Object O

Binnur
kurt@ce.itu.edu.tr

Istanbul Technical Universit
Computer Engineering Departmen

Version 0.1.2

About the Lecturer I

d BSc
ITU, Computer Engineering Department, 1995
d MSc

ITU, Computer Engineering Department, 1997
O Areas of Interest
Digital Image and Video Analysis and Processing
Real-Time Computer Vision Systems
Multimedia: Indexing and Retrieval

Software Engineering

YV VYV YV VY VY

OO Analysis and Design

Welcome to the Course I

4 Important Course Information
» Course Hours
* 10:00-13:00 Thursday
» Course Web Page
e http://www.cs.itu.edu.tr/~kurt/courses/blg252e
» Join to the group
e http://groups.yahoo.com/group/blg252¢
* blg252e(@yahoogroups.com

> E-mail ~Kuwt@ce.ltu.edutr

Grading Scheme I

3 Homeworks (5% each)
2 Midterm Exams (20%,25%)
A final exam (40%)

V. V V V

Y ou must follow the official Homework Guidelines

(http://www.ce.1tu.edu.tr/lisans/kilavuz.html).

A\

Academic dishonesty including but not limited to cheating,
plagiarism, collaboration 1s unacceptable and subject to disciplinary
actions. Any student found guilty will have grade F. Assignments
are due 1n class on the due date. Late assignments will generally not
be accepted. Any exception must be approved. Approved late
assignments are subject to a grade penalty.

References

The C++

Programming | Design Patterns
Language Elements of Reusable
SPECIAL EDITI1ON Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Bjarne Stmustrup | =

The Creator, of G+

The presentation 1s based on

Modern C++ Design

Generic Programming
and Design Patterns Applied

Andrei Alexandrescu

Foreword by Scott Meyers
Foreword by John Vlissides

-

th Series « Bjarne Stroustrup

C++ Templates

Asst.Protf.Dr. Feza Buzlaca’s Lecture Notes

Tell me and I forget.
Show me and I remember.
Let me do and I understand.
—Chinese Proverb

a 2

P,

-

There 1s no time for lab sessions

On the course web page you will find lab files for each
week. You should do the lab sessions on your own.
Just follow the 1nstructions on these documents.

{ Object Oriented Programming

Purpose of the Course I

» To introduce several programming paradigms including Object-
Oriented Programming, Generic Programming, Design

Patterns

» To show how to use these programming schemes with the C++
programming language to build “good” programs.

[Object Oriented Programming 7]

Course Outline |

Introduction to Object Oriented Programming.

C++: A Better C.

k.

Classes and Objects
Constructors and Destructors
Operator Overloading
Inheritance

Pointers to Objects
Polymorphism

A R AN

Exceptions

[Object Oriented Programming 8]

Course Outline |

10. Templates
11.The Standard Template Library - STL

{ Object Oriented Programming 9]

How to Use the Icons I

Demonstration Discussion

[Object Oriented Programming 10]

1N INTRODUCTION

Content I

» Introduction to Software Engineering

» Object-Oriented Programming Paradigm

Y—
S
)

=
=

e,
o

B
o

e

{ Object Oriented Programming 12]

Software I

» Computer Software 1s the product that software engineers
design and build.

» It encompasses

— programs that execute within a computer of any size and
architecture,

— documents that encompass hard-copy and virtual forms,

— data that combine numbers and text but also includes
representations of pictorial, video and audio information.

Y—
S
)

=
=

e,
o

B
o

e

[Object Oriented Programming 13]

History I

» Common problems:

— Why does 1t take so long?
— Why are development costs so high?
— Why can’t find all faults before delivery?

— Why can’t we measure the development?

Y—
S
)

=
=

e,
o

B
o

e

{ Object Oriented Programming 14]

History I

» Software Engineering: 1967, NATO Study Group,
Garmisch/ GERMANY

» 1968, NATO Software Engineering Conference:
Software Crisis

— Low quality

— Not met deadlines and cost limits

Y—
S
)

=
=

e,
o

B
o

e

{ Object Oriented Programming 15]

After 35 years I

» Still softwares are
— Late
— Over budget
— With residual faults

» Means

— SW has own unique properties and problems

Y—
S
)

=
=

e,
o

B
o

e

— Crisis >>>>> Depression

{ Object Oriented Programming 16]

Is SW An Engineering? I

» May be?
» Bridge — Operating System

- — After collapse, redesign & rebuild
.5 — Inspect similar bridges

_;5 — Perfectly engineered

= — Experience

= L

— — Maintaining

[Object Oriented Programming

McCall Quality Triangle I

Maintainability Portability

Flexibility Reusability
Testability Interoperability

CT TRANSITION

PRODUCT R

—
=
o

5=
=

S
o

B
S

|

PRODUCT OPERATION

Correctness Usability Efficiency
Reliability Integrity

[Object Oriented Programming 18]

I Correctness {__Traceability |
- | { mpleteness
S || Reliability | %«uim- y i
s | —{__Aeccuraey |
5 < Efficiency 8
Q| _ | Execution efficiency |
- @) | !ﬂ“ﬁ"f‘! Storage efficiency]
|
ke > \ perability]
= = : Maintainability Training]
= — Communicativeness]
i 2) | Testability Simpllcity I
= & | ciseness
= : Flexibility Lo
- |7 — _ ability]
S Portability lity
=) Modularity]
@ \I Reusability Software syst ence
o ine independence
|: l |ntsroperabiliﬂ' e { Communications commonality |
. — Data commonality |

[Object Oriented Programming

McCall Quality Triangle I

» Correctness: The extent to which a program satisfies its
specification and fulfills the customer’s mission objectives

P Reliability: The extent to which a program can be expected to
perform its intended function with required precision

» Efficiency: The amount of computing resources and code
required by a program to perform its function

» Integrity: Extent to which access to software or data by
unauthorized persons can be controlled

» Usability: Effort required to learn, operate, prepare input and
interpret output of a program

» Maintainability: Effort required to locate and fix an error in a
program

Y—
S
)

=
=

e,
o

B
o

e

[Object Oriented Programming 20]

McCall Quality Triangle I

» Flexibility: Effort required to modify an operational program

P Testability: Effort required to test a program to ensure that it
performs its intended function

» Portability: Effort required to transfer the program from one
hardware and/or software system environment to another

» Recusability: Extent to which a program can be reused 1n other
applications

» Interoperability: Effort required to couple one system to another

Y—
S
)

=
=

e,
o

B
o

e

[Object Oriented Programming 21]

Customer-User-Developer

—
S
o

=
=

e,
o

B
= USER

e

CUSTOMER

. ¥
Ko)

|
[

Contractual
obligation

Needs
TR TR A
ST TR S ro

Software system

Sponsors system
development

$$$.

needs

DEVELOPER

%% Builds

[Object Oriented Programming

Development Team

REQUIREMENTS o
 ANALYSIS AND DEFINITION J‘ . B
| SYSTEM 2
DESIGN F &
= 5
PROGRAM
= d DESIGN]: . B
S = - —
2 s ~ PROGRAM |a
S S | IMPLEMENTATION |
S s | N e -
*E’ X - TESTING | . B
= 2 INTEGRATION =
< TESTING
S SYSTEM ‘
' TESTING ™
system | .
DELIVERY | 5
© MAINTENANGE (o1

ANALYST

DESIGNER

PROGRAMMER

TESTER

TRAINER

$310d 434013A34

[Object Oriented Programming

Software Life Cycle I

» Requirements Phase

» Specification Phase
» Design Phase
» Implementation Phase

» Integration Phase

Y—
S
)

=
=

e,
o

B
o

e

» Maintenance Phase
» Retirement Phase

{ Object Oriented Programming 24]

Requirements Phase I

» Defining constraints

— Functions

— Due dates
— Costs

— Reliability

Y—
S
)

=
=

e,
o

B
o

e

— Size

» Types

— Functional

— Non-Functional

{ Object Oriented Programming 25]

Specification Phase I

» Documentation of requirements

— Inputs & Outputs
— Formal

— Understandable for user & developer

Y—
S
)

=
=

e,
o

B
o

e

— Usually functional requirements. (what to do)
— Base for testing & maintenance

» The contract between customer & developer ?

{ Object Oriented Programming 26]

Design Phase I

» Defining Internal structure (how to do)

» Has some levels (or types of docs)

- — Architectural design
S
o
S — Detailed design
S
S _
£
» Important

— To backtrack the aims of decisions

— To easily maintain

{ Object Oriented Programming 27]

Implementation Phase I

» Simply coding
» Unit tests

— For verification

Y—
S
)

=
=

e,
o

B
o

e

{ Object Oriented Programming 28]

Integration Phase I

» Combining modules

P System tests

— For validation

» Quality tests

Y—
S
)

=
=

e,
o

B
o

e

{ Object Oriented Programming 29]

Maintenance Phase I

» Corrective

» Enhancement

— Perfective

— Adaptive

Y—
S
)

=
=

e,
o

B
o

e

» Usually maintainers are not the same people with
developers.

» The only 1nput 1s (in general) the source code of the
software?!?

{ Object Oriented Programming 30]

Retirement Phase I

» When the cost of maintenance i1s not effective.

— Changes are so drastic, that the software should be
redesigned.

— So many changes may have been made.

— The update frequency of docs 1s not enough.

Y—
S
)

=
=

e,
o

B
o

e

— The hardware (or OS) will be changed.

{ Object Oriented Programming 31]

Why Object Technology? I

» Expectations are,

» Reducing the effort, complexity, and cost of development
and maintenance of software systems.

» Reducing the time to adapt an existing system (quicker
reaction to changes in the business environment).
Flexibility, reusability.

Y—
S
)

=
=

e,
o

B
o

e

» Increasing the reliability of the system.

[Object Oriented Programming 32]

Why C++ I

» C++ supports writing high quality programs (supports OO)

» C++ 1s used by hundreds of thousands of programmers in every
application domain.

— This use is supported by hundreds of libraries, hundreds of
textbooks, several technical journals, many conferences.

» Application domain:

— Systems programming: Operating systems, device drivers. Here,
direct manipulation of hardware under real-time constraints are
important.

Y—
S
)

=
=

e,
o

B
o

e

— Banking, trading, insurance: Maintainability, ease of extension,
case of testing and reliability 1s important.

— QGraphics and user interface programs

— Computer Communication Programs

[Object Oriented Programming 33]

What 1s Programming? I

» Like any human language, a programming language
provides a way to express concepts.

» Program development involves creating models of real
world situations and building computer programs based on
these models.

» Computer programs describe the method of implementing
the model.

» Computer programs may contain computer world
representations of the things that constitute the solutions
of real world problems.

Y—
S
)

=
=

e,
o

B
o

e

[Object Oriented Programming 34]

What 1s Programming? (Con’t) I

Programming Language

Abstraction/ @B

ﬁ Modeling A Implementatlﬂi

PaN

Y—
S
)

=
=

e,
o

B
o

e

COMPUTER
REAL WORLD PROGRAMMER

» If successful, this medium of expression (the object-oriented way)
will be significantly easier, more flexible, and efficient than the
alternatives as problems grow larger and more complex.

[Object Oriented Programming 35]

Y—
S
)

=
=

e,
o

B
o

e

Learning C++ I

» [ike human languages, programming languages also have many syntax
and grammar rules.

» Knowledge about grammar rules of a programming language 1s not
enough to write “good” programes.

» The most important thing to do when learning C++ 1s to focus on
concepts and not get lost in language-technical details.

» Design techniques i1s far more important than an understanding of
details; that understanding comes with time and practice.

» Before the rules of the programming language, the programming
scheme must be understood.

» Your purpose in learning C++ must not be simply to learn a new
syntax for doing things the way you used to, but to learn new and
better ways of building systems

[Object Oriented Programming 36]

Software Quality Metrics

» A program must do its job correctly. It must be useful and usable.
* A program must perform as fast as necessary (Real-time constraints).

* A program must not waste system resources (processor time, memory, disk capacity,
network capacity) foo much.

» It must be reliable.
* It must be easy to update the program.
* A good software must have sufficient documentation (users manual).

* Source code must be readable and understandable.
* It must be easy to maintain and update (change) the program.
* A program must consist of independent modules, with limited interaction.
* An error may not affect other parts of a program (Locality of errors).
* Modules of the program must be reusable in further projects.
- A software project must be finished before its deadline.
* A good software must have sufficient documentation (about development).
Smptwar'e developer

Object-oriented programming technique enables programmers to build high-
quality programs. While designing and coding a program, these quality metrics
must be kept always in mind. 37

Software Development Process I

Task/Problem

Analysis/Planning

Design/Modeling

Documentation

Y—
S
)

=
=

e,
o

B
o

e

Implementation

v

<>

[Object Oriented Programming 38]

» Analysis: Gaining a clear understanding of the problem. Understanding
requirements. They may change during (or after) development of the
system!

» Building the programming team.

» Design: Identifying the key concepts involved in a solution. Models of
the key concepts are created. This stage has a strong effect on the quality
of the software. Therefore, before the coding, verification of the created
model must be done.

» Design process 1s connected with the programming scheme. Here, our
design style 1s object-oriented.

Y—
S
)

=
=

e,
o

B
o

e

» Coding: The solution (model) is expressed in a program.

» Coding is connected with the programming language. In this course we
will use C++.

» Documentation: Each phase of a software project must be clearly
explained. A users manual should be also written.

» Test: the behavior of the program for possible inputs must be examined.
[Object Oriented Programming 39]

UML

» They are important design principles and design

patterns, which help us developing high-quality software.

The Unified Modeling Language (UML) 1s useful to
express the model.

Y—
S
)

=
=

e,
o

B
o

e

{ Object Oriented Programming

Unified Process (UP) I

» The UP promotes several best practices.
» lterative

» Incremental

» Risk-driven Recuirements

Business Analysis & Design

Y—
S
)

=
=

e,
o

B
o

e

Modeling y ,.f
, Y Configuration ,
Planning &% & Change Implementation
Management
Initial

Planning Environment ' Test
Evaluation \ Deployment

[Object Oriented Programming 41]

Unified Process (UP)

Requirements

Design

Requirements

Design

Time

Implementation &
Test & Integration
& More Design

Final Integration
& System Test

Y—
S
)

=
=

e,
o

B
o

e

_ J
e

4 weeks (for example) 5

Implementation &
Test & Integration
& More Design

Final Integration
& System Test

O«

Iterations are fixed in
length, or timeboxed.

Feedback from
iteration N leads to
refinement and
adaptation of the
requirements and
design in iteration
N+1.

The system grows
incrementally.

{ Object Oriented Programming

Procedural Programming I

» Pascal, C, BASIC, Fortran, and similar traditional
programming languages are procedural languages. That 1s,
cach statement 1n the language tells the computer to do
something.

» In a procedural language, the emphasis 1s on doing things
(functions).

Y—
S
)

=
=

e,
o

B
o

e

» A program 1s divided into functions and—ideally, at least—
each function has a clearly defined purpose and a clearly
defined interface to the other functions in the program.

[Object Oriented Programming 43]

Procedural Programming I

Main Program functions
: |
S :
=
v-d &
g '
< >
e -

"~ . Global Data
<

{ Object Oriented Programming 44]

Problems with Procedural Programming I

» Data Is Undervalued

» Data 1s, after all, the reason for a program’s existence. The important
parts of a program about a school for example, are not functions that
display the data or functions that checks for correct input; they are
student, teacher data.

» Procedural programs (functions and data structures) don’t model the
real world very well. The real world does not consist of functions.

Y—
S
)

=
=

e,
o

B
o

e

» Global data can be corrupted by functions that have no business
changing it.

» To add new data items, all the functions that access the data must be
modified so that they can also access these new items.

» Creating new data types 1s difficult.

[Object Oriented Programming 45]

Besides... I

P It is also possible to write good programs by using
procedural programming (C programs).

» But object-oriented programming offers programmers
many advantages, to enable them to write high-quality
programs.

Y—
S
)

=
=

e,
o

B
o

e

{ Object Oriented Programming 46]

Object Oriented Programming I

The fundamental 1dea behind object-oriented programming is:

 The real world consists of objects. Computer programs may
contain computer world representations of the things (objects) that
constitute the solutions of real world problems.

e Real world objects have two parts:

*Properties (or state :characteristics that can change),

Y—
S
)

=
=

e,
o

B
o

e

*Behavior (or abilities :things they can do).

*To solve a programming problem 1n an object-oriented language,
the programmer no longer asks how the problem will be divided
into functions, but how It will be divided into objects.

*The emphasis is on data

[Object Oriented Programming 47]

Object Oriented Programming I

» What kinds of things become objects 1n object-oriented
programs?

— Human entities: Employees, customers, salespeople,
worker, manager

— Graphics program: Point, line, square, circle, ...

Y—
S
)

=
=

e,
o

B
o

e

— Mathematics: Complex numbers, matrix

— Computer user environment: Windows, menus, buttons

— Data-storage constructs: Customized arrays, stacks,
linked lists

[Object Oriented Programming 48]

OOP : Encapsulation and Data Hiding I

Thinking in terms of objects rather than functions has a helpful
effect on design process of programs. This results from the close
match between objects in the programming sense and objects in the
real world.

To create software models of real world objects both data and the
functions that operate on that data are combined into a single
program entity. Data represent the properties (state), and functions
represent the behavior of an object. Data and its functions are said
to be encapsulated 1nto a single entity.

Y—
S
)

=
=

e,
o

B
o

e

An object’s functions, called member functions in C++ typically
provide the only way to access its data. The data 1s hidden, so it 1s

safe from accidental alteration.
[Object Oriented Programming 49]

OOP : Encapsulation and Data Hiding -, ’fI

» Encapsulation and data hiding are key terms in the
description of object-oriented languages.

» [you want to modify the data in an object, you know
exactly what functions interact with 1t: the member
functions 1n the object. No other functions can access the
data. This simplifies writing, debugging, and maintaining
the program.

Y—
S
)

=
=

e,
o

B
o

e

[Object Oriented Programming 50]

Example: A Point on the plane I

A Point on a plane has two properties; x-y coordinates.

Abilities (behavior) of a Point are, moving on the plane,
appearing on the screen and disappearing.

A model for 2 dimensional points with the following parts:

Y—
S
)

=
=

e,
o

B
o

e

Two integer variables (X, Y) to represent X and y
coordinates

A function to move the point: move ,
A function to print the point on the screen: print ,

A function to hide the point: hide .

[Object Oriented Programming 51]

Example: A Point on the plane

Once the model has been built and tested, it 1s possible to
create many objects of this model , in main program.

Point pointl, point2, point3;

pointl.move(50,30);
point]l.print();

Y—
S
)

=
=

e,
o

B
o

e

{ Object Oriented Programming 52]

The Object Model I

r

Class name

S :-;:@F;r@ii:ﬁﬂsi :
Attributes: o P R
CIEE]

Operalions:
A C++ program typically consists of a number of objects that
communicate with each other by calling one another’s member functions.

Aftributes:

—
S
o

=
=

e,
o

B
o

e

[Object Oriented Programming 53]

The Object Model Con'’t

Sender object

Attributes:

Operations:

Receiver object

Attributes:

Operations:

—
S
)

=
=

e,
o

B
o

e

message:
[sender, return
value(s)]

message: [receiver, operation, parameters]

[Object Oriented Programming 54]

OOP vs. Procedural Programming I

Procedural Programming:

*Procedural languages still requires you to think 1n terms of the
structure of the computer rather than the structure of the problem
you are trying to solve.

*The programmer must establish the association between the
machine model and the model of the problem that is actually being
solved.

Y—
S
)

=
=

e,
o

B
o

e

*The effort required to perform this mapping produces programs
that are difficult to write and expensive to maintain. Because the
real world thing and their models on the computer are quite
different.

[Object Oriented Programming 55]

Example: Procedural Programming .,

» Real world thing: student

» Computer model: char *, int, float ...

» It 1s said that the C language 1s closer to the computer than
the problem.

Y—
S
)

=
=

e,
o

B
o

e

{ Object Oriented Programming 56]

OOP vs. Procedural Programming .

Object Oriented Programming

» The object-oriented approach provides tools for the
programmer to represent elements in the problem space.

» We refer to the elements 1n the problem space and their
representations in the solution space as “objects.”

» The idea 1s that the program 1s allowed to adapt itself to the
problem by adding new types of objects, so when you read the
code describing the solution, you’re reading words that also
express the problem.

Y—
S
)

=
=

e,
o

B
o

e

» OOP allows you to describe the problem 1n terms of the

problem, rather than in terms of the computer where the solution
will run.

[Object Oriented Programming 57]

OOP vs. Procedural Programming .,

» Benefits of the object-oriented programming;:

— Readability
- — Understandability
;:) — Low probability of errors
,§ — Maintenance
= — Reusability

— Teamwork

{ Object Oriented Programming 58]

pal €+ As a Bettier @

C++ As a Better C I

» C++ was developed from the C programming
language, by adding some features to it. These
features can be collected 1n three groups:

2

1. Non-object-oriented features, which can be
used in coding phase. These are not Non object-oriented

involved with the programming technique. /J RSl
) . . Object-oriented extensions
2. Features which support object-oriented — |FeTSstRetT e

programming. extensions

3. Features which support generic
programming.

O
—
2
)
M
<
0p)]
<
4+
+
@

» With minor exceptions, C++ 1s a superset of C.

Minor exceptions:

C code that 1s not C++
[Object Oriented Programming 60]

C++'s Enhancements to C (Non Object-Oriented) I

» Caution: The better one knows C, the harder 1t seems to be

to avoid writing C++ in C style, thereby losing some of the
potential benefits of C++.

2

» 1. Always keep object-oriented and generic programming
techniques 1n mind.

» 2. Always use C++ style coding technique which has

&
g
ko,
s
<
N
<
|
|
O

many advantages over C style.

» Non object-oriented features of a C++ compiler can be

also used 1n writing procedural programs.

[Object Oriented Programming 61]

C++'s Enhancements to C (Non-OO) I

» Comment Lines

2

» /* This 1s a comment */

» // This 1s a comment

remainder of the line for comment text.

&
g
ko,
s
<
N
<
|
|
O

» This increases readability.

» C++ allows you to begin a comment with // and use the

{ Object Oriented Programming

Declarations and Definitions in C++ I

» Remember; there 1s a difference between a declaration

and a definition

2

exists somewhere, and here is what it should look like."

&
g
ko,
s
<
N
<
|
|
O

the name.

» A declaration introduces a name - an identifier = to the
compiler. It tells the compiler "This function or this variable

» A definition, on the other hand, says: "Make this variable

here" or "Make this function here.” It allocates storage for

[Object Oriented Programming

Example I

extern int I; /| Declaration
Int 1; /I Definition

struct ComplexT{ // Declaration
float re,im;
I3
ComplexT c1,c2; [/ Definition
void func(int, int); // Declaration (its body is a definition)

2

» In C, declarations and definitions must occur at the beginning of a
block.

» In C++ declarations and definitions can be placed anywhere an
executable statement can appear, except that they must appear prior to
the point at which they are first used. This improve the readability of
the program.

» A variable lives only 1n the block, in which 1t was defined. This
block 1s the scope of this variable.

&
g
ko,
s
<
N
<
|
|
O

[Object Oriented Programming 64]

C++'s Enhancements to C (Non-OO) I

Int a=0;
M for (int 1=0; 1 < 100; i++){ //11s declared in for loop
< at+;
§ Int p=12; // Declaration of p
2 // Scope of p
% } // ' End of scope for 1 and p

» Variable 1 1s created at the beginning of the for loop once.
» Variable p 1s created 100 times.

{ Object Oriented Programming 65]

C++'s Enhancements to C (Non-OO) I

» Scope Operator ::

A definition in a block can hide a definition in an enclosing
block or a global name. It 1s possible to use a hidden global

2

O name by using the scope resolution operator ::
& inty=0; // Globaly
= int x=1; /| Global x
Z void £(){ // Function is a new block
+ int x=5; // Local x=)5, it hides global x
O Xt /I Global x=2

X++; /l Local x=6

y++; /I Global y=1

h
[Object Oriented Programming 66 |

// Local x
// Global x 1s 2

int Xx=1;

@\
o1d fi

) void f()
2 Int x=2;
Q
aa
o X
<
i j
@

[Object Oriented Programming

2

int n=1 ;
nti1=3;
cout <<1<<""<<:i1<<endl;
cout <<n <<"\n";
C(})ut <<j<<""<<:i<<endl 31
return O ;

&
g
ko,
s
<
N
<
|
|
O

» Like in C, in C++ the same operator may have more than one
meaning. The scope operator has also many different tasks.

{ Object Oriented Programming 68]

inline functions I

» In C, macros are defined by using the #define directive of the
pPreprocessor.

2

» In C++ macros are defined as normal functions. Here the
keyword inline 1s inserted before the declaration of the
function.

» Remember the difference between normal functions and
macros:

&
g
ko,
s
<
N
<
|
|
O

» A normal function is placed in a separate section of code and a
call to the function generates a jump to this section of code.

» Before the jump the return address and arguments are saved in
memory (usually 1n stack).

[Object Oriented Programming 69]

inline functions Con’ fI

» When the function has finished executing, return address and return
value are taken from memory and control jumps back from the end
of the function to the statement following the function call.

2

» The advantage of this approach i1s that the same code can be called
(executed) from many different places in the program. This makes it
unnecessary to duplicate the function’s code every time it 1is
executed.

» There is a disadvantage as well, however.

&
g
ko,
s
<
N
<
|
|
O

» The function call itself, and the transfer of the arguments take some
time. In a program with many function calls (especially inside
loops), these times can add up and decrease the performance.

[Object Oriented Programming 70]

inline functions Con ’fl

#define sq(x) (x*x)

inline int SQ(int x){return (x*x); }

#define max(x,y) (y<x ?x:Y)

inline int max(int x,int y){return (y<x ? x : y); }

» An inline function is defined using almost the same syntax as an
ordinary function. However, instead of placing the function’s
machine-language code in a separate location, the compiler simply
inserts 1t into the location of the function call. :

2

&
g
ko,
s
<
N
<
|
|
O

int j, k, 1; // Three integers are defined

.......... // Some operations over k and 1

j=max(k, 1) ;//inline function max 1s inserted

i= (k<l 2k :)

[Object Oriented Programming 71]

inline functions Con’ fI

» The decision to inline a function must be made with some
care.

2

» [f a function 1s more than a few lines long and 1s called
many times, then inlining it may require much more
memory than an ordinary function.

» [t’s appropriate to inline a function when it is short, but
not otherwise. If a long or complex function is inlined,
too much memory will be used and not much time will
be saved.

&
g
ko,
s
<
N
<
|
|
O

[Object Oriented Programming 72]

inline functions Con ’fl

» Advantages

2

» Debugging
» Type checking
» Readable

O
E
)
M
<
0p)]
<
4+
+
O

{ Object Oriented Programming 73]

Default Function Arguments I

» A programmer can give default values to parameters of
a function. In calling of the function, if the arguments

- are not given, default values are used.

O

g int exp(int n,int K=2){

O

E‘; if(k == 2) exp(i+5)

2 , /| (i+5)* (i+5)
< 2

. return (n*n) ; exp(i+5.3)

5 else /] (i+5)73

return (exp(n,k-1)*n) ;

j

[Object Oriented Programming 74]

Example I

» In calling a function argument must be given from left

to right without skipping any parameter

2

..

void f(int 1, int j=7) ; // right
void g(int 1=3, 1nt j) ; // wrong
void h(int 1, int j=3,int k=7) ; // right

&
g
ko,
s
<
N
<
|
|
O

void m(int i=1, int j=2,int k=3) ; // right

‘void n(int i=2, int j,int k=3) ; // right ? wrong

[Object Oriented Programming

Example I

void n(int 1=1, int j=2,int k=3) ;
»n() 2 n(1,2,3)

»n(2) 2 n(2,2,3)

»n(3,4) 2 n(3,4,3)

»n(5,6,7) 2n(5,6,7)

2

&
g
ko,
s
<
N
<
|
|
O

{ Object Oriented Programming 76]

Function Declarations and Definitions I

» C++ uses a stricter type checking.

B parameters must be included in the parentheses.

2 char grade (int, int, int); // declaration

O

g int main()

~ [

< .

+ .

@8 char grade (int exam 1, int exam 2, int final exam) // definition

d

; // body of function
h

» In function declarations (prototypes) the data types of the

{ Object Oriented Programming

Function Declarations and Definitions I

» In C++ a return type must be specified; a missing return

type does not default to Int as is the case in C.

2

» In C++, a function that has no parameters can have an
empty parameter list.

int print (void); /* Cstyle */
int print(); /| C++ style

&
g
ko,
s
<
N
<
|
|
O

{ Object Oriented Programming

Reference Operator — & I

» This operator provides an alternative name for storage

2

» There are two usages of the operator

..

INnt& Nnn=n;
double a[10] ;
double& last = a[9] ;

&
g
ko,
s
<
N
<
|
|
O

“const char& new line ="\n";

{ Object Oriented Programming

® » Parameters Passing: Consider swap() function

heap

I

i i

| inttemp = *a; i i
@\ | | .

| *a=7b; | :

| |

I

: *b — temp 5 } i s}

| T 1 b

| int main(){ i
| inti=3j=5 : i
| |
- swap(&i,&j) ; |
| |
| |
. a

&
g
ko,
s
<
N
<
|
|
O

cout <<1<<""<<j<<endl;

__

{ Object Oriented Programming 80]

2

&
g
ko,
s
<
N
<
|
|
O

{ Object Oriented Programming

void shift(int& al,int& a2,int& a3,int& a4){
int tmp = al ;
al =a2;
a2 = a3 - int main() {

a3 = a4 - int x=1,y=2,z=3,w=4;

2

<X <<y< :
ad = tmp ; cout << x <<y <<z<<w <<endl

\ Shifi(x,y,zw) ;

&
g
ko,
s
<
N
<
|
|
O

cout << x <<y <<z <<w <<endl

return O ;

...

..................

{ Object Oriented Programming

1nt squareByValue(int a){ V01d squareByReference(int& a){

return (a*a) ; a*=a:
} S
- int main()| VOldSquareByponlter(lnt*aPtr){
Int X=2,y=3,2=4; *aPtr = *aPtr**aPtr ;

squareByPointer(&x) ;
cout << x <<endl ;

squareByReference(y) ;

&
g
ko,
s
<
N
<
|
|
O

cout <<y <<endl ;

z = squareByValue(z) ;
cout << z << endl ;

b

{ Object Oriented Programming

const Reference I

» To prevent the function from changing the parameter

accidentally, we pass the argument as constant reference to
the function.

@\
struct Person{ /] A structure to define persons
@) char name [40]; /1 Name filed 40 bytes
= int reg_num; /1 Register number 4 bytes
% }; /] Total: 44 bytes
M void print (const Person &K) /1 K is constant reference parameter
S {
2! cout << "Name: " << k.name << endl; /I name to the screen
f cout << "Num: " << k.reg_num << endl; // req num to the screen
+ .
@) int main(){
Person ahmet; /I ahmet is a variable of type Person
strcpy(ahmet.name,"Ahmet Bilir'); /] name = "Ahmet Bilir"
ahmet.reg_num=324; /Il req_ num= 324
print(ahmet); /1 Function call
return O; .
} Instead of 44 bytes only 4 bytes (address) are sent to the function.
{ Object Oriented Programming 84]

Return by reference I

» By default in C++, when a function returns a value: return expression;
expression 1s evaluated and its value 1s copied into stack. The calling function
reads this value from stack and copies it into its variables.

