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Chapter 1

Introduction

1.1 Introduction to the Course

This set of lecture notes has been prepared as a material for a logic course given
in the Swedish National Graduate School in Computer Science (CUGS).

The course is focused on various aspects of classical and non-classical logics,
including:

• the classical propositional and predicate calculus

• modal logics, including logics of programs and temporal logics

• fixpoint calculus.

The main emphasis is put on automated deduction and computer science ap-
plications of considered logics. Automated deduction techniques are presented
mainly in the context of the classical logics. The following techniques are con-
sidered:

• resolution method

• sequent calculus

• analytic tableaux.

Application areas include:

• formal specification and verification of software

• formal specification of data structures

• logic programming and deductive databases

9



10 CHAPTER 1. INTRODUCTION

• knowledge representation and commonsense reasoning.

This set of lecture notes is mainly based on the books [BDRS95, BDRS98,
D�LSS02, Sza92, Sza95] and papers [D�LS97, NOS99]. An excellent textbook on
mathematical logic is [EFT94]. These sources contain a comprehensive list of
the relevant literature.

1.2 Introduction to Logics

Logical formalisms are applied in many areas of computer science. The extensive
use of those formalisms resulted in defining hundreds of logics that fit nicely to
particular application areas. Let us then first clarify what do we mean by a
logic.

Recall first the rôle of logic in the clarification of human reasoning. In order to
make the reasoning fruitful, first of all we have to decide what is the subject of
reasoning or, in other words, what are we going to talk about and what language
are we going to use. The next step is to associate a precise meaning to basic
notions of the language, in order to avoid ambiguities and misunderstandings.
Finally we have to state clearly what kind of opinions (sentences) can be formu-
lated in the language we deal with and, moreover, which of those opinions are
true (valid), and which are false (invalid). Now we can investigate the subject
of reasoning via the validity of expressed opinions. Such an abstraction defines
a specific logic.

Traditionally, there are two methodologies1 to introduce a logic:

• syntactically, via a notion of a proof and proof system

• semantically, via a notion of a model, satisfiability and truth.

Both methodologies first require to chose a language that suits best a particular
application. Of course we use different vocabulary talking about politics and
about computer science. Moreover, we even use different linguistic tools. Logical
language is defined by means of basic concepts, formulas and logical connectives
or operators. Thus a syntax of the language is to be defined, so that one obtains
a precise definition what are well formed sentences or formulas.

Having a language syntax defined, one knows how to “speak” correctly and
does not know what do the spoken sentences mean and whether these are true
or false. Thus a meaning (also called an interpretation) is to be attached to
any well formed formula of the logic. The meaning is given either by the notion
of provability, or satisfiability. Namely, a sentence (formula) is considered valid
provided that it can be proved (syntactical approach) or it is valid in models
accepted as semantical structures (semantical approach).

1And it is often desirable and even necessary to follow both methodologies, assuming that
they lead to compatible results.
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I find the semantical approach more fundamental and consider the syntactic
approach as (still extremely important) tool. Thus logic will always be presented
here primarily via the underlying semantics, showing also how various types of
proof systems for the logics can be constructed. We then accept the following
definition of logic.

Definition 1.2.1 By a logic we shall mean triple L = 〈F,C, |=〉, where:

• F is a set of well-formed formulas

• C is a class of possible interpretations (models)

• |=⊆ C × F is a satisfiability relation.

For I ∈ C and α ∈ F , if I |= α then we say that interpretation I satisfies
formula α or I is a model od α. For C′ ⊆ C and F ′ ⊆ F , by C′ |= F ′ we shall
mean that for any interpretation I ∈ C′ and any formula α ∈ F ′ we have that
I |= α.

A formula is a tautology of L iff for any interpretation I ∈ C, we have that
I |= α. A formula is satisfiable iff there is an interpretation I ∈ C, such that
I |= α.

Another fundamental notion in logics is that of consequence. Namely, Definition
1.2.1 provides us with a meaning of a formula, but at that abstract level we still
do not know what it means that a formula is a consequence of other formulas.
In the following definition we clarify the concept.

Definition 1.2.2 Let L = 〈F,C, |=〉 be a logic. Then we say that a formula α ∈
F is a semantic consequence of a set of formulas F ′ ⊆ F iff for any interpretation
I ∈ C we have that

I |= F ′ implies I |= α.

1.3 Introduction to Proof Systems

Observe that the definition of tautologies does not provide us with any tools
for systematically proving that a given formula is indeed a tautology of a given
logic or is a consequence of a set of formulas.

One of possible ways of providing such tools is to define suitable proof systems.
Traditionally proof systems are often used to define new logic instead of defining
them via semantics. Then one immediately obtains tools for proving the validity
of formulas.

Hilbert-like axiomatic methods based on proof systems are accepted as a basis
for formal and verifiable reasoning about both tautologies and properties of
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interpretations. They are very intuitive and easy to understand. However,
there are currently much more open questions concerning the implementation
of Hilbert-like proof systems than there are suitable solutions. The reasoning
with Hilbert-like proof systems depends on accepting a set of basic axioms (i.e.
“obvious” formulas admitted without proof), together with derivation rules,
and then on deriving conclusions directly from axioms and/or theorems proved
previously. Derivation rules are usually formulated according to the following
scheme:

if all formulas from a set of formulas (so-called premises) A are
proved then formula α (so-called conclusion) is proved, too.

Such a rule is denoted by A � α or often by
A

α
. The set of provable formu-

las is defined inductively as the least set of formulas satisfying the following
conditions:

• every axiom is provable (note that some of the axioms may be so-called
nonlogical axioms coming from the specific theory we are working in).

• if the premises of a rule are provable then its conclusion is provable, too.

One can then think of proof systems as nondeterministic procedures, for the
process of proving theorems can be formulated as follows, where formula α is
the one to be proved valid:

if α is an axiom, or is already proved, then the proof is finished,
otherwise select (nondeterministically) a set of axioms or previously
proved theorems and then apply a nondeterministically chosen ap-
plicable derivation rule. Accept the thus obtained conclusion as the
new theorem and repeat the described procedure.

As axioms are special kinds of derivation rules (namely those with the empty set
of premises), nondeterminism can appear only when there are several derivation
rules that can be applied during the proof.

Gentzen-like proof systems, also called sequent calculus, offer a more general
form of derivation rules. The key rôle is played here by the notion of sequents
taking the form A⇒ B, where both A and B are finite sets of formulas. Intu-
itively, sequent A⇒ B means the following:

the conjunction of formulas of set A implies the disjunction of for-
mulas of B, where, by convention, conjunction of the empty set of
formulas is True, while its disjunction is False.

There is, however, an essential difference between the Hilbert and Gentzen meth-
ods of proofs. Namely, as Hilbert-like calculus is used to derive single formulas
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from sets of formulas, so sequent calculus allows us to derive sequents from other
sequents. Moreover, Gentzen- and Hilbert-like proofs go in opposite directions.
That is to say, in Hilbert-like systems the formula to be proved is obtained in
the final stage of the proof, while in a Gentzen-like proof it is a starting point
of the proof. The Gentzen-like (nâıve) proof procedure can then be formulated
as follows, where formula α is to be proved valid.

Start the whole proof from sequent ∅ ⇒ {α}. If the sequent (or all
other sequents obtained during derivation, if any) is (are) indecom-
posable (i.e. rules are no longer applicable) then check whether all of
the final sequents are axioms. If the answer is yes, then α is proved
valid, otherwise it is invalid. If some sequent is decomposable then
first decompose it and then repeat the described procedure.

Axioms in Gentzen-like proof systems are usually very simple. For instance,
any sequent A⇒ B such that A∩B 
= ∅ is an axiom in many proof systems for
tautologies. Derivation rules, however, take the more complicated form S � B,
where S is a set of sequents and B is a sequent. A rule S � B is often denoted

by
B

S
.

Note that Hilbert-like proof systems are easy to use while reasoning about the-
ories. One has only to add specific axioms of a theory to axioms of logic and
then to apply derivation rules. Many theories do have nice Gentzen-like ax-
iomatizations. However, obtaining them is often not a trivial task. Moreover,
implementation of Gentzen-like axiomatizations of theories raises new problems
and considerably complicates the process of finding proofs.

Let us summarize the above discussion with the following definitions.

Definition 1.3.1 Let L be a logic.

• By a sequent of logic L we mean any expression of the form A⇒ B, where
A and B are finite sets of formulas of L.

• By a Gentzen-like proof system for logic L we mean any pair 〈GAx, G〉
such that

– GAx, called a set of axioms, is any set of sequents of L,

– G is any set of derivation rules of the form S � s, where S is a set of
sequents of L, and s is a sequent of L.

• We say that sequent s is indecomposable in a given Gentzen-like proof
system iff s is an axiom or no rule of the system is applicable to s. A
sequent is called decomposable iff it is not indecomposable.

• By a Hilbert-like proof system for logic L we mean any pair 〈HAx, H〉
such that



14 CHAPTER 1. INTRODUCTION

– HAx, called a set of axioms, is any set of formulas of L,
– H is any set of derivation rules of the form A � p, where A is a set

of formulas of L, and p is a formula of L.

Note that separating axioms from rules in the case of Hilbert-like proof systems
is not necessary. Such a separation, however, allows us to treat both Gentzen-
and Hilbert-like proof systems uniformly. Note also that axioms and derivation
rules are usually given by schemes rather than by specific sequents, formulas or
sets. For instance, writing p, p→ q � q we always think of p and q as variables
ranging over set of formulas. Thus the above scheme of rules defines (usually
infinitely) many rules that can be obtained by substituting p and q with specific
formulas.

Definition 1.3.2 Let P = 〈Ax,C〉 be a Gentzen (Hilbert)-like proof system for
logic L. By a proof in P we mean a rooted tree labelled by sequents (formulas)
such that

• the height of the tree is finite,

• all leaves are labelled by elements of Ax (sequents or formulas, respec-
tively),

• any node n in the tree is labelled either by an element of Ax, or by sequent
(formula) s for which there is a derivation rule D � s in C with D = {t|t
is a label of a son of n in the tree}.

We say that the sequent (formula) s is provable in P iff there is a proof in P
with a root labelled by s.

Since we are not going to discuss here applications of Gentzen-style proofs of
theories, the next definition concerns Hilbert-like proof systems only.

Definition 1.3.3 Let P = 〈HAx,H〉 be a Hilbert-like proof system for logic
L. By a syntactic consequence (w.r.t. P ) of a set of formulas A we mean
any formula provable in the proof system 〈HAx ∪ A,H〉. The set of syntactic
consequences (w.r.t. P ) of set A is denoted by CP (A).

We conclude this section with an informal discussion of soundness and com-
pleteness. As mentioned in the introduction, soundness is always the most
fundamental property of any reasonable proof system. Soundness means that
all proved conclusions are semantically true. In terms of procedures, one can
define soundness as correctness of the procedure implementing the proof system.
All the results of the procedure must then be correct. Completeness, however,
means that all semantically true conclusions can be obtained as results of the
procedure. In other words, soundness means that all answers given by a proof
system are correct, while completeness means that all correct answers can be
obtained using the proof system. As soundness is then always required, com-
pleteness serves as a measure of the quality of proof systems.
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1.4 BNF Notation

We define the syntax of various logical languages using BNF notation with some
commonly used additions. Elements (words) of the defined language are called
terminal symbols. Syntactic categories, i.e. sets of well formed expressions are
represented by so-called non-terminal symbols and denoted by 〈Name〉, where
Name is the name of a category. Syntactic categories are defined over non-
terminal and terminal symbols using rules of the form:

〈S〉 ::= E1 || E2 || . . . || Ek

meaning that 〈S〉 is to be the least set of words containing only terminal symbols
and formed according to expression E1 or E2 or . . . or Ek. Notation {E} is used
to indicate that expressionE can be repeated 0 or more times and [E] - to denote
that expression E is optional.

Example 1.4.1 Assume we want do define arithmetic expressions containing
the variable x and using addition + and brackets ( and ). Terminal symbols are
then x,+, (, ). We need only one non-terminal symbol representing well-formed
expressions and denoted by 〈Expr〉. The following rule defines the syntactic
category 〈Expr〉, i.e. the set of all well-formed expressions:

〈Expr〉 ::= x || 〈Expr〉 + 〈Expr〉{+〈Expr〉} || (〈Expr〉).

Now, for instance, (x + x+ x) + x is a well-formed expression, but x+ 〈Expr〉
is not, since 〈Expr〉 is not a terminal symbol.
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Chapter 2

Propositional Calculus

2.1 Introduction

According to the methodology described in section 1.2 we first have to decide
upon the language we deal with.

Propositional logic is used to investigate properties of complex sentences built
from elementary sentences by using propositional connectives like negation, con-
junction, disjunction, implication, etc. Whether complex sentences are true or
not, depends solely on logical values of elementary sentences involved in them.
For example, elementary sentence p implies elementary sentence q if and when
p is false or q is true. Thus in classical propositional logic we need a language
containing constants denoting truth values, a set of propositional variables that
serve to represent elementary sentences, and the set of propositional connectives
used to build complex sentences. The sentences (or formulas) of the logic are
formed from elementary sentences by applying propositional connectives. The
meaning associated with complex sentences is given by valuations of elementary
sentences together with a method of calculating values of complex sentences
from their components.

2.2 Syntax of Propositional Calculus

Let V0 be a set of propositional variables (or boolean variables), i.e. variables
representing truth values True,False standing for true and false, respectively.
The set {True,False} is denoted by Bool. We further assume that truth values
are ordered, False ≤ True, and use min(. . .) and max(. . .) to denote minimum
and maximum of a given set of truth values.

We build propositional formulas (sentences) from truth values and propositional
variables by applying propositional connectives ¬,∧,∨,→,≡, standing for nega-

17
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tion, conjunction, disjunction, implication and equivalence, respectively. The set
of propositional formulas is denoted by F0. More formally, the syntax of propo-
sitional formulas is defined by the following rules:

〈F0〉 ::= 〈Bool〉 || 〈V0〉 || ¬〈F0〉 || 〈F0〉 ∧ 〈F0〉 || 〈F0〉 ∨ 〈F0〉 ||
〈F0〉 → 〈F0〉 || 〈F0〉 ≡ 〈F0〉 || (〈F0〉) || [〈F0〉]

2.3 Semantics of Propositional Calculus

The semantics of propositional formulas is given by assigning truth values to
propositional variables and then calculating values of formulas. Let

v : V0 −→ Bool

be such an assignment (called a valuation of propositional variables). Then v is
extended to define the truth value of propositional formulas as follows:

v(¬α) =
{

True if v(α) = False
False otherwise

v(α ∧ β) = min(v(α), v(β))
v(α ∨ β) = max(v(α), v(β))
v(α→ β) = True if and only if v(α) ≤ v(β)
v(α ≡ β) = True if and only if v(α) = v(β).

A propositional formula α is satisfiable if there is a valuation v such that v(α) =
True. It is a tautology if for all valuations v we have v(α) = True.

By a propositional literal we understand a propositional variable or its negation.
A literal is positive if it is a variable and is negative if it is the negation of
a variable. A propositional clause is any disjunction of propositional literals.
A propositional Horn clause is a clause with at most one positive literal. We
say that a formula is in conjunctive normal form, CNF, if it is a conjunction of
clauses. It is in disjunctive normal form, DNF, if it is a disjunction of conjunc-
tions of literals. It is in negation normal form, NNF, if any negation occurs only
in literals.

Observe that Horn clauses are often equivalently presented in the form of im-
plication:

(p1 ∧ . . . ∧ pn)→ q

or

(p1 ∧ . . . ∧ pn)→ False.
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Any formula can be equivalently transformed into CNF, DNF and NNF. The
transformation, into CNF or DNF may exponentially increase the size of the
formula, while the transformation into NNF may increase or decrease the size
of the formula by a constant factor.

Algorithm 2.3.1 Input: Formula α ∈ F0.

Output: Formula β ∈ F0 such that β ≡ α and β is in NNF.

Algorithm: Move negation inside of the formula α using the following rules,
until no rule is applicable:

sub-formula substitute by
¬True False
¬False True
¬¬γ γ
¬(α ∨ β) (¬α) ∧ (¬β)
¬(α ∧ β) (¬α) ∨ (¬β)
¬(α→ β) α ∧ (¬β)
¬(α ≡ β) [α ∧ (¬β)] ∨ [(¬α) ∧ β]

2.4 The Complexity of Propositional Calculus

Theorem 2.4.1 [Cook] The problem of checking satisfiability of propositional
formulas is NPTime-complete. Checking whether a formula is a propositional
tautology is a co-NPTime-complete problem.

There are some special cases where the reasoning is in PTime. One of the most
interesting cases is provided by the following theorem.

Theorem 2.4.2 The problem of checking satisfiability of propositional Horn
clauses is in PTime.

2.5 Exercises

1. Design an algorithm to transform a given propositional formula into an
equivalent propositional formula in the CNF.

2. Using the algorithm provided as a solution to exercise 1, transform formula
(p1 ∧ q1) ∨ (p2 ∧ q2) ∨ (p3 ∧ q3) into the CNF.

3. Find a formula size of which grows exponentially after the transformation
defined by algorithm designed in exercise 1.

4. Design an algorithm to transform a given propositional formula into an
equivalent propositional formula in the DNF.
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5. Using the algorithm provided as a solution to exercise 4, transform formula
(p1 ∨ q1 ∨ r1) ∧ (p2 ∨ q2 ∨ r2) into the DNF.

6. Design PTime algorithms for:

• checking the satisfiability of a formula in DNF

• checking the validity of a formula in CNF.



Chapter 3

Predicate Calculus

3.1 Introduction

Predicate calculus, known also as the classical first-order logic serves as a means
to express properties of individuals and relationships between individuals (ob-
jects of a domain). It is an extension of propositional calculus and provides
syntax that allows one to talk about relations and functions. Quantifiers “for
all” and “exists” are also available. The quantifiers range over individuals1.

Predicate calculus is a very powerful formalism2. It has a great variety of appli-
cations ranging from mathematics to computer science and artificial intelligence.
It is very well developed. In particular there are many well-developed automated
theorem proving methods. Thus is is widely used as a “kernel” of many other
formalisms.

3.2 Syntax of Predicate Calculus

Let VI be a set of individual variables representing values of some domain. In
order to define the language and semantics of predicate calculus (or, in other
words, first-order logic) we assume that we are given a set of function symbols
Fun = {fi : i ∈ I} and relation symbols Rel = {Rj : j ∈ J}, where I, J are
some finite sets. Functions and relations may have arguments. The number of
arguments is called the arity of the function or relation, respectively. Functions
and relations of arity 0 are called individual constants, or constants, for short,
and boolean constants. The set of individual constants is denoted by Const.

1In the second-order logic there are also quantifiers ranging over sets or relations, in the
third-order logic over sets of sets etc.

2In fact, it is the strongest logic satisfying some natural conditions, with partially com-
putable set of tautologies.
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Symbols of arity 1 are usually called unary and of arity 2 are called binary.3

The set of function symbols and relation symbols together with their arities is
called the signature or vocabulary. We sometimes write fai

i , R
aj

j to indicate that
function symbol fi has ai arguments and relation symbol Rj has aj arguments.
By a signature of a function or a relation symbol we understand the number of
arguments together with their types and the type of the result.

Functional expressions in predicate calculus are represented by terms. We define
the set of terms, denoted by Terms, by the following rule:

〈Terms〉 ::= Const || VI || 〈Fun〉([〈Terms〉]{, 〈Terms〉})

Terms without variables are called ground terms.

Formulas of predicate calculus, denoted by FI, are now defined by means of the
following rules.

〈FI〉 ::= 〈Bool〉 || 〈Rel〉([〈Terms〉]{, 〈Terms〉}) ||
¬〈FI〉 || 〈FI〉 ∧ 〈FI〉 || 〈FI〉 ∨ 〈FI〉 || 〈FI〉 → 〈FI〉 || 〈FI〉 ≡ 〈FI〉 ||
∀〈VI〉.〈FI〉 || ∃〈VI〉.〈FI〉 || (〈FI〉) || [〈FI〉]

Formulas of the form 〈Rel〉([〈Terms〉]{, 〈Terms〉}) are called atomic formulas.
Atomic formulas without variables are called ground formulas.

A first-order formula is called open if it does not contain quantifiers. A variable
occurrence is free in a formula if it is not bound by a quantifier, otherwise it is
called bound. A formula is called closed (or a sentence) if it does not contain
free occurrences of variables. Any set of sentences is called a first-order theory,
or theory, for short. A theory is understood as a conjunction of its sentences.

A formula is in the prenex normal form, PNF, if all its quantifiers are in its
prefix, i.e. it is of the form Q1x1. . . .Qkxk.α, where Q1, . . . , Qk ∈ {∀, ∃} and
α is an open formula. Any formula can be equivalently transformed into PNF.
The transformation into PNF may increase or decrease the size of the formula
by a constant factor.

By a universal formula we mean a formula in the prenex normal form, without
existential quantifiers. A set of universal formulas is called a universal theory.
By a first-order literal (or literal, for short) we understand an atomic formula
or its negation. A first-order clause is any disjunction of first-order literals,
preceded by a (possibly empty) prefix of universal quantifiers. A literal is posi-
tive if it is an atomic formula and is negative if it is the negation of an atomic
formula. A relation symbol R occurs positively (resp. negatively) in a formula α
if it appears under an even (resp. odd) number of negations. A relation symbol
R is similar to a formula α iff the arity of R is equal to the number of free

3Observe that in the case of binary relations or functions we often use traditional infix
notation. For instance we write x ≤ y rather than ≤ (x, y).



3.3. SEMANTICS OF PREDICATE CALCULUS 23

variables of α. A first-order Horn clause, or Horn clause, for short, is a clause
with at most one positive literal.

Semi-Horn formulas are defined by the following syntax rules:

〈semi-Horn Formula〉 ::=
〈Atomic Formula〉 → 〈FI〉 || 〈FI〉 → 〈Atomic Formula〉

where the formula 〈FI〉 is an arbitrary classical first-order formula positive w.r.t.
〈Atomic Formula〉, and the only terms allowed in the atomic formula are vari-
ables. The atomic formula is called the head of the formula and the first-order
formula is called the body of the formula. Semi-Horn formulas are assumed to
be implicitly universally quantified, i.e. any free variable is bound by an im-
plicit universal quantifier. Semi-Horn rules (or rules, for short), are semi-Horn
formulas in which the only terms are constant and variable symbols.

If the head of a rule contains a relation symbol R, we call the rule semi-Horn
w.r.t. R. If the body of a rule does not contain the relation symbol appearing in
its head, the rule is called nonrecursive. A conjunction of rules (nonrecursive)
w.r.t. a relation symbol R is called a (nonrecursive) semi-Horn theory w.r.t. R.

3.3 Semantics of Predicate Calculus

The semantics of first-order formulas is given by a valuation of individual vari-
ables together with an interpretation of function symbols and relation symbols
as functions and relations. The interpretation of function symbols and relation
symbols is defined by relational structures of the form

〈Dom, {fDom
i : i ∈ I}, {RDom

j : j ∈ J}〉,

where:

• Dom is a non-empty set, called the domain or universe of the relational
structure

• for i ∈ I, fDom
i denote functions corresponding to function symbols fi

• for j ∈ J , RDom
j denote relations corresponding to relation symbols Rj .

For the sake of simplicity, in the rest of the book we often abbreviate fDom
i and

RDom
j by fi and Rj , respectively.

