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Introduction

This text explains how to use mathematical models and methods to analyze prob-
lems that arise in computer science. Proofs play a central role in this work because
the authors share a belief with most mathematicians that proofs are essential for
genuine understanding. Proofs also play a growing role in computer science; they
are used to certify that software and hardware will always behave correctly, some-
thing that no amount of testing can do.

Simply put, a proof is a method of establishing truth. Like beauty, “truth” some-
times depends on the eye of the beholder, and it should not be surprising that what
constitutes a proof differs among fields. For example, in the judicial system, legal
truth is decided by a jury based on the allowable evidence presented at trial. In the
business world, authoritative truth is specified by a trusted person or organization,
or maybe just your boss. In fields such as physics or biology, scientific truth is
confirmed by experiment.' In statistics, probable truth is established by statistical
analysis of sample data.

Philosophical proof involves careful exposition and persuasion typically based
on a series of small, plausible arguments. The best example begins with “Cogito
ergo sum,” a Latin sentence that translates as “I think, therefore I am.” This phrase
comes from the beginning of a 17th century essay by the mathematician/philosopher,
René Descartes, and it is one of the most famous quotes in the world: do a web
search for it, and you will be flooded with hits.

Deducing your existence from the fact that you’re thinking about your existence
is a pretty cool and persuasive-sounding idea. However, with just a few more lines

! Actually, only scientific falsehood can be demonstrated by an experiment—when the experiment
fails to behave as predicted. But no amount of experiment can confirm that the next experiment won’t
fail. For this reason, scientists rarely speak of truth, but rather of theories that accurately predict past,
and anticipated future, experiments.
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0.1. References

of argument in this vein, Descartes goes on to conclude that there is an infinitely

beneficent God. Whether or not you believe in an infinitely beneficent God, you’ll

probably agree that any very short “proof” of God’s infinite beneficence is bound

to be far-fetched. So even in masterful hands, this approach is not reliable.
Mathematics has its own specific notion of “proof.”

Definition. A mathematical proof of a proposition is a chain of logical deductions
leading to the proposition from a base set of axioms.

The three key ideas in this definition are highlighted: proposition, logical deduc-
tion, and axiom. Chapter 1 examines these three ideas along with some basic ways
of organizing proofs. Chapter 2 introduces the Well Ordering Principle, a basic
method of proof; later, Chapter 5 introduces the closely related proof method of
induction.

If you’re going to prove a proposition, you’d better have a precise understand-
ing of what the proposition means. To avoid ambiguity and uncertain definitions
in ordinary language, mathematicians use language very precisely, and they often
express propositions using logical formulas; these are the subject of Chapter 3.

The first three Chapters assume the reader is familiar with a few mathematical
concepts like sets and functions. Chapters 4 and 8 offer a more careful look at
such mathematical data types, examining in particular properties and methods for
proving things about infinite sets. Chapter 7 goes on to examine recursively defined
data types.

0.1 References

[14], [49], [1]
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1 What is a Proof?

1.1 Propositions

Definition. A proposition is a statement (communication) that is either true or
false.

For example, both of the following statements are propositions. The first is true,
and the second is false.

Proposition 1.1.1. 2 + 3 = 5.
Proposition 1.1.2. 7/ + 1 = 3.

Being true or false doesn’t sound like much of a limitation, but it does exclude
statements such as “Wherefore art thou Romeo?” and “Give me an A!” It also ex-
cludes statements whose truth varies with circumstance such as, “It’s five o’clock,”
or “the stock market will rise tomorrow.”

Unfortunately it is not always easy to decide if a claimed proposition is true or
false:

Claim 1.1.3. For every nonnegative integer n the value of n> + n + 41 is prime.

(A prime is an integer greater than 1 that is not divisible by any other integer
greater than 1. For example, 2, 3, 5, 7, 11, are the first five primes.) Let’s try some
numerical experimentation to check this proposition. Let

p(n)z=n?+n+41." (1.1)
We begin with p(0) = 41, which is prime; then

p(1) = 43, p(2) = 47, p(3) = 53, ..., p(20) = 461

are each prime. Hmmm, starts to look like a plausible claim. In fact we can keep
checking through » = 39 and confirm that p(39) = 1601 is prime.

But p(40) = 402 4+ 40 4+ 41 = 41 - 41, which is not prime. So Claim 1.1.3
is false since it’s not true that p(n) is prime for all nonnegative integers n. In
fact, it’s not hard to show that no polynomial with integer coefficients can map all

“_2

I'The symbol ::= means “equal by definition.” It’s always ok simply to write “=" instead of ::=,
but reminding the reader that an equality holds by definition can be helpful.
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Chapter 1  What is a Proof?

nonnegative numbers into prime numbers, unless it’s a constant (see Problem 1.26).
But this example highlights the point that, in general, you can’t check a claim about
an infinite set by checking a finite sample of its elements, no matter how large the
sample.

By the way, propositions like this about all numbers or all items of some kind are
so common that there is a special notation for them. With this notation, Claim 1.1.3
would be

Vn € N. p(n) is prime. (1.2)

Here the symbol V is read “for all.” The symbol N stands for the set of nonnegative
integers: 0, 1, 2, 3, ... (ask your instructor for the complete list). The symbol “€”
is read as “is a member of,” or “belongs to,” or simply as “is in.” The period after
the N is just a separator between phrases.

Here are two even more extreme examples:

Conjecture. [Euler] The equation
a* + bt 4+t =d*
has no solution when a, b, ¢, d are positive integers.

Euler (pronounced “oiler”) conjectured this in 1769. But the conjecture was
proved false 218 years later by Noam Elkies at a liberal arts school up Mass Ave.
The solution he found was a = 95800, = 217519, ¢ = 414560, d = 42248]1.

In logical notation, Euler’s Conjecture could be written,

YaeZtVbeZt Ve e ZTVd e ZT. a* + b* + ¢* # d*.

Here, Z™ is a symbol for the positive integers. Strings of V’s like this are usually
abbreviated for easier reading:

VYa,b,c,d € Z'. a* + b* + ¢* # d*.

Here’s another claim which would be hard to falsify by sampling: the smallest
possible x, y, z that satisfy the equality each have more than 1000 digits!

False Claim. 313(x> + y3) = z3 has no solution when x,y,z € 7.V,

It’s worth mentioning a couple of further famous propositions whose proofs were
sought for centuries before finally being discovered:

Proposition 1.1.4 (Four Color Theorem). Every map can be colored with 4 colors
so that adjacent® regions have different colors.

2Two regions are adjacent only when they share a boundary segment of positive length. They are
not considered to be adjacent if their boundaries meet only at a few points.
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1.1. Propositions 7

Several incorrect proofs of this theorem have been published, including one that
stood for 10 years in the late 19th century before its mistake was found. A laborious
proof was finally found in 1976 by mathematicians Appel and Haken, who used a
complex computer program to categorize the four-colorable maps. The program
left a few thousand maps uncategorized, which were checked by hand by Haken
and his assistants—among them his 15-year-old daughter.

There was reason to doubt whether this was a legitimate proof—the proof was
too big to be checked without a computer. No one could guarantee that the com-
puter calculated correctly, nor was anyone enthusiastic about exerting the effort
to recheck the four-colorings of thousands of maps that were done by hand. Two
decades later a mostly intelligible proof of the Four Color Theorem was found,
though a computer is still needed to check four-colorability of several hundred spe-
cial maps.?

Proposition 1.1.5 (Fermat’s Last Theorem). There are no positive integers x, y
and z such that

for some integer n > 2.

In a book he was reading around 1630, Fermat claimed to have a proof for this
proposition, but not enough space in the margin to write it down. Over the years,
the Theorem was proved to hold for all n up to 4,000,000, but we’ve seen that this
shouldn’t necessarily inspire confidence that it holds for all n. There is, after all,
a clear resemblance between Fermat’s Last Theorem and Euler’s false Conjecture.
Finally, in 1994, British mathematician Andrew Wiles gave a proof, after seven
years of working in secrecy and isolation in his attic. His proof did not fit in any
margin.*

Finally, let’s mention another simply stated proposition whose truth remains un-
known.

Conjecture 1.1.6 (Goldbach). Every even integer greater than 2 is the sum of two
primes.

Goldbach’s Conjecture dates back to 1742. It is known to hold for all numbers
up to 10'®, but to this day, no one knows whether it’s true or false.

3The story of the proof of the Four Color Theorem is told in a well-reviewed popular (non-
technical) book: “Four Colors Suffice. How the Map Problem was Solved.” Robin Wilson. Princeton
Univ. Press, 2003, 276pp. ISBN 0-691-11533-8.

“In fact, Wiles’ original proof was wrong, but he and several collaborators used his ideas to arrive
at a correct proof a year later. This story is the subject of the popular book, Fermat’s Enigma by
Simon Singh, Walker & Company, November, 1997.



http://www.math.gatech.edu/~thomas/FC/fourcolor.html
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8 Chapter 1  What is a Proof?

For a computer scientist, some of the most important things to prove are the
correctness of programs and systems—whether a program or system does what it’s
supposed to. Programs are notoriously buggy, and there’s a growing community
of researchers and practitioners trying to find ways to prove program correctness.
These efforts have been successful enough in the case of CPU chips that they are
now routinely used by leading chip manufacturers to prove chip correctness and
avoid some notorious past mistakes.

Developing mathematical methods to verify programs and systems remains an
active research area. We’ll illustrate some of these methods in Chapter 5.

1.2 Predicates

A predicate can be understood as a proposition whose truth depends on the value
of one or more variables. So “n is a perfect square” describes a predicate, since you
can’t say if it’s true or false until you know what the value of the variable n happens
to be. Once you know, for example, that n equals 4, the predicate becomes the true
proposition “4 is a perfect square”. Remember, nothing says that the proposition
has to be true: if the value of n were 5, you would get the false proposition “5 is a
perfect square.”

Like other propositions, predicates are often named with a letter. Furthermore, a
function-like notation is used to denote a predicate supplied with specific variable
values. For example, we might use the name “P” for predicate above:

P(n) ::=“n is a perfect square”,

and repeat the remarks above by asserting that P (4) is true, and P(5) is false.

This notation for predicates is confusingly similar to ordinary function notation.
If P is a predicate, then P(n) is either true or false, depending on the value of n.
On the other hand, if p is an ordinary function, like n2 + 1, then p(n) is a numerical
quantity. Don’t confuse these two!

1.3 The Axiomatic Method

The standard procedure for establishing truth in mathematics was invented by Eu-
clid, a mathematician working in Alexandria, Egypt around 300 BC. His idea was
to begin with five assumptions about geometry, which seemed undeniable based on
direct experience. (For example, “There is a straight line segment between every
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pair of points”.) Propositions like these that are simply accepted as true are called
axioms.

Starting from these axioms, Euclid established the truth of many additional propo-
sitions by providing “proofs.” A proof is a sequence of logical deductions from
axioms and previously proved statements that concludes with the proposition in
question. You probably wrote many proofs in high school geometry class, and
you’ll see a lot more in this text.

There are several common terms for a proposition that has been proved. The
different terms hint at the role of the proposition within a larger body of work.

e Important true propositions are called theorems.
o A lemma is a preliminary proposition useful for proving later propositions.

e A corollary is a proposition that follows in just a few logical steps from a
theorem.

These definitions are not precise. In fact, sometimes a good lemma turns out to be
far more important than the theorem it was originally used to prove.

Euclid’s axiom-and-proof approach, now called the axiomatic method, remains
the foundation for mathematics today. In fact, just a handful of axioms, called the
Zermelo-Fraenkel with Choice axioms (ZFC), together with a few logical deduction
rules, appear to be sufficient to derive essentially all of mathematics. We’ll examine
these in Chapter 8.

1.4 Our Axioms

The ZFC axioms are important in studying and justifying the foundations of math-
ematics, but for practical purposes, they are much too primitive. Proving theorems
in ZFC is a little like writing programs in byte code instead of a full-fledged pro-
gramming language—by one reckoning, a formal proof in ZFC that 2 + 2 = 4
requires more than 20,000 steps! So instead of starting with ZFC, we’re going to
take a huge set of axioms as our foundation: we’ll accept all familiar facts from
high school math.

This will give us a quick launch, but you may find this imprecise specification
of the axioms troubling at times. For example, in the midst of a proof, you may
start to wonder, “Must I prove this little fact or can I take it as an axiom?” There
really is no absolute answer, since what’s reasonable to assume and what requires
proof depends on the circumstances and the audience. A good general guideline is
simply to be up front about what you’re assuming.
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Chapter 1  What is a Proof?

1.4.1 Logical Deductions

Logical deductions, or inference rules, are used to prove new propositions using
previously proved ones.

A fundamental inference rule is modus ponens. This rule says that a proof of P
together with a proof that P IMPLIES Q is a proof of Q.

Inference rules are sometimes written in a funny notation. For example, modus
ponens is written:

Rule.
P, P IMPLIES Q

0

When the statements above the line, called the antecedents, are proved, then we
can consider the statement below the line, called the conclusion or consequent, to
also be proved.

A key requirement of an inference rule is that it must be sound: an assignment
of truth values to the letters P, Q, ..., that makes all the antecedents true must
also make the consequent true. So if we start off with true axioms and apply sound
inference rules, everything we prove will also be true.

There are many other natural, sound inference rules, for example:

Rule.
P IMPLIES Q, QO IMPLIES R

P IMPLIES R

Rule.

NOT(P) IMPLIES NOT(Q)
Q IMPLIES P
On the other hand,
Non-Rule.

NOT(P) IMPLIES NOT(Q)
P IMPLIES Q

is not sound: if P is assigned T and Q is assigned F, then the antecedent is true
and the consequent is not.

As with axioms, we will not be too formal about the set of legal inference rules.
Each step in a proof should be clear and “logical”; in particular, you should state
what previously proved facts are used to derive each new conclusion.
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1.4.2 Patterns of Proof

In principle, a proof can be any sequence of logical deductions from axioms and
previously proved statements that concludes with the proposition in question. This
freedom in constructing a proof can seem overwhelming at first. How do you even
start a proof?

Here’s the good news: many proofs follow one of a handful of standard tem-
plates. Each proof has it own details, of course, but these templates at least provide
you with an outline to fill in. We’ll go through several of these standard patterns,
pointing out the basic idea and common pitfalls and giving some examples. Many
of these templates fit together; one may give you a top-level outline while others
help you at the next level of detail. And we’ll show you other, more sophisticated
proof techniques later on.

The recipes below are very specific at times, telling you exactly which words to
write down on your piece of paper. You’'re certainly free to say things your own
way instead; we’re just giving you something you could say so that you’re never at
a complete loss.

Proving an Implication

Propositions of the form “If P, then Q are called implications. This implication
is often rephrased as “P IMPLIES Q.”
Here are some examples:

e (Quadratic Formula) If ax? + bx 4+ ¢ = 0 and a # 0, then
X = (—b + Vb2 —4ac) /2a.
e (Goldbach’s Conjecture 1.1.6 rephrased) If n is an even integer greater than
2, then n is a sum of two primes.
e If0 < x <2 then —x3 +4x + 1 > 0.