@\

» An alternative to “return by value” is “return by reference”, in which the
value returned 1s not copied into stack.

@)
joJ > One result of using “return by reference” 1s that the function which returns a
I3 parameter by reference can be used on the left side of an assignment
ﬁ statement.
! iINt& max(const int a[], int length) { // Returns an integer reference
< int i=0; /1 indices of the largest element
i for (int j=0 ; j<length ; j++)
O it (ab] > all) 1=1J; ,
return afi]; // returns reference fo afi]
by
int main() {
int array[] = {12, -54, 0, 123, 63}; /1 An array with 5 elements
max(array,5) = O; /1 write O over the largest element

[Object Oriented Programming 85]

const return parameter I

To prevent the calling function from changing the return parameter
accidentally, const qualifier can be used.

const int& max(int a[], int length) // Can not be used on the left side of an

q\
{ /] assignment statement
int 1=0; /1 indices of the largest element
O for (int j=0 ; j<length ; j++)
2 it (alj] > alll) i=j;
D return afi];
o
<
44 This function can only be on right side of an assignment
QJE i{nt main()
int array[] = {12, -54, 0, 123, 63}; /1 An array with 5 elements
int largest; /1 A variable to hold the largest elem.
largest = max(array,5); /1 find the largest element
cout << "Largest element is " << largest << endl,;
return O;

}

[Object Oriented Programming

Never return a local variable by reference! I

»Since a function that uses “return by reference” returns an actual
memory address, 1t 1s important that the variable in this memory
location remain 1n existence after the function returns.

=When a function returns, local variables go out of existence and their

@\

@F values are lost.
—
2 int& f(){ /! Return by reference
5 int i; /1 Local variable. Created in stack
X ;
% return i; /I ERROR! i does not exist anymore.
< }
—I_ . .
55 Local variables can be returned by their values
int f() { /Il Return by value
int i; /l Local variable. Created in stack
return i; /1 OK.
¥

[Object Oriented Programming 87]

new/delete I

» In ANSI C, dynamic memory allocation is normally performed with
standard library functions malloc and free.
» The C++ new and delete operators enable programs to perform
dynamic memory allocation more easily.
» The most basic example of the use of these operators 1s given below.
An 1nt pointer variable 1s used to point to memory which 1s allocated by
the operator new. This memory is later released by the operator delete.
in C: int *p ;
p = (int *) malloc(N*sizeof(int)) ;
free(p) ;
inC++: int*p: pe—

j int*p*q;
=new Int[N] ; | -
gelete [lp ; - . p=newint[9] ;!

g=newint(9) ;

2

&
g
ko,
s
<
N
<
|
|
O

[Object Oriented Programming 88]

» Two Dimensional Array
© double ** q;

2

for(int 1=0;1<row;1++)

q[1] = new double[column] ;

for(int 1=0;1<row;1++)
delete []q[1] ;
delete []q ;

&
g
ko,
s
<
N
<
|
|
O

q = new double*[row] ; // matrix size 1s rowxcolumn

i" row jt" column: q[i][j]

{ Object Oriented Programming

q[0][1]

o - |

2

ql1][j]

o Fﬂll-l-ll

q[1] = new double[column] ;

O
—
2
)
M
<
0p)]
<
4+
+
@

q[row-1][j]

s =~

[Object Oriented Programming 90]

» Two Dimensional Array
® double **q;

2

for(int 1=1;1<row;1++)

q[1] = q[i-1] + column ;

&
g
ko,
s
<
N
<
|
|
O

delete []q[0] ;
delete []q ;

p =new double™[row] ; // matrix size 1s rowxcolumn

q[0] = new double[row*column] ;

i" row jt" column: q[i][j]

{ Object Oriented Programming

for (int 1=1;1<row;1++)
q[1] = q[1-1] + column ;

C\] .
qli] | e
@)
38
ko
M
@]
< .
|
ES q[row-1]
\ 4

0] = new double[row™*column] ;

{ Object Oriented Programming

double ** q ;

memoryAlign = column % 4;

memoryWidth = (memoryAlign ==0) ?

2

column : (column+4 -memoryAlign)
q[0] = new double[row*memoryWidth] ;
for(int 1=0;1<row;1++)

q[i] = q[i-1] + memoryWidth ;

delete []q[O0] ;
delete []q ;

&
g
ko,
s
<
N
<
|
|
O

{ Object Oriented Programming

Function Overloading I

» Function Overloading

double average(const double a[],int size) ;

2

double average(const int a[],int size) ;

double average(const int a[], const double b[],int size) ;

@ double average(const int a[],int size) {

double sum = 0.0 ;

&
g
ko,
s
<
N
<
|
|
O

for(int 1=0;1<size;i++) sum +=a[i] ;
return ((double)sum/size) ;

b

{ Object Oriented Programming

® double average(const double a[],int size) {
double sum = 0.0 ;

for(int i=0;i<size;i++) sum += a[i] ;

2

return (sum/size) ;

b

© Jouble average(const int af],const double b[],int size) {

double sum =0.0 ;

&
g
ko,
s
<
N
<
|
|
O

for(int i=0;i<size;i++) sum += a[i] + b[i] ;

return (sum/size) ;

{ Object Oriented Programming

int main() {
int w[5]=1{1,2,3,4,5} ;
double x[5]={1.1,2.2,3.3,4.4,5.5} ;

2

@ cout <<average(w,5);
@ cout <<average(x,5) ;
® cout << average(w,x,5) ;

return O ;

&
g
ko,
s
<
N
<
|
|
O

[Object Oriented Programming

Function Templates I

» Function Templates

2

template <typename T>

void printArray(const T *array,const int size)
for(int 1=0;1 < s1ze;1++)
cout << array[i] <<"";

cout << endl ;

&
g
ko,
s
<
N
<
|
|
O

{ Object Oriented Programming

int main() {
int a[3]={1,2,3} ;
double b[5]={1.1,2.2,3.3,4.4,5.5} ;
char c[7]={a’, ‘b, °¢’, ‘d’, ‘e’ , I, ‘g’} ;
@ printArray(a,3) ;

2

@ printArray(b,5) :
© printArray(c,7) :

&
g
ko,
s
<
N
<
|
|
O

return O ;

h

[Object Oriented Programming

void printArray(int *array,cont int size){
for(int 1=0;1 < s1ze;1++)

cout << array[1] <<“,";

2

cout << endl ;

b

void printArray(char *array,cont int size){

for(int 1=0;1 < s1ze;1++)

&
g
ko,
s
<
N
<
|
|
O

cout << array[1] ;

cout << endl ;

{ Object Oriented Programming

Operator Overloading I

»In C++ 1t 1s also possible to overload the built-in C++
operators such as +, -, = and ++ so that they too invoke
different functions, depending on their operands.

» That 1s, the + in a+b will add the variables if a and b
are integers, but will call a different function if a and b
are variables of a user defined type.

2

&
g
ko,
s
<
N
<
|
|
O

{ Object Oriented Programming 100]

Operator Overloading: Rules I

» You can’t overload operators that don’t already exist in C++.

» You can not change numbers of operands. A binary operator
(for example +) must always take two operands.

2

» You can not change the precedence of the operators.

* comes always before +

» Everything you can do with an overloaded operator you can
also do with a function. However, by making your listing
more intuitive, overloaded operators make your programs
easier to write, read, and maintain.

&
g
ko,
s
<
N
<
|
|
O

» Operator overloading 1s mostly used with objects. We will
discuss this topic later more in detail.

[Object Oriented Programming 101]

Operator Overloading I

» Functions of operators have the name operator and the
symbol of the operator. For example the function for the
operator + will have the name operator+:

2

struct SComplex {
float real,img;

s

SComplex operator+(SComplex vl, SComplex v2){
SComplex result;

..

&
g
ko,
s
<
N
<
|
|
O

int main(){
result.real=vl.real+v2.real; | scomplex c1={1,2},c2 ={5,1};

result.img=v1.img+v2.img; SComplex c3;
return result; - c3=cl+c2; //clH(c2)

h By

.
..

{ Object Oriented Programming 102]

namespace I

» When a program reaches a certain size it's typically broken up into pieces,

each of which is built and maintained by a different person or group.

2

» Since C effectively has a single arena where all the 1dentifier and function
names live, this means that all the developers must be careful not to

accidentally use the same names in situations where they can conflict.

» The same problem come out if a programmer try to use the same names as
the names of library functions.

&
g
ko,
s
<
N
<
|
|
O

» Standard C++ has a mechanism to prevent this collision: the namespace

keyword. Each set of C++ definitions in a library or program is "wrapped” in a
namespace, and if some other definition has an identical name, but i1s in a

different namespace, then there 1s no collision.

[Object Oriented Programming 103]

namespace I

namespace programmerl{ // programmerl’s namespace

int iflag; /| programmerl’s iflag

N void g(int); // programmerl's g function
; // other variables

%) // end of namespace

5

sall Namespace programmer2{ // programmer2's namespace

= int i1flag; // programmer?2's iflag

< :

|

ér) } // end of namespace

{ Object Oriented Programming 104]

2

&
g
ko,
s
<
N
<
|
|
O

Accessing Variables I

programmerl::iflag = 3; /1l programmerl's iflag
programmer2::iflag = -345; /1l programmer?2’s iflag
programmerl::g(6); /1 programmerl’s g function

If a variable or function does not belong to any namespace, then it 1s
defined in the global namespace. It can be accessed without a namespace
name and scope operator.

This declaration makes it easier to access variables and functions, which
are defined in a namespace.

using programmerl::iflag; /1 applies to a single item in the namespace
iflag = 3; /1 programmerl::iflag=3;
programmer?2::iflag = -345;

programmerl::g(6);

using namespace programmerl; // applies to all elements in the namespace
iflag = 3; /1l programmerl::iflag=3;

g(6); /1l programmerl’s function g
programmer2::iflag = -345;

[Object Oriented Programming 105]

namespace I

#include <iostream> ~ int main() {
| namespace F { float x = 19.1;
float x = 9; using namespace G;
} using namespace G::INNER_G;
namespace G { std::cout << "x =" << x << std::endl;
using namespace F; std::cout << "y =" <<y << std::endl;
floaty = 2.0; std:.cout << "z =" << z << std::endl;
namespace INNER_G { return O;
float z = 10.01; }

2

&
g
ko,
s
<
N
<
|
|
O

...

{ Object Oriented Programming 106]

namespace I

...

#include <iostream> ~ int main() {
namespace F { using namespace G;
float x = 9; using namespace G::INNER_G,;

2

} std::cout << "x =" << X << std::endl;
namespace G { stducout <<y =" <<y << std::end!
using namespace F; | std:cout << "z =" << z << std::endl;

floaty = 2.0; return O;
namespace INNER_G{)

ongx=5L
float z = 10.01;

&
g
ko,
s
<
N
<
|
|
O

{ Object Oriented Programming 107]

namespace I

...

#include <iostream> ~ int main() {
namespace F { using namespace G;

2

float x = 9: std::cout << "X =" << X << std::end!:

} stdicout<< 'y =" <<y << std:end|
namespace G { . retun 0

using namespace F;)
floaty = 2.0;
namespace INNER_G {
long x = 5L;
float z = 10.01;

&
g
ko,
s
<
N
<
|
|
O

{ Object Oriented Programming 108]

namespace I

...

#include <iostream> - intmain() {
namespace F { using namespace G;

2

float x = 9: std::cout << "x = " << X << std::end|:

} | stducout <<y =" <<y << std:endl
namespace G { . returnO;

float y = 2.0;)
namespace INNER_G {

long x = 5L;

float z = 10.01;

&
g
ko,
s
<
N
<
|
|
O

{ Object Oriented Programming 109]

namespace I

...

#include <iostream> - intmain() {
namespace F { using namespace G::INNER_G;

float x = 9: std::cout << "x = " << X << std::end|:

2

} std::cout <<y =" <<y << std::endl;
namespace G { etumn O

floaty = 2.0;) |
namespace INNER G {

long x = 5L,

float z = 10.01;

&
g
ko,
s
<
N
<
|
|
O

{ Object Oriented Programming 110]

Standard C++ Header Files I

» In the first versions of C++, mostly ‘.h’ 1s used as extension for the header

#include

files.
C\]
» As C++ evolved, different compiler vendors chose different extensions for
@F file names (.hpp, .H , etc.). In addition, various operating systems have
B30 different restrictions on file names, in particular on name length. These issues
ko .
aall caused source code portability problems.
<
% » To solve these problems, the standard uses a format that allows file names
i longer than eight characters and eliminates the extension.
@)
» For example, instead of the old style of including 10stream.h, which looks
like this: #include <iostream.h>, you can now write:
<jostream>

[Object Oriented Programming

111 |

Standard C++ Header Files I

» The libraries that have been inherited from C are still available with
the traditional ‘.h’ extension. However, you can also use them with the

S more modern C++ include style by puting a “Cc” before the name. Thus:
#include <stdio.h> become: #include <cstdio>
#include <stdlib.h> #include <cstdlib>

» In standard C++ headers all declarations and definitions take place in a
namespace : std

&
g
ko,
s
<
N
<
|
|
O

» Today most of C++ compilers support old libraries and header files
too. So you can also use the old header files with the extension '.h'. For a
high-quality program prefer always the new libraries.

[Object Oriented Programming 112]

[/O

» Instead of library functions (printf, scanf), in C++ library
objects are used for IO operations.

2

» When a C++ program includes the 10stream header, four
objects are created and initialized:

» cin handles input from the standard input, the
keyboard.

» cout handles output to the standard output, the screen.

P cerr handles unbuffered output to the standard error
device, the screen.

&
g
ko,
s
<
N
<
|
|
O

» clog handles buffered error messages to the standard
error device

[Object Oriented Programming 113]

Using cout Object I

To print a value to the screen, write the word cout, followed
by the 1nsertion operator (<<).

Q
#include<iostream> /[Header file for the cout object
%j int main() {
2 int i=5; // integer i is defined, initial value is 5
5 float f=4.6; /Il floating point number f is defined, 4.6
- std::cout << "Integer Number =" << i << " Real Number=" << f;
2 turn O;
Z return O;
N
|
O

{ Object Oriented Programming 114]

Using cin Object I

The predefined cin stream object 1s used to read data from
the standard input device, usually the keyboard. The cin
stream uses the >> operator, usually called the "get from"
operator.

2

#include<iostream>

using namespace std; // we don't need std:: anymore

int main() {
int 1,J; // Two integers are defined
cout << "QGive two numbers \n"; // cursor to the new line
cin >>1>>j; // Read 1 and j from the keyboard
cout << "Sum="<<1+)<<"\n";
return O;

h

[Object Oriented Programming 115]

&
g
ko,
s
<
N
<
|
|
O

std namespace I

#include <string>

#include <iostream>

2

using namespace std;
int main() {
string test;
while(test.empty() || test.size() <= 5)

d

cout << "Type a string longer string. " << endl;

&
g
ko,
s
<
N
<
|
|
O

cin >> test;

h
printf(*“%s”,test.c_str())

{ Object Oriented Programming 116]

bool Type |

The type bool represents boolean (logical) values: true and false

Before bool became part of Standard C++, everyone tended to use different
techniques 1n order to produce Boolean-like behavior.

@\

These produced portability problems and could introduce subtle errors.

@)
= L :
=8 Because there’s a lot of existing code that uses an Int to represent a flag, the
5 compiler will implicitly convert from an int to a bool (nonzero values will
S8 produce true while zero values produce false).
N
f Do not prefer to use integers to produce logical values.
C—B bool is greater; // Boolean variable: is greater
is greater = false; /] Assigning a logical value
Int a,b;
1s_greater = a > b; /I Logical operation
if (1s_greater) /I Conditional operation
[Object Oriented Programming 117]

constant I

» In standard C, preprocessor directive #define 1s used to create
constants: #define PI 3.14

» C++ introduces the concept of a named constant that 1s just like a
variable, except that its value cannot be changed.

» The modifier const tells the compiler that a name represents a

constant:
const int MAX = 100;

2

MAX = 5; /| Compiler Error!
» const can take place before (left) and after (right) the type. They are
always (both) allowed and equivalent.

int const MAX = 100; // The same as const int MAX = 100;
» Decreases error possibilities.
» To make your programs more readable, use uppercase font for
constant 1dentifiers.

&
g
ko,
s
<
N
<
|
|
O

[Object Oriented Programming 118]

Use of constant—1 I

Another usage of the keyword const is seen in the declaration of pointers.
There are three different cases:

a) The data pointed by the pointer is constant, but the pointer itself
however may be changed.

2

const char *p = "ABC";

p 1s a pointer variable, which points to chars. The const word may also
be written after the type:

char const *p = "ABC";

&
g
ko,
s
<
N
<
|
|
O

Whatever 1s pointed to by p may not be changed: the chars are declared
as const. The pointer p itself however may be changed.

*p="7Z", // Compiler Error! Because data is constant
p++; //OK, because the address in the pointer may change.

[Object Oriented Programming 119]

Use of constant—2 I

b) The pointer itself is a const pointer which may not be changed.
Whatever data 1s pointed to by the pointer may be changed.

N char * const sp ="ABC"; // Pointer is constant, data may change
*sp="7"; /I OK, data is not constant
spt++; // Compiler Error! Because pointer is constant

&
g
ko,
s
<
N
<
|
|
O

{ Object Oriented Programming 120]

Use of constant—3 I

c) Neither the pointer nor what it points to may be changed

The same pointer definition may also be written as follows:
char const * const ssp = "ABC";
const char * const ssp ="ABC";
*ssp="Z"; // Compiler Error! Because data is constant
ssp++; // Compiler Error! Because pointer is const

2

» The definition or declaration in which const is used should be read
from the variable or function identifier back to the type identifier:
"ssp 1s a const pointer to const characters"

&
g
ko,
s
<
N
<
|
|
O

[Object Oriented Programming 121]

Casts I

» Traditionally, C offers the following cast construction:

(typename) expression

o Example: f= (float)i/2;
@8 Following that, C++ mitially also supported the function call style cast
— .
=8 notation:
O
Qg typename(expression)
4 Example: Converting an integer value to a floating point value
il int i=5;
S8 float f:
f = float(1)/2;

» But, these casts are now called old-style casts, and they are
deprecated. Instead, four new-style casts were introduced.

{ Object Oriented Programming 122]

Casts: static cast I

» The static cast<type>(expression) operator 1s used to convert one
type to an acceptable other type.

Int 1=5;
float f;
f = static_cast<float>(i)/2;

2

&
g
ko,
s
<
N
<
|
|
O

{ Object Oriented Programming 123]

Casts: const cast I

» The const cast<type>(expression) operator 1s used to do away with
the const-ness of a (pointer) type.

If the programmer wants to do this assignment on purpose then he/she
must use the const cast operator:

N P [n the following example p 1s a pointer to constant data, and q 1s a
@] Dointer to non-constant data. So the assignment q = p 1s not allowed.
E const char *p ="ABC"; [/ p points to constant data

e char *q, /[data pointed by g may change

S qg=p, [l Compiler Error! Constant data may change
<

|

|

O

g = const_cast<char *>(p);
*g ='X";, /I Dangerous?

[Object Oriented Programming 124]

Casts: reinterpret cast I

The reinterpret cast<type>(expression) operator is used to reinterpret byte
patterns. For example, the individual bytes making up a structure can easily be
reached using a reinterpret cast

@\

struct S { /I A structure

int 11,12; // made of two integers

@ L
E—*) .’ .
2 int main(){
Q S x; // x is of type S
- x.11=1; // fields of x are filled
< .
7 X.12=2;
< unsigned char *xp; // A pointer to unsigned chars
i Xp = reinterpret_cast<unsigned char *> (&x);
@) for (int j=0; j<8; j++) // bytes of x on the screen

std::cout << static cast<int>(*xp++);
return O;

b

The structure S 1s made of two integers (2x4=8 bytes). X 1s a variable of type S.
Each byte of x can be reached by using the pointer xp.

[Object Oriented Programming 125]

Casts: dynamic cast I

The dynamic cast<>() operator is used in the context of inheritance
and polymorphism. We will see these concepts later. The discussion of
this cast 1s postponed until the section about polymorphism.

2

» Using the cast-operators 1s a dangerous habit, as 1t suppresses the
normal type-checking mechanism of the compiler.

P It is suggested to prevent casts 1f at all possible.

» If circumstances arise in which casts have to be used, document the
reasons for their use well 1n your code, to make double sure that the
cast 1s not the underlying cause for a program to misbehave.

&
g
ko,
s
<
N
<
|
|
O

[Object Oriented Programming 126]

3 OO Programming EoncEpPLs

Content I

» OOP Concepts
— Class
* Encapsulation
 Information Hiding
— Inheritance
— Polymorphism

N
Z
Y
)
Q
-
o
@)
N
=
=
=
S
—
N
o
—(
A
o
o

{ Object Oriented Programming 128]

OOP Concepts I

» When you approach a programming problem in an object-
oriented language, you no longer ask how the problem
will be divided into functions, but how i1t will be divided
Into objects.

» Thinking 1n terms of objects rather than functions has a
helpful effect on how easily you can design programs.
Because the real world consists of objects and there is a
close match between objects 1n the programming sense
and objects in the real world.

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

[Object Oriented Programming 129]

What is an Object? I

» Many real-world objects have both a state (characteristics
that can change) and abilities (things they can do).

» Real-world object=State (properties)+ Abilities (behavior)
» Programming objects = Data+ Functions

» The match between programming objects and real-world
objects 1s the result of combining data and member
functions.

» How can we define an object in a C++ program?

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

[Object Oriented Programming 130]

Classes and Objects I

» Class is a new data type which is used to define objects. A
class serves as a plan, or a template. It specifies what data
and what functions will be included 1n objects of that
class. Writing a class doesn’t create any objects.

» A class 1s a description of similar objects.

» Objects are instances of classes.

N
Z
Y
)
Q
=
o
@)
N
=
=
=
S
—
el
o
L
A
o
o

{ Object Oriented Programming 131]

Example I

A model (class) to define points 1n a graphics program.

» Points on a plane must have two properties (states):

— X and Yy coordinates. We can use two integer variables
to represent these properties.

» In our program, points should have the following abilities
(behavior):

— Points can move on the plane: move function

— Points can show their coordinates on the screen: print
function

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

— Points can answer the question whether they are on the
zero point (0,0) or not: IS_zero function

[Object Oriented Programming 132]

Class Detfinition: Point I

class Point { /I Declaration of Point Class
int X,y; // Properties.: x and y coordinates
public: /| We will discuss it later
voild move(int, int); // A function to move the points
void print(); // to print the coordinates on the screen
bool 1s zero(); // is the point on the zero point(0,0)
}; /I End of class declaration (Don't forget ;)

» In our example first data and then the function prototypes are written.
P It is also possible to write them 1n reverse order.
» Data and functions in a class are called members of the class.

» In our example only the prototypes of the functions are written in the
class declaration. The bodies may take place in other parts (in other files)
of the program.

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

P If the body of a function 1s written 1n the class declaration, then this
function 1s defined as an inline function (macro).

[Object Oriented Programming 133]

Bodies of Member Functions I

// A function to move the points
void Point::move(int new X, int new y) {
X =NeW_X; /] assigns new value to x coordinate
y =New ; /] assigns new value to y coordinate
h
/I To print the coordinates on the screen
void Point::print() {
cout <<"X="<<x<<" Y=" <<y <<end]
h
//'is the point on the zero point(0,0)
bool Point::is_zero() {
return (x == 0) && (y == 0); // if x=0 & y=0 returns true

h

{ Object Oriented Programming 134]

N
Z
Y
)
Q
=
o
@)
N
=
=
=
S
—
el
o
L
A
o
o

>

Now we have a model (template) to define point objects.
We can create necessary points (objects) using the model.

| int main() {

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

Point pointl, point2; // 2 object are defined: pointl and point2
point]l.move(100,50); // pointl moves to (100,50)

pointl.print(); // pointl's coordinates to the screen
pointl.move(20,65); // pointl moves to (20,65)
pointl.print(); // pointl's coordinates to the screen

I
I
I
I
I
I
I
I
I
I
I
I
I
|
if(pointl.is zero()) // is pointl on (0,0)? |
cout << "point] is now on zero point(0,0)" << end]; i
else cout << "pointl is NOT on zero point(0,0)" << end]; |
point2.move(0,0); // point2 moves to (0,0) |
if(point2.is zero()) // is point2 on (0,0)? |
cout << "point2 1s now on zero point(0,0)" << endl; |
else cout << "point2 1s NOT on zero point(0,0)" << endl; i
return O; |
I

I

— — — — — —— e

[Object Oriented Programming 135]

N
Z
Y
)
Q
-
o
@)
N
=
=
=
S
—
N
o
—(
A
o
o

class Time {
int hour;
Int minute;
int second ;
public:
// Get Functions
int GetHour() {return hour;} ;
int GetMinute() {return minute;} ;
int GetSecond () {return second;} ;
// Set Functions

UML Class Diagram

Time
(from Design Model)

EXHour
Ex=Minute
ExSecond

[®setTime()

" ®GetHour()
®GetMinute()

| ®GetSecond()
" ®setHour()

| WsetMinute()
| ®setSecond()

L =PrintTime()

void SetTime(int h,int m,int s) {hour=h;minute=m;second=s;};
void SetHour(int h) {hour= (h>=0 && h<24) ? h : 0;} ;

vold SetMinute(int m){minute= (m>=0 && m<60) 7?7 m: 0;} ;
vold SetSecond(int s) {second= (s>=0 && s<60) ? s : 0;} ;

void PrintTime();

¥

{ Object Oriented Programming

C++ Terminology I

» A class is a grouping of data and functions. A class is very much
like a structure type as used in ANSI-C, it is only a pattern to be
used to create a variable which can be manipulated in a program.

» An object is an instance of a class, which is similar to a variable
defined as an instance of a type. An object is what you actually use
1n a program.

» A method (member function) is a function contained within the
class. You will find the functions used within a class often referred
to as methods in programming literature.

» A message 1s the same thing as a function call. In object oriented
programming, we send messages instead of calling functions. For
the time being, you can think of them as identical. Later we will see
that they are in fact slightly different.

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

[Object Oriented Programming 137]

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

Conclusion I

» Until this slide we have discovered some features of the object-
oriented programming and the C++.

» Our programs consist of object as the real world do.

» Classes are living (active) data types which are used to define
objects. We can send messages (orders) to objects to enable them to
do something.

» Classes include both data and the functions involved with these data
(encapsulation). As the result:

» Software objects are similar to the real world objects,
» Programs are easy to read and understand,

» [t is easy to find errors,

» It supports modularity and teamwork.

[Object Oriented Programming 138]

Defining Methods as inline Functions I

» In the previous example (Example 3.1), only the prototypes of the
member functions are written in the class declaration. The bodies of
the methods are defined outside the class.

P [t 1s also possible to write bodies of methods 1n the class. Such
methods are defined as inline functions.

» For example the 1s_zero method of the Point class can be defined as
an inline function as follows:

class Point{ /I Declaration of Point Class
int x,y; /I Properties: x and y coordinates
public:
void move(int, int); /I A function to move the points
void print(); // to print the coordinates on the screen

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

bool is_zero() { // is the point on the zero point(0,0) inline function
return (x ==0) && (y ==0); // the body of is_zero

}
55

[Object Oriented Programming 139]

Defining Dynamic Objects I

» Classes can be used to define variables like built-in data types (int,
float, char etc.) of the compiler.

» For example it 1s possible to define pointers to objects. In the
example below two pointers to objects of type Point are defined.

int main() {
Point *ptrl = new Point; // allocating memory for the object pointed by ptrl
Point *ptr2 = new Point; // allocating memory for the object pointed by ptr2

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

ptrl->move(50, 50); /1 ‘'move’ message to the object pointed by ptrl
ptrl->print(); /1 print’ message to the object pointed by ptrl
ptr2->move(100, 150); // ‘move’ message to the obfject pointed by ptr2
if(ptr2->is_zero()) /1 Is the object pointed by ptr2 on zero
cout << " Object pointed by ptr2 is on zero." << endl;
else cout << " Object pointed by ptr2 is NOT on zero." << endl;
delete ptrl; /1l Releasing the memory
delete ptr2;
return O;
¥

[Object Oriented Programming 140]

Defining Array of Objects I

» We may define static and dynamic arrays of objects. In the example
below we see a static array with ten elements of type Point.

» We will see later how to define dynamic arrays of objects.

Int main()
{
Point array[10]; /1 defining an array with ten objects
array[0].move(15, 40); // ‘'move’ message to the first element (indices 0)
array [1].move(75, 35); // ‘move’ message to the second element (indices 1)
/] message to other elements
for (int1 =0;1<10; 1++) // print’ message to all objects in the array

array[i].print();
return O;

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

[Object Oriented Programming 141]

Controlling Access to Members I

» We can divide programmers into two groups: class creators (those
who create new data types) and client programmers (the class
consumers who use the data types in their applications).

» The goal of the class creator 1s to build a class that includes all
necessary properties and abilities. The class should expose only what's
necessary to the client programmer and keeps everything else hidden.

» The goal of the client programmer is to collect a toolbox full of
classes to use for rapid application development.

» The first reason for access control is to keep client programmers'
hands off portions they shouldn't touch. The hidden parts are only
necessary for the internal machinations of the data type but not part of
the interface that users need in order to solve their particular
problems.

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

[Object Oriented Programming 142]

Controlling Access to Members -, ’fI

» The second reason for access control 1s that, 1f 1t’s hidden,
the client programmer can’t use it, which means that the
class creator can change the hidden portion at will without
worrying about the impact to anyone else.

» This protection also prevents accidentally changes of
states of objects.

N
Z
Y
)
Q
=
o
@)
N
=
=
=
S
—
el
o
L
A
o
o

{ Object Oriented Programming 143]

Controlling Access to Members -, ’fI

» The labels public: , private: (and protected: as we will see
later) are used to control access to a class' data members
and functions.

» Private class members can be accessed only by members
of that class.

» Public members may be accessed by any function in the
program.

» The default access mode for classes 1s private: After each
label, the mode that was invoked by that label applies until
the next label or until the end of class declaration.

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

[Object Oriented Programming 144]

Controlling Access to Members -, ’fI

» The primary purpose of public members is to present to the
class's clients a view of the services the class provides.
This set of services forms the public interface of the class.

» The private members are not accessible to the clients of a
class. They form the implementation of the class.

Messages

pointl.print()

pointl.move(100,45) ‘ : /
void

P Print() private

- \ S

public members bool is_zero() if(pointl.is_zero())

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

[Object Oriented Programming 145]

» Example: We modify the move function of the class Point.
Clients of this class can not move a point outside a window

with a size of 500x300.

e class Point{ /1 Point Class
A int x,y; /1 private members.: x and y coordinates
| public: /Il public members
S bool move(int, int); // A function to move the points
8 void print(); /1 to print the coordinates on the screen
%)D bool is_zero(); /1 is the point on the zero point(0,0)
};

g /1 A function to move the points (0,500 x 0,300)
= bool Point::move(int new_x, int new_y) {
> if(new_x >0 && new x < 500 && /! if new x is in 0-500
= new y >0 && new_ y < 300){ // ifnew yisin 0-300
5: X = New_X; /1 assigns new value to x coordinate
@) Yy = new._y,; /] assigns new value to y coordinate
o return true; /1 input values are accepted

by

return false; /1 input values are not accepted

}

[Object Oriented Programming 146]

» The new move function returns a boolean value to inform
the client programmer whether the input values are
accepted or not.