For a given signature Sig, by STRUC[Sig] we denote the class of all relational
structures built over the signature Sig.

Let v : VI −→ Dom be a valuation of individual variables. By vx
a we shall denote

the valuation obtained from v by assigning value a to variable x and leaving all
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other variables unchanged, i.e.:

vx
a(z) =

{
a if z = x
v(z) otherwise

The valuation v is extended to provide values of terms as follows, where f ∈ Fun
is a k-argument function symbol and t1, . . . , tk ∈ Terms:

v(f(t1, . . . , tk)) = fDom(v(t1), . . . , v(tk)).

Then v is extended to define the truth value of first-order formulas as follows,
where R ∈ Rel is a k-argument relation:

v(R(t1, . . . , tk)) = RDom(v(t1), . . . , v(tk))

v(¬α) =
{

True if v(α) = False
False otherwise

v(α ∧ β) = min(v(α), v(β))
v(α ∨ β) = max(v(α), v(β))
v(α→ β) = True if and only if v(α) ≤ v(β)
v(α ≡ β) = True if and only if v(α) = v(β)

v(∀x.α(x)) = min({vx
a(α(x)) : a ∈ Dom})

v(∃x.α(x)) = max({vx
a(α(x)) : a ∈ Dom}).

A first-order formula α is satisfiable if there is a relational structure

M = 〈Dom, {fDom
i : i ∈ I}, {RDom

j : j ∈ J}〉

and a valuation v : VI −→ Dom such that its extension to FI satisfies v(α) = True.
Formula α is valid in a relational structureM if for all valuations v : VI −→ Dom,
v(α) = True. In such a case we also say that M is a model for α. Formula α is a
tautology if for all relational structures of suitable signature and all valuations
v we have v(α) = True. For a set of formulas F ⊆ FI and formula α ∈ FI, by
entailment (or a consequence relation)4, denoted by F |= α, we mean that α is
satisfied in any relational structure which is a model of all formulas of F . By
Cn(F ) we mean the set of all semantical consequences of F , i.e.

Cn(F ) = {α ∈ FI : F |= α}.

It is important to note that in many applications one deals with so-called
many-sorted interpretations. In such a case one deals with elements of dif-
ferent types, called sorts, i.e. the underlying domain Dom is a union of disjoint

4We always assume that G |= β means that formula β is valid in all models of the set of
formulas G, where formulas, validity and the notion of models depend on a given logic.
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sets, Dom = Dom1 ∪ . . . ∪ Domn and arguments and results of function and
relation symbols are typed. For instance, one can consider two-sorted relational
structure Stacks = 〈E ∪ S, push, pop, top〉, where E is a set of elements and S
is a set of stacks. Now, for example top takes as argument a stack (from S) and
returns as its result an element of E. The definitions provided previously can
easily be adapted to deal with this case.

3.4 The Complexity of Predicate Calculus

Using predicate calculus as a practical reasoning tool is somewhat questionable,
because of the complexity of the logic. Existing first-order theorem provers solve
the reasoning problem partially and exploit the fact that checking whether a
first-order formula is a tautology is partially computable.

The following theorem quotes the most important facts on the complexity of
general first-order reasoning.

Theorem 3.4.1

1. The problem of checking whether a given first-order formula is a tautology
is uncomputable [Church] but is partially computable [Gödel].

2. The problem of checking whether a given first-order formula is satisfiable,
is not partially computable [Church].

Fortunately, when fixing a finite domain relational structure, one ends up in a
tractable situation, as stated in the following theorem.

Theorem 3.4.2 Checking the satisfiability and validity of a given fixed first-
order formula in a given finite domain relational structure is in PTime and
LogSpace w.r.t. the size of the domain.

Observe that the above theorem holds only when a finite structure is fixed. If
one would like to investigate properties of first-order formulas valid in all finite
domain structures, one would end up in quite complex situation, as we have the
following theorem.

Theorem 3.4.3 [Trakhtenbrot]

1. The problem of checking whether a first-order formula is valid in all finite
domain structures is not partially computable.

2. The problem of checking whether a first-order formula is satisfied in a
finite domain structure is not computable but is partially computable.
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3.5 Unification of terms

One of the substantial tools for many methods of automated deduction is that
of the unification of terms. The unification means that given two terms, we are
looking for a substitution of variables such that the terms become identical.

Definition 3.5.1 By a substitution we understand any mapping from vari-
ables to terms. We say that a substitution σ is a unifier for the set of terms
T = {t1, t2, . . . , tk} iff σ(t1) = σ(t2) = . . . = σ(tk). We say that σ is a most
general unifier of T iff it is a unifier and for any other unifier σ′ of T there is a
substitution σ′′ such that σ′ = σ ◦ σ′′.

Example 3.5.2 Substitution σ = [x := f(y)] unifies terms g(f(y), f(x)) and
g(x, f(f(y))). In fact, it is the most general unifier for the two terms.

Substitution σ′ = [x := f(h(z)); y := h(z)] is also a unifier of the terms, but it
is not the most general unifier. In fact, σ′ = σ ◦ [y := h(z)].

On the other hand, terms f(x) and g(x) are not unifiable as no substitution of
variables can make them identical.

Proposition 3.5.3 If σ and σ′ are most general unifiers for terms t1, . . . , tn
then there there is a renaming of variables ρ such that σ = σ′ ◦ ρ.

Let us now formulate the algorithm that unifies two terms or answers that such
a unification is not possible.

Definition 3.5.4 Let t1, t2 be two terms. By a disagreement of t1 and t2 we
understand a pair t′1, t′2 of sub-terms of t1 and t2, respectively, such that:

• first symbols of t′1 and t′2 are different

• terms t1 and t2 are identical up to the occurrence of t1 and t2, respectively
(counting from left to right).

Example 3.5.5 The disagreement for terms f(x, g(y, h(z)) and f(x, g(h(u), y))
is the pair y, and h(u).

Algorithm 3.5.6 [A unification algorithm]

Input: terms t1, t2.

Output: the most general unifier σ of t1, t2 if it exists, otherwise inform, that it
does not exist.

Set σ to be the identity;

while σ(t1) 
= σ(t2) do steps 1-5:
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1. let t′1 and t′2 be a disagreement for terms σ(t1) and σ(t2)

2. if none of terms t′1 and t′2 is a variable then answer that the
most general unifier does not exist and stop

3. if one of the terms t′1 and t′2 is a variable, say x, then denote
the other term by t (if both terms are variables then the choice
is arbitrary)

4. if x occurs in t then answer that the most general unifier does
not exist and stop

5. set σ := σ ◦ [x := t].

3.6 Skolemization

Skolemization is a technique for eliminating existential first-order quantifiers.

Assume we are given a formula α in the PNF form. In order to obtain a Skolem
form of α we eliminate all existential quantifiers from left to right as follows:

• if α is of the form ∃x.β(x, ȳ) then remove the quantifier ∃x and replace all
occurrences of x in α by a new constant symbol (the new symbol is called
a Skolem constant)

• if α is of the form ∀z̄.∃x.Q̄.β(z̄, x, ȳ) then remove the quantifier ∃x and
replace all occurrences of x in α by term f(z̄), where f is a new function
symbol (f is called a Skolem function).

Example 3.6.1 Consider formula ∃x.∀y.∃z.∀t.∃u.R(x, y, z, t, u). The Skolem
form of the formula is ∀y.∀t.R(a, y, f(y), t, g(y, t)).

Proposition 3.6.2 Skolemization preserves the satisfiability of formulas, i.e.,
a formula is satisfiable iff its Skolem form is satisfiable.

3.7 Exercises

1. Show semantically that the following formulas are tautologies of predicate
calculus, where Q stands for a quantifier ∀ or ∃, and formula γ does not
contain variable x:

(a) ∃x.(α(x) ∨ β(x)) ≡ ∃x.α(x) ∨ ∃x.β(x)

(b) ∀x.(α(x) ∧ β(x)) ≡ ∀x.α(x) ∧ ∀x.β(x)

(c) Qx.(α(x)) ∧ γ ≡ Qx.(α(x) ∧ γ)

(d) γ ∧Qx.(α(x)) ≡ Qx.(γ ∧ α(x))
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(e) Qx.(α(x)) ∨ γ ≡ Qx.(α(x) ∨ γ)

(f) γ ∨Qx.(α(x)) ≡ Qx.(γ ∨ α(x))

(g) α(t̄) ≡ ∀x̄(α(t̄← x̄) ∨ x̄ 
= t̄)

(h) α(t̄1) ∨ · · · ∨ α(t̄n) ≡ ∃x̄.(x̄ = t̄1 ∨ · · · ∨ x̄ = t̄n) ∧ α(t̄1 := x̄)).

2. Design an algorithm to transform a given predicate formula into an equiv-
alent predicate formula in the PNF.

3. Using the algorithm provided as a solution to exercise 2, transform formula
∀x.[∃y.(R(x) ∨ P (y) ∨ ∀x.S(x, y))] ∧ ∃x.R(x) into the PNF.

4. Design algorithms that prove Theorem 3.4.2.

5. Generalize Algorithm 3.5.1 to an arbitrary number of terms.

6. Transform the formula ∃x.∀y.∃z.(P (x, y) ∨Q(z)) into the Skolem form.

7. Show that Skolemization does not preserve the validity of formulas.



Chapter 4

Applications of Predicate
Calculus

4.1 Specifying Data Structures

Data structures play an important rôle in programming. Formal specification
and analysis of abstract data types occupies an important place in current re-
search on the description of semantics of programming languages and on the
process of program design and verification. In this section we shall show how
to specify data structures by means of predicate calculus.

Data structure consists of objects (elements) and operations performed on the
objects. Let us start with a simple example.

Example 4.1.1 Consider a data structure representing stacks. In this case we
deal with two types of objects, E and S, representing elements and stacks, re-
spectively. The signatures of typical operations on stacks are defined as follows1:

top : S −→ E

pop : S −→ S

push : E × S −→ S

empty : ∅ −→ S

err : ∅ −→ E

Now we are ready to specify the properties of operations.

∀e.∀s.[push(e, s) 
= empty] (4.1)
1Observe that empty and err have no arguments and thus are constant symbols. Their

intended meaning is to represent the empty stack and an error, respectively.

29
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top(empty) = err (4.2)
∀e.∀s.[e = top(push(e, s))] (4.3)
pop(empty) = empty (4.4)
∀e.∀s.[s = pop(push(e, s))] (4.5)
∀s.[s 
= empty → s = push(top(s), pop(s))] (4.6)
∀s.∀s′.[s = s′ ≡ (top(s) = top(s′) ∧ pop(s) = pop(s′))]. (4.7)

Of course, one would like to know what is the quality of specification provided
in Example 4.1. Are there any missing important details? The specification
might have many models. What then should be accepted as its semantics?

Let us first start with the question of semantics. There are many approaches,
but I like best the one originating from the algorithmic logic (see section 11.3).
Here, we assume that stacks are built only by applying the available operations.
In the context of programming, such an assumption is well justified. We just
do not allow unusual stacks appearing in the model “from nowhere”. Thus we
assume that any stack is obtained from the empty stack by iterating push, i.e.
any stack s is assumed to be definable by a term of the following form:

s = push(e1, push(e2, push(. . . , push(en, empty)))), (4.8)

where e1, . . . , en are elements placed on the stack, and in the case when n = 0,
s is defined to be empty. Unfortunately, the property (4.8) is not expressible
by means of the predicate calculus2.

Let us now fix the set E of elements. We shall show that all models in which any
stack is definable as in formula (4.8) are isomorphic, i.e. that these models have
logically the same properties and the implementation may only differ in such
details as representation of elements and stacks. Logical properties of stacks as
well as properties of programs using stacks remain the same, provided that the
implementation satisfies properties (4.1)-(4.7) together with the meta-property
(4.8).

Definition 4.1.2 Relational structures S1 and S2 are similar if they consist of
the same number of sorts, functions and relations and the signatures of corre-
sponding functions and relations are the same. By a homomorphism between
S1 and S2 we shall mean a mapping h : S1 −→ S2 such that:

1. for any function f1
i of S1 and corresponding function f2

i of S2

h(f1
i (a1, . . . , an)) = f2

i (h(a1), . . . , h(an))

2. for any relation r1i of S1 and corresponding function r2i of S2

r1i (a1, . . . , an)) iff r2i (h(a1), . . . , h(an)).
2It is expressible in stronger logics, like algorithmic or dynamic logic.
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By an isomorphism we understand a homomorphism which is one-to-one and
onto.

Example 4.1.3 [Example 4.1 continued] Assume that the set of elements E is
fixed and (4.1)-(4.7) together with the meta-property (4.8) hold. We shall show
that all models of the specification are isomorphic. Let S and T be two models
of (4.1)-(4.7). We define a mapping i : S −→ T as follows:

• i(e) def= e for e ∈ E
• i(push(e1, pushS(e2, pushS(. . . , pushS(en, empty

S))))) def=
pushT (e1, pushT (e2, pushT (. . . , push(en, empty

T )))),
where the superscripts indicate the appropriate structure.

By (4.8), i is defined on all elements and stacks and i is onto. Using property
(4.7) one can show that i is a one-to-one mapping. Let us now show that all
operations on stacks are preserved under i.

1. By definition of i, i(emptyS) = emptyT .

2. Consider i(topS(s)). By (4.8), s = emptyS or s = pushS(e, t) for some e
and t. In the first case, by definition of i and property (4.2), i(topS(s)) =
i(emptyS) = errS = errT = topT (emptyT ) = topT (i(emptyS)). In the
second case, by (4.3), (4.7) and definition of i,
i(topS(s)) = i(topS(pushS(e, t))) = e = topT (pushT (e, t)) = topT (i(s)).

3. The case of i(pop(s)) is similar to that of i(top(s)). Here properties (4.4),
(4.5) and (4.7) are to be applied.

4. Consider i(pushS(e, s)). Here the proof is carried out by structural in-
duction on terms representing stacks. Consider first the case when s =
empty. By definition of i, i(pushS(e, emptyS)) = pushT (e, emptyT ) =
pushT (i(e), i(emptyS)). In order to prove the induction step consider a
non-empty stack s. By (4.6) we have that s = pushS(topS(s), popS(s)).
Now pushS(e, t) = s, for some s. Thus
i(pushS(e, t)) = i(s) = i(pushS(topS(s), popS(s)).
By the definition of i and the fact that i preserves operations top and pop,

i(pushS(topS(s), popS(s)) = pushT (i(topS(s)), i(popS(s))) =
pushT (topT (s), popT (s)).

4.2 Predicate Calculus as a Programming Lan-

guage

Predicate logic is a successful application as a tool to express programs. In fact,
declarative programming, in particular the logic programming paradigm uses
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predicate calculus to express programs. PROLOG serves as the most popular
programming language based on the paradigm.

The man idea is to define computation by means of Horn clauses. In logic
programming, one deals with clauses written in the following form:

R(x̄)← R1(x̄1), . . . , Rk(x̄k)

with intended meaning that the conjunction of R1(x̄1), . . . , Rk(x̄k) implies R(x̄).
A logic program is simply a set of clauses, interpreted as the conjunction of
clauses. The semantics is given by the minimal model of all relations occurring
in a given program.

The underlying computation mechanism heavily depends on resolution and uni-
fication, which are discussed more deeply in further parts of the notes.

Example 4.2.1 Consider the well-known problem of Hanoi towers. One has
three towers and n rings, each of different size. Rings can be put only on rings
of a greater size. Initially all rings are on the first tower. Move all the rings onto
the second tower, assuming that the third tower might be used, too. Consider
the following logic program, where the intended meaning of H(n,A,B,C) is
“move n rings from A to B, using C, and the meaning of relation Move(X,Y )
is that the upper ring of tower X is moved into the tower Y :

H(n,A,B,C)← n = 0
H(n,A,B,C)← H(n− 1, A, C,B),Move(A,B), H(n− 1, C,B,A).

The above two simple clauses solve the problem.

4.3 Predicate Calculus as a Query Language

Predicate calculus appears as powerful as SQL when querying databases. In fact
one can use function-free fragment of predicate calculus as a query language.
Any formula of predicate calculus defines a new relation of arity equal to the
number of free variables occurring in the formula. Since in the case of databases,
one deals with finite structures, the complexity results quoted as Theorem 3.4.2
apply here, too.

Let us explain the idea using the following example.

Example 4.3.1 Consider a database containing the following relations:

• M(x),W (x) stating that person x is a man or a woman, respectively

• MC(x, y) stating that x and y are a married couple.
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M(x) ∧ ∃y.[MC(x, y) ∨MC(y, x)] expresses that x is a husband. Observe that
x is the only free variable in the query. Thus one can consider the query as a
definition of a new relation, say H(x), defined as

H(x) ≡ [M(x) ∧ ∃y.[MC(x, y) ∨MC(y, x)]].

The query MC(x, y) ∨MC(y, x) defines a binary relation of all married cou-
ples. One can introduce a new relation symbol to denote this relation, e.g.
Married(x, y) ≡ MC(x, y) ∨MC(y, x) and use it in other queries. This does
not increase the expressiveness of the language, but makes querying more con-
venient.

The query ∃x.H(x) has no free variables. It defines a “yes or no” query, return-
ing a (zero-argument) boolean constant True or False and checking whether in
the database there is a person who is a husband.

Another example of a “yes or no” query could be

∀x.[W (x)→ ∃y.Married(x, y)].

The query checks whether all women in the database are married.

The query M(x) ∧ ∀y.[¬Married(x, y)] selects all unmarried men.

4.4 Exercises

1. Provide a specification of lists in the predicate calculus.

2. Provide a specification of trees in the predicate calculus.

3. Provide a specification of graphs in the predicate calculus.

4. Assume that:

• List(x, h, t) means that h is the head and t is the tail of list x

• Empty(x) means that list x is empty.

Specify the following relations within the logic programming paradigm:

(a) C(e, x) meaning that list x contains element e

(b) Conc(x, y, z) meaning that list z results from concatenating lists x
and y

(c) Shr(x, y) meaning that list x is shorter than list y.

5. Consider a library database containing the following relations:

• T (x, y) meaning that book number x has title y

• W (x, y) meaning that book number x has been written by writer y
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• R(x, y) meaning that book number x is borrowed by reader y.

Construct the following queries in the language of predicate calculus:

(a) select titles and writers of all books borrowed by reader r

(b) select titles of all books written by writer w

(c) select all books borrowed by readers of the library.



Part II

Automated Deduction in
Classical Logic
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Chapter 5

Automated Deduction in
Propositional Calculus

5.1 Introduction

There are many techniques for proving satisfiability/validity of propositional
formulas. Here we shall concentrate on purely logical calculus.

5.2 Resolution Method

The resolution method was introduced by Robinson in 1965 in the context of
predicate calculus (see section 6.2 for presentation of the method in this more
general context). It is one of the most frequently used technique for proving the
validity of formulas.

The resolution method applies to clauses. Here the reductio ad absurdum, i.e.,
a reduction to absurdity argument is applied. This means that in order to prove
that a formula is valid one first negates it, and shows that the negated formula
is inconsistent. In the context of resolution, one has to transform the negated
formula into a conjunction of clauses (CNF) and proves that the obtained set
of clauses is inconsistent. Inconsistency is represented by the empty clause,
denoted here by ∇. Observe that the empty clause is the empty disjunction
which, by definition, is False.

The resolution method is based on applying the following two rules:

p1 ∨ . . . ∨ pk ∨ r, ¬r ∨ q1 ∨ . . . ∨ qm � p1 ∨ . . . ∨ pk ∨ q1 ∨ . . . ∨ qm (5.1)
p1 ∨ . . . ∨ pk ∨ pk � p1 ∨ . . . ∨ pk, (5.2)

37
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where p1, . . . , pk, q1, . . . , qm are literals and r is a propositional variable.

Rule (5.1) is called the resolution rule and rule (5.2) is called the factoring rule.

Note that the resolution rule can be presented equivalently in the following form:

¬(p1 ∨ . . . ∨ pk)→ r, r → (q1 ∨ . . . ∨ qm) �
¬(p1 ∨ . . . ∨ pk)→ (q1 ∨ . . . ∨ qm).

Thus, in the case of propositional calculus, it reflects the transitivity of impli-
cation.

It is important to note that the resolution rule does not preserve validity of
formulas. However it preserves their satisfiability, which suffices for the method,
as it shows inconsistency, i.e., unsatisfiability of sets of clauses.

The following theorems state that the resolution method is sound and complete.

Theorem 5.2.1 For any set of propositional clauses S,

1. if S � ∇ then S is inconsistent (soundness)

2. if S is inconsistent then S � ∇ (completeness),

where � denotes the proof system consisting of rules (5.1) and (5.2).

The following examples show some applications of the method.

Example 5.2.2 Consider clauses p∨ p and ¬p∨¬p. Obviously, the clauses are
inconsistent. The following proof shows that ∇ can be obtained by applying
the resolution method1.

p ∨ p
p

(5.2)
¬p ∨ ¬p
¬p (5.2)

∇ (5.1)

Example 5.2.3 Let us prove that formula [p → (q ∨ r)] → [(p ∧ ¬q) → r]
is a propositional tautology. We first negate the formula and obtain [p →
(q ∨ r)] ∧ (p ∧ ¬q) ∧ ¬r]. The negated formula is represented by four clauses:
(¬p∨ q ∨ r), p, ¬q, ¬r. Let us now prove that ∇ follows from the set of clauses:

¬p ∨ q ∨ r, p

q ∨ r (5.1) ¬q

r
(5.1) ¬r

∇ (5.1)

1Observe that the factoring rule is substantial here. The resolution rule itself does not lead
to the result.
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Example 5.2.4 The set of clauses p∨q, ¬q∨s is consistent. Consequently, one
cannot derive ∇ from the set, as the only possible application of the resolution
rule results in clause p ∨ s and then no new clauses can further be obtained.

5.3 Sequent Calculus

Sequent calculus were introduced by Gentzen in 1934 and are also known as
Gentzen-like calculus and sometimes as a natural deduction. In fact, a similar
method was independently formulated by Jaśkowski, also in 1934. In sequent
calculus one deals with sets of formulas rather that with single formulas. Proofs
are driven by syntax of formulas which simplifies the process of proving validity.

Definition 5.3.1 By a sequent we shall understand any expression of the form

α1, . . . , αn ⇒ β1, . . . , βm,

where α1, . . . , αn, β1, . . . , βm are propositional formulas.

A sequent α1, . . . , αn ⇒ β1, . . . , βm represents a single propositional formula

(α1 ∧ . . . ∧ αn)→ (β1 ∨ . . . ∨ βm).

We assume that the order of formulas in sequents is inessential.

Let us now define sequent calculus for propositional logic.

Definition 5.3.2 By an axiom of sequent calculus we shall understand any
sequent of the form α1, . . . , αn, γ ⇒ β1, . . . , βm, γ. The rules of sequent calculus
for propositional connectives are of the following form:

(¬l)¬α, α1, . . . , αn ⇒ β1, . . . , βm

α1, . . . , αn ⇒ β1, . . . , βm, α
(¬r)α1, . . . , αn ⇒ β1, . . . , βm,¬α

α, α1, . . . , αn ⇒ β1, . . . , βm

(∧l)α ∧ β, α1, . . . , αn ⇒ β1, . . . , βm

α, β, α1, . . . , αn ⇒ β1, . . . , βm
(∨r)α1, . . . , αn ⇒ β1, . . . , βm, α ∨ β

α1, . . . , αn ⇒ β1, . . . , βm, α, β

(∧r) α1, . . . , αn ⇒ β1, . . . , βm, α ∧ β
α1, . . . , αn ⇒ β1, . . . , βm, α; α1, . . . , αn ⇒ β1, . . . , βm, β

(∨l) α ∨ β, α1, . . . , αn ⇒ β1, . . . , βm

α, α1, . . . , αn ⇒ β1, . . . , βm; β, α1, . . . , αn ⇒ β1, . . . , βm

The rules for other boolean connectives can easily be derived.

