
CS 132 Compiler Construction

1. Introduction 2

2. Lexical analysis 31

3. LL parsing 58

4. LR parsing 110

5. JavaCC and JTB 127

6. Semantic analysis 150

7. Translation and simplification 165

8. Liveness analysis and register allocation 185

9. Activation Records 216

1

Chapter 1: Introduction

2

Things to do

� make sure you have a working SEAS account

� start brushing up on Java

� review Java development tools

� find http://www.cs.ucla.edu/ palsberg/courses/cs132/F03/index.html

� check out the discussion forum on the course webpage

Copyright c

�

2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or
fee. Request permission to publish from hosking@cs.purdue.edu.

3

Compilers

What is a compiler?

� a program that translates an executable program in one language into
an executable program in another language

� we expect the program produced by the compiler to be better, in some
way, than the original

What is an interpreter?

� a program that reads an executable program and produces the results
of running that program

� usually, this involves executing the source program in some fashion

This course deals mainly with compilers

Many of the same issues arise in interpreters

4

Motivation

Why study compiler construction?

Why build compilers?

Why attend class?

5

Interest

Compiler construction is a microcosm of computer science

artificial intelligence greedy algorithms
learning algorithms

algorithms graph algorithms
union-find

dynamic programming
theory DFAs for scanning

parser generators
lattice theory for analysis

systems allocation and naming
locality

synchronization
architecture pipeline management

hierarchy management
instruction set use

Inside a compiler, all these things come together

6

Isn’t it a solved problem?

Machines are constantly changing

Changes in architecture � changes in compilers

� new features pose new problems

� changing costs lead to different concerns

� old solutions need re-engineering

Changes in compilers should prompt changes in architecture

� New languages and features

7

Intrinsic Merit

Compiler construction is challenging and fun

� interesting problems

� primary responsibility for performance (blame)

� new architectures � new challenges

� real results

� extremely complex interactions

Compilers have an impact on how computers are used

Compiler construction poses some of the most interesting problems in
computing

8

Experience

You have used several compilers

What qualities are important in a compiler?

1. Correct code

2. Output runs fast

3. Compiler runs fast

4. Compile time proportional to program size

5. Support for separate compilation

6. Good diagnostics for syntax errors

7. Works well with the debugger

8. Good diagnostics for flow anomalies

9. Cross language calls

10. Consistent, predictable optimization

Each of these shapes your feelings about the correct contents of this course

9

Abstract view

errors

compilercode code
source machine

Implications:

� recognize legal (and illegal) programs

� generate correct code

� manage storage of all variables and code

� agreement on format for object (or assembly) code

Big step up from assembler — higher level notations

10

Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:

� intermediate representation (IR)

� front end maps legal code into IR

� back end maps IR onto target machine

� simplify retargeting

� allows multiple front ends

� multiple passes � better code

11

A fallacy

back
end

front
end

FORTRAN
code

front
end

front
end

front
end

back
end

back
end

code

code

code

C++

CLU

Smalltalk

target1

target2

target3

Can we build n � m compilers with n

�

m components?

� must encode all the knowledge in each front end

� must represent all the features in one IR

� must handle all the features in each back end

Limited success with low-level IRs
12

Front end

code
source tokens

errors

scanner parser IR

Responsibilities:

� recognize legal procedure

� report errors

� produce IR

� preliminary storage map

� shape the code for the back end

Much of front end construction can be automated
13

Front end

code
source tokens

errors

scanner parser IR

Scanner:

� maps characters into tokens – the basic unit of syntax

� � � � ��

becomes

� id, � � � � id, � � � � id, � � �

� character string value for a token is a lexeme

� typical tokens: number, id, �, �, �,

	

,

�� ,
�

� eliminates white space (tabs, blanks, comments)

� a key issue is speed

� use specialized recognizer (as opposed to

�
 �)

14

Front end

code
source tokens

errors

scanner parser IR

Parser:

� recognize context-free syntax

� guide context-sensitive analysis

� construct IR(s)

� produce meaningful error messages

� attempt error correction

Parser generators mechanize much of the work

15

Front end

Context-free syntax is specified with a grammar

�sheep noise � ::=

��� �

� �� � �sheep noise �

This grammar defines the set of noises that a sheep makes under normal
circumstances

The format is called Backus-Naur form (BNF)

Formally, a grammar G � �

S � N � T � P

�
S is the start symbol

N is a set of non-terminal symbols

T is a set of terminal symbols

P is a set of productions or rewrite rules (P : N � N

	

T)

16

Front end

Context free syntax can be put to better use

1 �goal � ::= �expr �

2 �expr � ::= �expr � �op � � term �

3

� � term �

4 � term � ::= � � � �
�

5

� �

6 �op � ::= �

7

� �

This grammar defines simple expressions with addition and subtraction
over the tokens

�

and � � � �
�

S = �goal �

T = � � � �
� ,

�

, �, �
N = �goal � , �expr � , � term � , �op �

P = 1, 2, 3, 4, 5, 6, 7

17

Front end

Given a grammar, valid sentences can be derived by repeated substitution.

Prod’n. Result

�goal �

1 �expr �

2 �expr � �op � � term �

5 �expr � �op � �

7 �expr � � �

2 �expr � �op � � term � � �

4 �expr � �op � � � �

6 �expr � � � � �

3 � term � � � � �

5 � � � � �
To recognize a valid sentence in some CFG, we reverse this process and
build up a parse

18

Front end

A parse can be represented by a tree called a parse or syntax tree

2><num:

<id:x>

<id: >y

goal

op

termopexpr

expr term

expr

term

-

+

Obviously, this contains a lot of unnecessary information
19

Front end

So, compilers often use an abstract syntax tree

<id:x> 2><num:

<id: >y+

-

This is much more concise

Abstract syntax trees (ASTs) are often used as an IR between front end
and back end

20

Back end

errors

IR allocation
register

selection
instruction machine

code

Responsibilities

� translate IR into target machine code

� choose instructions for each IR operation

� decide what to keep in registers at each point

� ensure conformance with system interfaces

Automation has been less successful here
21

Back end

errors

IR allocation
register machine

code
instruction
selection

Instruction selection:

� produce compact, fast code

� use available addressing modes

� pattern matching problem

– ad hoc techniques

– tree pattern matching

– string pattern matching

– dynamic programming

22

Back end

errors

IR machine
code

instruction
selection

register
allocation

Register Allocation:

� have value in a register when used

� limited resources

� changes instruction choices

� can move loads and stores

� optimal allocation is difficult

Modern allocators often use an analogy to graph coloring

23

Traditional three pass compiler

IR

errors

IRmiddlefront back
end end end

source
code code

machine

Code Improvement

� analyzes and changes IR

� goal is to reduce runtime

� must preserve values

24

Optimizer (middle end)

opt nopt1 ... IR

errors

IR IR
IR

Modern optimizers are usually built as a set of passes

Typical passes

� constant propagation and folding

� code motion

� reduction of operator strength

� common subexpression elimination

� redundant store elimination

� dead code elimination

25

Compiler example

Parse TranslateLex
Canon-Semantic

Analysis calize
Instruction
Selection

Frame
Layout

Parsing
Actions

S
ou

rc
e

P
ro

gr
am

T
ok

en
s

Pass 10

R
ed

uc
tio

ns

A
bs

tr
ac

t S
yn

ta
x

T
ra

ns
la

te

IR
 T

re
es

IR
 T

re
es

Frame

Tables

Environ-
ments

A
ss

em

Control
Flow

Analysis

Data
Flow

Analysis

Register
Allocation

Code
Emission Assembler

M
ac

hi
ne

 L
an

gu
ag

e

A
ss

em

F
lo

w
 G

ra
ph

In
te

rf
er

en
ce

 G
ra

ph

R
eg

is
te

r
A

ss
ig

nm
en

t

A
ss

em
bl

y
La

ng
ua

ge

R
el

oc
at

ab
le

 O
bj

ec
t C

od
e

Pass 1 Pass 4

Pass 5 Pass 8 Pass 9

Linker

Pass 2

Pass 3

Pass 6 Pass 7

26

Compiler phases

Lex Break source file into individual words, or tokens
Parse Analyse the phrase structure of program
Parsing
Actions

Build a piece of abstract syntax tree for each phrase

Semantic
Analysis

Determine what each phrase means, relate uses of variables to their
definitions, check types of expressions, request translation of each
phrase

Frame
Layout

Place variables, function parameters, etc., into activation records (stack
frames) in a machine-dependent way

Translate Produce intermediate representation trees (IR trees), a notation that is
not tied to any particular source language or target machine

Canonicalize Hoist side effects out of expressions, and clean up conditional branches,
for convenience of later phases

Instruction
Selection

Group IR-tree nodes into clumps that correspond to actions of target-
machine instructions

Control Flow
Analysis

Analyse sequence of instructions into control flow graph showing all
possible flows of control program might follow when it runs

Data Flow
Analysis

Gather information about flow of data through variables of program; e.g.,
liveness analysis calculates places where each variable holds a still-
needed (live) value

Register
Allocation

Choose registers for variables and temporary values; variables not si-
multaneously live can share same register

Code
Emission

Replace temporary names in each machine instruction with registers

27

A straight-line programming language

� A straight-line programming language (no loops or conditionals):

Stm � Stm ; Stm CompoundStm
Stm � �

: � Exp AssignStm
Stm � �� � � � �

ExpList

�

PrintStm
Exp � �

IdExp
Exp � � � � NumExp
Exp � Exp Binop Exp OpExp
Exp � �

Stm � Exp

�

EseqExp
ExpList � Exp � ExpList PairExpList
ExpList � Exp LastExpList
Binop � �

Plus
Binop � � Minus
Binop � � Times
Binop � �

Div

� e.g., � : � 5

�

3;

�

: � � �� � � � � � � � � 1

�
� 10 � � �

; �� � � � � � �

prints:

� �
��

28

Tree representation

� : � 5

�

3;

�

: � � �� � � � � � � � � 1

�
� 10 � � �

; �� � � � � � �
AssignStm

CompoundStm

a OpExp

PlusNumExp

5

NumExp

3

AssignStm

b EseqExp

PrintStm

PairExpList

IdExp

a

LastExpList

OpExp

MinusIdExp NumExp

a 1

OpExp

NumExp Times IdExp

a10

PrintStm

LastExpList

IdExp

b

CompoundStm

This is a convenient internal representation for a compiler to use.

29

Java classes for trees

� ��� �� �� � � � �� � � � 	
�

� � �� � ��
 	�
 � � � � � 	 �� � � � �� � � 	

� � 	 � � 	 ��� � � 	 ���

��
 	�
 � � � � � 	 � � � 	 � � � � � 	 � � �

 � � 	 ��� � � � � � 	 �� � �� �

�
� � �� � ��� � �! � � � 	 �� � � � �� � � 	

� �� �! �� "� � �� � �

��� � �! � � � 	 � � �� �! � "� � � �

 �� � � � � � �� �

�
� � �� � #� � � � � 	 �� � � � �� � � 	

"� � $ � � � � � � �

#� � � � � 	 � "� � $ � � � �

 �� � � � �� �

�
� ��� �� �� � � � �� � "� �
�

� � �� � % � "� � � � � � � �� "� �

� �� �! ��

% � "� � � � �� �! �
 �� � �

�

� � �� � & � 	 "� � � � � � � �� "� �

 � � � � 	�

& � 	 "� � � � � � �
 � � 	� �� �

�
� � �� � ' � "� � � � � � � �� "� �

"� � � � (�)� � ! * � � � �
 � �� �

(� � � � � � � � � �

# � �� � ��� + � �� � �� , 	 � � � -� . �/ � 0�

' � "� � � "� � �� � �
 � "� � � �

 � � (�� ��
 � �� �
 � � ! * �� � � �

�
� � �� � "� �1 "� � �� � � � �� "� �

� � 	 � � 	� "� � �� � �

"� �1 "� � � � � 	 � � "� � � �

 � � 	� � � � � � � �� �

�
� ��� �� �� � � � �� � "� � $ � �
�

� � �� � # � � "� � $ � � � � � � � �� "� � $ � �

"� � * � � �� "� � $ � � � � ��

� � � � � # � � "� � $ � � � "� � *� "� � $ � � � �

 * � � �� *� � � �� � � �

�
� � �� � $ �� � "� � $ � � � � � � � �� "� � $ � �

"� � * � � ��

� � � � � $ �� � "� � $ � � � "� � * �
 * � � �� *� �

�

30

Chapter 2: Lexical Analysis

31

Scanner

code
source tokens

errors

scanner parser IR

� maps characters into tokens – the basic unit of syntax

� � � � ��

becomes

� id, � � � � id, � � � � id, � � �

� character string value for a token is a lexeme

� typical tokens: number, id, �, �, �,
	

,

�� ,
�

� eliminates white space (tabs, blanks, comments)

� a key issue is speed

� use specialized recognizer (as opposed to

�
 �)
Copyright c

�

2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or
fee. Request permission to publish from hosking@cs.purdue.edu.

32

Specifying patterns

A scanner must recognize various parts of the language’s syntax
Some parts are easy:

white space

�ws � ::= �ws � � �

� �ws � � � � �

� � �

� � � � �

keywords and operators
specified as literal patterns:

�� ,
�

comments
opening and closing delimiters:

	 �
� � �

� 	

33

Specifying patterns

A scanner must recognize various parts of the language’s syntax

Other parts are much harder:

identifiers
alphabetic followed by k alphanumerics (, $, &, . . .)

numbers

integers: 0 or digit from 1-9 followed by digits from 0-9

decimals: integer

�

�
�

digits from 0-9

reals: (integer or decimal)
� � �

(+ or -) digits from 0-9

complex:

� � �

real
��
�

�
real

� � �

We need a powerful notation to specify these patterns

34

Operations on languages

Operation Definition
union of L and M L

	

M � �

s

�

s � L or s � M

�
written L

	

M
concatenation of L and M LM � �

st

�

s � L and t � M
�

written LM
Kleene closure of L L

� � � ∞
i � 0 Li

written L

�

positive closure of L L

� � � ∞
i �1 Li

written L

�

35

Regular expressions

Patterns are often specified as regular languages

Notations used to describe a regular language (or a regular set) include
both regular expressions and regular grammars

Regular expressions (over an alphabet Σ):

1. ε is a RE denoting the set

�

ε

�

2. if a � Σ, then a is a RE denoting

�

a

�

3. if r and s are REs, denoting L

�

r

�

and L

�

s
�

, then:

�

r

�

is a RE denoting L

�

r

�

�

r

� � �

s

�

is a RE denoting L

�

r
� �

L
�

s

�

�

r

� �

s

�

is a RE denoting L
�

r
�

L
�
s

�

�

r

� �

is a RE denoting L
�

r
� �

If we adopt a precedence for operators, the extra parentheses can go away.
We assume closure, then concatenation, then alternation as the order of
precedence.