» Here 1s the main function:

int main() {
Point pl; // p1 object is defined
int x,y; /I Two variables to read some values from the keyboard
cout << " Give x and y coordinates ;
cin >> x >>y; // Read two values from the keyboard
if(pl.move(x,y)) //send move message and check the result

pl.print(); // If result is OK print coordinates on the screen

else cout << "\nlnput values are not accepted";

)
It 1s not possible to assign a value to x or y directly outside

the class.
pl.x=-10; //ERROR! x is private

[Object Oriented Programming 147]

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

struct Keyword in C++ I

P class and struct keywords have very similar meaning in
the C++.

» They both are used to build object models.

» The only difference 1s their default access mode.

» The default access mode for class is private

» The default access mode for struct is public

N
Z
Y
)
Q
-
o
@)
N
=
=
=
S
—
el
o
—(
A
o
o

{ Object Oriented Programming 148]

Friend Functions and Friend Classes I

» A function or an entire class may be declared to be a friend of another

- class.
B P A friend of a class has the right to access all members (private,
% protected or public) of the class.
S class A{
@ friend class B; /1 Class B Is a friend of class A
%D private: /1 private members of A
é Int i;
= float f; ! :
S public: /1 public members of A In this example, A 1s not a
o : 2. :
= void fonk1(char *c); friend of B. A can not access
—~ }; .
g class B 1) Clace B private members of B.
® int j;

public:

void fonk2(A &s) { cout << s.i; } // B can access private members of A
¥

[Object Oriented Programming 149]

Friend Functions and Friend Classes

» A friend function has the right to access all members

e (private, protected or public) of the class.
Z
8* class Point{ /1 Point Class
8 friend void zero(Point &); /1 A friend function of Point
8 Int X,y; /Il private members: x and y coordinates
a0 public: /1 public members
= bool move(int, int); /1 A function to move the points
= void print(); /1 to print the coordinates on the screen
% bool is_zero(); /1 is the point on the zero point(0,0)
y b
E /1 Assigns zero to all coordinates
® void zero(Point &p) /1 Not a member of any class
@ {

p.x = 0; /] assign zero to x of p

p.y =0; /1 assign zero to y of p

¥

{ Object Oriented Programming 150]

this Pointer I

» Each object has its own data space
in the memory of the computer.
When an object 1s defined,
memory is allocated only for its pointl
data members.

» The code of member functions are
created only once. Each object of
the same class uses the same
function code.

N
2
Q
Q
o
o
O
1))
§=
=
=
=
OD =
= point2
-3

o

o

» How does C++ ensure that the proper object 1s referenced?

» C++ compiler maintains a pointer, called the this pointer.

[Object Oriented Programming 151]

» A C++ compiler defines an object pointer this. When a member
function 1s called, this pointer contains the address of the object, for
which the function 1s invoked. So member functions can access the
data members using the pointer this.

» Programmers also can use this pointer in their programs.

» Example: We add a new function to Point class: far away.
This function will return the address of the object that has the largest
distance from (0,0).

Point *Point::far away(Point &p) {
unsigned long x1 = x*x; // x1 =x?
unsigned long y1 = y*y; //yl =y?
unsigned long x2 = p.x * p.x;
unsigned long y2 =p.y * p.y;
if ((x1+yl) > (x2+y2)) return this; // Object returns its address
else return &p; /I The address of the incoming object

N
Z
Y
)
Q
=
o
@)
N
=
=
=
S
—
el
o
L
A
o
o

b

{ Object Oriented Programming 152]

» this pointer can also be used in the methods 1f a parameter of the method

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

has the same name as one of the members of the class.

class Point{ /I Point Class
int X,y; // private members: x and y coordinates
public: // public members
bool move(int, int); // A function to move the points
// other methods are omitted
s
/I A function to move the points (0,500 x 0,300)
bool Point::move(int X, int y) // paramters has the same name as
{ !/ data members x and y
if(x>0 && x <500 && //'if given x is in 0-500
y>0&& y<300){ //ifgivenyisin (0-300
this->x = x; I/ assigns given x value to member x
this->y =vy; // assigns given y value to memeber y
return true; // input values are accepted
b
return false; // input values are not accepted
;

[Object Oriented Programming

153 |

Summary I

- Process Model .
Point o;

% heap

S S

O

1))

e stack O .

§ text main()

> o.move(1,1);

al

Q data

e

[Object Oriented Programming 154]

Summary I

Process Model

heap

stack

text main()

data

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

[Object Oriented Programming 155]

Summary I

Process Model Point *p;

heap p= new Point();
S H
- -1

text main()

p->move(l,1),
dat
(o) move(s)

[Object Oriented Programming 156]

m
Z
o,
Q
@)
o
S
@)
o0
§=
=
=
=
—
5h
O
L
A
o
o

Summary I

Point p[10];

p[1].move(1,1);

«— move(l,1)

N
Z
Y
)
Q
-
o
@)
N
=
=
=
S
—
el
o
—(
A
o
o

{ Object Oriented Programming 157]

Summary I

Point *p;

. H
B

p= new Point[10];

p[1].move(1,1);

«— move(l,1)
(*(p+1)).move(1,1);

N
Z
Y
)
Q
=
o
@)
N
=
=
=
S
—
el
o
L
A
o
o

(p+1)->move(1,1);

{ Object Oriented Programming 158]

InitialiZinge and Emalizing

(Objects

Content I

» Constructors

— Default Constructor
— Copy Constructor
» Destructor

v
7))
+~
Q
.Q)
oy
O
on
g
=
=
k=
e
o)
-
av]
on
g
=
=
£
S
e

{ Object Oriented Programming 160]

Initializing Objects: Constructors I

» The class designer can guarantee 1nitialization of every
object by providing a special member function called the
constructor.

» The constructor 1s invoked automatically each time an
object of that class is created (instantiated).

» These functions are used to (for example) assign initial
values to the data members, open files, establish
connection to a remote computer etc.

» The constructor can take parameters as needed, but it
cannot have a return value (even not void).

v
7))
+~
Q
.d.)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

{ Object Oriented Programming 161]

Initializing Objects: Constructors I

» The constructor has the same name as the class itself.

» Constructors are generally public members of a class.
» There are different types of constructors.

» For example, a constructor that defaults all its arguments
Or requires no arguments, 1.€. a constructor that can be
invoked with no arguments is called default constructor.

» In this section we will discuss different kinds of
constructors.

v
7))
+~
Q
.d.)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

{ Object Oriented Programming 162]

Detault Constructors

» A constructor that defaults all 1ts arguments or requires no
arguments, 1.. a constructor that can be invoked with no

arguments.
class Point{ /1 Declaration Point Class
int X,y; /1 Properties.: x and y coordinates
public:
Point(); /1 Declaration of the default constructor
bool move(int, int); /1 A function to move points
void print(); /1 to print coordinates on the screen
¥

Point::Point() { /1 Default Constructor
cout << "Constructor is called..." << endl;
X = 0; /I Assigns zero to coordinates

v
N
+~
Q
.d)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

y =0;

¥

int main() {
Point p1, p2; /1 Default construct is called 2 times
Point *pp = new Point; /1 Default construct is called once

{ Object Oriented Programming 163]

Constructors with Parameters I

» Like other member functions, constructors may also have
parameters.

» Users of the class (client programmer) must supply constructors
with necessary arguments.

class Point{ /1 Declaration Point Class
Int X,y; /1 Properties.: x and y coordinates
public:
Point(int, int); /1 Declaration of the constructor
bool move(int, int); /1 A function to move points
void print(); /1 to print coordinates on the screen
¥

» This declaration shows that the users of the Point class have to give
two mteger arguments while defining objects of that class.

v
N
+~
Q
.d)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

[Object Oriented Programming 164]

Example: Constructors with Parameters I

Point::Point(int x_first, int y_first) {
cout << "Constructor is called..." << endl;

N if (x_first<0) /1 If the given value is negative
% X =0; /1 Assigns zero to x
;% else |
@) X = x_first;
=h If (y first<0) /1 If the given value is negative
IS y = 0; /1 Assigns zero to x
Té else
= y =y _first;
< }
= 7/ —— Main Program -------------
20 int main() {
S Point p1(20, 100), p2(-10, 45); /1 Construct is called 2 times
= Point *pp = new Point(10, 50); /1 Construct is called once
*é’ Point p3; Il ERROR! There Is not a default constructor
}

{ Object Oriented Programming 165]

v
N
+~
Q
.d)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

Constructor Parameters with Default Values I

» Constructors parameters may have default values

class Point{
public:
Point(int x_first =0, inty_ first = 0);
¥
Point::Point(int x_first, inty_ first) {
if (x_first<O0) /1 If the given value is negative
X = 0; /1 Assigns zero to x
else x = x_first;
if (y_first<O0) /1 If the given value is negative
y =0; /1 Assigns zero to x
else y =y first;
by
» Now, client of the class can create objects
Point p1(15,75); [/ x=15, y=T75
Point p2(100); // x=100, y=0

» This function can be also used as a default constructor
Point p3; // x=0, y=0

{ Object Oriented Programming 166]

Multiple Constructors I

» The rules of function overloading 1s also valid for constructors. So, a
class may have more than one constructor with different type of

Input parameters.

Point::Point() { /1 Default constructor
............... /]l Boadly is not important

Point::Point(int x_first, int y_first) { // A constructor with parameters
................. /1l Boadly is not important

¥

» Now, the client programmer can define objects in different ways:
Point p1; /1 Default constructor is called
Point p2(30, 10); /1 Constructor with parameters is called

» The following statement causes an compiler error, because the class

does not include a constructor with only one parameter.
Point p3(10); /| ERROR! There isn't a constructor with one parameter

v
N
+~
Q
.d)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

[Object Oriented Programming 167]

Initializing Arrays of Objects I

» When an array of objects is created, the default
constructor of the class 1s invoked for each element (object)
of the array one time.

Point array[10]; // Default constructor is called 10 times
» To invoke a constructor with arguments, a list of initial
values should be used.

» To invoke a constructor with more than one arguments, its
name must be given in the list of 1nitial values, to make the
program more readable.

v
N
+~
Q
.d)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

[Object Oriented Programming 168]

Initializing Arrays of Objects Con ’fl

» // Constructor

Point(int x_first, inty first=0) {.... }

// Can be called with one or two args

» // Array of Points

Point array[]= { {10} , {20} , Point(30,40) };

» Three objects of type Point has been created and the
constructor has been invoked three times with different

v
N
+~
Q
.d)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

arguments.
Objects: Arguments:
array[0 x_first=10,y first=0
array|[1 X first=20,y first=0
array|2] x_first =30,y first=40

[Object Oriented Programming 169]

Initializing Arrays of Objects Con ’fl

P [f the class has also a default constructor the programmer may
define an array of objects as follows:

Point array[5]= { {10} , {20} , Point(30,40) };

» Here, an array with 5 elements has been defined, but the list of
initial values contains only 3 values, which are sent as
arguments to the constructors of the first three elements. For
the last two elements, the default constructor 1s called.

» To call the default constructor for an object, which 1s not at the
end of the array

Point array[5]= { {10} , {20}, Point() , Point(30,40) };

» Here, for objects array[2] and array[4] the default constructor 1s
invoked.

Point array[5]= { {10}, {20}, , Point(30,40) }; // ERROR!

v
N
+~
Q
.G)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

[Object Oriented Programming 170]

v
7))
+~
Q
.Q)
oy
O
on
g
=
=
k=
e
o)
-
av]
on
g
=
=
£
S
e

Constructor Initializers I

P Instead of assignment statements constructor initializers can be used
to 1nitialize data members of an object.

» Specially, to assign 1nitial value to a constant member using the
constructor 1nitializer is the only way.

» Consider the class:

class C{
const int ClI;
Nt X;

public: cleiss G

const int Cl = 10 ;
Int X;

C(){
X = 0;
=k

&

}
o

[Object Oriented Programming 171]

Solution I

The solution is to use a constructor initializer. F4ESEN
const int CI;

INt X;
public:

CO - CI(0) {

X =-2;

class C{
const int CI;
Int X; All data members of a class
public: can be initialized by using
C(inta) : CI(0), x (a) constructor initializers.

{}
&

[Object Oriented Programming 172]

v
7))
+~
Q
.G.)
oy
O
on
g
=
=
k=
e
o)
-
av]
on
g
=
=
£
S
e

Destructors I

» The destructor 1s very similar to the constructor except
that 1t 1s called automatically

1. when each of the objects goes out of scope or

2. a dynamic object is deleted from memory by using the
delete operator.

» A destructor 1s characterized as having the same name as
the class but with a tilde ‘~’ preceded to the class name.

» A destructor has no return type and receives no
parameters.

» A class may have only one destructor.

v
N
+~
Q
.d)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

[Object Oriented Programming 173]

Example I

class String{

int size; /| Length (number of chars) of the string
char *contents; // Contents of the string
public:
String(const char *); // Constructor
void print(); /I An ordinary member function
~String(); // Destructor

s
» Actually, the standard library of C++ contains a String

class. Programmers don't need to write their own string
class. We write this class only to show some concepts.

v
N
+~
Q
.d)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

{ Object Oriented Programming 174]

/] Constructor : copies the input character array that terminates with a null character
/1 to the contents of the string
String::String(const char *in_data) {

cout<< "Constructor has been invoked" << endl,

size = strlen(in_data); /1 strlen is a function of the cstring library
contents = new char[size +1]; // +1 for null ('\O") character
strcpy(contents, in_data); /1 input_adata is copred to the contents

b
void String::print() {
cout << contents << " " << size << endl;
¥
/1 Destructor: Memory pointed by contents is given back
String::—String() {
cout << "Destructor has been invoked" << endl;

delete[] contents; int main() {

String string1("'string 1");
String string2("'string 2");

}

stringl.print();
string2.print();

ﬂ-
E
Q
Z
O
O
oY)
=
N
<
=
[
o)
=
qv]
oY)
=
N
<
p=
= . .
— return O: // destructor is called twice

[Object Oriented Programming 175]

Copy Constructor I

P It is a special type of constructors and used to copy the contents of
an object to a new object during construction of that new object.

» The type of its input parameter 1s a reference to objects of the same
type. It takes as argument a reference to the object that will be
copied into the new object.

» The copy constructor 1s generated automatically by the compiler 1f
the class author fails to define one.

» If the compiler generates it, it will simply copy the contents of the
original into the new object as a byte by byte copy.

» For simple classes with no pointers, that 1s usually sufficient, but 1f
there 1s a pointer as a class member so a byte by byte copy would
copy the pointer from one to the other and they would both be
pointing to the same allocated member.

v
N
+~
Q
.G)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

[Object Oriented Programming 176]

Copy Constructor Con ’fI

» For example the copy constructor, generated by the
compiler for the String class will do the following job:

Shallow Copy
ooliisllcl 0x008d0080 >0l contents
Existing object The new object

v
7))
+~
Q
.Q)
oy
O
on
g
=
=
k=
e
o)
-
av]
on
g
=
=
£
S
e

{ Object Oriented Programming 177]

Copy Constructor Con ’fl

» The copy constructor, generated by the compiler can not copy the
memory locations pointed by the member pointers.

» The programmer must write 1its own copy constructor to perform these

operations.
elplclalcW 0x008d0080 Deep Copy 0x00ef0080
Existing object The new object

v
7))
+~
Q
.Q)
oy
O
on
g
=
=
k=
e
o)
-
av]
on
g
=
=
£
S
e

{ Object Oriented Programming 178]

Example: The copy constructor of the String class I

class String {

int size;
char *contents;
public:
String(const char *); /1 Constructor
String(const String &); /l Copy Constructor
void print(); /1 Prints the string on the screen
~String(); /1 Destructor

j

String::String(const String &object _in) { /1 Copy Constructor
cout<< "Copy Constructor has been invoked" << endl;
size = object_in.size;
contents = new charl[size + 1]; /1 +1 for null character
strcpy(contents, object_in.contents);

v
N
+~
Q
.d)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

¥
int main() {
String my_string("'string 1");
my_string.print();
String other = my_string; /1 Copy constructor is invoked
String more(my_string); /1 Copy constructor is invoked

[Object Oriented Programming 179]

Constant Objects and Const Member Functions I

» The programmer may use the keyword const to specify that an
object 1s not modifiable.

» Any attempt to modify (to change the attributes) directly or
indirectly (by calling a function) causes a compiler error.

const TComplex cz(0,1); // constant object

» C++ compilers totally disallow any member function calls for
const objects. The programmer may declare some functions as
const, which do not modify any data of the object. Only const
functions can operate on const objects.

void print() const // constant method

{

cout << “complex number="* <<real << “, " <<Img;

}

[Object Oriented Programming 180]

v
N
+~
Q
.d)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

/] Constant function: It prints the coordinates on the screen
void Point::print() const

{
cout << "X="<<x<<", Y="<<y<<endl;

~ .
&
3 /] -----—-- Main Program -------------
gy Nt main()
o8 {
%D const Point cp(10,20); /] constant point
] Point ncp(0,50); /1 non-constant point
Ic—; cp.print(); /1 OK. Const function operates on const object
= cp.move(30,15); /I ERROR! Non-const function on const object
e ncp.move(100,45); /! OK. ncp is non-const
Fg return O;
<
Z
IS§ P A const method can invoke only other const methods, because a
& const method is not allowed to alter an object's state either
k= directly or indirectly, that i1s, by invoking some nonconst

method.

{ Object Oriented Programming 181]

class TComplex{
float real,img;

public:
TComplex(float, float); // constructor
void print() const; // const method
void reset() {real=img=0;} // non-const method
I3
TComplex::TComplex(float r=0,float i=0){
real=r;
img=i;
}

void TComplex::print() const{ // const method
std::cout << “complex number=* << real << “, * << img;

}
Int main() {
const TComplex cz(0,1); // constant object
TComplex ncz(1.2,0.5) // non-constant object

cz.print(); // OK
cz.reset(); // Error !!!
ncz.reset(); // OK

}

{ Object Oriented Programming 182]

v
7))
+~
Q
.d.)
oy
O
on
g
=
=
k=
e
o)
-
av]
on
g
=
=
£
S
e

static Class Members I

» Normally, each object of a class has its own copy of all
data members of the class.

» In certain cases only one copy of a particular data member
should be shared by all objects of a class. A static data
member 1s used for this reason.

v
7))
+~
Q
.d.)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

class A{
char c; Object p ——_ Object g
static int i; [T
b char c [S;[r?ttlic char ¢]
iInt main()
{ \ charc |
A)] r; -
_ P4 Object r
}

{ Object Oriented Programming 183]

static Class Members I

P Static data members exist even no objects of that class
exist.

P Static data members can be public or private.

» To access public static data when no objects exist use the
class name and binary scope resolution operator.

for example A::I= 5;

P To access private static data when no objects exist, a
public static member function must be provided.

» They must be 1nitialized once (and only once) at file
SCope.

v
N
+~
Q
.d)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

[Object Oriented Programming 184]

...

~ static int count; / Number of created objects (static data)
% public:
static void GetCount(){return count;}
A(){count ++; std::cout<< std::endl << "Constructor “ << count; }
~A(){count--; std::cout<< std::endl << "Destructor “ << count;}

int A::count=0; // Allocating memory for number

v
7))
+~
Q
.d.)
oy
O
on
g
=
=
k=
e
o)
-
av]
on
g
=
=
£
S
e

{ Object Oriented Programming 185]

int main(){
std::cout<<"\n Entering 1. BLOCK........... "
A ab,c;

d

A d,e;

b

v
7))
+~
Q
.Q)
oy
O
on
g
N
=
§=
e
o)
-
av]
on
g
N
=
£
S
e

std::cout<<"\n Exiting 2. BLOCK............ "

std::cout<<"\n Entering 2. BLOCK............ ;

{ Object Oriented Programming

...

‘Entering 1. BLOCK............
Constructor 1
Constructor 2

Constructor 3
Entering 2. BLOCK............
Constructor 4
Constructor 5

‘Exiting 2. BLOCK............
Destructor 5

Destructor 4

“Exiting 1. BLOCK............
Destructor 3

Destructor 2

Destructor 1

v
7))
+~
Q
.d.)
oy
O
on
g
=
=
k=
e
o)
-
av]
on
g
=
=
£
S
e

{ Object Oriented Programming 187]

Passing Objects to Functions as Arguments I

» Objects should be passed or returned by reference unless there are
compelling reasons to pass or return them by value.

» Passing or returning by value can be especially inefficient in the case
of objects. Recall that the object passed or returned by value must be
copied into stack and the data may be large, which thus wastes storage.
The copying itself takes time.

P If the class contains a copy constructor the compiler uses this function
to copy the object into stack.

» We should pass the argument by reference because we don’t want an
unnecessary copy of it to be created. Then, to prevent the function
from accidentally modifying the original object, we make the
parameter a const reference.

ComplexT & ComplexT::add(const ComplexT& z) {

v
7))
+~
Q
.d.)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

ComplexT result; /1 local object
result.re = re + z.re; Remember, local
result.im = im + z.im; :
return result; /I ERROR! variables can not be
1 returned by reference.

{ Object Oriented Programming 188]

Avoiding Temporary Objects I

» In the previous example, within the add function a temporary object
1s defined to add two complex numbers.

» Because of this object, constructor and destructor are called.

» Avoiding the creation of a temporary object within add() saves time
and memory space.

ComplexT ComplexT::add(const ComplexT& c) {
double re _new,im_new;
re_new =re + c.re;
Im_new = im + c.im;
return ComplexT(re_new,im_new); // Constructor is called

¥

» The only object that’s created 1s the return value 1n stack, which 1s
always necessary when returning by value.

» This could be a better approach, if creating and destroying individual
member data 1tems 1s faster than creating and destroying a complete
object.

v
N
+~
Q
.G)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

[Object Oriented Programming 189]

Nesting Objects: Classes as Members of Other Classes I

» A class may include objects of other classes as its data
members.

» In the example, a class 1s designed (ComplexFrac) to
define complex numbers. The data members of this class
are fractions which are objects of another class (Fraction).

P

numerator
denominator

constructor
print() J

denominator

numerator
denominator

constructor

Qint() /

[Object Oriented Programming 190]

numerator]

Fraction

v
N
+~
Q
.G)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

ComplexFrac

Composition & Aggregation I

» The relation between Fraction and ComplexFrac is called
"has a relation". Here, ComplexFrac has a Fraction
(actually two Fractions).

» Here, the author of the class ComplexFrac has to supply
the constructors of its object members (re , 1m) with
necessary arguments.

» Member objects are constructed in the order in which they
are declared and before their enclosing class objects are
constructed.

v
N
+~
Q
.d)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

[Object Oriented Programming 191]

» Example: A class to define fractions

class Fraction { /1 A class to define fractions
Int numerator, denominator;

public:
Fraction(int, int); /] CONSTRUCTOR

void print() const;
};
Fraction::Fraction(int num, int denom) { // CONSTRUCTOR
numerator = num;
If (denom==0) denominator = 1;
else denominator = denom;
cout << "Constructor of Fraction" << endl;
}
void Fraction::print() const {
cout << numerator << "/" << denominator << endl;

v
N
+~
Q
.d)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

¥

{ Object Oriented Programming 192]

Example: A class to define complex numbers. It contains two objects as

members
class ComplexFrac { // Complex numbers, real and imag. parts are fractions
Fraction re, im; // objects as data members of another class
public:
ComplexFrac(int,int); // Constructor
void print() const;
};
ComplexFrac::ComplexFrac(int re_in, int im_in) : re(re_in, 1) , im(im_in, 1)

{

} —
void ComplexFrac::print() const { Data members are initialized
re.print();
im.print();
} :
int main() { When an object goes out of scope, the

Sl RSN destructors are called in reverse order:
cf.print();
return O;

v
7))
+~
Q
.Q)
oy
O
on
g
=
=
k=
e
o)
-
av]
on
g
=
=
£
S
e

The enclosing object is destroyed first,
1 then the member (inner) object.

[Object Oriented Programming 193]

Working with Multiple Files
(Separate Compilation)

» [t 1s a good way to write each class or a collection of
related classes 1n separate files.

P [t provides managing the complexity of the software and
reusability of classes 1n new projects.

v
7))
+~
Q
.d.)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

{ Object Oriented Programming 194]

Working with Multiple Files

header header header| Only declarations

\ 4
C++ C++
source source

l l
l l

executable
y

Definitions

v
N
+~
Q
.G)
o
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

Object Oriented Programming

» When using separate compilation you need some way to
automatically compile each file and to tell the linker to build all the
pieces along with the appropriate libraries and startup code into an
executable file.

» The solution, developed on Unix but available everywhere in some
form, is a program called make.

» Compiler vendors have also created their own project building tools.
These tools ask you which files are 1n your project and determine all
the relationships themselves. These tools use something similar to a
makefile, generally called a project file, but the programming
environment maintains this file so you don’t have to worry about it.

» The configuration and use of project files varies from one
development environment to another, so you must find the
appropriate documentation on how to use them (although project file
tools provided by compiler vendors are usually so simple to use that
you can learn them by playing around).

» We will write the example e410.cpp about fractions and complex
numbers again. Now we will put the class for fractions and complex
numbers 1n separate files.

v
N
+~
Q
.G)
oy
O
on
g
=
=
k=
e
o)
-
av}
on
g
=
=
£
S
e

[Object Oriented Programming 196]

5 Operator OVerioading

Operator Overloading I

P It 1s possible to overload the built-in C++ operators such
as +, >=, and ++ so that they invoke different functions,
depending on their operands.

» a+b will call one function if @ and b are integers, but will
call a different function if @ and b are objects of a class.

» Operator overloading makes your program easler to write
and to understand.

» Overloading does not actually add any capabilities to C++.
Everything you can do with an overloaded operator you
can also do with a function.

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

» However, overloaded operators make your programs
easier to write, read, and maintain.

[Object Oriented Programming 198]

Operator Overloading I

» Operator overloading 1s only another way of calling a
function.

» You have no reason to overload an operator except 1if it
will make the code involving your class easier to write and
especially easier to read.

» Remember that code 1s read much more than it 1s written

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

{ Object Oriented Programming 199]

[Limitations I

» You can’t overload operators that don’t already exist in
C++. You can overload only the built-in operators.

il P You can not overload the following operators

<

= *

=

=

2 ->

o

(o)

o L |

2 ..

S ?:

o :
sizeof

{ Object Oriented Programming 200]

[Limitations I

» The C++ operators can be divided roughly into binary and
unary. Binary operators take two arguments. Examples are
atb, a-b, a/b, and so on. Unary operators take only one
argument: -a, ++a, a--.

» [f a built-in operator is binary, then all overloads of it
remain binary. It 1s also true for unary operators.

» Operator precedence and syntax (number of arguments)
cannot be changed through overloading.

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

» All the operators used in expressions that contain only
built-in data types cannot be changed. At least one
operand must be of a user defined type (class).

[Object Oriented Programming 201]

Overloading the + operator for ComplexT I

[* A class to define complex numbers */
class TComplex {
float real,img;

= public:
[l Member functions

%D TComplex operator+(TComplex&); // header of operator+
=g function
2
§ /* The Body of the function for operator + */
@ TComplex TComplex::operator+(TComplex& z) {
S TCOMPIEXTESUIL e sseseesssees s s ssses s ssnseee
Bl ool g iy ntmainO '
o, : - img, : _
o return result: E TComplex z1,z2,z3;

] : . /I Other operations

z3=z1+22; like z3 = z1. operator+(22)

[Object Oriented Programming 202]

Overloading the Assignment Operator (=)

» Because assigning an object to another object of the same
type 1s an activity most people expect to be possible, the
compiler will automatically create a type::operator=(const
type &) 1f you don’t make one.

» The behavior of this operator 1s member wise assignment.
It assigns (copies) each member of an object to members
of another object. (Shallow Copy)

P If this operation is sufficient you don't need to overload
the assignment operator. For example, overloading of
assignment operator for complex numbers 1s not
necessary.

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

[Object Oriented Programming 203]

Overloading the Assignment Operator (=)

vold ComplexT::operator=(const ComplexT& z)

d

re = Z.re;

m = z.1m;

h

» You don't need to write such an assignment operator
function, because the operator provided by the compiler
does the same thing.

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

{ Object Oriented Programming 204]

Overloading the Assignment Operator (=)

» In general, you don’t want to let the compiler do this for
you.

» With classes of any sophistication (especially if they
contain pointers!) you want to explicitly create an
operator=.

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

{ Object Oriented Programming 205]

Example I

class string {

Int size,

char *contents;
V) .

public:

.éo void operator=(const string &); // assignment operator
"§ | /I Other methods
= I
c>> void string::operator=(const string &s)
S
= size = s.size;
o8
o

delete [Jcontents;
contents = new char[size+1];
strcpy(contents, s.contents);

}

{ Object Oriented Programming 206]

Operator Provided by the Compiler I

Source object Destination object

- g ©° EEE
0x008d0080 0x008d0080 %

contents: | l contents

size

Data is still wasting
memory space.

e
on
i
i)
<
©
—
O
>
O
—
o
~
o]
—
O
[oF
O

{ Object Oriented Programming 207]

Operator of the Programmer I

Source object Destination object

‘ contents

0x008d0080

contents |

e
on
i
i)
<
©
—
O
>
O
—
o
~
o]
—
O
[oF
O

V V. VV V VVY VY

{ Object Oriented Programming 208]

Return value of the assignment operator I

» When there’s a void return value, you can’t chain the
assignment operator (asma=b=c).

¥ P To fix this, the assignment operator must return a reference

24 to the object that called the operator function (its address).
=
= /I Assignment operator , can be chained as in a =b = c
= const String& String::operator=(const String &in_object) {
5 if (size !=1n_object.size){ // if the sizes of the source and destination
o size = in_object.size; // objects are different
§ delete [] contents; // The old contents is deleted
2. contents = new char[size+1]; // Memory allocation for the new contents
©)
strcpy(contents, in_object.contents);
return *this; // returns a reference to the object

b

[Object Oriented Programming 209]

Copy Constructor vs. Assignment Operator I

» The difference between the assignment operator and the
copy constructor 1s that the copy constructor actually
creates a new object before copying data from another
object 1nto 1t, whereas the assignment operator copies data
into an already existing object.

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

{ Object Oriented Programming 210]

Copy Constructor vs. Assignment Operator I

> A a:
» A b(a);
» b=a;
> A c=a;

e
on
i
i)
<
©
—
O
>
O
—
o
~
o]
—
O
@F
O

{ Object Oriented Programming 211]

Overloading Unary Operators I

» Unary operators operate on a single operand. Examples are the
increment (++) and decrement (--) operators; the unary minus, as in -35;
and the logical not (!) operator.

@ .
» Unary operators take no arguments, they operate on the object for

%D which they were called. Normally, this operator appears on the left
] side of the object, as in lobj, -obj, and ++obj.
T’; Example: We define ++ operator for class ComplexT to increment the
®8 rcal part of the complex number by 0.1 .
c . .
IS Int main() {
= ComplexT z(1.2, 0.5);
o ++2z; [/ operator++ function is called

Z.print(); .

return O- void ComplexT::operator++() {

! ’ re=re+0.1;
by

[Object Oriented Programming 212]

» To be able to assign the incremented value to a new object,
the operator function must return a reference to the object.

/] ++ operator

8l // increments the real part of a complex number by 0.1
o const ComplexT & ComplexT::operator++() {
= re=re+0.1;
§ return *this;
S .
> .
el Iint main() {
3 ComplexT z1(1.2, 0.5), z2;
%’ 22 = ++2z1; //++ operator is called, incremented value is assigned to z2
o z2.print();
O .
return O;
¥

{ Object Oriented Programming 213]

Overloading the “[]” Operator

» Same rules apply to all operators. So we don’t need to
discuss each operator. However, we will examine some

gl 1nteresting operators.

