Functional Programming

Tyng-Ruey Chuang

2010 Formosan Summer School on Logic, Language, and Computation June 28 – July 9, 2010

This course note ...

- ... is prepared for the 2010 Formosan Summer School on Logic, Language, and Computation (FLOLAC) held in Taipei, Taiwan,
- ... is made available from the FLOLAC '10 web site:

http://flolac.iis.sinica.edu.tw/flolac10/

(please also check the above site for updated version)

• ... and is released to the public under a Creative Commons Attribution-ShareAlike 3.0 Taiwan license:

http://creativecommons.org/licenses/by-sa/3.0/

Course outline

Unit 1. Basics of functional programming.

Unit 2. Fold/unfold functions; Parametric modules.

Each unit consists of 2 hours of lecture and 1 hour of lab/tutor. Examples will be given in Objective Caml (O'Caml). Useful online resources about O'Caml:

- Web site: http://caml.inria.fr/
- Book: Developing Applications with Objective Caml. URL: http://caml.inria.fr/pub/docs/oreilly-book/

1 Basics of functional programming

1.1 Function, evaluation, and binding

Functions let x = 1

let y = x + 1

let succ n = n + 1

```
let z = succ y
   • val x : int = 1
     val y : int = 2
     val succ : int -> int = <fun>
     val z : int = 3
let sum x y = x + y
let five = sum 2 3
   • val sum : int -> int -> int = <fun>
     val five : int = 5
let plus3 = sum 3
let seven = plus3 4
   • val plus3 : int -> int = <fun>
     val seven : int = 7
Anonymous functions
let succ = fun n \rightarrow n + 1
let one = succ 0
let two = (fun n \rightarrow n + 1) one
   • val succ : int -> int = <fun>
     val one : int = 1
     val two : int = 2
let sum = fun x \rightarrow fun y \rightarrow x + y
let plus3 = sum 3
   • val sum : int -> int -> int = <fun>
     val plus3 : int -> int = <fun>
let twice = fun f \rightarrow fun x \rightarrow f (f x)
let plus6 = twice plus3
let seven = plus6 one
   • val twice : ('a -> 'a) -> 'a -> 'a = <fun>
     val plus6 : int -> int = <fun>
     val seven : int = 7
```

Functions as arguments and as results

```
let compose f g = fun x \rightarrow f (g x)
let plus 3 n = n + 3
let times2 n = n * 2
let this = compose plus3 times2 1
let that = compose times2 plus3 1
   • val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>
     val plus3 : int -> int = <fun>
     val times2 : int -> int = <fun>
     val this : int = 5
     val that : int = 8
let twice f = compose f f
let what = twice (fun n \rightarrow n + n)
let guess = what 1
   • val twice : ('a -> 'a) -> 'a -> 'a = <fun>
     val what : int -> int = <fun>
     val guess : int = 4
```

Notations in O'Caml

Function application is just juxtaposition, and is left associative. These two definitions are the same:

- let this = compose plus3 times2 1
- let this = ((compose plus3) times2) 1

Function abstraction is right associative. These two definitions are the same:

```
    let sum = fun x -> fun y -> x + y
    val sum : int -> int -> int = <fun>
    let sum = fun x -> (fun y -> x + y)
    val sum : int -> (int -> int) = <fun>
```

Evaluation in O'Caml

- Expressions are evaluated before they are passed as arguments to the function body.
- The function body is evaluated only when all the arguments are evaluated.
- Functions can be partially applied.

Binding in O'Caml

- Lexical binding: Expressions are evaluated and bound to the corresponding identifiers in the order they appear in the program text.
- Nested binding: Outer bindings are shadowed by inner bindings.

```
let x = 100
let f y = let x = x + y in x
let x = 10
let z = f x
```

• Simultaneous binding: Several bindings occur at the same time under the same environment.

```
let x = z
and z = x
```

• Recursive binding: Identifiers can be referred to when they are being defined.

```
let rec fac n = if n <= 0 then 1 else n * (fac (n -1)) let six = fac 3
```

Recursive functions: examples

• Expressiveness: Euclid's algorithm for greatest common divisor (gcd), assuming integers m, n > 0:

```
let rec gcd m n =
    if m mod n = 0
        then n
        else gcd n (m mod n)

let u = gcd 57 38
let v = gcd 38 59
```

• The danger of non-terminating computation:

```
let rec loop x = loop x
let oops = loop 0
```

1.2 Data types

Built-in data types in O'Caml

Built-in type operators in O'Caml

Cartesian product

```
type int_pair = int * int

let rec gcd (m, n) =
    if m mod n = 0
        then n else gcd (n, m mod n)

val gcd : int * int -> int = <fun>
```