It is important to observe that the rules preserve validity of formulas, assum-
ing that semicolons in consequents of rules (∧r) and (∨l) are interpreted as a
conjunction.
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We have the following theorem stating soundness and completeness of sequent
calculus.

Theorem 5.3.3 Let α be a propositional formula. Then:

• if the sequent ∅ ⇒ α is provable then α is a tautology of propositional
calculus (soundness)

• if α is a tautology of propositional calculus then the sequent ∅ ⇒ α is
provable (completeness),

where provability refers to sequent calculus defined in Definition 5.3.2.

Consider now some examples of applications of the sequent calculus.

Example 5.3.4 Let us prove that ¬[(p ∧ q) ∨ s] ∨ (p ∨ s) is a tautology. We
start the proof with the sequent ∅ ⇒ ¬[(p ∧ q) ∨ s] ∨ (p ∨ s):

∅ ⇒ ¬[(p ∧ q) ∨ s] ∨ (p ∨ s)
∅ ⇒ ¬[(p ∧ q) ∨ s], (p ∨ s) (∨r)

(p ∧ q) ∨ s⇒ (p ∨ s) (¬r)

(p ∧ q) ∨ s⇒ p, s
(∨r)

p ∧ q ⇒ p, s

p, q ⇒ p, s
(∧l); s⇒ p, s

(∨l)

The bottom sequents are axioms, thus the initial formula is a propositional
tautology.

The following example shows how to derive rules for other propositional con-
nectives.

Example 5.3.5 Let us derive rules for implication. Assume we are given a
sequent of the form α1, . . . , αn ⇒ β1, . . . , βm, α → β. We use the fact that
(α→ β) ≡ (¬α ∨ β). Consider the following derivation:

α1, . . . , αn ⇒ β1, . . . , βm, α→ β

α1, . . . , αn ⇒ β1, . . . , βm,¬α ∨ β
α1, . . . , αn ⇒ β1, . . . , βm,¬α, β

(∨r)

α1, . . . , αn, α⇒ β1, . . . , βm, β
(¬r)

Thus the rule for implication on the righthand side of sequents can look as
follows:

(→ r)
α1, . . . , αn ⇒ β1, . . . , βm, α→ β

α1, . . . , αn, α⇒ β1, . . . , βm, β
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Assume we are now given a sequent of the form α1, . . . , αn, α→ β ⇒ β1, . . . , βm.
Consider the following derivation:

α1, . . . , αn, α→ β ⇒ β1, . . . , βm

α1, . . . , αn,¬α ∨ β ⇒ β1, . . . , βm

α1, . . . , αn,¬α⇒ β1, . . . , βm

α1, . . . , αn,⇒ β1, . . . , βm, α
(¬l); α1, . . . , αn, β ⇒ β1, . . . , βm

(∨l)

Thus the rule for implication on the lefthand side of sequents can look as follows:

(→ l)
α1, . . . , αn, α→ β ⇒ β1, . . . , βm

α1, . . . , αn ⇒ β1, . . . , βm, α; α1, . . . , αn, β ⇒ β1, . . . , βm

Let us now show a derivation tree for a formula which is not a tautology and
show how can one construct a valuation of propositional variables falsifying the
formula.

Example 5.3.6 Consider formula (p ∨ q) → p. In order to prove it, we start
with the sequent ∅ ⇒ (p ∨ q)→ p. The derivation tree looks as follows2:

∅ ⇒ (p ∨ q)→ p

p ∨ q ⇒ p

p⇒ p; q ⇒ p
(∨l)

(→ r)

The first bottom sequent is an axiom, but the second one is not. One can falsify
it by assuming that q is True and p is False. Observe that this valuation falsifies
the input formula.

In general, such a construction gives a partial valuation which can further be
extended to a total valuation falsifying the formula. One uses here fact that
validity (thus invalidity, too) is preserved by the rules of sequent calculus.

5.4 Analytic Tableaux

Analytic tableaux were invented by Beth in 1955 (under the name of semantic
tableaux) and then simplified by Smullyan in 1968. Analytic tableaux, like
resolution, apply the reduction to absurdity paradigm.

The name tableaux comes from the representation of proof trees in the form of
tables. In these notes, however, we shall use tree-like rather than the tabular
presentation.

The following example provides a hint how do the tables look like.
2We use here the rule (→ r) derived in Example 5.3.5.
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Example 5.4.1 Consider the following proof tree:

α

α1

α3

α6 α7

α2

α4

α8

α5

It can be represented by the following table:

α
α1 α2

α3 α4 α5

α6 α7 α8

Any tableau represents a formula as follows:

• each branch of tableau represents the conjunction of formulas appearing
on this branch

• the tableau represents the disjunction of all its branches.

The tableau of Example 5.4.1 represents the following formula:

(α ∧ α1 ∧ α3 ∧ α6) ∨ (α ∧ α1 ∧ α3 ∧ α7) ∨
(α ∧ α2 ∧ α4 ∧ α8) ∨ (α ∧ α2 ∧ α5).

The rules in propositional analytic tableaux are grouped into two types, the
so-called rules of type α, corresponding to conjunction, and rules of type β,
corresponding to disjunction. The following table summarizes the types.

α α1, . . . , αn β β1, . . . , βn

φ1 ∧ . . . ∧ φn φ1, . . . , φn φ1 ∨ . . . ∨ φn φ1, . . . , φn

¬(φ1 ∨ . . . ∨ φn) ¬φ1, . . . ,¬φn ¬(φ1 ∧ . . . ∧ φn) ¬φ1, . . . ,¬φn

¬¬φ φ
¬True False
¬False True

Observe that the only propositional connectives considered are ∨, ∧ and ¬. The
rules for analytic tableaux are defined for those connectives. The rules for other
connectives can easily be derived.

Definition 5.4.2 By an analytic tableau for a formula φ we understand a la-
belled tree constructed as follows:
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• the root of the tree is labelled by formula φ

• the branches are obtained by applying the following rules:

(α)
α

α1

. . .

αn

(β)
β

β1; . . . βn

A branch of a tableau is called closed iff it contains a formula and its negation.
A tableau is closed provided that all its branches are closed.

Observe that closed tableaux represent formulas equivalent to False. Thus the
proof method based on analytic tableaux depends on searching for a closed
tableau for the negation of the input formula.

The following examples explain the method.

Example 5.4.3 Let us prove that formula q → ((p ∧ q) ∨ q) is a propositional
tautology. We first negate the formula and obtain q ∧ ((¬p ∨ ¬q) ∧ ¬q). The
following tableau is constructed for the negated formula:

q ∧ ((¬p ∨ ¬q) ∧ ¬q)
q

(¬p ∨ ¬q) ∧ ¬q
¬p ∨ ¬q
¬q

(α)

(α)

Observe that the above tableau contains one branch, which is closed (contains
both q and ¬q). In consequence the tableau is closed, thus the input formula is
a propositional tautology.

Example 5.4.4 Let us check whether formula ¬(p ∧ q) ∧ q is a propositional
tautology. We first negate it and obtain (p∧q)∨¬q. The tableau for the formula
is constructed as follows:

(p ∧ q) ∨ ¬q
p ∧ q
p

q

(α) ¬q
(β)

The first branch of the tableau is closed, but the second one is not. The input
formula is then not a propositional tautology.
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We have the following theorem stating soundness and completeness of analytic
tableaux.

Theorem 5.4.5 Let α be a propositional formula. Then:

• if there is a closed tableau for ¬α then α is a propositional tautology
(soundness)

• if α is a tautology of propositional calculus then there is a closed tableau
for ¬α (completeness).

5.5 Exercises

1. Show that the resolution rule preserves satisfiability and does not preserve
validity of propositional formulas.

2. Show that the rules of sequent calculus preserve validity of propositional
formulas.

3. Derive sequent calculus rules for the propositional connective ⊕ (exclusive
or) defined as (p⊕q) ≡ True iff p is True or q is True but not both together.

4. Define analytic tableaux rules for implication.

5. Using resolution method, sequent calculus and analytic tableaux check
whether the following formulas are propositional tautologies:

(a) (p→ q)→ [(r → s)→ ((p ∧ r)→ (q ∧ s))]
(b) [(p ∨ q)→ r]→ [(p→ r) ∧ (q → r)]

(c) [(p ∧ q)→ r]→ [(p→ r) ∧ (q → r)]

(d) (p→ q)→ [(p→ ¬q)→ ¬p].



Chapter 6

Automated Deduction in
Predicate Calculus

6.1 Introduction

In this chapter we shall extend methods defined in Chapter 5 for the case of
propositional calculus.

6.2 Resolution Method

The resolution method in predicate calculus is based on the resolution rule and
the factoring rule. However, because of the language, which includes terms, one
has to use the unification.

Let us start with an example illustrating the need for unification of terms.

Example 6.2.1 Consider two formulas ∀x, y.[M(f(y), h(x)) → T (y, x)] and
∀x.M(f(g(x)), h(a)). In order to prove that T (g(a), a) one has to unify terms
f(y) with f(g(x)) and h(x) with h(a). The unification is done by applying
substitution [x := a; y := g(x)]. Now the result is obtained by the transitivity
of implication (which corresponds to an application of the resolution rule).

Consequently, the resolution and factoring rules are formulated as follows.

p1(t̄1) ∨ . . . ∨ pk(t̄k) ∨ r(t̄), ¬r(t̄′) ∨ q1(s̄1) ∨ . . . ∨ qm(s̄m) � (6.1)
p1(σ(t̄1)) ∨ . . . ∨ pk(σ(t̄k)) ∨ q1(σ(s̄1)) ∨ . . . ∨ qm(σ(s̄m))

p1(t̄1) ∨ . . . ∨ pk(t̄) ∨ pk(t̄′) � p1(σ(t̄1)) ∨ . . . ∨ pk(σ(t̄k)), (6.2)

where:

45
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• p1, . . . , pk, q1, . . . , qm are literals and r is a relation symbol

• t̄1, . . . t̄k, t̄, t̄′, s̄1, . . . , s̄m are vectors of terms

• σ is the most general unifier for t̄ and t̄′

• all repeating occurrences of literals in the consequent of rule (6.2) are
deleted.

Rule (6.1) is called the resolution rule and rule (6.2) is called the factoring rule.

It is again important to note that the resolution rule does not preserve validity
of formulas. However it preserves their satisfiability.

The following theorems state that the resolution method is sound and complete.

Theorem 6.2.2 For any set of first-order clauses S,

1. if S � ∇ then S is inconsistent (soundness)

2. if S is inconsistent then S � ∇ (completeness),

where � denotes the proof system consisting of rules (6.1) and (6.2).

Example 6.2.3 Let us prove that formula ∃x.∀y.R(y, x) → ∀z.∃u.R(z, u) is a
tautology. Negating the formula results in ∃x.∀y.R(y, x)∧ ∃z.∀u.¬R(z, u). The
formula is not in the form of a set of clauses. We apply Skolemization and
obtain two clauses1 R(y, a) and ¬R(b, u), where a, b are Skolem constants. A
single resolution step with the most general unifier [y := b;u := a] gives as the
result the empty clause:

R(y, a) R(b, u)
∇ (6.1; σ = [y := b;u := a]),

which proves the input formula.

Example 6.2.4 Consider formula ¬∃y.∀z.[P (z, y)∧ ∀x.(¬P (z, x) ∨ ¬P (x, z))].
We first negate the formula and obtain ∃y.∀z.[P (z, y)∧∀x.(¬P (z, x)∨¬P (x, z))],
which is equivalent to the formula in PNF form ∃y.∀z.∀x.[P (z, y) ∧ (¬P (z, x) ∨
¬P (x, z))]. After Skolemization and renaming of variable z in the first clause
we obtain two clauses P (z′, a) and (¬P (z, x) ∨ ¬P (x, z)), where a is a Skolem
constant. The proof can now be obtained as follows:

P (z′, a)
¬P (z, x) ∨ ¬P (x, z)

¬P (a, a)
(6.2; σ = [x := a; z := a])

∇ (6.1; σ = [z′ := a]).

Since the empty clause is obtained, the negated formula leads to contradiction,
which shows that the input formula is a first-order tautology.

1The universal quantifiers are, as usual, implicit here.
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6.3 Sequent Calculus

We define sequent calculus for the predicate calculus by accepting axioms and
rules as given for propositional in section 5.3 (see Definition 5.3.2) and by adding
new rules for first-order quantifiers.

Definition 6.3.1 The rules of sequent calculus for quantifiers are of the follow-
ing form:

(∀l) ∀x.α(x), α1 , . . . , αn ⇒ β1, . . . , βm

α(x := t), α1, . . . , αn, ∀x.α(x)⇒ β1, . . . , βm

(∀r) α1, . . . , αn ⇒ ∀x.β(x), β1, . . . , βm

α1, . . . , αn ⇒ β(x), β1, . . . , βm

(∃l) ∃x.α(x), α1 , . . . , αn ⇒ β1, . . . , βm

α(x), α1, . . . , αn ⇒ β1, . . . , βm

(∃r) α1, . . . , αn ⇒ ∃x.β(x), β1, . . . , βm

α1, . . . , αn ⇒ β(x := t), β1, . . . , βm, ∃x.β(x)
,

where t is a term, and in the substitution x := t in rules (∀l) and (∃r) all
variables that would become bound by a quantifier are renamed by using new
variables.

It is important to observe that the rules preserve validity of formulas.

We have the following theorem stating soundness and completeness of sequent
calculus.

Theorem 6.3.2 Let α be a first-order formula. Then:

• if the sequent ∅ ⇒ α is provable then α is a tautology of predicate calculus
(soundness)

• if α is a tautology of predicate calculus then the sequent ∅ ⇒ α is provable
(completeness).

The following example illustrates the method.

Example 6.3.3 Consider formula ∀x.[P (x) ∨ Q(x)] → [∃x.P (x) ∨ ∀x.Q(x)].
In order to prove that the formula is a tautology we start with the sequent
∅ ⇒ ∀x.[P (x) ∨Q(x)]→ [∃x.P (x) ∨ ∀x.Q(x)], then we apply rules (→ r), (∨r),
(∀l), (∃r, ∀r), (∨l):

∅ ⇒ ∀x.[P (x) ∨ Q(x)] → [∃x.P (x) ∨ ∀x.Q(x)]

∀x.[P (x) ∨ Q(x)] ⇒ ∃x.P (x) ∨ ∀x.Q(x)

∀x.[P (x) ∨ Q(x)] ⇒ ∃x.P (x),∀x.Q(x)

P (x) ∨ Q(x), ∀x.[P (x) ∨ Q(x)] ⇒ ∃x.P (x),∀x.Q(x)

P (x) ∨ Q(x), ∀x.[P (x) ∨ Q(x)] ⇒ P (x), Q(x), ∃x.P (x)

P (x), ∀x.[P (x) ∨ Q(x)] ⇒ P (x), Q(x),∃x.P (x); Q(x), ∀x.[P (x) ∨ Q(x)] ⇒ P (x), Q(x), ∃x.P (x)
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Since both leaves of the proof tree are axioms, the proof is completed.

6.4 Analytic Tableaux

We extend tableaux given for propositional connectives in section 5.4. We need
rules for quantifiers. The rules for quantifiers are grouped into two types, the
so-called rules of type γ, corresponding to the universal quantification, and rules
of type δ, corresponding to the existential quantification. The following table
summarizes the types.

γ γ1 δ δ1

∀x.φ(x) φ(t) ¬∀x.φ(x) ¬φ(c)
¬∃x.φ(x) ¬φ(t) ∃x.φ(x) φ(c)

where t is a term not containing free variables that could become bound after
the substitution, and c is a constant symbol.

Definition 6.4.1 By an analytic tableau for a formula φ we understand a la-
belled tree constructed as follows:

• the root of the tree is labelled by formula φ

• the branches are obtained by applying rules given in Definition 5.4.2 and
the following rules:

(γ)
γ

γ1
(δ)

δ

δ1

A branch of a tableau is called closed iff it contains a formula and its negation.
A tableau is closed provided that all its branches are closed.

Example 6.4.2 Let us prove the formula

∀x.[P (x)→ Q(x)]→ [∀x.P (x)→ ∀x.Q(x)].

We first negate it, eliminate implication, and obtain:

∀x.(¬P (x) ∨Q(x)) ∧ ∀x.P (x) ∧ ¬∀x.Q(x).
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The following tableau can be constructed for the formula:

∀x.(¬P (x) ∨Q(x)) ∧ ∀x.P (x) ∧ ¬∀x.Q(x)
∀x.(¬P (x) ∨Q(x))

∀x.P (x)
¬∀x.Q(x)

¬P (c) ∨Q(c)
P (c)

¬∀x.Q(x)
¬P (c) ∨Q(c)
¬Q(c)

¬P (c) Q(c)
(β)

(δ)

(γ with t = c)

(α)

The tableau is closed, which proves the formula.

We have the following theorem stating soundness and completeness of analytic
tableaux.

Theorem 6.4.3 Let α be a first-order formula. Then:

• if there is a closed tableau for ¬α then α is a tautology of the predicate
calculus (soundness)

• if α is a tautology of predicate calculus then there is a closed tableau for
¬α (completeness).

6.5 Exercises

1. Check which of the following formulas are valid, using the resolution
method, sequent calculus and analytic tableaux:

(a) ∃x.(P (x) ∨Q(x)) ≡ (∃x.P (x) ∨ ∃x.Q(x))

(b) ∀x.(P (x) ∧Q(x)) ≡ (∀x.P (x) ∧ ∀x.Q(x))

(c) ∀x.∃y.R(x, y)→ ∃y.∀x.R(x, y)

(d) ∀x.∀y.[R(x, y) ∨R(y, x)]→ ∃x.∃y.R(x, y)

(e) ∀x.∃y.[R(x, y) ∨ ∃z.R(x, z)]→ ∃x.R(x, x).

2. For a chosen method define rules for equality and prove the following
formulas:

(a) [P (x) ∨ P (y)] ≡ ∃z.[(z = x ∨ z = y) ∧ P (z)]

(b) P (t) ≡ ∀x.(x 
= t ∨ P (x)).
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Part III

Second-Order Logic and its
Applications
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Chapter 7

Second-Order Logic

7.1 Introduction

In many computer science applications, including AI, databases and formal ver-
ification of software, it is often necessary to formulate properties using phrases
of the form “there is a relation”, “for any relation”, i.e. to use quantifiers over
relations. Such quantifiers are called second-order quantifiers and are allowed
in the second-order logic.

7.2 Syntax of Second-Order Logic

Second-order logic is an extension of predicate calculus obtained by admitting
second-order quantifiers. In order to define this logic we have to add variables
representing relations. The set of relational variables1 is denoted by VII.

Formulas of second-order logic, denoted by FII, are defined by means of the
following rules.

〈FII〉 ::= 〈Bool〉 || 〈VII〉 || 〈FI〉 || ¬〈FII〉 || 〈FII〉 ∧ 〈FII〉 || 〈FII〉 ∨ 〈FII〉 ||
〈FII〉 → 〈FII〉 || 〈FII〉 ≡ 〈FII〉 || ∀〈VI〉.〈FII〉 || ∃〈VI〉.〈FII〉 ||
∀〈Rel〉.〈FII〉 || ∃〈Rel〉.〈FII〉 || (〈FII〉) || [〈FII〉]

By an existential fragment of second-order logic we shall mean the set of second-
order formulas, whose second-order quantifiers can only be existential and ap-
pear in front of the formula.

1Relational variables are sometimes called second-order variables.
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7.3 Semantics of Second-Order Logic

The semantics of the second-order logic is an extension of the semantics of the
predicate calculus. We then only have to provide the semantics for relational
variables and second-order quantifiers.

Let R ∈ Rel be a k-argument relation symbol. Assume we are given a relational
structure M = 〈Dom, {fDom

i : i ∈ I}, {RDom
j : j ∈ J}〉,. Denote by Rel(M) the

set of all relations over Dom. Let v′ : VI −→ Dom be a valuation of individual
variables and v′′ : VII −→ Rel(M) be a valuation assigning relations to relational
variables. Valuations v′, v′′ can be extended to the valuation assigning truth
values to second-order formulas, v : FII −→ Bool, as follows, assuming that
first-order connectives and quantifiers are defined as in section 3.3:

v(X) = v′′(X) for X ∈ VII

v(∀X.A(X)) = min({vX
S (A(X))) : S ⊆ Domk})

v(∃X.A(X)) = max({vX
S (A(X)) : S ⊆ Domk}),

where X is a k-argument relational variable and by vX
S we denote the valuation

obtained from v by assigning value S to variableX and leaving all other variables
unchanged.

Observe that in many cases second-order quantification, say ∀R, is intended to
range over a subset of all relations. For instance in the weak second-order logic
only finite relations are considered. Another example is the so-called Henkin-
like semantics, where one restricts possible relations, e.g. to first-order definable
relations. This is motivated by the high complexity of the second-order logic
(see section 7.4) as well as the observation that quite often one has in mind a
restricted subset of relations. For example, consider the sentence “John has all
features of a good student. The second-order quantification “all features ranges
over relations that can be defined by a first-order formula.

7.4 The Complexity of Second-Order Logic

Theorem 7.4.1 Both checking whether a second-order formula is satisfiable or
whether it is a tautology are not partially computable problems2.

Theorem 7.4.2 Let α be a second-order formula α. Then:

• checking satisfiability and validity of α over a given finite domain relational
structure is PSpace-complete

• [Fagin] if α belongs to the existential fragment of second-order logic, then
checking its satisfiability is NPTime-complete.

2In fact, the problem is even much more complex as these are not even arithmetical in the
sense of Kleene and Mostowski hierarchy.
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7.5 Second-Order Logic in Commonsense Rea-

soning

One of the most prominent applications of the second-order logic is the formula-
tion of circumscription3 Circumscription is a powerful non-monotonic formalism
centered around the following idea: the objects (tuples of objects) that can be
shown to satisfy a certain relation are all the objects (tuples of objects) satisfy-
ing it. For instance, to circumscribe the relation of being red is to assume that
any object that cannot be proved red is not red.

Circumscription can be viewed as a form of minimization of relations. Observe
also that circumscription can be used for maximizing relations, since maximizing
a relation corresponds to minimizing its negation. Given a theory T , a list
P1, . . . , Pn of relation symbols to be minimized and a list Q1, . . . , Qm of relation
symbols that are allowed to vary, circumscription of P1, . . . , Pn in T with variable
Q1, . . . , Qm amounts to implicitly adding to T a special second-order sentence,
called circumscription axiom, capturing the desired minimization.