36

Examples

identifier
letter � �

a

�

b

�

c

��
� � �

�

z

�

A

�

B

�

C

�
� � �

�

Z

�

digit � �

0

�

1

�

2

�

3

�

4

�

5

�

6

�

7

�

8

�

9

�

id � letter

�

letter

�

digit

� �

numbers
integer � � � � � �

ε

� �

0

� �

1

�

2

�

3

��
� � �

�

9

�

digit
� �

decimal � integer .

�

digit

� �

real � �

integer

�

decimal

� � � � � � �
digit

�

complex � � � �

real � real

� � �

Numbers can get much more complicated

Most programming language tokens can be described with REs

We can use REs to build scanners automatically

37

Algebraic properties of REs

Axiom Description
r

�

s � s

�

r

�

is commutative
r

� �

s

�

t

� � �

r

�

s

� �

t

�

is associative�

rs

�

t � r

�

st

�

concatenation is associative
r

�

s

�

t

� � rs

�

rt concatenation distributes over
�

�

s

�

t

�

r � sr

�

tr
εr � r ε is the identity for concatenation
rε � r

r

� � �

r

�

ε

� �

relation between
�

and ε
r

� � � r

� �

is idempotent

38

Examples

Let Σ � �

a � b

�

1. a

�

b denotes

�

a � b

�

2.

�

a

�

b

� �

a

�

b

�

denotes

�

aa � ab � ba � bb

�

i.e.,

�

a

�

b

� �

a

�

b

� � aa

�

ab

�

ba

�

bb

3. a

�

denotes

�

ε � a � aa � aaa �� � �
�

4.

�

a

�

b

� �

denotes the set of all strings of a’s and b’s (including ε)
i.e.,

�

a

�

b

� � � �

a

�

b

� � �

5. a

�

a

�

b denotes
�

a � b � ab � aab � aaab � aaaab �� � �
�

39

Recognizers

From a regular expression we can construct a

deterministic finite automaton (DFA)

Recognizer for identifier :

0 21

3

digit
other

letter

digit
letter

other

error

accept

identifier
letter � �

a

�

b

�

c

��
� � �

�

z
�

A
�

B

�

C

�
� � �

�

Z

�

digit � �

0

�

1

�

2

�

3
�

4
�

5

�

6

�

7

�

8

�

9

�

id � letter

�

letter
�

digit

� �

40

Code for the recognizer

� * �� � � � � � � * �� � � �

� � � � � � �� ��� �
 � � (
 � � � � � � � � �

�
 � � � (� � � � �

�
 � � � / � � � � � � � � � � 	� �� � �� �! � �

� * � � � �
 � �
 � � � 	

� � �� � � � * �� � � �� �
 � * �� � �

� � � � � � � � � � � � � � �
 � � �� � � � � � � � � �

� � � � * � � � � � � � 	

� �� � �
� � � � � � � �! � � � � �

�
 � � � / � � � � � �
 � � � / � � � � � � * �� �

� * �� � � � � � � * �� � � �

�� � � ��

� �� � �� � � �� � � � � � � � � � � �

�
 � � � �� � � � � � � � (�� �

�
 � � � �� � � �

�� � � ��

� �� � -� � � �� �
 � � �

�
 � � � �� � � � �� �
 � �

�
 � � � �� � � �

�� � � ��

�

�
� � � �� � �
 � � � �� � � �

41

Tables for the recognizer

Two tables control the recognizer

� �� � � � � � �� a � z A � Z 0 � 9 other
value letter letter digit other

�
 � � � � � �
�

class 0 1 2 3
letter 1 1 — —
digit 3 1 — —
other 3 2 — —

To change languages, we can just change tables

42

Automatic construction

Scanner generators automatically construct code from regular expression-
like descriptions

� construct a dfa

� use state minimization techniques

� emit code for the scanner

(table driven or direct code)

A key issue in automation is an interface to the parser

�
 � is a scanner generator supplied with UNIX

� emits C code for scanner

� provides macro definitions for each token
(used in the parser)

43

Grammars for regular languages

Can we place a restriction on the form of a grammar to ensure that it de-
scribes a regular language?

Provable fact:

For any RE r, there is a grammar g such that L

�

r

� � L

�

g
�

.

The grammars that generate regular sets are called regular grammars

Definition:

In a regular grammar, all productions have one of two forms:

1. A � aA

2. A � a

where A is any non-terminal and a is any terminal symbol

These are also called type 3 grammars (Chomsky)

44

More regular languages

Example: the set of strings containing an even number of zeros and an
even number of ones

s0 s1

s2 s3

1

1

0 0

1

1

0 0

The RE is

�

00

�

11

� � � �

01
�

10
� �

00

�

11

� � �

01

�

10

� �

00

�

11

� � � �

45

More regular expressions

What about the RE

�

a

�

b

� �

abb ?

s0 s1 s2 s3

a

�

b

a b b

State s0 has multiple transitions on a!

� nondeterministic finite automaton

a b
s0

�
s0 � s1

� �

s0

�

s1 –

�

s2

�

s2 –

�

s3

�

46

Finite automata

A non-deterministic finite automaton (NFA) consists of:

1. a set of states S � �

s0 �� � � � sn

�

2. a set of input symbols Σ (the alphabet)

3. a transition function move mapping state-symbol pairs to sets of states

4. a distinguished start state s0

5. a set of distinguished accepting or final states F

A Deterministic Finite Automaton (DFA) is a special case of an NFA:

1. no state has a ε-transition, and

2. for each state s and input symbol a, there is at most one edge labelled
a leaving s.

A DFA accepts x iff. there exists a unique path through the transition graph
from the s0 to an accepting state such that the labels along the edges spell
x.

47

DFAs and NFAs are equivalent

1. DFAs are clearly a subset of NFAs

2. Any NFA can be converted into a DFA, by simulating sets of simulta-
neous states:

� each DFA state corresponds to a set of NFA states

� possible exponential blowup

48

NFA to DFA using the subset construction: example 1

s0 s1 s2 s3

a

�

b

a b b

a b

�

s0

� �

s0 � s1

� �

s0

�

�

s0 � s1

� �

s0 � s1

� �

s0 � s2
�

�

s0 � s2

� �

s0 � s1

� �

s0 � s3
�

�

s0 � s3

� �

s0 � s1

� �
s0

�

�

s0

� �

s0 � s1

� �

s0 � s2

� �

s0 � s3

�

b

a b b

b

a

a

a

49

Constructing a DFA from a regular expression

DFA

DFA

NFA

RE

minimized

movesε

RE �NFA w/ε moves
build NFA for each term
connect them with ε moves

NFA w/ε moves to DFA
construct the simulation
the “subset” construction

DFA � minimized DFA
merge compatible states

DFA � RE
construct Rk

i j

� Rk � 1
ik

�
Rk � 1

kk

� �

Rk � 1
k j

�

Rk � 1
i j

50

RE to NFA

N

�

ε

�

ε

N

�

a

�

a

N

�

A

�

B

�

AN(A)

N(B) B

ε

εε

ε

N

�

AB

� AN(A) N(B) B

N

�

A

� �

ε

AN(A)

ε
ε ε

51

RE to NFA: example

�

a

�

b

� �

abb

a

�

b

1

2 3

6

4 5

ε

ε ε

ε

a

b

�

a

�

b

� �

0 1

2 3

6

4 5

7
ε

ε

ε ε

ε

ε

a

b

ε

ε

abb
7 8 9 10

a b b

52

NFA to DFA: the subset construction

Input: NFA N
Output: A DFA D with states Dstates and transitions Dtrans

such that L

�

D

� � L

�

N

�

Method: Let s be a state in N and T be a set of states,
and using the following operations:

Operation Definition
ε-closure

�

s

�

set of NFA states reachable from NFA state s on ε-transitions alone
ε-closure

�

T

�

set of NFA states reachable from some NFA state s in T on ε-
transitions alone

move

�

T � a

�

set of NFA states to which there is a transition on input symbol a
from some NFA state s in T

add state T � ε-closure

�

s0

�

unmarked to Dstates
while

�

unmarked state T in Dstates
mark T
for each input symbol a

U � ε-closure

�

move

�

T � a

� �

if U

��� Dstates then add U to Dstates unmarked
Dtrans

�

T � a

� � U
endfor

endwhile

ε-closure

�

s0

�

is the start state of D
A state of D is accepting if it contains at least one accepting state in N

53

NFA to DFA using subset construction: example 2

0 1

2 3

6

4 5

7
ε

ε

ε ε

ε

ε

a

b

ε

ε

8 9 10
a b b

A � �

0 � 1 � 2 � 4 � 7

�

D � �
1 � 2 � 4 � 5 � 6 � 7 � 9

�

B � �

1 � 2 � 3 � 4 � 6 � 7 � 8

�

E � �
1 � 2 � 4 � 5 � 6 � 7 � 10

�

C � �

1 � 2 � 4 � 5 � 6 � 7

�

a b
A B C
B B D
C B C
D B E
E B C

54

Limits of regular languages

Not all languages are regular

One cannot construct DFAs to recognize these languages:

� L � �

pkqk �

� L � �

wcwr �

w � Σ

� �

Note: neither of these is a regular expression!
(DFAs cannot count!)

But, this is a little subtle. One can construct DFAs for:

� alternating 0’s and 1’s

�

ε

�

1

� �

01

� � �

ε

�

0

�

� sets of pairs of 0’s and 1’s

�

01

�

10

� �

55

So what is hard?

Language features that can cause problems:

reserved words
PL/I had no reserved words

� � � �
� � �
� � �
� �
 � �
 �
 � �

 � �
 � � �
� �
significant blanks

FORTRAN and Algol68 ignore blanks

 � � � � � �
�

� �

 � � � � � �
�

� �

string constants
special characters in strings

�
 � � � �
, � � �

, � � � �
, � � � �
� �

 � � � � �
�

finite closures
some languages limit identifier lengths
adds states to count length
FORTRAN 66 � 6 characters

These can be swept under the rug in the language design

56

How bad can it get?

� � �� � � �� �� � � � � � � 	

�
 	 � 	� �� �� � 	 � �
�

 � � �

� � �
� � � � � �� 	 � 	 � � �� � � 	 �
 � � 	 �
 �

� � �� � � �� � � � � 	 � � � � �
�

� � � � � �
�

� �� � �

� � � � � � � � 	 � � �� � � � � �

� � � � � � � � 	 � � � � � � � �

� � �� � � � �

� � �� � � � �
�

�

� � � �� � � �

� � � � �� � � � �

� � � � �� � �� �
�

� � �

� � �� � � � �� � �� �

� � � � �

� � � � � � � � � � � �
� �

� � � � � � � �

� � � � �

"� � 	� � � � � � �
 .� � � � � � � � � � � �
 (%� + ��
 � �
 � � �
 �

57

Chapter 3: LL Parsing

58

The role of the parser

code
source tokens

errors

scanner parser IR

Parser

� performs context-free syntax analysis

� guides context-sensitive analysis

� constructs an intermediate representation

� produces meaningful error messages

� attempts error correction

For the next few weeks, we will look at parser construction

Copyright c

�

2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or
fee. Request permission to publish from hosking@cs.purdue.edu.

59

Syntax analysis

Context-free syntax is specified with a context-free grammar.

Formally, a CFG G is a 4-tuple

�

Vt � Vn � S � P

�

, where:

Vt is the set of terminal symbols in the grammar.
For our purposes, Vt is the set of tokens returned by the scanner.

Vn, the nonterminals, is a set of syntactic variables that denote sets of
(sub)strings occurring in the language.
These are used to impose a structure on the grammar.

S is a distinguished nonterminal

�

S � Vn
�

denoting the entire set of strings
in L

�

G

�

.
This is sometimes called a goal symbol.

P is a finite set of productions specifying how terminals and non-terminals
can be combined to form strings in the language.
Each production must have a single non-terminal on its left hand side.

The set V � Vt

	

Vn is called the vocabulary of G

60

Notation and terminology

� a � b � c �� � � � Vt

� A � B � C �� � � � Vn

� U � V � W �� � � � V

� α � β � γ �� � � � V

�

� u � v � w �� � � � V

�

t

If A � γ then αAβ � αγβ is a single-step derivation using A � γ

Similarly, � �

and � �

denote derivations of

�

0 and

�

1 steps

If S � �

β then β is said to be a sentential form of G

L

�

G

� � �

w � V

�

t

�

S � �

w
�

, w � L

�

G

�

is called a sentence of G

Note, L

�

G

� � �

β � V
� �

S � �

β

� �

V

�

t

61

Syntax analysis

Grammars are often written in Backus-Naur form (BNF).

Example:

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

expr

� �

op

� �

expr

�

3

� � � �

4

� �

5

�

op

�

:: � �

6

� �

7

�

�

8

� �
This describes simple expressions over numbers and identifiers.

In a BNF for a grammar, we represent

1. non-terminals with angle brackets or capital letters
2. terminals with � � �
 �� � �
� font or underline
3. productions as in the example

62

Scanning vs. parsing

Where do we draw the line?

term :: �

0 � 9

� � �

�

0

� �� � � � �� � � � �

op :: � � � � �
�

� �

expr :: � �

term op

� �

term

Regular expressions are used to classify:

� identifiers, numbers, keywords

� REs are more concise and simpler for tokens than a grammar

� more efficient scanners can be built from REs (DFAs) than grammars

Context-free grammars are used to count:

� brackets:

� �

,

�
� � � . . .
�

,
� �

. . . � �
� . . .
 � �

� imparting structure: expressions

Syntactic analysis is complicated enough: grammar for C has around 200
productions. Factoring out lexical analysis as a separate phase makes
compiler more manageable.

63

Derivations

We can view the productions of a CFG as rewriting rules.

Using our example CFG:

�

goal

� � �

expr

�

� �

expr

� �

op

� �

expr

�

� �

expr

� �

op

� �

expr

� �

op

� �

expr
�

� �

id, � � �

op

� �

expr

� �

op

� �

expr
�

� �

id, � � � �

expr

� �

op
� �

expr

�

� �

id, � � � �

num,
� � �

op
� �

expr

�

� �

id, � � � �

num,
� �

�

�

expr

�

� �

id, � � � �

num,
� �

�

�

id, � �

We have derived the sentence � � � � �.
We denote this

�

goal

� � � �
 � � � � � �

.