Function space

```
type int2int2int = int -> int -> int
let rec gcd m n =
    if m mod n = 0
        then n else gcd n (m mod n)

val gcd : int -> int -> int = <fun>
```

Expressions, values, and types

• Well-typed expressions:

```
0, (1 + 2), (sum 2 3), (fun x -> fun y -> x + y), (2, true)
```

• Ill-typed expressions:

```
(1 + '2'), (sum 2 3.0), ((fun x -> fun y -> x + y) 0 1 2)
```

• All O'Caml values have types:

```
val sum : int -> int -> int = <fun>
val five : int = 5
```

• Some values are polymorphic:

```
val twice : ('a -> 'a) -> 'a -> 'a = <fun>
val empty_list : 'a list = []
```

• Expressions are statically checked to ensure they always evaluate to values.

O'Caml is strict

- O'Caml insists on evaluating the arguments in a function application though the arguments may not be required for the computation in the function body. O'Caml is called a *strict* language.
- Some functional language, e.g., Haskell, will evaluate the function arguments only when they are demanded by the computation in the function body. These languages are non-strict.
- What is wrong in this picture (in O'Caml):

```
let oracle () = ...
let choice this that =
   if oracle () then this else that
```

```
• let rec loop x = loop x
let oops = choice (loop 0) 0
```

Functions to the rescue!

```
let rec loop x = loop x

let choice this that =
    if oracle () then this else that

let new_choice this that =
    if oracle () then this () else that ()

let was = choice (loop 0) 0

let now = new_choice (fun () -> loop 0) (fun () -> 0)

val choice : 'a -> 'a -> 'a = <fun>
val new_choice : (unit -> 'a) -> (unit -> 'a) -> 'a = <fun>
```

What about variables?

- We can bind values to identifiers; once an identifier is bound, its value never changes. Of course, bindings can be nested hence, for the same identifier, the inner binding may shadow outer binding.
- Can one implement a counter using only functions?
- We can implement many counters using only functions!

```
• let init value = fun () -> value
let read counter = counter ()
let step counter more = fun () -> read counter + more

val init : 'a -> unit -> 'a = <fun>
val read : (unit -> 'a) -> 'a = <fun>
val step : (unit -> int) -> int -> unit -> int = <fun>
```

Counters via functions

```
let init value = fun () -> value
let read counter = counter ()
let step counter more = fun () -> read counter + more
let mem = init 0
let x = step mem 1
let y = step mem 2
let z = step x 100
let x_y_z = (read x, read y, read z)
```

```
val init : 'a -> unit -> 'a = <fun>
val read : (unit -> 'a) -> 'a = <fun>
val step : (unit -> int) -> int -> unit -> int = <fun>
val mem : unit -> int = <fun>
val x : unit -> int = <fun>
val y : unit -> int = <fun>
val z : unit -> int = <fun>
val z : unit -> int = <fun>
val z : unit -> int = <fun>
val x : unit -> int = <fun>
val x : unit -> int = <fun>
val x : unit -> int = (1, 2, 101)
```

Programming by pattern-matching

List reversal: two examples

```
• let rec reverse list =
    match list with
        [] -> []
        | head :: tail -> (reverse tail) @ [head]
• let reverse list =
        let rec rev rest accumulator =
            match rest with
            [] -> accumulator
            | hd :: tl -> rev tl (hd :: accumulator)
    in
    rev list []
```

• Both have type:

```
val reverse : 'a list -> 'a list = <fun>
```

• Which one is better?

Functions over lists

User-defined type constructors

- tree is a type constructor: it construct a type α tree whenever given a type α .
- Leaf and Node are the two value constructors for type α tree.

```
Leaf: 'a tree
Node: 'a * 'a tree * 'a tree -> 'a tree
```

• In O'Caml, type constructors start with lower-case letters; value constructors start with upper-case letters.

• In O'Caml, type constructors and value constructors are unary. Type construction uses postfix notation; value construction, prefix.

```
Some (Node (1, Node (0, Leaf, Leaf), Node (2, Leaf, Leaf)))
has type
int tree option
```

Functions over trees

Functions over trees, continued

```
let rec build f s =
   match f s with
      None -> Leaf
      | Some (a, left, right) ->
      Node (a, build f left, build f right)

let range (low, high) =
   if low > high
      then None
      else let mid = (low + high) / 2 in
            Some (mid, (low, mid - 1), (mid + 1, high))

let tree1to7 = build range (1, 7)
```

2 Fold/unfold functions; Parametric modules

2.1 Fold/unfold functions for data types

Functions over lists, re-visited

```
let rec filter p list =
   match list with
      [] -> []
      | head :: tail ->
      if p head then head :: (filter p tail)
            else filter p tail

let rec append front rear =
   match front with
      [] -> rear
      | head :: tail -> head :: (append tail rear)
```

- Both functions work on lists in a bottom-up manner.
- What is the base case, and what is the inductive step?