%D » One of the interesting operators 1s the subscript operator.
qv . .

81 P It can be declared 1n two different ways:

)

>

M class C {

o

= returntype & operator [] (paramitype),
O

3 or

o

const returntype & operator [] (paramitype) const

Y

[Object Oriented Programming

214 |

Overloading the “[]” Operator

» The first declaration can be used when the overloaded
subscript operator modifies the object. The second
declaration 1s used with a const object; in this case, the
overloaded subscript operator can access but not modify the
object.

If ¢ 1s an object of class C, the expression
c[i]

1s interpreted as

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

c.operator|](i)

[Object Oriented Programming 215]

» Example: Overloading of the subscript operator for the String
class. The operator will be used to access the it" character of the
string. If 1 is less the zero then the first character and if 1 is greater
than the Size of the string the last character will be accessed.

/] Subscript operator

0 char & String::operator[](int 1) {

en if(i < 0)

-,g return contents|[0]; /] return first character

S if(i >= size)

E return contents[size-1]; /] return last character

5 return contentsli]; /] return i th character

q

= iInt main() {

) String s1("String 1");

8 s1[1] ="'p'; // modifies an element of the contents
sl.print();
cout << " 5 th character of the string sl is: " << s1[5] << endl;
return O;

}

[Object Oriented Programming 216]

Overloading the “()” Operator I

The function call operator is unique 1n that it allows any number of
arguments.

class C{
returntype operator () (paramtypes),

¥
If c 1s an object of class C, the expression

c(l, J, K) 1s interpreted as
c.operator()(1,], k)

Example: The function call operator is overloaded to print complex
numbers on the screen. In this example the function call operator does
not take any arguments.

/1 The function call operator without any argument, it prints a complex number
void ComplexT::operator()() const {
cout<<re<<","<<im<< endl;

}

[Object Oriented Programming 217]

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

Example: The function call operator is overloaded to copy a
part of the contents of a string into a given memory location.
In this example the function call operator takes two arguments:
the address of the destination memory and the numbers of
characters to copy.

Vo)
®¥Y // The function call operator with two arguments
E=8 void String::operator()(char * dest, int num) const {
Fg if (num > size) num=size; /1 if num is greater the size of the string
,8 for (int k=0; k < num; k++) dest[k]=contents[k];
O
>
O8 int main() {
§ String s1("Example Program");
S char * ¢ = new char[8]; /1 Destination memory
‘& s1(c,7); /] First 7 letters of string1 are copied into ¢
@, c[7] = "\O’; /] End of string (null) character

cout << c;

delete [] c;

return O;

b

[Object Oriented Programming 218]

"Pre" and "post" form of operators ++ and -- I

» Recall that ++ and -- operators come 1n “pre” and “post”
form.
P I these operators are used with an assignment statement
than different forms has different meanings.

7z2=++z1;, // preincrement

z2 =z1++;, // postincrement

» The declaration, operator ++ () with no parameters
overloads the preincrement operator.

e
oNn
i
i)
<
©
—
O
>
O
—
o
~
<
—
O
@F
O

» The declaration, operator ++ (int) with a single int
parameter overloads the postincrement operator. Here, the
int parameter serves to distinguish the postincrement form

from the preincrement form. This parameter 1s not used.
[Object Oriented Programming 219]

Post-Increment Operator I

// postincrement operator
ComplexT ComplexT::operator++(int) {

ComplexT temp;

temp = *this; // old value (original objects)
re=re+0.1; // increment the real part
return temp; // return old value

e
on
i
i)
<
©
—
O
>
O
—
o
~
o]
—
O
@F
O

{ Object Oriented Programming 220]

Pre-Increment Operator I

// postincrement operator
ComplexT ComplexT::operator++() {

re=re + 0.1; // increment the real part

return *this; /] return old value

e
on
i
i)
<
©
—
O
>
O
—
o
~
o]
—
O
@F
O

{ Object Oriented Programming 221]

6

222

Content I

» Inheritance

» Reusability in Object-Oriented Programming
» Redefining Members (Name Hiding)

\O

5] P Overloading vs. Overriding
=1 » Access Control
Eg) » Public and Private Inheritance
» Constructor, Destructor and Assignment Operator in
Inheritance
» Multiple Inheritance

» Composition vs Inheritance

[Object Oriented Programming 223]

Inheritance I

» Inheritance is one of the ways in object-oriented
programming that makes reusability possible.

\D eq o
» Reusability means taking an existing class and using 1t in

§ a new programming situation.

*q";; » By reusing classes, you can reduce the time and effort

= needed to develop a program, and make software more

robust and reliable.

{ Object Oriented Programming 224]

Inheritance I

History
» The earliest approach to reusability was simply rewriting

* existing code. You have some code that works 1n an old
‘é program, but doesn’t do quite what you want 1n a new

S project.

é » You paste the old code 1nto your new source file, make a

few modifications to adapt it to the new environment.
Now you must debug the code all over again. Often you’re
sorry you didn’t just write new code.

{ Object Oriented Programming 225]

Inheritance I

» To reduce the bugs introduced by modification of code,
programmers attempted to create self-sufficient program

© elements 1n the form of functions.
31 P Function libraries were a step in the right direction, but,
§ functions don’t model the real world very well, because
%3 they don’t include important data.

» All too often, functions require modification to work 1n a
new environment.

» But again, the modifications introduce bugs.

{ Object Oriented Programming 226]

Reusability in Object-Oriented Programming I

» A powerful new approach to reusability appears 1n object-
oriented programming 1s the class library. Because a class

= more closely models a real-world entity, 1t needs less
Q modification than functions do to adapt it to a new

5 situation.

%3 » Once a class has been created and tested, it should

(1deally) represent a useful unit of code.
» This code can be used 1n different ways again.

{ Object Oriented Programming 227]

Reusability in Object-Oriented Programming I

1. The simplest way to reuse a class 1s to just use an object
of that class directly. The standard library of the C++ has

= many useful classes and objects.

s — For example, cin and cout are such built in objects.
S Another useful class is string , which is used very
D) .

= often in C++ programs.

{ Object Oriented Programming 228]

6

Inheritance

Reusability in Object-Oriented Programming I

2. The second way to reuse a class is to place an object of
that class inside a new class.

— We call this “creating a member object.”

— Your new class can be made up of any number and
type of other objects, in any combination that you need
to achieve the functionality desired in your new class.

— Because you are composing a new class from existing
classes, this concept 1s called composition (or more
generally, aggregation). Composition 1s often referred
to as a “has-a” relationship.

[Object Oriented Programming 229]

Reusability in Object-Oriented Programming I

3. The third way to reuse a class 1s mheritance, which 1s
described next. Inheritance 1s referred to as a "i1s a" or "a
kind of" relationship.

6

Inheritance

{ Object Oriented Programming 230]

string |

» While a character array can be fairly useful, 1t is quite
limited. It's simply a group of characters in memory, but if
you want to do anything with 1t you must manage all the
little details.

» The Standard C++ string class 1s designed to take care of
(and hide) all the low-level manipulations of character
arrays that were previously required of the C programmer.

6

O
Q
=
S
R
—
O
<=
=
et

» To use strings you include the C++ header file <string>.

» Because of operator overloading, the syntax for using
strings is quite intuitive (natural).

{ Object Oriented Programming 231]

6

string |

#include <string> // Standard header file of C++ (inc. string class)
#include <iostream>

using namespace std;

int main() {

Inheritance

string s1, s2; /l Empty strings
string s3 = "Hello, World."; // Initialized
string s4("I am"); /I Also initialized
s2 ="Today"; /] Assigning to a string
sl =s3+""+s4; // Combining strings
sl +="20"; I/l Appending to a string
cout <<sl +s2 +"!" << endl;
return O;

h

{ Object Oriented Programming 232]

6

Inheritance

[Object Oriented Programming

string |

» The first two strings, sl and s2, start out empty, while s3 and s4
show two equivalent ways to initialize string objects from character
arrays (you can just as easily initialize string objects from other
string objects).

P You can assign to any string object using '='". This replaces the
previous contents of the string with whatever 1s on the right-hand
side, and you don't have to worry about what happens to the
previous contents - that's handled automatlcally for you.

» To combine strings you simply use the + operator, which also
allows you to combine character arrays with strings. It you want to
append either a string or a character array to another string, you can
use the operator +=.

» Finally, note that cout already knows what to do with strings, so you
can just send a string (or an expression that produces a string, which
happens with

» sl +s2+ "!" directly to cout in order to print it.

233 |

Inheritance I

» OOP provides a way to modify a class without changing

its code.
B > This is achieved by using inheritance to derive a new class
‘é from the old one.
*q";; » The old class (called the base class) is not modified, but
S the new class (the derived class) can use all the features of
~ the old one and additional features of its own.

{ Object Oriented Programming 234]

"is a" Relationship I

» We know that PCs, Macintoshes and Cray are kinds of
computers; a worker, a section manager and general
manager are kinds of employee.

6

» If there is a "kind of" relation between two objects then
we can derive one from other using the inheritance.

Inheritance

[Object Oriented Programming 235]

Inheritance Syntax I

» The simplest example of inheritance requires two classes:
a base class and a derived class.

Ml » The base class does not need any special syntax. The

‘é derived class, on the other hand, must indicate that 1t’s

g derived from the base class.

=l » This is done by placing a colon after the name of the

— derived class, followed by a keyword such as public and
then the base class name.

[Object Oriented Programming 236]

» Example: Modeling teachers and the principal (director) in
a school.

» First, assume that we have a class to define teachers, then
we can use this class to model the principal. Because the
principal 1s a teacher.

O
class Teacher { /l Base class
é) private: /I means public for derived class members
s string name;
= int age, numberOfStudents;
= public:
— void setName (const string & new_name){ name = new_name; }
}
class Principal : public Teacher { // Derived class
string schoolName; /1 Additional members
Int numberOfTeachers;
public:
void setSchool(const string & s _name){ schoolName = s_name; }
¥

[Object Oriented Programming 237]

principal Is a teacher

in’}mailrll() i principal (derived class)
= Pfl?lilgzlt p,l; teacher (base class)
3 pl.setNameg' Principal 1"); Name,
= tl.setName(" Teacher=4=x Age,
:C) pl.setSchoolg Elementary School™; numberOfStudents
=l rcturn 0; setName(string)
N | schoolName

numberOfTeachers
setSchool(string)

[Object Oriented Programming 238]

Redefining Members (Name Hiding) I

» Some members (data or function) of the base class may not
suitable for the derived class. These members should be

\© redefined 1n the derived class.

g3y P> For example, assume that the Teacher class has a print
5 function that prints properties of teachers on the screen.
é) » But this function 1s not sufficient for the class Principal,

because principals have more properties to be printed. So
the print function must be redefined.

[Object Oriented Programming 239]

Redefining Members I

class Teacher{ // Base class
protected:

N string name;

. int age, numOfStudents;

2 public:

.g vold setName (const string & new name) { name = new name; }
%) void print() const;

b

vold Teacher::print() const { // Print method of Teacher class
cout << "Name: " <<name<<" Age: " << age << endl;
cout << "Number of Students: " << numOfStudents << endl;

h

[Object Oriented Programming

240 |

class Principal : public Teacher /I Derived class
string school name;
int numOfTeachers;
public:
void setSchool(const string & s name) { school name =s name; }

e void print() const; // Print function of Principal class

0 s

§ void Principal::print() const { // Print method of principal class
Bl cout << "Name: " << name <<" Age: " << age << endl;

E cout << "Number of Students: " << numOfStudents << endl;

cout << "Name of the school: " << school name << end];

b

» print() function of the Principal class overrides (hides) the
print() function of the Teacher class.

[Object Oriented Programming 241]

Redefining Members I

» Now the Principal class has two print() functions. The
members of the base class can be accessed by using the

\O
scope operator (::).
O
@)
§ void Principal::print() const { // Print method of Principal class
E) Teacher::print(); // invokes the print function of the teacher class
= cout << "Name of the school: " << school name << end];

b

[Object Oriented Programming

242 |

Overloading vs. Overriding I

» [f you modify the signature and/or the return type of a
member function from the base class then the derived class

Ml has two member functions with the same name. But this 1s
3y not overloading, it is overriding.

§ » If the author of the derived class redefines a member
1 function, it means he or she changes the interface of the base
&8 class. In this case the member function of the base class is

hidden.

[Object Oriented Programming

243 |

Example class A{

e class B: public A{
public:

A public:
int 1al,1a2; float ial; // overrides ial
YOld fa}(); float fal(float); // overrides fal
< int fa2(int); L
¥
O (-
% int main() { @%%% examplel4.cpp
= B b;
% int j=b.fa2(1);
— b.1al=4; // B::al
b.1a2=3; // A::ia2 if ia2 is public in A

float y=b.fal(3.14); // B::fal

b.fal(); // ERROR fal function in B Aides the function of A
b.Azfal(); //OK

b.A::1al=1; // OK
h

{ Object Oriented Programming 244]

Example I

O A:lal

Q) .

= 3 | Azia2 b.ial=4;
= b.1a2=3;
< .

L= 4 B::rlal

{ Object Oriented Programming 245]

Access Control I

» Remember, when inheritance 1s not i1nvolved, class member
functions have access to anything in the class, whether public or
private, but objects of that class have access only to public members.

\O

» Once inheritance enters the picture, other access possibilities arise
38 for derived classes. Member functions of a derived class can access
§ public and protected members of the base class, but not private
E) members. Objects of a derived class can access only public members of
i= the base class.

Access Base Class

public . y yes

no

yes no no

[Object Oriented Programming 246]

Example
class A{ class B: public A{

p.rivqte: private:
mtial; float ial; // overrides ial

protected: public:

N= int 1a2; float fal(float); // overrides fal
public: |5

é void fal();

S int fa2(int);

g P float B::fal(float f) {

= 1al=2.22 ;

1a2=static cast<int>({*{);

j

{ Object Oriented Programming

247 |

class Teacher { // Base class

private: // only members of Teacher can access
string name;
protected: /I Also members of derived classes can
int age, numOfStudents;
public: // Everyone can access
= vold setName (const string & new name){ name = new name; }
o void print() const;
3 .
g ’
358 class Principal : public Teacher { // Derived class
O .
= private: /I Default

string school name;
int numOfTeachers;

public:
void setSchool(const string & s name) { school name =s name; }
void print() const;
int getAge() const { return age; } // It works because age is protected
const string & get name(){ return name;}// ERROR! name is private

55

[Object Oriented Programming 248]

Int main()

Ne { teacher t1;
principal p1;
g t1.numberOfStudents=54;
E) tl1.setName(*Sema Catir");
= pl.setSchool(“Halide Edip Adivar Lisesi");
}

[Object Oriented Programming 249]

Protected vs. Private Members I

» In general, class data should be private. Public data 1s open to

modification by any function anywhere in the program and should

Ml almost always be avoided.

Q » Protected data 1s open to modification by functions in any derived
IS class. Anyone can derive one class from another and thus gain access
E) to the base class’s protected data. It’s safer and more reliable 1f derived
=l classes can’t access base class data directly.

» But in real-time systems, where speed 1s important, function calls to

access private members 1s a time-consuming process. In such systems

data may be defined as protected to make derived classes access data

directly and faster.

[Object Oriented Programming

250 |

Private data: Slow and reliable

class A{
private:

Int I;

public:

/] Base class

// safe

void access(int new_D{ // public interface to access i
if (new_i > 0 && new_i <= 100)

I=new_i;
};

class B:public A{
private:
int k;
public:
void set(new_i, new_k){
A::access(new i);

/] Derived class

/] reliable but slow

Protected data: Fast, author of the derived
class is responsible
class A{ /] Base class
protected:
int i; /] derived class can access directly
public:

};.

class B:public A{ /1 Derived class
private:
int k;
public:
void set(new_i,new_Kk){
I=new_i; /] fast

Public Inheritance I

» In 1inheritance, you usually want to make the access

specifier public.
= class Base
: {y |
= class Derived : public Base {
EZ » This 1s called public inheritance (or sometimes public

derivation). The access rights of the members of the base
class are not changed.

» Objects of the derived class can access public members of
the base class.

» Public members of the base class are also public members

of the derived class.
[Object Oriented Programming 252]

Private Inheritance I

class Base
- 15
class Derived : private Base {
O
=} » This is called private inheritance.
Bl » Now public members of the base class are private
= .
&) members of the derived class.

» Objects of the derived class can not access members of the
base class.

» Member functions of the derived class can still access
public and protected members of the base class.

[Object Oriented Programming 253]

Class A

[Object Oriented Programming 254]

Redefining Access I

» Access specifications of public members of the base class
can be redefined in the derived class.

M » When you inherit privately, all the public members of the
o8 Dbase class become private.

§ » [f you want any of them to be visible, just say their names
%3 (no arguments or return values) along with the using

keyword 1n the public section of the derived class:

[Object Oriented Programming 255]

Int main(){

Base b;
class Base{ Derived d;
private: b.iI=5; // OK public in Base
int k; d.i=0; // ERROR private inheritance
\O public: b.f(); //OK
. int i; d.f; _// 0]
C% void £(): return O;
= L
=
Bl class Derived : private Base{ // All members of Base are private now
int m;
public:
Base::f(); // () is public again
void tb1();
fs
[Object Oriented Programming 256]

6

O
O
-
<
R
-
O
=
=
e

class Base{
private:
int k;
public:
nt 1;
void f(int);
bool f(int,float);
s

Int main(){

Base b;

Derived d;

b.1=5;

d.i=0;
b.f();

d.f();
return O;

// OK public in Base
// ERROR private inheritance

// OK
// OK

class Derived : private Base{ // All members of Base are private now

int m;
public:

Base::f(int); // f(1int) 1s public again

void ftb1();
s

[Object Oriented Programming

257 |

Special Member Functions and Inheritance I

» Some functions will need to do different things in the base class and
the derived class. They are the overloaded = operator, the destructor,
and all constructors.

6

» Consider a constructor. The base class constructor must create the
base class data, and the derived class constructor must create the
derived class data.

» Because the derived class and base class constructors create
different data, one constructor cannot be used in place of another.
Constructor of the base class can not be the constructor of the derived
class.

» Similarly, the = operator in the derived class must assign values to
derived class data, and the = operator in the base class must assign
values to base class data. These are different jobs, so assignment
operator of the base class can not be the assignment operator of the
derived class.

Inheritance

[Object Oriented Programming 258]

6

Constructors and Inheritance I

» When you define an object of a derived class, the base class
constructor will be called before the derived class constructor. This is
because the base class object 1s a subobject—a part—of the derived
class object, and you need to construct the parts before you can

Inheritance

construct the whole.
»If the base class has a constructor that needs arguments, this
constructor must be called before the constructor of the derived class.
class Teacher{ //turetilmis sinif @E:L example]5.cpp
char *Name; -
int Age,numberOfStudents;
public:
Teacher(char *newName){Name=newName;} // temel sinif kurucusu
%

class Principal : public Teacher{ // turetiimis sinif
int numberOfTeachers;
public:
Principal(char *, int); // // turetilmis sinif kurucusu

%

[Object Oriented Programming 259]

/1 Constructor of the derived class
/1 constructor of the base Is called before the body of the constructor of the derived class
Principal::Principal(const string & new_name, int numOT):Teacher(new_name)

{
}

» Remember, the constructor initializer can also be used to initialize
members.

numOfTeachers = numOT;

/1 Constructor of the derived class
Principal::Principal(const string & new_name, int numOT)
:Teacher(new_name), numOfTeachers(numOT)

{} /1 body of the constructor is empty
int main() {
Principal p1("Ali Bilir", 20); // An obyject of derived class is defined
return O;
¥

» If the base class has a constructor, which must take some arguments, then
the derived class must also have a constructor that calls the constructor of
the base with proper arguments. 260

Destructors and Inheritance I

» Destructors are called automatically.
» When an object of the derived class goes out of scope, the

\O ° ° . °
destructors are called in reverse order: The derived object 1s

‘é destroyed first, then the base class object.

4w,

5

=

=

{ Object Oriented Programming 261]

#include <iostream.h>
class B {
public:
B() { cout << "B constructor” << endl; }
~B() { cout << "B destructor" << end|; }

6

7
class C : public B {
public:
C() { cout << "C constructor" << endl; }
~C() { cout << "C destructor" << endl; }

Inheritance

%

Int main(){
std::cout << "Start" << std::endl;
C ch; // create a C object

std::cout << "End" << std::endl;

}

{ Object Oriented Programming

262 |

#include <iostream.h>
class A {
private:
int ;
float y;
public:

A(int i, float f) :

x(1), y(H) I/ Initialize A

{ cout << "Constructor A" << endl; }
void display() {

cout << intA<<" "<<floA<<";";}

class B : public A {
private:
int v;
float w;
public:
B(int i1, float f1, int i2, float f2) :
A1, 1), Il initialize A
I/ initialize B

v(i2), w(f2)

{ cout << "Constructor B" << endl; }
void display(){

A..display();

Cout<<v<<ll’I|<<W<<II;II;

Example: Constructor Chainl

class C : public B {
private:
intr,
float s;
public:
C(intil,float f1, int i2,float f2,int i3,float f3) :
B(i1, f1, 12, f2), Il initialize B
r@i3), s(f3) Il initialize C
{ cout << "Constructor C" << endl; }
void display() {
B::display();
cout<<r<<", " <<s;

“int main() {
Cec(l, 1.1,2,2.2,3,3.3);
cout << "\nDatainc=";

c.display(); -
} @:@f{% examplel9.cpp

263

Explanation I

» A C class 1s inherited from a B class, which is 1n turn
inherited from a A class.

Ml P Each class has one int and one float data item.

34 P The constructor in each class takes enough arguments to
§ initialize the data for the class and all ancestor classes. This
%3 means two arguments for the A class constructor, four for B

(which must initialize A as well as itself), and six for C
(which must initialize A and B as well as itself).

» Each constructor calls the constructor of its base class.

[Object Oriented Programming 264]

6

Explanation I

» In main(), we create an object of type C, initialize 1t to six
values, and display it.
» When a constructor starts to execute, 1t 1s guaranteed that
all the subobjects are created and 1nitialized.
» Incidentally, you can't skip a generation when you call an
ancestor constructor in an initialization list. In the following
modification of the C constructor:
C(int 11, float f1, int 12, float {2, int 13, float £3) :
A(l, 1), // ERROR! can't initialize A
intC(i3), floC(f3) // initialize C

Inheritance

{3
the call to A() 1s 1llegal because the A class i1s not the

immediate base class of C.

[Object Oriented Programming 265]

Explanation: Constructor Chain I

» You never need to make explicit destructor calls because
there's only one destructor for any class, and it doesn't take

= any arguments.

‘é » The compiler ensures that all destructors are called, and
) that means all of the destructors 1n the entire hierarchy,
%3 starting with the most-derived destructor and working back

to the root.

[Object Oriented Programming

266 |

Assignment Operator and Inheritance I

P Assignment operator of the base class can not be the
assignment operator of the derived class.

» Recall the String example.

class String {
protected:
Int size;
char *contents;
public:
const String & operator=(const String &); // assignment operator
; /1 Other methods

Inheritance

const String & String::operator=(const String &in_object) {
size = in_object.size;

delete[] contents; // delete old contents

contents = new char[size+1];

strcpy(contents, in_object.contents);

return *this;

[Object Oriented Programming 267]

» Example: Class String2 1s derived from class String. If an
assignment operator 1s necessary it must be written

class String2 : public String { // StringZ2 is derived from String

Int size2;
char *contents2;
Ml public:
o const String2 & operator=(const String2 &);
Q :
s
E /] **** Assignment operator for String2 ****
Ef const String2 & String2::operator=(const String2 &in_object) {

size = Iin_object.size; /1 inherited size
delete [Jcontents;

contents= strdup(in_object.contents);

size2 = In_object.size2;

delete[] contents2;

contents2 = strdup(in_object.contents?2);

return *this;

¥

[Object Oriented Programming 268]

In previous example, data members of String (Base) class must be protected. Otherwise
methods of the String2 (Derived) can not access them.

The better way to write the assignment operator of String2 is to call the assignment
operator of the String (Base) class.

Now, data members of String (Base) class may be private.

//** Assignment operator **
const String2 & String2::operator=(const String2 & in_object)
{

6

String::operator=(in_object); // call the operator= of String (Base)
cout<< "Assignment operator of String2 has been invoked" << end],

size2 = in_object.size2;

delete[] contents2;

contents2 = new char[size2 + 1];

strcpy(contents2, in_object.contents2);

return *this;

Inheritance

}

In this method the assignment operator of the String is called with an argument of type
(String2 &). Actually, the operator of String class expects a parameter of type (String &).
This does not cause a compiler error, because as we will se in Section 7, a reference to
base class can carry the address of an object of derived class.

[Object Oriented Programming 269]

Composition vs. Inheritance I

» Every time you place instance data in a class, you are
creating a "has a" relationship. If there is a class Teacher and

Ml one of the data items in this class is the teacher's name, I can
a4 say that a Teacher object has a name.

§ » This sort of relationship 1s called composition because the
%3 Teacher object 1s composed of these other variables.

» Remember the class ComplexFrac. This class 1s composed
of two Fraction objects.

» Composition in OOP models the real-world situation 1n
which objects are composed of other objects.

[Object Oriented Programming 270]

Composition vs. Inheritance I

» Inheritance 1n OOP mirrors the concept that we call
generalization in the real world. If I model workers, managers

M and researchers in a factory, I can say that these are all
3y specific types of a more general concept called an employee.
§ » Every kind of employee has certain features: name, age, ID
g num, and so on.

S

» But a manager, in addition to these general features, has a
department that he/she manages.

» A researcher has an area on which he/she studies.
» In this example the manager has not an employee.
» The manager 1s an employee

[Object Oriented Programming 271]

» You can use composition & inheritance together. The following example
shows the creation of a more complex class using both of them.

class A { class B {
Int i; Int i;
public: public:
A(nt i) - (i) {} B(int i) : i(i) {}
~AQ) {} ~B() {}
void f() const {} void f() const {}

b ¥

class C : public B { // Inheritance, Cis B

A a; // Composition, C has A
public:
C(int i) : B(ii), a(ii) {}
~C() {3 // Calls ~A() and —B()
void f() const { // Redefinition
a.f();
B::f();
¥
};

272

» C inherits from B and has a member object ("is composed
of") of type A. You can see the constructor initializer list
contains calls to both the base-class constructor and the
member-object constructor.

» The function C::f() redefines B::f(), which it inherits,
and also calls the base-class version. In addition, 1t calls

a.f().

» Notice that the only time you can talk about redefinition
of functions 1s during inheritance; with a member object you
can only manipulate the public interface of the object, not
redefine it.

» In addition, calling f() for an object of class C would not
call a.f() 1f C::f() had not been defined, whereas 1t would
call B::A().

[Object Oriented Programming 273]

6

Inheritance

6

Inheritance

Multiple Inheritance I

class Basel{ // Base 1 Int main(){

p.”ki"C: =¥ Deriv d;

int a;

void fal(); d.a=4;

char *fa2(int); float y=d.fal(3.14);

k int i=d.fc();

class Base2{ // Base 2 }

public: 5
int a: R [example20.cpp
char *fa2(int, char®); ®‘§¢J§

int fc(); char * c=d.fa2(1);

3

is not valid.
class Deriv : public B public Base2{ In inheritance functions are not
public: overloaded. They are overridden.
int a; You have to write
float fal(float); char * c=d.Basel::fa2(1);
int fb1(int); or

5

char * c=d.Base2::fa2(1,"Hello");

[Object Oriented Programming 274]

6

Inheritance

Repeated Base Classes I

class Gparent

{ }

class Mother : public Gparent

{ }

class Father : public Gparent

{ }
class Child : public Mother, public Father

{ }

Mother

Gparent

Father

» Both Mother and Father inherit from Gparent, and Child inherits
from both Mother and Father. Recall that each object created through
inheritance contains a subobject of the base class. A Mother object and
a Father object will contain subobjects of Gparent, and a Child object
will contain subobjects of Mother and Father, so a Child object will
also contain two Gparent subobjects, one inherited via Mother and one

inherited via Father.

» This 1s a strange situation. There are two subobjects when really

there should be one.

[Object Oriented Programming

275 |

Repeated Base Classes I

> Suppose there’s a data item 1n Gparent:

class Gparent {

< . protected:

. Intgdata;
3 & '
= class Child : public Mother, public Father {
I . public: |
< void Cfunc() {

Int temp = gdata,; // error: amblquous

}

» The compiler will complain that the reference to gdata is ambiguous.
It doesn’t know which version of gdata to access: the one in the Gparent
subobject in the Mother subobject or the one in the Gparent subobject in
the Father subobject.

[Object Oriented Programming 276]

6

Inheritance

Solution: Virtual Base Classes I

» You can fix this using a new keyword, virtual, when deriving Mother

and Father from Gparent :

: class Gparent

{ }

class Mother : virtual public Gparent
- { %

class Father : virtual public Gparent ®

{ ¥} @ ;ﬁ/ example21.cpp

==

class Child : public Mother, public Father

» The virtual keyword tells the compiler to inherit only one subobject
from a class mto subsequent derived classes. That fixes the ambiguity
problem, but other more complicated problems arise that are too

complex to delve into here.

» In general, you should avoid multiple inheritance, although if you
have considerable experience in C++, you might find reasons to use it in

unusual situations.

[Object Oriented Programming

277 |

--

. class Base
{
. public: :

int a,b,c; Base

6

: }’ :
- class Derived : public Base T
{ Drived

public:
int b; T

b Derived2

class Derived? : public Derived

B

O
O
-
<
R
-
O
=
=
e

public:
int C;

[Object Oriented Programming 278]

6

O
O
-
<
R
-
O
=
=
e

. class C{

I3
class D : public A, public B, private C {

[Object Oriented Programming

279 |

6

¥
. class A : public L {

. class B : public L { T T
. class C : public A, public B {

void f() ;

Inheritance

[Object Oriented Programming 280]

6

. class A : virtual public L { L

. class B : virtual public L {

Inheritance

class C : public A, public B { :

[Object Oriented Programming 281]

--

. class B {

. class X : virtual public B {

6

- class Y : virtual public B {

I3
. class Z : public B {

Inheritance

I3
. class AA : public X, public Y, public Z {

[Object Oriented Programming

282 |

6

O
O
-
<
R
-
O
=
=
e

. class B {

. class X : virtual public B {

%
. class Y : public B {

I3
. class Z : public B {

. class AA : public X, public Y, public Z {

[Object Oriented Programming

283 |

6

Inheritance

. class B {

. class X : virtual public B {

. class Y : virtual public B {

. class Z : virtual public B {

. class AA : public X, public Y, public Z { |

S

AA

[Object Oriented Programming

284 |

Object Pointers

Pointers to Objects I

» Objects are stored 1n memory, so pointers can point to
objects just as they can to variables of basic types.

The new Operator:

» The new operator allocates memory of a specific size from
the operating system and returns a pointer to its starting
point. If 1t 1s unable to find space, 1n returns a 0 pointer.

» When you use new with objects, 1t does not only allocates
memory for the object, 1t also creates the object 1n the sense
of invoking the object’s constructor. This guarantees that the
object 1s correctly initialized, which 1s vital for avoiding
programming errors.

7

9p]
—
O
+~
.5
O
A
+~
Q
QO
o
o

[Object Oriented Programming 286]

Pointers to Objects I

The delete Operator

» To ensure safe and efficient use of memory, the new
operator 1s matched by a corresponding delete operator
that releases the memory back to the operating system.