There are a couple of standard methods for proving an implication.

1.5.1 Method #1
In order to prove that P IMPLIES Q:

1. Write, “Assume P .’

2. Show that Q logically follows.
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Example

Theorem 1.5.1. If0 < x < 2, then —x3 + 4x + 1 > 0.

Before we write a proof of this theorem, we have to do some scratchwork to
figure out why it is true.

The inequality certainly holds for x = 0; then the left side is equal to 1 and
1 > 0. As x grows, the 4x term (which is positive) initially seems to have greater
magnitude than —x3 (which is negative). For example, when x = 1, we have
4x = 4, but —x3 = —1 only. In fact, it looks like —x3 doesn’t begin to dominate
until x > 2. So it seems the —x> + 4x part should be nonnegative for all x between
0 and 2, which would imply that —x3 + 4x + 1 is positive.

So far, so good. But we still have to replace all those “seems like” phrases with
solid, logical arguments. We can get a better handle on the critical —x3 + 4x part
by factoring it, which is not too hard:

X3 +4x =x2—-x)2 + x)

Aha! For x between 0 and 2, all of the terms on the right side are nonnegative. And
a product of nonnegative terms is also nonnegative. Let’s organize this blizzard of
observations into a clean proof.

Proof. Assume 0 < x < 2. Then x, 2—x and 2 + x are all nonnegative. Therefore,
the product of these terms is also nonnegative. Adding 1 to this product gives a
positive number, so:

x2—-x)24+x)+1>0

Multiplying out on the left side proves that
—x344x+1>0
as claimed. |

There are a couple points here that apply to all proofs:

e You'll often need to do some scratchwork while you’re trying to figure out
the logical steps of a proof. Your scratchwork can be as disorganized as you
like—full of dead-ends, strange diagrams, obscene words, whatever. But
keep your scratchwork separate from your final proof, which should be clear
and concise.

e Proofs typically begin with the word “Proof” and end with some sort of de-
limiter like OJ or “QED.” The only purpose for these conventions is to clarify
where proofs begin and end.
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1.5.2 Method #2 - Prove the Contrapositive
An implication (“P IMPLIES Q) is logically equivalent to its contrapositive
NOT(Q) IMPLIES NOT(P).

Proving one is as good as proving the other, and proving the contrapositive is some-
times easier than proving the original statement. If so, then you can proceed as
follows:

1. Write, “We prove the contrapositive:” and then state the contrapositive.

2. Proceed as in Method #1.

Example
Theorem 1.5.2. If r is irrational, then ﬁ is also irrational.

A number is rational when it equals a quotient of integers —that is, if it equals
m/n for some integers m and n. If it’s not rational, then it’s called irrational. So
we must show that if 7 is not a ratio of integers, then /r is also not a ratio of
integers. That’s pretty convoluted! We can eliminate both not’s and simplify the
proof by using the contrapositive instead.

Proof. We prove the contrapositive: if /7 is rational, then r is rational.
Assume that /7 is rational. Then there exist integers m and n such that:

Jr="

n
Squaring both sides gives:
m2
T
Since m? and n? are integers, r is also rational. |

1.6 Proving an “If and Only If”

Many mathematical theorems assert that two statements are logically equivalent;
that is, one holds if and only if the other does. Here is an example that has been
known for several thousand years:

Two triangles have the same side lengths if and only if two side lengths
and the angle between those sides are the same.

The phrase “if and only if”” comes up so often that it is often abbreviated “iff.”
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1.6.1 Method #1: Prove Each Statement Implies the Other

The statement “P IFF Q” is equivalent to the two statements “P IMPLIES Q” and
“Q IMPLIES P.” So you can prove an “iff” by proving two implications:

1. Write, “We prove P implies Q and vice-versa.”

2. Write, “First, we show P implies Q.” Do this by one of the methods in
Section 1.5.

3. Write, “Now, we show Q implies P.” Again, do this by one of the methods
in Section 1.5.
1.6.2 Method #2: Construct a Chain of Iffs
In order to prove that P is true iff Q is true:

1. Write, “We construct a chain of if-and-only-if implications.”

2. Prove P is equivalent to a second statement which is equivalent to a third
statement and so forth until you reach Q.

This method sometimes requires more ingenuity than the first, but the result can be
a short, elegant proof.
Example

The standard deviation of a sequence of values x1, X2, ..., X, is defined to be:

\/(xl—M)2+(X2—,Uv)2+---+(xn—u)2

(1.3)
n
where p is the average or mean of the values:
L X1t X2+t Xp
W=
n
Theorem 1.6.1. The standard deviation of a sequence of values x1, . .., X, is zero

iff all the values are equal to the mean.

For example, the standard deviation of test scores is zero if and only if everyone
scored exactly the class average.

Proof. We construct a chain of “iff” implications, starting with the statement that
the standard deviation (1.3) is zero:

\/(Xl—M)2+(X2—M)2+---+(xn—u)2 _
n

0. (1.4)
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Now since zero is the only number whose square root is zero, equation (1.4) holds
iff

(x1— )+ (2= >+ + (xn — > =0. (1.5)

Squares of real numbers are always nonnegative, so every term on the left-hand
side of equation (1.5) is nonnegative. This means that (1.5) holds iff

Every term on the left-hand side of (1.5) is zero. (1.6)
But a term (x; — ,u)2 is zero iff x; = w, so (1.6) is true iff

Every x; equals the mean.

1.7 Proof by Cases

Breaking a complicated proof into cases and proving each case separately is a com-
mon, useful proof strategy. Here’s an amusing example.

Let’s agree that given any two people, either they have met or not. If every pair
of people in a group has met, we’ll call the group a club. If every pair of people in
a group has not met, we’ll call it a group of strangers.

Theorem. Every collection of 6 people includes a club of 3 people or a group of 3
strangers.

Proof. The proof is by case analysis>. Let x denote one of the six people. There
are two cases:

1. Among 5 other people besides x, at least 3 have met x.

2. Among the 5 other people, at least 3 have not met x.

Now, we have to be sure that at least one of these two cases must hold,® but that’s
easy: we’ve split the 5 people into two groups, those who have shaken hands with
x and those who have not, so one of the groups must have at least half the people.

Case 1: Suppose that at least 3 people did meet x.

This case splits into two subcases:

SDescribing your approach at the outset helps orient the reader.

OPart of a case analysis argument is showing that you've covered all the cases. This is often
obvious, because the two cases are of the form “P” and “not P.” However, the situation above is not
stated quite so simply.
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Case 1.1: No pair among those people met each other. Then these
people are a group of at least 3 strangers. The theorem holds in this
subcase.

Case 1.2: Some pair among those people have met each other. Then
that pair, together with x, form a club of 3 people. So the theorem
holds in this subcase.

This implies that the theorem holds in Case 1.
Case 2: Suppose that at least 3 people did not meet x.
This case also splits into two subcases:

Case 2.1: Every pair among those people met each other. Then these
people are a club of at least 3 people. So the theorem holds in this
subcase.

Case 2.2: Some pair among those people have not met each other.
Then that pair, together with x, form a group of at least 3 strangers. So
the theorem holds in this subcase.

This implies that the theorem also holds in Case 2, and therefore holds in all cases.
|

1.8 Proof by Contradiction

In a proof by contradiction, or indirect proof, you show that if a proposition were
false, then some false fact would be true. Since a false fact by definition can’t be
true, the proposition must be true.

Proof by contradiction is always a viable approach. However, as the name sug-
gests, indirect proofs can be a little convoluted, so direct proofs are generally prefer-
able when they are available.

Method: In order to prove a proposition P by contradiction:

1. Write, “We use proof by contradiction.”
2. Write, “Suppose P is false.”
3. Deduce something known to be false (a logical contradiction).

4. Write, “This is a contradiction. Therefore, P must be true.”
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Example

We’ll prove by contradiction that +/2 is irrational. Remember that a number is ra-
tional if it is equal to a ratio of integers—for example, 3.5 = 7/2 and 0.1111--- =
1/9 are rational numbers.

Theorem 1.8.1. /2 is irrational.

Proof. We use proof by contradiction. Suppose the claim is false, and /2 is ratio-
nal. Then we can write +/2 as a fraction n/d in lowest terms.

Squaring both sides gives 2 = n?/d? and so 2d? = n?. This implies that 7 is a
multiple of 2 (see Problems 1.15 and 1.16). Therefore n2 must be a multiple of 4.
But since 2d? = n?, we know 2d? is a multiple of 4 and so d? is a multiple of 2.
This implies that d is a multiple of 2.

So, the numerator and denominator have 2 as a common factor, which contradicts
the fact that n/d is in lowest terms. Thus, \/5 must be irrational. [ |

1.9 Good Proofs in Practice

One purpose of a proof is to establish the truth of an assertion with absolute cer-
tainty, and mechanically checkable proofs of enormous length or complexity can
accomplish this. But humanly intelligible proofs are the only ones that help some-
one understand the subject. Mathematicians generally agree that important mathe-
matical results can’t be fully understood until their proofs are understood. That is
why proofs are an important part of the curriculum.

To be understandable and helpful, more is required of a proof than just logical
correctness: a good proof must also be clear. Correctness and clarity usually go
together; a well-written proof is more likely to be a correct proof, since mistakes
are harder to hide.

In practice, the notion of proof is a moving target. Proofs in a professional
research journal are generally unintelligible to all but a few experts who know all
the terminology and prior results used in the proof. Conversely, proofs in the first
weeks of a beginning course like 6.042 would be regarded as tediously long-winded
by a professional mathematician. In fact, what we accept as a good proof later in
the term will be different from what we consider good proofs in the first couple
of weeks of 6.042. But even so, we can offer some general tips on writing good
proofs:

State your game plan. A good proof begins by explaining the general line of rea-
soning, for example, “We use case analysis” or “We argue by contradiction.”
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Keep a linear flow. Sometimes proofs are written like mathematical mosaics, with
juicy tidbits of independent reasoning sprinkled throughout. This is not good.
The steps of an argument should follow one another in an intelligible order.

A proof is an essay, not a calculation. Many students initially write proofs the way
they compute integrals. The result is a long sequence of expressions without
explanation, making it very hard to follow. This is bad. A good proof usually
looks like an essay with some equations thrown in. Use complete sentences.

Avoid excessive symbolism. Your reader is probably good at understanding words,
but much less skilled at reading arcane mathematical symbols. Use words
where you reasonably can.

Revise and simplify. Your readers will be grateful.

Introduce notation thoughtfully. Sometimes an argument can be greatly simpli-
fied by introducing a variable, devising a special notation, or defining a new
term. But do this sparingly, since you’re requiring the reader to remember
all that new stuff. And remember to actually define the meanings of new
variables, terms, or notations; don’t just start using them!

Structure long proofs. Long programs are usually broken into a hierarchy of smaller
procedures. Long proofs are much the same. When your proof needed facts
that are easily stated, but not readily proved, those fact are best pulled out
as preliminary lemmas. Also, if you are repeating essentially the same argu-
ment over and over, try to capture that argument in a general lemma, which
you can cite repeatedly instead.

Be wary of the “obvious.” When familiar or truly obvious facts are needed in a
proof, it’s OK to label them as such and to not prove them. But remember
that what’s obvious to you may not be—and typically is not—obvious to
your reader.

Most especially, don’t use phrases like “clearly” or “obviously” in an attempt
to bully the reader into accepting something you’re having trouble proving.
Also, go on the alert whenever you see one of these phrases in someone else’s
proof.

Finish. At some point in a proof, you’ll have established all the essential facts
you need. Resist the temptation to quit and leave the reader to draw the
“obvious” conclusion. Instead, tie everything together yourself and explain
why the original claim follows.
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Creating a good proof is a lot like creating a beautiful work of art. In fact,
mathematicians often refer to really good proofs as being “elegant” or “beautiful.”
It takes a practice and experience to write proofs that merit such praises, but to
get you started in the right direction, we will provide templates for the most useful
proof techniques.

Throughout the text there are also examples of bogus proofs—arguments that
look like proofs but aren’t. Sometimes a bogus proof can reach false conclusions
because of missteps or mistaken assumptions. More subtle bogus proofs reach
correct conclusions, but do so in improper ways such as circular reasoning, leaping
to unjustified conclusions, or saying that the hard part of the proof is “left to the
reader.” Learning to spot the flaws in improper proofs will hone your skills at seeing
how each proof step follows logically from prior steps. It will also enable you to
spot flaws in your own proofs.

The analogy between good proofs and good programs extends beyond structure.
The same rigorous thinking needed for proofs is essential in the design of criti-
cal computer systems. When algorithms and protocols only “mostly work™ due
to reliance on hand-waving arguments, the results can range from problematic to
catastrophic. An early example was the Therac 25, a machine that provided radia-
tion therapy to cancer victims, but occasionally killed them with massive overdoses
due to a software race condition. A further example of a dozen years ago (August
2004) involved a single faulty command to a computer system used by United and
American Airlines that grounded the entire fleet of both companies—and all their
passengers!

It is a certainty that we’ll all one day be at the mercy of critical computer systems
designed by you and your classmates. So we really hope that you’ll develop the
ability to formulate rock-solid logical arguments that a system actually does what
you think it should do!

1.10 References

[14], [11, [49], [18], [22]
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Problems for Section 1.1

Class Problems

Problem 1.1.
Albert announces to his class that he plans to surprise them with a quiz sometime
next week.

His students first wonder if the quiz could be on Friday of next week. They
reason that it can’t: if Albert didn’t give the quiz before Friday, then by midnight
Thursday, they would know the quiz had to be on Friday, and so the quiz wouldn’t
be a surprise any more.

Next the students wonder whether Albert could give the surprise quiz Thursday.
They observe that if the quiz wasn’t given before Thursday, it would have to be
given on the Thursday, since they already know it can’t be given on Friday. But
having figured that out, it wouldn’t be a surprise if the quiz was on Thursday either.
Similarly, the students reason that the quiz can’t be on Wednesday, Tuesday, or
Monday. Namely, it’s impossible for Albert to give a surprise quiz next week. All
the students now relax, having concluded that Albert must have been bluffing. And
since no one expects the quiz, that’s why, when Albert gives it on Tuesday next
week, it really is a surprise!

What, if anything, do you think is wrong with the students’ reasoning?

Problem 1.2.
The Pythagorean Theorem says that if ¢ and b are the lengths of the sides of a right
triangle, and c is the length of its hypotenuse, then

a? 4+ b? =2

This theorem is so fundamental and familiar that we generally take it for granted.
But just being familiar doesn’t justify calling it “obvious”—witness the fact that
people have felt the need to devise different proofs of it for milllenia.” In this
problem we’ll examine a particularly simple “proof without words” of the theorem.