Fold function for lists

```
let rec fold (base, step) list =
    match list with
        [] -> base
        | hd :: tl -> step (hd, fold (base, step) tl)

let filter p list =
        let step (hd, acc) = if p hd then (hd :: acc) else acc
in
        fold ([], step) list

let append front rear =
        fold (rear, fun (hd, acc) -> hd :: acc) front

val fold : 'a * ('b * 'a -> 'a) -> 'b list -> 'a = <fun>
val filter : ('a -> bool) -> 'a list -> 'a list = <fun>
val append : 'a list -> 'a list -> 'a list = <fun>
```

Fold function for trees

What is a tree, anyway?

```
fold : 'b * ('a * 'b * 'b -> 'b) -> 'a tree -> 'b
```

- A tree of type α tree is a value that can be folded.
- Whenever given a base value of type β , and an inductive function of type $\alpha \times \beta \times \beta \to \beta$, a tree can be folded into a value of type β .

A new data type for trees

A new swap function

Look at a tree this way!

```
type ('a, 'b) t = Leaf | Node of 'a * 'b * 'b

type 'a tree = Rec of ('a, 'a tree) t

val fold : (('a, 'b) t -> 'b) -> 'a tree -> 'b = <fun>
```

- Type constructor (α, β) t defines (the only) two forms of a tree node.
- Type constructor α tree defines a tree as a recursive structure via type constructor (α, β) t. The recursion occurs at the second type argument to t.
- A function of type (α, β) $t \to \beta$ comprises both the base case and the inductive step necessary for folding a value of type α tree to a value of type β .

A new data type for trees, continued

```
type ('a, 'b) t = Leaf \mid Node \ of 'a * 'b * 'b
type 'a tree = Rec of ('a, 'a tree) t
val unfold : ('a -> ('b, 'a) t) -> 'a -> 'b tree = <fun>
We saw this before!
let rec build f s =
    match f s with
            None -> Leaf
          | Some (a, left, right) ->
            Node (a, build f left, build f right)
let range (low, high) =
     if low > high
        then None
        else let mid = (low + high) / 2 in
              Some (mid, (low, mid - 1), (mid + 1, high))
let tree1to7 = build range (1, 7)
val build : ('a -> ('b * 'a * 'a) option) -> 'a -> 'b tree = <fun>
Rewrite it using unfold
let rec unfold g seed =
    match g seed with
            Leaf -> Rec Leaf
          | Node (here, left, right) ->
      Rec (Node (here, unfold g left, unfold g right))
let range (low, high) =
     if low > high
        then Leaf
        else let mid = (low + high) / 2 in
              Node (mid, (low, mid - 1), (mid + 1, high))
let balanced = unfold range
let tree1to7 = balanced (1, 7)
val unfold : ('a -> ('b, 'a) t) -> 'a -> 'b tree = \langle \text{fun} \rangle val range : int * int -> (int, int * int) t = \langle \text{fun} \rangle val balanced : int * int -> int tree = \langle \text{fun} \rangle
```

val tree1to7 : ...

Look at a tree the other way!

```
type ('a, 'b) t = Leaf | Node of 'a * 'b * 'b

type 'a tree = Rec of ('a, 'a tree) t

val unfold : ('b -> ('a, 'b) t) -> 'b -> 'a tree = <fun>
```

- Type constructor (α, β) t defines (the only) two forms of a tree node.
- Type constructor α tree defines a tree as a recursive structure via type constructor (α, β) t. The recursion occurs at the second type argument to t.
- A function of type $\beta \to (\alpha, \beta)$ t comprises the co-inductive step necessary for unfolding a value of type β to a value of type α tree.

Fold and unfold for trees

```
let rec fold f tree =
    match tree with
        Rec Leaf -> f Leaf
        | Rec (Node (here, left, right)) ->
            f (Node (here, fold f left, fold f right))

let rec unfold g seed =
    match g seed with
        Leaf -> Rec Leaf
        | Node (here, left, right) ->
        Rec (Node (here, unfold g left, unfold g right))

val fold : (('a, 'b) t -> 'b) -> 'a tree -> 'b = <fun>
val unfold : ('a -> ('b, 'a) t) -> 'a -> 'b tree = <fun>
```

Functions fold and unfold look strangely similar to each other!

Fold and unfold for trees, the third round (I)

Fold and unfold for trees, the third round (II)

Fold and unfold for trees — ever more functional!