» [f you create an array with new Type][|;, you need the
brackets when you delete it:

INnt * ptr = new Int[10];

c~

delete [] ptr;

Don’t forget the brackets when deleting arrays of objects. Using them ensures
that all the members of the array are deleted and that the destructor is called

Object Pointers

for each one. If you forget the brackets, only the first element of the array will
be deleted.

[Object Oriented Programming 287]

Example I

clgss String { int main() {
int size; String *sptr = new String[3];

- cha.r *contents; String s1("String 1");

publ.lc: String s2("String 2");
% String(); *sptr = s1;
- String(const char *); *(sptr + 1) = s2;
S String(const String &); sptr->print();
A . : :
e const String& operator=(const String &); (sptr+1)->print();
% Void.print() const ; sptr[1].print();
® ~String(); delete[] sptr;

55 return 0O;

h

[Object Oriented Programming 288]

Linked List of Objects I

A class may contain a pointer to objects of its type.
This pointer can be used to build a chain of objects, a linked list.

class Teacher {
friend class Teacher list;

c~

// linked list for teachers

= string name; _
= int age, numOfStudents; clz;sesa'gﬁztﬁh*eggg(sjt.{
s Teacher * next; Slbiic: ’
Bl public: Teacher list(){head=0:}
8y Teacher(const string &, int, int); bool append(const string &,int,int);
M void print() const: bool del(const string &);

const string& getName() const { \f_)llga'?:rr'go”g?g_st ;

return name; } }: e
~Teacher()

¥

[Object Oriented Programming 289]

Linked List of Objects I

» In the previous example the Teacher class must have a
pointer to the next object and the list class must be declared
as a friend, to enable users of this class building linked lists.
P If this class 1s written by the same group then it is possible
to put such a pointer in the class.

» But usually programmers use ready classes, written by
other groups, for example classes from libraries.

» These classes may not have a next pointer.

» To build linked lists of such ready classes the programmer
have to define a node class.

» Each object of the node class will hold the addresses of
an element of the list.

7

9p]
—
O
+~
.5
O
A
+~
Q
QO
o
o

[Object Oriented Programming 290]

Linked List of Objects I

class Teacher node{
friend class Teacher list;

Teacher * element; /| The element of the list
& Teacher node * next; // next node
% Teacher node(const string &, int, int); // constructor
*Qé) ~Teacher node(); // destructor
< L
' Teacher node::Teacher node(const string & n, int a, int nos){
‘_% clement = new Teacher(n, a, nos);
O next = 0;

h

Teacher node::~Teacher node(){
delete element;

h

[Object Oriented Programming 291]

Pointers and Inheritance I

P If a class Derived has a public base class Base, then a
pointer to Derived can be assigned to a variable of type
pointer to Base without use of explicit type conversion. A
pointer to Base can carry the address of an object of
Derived.

» The opposite conversion, for pointer to Base to pointer to
Derived, must be explicit.

» For example, a pointer to Teacher can point to objects of
Teacher and to objects of Principal. A principal is a
teacher, but a teacher 1s not always a principal.

7

9p]
—
O
+~
.5
O
A
+~
Q
QO
o
o

[Object Oriented Programming 292]

Pointers and Inheritance I

class Base{

-
4 class Derived : public Base {
=
= %
§ Derived d;
Base *bp = &d; // implicit conversion
Derived *dp = bp; // ERROR! Base is not Derived

dp = static cast<Derived *>(bp); // explicit conversion

{ Object Oriented Programming 293]

Pointers and Inheritance I

P If the class Base 1s a private base of Derived , then the
implicit conversion of a Derived™® to Base* would not be
done.

» Because, 1n this case a public member of Base can be
accessed through a pointer to Base but not through a pointer
to Derived.

7

9p]
—
O
+~
.5
O
A
+~
Q
QO
o
o

{ Object Oriented Programming 294]

Pointers and Inheritance I

class Base{

int ml;
public:

= int m2; // m2 1s a public member of Base
Z S
*Qa’) class Derived : private Base { // m2 1s not a public member of Derived
S
S
8 Derived d;
Sl dm2= 5; // ERROR! m2 is private member of Derived

Base *bp = &d; // ERROR! private base
bp = static_cast<Base*>(&d); // ok: explicit conversion
bp->m2=35; //ok

{ Object Oriented Programming 295]

Heterogeneous Linked Lists I

» Using the inheritance and pointers, heterogeneous linked
lists can be created.

» A list specified 1n terms of pointers to a base class can
hold objects of any class derived from this base class.

» We will discuss heterogeneous lists again, after we have
learnt polymorphism.

Example: A list of teachers and principals

7

9p]
—
O
+~
.5
O
A
+~
Q
QO
o
o

head

insert()
delete()

Teacher t2 Teacher t3

Teacher t1

List my _list Principal p1 Principal p2

[Object Oriented Programming 296]

8 Polymoerphism

Content I

» Polymorphism
» Virtual Members
» Abstract Class

o0
=
4
<
£
S
=
=
o
al

{ Object Oriented Programming 298]

Polymorphism I

» There are three major concepts in object-oriented programming:

1. Classes,

2. Inheritance,
3. Polymorphism, which is implemented in C++ by virtual functions.

» In real life, there is often a collection of different objects that, given
1dentical instructions (messages), should take different actions. Take
teacher and principal, for example.

» Suppose the minister of education wants to send a directive to all
personnel: “Print your personal information!” Different kinds of staff
(teacher or principal) have to print different information. But the
minister doesn’t need to send a different message to each group. One
message works for everyone because everyone knows how to print his
or her personal information.

o0
=
4
<
£
S
=
==
o
al

{ Object Oriented Programming 299]

Polymorphism I

» Polymorphism means ‘“‘taking many shapes”. The minister’s single
instruction 1s polymorphic because 1t looks different to different
kinds of personnel.

» Typically, polymorphism occurs in classes that are related by
inheritance. In C++, polymorphism means that a call to a member
function will cause a different function to be executed depending on
the type of object that invokes the function.

» This sounds a little like function overloading, but polymorphism is a
different, and much more powerful, mechanism. One difference
between overloading and polymorphism has to do with which
function to execute when the choice 1s made.

o0
=
4
<
£
S
=
==
o
al

» With function overloading, the choice i1s made by the compiler
(compile-time). With polymorphism, it’s made while the program is
running (run-time).

{ Object Oriented Programming 300]

Normal Member Functions Accessed with Pointers I

Q class Square { // Base Class

protected:
- double edge;
public:
gz Square(double e):edge(e){ } //Base class constructor
- double area(){ return(edge * edge) ; }
A v
o Q class Cube : public Square { // Derived Class
“[ﬂ public:

Cube(double e):Square(e){} // Derived class cons.
double area(){ return(6.0 * edge * edge) ; }

'

{ Object Oriented Programming 301]

int main(){

» Remember that it’s perfectly all right to assign an address of one
type (Derived) to a pointer of another (Base), because pointers to
objects of a derived class are type compatible with pointers to
objects of the base class.

» Now the question is, when you execute the statement
ptr->area();
what function 1s called? Is 1t Square::area() or Cube::area()?

. Square S(2.0) :
. Cube C(2.0) ;
. Square *ptr ;
. char ¢ ;
. cout << “Square or Cube"; cin >>c ;
. if (c=='s") ptr=&S ;

= else ptr=&C ;

= . ptr—area(); // which Area ?7??

Z S

% » ptr = &C;

=

=

O

=¥

{ Object Oriented Programming 302]

Virtual Member Functions Accessed with Pointers I

Let’s make a single change in the program: Place the keyword virtual
in front of the declaration of the area() function 1n the base class.

class Square { // Temel sinif

e protected:
= double edge;
3= public:
? Square(double e):edge(e){ } //temel sinif kurucusu
a virtual double area(){ return(edge * edge) ; }
S ¥
= class Cube : public Square { // Turetilmis sinif
public:
Cube(double e):Square(e){} // Turetilmis sinif kurucusu
double area(){ return(6.0 * edge * edge) ; }
¥
[Object Oriented Programming 303]

|nt main(){ -
Square S(2.0) L squarc.cpp ;
Cube C(8.0) ;
Square *ptr ;
char C ;

cout << “Square or Cube";cin>>c ;
If (c=="s") ptr=&S ;

else ptr=&C ;
ptr—Area();

o0
=
4
<
£
S
=
=
o
al

{ Object Oriented Programming

304 |

Virtual Member Functions Accessed with Pointers I

The function in the base class (Teacher) is executed in both cases. The compiler ignores

the contents of the pointer ptr and chooses the member function that matches the type
of the pointer.

Let's make a single change in the program: Place the keyword virtual in front of the

el declaration of the print() function in the base class.
= class Teacher{ /!l Base class ;
3 string *name; —
= int numOfStudents;
§ public:
& Teacher(const string &, int); /1 Constructor of base
o virtual void print() const; /1 A virtual (polymorphic) function
L IR
class Principal : public Teacher{ /1 Derived class
string *SchoolName;
public:
Principal(const string &, int, const string &);
void print() const; /1 It is also virtual (polymorphic)
};
[Object Oriented Programming 305]

Late Binding I

» Now, different functions are executed, depending on the contents of
ptr. Functions are called based on the contents of the pointer ptr, not
on the type of the pointer. This 1s polymorphism at work. I’ve made

print() polymorphic by designating it virtual.

the compiler has no problem with the expression
» ptr->print();

o0
=
4
<
£
S
=
=
o
al

may be a pointer to. It could be the address of an object of the
Teacher class or the Principal class. Which version of print() does

» How does the compiler know what function to compile? In e81.cpp,

» [t always compiles a call to the print() function in the base class. But
in e82.cpp, the compiler doesn’t know what class the contents of ptr

the compiler call? In fact, at the time 1t’s compiling the program, the
compiler doesn’t know what to do, so it arranges for the decision to

be deferred until the program is running.

[Object Oriented Programming

306 |

Late Binding I

» At runtime, when the function call is executed, code that the
compiler placed in the program finds out the type of the object
whose address 1s 1n ptr and calls the appropriate print() function:
Teacher::print() or Principal::print(), depending on the class of the
object.

» Selecting a function at runtime is called late binding or dynamic
binding. (Binding means connecting the function call to the
function.)

» Connecting to functions in the normal way, during compilation, is
called early binding or static binding. Late binding requires a small
amount of overhead (the call to the function might take something
like 10 percent longer) but provides an enormous increase in power
and flexibility.

o0
=
4
<
£
S
=
=
o
al

[Object Oriented Programming 307]

How It Works I

» Remember that, stored in memory, a normal object—that is, one
with no virtual functions—contains only its own data, nothing else.

» When a member function 1s called for such an object, the compiler
passes to the function the address of the object that invoked it. This
address is available to the function in the this pointer, which the
function uses (usually invisibly) to access the object’s data.

» The address in this 1s generated by the compiler every time a
member function 1s called; it’s not stored 1n the object and does not
take up space in memory.

o0
=
4
<
£
S
=
=
o
al

» The this pointer is the only connection that’s necessary between an
object and its normal member functions.

[Object Oriented Programming 308]

How It Works I

» With virtual functions, things are more complicated. When a derived
class with virtual functions 1s specified, the compiler creates a table—
an array—of function addresses called the virtual table.

» The Teacher and Principal classes each have their own virtual table.
There 1s an entry 1n each virtual table for every virtual function in the
class. Objects of classes with virtual functions contain a pointer to the
virtual table of the class. These object are slightly larger than normal
objects.

o0
=
4
<
£
S
=
=
o
al

» In the example, when a virtual function 1s called for an object of
Teacher or Principal, the compiler, instead of specifying what
function will be called, creates code that will first look at the object’s
virtual table and then uses this to access the appropriate member
function address. Thus, for virtual functions, the object itself
determines what function is called, rather than the compiler.

[Object Oriented Programming 309]

Example: Assume that the classes Teacher and Principal contain two virtual functions.

class Teacher{ /] Base class
string *name;
int numOfStudents;

public:
virtual void read(); /1 Virtual function
o0 virtual void print() const; /1 Virtual function
¥
s
g= class Principal : public Teacher{ /1 Derived class
- string *SchoolName;
g public:
S void read(); /1 Virtual function
s void print() const; /1 Virtual function
= };
Virtual Table of Teacher Virtual Table of Principal
&Teacher::read &Principal: ‘read
&Teacher::print &Principal::print

[Object Oriented Programming 310]

Objects of Teacher and Principal will contain a pointer to their virtual tables.

int main(){

Teacher t1("Teacher 1", 50);

Teacher t2("Teacher 2", 35);

Principal p1("Principal 1", 45 , "School 1");
: Virtual Table of Teacher

¥
: &Teacher::read
el MC68000-like assembly counterpart vpur _
of the statement t1 Teacher 1 &Teacher::print
=l Ptr->print(); Here ptr contains the 50
é} address of an object.
§ move.l ptr, this ; this to object vptr
movea.l ptr, a0 ; a0 to object Vi L
’ ’ irtual Table of Principal
é movea.l (a0), al ; al<-vptr 2 Teacher 2 f P
:ci jsr 4(al) ; jsrprint 35 &Principal::read
If the print() function would not a &Principal::print
virtual function: vptr
move.l ptr, this ; this to object Principal 1
jsr teacher_print pl 415
o N : School 1
jsr principal_print
[Object Oriented Programming 311]

Don’t Try This with Objects I

Be aware that the virtual function mechanism works only
with pointers to objects and, with references, not with objects

- themselves. int mainO{

= Square S(4);
£ Cube C(8);

é S.Area();

S C.Area();

L

Calling virtual functions is a time-consuming process, because
of indirect call via tables. Don’t declare functions as virtual 1f
it 1s not necessary.

[Object Oriented Programming 312]

Warning

class Square { // Base

protected:
double edge;

00 public:
= Square(double e):edge(e){ } // Base Class Constructor
= virtual double Area(){ return(edge * edge) ; }
- NS
é class Cube : public Square { // Derived Class
% public:
o

Cube(double e):Square(e){} // Derived Class Constructor
double Area(){ return(6.0 * Square::Area()) ; }

g T
Here, Square::Area() is not virtual

{ Object Oriented Programming

313 |

Homogeneous Linked Lists and Polymorphisml

Most frequent use of polymorphism 1s on collections such as

protected:
- double edge;
= public:
3= Square(double e):edge(e){ }
? virtual double area(){ return(edge * edge) ; }
a Sqaure *next ;
S s
class Cube : public Square {
public:
Cube(double e):Square(e){}
double area(){ return(6.0 * edge * edge) ; }
s
{ Object Oriented Programming 314]

int main() {

o0
=
4
<
£
S
=
=
o
al

;

Circle ¢1(50);

Square s1(40);

Circle c2(23);

Square s2(78);

Square *listPtr; // Pointer of the linked list

/*** Construction of the list ***/

listPtr=&c1;

cl.next=&sl;

s].next=&c2;

c2.next=&s2;

s2.next=0L;

while (listPtr){ // Printing all elements of the list
cout << listPtr->Area() << endl ;
listPtr=listPtr->next;

h

{ Object Oriented Programming

315 |

Abstract Classes I

» To write polymorphic functions wee need to have derived classes.
But sometimes we don’t need to create any base class objects, but
only derived class objects. The base class exists only as a starting

point for deriving other classes.

which means that no actual objects will be created from it.

o0
=
4
<
£
S
=
=
o
al

» This kind of base classes we can call are called an abstract class,

» Abstract classes arise in many situations. A factory can make a
sports car or a truck or an ambulance, but it can’t make a generic
vehicle. The factory must know the details about what kind of vehicle
to make before it can actually make one. Similarly, you’ll see

sparrows, wrens, and robins flying around, but you won’t see any

generic birds.
» Actually, a class 1s an abstract class only in the eyes of humans.

[Object Oriented Programming

316 |

Pure Virtual Classes I

» It would be nice if, having decided to create an abstract base class, I
could nstruct the compiler to actively prevent any class user from ever
making an object of that class. This would give me more freedom 1n
designing the base class because I wouldn’t need to plan for actual
objects of the class, but only for data and functions that would be used
by derived classes. There 1s a way to tell the compiler that a class 1s
abstract: You define at least one pure virtual function in the class.

» A pure virtual function 1s a virtual function with no body. The body
of the virtual function in the base class is removed, and the notation =0
is added to the function declaration.

o0
=
4
<
£
S
=
=
o
al

[Object Oriented Programming 317]

o0
Z
£
3 Are they the same or different?
£
o
ol

[Object Oriented Programming 318]

»Not in the real world, but in our thoughts as an abstraction
classification.

» A “Cleaning Utensil” does not exist, but specific kinds do!

o0
=
4
<
£
S
=
=
o
al

{ Object Oriented Programming 319]

Example in Visual C++ 6 I

class CGenericShape{ // Abstract base class
protected:
int X,y;
- CGenericShape *next ;
= public:
3= CGenericShape(int X _in,inty in,
3 CGenericShape *nextShape){
& X=X in;
= i
e y=y_ 1,

next = nextShape ;
+ // Constructor
CGenericShape* operator++() {return next;}
virtual void draw(HDC)=0; // pure virtual function

'

{ Object Oriented Programming

320 |

o0
=
4
<
£
S
=
=
o
al

class CLine:public CGenericShape{ // Line class
protected:

int x2,y2; // End coordinates of line

public:

CLine(int X 1n,inty in,int x2 in,int y2 1n,
CGenericShape *nextShape)
:CGenericShape(x 1n,y in,nextShape)
X2=x2 1n;
y2=y2 1n;

)

vold draw(HDC hdc){ // virtual draw function

MoveToEx(hdc,x,y,(LPPOINT) NULL);
LineTo(hdc,x2,y2); }

'

{ Object Oriented Programming

321 |

class CRectangle:public CLine{ // Rectangle class
public:
CRectangle (int X _in,inty 1n,int X2 in,int y2 1n,
CGenericShape *nextShape)

:CLine(x 1,y 1n,x2 1in,y2 in,nextShape)
S

vold draw(HDC hdc){// virtual draw

Rectangle(hdc,x,y,x2,y2);

o0
=
4
<
£
S
=
=
o
al

{ Object Oriented Programming

322 |

class CCircle:public CGenericShape{ // Circle class
protected:
int radius;
public:
CCircle (int x_cen,inty cen,intr,

o0

- CGenericShape *nextShape)

Z :CGenericShape(x cen,y cen,nextShape)
3 d

o .

E» radius=r;

O

< h

vold draw(HDC hdc) { // virtual draw
Ellipse(hdc,x-radius,y-radius,x+radius,y+radius);

}
'

{ Object Oriented Programming

323 |

vold ShowShapes(CGenericShape &shape, HDC hdc)

d

o0
=
4
<
£
S
=
=
o
al

CGenericShape *p = &shape ;
// Which draw function will be called?
while (p!=NULL){
p->draw(hdc); // It 's unknown at compile-time
p=++t%p;
Sleep(100);

{ Object Oriented Programming

324 |

PAINTSTRUCT ps;
HDC hdc;

CLine Linel(50,50,150,150,NULL);

CLine Line2(150,50,50,150,&Linel) ;

CCircle Circlel(100,100,20,&Line2);

CCircle Circle2(100,100,50,&Circlel);
CRectangle Rectangle1(50,50,150,150,&Circle2);

@;;%ﬁf PolyDraw.dsw

switch (message) {
case WM_PAINT:
hdc = BeginPaint (hwnd, &ps);
ShowShapes (Rectanglel,hdc);
EndPaint (hwnd, &ps);
return O;

o0
=
4
<
£
S
=
==
o
al

[Object Oriented Programming

325 |

A Finite State Machine (FSM) Example

State {1, 2,3}
Input :{a, b}, xtoexit
Output : {x,y}

aly b/y

Q b/x

oo
=
4
<
£
S
=
=
o
al

a class structure.

base class.

States of the FSM are defined using

Each state 1s derived from the same

[Object Oriented Programming

326 |

class State{ /] Base State (Abstract Class)
protected:
State * const next_a, * const next_b; /1 Pointers to next state
char output;
public:
State(State & a, State & b):next_a(&a), next _b(&b) { }
virtual State* transition(char)=0; // pure virtual function
¥
class Statel:public State{ /] *** Statel ***
public:
Statel(State & a, State & b):State(a, b) { }
State* transition(char);
¥
class State2:public State{ /] *** State2 ***
public:
State2(State & a, State & b):State(a, b) { }
State* transition(char);

o0
=
4
<
£
S
=
=
o
al

¥
class State3:public State{ /] *** State3 ***
public:
State3(State & a, State & b):State(a, b) { }
State* transition(char);

&

{ Object Oriented Programming

327 |

The transition function of each state defines the behavior of
the FSM. It takes the input value as argument, examines the
input, produces an output value according to the imput value
and returns the address of the next state.

State* Statel::transition(char input)
{
switch(input){
case 'a': output ='y';
return next_a;
case 'b': output = 'x';
return next_b;
default : cout << endl << "Undefined input";
cout << endl << "Next State: Unchanged",
return this;

o0
=
4
<
£
S
=
=
o
al

¥
}

[Object Oriented Programming

328 |

The FSM 1n our example has three states.

class FSM{ /1 Finite State Machine
Statel s1;
State2 s2;
State3 s3;
State *current; /1 points to the current state
public:
o0 FSM() : s1(sl1,s2), s2(s3,s2), s3(sl,s2), current(&sl) { } //Starting state is Statel
void run();
= ¥
78 Vvoid FSM::run() {
= char in;
= do {
g cout << endl << "Give the input value (a or b; x: EXIT) ";
=, cin >> in;
o) if (in '="X")
o5 current = current->transition(in); /1 Polymorphic function call
else
curent = 0; /Il EXIT

} while(current);

}

The transition function of the current state 1s called.
Return value of this function determines the next state of the FSM.

[Object Oriented Programming 329 |

Virtual Constructors? I

» Can constructors be virtual?

No, they can’t be.

» When you’re creating an object, you usually already know
what kind of object you’re creating and can specify this to the
compiler. Thus, there’s not a need for virtual constructors.

» Also, an object’s constructor sets up its virtual mechanism
(the virtual table) in the first place. You don’t see the code
for this, of course, just as you don’t see the code that
allocates memory for an object.

o0
=
4
<
£
S
=
=
o
al

» Virtual functions can’t even exist until the constructor has
finished its job, so constructors can’t be virtual.

[Object Oriented Programming 330]

Virtual Destructors I

» Recall that a derived class object typically contains data
from both the base class and the derived class.

are called.

o0
=
4
<
£
S
=
=
o
al

» To ensure that such data is properly disposed of, it may be
essential that destructors for both base and derived classes

{ Object Oriented Programming

331 |

Virtual Destructors I

class Base {

public:
~Base() { cout << "\nBase destructor"; }

> I
=l class Derived : public Base {
3 public:
3 ~Derv() { cout << "\nDerived destructor"; }
g ¥
~ int main(){

Base* pb = new Derived;
delete pb;
cout << endl << "Program terminates.* << endl ;

;

{ Object Oriented Programming

332 |

Virtual Destructors I

» But the output 1s
Base Destructor
Program terminates
» In this program bp is a pointer of Base type. So it can
point to objects of Base type and Derived type. In the
example, bp points to an object of Derived class, but while
deleting the pointer only the Base class destructor 1s
called.
» This 1s the same problem you saw before with ordinary
(nondestructor) functions. If a function 1sn’t virtual, only
the base class version of the function will be called when
it’s invoked using a base class pointer, even if the contents
of the pointer 1s the address of a derived class object. Thus
in €85.cpp, the Derived class destructor 1s never called.
This could be a problem if this destructor did something
important.

[Object Oriented Programming 333]

o0
=
4
<
£
S
=
=
o
al

To fix this problem, we have to make the base class destructor virtual.

class Base {
public:
virtual ~Base() { cout << "\nBase destructor"; }
s
class Derived : public Base {
public:
~Derv() { cout << "\nDerived destructor"; }
s
int main(){
Base* pb = new Derived;
delete pb;
cout << endl << "Program terminates.* << endl ;

o0
=
4
<
£
S
=
==
o
al

h

{ Object Oriented Programming 334]

O EXCEPTION

Program Errors I

» Kinds of errors with programs
— Poor logic - bad algorithm

— Improper syntax - bad implementation

— Exceptions - Unusual, but predictable problems

» The earlier you find an error, the less it costs to fix it

» Modern compilers find errors early

@)\
-
o

=
o
Q
Q
P<

(L]

[Object Oriented Programming

336 |

Paradigm Shift from C I

» In C, the default response to an error 1s to continue,
possibly generating a message

» In C++, the default response to an error 1s to terminate the
program

» C++ programs are more “brittle”, and you have to strive
to get them to work correctly

@)\
-
o

=
o
Q
Q
P<

(L]

» Can catch all errors and continue as C does

[Object Oriented Programming 337]

assert() I

» a macro (processed by the precompiler)
— Returns TRUE 1if its parameter 1s TRUE

— Takes an action if it 1s FALSE

—abort the program

@)\
-
o

phar
o
Q
Q
P<

(L]

—throw an exception

» [f DEBUG is not defined, asserts are collapsed so that they

generate no code

{ Object Oriented Programming

338 |

assert() (cont’d) I

» When writing your program, if you know something 1s true,
you can use an assert

» If you have a function which is passed a pointer, you can do

— assert(pTruck);

—1f pTruck 1s 0, the assertion will fail

@)\
-
o

=
o
Q
Q
P<

(L]

» Use of assert can provide the code reader with insight to
your train of thought

[Object Oriented Programming 339]

assert() (cont’d) I

» Assert 1s only used to find programming errors
» Runtime errors are handled with exceptions
— DEBUG false => no code generated for assert

— Animal *pCat = new Cat;

— assert(pCat); // bad use of assert

@)\
-
o

phar
o
Q
Q
P<

(L]

— pCat ->memberFunction();

{ Object Oriented Programming

340 |

assert() (cont’d) I

» assert() can be helpful

» Don’t overuse it

» Don’t forget that it “instruments” your code
—1nvalidates unit test when you turn DEBUG off

» Use the debugger to find errors

@)\
-
o

phar
o
Q
Q
P<

(L]

{ Object Oriented Programming

341 |

Exceptions I

» You can fix poor logic (code reviews, debugger)
» You can fix improper syntax (asserts, debugger)
» You have to live with exceptions

— Run out of resources (memory, disk space)

— User enters bad data

@)\
-
o

phar
o
Q
Q
P<

(L]

— Floppy disk goes bad

{ Object Oriented Programming

342 |

Why are Exceptions Needed? I

» The types of problems which cause exceptions (running
out of resources, bad disk drive) are found at a low level
(say 1n a device driver)

» The low level code implementer does not know what
your application wants to do when the problem occurs, so
s’he “throws” the problem “up” to you

@)\
-
o

=
o
Q
Q
P<

(L]

[Object Oriented Programming 343]

How To Deal With Exceptions I

» Crash the program
» Display a message and exit
» Display a message and allow the user to continue

» Correct the problem and continue without disturbing the
user

@)\
-
o

phar
o
Q
Q
P<

(L]

Steinbach's Corollary to Murphy's Law:
"Never test for a system error you don't
know how to handle."

[Object Oriented Programming

344 |

What is a C++ Exception? I

» An object
— passed from the area where the problem occurs

— passed to the area where the problem 1s handled

» The type of object determines which exception handler
will be used

@)\
-
o

=
o
Q
Q
P<

(L]

{ Object Oriented Programming

345 |

Syntax I

try {
// a block of code which might generate an exception

}
catch(xNoDisk) {
// the exception handler(tell the user to
// insert a disk)
}
catch(xNoMemory) {
// another exception handler for this “try block™

}

@)\
-
o

phar
o
Q
Q
P<

(L]

{ Object Oriented Programming 346]

The Exception Class I

» Define like any other class:
class Set {

private:
int *pData;

public:

@)\
-
o

=
o
Q
Q
P<

(L]

class xBadIndex {}; // just like any other class

'

{ Object Oriented Programming

347 |

Throwing An Exception I

» In your code where you reach an error node:
1T(memberindex < 0)

throw xBadlndex();

can handle your thrown object

@)\
-
o

=
o
Q
Q
P<

(L]

context, the call stack 1s examined

» Exception processing now looks for a catch block which

P If there 1s no corresponding catch block in the immediate

[Object Oriented Programming

348 |

The Call Stack I

» As your program executes, and functions are called, the
return address for each function 1s stored on a push down
stack

» At runtime, the program uses the stack to return to the
calling function

» Exception handling uses 1t to find a catch block

@)\
-
o

=
o
Q
Q
P<

(L]

[Object Oriented Programming 349]

Passing The Exception I

» The exception is passed up the call stack until an
appropriate catch block is found

» As the exception 1s passed up, the destructors for objects
on the data stack are called

» There 1s no going back once the exception 1s raised

@)\
-
o

phar
o
Q
Q
P<

(L]

[Object Oriented Programming

350 |

Handling The Exception I

» Once an appropriate catch block 1s found, the code in the
catch block is executed

» Control is then given to the statement after the group of
catch blocks

» Only the active handler most recently encountered in the
thread of control will be invoked

@)\
-
o

phar
o
Q
Q
P<

(L]

[Object Oriented Programming 351]

Handling The Exception (cont’d) I

catch (Set::xBadlndex) {
// display an error message

}
catch (Set::xBadData) {

// handle this other exception

}

//control 1s given back here

@)\
-
o

=
o
Q
Q
P<

(L]

P If no appropriate catch block 1s found, and the stack is at

main(), the program exits

[Object Oriented Programming

352 |

Default catch Specifications I

» Similar to the switch statement
catch (Set::xBadlndex)

{ // display an error message }
catch (Set::xBadData)

{ // handle this other exception }
catch (.)