Definition 7.5.1 [Circumscription] Let P = (P1 . . . , Pn) be a tuple of distinct
relation symbols, S = (S1, . . . , Sm) be a tuple of distinct relation symbols dis-
joint with P , and let T (P, S) be a theory. The circumscription of P in T (P, S)
with variable S, written CIRC(T ;P ;S), is the sentence

T (P, S) ∧ ∀X.∀Y . ¬[T (X,Y ) ∧X < P ] (7.1)

where X = (X1 . . . , Xn) and Y = (Y1, . . . , Ym) are tuples of relation variables
similar to P and S, respectively.4

Observe that (7.1) can be rewritten as

T (P, S) ∧ ∀X.∀Y . [
[T (X,Y ) ∧X ≤ P ]→ P ≤ X]

which, in turn, is an abbreviation for

T (P, S) ∧ ∀X.∀Y .
[

[T (X,Y ) ∧
n∧

i=1

∀x.(Xi(x)→ Pi(x))]

→
n∧

i=1

∀x.(Pi(x)→ Xi(x))

]
.

3Circumscription was introduced by McCarthy. Its second-order formulation is due to
Lifschitz.

4T (X, Y ) is the sentence obtained from T (P , S) by replacing all occurrences of P1 . . . , Pn

by X1 . . . , Xn, respectively, and all occurrences of S1 . . . , Sm by Y1 . . . , Ym, respectively.
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Example 7.5.2 Let T consists of:

Bird(Tweety)
∀x.[Bird(x) ∧ ¬Ab(x)→ Flies(x)].

We take P = (Ab) and S = (Flies).

CIRC(T ;P ;S) = T (P, S)∧
∀X.∀Y. [[Bird(Tweety) ∧ ∀x.[(Bird(x) ∧ ¬X(x))→ Y (x)]∧
∀x.(X(x)→ Ab(x))]→ ∀x.(Ab(x)→ X(x))] .

Substituting False for X and Bird(x) for Y , we conclude that

CIRC(T ;P ;S) |= T ∧A (7.2)

where A is

T ∧ [∀x.(Bird(x) ∧ ¬False)→ Bird(x)) ∧ ∀x.(False→ Ab(x))]→
[∀x.Ab(x)→ False])..

Since A simplifies to ∀x.Ab(x)→ False, we conclude, by (7.2), that

CIRC(T ;P ;S) |= Flies(Tweety).

Example 7.5.3 Let T consists of:

R(n) ∧Q(n)
∀x.R(x) ∧ ¬Ab1(x)→ ¬P (x)
∀x.Q(x) ∧ ¬Ab2(x)→ P (x),

with R, P , Q, n standing for Republican, Pacifist, Quaker and Nixon, re-
spectively.5 Let M and N be models of T such that |M | = |N | = {nixon},
M |n |= N |n |= nixon, M |R |= N |R |= {nixon}, M |Q |= N |Q |= {nixon}
and

M |P |= {nixon} N |P |= ∅
M |Ab1 |= {nixon} N |AB1 |= ∅
M |Ab2 |= ∅ N |Ab2 |= {nixon}.

It is easily seen that for any S, M and N are both (AB,S)-minimal models of T ,
where AB = (Ab1, Ab2). Furthermore, M |= P (n) and N |= ¬P (n). It follows,

5Observe that we use two abnormality relations here, namely Ab1 and Ab2. This is because
being abnormal with respect to pacifism as a quaker is a different notion than being abnormal
with respect to pacifism as a republican.
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therefore, that when we circumscribe AB in T , we shall not be able to infer
whether Nixon is a pacifist or not. The best we can obtain is the disjunction
¬Ab1(n) ∨ ¬Ab2(n), stating that Nixon is either normal as a republican or as a
quaker.

7.6 Exercises

1. Prove that the following formula6 is a second-order tautology:

∀x̄∃y.α(x̄ . . .) ≡ ∃f∀x̄α(x̄, y := f(x̄), . . .).

2. Prove theorem of Fagin (the second part of Theorem 7.4.2).

3. Characterize natural numbers up to isomorphism using the second-order
logic.

4. Express in the second-order logic that S(x, y) is the transitive closure of
relation R(x, y).

6Called second-order Skolemization.
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Chapter 8

Second-Order Quantifier
Elimination

8.1 Introduction

Second-order logic is a natural tool to express many interesting properties. It
is usually avoided because of its high complexity. On the other hand, there are
methods that allow one to eliminate second-order quantifiers. The most fruitful
methods are described below.

8.2 SCAN Algorithm

The Scan algorithm1 was proposed by Gabbay and Ohlbach. It can be consid-
ered as a refinement of Ackermann’s resolution-like method, but it was discov-
ered independently. Scan takes as input second-order formulae of the form

α = ∃P1 . . . ∃Pk.Φ

with existentially quantified predicate variables Pi and a first-order formula Φ.
Scan eliminates all predicate variables at once.

The following three steps are performed by Scan:

1. Φ is transformed into clause form.

2. All C-resolvents and C-factors with the predicate variables P1, . . . , Pk are
generated. C-resolution rule (‘C’ is short for constraint) is defined as

1Scan means “Synthesizing Correspondence Axioms for Normal Logics”. The name was
chosen before the general nature of the procedure was recognized.
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follows:

P (s1, . . . sn) ∨ C P (. . .) and ¬P (. . .)
¬P (t1, . . . , tn) ∨D are the resolution literals
C ∨D ∨ s1 
= t1 ∨ . . . ∨ sn 
= tn

and the C-factoring rule is defined analogously:

P (s1, . . . , sn) ∨ P (t1, . . . , tn) ∨ C
P (s1, . . . , sn) ∨ C ∨ s1 
= t1 ∨ . . . ∨ sn 
= tn

.

When all resolvents and factors between a particular literal and the rest of
the clause set have been generated (the literal is then said to be “resolved
away”), the clause containing this literal is deleted (this is called “purity
deletion”). If all clauses have been deleted this way, we know α is a
tautology. If an empty clause is generated, we know α is inconsistent.

3. If step 2 terminates and the set of clauses is non-empty then the quantifiers
for the Skolem functions are reconstructed.

The next example illustrates the various steps of the SCAN algorithm in detail.

Example 8.2.1 Let the input for SCAN be:

∃P.∀x.∀y.∃z.[(¬P (a) ∨Q(x)) ∧ (P (y) ∨Q(a)) ∧ P (z)].

In the first step the clause form is computed:

C1 : ¬P (a) ∨Q(x)
C2 : P (y) ∨Q(a)
C3 : P (f(x, y))

where f is a Skolem function.

In the second step of SCAN we begin by choosing ¬P (a) to be resolved away.
The resolvent between C1 and C2 is C4 = Q(x), Q(a) which is equivalent to
Q(a) (this is one of the equivalence preserving simplifications). The C-resolvent
between C1 and C3 is C5 = (a 
= f(x, y), Q(x)). There are no more resolvents
with ¬P (a), so C1 is deleted. We are left with the clauses

C2 : P (y) ∨Q(a)
C3 : P (f(x, y))
C4 : Q(a)
C5 : a 
= f(x, y) ∨Q(x).

Selecting the next two P -literals to be resolved away yields no new resolvents,
so C2 and C3 can be deleted as well. All P -literals have now been eliminated.
Restoring the quantifiers, we then get

∀x.∃z.[Q(a) ∧ (a 
= z ∨Q(x))]

as the final result (y is no longer needed).
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There are two critical steps in the algorithm. First of all the C-resolution loop
need not always terminate. This may but need not indicate that there is no first–
order equivalent for the input formula. If the resolution eventually terminates
the next critical step is the unskolemization. Since this is essentially a quantifier
elimination problem for existentially quantified function variables, there is also
no complete solution. The algorithm usually used is heuristics based.

Preventing C-resolution from looping is a difficult control issue. Some equiva-
lence preserving transformations on clause sets turned out to be quite useful. In
the algorithm we have implemented each new resolvent can be tested whether
it is implied by the non-parent clauses. In the affirmative case it is deleted even
if more resolutions are possible.

Example 8.2.2 Consider three colorability of a graph. The following second-
order formula expresses this property:

∃C.
⎛⎝ ∀x.[C(x,R) ∨ C(x, Y ) ∨ C(x,G)]∧
∀x.∀y.[(C(x, y) ∧ C(x, z))→ y = z]∧
∀x.∀y.[E(x, y)→ ¬∃z.(C(x, z) ∧ C(y, z))]

⎞⎠ (8.1)

where R, Y,G are constant symbols denoting colors, C(x, y) is interpreted as
“node x in a graph has color y” and E(x, y) as “y is adjacent to x in a graph”.
The first formula states that each node is colored with one of the three colors.
The second axiom says that each node has at most one color and finally the last
axiom requires adjacent nodes to have different colors.

The clause normal form of (8.1) is

C(x,R) ∨ C(x, Y ) ∨ C(x,G) ∨ C(x,B)
¬C(x, y) ∨ ¬C(x, z) ∨ x = z
¬C(x, z) ∨ ¬C(y, z) ∨ ¬N(x, y)

Given this to SCAN and asking it to eliminate C the resolution loops. If we
however replace the first clause by the equivalent formula

∀x ∃c (c = R ∨ c = Y ∨ c = G ∨ c = B) ∧ C(x, c)

whose clause normal form is

c(x) = R ∨ c(x) = Y ∨ c(x) = G ∨ c(x) = B
C(x, c(x))

there is no problem anymore. The two successive resolutions with the second
clause yields a tautology. The two successive resolutions with the third clause
yields c(x) 
= c(y) ∨ ¬N(x, y). The result is now

∃c.∀x.(c(x) = R ∨ c(x) = Y ∨ c(x) = G ∨ c(x) = B)
∧∀x.∀y.(N(x, y)⇒ c(x) 
= c(y))



62 CHAPTER 8. SECOND-ORDER QUANTIFIER ELIMINATION

which is again second–order. It is just a reformulation of the original formula
in terms of the coloring function c. However, it would be quite surprising to get
a better result with such a simple method.

8.3 DLS Algorithm

We say that a formula Φ is positive w.r.t. a predicate P iff there is no occurrence
of ¬P in the negation normal form of Φ. Dually, we say that Φ is negative w.r.t.
P iff every of its occurrences in the negation normal form of Φ is of the form
¬P .

The following lemma was proved by Ackermann in 1934.

Lemma 8.3.1 [Ackermann] Let P be a predicate variable and let Φ and Ψ(P )
be first–order formulae.

• If Ψ(P ) is positive w.r.t. P and Φ contains no occurrences of P at all, then

∃P.∀x.(P (x)→ Φ) ∧Ψ(P ) ≡ Ψ
[
P (α) := [Φ]xα

]
• If Ψ(P ) is negative w.r.t. P and Φ contains no occurrences of P at all,

then

∃P.∀x.(Φ→ P (x)) ∧Ψ(P ) ≡ Ψ
[
P (α) := [Φ]xα

]
The right hand formulas are to be read as: “every occurrence of P in Ψ is to
be replaced by Φ where the actual argument of P , say α, replaces the variables
of x in Φ (and the bound variables are renamed if necessary)”.

Hence, if the second–order formula under consideration has the syntactic form
of one of the forms given as the left-hand-side of equivalences given in Lemma
8.3.1 then this lemma can immediately be applied for the elimination of P .

The DLS algorithm was defined by Doherty, �Lukaszewicz and Sza�las as a re-
finement of an earlier algorithm of Sza�las. The algorithm tries to transform the
input formula into the form suitable for application of Lemma 8.3.1.

More precisely, the algorithm takes a formula of the form ∃P.Φ, where Φ is a
first-order formula, as an input and returns its first-order equivalent or reports
failure2. Of course, the algorithm can also be used for formulas of the form
∀P.Φ, since the latter formula is equivalent to ¬∃P.¬Φ. Thus, by repeating the

2The failure of the algorithm does not mean that the second-order formula at hand cannot
be reduced to its first-order equivalent. The problem we are dealing with is not even partially
decidable, for first-order definability of the formulas we consider is totally uncomputable.
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algorithm one can deal with formulas containing many arbitrary second-order
quantifiers.

The following purity deletion rule is used in the algorithm.

if there is a predicate Q among the list of predicates to be eliminated
such that Q occurs with mixed sign in some clauses and either only
with positive or only with negative sign in the other clauses then
all clauses containing Q are deleted. For example in the two clauses
¬Q(x)∨Q(f(x)) and Q(a) there is no clause containing Q only with
negative sign. If these are the only clauses with Q, they can be
deleted. (Since Q is existentially quantified, a model making Q true
everywhere satisfies the clauses.)

The elimination algorithm consists of three phases: (1) preprocessing; (2) prepa-
ration for Lemma 8.3.1; (3) application of Lemma 8.3.1. These phases are de-
scribed below. It is always assumed that (1) whenever the goal specific for a
current phase is reached, then the remaining steps of the phase are skipped, (2)
every time the extended purity deletion rule is applicable, it should be applied.

1. Preprocessing. The purpose of this phase is to transform the formula
∃P.Φ into a form that separates positive and negative occurrences of the
quantified predicate variable P . The form we want to obtain is

∃x̄.∃P.[(Φ1(P ) ∧Ψ1(P )) ∨ · · · ∨ (Φn(P ) ∧Ψn(P ))],

where, for each 1 ≤ i ≤ n, Φi(P ) is positive w.r.t. P and Ψi(P ) is neg-
ative w.r.t. P . The steps of this phase are the following. (i) Eliminate
the connectives ⇒ and ≡ using the usual definitions. Remove redundant
quantifiers. Rename individual variables until all quantified variables are
different and no variable is both bound and free. Using the usual equiva-
lences, move the negation connective to the right until all its occurrences
immediately precede atomic formulas. (ii) Move universal quantifiers to
the right and existential quantifiers to the left, applying as long as possible
the usual quantifier rules. (iii) In the matrix of the formula obtained so
far, distribute all top-level conjunctions over the disjunctions that occur
among their conjuncts. (iv) If the resulting formula is not in the required
form, then report the failure of the algorithm. Otherwise replace the input
formula by its equivalent given by

∃x̄.(∃P.(Φ1(P ) ∧Ψ1(P )) ∨ · · · ∨ ∃P.(Φn(P ) ∧Ψn(P ))).

Try to find first-order equivalent of the above formula by applying the next
phases in the algorithm to each its disjunct separately. If the first-order
equivalents of each disjunct are successfully obtained then return their
disjunction, preceded by the prefix ∃x̄, as the output of the algorithm.
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2. Preparation for the Ackermann lemma. The goal of this phase is to trans-
form a formula of the form ∃P (Φ(P ) ∧ Ψ(P )), where Φ(P ) (respectively.
Ψ(P )) is positive (respectively. negative) w.r.t. P , into one of the forms
required in Lemma 8.3.1. Both forms can always be obtained by us-
ing equivalences given in section 3.7 and both transformations should be
performed because none, one or both forms may require Skolemization.
Unskolemization, which occurs in the next phase, could fail in one form,
but not the other. In addition, one form may be substantially smaller
than the other.

3. Application of the Ackermann Lemma. The goal of this phase is to elim-
inate the second-order quantification over P , by applying Lemma 8.3.1,
and then to unskolemize the function variables possibly introduced. This
latter step employs the second-order Skolemization equivalence.

4. Simplification. Generally, application of Lemma 8.3.1 in step (3) often
involves the use of equivalences mentioned in section 3.7 in the left to right
direction. If so, the same equivalences may often be used after application
in the right to left direction, substantially shortening the resulting formula.

8.4 Reducing Circumscription

Example 8.4.1 Consider a variant of the Vancouver example of Reiter. Rather
than using the function city as Reiter does, we will use a relation C(x, y) with
suitable axioms. The intention is that that C(x, y) holds iff y is the home town
of x.

Let Φ(Ab,C) be the theory

[∀x.∀y.∀z.(¬Ab(x) ∧ C(x, y) ∧C(wife(x), z))→ y = z]∧
[∀x.∀y.∀z. (C(x, y) ∧ C(x, z))→ y = z].

The circumscription of Φ(Ab,C) with Ab minimized and C varied is

circ(Φ(Ab,C);Ab;C) ≡ Φ(Ab,C) ∧
∀P ∗.∀Z∗.[Φ(P ∗, Z∗) ∧ [P ∗ ≤ Ab]→ [Ab ≤ P ∗],

where

Φ(P ∗, Z∗) ≡ [∀x.∀y.∀z.¬P ∗(x) ∧ Z∗(x, y) ∧ Z∗(wife(x), z)→ y = z] ∧
[∀x.∀y.∀z.Z∗(x, y) ∧ Z∗(x, z)→ y = z].

The DLS algorithm reduces the second-order part of circumscription:

∀P ∗.∀Z∗.[Φ(P ∗, Z∗) ∧ [P ∗ ≤ Ab]→ [Ab ≤ P ∗]].
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After two iterations (the first for reducing P ∗ and the second for reducing Z∗)
one obtains the result ∀t.¬Ab(t). Consequently,

circ(Φ(Ab,C);Ab;C) ≡ Φ(Ab,C) ∧ ∀t.¬Ab(t).

8.5 Exercises

1. Give an example where SCAN fails.

2. Give an example where DLS fails.

3. Let Γ(Ab,On) be the theory

[b1 
= b2 ∧B(b1) ∧B(b2) ∧ ¬On(b1)] ∧
∀x.(B(x) ∧ ¬Ab(x)→ On(x)),

where B and On are abbreviations for Block and Ontable, respectively.
Consider the circumscription of Γ(Ab,On) with Ab minimized and On
varied, and eliminate second-order quantifiers using SCAN and DLS.

4. Let Γ(Ab,G) be the theory

[∃x.∃y.(B(y) ∧ F (x, y) ∧ ¬G(x, y))]
∧[∀x.∀y.(B(y) ∧ F (x, y) ∧ ¬Ab(x, y)→ G(x, y))],

where B, F and G are abbreviations for Birthday, Friend and Gives-
Gift, respectively. Here Ab(x, y) has the following intuitive interpretation:
“x behaves abnormally w.r.t. y in the situation when y has a birthday
and x is a friend of y”. Consider the circumscription of Γ(Ab,G) with
Ab minimized and G varied, and eliminate second-order quantifiers using
SCAN and DLS.

5. Let Γ be the theory

[∀x.∃y.(Ab(x, y)→ H(x, y))] ∧
∀x.∃y.(¬Ab(x, y)→ H(x, y)).

Here H(x, y) and Ab(x, y) are to be intuitively interpreted as “x is in a
hospital in a situation y” and “x behaves abnormally in a situation y”,
respectively. Consider the circumscription of Γ, with Ab minimized and
H varied, and eliminate second-order quantifiers using SCAN and DLS.
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Part IV

Other Important Logics
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Chapter 9

Modal Logics

9.1 Introduction

Classical logic is extensional in the sense that one can always substitute a term
by an equal term and a subformula by equivalent subformula. On the other
hand, in many applications one deals with intensional notions, i.e., notions that
are not extensional in its nature.For instance, many natural language expressions
are not extensional.

Consider the operator Knows(x, y) meaning that person x knows who is person
y. Assume that ¬Knows(Jack,X) and that Knows(Jack,Mary). Here we
assume that X is a masked person. It might, however, happen that Mary = X .
If expression Knows was extensional, one could then replace X by Mary and
obtain ¬Knows(Jack,Mary) leading to an obvious contradiction.

Intensional notions are called modal operators or modalities and logics allowing
such notions are called modal logics and sometimes intensional logics. In the
simplest case one deals with a single unary modality � and its dual ♦. Modalities
� and ♦ have many possible readings, dependent on a particular application.
The following table summarizes the most frequent readings of modalities.

a possible reading of �α a possible reading of ♦α
α is necessary α is possible
α is obligatory α is allowed

always α sometimes α
in the next moment of time α in the next moment of time α

α is known α is believed
every program state satisfies α there is a program state satisfying α

α is provable α is not provable

Observe that � usually corresponds to a kind of universal quantification and ♦
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usually corresponds to a kind of existential quantification.

The types of modal logics reflect the possible readings of modalities. The fol-
lowing table summarizes types of logics corresponding to the possible readings
of modalities.

the possible reading of modalities the type of modal logic
necessary, possible aletic logics
obligatory, allowed deontic logics

always, sometimes, in the next time temporal logics
known, believed epistemic logics

every (some) state of a program satisfies logics of programs
(un)provable provability logics

Modal logics have a long history. However we will focus on their modern devel-
opments.

9.2 Syntax of Propositional Modal Logics

The simplest version of modal logics allows for a single unary modal operator,
usually denoted by � and its dual form, denoted by ♦. In more complex ap-
plications, e.g., involving multi-agent systems or software verification, one deals
with many modalities included in so-called multi-modal logics.

Let us start with the case of one modality.

Definition 9.2.1 Formulas of propositional modal logic, denoted by FM are de-
fined by augmenting the syntax rules for propositional formulas by the following
rule:

〈FM 〉 ::= 〈F0〉 || �〈FM 〉.

Dual modal operator, ♦, is defined by ♦α def≡ ¬�¬α.

9.3 How to Develop a Modal Logic for an Ap-
plication

There are two approaches to defining modal logics suitable for a given applica-
tion. The first one depends on providing a set of axioms describing the desired
properties of modal operators. The second one starts with suitable models
(e.g., generated by a program) and then develops syntactic (proof-theoretical)
characterization of modalities.
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Let us start with the first approach (the second one will be represented in
Chapters 10 and 11 on temporal logics and logics of programs). Suppose we are
interested in formalizing knowledge operator. One can postulate, or instance,
the following properties:

1. �α→ ♦α — if α is known then α is believed

2. �α→ α — if α is known then it actually holds

3. α→ ♦α — if α holds then it is believed.

Of course there are many questions at this point, including the following:

• are the properties consistent?

• do the properties express all the desired phenomena?

• is a property a consequence of another property?

• how to formalize the reasoning involving modalities?

Usually answers to such questions are given by semantic investigations.

One should also note that many modal logics are well understood and can be
used as building blocks for more advanced applications.

Let us now define a well-known classification of modal logics, based on properties
of modalities. The starting point for the classification is the notion of normal
modal logics as defined below.

Definition 9.3.1 Let F be a modal language, as defined in Definition 9.2.1.
Then:

• By a propositional modal logic we understand any logic with the set of
formulas F .

• By a normal modal logic we shall understand any modal logic 〈F , C, |=〉,
satisfying the following conditions:

– |= �(α→ β)→ (�α→ �β),

– |= α implies |= �α.

The least normal modal logic (in the sense of the set of tautologies) is denoted
by K1.

The above conditions concerning normal modal logics are reflected by a Hilbert-
like proof system defined below.

1K comes from the name of Kripke.
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Definition 9.3.2 Proof system for K is defined by extending the propositional
calculus by adding the axiom:

�(α→ β)→ (�α→ �β)

together with the following modal generalization rule:

α � �α.

Other normal modal logics are defined by additional axioms expressing the
desired properties of modalities. Bellow we follow the classification introduced
by Lemmon.

D. = �α→ ♦α
T. = �α→ α
4. = �α→ ��α
E. = ♦α→ �♦α
B. = α→ �♦α
Tr. = �α ≡ α
M. = �♦α→ ♦�α
G. = ♦�α→ �♦α
H. = (♦α ∧ ♦β)→ (♦(α ∧ β) ∨ ♦(α ∧ ♦β) ∨ ♦(β ∧ ♦α))
Grz. = �(�(α→ �α)→ α)→ α
Dum. = �(�(α→ �α)→ α)→ (♦�α→ α)
W. = �(�α→ α)→ �α.

In the formulas given above D comes from deontic, T is a traditional name of
the axiom (after Feys), 4 is characteristic for logic S4 of Lewis, E comes from
Euclidean2, B comes from Brouwer3, Tr abbreviates trivial, M comes from
McKinsey, G from Geach, H from Hintikka, Grz from Grzegorczyk, Dum from
Dummett, W from reverse well founded4.