Such a sequence of rewrites is a derivation or a parse.

The process of discovering a derivation is called parsing.

64

Derivations

At each step, we chose a non-terminal to replace.

This choice can lead to different derivations.

Two are of particular interest:

leftmost derivation
the leftmost non-terminal is replaced at each step

rightmost derivation
the rightmost non-terminal is replaced at each step

The previous example was a leftmost derivation.

65

Rightmost derivation

For the string � � � � �:

�

goal

� � �

expr

�

� �

expr

� �

op

� �

expr

�

� �

expr

� �

op

� �

id, � �

� �

expr

�

�

�

id, � �

� �

expr

� �

op

� �

expr

�

�

�

id, � �

� �

expr

� �

op

� �

num,

� �

�

�

id, � �

� �

expr

� � �

num,

� �

�

�
id, � �

� �

id, � � � �

num,
� �

�

�

id, � �

Again,

�

goal

� � � �
 � � � � � �

.

66

Precedence

goal

expr

expr op expr

expr op expr * <id,y>

<num,2>+<id,x>

Treewalk evaluation computes (� � �

) � �

— the “wrong” answer!

Should be � �

(
� � �)

67

Precedence

These two derivations point out a problem with the grammar.

It has no notion of precedence, or implied order of evaluation.

To add precedence takes additional machinery:

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

expr

� � �

term

�
3

� �

expr

� � �

term
�

4

� �

term

�

5

�

term

�

:: � �

term

�

�

�
factor

�

6

� �

term
� � �

factor

�

7

� �

factor
�

8

�

factor

�

:: � � � �

9
� �

This grammar enforces a precedence on the derivation:

� terms must be derived from expressions

� forces the “correct” tree

68

Precedence

Now, for the string � � � � �:

�

goal

� � �

expr

�

� �

expr

� � �

term

�

� �

expr

� � �

term

�

�

�

factor

�

� �

expr

� � �

term

�

�

�

id, � �

� �

expr

� � �

factor

�

�

�

id, � �

� �

expr

� � �

num,

� �

�

�

id, � �

� �

term

� � �

num,

� �

�

�
id, � �

� �

factor

� � �

num,
� �

�

�

id, � �

� �

id, � � � �

num,
� �

�

�

id, � �

Again,

�

goal

� � � �
 � � � � � �

, but this time, we build the desired tree.

69

Precedence

expr

expr

+

term

factor

<id,x>

goal

term

*term

<num,2>

factor

factor

<id,y>

Treewalk evaluation computes � �

(

� � �)

70

Ambiguity

If a grammar has more than one derivation for a single sentential form,
then it is ambiguous

Example:

�

stmt

�

::=

� � �

expr

� � �
� �

stmt

�

� � � �

expr

� � �
� �

stmt

�
 � �
 �

stmt

�

� � � �
� � � � � �

Consider deriving the sentential form:

� �

E1

� �
� � �

E2

� �
� S1

 � �
 S2

It has two derivations.

This ambiguity is purely grammatical.

It is a context-free ambiguity.

71

Ambiguity

May be able to eliminate ambiguities by rearranging the grammar:

�

stmt

�

::=

�

matched

�

� �

unmatched

�

�

matched

�

::=

� � �

expr

� � �
� �

matched

�
 � �
 �

matched
�

� � � �
� � � � � �

�

unmatched

�

::=

� � �

expr

� � �
� �

stmt

�

� � � �

expr

� � �
� �

matched

�
 � �
 �

unmatched

�

This generates the same language as the ambiguous grammar, but applies
the common sense rule:

match each
 � �
 with the closest unmatched � �
�

This is most likely the language designer’s intent.

72

Ambiguity

Ambiguity is often due to confusion in the context-free specification.

Context-sensitive confusions can arise from overloading.

Example:

� � � � � � �

In many Algol-like languages,

�

could be a function or subscripted variable.

Disambiguating this statement requires context:

� need values of declarations

� not context-free

� really an issue of type

Rather than complicate parsing, we will handle this separately.

73

Parsing: the big picture

parser

generator

code

parser

tokens

IR

grammar

Our goal is a flexible parser generator system

74

Top-down versus bottom-up

Top-down parsers

� start at the root of derivation tree and fill in

� picks a production and tries to match the input

� may require backtracking

� some grammars are backtrack-free (predictive)

Bottom-up parsers

� start at the leaves and fill in

� start in a state valid for legal first tokens

� as input is consumed, change state to encode possibilities
(recognize valid prefixes)

� use a stack to store both state and sentential forms

75

Top-down parsing

A top-down parser starts with the root of the parse tree, labelled with the
start or goal symbol of the grammar.

To build a parse, it repeats the following steps until the fringe of the parse
tree matches the input string

1. At a node labelled A, select a production A � α and construct the
appropriate child for each symbol of α

2. When a terminal is added to the fringe that doesn’t match the input
string, backtrack

3. Find the next node to be expanded (must have a label in Vn)

The key is selecting the right production in step 1

� should be guided by input string

76

Simple expression grammar

Recall our grammar for simple expressions:

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

expr

� � �

term

�

3

� �

expr

� � �

term

�

4

� �

term

�

5

�

term

�

:: � �

term

�

�

�

factor
�

6

� �

term

� � �

factor
�

7

� �

factor

�

8

�

factor

�

:: � � � �
9

� �

Consider the input string � � � � �

77

Example
Prod’n Sentential form Input

–

�

goal

� �� �

� � �

1

�

expr

� �� �

� � �

2

�

expr

� � �

term

� �� �

� � �

4

�

term

� � �

term

� �� �

� � �

7

�

factor

� � �

term

� �� �

� � �
9

 � � �

term

� �� �

� � �
–

 � � �

term

� � �

�

� � �
–

�

expr

� �� �

� � �

3

�

expr

�

�
�

term

� �� �

� � �

4

�

term

�

�
�

term

� �� �

� � �

7

�

factor

�

�
�

term

� �� �

� � �

9

 �
�

�

term

� �� �

� � �

–

 �
�

�

term

� � �

�

� � �

–

 �
�

�

term

� � �

� � � �

7

 �
�

�

factor

� � �

� � � �

8

 �
� � � 	 � �

� � � �

–

 �
� � � 	 � �

� � � �

–

 �
�

�

term

� � �

� � � �

5

 �
�

�

term

� � �
factor

� � �

� � � �

7

 �
�

�

factor
� � �

factor

� � �

� � � �

8

 �
� � � 	 � �

factor

� � �

� � � �

–

 �
� � � 	 � �

factor

� � �

� � � �

–

 �
� � � 	 � �

factor

� � �

� � ��

9
 �

� � � 	 � � � �

� � ��

–
 �

� � � 	 � � � �

� � � �

78

Example

Another possible parse for � � � � �

Prod’n Sentential form Input
–

�

goal

� � � � � � �
1

�

expr

� � � � � � �

2

�

expr

� � �

term

� � � � � � �

2

�

expr

� � �

term

� � �

term

� � � � � � �

2

�

expr

� � �

term

� �
� � �

� � � � � �

2

�

expr

� � �

term

� �
� � �

� � � � � �

2 � � �

� � � � � �

If the parser makes the wrong choices, expansion doesn’t terminate.
This isn’t a good property for a parser to have.

(Parsers should terminate!)

79

Left-recursion

Top-down parsers cannot handle left-recursion in a grammar

Formally, a grammar is left-recursive if

�

A � Vn such that A � �

Aα for some string α

Our simple expression grammar is left-recursive

80

Eliminating left-recursion

To remove left-recursion, we can transform the grammar

Consider the grammar fragment:

�

foo

�

:: � �

foo

�

α�

β

where α and β do not start with

�

foo

�

We can rewrite this as:

�

foo

�

:: � β
�

bar

�

�

bar

�

:: � α
�

bar

�

�
ε

where

�

bar

�

is a new non-terminal

This fragment contains no left-recursion

81

Example
Our expression grammar contains two cases of left-recursion

�

expr

�

:: � �

expr

� � �

term

�

� �

expr

� � �

term

�

� �

term

�

�

term

�

:: � �

term

�

�

�

factor

�

� �

term

� � �

factor

�

� �

factor

�

Applying the transformation gives

�

expr

�

:: � �

term

� �

expr
� �

�

expr

� �

:: � � �

term
� �

expr

� �

�

ε� � �

term

� �

expr

� �

�

term

�

:: � �
factor

� �

term

� �

�

term

� �

:: � �
�

factor

� �

term

� �

�
ε� � �

factor

� �

term

� �

With this grammar, a top-down parser will

� terminate

� backtrack on some inputs

82

Example

This cleaner grammar defines the same language

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

term

� � �

expr

�

3

� �

term

� � �

expr

�

4

� �

term

�

5

�

term

�

:: � �

factor

�

�

�

term

�

6

� �

factor

� � �

term
�

7

� �

factor

�

8

�

factor

�

:: � � � �

9

� �

It is

� right-recursive

� free of ε productions

Unfortunately, it generates different associativity
Same syntax, different meaning

83

Example

Our long-suffering expression grammar:

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

term

� �

expr

� �

3

�

expr

� �

:: � � �

term

� �

expr

� �

4

� � �

term

� �

expr

� �

5

�

ε
6

�

term

�

:: � �

factor

� �

term
� �

7

�

term

� �

:: � �
�

factor
� �

term

� �

8

� � �

factor
� �

term

� �

9

�

ε
10

�

factor

�

:: � � � �

11
� �

Recall, we factored out left-recursion
84

How much lookahead is needed?

We saw that top-down parsers may need to backtrack when they select the
wrong production

Do we need arbitrary lookahead to parse CFGs?

� in general, yes

� use the Earley or Cocke-Younger, Kasami algorithms
Aho, Hopcroft, and Ullman, Problem 2.34

Parsing, Translation and Compiling, Chapter 4

Fortunately

� large subclasses of CFGs can be parsed with limited lookahead

� most programming language constructs can be expressed in a gram-
mar that falls in these subclasses

Among the interesting subclasses are:

LL(1): left to right scan, left-most derivation, 1-token lookahead; and
LR(1): left to right scan, right-most derivation, 1-token lookahead

85

Predictive parsing

Basic idea:

For any two productions A � α

�

β, we would like a distinct way of
choosing the correct production to expand.

For some RHS α � G, define FIRST

�

α

�

as the set of tokens that appear
first in some string derived from α
That is, for some w � V

�

t , w �

FIRST

�

α

�

iff. α � �

wγ.

Key property:
Whenever two productions A � α and A � β both appear in the grammar,
we would like

FIRST

�

α
� �

FIRST

�

β

� � φ

This would allow the parser to make a correct choice with a lookahead of
only one symbol!

The example grammar has this property!

86

Left factoring

What if a grammar does not have this property?

Sometimes, we can transform a grammar to have this property.

For each non-terminal A find the longest prefix
α common to two or more of its alternatives.

if α

� � ε then replace all of the A productions
A � αβ1

�

αβ2

�
� � �

�

αβn

with
A � αA

�

A

� � β1

�

β2

�
� � �

�

βn

where A

�

is a new non-terminal.

Repeat until no two alternatives for a single
non-terminal have a common prefix.

87

Example

Consider a right-recursive version of the expression grammar:

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

term

� � �

expr

�

3

� �

term

� � �

expr

�

4

� �

term

�

5

�

term

�

:: � �

factor

�

�

�

term
�

6

� �

factor

� � �

term
�

7

� �

factor

�

8

�

factor

�

:: � � � �

9

� �

To choose between productions 2, 3, & 4, the parser must see past the � � �

or

�

and look at the

�

, � , � , or
�

.

FIRST

�

2
� �

FIRST

�

3

� �

FIRST

�

4

� � � φ

This grammar fails the test.

Note: This grammar is right-associative.

88

Example

There are two nonterminals that must be left factored:

�

expr

�

:: � �

term

� � �

expr

�

� �

term

� � �

expr

�

� �

term

�

�

term

�

:: � �

factor

�

�

�

term

�

� �

factor

� � �

term

�

� �

factor

�

Applying the transformation gives us:

�

expr

�

:: � �

term
� �

expr

� �

�

expr

� �

:: � � �
expr

�

� � �

expr

�

�
ε

�

term
�

:: � �

factor

� �

term

� �

�

term
� �

:: � �
�

term

�

� � �

term

�

�

ε

89

Example

Substituting back into the grammar yields

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

term

� �

expr

� �

3

�

expr

� �

:: � � �

expr

�

4

� � �

expr

�

5

�

ε
6

�

term

�

:: � �

factor

� �

term
� �

7

�

term

� �

:: � �
�

term
�

8

� � �

term
�

9

�

ε
10

�

factor

�

:: � � � �

11
� �

Now, selection requires only a single token lookahead.

Note: This grammar is still right-associative.

90

Example

Sentential form Input
–

�

goal

� �� �

� � �

1

�

expr

� �� �

� � �

2

�

term

� �

expr

� � �� �

� � �

6

�

factor

� �

term

� � �

expr

� � �� �

� � �

11

 � �

term

� � �

expr

� � �� �

� � �

–

 � �

term

� � �

expr

� � � �
�

� � �
9

 �ε

�

expr

� � � �
�

�
4

 �
�

�

expr

� � �
�

� � �

–

 �
�

�

expr

� � �

� � � �

2

 �
�

�

term

� �

expr

� � � �

� � � �

6

 �
�

�

factor

� �

term

� � �

expr

� � � �

� � � �

10

 �
� � � 	 �

term

� � �

expr

� � � �

� � � �

–

 �
� � � 	 �

term

� � �

expr

� � � �

� �� �

7

 �
� � � 	 � �

term

� �

expr

� � � �

� �� �

–

 �
� � � 	 � �

term

� �

expr
� � � �

� � ��

6

 �
� � � 	 � �

factor

� �

term
� � �

expr

� � � �

� � ��

11

 �
� � � 	 � � �

term
� � �

expr

� � � �

� � ��

–

 �
� � � 	 � � �

term
� � �

expr

� � � �

� � � �

9

 �
� � � 	 � � �

expr

� � � �

� � � �

5

 �
� � � 	 � � � �

� � � �

The next symbol determined each choice correctly.