{ // handle any other exception }

@)\
-
o

phar
o
Q
Q
P<

(L]

[Object Oriented Programming

353 |

Exception Hierarchies I

» Exception classes are just like every other class; you can
derive classes from them

» So one try/catch block might catch all bad indices, and

> another might catch only negative bad indices
&
5
2 xBadIndex
&
xNegative xTooLarge

[Object Oriented Programming 354]

Exception Hierarchies (cont’d) I

class Set {
private:
int *pData;
public:
class xBadlndex {};
class xNegative : public xBadlndex {};
class xTooLarge: public xBadlndex {};

@)\
-
o

phar
o
Q
Q
P<

(L]

}s
// throwing xNegative will be
// caught by xBadlndex, too

[Object Oriented Programming

355 |

Data 1n Exceptions I

» Since Exceptions are just like other classes, they can have
data and member functions

» You can pass data along with the exception object

» An example is to pass an error subtype for xBadIndex,
you could throw the type of bad index

@)\
-
o

phar
o
Q
Q
P<

(L]

[Object Oriented Programming 356]

Data 1n Exceptions (Continued) I

// Add member data,ctor,dtor,accessor method

class xBadIndex {

- private:

- int badlndex;

% public:

5 xBadIndex(int 1Type):badlndex(1Type) {}

int GetBadIndex () { return badIndex; }
~xBadIndex() {}

'

{ Object Oriented Programming

357 |

Passing Data In Exceptions I

// the place 1n the code where the index 1s used
if (index < 0)

throw xBadIndex(index);
if (index > MAX)

throw xBadIndex(index);

// iIndex 1s ok

@)\
-
o

=
o
Q
Q
P<

(L]

{ Object Oriented Programming

358 |

Getting Data From Exceptions I

catch (Set::xBadIndex &theException)

{
o int badIndex = theException.GetBadIndex();
= if (badIndex <0)
§ cout << “Set Index “ << badIndex << “ less than 0’;
=
& else

cout << “Set Index “ << badlndex << “ too large”;

cout << endl;

[Object Oriented Programming

359 |

Passing Data In Exceptions I

// the place 1n the code where the index 1s used
if (index < 0)

throw xNegative (index);
if (index > MAX)

throw xTooLarge(index);

@)\
-
o

=
o
Q
Q
P<

(L]

// iIndex 1s ok

{ Object Oriented Programming

360 |

Getting Data From Exceptions I

catch (Set::xNegative &theException)

d
int badIndex = theException.GetBadIndex();

cout << “Set Index “ << badIndex << ““ less than 0’;

cout << endl;

j

@)\
-
o

phar
o
Q
Q
P<

(L]

{ Object Oriented Programming

361 |

Getting Data From Exceptions I

catch (Set::xTooLarge &theException)

d
int badIndex = theException.GetBadIndex();

cout << “Set Index *“ << badIndex << *“ 1s too large”;

cout << endl;

j

@)\
-
o

phar
o
Q
Q
P<

(L]

{ Object Oriented Programming

362 |

Caution I

» When you write an exception handler, stay aware of the
problem that caused it

condition, you shouldn’t have statements in your
exception object constructor which allocate memory

@)\
-
o

phar
o
Q
Q
P<

(L]

» Example: 1f the exception handler 1s for an out of memory

[Object Oriented Programming

363 |

Exceptions With Templates I

» You can create a single exception for all instances of a
template

—declare the exception outside of the template

» You can create an exception for each instance of the
template

@)\
-
o

phar
o
Q
Q
P<

(L]

—declare the exception inside the template

[Object Oriented Programming

364 |

Single Template Exception I

class xSingleException {};

template <class T>
class Set {

@)

- private:

= T *pType;
Q. -

Q public:

i Set();

T& operator|[] (int Index) const;
};

{ Object Oriented Programming

365 |

Each Template Exception I

template <class T>
class Set {
private:
T *pType;
public:
class xEachException {};
T& operator[] (int Index) const;
}s
// throw xEachException();

@)\
-
o

phar
o
Q
Q
P<

(L]

{ Object Oriented Programming

366 |

Catching Template Exceptions I

» Single Exception (declared outside the template class)
catch (xSingleException)

» Each Exception (declared inside the template class)
catch (Set<int>::xEachException)

@)\
-
o

phar
o
Q
Q
P<

(L]

[Object Oriented Programming

367 |

Exception Specification I

» A function that might throw an exception can warn its
users by specifying a list of the exceptions that it can
throw.

class Zerodivide{/*..*/};
int divide (int, Int) throw(Zerodivide);

P If your function never throws any exceptions
bool equals (int, Int) throw();

P Note that a function that 1s declared without an exception
specification such as bool equals (int, int); guarantees
nothing about its exceptions: It might throw any
exception, or it might throw no exceptions.

@)\
-
o

=
o
Q
Q
P<

(L]

[Object Oriented Programming 368]

Exception Specification I

» Exception Specifications Are Enforced At Runtime

» When a function attempts to throw an exception that it 1s
not allowed to throw according to its exception
specification, the exception handling mechanism detects
the violation and invokes the standard function
unexpected().

» The default behavior of unexpected() is to call
terminate(), which terminates the program.

@)\
-
o

phar
o
Q
Q
P<

(L]

» The default behavior can be altered, nonetheless, by using
the function set_unexpected().

[Object Oriented Programming 369]

Exception Specification I

» Because exception specifications are enforced only at
runtime, the compiler might deliberately 1gnore code that
seemingly violates exception specifications.

» Consider the following:
int f(); //no exception specification
» What if f throws an exception
void g(int j) throw()
{

@)\
-
o

=
o
Q
Q
P<

(L]

Int result = f(O);
}

[Object Oriented Programming 370]

Concordance of Exception Specification I

C++ requires exception specification concordance in derived
classes. This means that an overriding virtual function 1n a
derived class has to have an exception specification that 1s at
least as restrictive as the exception specification of the
overridden function in the base class.

@)\
-
o

phar
o
Q
Q
P<

(L]

[Object Oriented Programming 371]

I_class. BaseEx{}; ll | class A {
| class DerivedEx: public BaseEx{}; | public:

| class Othe@({ | virtual void f() throw (BaseEx);
virtual void g() throw (BaseEx); I
virtual void h() throw (DerivedEx);
virtual void i() throw (DerivedEx);
virtual void j() throw(BaseEx);

:};

class D: public A {
public:
void f() throw (DerivedEx); /OK
void g() throw (OtherEx); //error
void h() throw (DerivedEx); //OK
void 1() throw (BaseEXx); //error
void j() throw (BaseEx,OtherEx); //error

@)\
-
o

=
o
Q
Q
P<

(L]

'

{ Object Oriented Programming 372]

Concordance of Exception Specification I

An exception could belong to two groups:

class Netfile err : public Network_err, public File_system_err {

[* 0%
N
S Netfile err can be caught by functions dealing with network exceptions:
@ void f(){
5 try {
/ / something
h
catch (Network err& e) {
/...
b
h
{ Object Oriented Programming 373]

void g() {

try {
o / / something else
}
<
:% catch(File system erré& e) {
S / / ...
<
= +

{ Object Oriented Programming 374]

Exception Matching I

void FO {
try {
throw EQ) ;

}

catch(H) {
= // when do we get here?
H
g The handler 1s 1nvoked:
aa

1] If H 1s the same type as E.

2] If H 1s an unambiguous public base of E.

3] If H and E are pointer types and [1] or [2] holds for the
types to which they refer.

[4] If H 1s a reference and [1] or [2] holds for the type to

which H refers.
[Object Oriented Programming 375]

Resource Management I

When a function acquires a resource — that 1s, 1t opens a file,
allocates some memory from the free store, sets an access
control lock, etc., — it 1s often essential for the future running
of the system that the resource be properly released.

@)\
S
& void use_file(const char™* fn)
% d
= FILE* f = fopen(fn,"w") ;
// use {
fclose(f) ;
h

[Object Oriented Programming 376]

Resource Management I

Fault-tolerant implementation using try-catch:

vold use file(const char™ fn)

~ { void f(){
FILE* f = fopen(fn,"r") ; try {
.5 try {
2. /[use f use_file(“c:\\dat.txt”);
2 h
= catch (Ex e) { !
fclose(f) ; catch(SomeEx ¢){
throw e; }
h h
fclose(f) ;
h
{ Object Oriented Programming ST]

Resource Management I

The problem with this solution is that it 1s verbose, tedious,
and potentially expensive.

class File ptr {
FILE* p;
public:
File ptr(const char* n, const char* a) { p = fopen(n,a) ; }
File ptr(FILE* pp) { p =pp; }
~File ptr() { fclose(p) ; }
operator FILE*() { return p; }

}, o

void use file(const char® fn) {
File ptr {(fn,"r") ;
// use f

@)\
-
o

=
o
Q
Q
P<

(L]

[Object Oriented Programming 378]

Standard Exceptions I

» The C++ standard includes some predefined exceptions,

in <stdexcept>
» The base class is exception

been avoided by writing the program differently
— Subclass runtime_error is for other errors

@)\
-
o

phar
o
Q
Q
P<

(L]

— Subclass logic_error is for errors which could have

[Object Oriented Programming

379 |

Standard Exceptions I

class exception {
public:
exception() throw() ;
exception(const exception&) throw() ;
exception& operator=(const exception&) throw() ;
virtual ~exception() throw() ;
virtual const char*what() const throw() ;
private:

/...
'S

@)\
-
o

phar
o
Q
Q
P<

(L]

[Object Oriented Programming

380 |

Logic Error Hierarchy I

logic_error

domain_error invalid_argument length_error out_of range

@)\
-
o

phar
o
Q
Q
P<

(L]

[Object Oriented Programming 381]

Runtime Error Hierarchy I

runtime_error

underflow error overflow error range error

@)\
-
o

phar
o
Q
Q
P<

(L]

The 1dea 1s to use one of the specific classes (e.g. range error)

to generate an exception

[Object Oriented Programming

382 |

Data For Standard Exceptions I

// standard exceptions allow you to specifty
// string information

throw overflow _error(““Doing float division 1In function div”’);

N // the exceptions all have the form:

o class overflow _error : public runtime_error
2 {

=

53 public:

Q

<

a8

overflow_error(const string& what_arg)
> runtime_error(what_arg) {};

{ Object Oriented Programming

383 |

Catching Standard Exceptions I

catch (overflow _error)

{
cout << “Overflow error” << endl;
Ny
= _
9 catch (exceptioné& e)
I <
S
LE cout << typerd(e).name() << *“: “ << e.what() << endl;
by

{ Object Oriented Programming

384 |

More Standard Exception Data I

P catch (exception&k ¢)
— Catches all classes derived from exception

— If the argument was of type exception, it would be
converted from the derived class to the exception
class

— The handler gets a reference to exception as an
argument, so it can look at the object

@)\
-
o

=
o
Q
Q
P<

(L]

[Object Oriented Programming 385]

RTTI (RunTime Type Information) I

» It's one of the more recent additions to C++ and isn't supported by
many older implementations. Other implementations may have

compiler settings for turning RTTI on and off.

determine the type of object during runtime.

@)\
-
o

=
o
Q
Q
P<

(L]

vendors.

» The intent of RTTI 1s to provide a standard way for a program to

» Many class libraries have already provided ways to do so for their
own class objects, but in the absence of built-in support in C++, each
vendor's mechanism typically 1s incompatible with those of other

» Creating a language standard for RTTI should allow future libraries

to be compatible with each other.

[Object Oriented Programming

386 |

What 1s RTTI for? I

» Suppose you have a hierarchy of classes descended from a common
base. You can set a base class pointer to point to an object of any of
the classes in this hierarchy. Next, you call a function that, after
processing some information, selects one of these classes, creates an
object of that type, and returns its address, which gets assigned to a

base class pointer.
» How can you tell what kind of object it points to?

@)\
-
o

phar
o
Q
Q
P<

(L]

[Object Oriented Programming 387]

How does 1t work? I

C++ has three components supporting RTTI:

» dynamic_cast pointer
generates a pointer to a derived type from a pointer to a base
type, 1f possible. Otherwise, the operator returns 0, the null
pointer.

» typeid operator
returns a value 1dentifying the exact type of an object.

» type_info structure
holds information about a particular type.

@RTTI works only for classes with virtual functions

@)\
-
o

phar
o
Q
Q
P<

(L]

[Object Oriented Programming

388 |

dynamic cast<> I

» The dynamic cast operator 1s intended to be the most heavily used

RTTI component.

» It doesn't answer the question of what type of object a pointer

points to.

the address of the object to a pointer of a particular type.

@)\
-
o

=
o
Q
Q
P<

(L]

» Instead, it answers the question of whether you can safely assign

{ Object Oriented Programming

389 |

class Grand { // has virtual methods} ;
class Superb : public Grand { ... } ;
class Magnificent : public Superb { ... } ;

Grand * pg = new Grand;
Grand * ps = new Superb;
Grand * pm = new Magnificent;

Magnificent * pl = (Magnificent *) pm; // #1
Magnificent * p2 = (Magnificent *) pg; /] #2
Superb * p3 = (Magnificent *) pm; /] #3

@)\
-
o

=
o
Q
Q
P<

(L]

Which of the previous type casts are safe?

Superb pm = dynamic cast<Superb *>(pg);

[Object Oriented Programming 390]

@)\
-
o

phar
o
Q
Q
P<

(L]

class Grand {
virtual void speak() ;
I
class Superb : public Grand {
void speak() ;
virtual void say() ;
5
class Magnificent : public Superb {
char ch ;
void speak() ;
void say() ;

¥

for (Int1=0;1<35; 1++)

{
pg = getOne();
pg->speak();

{ Object Oriented Programming

301 |

» However, you can't use this exact approach to invoke the say()
function; 1t's not defined for the Grand class.

» However, you can use the dynamic_cast operator to see if pg can
be type cast to a pointer to Superb.

» This will be true 1f the object 1s either type Superb or Magnificent.
In either case, you can invoke the say() function safely:

if (ps = dynamic cast<Superb *>(pg))
ps->say();

@)\
-
o

=
o
Q
Q
P<

(L]

{ Object Oriented Programming

302 |

typeid I

» typeid 1s an operator which allows you to access the type of

an object at runtime
» This 1s useful for pointers to derived classes

name
if(typeid(*carType) == typeid(Ford))
cout << “This 1s a Ford” << endl;

@)\
-
o

phar
o
Q
Q
P<

(L]

» typeid overloads ==, !=, and defines a member function

[Object Oriented Programming

303 |

typeid().name I

cout << typerd(*carType).name() << endl;
// It we had said:
// carType = new Ford();

cout << typeird(e).name()

returns the name of the exception

= // The output would be:
.5 // Ford

@ » So:

<

b

{ Object Oriented Programming 394]

e.what() |

» The class exception has a member function what
virtual char* what();

» This 1s inherited by the derived classes

» what() returns the character string specified in the throw statement for
the exception

throw overflow error(‘“Doing float division in function div’);

@)\
-
o

phar
o
Q
Q
P<

(L]

cout << typeid(e).name() << *“: “ << e.what() << endl;

{ Object Oriented Programming 395]

Deriving New exception Classes I

class xBadIndex : public runtime_error {
public:
xBadIndex(const char *what arg = “Bad Index™)
. runtime_error(what arg) {}
s
// we inherit the virtual function what
// default supplementary information character string

@)\
-
o

phar
o
Q
Q
P<

(L]

{ Object Oriented Programming

396 |

template <class T>
class Array{
private:

T *data ;

int Size ;
public:

Array(void);

Array(int);

Exception 9

class eNegativelndex {};
class eOutOfBounds{};
class eEmptyArray{};

T& operator[](int) ;
¥

{ Object Oriented Programming 397]

template <class T>

Array<T>::Array(void){
data = NULL ;
Size=0 ;

b

template <class T>

Exception 9

Array<T>::Array(int size){
Size = size ;

data = new T[Size] ;

{ Object Oriented Programming

308 |

template <class T>

T& Array<T>::operator[](int index){
1f(data == NULL) throw eEmptyArray() ;
if(index < 0) throw eNegativelndex() ;
if(index >= Size) throw eOutOfBounds() ;

return data[index] ;

@)\
-
o

=
o
Q
Q
P<

(L]

{ Object Oriented Programming

309 |

Array<int> a(10) ;
try{
int b =a[200] ;
)
catch(Array<int>::eEmptyArray){
cout << "Empty Array" ;

j

catch(Array<int>::eNegativelndex){

@)\
-
o

=
o
Q
Q
P<

(L]

cout << "Negative Array" ;

)
catch(Array<int>::eOutOfBounds){

cout << "Qut of bounds" ;

j

{ Object Oriented Programming

400 |

JI0] TENMPLATES

Kalip-Parametrik Cok Sekillilik Nedir? I

Siniflardaki fonksiyonlarin govdeleri incelendiginde, yapilan i1slemler
cogu zaman, iuizerinde islem yapilan verinin tipinden bagimsizdir. Bu
durumda fonksiyonun govdesi, verinin tipit cinsinden, parametrik

olarak ifade edilebilir:

=
Int abs(int n) {
|5 return (n<0) ? -n : n;
<
% }
& long abs(long n) {

return (n<0) ? -n : n;
}

float abs(float n) {
return (n<0) ? -n : n;

}

{ Object Oriented Programming 402]

> C

Her tip i¢in farkli adlarda fonksiyonlar.
ornek mutlak deger fonksiyonlari:

abs(), fabs(), fabsl(), labs(), cabs(), ...

=

> C++
5 Fonksiyonlara iglev yiikleme bir ¢6ziim olabilir mi?
= [slev yiiklenen fonksiyonlarin gdvdeleri degismiyor !
=

Govdeler tekrar ediliyor = Hata !

P Coziim
T1ip1 parametre kabul eden bir yap: : Template

{ Object Oriented Programming

403 |

Fonksiyon Kalib1 Tanimlamak I

template <class T>
inline T const& max (T const& a, T const& b){
return a<b?b:a;

= f

- int main() {

3 nti1=42;

% std::cout << "max(7,1): " << :max(7,1) << std::endl;
g double f1 =3 .4;

— double 2 =-6.7;

std::cout << "max(f1,2): " << :max(f1,{2) << std::endl;
std::string s1 = "mathematics"; std::string s2 = "math";
std::cout << "max(sl,s2): " << :max(sl,s2) << std::endl;

{ Object Oriented Programming 404]

max(4,7) // Tamam: Her 1ki argiiman int
max(4,4.2) // Hata: 11k T 1nt, 1kinci T double

max<double>(4,4.2) // Tamam
max(static cast<double>(4),4.2) / Tamam

10

Templates

{ Object Oriented Programming 405]

template <class T>

= void printArray(T *array,const int size){
s for(int 1=0;1 < s1ze;1++)

% cout << array[1] <<"";

E) cout << endl :

{ Object Oriented Programming 406]

int main() {
int a[3]:{19293})
double b[5]={1.1,2.2,3.3,4.4,5.5} ;

S char c[7]={a’, ‘b’, ¢c’, ‘d’, ‘e’ , I, ‘g’} ;
3

o] ;

%‘ printArray(a,3) ;

= printArray(b,5) .

printArray(c,7) ;

return O ;

b

[Object Oriented Programming

407 |

void printArray(int *array,cont int size){
for(int 1=0;1 < size;1++)

cout << array[1] <<"";

S cout << endl ;

3 h

= void printArray(char *array,cont int size){
2 for(int 1=0;1 < size;1++)

cout << array[i1] << ™ ;

cout << endl ;

h

{ Object Oriented Programming

408 |

template’in Isleyisi I

Gergekte derleyicit template ile verilmis fonksiyon govdesi i¢in
herhangi bir kod iiretmez. Ciinkii template ile bazi verilerin tip1
parametrik olarak ifade edilmistir. Verinin tip1 ancak bu fonksiyona
iliskin bir ¢agr1 oldugunda ortaya ¢ikacaktir. Derleyici her farkli tip

ml icin yeni bir fonksiyon olusturacaktir. template yeni fonksiyonun
% verinin tipine bagl olarak nasil olusturulacagini tanimlamaktadir.

=

a.

=

)

o

Int inAtVarl =5:

cout << "abs(" << int << ")=" << abs(intVarl);

{ Object Oriented Programming 409]

template’in Isleyisi I

» Programi ister template yapisi ile olusturalim ister de template
yapist olmaksizin olusturalim, programin bellekte kaplayacagi alan

degismeyecektir.
=4 P Degisen, kaynak kodun boyu olacaktir. template yapisi
B kullanilarak olusturulan programin kaynak kodu, daha anlagilir ve
=8 hata denetimi daha yiiksek olacaktir. Ciinkii template yapisi
% kullanildiginda degisiklik sadece tek bir fonksiyon gdvdesinde
E) yapilacaktir.

[Object Oriented Programming 410]

Template Parametresi bir Nesne Olabilir I

class TComplex { /* A4 class to define complex numbers */
float real,imag;

public:
o . // other member functions
_ bool operator>(const TComplex&) const ;
S
'%i bool TComplex::operator>(const TComplex& z) const {
E) float norm1 = real * real + 1imag * imag;

float norm2 = z.real * z.real + z.imag * z.imag;
if (norm1 > norm?2) return true;
else return false;

[Object Oriented Programming

411 |

template <class T>
const T & max(const T &vl, const T & v2)

d

if (vl > v2) return vi;

else

b

10

int main() {
int 11=5, 12= -3;

='D’, c2='N";

float £1=3.05, 2=12.47;

TComplex z1(1.4,0.6), z2(4.6,-3.8);

max(11,12) << endl;

:max(cl,c2) << endl;

cout << ::

cout <<:

char cl

Templates

cout <<
cout <<

b

return v2;

max(fl,f2) << endl;

‘max(z1,z2) << endl;

[Object Oriented Programming

412 |

Coklu template Parametreli Argiimanlar I

template <class atype>
Int find(const atype *array, atype value, int size) {
for(int j=0; j<size; j++)

= if(array[j]==value) return j;

- return -1;

D)

= .

=

© char chrArr[] ={a', 'c', 'f", 's', 'u’, 'z'}; [/l array

char ch ="'f"; // value to find

int intArr[] = {1, 3, 5, 9, 11, 13};

Int in = 6;

double dubArr[] = {1.0, 3.0, 5.0, 9.0, 11.0, 13.0};
double db = 4.0;

{ Object Oriented Programming 413]

Int main()

{

-

- cout << "\n 'f" In chrArray: index=" << find(chrArr, ch, 6);
8 cout << "\n 6 In IntArray: index=" << find(intArr, in, 6);

% cout << "\n 4 in dubArray: index=" << find(dubArr, db, 6);
= I

O

—

{ Object Oriented Programming 414]

Ornek I

10

Templates

template <class T>
void swap(T& x, T& y) {
T temp ;
temp =X ;
X=Y;
y =temp ;
h
char str1[100], str2[100] ;
inti,;;
TComplex cl,c2;
swap(1,]) ;
swap(cl,c2);
swap(str1[50], str2[50]) ;
swap(1, str[25]) ;
swap(strl , str2) ; hata

{ Object Oriented Programming

415 |

void swap(char* x, char* y) {
int max len ;
max_len = (strlen(s1)>=strlen(s2)) ? strlen(s1):strlen(s2);
char* temp = new char[max_len+1];

= strepy(temp,s1);
” strcpy(sl,s2);

O

k= strcpy(s2,temp);
g delete []temp;

O

— .

{ Object Oriented Programming 416]

Tipsiz Template Parametreleri I

template <typename T, int VAL>
T addValue (T const& x) {

return X + VAL;
=]
M template <double VAT> Somble ' ivin verd]
% double process (double v) pubie qisrerme
g return v * VAT;
=

h

{ Object Oriented Programming 417]

[slev Yiiklemede Esleme Onceligi I

» Kalip disinda ayn1 imzaya sahip fonksiyon

» Kalip ile tanimlanmis ayni imzaya sahip fonksiyon

———————————————————————q

| char str1[100], str2[100] ;

|

= |

— | :

s | swap(strl , str2) ; |

=

ol pe—— D R e r__._______:ap_ ________ :

5 template <class T> - 1void swap(char* x, char* y) { :

— V01d swap(T& x, T&y) { | .. |
 Teemp: :
temp=x; i
. X=Yy;
 y=temp;

%...}..:
{ Object Oriented Programming 418]

» Template parametre sayisi birden fazla olabilir:
template <class atype, class btype>
btype find(const atype* array, atype value, btype size) {
for (btype |=0; j<size; |++)

Coklu template Parametreli Yapilar I

-

- if(array[j]==value) return j;

Z return (btype)-1,

5 }

g »Bu durumda, derleyict sadece farkli dizi tipleri i¢cin degil aym
all zamanda aranan elemanin farkli tipte olmasi durumunda da farkli bir

kod tiretecektir:
short int result,si=100:;
Int invalue=5;
result = find(intArr, invalue,si) ;

[Object Oriented Programming

419 |

Sinif template Yapisi I

class Stack {

int stfMAX]; // array of ints
int top; // index number of top of stack
public:
= Stack(); /] constructor
= void push(int var); // takes int as argument
o int pop(); // returns int value
5 5
o
5 class LongStack {
- long stiMAX]; // array of longs
int top; // index number of top of stack
public:
LongStack(); /[constructor
void push(long var); // takes long as argument
long pop(); // returns long value
I3

[Object Oriented Programming 420]

template <class Type,int maxSize>
class Stack{
Type stfmaxSize]; /I stack: array of any type

Int top; // number of top of stack
public:
Stack(){top = 0;} /] constructor
= void push(Type); /[put number on stack
_ Type pop(); // take number off stack
= 1
& template<class Type>
E) void Stack<Type>::push(Type var) // put number on stack

~ if(top > maxSize-1) /1 if stack full,

throw "Stack is full!; // throw exception
st[top++] = var;

...

[Object Oriented Programming

. template<class Type>
Type Stack<Type>::pop() { // take number off stack
if(top <= 0) /I if stack empty,

throw "Stack is empty!"; // throw exception
return st[--top];

--

tint main() i // s2 is object of class Stack<long>
= .| Stack<long,10> s2;
Bl | //slis object of class Stack<float> i i [/l push 2longs, pop 2 longs
- Stack<float,20> s1; Pty
Q // push 2 floats, pop 2 floats i s2.push(123123123L);
% try{ . s2.push(234234234L);
= sl.push(1111.1); i cout << "1:" << s2.pop() << endl;
ﬁ sl.push(2222.2); i1 cout<<"2:"<<s2.pop() << endl
cout << "1: " << sl.pop() << endl; P}
cout << "2: " << s1.pop() << endl; i i /] exception handler
} . i catch(const char * msg) {
/I exception handler i i cout<<msg<<endl
catch(const char * msg) { : * }
cout << msg << endl; : i} /I End of program
) P

e R AR AR AR EEE AR R EEE AR EEEAAAENEAAAENEASAREENSAEEEESAREESSAREESSAEEESSSEEEEESSE A EEEEEEEEEEEEEEEEE A AR A AN RN EEEAEEEEEAREEEEAEEEEAREEEAEREESSEEEESSEEEESSEEEEssEEEEsssEsEssssmmnsss

[Object Oriented Programming 422]

Sinif template Yapisinin Farka I

» Template fonksiyonlar1 i¢in template parametresinin ne
olacagimi1 derleyicl cagr1 yapilan fonksiyon i¢in imzaya
bakarak karar verir.

&4 p Template smiflar icin tanimlandifinda template
& parametresini pProgrameci verir.

e

E Stack<ﬂ0at,20>81, Swap(CI,Cz),

[Object Oriented Programming 423]

Neler Template Parametres: Olamaz? I

template <typename T> class List { ... };
typedet struct { double x, y, z; } Point;
typedef enum { red, green, blue } *ColorPtr; enum types

=
int main() {
Ec; struct Associgltion { Int™* p; int* q; }; local types
5 List<Assocation*> errorl;
e List<ColorPtr> error2;
List<Point>;

{ Object Oriented Programming 424]

Static PolymorphismxDynamic Polymorphism I

» Run-time Polymorphism vs. Compile-time Polymorphism

» Run-time Polymorphism:

— Inheritance & virtual functions

10

» Compile-time Polymorphism

— templates

Templates

{ Object Oriented Programming 425]

class GeoObj {
public:
virtual void draw() const = 0;
virtual Coord center of gravity() const = 0;

s
class Circle : public GeoODbj {
= public:
virtual void draw() const;
|5 virtual Coord center of gravity() const;
<
=
= ¥
O 2)))
= class Line : public GeoODbj {
public:

virtual void draw() const;
virtual Coord center of gravity() const;

};...

{ Object Oriented Programming

426 |

Run-time Polymorphism

void myDraw (GeoObj const& obj)

d
obj.draw();
h
=
int main()
S
s .
e Line I;
% Circle ¢, cl, ¢2;
=
myDraw(l); // myDraw(GeoObj&) => Line::draw()
myDraw(c); // myDraw(GeoQObj&) => Circle::draw()

{ Object Oriented Programming 427]

// concrete geometric object class Circle
// - not derived from any class
class Circle {
public:
void draw() const;
Coord center of gravity() const;

=
% L
IS8 // concrete geometric object class Line
a. .
=l // - not derived from any class
D) .
=4 class Line {
public:

void draw() const;
Coord center of gravity() const;

};...

{ Object Oriented Programming 428]

Compile-time Polymorphism

template <typename GeoObj>
void myDraw (GeoObj const& oby)

d
obj.draw();
=
2 int main()
"= [
= Line I;
=

Circle c, cl, c2;

myDraw(l); // myDraw<Line>(GeoObj&)=>Line::draw()
myDraw(c); // myDraw<Circle>(GeoObj&)=>Circle::draw()

{ Object Oriented Programming 429]

Advantages & Disadvantages I

Dynamic polymorphism in C++:

» Heterogeneous collections are handled elegantly.

» The executable code size 1s potentially smaller (because

-

- only one polymorphic function 1s needed, whereas distinct
% template instances must be generated to handle different
‘;g types).

s P Code can be entirely compiled; hence no implementation

source must be published (distributing template libraries
usually requires distribution of the source code of the
template implementations).

{ Object Oriented Programming 430]

Advantages & Disadvantages I

In contrast, the following can be said about static
polymorphism in C++;

» Collections of built-in types are easily implemented. More

= generally, the interface commonality need not be
7 expressed through a common base class.

% » Generated code 1s potentially faster (because no
E) indirection through pointers is needed a prior1 and

nonvirtual functions can be inlined much more often)

» Concrete types that provide only partial interfaces can still
be used if only that part ends up being exercised by the
application.

{ Object Oriented Programming 431]

10

New Approaches—Design Patterns I

» A Design Pattern

— “Bridge Pattern”
» Inheritance based implementation

Templates

Interface implementatiion
: bady
Implementation® body M virual operationAl) =0
virtual operationB() = 0;
oparatiomnil) | wirlual operationC{) =0
by -~oparatiomnad |
| s
operaticnBi) {
body-=opearationd() | |
by -~oiparadiond]) : .
1 ’ ') Implementation A Implemantation B
1
wirtial aparationd) vitual aperationdl)
wirlual oparationB{) virtual oparationBi)
virtual oparationCy|) virtual oparationCi()

[Object Oriented Programming 432]

New Approaches—Design Patterns I

» Implementation with template

Implementation B

poemm ey
; Impl
- Interface
Impl body;
O
~ oparationAll |
E body.o e ranlionedd) Implemeantation A
o '
a apgeralionB!] 4 operationd),
) S ::|:r:::|:'-:'2- | operationB()
- body. operastionC())
operationC()

eypet rabiorn |
aparationBE| |
operation|}

{ Object Oriented Programming

(Generc Programming

(vl STHE i C)

Standard Template Library I

Nesneye dayali programlamada, verinin birincil Oneme sahip
programlama birimi oldugunu belirtmistik. Veri, fiziksel yada soyut bir
cok buyukligii modelleyebilir. Bu model oldukga basit yada karmasik
olabilir. Her nasil olursa olsun, ver:t mutlaka bellekte saklanmaktadir ve
veriye benzer bicimlerde erisilmektedir. C++, oldukca karmasik veri
tiplerini ve yapilarim1 olusturmamiza olanak saglayan mekanizmalara
sahiptir. Genel olarak, programlarin, bu veri yapilarina belirli bazi
bicimlerde eristigini biliyoruz:

array, list, stack, queue, vector, map, ...

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

STL kiitiiphanest verinin bellekteki organizasyonuna, erisimine ve
islenmesine yonelik c¢esitli yontemler sunmaktadir. Bu boliimde bu
yontemleri inceleyecegiz.

[Object Oriented Programming 435]

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

Standard Template Library (STL) Hewlett Packard’in Palo Alto (
California) daki laboratuarlarinda Alexander Stepanov ve Meng Lee
tarafindan gelistirilmistir.

1970 lerin sonlarinda Alexander Stepanov bir kisim algoritmalarin veri
yapisinin nasil depolandiklarindan bagimsiz olduklarint gozlemledi.
Ornegin, siralama algoritmalarinda siralanacak sayilarin bir dizide mi?
yoksa bir listede mi? bulundugunun bir onemi yoktur. Degisen sadece
bir sonraki elemana nasil erisildigi ile ilgilidir. Stepanov bu ve benzeri
algoritmalart inceleyerek, algoritmalar: veri yapisindan bagimsiz olarak
performanstan odiin vermeksizin soyutlamayr basarmistir. Bu fikrini
1985 °de Generic ADA dilinde gerceklestirmistir. Ancak o donemde
heniiz C++’da bir onceki boliimde inceledigimiz Template yapisi
bulunmadigi i¢in bu fikrini C++’da ancak 1992 yilinda
gerceklestirebilmistir.