The above formulas are used to define many well-known modal logics. The
notational convention KX0...Xm means the least normal logic in which formulas
X0, ..., Xm are accepted as axioms. The following logics are frequently used and
applied:

2This axiom is often denoted by 5.
3Because of its similarity with KTB and the intuitionistic logic.
4It is also known as the Löb axiom.
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KT = T = logic of Gödel/Feys/Von Wright
KT4 = S4

KT4B = KT4E = S5
K4E = K45
KD = deontic T

KD4 = deontic S4
KD4B = deontic S5
KTB = Brouwer logic

KT4M = S4.1
KT4G = S4.2
KT4H = S4.3

KT4Dum = D = Prior logic
KT4Grz = KGrz = Grzegorczyk logic

K4W = KW = Löb logic
KTr = KT4BM = trivial logic.

Observe that Hilbert-like proof method formalizes the process of reasoning in
the above logics.

9.4 Semantics of Propositional Modal Logics

There are many semantics for modal logics. Here we shall follow the Kripke-like
style of defining semantics for modal logics5.

Kripke published his famous paper in 1959. The basis for the Kripke semantics
is the universe of possible worlds. Formulas evaluated in the so-called actual
world. The other worlds, alternatives to the actual worlds correspond to possible
situations. Modalities � and ♦ have the following intuitive meaning:

• formula �α holds in a given world w, if α holds in all worlds alternative
for w

• formula ♦α holds in a given world w, if α holds in some world alternative
for w.

What remains to do is to define the notion of alternative worlds. Kripke assumes
that this is done by a binary relation on worlds, as defined in the following
definition.

Definition 9.4.1 By a Kripke frame we mean nay relational system of the form
〈W , R〉, where W is any set and R id a binary relation defined onW . Elements
of W are called worlds.

We are now ready to define the notion of a Kripke structure.
5In fact, similar semantics was a couple of years earlier defined by Kanger. Then, in the

same year, the similar semantics was given by Hintikka and also Guillaume.
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Definition 9.4.2 By a Kripke structure we mean triple

〈K, w, v〉,

where K = 〈W , R〉 is a Kripke frame, w ∈ W is the actual world and v is
a mapping, v : F × W −→ {True,False}, assigning truth values to atoms in
worlds.

Observe that a very general definition of modal logics was given in Defini-
tion 9.2.1. However, from now on we shall restrict ourselves to those modal
logics, whose semantics is defined via Kripke structures. The following defini-
tion reflects this approach.

Definition 9.4.3 By a propositional modal logic we shall mean any logicM =
〈F , C, |=M〉, where:

• the set of formulas F is defined as in Definition 9.2.1,

• C is a subclass of the class of all Kripke structures,

• |=M is defined as follows:

– K, w, v |=M α iff v(α,w) = True, where α is an atom,

– the meaning of propositional connectives is the same as in the case
of propositional calculus,

– K, w, v |=M �α iff for any w′ such that R(w,w′) holds, we have that
K, w′, v |=M α, where R is the relation of the Kripke frame K,

– K, w, v |=M ♦α iff there is w′ such that R(w,w′) and K, w′, v |=M α,
where R is the relation of the Kripke frame K.

By K |=M α we shall mean that formula α holds in any Kripke structure with
the frame K.

Observe that we now face the question, what are the properties of relation R
that guarantee that particular axioms are indeed valid in all Kripke structures.
If the properties can be expressed by means of predicate calculus, we will be
able to automatize the reasoning using the techniques defined for the predicate
calculus.

It appears that the properties ofR can often be calculated using the second-order
quantifier elimination techniques. We shall return to the subject later. Here
we only summarize some correspondences between modal logics and predicate
calculus. We use notation ∃!y, meaning that there is exactly one y. Such a
quantifier can be defined as follows:

∃!y.α(y) ≡ ∃y.(α(y) ∧ ∀z.(α(z)→ z = y)).
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Formula Property of R
D ∀x.∃y.R(x, y) (R is serial)
T ∀x.R(x, x) (R is reflexive)
4 ∀x, y, z.(R(x, y) ∧R(y, z))→ R(x, z) (R is transitive)
E ∀x, y, z.(R(x, y) ∧R(x, z))→ R(y, z) (R is Euclidean)
B ∀x, y.(R(x, y)→ R(y, x)) (R is symmetric)
Tr ∀x, y.(R(x, y) ≡ x = y) (R is trivial)
G ∀x, y, z.((R(x, y) ∧R(x, z))→ ∃w(R(y, w) ∧R(z, w))

(R is directed)
♦α→ �α ∀x, y, z.(R(x, y) ∧R(x, z))→ y = z (R is a partial function)
♦α ≡ �α ∀x.∃!y.R(x, y) (R is a function)

��α→ �α ∀x, y.R(x, y)→ ∃z(R(x, z) ∧R(z, y)) (R is dense)

Unfortunately, not all modal axioms correspond to first-order expressible prop-
erties of R. Axioms Grz, W M are examples of the lack of the desired corre-
spondence.

Similarly, there are some natural properties of relation R, which cannot be
captured by any modal axiom. For instance,

∀x.¬R(x, x) - antireflexivity
∀x, y.(R(x, y)→ ¬R(y, x)) - antisymmetry
∀x, y.(R(x, y) ∧R(y, x))→ x = y - weak antisymmetry.

9.5 Multi-Modal Logics

Consider now the case where one deals with many modalities6.

Definition 9.5.1 Formulas of a propositional multi-modal logic with modalities
�m, where (m = 1, . . . , k), are defined by replacing in Definition 9.2.1 the clause
introducing � by the following clause:

〈FM 〉 ::= 〈F0〉 || �1〈FM 〉 || . . . || �k〈FM 〉.

Modalities ♦m, dual �m are defined by ♦mα
def≡ ¬�m(¬α).

The notions of the Kripke frames and structures is easily obtained by introducing
relations Rm, for m = 1, . . . , k modelling modalities �m.

Definition 9.5.2

• By a multi-modal Kripke frame we understand any relational system
〈W , {Rm}m∈M 〉, where W is any set, and Rm are binary relations on
W .

6We consider here only unary modalities. One can easily extend the definitions form many-
argument modalities.
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• By a multi-modal Kripke structure we understand any triple 〈K, w, v〉,
where K = 〈W , {Rm}m∈M 〉 is a multi-modal Kripke frame, w ∈ W is a
world and v is a function,

v : F ×W −→ {True,False}.

Definition 9.5.3 By a propositional multi-modal logic with modalities �m (m =
1, . . . , k) we call any logic M = 〈F , C, |=M〉, where:

• F the set of formulas as defined in Definition 9.5.1,

• C is a subclass the class of Kripke structures,

• |=M is defined by extending Definition 9.4.3, where m = 1, . . . , k):

– K, w, v |=M �mα iff for anyw′ such thatRm(w,w′) we haveK, w′, v |=M
α, where Rm is a relation of K,

– K, w, v |=M ♦mα iff there is w′ such that Rm(w,w′) and K, w′, v |=M
α, where Rm is a relation of K.

9.6 Computing Correspondences between Modal

Logics and Predicate Calculus

Example 9.6.1 Consider first the modal axioms �p → p, �p → ��p and
p→ �♦p. As we treat implication as abbreviation, those should be equivalently
rewritten as ¬�p ∨ p, ¬�p ∨��p and ¬p ∨�♦p
Let us now apply the algorithm to those axioms. Let us start with the first one.

— translated axiom:
∀P.∀x.¬(∀y.¬R(x, y) ∨ P (y)) ∨ P (x)

— negated: ∃x.∃P.(∀y.¬R(x, y)∨P (y))∧¬P (x) — note that Lemma
8.3.1 can be applied

— P eliminated: ∃x.¬R(x, x)
— unnegated: ∀x.R(x, x) — i.e. the reflexivity of R

Let us now consider the second axiom.

— translated axiom:
∀P.∀x.¬(∀y.¬R(x, y)∨P (y))∨∀y.(¬R(x, y)∨∀z.(¬R(y, z)∨P (z)))

— negated:
∃x.∃P.(∀y.¬R(x, y)∨P (y))∧∃y.(R(x, y)∧∃z.(R(y, z)∧¬P (z)))

— transformed:
∃x.∃P.∀y.[P (y) ∨ ¬R(x, y)] ∧ [∃y.R(x, y) ∧ ∃z.(R(y, z) ∧ ¬P (z))]
— now Lemma 8.3.1 can be applied
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— P eliminated: ∃x.∃y.R(x, y) ∧ ∃z.(R(y, z) ∧ ¬R(x, z))
— unnegated: ∀x.∀y.¬R(x, y) ∨ ∀z.(¬R(y, z)∨R(x, z)) — the algo-

rithm stops here, however the formula can still be simplified as
follows

— simplified: ∀x, y, z.R(x, y) → (R(y, z) → R(x, z)) — i.e., the
transitivity of R

The elimination of P from the third axiom proceeds as follows.

— translated axiom:
∀P.∀x.¬P (x) ∨ (∀y.¬R(x, y) ∨ ∃z.(R(y, z) ∧ P (z))

— negated: ∃x.∃P.P (x) ∧ ∃y.(R(x, y) ∧ ∀z.(¬R(y, z) ∨ ¬P (z))
— transformed:
∃x.∃P.∀z.[P (z)∨x 
= z]∧ [∃y.R(x, y)∧∀z.(¬R(y, z)∨¬P (z))] —
now Lemma 8.3.1 can be applied

— P eliminated: ∃x.∃y.R(x, y) ∧ ∀z.(¬R(y, z) ∨ x 
= z)
— unnegated: ∀x.∀y.¬R(x, y)∨∃z.(R(y, z)∧x = z) — the algorithm

stops here, but we can simplify the formula
— simplified: ∀x, y.R(x, y)→ R(y, x) — i.e., the symmetry of R

Let us now illustrate the algorithm in case of elimination of two second-order
quantifications. For this purpose consider the axiom �(p∨ q)→ (�p∨�q), i.e.,
¬�(p ∨ q) ∨ (�p ∨�q).

— translated axiom: ∀P.∀Q.∀x.¬(∀y.(R(x, y)→ (P (y) ∨Q(y))) ∨
(∀z.(R(x, z)→ P (z)) ∨ ∀v.(R(x, v)→ Q(v)))

— negated: ∃x.∃P.∃Q.(∀y.(¬R(x, y) ∨P (y)∨Q(y))∧ (∃z.(R(x, z)∧
¬P (z)) ∧ ∃v.(R(x, v) ∧ ¬Q(v))

— separated (w.r.t. Q): ∃x, z, v.∃P.∃Q.∀y.[Q(y)∨(¬R(x, y)∨P (y))]∧
[R(x, z) ∧ ¬P (z) ∧R(x, v) ∧ ¬Q(v)]

— Q eliminated:
∃x, z, v.∃P.(R(x, z) ∧ ¬P (z) ∧R(x, v) ∧ (¬R(x, v) ∨ P (v))

— separated (w.r.t. P ):
∃x, z, v.∃P.[P (v)∨¬R(x, v)]∧R(x, z)∧¬P (z)∧R(x, v)∧¬P (v)

— transformed:
∃x, z, v.∃P.∀u.[P (u) ∨ (u 
= v ∨ ¬R(x, u))] ∧ [R(x, z) ∧ ¬P (z) ∧
R(x, v)]

— P eliminated: ∃x, z, v.[R(x, z) ∧ (z 
= v ∨ ¬R(x, z)) ∧R(x, v)]
— negated: ∀x, z, v.[¬R(x, z) ∨ (z = v ∧R(x, z)) ∨ ¬R(x, v)] — the

algorithm stops here, but we can still make some simplifications:
— simplified: ∀x, z, v.((R(x, z) ∧R(x, v))→ (z = v ∧R(x, z)), i.e.,
∀x, z, v.((R(x, z) ∧R(x, v))→ z = v
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9.7 Exercises

1. Provide a precise definition of translation of modal formulas into formulas
of the predicate calculus.

2. Compute correspondences of Example 9.6.1 using SCAN.

3. Compute correspondences for axioms D and ��α→ �α, using a chosen
second-order quantifier elimination technique.

4. Check whether the following formulas are tautologies of K:

• α→ �α
• α→ �True

• ♦True

• ♦True→ (�α→ ♦α).



Chapter 10

Temporal Logic

10.1 Introduction

As temporal logics serve as a tool for expressing and verifying properties dy-
namically changing in time, one first of all has to decide what is the structure of
time, and what are time-dependent properties. Both time structure and time-
dependent properties are strongly dependent on the specific application. As we
are now mainly interested in the temporal logics of programs, we shall not at-
tempt to give any general definition of temporal logics. Instead, we shall present
a definition that follows intuitions related to programs and their computations.
Consider then typical programs. Usual programs are algorithms that compute
over fixed, time-independent data structures. Program variables are thus those
symbols that change while passing from one program state to another. For our
purposes it is then sufficient to admit that the only time-dependent symbols are
program variables, and that all other symbols are independent of the flow of
time. Time-dependent symbols are usually called flexible or local, while time-
independent ones are rigid or global. The situation with the notion of time is
not that simple, for temporal logics of programs are mainly applied to specifi-
cation and verification of concurrent computations. Thus there can be as many
reasonable structures of time as there are possible models of computations. Ac-
cepting the so-called interleaving model, where actions of processes are shuffled,
one deals with a linear time. For semantics based on partial orders, partially
ordered time is the most natural and apparent. It is not difficult to give ex-
amples of applications where multilinear time suits best. Even when one deals
with linear time, there is a wide choice. The following are typical examples:

• time is reals, ordered by the usual relation ≤, i.e. the corresponding time
structure is 〈R,≤〉,
• time is integers ordered by the usual relation ≤, i.e. the time structure is
〈Z,≤〉,

79
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• time is natural numbers with a successor function (corresponding to next-
time modality) ordered by the relation ≤, i.e. the time structure is
〈N, succ,≤〉
• time is natural numbers with distinguished constants 0, 1, addition, mul-

tiplication and ordered by the relation ≤, i.e. the time structure is
〈N, 0, 1,+, ∗,≤〉.

In the general definition of the temporal logic of programs we have to accept
all possible notions of time. We shall assume that time is given by means of
classical first-order interpretation. Since data structures are usually defined by
first-order interpretations, too, we have the following definition.

Definition 10.1.1 By temporal logic we mean any logic TL = 〈F,Mod, .〉 such
that

• F contains a distinguished set of constants C (elements of C are called
flexible constants); no symbols except those of C can have a time-depen-
dent meaning,

• Mod is a class of classical two-sorted interpretations of the form 〈T , D,
(fc)c∈C〉, where

– T is a time structure,

– D is a data structure that gives meaning to function and relation
symbols (as in classical first-order logic),

– for any c ∈ C, fc : T −→ D is a function from T to D which serves
to interpret constant c (the value of c at time t is fc(t)).

Note that in the case of propositional versions of temporal logics, data structure
D of the above definition consists of two-element boolean algebra (with universe
{True,False}).
Observe also that flexible constants are usually called variables in the literature
as they correspond to program variables. In what follows we shall often use
similar terminology.

10.2 Propositional Temporal Logic of Programs

In the following definition we shall consider only two temporal operators, namely
atNext (introduced by Kröger) and atPrev . These operators are similar. Their
main difference is that atNext concerns the future, while atPrev deals with
the past. Intuitively, p atNext q means that p will be satisfied at the nearest of
the future time points with q satisfied and p atPrev q means that p has been
satisfied at the nearest of the past time points with q satisfied. Note that we
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deal with the strong versions of the temporal operators, in that we require that
p atNext q implies satisfiability of q at some future time point and p atPrev q
implies satisfiability of q somewhere in the past.

Definition 10.2.1 By a propositional temporal logic of programs we mean triple
PTL = 〈FPTL,ModPTL, |=PTL〉, where

• FPTL is the set of propositional temporal formulas containing a distin-
guished set P of flexible propositional variables and defined by the follow-
ing syntax rules

〈FPTL〉 ::= 〈P 〉 || ¬〈FPTL〉 || 〈FPTL〉 ∧ 〈FPTL〉 || 〈FPTL〉 ∨ 〈FPTL〉 ||
〈FPTL〉 → 〈FPTL〉 || 〈FPTL〉 ≡ 〈FPTL〉 ||
〈FPTL〉 atNext 〈FPTL〉 || 〈FPTL〉 atPrev 〈FPTL〉 ||
|| (〈FPTL〉) || [〈FPTL〉]

• Mod is the class of two-sorted first-order interpretations 〈Z, D, (fp)p∈P 〉,
where

1. Z is the structure of integers ordered by the usual relation ≤, i.e.
Z = 〈Z,≤〉,

2. D is the two-element boolean algebra with universe {True,False},
3. for any p ∈ P , fp : Z −→ {True,False} is a function assigning boolean

values to propositional variables (intuitively fp(t) is the value of p at
time point t)

• for M ∈ModPTL, and γ ∈ FPTL, M |=PTL γ iff for all t ∈ Z, M, t |= γ,
where for α, β ∈ FPTL:

1. M, t |= α, for α ∈ P , iff fα(t) = True

2. M, t |= ¬α iff not M, t |= α

3. M, t |= α ∧ β iff M, t |= α and M, t |= β

4. M, t |= α atNextβ iff there is t1 ∈ Z such that t1 > t,
M, t1 |= α ∧ β and for all t < t2 < t1, M, t2 |= ¬β

5. M, t |= α atPrevβ iff there is t1 ∈ Z such that t1 < t,
M, t1 |= α ∧ β and for all t1 < t2 < t, M, t2 |= ¬β.

Observe that other known temporal operators can easily be defined, e.g.:

• the operator ←−© with truth table ∃t′ < t.[∀t′′ < t.(t′′ ≤ t′) ∧ Q(t′)] (i.e.,
Q is true at the immediate predecessor of t) is defined by

(←−©q) def≡ q atPrevTrue,
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• the operator © with truth table ∃t′ > t.[∀t′′ > t.(t′′ ≥ t′) ∧ Q(t′)] (i.e.,
Q is true at the immediate successor of t) is defined by

(©q) def≡ q atNextTrue.

• the operator ♦ with truth table ∃t′ > t.[Q(t′)] is defined by

♦α def≡ True atNextα

There are many other temporal operators discussed in the literature, for in-
stance:

• the operator Since with truth table
∃t′ < t.[P (t′) ∧ ∀s.(t′ < s < t→ Q(s))],

• the operator Until with truth table
∃t′ > t.[P (t′) ∧ ∀s.(t < s < t′ → Q(s))],

• the operator ←−♦ with truth table ∃t′ < t.[Q(t′)],

• the operator ←−� with truth table ∀t′ < t.[Q(t′)],

• the operator � with truth table ∀t′ > t.[Q(t′)],

• the operator �̂ with truth table ∀t.[Q(t)],

• the operator ♦̂ with truth table ∃t.[Q(t)].

The definitions those operators using atNext and atPrev are left as exercises.

Let us now consider a few examples of properties of programs expressible by
means of temporal logics of programs (thus by PTL, too). In the examples we
assume that formulas p and q do not contain past time operators.

• Invariance (safety) properties

– p→ �q (all states reached by a program after the state satisfying p
will satisfy q)

– (atF irst→ p)→ �(atEnd→ q) (partial correctness w.r.t conditions
p and q, where propositional variable atF irst is true only at the
beginning of the specified program, while atEnd is true only when
the program reaches its terminal state)

– �((¬q) ∨ (¬p)) (the program cannot enter critical regions p and q
simultaneously (mutual exclusion)).
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• Eventuality properties

– p → ♦q (there is a program state satisfying q reached by a program
after the state satisfying p)

– (atF irst→ p)→ q atNext atEnd (total correctness w.r.t. conditions
p and q)

– �♦p→ ♦q (repeating a request p will force a response q)

– �p→ ♦q (permanent holding a request p will force a response q).

Note that precedence properties are easier and more natural to express by past
time operators than by future time ones. For instance, a typical precedence
property stating that any occurrence of a program state (event) satisfying p (if
any) must be preceded by a state (event) satisfying q, can be formulated by
past time operator←−♦ as p→←−♦ q while a suitable formula involving future time
operators only could to look like ♦p→ (¬p Until q).

The propositional temporal logic we deal with, PTL, is decidable. This means
that there is an algorithm to decide whether a given formula is satisfiable. More
precisely, given a formula p of PTL, we can automatically check whether there
is an interpretation M = 〈Z, D, (fp)p∈P 〉 ∈ Mod0 satisfying p (i.e. such that
M |= p). Such an algorithm can, for instance, use the following important
theorem.

Theorem 10.2.2 If a formula of PTL is satisfiable then it is satisfiable by a
finitely representable interpretation. Moreover, the size of the interpretation
can be calculated from size of the formula.

10.3 Hilbert and Gentzen-like Proof Systems for

PTL

Let us now define the Hilbert-like proof system for the propositional temporal
logic PTL.

Definition 10.3.1 By the Hilbert-like proof systemHP for logic PTLwe mean
the system 〈HAx,H〉, where

• set HAx consists of the following (schemes of) axioms

1. � ¬©α ≡ ©(¬α)

2. � (©α ∧©β)→©(α ∧ β)

3. � α atNextβ ≡ ©((α ∧ β) ∨ (¬β ∧ α atNextβ))

4. � ¬←−©α ≡ ←−©(¬α)
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5. � (←−©α ∧←−©β)→←−©(α ∧ β)

6. � α atPrevβ ≡ ←−©((α ∧ β) ∨ (¬β ∧ α atPrevβ))

7. � α ≡ ©(←−©α)

8. � α ≡ ←−©(©α)

9. � �(α→©α) → (©α→ �α)

10. � ←−�(α→←−©α) → (←−©α→←−�β)

• set H consists of the following (schemes of) derivation rules

1. for each substitution instance of a classical propositional tautology
α, � α

2. α, α→ β � β

3. α→ β � α atNext γ → β atNext γ

4. ©(α ∧ β) → γ, ©(¬β ∧ γ)→ γ, γ → δ � α atNextβ → δ

5. α→ β � α atPrev γ → β atPrev γ

6. ←−©(α ∧ β) → γ,
←−©(¬β ∧ γ)→ γ, γ → δ � α atPrev β → δ.

A few examples of applications of HP now follow.

Example 10.3.2 First we shall show simple formal proofs that the following
usual axioms of many propositional temporal proof systems

α atNextβ → ♦β (10.1)

©(α ∧ β)→ (©α ∧ ©β) (10.2)

←−©(α ∧ β)→ (←−©α ∧ ←−©β) (10.3)

are derivable in system HP .

First note that ♦β is, by definition, equivalent to True atNextβ. Formula α →
True is derivable in system HP by application of rule 1, as it is simply a classical
propositional tautology. Thus, applying rule 3 with β in the rule substituted by
True we obtain α atNextβ → True atNextβ, i.e., by definition, α atNextβ → ♦β.
This proves (10.1).

As proofs of (10.2) and (10.3) are similar, we shall present the second of them.
According to the definition, ←−©p ≡ p atPrevTrue, thus, by rule 1, it suffices to
prove that

(α ∧ β) atPrev True→ α atPrev True (10.4)
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and

(α ∧ β) atPrev True→ β atPrevTrue. (10.5)

Since formulas (α ∧ β) → α and (α ∧ β) → β are classical propositional tau-
tologies, we prove (10.4) and (10.5) by application of rule 1 and then 5 with γ
substituted by True.