Here’s the strategy. Suppose you are given four different colored copies of a
right triangle with sides of lengths a, b and ¢, along with a suitably sized square,
as shown in Figure 1.1.

(a) You will first arrange the square and four triangles so they form a ¢ x ¢ square.
From this arrangement you will see that the square is (b — a) x (b — a).

7Over a hundred different proofs are listed on the mathematics website http://www.cut-the-
knot.org/pythagoras/.
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Figure 1.1 Right triangles and square.

(b) You will then arrange the same shapes so they form two squares, one a X a
and the other b x b.

You know that the area of an s x s square is s2. So appealing to the principle that

Area is Preserved by Rearranging,

you can now conclude that a® + b2 = ¢2, as claimed.

This really is an elegant and convincing proof of the Pythagorean Theorem, but it
has some worrisome features. One concern is that there might be something special
about the shape of these particular triangles and square that makes the rearranging
possible—for example, suppose a = b?

(¢) How would you respond to this concern?

(d) Another concern is that a number of facts about right triangles, squares and
lines are being implicitly assumed in justifying the rearrangements into squares.
Enumerate some of these assumed facts.

Problem 1.3.
What’s going on here?!

2
1= V1= (D)= = V_1v=1 = (¢—1) "
(a) Precisely identify and explain the mistake(s) in this bogus proof.

(b) Prove (correctly) thatif 1 = —1, then2 = 1.
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(¢) Every positive real number r has two square roots, one positive and the other
negative. The standard convention is that the expression /7 refers to the positive
square root of 7. Assuming familiar properties of multiplication of real numbers,
prove that for positive real numbers r and s,

Vs = \/rs.

Problem 1.4.
Identify exactly where the bugs are in each of the following bogus proofs.

(a) Bogus Claim: 1/8 > 1/4.

Bogus proof.
3>2
3logyo(1/2) > 2log;((1/2)
logy(1/2)* > log;(1/2)?
(1/2)* > (1/2)%,
and the claim now follows by the rules for multiplying fractions. |

(b) Bogus proof: 1¢ = $0.01 = (30.1)%> = (10¢)?> = 100¢ = $1. M

(c) Bogus Claim: If ¢ and b are two equal real numbers, then a = 0.

Bogus proof.

a=>b

a’ = ab
a*—b*=ab—b?
(a—b)la+b)=(a—b)b

a+b=0>

a=0.

8From [48], Twenty Years Before the Blackboard by Michael Stueben and Diane Sandford
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Problem 1.5.
It’s a fact that the Arithmetic Mean is at least as large as the Geometric Mean,
namely,
a+b
7 > Vab

for all nonnegative real numbers a and b. But there’s something objectionable
about the following proof of this fact. What’s the objection, and how would you fix

it?
Bogus proof.
b ?
a—; > Vab, SO
?
a+b=>2+vab, o)
?
a® + 2ab + b?* > 4ab, o)
?
a®? —2ab + b? > 0, o)
(a—b)?%>0 which we know is true.

The last statement is true because a — b is a real number, and the square of a real
number is never negative. This proves the claim. |

Practice Problems

Problem 1.6.
Why does the “surprise” paradox of Problem 1.1 present a philosophical problem
but not a mathematical one?

Problems for Section 1.5

Homework Problems

Problem 1.7.

Show that log n is either an integer or irrational, where # is a positive integer. Use
whatever familiar facts about integers and primes you need, but explicitly state such
facts.
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Problems for Section 1.7

Practice Problems

Problem 1.8.
Prove by cases that
max(r, s) + min(r,s) =r + s (*)

for all real numbers r, s.

Class Problems

Problem 1.9.
If we raise an irrational number to an irrational power, can the result be rational?

Show that it can by considering \/Eﬁ and arguing by cases.

Problem 1.10.
Prove by cases that
Ir+ sl < |r[+|s] (D

for all real numbers r, s.°

Homework Problems

Problem 1.11. (a) Suppose that
a+b+c=d,

where a, b, ¢, d are nonnegative integers.

Let P be the assertion that d is even. Let W be the assertion that exactly one among
a, b, c are even, and let T be the assertion that all three are even.

Prove by cases that
P 1FF [W OR T.

(b) Now suppose that

w2+x2—|—y2=22,

9The absolute value |r| of r equals whichever of r or —r is not negative.
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where w, x, y, z are nonnegative integers. Let P be the assertion that z is even, and
let R be the assertion that all three of w, x, y are even. Prove by cases that

P 1FF R.

Hint: An odd number equals 2m + 1 for some integer m, so its square equals
4(m? 4+ m) + 1.

Exam Problems

Problem 1.12.
Prove that there is an irrational number a such that a\/§ is rational.

Hint: Consider 3/5\/5 and argue by cases.

Problems for Section 1.8

Practice Problems

Problem 1.13.
Prove that for any n > 0, if ¢” is even, then a is even.
Hint: Contradiction.

Problem 1.14.
Prove that if @ - b = n, then either a or b must be < /n, where a, b, and n are
nonnegative real numbers. Hint: by contradiction, Section 1.8.

Problem 1.15.
Let n be a nonnegative integer.

(a) Explain why if n? is even—that is, a multiple of 2—then n is even.

(b) Explain why if n? is a multiple of 3, then n must be a multiple of 3.

Problem 1.16.
Give an example of two distinct positive integers m, n such that n? is a multiple of
m, but n is not a multiple of m. How about having m be less than n?
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Class Problems

Problem 1.17.
How far can you generalize the proof of Theorem 1.8.1 that +/2 is irrational? For
example, how about \/5?

Problem 1.18.
Prove that log, 6 is irrational.

Problem 1.19.
Prove by contradiction that \/5 + \/5 is irrational.

Hint: (/3 + V2)(V/3 — V/2)

Problem 1.20.
Here is a generalization of Problem 1.17 that you may not have thought of:

Lemma. Let the coefficients of the polynomial
ag +ayx +arx® + -+ a1 x4 X"
be integers. Then any real root of the polynomial is either integral or irrational.

(a) Explain why the Lemma immediately implies that vk is irrational whenever
k is not an mth power of some integer.
(b) Carefully prove the Lemma.

You may find it helpful to appeal to:
Fact. If a prime p is a factor of some power of an integer, then it is a factor of that
integer.

You may assume this Fact without writing down its proof, but see if you can explain
why it is true.

Exam Problems

Problem 1.21.
Prove that logg 12 is irrational.
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Problem 1.22.
Prove that log;, 18 is irrational.

Problem 1.23.

A familiar proof that J72 is irrational depends on the fact that a certain equation
among those below is unsatisfiable by integers @, b > 0. Note that more than one
is unsatisfiable. Indicate the equation that would appear in the proof, and explain
why it is unsatisfiable. (Do not assume that J72is irrational.)

i. a2 =7>+b2
ii. a3 =72 +03
iii. a? = 7%h?
iv. a3 =7?b3
v. a® =73h3

vi. (ab)? =72

Homework Problems

Problem 1.24.
The fact that that there are irrational numbers a,b such that 4 is rational was
proved in Problem 1.9 by cases. Unfortunately, that proof was nonconstructive: it
didn’t reveal a specific pair a, b with this property. But in fact, it’s easy to do this:
leta = +/2and b ::= 21log, 3.

We know a = ~/2 is irrational, and a® = 3 by definition. Finish the proof that
these values for a, b work, by showing that 2 log, 3 is irrational.

Problem 1.25.
Here is a different proof that \/5 18 irrational, taken from the American Mathemat-
ical Monthly, v.116, #1, Jan. 2009, p.69:

Proof. Suppose for the sake of contradiction that +/2 is rational, and choose the
least integer ¢ > 0 such that (\/5 — 1) g is a nonnegative integer. Let ¢’ ::=

(\/5 - 1) g. Clearly 0 < ¢’ < g. But an easy computation shows that (\/5 - 1) q
is a nonnegative integer, contradicting the minimality of g. |
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(a) This proof was written for an audience of college teachers, and at this point it
is a little more concise than desirable. Write out a more complete version which
includes an explanation of each step.

(b) Now that you have justified the steps in this proof, do you have a preference
for one of these proofs over the other? Why? Discuss these questions with your
teammates for a few minutes and summarize your team’s answers on your white-
board.

Problem 1.26.
For n = 40, the value of polynomial p(n) ::= n? + n + 41 is not prime, as noted
in Section 1.1. But we could have predicted based on general principles that no
nonconstant polynomial can generate only prime numbers.

In particular, let g (n) be a polynomial with integer coefficients, and let ¢ ::=¢(0)
be the constant term of g.

(a) Verify that g(cm) is a multiple of ¢ for all m € Z.

(b) Show that if ¢ is nonconstant and ¢ > 1, then as n ranges over the nonnegative
integers N there are infinitely many ¢ (n) € Z that are not primes.
Hint: You may assume the familiar fact that the magnitude of any nonconstant

polynomial ¢ (n) grows unboundedly as n grows.

(c) Conclude that for every nonconstant polynomial g there must be an n € N
such that g (n) is not prime. Hint: Only one easy case remains.
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Every nonempty set of nonnegative integers has a smallest element.

This statement is known as The Well Ordering Principle (WOP). Do you believe
it? Seems sort of obvious, right? But notice how tight it is: it requires a nonempty
set—it’s false for the empty set which has no smallest element because it has no
elements at all. And it requires a set of nonnegative integers—it’s false for the
set of negative integers and also false for some sets of nonnegative rationals—for
example, the set of positive rationals. So, the Well Ordering Principle captures
something special about the nonnegative integers.

While the Well Ordering Principle may seem obvious, it’s hard to see offhand
why it is useful. But in fact, it provides one of the most important proof rules in
discrete mathematics. In this chapter, we’ll illustrate the power of this proof method
with a few simple examples.

2.1 Well Ordering Proofs

We actually have already taken the Well Ordering Principle for granted in proving
that +/2 is irrational. That proof assumed that for any positive integers m and n,
the fraction m/n can be written in lowest terms, that is, in the form m’/n’ where
m' and n’ are positive integers with no common prime factors. How do we know
this is always possible?

Suppose to the contrary that there are positive integers m and n such that the
fraction m/n cannot be written in lowest terms. Now let C be the set of positive
integers that are numerators of such fractions. Then m € C, so C is nonempty. By
WOP, there must be a smallest integer mg € C. So by definition of C, there is an
integer ng > 0 such that

. mo . .
the fraction — cannot be written in lowest terms.
no

This means that m and 79 must have a common prime factor, p > 1. But

mo/p _ mo
no/p no’
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so any way of expressing the left-hand fraction in lowest terms would also work for
mo/ng, which implies

mo/p

no/p

the fraction cannot be in written in lowest terms either.

So by definition of C, the numerator mg/p is in C. But mgo/p < mg, which
contradicts the fact that mg is the smallest element of C.

Since the assumption that C is nonempty leads to a contradiction, it follows that
C must be empty. That is, that there are no numerators of fractions that can’t be
written in lowest terms, and hence there are no such fractions at all.

We’ve been using the Well Ordering Principle on the sly from early on!

2.2 Template for WOP Proofs

More generally, there is a standard way to use Well Ordering to prove that some
property, P(n) holds for every nonnegative integer n. Here is a standard way to
organize such a well ordering proof:

To prove that “ P (n) is true for all n € N” using the Well Ordering Principle:
e Define the set C of counterexamples to P being true. Specifically, define
C ::={n € N| NOT(P(n)) is true}.

(The notation {n | Q(n)} means “the set of all elements n for which Q (n)
is true.” See Section 4.1.4.)

Assume for proof by contradiction that C is nonempty.

By WOP, there will be a smallest element n in C.

Reach a contradiction somehow—often by showing that P(n) is actually
true or by showing that there is another member of C that is smaller than
n. This is the open-ended part of the proof task.

Conclude that C must be empty, that is, no counterexamples exist. |

2.2.1 Summing the Integers

Let’s use this template to prove
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Theorem 2.2.1.
14+424+34+---+n=nn+1)/2 2.1)

for all nonnegative integers n.

First, we’d better address a couple of ambiguous special cases before they trip us
up:

e If n = 1, then there is only one term in the summation, andso 1 +2 4 3 +
-+« n is just the term 1. Don’t be misled by the appearance of 2 and 3 or by
the suggestion that 1 and n are distinct terms!

e If n = 0, then there are no terms at all in the summation. By convention, the
sum in this case is 0.

So, while the three dots notation, which is called an ellipsis, is convenient, you
have to watch out for these special cases where the notation is misleading. In
fact, whenever you see an ellipsis, you should be on the lookout to be sure you
understand the pattern, watching out for the beginning and the end.

We could have eliminated the need for guessing by rewriting the left side of (2.1)
with summation notation:

Xn:i or Z i

i=1 1<i<n

Both of these expressions denote the sum of all values taken by the expression to
the right of the sigma as the variable i ranges from 1 to n. Both expressions make
it clear what (2.1) means when n = 1. The second expression makes it clear that
when n = 0, there are no terms in the sum, though you still have to know the
convention that a sum of no numbers equals O (the product of no numbers is 1, by
the way).

OK, back to the proof:

Proof. By contradiction. Assume that Theorem 2.2.1 is false. Then, some nonneg-
ative integers serve as counterexamples to it. Let’s collect them in a set:

nn+1)

Ci={neN|1+24+3+--+n# 5

}.
Assuming there are counterexamples, C is a nonempty set of nonnegative integers.
So, by WOP, C has a minimum element, which we’ll call ¢. That is, among the
nonnegative integers, ¢ is the smallest counterexample to equation (2.1).

Since c is the smallest counterexample, we know that (2.1) is false for n = ¢ but
true for all nonnegative integers n < ¢. But (2.1) is true for n = 0, so ¢ > 0. This
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means ¢ — 1 is a nonnegative integer, and since it is less than ¢, equation (2.1) is
true for ¢ — 1. That is,

c—1)c
1+2+3+---+(c—1)=(T).
But then, adding ¢ to both sides, we get
c—1)c c2—c+2c clc+1
1+2+3+---+(C—1)+c:g+c= = ( ),
2 2 2
which means that (2.1) does hold for ¢, after all! This is a contradiction, and we
are done. |

2.3 Factoring into Primes

We’ve previously taken for granted the Prime Factorization Theorem, also known
as the Unique Factorization Theorem and the Fundamental Theorem of Arithmetic,
which states that every integer greater than one has a unique' expression as a prod-
uct of prime numbers. This is another of those familiar mathematical facts which
are taken for granted but are not really obvious on closer inspection. We’ll prove
the uniqueness of prime factorization in a later chapter, but well ordering gives an
easy proof that every integer greater than one can be expressed as some product of
primes.

Theorem 2.3.1. Every positive integer greater than one can be factored as a prod-
uct of primes.

Proof. The proof is by WOP.

Let C be the set of all integers greater than one that cannot be factored as a
product of primes. We assume C is not empty and derive a contradiction.