[Object Oriented Programming 436]

Generic Programming I

Bir yazilim iriiniiniin bilesenlerini, ii¢ boyutlu uzayda bir nokta
olarak diistinebiliriz :

o0 : t k

g= (siralama,int,array) - _ L

é : T verl tipi1 : int, float, ...

= (stralama,double,list) [, -

S (siralama,intlist) - ">~ [Tl

%) template .. © ;

A > PRIy SN .

) \\\ RS .

= (stralama,array) (®) \o kap:

= : dizi, liste, kuyruk ...

5 (siralama, list) algoritma :
generic prog. ! siralama, kaynastirma, arama ...
(siralama)

{ Object Oriented Programming 437]

STL Bilesenleri I

STL li¢ temel bilesenden olusmaktadir:

 Algoritma,

« Kap (Container): nesneleri depolamak ve yonetmekten
sorumlu nesne,

 Lineer Kaplar : Vector, Deque, List
 Asosyatif Kaplar : Set, Map, Multi-set, Multi-map

* Yineleyici (lterator): algoritmanin farkli tipte kaplarla
calismasinmi saglayacak sekilde erisimin soyutlar.

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

{ Object Oriented Programming 438]

Kaplar

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

Container Description Required Header
bitset A set of bits <bitset>
deque A double-ended queue <deque>

list A linear list <list>
map Stores key/valup pairs in which each key <map>
1s associated with only one value
Stores key/value pairs in which one key
multimap may be associated with two or more <map>
values
multiset A set in \.NhiCh' each element is not <sef>
necessarily unique
priority queue [l A priority queue <queue>
queue A queue <queue>
set A set in which each element is unique <set>
stack A stack <stack>
vector A dynamic array <vector>

[Object Oriented Programming

439 |

C++’da sabit boyutlu dizi tanimlamak yuriitme zamaninda bellegin ya koti kullanilmasina
yada dizi boyunun yetersiz kalmasina neden olmaktadir.

STL kitiiphanesindeki vector kabi bu sorunlar1 gidermektedir.

STL kiitiiphanesindeki list kab1, baglantili liste yapisidir.

- deque (Double-Ended QUEue) kabi, yigm ve kuyruk vyapilarinin birlesimi olarak
dustntilebilir. deque kabi her iki ugtan veri eklemeye ve silmeye olanak saglamaktadir.
Z
' é Vector Relocating,
= expandable array Quick random access (by index number).
s Slow to insert or erase in the middle.
%0 Quick to insert or erase at end.
=
%‘ List Doubly linked list ~ Quick to insert or delete at any location.
= Quick access to both ends.
2 Slow random access.
o8 Deque Like vector,
O but can be accessed
at either end Quick random access (using index number).

Slow to insert or erase in the middle.
Quick to insert or erase (push and pop) at
either the beginning or the end.

[Object Oriented Programming 440]

Vector |

» #include <vector>

» Kurucular

— Bos: vector<string> object;
— Belirli sayida eleman:
* vector<string> object(5,string(“hello™)) ;
* vector<string> container(10)
* vector<string> object(&container[5], &container[9]);

* vector<string> object(container) ;

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 441]

Vector Member Functions |

» Type &vector::back(): returns the reference to the last element

» Type &vector::front():returns the reference to the first element

B > vector:iterator vector: :begin()
,%0 » vector::iterator vector::end()

g » vector::clear()

3 P bool vector::empty()

ﬂ::) P vector::iterator vector::erase()
'8 — erase(pos)

g — erase(first,beyond)

{ Object Oriented Programming 442]

Vector Member Functions |

» vector::insert
— vector::iterator insert(pos)
— vector::iterator insert(pos,value)
— vector::iterator insert(pos,first,beyond)
— vector::iterator insert(pos,n,value)

» void vector::pop back()
» void vector::push back(value)
P vector::resize()

— resize(n,value)

» vector::swap()
— vector<int> v1(7),v2(10) ;
— vl.swap(v2);

» unsigned vector::size()

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 443]

...

vector<<int>v;

cout << v.capacity() << v.size() ;
v.insert(v.end(),3) ; v=(3)
cout << v.capacity() << v.size() ,

v.insert (v.begin(), 2, 5); v = (5,5,3)

vector<int>w (4,9); W =(9,9,9,9)
w.insert(w.end(), v.begin(), v.end()); w =(9,9,9,9,5,5,3)
w.swap(v) ; v=(9,999553) w=(55,3)

—
—
N
=
=
=
S
—
&N
o
-
a
Q
=
O
-
)
O

w.erase(w.begin()); w=(3)
w.erase(w.begin(),w.end()) ;

[Object Oriented Programming

444 |

#define USE STL
// STL include files
Hinclude <vector>

Hinclude <list>

vector<int> v;
v.insert(v.end(),3) ;
v.insert(v.begin(),5) ;

cout << v.front() << endl;
cout << v.back() ;

v.pop back();
cout << v.back() ;

—
—
N
=
=
=
S
—
&N
o
-
a
Q
=
O
-
)
O

v=(3)
v =(5,3)
5

3

5

{ Object Oriented Programming

445 |

[ist |

» #include <list>

» Eklenecek eleman sayisi belirli olmadigr durumlarda uygundur

» Kurucular
— Bos: list<string> object;
— Belirli sayida eleman:
o list<string> object(5,string(“hello)) ;
o list<string> container(10)
* list<string> object(&container[5], &container[9]);
* list<string> object(container) ;

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 446]

[.ist Member Functions |

» Type &list::back(): returns the reference to the last element

» Type &list::front():returns the reference to the first element

:0 » list::iterator list::begin()
= D list::iterator list::end()

= :

% » list::clear()

§0 » bool list::empty()

S B [ist::iterator list: :erase()
Q

'8 — erase(pos)

g — erase(first,beyond)

{ Object Oriented Programming 447]

[.ist Member Functions |

» list::insert
— list::1terator insert(pos)
— list::iterator insert(pos,value)
— list::iterator insert(pos,first,beyond)
— list::iterator insert(pos,n,value)

» void list::pop back()
» void list::push back(value)
» list::resize()
— resize(n,value)
» void list<type>::merge(list<type> other)
» void list<type>::remove(value) s
» unsigned list::size() L i cpp

@%{% list2.cpp

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 448]

[.ist Member Functions |

P list::sort() s
» void list::splice(pos,object) @glf list3.cpp

» void list::unique(): operates on sorted list, removes consecutive
identical elements

@;;\%E list4.cpp

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 449]

Queue |

» #include <queue>
» FIFO (=First In First Out)
» Kurucular

— Bos: queue<string> object;
— Kopya Kurucu: queue<string> object(container) ;

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 450]

Queue Member Functions |

» Type &queue::back(): returns the reference to the last
clement

» Type &queue::front(): returns the reference to the first
clement

» bool queue::empty()

» void queue::push(value)

» void queue::pop()

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 451]

Priority Queue |

» #include <queue>

» Temel olarak queue 1le aym
» Kuyruga ekleme belirli bir oncelige gore yurutilir
» Oncelik: operator<()

@%ﬁ% priqueuel.cpp

@%ﬁ% priqueue2.cpp

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 452]

Priority Queue Member Functions |

» Type &queu::back(): returns the reference to the last
clement

» Type &queue::front():returns the reference to the first
clement

» bool queue::empty()

» void queue::push(value)

» void queue::pop()

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 453]

Deque |

» #include <deque>
» Head &Tail, Doubly Linked

» deque<string> object
* deque<string> object(5,string(“hello”)) ;
* deque<string> container(10)
* deque<string> object(&container[5], &container[9]);
* deque<string> object(container) ;

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 454]

Deque Member Functions |

» Type &deque::back(): returns the reference to the last element

» Type &deque::front():returns the reference to the first element

:0 » deque::iterator deque::begin()
= P deque::iterator deque::end()

=

% » deque::clear()

§0 » bool deque::empty()

ﬂ::) » deque::iterator deque::erase()
'8 — erase(pos)

g — erase(first,beyond)

{ Object Oriented Programming 455]

Deque Member Functions |

» vector::insert

— deque::iterator insert(pos)
— deque::iterator msert(pos,value)
— deque::iterator insert(pos,first,beyond)
— deque::iterator insert(pos,n,value)
» void deque::pop back()
» void deque::push back(value)
» deque::resize()
— resize(n,value)

» deque::swap()

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
-
)
O

» unsigned deque::size()

{ Object Oriented Programming 456]

Asosyatif Kaplar: Set, Multiset, Map, Multimap I

» Set sirali kiime olusturmak 1¢in kullanilir.
#include <set>

using namespace std;

int main() {
string names[] = {"Katie", "Robert","Mary", "Amanda", "Marie"};
set<string> nameSet(names, names+5);// initialize set to array
set<string>::const _iterator iter; // iterator to set
nameSet.insert("Jack"); // 1nsert some more names

nameSet.insert("Larry");

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

nameSet.insert("Robert"); // no effect; already in set
nameSet.insert("Barry");
nameSet.erase("Mary"); // erase a name

[Object Oriented Programming 457]

cout << "\nSize=" << nameSet.size() << endl;
iter = nameSet.begin(); // display members of set
while(iter !|= nameSet.end())

cout << *jter++ <<"\n';
string searchName; // get name from user
cout << "\nEnter name to search for: ";
cin >> searchName; // find matching name in set
iter = nameSet.find(searchName);
1f(1ter == nameSet.end())

cout << "The name" << searchName << " 1s NOT 1n the set.";
else

cout << "The name " << *1ter << " IS 1n the set.";

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
-
)
O

h

{ Object Oriented Programming

458 |

// set2.cpp set

int main() {
set<string> city;
set<string>::iterator iter;
city.insert("Trabzon");
city.insert("Adana");
city.insert("Edirne");
city.insert("Bursa");
city.insert(“Istanbul");
city.insert("Rize");
city.insert(" Antalya");

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

city.insert(“Izmir");

city.insert("Hatay");
city.insert(" Ankara");
city.insert("Zonguldak");

// msert city names

{ Object Oriented Programming

459 |

iter = city.begin(); // display set
while(1ter != city.end())
cout << *jter++ << endl;

string lower, upper; // display entries in range
cout << "\nEnter range (example A Azz): ";
cin >> lower >> upper;
iter = city.lower bound(lower);
while(1ter != city.upper bound(upper))
cout << *iter++ << endl;

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 460]

» #include <map>
» Key/Value pairs
» map<string,int> object
* pair<string,int>
pa[]= {
pair<string,int>(“one”, 1),
pair<string,int>(“two”,2),
pair<string,int>(‘“‘three”,3),
pair<string,int>(“four”,4)
;s
* map<string,int> object(&pa[0],&pa[3]);
» object[“two”’]

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 461]

Map Member Functions |

» map::insert

— pair<map::iterator,bool> insert(keyvalue)

— pair<map::iterator,bool> insert(pos,keyvalue)
— void 1nsert(first,beyond)

» map::iterator map::lower bound(key)

» map::iterator map::upper bound(key)

P pair<map::iterator,map::iterator> map::equal range(key)
» map::iterator map::find(key)

— returns map::end() if not found

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
-
)
O

» unsigned deque::size()

{ Object Oriented Programming 462]

Map Member Functions |

» map::iterator map::begin()

» map::iterator map::end()

N P map::clear()

g » bool map::empty()

g P map::iterator map::erase()
?30 — erase(keyvalue)

i:) — erase(pos)

ég — erase(first,beyond)

)

O

{ Object Oriented Programming 463]

int main(){ OI‘Il ek I

map<string,int> city num;

city num["Trabzon"]=61;

string city name;

cout << "\nEnter a city: ";

cin >> city _name;

if (city num.end()== city num.find(city name))

cout << city name << " 1s not in the database" << endl;

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

else

cout << "Number of " << city name << ":" << city num|city name];

b

{ Object Oriented Programming 464]

MultiMap |

» #include <map>

» Main difference between map and multimap 1s that the
multimap supports multiple entries of values having the
same keys and the same values.

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 465]

Ozetce |

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

Islem Yiiriitiilen Islem
a.size() a.end() — a.begin()
a.max size()
a.empty() a.size() ==
Islem Dontis Degeri| Yiirttilen Islem Uyguéa;;ib;ldlgl
a.front() T& *a.begin() vector, list, deque
a.back() T& *a.end() vector, list, deque
a.push front(x) void a.insert(a.begin(),x) list,deque
a.push back(x) void a.insert(a.end(),x) | vector, list,deque
a.pop front() void a.erase(a.begin()) list,deque
a.pop back() void a.erase(--a.end()) list,deque
a[n] T& *(a.begin()+n) vector,deque

[Object Oriented Programming

466 |

Iterators I

[terators : Genellestirilmis Isaretci

andom Access
Iterators

vector, deque

Outputlterator r;
Inputlterator r,
Forwardlterator r,

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

Randomlterator r ;

Bidirectionallterator r,

ORWARD
Iterators

RECTIONAL
[terators
list
INPUT
[terators

OUTPUT
[terators

[Object Oriented Programming

467 |

[terator Capability

Iterator Capability Input | Output | Forward | Bidirectional | Random Access
- Dereferencing read yes no yes yes yes
Dereferencing write no yes yes yes yes
%0 Fixed and repeatable order no no yes yes yes
' é ++i yes yes yes yes yes
= 1++
8 -1 no no no yes yes
) :
oy |-
= :
a® 1[n] no no no no yes
;Q‘:‘) i+n no no no no yes
Qg) i-n no no no no yes
8 1+=n no no no no yes
1 -=n no no no no yes

[Object Oriented Programming

468 |

Output Iterators

- Q@ Ouputlterator a, ® Outputlterator r ;

%D *a=t; r++ ;

é t=*a, Hata r+-+ ; Hata

<

P

2

5: 9 OMtputItemtor v, 9 OUZpr]f@VCZIOF l,] -

—

= =0, i=j ;

O *r=I,; Hata *++=q ; Hata
b

{ Object Oriented Programming 469]

Forward and Bidirectional Iterators I

>

John | Tom | Peter | Mary Andy | Bill

_ < >

_

—
range[v.begin(),v.end()]

list<int>1(1,1) ;
l.push back(2);//list1:12
list<int>::1terator first=l.begin() ;
list<int>::1terator last=l.end() ;
while(last != first){

-- last ;

cout << *last << 77 ;

—
—
N
=
=
=
S
—
&N
o
-
a
Q
=
O
-
)
O

;

[Object Oriented Programming

470 |

template<class Forwardlterator, class T>
Forwardlterator find linear(ForwardlIterator first,
ForwardlIterator last, T& value){
while(first != last) if(*first++ == value) return first;
else return last ;

b

vector<int> v(3,1) ;

v.push_back(7); //vector: 1117

vector<int>::iterator 1=find linear(v.begin(), v.end(),7) ;
1f(1 = v.end()) cout << *i ;

else cout << “not found!” ;

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 471]

Bubble Sort I

template<class Compare>
void bubble sort(Bidirectionallterator first,
Bidirectionallterator last, Compare comp){
Bidirectionallterator left = first , right = first ;
right ++ ;
while(first != last){
while(right != last){
1f(comp(*right,*left))
iter swap(left,right) ;
right++ ;

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

left++;
h
last -- ;
left = ﬁrst , rlght = ﬁrst ’ ., ...
! list<int> [;
} . bubble_sort(l.begin(),l.end(),less<int>())

bubble sort(l.begin(),l.end(),greater<int>()) ,

{ Object Oriented Programming 472]

Random Access Iterators I

vector<int> v(1,1) ;
v.push back(2) ; v.push back(3) ; v.push back(4);//v:1234
vector<int>::iterator i=v.begin() ;

—
B cctor<int>::iterator J=112;
=l cout << *j <<«
= =3 cout << Fi<<;
Sl =i 1; cout << *j <<
go] -=2; cout << *j <<
o cout <<v[l]<<endl;
QS (J<1) ? cout << *“} <1”: cout << “not] <17 ; cout << endl ;
'E:‘) (>1) ? cout << *“;>1": cout << “not j >1"; cout << endl ;
s (>=1) && (J<=1)? cout << *“j and 1 equal” : cout << *“j and 1 not equal > 1" ; cout <<
@) cndl;
1=];
j= v.begin();
1=v.end ;

cout << “iterator distance end — begin : ” << (i-j) ;

{ Object Oriented Programming 473]

[terator Operators |

» STL provides two functions that return the number of
elements between two elements and that jump from one
element to any other element 1n the container:

— distance()

— advance()

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 474]

distance() |

» The distance() function finds the distance between the
current position of two iterators.

template<class RandomAccesslterator>
iterator traits<RandomAccesslterator>::difference type

distance(RandomAccesslterator first, RandomAccesslterator
last) {

return last — first;

b

template<class Inputlterator>
iterator traits<Inputlterator>::difference type
distance(Inputlterator first, Inputlterator last) {
iterator traits<Inputlterator>::difference type n = 0;
while (first++ != last) ++n;
return n;

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

;

[Object Oriented Programming 475]

advance() |

» So far, we have seen how we can move iterators forward
and backward by using the increment and decrement
operators, respectively. We can also move random access
iterators several steps at a time using the addition and
subtraction functions. Other types of iterators, however,
do not have the addition and subtraction functions.

» The STL provides the advance() function to move any
iterator—except the output iterators—several steps at a
time:

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 476]

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

template<class Inputlterator, class Distance>
void advance(Inputlterator& i1, Distance& n) {
while (n--) ++i1;
h
template<class Bidirectionallterator, class Distance>
void advance(Bidirectionallterator & bi, Distance& n) {
if (n >= 0) while (n--) ++bi;
else while (n++) --bi;
h
template<class RandomA ccesslterator, class Distance>
vold advance(RandomAccesslterator& ri, Distance& n) {
11 +=n;

b

{ Object Oriented Programming

477 |

Designing Generic Algorithm I

e Algorithm
b | I
| B |

- Object
N
=
é Container
g implementing an algorithm such as computing the maximum value in a
éo sequence can be done without knowing the details of how values are
% stored in that sequence:
I3 template <class Iterator>
58 Iterator max element (Iterator beg, // refers to start of collection
= Iterator end) // refers to end of collection
1
)
[Object Oriented Programming 478]

Binary Search for Integer Array I

const int * binary search(const int * array, int n, int Xx){

= const int *lo = array, *hi = array + n , *mid ;
a0 while(lo !=hi) {

g mid = lo + (hi-10)/2 ;

= 1f(x == *mid) return mid ;

= if(x < *mid) hi = mid ;

E else lo=mid + 1 ;

2 h

E;) return O ;

L

O

b

{ Object Oriented Programming 479]

Binary Search—Template Solution (Form-1) I

template<class T>

— const T * binary search(const T * array, int n, T& x){
a0 const T *lo = array, *h1 = array + n, *mid ;

g while(lo !=hi) {

: mid = lo + (hi-10)/2 -

= if(x == *mid) return mid ;

E if(x < *mid) hi =mid ;

kS elselo=mid+ 1 ;

2 }

G return O ;

b

{ Object Oriented Programming

480 |

Binary Search—Template Solution (Form-2) I

template<class T>

— const T * binary search(T * first,T * last, T& x){
a0 const T *lo = first, *h1 = last , *mid ;

g while(lo !=hi) {

: mid = lo + (hi-10)/2 -

= if(x == *mid) return mid ;

E if(x < *mid) hi =mid ;

kS elselo=mid+ 1 ;

2 }

G return last ;

b

{ Object Oriented Programming

481 |

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

Generic Binary Search I

template<class RandomAccesslterator,class T>
const T * binary search(RandomAccesslterator first,
RandomAccesslterator last, T& value){
RandomAccesslterator not found = last, mid ;
RandomAccesslterator lo= first, hi=last ;
while(lo !=h1) {
mid = lo + (hi-10)/2 ;
1f(value == *mid) return mid ;
1f(value < *mid) hi = mid ;
elselo=mid + 1 ;

b

return not found ;

h

{ Object Oriented Programming 482]

STL Algorithms

Purpose

Returns first element equivalent to a specified value

Counts the number of elements that have a specified value

Compares the contents of two containers and returns true if
all corresponding elements are equal

Looks for a sequence of values in one container that
correspond with the same sequence in another container

Copies a sequence of values from one container to another
(or to a different location in the same container)

Exchanges a value in one location with a value in another

Exchanges a sequence of values in one location with a
sequence of values in another location

Copies a value into a sequence of locations

Sorts the values in a container according to a specified
ordering

Combines two sorted ranges of elements to make a larger
sorted range

Returns the sum of the elements in a given range

Algorithm
find

- A in t

- = coun

=
= equal

o0 —

(= ®)

' é ,%3 search

= V

S O copy

50 o

O = swap

. Q

A = iter swap

3 &85

= fill

qg) sort

O
merge
accumulate
for each

Executes a specified function for each element in the
container

[Object Oriented Programming

483 |

find() |

» The find() algorithm looks for the first element 1n a
container that has a specified value.

» find() example program shows how this looks when we’re
trying to find a value in an array of int’s.

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 484]

Example |

#include <iostream>

— #include <algorithm> //for find()
W intarr[]= {11, 22,33,44,55, 66,77, 88 };
§ int main() {
§D Int™* ptr;
% ptr = find(arr, arr+8, 33); //find first 33
§ cout << “First object with value 33 found at offset ™
S << (ptr-arr) << endl;

return O;

)

{ Object Oriented Programming 485]

count() |

» count() counts how many elements in a container have a
specified value and returns this number.

#include <iostream>
#include <algorithm> //for count()
int arr[] = { 33, 22, 33, 44, 33, 55, 66, 77 };

int main(){
int n = count(arr, arr+8, 33); //count number of 33’s
cout << “There are “ <<n <<” 33’s 1n arr.” << endl;
return 0;

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

j

{ Object Oriented Programming 486]

count 1f() |

» size tcount if(Inputlterator first, Inputlterator last,
Predicate predicate)

. #include <vector>

. #include <algorithm> //for count if{()
inta[]=1{1,2,3,4,3,4,2,1,3 };
class Odd {

. public:

bool operator()(int val){ return val&1 ; }

BE

- int main(){

std::vector<int> 1v(a,a+9) ;

std::cout << count_1f(1v.begin(),1v.end(),0dd()) ;
return O ;

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

{ Object Oriented Programming 487]

equal() |

» bool equal(Inputlterator first, Inputlterator last,

Inputlterator otherFirst)
» bool equal(Inputlterator first, Inputlterator last,

Inputlterator otherFirst,Predicate predicate)

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 488]

class CaseString {
public:
bool operator()(string const &first,string const &second) {
return !strcasecmp(first.c_str(),second.c str()) ;

h
s
int main() {
string
first[]={"Alpha","bravo","Charley","echo","Delta","golf"},
second[]={"alpha","Bravo","charley","Echo","delta","Golf"} ;
std::string *last = first + sizeof(first)/sizeof(std::string) ;
cout << (equal(first,last,second)?"Equal":"Not equal") ;
cout << (equal(first,last,second,CaseString())?"Equal":
"Not equal") ;

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

return O ;

b

{ Object Oriented Programming

489 |

fill(),fill n() |

» void fill(Forwardlterator first,ForwardIterator last,

Type const &value)

VeC t0r<1nt>1v(8); ..
Aill(iv.begin(),iv.end(),8) ;

» void fill n(Forwardlterator first,Size n,
Type const &value)

Vect0r<1nt>1v(8); ..
fill_n(iv.begin()+2,4.8) ;

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 490]

sort() |

» You can guess what the sort() algorithm does.

Here’s an example:

2t #include <iostream>
g #include <algorithm>
= int arr[] = {45, 2, 22, -17, 0, -30, 25, 55};
E int main(){
e sort(arr, arr+8); //sort the numbers
= for(int j=0; j<8; j++) //display sorted array
© cout << arr[j] << © ¢;

return 0;

)

{ Object Oriented Programming 491]

search() |

» Some algorithms operate on two containers at once. For instance,
while the find() algorithm looks for a specified value in a single

— container, the search() algorithm looks for a sequence of values,
specified by one container, within another container.
g
é int source[] = { 11,44, 33,11, 22,33,11, 22,44 };
= int pattern[] = { 11, 22, 33 };
E int main() {
Q Int* ptr;
—
2 ptr = search(source, source+9, pattern, pattern+3);
G 1f(ptr == source+9) cout << “No match found\n”;
clse cout << “Match at ” << (ptr - source) ;
return O;
)

{ Object Oriented Programming 492]

binary search() |

» #include <algorithm>

— bool binary search(Forwardlterator first, Forwardlterator last,Type const
&value)

— bool binary search(Forwardlterator first, ForwardlIterator last,Type const
&value,Comparator comp)

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 493]

merge() |

#include <iostream>
#include <algorithm> //for merge()
using namespace std;
intsrcl[]=1{2,3,4,6,8 };
intsrc2[]=1{1,3,5};
int dest[8];
int main(){ //merge srcl and src2 into dest
merge(srcl, srcl+5, src2, src2+3, dest);
for (int j=0; j<8; j++) //display dest
cout << dest[j] << ¢;
cout << endl;
return 0;

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
-
)
O

b

{ Object Oriented Programming 494]

accumulate() |

» #include <numeric>
— Type accumulate(Inputlterator first, Inputlterator last, Type init)
operator+() 1s applied to all elements and the result 1s returned
— Type accumulate(Inputlterator first, Inputlterator last,

Type

init,BinaryOperation op)
binary operator op() 1s applied to all elements

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 495]

#include <iostream>
#include <numeric>
#include <vector>

 int main(){
i= int1a[]={1,2,3,4} ;
é std::vector<int> 1v(1a,1a+4) ;
S
;9:) cout << accumulate(1v.begin(),1v.end(),int()) << std::endl ;
B cout << accumulate(iv.begin(),1v.end(),int(1),multiplies<int>())
Eg <<endl;
G system("pause") ;
return O ;

{ Object Oriented Programming 496]

adjacent difference() |

» #include <numeric>

— Outputlterator adjacent difference(Inputlterator first, Inputlterator
last,OutputOperator result)

— OQOutputlterator adjacent difference(Inputlterator first, Inputlterator last,
OutputOperator result,BinaryOperation op)

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 497]

#include <iostream>

#include <numeric>

#include <vector>

int main() {
intia[]={1,3,7,23} ;
std::vector<int> 1v(ia,1a+4) ;
std::vector<int> ov(iv.size()) ;
adjacent difference(iv.begin(),iv.end(),ov.begin()) ;
copy(ov.begin(),ov.end(),std::ostream iterator<int>(cout," ")) ;
std::cout << std::endl ;

adjacent difference(iv.begin(),1v.end(),ov.begin(),minus<int>()) ;
copy(ov.begin(),ov.end(),ostream _iterator<int>(cout," ")) ;
system("pause") ;

return O ;

h

{ Object Oriented Programming 498]

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

copy(), copy backward() |

» #include <algorithm>
— Qutputlterator copy(Inputlterator first, Inputlterator last,
Outputlterator destination)

— Bidirectionallterator copy(Inputlterator first, Inputlterator last,
Bidirectionallterator last2)

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 499]

for each |

» Function for each(ForwardIterator first,

Forwardlterator last,Function func)

~void lowerCase(char &c){
¢ = static_cast<char>(tolower(c)) ;

void capitalizedOutput(std::string const &str){

char *tmp = strcpy(new char[str.size()+1],str.c_str()) ;
std::for each(tmp+1,tmp+str.size(),lowerCase) ;

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
=
)
O

tmp[0] = toupper(*tmp) ;
std::cout <<tmp <<" " ; .
delete []tmpa @2\{\ foreachl.cpp

=

=i

{ Object Oriented Programming 500]

int main() {

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

h

std::string
sarr[] =
d
"alpha", "BRAVQ", "charley", "ECHO", "delta",
"FOXTROT", "golf", "HOTEL"
s
*last = sarr + sizeof(sarr) / sizeof(std::string) ;
void (*f)(std::string const&) ;
f = std::for each(sarr,last,capitalizedOutput) ;
std::cout << std::endl ;
f("alpha") ;
std::cout << std::endl ;
system("pause") ;
return O ;

{ Object Oriented Programming

501 |

Another Example |

class Show {
intd count;
public:

void operator()(std::string &str){
for each(str.begin(),str.end(),lowerCase) ;
str[0] =toupper(str[0]);
std::cout << ++d count <<" " <<str<<"; " ;

h

int getCount() const{
return d count ;

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

@%{; foreach2.cpp

{ Object Oriented Programming 502]

int main() {

std::string

sarr[] = {
— "alpha", "BRAVO", "charley", "ECHO", "delta",
50 "FOXTROT", "golf", "HOTEL"
g L
% *last = sarr + sizeof(sarr) / sizeof(std::string) ;
5o cout << for each(sarr,last,Show()).getCount() << end] ;
E system("pause") ;
9 return O ;
c
=
D)
O

{ Object Oriented Programming 503]

transform() |

int 3 n plus 1(intn) { void show(int n) {
return (n&1) ? 3*n+1 : n/2 ; std::cout <<n<<"";

h h

int main() {
int 1Arr[] = { 5,2,23,76,33,44} ;
std::for each(1Arr,1Arr+6,show) ; std::cout << std::endl ;
std::transform(iArr,1Arr+6,1Arr, 3 n plus 1) ;
std::for each(iArr,iArr+6,show) ;
system('"pause") ;
return O ;

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

@%{% transform.cpp

{ Object Oriented Programming 504]

Predicates 1in <tfunctional> |

» When the type of the return value of a unary function
object 1s bool, the function is called a unary predicate. A
binary function object that returns a bool value 1s called a
binary predicate.

» The Standard C++ Library defines several common
predicates in <functional>

—
—
o0
=
=
=
av}
—
o)
®)
-
a
Q
=
O
-
)
O

{ Object Oriented Programming 505]

TABLE . PREDICATES DEFINED IN «functional=>

Function Tvpe Description

equal to 111IliI[}' argl argd
not_equal to 11illflt'}' argl != arg
greater].'Illl;'l[}' argl > arg?
greater egqual]‘lilu'l['}. argl == argz
less]ﬁlL:l['_‘-. argl < arg
less equal binary argl <= arg2
logical_and bina Iy argl L& arg2
logical or l'lilli'll}' argl | arg2
logical not nnary largl

template<class T>

class equal to : binary function<T, T, bool> {

—
—
N
=
=
=
S
—
&N
®)
-
a
Q
=
O
-
)
O

bool operator()(T& argl, T& arg2) const { return argl == arg2; }
Js

{ Object Oriented Programming 506]

1) STREAMS

Streams I

» A stream 1s a general name given to a flow of data in an
input/output situation. For this reason, streams in C++ are
often called l10streams.

al P> An lostream can be represented by an object of a
2 particular class.

38 P For example, you’ve already seen numerous examples of
N

the cin and cout stream objects used for input and output.

[Object Oriented Programming 508]

Advantages of Streams I

» Old-fashioned C programmers may wonder what advantages there
are to using the stream classes for I/O instead of traditional C
functions such as printf() and scanf() and—for files—fprintf(),
fscanf(), and so on.

» One reason 1s that the stream classes are less prone to errors. If
you’ve ever used a %d formatting character when you should have
used a %f 1n printf(), you’ll appreciate this. There are no such
formatting characters in streams, because each object already knows
how to display itself. This removes a major source of program bugs.