Note that the following tautologies can be proved applying axioms 1, 4, tau-
tologies (10.2), (10.3) and rule 1

� ©(α→ β) ≡ (©α→©β), (10.6)

� ←−©(α→ β) ≡ (←−©α→←−©β). (10.7)

The following example shows a formal proof of a temporal property that com-
bines past and future. It also displays the usefulness of proof rule 4.

Example 10.3.3 Let us present a formal proof of the following temporal tau-
tology:

α → ¬(True atNext (¬(True atPrevα))).

By classical propositional reasoning, we have to prove the formula

True atNext (¬(True atPrevα)) → ¬α.

Its form suggests the use of rule 4 of proof system HP . It is then sufficient to
find an invariant γ such that premises of the rule can be proved valid. After
applying suitable substitutions, those premises take the following form

©(True ∧ (¬(True atPrevα))) → γ, (10.8)
©(True atPrevα ∧ γ) → γ, (10.9)
γ → (¬α). (10.10)

At first glance it seems that substituting γ by ¬α should work. Unfortunately,
it is not the case. It is, however, quite a usual situation in the logics of pro-
grams (e.g. in that of Hoare for partial correctness of while-programs) that the
invariant has to be stronger than the desired conclusion suggests. No wonder
then, that a similar phenomenon is inherited by the temporal logic of programs.
In our proof we shall accept formula ©(←−�(¬α)) as a suitable invariant. By the
definition of ←−� , the invariant takes the form ©(¬(True atPrevα)).
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The premise (10.8) reduces now to©(¬(True atPrevα)) → ©(¬(True atPrevα)),
which as an obvious classical propositional tautology is provable (by rule (1) of
HP ).

After replacing γ by our invariant and applying classical propositional reasoning,
the second premise (10.9) takes the form

©(True atPrevα ∧ ©(¬(True atPrevα))) → ©(¬(True atPrevα)).

Note that provability of formula

©©(¬(True atPrevα)) → ©(¬(True atPrevα))

implies, by axiom 1, tautology (10.6) of the previous example and rule (1) of
HP , provability of the premise (10.9). By tautology (10.6) it suffices to show
provability of the formula ©(¬(True atPrevα)) → (¬(True atPrevα)), i.e. by
axiom 1 and rule 1, provability of formula

True atPrevα → ©(True atPrevα). (10.11)

Consider the right-hand side of the implication (10.11). After application of
axiom 6 we can rewrite it as ©(←−©(True ∧ α) ∨ ←−©(¬α ∧ True atPrevα)). By
applying axioms 1, 7 and tautology (10.6), we obtain the formula α ∨ (¬α ∧
True atPrevα), i.e. by rule 1, formula (α ∨ True atPrevα), which, again by rule
1, is implied by the left-hand side of implication (10.11).

The premise (10.8), γ → (¬α), takes the form ©(¬(True atPrevα)) → (¬α).
To prove this formula it suffices to apply axiom 1 together with rule 1 in order
to obtain the formula α → ©(True atPrevα). This formula can be proved by
applying axiom 6 and then 7 together with axiom 1, tautology (10.6) and rule 1.

To complete the proof it now suffices to apply rule 4 of HP .

We have the following important theorem.

Theorem 10.3.4 Proof system HP for propositional temporal logic PTL is
sound and complete.

Let us now present a Gentzen-like proof system for PTL. According to the
notational conventions used in the literature we denote finite sets of formulas
by ∆, Γ, Π and Σ. Similarly, by ∆, α,Γ we mean set ∆∪{α}∪Γ. Thus a colon
corresponds to the set-theoretical union. A semicolon will be used to separate
different sequents.

Definition 10.3.5 By Gentzen-like proof system GP for logic PTL we mean
system 〈GAx,G〉 such that
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• GAx consists of a single (scheme of) axioms of the form � Γ ⇒ ∆ when
Γ ∩∆ 
= ∅
• G consists of the rules for the classical propositional calculus (see section

5.3) together with the following (schemes of) derivation rules

(©¬l) Γ,©(¬α)⇒ ∆
Γ⇒ ∆,©α (©¬r) Γ⇒ ∆,©(¬α)

Γ,©α⇒ ∆

(←−©¬l) Γ,←−©(¬α)⇒ ∆
Γ⇒ ∆,←−©α (←−©¬r) Γ⇒ ∆,←−©(¬α)

Γ,←−©α⇒ ∆

(atNm)
Γ atNextα⇒ ∆ atNextα

Γ⇒ ∆
(atPm)

Γ atPrevα⇒ ∆ atPrevα
Γ⇒ ∆

,

where Σ atNext γ denotes set {β atNext γ| β ∈ Σ} and Σ atPrev γ denotes
set {β atPrev γ| β ∈ Σ}

(←−©©l)
←−©©α,Γ⇒ ∆
α,Γ⇒ ∆

(←−©©r)Γ⇒ ∆,←−©©α
Γ⇒ ∆, α

(©←−©l)©
←−©α,Γ⇒ ∆
α,Γ⇒ ∆

(©←−©r)Γ⇒ ∆,©←−©α
Γ⇒ ∆, α

(atNl)
Γ, α atNextβ ⇒ ∆

Γ,©((α ∧ β) ∨ (¬β ∧ α atNextβ))⇒ ∆

(atNr)
Γ⇒ α atNextβ,∆

Γ⇒ ∆,©((α ∧ β) ∨ (¬β ∧ α atNextβ))

(atNi)
α atNextβ,Γ⇒ ∆

©(α ∧ β)⇒ γ; ©(¬β ∧ γ)⇒ γ; Γ, γ ⇒ ∆

(atP l)
Γ, α atPrev β ⇒ ∆

Γ,←−©((α ∧ β) ∨ (¬β ∧ α atPrev β))⇒ ∆

(atPr)
Γ⇒ α atPrevβ,∆

Γ⇒ ∆,←−©((α ∧ β) ∨ (¬β ∧ α atPrevβ))

(atP i)
α atPrevβ,Γ⇒ ∆←−©(α ∧ β)⇒ γ; ←−©(¬β ∧ γ)⇒ γ; Γ, γ ⇒ ∆

(iF )
Γ⇒ ∆,©α→ �α

Γ⇒ ∆,�(α→©α)
(iP )

Γ⇒ ∆,©α→ �α
Γ⇒ ∆,�(α→©α)
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The following cut rule is useful, as it simplifies some derivations. Usually one
avoids cut rule since it complicates the implementation of the proof system
(because the formula γ of the rule is to be guessed).

(cut)
Γ⇒ Σ

Γ⇒ γ; γ ⇒ Σ

Example 10.3.6 Let us first show that the following rules can be derived in
GP :

Γ⇒ ∆,©(α ∧ β)
Γ⇒©α,∆; Γ⇒©β,∆ (10.12)

Γ,©(α ∧ β)⇒ ∆
Γ,©α,©β ⇒ ∆

(10.13)

Below (pc) refers to the rules of the classical propositional calculus. Derivation
of (10.12) is the following:

Γ⇒ ∆,©(α ∧ β)
Γ⇒©α ∧©β,∆

Γ⇒©α,∆; Γ⇒©β,∆(pc)
©α ∧©β ⇒©(α ∧ β)
©α,©β ⇒©(α ∧ β)
α, β ⇒ α ∧ β

α, β ⇒ α; α, β ⇒ β
(pc)

(atN)
(pc)

(cut)

Note that in application of rule (atN) we use the definition of©. The right-hand
branch of this derivation reduces to axioms. Observe then that the conclusion of
the derivation depends only on premises Γ⇒©p,∆; Γ⇒©q,∆. This justifies
rule (10.12).

The derivation of rule (10.13) can look as follows (applications of rules of the
classical propositional calculus are not marked here):

Γ,©(α ∧ β)⇒ ∆
Γ⇒ ∆,¬(©α ∧©β)
©α ∧©β,Γ⇒ ∆
©α,©β,Γ⇒ ∆

¬(©α ∧©β),©(α ∧ β)⇒
©(α ∧ β)⇒©α ∧©β

©(α ∧ β)⇒©α
α ∧ β ⇒ α

α, β ⇒ α

(atN)
©(α ∧ β)⇒©β

α ∧ β ⇒ β

α, β ⇒ β

(atN)

(cut)

As before, in order to complete the justification of rule (10.13) it now suffices
to forget those branches of the proof that reduce to axioms.
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Example 10.3.7 Let us now show examples of two simple proofs of temporal
tautologies ¬©False and α atNextβ → ♦β.

The proof of the first tautology can be the following:

⇒ ¬©False

⇒ ¬©(α ∧ ¬α)
©(α ∧ ¬α)⇒

©α,©(¬α)⇒
©α,¬©α⇒
©α⇒©α (pc)

(©¬l)
(10.13)

(pc)
(def. of False)

Note that the second tautology has already been proved in Example 10.3.2.
Observe, however, how the former proof can be automated in Gentzen-like for-
malism.

⇒ α atNextβ → ♦β
⇒ α atNextβ → True atNextβ

α atNextβ ⇒ True atNextβ
α⇒ True

(atNm)
(pc)

(def. of ♦)

The rest of the proof can be carried out by simple applications of rules for

propositional calculus and the definition True
def≡ (p ∨ ¬p).

We have the following theorem.

Theorem 10.3.8 Proof system GP for propositional temporal logic PTL is
sound and complete.

10.4 Exercises

1. Define the following temporal operators using atPrev and atNext .

• the operator Since with truth table
∃t′ < t.[P (t′) ∧ ∀s.(t′ < s < t→ Q(s))],

• the operator Until with truth table
∃t′ > t.[P (t′) ∧ ∀s.(t < s < t′ → Q(s))],

• the operator ←−♦ with truth table ∃t′ < t.[Q(t′)],

• the operator ←−� with truth table ∀t′ < t.[Q(t′)],

• the operator � with truth table ∀t′ > t.[Q(t′)],

• the operator �̂ with truth table ∀t.[Q(t)],
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• the operator ♦̂ with truth table ∃t.[Q(t)].

2. Using the system HP and GP, prove that α → �(←−♦α) is a tautology of
PTL.

3. Show that the rule α � ←−�α is derivable in HP .

4. Check the validity of the following formulas:

• �α→ �(p→©α)

• �α→ �♦α
• �♦α→ ♦�α
• ♦�α→ �♦α.



Chapter 11

Logics of Programs

11.1 Introduction

Logics of programs play a similar rôle in computer science to that of the classical
logic in “pure” mathematics. Classical formulae, however, mirror the static na-
ture of mathematic notions. On the other hand, dynamic behavior of programs
requires an another approach. Namely, the dynamic character of phenomena
appearing in most areas of computer science have their counterparts in non-
classical logics.

The history of development of logics of programs was initiated in the late six-
ties and may seem a rather short one. Nevertheless the research on logics of
programs was very intensive. Many logics have been defined and investigated.
They were strongly influenced by development of new programming tools for
expanding applications of computers, and by essential progress in programming
methodology. The explosion of various applications of computers resulted in de-
velopment of many new programming concepts. Over fifteen hundred different
programming languages have been defined. They were usually accompanied by
less or more suitable axiom systems for proving correctness of programs. Thus
one of the major trends in the area of logics of programs concerns proof systems
that enable formal reasoning about program properties.

First-order logics of programs that are intended to express at least the most
basic properties of programs as e.g. halting property, cannot be characterized
completely (in classical sense) by finitistic proof systems. On the other hand, in
order to stay within a finitary framework, one can try to weaken classical notion
of completeness. Various non-classical notions of completeness were defined
and new completeness proving techniques were developed. The most widely
accepted non-classical notion of completeness is that of relative completeness
defined by Cook. He separated the reasoning about programs from reasoning
about first-order properties of underlying interpretation, and proved that the
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famous Hoare’s system for proving partial correctness of programs is complete
relative to the class of expressive interpretations.

Definition 11.1.1 [Cook] We say that a proof system P for a logic is sound
(complete) relative to the class C of interpretations, provided that for any I ∈ C
and any formula α,

ThI � α implies (is implied by) I |= α,

where ThI denotes the set of all classical first-order formulae valid in I.

In fact, in the definition of Cook, C is assumed to be the class of expressive
interpretations.

Arithmetical completeness was derived from relative completeness by Harel in
his works on dynamic logic. Harel restricts the class of admissible interpretations
to those containing arithmetic of natural numbers. One can also consider a
Henkin-like semantics, where non-standard models of computations are allowed.

Below we shall show proof systems that use a form of induction and are then
close to Harel’s ideas. The proof systems given below can be automatically
obtained from a definition of their semantics1

11.2 Strictly arithmetical interpretations

Let us now discuss the class of admissible interpretations we consider here.
First, we assume that s-arithmetical interpretation contains sort ω of natural
numbers together with constants 0, 1 and functions +, ∗. Next note that pro-
grammers deal with potentially infinite data types whose elements, however, are
represented by finitistic means. Queues, stacks, arrays, trees, symbols, etc. are
always finite. We shall formulate this condition as assumption that for each sort
there is a relation “encoding” its elements as natural numbers.

Let us note that we do not consider finite interpretations, for ω is infinite.

The following definition summarizes the discussion.

Definition 11.2.1 First-order interpretation I is called strictly arithmetical
provided that:

1. I contains sort ω of natural numbers together with constants 0, 1 and
functions +, ∗ interpreted as usual

2. for each sort s of I there is an effective binary relation es such that for
each x of sort s there is exactly one i ∈ ω with es(x, i) true in I.

1The general method of obtaining such proof systems was worked out by the author of
these notes and published in a series of papers.
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Let us remark here that because of effectiveness of relation es all sorts of I are
effective (i.e. some natural kind of Turing computability is defined on sorts of
I). Note also that the class of strictly arithmetical interpretations are a proper
subclass of arithmetical interpretations of Harel.

In order to simplify our considerations, in what follows we shall consider one-
sorted strictly arithmetical interpretations with sort ω, operations 0, 1, +, ∗ and
additional functions having signature ω → ω. In presence of encoding relations
this can be done without loss of generality. Namely, functions and relations on
sorts other than ω can be represented by functions with signature ω → ω or
ω → {0, 1}, respectively.

Definition 11.2.2 We say that a proof system P for a logic is strictly arith-
metically sound (complete) provided that it is sound (complete) relative to the
class of strictly arithmetical interpretations.

The above definition differs from relative completeness of Cook and arithmetical
completeness of Harel in class of admissible interpretations.

11.3 Algorithmic Logic

Algorithmic logic was introduced by Salwicki. Algorithmic logic is a multi-
modal logic, where modal operators are (labelled by) programs. Namely, if P is
a program and α is a formula, then [P ]α is a formula, too. Its intended meaning
is that program P stops and its results satisfy formula α.

Definition 11.3.1 By algorithmic logic (AL) we shall mean the logic satisfying
the following conditions:

1. non-classical connectives are of the form [P ], where P is a program, i.e.
an expression defined as follows:

〈Program〉 ::= z := t || 〈Program〉; 〈Program〉 ||
if γ then 〈Program〉 else 〈Program〉 fi ||
while γ do 〈Program〉 od

where z is a variable, t is a term and γ is an open formula,

2. the class of admissible interpretations is the class of classical first-order
interpretations

3. the satisfiability relation of AL, |=, is defined as follows:

• for classical connectives and first-order quantifiers |= agrees with sat-
isfiability relation of the predicate calculus
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• I, v |= [z := t]α iff I, v |= α(z := t),
• I, v |= [P ;Q]α iff I, v |= [P ]([Q]α)
• I, v |= [if γ then P else Q fi]α iff I, v |= (γ → [P ]α) ∧ (¬γ → [Q]α)
• I, v |= [while γ do P od]α iff there is i ∈ ω such that I, v |= [P i](¬γ),

and for the first such i we have that I, v |= [P i]α).

Example 11.3.2 Observe that:

• [P ]True expresses that program P stops

• α→ [P ]β expresses the total correctness of program P w.r.t. α and β

• (α∧ [P ]True)→ [P ]β expresses the partial correctness of program P w.r.t.
α and β

• ∀x.[y := 0; while y 
= x do y := y + 1 od]True over the domain of natural
numbers expresses the fact that every natural number is “finite”, i.e., can
be obtained from 0 by a finite number of applications of the successor
function.

Many other interesting properties of programs and data structures can also be
expressed.

Definition 11.3.3 Given a fixed strictly arithmetical interpretation, we define
the following proof system for AL:

1. all instances of classical propositional tautologies

2. �AL [z := t]α ≡ α(z := t) where α is an open formula

3. �AL [P ;Q]α ≡ [P ]([Q]α)

4. �AL [if γ then P else Q fi]α ≡ (γ → [P ]α) ∧ (¬γ → [Q]α)

5. (α ∧ ¬γ)→ δ, (γ ∧ [P ]δ)→ δ, δ → β �AL [while γ do P od]α→ β

6. β → ∃n δ(n), δ(n+ 1)→ ((α ∧ ¬γ) ∨ (γ ∧ [P ]δ(n)), ¬δ(0) �AL

β → [while γ do P od]α,
where n does not appear in γ, α and P

7. α, α→ β �AL β

α→ β �AL ∀x.α→ ∀x.β
α→ β �AL [P ]α→ [P ]β.

The following theorem is a consequence of more general Theorem 12.7.6.

Theorem 11.3.4 The proof system defined in Definition 11.3.3 is strictly arith-
metically sound and complete.
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11.4 Dynamic Logic

Definition 11.4.1 By dynamic logic (DL) we shall mean the logic satisfying
the following conditions:

(a) non-classical connectives are of the form 〈P 〉, where P is a program, i.e.
an expression defined as follows:

〈Program〉 ::= z := t || γ? || 〈Program〉; 〈Program〉 ||
〈Program〉 ∪ 〈Program〉 || 〈Program〉∗

where z is a variable, t is a term and γ is an open formula,

(b) the class of admissible interpretations is the class of classical first-order
interpretations

(c) the satisfiability relation of DL, |=, is defined as follows:

– for classical connectives and first-order quantifiers |= agrees with sat-
isfiability relation of classical first-order logic

– I, v |= 〈z := t〉α iff I, v |= α(z := t),

– I, v |= 〈γ?〉α iff I, v |= γ ∧ α
– I, v |= 〈P ;Q〉α iff I, v |= 〈P 〉(〈Q〉α)

– I, v |= 〈P ∪Q〉α iff I, v |= 〈P 〉α or I, v |= 〈Q〉α
– I, v |= 〈P ∗〉α iff there is i ∈ ω such that I, v |= 〈P i〉α.

Note that the main difference between AL and DL is that AL concerns de-
terministic programs, whilst DL also non-deterministic ones (due to program
connectives ∪ and ∗). Consequently, 〈〉 means modal possibility.

Definition 11.4.2 By concurrent dynamic logic (CDL) we shall mean DL aug-
mented with additional program connective ∩, and the following rule concerning
its semantics:

I, v |= 〈P ∩Q〉α iff I, v |= 〈P 〉α and I, v |= 〈Q〉α.

Definition 11.4.3 Given a fixed strictly arithmetical interpretation, we define
the following proof system for (C)DL:

1. all instances of classical propositional tautologies

2. �(C)DL< z := t > α ≡ α(z := t) where α is an open formula

3. �(C)DL< γ? > α ≡ γ ∧ α
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4. �(C)DL 〈P ;Q〉α ≡ 〈P 〉(〈Q〉α)

5. �(C)DL< P ∪Q > α ≡< P > α∨ < Q > α

6. �CDL< P ∩Q > α ≡< P > α∧ < Q > α

7. (α∨ < P > δ)→ δ, δ → β �(C)DL< P ∗ > α→ β

8. β → ∃n δ(n), δ(n+ 1)→ (α∨ < P > δ(n)), ¬δ(0) �(C)DL β →< P ∗ > α

where n does not appear in < P ∗ > α

9. α, α→ β �(C)DL β

α→ β �(C)DL ∀x.α→ ∀x.β
α→ β �(C)DL< P > α→< P > β

The following theorem is a consequence of more general Theorem 12.7.6.

Theorem 11.4.4 The proof system defined in Definition 11.4.3 is strictly arith-
metically sound and complete.

Gentzen-like rules for DL could include the following ones (see also section 12.7):

• Γ, 〈P ∗〉α,Σ⇒ ∆
α ∨ 〈P 〉δ ⇒ δ; Γ, δ,Σ⇒ ∆

• Γ⇒ Σ, 〈P ∗〉α,∆
δ(n← n+ 1)⇒ α ∨ 〈P 〉δ(n); δ(n← 0)⇒; Γ⇒ Σ, ∃n(δ(n)),∆

,

where n does not appear in 〈P ∗〉α.

11.5 Exercises

1. Prove rules 5, 6 of Definition 11.3.3.

2. Prove rules 7, 8 of Definition 11.4.3.

3. Check whether the following formulas are tautologies of AL:

• [P ](α ∧ β) ≡ ([P ]α ∧ [P ]β)
• [P ](α ∨ β) ≡ ([P ]α ∨ [P ]β).

4. Check whether the following formulas are tautologies of (C)DL:

• 〈P 〉(α ∨ β) ≡ (〈P 〉α ∧ 〈P 〉β)
• 〈P 〉(α ∨ β) ≡ (〈P 〉α ∨ 〈P 〉β).

5. Express in AL and in (C)DL the following properties of stacks and queues:

• every stack is finite
• every queue is finite.
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Fixpoint Calculus

12.1 Introduction

Fixpoint calculus are important in computer science applications. First, the
semantics of many computational processes have a nice fixpoint characterization.
Second, fixpoint queries are computable in PTime. Moreover, as Immerman
and Vardi proved, fixpoint calculus express all PTime computable queried over
ordered databases.

This chapter is then devoted to fixpoint calculus and their applications.

12.2 Syntax of Fixpoint Calculus

Formulas of fixpoint calculus, denoted by FX, are defined by means of the fol-
lowing rules.

〈FX〉 ::= 〈FI〉 || lfp 〈Rel〉.〈FX〉 where 〈FX〉 is positive w.r.t. 〈Rel〉 ||
gfp 〈Rel〉.〈FX〉 where 〈FX〉 is positive w.r.t. 〈Rel〉 ||
¬〈FX〉 || 〈FX〉 ∧ 〈FX〉 || 〈FX〉 ∨ 〈FX〉 || 〈FX〉 → 〈FX〉 ||
〈FX〉 ≡ 〈FX〉 || ∀〈VI〉.〈FX〉 || ∃〈VI〉.〈FX〉 || (〈FX〉) || [〈FX〉]

It is sometimes convenient to define more than one relation by means of fix-
point equations. This gives raise to so-called simultaneous fixpoints defined by
allowing many relations as arguments of fixpoint operators. The syntax is then
modified by assuming new syntax rules for fixpoint operators and leaving the

97
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other rules unchanged. The new rules are the following:

lfp 〈Rel〉{, 〈Rel〉}.〈FX〉 || gfp 〈Rel〉{, 〈Rel〉}.〈FX〉

where 〈FX〉 are positive w.r.t. all relations in 〈Rel〉{, 〈Rel〉}.

12.3 Semantics of Fixpoint Calculus

The semantics of lfp X.T (X) and gfp X.T (X) is the least and the greatest fix-
point of T (X), i.e. the least and the greatest relation X such that X ≡ T (X).
Since T is assumed positive w.r.t. X , such fixpoints exist. More precisely, given
a relational structure 〈Dom, {fDom

i : i ∈ I}, {RDom
j : j ∈ J}〉, and any valuation

v : VI −→ Dom can be extended to valuation v : FX −→ Bool as follows, as-
suming that first-order connectives and quantifiers are defined as in the case of
predicate calculus:

v(lfp X(x̄).A(X)) = the least (w.r.t. ⊆)) relation S such that
S(x) ≡ vX

S (A(X))
v(gfp X(x̄).A(X)) = the greatest (w.r.t. ⊆)) relation S such that

S(x) ≡ vX
S (A(X)).