91

Back to left-recursion elimination

Given a left-factored CFG, to eliminate left-recursion:

if

�

A � Aα then replace all of the A productions
A � Aα

�

β

��
� � �

�

γ
with

A � NA

�

N � β

�
� � �

�

γ
A

� � αA

� �

ε
where N and A

�

are new productions.

Repeat until there are no left-recursive productions.

92

Generality

Question:

By left factoring and eliminating left-recursion, can we transform
an arbitrary context-free grammar to a form where it can be pre-
dictively parsed with a single token lookahead?

Answer:

Given a context-free grammar that doesn’t meet our conditions,
it is undecidable whether an equivalent grammar exists that does
meet our conditions.

Many context-free languages do not have such a grammar:

�

an0bn �

n
�

1
� �

an1b2n �

n

�

1

�

Must look past an arbitrary number of a’s to discover the 0 or the 1 and so
determine the derivation.

93

Recursive descent parsing

Now, we can produce a simple recursive descent parser from the (right-
associative) grammar.

� � � ��
� � �
� � �
 � � � � �
� � � �

� � �
 � �� � � � �� � � � � � � �
� � � � � � � � �
�

�
 � �� � �� � � � �

 � �� �
� � � �
� � � � � �� � � � � � �
�

�
 � �� � �� � � � �

 � �
 �
 � �� �
 � �� �� � �
 � � �

 � �� �� � �
�

� � � � � �
� �
 � � � � � �
�

� � �
� � �
 � � � � �
� � � �

�
 � �� �
 � �� � � �

 � �
 � � � � � �
� � � � �� � � � �
�

� � �
� � �
 � � � � �
� � � �

�
 � �� �
 � �� � � �

 � �
 �
 � �� � �� �

94

Recursive descent parsing

�
� ��
� � � � � � � � � � � � �� � � � � � �
�

�
 � �� � �� � � � �

 � �
 �
 � �� � �
� � �� � �
 � � �

�
� � �� � �
�

� � � � � �
� � � � � � � � �
�

� � �
� � �
 � � � � �
� � � �

�
 � �� � �
� � � � �

 � �
 � � � � � �
� � � �� � � �
�

� � �
� � �
 � � � � �
� � � �

�
 � �� � �
� � � � �

 � �
 �
 � �� � �� �

� � � � � � �

� � � � � �
� � �� � � � �
�

� � �
� � �
 � � � � �
� � � �

�
 � �� � �� �

 � �
 � � � � � �
� � � � � � �
�

� � �
� � �
 � � � � �
� � � �

�
 � �� � �� �

 � �
 �
 � �� � � � � � � �

95

Building the tree

One of the key jobs of the parser is to build an intermediate representation
of the source code.

To build an abstract syntax tree, we can simply insert code at the appropri-
ate points:

� � � � � � � � �

can stack nodes

�

, � � �

� �
� � �� � �
 � � can stack nodes � ,

�

� �
� � � � can pop 3, build and push subtree

�
 � �� �� � �
 � � can stack nodes

�

, �

�
 � �� � �

can pop 3, build and push subtree

� � � � � � �

can pop and return tree

96

Non-recursive predictive parsing

Observation:

Our recursive descent parser encodes state information in its run-
time stack, or call stack.

Using recursive procedure calls to implement a stack abstraction may not
be particularly efficient.

This suggests other implementation methods:

� explicit stack, hand-coded parser

� stack-based, table-driven parser

97

Non-recursive predictive parsing

Now, a predictive parser looks like:

scanner
table-driven

parser
IR

parsing

tables

stack

source

code

tokens

Rather than writing code, we build tables.

Building tables can be automated!

98

Table-driven parsers

A parser generator system often looks like:

scanner
table-driven

parser
IR

parsing

tables

stack

source

code

tokens

parser

generator
grammar

This is true for both top-down (LL) and bottom-up (LR) parsers

99

Non-recursive predictive parsing

Input: a string w and a parsing table M for G

� � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � Start Symbol

� � �
� � �
 � � � � �
� � �

�
 �
 � �

� � � � � � � � � � � �

� � � � � � �
� � � � � � � � � � � � �
�

� � � � � � �
� � �
�

� � � �

� � �
� � �
 � � � � �
� � �

 � �

� � � � � �

 � �
 	 � X is a non-terminal � 	

� �

M

��
�

� � �
� � � X � Y1Y2

� � � Yk

� �
�

� � � �

� � � �

Yk � Yk � 1 � � � � � Y1

 � �

� � � � � �

�� � � � � � � � �

100

Non-recursive predictive parsing

What we need now is a parsing table M.

Our expression grammar:

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

term

� �

expr

� �

3

�

expr

� �

:: � � �

expr

�

4

� � �

expr

�

5

�

ε
6

�

term

�

:: � �

factor

� �

term

� �

7

�

term

� �

:: � �
�

term

�

8

� � �

term

�

9

�

ε
10

�

factor

�

:: � � � �

11

� �

Its parse table:

�
 � � � � � �

�

$†

�

goal

�

1 1 – – – – –

�

expr

�

2 2 – – – – –

�

expr

� �

– – 3 4 – – 5

�

term

�

6 6 – – – – –

�

term

� �

– – 9 9 7 8 9

�

factor
�

11 10 – – – – –

† we use $ to represent
" ' �

101

FIRST

For a string of grammar symbols α, define FIRST

�

α

�

as:

� the set of terminal symbols that begin strings derived from α:

�

a � Vt

�

α � �

aβ

�

� If α � �

ε then ε �

FIRST

�

α

�

FIRST

�

α

�

contains the set of tokens valid in the initial position in α

To build FIRST

�

X

�

:

1. If X � Vt then FIRST

�

X

�

is

�

X

�

2. If X � ε then add ε to FIRST

�

X

�

.

3. If X � Y1Y2

� � � Yk:

(a) Put FIRST

�

Y1

� � �

ε

�

in FIRST
�

X
�

(b)

�

i : 1 � i

�

k, if ε �

FIRST
�

Y1
� �

� � �

�

FIRST

�

Yi � 1

�

(i.e., Y1

� � � Yi � 1

� �

ε)
then put FIRST

�

Yi
� � �

ε

�

in FIRST

�

X

�

(c) If ε �

FIRST

�

Y1
� �

� � �

�

FIRST

�

Yk

�

then put ε in FIRST

�

X

�

Repeat until no more additions can be made.

102

FOLLOW

For a non-terminal A, define FOLLOW

�

A

�

as

the set of terminals that can appear immediately to the right of A

in some sentential form

Thus, a non-terminal’s FOLLOW set specifies the tokens that can legally
appear after it.

A terminal symbol has no FOLLOW set.

To build FOLLOW

�

A

�

:

1. Put $ in FOLLOW

� �

goal

� �

2. If A � αBβ:

(a) Put FIRST

�

β

� � �

ε

�

in FOLLOW

�
B

�

(b) If β � ε (i.e., A � αB) or ε �
FIRST

�

β

�

(i.e., β � �

ε) then put FOLLOW

�

A

�

in FOLLOW

�

B

�
Repeat until no more additions can be made

103

LL(1) grammars

Previous definition
A grammar G is LL(1) iff. for all non-terminals A, each distinct pair of pro-
ductions A � β and A � γ satisfy the condition FIRST

�

β

� �

FIRST
�

γ
� � φ.

What if A � �

ε?

Revised definition
A grammar G is LL(1) iff. for each set of productions A � α1

�

α2

�
� � �

�

αn:

1. FIRST

�

α1

�
� FIRST

�

α2

�
�� � � � FIRST

�

αn

�

are all pairwise disjoint

2. If αi

� �

ε then FIRST

�

α j

� �

FOLLOW

�

A

� � φ �
�

1

�

j

�

n � i

� � j.

If G is ε-free, condition 1 is sufficient.

104

LL(1) grammars

Provable facts about LL(1) grammars:

1. No left-recursive grammar is LL(1)

2. No ambiguous grammar is LL(1)

3. Some languages have no LL(1) grammar

4. A ε–free grammar where each alternative expansion for A begins with
a distinct terminal is a simple LL(1) grammar.

Example

S � aS

�

a

is not LL(1) because FIRST

�

aS

� � FIRST

�

a

� � �

a

�

S � aS

�

S

� � aS

� �

ε
accepts the same language and is LL(1)

105

LL(1) parse table construction

Input: Grammar G

Output: Parsing table M

Method:

1.

�

productions A � α:

(a)

�

a �

FIRST

�

α

�

, add A � α to M

�

A � a

�

(b) If ε �

FIRST

�

α

�

:

i.

�

b �

FOLLOW

�

A

�

, add A � α to M

�

A � b
�

ii. If $ �

FOLLOW

�

A

�

then add A � α to M

�

A � $

�

2. Set each undefined entry of M to
� � � �

If

�

M

�

A � a

�

with multiple entries then grammar is not LL(1).

Note: recall a � b � Vt, so a � b

� � ε

106

Example

Our long-suffering expression grammar:

S � E T � FT

�

E � T E

�

T

� � � T

� �

T

�

ε
E

� � �

E

� � E

�

ε F � �
 � � � �

FIRST FOLLOW

S

� � � 	
�

 � � �

$

�

E

� � � 	
�

 � � �

$

�

E

� �

ε �

�
� �

� �

$

�

T

� � � 	
�

 � � � �
� � � $

�

T

� �

ε �
�

�
� � � �

� � � $

�

F

� � � 	
�

 � � � �
� � �

�
�

�
� $

�

 � � � �

�

� � 	 � � � 	 �

�

� � � �

�

� � � �

�

� � � �

�

�

�
�

�

�

 � � � 	 �

� � �

$
S S � E S � E � � � � �

E E � TE

�

E � TE

�

� � � � �

E

�

� � E
� � �

E E

� � � E � � E

� � ε
T T � FT

�

T � FT
�

� � � � �

T

�

� � T

� � ε T

� � ε T

� � � T T

� � �

T T

� � ε
F F � �

F � � � 	 � � � � �

107

A grammar that is not LL(1)

�

stmt

�

:: � � � �

expr

� � �
� �

stmt

�

� � � �

expr

� � �
� �

stmt

�
 � �
 �

stmt

�

�
� � �

Left-factored:

�

stmt

�

:: � � � �

expr

� � �
� �

stmt

� �

stmt

� � �
� � �

�

stmt

� �

:: �
 � �
 �

stmt

� �

ε

Now, FIRST

� �

stmt

� � � � �

ε �
 � �
 �

Also, FOLLOW

� �

stmt

� � � � �
 � �
 � $

�

But, FIRST

� �

stmt

� � � �

FOLLOW

� �

stmt

� � � � �
 � �
 � � � φ

On seeing
 � �
, conflict between choosing

�

stmt

� �

:: �
 � �
 �

stmt

�

and
�

stmt

� �

:: � ε

� grammar is not LL(1)!

The fix:

Put priority on

�

stmt
� �

:: �
 � �
 �

stmt

�

to associate
 � �
 with clos-
est previous � �
� .

108

Error recovery

Key notion:

� For each non-terminal, construct a set of terminals on which the parser
can synchronize

� When an error occurs looking for A, scan until an element of SYNCH

�

A

�

is found

Building SYNCH:

1. a �

FOLLOW

�

A

� � a �

SYNCH

�

A

�

2. place keywords that start statements in SYNCH

�

A

�

3. add symbols in FIRST

�

A

�

to SYNCH
�

A
�

If we can’t match a terminal on top of stack:

1. pop the terminal

2. print a message saying the terminal was inserted

3. continue the parse

(i.e., SYNCH

�

a

� � Vt � �

a

�

)

109

Chapter 4: LR Parsing

110

Some definitions

Recall

For a grammar G, with start symbol S, any string α such that S � �

α is
called a sentential form

� If α � V

�

t , then α is called a sentence in L

�

G

�

� Otherwise it is just a sentential form (not a sentence in L

�

G

�

)

A left-sentential form is a sentential form that occurs in the leftmost deriva-
tion of some sentence.

A right-sentential form is a sentential form that occurs in the rightmost
derivation of some sentence.

Copyright c

�

2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or
fee. Request permission to publish from hosking@cs.purdue.edu.

111

Bottom-up parsing

Goal:

Given an input string w and a grammar G, construct a parse tree by
starting at the leaves and working to the root.

The parser repeatedly matches a right-sentential form from the language
against the tree’s upper frontier.

At each match, it applies a reduction to build on the frontier:

� each reduction matches an upper frontier of the partially built tree to
the RHS of some production

� each reduction adds a node on top of the frontier

The final result is a rightmost derivation, in reverse.

112

Example

Consider the grammar

1 S � � AB

2 A � A

� �

3

� �

4 B �

and the input string � � � �

Prod’n. Sentential Form
3 � � � �

2 � A

� �

4 � A

1 aABe
– S

The trick appears to be scanning the input and finding valid sentential
forms.

113

Handles

What are we trying to find?

A substring α of the tree’s upper frontier that

matches some production A � α where reducing α to A is one step in
the reverse of a rightmost derivation

We call such a string a handle.

Formally:

a handle of a right-sentential form γ is a production A � β and a po-
sition in γ where β may be found and replaced by A to produce the
previous right-sentential form in a rightmost derivation of γ

i.e., if S � �

rm αAw �

rm αβw then A � β in the position following α is a
handle of αβw

Because γ is a right-sentential form, the substring to the right of a handle
contains only terminal symbols.

114

Handles

S

α

A

wβ
The handle A � β in the parse tree for αβw

115

Handles

Theorem:

If G is unambiguous then every right-sentential form has a unique han-
dle.

Proof: (by definition)

1. G is unambiguous � rightmost derivation is unique

2. � a unique production A � β applied to take γi � 1 to γi

3. � a unique position k at which A � β is applied

4. � a unique handle A � β

116

Example

The left-recursive expression grammar (original form)

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

expr

� � �

term

�

3

� �

expr

� � �

term

�

4

� �

term

�

5

�

term

�

:: � �

term

�

�

�

factor

�

6

� �

term

� � �

factor

�

7

� �

factor

�

8

�

factor

�

:: � � � �

9

� �

Prod’n. Sentential Form
–

�

goal

�

1

�

expr

�
3

�

expr
� � �

term

�

5
�

expr
� � �

term

�

�

�

factor

�

9
�

expr

� � �

term

�

� �

7
�

expr

� � �

factor

�

� �

8

�

expr

� � � � � � �

4

�

term

� � � � � � �

7

�

factor

� � � � � � �

9

�
 � � � � � �

117

Handle-pruning

The process to construct a bottom-up parse is called handle-pruning.

