Computer Science BooksNumerical Computation Books

LAPACK Users' Guide, 3rd Edition

LAPACK Users' Guide, 3rd Edition

LAPACK Users' Guide, 3rd Edition

This book covers the following topics: Computers for which LAPACK is Suitable, LAPACK Compared with LINPACK and EISPACK, LAPACK and the BLAS, Availability of LAPACK, Commercial Use of LAPACK, Installation of LAPACK, Documentation for LAPACK, Support for LAPACK and Errata in LAPACK.

Author(s):

sNA Pages
Similar Books
Introduction to Numerical Computation

Introduction to Numerical Computation

This is an exhaustive PDF written by Lars Elden, Linde Wittmeyer-Koch, and Hans Bruun Nielsen. In fact, this really is an exemplary introduction to numerical computation. The text begins with the basics like error analysis and computer arithmetic, which gives a very solid ground for the origin and handling of numerical errors. It proceeds further to explain more basic topics related to function evaluation, solutions of nonlinear equations, and interpolation techniques. Next, it describes procedures for improving numerical estimates using differentiation and Richardson extrapolation. This is followed by full details of integration, systems of linear equations, and approximation. Finally, ordinary differential equations complete a thorough course of study that will prepare the reader with both the theory and practice that will serve in carrying out numerical computations.

s383 Pages
Numerical Methods for Computational Science and Engineering

Numerical Methods for Computational Science and Engineering

The resource described here is an overview of numerical methods important in the study of computational science and engineering. The text starts off with Computing with Matrices and Vectors, foundational elements in many algorithms. The note moves forward and explains Direct Methods for Linear Systems of Equations and Direct Methods for Linear Least Squares Problems, important problem-solving aspects in linear algebra. The Filtering Algorithms for data processing are reviewed, while Data Interpolation and Data Fitting in 1D discuss ways of approximating onedimensional data. Approximation of Functions in 1D and Numerical Quadrature introduce the techniques on function approximation and integration. It also discusses Iterative Methods for Non-Linear Systems of Equations and Eigenvalues-a critical topic needed for solving complex systems. It finally includes Numerical Integration and Structure Preserving Integration, fundamental to perform numerical calculations with appropriate accuracy in scientific computing.

s839 Pages
Numerical Computation Guide

Numerical Computation Guide

This book is a technical reference to the floating-point environment supported on SPARCTM and x86 platforms running under the Solaris operating system. The book describes the Floating-Point Environment, the representation and computation of floating point numbers and how the results of arithmetic operations are rounded. The Software and Hardware Support section describes how numerical operations are passed between the hardware and software of the system. The book should be indispensable to anyone seeking an understanding of how numerical computations are executed and optimized on Solaris systems. In particular, it will be an asset worth having in real life for developers and engineers working in the field of numerical algorithms within this particular environment of computing and offers a deep view into performance and accuracy considerations.

sNA Pages
Numerical Methods for Scientific Computing

Numerical Methods for Scientific Computing

It gives an explanation of all the different numerical methods of scientific computing. It starts with the basics, which is Root Finding and Orthogonal Functions, solving equations and analyzing functions. Finite Differences and Divided Differences included for the needs in the process of numerical differentiation and interpolation. Interpolation and Curve Fitting are given to outline estimation and modeling. It also includes Z-Transforms and Summation Formulas for signal processing and numerical summation. Quadrature Formulas and Ordinary Differential Equations are explained for integration and the solution of differential equations. Partial Differential Equations, Integral Equations, and Stability and Error Analysis form the advanced topics for numerical methods coverage. Further, Monte Carlo Techniques, Message Passing Interface, and Simulation Modeling are included to point out methods for probabilistic simulations and parallel computing.

sNA Pages