The semantics of the least fixpoint operator lfp X1, . . . , Xn.T (X1, . . . , Xn) and
the greatest fixpoint operator gfp X1, . . . , Xn.T (X1, . . . , Xn) is the tuple of the
least and the greatest fixpoints of T (X1, . . . , Xn), i.e. the least and the greatest
relations X1, . . . , Xn such that for all i = 1, . . . , n, Xi ≡ T (X1, . . . , Xn). Since
T is assumed positive w.r.t. X1, . . . , Xn, such fixpoints exist.

12.4 The Characterization of Fixpoints

Consider the following simultaneous fixpoint.

lfp R1(x̄1), . . . , Rk(x̄k).A(R1(x̄1), . . . , Rk(x̄k))

Each Ri is called the i-th coordinate of the fixpoint and also denoted by A/i.

Fixpoint formulas have a very nice computational characterization, which allows
one to compute simultaneous fixpoints over databases in time polynomial in the
size of the database1. Namely, given an extensional database B, we have the
following definition of the least fixpoint,

〈R1(x̄1), . . . , Rk(x̄k)〉 =
∨
i∈ω

Ai(False, . . . ,False)

1In the case of infinite domains, ω is to be replaced by a suitable ordinal number.
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where brackets 〈, 〉 are used to denote a vector of relations, ω stands for the set
of natural numbers,

A0(False, . . . ,False) = 〈False, . . . ,False︸ ︷︷ ︸
k−times

〉

Ai+1(False, . . . ,False) = 〈Ai/1(False, . . . ,False), . . . , Ai/k(False, . . . ,False)〉.

Similarly, we have the following definition of the greatest fixpoint,

〈R1(x̄1), . . . , Rk(x̄k)〉 =
∧
i∈ω

Ai(True, . . . ,True)

where

A0(True, . . . ,True) = 〈True, . . . ,True︸ ︷︷ ︸
k−times

〉

Ai+1(True, . . . ,True) = 〈Ai/1(True, . . . ,True), . . . , Ai/k(True, . . . ,True)〉.

12.5 The Complexity of Fixpoint Calculus

Theorem 12.5.1 Both checking whether a fixpoint formula is satisfiable or
whether it is a tautology are not partially computable problems2.

Theorem 12.5.2 Given a fixpoint formula, checking its satisfiability or validity
over a given finite domain relational structure is in PTime.

12.6 Fixpoint Calculus as a Query Language

Example 12.6.1 The transitive closure of a binary relation R can be defined
by the following fixpoint formula:

TC(R)(x, y) ≡ lfp X(x, y).[R(x, y) ∨ ∃z.(R(x, z) ∧X(z, y))].

Example 12.6.2 Consider now the following example, where we are given a
unary relation Wise and a binary relation Colleague defined on the set Persons
and suppose we want to calculate the relation Wisest as the greatest relation
satisfying the following constraint, meaning that Wisest are those who are wise
and have only wisest colleagues:

∀x.Wisest(x)→ (Wise(x) ∧ ∀y.(Colleague(x, y)→Wisest(y))).
2In fact, as in the case of the second-order logic, the problem is even much more complex

than partially computable problems or their complements.
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The Wisest relation is defined by the following fixpoint formula:

gfp X(x).[∀x.X(x)→ (Wise(x) ∧ ∀y.(Colleague(x, y)→ X(y)))].

since we are interested in calculating the greatest such relation.

Example 12.6.3 The example concerns a game with states a, b, .... The game
is between two players. The possible moves of the games are held in a binary
relation moves. A tuple 〈a, b〉 in moves indicates that when in a state a, one
can chose to move to state b. A player loses if he or she is in a state from which
there are no moves. The goal is to compute the set of winning states (i.e., the
set of states such that there exists a winning strategy for a player in this state).
These are obtained as the extension of a unary predicate win.

Let M(x, y) and W (x) denote the predicates moves and win, respectively.

Observe that W satisfies the following conditions:

1. ∀x[(∃yM(x, y) ∧ ∀z¬M(y, z)) → W (x)], i.e. from x there is a move to y
from which the opposing player has no move;

2. ∀x[(∃yM(x, y) ∧ ∀z(M(y, z) → W (z))) → W (x)], i.e. from x there is a
move to y from which all choices of the opposing player lead to a state
where the other player (the player that moved from x to y) has a winning
strategy.

Note that (1) is subsumed by (2), thus the definition of W is given by,

W (x) ≡ µW (x).{∃y.[M(x, y) ∧ ∀z.(M(y, z)→W (z))]}.

12.7 Designing Proof Systems

By M we shall denote an enumerable set of non-classical connectives. We as-
sume that the connectives are unary. However, the approach can easily be
generalized to many-argument non-classical connectives. In the sequel we shall
always assume that a first-order signature is fixed. By L we shall then denote
the set of many-sorted classical first-order formulas.

Definition 12.7.1 Let M be an enumerable set of non-classical connectives.
We form an M-extension of classical first-order logic (M -logic, in short) as triple
〈L(M), C, |=〉, where:

1. L(M) is the set of formulas obtained from L augmented with the following
syntax rule:

〈L(M)〉 ::= 〈L〉||〈M〉(〈L(M)〉)
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2. C is a class of admissible interpretations (we assume C is a subclass of
classical first-order interpretations in relational structures)

3. |= is a satisfiability relation that agrees with the classical one for classical
first-order formulas.

The semantics of many logics can be characterized by means of fixpoint equa-
tions. The fixpoint calculus are an obvious example. Also many other logics
can be characterized similarly.

Example 12.7.2 For any first-order interpretation I and valuation v of free
variables the following conditions hold:

• I, v |= 〈P ∗〉α ≡ (α ∨ 〈P 〉〈P ∗〉α)

• I, v |= α atNextβ ≡ ©(α ∧B) ∨©(¬β ∧ α atNextβ)

The above example points out the most essential characterization of non-classical
connectives in considered logics. Namely, equivalences given there have the fol-
lowing common form:

x ≡ Γ(x),

e.g, x ≡ (α ∨ 〈P 〉x).

Definition 12.7.3 We say that set Γ(M) = {Γm(A)(x) | m ∈ M,A ∈ L(M)}
defines set M of non-classical connectives of M -logic provided that the following
conditions hold:

• for any first-order interpretation I and valuation v of free variables,

– I, v |= m(A) ≡ Γm(A)(m(A))

– I, v |= m(A) iff there is i ∈ ω such that I, v |= Γi
m(A)(False).

• there is a well-founded3 relation <M on M such that righthand sides of
equalities defining functionals Γm(A) ∈ Γ(M), contain (syntactically) only
connectives less (w.r.t. <M ) than m.

Definition 12.7.4

• Given an M -logic, we shall say that set M of non-classical connectives is
monotone iff for any interpretation I, m ∈M , and formulas α, β:

I |= α→ β implies I |= m(α)→ m(β)
3A binary relation is well-founded if there are no infinite decreasing chains w.r.t. the

relation.
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• Given an M -logic, we shall say that set Γ of functionals is monotone iff
for any interpretation I, functional G ∈ Γ, and formulas α, β:

I |= α→ β implies I |= G(α)→ G(β)

Definition 12.7.5 By proof system P(M,Γ) for (M, Γ)-logic we shall mean the
proof system containing the following axioms and inference rules:

(1) all instances of classical propositional tautologies

(2) for all m ∈M and formula α such that Γm(α)(x) is a constant functional
(syntactically, i.e. functional containing no occurrences of x) we assume
the following axiom:

(LR) �(M,Γ) m(α) ≡ Γm(α)(False)

(3) for all m ∈ M other then those in (2) we assume the following inference
rules:

(L) Γm(α)(γ)→ γ, γ → β �(M,Γ) m(α)→ β

(R) β → ∃n γ(n), γ(n + 1) → Γm(α)(γ(n)),¬γ(0) �(M,Γ) β → m(α)
where n is a variable not appearing in m(α)

(4) rules:

(MP) α, α→ β �(M,Γ) β

(G) α→ β �(M,Γ) ∀x.α→ ∀x.β
(M) α→ β �(M,Γ) m(α)→ m(β)

Note that distinction between cases (2) and (3) is not essential. In fact, we
could consider case (3) only, particular case of which is case (2). However, we
make the distinction in order to obtain more elegant proof systems.

Theorem 12.7.6 [Sza�las] For any (M, Γ)-logic proof system P(M,Γ) is strictly
arithmetically sound and complete.

Definition 12.7.7 Let L be an (M,G)-logic. By GPL we shall mean the fol-
lowing proof system

I. axioms:
� Γ⇒ ∆, when Γ ∩∆ 
= ∅

II. rules:

1. rules for the predicate calculus

2. for all m ∈M and formula α such that Gm(α)(x) is a constant func-
tional (syntactically, i.e. functional containing no occurrences of x)
we assume the following rules:
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(a)
Σ,m(α),Γ⇒ ∆

Σ, Gm(α)(False),Γ⇒ ∆

(b)
Γ⇒ Σ,m(α),∆

Γ⇒ Σ, Gm(α)(False),∆
3. for all m ∈M other than those above we assume the following rules:

(a)
Γ,m(α),Σ⇒ ∆

Gm(α)(γ)⇒ γ; Γ, γ,Σ⇒ ∆

(b)
Γ⇒ Σ,m(α),∆

γ(n+ 1)⇒ Gm(A)(γ(n)); γ(0)⇒; Γ⇒ Σ, ∃n.(γ(n)),∆
where n does not appear in m(A).

Note that, as in the case of the Hilbert-like proof system, the rules 2(a) and
2(b) are special cases of rules 3(a) and 3(b).

Theorem 12.7.8 [Sza�las] For any (M, Γ)-logic proof systemGP(M,Γ) is strictly
arithmetically sound and complete.

12.8 A Fixpoint Approach to Quantifier Elimi-
nation

The idea that lead to Lemma 8.3.1 can be generalized by the use of fixpoint
operators.

As an example consider the second–order formula

∃P.[P (a) ∧ ¬P (b) ∧ ∀x.∀y.(¬P (x) ∨ P (y) ∨N(x, y))].

The problem we have if we try to apply Lemma 8.3.1 is that we are not able
to separate the positive from the negative occurrences of P such that the re-
quirements for the lemma are fulfilled. This is certainly not too surprising for
otherwise we would be able to find an equivalent first–order formula which is
impossible as Ackermann’s result shows. The idea is therefore to describe these
many conjunctive elements in a finite language and that with the help of fixpoint
operators as follows:[

νP (x). x 
= a ∧ ∀y P (y) ∨N(y, x)
]x

b

where [Φ]xb is meant to express that every occurrence of x in Φ is to be replaced
by b.

Theorem 12.8.1 [Nonnegart and Sza�las] If Φ and Ψ are positive w.r.t. P then
the closure ordinal for Φ(P ) is less than or equal to ω and

∃P ∀y (P (y)→ Φ(P )) ∧Ψ(P ) ≡ Ψ
[
P (α) :=

[
νP (y).Φ(P )

]y

α

]
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and similarly for the case where the sign of P is switched and Φ and Ψ are
negative w.r.t. P .

Note the strong similarities between Lemma 8.3.1 and Lemma 12.8.1. In fact,
it can quite easily be observed that this fixpoint result subsumes the former
result as described in Lemma 8.3.1 for in case that Φ does not contain any P at
all we have that νP (y).Φ is equivalent to Φ, hence Theorem 12.8.1 is a proper
generalization of Lemma 8.3.1.

Again it is usually necessary to apply some equivalence preserving transforma-
tions in order to obtain a formula in the form required for applying Lemma
12.8.1. This can be done by the initial phases of the DLS algorithm (see section
8.3). Recall that the syntactic form required in Lemma 8.3.1 cannot always be
obtained. This is not the case anymore for Lemma 12.8.1 for any formula can be
transformed into the form required provided second–order Skolemization is al-
lowed. This Skolemization evidently cannot be avoided in general for otherwise
every second–order formula could be transformed into a (possibly infinite) first–
order formula. Nevertheless, the lemma can always be applied and returns some
result which is usually a fixpoint formula and sometimes another second–order
formula. Such fixpoints can be tried to be simplified then and in particular in
case where the fixpoint is bounded a final first–order result can be found.

The following example illustrates the use of Theorem 12.8.1 in case of the second-
order induction axiom.

Example 12.8.2 Consider the second-order induction, where S(x, y) means
that y is a successor of x:

∀P.[P (0) ∧ ∀x.∀y.((P (x) ∧ S(x, y))→ P (y))]→ ∀z.P (z) (12.1)

Let us now transform the formula into the form required in Theorem 12.8.1 and
then apply the theorem4:

Negated —
∃P.[P (0) ∧ ∀x.∀y.((P (x) ∧ S(x, y))→ P (y))] ∧ ∃z.¬P (z)

Transformed into the conjunctive normal form —
∃z.∃P.∀y.[(y 
= 0 ∨ P (y)) ∧ ∀x.(¬P (x) ∨ ¬S(x, y) ∨ P (y))] ∧ ¬P (z)

Transformed into the form required in Theorem 12.8.1 —
∃z.∃P.∀y.[P (y) ∨ (y 
= 0 ∧ ∀x.(¬S(x, y) ∨ ¬P (x)))] ∧ ¬P (z)

After application of Theorem 12.8.1 —
∃z.ν¬P (z).(z 
= 0 ∧ ∀x.[¬S(x, z) ∨ ¬P (x))]

Unnegated —
∀z.µP (z).[z = 0 ∨ ∃x.(S(x, z) ∧ P (x))].

4We use the well-known equivalence (p → q) ≡ (¬p ∨ q)
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By Theorem 12.8.1 we have that the above formula is equivalent to the following
infinite disjunction:

∀z.
∨
i∈ω

[z = 0 ∨ ∃x.(S(x, z) ∧ P (x))]i(False).

Denote by Φ(Ψ(z)) the formula z = 0 ∨ ∃x.(S(x, z) ∧Ψ(x)). Now

Φ0(False) ≡ False
Φ1(False) ≡ [z = 0 ∨ ∃x.(S(x, z) ∧ False)] ≡ [z = 0 ∨ False] ≡

[z = 0]
Φ2(False) ≡ Φ(Φ1(False)) ≡ [z = 0 ∨ ∃x.(S(x, z) ∧ x = 0)] ≡

[z = 0 ∨ S(0, z)]
Φ3(False) ≡ Φ(Φ2(False)) ≡

[z = 0 ∨ ∃x.(S(x, z) ∧ (x = 0 ∨ S(0, x)))] ≡
[z = 0 ∨ S(0, z) ∨ S2(0, z)]

...
Φi(False) ≡ [z = 0 ∨ S(0, z) ∨ ... ∨ Si−1(0, z)].

Thus, by a simple calculation we obtain the well-known, but not trivial fact
that the second-order induction (12.1) is equivalent to ∀z.∨i∈ω [Si(0, z)], i.e.
“every natural number is obtained from 0 by a finite number of applications of
the successor relation”. In fact, the other Peano axioms say that the successor
relation is a function, etc.

Let us now show some correspondence-theoretical applications of Theorem 12.8.1.

Example 12.8.3 Consider the Löb Axiom

�(�P → P ) → �P (12.2)

Translated:
∀P.∀x.[∀y.(R(x, y)→ ∀z.(R(y, z)→ P (z))→ P (y))]→

∀u.(R(x, u)→ P (u))

After negation and elimination of →:
∃P.∃x.[∀y.(¬R(x, y) ∨ ∃z.(R(y, z) ∧ ¬P (z) ∨ P (y)))]∧

∃u.(R(x, u) ∧ ¬P (u))

Transformed into the form required in Theorem 12.8.1:
∃x.∃P.[∀y.(P (y) ∨ ¬R(x, y) ∨ ∃z.(R(y, z) ∧ ¬P (z)))]∧

∃u.(R(x, u) ∧ ¬P (u))

After application of Theorem 12.8.1:
∃x.∃u.R(x, u) ∧ ν¬P (u).[¬R(x, u) ∨ ∃z.(R(u, z) ∧ ¬P (z))]
Unnegated:
∀x.∀u.R(x, u)→ µP (u).[R(x, u) ∧ ∀z.(R(u, z)→ P (z))]
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Denote by Φ(Ψ(u)) the formula R(x, u) ∧ ∀z.(R(u, z)→ Ψ(z)). Now

Φ0(False) ≡ False
Φ1(False) ≡ R(x, u) ∧ ∀z.¬R(u, z)
Φ2(False) ≡ Φ(Φ(False)) ≡ Φ(R(x, u) ∧ ∀z.¬R(u, z)) ≡
R(x, u) ∧ ∀z.(R(u, z)→ (R(x, z) ∧ ∀z1.¬R(z, z1))))
Φ3(False) ≡ Φ(Φ2(False)) ≡
Φ(R(x, u) ∧ ∀z.(R(u, z)→ (R(x, z) ∧ ∀z1.¬R(z, z1)) ≡
R(x, u)∧∀z.(R(u, z)→ R(x, z)∧∀z2.(R(z, z2)→ (R(x, z2)∧∀z1.¬R(z2, z1))))
...

Thus the Löb axiom (12.2) is equivalent to

∀x.∀u.R(x, u)→
∨
i∈ω

Φi(False),

which expresses that the relation R is transitive and reverse well-founded. Tran-
sitivity of R can be seen by unfolding the fixpoint two times and the reverse
well-foundness of R then follows from the simplification of ∀x.∀u.R(x, u) →
µP (u).[R(x, u)∧∀z.(R(u, z)→ P (z))] to ∀x.∀u.R(x, u)→ µP (u).[∀z.R(u, z)→
P (z)] under the transitivity assumption.

Example 12.8.4 Consider the temporal logic formula

�(p→©p) → (p→ �p). (12.3)

where � should be interpreted as always or henceforth and © as at the next
moment of time.

Translated:
∀P.∀x.[∀y.(R�(x, y)→ (P (y)→ ∀z.(R©(y, z)→ P (z))))]→

[P (x)→ ∀u.(R�(x, u)→ P (u))]

Negated:
∃x.∃P.[∀y.(R�(x, y)→ (P (y)→ ∀z.(R©(y, z)→ P (z))))]∧

[P (x) ∧ ∃u.(R�(x, u) ∧ ¬P (u))]
Transformed into the conjunctive normal form:
∃x.∃u.∃P.∀y.∀z.(P (z) ∨ ¬R�(x, y) ∨ ¬R©(y, z) ∨ ¬P (y))∧
∀z.(P (z) ∨ x 
= z) ∧R�(x, u) ∧ ¬P (u)

Transformed into the form required in the Theorem 12.8.1:
∃x.∃u.∃P.∀z.[P (z)∨ (x 
= z∧∀y.(¬R�(x, y)∨¬R©(y, z)∨¬P (y))]∧

R�(x, u) ∧ ¬P (u)
After application of Theorem 12.8.1:
∃x.∃u.R�(x, u)∧

ν¬P (u).(x 
= u ∧ ∀y.(¬R�(x, y) ∨ ¬R©(y, u) ∨ ¬P (y))]

Unnegated:
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∀x.∀u.R�(x, u)→
µP (u).(x = u ∨ ∃y.(R�(x, y) ∧R©(y, u) ∧ P (y)).

Thus formula (12.3) is equivalent to the following one:

∀u.∀x.R�(u, x)⇒ {R�(u, u) ∧ [u = x ∨R©(u, x)∨∨
i∈ω ∃v0 . . . ∃vi.(R�(u, v0) ∧ . . . ∧R�(u, vi)∧

R©(u, v0) ∧R©(v0, v1) ∧ . . . ∧R©(vi−1, vi) ∧R©(vi, x))]}.
i.e. this formula states that R� is the reflexive and transitive closure of R©, a
property which is not expressible by means of the classical logic but expressible
by means of the fixpoint logic.

12.9 Exercises

1. Let B(b, x, y) means that there is a connection between places x and y by
bus b and let T (t, x, y) means that there is a connection between places x
and y by train t. Formulate the following queries:

(a) Is there a connection between x and y by a single bus or a single
train?

(b) Is there a connection between x and y by bus lines only?

(c) Is there a connection between x and y combining arbitrary trains and
busses?

2. Consider the following axiom schema, which is sometimes called the mod-
ified Löb Axiom:

�(P → ♦P ) → (♦P → �♦P ).

Find a fixpoint correspondence of the schema.

3. Consider the axiom schema

�(�P → P )→ P.

Show that no Kripke frame validates the schema. Hint: find the fixpoint
correspondence and show that the resulting fixpoint formula is equivalent
to False.

4. Design a strictly arithmetically complete proof system for fixpoint calcu-
lus.
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Chapter 13

Rough Concepts

13.1 Introduction

In many AI applications, a precise set or relation is either unknown, or to
complex to represent. In such cases one often approximates the set/relation.

The lower approximation of a concept represents points that are known to be
part of the concept, the boundary region represents points that might or might
not be part of the concept, and the complement of the upper approximation
represents points that are known not to be part of the concept.

The rough set philosophy is founded on the assumption that we associate some
information (data, knowledge) with every object of the universe of discourse.
This information is often formulated in terms of attributes about objects. Ob-
jects characterized by the same information are interpreted as indiscernible
(similar) in view of the available information about them. An indiscernibil-
ity relation, generated in this manner from the attribute/value pairs associated
with objects, provides the mathematical basis of rough set theory.

Any set of all indiscernible (similar) objects is called an elementary set, and
forms a basic granule (atom) of knowledge about the universe. Any union of
some elementary sets in a universe is referred to as a crisp (precise) set; otherwise
the set is referred to as being a rough (imprecise, vague) set. In the latter case,
two separate unions of elementary sets can be used to approximate the imprecise
set, as we have seen in the example above.

Consequently, each rough set has what are called boundary-line cases, i.e., ob-
jects which cannot with certainty be classified either as members of the set or
of its complement. Obviously, crisp sets have no boundary-line elements at all.
This means that boundary-line cases cannot be properly classified by employing
only the available information about objects.

The assumption that objects can be observed only through the information

109
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available about them leads to the view that knowledge about objects has gran-
ular structure. Due to this granularity, some objects of interest cannot always
be discerned given the information available, therefore the objects appear as the
same (or similar). As a consequence, vague or imprecise concepts, in contrast to
precise concepts, cannot be characterized solely in terms of information about
their elements since elements are not always discernable from each other. In the
proposed approach, we assume that any vague or imprecise concept is replaced
by a pair of precise concepts called the lower and the upper approximation of
the vague or imprecise concept. The lower approximation consists of all ob-
jects which with certainty belong to the concept and the upper approximation
consists of all objects which have a possibility of belonging to the concept.

The difference between the upper and the lower approximation constitutes the
boundary region of a vague or imprecise concept. Additional information about
attribute values of objects classified as being in the boundary region of a concept
may result in such objects being re-classified as members of the lower approxi-
mation or as not being included in the concept. Upper and lower approximations
are two of the basic operations in rough set theory.

13.2 Information Systems and Indiscernibility

One of the basic fundaments of rough set theory is the indiscernibility relation
which is generated using information about particular objects of interest. Infor-
mation about objects is represented in the form of a set of attributes and their
associated values for each object. The indiscernibility relation is intended to
express the fact that, due to lack of knowledge, we are unable to discern some
objects from others simply by employing the available information about those
objects. In general, this means that instead of dealing with each individual ob-
ject we often have to consider clusters of indiscernible objects as fundamental
concepts of our theories.