If C is not empty, there is a least element n € C by WOP. This n can’t be prime,
because a prime by itself is considered a (length one) product of primes, and no
such products are in C.

So n must be a product of two integers a and b where 1 < a,b < n. Since a
and b are smaller than the smallest element in C, we know that a, b ¢ C. In other
words, a can be written as a product of primes pj p> --- pr and b as a product of
primes ¢ ---q;. Therefore, n = p1--- pxq1---q; can be written as a product of
primes, contradicting the claim that n € C. Our assumption that C is not empty
must therefore be false. |

1

... unique up to the order in which the prime factors appear
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2.4 Well Ordered Sets

A set of real numbers is well ordered when each of its nonempty subsets has a
minimum element. The Well Ordering Principle says that the set of nonnegative
integers is well ordered, but so are lots of other sets of real numbers according to
this more general form of WOP. A simple example would be the set N of numbers
of the form rn, where r is a positive real number and n € N. (Why does this work?)

Well ordering commonly comes up in computer science as a method for proving
that computations won’t run forever. The idea is to assign a value to each successive
step of a computation so that the values get smaller at every step. If the values are
all from a well ordered set, then the computation can’t run forever, because if it did,
the values assigned to its successive steps would define a subset with no minimum
element. You’ll see several examples of this technique applied in Chapter 6 to prove
that various state machines will eventually terminate.

Notice that a set may have a minimum element but not be well ordered. The set
of nonnegative rational numbers is an example: it has a minimum element zero,
but it also has nonempty subsets that don’t have minimum elements—the positive
rationals, for example.

The following theorem is a tiny generalization of the Well Ordering Principle.

Theorem 2.4.1. For any nonnegative integer n the set of integers greater than or
equal to —n is well ordered.

This theorem is just as obvious as the Well Ordering Principle, and it would
be harmless to accept it as another axiom. But repeatedly introducing axioms gets
worrisome after a while, and it’s worth noticing when a potential axiom can actually
be proved. This time we can easily prove Theorem 2.4.1 using the Well Ordering
Principle:

Proof. Let S be any nonempty set of integers > —n. Now add n to each of the
elements in S; let’s call this new set S + n. Now S + n is a nonempty set of
nonnegative integers, and so by the Well Ordering Principle, it has a minimum
element m. But then it’s easy to see that 7m — n is the minimum element of S. W

The definition of well ordering states that every subset of a well ordered set
is well ordered, and this yields two convenient, immediate corollaries of Theo-
rem 2.4.1:

Definition 2.4.2. A lower bound (respectively, upper bound) for a set S of real
numbers is a number b such that b < s (respectively, b > s) for every s € S.
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Note that a lower or upper bound of set S is not required to be in the set.
Corollary 2.4.3. Any set of integers with a lower bound is well ordered.

Proof. A set of integers with a lower bound b € R will also have the integer n =
|b| as a lower bound, where |5 |, called the floor of b, is gotten by rounding down
b to the nearest integer. So Theorem 2.4.1 implies the set is well ordered. |

Corollary 2.4.3 leads to another principle we usually tahe for granted:

Corollary 2.4.4. Any nonempty set of integers with an upper bound has a maximum
element.

Proof. Suppose a set S of integers has an upper bound b € R. Now multiply each
element of S by -1; let’s call this new set of elements —S. Now, of course, —b is a
lower bound of —S. So —S has a minimum element —m by Corollary 2.4.3. But
then it’s easy to see that m is the maximum element of S. |

Finite sets are yet another routine example of well ordered set.
Lemma 2.4.5. Every nonempty finite set of real numbers is well ordered.

Proof. Since subsets of finite sets are finite, it is sufficient to prove that every finite
set has a minimum element.

We prove this using the WOP on the size of finite sets.

Let C be the set of positive integers n such that some set of size n has no mini-
mum element. Assume for the sake of contradiction that C is nonempty. By WOP,
there is a minimum integer m € C.

Every set of size one obviously has a minimum element, so m > 2.

Now let F' be a set of m real numbers. We will reach a contradiction by showing
that ' has a minimum element.

So let ro be an element of F'. Since m > 2, removing ro from F leaves a
nonempty set F’ smaller than m. Since m is the smallest element of C, we know
F’ has a minimum element r;. But that means the smaller of r¢ and r; is the
minimum element of F. u

2.4.1 A Different Well Ordered Set (Optional)
The set IF of fractions that can be expressed in the form n/(n + 1):

0123 n
1'2°3'47 "n+177

L)

is well ordered. The minimum element of any nonempty subset of [F is simply the
one with the minimum numerator when expressed in the form n/(n + 1).
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Now we can define a very different well ordered set by adding nonnegative inte-
gers to numbers in F. That is, we take all the numbers of the form n + f where n is
a nonnegative integer and f is a number in . Let’s call this set of numbers—you
guessed it—N 4+ [F. There is a simple recipe for finding the minimum number in
any nonempty subset of N 4 [F, which explains why this set is well ordered:

Lemma 2.4.6. N + F is well ordered.

Proof. Given any nonempty subset S of N 4 [, look at all the nonnegative integers
n such that n + f isin S for some f € F. This is a nonempty set nonnegative
integers, so by the WOP, there is a minimum such integer; call it ny.

By definition of ng, there is some f € FF such that ng + f is in the set S. So
the set all fractions f such thatng + f € S is a nonempty subset of IF, and since
F is well ordered, this nonempty set contains a minimum element; call it fg. Now
it easy to verify that ng + fg is the minimum element of S’ (Problem 2.20). |

The set N + F is significantly different from the examples above, and it pro-
vides a hint of the rich collection of well ordered sets. In all the earlier examples,
each element was greater than only a finite number of other elements. In N + F,
every element greater than or equal to 1 can be the first element in strictly decreas-
ing sequences of elements of arbitrary finite length. For example, the following
decreasing sequences of elements in N + [ all start with 1:

ek
BILWINNI= D
V= O

=

T W= O

Nevertheless, since N + [ is well ordered, it is impossible to find an infinite de-
creasing sequence of elements in N + I, because the set of elements in such a
sequence would have no minimum.

Problems for Section 2.2

Practice Problems

Problem 2.1.
For practice using the Well Ordering Principle, fill in the template of an easy to
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prove fact: every amount of postage that can be assembled using only 10 cent and
15 cent stamps is divisible by 5.

In particular, let the notation “j | k” indicate that integer j is a divisor of integer
k, and let S(n) mean that exactly n cents postage can be assembled using only 10
and 15 cent stamps. Then the proof shows that

S(n) IMPLIES 5| n, for all nonnegative integers . 2.2)
Fill in the missing portions (indicated by “...”) of the following proof of (2.2).

Let C be the set of counterexamples to (2.2), namely

C:={nl...}

Assume for the purpose of obtaining a contradiction that C is nonempty.
Then by the WOP, there is a smallest number m € C. This m must be
positive because . ...

But if S(m) holds and m is positive, then S(m — 10) or S(m — 15)
must hold, because .. ..

So suppose S(m — 10) holds. Then 5 | (m — 10), because. ..

Butif 5 | (m — 10), then obviously 5 | m, contradicting the fact that m
is a counterexample.

Next, if S(m — 15) holds, we arrive at a contradiction in the same way.
Since we get a contradiction in both cases, we conclude that. . .

which proves that (2.2) holds.

Problem 2.2.
The Fibonacci numbers F(0), F(1), F(2), ... are defined as follows:

0 ifn =0,
Fn):=11 ifn=1,
Fn—-1)+Fn-2) ifn>1.

Exactly which sentence(s) in the following bogus proof contain logical errors?
Explain.

False Claim. Every Fibonacci number is even.




“mecs” — 2017/6/5 — 19:42 — page 37 — #45

2.4. Well Ordered Sets 37

Bogus proof. Let all the variables n, m, k mentioned below be nonnegative integer
valued.

1.
2.

10.
11.
12.

The proof is by the WOP.

Let EF(n) mean that F(n) is even.

. Let C be the set of counterexamples to the assertion that EF(n) holds for all

n € N, namely,
C ::={n € N| NOT(EF(n))}.

We prove by contradiction that C is empty. So assume that C is not empty.

. By WOP, there is a least nonnegative integer m € C.
. Then m > 0, since F(0) = 0 is an even number.
. Since m is the minimum counterexample, F'(k) is even for all k < m.

. In particular, F(m — 1) and F(m — 2) are both even.

But by the definition, F(m) equals the sum F(m — 1) + F(m — 2) of two
even numbers, and so it is also even.

That is, EF(m) is true.
This contradicts the condition in the definition of m that NOT(EF()) holds.

This contradition implies that C must be empty. Hence, F(n) is even for all
neN.

Problem 2.3.

In Chapter 2, the Well Ordering Principle was used to show that all positive rational
numbers can be written in “lowest terms,” that is, as a ratio of positive integers with
no common factor prime factor. Below is a different proof which also arrives at this
correct conclusion, but this proof is bogus. Identify every step at which the proof
makes an unjustified inference.

Bogus proof. Suppose to the contrary that there was positive rational ¢ such that ¢
cannot be written in lowest terms. Now let C be the set of such rational numbers
that cannot be written in lowest terms. Then g € C, so C is nonempty. So there
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must be a smallest rational gg € C. So since go/2 < qo, it must be possible to
express ¢o/2 in lowest terms, namely,
qo m
D _= 2.3
> = (2.3)
for positive integers m,n with no common prime factor. Now we consider two
cases:
Case 1: [n is odd]. Then 2m and n also have no common prime factor, and

therefore
m 2m
n n
expresses ¢o in lowest terms, a contradiction.
Case 2: [n is even]. Any common prime factor of m and n/2 would also be a
common prime factor of m and n. Therefore m and n/2 have no common prime

factor, and so
m

n/2
expresses ¢o in lowest terms, a contradiction.

Since the assumption that C is nonempty leads to a contradiction, it follows that
C is empty—that is, there are no counterexamples. |

q0

Class Problems

Problem 2.4.
Use the Well Ordering Principle ? to prove that

24

“ K2 = nn+ 1)2n + 1)‘
2 :

for all nonnegative integers 7.

Problem 2.5.
Use the Well Ordering Principle to prove that there is no solution over the positive
integers to the equation:

4a® +2b3 = 3.

ZProofs by other methods such as induction or by appeal to known formulas for similar sums will
not receive full credit.
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Problem 2.6.

You are given a series of envelopes, respectively containing 1, 2,4, ...,2™ dollars.
Define

Property m: For any nonnegative integer less than 2 +1, there is a
selection of envelopes whose contents add up to exactly that number
of dollars.

Use the Well Ordering Principle (WOP) to prove that Property m holds for all
nonnegative integers m.

Hint: Consider two cases: first, when the target number of dollars is less than
2™ and second, when the target is at least 2.

Homework Problems

Problem 2.7.
Use the Well Ordering Principle to prove that any integer greater than or equal to 8
can be represented as the sum of nonnegative integer multiples of 3 and 5.

Problem 2.8.
Use the Well Ordering Principle to prove that any integer greater than or equal to
50 can be represented as the sum of nonnegative integer multiples of 7, 11, and 13.

Problem 2.9.
Euler’s Conjecture in 1769 was that there are no positive integer solutions to the
equation

a* +b* + c* =d*.

Integer values for a, b, c,d that do satisfy this equation were first discovered in
1986. So Euler guessed wrong, but it took more than two centuries to demonstrate
his mistake.
Now let’s consider Lehman’s equation, similar to Euler’s but with some coeffi-
cients:
8a* + 4b* + 2¢* = d* (2.5)

Prove that Lehman’s equation (2.5) really does not have any positive integer
solutions.
Hint: Consider the minimum value of a among all possible solutions to (2.5).



http://mathworld.wolfram.com/EulersSumofPowersConjecture.html
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Problem 2.10.
Use the Well Ordering Principle to prove that
n < 3"/3 (2.6)

for every nonnegative integer 7.
Hint: Verify (2.6) for n < 4 by explicit calculation.

Problem 2.11.
A winning configuration in the game of Mini-Tetris is a complete tiling of a2 x n
board using only the three shapes shown below:

For example, here are several possible winning configurations on a 2 x 5 board:

(a) Let T, denote the number of different winning configurations on a 2 x n board.
Determine the values of 77, 7> and T5.

(b) Express Ty in terms of T,—; and T,—» forn > 2.

(c) Use the Well Ordering Principle to prove that the number of winning configu-
rations on a 2 x n Mini-Tetris board is:>

_ 2n+1 + (_l)n

Ty 3

)

Problem 2.12.

Mini-Tetris is a game whose objective is to provide a complete “tiling” of a 2 x n
board using tiles of specified shapes. In this problem we consider the following set
of five tiles:

3A good question is how someone came up with equation (*) in the first place. A simple Well
Ordering proof gives no hint about this, but it should be absolutely convincing anyway.
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For example, there are two possible tilings of a 2 x 1 board:

Also, here are three tilings for a 2 x 2 board:

Note that tiles may not be rotated, which is why the second and third of the above
tilings count as different, even though one is a 180° rotation of the other. (A 90°
degree rotation of these shapes would not count as a tiling at all.)

(a) There are four more 2 x 2 tilings in addition to the three above. What are they?

Let T, denote the number of different tilings of a 2 x n board. We know that
Ty =2and T, = 7. Also, Top = 1 because there is exactly one way to tile a 2 x 0
board—don’t use any tiles.

(b) T, can be specified in terms of 7,—; and T, —, as follows:
T, =2T,—1 + 3T, 2.7

forn > 2.

Briefly explain how to justify this equation.
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(c) Use the Well Ordering Principle to prove that for n > 0, the number 7}, of
tilings of a 2 x n Mini-Tetris board is:

3n+1 4 (—1)”
—4 .

Exam Problems

Problem 2.13.
Except for an easily repaired omission, the following proof using the Well Ordering
Principle shows that every amount of postage that can be paid exactly using only
10 cent and 15 cent stamps, is divisible by 5.

Namely, let the notation “j | £ indicate that integer j is a divisor of integer k,
and let S'(n) mean that exactly n cents postage can be assembled using only 10 and
15 cent stamps. Then the proof shows that

S(n) IMPLIES 5| n, for all nonnegative integers 7. (2.8)

Fill in the missing portions (indicated by “...”) of the following proof of (2.8), and
at the end, identify the minor mistake in the proof and how to fix it.

Let C be the set of counterexamples to (2.8), namely

C:={n|SHn)and NOT(5 | n)}

Assume for the purpose of obtaining a contradiction that C is nonempty.
Then by the WOP, there is a smallest number m € C. Then S(m —10)
or S(m — 15) must hold, because the m cents postage is made from 10
and 15 cent stamps, so we remove one.

So suppose S(m — 10) holds. Then 5 | (m — 10), because. ..
But if 5 | (m — 10), then 5 | m, because. ..
contradicting the fact that m is a counterexample.