To construct a rightmost derivation

S � γ0

� γ1

� γ2

�
� � �

� γn � 1

� γn

� w

we set i to n and apply the following simple algorithm

� � � � � n

 � �� � � �

1.

� � �
 � �
 �� �
 �
 Ai

� βi

� � γi

2. �
 � � � �
 βi

� � � �

Ai

� � �
�
� � �
 γi � 1

This takes 2n steps, where n is the length of the derivation

118

Stack implementation

One scheme to implement a handle-pruning, bottom-up parser is called a
shift-reduce parser.

Shift-reduce parsers use a stack and an input buffer

1. initialize stack with $

2. Repeat until the top of the stack is the goal symbol and the input token
is $

a) find the handle
if we don’t have a handle on top of the stack, shift an input symbol
onto the stack

b) prune the handle
if we have a handle A � β on the stack, reduce

i) pop

�

β

�

symbols off the stack

ii) push A onto the stack

119

Example: back to � � ��� �

1

�

goal

�

:: � �

expr

�

2

�

expr

�

:: � �

expr

� � �

term

�

3

� �

expr

�

�
�

term

�

4

� �

term

�

5

�

term

�

:: � �

term

� � �

factor

�

6

� �

term

� � �

factor

�

7

� �

factor

�

8

�

factor

�

:: � � � 	

9

� �

Stack Input Action
$

 �
� � � 	 � �

shift
$

 �

� � � 	 � �
reduce 9

$

�

factor

�

� � � 	 � �
reduce 7

$

�

term

�

� � � 	 � �
reduce 4

$

�

expr

�

� � � 	 � �

shift
$

�

expr

�

� � � 	 � �

shift
$

�

expr

�

� � � 	 � �

reduce 8
$

�

expr

�

�
�

factor

� � �

reduce 7
$

�

expr

�

�
�

term

� � �

shift
$

�

expr

�

�
�

term

� � �

shift
$

�

expr

�

�
�

term
� � �

reduce 9
$

�

expr

�

�
�

term
� � �

factor

�

reduce 5
$

�

expr

�

�
�

term
�

reduce 3
$

�

expr

�

reduce 1
$

�

goal
�

accept

1. Shift until top of stack is the right end of a handle

2. Find the left end of the handle and reduce

5 shifts + 9 reduces + 1 accept

120

Shift-reduce parsing

Shift-reduce parsers are simple to understand

A shift-reduce parser has just four canonical actions:

1. shift — next input symbol is shifted onto the top of the stack

2. reduce — right end of handle is on top of stack;
locate left end of handle within the stack;
pop handle off stack and push appropriate non-terminal LHS

3. accept — terminate parsing and signal success

4. error — call an error recovery routine

The key problem: to recognize handles (not covered in this course).

121

LR

�

k

�

grammars

Informally, we say that a grammar G is LR

�

k

�

if, given a rightmost derivation

S � γ0

� γ1

� γ2

�
� � �

� γn

� w �

we can, for each right-sentential form in the derivation,

1. isolate the handle of each right-sentential form, and
2. determine the production by which to reduce

by scanning γi from left to right, going at most k symbols beyond the right
end of the handle of γi.

122

LR

�

k

�

grammars

Formally, a grammar G is LR

�

k

�

iff.:

1. S � �

rm αAw �

rm αβw, and

2. S � �

rm γBx �

rm αβy, and

3. FIRSTk

�

w

� � FIRSTk

�

y

�

� αAy � γBx

i.e., Assume sentential forms αβw and αβy, with common prefix αβ and
common k-symbol lookahead FIRSTk

�

y

� � FIRSTk

�

w

�

, such that αβw re-
duces to αAw and αβy reduces to γBx.

But, the common prefix means αβy also reduces to αAy, for the same re-
sult.

Thus αAy � γBx.

123

Why study LR grammars?

LR(1) grammars are often used to construct parsers.

We call these parsers LR(1) parsers.

� everyone’s favorite parser

� virtually all context-free programming language constructs can be ex-
pressed in an LR(1) form

� LR grammars are the most general grammars parsable by a determin-
istic, bottom-up parser

� efficient parsers can be implemented for LR(1) grammars

� LR parsers detect an error as soon as possible in a left-to-right scan
of the input

� LR grammars describe a proper superset of the languages recognized
by predictive (i.e., LL) parsers

LL

�

k

�

: recognize use of a production A � β seeing first k symbols of β

LR

�

k

�

: recognize occurrence of β (the handle) having seen all of what
is derived from β plus k symbols of lookahead

124

Left versus right recursion

Right Recursion:

� needed for termination in predictive parsers

� requires more stack space

� right associative operators

Left Recursion:

� works fine in bottom-up parsers

� limits required stack space

� left associative operators

Rule of thumb:

� right recursion for top-down parsers

� left recursion for bottom-up parsers

125

Parsing review

Recursive descent

A hand coded recursive descent parser directly encodes a grammar
(typically an LL(1) grammar) into a series of mutually recursive proce-
dures. It has most of the linguistic limitations of LL(1).

LL

�

k

�

An LL

�

k

�

parser must be able to recognize the use of a production after
seeing only the first k symbols of its right hand side.

LR

�

k

�

An LR

�

k

�

parser must be able to recognize the occurrence of the right
hand side of a production after having seen all that is derived from that
right hand side with k symbols of lookahead.

The dilemmas:

� LL dilemma: pick A � b or A � c ?

� LR dilemma: pick A � b or B � b ?

126

Chapter 5: JavaCC and JTB

127

The Java Compiler Compiler

� Can be thought of as “Lex and Yacc for Java.”

� It is based on LL(k) rather than LALR(1).

� Grammars are written in EBNF.

� The Java Compiler Compiler transforms an EBNF grammar into an
LL(k) parser.

� The JavaCC grammar can have embedded action code written in Java,
just like a Yacc grammar can have embedded action code written in C.

� The lookahead can be changed by writing

� � �� 	� � 	 � �
� � �

�

.

� The whole input is given in just one file (not two).

128

The JavaCC input format

One file:

� header

� token specifications for lexical analysis

� grammar

129

The JavaCC input format

Example of a token specification:

� �� � � �

�

� � �� � � ��
�

� � � � � 	� � � �� � � � � � � � � �� � � � � � � � � � � � � � � �

�

Example of a production:

� � �
 � � � �
 �
� � � � � � �
 � �� � � � �

� �
�

� � � � �
 �
� � � � � � � �
 � �� � � � � ��
 � � � � � � � � � �

�

130

Generating a parser with JavaCC

� � �� � � � � � � � � � �
� � 	 	 �
�
� � �
 � � �� � �
� � � � � � � �
 � � � �

 � � �

� � �� � � � � � �
� � �� 	 	 � � � � �
� � �� � � � � � � � � � � � � � � � � �
 �� � �
�

� � �� � � � � � �� � � �
� 	 	 �� � �
 � � �
 �� � � � � � �� � � �
�

131

The Visitor Pattern

For object-oriented programming,

the Visitor pattern enables

the definition of a new operation

on an object structure

without changing the classes

of the objects.

Gamma, Helm, Johnson, Vlissides:
Design Patterns, 1995.

132

Sneak Preview

When using the Visitor pattern,

� the set of classes must be fixed in advance, and

� each class must have an accept method.

133

First Approach: Instanceof and Type Casts

The running Java example: summing an integer list.

� � �
� � � �
 � � � � � �

� � � � � � � � � � � �
 �
� � � � � � � � �

� � � � � � � � � � � � �
 �
� � � � � � � �

� � � �
 �
�

� � � � � � � � �

�

134

First Approach: Instanceof and Type Casts

� � � � � � 	 	 � �
 � � � � � � � �
 � �

� � � � � � � � �

� � � �
 � � �� � �

 � � � �
 �

� � � �
 � �� � �

 � �

� � � � � � � � � � �
 � � � � � �

�� � �

 � � � � �
 �

 � �
 � � � � � � � � � � �
 � � � � � � � �

� � � � � � � � � � � � � � � � �
�

�
 �
�

� � � � � � � � � � �
�

� � � � �

	 	 � � � � �
 � �
 � � � � � �
 � � � � � �

�

�

Advantage: The code is written without touching the classes

� � �

and

� � � � .

Drawback: The code constantly uses type casts and

� � � � � � �
 � �

to
determine what class of object it is considering.

135

Second Approach: Dedicated Methods

The first approach is not object-oriented!

To access parts of an object, the classical approach is to use dedicated
methods which both access and act on the subobjects.

� � �
� � � �
 � � � � �

� � � � � � � � �

�

We can now compute the sum of all components of a given

� � � � -object

�

by writing

�
� � � � � � .

136

Second Approach: Dedicated Methods

� � � � � � � � � � � �
 �
� � � � � � � �

� � � � � � � � � � � � � � �

�
 � �� � � �

�

�
� � � � � � � � � � � � �
 �
� � � � � � � �

� � � �
 �
�

� � � � � � � � �

� � � � � � � � � � � � � � �

�
 � �� � �
 �
 � � � � �
� � � � � � �

�

�

Advantage: The type casts and

� � � � � � �
 � �

operations have disappeared,
and the code can be written in a systematic way.

Disadvantage: For each new operation on

� � � � -objects, new dedicated
methods have to be written, and all classes must be recompiled.

137

Third Approach: The Visitor Pattern

The Idea:

� Divide the code into an object structure and a Visitor (akin to Func-
tional Programming!)

� Insert an � � �
 � � method in each class. Each accept method takes a
Visitor as argument.

� A Visitor contains a � � � � � method for each class (overloading!) A
method for a class C takes an argument of type C.

� � �
� � � �
 � � � � �

� � �
 � � �
 � � � � � � � � � � � � �

�
� � �
� � � �
 � � � � � � � �

� � �
 � � � � � � � � � � � �

� � �
 � � � � � � � � � � � � �

�

138

Third Approach: The Visitor Pattern

� The purpose of the � � �
 � � methods is to
invoke the � � � � � method in the Visitor which can handle the current
object.

� � � � � � � � � � � �
 �
� � � � � � � �

� � � � � � � � �
 � � �
 � � � � � � � � � � � � �

� � � � � � � � � � � � � �

�

�
� � � � � � � � � � � � �
 �
� � � � � � � �

� � � �
 �
�

� � � � � � � � �

� � � � � � � � �
 � � �
 � � � � � � � � � � � � �

� � � � � � � � � � � � � �

�

�

139

Third Approach: The Visitor Pattern

� The control flow goes back and forth between the � � � � � methods in
the Visitor and the � � �
 � � methods in the object structure.

� � � � � � � �� � � � � � � � � � �
 �
� � � � � � � � � � �

� � � � � � � � �

� � � � � � � � �
 � � � � � � � � � � � � �

� � � � � � � � �
 � � � � � � � � � � � � �

� � � � � � � � � � �
 �
�

� � � � � �
� � � �
 � � � � � � � � �

�

�
� � � � �

� � �� � � � � � � � � � �
 � � � �� � � � � � � � � �

�
� � � �
 � � � � � � �

� � � �
 � � � � �
� �� � � � �� � � � � � � � � �

Notice: The � � � � � methods describe both
1) actions, and 2) access of subobjects.

140

Comparison

The Visitor pattern combines the advantages of the two other approaches.

Frequent Frequent
type casts? recompilation?

Instanceof and type casts Yes No
Dedicated methods No Yes
The Visitor pattern No No

The advantage of Visitors: New methods without recompilation!
Requirement for using Visitors: All classes must have an accept method.

Tools that use the Visitor pattern:

� JJTree (from Sun Microsystems) and the Java Tree Builder (from Pur-
due University), both frontends for The Java Compiler Compiler from
Sun Microsystems.

141

Visitors: Summary

� Visitor makes adding new operations easy. Simply write a new
visitor.

� A visitor gathers related operations. It also separates unrelated
ones.

� Adding new classes to the object structure is hard. Key consid-
eration: are you most likely to change the algorithm applied over an
object structure, or are you most like to change the classes of objects
that make up the structure.

� Visitors can accumulate state.

� Visitor can break encapsulation. Visitor’s approach assumes that
the interface of the data structure classes is powerful enough to let
visitors do their job. As a result, the pattern often forces you to provide
public operations that access internal state, which may compromise
its encapsulation.

142

The Java Tree Builder

The Java Tree Builder (JTB) has been developed here at Purdue in my
group.

JTB is a frontend for The Java Compiler Compiler.

JTB supports the building of syntax trees which can be traversed using
visitors.

JTB transforms a bare JavaCC grammar into three components:

� a JavaCC grammar with embedded Java code for building a syntax
tree;

� one class for every form of syntax tree node; and

� a default visitor which can do a depth-first traversal of a syntax tree.

143

The Java Tree Builder

The produced JavaCC grammar can then be processed by the Java Com-
piler Compiler to give a parser which produces syntax trees.

The produced syntax trees can now be traversed by a Java program by
writing subclasses of the default visitor.

�
�

� �
�

�

� �JavaCC
grammar

JTB JavaCC grammar
with embedded
Java code

Java Compiler
Compiler

Parser

Program

Syntax tree
with accept methods

Syntax-tree-node
classes

Default visitor

144

Using JTB

� � � � � � � � � � �
� � 	 	 �
�
� � �
 � � � �
� � � �
�

� �

� � �� � � � � �
� � � �
�

� � 	 	 �
�
� � �
 � � �� � �
� � � � � � � �
 � � � �

 � � �

� � �� � � � � � �
� � �� 	 	 � � � � �
� � �� � � � � � � � � � � � � � � � � �
 �� � �
�

� �
 � � � � � � � � � � � � � � �

� � �� � � � � � �� � � �
� 	 	 � � � �
 � � � �� � � � � �

 � � � �� � � �
�
� � �

 �
 � � �
 � � �
 � � � � � � � �

145

Example (simplified)

For example, consider the Java 1.1 production

� � �
 	 � � � � � �
� � � � � � �

�
� � �� � � � � ��
 � � � � � � � 	 � � � � � �
� � � �
� � � � � � �

� � ��
 � � � � � � � �

JTB produces:

	 � � � � � �
� � 	 � � � � � �
� � � � �

�
� � �� � � � � ��
 � � � � � � � �

	 � � � � � �
� � � �
� � � � � � � �

� � ��
 � � � � � � � � � � �

� � � �
� � �� � � � � ��
 � � � � � � �

� � � 	 � � � � � �
� � � �
� � � � � � �

� � � � � ��
 � � � � � � �

� �
 � �� � �
 � 	 � � � � � �
� � � � �
� � �
� � � � � �

�

Notice that the production returns a syntax tree represented as an

	 � � � � � �
� � object.