Let us now present this intuitive picture about rough set theory more formally.

Definition 13.2.1 An information system is any pair A = 〈U,A〉 where U is a
non-empty finite set of objects called the universe and A is a non-empty finite
set of attributes such that a : U → Va for every a ∈ A. The set Va is called the
value set of a. By InfB(x) = {(a, a(x)) : a ∈ B}, we denote the information
signature of x with respect to B, where B ⊆ A and x ∈ U .

Note that in this definition, attributes are treated as functions on objects, where
a(x) denotes the value the object x has for the attribute a.

Any subset B of A determines a binary relation INDA(B) ⊆ U × U , called an
indiscernibility relation, defined as follows.

Definition 13.2.2 Let A = 〈U,A〉 be an information system and let B ⊆ A.
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By the indiscernibility relation determined by B, denoted by INDA(B), we
understand the relation

INDA(B) = {(x, x′) ∈ U × U : ∀a ∈ B.[a(x) = a(x′)]}.

If (x, y) ∈ INDA(B) we say that x and y are B-indiscernible. Equivalence
classes of the relation INDA(B) (or blocks of the partition U/B) are referred
to as B-elementary sets. The unions of B-elementary sets are called B-definable
sets.

Observe that INDA(B) is an equivalence relation. Its classes are denoted by
[x]B. By U/B we denote the partition of U defined by the indiscernibility
relation IND(B).

In the rough set approach the elementary sets are the basic building blocks
(concepts) of our knowledge about reality.

The ability to discern between perceived objects is also important for construct-
ing many entities like reducts, decision rules, or decision algorithms which will
be considered in later sections. In the classical rough set approach the discerni-
bility relation, DISA(B), is defined as follows.

Definition 13.2.3 Let A = 〈U,A〉 be an information system and B ⊆ A. The
discernibility relation DISA(B) ⊆ U ×U is defined by xDIS(B)y if and only if
not(xIND(B)y).

We now consider how to express (define) sets of objects using formulas con-
structed from attribute/value pairs. The simplest type of formula consisting of
one attribute/value pair is called an elementary descriptor.

Definition 13.2.4 An elementary descriptor is any formula of the form a = v
where a ∈ A and v ∈ Va. A generalized descriptor is any formula of the form∨n

i=1 a = vi, where a ∈ A and each vi ∈ Va. A boolean descriptor is any boolean
combination of elementary or generalized descriptors.

Let S = {v1, . . . vn} ⊆ Va. We will sometimes use the following notation, a .= S
or a .= {v1, . . . vn} as an abbreviation for

∨n
i=1 a = vi.

Let ϕ be a boolean descriptor. The meaning of ϕ in A, denoted ‖ϕ‖A, is defined
inductively as follows:

1. if ϕ is of the form a = v then ‖ϕ‖A = {x ∈ U : a(x) = v} ;

2. ‖ϕ ∧ ϕ′‖A = ‖ϕ‖A ∩ ‖ϕ′‖A
‖ϕ ∨ ϕ′‖A = ‖ϕ‖A ∪ ‖ϕ′‖A
‖¬ϕ‖A = U − ‖ϕ‖A.
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Definition 13.2.5 Any set of objects X ⊆ U definable in A by some formula
ϕ (i.e., X=‖ϕ‖A) is referred to as a crisp (precise, exact) set; otherwise the set
is referred to as a rough (imprecise, inexact, vague) set .

Observe that vague concepts cannot be represented only by means of crisp
concepts, although they can be approximated by crisp concepts.

13.3 Approximations and Rough Sets

Let us now define approximations of sets in the context of information systems.

Definition 13.3.1 Let A = 〈U,A〉 be an information system, B ⊆ A and
X ⊆ U . The B-lower approximation and B-upper approximation of X , denoted
by XB+ and XB⊕ respectively, are defined by XB+ = {x : [x]B ⊆ X} and
XB⊕ = {x : [x]B ∩X 
= ∅}.
The B-lower approximation of X is the set of all objects which can be classi-
fied with certainty as belonging to X just using the attributes in B to discern
distinctions.

Definition 13.3.2 The set consisting of objects in the B-lower approximation
XB+ is also called the B-positive region of X . The set XB− = U − XB⊕ is
called the B-negative region of X . The set XB± = XB⊕ − XB+ is called the
B-boundary region of X .

Observe that the positive region of X consists of objects that can be classified
with certainty as belonging to X using attributes from B. The negative region
of X consists of those objects which can be classified with certainty as not
belonging to X using attributes from B. The B-boundary region of X consists
of those objects that cannot be classified unambiguously as belonging to X using
attributes from B.

The size of the boundary region of a set can be used as a measure of the quality
of that set’s approximation (relative to U). One such measure is defined as
follows.

Definition 13.3.3 The accuracy of approximation is defined in terms of the
following coefficient,

αB(X) =
|XB+ |
|XB⊕ | ,

where |X | denotes the cardinality of X 
= ∅.

It is clear that 0 ≤ αB(X) ≤ 1. If αB(X) = 1 then X is crisp with respect to B
(X is precise with respect to B); otherwise, if αB(X) < 1 then X is rough with
respect to B (X is vague or imprecise with respect to B).
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13.4 Decision Systems

Rough set techniques are often used as a basis for supervised learning using
tables of data. In many cases the target of a classification task, that is, the
family of concepts to be approximated, is represented by an additional attribute
called a decision attribute. Information systems of this kind are called decision
systems.

Definition 13.4.1 Let 〈U,A〉 be an information system. A decision system is
any system of the form A = 〈U,A, d〉, where d 
∈ A is the decision attribute and
A is a set of conditional attributes, or simply conditions.

Let A = 〈U,A, d〉 be given and let Vd = {v1, . . . , vr(d)}. Decision d determines a
partition {X1, . . . , Xr(d)} of the universe U , where Xk = {x ∈ U : d(x) = vk}
for 1 ≤ k ≤ r(d). The set Xi is called the i-th decision class of A. By Xd(u) we
denote the decision class {x ∈ U : d(x) = d(u)}, for any u ∈ U .

One can generalize the above definition to the case of decision systems of the
form A = 〈U,A,D〉 where the set D = {d1, ...dk} of decision attributes and A
are assumed to be disjoint. Formally this system can be treated as the decision
system A = 〈U,C, dD〉 where dD(x) = (d1(x), ..., dk(x)) for x ∈ U.
A decision table can be identified as a representation of raw data (or training
samples in machine learning) which is used to induce concept approximations in
a process known as supervised learning. Decision tables themselves are defined
in terms of decision systems. Each row in a decision table represents one training
sample. Each column in the table represents a particular attribute in A, with
the exception of the 1st column which represents objects in U and selected
columns representing the decision attribute(s).

The formulas consisting only of descriptors containing condition (decision) at-
tributes are called condition formulas of A (decision formulas of A).

Any object x ∈ U belongs to a decision class ‖∧
a∈D a = a(x)‖A of A. All

decision classes of A create a partition of the universe U .

A decision rule for A is any expression of the form ϕ⇒ ψ, where ϕ is a condition
formula, ψ is a decision formula, and ‖ϕ‖A 
= ∅. formulas ϕ and ψ are referred
to as the predecessor and the successor of the decision rule ϕ ⇒ ψ. Decision
rules are often called “IF . . . THEN . . .” rules.

A decision rule ϕ⇒ ψ is true in A if and only if ‖ϕ‖A ⊆ ‖ψ‖A; otherwise, one
can measure its truth degree by introducing some inclusion measure of ‖ϕ‖A
in ‖ψ‖A. For example, one such measure which is widely used, is called a
confidence coefficient and is defined as,

|‖ϕ ∧ ψ‖A|
|U | .
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Another measure of non-classical inclusion called support of the rule, is defined
as,

|‖ϕ‖A|
|U | .

Each object x in a decision table determines a decision rule,

∧
a∈C

a = a(x)⇒
∧

a∈D

a = a(x).

Decision rules corresponding to some objects can have the same condition parts
but different decision parts. Such rules are called inconsistent (nondeterministic,
conflicting, possible); otherwise the rules are referred to as consistent (certain,
sure, deterministic, nonconflicting) rules. Decision tables containing inconsis-
tent decision rules are called inconsistent (nondeterministic, conflicting); other-
wise the table is consistent (deterministic, nonconflicting).

In machine learning and pattern recognition it is often necessary to induce
concept approximations from a set of learning samples together with decision
attribute values for each sample. The concept approximations generated can be
used as the basis for additional algorithms which classify previously unobserved
objects not listed in the original decision tables. Classifiers in such algorithms
can be represented by sets of decision rules together with mechanisms for re-
solving conflicts between decision rules which provide us with different decisions
for the same object.

Numerous methods based on the rough set approach combined with boolean
reasoning techniques have been developed for decision rule generation. When a
set of rules have been induced from a decision table containing a set of training
examples, they can be inspected to determine if they reveal any novel relation-
ships between attributes that are worth pursuing further. In addition, the rules
can be applied to a set of unseen cases in order to estimate their classification
power.

13.5 Dependency of Attributes

An important issue in data analysis is to discover dependencies between at-
tributes. Intuitively, a set of attributes D depends totally on a set of attributes
C, denoted C ⇒ D, if the values of attributes from C uniquely determine the
values of attributes from D. In other words, D depends totally on C, if there
exists a functional dependency between values of C and D.

Formally, a dependency between attributes can be defined as follows.
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Definition 13.5.1 Let A = 〈U,A〉, and D and C be subsets of A. We say that
D depends on C to degree k (0 ≤ k ≤ 1), denoted by C ⇒k D, if

k = γ(C,D) =
|POSC(D)|
|U | ,

where

POSC(D) =
⋃

X∈U/D

XC+ ,

called a positive region of the partition U/D with respect to C, is the set of all
elements of U that can be uniquely classified to blocks of the partition U/D, by
means of C. The coefficient k is called the degree of the dependency.

If k = 1 we say that D depends totally on C, and if k < 1, we say that D depends
partially (to degree k) on C.

The coefficient k expresses the ratio of all elements of the universe which can
be properly classified to blocks of the partition U/D employing attributes C, to
all elements of the universe.

If D depends totally on C then IND(C) ⊆ IND(D). This means that the
partition generated by C is finer than the partition generated by D. Notice,
that the concept of dependency discussed above corresponds to that considered
in relational databases. Definition 13.5.1 is a central concept and is used to
define the notion of reduct in the next section.

In summary, D is totally (partially) dependent on C, if all (some) elements
of the universe U can be uniquely classified to blocks of the partition U/D,
employing C.

13.6 Reduction of Attributes

A question often arises as to whether one can remove some data from a data
table and still preserve its basic properties, that is, whether a table containing
superfluous data can be optimized by removal of redundant data. Let us express
this more precisely.

Definition 13.6.1 Let A = (U,A,D) be a decision system and C ⊆ A, E ⊆ D
be sets of condition and decision attributes, respectively. We will say that
C′ ⊆ C is a E-reduct (reduct with respect to E) of C, if C′ is a minimal subset
of C such that γ(C,E) = γ(C′, E).

The intersection of all E-reducts is called a E-core (core with respect to E).
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Essentially, the definition states that if we disregard some subset of the at-
tributes of C, this will not allow us to classify more or less objects as being in
E equivalence classes in the partition U/E.

Because the core is the intersection of all reducts, it is included in every reduct,
i.e., each element of the core belongs to some reduct. Thus, in a sense, the core
is the most important subset of attributes, since none of its elements can be
removed without affecting the classification power of attributes.

One can consider preserving less restrictive constraints than γ(C,E) = γ(C′, E)
when trying to reduce conditional attributes . For example, one can require
|γ(C,E) − γ(C′, E)| < ε, for a given threshold ε > 0. The reduction of condi-
tional attributes preserving such constraints results in reduct approximation.

Many other kinds of reducts and their approximations are discussed in the
literature. It turns out that they can be efficiently computed using heuristics
based on Boolean reasoning techniques.

13.7 Representing Rough Concepts in Predicate

Calculus

Let us now discuss the concept of rough sets from the point of view of the logical
calculus we use in other parts of the book.

In order to construct a language for dealing with rough concepts, we introduce
the following relation symbols for any rough relation R:

• R+ – represents the positive facts known about the relation. R+ corre-
sponds to the lower approximation of R. R+ is called the positive region
(part) of R.

• R− – represents the negative facts known about the relation. R− corre-
sponds to the complement of the upper approximation of R. R− is called
the negative region (part) of R.

• R± – represents the unknown facts about the relation. R± corresponds to
the set difference between the upper and lower approximations to R. R±

is called the boundary region (part) of R.

• R⊕ – represents the positive facts known about the relation together with
the unknown facts. R⊕ corresponds to the upper approximation to R. R⊕

is called the positive-boundary region (part) of R.

• R� – represents the negative facts known about the relation together
with the unknown facts. R� corresponds to the lower approximation of
the complement of R. R� is called the negative-boundary region (part) of
R.
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From the logical point of view, elementary sets can be represented by means of
logical formulas or primitive relations, assuming their extensions form a parti-
tion of the universe. Assume we are given elementary sets defined by formulas
{α1(x̄1), . . . , αn(x̄n)}. Any relation can now be approximated as follows:

R+(x̄)
def≡

∨
{αi : 1 ≤ i ≤ n ∧ ∀x̄∀x̄i.(αi(x̄i)→ R(x̄))}

R⊕(x̄)
def≡

∨
{αj : 1 ≤ j ≤ n ∧ ∃x̄∃x̄j .(R(x̄) ∧ αj(x̄j))}.

13.8 Rough Deductive Databases

13.8.1 The Language of Extensional Databases

The extensional database consists of positive and negative facts. We thus assume
that the language of the extensional database is a set of literals, i.e. formulas
of the form R(c̄) or ¬R(c̄), where R is a relation symbol and c̄ is a tuple of
constant symbols.

13.8.2 The Language of Intensional Databases

The intensional database is intended to infer new facts, both positive and neg-
ative via application of intensional rules to the EDB. The rules have the form,

±P (x̄)← ±P1(x̄1), . . .± Pk(x̄k), (13.1)

where ± is either the empty string or the negation symbol ¬ and any variable
that appears in a head of a rule (i.e. any variable of x̄ in a rule of the form
(13.1)) appears also in the rule’s body (i.e. among variables of x̄1, . . . x̄k in the
rule).

The rules can be divided into two layers, the first for inferring positive and the
second for inferring negative facts. The first layer of rules (called the positive
IDB rule layer), used for inferring positive facts, has the form,

P (x̄)← ±P1(x̄1), . . .± Pk(x̄k) (13.2)

while the second layer of rules (called the negative IDB rule layer), used for
inferring negative facts, has the following form,

¬P (x̄)← ±P1(x̄1), . . .± Pk(x̄k) (13.3)

13.8.3 The Semantics of Extensional Databases

The semantics of the extensional database is given by rough sets of tuples. Let
R() be a relational symbol appearing in the extensional database. Then R() is
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interpreted as the rough set whose positive part contains all tuples v(c̄) for which
literal R(c̄) is in the database and the negative part contains all tuples v(c̄) for
which literal ¬R(c̄) is in the database. All other tuples are in the boundary
region of R().

EDB�R(ā) iff R(ā) ∈ EDB+(R),
EDB�¬R(ā) iff ¬R(ā) ∈ EDB−(R),

where R() is a relation of the EDB and ā is a tuple of constants.

Rough relations for the EDB are then defined as follows:

R+
EDB = {v(ā) : EDB�R(ā)}

R−
EDB = {v(ā) : EDB�¬R(ā)}

R±
EDB = {v(ā) : EDB 
�R(ā) and EDB 
�¬R(ā)}.

It is important to observe here, that consistency is not required here.

13.8.4 The Semantics of Intensional Databases

The semantics of the intensional database is given by rough sets of tuples after
application of the intensional rules to the extensional database.

In order to provide the semantics of IDB we require the definition of so-called
Feferman-Gilmore translation.

Definition 13.8.1 By a Feferman-Gilmore translation of formula α, denoted
by FG(α), we mean the formula obtained from α by replacing all negative
literals of the form ¬R(ȳ) by R−(ȳ) and all positive literals the form R(ȳ) by
R+(ȳ).

Let S̄ = (S1, . . . , Sp) contain all relation symbols of the form R+ and R−,
where R is a relation symbol occurring in an IDB rule. For any relation Si, all
rules with S+

i (respectively S−
i ) in their heads should be gathered into a single

formula of the form

∀ȳi.[S±
i (ȳi)← αi(ȳi)]

where

αi(ȳi) ≡
∨
j

∃z̄j .βij(z̄j)

where βij(z̄j) denotes the bodies of all the appropriate rules and ± stands for
+ or −, respectively.
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Define S̄IDB ≡ µS̄.[FG(α1), . . . , FG(αp)], where µ denotes the least simultane-
ous fixpoint operator. In some cases the IDB might appear inconsistent. This
happens when there is a relation R() such that R+ ∩ R− 
= ∅. In what follows
we require that the IDB is consistent, i.e. for all IDB relations R() we have that
R+ ∩R− = ∅. This consistency criterion can be verified in time polynomial in
the size of the database.

The semantics of IDB rules are then defined as follows:

IDB�R(ā) iff ā ∈ EDB+(R) ∪ IDB+(R),
IDB�¬R(ā) iff ā ∈ EDB−(R) ∪ IDB−(R),

where R() is a relation in the EDB or in the head of an intensional rule, ā
is a tuple of constants, and IDB+(R) and IDB−(R) are computed from the
simultaneous fixpoint definition S̄IDB defined above.

Rough relations for the IDB are then defined as follows:

R+
IDB = {v(ā) : IDB�R(ā)}

R−
IDB = {v(ā) : IDB�¬R(ā)}

R±
IDB = {v(ā) : IDB 
�R(ā) and IDB 
�¬R(ā)}.

Observe that,

EDB�R(ā) implies IDB�R(ā)
EDB�¬R(ā) implies IDB�¬R(ā).

Example 13.8.2 Consider the following set of rules:

A1.Q
+(n)

A2.R
+(n)

A4.P
−(x)← A3.P

−(x)
A4.P

−(x)← A2.R
+(x),¬A3.P

+(x)
A4.P

+(x)← A3.P
+(x)

A5.P
−(x)← A3.P

−

A5.P
+(x)← A3.P

+(x)
A5.P

+(x)← A1.Q
+(x),¬A3.P

−(x),

where it is assumed that relations are distributed among agents and that A.R
denotes relation R coming from agent A.

The relations A1.Q
+, A2.R

+, A4.P
−, A4.P

+, A5.P
−, and A5.P

+, occurring in
the heads of the above rules, are defined by the fixpoint formula given by

lfp A1.Q
+, A2.R

+, A4.P
−, A4.P

+, A5.P
−, A5.P

+.R (13.4)
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where R denotes the conjunction of the bodies of rules.

Applying the fixpoint computation procedure, we can compute the relations
characterized by the simultaneous fixpoint formula (13.4):

{}
{A1.Q

+(n), A2.R
+(n)}

{A1.Q
+(n), A2.R

+(n), A4.P
−(n), A5.P

+(n)}.

Assume that the query of interest is P (n). Agent A4 answers False and agent
A5 answers True to the query.

13.9 Exercises

1. Consider the following decision table:

a1 a2 a3 d1 d2

1 1 0 1 1
1 0 0 0 0
0 1 0 1 0
0 0 0 0 0
1 1 1 1 1
1 0 0 0 1
0 1 1 1 1
0 0 1 0 1

• Find all {d1}-reducts and {d1}-core.

• Find all {d2}-reducts and {d2}-core.

2. Create decision rules for d1 and d2 based on the decision table of exercise 1.

3. Define a structure of rough database and exemplary rules for recognizing
small cars.
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interpretations, 11
isomorphism, 31

Kripke frame, 73
Kripke structure, 74

literal, 22
local symbol, 79
logic, 11
logic of Brouwer, 72
logic of Grzegorczyk, 72
logic of Löb, 72
logic of Prior, 72
logic programming paradigm, 31
logic K45, 72
logic KD4, 72
logic KD, 72
logic K, 71
logic S4.1, 72
logic S4.2, 72
logic S4.3, 72
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logic S4, 72
logic S5, 72
logic T, 72
logics of programs, 70

M-extension of classical first-order
logic, 100

M-logic, 100
many-sorted, 24
modal generalization rule, 72
modal operators, 69
modalities, 69
model, 11, 24
models, 11
modified Löb Axiom, 107
monotone set of connectives, 101
most general unifier, 26
multi-modal Kripke frame, 75
multi-modal Kripke structure, 76

natural deduction, 39
negation, 18
negation normal form, 18
negative formula, 62
negative IDB rule layer, 117
negative occurrence, 22
negative region (part), 116
negative-boundary region (part), 116
NNF, 18
non-terminal symbols, 15
nonconflicting rules, 114
nonconflicting table, 114
nondeterministic rules, 114
nondeterministic table, 114
nonrecursive, 23
normal modal logic, 71

open formula, 22

partial correctness of program, 94
PNF, 22
positive formula, 62
positive IDB rule layer, 117
positive occurrence, 22
positive region (part), 116
positive region of the partition, 115

positive-boundary region (part), 116
possible rules, 114
possible worlds, 73
predecessor of decision rule, 113
predicate calculus, 21
premises, 12
prenex normal form, 22
proof, 14
propositional clause, 18
propositional formulas, 17
propositional Horn clause, 18
propositional literal, 18
propositional modal logic, 71, 74
propositional multi-modal logic, 76
propositional temporal formulas, 81
propositional temporal logic of pro-

grams, 81
propositional variables, 17
provability logics, 70
PTL, 81

reductio ad absurdum, 37
reduction to absurdity, 37
relational structures, 23
relational variables, 53
relative completeness, 92
relative soundness, 92
resolution rule, 38, 46
rigid symbol, 79
rough (imprecise, vague) set, 109
rules, 23
rules of sequent calculus for propo-

sitional connectives, 39
rules of sequent calculus for quanti-

fiers, 47
rules of type α, 42
rules of type β, 42
rules of type δ, 48
rules of type γ, 48

satisfiability relation, 11
satisfiable, 11, 18, 24
satisfies, 11
second-order logic, 53
second-order quantifiers, 53
second-order variables, 53
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semantic consequence, 11
semantic tableaux, 41
Semi-Horn formulas, 23
Semi-Horn rules, 23
semi-Horn theory w.r.t. R, 23
sentence, 22
sentences, 17
sequent, 13, 39
sequent calculus, 12
signature, 22
signature of a function or a relation

symbol, 22
similar relational structures, 30
similar to a formula, 22
simultaneous fixpoints, 97
Skolem constant, 27
Skolem form, 27
Skolem function, 27
Skolemization, 27
sorts, 24
strictly arithmetical completeness, 93
strictly arithmetical interpretation,

92
strictly arithmetical soundness, 93
substitution, 26
successor of the decision rule, 113
support of rule, 114
sure rules, 114
Syntactic categories, 15
syntactic consequence, 14

tautology, 11, 18, 24
temporal logic, 80
temporal logics, 70
terminal symbols, 15
terms, 22
theory, 22
time structure, 80
total correctness of program, 94
trivial modal logic, 72
truth value, 18, 24

unary, 22
unifier, 26
universal formula, 22
universal theory, 22

universe, 23

valid, 24
valuation, 18
value set, 110
vocabulary, 22

weak second-order logic, 54
well-formed formulas, 11
well-founded, 101
worlds, 73