Next suppose S(m — 15) holds. Then the proof for m — 10 carries
over directly for m — 15 to yield a contradiction in this case as well.
Since we get a contradiction in both cases, we conclude that C must
be empty. That is, there are no counterexamples to (2.8), which proves
that (2.8) holds.

The proof makes an implicit assumption about the value of m. State the assump-
tion and justify it in one sentence.
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Problem 2.14. (a) Prove using the Well Ordering Principle that, using 6¢, 14¢, and
21¢ stamps, it is possible to make any amount of postage over 50¢. To save time,
you may specify assume without proof that 50¢, 51¢, ... 100¢ are all makeable, but
you should clearly indicate which of these assumptions your proof depends on.

(b) Show that 49¢ is not makeable.

Problem 2.15.
We’ll use the Well Ordering Principle to prove that for every positive integer n, the
sum of the first n odd numbers is 72, that is,

n—1

> Qi+ 1) =n? (2.9)

i=0

foralln > 0.
Assume to the contrary that equation (2.9) failed for some positive integer . Let
m be the least such number.

(a) Why must there be such an m?
(b) Explain why m > 2.

(c) Explain why part (b) implies that

m—1

Y-+ =(m-1)7> (2.10)

i=1
(d) What term should be added to the left-hand side of (2.10) so the result equals
m
do@iE -1+ 1)?
i=1

(e) Conclude that equation (2.9) holds for all positive integers .

Problem 2.16.
Use the Well Ordering Principle (WOP) to prove that

244+---+2n=nn+1) (2.11)

foralln > 0.
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Problem 2.17.
Prove by the Well Ordering Principle that for all nonnegative integers, 7:
N\ 2
03+13+23+---+n3:(@) . (2.12)
Problem 2.18.
Use the Well Ordering Principle to prove that
1 2
1242343 44 tnn41) =12 DOFD )

3

for all integers n > 1.

Problem 2.19.

Say a number of cents is makeable if it is the value of some set of 6 cent and 15
cent stamps. Use the Well Ordering Principle to show that every integer that is a
multiple of 3 and greater than or equal to twelve is makeable.

Problems for Section 2.4

Homework Problems

Problem 2.20.
Complete the proof of Lemma 2.4.6 by showing that the number ng + fs is the
minimum element in S.

Practice Problems

Problem 2.21.

Indicate which of the following sets of numbers have a minimum element and
which are well ordered. For those that are not well ordered, give an example of
a subset with no minimum element.

(a) The integers > —V2.
(b) The rational numbers > V2.

(c) The set of rationals of the form 1/n where n is a positive integer.
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(d) The set G of rationals of the form m/n where m,n > 0 and n < g, where g
is a googol 10190,

(e) The set IF of fractions of the form n/(n + 1):

N N g e e e

0
l’

W N
| w

| =

(f) Let W ::= N U F be the set consisting of the nonnegative integers along with
all the fractions of the form n/(n + 1). Describe a length 5 decreasing sequence of
elements of W starting with 1,...length 50 decreasing sequence,. . . length 500.

Problem 2.22.
Use the Well Ordering Principle to prove that every finite, nonempty set of real
numbers has a minimum element.

Class Problems

Problem 2.23.
Prove that a set R of real numbers is well ordered iff there is no infinite decreasing
sequence of numbers R. In other words, there is no set of numbers ; € R such
that

ro>r1>ry>.... (2.13)
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3 Logical Formulas

It is amazing that people manage to cope with all the ambiguities in the English
language. Here are some sentences that illustrate the issue:

e “You may have cake, or you may have ice cream.”
e “If pigs can fly, then your account won’t get hacked.”

e “If you can solve any problem we come up with, then you get an A for the
course.”

e “Every American has a dream.”

What precisely do these sentences mean? Can you have both cake and ice cream or
must you choose just one dessert? Pigs can’t fly, so does the second sentence say
anything about the security of your account? If you can solve some problems we
come up with, can you get an A for the course? And if you can’t solve a single one
of the problems, does it mean you can’t get an A? Finally, does the last sentence
imply that all Americans have the same dream—say of owning a house—or might
different Americans have different dreams—say, Eric dreams of designing a killer
software application, Tom of being a tennis champion, Albert of being able to sing?

Some uncertainty is tolerable in normal conversation. But when we need to
formulate ideas precisely—as in mathematics and programming—the ambiguities
inherent in everyday language can be a real problem. We can’t hope to make an
exact argument if we’re not sure exactly what the statements mean. So before we
start into mathematics, we need to investigate the problem of how to talk about
mathematics.

To get around the ambiguity of English, mathematicians have devised a spe-
cial language for talking about logical relationships. This language mostly uses
ordinary English words and phrases such as “or,” “implies,” and “for all.” But
mathematicians give these words precise and unambiguous definitions which don’t
always match common usage.

Surprisingly, in the midst of learning the language of logic, we’ll come across
the most important open problem in computer science—a problem whose solution
could change the world.
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3.1 Propositions from Propositions

In English, we can modify, combine, and relate propositions with words such as
“not,” “and,” “or,” “implies,” and “if-then.” For example, we can combine three
propositions into one like this:

If all humans are mortal and all Greeks are human, then all Greeks are mortal.

For the next while, we won’t be much concerned with the internals of propositions—
whether they involve mathematics or Greek mortality—but rather with how propo-
sitions are combined and related. So, we’ll frequently use variables such as P and
Q in place of specific propositions such as “All humans are mortal” and “2 4 3 =
5.” The understanding is that these propositional variables, like propositions, can
take on only the values T (true) and F (false). Propositional variables are also
called Boolean variables after their inventor, the nineteenth century mathematician
George—you guessed it—Boole.

3.1.1 NOT, AND, and OR

Mathematicians use the words NOT, AND and OR for operations that change or
combine propositions. The precise mathematical meaning of these special words
can be specified by truth tables. For example, if P is a proposition, then so is
“NOT(P),” and the truth value of the proposition “NOT(P)” is determined by the
truth value of P according to the following truth table:

P | NOT(P)
T F
F T

The first row of the table indicates that when proposition P is true, the proposi-
tion “NOT(P)” is false. The second line indicates that when P is false, “NOT(P)”
is true. This is probably what you would expect.

In general, a truth table indicates the true/false value of a proposition for each
possible set of truth values for the variables. For example, the truth table for the
proposition “P AND Q” has four lines, since there are four settings of truth values
for the two variables:

| P AND Q

CECNE RS

0
T
F
T
F

CECRCRS




“mecs” — 2017/6/5 — 19:42 — page 49 — #57

3.1. Propositions from Propositions 49

According to this table, the proposition “P AND Q” is true only when P and Q
are both true. This is probably the way you ordinarily think about the word “and.”
There is a subtlety in the truth table for “P OR Q”:

P Q|PORQ
T T T
T F T
F T T
F F F

The first row of this table says that “P OR Q” is true even if both P and Q are
true. This isn’t always the intended meaning of “or” in everyday speech, but this is
the standard definition in mathematical writing. So if a mathematician says, “You
may have cake, or you may have ice cream,” he means that you could have both.

If you want to exclude the possibility of having both cake and ice cream, you
should combine them with the exclusive-or operation, XOR:

Q| P XOR Q

SRR
SRR
SR

3.1.2 If and Only If

Mathematicians commonly join propositions in an additional way that doesn’t arise
in ordinary speech. The proposition “P if and only if Q” asserts that P and Q have
the same truth value. Either both are true or both are false.

P Q|PIFFQ
T T T
T F F
F T F
F F T

For example, the following if-and-only-if statement is true for every real number
X:
x2—4>0 IFF |x| > 2.

For some values of x, both inequalities are true. For other values of x, neither
inequality is true. In every case, however, the IFF proposition as a whole is true.
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3.1.3 IMPLIES

The combining operation whose technical meaning is least intuitive is “implies.”
Here is its truth table, with the lines labeled so we can refer to them later.

P Q| P IMPLIES O

T T T (tt)
T F F (th)
F T T (ft)
F F T (ff)

The truth table for implications can be summarized in words as follows:

An implication is true exactly when the if-part is false or the then-part is true.

This sentence is worth remembering; a large fraction of all mathematical statements
are of the if-then form!

Let’s experiment with this definition. For example, is the following proposition
true or false?

If Goldbach’s Conjecture is true, then x2 > 0 for every real number x.

We already mentioned that no one knows whether Goldbach’s Conjecture, Proposi-
tion 1.1.6, is true or false. But that doesn’t prevent us from answering the question!
This proposition has the form P IMPLIES Q where the hypothesis P is “Gold-
bach’s Conjecture is true” and the conclusion Q is “x~ > 0 for every real number
x.” Since the conclusion is definitely true, we’re on either line (tt) or line (ft) of the
truth table. Either way, the proposition as a whole is frue!

Now let’s figure out the truth of one of our original examples:

If pigs fly, then your account won’t get hacked.

Forget about pigs, we just need to figure out whether this proposition is true or
false. Pigs do not fly, so we’re on either line (ft) or line (ff) of the truth table. In
both cases, the proposition is true!

False Hypotheses

This mathematical convention—that an implication as a whole is considered true
when its hypothesis is false—contrasts with common cases where implications are
supposed to have some causal connection between their hypotheses and conclu-
sions.

For example, we could agree—or at least hope—that the following statement is
true:
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If you followed the security protocal, then your account won’t get
hacked.

We regard this implication as unproblematical because of the clear causal connec-
tion between security protocols and account hackability.
On the other hand, the statement:

If pigs could fly, then your account won’t get hacked,

would commonly be rejected as false—or at least silly—because porcine aeronau-
tics have nothing to do with your account security. But mathematically, this impli-
cation counts as true.

It’s important to accept the fact that mathematical implications ignore causal
connections. This makes them a lot simpler than causal implications, but useful
nevertheless. To illustrate this, suppose we have a system specification which con-
sists of a series of, say, a dozen rules,’

If the system sensors are in condition 1,
then the system takes action 1.

If the system sensors are in condition 2,
then the system takes action 2.

If the system sensors are in condition 12,
then the system takes action 12.

Letting C; be the proposition that the system sensors are in condition i, and A;
be the proposition that system takes action i, the specification can be restated more
concisely by the logical formulas

Ci IMPLIES A1,
C, IMPLIES A»,

C1, IMPLIES A12.

Now the proposition that the system obeys the specification can be nicely expressed
as a single logical formula by combining the formulas together with ANDs::

[C1 IMPLIES A1] AND [C2 IMPLIES A3] AND --- AND [C12 IMPLIES A12]. (3.1)

For example, suppose only conditions C; and Cs are true, and the system indeed
takes the specified actions A, and As. So in this case, the system is behaving

! Problem 3.16 concerns just such a system.
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according to specification, and we accordingly want formula (3.1) to come out true.
The implications C» IMPLIES A, and C5 IMPLIES As are both true because both
their hypotheses and their conclusions are true. But in order for (3.1) to be true, we
need all the other implications, all of whose hypotheses are false, to be true. This
is exactly what the rule for mathematical implications accomplishes.

3.2 Propositional Logic in Computer Programs

Propositions and logical connectives arise all the time in computer programs. For
example, consider the following snippet, which could be either C, C++, or Java:

if (x>0 1] (x <=0 && y > 100) )

(further instructions)

Java uses the symbol | | for “OR,” and the symbol && for “AND.” The further
instructions are carried out only if the proposition following the word if is true.
On closer inspection, this big expression is built from two simpler propositions.
Let A be the proposition that x > 0, and let B be the proposition thaty > 100.
Then we can rewrite the condition as

A OR (NOT(A) AND B). 3.2)

3.2.1 Truth Table Calculation

A truth table calculation reveals that the more complicated expression 3.2 always
has the same truth value as
A OR B. 3.3)

We begin with a table with just the truth values of A and B:

B|A OR (NOT(4) AND B)| AORB

CECEERE| N
R
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These values are enough to fill in two more columns:
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A B|A OR (NOT(A) AND B)| AORB

T T F T

T F F T

F T T T

F F T F
Now we have the values needed to fill in the AND column:

A B|A OR (NOT(A) AND B)| AORB

T T F F T

T F F F T

F T T T T

F F T F F
and this provides the values needed to fill in the remaining column for the first OR:

A B|A OrR (NOT(A) AND B)| AORB

T T T F F T

T F T F F T

F T T T T T

F F F T F F

Expressions whose truth values always match are called equivalent. Since the two
emphasized columns of truth values of the two expressions are the same, they are
equivalent. So we can simplify the code snippet without changing the program’s
behavior by replacing the complicated expression with an equivalent simpler one:

if |

x > 0 ||

y > 100 )

(further instructions)

The equivalence of (3.2) and (3.3) can also be confirmed reasoning by cases:

A is T. An expression of the form (T OR anything) is equivalent to T. Since 4 is T
both (3.2) and (3.3) in this case are of this form, so they have the same truth

AisF.

value, namely, T.

An expression of the form (F OR anything) will have same truth value as
anything. Since A is F, (3.3) has the same truth value as B.

An expression of the form (T AND anything) is equivalent to anything, as is
any expression of the form F OR anything. So in this case A OR (NOT(A) AND
B) is equivalent to (NOT(A) AND B), which in turn is equivalent to B.
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Therefore both (3.2) and (3.3) will have the same truth value in this case,
namely, the value of B.

Simplifying logical expressions has real practical importance in computer sci-
ence. Expression simplification in programs like the one above can make a program
easier to read and understand. Simplified programs may also run faster, since they
require fewer operations. In hardware, simplifying expressions can decrease the
number of logic gates on a chip because digital circuits can be described by logical
formulas (see Problems 3.6 and 3.7). Minimizing the logical formulas corresponds
to reducing the number of gates in the circuit. The payoff of gate minimization is
potentially enormous: a chip with fewer gates is smaller, consumes less power, has
a lower defect rate, and is cheaper to manufacture.

3.2.2 Cryptic Notation

Java uses symbols like “&&” and “||” in place of AND and OR. Circuit designers
use “” and “+,” and actually refer to AND as a product and OR as a sum. Mathe-
maticians use still other symbols, given in the table below.

English Symbolic Notation
NOT(P) —P (alternatively, P)
P AND Q PAQ

PoORQ PvQ

PIMPLIES Q9 P — O
if P then Q P—Q

P 1FF Q P<«—Q
P XOR Q P& O
For example, using this notation, “If P AND NOT(Q), then R” would be written:
(P AQ)— R.

The mathematical notation is concise but cryptic. Words such as “AND” and
“OR” are easier to remember and won’t get confused with operations on numbers.
We will often use P as an abbreviation for NOT(P), but aside from that, we mostly
stick to the words—except when formulas would otherwise run off the page.

3.3 Equivalence and Validity

3.3.1 Implications and Contrapositives

Do these two sentences say the same thing?
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If I am hungry, then I am grumpy.
If I am not grumpy, then I am not hungry.