146

Example (simplified)

JTB produces a syntax-tree-node class for

	 � � � � � �
� � :

� � � � � � � � � � � 	 � � � � � �
� � � � � �
 �
� � � � �

 �

� � �� � � � � ��
 � � � � � � � � 	 � � � � � �
� � � �
� � � � � � � �

� � ��
 � � � � � � � �

� � � � � � 	 � � � � � �
� � �
� � �� � � � � ��
 � � � � � � �
�

	 � � � � � �
� � � �
� � � � � � �
�

� � ��
 � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � �
 � � �
 � � � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � � � � � �

�

�

Notice the � � �
 � � method; it invokes the method � � � � � for

	 � � � � � �
� � in
the default visitor.

147

Example (simplified)

The default visitor looks like this:

� � � � � � � � � � � �
 � � � � � � � �� � � � � � � � � � �
 �
� � � � � � � � � � �

� � �
	 	

	 	 � � � �
� � �� � � � � ��
 � � � � � � �

	 	 � � � � 	 � � � � � �
� � � �
� � � � � � �

	 	 � � � � � � ��
 � � � � � � �

	 	
� � � � � � � � �
 � � � � � � 	 � � � � � �
� � � � �

� �
� �
� � � �
 � � � � � � � � �

� �
� �
� � � �
 � � � � � � � � �

� �
� �
� � � �
 � � � � � � � � �

�

�

Notice the body of the method which visits each of the three subtrees of
the

	 � � � � � �
� � node.

148

Example (simplified)
Here is an example of a program which operates on syntax trees for Java
1.1 programs. The program prints the right-hand side of every assignment.
The entire program is six lines:

� � � � � � � � � � � � �� � � � 	 � � � � � � � �
 � �
�
 � �
 � � � � � � � �� � � � � � � �

� � �
 � � � � � � 	 � � � � � �
� � � � �

�
�
 � � �
� � � �
� � � �
 � �
�
 � � �
� � � �
� � � �

� �
� �
� � � �
 � � � � � � � � � � �
� �� � � � �� � � �

� �
� �
� � � �
 � � � � � � � � �

�

�

When this visitor is passed to the root of the syntax tree, the depth-first
traversal will begin, and when

	 � � � � � �
� � nodes are reached, the method

� � � � � in

� �� � � � 	 � � � � � � � �

is executed.

Notice the use of

�
�
 � � �
� � � �
� . It is a visitor which pretty prints Java
1.1 programs.

JTB is bootstrapped.

149

Chapter 6: Semantic Analysis

150

Semantic Analysis

The compilation process is driven by the syntactic structure of the program
as discovered by the parser

Semantic routines:

� interpret meaning of the program based on its syntactic structure

� two purposes:

– finish analysis by deriving context-sensitive information

– begin synthesis by generating the IR or target code

� associated with individual productions of a context free grammar or
subtrees of a syntax tree

Copyright c

�

2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or
fee. Request permission to publish from hosking@cs.purdue.edu.

151

Context-sensitive analysis

What context-sensitive questions might the compiler ask?

1. Is � scalar, an array, or a function?

2. Is � declared before it is used?

3. Are any names declared but not used?

4. Which declaration of � does this reference?

5. Is an expression type-consistent?

6. Does the dimension of a reference match the declaration?

7. Where can � be stored? (heap, stack,� � �)

8. Does � � reference the result of a malloc()?

9. Is � defined before it is used?

10. Is an array reference in bounds?

11. Does function

� � � produce a constant value?

12. Can � be implemented as a memo-function?

These cannot be answered with a context-free grammar

152

Context-sensitive analysis

Why is context-sensitive analysis hard?

� answers depend on values, not syntax

� questions and answers involve non-local information

� answers may involve computation

Several alternatives:

abstract syntax tree specify non-local computations
(attribute grammars) automatic evaluators

symbol tables central store for facts
express checking code

language design simplify language
avoid problems

153

Symbol tables

For compile-time efficiency, compilers often use a symbol table:

� associates lexical names (symbols) with their attributes

What items should be entered?

� variable names

� defined constants

� procedure and function names

� literal constants and strings

� source text labels

� compiler-generated temporaries (we’ll get there)

Separate table for structure layouts (types) (field offsets and lengths)

A symbol table is a compile-time structure

154

Symbol table information

What kind of information might the compiler need?

� textual name

� data type

� dimension information (for aggregates)

� declaring procedure

� lexical level of declaration

� storage class (base address)

� offset in storage

� if record, pointer to structure table

� if parameter, by-reference or by-value?

� can it be aliased? to what other names?

� number and type of arguments to functions

155

Nested scopes: block-structured symbol tables

What information is needed?

� when we ask about a name, we want the most recent declaration

� the declaration may be from the current scope or some enclosing
scope

� innermost scope overrides declarations from outer scopes

Key point: new declarations (usually) occur only in current scope

What operations do we need?

� � � �
 � � � � � � � � � � �
 �� � � �
 � � �� � �
 � – binds key to value

� � � �
 � � �
 � � � � � � � � �
 � � – returns value bound to key

� � � �
 �
� � � � � � �
 � � – remembers current state of table

� � � �

�
 � � � �
 � � – restores table to state at most recent scope that
has not been ended

May need to preserve list of locals for the debugger

156

Attribute information

Attributes are internal representation of declarations

Symbol table associates names with attributes

Names may have different attributes depending on their meaning:

� variables: type, procedure level, frame offset

� types: type descriptor, data size/alignment

� constants: type, value

� procedures: formals (names/types), result type, block information (lo-
cal decls.), frame size

157

Type expressions

Type expressions are a textual representation for types:

1. basic types: boolean, char, integer, real, etc.

2. type names

3. constructed types (constructors applied to type expressions):

(a) array

�

I � T

�

denotes array of elements type T , index type I

e.g., array

�

1� � � 10 � integer

�

(b) T1

� T2 denotes Cartesian product of type expressions T1 and T2

(c) records: fields have names
e.g., record

� � � � integer

�
�

� � � real

� �

(d) pointer

�

T

�

denotes the type “pointer to object of type T ”

(e) D � R denotes type of function mapping domain D to range R

e.g., integer � integer � integer

158

Type descriptors

Type descriptors are compile-time structures representing type expres-
sions

e.g., char � char � pointer

�

integer

�

�

�

char char

pointer

integer

or

�

char

pointer

integer

159

Type compatibility

Type checking needs to determine type equivalence

Two approaches:

Name equivalence: each type name is a distinct type

Structural equivalence: two types are equivalent iff. they have the same
structure (after substituting type expressions for type names)

� s � t iff. s and t are the same basic types

� array

�

s1 � s2

� � array

�

t1 � t2

�

iff. s1
� t1 and s2

� t2

� s1

� s2

� t1

� t2 iff. s1

� t1 and s2

� t2

� pointer

�

s

� � pointer

�

t

�

iff. s � t

� s1

� s2

� t1

� t2 iff. s1
� t1 and s2

� t2

160

Type compatibility: example

Consider:

� � �
 � � � � � � �
 � � �

�� � �
 � � � � � � ��

� � � � � � � � ��

� � � �
 � � �

�� � � � �
 � � �

Under name equivalence:

� �
 � � and

� � � � have the same type

� �, � and � have the same type

� � and �
 � � have different type

Under structural equivalence all variables have the same type

Ada/Pascal/Modula-2 are somewhat confusing: they treat distinct type def-
initions as distinct types, so

� has different type from � and �

161

Type compatibility: Pascal-style name equivalence

Build compile-time structure called a type graph:

� each constructor or basic type creates a node

� each name creates a leaf (associated with the type’s descriptor)

�� � � ��� � �

� � � 	
 pointer
� � � �

pointer
�

pointer

 �

Type expressions are equivalent if they are represented by the same node
in the graph

162

Type compatibility: recursive types

Consider:� � �
 � � � � � � �
 � � �

�
 � � � �
 � � �

� � � � � � � �
 �
� �

�
 � � � � � � ��

�
�

We may want to eliminate the names from the type graph

Eliminating name

� � � �

from type graph for record:

record��� � �

�

�

��� �
	 integer

�

� � � �

pointer

� � � �

163

Type compatibility: recursive types

Allowing cycles in the type graph eliminates �
 � �

:

record��� � �

�

�

��� �
	 integer

�

� � � �

pointer

164

Chapter 7: Translation and Simplification

165

IR trees: Expressions

i

CONST
Integer constant i

n

NAME
Symbolic constant n [a code label]

t

TEMP
Temporary t [one of any number of “registers”]

o e1 e2

BINOP
Application of binary operator o:

PLUS, MINUS, MUL, DIV
AND, OR, XOR [bitwise logical]
LSHIFT, RSHIFT [logical shifts]
ARSHIFT [arithmetic right-shift]

to integer operands e1 (evaluated first) and e2 (evaluated second)

e

MEM
Contents of a word of memory starting at address e

f

�

e1 �� � � � en

�

CALL
Procedure call; expression f is evaluated before arguments e1 �� � � � en

s e

ESEQ
Expression sequence; evaluate s for side-effects, then e for result

Copyright c

�

2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or
fee. Request permission to publish from hosking@cs.purdue.edu.

166

IR trees: Statements

t

TEMP e

MOVE

Evaluate e into temporary t

e1

MEM e2

MOVE

Evaluate e1 yielding address a, e2 into word at a

e

EXP
Evaluate e and discard result

e

�

l1 �� � � � ln

�

JUMP
Transfer control to address e; l1 �� � � � ln are all possible values for e

o e1 e2 t f

CJUMP
Evaluate e1 then e2, yielding a and b, respectively; compare a with b
using relational operator o:

EQ, NE [signed and unsigned integers]
LT, GT, LE, GE [signed]
ULT, ULE, UGT, UGE [unsigned]

jump to t if true, f if false

s1 s2

SEQ
Statement s1 followed by s2

n

LABEL
Define constant value of name n as current code address; NAME

�

n

�

can be used as target of jumps, calls, etc.

167

Kinds of expressions

Expression kinds indicate “how expression might be used”

Ex(exp) expressions that compute a value

Nx(stm) statements: expressions that compute no value

Cx conditionals (jump to true and false destinations)

RelCx(op, left, right)

IfThenElseExp expression/statement depending on use

Conversion operators allow use of one form in context of another:

unEx convert to tree expression that computes value of inner tree

unNx convert to tree statement that computes inner tree but returns no
value

unCx(t, f) convert to statement that evaluates inner tree and branches to
true destination if non-zero, false destination otherwise

168

Translating

Simple variables: fetch with a MEM:

PLUS TEMP fp CONST k

BINOP
MEM

Ex(MEM(

�

(TEMP fp, CONST k)))

where fp is home frame of variable, found by following static links; k is
offset of variable in that level

Array variables: Suppose arrays are pointers to array base. So fetch with
a MEM like any other variable:

Ex(MEM(

�

(TEMP fp, CONST k)))

Thus, for e

�

i

�

:

Ex(MEM(

�

(e.unEx, � (i.unEx, CONST w))))

i is index expression and w is word size

Note: must first check array index i � size

�

e

�

; runtime will put size in
word preceding array base

169

Translating

Record variables: Suppose records are pointers to record base, so fetch like other vari-
ables. For e.

(

:

Ex(MEM(

�

(e.unEx, CONST o)))

where o is the byte offset of the field

(

in the record
Note: must check record pointer is non-nil (i.e., non-zero)

String literals: Statically allocated, so just use the string’s label

Ex(NAME(label))

where the literal will be emitted as:

� �
 � � � �

� � � � �� � �� � � * � � ��
 �
 � � � �

Record creation: � �

f1

� e1 � f2

� e2 �� � � fn

� en

�

in the (preferably GC’d) heap, first allocate
the space then initialize it:

Ex(ESEQ(SEQ(MOVE(TEMP r, externalCall(”allocRecord”, [CONST n])),
SEQ(MOVE(MEM(TEMP r), e1.unEx)),

SEQ(. . . ,
MOVE(MEM(+(TEMP r, CONST

�

n � 1

�

w)),
en.unEx))),

TEMP r))

where w is the word size

Array creation: � �

e1
�
 (

e2: Ex(externalCall(”initArray”, [e1.unEx, e2.unEx]))

170

Control structures

Basic blocks:

� a sequence of straight-line code

� if one instruction executes then they all execute

� a maximal sequence of instructions without branches

� a label starts a new basic block

Overview of control structure translation:

� control flow links up the basic blocks

� ideas are simple

� implementation requires bookkeeping

� some care is needed for good code

171

while loops

while c do s:

1. evaluate c

2. if false jump to next statement after loop

3. if true fall into loop body

4. branch to top of loop

e.g.,
test :

if not(c) jump done
s
jump test

done:
Nx(SEQ(SEQ(SEQ(LABEL test, c.unCx(body, done)),

SEQ(SEQ(LABEL body, s.unNx), JUMP(NAME test))),
LABEL done))

repeat e1 until e2

� evaluate/compare/branch at bottom of loop

172

for loops

for

�

:= e1 to e2 do s
1. evaluate lower bound into index variable
2. evaluate upper bound into limit variable
3. if index � limit jump to next statement after loop
4. fall through to loop body
5. increment index
6. if index

�

limit jump to top of loop body
t1

� e1
t2

� e2
if t1

� t2 jump done
body : s

t1

� t1

�

1
if t1

�

t2 jump body
done:

For break statements:

� when translating a loop push the done label on some stack

� break simply jumps to label on top of stack

� when done translating loop and its body, pop the label

173

Function calls

f

�

e1 �� � � � en

�

:

Ex(CALL(NAME label f , [sl,e1,. . . en]))

where sl is the static link for the callee f , found by following n static links
from the caller, n being the difference between the levels of the caller and
the callee

174

Comparisons

Translate a op b as:

RelCx(op, a.unEx, b.unEx)

When used as a conditional unCx

�

t � f

�

yields:

CJUMP(op, a.unEx, b.unEx, t, f)

where t and f are labels.