» Second, you can overload existing operators and functions, such as
the insertion (<<) and extraction (>>) operators, to work with classes
you create. This makes your classes work 1n the same way as the
built-in types, which again makes programming easier and more error
free (not to mention more aesthetically satisfying).

[Object Oriented Programming 509]

Stream Class Hierarchy I

10S

ostream fstreambase

iostream ifstream ofstream

fstream

[Object Oriented Programming 510]

Stream Class Hierarchy I

» The 10S class is the base class for the i0stream hierarchy.

—contains many constants and member functions common
to input and output operations of all kinds.

—also contains a pointer to the streambuf class, which
contains the actual memory buffer into which data 1s read
or written and the low-level routines for handling this
data.

[Object Oriented Programming 511]

Stream Class Hierarchy I

» The Istream and ostream classes are derived from 10S and
are dedicated to input and output, respectively.

» The istream class contains such member functions as
get(), getline(), read(), and the extraction (») operators,
whereas 0stream contains put() and write() and the
insertion («) operators.

» The iostream class is derived from both istream and
ostream by multiple inheritance.

— used with devices, such as disk files, that may be
opened for both input and output at the same time.

[Object Oriented Programming 512]

Stream Class Hierarchy I

» The ifstream class is used for creating input file objects

» The ofstream class is used for creating input file objects
1s used for creating output file objects.

» To create a read/write file the fstream class should be
used.

[Object Oriented Programming 513]

10S

» The 10s class 1s the grand daddy of all the stream classes
and contains the majority of the features you need to operate
C++ streams.

» The three most important features are
— the formatting flags,

— the error-status bits,

— the file operation mode.

We’ll look at formatting flags and error-status bits now.

[Object Oriented Programming 514]

12

Streams

Formatting Flags I

Formatting flags are a set of enum definitions in 10s. They act as on/off
switches that specify choices for various aspects of input and output
format and operation.

skipws
left

right

dec

oct

hex
showbase
showpoint
uppercase
showpos
scientific
fixed

unitbuf

Skip (ignore) whitespace on input.

Left adjust output.

Right adjust output.

Convert to decimal.

Convert to octal.

Convert to hexadecimal.

Use base indicator on output (0 for octal, Ox for hex).
Show decimal point on output.

Use uppercase X, E, and hex output letters ABCDEF.
Display ‘+’ before positive integers.

Use exponential format on floating-point output [9.1234E2].
Use fixed format on floating-point output [912.34].
Flush all streams after insertion.

[Object Oriented Programming

515 |

Formatting Flags I

» There are several ways to set the formatting flags, and
different flags can be set in different ways. Because they are
members of the 10s class, flags must usually be preceded by
the name 10s and the scope-resolution operator (e.g.,
i0s::skipws). All the flags can be set using the setf() and
unsetf() 10s member functions.

» For example,

cout.setf(ros::left); //left justify output text
cout >> "This text 1s left-justified";
cout.unsetf(i1os::left); //return to default

//(right justified)
» Many formatting flags can be set using manipulators, so
let’s look at them now.

[Object Oriented Programming 516]

Manipulators I

» Manipulators are formatting instructions inserted directly

into a stream.

» You’ve seen examples before, such as the manipulator

endl, which sends a new line to the stream and flushes it:
cout << ""To each his own." << endl;

» There 1s also used the setiosflags() manipulator:

cout << setiosflags(ios::fixed) // use fixed decimal point
<< setiosflags(ios::showpoint) //always show decimal point
<< var,

[Object Oriented Programming 517]

No-argument 10s Manipulators I

ws|[Turn on whitespace skipping on mput

dec||Convert to decimal

oct|{|Convert to octal

hex||Convert to hexadecimal

endl||/Insert new line and flush the output stream

ends|{Insert null character to terminate an output string

flush||Flush the output stream

lock||Lock file handle
unlock||Unlock file handle

You insert these manipulators directly into the stream. e.g., to output var
in hexadecimal format, you can say
cout << hex << var;

[Object Oriented Programming 518]

10s Manipulators with Arguments |

» Manipulators that take arguments affect only the next item

1n the stream.

» For example, 1f you use setw to set the width of the field 1n

setw() field width (int) Set field width for output
: Set fill character for output
setfill() fill character (int) (default is a space)

. S Set precision (number of
setprecision() ||precision (int) digits displayed)
setiosflags() |[formatting flags (long) |[Set specified flags
resetiosflags() ||formatting flags (long) [[Clear specified flags

which one number 1s displayed, you’ll need to use 1t again for
the next number.

[Object Oriented Programming

519 |

Functions |

» The 10s class contains a number of functions that you can
use to set the formatting flags and perform other tasks.
» Most of these functions are shown below:

ch=fill() Return the fill character (fills unused part of
field; default 1s space).

fill(ch) Set the fill character.

Get the precision (number of digits displayed
for floating point).

precision(p) ||Set the precision.

w=width() |[|Get the current field width (in characters).
width(w) Set the current field width.

setf(flags) Set specified formatting flags (e.g., 10s::left).

p=precision()

unsetf(flags) [|Unset specified formatting flags.

[Object Oriented Programming 520]

» These functions are called for specific stream objects using the
normal dot operator. For example, to set the field width to 14, you can

say
cout.width(14);
S) » Similarly, the following statement sets the fill character to an asterisk
(as for check printing):
é cout.fill("*");
[} P You can use several functions to manipulate the 10s formatting tlags
)

directly.

For example, to set left justification, use
cout.setf(ios::left);

To restore right justification, use
cout.unsetf(1os::left);

[Object Oriented Programming 521]

1stream |

The istream class, which 1s derived from 10s, performs input-
specific activities.

Istream functions:

gy >> Formatted extraction for all basic (and overloaded) types.
N get(ch) Extract one character into ch.

g get(str) Extract characters into array str, until \0’.

% get(str, MAX) Extract up to MAX characters into array.

get(str, DELIM) Extract characters into array str until specified delimiter
(typically “\n”).
Leave delimiting char in stream.

[Object Oriented Programming 522]

IsStream Functions I

Extract characters into array str until MAX characters or
the DELIM character. Leave delimiting char in stream

Extract characters into array str until MAX characters or
the DELIM character. Extract delimiting character

putback(ch)||Insert last character read back into input stream
: Extract and discard up to MAX characters until (and
ignore(MAX, DELIMIi; luding) the specified delimiter (typically “\n’)
peek(ch)||Read one character, leave it in stream

Return number of characters read by a (immediately
preceding) call to get(), getline(), or read()

For files. Extract up to MAX characters into str until
EOF

seekg(position)||Sets distance (in bytes) of file pointer from start of file
Sets distance (in bytes) of file pointer from specified
place in file: seek dir can be ios::beg, ios::cur, ios::end
position = tellg(pos)||Return position (in bytes) of file pointer from start of file

get(str, MAX, DELIM)

getline(str, MAX, DELIM)

count = gcount()

read(str, MAX)

seekg(position, seek dir)

[Object Oriented Programming 523]

ostream I

The ostream class handles output or insertion activities.

ostream functions:

<< Formatted insertion for all basic (and overloaded) types.

put(ch) Insert character ch into stream.

flush() Flush buffer contents and insert new line.

write(str, SIZE) Insert SIZE characters from array str into file.

seekp(position) Sets distance in bytes of file pointer from start of file.

seekp(position, seek dir) Set distance in bytes of file pointer from specified place in
file. seek dir can be 10s::beg, ios::cur, or 10s::end.

position = tellp() Return position of file pointer, in bytes.

[Object Oriented Programming

524 |

Ostream and withassign Classes |

» The 1ostream class, which 1s derived from both i1stream and
ostream, acts only as a base class from which other classes,
specifically 1ostream withassign, can be derived.
» It has no functions of its own (except constructors and destructors).
Classes derived from 1ostream can perform both input and output.
» There are three withassign classes:
Istream_withassign, derived from istream
ostream_withassign, derived from ostream
lostream_withassign, derived from iostream
» These withassign classes are much like those they’re derived from
except they include overloaded assignment operators so their objects
can be copied.

[Object Oriented Programming 525]

Predefined Stream Objects

Objects Name Class Used for

cin istream_withassign Keyboard input

cout ostream_withassign Normal screen output
cerr ostream_withassign Error output

clog ostream_withassign Log output

The cerr object is often used for error messages and program diagnostics. Output
sent to cerr is displayed immediately, rather than being buffered, as output sent
to cout is. Also, output to cerr cannot be redirected. For these reasons, you have
a better chance of seeing a final output message from cerr if your program dies
prematurely. Another object, clog, is similar to cerr in that it is not redirected,
but its output is buffered, whereas cerr’s is not.

12

Streams

Stream Errors

What happens if a user enters the string "nine” instead of the integer 9, or pushes
ENTER without entering anything? What happens if there's a hardware failure?
We'll explore such problems in this session. Many of the techniques you'll see here
are applicable to file I/0 as well.

[Object Oriented Programming 526]

Error-Status Bits I

The stream error-status bits (error byte) are an ios member that report errors
that occurred in an input or output operation.

goodbit No errors (no bits set, value = 0).

eofbit Reached end of file.

failbit Operation failed (user error, premature EOF).
badbit Invalid operation (no associated streambuf).
hardfall Unrecoverable error.

Various ios functions can be used to read (and even set) these error bits.

int = eof(); Returns true if EOF bit set.

int = fail(); Returns true if fail bit or bad bit or hard-fail bit set.
int = bad(); Returns true if bad bit or hard-fail bit set.

int = good(); Returns true if everything OK; no bits set.
clear(int=0); With no argument, clears all error bits;

otherwise sets specified bits, as in clear(ios::failbit).

[Object Oriented Programming 527]

’.#mclufle <jostream> @}% inp.cpp
int main() {

nt 1;
char ok=0;
while(!ok) { // cycle until input OK
cout << "\nEnter an integer: ";
cin >> 1;
1f(cin.good()) ok=1; // 1f no errors
else {
cin.clear(); // clear the error bits
cout << "Incorrect mput";
cin.ignore(20, "\n'); // remove newline
h
b
cout << "integer 1s " << 1; // error-free integer
h
{ Object Oriented Programming 528]

No-Input Input |

» Whitespace characters, such as TAB, ENTER , and ‘\n’, are normally
ignored (skipped) when inputting numbers. This can have some
undesirable side effects. For example, users, prompted to enter a number,
may simply press the key without typing any digits. Pressing ENTER
causes the cursor to drop down to the next line while the stream continues
to wait for the number.

» What’s wrong with the cursor dropping to the next line?

—First, mexperienced users, seeing no acknowledgment when they
press , may assume the computer 1s broken.

—Second, pressing repeatedly normally causes the cursor to drop
lower and lower until the entire screen begins to scroll upward.

» Thus 1t’s important to be able to tell the input stream not to ignore
whitespace. This 1s done by clearing the skipws flag:

[Object Oriented Programming 529]

cout << "\nEnter an integer: ";
cin.unsetf(ios::skipws); // don't ignore whitespace
cin >> 1;
1f(cin.good())
d
// no error
)
// error
Now 1if the user types without any digits, failbit will be set and an
error will be generated. The program can then tell the user what to
do or reposition the cursor so the screen does not scroll.

{ Object Oriented Programming

530 |

Disk File I/O with Streams |

» Disk files require a different set of classes than files used with the
keyboard and screen. These are 1fstream for input, fstream for input and
output, and ofstream for output. Objects of these classes can be
associated with disk files and you can use their member functions to
read and write to the files.

» The ifstream, ofstream, and fstream classes are declared in the
FSTREAM.H file.

» This file also includes the IOSTREAM.H header file, so there 1s no
need to include it explicitly;

» FSTREAM.H takes care of all stream I/O.

[Object Oriented Programming 531]

#include <fstream.h> // for file I/0O
int main() {
char ch = 'x'; // character
intj =77, // Integer
double d = 6.02; // floating point
char strl[] = "Kafka"; // strings
char str2[] = "Proust"; // (no embedded spaces)
ofstream outfile("fdata.txt"); // create ofstream object
outfile << ch // 1nsert (write) data
<<y << // needs space between numbers
<<d
<<str] << // needs space between strings
<< str2;

Object Oriented Programming

12

Streams

Here the program defines an object called outfile to be a member of the ofstream class.
At the same time, it initializes the object to the file name FDATA.TXT. This
initialization sets aside various resources for the file, and accesses or opens the file of
that name on the disk. If the file doesn’t exist, it is created. If it does exist, it 1s truncated
and the new data replaces the old. The outfile object acts much as cout did in previous
programs, so the insertion operator (<<) is used to output variables of any basic type to
the file. This works because the insertion operator is appropriately overloaded in
ostream, from which ofstream is derived.

When the program terminates, the outfile object goes out of scope. This calls its
destructor, which closes the file, so you don’t need to close the file explicitly.

Y ou must separate numbers (such as 77 and 6.02) with nonnumeric characters. Because
numbers are stored as a sequence of characters rather than as a fixed-length field, this is
the only way the extraction operator will know, when the data is read back from the file,
where one number stops and the next one begins. Second, strings must be separated with
whitespace for the same reason. This implies that strings cannot contain embedded
blanks. In this example, I use the space character (“ *) for both kinds of delimiters.
Characters need no delimiters, because they have a fixed length.

[Object Oriented Programming 533]

Reading Data |

Any program can read the file generated by previous program by using
an ifstream object that 1s 1nitialized to the name of the file. The file 1s
automatically opened when the object 1s created. The program can then
read from 1t using the extraction (>>) operator.

{ Object Oriented Programming 534]

// reads formatted output from a file, using >>
#include <fstream.h>
const int MAX = 80;
int main() {
char ch; // empty variables
int J;
double d;
char strl[MAX];
char str2[MAX];
ifstream infile("fdata.txt"); // create ifstream object
infile >> ch >> j >>d >> str]l >> str2; // extract data from it
cout << ch << endl // display the data
<<j<<endl
<< d <<endl
<<str]l << endl
<< str2 << endl;

;

{ Object Oriented Programming 535]

Detecting End-OF-File I

» Objects derived from 10s contain error-status bits that can be
checked to determine the results of operations. When you read a file
little by little, you will eventually encounter an end-of-file condition.

check for this:
while(!infile.eof()) // until eof encountered

The EOF 1s a signal sent to the program from the hardware when there
1s no more data to read. The following construction can be used to

» However, checking specifically for an eofbit means that I won’t

detect the other error bits, such as the failbit and badbit, which may
also occur, although more rarely. To do this, I could change the loop

condition:

while(infile.good()) // until any error encountered

[Object Oriented Programming

536 |

» But even more simply, I can test the stream directly

while(infile) // until any error encountered
Any stream object, such as infile, has a value that can be tested for the
usual error conditions, including EOF. If any such condition is true,
the object returns a zero value.
» If everything 1s going well, the object returns a nonzero value. This
value 1s actually a pointer, but the “address” returned has no
significance except to be tested for a zero or nonzero value.

[Object Oriented Programming 537]

Binary /O |

You can write a few numbers to disk using formatted I/O, but if you’re storing
a large amount of numerical data, it’s more efficient to use binary I/O in which
numbers are stored as they are in the computer’s RAM memory rather than as
strings of characters. In binary I/O an integer 1s always stored in 2 bytes,
whereas its text version might be 12345, requiring 5 bytes. Similarly, a float 1s
always stored in 4 bytes, whereas i1ts formatted version might be 6.02314¢13,
requiring 10 bytes.

The next example shows how an array of integers 1s written to disk and then
read back into memory using binary format. I use two new functions: write(),
a member of ofstream, and read(), a member of ifstream. These functions
think about data in terms of bytes (type char). They don’t care how the data 1s
formatted, they simply transfer a buffer full of bytes from and to a disk file.
The parameters to write() and read() are the address of the data buffer and its
length. The address must be cast to type char, and the length is the length in
bytes (characters), not the number of data items in the buffer.

[Object Oriented Programming 538]

Example I

#include <fstream.h> // for file streams
const int MAX = 100; // number of 1nts
int bufffMAX]; // buffer for integers
int main() {

int j;

for(j=0; ;<MAX; j++) // fill buffer with data
buff]j]=3;//(0, 1, 2, ...)
ofstream os("edata.dat", i0s::binary); // create output stream
os.write((char®*)buff, MAX*sizeof(int)); // write to it
os.close(); // must close it
for(j=0; ;<MAX; j*++) // erase buffer

buft]j] = 0;
ifstream is("edata.dat", 10s::binary); // create input stream
1s.read((char*)buff, MAX*sizeof(int)); //read from it
for(j=0; ;I<MAX; j++) // check data

if(bufi]j] !=3) std::cerr << "\nData is incorrect";

else std::cout << "\nData 1s correct"’;

;

[Object Oriented Programming 539]

Writing an Object to Disk |

When writing an object, you generally want to use binary mode. This
writes the same bit configuration to disk that was stored in memory and
ensures that numerical data contained in objects 1s handled properly.

#include <fstream.h> // for file streams
class person { // class of persons
protected:
char name[40]; // person's name
int age; // person's age
public:
void getData(void) { // get person's data

std::cout << "Enter name: "; cin >> name;
std::cout << "Enter age: "; cin >> age;

h
b

[Object Oriented Programming 540]

int main() {

person pers; // create a person
pers.getData(); // get data for person
ofstream outfile("PERSON.DAT", 10s::binary);

outfile.write((char*)&pers, sizeof(pers)); // write to it

h
Reading an Object from Disk

#include <fstream.h> // for file streams
class person { // class of persons
protected:
char name[40]; // person's name
int age; // person's age
public:
void showData(void) { // display person's data

std::cout <<'"\n Name: " << name;
std::cout <<'"\n Age: " << age;

h
55

[Object Oriented Programming 541]

int main() {
person pers; // create person variable
ifstream infile("PERSON.DAT", i0s::binary); // create stream
infile.read((char*)&pers, sizeof(pers)); // read stream
pers.showData(); // display person

h

To work correctly, programs that read and write objects to files, must be working
on the same class of objects. Objects of class person in these programs are exactly
42 bytes long, with the first 40 occupied by a string representing the person’s name
and the last 2 containing an int representing the person’s age.

Notice, however, that although the person classes in both programs have the same
data, they may have different member functions. The first includes the single
function getData(), whereas the second has only showData(). It doesn’t matter
what member functions you use, because members functions are not written to disk
along with the object’s data. The data must have the same format, but
inconsistencies in the member functions have no effect. This is true only in simple
classes that don’t use virtual functions.

[Object Oriented Programming 542]

I/O with Multiple Objects |

#include <fstream.h> // for file streams
class person { // class of persons
protected:
char name[40]; // person's name
int age; // person's age
public:
void getData() { // get person's data

cout << "\n Enter name: "; cin >> name;
cout <<" Enter age: "; cin >> age;
void showData() { // display person's data
cout <<"\n Name: " << name;
cout <<"\n Age: " <<age;

b

¥

[Object Oriented Programming

543 |

int main(){
char ch;
person pers; /[create person object
fstream file; // create input/output file
file.open("PERSON.DAT", ios::out | ios::binary); // open for append
do{ /[data from user to file
cout << "\nEnter person's data:";
pers.getData(); I/l get one person's data

file.write((char*)&pers, sizeof(pers)); // write to file
cout << "Enter another person (y/n)? ",

cin >> ch;
} while(ch=="y"); // quit on 'n’
file.close(); // reset to start of file

file.open("PERSON.DAT", 10s::1n | 10s::binary);

file.read((char*)&pers, sizeof(pers)); // read first person
while(!file.eof()) I/ quit on EOF
{
cout << "\nPerson:"; /[display person
pers.showData();
file.read((char*)&pers, sizeof(pers)); // read another
} I/ person

}

@g{g objfile.cpp

[Object Oriented Programming

544

Reacting to Errors |

The next program shows how errors are most conveniently handled. All disk operations are
checked after they are performed. If an error has occurred, a message is printed and the program
terminates. We will use the technique, discussed earlier, of checking the return value from the
object itself to determine its error status. The program opens an output stream object, writes an
entire array of integers to it with a single call to write(), and closes the object. Then it opens an
input stream object and reads the array of integers with a call to read().

#include <fstream> // for file streams

#include <process> // for exit()

const int MAX = 1000;

int bufffMAX];

int main(){
for(int j=0; ;I<MAX j++) bufi] j | =; // fill buffer with data
ofstream os; // create output stream
os.open("edata.dat", 10s::trunc | 10s::binary); // open it
1f('os) { cerr << "\nCould not open output file"; exit(1); }
std::cout << "\nWriting..."; // write buffer to it
os.write((char®*)buff, MAX*sizeof(int));
1f(!os) { cerr << "\nCould not write to file"; exit(1); }
os.close(); // must close it

;

[Object Oriented Programming 545]

for(j=0; ;<MAX; j++) buff] j] = 0; // clear buffer
ifstream is; // create input stream
1s.open("edata.dat", 10s::binary);
1f(!1s) { std::cerr << "\nCould not open input file"; exit(1); }
std::cout << "\nReading...";
1s.read((char*)buff, MAX*sizeof(int)); // read file
1f(!1s) { std::cerr << "\nCould not read from file"; exit(1); }
for(j=0; ;I<MAX; j++) // check data

if(bufi]j] =3) { std::cerr << "\nData 1s incorrect"; exit(1); }
std::cout << "\nData 1s correct';

;

Analyzing Errors

In the previous example, we determined whether an error occurred in an I/O
operation by examining the return value of the entire stream object.
if(!is)

// error occurred

However, i1t’s also possible, using the 10s error-status bits, to find out more specific
information about a file I/O error.

[Object Oriented Programming 546]

#include <fstream.h> // for file functions
int main(){
1fstream file;
file.open("GROUP.DAT", 10s::nocreate);
1f(!file)
cout << endl <<"Can't open GROUP.DAT";
else
cout << endl << "File opened successfully.";
cout << endl << "file =" << file;
cout << endl << "Error state =" << file.rdstate();
cout << endl << "good() =" << file.good();
cout << endl << "eof() =" << file.eof();
cout << endl << "fail() =" << file.fail();
cout << endl << "bad() =" << file.bad();
file.close();

;

[Object Oriented Programming 547]

This program first checks the value of the object file. If its value is zero, the
file probably could not be opened because it didn’t exist. Here’s the output of
the program when that’s the case:

Can't open GROUP.DAT
file = 0x1c730000
Error state =4

good() =0
cof() =0
fail() = 4
bad() =4

The error state returned by rdstate() 1s 4. This 1s the bit that indicates the file
doesn’t exist; it’s set to 1. The other bits are all set to 0. The good() function
returns 1 (true) only when no bits are set, so it returns 0 (false). I’'m not at
EOF, so eof() returns 0. The fail() and bad() functions return nonzero because
an error occurred.

In a serious program, some or all of these functions should be used after every
I/O operation to ensure that things have gone as expected.

[Object Oriented Programming 548]

File Pointers |

Each file object has associated with it two integer values called the get pointer and the put
pointer. These are also called the current get position and the current put position, or—if it’s
clear which one is meant—simply the current position. These values specify the byte number
in the file where writing or reading will take place

There are times when you must take control of the file pointers yourself so that you can read
from or write to an arbitrary location in the file. The seekg() and tellg() functions allow you to
set and examine the get pointer, and the seekp() and tellp() functions perform the same actions
on the put pointer.

// seeks particular person in file
#include <fstream.h> // for file streams
class person { // class of persons
protected:
char name[40]; // person's name
int age; // person's age
public:
void showData() { // display person's data
cout << "\n Name: " << name; cout << "\n Age: " << age;

§
55

[Object Oriented Programming 549]

int main(){
person pers; // create person object
ifstream 1nfile; // create input file
infile.open("PERSON.DAT", i0s::binary); // open file
infile.seekg(0, 10s::end); // go to 0 bytes from end
int endposition = infile.tellg(); // find where we are
int n = endposition / sizeof(person); // number of persons
cout << endl << "There are " << n <<" persons in file";
cout << endl << "Enter person number: "; cin >> n;
int position = (n-1) * sizeof(person); // number times size
infile.seekg(position); // bytes from begin
infile.read((char*)&pers, sizeof(pers)); // read one person
pers.showData(); // display the person

;

Here’s the output from the program, assuming that the PERSON.DAT file

contains 3 persons:

There are 3 persons iIn file
Enter person number: 2
Name: Rainier
Age: 21

[Object Oriented Programming

550 |

File I/O Using Member Functions I

So far, we’ve let the main() function handle the details of file I/O. This
i1s nice for demonstrations, but in real object-oriented programs, it’s
natural to include file I/O operations as member functions of the class.

In the next example, we will add member functions, diskOut() and
diskIn() to the person class. These functions allow a person object to
write 1tself to disk and read itself back 1n.

Simplifying assumptions: First, all objects of the class will be stored in
the same file, called PERSON.DAT. Second, new objects are always
appended to the end of the file. An argument to the diskIn() function
allows me to read the data for any person in the file. To prevent
attempts to read data beyond the end of the file, I include a static
member function, diskCount(), that returns the number of persons
stored 1n the file.

[Object Oriented Programming 551]

#include <fstream.h> // for file streams
class person {// class of persons
protected:
char name[40]; // person's name
int age; // person's age
public:
void getData(){ // get person's data
cout << "\n Enter name: "; cin >> name; cout << " Enter age: "; cin >> age;}
void showData(){ // display person's data
cout << "\n Name: " << name; cout << "\n Age: " << age; }
void diskIn(int); // read from file
void diskOut(); // write to file
static int diskCount(); // return number of persons in file

55

void person::diskIn(int pn){ // read person number pn from file
ifstream infile; // make stream
infile.open("PERSON.DAT", ios::binary); // open it
infile.seekg(pn*sizeof(person)); // move file ptr
infile.read((char*)this, sizeof(*this)); // read one person

b

[Object Oriented Programming 552]

void person::diskOut() // write person to end of file

d
ofstream outfile; // make stream
outfile.open("PERSON.DAT", 10s::app | 10s::binary); // open it
outfile.write((char*)this, sizeof(*this)); // write to it

b

int person::diskCount() // return number of persons 1n file

d

ifstream 1nfile;

infile.open("PERSON.DAT", 10s::binary);

infile.seekg(0, 10s::end); // go to 0 bytes from end

return infile.tellg() / sizeof(person); // calculate number of persons

b

{ Object Oriented Programming 553]

int main(void){

person p; // make an empty person
char ch;
do{ // save persons to disk
cout << "\nEnter data for person:";
p.getData(); // get data
p.diskOut(); // write to disk
cout << "Do another (y/n)? ";
cin >> ch;
Ywhile(ch=="y"); // until user enters n'
int n = person::diskCount(); // how many persons in file?

cout << "\nThere are " <<n << " persons in file";
for(int j=0; j<n; j++) { // for each one,

cout << "\nPerson #" << (j+1);

p.diskIn(j); // read person from disk

p.showData(); // display person

b
j

[Object Oriented Programming

554 |

Overloading the « and » Operators I

In this session I’ll show how to overload the extraction and insertion operators. This is a
powerful feature of C++. It lets you treat I/O for user-defined data types in the same
way as for basic types such as int and double. For example, if you have an object of
class TComplex called cl, you can display it with the statement

cout << cl; just as if it were a basic data type.

You can overload the extraction and insertion operators so they work with the display
and keyboard (cout and cin). With a little more care, you can also overload them so they
work with disk files as well.

#include<iostream>
class TComplex {
float real,img;
friend std::istream& operator >>(std::1stream&, TComplex&);
friend std::ostream& operator <<(std::ostreamé&, const TComplex&);
public:
TComplex(float rl=0,float 1ig=0) {real=rl;img=1g; }
TComplex operator+(const TComplex&);
I

[Object Oriented Programming 555]

1stream& operator >>(istream& stream, TComplex& z){ // Overloading >>
cout << "Enter real part:";
stream >> z.real;
cout << "Enter imaginer part:";
stream >> z.1mg;
return stream,;
h
ostream& operator <<(ostreamé& stream, const TComplex & z){
stream << "(" <<zreal <<"," <<z.img <<")\n";
return stream,
}
TComplex TComplex::operator+(const TComplex & z){ // Operator +
return TComplex (real+z.real , img+z.1mg);
}
int main(){
TComplex z1,z2,73;
std::cin >> z1;
std::cin >> z2;
z3=z1+z2; (3
std::cout << " Result=" << z3;

b

[Object Oriented Programming 556]

N 7

»
&7 =

(/
D

inout.cpp

Overloading for Files |

The next example shows how the << and >> operators can be overloaded so they
work with both file I/O and cout and cin.

#include<fstream>
class TComplex {
float real,img;
friend istream& operator >>(istream&, TComplex&);
friend ostream& operator <<(ostreamé&, const TComplex&);
public:
TComplex(float rl=0,float ig=0) {real=rl;img=ig;}
s
istream& operator >>(istream& stream, TComplex &z){
char dummy;

stream >> dummy >> z.real;
stream >> dummy >> z.img >> dummy;
return stream;

b

ostream& operator <<(ostreamé& stream, const TComplex & z){
stream << "(" << z.real <<" " << z.img <<") \n";
return stream;

3

[Object Oriented Programming 557]

int main(){

b

char ch;
TComplex z1;
ofstream ofile; // create and open
ofile.open("complex.dat"); // output stream
do { std::cout << "\nEnter Complex Number:(real,img)";
cin >> z1; // get complex number from user
ofile << zl; // write it to output str
std::cout << "Do another (y/n)? "; std::cin >> ch;
} while(ch !="n");
ofile.close(); // close output stream
std::1fstream ifile; // create and open
ifile.open(""complex.dat"); // input stream
std:.cout << "\nContents of disk file 1s:";
while(!ifile.eof()){
ifile >> z1; // read complex number from stream
if (ifile)

@%{'{g fileio.cpp

std::cout << "\nComplex Number =" << zI; // display complex number

j

[Object Oriented Programming

558 |

Overloading for Binary I/0 |

So far, you’ve seen examples of overloading operator<<() and operator>>() for formatted
I/O. They also can be overloaded to perform binary I/0. This may be a more efficient way
to store information, especially if your object contains much numerical data.

#include <fstream.h> // for file streams
class person {// class of persons
protected:
char name[40]; // person's name
int age; // person's age
public:
void getData(){ // get data from keyboard
cout << "\n Enter name: "; cin.getline(name, 40);
cout << " Enter age: "; cin >> age;

h
void putData(){ // display data on screen

cout << '"\n Name =" << name; cout << "\n Age =" << age;

friend istream& operator >> (istream& s, person& d);
friend ostream& operator << (ostream& s, person& d);

559 |

[Object Oriented Programming

void persin(istream& s){
s.read((char*)this, sizeof(*this));

h

void persout(ostreamé& s) // write our data to file

d

s.write((char*)this, sizeof(*this));

)

+; // end of class definiton
istream& operator >> (istream& s, person& d) {

d.persin(s);
return S;
h
ostream& operator << (ostream& s, person& d){
d.persout(s);
return s;
h

{ Object Oriented Programming

560 |

int main(){
person persl, pers2, pers3, pers4;
cout << "\nPerson 1";
persl.getData(); // get data for persl
cout << "\nPerson 2";
pers2.getData(); // get data for pers2
outfile("PERSON.DAT", 10s::binary);
outfile << persl << pers2; // write to file
outfile.close();
ifstream infile("PERSON.DAT", 10s::binary);
infile >> pers3 >> pers4; // read from file into
cout << "\nPerson 3"; // pers3 and pers4
pers3.putData(); // display new objects
cout << "\nPerson 4";
pers4.putData();

b

[Object Oriented Programming 561]