We can settle the issue by recasting both sentences in terms of propositional logic.
Let P be the proposition “I am hungry” and Q be “I am grumpy.” The first sentence
says “P IMPLIES Q7 and the second says “NOT(Q) IMPLIES NOT(P).” Once
more, we can compare these two statements in a truth table:

P | Q| (P MPLIES Q) | (NOT(Q) IMPLIES NOT(P))
T

T[T F T F
T|F F T F F
F|T T F T T
F|F T T T T

Sure enough, the highlighted columns showing the truth values of these two state-
ments are the same. A statement of the form “NOT(Q) IMPLIES NOT(P)” is called
the contrapositive of the implication “P IMPLIES Q.” The truth table shows that
an implication and its contrapositive are equivalent—they are just different ways of
saying the same thing.

In contrast, the converse of “P IMPLIES Q7 is the statement “Q IMPLIES P.”
The converse to our example is:

If I am grumpy, then I am hungry.
This sounds like a rather different contention, and a truth table confirms this suspi-

cion:
P | Q| PIMPLIES Q | Q IMPLIES P

T[T T T
T|F F T
F|T T F
F|F T T

Now the highlighted columns differ in the second and third row, confirming that an
implication is generally not equivalent to its converse.

One final relationship: an implication and its converse together are equivalent to
an iff statement, specifically, to these two statements together. For example,

If I am grumpy then I am hungry, and if I am hungry then I am grumpy.
are equivalent to the single statement:

I am grumpy iff [ am hungry.
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Once again, we can verify this with a truth table.

P | Q| (PIMPLIES Q) AND (Q IMPLIES P) | P IFF Q
T|T T T T T
T|F F F T F
F|T T F F F
F|F T T T T

The fourth column giving the truth values of
(P IMPLIES Q) AND (Q IMPLIES P)

is the same as the sixth column giving the truth values of P IFF Q, which confirms
that the AND of the implications is equivalent to the IFF statement.

3.3.2 Validity and Satisfiability

A valid formula is one which is always true, no matter what truth values its vari-
ables may have. The simplest example is

P OR NOT(P).

You can think about valid formulas as capturing fundamental logical truths. For
example, a property of implication that we take for granted is that if one statement
implies a second one, and the second one implies a third, then the first implies the
third. The following valid formula confirms the truth of this property of implication.

[(P IMPLIES Q) AND (Q IMPLIES R)| IMPLIES (P IMPLIES R).

Equivalence of formulas is really a special case of validity. Namely, statements
F and G are equivalent precisely when the statement (F IFF G) is valid. For
example, the equivalence of the expressions (3.3) and (3.2) means that

(A OR B) IFF (A OR (NOT(A) AND B))

is valid. Of course, validity can also be viewed as an aspect of equivalence. Namely,
a formula is valid iff it is equivalent to T.

A satisfiable formula is one which can sometimes be true—that is, there is some
assignment of truth values to its variables that makes it true. One way satisfiabil-
ity comes up is when there are a collection of system specifications. The job of
the system designer is to come up with a system that follows all the specs. This
means that the AND of all the specs must be satisfiable or the designer’s job will be
impossible (see Problem 3.16).

There is also a close relationship between validity and satisfiability: a statement
P is satisfiable iff its negation NOT(P) is not valid.
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3.4 The Algebra of Propositions

3.4.1 Propositions in Normal Form

Every propositional formula is equivalent to a “sum-of-products” or disjunctive
normal form (DNF).

More precisely, a propositional variable A or its negation bar(A) is called a
literal, and an AND of literals involving distinct variables is called an AND-clause.
For example,

A AND B AND C

is an AND-clause, but A AND B AND B AND C is not because B appears twice.
Finally, a DNF is an ORof AND-clauses such as

(A AND B) OR (A AND C). (3.49)

You can read a DNF for any propositional formula directly from its truth table.
For example, the formula
A AND (B OR C) 3.5)

has truth table:
A AND (BORC)

e = = g |
e s = | S
o e = =] O
CI R R R R R

The formula (3.5) is true in the first row when A, B and C are all true, that is, where
A AND B AND C is true. It is also true in the second row where A AND B AND C
is true, and in the third row when A AND B AND C is true, and that’s all. So (3.5)
is true exactly when

(A AND B AND C) OR (A AND B AND C) OR (A AND B AND C) (3.6)

is true.

The expression (3.6) is a DNF where each AND-clause actually includes a literal
for every one of the variables in the whole formula. We’ll call such a formula a full
DNF.
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A DNF formula can often be simplified into a smaller DNF For example, the
DNF (3.6) further simplifies to the equivalent DNF (3.4) above.

Applying the same reasoning to the F entries of a truth table yields a conjunctive
normal form (CNF) for any formula—an AND of OR-clauses, where an OR-clause
is an OR of literals from different variables.

For example, formula (3.5) is false in the fourth row of its truth table (3.4.1)
where A is T, B is F and C is F. But this is exactly the one row where the OR-
clause (A OR B OR C) is F! Likewise, (3.5) is false in the fifth row, which is
exactly where (4 OR B OR C) is F. This means that (3.5) will be F whenever the
AND of these two OR-clauses is false. Continuing in this way with the OR-clauses
corresponding to the remaining three rows where (3.5) is false, we get a CNF that
is equivalent to (3.5), namely,

(AOR B OR C) AND (A OR B OR C) AND (4 OR B OR C)AND
(AOR BORC) AND (A OR B OR C)

Again, each OR-clause includes a literal for every one of the variables, that is, it is
a full CNF
The methods above can be applied to any truth table, which implies

Theorem 3.4.1. Every propositional formula is equivalent to both a full disjunctive
normal form and a full conjunctive normal form.

3.4.2 Proving Equivalences

A check of equivalence or validity by truth table runs out of steam pretty quickly:
a proposition with n variables has a truth table with 2" lines, so the effort required
to check a proposition grows exponentially with the number of variables. For a
proposition with just 30 variables, that’s already over a billion lines to check!

An alternative approach that sometimes helps is to use algebra to prove equiv-
alence. A lot of different operators may appear in a propositional formula, so a
useful first step is to get rid of all but three: AND, OR and NOT. This is easy be-
cause each of the operators is equivalent to a simple formula using only these three.
For example, A IMPLIES B is equivalent to NOT(A) OR B. Formulas defining the
remaining operators using only QAND, OR and NOT are left to Problem 3.17.

We list below a bunch of equivalence axioms with the symbol “ <— * between
equivalent formulas. These axioms are important because they are all that’s needed
to prove every possible equivalence. We’ll start with some equivalences for AND’s
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that look like the familiar ones for multiplication of numbers:

AANDB «<— BANDA (commutativity of AND)
(3.7
(AAND B) ANDC <«— A AND (B AND C) (associativity of AND)
(3.8)
TANDA «— A (identity for AND)
FANDA «— F (zero for AND)

AAND (BORC) <— (A AND B) OR (A AND C) (distributivity of AND over OR)
3.9

Associativity (3.8) justifies writing A AND B AND C without specifying whether
it is parenthesized as A AND (B AND C) or (A AND B) AND C. Both ways of
inserting parentheses yield equivalent formulas.

Unlike arithmetic rules for numbers, there is also a distributivity law for “sums”
over “products:”

AOR(BANDC) «<— (AOR B) AND (AOR C) (distributivity of OR over AND)
(3.10)

Three more axioms that don’t directly correspond to number properties are

AAND A «— A (idempotence for AND)
AANDA <« F (contradiction for AND) (3.11)
N OT(Z) «~ A (double negation) 3.12)

There are a corresponding set of equivalences for OR which we won’t bother to
list, except for validity rule (3.13) for OR:

AORA «— T (validity for OR) (3.13)

Finally, there are De Morgan’s Laws which explain how to distribute NOT’s over
AND’s and OR’s:

NOT(A AND B) < AORB (De Morgan for AND) (3.14)

NOT(A OR B) «— A AND B (De Morgan for OR) (3.15)

All of these axioms can be verified easily with truth tables.
These axioms are all that’s needed to convert any formula to a full DNF. We can
illustrate how they work by applying them to turn the negation of formula (3.5),

NOT((A AND B) OR (A AND C)). (3.16)
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into a full DNF.
We start by applying De Morgan’s Law for OR (3.15) to (3.16) in order to move
the NOT deeper into the formula. This gives

NOT(A AND B) AND NOT(A AND C).

Now applying De Morgan’s Law for AND (3.14) to the two innermost AND-terms,
gives L L
(AOR B) AND (AOR C). (3.17)

At this point NOT only applies to variables, and we won’t need De Morgan’s Laws
any further.

Now we will repeatedly apply (3.9), distributivity of AND over OR, to turn (3.17)
into a DNF. To start, we’ll distribute (A OR B) over AND to get

((AOR B) AND A) OR ((A OR B) AND C).
Using distributivity over both AND’s we get
((A AND A) OR (B AND A)) OR ((A AND C) OR (B AND C)).

By the way, we’ve implicitly used commutativity (3.7) here to justify distributing
over an AND from the right. Now applying idempotence to remove the duplicate
occurrence of A we get

(A OR (B AND A)) OR ((A AND C) OR (B AND C)).

Associativity of QOR now allows dropping the parentheses grouping the AND-
clauses to yield the following DNF for (3.16):

A OR (B AND A) OR (A AND C) OR (B AND C). (3.18)

The penultimate step is to turn this DNF into a full DNF. This can be done
separately for ech AND-clause. We’ll illustrate how using the second AND-clause
(B AND A). This clause needs to mention C to be in full form. To introduce C, we
use validity for OR and identity for AND to conclude that

(B AND A) < (B AND A) AND (C OR C).
Now distributing (B AND A) over the OR in (C OR C) yields the full DNF

(B AND A AND C) OR (B AND A AND C).
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Doing the same thing to the other AND-clauses in (3.18) finally gives a full DNF
for (3.5): o o .

(A AND B AND C) OR (A AND B AND C) OR

(A AND B AND C) OR (4 AND B AND C) OR

(B AND A AND C) OR (B AND A AND C) OR

(A AND C AND B) OR (4 AND C AND B) OR

(B AND C AND A) OR (B AND C AND A).

The final step is to use commutativity to sort the variables within the AND-clauses
and then sort the AND-clauses themselves, followed by applying OR-idempotence
as needed to remove duplicate AND-clauses. This finally yields a sorted full DNF
without duplicates which is called a canonical DNF :

(A AND B AND C) OR
(A AND B AND C) OR
(A AND B AND C) OR
(A AND B AND C) OR
(A AND B AND C).

This example illustrates the general strategy for applying the axioms above to any
given propositional formala to derive an equivalent canonical DNF. This proves:

Theorem 3.4.2. Using the equivalences listed above, any propositional formula
can be proved equivalent to a canonical form.

What has this got to do with equivalence? That’s easy: to prove that two formulas
are equivalent, convert them both to canonical forms over the set of variables that
appear in at least one of the formulas—call these the combined variables. Now
if two formulas are equivalent to the same canonical form then the formula are
certainly equivalent. Conversely, the way we read off a full disjunctive normal
form from a truth table actually yields a canonical form. So if two formulas are
equivalent, they will have the same truth table over the combined variables, and
therefore they will have the same canonical form. This proves

Theorem 3.4.3 (Completeness of the propositional equivalence axioms). Two propo-
sitional formula are equivalent iff they can be proved equivalent using the equiva-
lence axioms listed above.

Notice that the same approach could be taken used CNF instead of DNF canoni-
cal forms.

The benefit of the axioms is that they allow some ingenious proofs of equiva-
lence that may involve much less effort than the truth table method. Moreover,
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Theorem 3.4.3 reassures us that the axioms are guaranteed to provide a proof of
every equivalence, which is a great punchline for this section.

But we don’t want to mislead you: the guaranteed proof involves deriving canon-
ical forms, and canonical forms are essentially copies of truth tables. There is no
reason to expect algebraic proofs of equivalence to be any easier in general than
conversion to canonical form, which means algebraic proofs will generally be no
easier than using truth tables.

3.5 The SAT Problem

Determining whether or not a more complicated proposition is satisfiable is not so
easy. How about this one?

(P OR Q OR R) AND (P OR Q) AND (P OR R) AND (R OR Q)

The general problem of deciding whether a proposition is satisfiable is called
SAT. One approach to SAT is to construct a truth table and check whether or not
a T ever appears, but as with testing validity, this approach quickly bogs down
for formulas with many variables because truth tables grow exponentially with the
number of variables.

Is there a more efficient solution to SAT? In particular, is there some brilliant
procedure that determines SAT in a number of steps that grows polynomially—Ilike
n? or n'*—instead of exponentially—2"—whether any given proposition of size n
is satisfiable or not? No one knows. And an awful lot hangs on the answer.

The general definition of an “efficient” procedure is one that runs in polynomial
time, that is, that runs in a number of basic steps bounded by a polynomial in s,
where s is the size of an input. It turns out that an efficient solution to SAT would
immediately imply efficient solutions to many other important problems involving
scheduling, routing, resource allocation, and circuit verification across multiple dis-
ciplines including programming, algebra, finance, and political theory. This would
be wonderful, but there would also be worldwide chaos. Decrypting coded mes-
sages would also become an easy task, so online financial transactions would be
insecure and secret communications could be read by everyone. Why this would
happen is explained in Section 9.12.

Of course, the situation is the same for validity checking, since you can check for
validity by checking for satisfiability of a negated formula. This also explains why
the simplification of formulas mentioned in Section 3.2 would be hard—validity
testing is a special case of determining if a formula simplifies to T.
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Recently there has been exciting progress on SAT-solvers for practical applica-
tions like digital circuit verification. These programs find satisfying assignments
with amazing efficiency even for formulas with millions of variables. Unfortu-
nately, it’s hard to predict which kind of formulas are amenable to SAT-solver
methods, and for formulas that are unsatisfiable, SAT-solvers are generally much
less effective.

So no one has a good idea how to solve SAT in polynomial time, or how to
prove that it can’t be done—researchers are completely stuck. The problem of
determining whether or not SAT has a polynomial time solution is known as the
“P vs. NP” problem.? It is the outstanding unanswered question in theoretical
computer science. It is also one of the seven Millenium Problems: the Clay Institute
will award you $1,000,000 if you solve the P vs. NP problem.

3.6 Predicate Formulas

3.6.1 Quantifiers

The “for all” notation V has already made an early appearance in Section 1.1. For
example, the predicate
4‘x2 z 077

is always true when x is a real number. That is,
VxeR.x?>0

is a true statement. On the other hand, the predicate
“5x2—7=0"

is only sometimes true; specifically, when x = + \/7/_5 There is a “there exists”
notation 3 to indicate that a predicate is true for at least one, but not necessarily all
objects. So

Ix eR.5x2-7=0

is true, while
Vx eR.5x2—-7=0

is not true.