When used as a value unEx yields:

ESEQ(SEQ(MOVE(TEMP r, CONST 1),
SEQ(unCx(t, f),

SEQ(LABEL f,
SEQ(MOVE(TEMP r, CONST 0), LABEL t)))),

TEMP r)

175

Conditionals

The short-circuiting Boolean operators have already been transformed into
if-expressions in the abstract syntax:

e.g., x � 5 & a � b turns into if x � 5 then a � b else 0

Translate if e1 then e2 else e3 into: IfThenElseExp(e1, e2, e3)

When used as a value unEx yields:

ESEQ(SEQ(SEQ(e1.unCx(t, f),
SEQ(SEQ(LABEL t,

SEQ(MOVE(TEMP r, e2.unEx),
JUMP join)),

SEQ(LABEL f,
SEQ(MOVE(TEMP r, e3.unEx),

JUMP join)))),
LABEL join),

TEMP r)

As a conditional unCx

�

t � f
�

yields:

SEQ(e1.unCx(tt,ff), SEQ(SEQ(LABEL tt, e2.unCx(t, f)),
SEQ(LABEL ff, e3.unCx(t, f))))

176

Conditionals: Example

Applying unCx

�

t � f

�

to if x � 5 then a � b else 0:

SEQ(CJUMP(LT, x.unEx, CONST 5, tt, ff),
SEQ(SEQ(LABEL tt, CJUMP(GT, a.unEx, b.unEx, t, f)),

SEQ(LABEL ff, JUMP f)))

or more optimally:

SEQ(CJUMP(LT, x.unEx, CONST 5, tt, f),
SEQ(LABEL tt, CJUMP(GT, a.unEx, b.uneX, t, f)))

177

One-dimensional fixed arrays

�� � � � 	 � � 	� � �
� �

� � � � � � �
 �
� �

� � �

� �
 �

translates to:

MEM(+(TEMP fp, +(CONST k � 2w, � (CONST w, e.unEx))))

where k is offset of static array from fp, w is word size

In Pascal, multidimensional arrays are treated as arrays of arrays, so

	 � �
�

� �

is equivalent to A[i][j], so can translate as above.

178

Multidimensional arrays

Array allocation:

constant bounds

– allocate in static area, stack, or heap

– no run-time descriptor is needed

dynamic arrays: bounds fixed at run-time

– allocate in stack or heap
– descriptor is needed

dynamic arrays: bounds can change at run-time

– allocate in heap
– descriptor is needed

179

Multidimensional arrays

Array layout:

� Contiguous:

1. Row major
Rightmost subscript varies most quickly:

	 � �
�

� �
�

	 � �
�

� �
� � � �

	 � �
�

� �
�

	 � �
�

� �
� � � �

Used in PL/1, Algol, Pascal, C, Ada, Modula-3
2. Column major

Leftmost subscript varies most quickly:

	 � �
�

� �
�

	 � �
�

� �
� � � �

	 � �
�

� �
�

	 � �
�

� �
� � � �

Used in FORTRAN

� By vectors

Contiguous vector of pointers to (non-contiguous) subarrays

180

Multi-dimensional arrays: row-major layout

� � � � � � �
� �

�
�

�
� �

� � � � �

� � � � � � � �
� �

� � � � � � � � � � �
� �

� � � � �

no. of elt’s in dimension j:

D j

� Uj

� L j

�

1

position of

	 �

i1� � � � � in

�

:

�

in � Ln

�

� �

in � 1

� Ln � 1

�

Dn

� �

in � 2

� Ln � 2

�

DnDn � 1

�
� � �

� �

i1 � L1

�

Dn

� � � D2

which can be rewritten as

variable part

� �� �

i1D2

� � � Dn

�

i2D3
� � � Dn

�
� � �

�

in � 1Dn

�

in

� �

L1D2

� � � Dn
�

L2D3

� � � Dn

�
� � �

�

Ln � 1Dn

�

Ln

�

� � � �

constant part

address of

	 �

i1� � � � � in

�

:
address(

	

) + ((variable part � constant part) � element size)

181

case statements

case E of V1: S1 . . .Vn: Sn end

1. evaluate the expression

2. find value in case list equal to value of expression

3. execute statement associated with value found

4. jump to next statement after case

Key issue: finding the right case

� sequence of conditional jumps (small case set)
O

� �

cases

� �

� binary search of an ordered jump table (sparse case set)
O

�

log2

�

cases

� �

� hash table (dense case set)
O

�

1

�

182

case statements

case E of V1: S1 . . .Vn: Sn end

One translation approach:
t := expr
jump test

L1: � �

 � � � S1
jump next

L2: code for S2
jump next
. . .

Ln: code for Sn
jump next

test: if t � V1 jump L1
if t � V2 jump L2
. . .
if t � Vn jump Ln
code to raise run-time exception

next:

183

Simplification

� Goal 1: No SEQ or ESEQ.

� Goal 2: CALL can only be subtree of EXP(. . .) or MOVE(TEMP t,. . .).

Transformations:

� lift ESEQs up tree until they can become SEQs

� turn SEQs into linear list

ESEQ(s1, ESEQ(s2, e)) � ESEQ(SEQ(s1,s2), e)
BINOP(op, ESEQ(s, e1), e2) � ESEQ(s, BINOP(op, e1, e2))

MEM(ESEQ(s, e1)) � ESEQ(s, MEM(e1))

JUMP(ESEQ(s, e1)) � SEQ(s, JUMP(e1))

CJUMP(op,
ESEQ(s, e1), e2, l1, l2)

� SEQ(s, CJUMP(op, e1, e2, l1, l2))

BINOP(op, e1, ESEQ(s, e2)) � ESEQ(MOVE(TEMP t, e1),
ESEQ(s,

BINOP(op, TEMP t, e2)))
CJUMP(op,

e1, ESEQ(s, e2), l1, l2)

� SEQ(MOVE(TEMP t, e1),
SEQ(s,

CJUMP(op, TEMP t, e2, l1, l2)))
MOVE(ESEQ(s, e1), e2) � SEQ(s, MOVE(e1, e2))
CALL(f , a) � ESEQ(MOVE(TEMP t, CALL(f , a)),

TEMP(t))

184

Chapter 8: Liveness Analysis and Register Allocation

185

Register allocation

errors

IR machine
code

instruction
selection

register
allocation

Register allocation:

� have value in a register when used

� limited resources

� changes instruction choices

� can move loads and stores

� optimal allocation is difficult

� NP-complete for k

�

1 registers

Copyright c

�

2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and full citation on the first page. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or fee. Request permission to publish from hosking@cs.purdue.edu.

186

Liveness analysis

Problem:

� IR contains an unbounded number of temporaries

� machine has bounded number of registers

Approach:

� temporaries with disjoint live ranges can map to same register

� if not enough registers then spill some temporaries
(i.e., keep them in memory)

The compiler must perform liveness analysis for each temporary:

It is live if it holds a value that may be needed in future

187

Control flow analysis

Before performing liveness analysis, need to understand the control flow
by building a control flow graph (CFG):

� nodes may be individual program statements or basic blocks

� edges represent potential flow of control

Out-edges from node n lead to successor nodes, succ
�

n
�

In-edges to node n come from predecessor nodes, pred

�

n

�

Example:

a � 0
L1 : b � a

�

1
c � c

�

b
a � b � 2
if a � N goto L1
return c

188

Liveness analysis

Gathering liveness information is a form of data flow analysis operating
over the CFG:

� liveness of variables “flows” around the edges of the graph

� assignments define a variable, v:

– def

�

v

� � set of graph nodes that define v

– def

�

n

� � set of variables defined by n

� occurrences of v in expressions use it:

– use

�

v

� � set of nodes that use v

– use

�

n

� � set of variables used in n

Liveness: v is live on edge e if there is a directed path from e to a use of v

that does not pass through any def
�

v
�

v is live-in at node n if live on any of n’s in-edges

v is live-out at n if live on any of n’s out-edges

v � use

�

n

� � v live-in at n

v live-in at n � v live-out at all m � pred

�

n

�

v live-out at n � v

�� def
�

n
� � v live-in at n

189

Liveness analysis

Define:
in

�

n

�

: variables live-in at n
in

�

n

�

: variables live-out at n

Then:

out

�

n

� �

s �succ

�

n

�

in

�

s

�
succ

�

n

� � φ � out

�

n

� � φ

Note:

in

�

n

� �

use
�

n

�

in

�

n

� �
out

�

n

� � def

�

n

�

use

�

n

�

and def

�

n

�

are constant (independent of control flow)

Now, v � in

�

n

�

iff. v � use
�

n
�

or v � out

�

n

� � def

�

n

�

Thus, in

�

n

� � use
�

n
� 	 �

out

�

n

� � def

�

n

� �

190

Iterative solution for liveness

foreach n

�

in

�

n

� � φ; out

�

n

� � φ

�

repeat
foreach n

in

� �

n

� � in

�

n

�

;

out

� �

n

� � out

�

n

�

;

in

�

n

� � use

�

n

� 	 �

out

�

n

� � de f
�

n

� �

out

�

n

� �

s �succ

�

n

�

in
�

s
�

until in

� �

n

� � in

�

n

� �

out
� �

n

� � out

�

n

�
�

�

n

Notes:

� should order computation of inner loop to follow the “flow”

� liveness flows backward along control-flow arcs, from out to in

� nodes can just as easily be basic blocks to reduce CFG size

� could do one variable at a time, from uses back to defs, noting liveness
along the way

191

Iterative solution for liveness

Complexity : for input program of size N

� �

N nodes in CFG

� �

N variables

� N elements per in/out

� O

�

N

�

time per set-union

� for loop performs constant number of set operations per node

� O

�

N2 �

time for for loop

� each iteration of repeat loop can only add to each set
sets can contain at most every variable

� sizes of all in and out sets sum to 2N2,
bounding the number of iterations of the repeat loop

� worst-case complexity of O
�

N4 �

� ordering can cut repeat loop down to 2-3 iterations

� O

�

N

�

or O

�

N2 �

in practice

192

Iterative solution for liveness

Least fixed points

There is often more than one solution for a given dataflow problem (see
example).

Any solution to dataflow equations is a conservative approximation:

� v has some later use downstream from n

� v � out

�

n

�

� but not the converse

Conservatively assuming a variable is live does not break the program; just
means more registers may be needed.

Assuming a variable is dead when it is really live will break things.

May be many possible solutions but want the “smallest”: the least fixpoint.

The iterative liveness computation computes this least fixpoint.

193

Register allocation

errors

IR machine
code

instruction
selection

register
allocation

Register allocation:

� have value in a register when used

� limited resources

� changes instruction choices

� can move loads and stores

� optimal allocation is difficult

� NP-complete for k

�

1 registers

Copyright c

�

2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and full citation on the first page. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or fee. Request permission to publish from hosking@cs.purdue.edu.

194

Register allocation by simplification

1. Build interference graph G: for each program point

(a) compute set of temporaries simultaneously live
(b) add edge to graph for each pair in set

2. Simplify : Color graph using a simple heuristic

(a) suppose G has node m with degree � K

(b) if G

� � G � �

m

�

can be colored then so can G, since nodes adjacent
to m have at most K � 1 colors

(c) each such simplification will reduce degree of remaining nodes
leading to more opportunity for simplification

(d) leads to recursive coloring algorithm

3. Spill : suppose

� �

m of degree � K

(a) target some node (temporary) for spilling (optimistically, spilling
node will allow coloring of remaining nodes)

(b) remove and continue simplifying

195

Register allocation by simplification (continued)

4. Select : assign colors to nodes

(a) start with empty graph
(b) if adding non-spill node there must be a color for it as that was the

basis for its removal
(c) if adding a spill node and no color available (neighbors already K-

colored) then mark as an actual spill
(d) repeat select

5. Start over : if select has no actual spills then finished, otherwise

(a) rewrite program to fetch actual spills before each use and store
after each definition

(b) recalculate liveness and repeat

196

Coalescing

� Can delete a move instruction when source s and destination d do not
interfere:

– coalesce them into a new node whose edges are the union of those
of s and d

� In principle, any pair of non-interfering nodes can be coalesced

– unfortunately, the union is more constrained and new graph may
no longer be K-colorable

– overly aggressive

197

Simplification with aggressive coalescing

build

any co
al

es
ce

do
ne

simplify

any

do
ne

 s

pi
ll

spill

select

aggressive
 coalesce

198

Conservative coalescing

Apply tests for coalescing that preserve colorability.

Suppose a and b are candidates for coalescing into node ab

Briggs: coalesce only if ab has � K neighbors of significant degree

�

K

� simplify will first remove all insignificant-degree neighbors

� ab will then be adjacent to � K neighbors

� simplify can then remove ab

George: coalesce only if all significant-degree neighbors of a already inter-
fere with b

� simplify can remove all insignificant-degree neighbors of a

� remaining significant-degree neighbors of a already interfere with b so
coalescing does not increase the degree of any node

199

Iterated register coalescing

Interleave simplification with coalescing to eliminate most moves while without extra spills

1. Build interference graph G; distinguish move-related from non-move-related nodes

2. Simplify : remove non-move-related nodes of low degree one at a time

3. Coalesce: conservatively coalesce move-related nodes

� remove associated move instruction

� if resulting node is non-move-related it can now be simplified

� repeat simplify and coalesce until only significant-degree or uncoalesced moves

4. Freeze: if unable to simplify or coalesce

(a) look for move-related node of low-degree
(b) freeze its associated moves (give up hope of coalescing them)
(c) now treat as a non-move-related and resume iteration of simplify and coalesce

5. Spill : if no low-degree nodes

(a) select candidate for spilling
(b) remove to stack and continue simplifying

6. Select : pop stack assigning colors (including actual spills)

7. Start over : if select has no actual spills then finished, otherwise

(a) rewrite code to fetch actual spills before each use and store after each definition
(b) recalculate liveness and repeat

200

Iterated register coalescing

select

potential
spill

actual
 spill

build

conservative
 coalesce

simplify

freeze

SSA constant
 propagation

(optional)

sp
ill

s
do

ne

an
y

201

Spilling

� Spills require repeating build and simplify on the whole program

� To avoid increasing number of spills in future rounds of build can sim-
ply discard coalescences

� Alternatively, preserve coalescences from before first potential spill,
discard those after that point

� Move-related spilled temporaries can be aggressively coalesced, since
(unlike registers) there is no limit on the number of stack-frame loca-
tions

202

Precolored nodes

Precolored nodes correspond to machine registers (e.g., stack pointer, ar-
guments, return address, return value)

� select and coalesce can give an ordinary temporary the same color as
a precolored register, if they don’t interfere

� e.g., argument registers can be reused inside procedures for a tempo-
rary

� simplify, freeze and spill cannot be performed on them

� also, precolored nodes interfere with other precolored nodes

So, treat precolored nodes as having infinite degree

This also avoids needing to store large adjacency lists for precolored nodes;
coalescing can use the George criterion

203

Temporary copies of machine registers

Since precolored nodes don’t spill, their live ranges must be kept short:

1. use move instructions

2. move callee-save registers to fresh temporaries on procedure entry,
and back on exit, spilling between as necessary

3. register pressure will spill the fresh temporaries as necessary, other-
wise they can be coalesced with their precolored counterpart and the
moves deleted

204

Caller-save and callee-save registers

Variables whose live ranges span calls should go to callee-save registers,
otherwise to caller-save

This is easy for graph coloring allocation with spilling

� calls interfere with caller-save registers

� a cross-call variable interferes with all precolored caller-save registers,
as well as with the fresh temporaries created for callee-save copies,
forcing a spill

� choose nodes with high degree but few uses, to spill the fresh callee-
save temporary instead of the cross-call variable

� this makes the original callee-save register available for coloring the
cross-call variable

205

Example

� �
� �

� � � � �

� � � � �

� � � � �

 � � �

 � � �

� � � ��

 � �
 � �

 � �
 � �

� �
 � � � � � � � � � �

� � � �

� � � � �

�
 � �� � � � �
� � � � � �
 � � � �

� Temporaries are � ,

�

, �,

,

� Assume target machine with K � 3 registers: � �

, � �

(caller-save/argument/result),

� �

(callee-save)

� The code generator has already made arrangements to save � �

ex-
plicitly by copying into temporary � and back again

206

Example (cont.)