Fold and unfold are functions that each takes in a (basis) function as the argument and return a (tree) function as the result.

```
let ($) f g x = f (g x)

let rec fold f tree = (f $ map (id, fold f) $ down) tree
let rec unfold g seed = (up $ map (id, unfold g) $ g) seed

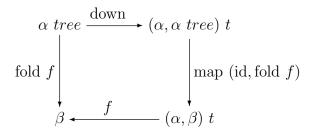
let this = fold up
let that = unfold down

val ($): ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>
val fold: (('a, 'b) t -> 'b) -> 'a tree -> 'b = <fun>
val unfold: ('a -> ('b, 'a) t) -> 'a -> 'b tree = <fun>
val this: 'a tree -> 'a tree = <fun>
val that: 'a tree -> 'a tree = <fun>
```

What is this, and what is that?

Functional diagram for fold

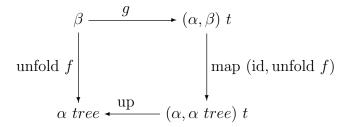
In the diagram, functions are arrows, and types are objects.



let rec fold f tree = (f \$ map (id, fold f) \$ down) tree

Functional diagram for unfold

In the diagram, functions are arrows, and types are objects.

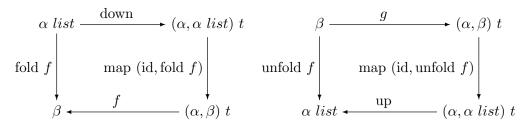


let rec unfold g seed = (up \$ map (id, unfold g) \$ g) seed

Let's not forget lists!

type 'a list = Rec of ('a, 'a list) t

let rec fold f list = (f \$ map (id, fold f) \$ down) list
let rec unfold g seed = (up \$ map (id, unfold g) \$ g) seed



2.2 Parametric Modules

Modules

- A module, also called *structure*, packs together related definitions (types, values, and even modules).
- The module name acts as a "name space" to avoid name conflicts.

Module interfaces

- A module interface, also called *signature*, specifies which components of a structure are accessible from the outside, and with which type.
- It acts as a contract between the user and the implementer of a module. Interface checking is always enforced in O'Caml.

```
module type STACK =
sig
  type 'a t
  val empty: 'a t
  val push: 'a -> 'a t -> 'a t
  val pop: 'a t -> ('a * 'a t) option
end

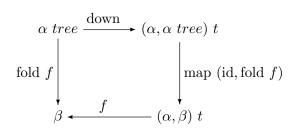
module S: STACK = MyStack
let whatever = S.push 1 S.empty
```

Parametric modules

• A parametric module, also called *functor*, is a structure parameterized by other structures.

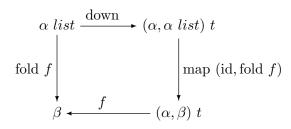
• Type sharing and structure sharing constraints can be used to relate the arguments and the result.

Tree folding



List folding

```
| Cons (hd, tl) -> Cons (f hd, g tl)
type 'a list = Rec of ('a, 'a list) t
```



A fold for all seasons?

- Wanted: A way to describe the derivation of a unary type constructor by recursing over a binary type constructor, and to define the accompanying fold function at the same time.
- This is exactly what a parametric module can do!
- Input: a module with a binary type constructor and its map function.
- Output: a module with a unary type constructor, its map function, and its fold and unfold functions.

Module interfaces FUN and FIX

```
module type FUN =
sig
   type ('a, 'u) t
   val map: ('a -> 'b) * ('u -> 'v) -> ('a, 'u) t -> ('b, 'v) t
end

module type FIX =
sig
   module Base: FUN
   type 'a t = Rec of ('a, 'a t) Base.t
   val down: 'a t -> ('a, 'a t) Base.t
   val up: ('a, 'a t) Base.t -> 'a t

  val map: ('a -> 'b) -> 'a t -> 'b t
   val fold: (('a, 'x) Base.t -> 'x) -> 'a t -> 'x
end
```

Mu, the fixed-pointing module

```
module type MU = functor (B: FUN) -> FIX with module Base = B
module Mu: MU = functor (B: FUN) ->
struct
 module Base = B
 type 'a t = Rec of ('a, 'a t) Base.t
 let down (Rec t) =
 let up
              t = Rec t
 let rec fold f (Rec t) = f
                              (Base.map (id, fold f) t)
 let rec map f (Rec t) = Rec (Base.map (f, map f) t)
end
Module Tree
module T =
struct
 type ('a, 'b) t = Leaf
                  | Node of 'a * 'b * 'b
 let map (f, g) t =
      match t with Leaf -> Leaf
                 | Node ( h, l, r) ->
                  Node (f h, g l, g r)
end
module Tree = Mu(T)
Module List
module L =
struct
 type ('a, 'b) t = Null
                 | Cons of 'a * 'b
 let map (f, g) t =
      match t with Null -> Null
                 | Cons ( hd,
                                tl) ->
                  Cons (f hd, g tl)
end
module List = Mu(L)
```