2P stands for problems whose instances can be solved in time that grows polynomially with the
size of the instance. NP stands for nondeterministtic polynomial time, but we’ll leave an explanation
of what that is to texts on the theory of computational complexity.
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There are several ways to express the notions of “always true” and “sometimes
true” in English. The table below gives some general formats on the left and specific
examples using those formats on the right. You can expect to see such phrases
hundreds of times in mathematical writing!

Always True

For all x € D, P(x) is true. Forall x € R, x2 > 0.
P(x) is true for every x in the set D. x2 > 0 for every x € R.

Sometimes True

There is an x € D such that P(x) is true. There is an x € R such that 5x% — 7 = 0.
P(x) is true for some x in the set D. 5x2 —7 = 0 for some x € R.
P(x) is true for at least one x € D. 5x2 —7 = 0 for at least one x € R.

All these sentences “quantify” how often the predicate is true. Specifically, an
assertion that a predicate is always true is called a universal quantification, and an
assertion that a predicate is sometimes true is an existential quantification. Some-
times the English sentences are unclear with respect to quantification:

If you can solve any problem we come up with,
then you get an A for the course. (3.19)

The phrase “you can solve any problem we can come up with” could reasonably be
interpreted as either a universal or existential quantification:

you can solve every problem we come up with, (3.20)

or maybe
you can solve at least one problem we come up with. 3.21)

To be precise, let Probs be the set of problems we come up with, Solves(x) be
the predicate “You can solve problem x,” and G be the proposition, “You get an A
for the course.” Then the two different interpretations of (3.19) can be written as
follows:

(Vx € Probs. Solves(x)) IMPLIES G, for (3.20),
(3x € Probs. Solves(x)) IMPLIES G. for (3.21).

3.6.2 Mixing Quantifiers

Many mathematical statements involve several quantifiers. For example, we al-
ready described
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Goldbach’s Conjecture 1.1.6: Every even integer greater than 2 is the
sum of two primes.

Let’s write this out in more detail to be precise about the quantification:

For every even integer n greater than 2, there exist primes p and g such
thatn = p 4+ q.

Let Evens be the set of even integers greater than 2, and let Primes be the set of
primes. Then we can write Goldbach’s Conjecture in logic notation as follows:

Vn € Evens dp € Primes dg € Primes. n = p +gq.

fOf every even there exist primes
integer n > 2 p and g such that

3.6.3 Order of Quantifiers

Swapping the order of different kinds of quantifiers (existential or universal) usually
changes the meaning of a proposition. For example, let’s return to one of our initial,
confusing statements:

“Every American has a dream.”

This sentence is ambiguous because the order of quantifiers is unclear. Let A be
the set of Americans, let D be the set of dreams, and define the predicate H(a, d)
to be “American a has dream d.” Now the sentence could mean there is a single
dream that every American shares—such as the dream of owning their own home:

dd e DVae A.H(a,d)
Or it could mean that every American has a personal dream:
Yae€ A3d € D.H(a,d)

For example, some Americans may dream of a peaceful retirement, while others
dream of continuing practicing their profession as long as they live, and still others
may dream of being so rich they needn’t think about work at all.

Swapping quantifiers in Goldbach’s Conjecture creates a patently false statement
that every even number > 2 is the sum of the same two primes:

dp € Primes 3¢ € Primes. Vi € Evens n = p + g.

there exist primes for every even
p and g such that integern > 2
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3.6.4 Variables Over One Domain

When all the variables in a formula are understood to take values from the same
nonempty set D it’s conventional to omit mention of D. For example, instead of
Vx € D3y € D. Q(x, y) we’d write Yx3y. Q(x, y). The unnamed nonempty set
that x and y range over is called the domain of discourse, or just plain domain, of
the formula.

It’s easy to arrange for all the variables to range over one domain. For exam-
ple, Goldbach’s Conjecture could be expressed with all variables ranging over the
domain N as

Vn.n € Evens IMPLIES (3 p3¢q. p € Primes AND g € Primes AND#n = p + ¢q).

3.6.5 Negating Quantifiers
There is a simple relationship between the two kinds of quantifiers. The following
two sentences mean the same thing:

Not everyone likes ice cream.

There is someone who does not like ice cream.

The equivalence of these sentences is an instance of a general equivalence that
holds between predicate formulas:

NOT(Vx. P(x)) isequivalentto 3Ix. NOT(P(x)). (3.22)

Similarly, these sentences mean the same thing:

There is no one who likes being mocked.

Everyone dislikes being mocked.

The corresponding predicate formula equivalence is
NOT(3x. P(x)) isequivalentto Vx.NOT(P(x)). (3.23)

Note that the equivalence (3.23) follows directly by negating both sides the equiv-
alence (3.22).

The general principle is that moving a NOT to the other side of an “3” changes
it into “VY,” and vice versa.

These equivalences are called De Morgan’s Laws for Quantifiers because they
can be understood as applying De Morgan’s Laws for propositional formulas to
an infinite sequence of AND’s and OR’s. For example, we can explain (3.22) by
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supposing the domain of discourse is {do, d1,...,dy,...}. Then Ix. NOT(P(x))
means the same thing as the infinite OR:

NOT(P(dp)) OR NOT(P(dy)) OR --- OR NOT(P(dy)) OR.... (3.24)
Applying De Morgan’s rule to this infinite OR yields the equivalent formula
NOT[P(dg) AND P(dy) AND--- AND P(d,) AND...]. (3.25)
But (3.25) means the same thing as
NOT[Vx. P(x)].

This explains why 3x. NOT(P(x)) means the same thing as NOT[Vx. P (x)], which
confirms(3.22).
3.6.6 Validity for Predicate Formulas

The idea of validity extends to predicate formulas, but to be valid, a formula now
must evaluate to true no matter what the domain of discourse may be, no matter
what values its variables may take over the domain, and no matter what interpreta-
tions its predicate variables may be given. For example, the equivalence (3.22) that
gives the rule for negating a universal quantifier means that the following formula
is valid:

NOT(Vx. P(x)) IFF dx. NOT(P(x)). (3.26)

Another useful example of a valid assertion is
dxVy. P(x,y) IMPLIES Vy3dx. P(x, y). (3.27)
Here’s an explanation why this is valid:

Let D be the domain for the variables and Py be some binary predi-
cate’ on D. We need to show that if

dx € D.Vy € D. Py(x, y) (3.28)
holds under this interpretation, then so does
Vy € D3x € D. Py(x,y). (3.29)

So suppose (3.28) is true. Then by definition of 3, this means that some
element dy € D has the property that

Vy e D. P()(do,y).

3That is, a predicate that depends on two variables.
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By definition of V, this means that
Po(do.d)

is true for all d € D. So given any d € D, there is an element in D,
namely dy, such that Py(do, d) is true. But that’s exactly what (3.29)
means, so we’ve proved that (3.29) holds under this interpretation, as
required.

We hope this is helpful as an explanation, but we don’t really want to call it a
“proof.” The problem is that with something as basic as (3.27), it’s hard to see
what more elementary axioms are ok to use in proving it. What the explanation
above did was translate the logical formula (3.27) into English and then appeal to
the meaning, in English, of “for all” and “there exists” as justification.

In contrast to (3.27), the formula

Vy3dx. P(x,y) IMPLIES dxVy. P(x,y). (3.30)

is not valid. We can prove this just by describing an interpretation where the hy-
pothesis Vy3x. P(x, y) is true but the conclusion 3xVy. P(x, y) is not true. For
example, let the domain be the integers and P(x, y) mean x > y. Then the hy-
pothesis would be true because, given a value n for y we could choose the value
of x to be n + 1, for example. But under this interpretation the conclusion asserts
that there is an integer that is bigger than all integers, which is certainly false. An
interpretation like this that falsifies an assertion is called a counter-model to that
assertion.

3.7 References

[21]

Problems for Section 3.1

Practice Problems

Problem 3.1.
Some people are uncomfortable with the idea that from a false hypothesis you can
prove everything, and instead of having P IMPLIES Q be true when P is false,
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they want P IMPLIES Q to be false when P is false. This would lead to IMPLIES
having the same truth table as what propositional connective?

Problem 3.2.
Your class has a textbook and a final exam. Let P, Q and R be the following
propositions:

P::= You get an A on the final exam.
Q::= You do every exercise in the book.
R::= You get an A in the class.

Translate following assertions into propositional formulas using P, O, R and
the propositional connectives AND, NOT, IMPLIES.

(a) You get an A in the class, but you do not do every exercise in the book.

(b) You get an A on the final, you do every exercise in the book, and you get an A
in the class.

(c) To get an A in the class, it is necessary for you to get an A on the final.

(d) You get an A on the final, but you don’t do every exercise in this book; never-
theless, you get an A in this class.

Class Problems

Problem 3.3.
When the mathematician says to his student, “If a function is not continuous, then it
is not differentiable,” then letting D stand for “differentiable” and C for continuous,
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the only proper translation of the mathematician’s statement would be
NOT(C) IMPLIES NOT(D),

or equivalently,
D 1MPLIES C.

But when a mother says to her son, “If you don’t do your homework, then you
can’t watch TV,” then letting T stand for “can watch TV” and H for “do your
homework,” a reasonable translation of the mother’s statement would be

NOT(H) 1FF NOT(T),

or equivalently,
H 1FF T.

Explain why it is reasonable to translate these two IF-THEN statements in dif-
ferent ways into propositional formulas.

Homework Problems

Problem 3.4.

Describe a simple procedure which, given a positive integer argument, 7, produces
a width n array of truth-values whose rows would be all the possible truth-value
assignments for n propositional variables. For example, for n = 2, the array would
be:

SRR
CEE R

Your description can be in English, or a simple program in some familiar lan-
guage such as Python or Java. If you do write a program, be sure to include some
sample output.

Problem 3.5.
Sloppy Sam is trying to prove a certain proposition P. He defines two related
propositions O and R, and then proceeds to prove three implications:

P IMPLIES Q, O IMPLIES R, R IMPLIES P.

He then reasons as follows:
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If Q is true, then since I proved (Q IMPLIES R), I can conclude that R
is true. Now, since I proved (R IMPLIES P), I can conclude that P is
true. Similarly, if R is true, then P is true and so Q is true. Likewise,
if P is true, then so are Q and R. So any way you look at it, all three
of P, Q and R are true.

(a) Exhibit truth tables for
(P IMPLIES Q) AND (Q IMPLIES R) AND (R IMPLIES P) *)

and for
P AND Q AND R. (**)

Use these tables to find a truth assignment for P, Q, R so that (*) is T and (¥*) is F.

(b) You show these truth tables to Sloppy Sam and he says “OK, I'm wrong that
P, O and R all have to be true, but I still don’t see the mistake in my reasoning.
Can you help me understand my mistake?” How would you explain to Sammy
where the flaw lies in his reasoning?

Problems for Section 3.2

Class Problems

Problem 3.6.
Propositional logic comes up in digital circuit design using the convention that T
corresponds to 1 and F to 0. A simple example is a 2-bit half-adder circuit. This
circuit has 3 binary inputs, a1, ao and b, and 3 binary outputs, c, 51, S9. The 2-bit
word ajag gives the binary representation of an integer k between 0 and 3. The
3-bit word c¢s15¢ gives the binary representation of k + b. The third output bit ¢ is
called the final carry bit.

So if k and b were both 1, then the value of a1ag would be 01 and the value of
the output ¢s159 would 010, namely, the 3-bit binary representation of 1 + 1.

In fact, the final carry bit equals 1 only when all three binary inputs are 1, that is,
when k = 3 and b = 1. In that case, the value of c¢s15¢ is 100, namely, the binary
representation of 3 4 1.
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This 2-bit half-adder could be described by the following formulas:

cop = b

So = ap XOR ¢g

Cc1 = ag AND ¢ the carry into column 1
S1 = a1 XOR ¢1

¢» = a1 AND ci the carry into column 2

Cc = C)p.

(a) Generalize the above construction of a 2-bit half-adder to an n + 1 bit half-
adder with inputs a,,...,a1,ao and b and outputs ¢, sy, ..., S1, 9. That is, give
simple formulas for s; and ¢; for 0 <i < n + 1, where ¢; is the carry into column
i +1,and ¢ = cp41-

(b) Write similar definitions for the digits and carries in the sum of two n + 1-bit
binary numbers a, ...a1ag and by, ... b1 byg.

Visualized as digital circuits, the above adders consist of a sequence of single-
digit half-adders or adders strung together in series. These circuits mimic ordinary
pencil-and-paper addition, where a carry into a column is calculated directly from
the carry into the previous column, and the carries have to ripple across all the
columns before the carry into the final column is determined. Circuits with this
design are called ripple-carry adders. Ripple-carry adders are easy to understand
and remember and require a nearly minimal number of operations. But the higher-
order output bits and the final carry take time proportional to n to reach their final
values.

(¢) How many of each of the propositional operations does your adder from part (b)
use to calculate the sum?

Homework Problems

Problem 3.7.
As in Problem 3.6, a digital circuit is called an (n + 1)-bit half-adder when it has
with n 4 2 inputs

an,...,a1,d9,b

and n + 2 outputs
C,Sn,...,51,50-

The input-output specification of the half-adder is that, if the 0-1 values of inputs
ayn,...,a,dap are taken to be the (n + 1)-bit binary representation of an integer k
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then the 0-1 values of the outputs ¢, sy, . . ., $1, So are supposed to be the (n + 2)-bit
binary representation of k + b.

For example suppose n = 2 and the values of apajag were 101. This is the
binary representation of k = 5. Now if the value of b was 1, then the output should
be the 4-bit representation of 5 + 1 = 6. Namely, the values of cs,515¢9 would be
0110.

There are many different circuit designs for half adders. The most straighforward
one is the “ripple carry” design described in Problem 3.6. We will now develop
a different design for a half-adder circuit called a parallel-design or “look-ahead
carry” half-adder. This design works by computing the values of higher-order digits
for both a carry of 0 and a carry of 1, in parallel. Then, when the carry from the
low-order digits finally arrives, the pre-computed answer can be quickly selected.

We’ll illustrate this idea by working out a parallel design for an (n + 1)-bit half-
adder.

Parallel-design half-adders are built out of parallel-design circuits called add!-
modules. The input-output behavior of an add1-module is just a special case of a
half-adder, where instead of an adding an input b to the input, the add1-module
always adds 1. That is, an (n 4 1)-bit add1-module has (n + 1) binary inputs

an’---’alsa()v

and n 4+ 2 binary outputs
Cpnv"'vpl’p()'
If a, ...ajap are taken to be the (n + 1)-bit representation of an integer k then

CPn - .. P1Po is supposed to be the (n + 2)-bit binary representation of k + 1.
So a 1-bit add1-module just has input ag and outputs ¢, pg where

Po ::=ap XOR 1, (or more simply, po ::= NOT(ag)),

C i=4dyp.