� Interference graph:

c

d

b e
r2

r1 a

r3

� No opportunity for simplify or freeze (all non-precolored nodes have
significant degree

�

K)

� Any coalesce will produce a new node adjacent to

�

K significant-
degree nodes

� Must spill based on priorities:
Node uses

�

defs uses
�

defs degree priority
outside loop inside loop

� �

2

�

10 � 0

� �

4 � 0.50� �

1

�

10 � 1

� �

4 � 2.75

�

�

2

�

10 � 0

� �

6 � 0.33
 �

2

�

10 � 2

� �

4 � 5.50

 �

1
�

10 � 3

� �

3 � 10.30

� Node � has lowest priority so spill it

207

Example (cont.)

� Interference graph with � removed:

d

b e
r2

r1 a

r3

� Only possibility is to coalesce � and
: �
 will have � K significant-
degree neighbors (after coalescing

will be low-degree, though high-
degree before)

ae d

b
r2

r1

r3

208

Example (cont.)

� Can now coalesce

�

with � �

(or coalesce �
 and � �

):

r3

r1 dae

r2b

� Coalescing �
 and � �

(could also coalesce

with � �
):

r3

dr1ae

r2b

209

Example (cont.)

� Cannot coalesce � � �
 with

because the move is constrained : the
nodes interfere. Must simplify

:

r3

r1ae

r2b

� Graph now has only precolored nodes, so pop nodes from stack col-
oring along the way
–

 � � �

– � ,

�

,
 have colors by coalescing
– � must spill since no color can be found for it

� Introduce new temporaries � �

and � �

for each use/def, add loads be-
fore each use and stores after each def

210

Example (cont.)

� �
� �

� � � � � �

� � �
�

� � � � � � � �

� � � � �

� � � � �

 � � �

 � � �

� � � ��

 � �
 � �

 � �
 � �

� �
 � � � � � � � � � �

� � � �

� � � � � � �
�

� � � �

� � � � � �

�
 � �� � � � �
� � � � � �
 � � � �

211

Example (cont.)

� New interference graph:

c2

c1

d

b e
r2

r1 a

r3

� Coalesce � �

with � �

, then � �

with � �

:

r3c1c2

d

b e
r2

r1 a

� As before, coalesce � with
, then
�

with � �

:

r1 d

r3c1c2

ae

r2b

212

Example (cont.)

� As before, coalesce �
 with � �

and simplify

:

r3c1c2

r2b

r1ae

� Pop

from stack: select � �

. All other nodes were coalesced or precol-
ored. So, the coloring is:

– � � � �

–

� � � �

– � � � �

–

 � � �

–
 � � �

213

Example (cont.)

� Rewrite the program with this assignment:

� �
� �

� � � � � �

� � �
�

� � � � � � � �

� � � � � �

� � � � � �

� � � � �

� � � � � �

� � � ��

� � � � � � � � �

� � � � � � � �

� � � � � � � � � � � � � �

� � � � � �

� � � � � � �
�

� � � �

� � � � � �

�
 � �� � � � �
� � � � � �
 � � � �

214

Example (cont.)

� Delete moves with source and destination the same (coalesced):

� �
� �

� � �
�

� � � � � � � �

� � � � �

� � � ��

� � � � � � � � �

� � � � � � � �

� � � � � � � � � � � � � �

� � � � � �

� � � � � � �
�

� � � �

�
 � �� � � � �
� � � � � �
 � � � �

� One uncoalesced move remains

215

Chapter 9: Activation Records

216

The procedure abstraction

Separate compilation:

� allows us to build large programs

� keeps compile times reasonable

� requires independent procedures

The linkage convention:

� a social contract

� machine dependent

� division of responsibility

The linkage convention ensures that procedures inherit a valid run-time
environment and that they restore one for their parents.

Linkages execute at run time

Code to make the linkage is generated at compile time

Copyright c

�

2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or
fee. Request permission to publish from hosking@cs.purdue.edu.

217

The procedure abstraction

The essentials:

� on entry, establish �’s environment

� at a call, preserve �’s environment

� on exit, tear down �’s environment

� in between, addressability and proper lifetimes

pre−call

call

post−call

procedure Q

prologue

epilogue

prologue

epilogue

procedure P

Each system has a standard linkage

218

Procedure linkages

Assume that each procedure activation has
an associated activation record or frame (at
run time)
Assumptions:

� RISC architecture

� can always expand an allocated block

� locals stored in frame

ar
gu

m
en

ts
in

co
m

in
g

ar
gu

m
en

ts
ou

tg
oi

ng

argument n

argument 2

argument 1

.

.

.

saved registers

temporaries

return address

argument 2

argument 1

.

.

.

argument m

higher addresses

lower addresses

pointer
stack

frame
pointer

local
variables

previous fram
e

next fram
e

current fram
e

219

Procedure linkages

The linkage divides responsibility between caller and callee

Caller Callee
Call pre-call prologue

1. allocate basic frame
2. evaluate & store params.
3. store return address
4. jump to child

1. save registers, state
2. store FP (dynamic link)
3. set new FP
4. store static link
5. extend basic frame

(for local data)
6. initialize locals
7. fall through to code

Return post-call epilogue

1. copy return value
2. deallocate basic frame
3. restore parameters

(if copy out)

1. store return value
2. restore state
3. cut back to basic frame
4. restore parent’s FP
5. jump to return address

At compile time, generate the code to do this

At run time, that code manipulates the frame & data areas

220

Run-time storage organization

To maintain the illusion of procedures, the compiler can adopt some con-
ventions to govern memory use.

Code space

� fixed size

� statically allocated (link time)

Data space

� fixed-sized data may be statically allocated

� variable-sized data must be dynamically allocated

� some data is dynamically allocated in code

Control stack

� dynamic slice of activation tree

� return addresses

� may be implemented in hardware

221

Run-time storage organization

Typical memory layout

stack

free memory

heap

code

static data

low address

high address

The classical scheme

� allows both stack and heap maximal freedom

� code and static data may be separate or intermingled

222

Run-time storage organization

Where do local variables go?

When can we allocate them on a stack?

Key issue is lifetime of local names

Downward exposure:

� called procedures may reference my variables

� dynamic scoping

� lexical scoping

Upward exposure:

� can I return a reference to my variables?

� functions that return functions

� continuation-passing style

With only downward exposure, the compiler can allocate the frames on the
run-time call stack

223

Storage classes

Each variable must be assigned a storage class (base address)

Static variables:

� addresses compiled into code (relocatable)

� (usually) allocated at compile-time

� limited to fixed size objects

� control access with naming scheme

Global variables:

� almost identical to static variables

� layout may be important (exposed)

� naming scheme ensures universal access

Link editor must handle duplicate definitions

224

Storage classes (cont.)

Procedure local variables

Put them on the stack —

� if sizes are fixed

� if lifetimes are limited

� if values are not preserved

Dynamically allocated variables

Must be treated differently —

� call-by-reference, pointers, lead to non-local lifetimes

� (usually) an explicit allocation

� explicit or implicit deallocation

225

Access to non-local data

How does the code find non-local data at run-time?

Real globals

� visible everywhere

� naming convention gives an address

� initialization requires cooperation

Lexical nesting

� view variables as (level,offset) pairs (compile-time)

� chain of non-local access links

� more expensive to find (at run-time)

226

Access to non-local data

Two important problems arise

� How do we map a name into a (level,offset) pair?

Use a block-structured symbol table (remember last lecture?)

– look up a name, want its most recent declaration

– declaration may be at current level or any lower level

� Given a (level,offset) pair, what’s the address?

Two classic approaches

– access links (or static links)

– displays

227

Access to non-local data

To find the value specified by

�

l � o

�

� need current procedure level, k

� k � l � local value

� k � l � find l’s activation record

� k � l cannot occur

Maintaining access links: (static links)

� calling level k

�

1 procedure

1. pass my FP as access link

2. my backward chain will work for lower levels

� calling procedure at level l � k

1. find link to level l � 1 and pass it

2. its access link will work for lower levels

228

The display

To improve run-time access costs, use a display :

� table of access links for lower levels

� lookup is index from known offset

� takes slight amount of time at call

� a single display or one per frame

� for level k procedure, need k � 1 slots

Access with the display

assume a value described by

�

l � o

�

� find slot as

 � � � � � � �

l

�

� add offset to pointer from slot (

 � � � � � � �

l

� �

o

�

)

“Setting up the basic frame” now includes display manipulation

229

Calls: Saving and restoring registers

caller’s registers callee’s registers all registers
callee saves 1 3 5
caller saves 2 4 6
1. Call includes bitmap of caller’s registers to be saved/restored

(best with save/restore instructions to interpret bitmap directly)

2. Caller saves and restores its own registers
Unstructured returns (e.g., non-local gotos, exceptions) create some problems, since
code to restore must be located and executed

3. Backpatch code to save registers used in callee on entry, restore on exit
e.g., VAX places bitmap in callee’s stack frame for use on call/return/non-local goto/exception
Non-local gotos and exceptions must unwind dynamic chain restoring callee-saved
registers

4. Bitmap in callee’s stack frame is used by caller to save/restore
(best with save/restore instructions to interpret bitmap directly)
Unwind dynamic chain as for 3

5. Easy
Non-local gotos and exceptions must restore all registers from “outermost callee”

6. Easy (use utility routine to keep calls compact)
Non-local gotos and exceptions need only restore original registers from caller

Top-left is best: saves fewer registers, compact calling sequences

230

Call/return

Assuming callee saves:
1. caller pushes space for return value
2. caller pushes SP
3. caller pushes space for:

return address, static chain, saved registers
4. caller evaluates and pushes actuals onto stack
5. caller sets return address, callee’s static chain, performs call

6. callee saves registers in register-save area
7. callee copies by-value arrays/records using addresses passed as ac-

tuals
8. callee allocates dynamic arrays as needed

9. on return, callee restores saved registers
10. jumps to return address

Caller must allocate much of stack frame, because it computes the actual
parameters

Alternative is to put actuals below callee’s stack frame in caller’s: common
when hardware supports stack management (e.g., VAX)

231

MIPS procedure call convention

Registers:

Number Name Usage
0 �
� � Constant 0
1 at Reserved for assembler

2, 3 v0, v1 Expression evaluation, scalar function results
4–7 a0–a3 first 4 scalar arguments

8–15 t0–t7 Temporaries, caller-saved; caller must save to pre-
serve across calls

16–23 s0–s7 Callee-saved; must be preserved across calls
24, 25 t8, t9 Temporaries, caller-saved; caller must save to pre-

serve across calls
26, 27 k0, k1 Reserved for OS kernel

28 gp Pointer to global area
29 sp Stack pointer
30 s8 (fp) Callee-saved; must be preserved across calls
31 ra Expression evaluation, pass return address in calls

232

MIPS procedure call convention

Philosophy:

Use full, general calling sequence only when necessary; omit por-
tions of it where possible (e.g., avoid using fp register whenever
possible)

Classify routines as:

� non-leaf routines: routines that call other routines

� leaf routines: routines that do not themselves call other routines

– leaf routines that require stack storage for locals

– leaf routines that do not require stack storage for locals

233

MIPS procedure call convention

The stack frame
high memory

low memory

argument n

argument 1

saved $ra

argument build

virtual frame pointer ($fp)

stack pointer ($sp)

temporaries

static link

locals

fram
esize

fr
am

e
of

fs
et

other saved registers

234

MIPS procedure call convention

Pre-call:

1. Pass arguments: use registers a0 . . . a3; remaining arguments are
pushed on the stack along with save space for a0 . . . a3

2. Save caller-saved registers if necessary

3. Execute a

� � �

instruction: jumps to target address (callee’s first in-
struction), saves return address in register ra

235

MIPS procedure call convention

Prologue:

1. Leaf procedures that use the stack and non-leaf procedures:

(a) Allocate all stack space needed by routine:

� local variables

� saved registers

� sufficient space for arguments to routines called by this routine

� � � � � � ��
� � � �
 � � �

(b) Save registers (ra, etc.)
e.g.,

� �

� � �
�

� � � �
 � � �
 � � � � �
 � � � �
 � � � � � �

� �

� � �
�

� � � �
 � � �
 � � � � �
 � � � �
 � � � � � � � �

� �

� � �
�

� � � �
 � � �
 � � � � �
 � � � �
 � � � � � � � �

where

� � � �
 � � �
 and
� � � �
 � � � �
 � (usually negative) are compile-

time constants

2. Emit code for routine

236

MIPS procedure call convention

Epilogue:

1. Copy return values into result registers (if not already there)

2. Restore saved registers

� � �
� � � � � �
 � � �
 � � � � �
 � � � �
 � � � � � � � �

3. Get return address

� �

� � �
�

� � � �
 � � �
 � � � � �
 � � � �
 � � � � � �

4. Clean up stack

�

 � � � ��
� � � �
 � � �

5. Return

� � � �

237