In the ripple-carry design, a double-size half-adder with 2(n + 1) inputs takes
twice as long to produce its output values as an (n 4 1)-input ripple-carry circuit.
With parallel-design add1-modules, a double-size add1-module produces its output
values nearly as fast as a single-size add1-modules. To see how this works, suppose
the inputs of the double-size module are

aZn—i—l’---’al,aO

and the outputs are
C7 p2n+17 LRI 7p1’ pO
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We will build the double-size add1-module by having two single-size add1-modules
work in parallel. The setup is illustrated in Figure 3.1.

Namely, the first single-size add1-module handles the first #» + 1 inputs. The in-
puts to this module are the low-order n + 1 input bits a,, .. ., a1, ag, and its outputs
will serve as the first n + 1 outputs py, ..., p1, po of the double-size module. Let
¢(1) be the remaining carry output from this module.

The inputs to the second single-size module are the higher-order n + 1 input bits
a2p+1,--.,dn+2,dn+1. Callits first n + 1 outputs ry, ..., r1, 7o and let ¢(z) be its
carry.

(a) Write a formula for the carry ¢ of the double-size add1-module solely in terms
of carries ¢(1) and c¢(y) of the single-size add1-modules.

(b) Complete the specification of the double-size add1-module by writing propo-
sitional formulas for the remaining outputs p,4; for 1 <i < n + 1. The formula
for pp+i should only involve the variables a, 4, ri—1 and ¢(y).

(c) Explain how to build an (n + 1)-bit parallel-design half-adder from an (n + 1)-
bit add1-module by writing a propositional formula for the half-adder output s;
using only the variables a;, p; and b.

(d) The speed or latency of a circuit is determined by the largest number of gates
on any path from an input to an output. In an n-bit ripple carry circuit(Problem 3.6),
there is a path from an input to the final carry output that goes through about 2n
gates. In contrast, parallel half-adders are exponentially faster than ripple-carry
half-adders. Confirm this by determining the largest number of propositional opera-
tions, that is, gates, on any path from an input to an output of an n-bit add1-module.
(You may assume n is a power of 2.)

Exam Problems

Problem 3.8.

Claim. There are exactly two truth environments (assignments) for the variables
M, N, P, Q, R, S that satisfy the following formula:

(P OR Q)AND (Q OR R)AND (ROR S)AND (S OR P)AND M AND N
~——— ~———— ——— —_———
clause (1) clause (2) clause (3) clause (4)

(a) This claim could be proved by truth-table. How many rows would the truth
table have?
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| coy=—  (n+1)-bitaddl | coy—==—  (n+1)-bitaddl

r r Iy

2(n+2)-bit add1 module

________________________________________________________________________________

Ponti Pnt+2 Puti Pn P1 Po

Figure 3.1 Structure of a Double-size add! Module.
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(b) Instead of a truth-table, prove this claim with an argument by cases according
to the truth value of P.

Problem 3.9.
An n-bit AND-circuit has 0-1 valued inputs ag,ai,...,an—1 and one output ¢
whose value will be

¢ =ag ANDaj AND--- AND ay—1.

There are various ways to design an n-bit AND-circuit. A serial design is simply
a series of AND-gates, each with one input being a circuit input a; and the other
input being the output of the previous gate as shown in Figure 3.2.

We can also use a tree design. A 1-bit tree design is just a wire, that is ¢ ::= a;.
Assuming for simplicity that n is a power of two, an n-input tree circuit forn > 1
simply consists of two n/2-input tree circuits whose outputs are AND’d to produce
output ¢, as in Figure 3.3. For example, a 4-bit tree design circut is shown in
Figure 3.4.

(a) How many AND-gates are in the n-input serial circuit?

(b) The “speed” or latency of a circuit is the largest number of gates on any path
from an input to an output. Briefly explain why the tree circuit is exponentially
faster than the serial circuit.

(c) Assume n is a power of two. Prove that the n-input tree circuit has n — 1
AND-gates.

Problems for Section 3.3

Practice Problems

Problem 3.10.

Indicate whether each of the following propositional formulas is valid (V), satis-
fiable but not valid (S), or not satisfiable (N). For the satisfiable ones, indicate a
satisfying truth assignment.
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Figure 3.2 A serial AND-circuit.

AND

77
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0 1 an/z -1 wa au/z +1 e

AND

Figure 3.3 An n-bit AND-tree circuit.

Figure 3.4 A 4-bit AND-tree circuit.
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M IMPLIES Q

M IMPLIES (P OR Q)

M IMPLIES [M AND (P IMPLIES M)]
(P OR Q) IMPLIES Q

(P OR Q) IMPLIES (P AND Q)

(P OR Q) IMPLIES [M AND (P IMPLIES M)]
(P XOR Q) IMPLIES Q
(P XOR Q) IMPLIES (P OR Q)
(P XOR Q) IMPLIES [M AND (P IMPLIES M)]

Problem 3.11.
Show truth tables that verify the equivalence of the following two propositional
formulas

(P XOR Q),
NOT(P IFF Q).

Problem 3.12.
Prove that the propositional formulas

PORQORR
and
(P ANDNOT(Q))OR (Q ANDNOT(R)) OR (R ANDNOT(P)) OR (P AND Q AND R).

are equivalent.

Problem 3.13.
Prove by truth table that OR distributes over AND, namely,

P OR (Q AND R) isequivalentto (P OR Q) AND (P OR R) (3.31)
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Exam Problems

Problem 3.14.
The formula

NOT(A IMPLIES B) AND A AND C
IMPLIES
D AND E AND F AND G AND H AND I AND J AND K AND L AND M

turns out to be valid.

(a) Explain why verifying the validity of this formula by truth table would be very
hard for one person to do with pencil and paper (no computers).

(b) Verify that the formula is valid, reasoning by cases according to the truth value
of A.
Proof. Case: (A is True).

Case: (A is False).

Class Problems

Problem 3.15. (a) Verify by truth table that
(P IMPLIES Q) OR (Q IMPLIES P)

is valid.

(b) Let P and Q be propositional formulas. Describe a single formula R using
only AND’s, OR’s, NOT’s, and copies of P and Q, such that R is valid iff P and QO
are equivalent.

(c) A propositional formula is satisfiable iff there is an assignment of truth values
to its variables—an environment—that makes it true. Explain why

P isvalid iff NOT(P) is not satisfiable.

(d) A set of propositional formulas P, ..., Py is consistent iff there is an envi-
ronment in which they are all true. Write a formula S such that the set Py, ..., Py
is not consistent iff S is valid.
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Problem 3.16.
This problem* examines whether the following specifications are satisfiable:

1. If the file system is not locked, then

(a) new messages will be queued.
(b) new messages will be sent to the messages buffer.

(c) the system is functioning normally, and conversely, if the system is
functioning normally, then the file system is not locked.

2. If new messages are not queued, then they will be sent to the messages buffer.
3. New messages will not be sent to the message buffer.

(a) Begin by translating the five specifications into propositional formulas using
four propositional variables:

L ::= file system locked,

Q 1= new messages are queued,
B ::=new messages are sent to the message buffer,
N ::= system functioning normally.

(b) Demonstrate that this set of specifications is satisfiable by describing a single
truth assignment for the variables L, @, B, N and verifying that under this assign-
ment, all the specifications are true.

(c) Argue that the assignment determined in part (b) is the only one that does the
job.

Problems for Section 3.4

Practice Problems

Problem 3.17.

A half dozen different operators may appear in propositional formulas, but just
AND, OR, and NOT are enough to do the job. That is because each of the operators
is equivalent to a simple formula using only these three operators. For example,
A IMPLIES B is equivalent to NOT(A) OR B. So all occurences of IMPLIES in a
formula can be replaced using just NOT and OR.

4Revised from Rosen, 5th edition, Exercise 1.1.36
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(a) Write formulas using only AND, OR, NOT that are equivalent to each of AIFF B
and A XOR B. Conclude that every propositional formula is equivalent to an AND-
OR-NOT formula.

(b) Explain why you don’t even need AND.

(c) Explain how to get by with the single operator NAND where A NAND B is
equivalent by definition to NOT(A AND B).

Class Problems

Problem 3.18.
The propositional connective NOR is defined by the rule

P NOR Q ::= (NOT(P) AND NOT(Q)).

Explain why every propositional formula—possibly involving any of the usual op-
erators such as IMPLIES, XOR, ...—is equivalent to one whose only connective is
NOR.

Problem 3.19.
Explain how to read off a conjunctive form for a propositional formula directly
from a disjunctive form for its complement.

Problem 3.20.

Let P be the proposition depending on propositional variable A, B, C, D whose
truth values for each truth assignment to A, B, C, D are given in the table below.
Write out both a disjunctive and a conjunctive normal form for P.
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| | | || | | | | | | S
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Homework Problems

Problem 3.21.
Use the equivalence axioms of Section 3.4.2 to convert the formula

A XOR B XOR C

(a) ...to disjunctive (OR of AND’s) form,

(b) ...to conjunctive (AND of OR’s) form.

Problems for Section 3.5

Class Problems

Problem 3.22.

The circuit-SAT problem is the problem of determining, for any given digital circuit
with one output wire, whether there are truth values that can be fed into the circuit
input wires which will lead the circuit to give output T.
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It’s easy to see that any efficient way of solving the circuit-SAT problem would
yield an efficient way to solve the usual SAT problem for propositional formulas
(Section 3.5). Namely, for any formula F, just construct a circuit Cr using that
computes the values of the formula. Then there are inputs for which Cg gives
output true iff F is satisfiable. Constructing Crg from F is easy, using a binary
gate in Cp for each propositional connective in F. So an efficient circuit-SAT
procedure leads to an efficient SAT procedure.

Conversely, there is a simple recursive procedure that will construct, given C, a
formula E¢ that is equivalent to C in the sense that the truth value E¢ and the out-
put of C are the same for every truth assignment of the variables. The difficulty is
that, in general, the “equivalent” formula E ¢, will be exponentially larger than C.
For the purposes of showing that satifiability of circuits and satisfiability of formu-
las take roughly the same effort to solve, spending an exponential time translating
one problem to the other swamps any benefit in switching from one problem to the
other.

So instead of a formula E¢ that is equivalent to C, we aim instead for a formula
Fc that is “equisatisfiable” with C. That is, there will be input values that make
C output True iff there is a truth assignment that satisfies F¢. (In fact, F¢ and C
need not even use the same variables.) But now we make sure that the amount of
computation needed to construct F¢ is not much larger than the size of the circuit
C. In particular, the size of F¢ will also not be much larger than C.

The idea behind the construction of F¢ is that, given any digital circuit C with
binary gates and one output, we can assign a distinct variable to each wire of C.
Then for each gate of C, we can set up a propositional formula that represents the
constraints that the gate places on the values of its input and output wires. For
example, for an AND gate with input wire variables P and Q and output wire
variable R, the constraint proposition would be

(P AND Q) IFF R. (3.32)

(a) Given a circuit C, explain how to easily find a formula F¢ of size proportional
to the number of wires in C such that F¢ is satisfiable iff C gives output T for some
set of input values.

(b) Conclude that any efficient way of solving SAT would yield an efficient way
to solve circuit-SAT.

Homework Problems

Problem 3.23.
A 3-conjunctive form (3CF) formula is a conjunctive form formula in which each
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OR-term is an OR of at most 3 variables or negations of variables. Although it
may be hard to tell if a propositional formula F is satisfiable, it is always easy to
construct a formula C(F) that is

e in 3-conjunctive form,
e has at most 24 times as many occurrences of variables as F, and
e is satisfiable iff F' is satisfiable.

To construct C(F), introduce a different new variables for each operator that
occurs in F. For example, if F was

((P XOR Q) XOR R) OR (P AND S) (3.33)

we might use new variables X1, X» O and A corresponding to the operator occur-
rences as follows:

(P XOR Q) XOR R) OR (P AND S).
—— S~—— S—— ~——
X1 X2 (0] A

Next we write a formula that constrains each new variable to have the same truth
value as the subformula determined by its corresponding operator. For the example
above, these constraining formulas would be

X1 IFF (P XOR Q),
X» IFF (X1 XOR R),
ATFF (P AND S),
O IFF (X2 OR A)

(a) Explain why the AND of the four constraining formulas above along with a
fifth formula consisting of just the variable O will be satisfiable iff (3.33) is satisfi-
able.

(b) Explain why each constraining formula will be equivalent to a 3CF formula
with at most 24 occurrences of variables.

(c) Using the ideas illustrated in the previous parts, explain how to construct C(F')
for an arbitrary propositional formula F.
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Problems for Section 3.6

Practice Problems

Problem 3.24.
For each of the following propositions:

1. Vx3dy.2x —y =0

2. Vx3dy.x -2y =0

3. Vx.x < 10 IMPLIES (Vy. y < X IMPLIES y < 9)
4, Vx3y. [y > xAdz. y 4+ z =100]

determine which propositions are true when the variables range over:

(a) the nonnegative integers.
(b) the integers.

(¢) the real numbers.

Problem 3.25.
Let Q(x, y) be the statement

“x has been a contestant on television show y.”

The universe of discourse for x is the set of all students at your school and for y is
the set of all quiz shows that have ever been on television.

Determine whether or not each of the following expressions is logically equiva-
lent to the sentence:

“No student at your school has ever been a contestant on a television quiz show.”

(a) VxVy. NOT(Q(x,y))
(b) Ix3y. NOT(Q(x, y))
(¢) NOT(Vx Vy. O(x,y))

(d) NOoT(3xTy. O(x,y))
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Problem 3.26.
Express each of the following statements using quantifiers, logical connectives,
and/or the following predicates

P(x): x is a monkey,

O(x): xisa6.042 TA,

R(x): x comes from the 23rd century,

S(x): x likes to eat pizza,
where x ranges over all living things.

(a) No monkeys like to eat pizza.

(b) Nobody from the 23rd century dislikes eating pizza.
(c) All 6.042 TAs are monkeys.

(d) No 6.042 TA comes from the 23rd century.

(e) Does part (d) follow logically from parts (a), (b), (c)? If so, give a proof. If
not, give a counterexample.

(f) Translate into English: (Vx)(R(x) v S(x) — Q(x)).
(g) Translate into English:

[3x. R(x) AND NOT(Q(x))] IMPLIES Vx. (P (x) IMPLIES S(x)).

Problem 3.27.
Find a counter-model showing the following is not valid.

dx.P(x) IMPLIES Vx.P(x)

(Just define your counter-model. You do not need to verify that it is correct.)

Problem 3.28.
Find a counter-model showing the following is not valid.

[3x. P(x) AND 3x.Q(x)] IMPLIES x.[P(x) AND Q(x)]

(Just define your counter-model. You do not need to verify that it is correct.)
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Problem 3.29.
Which of the following are valid? For those that are not valid, desribe a counter-
model.

(a) dx3y. P(x, y) IMPLIES dydx. P(x, y)

(b) Vx3y. O(x, y) IMPLIES dyVx. O(x,y)
(¢c) IxVy. R(x, y) IMPLIES Vy3dx. R(x, y)

(d) NOT(3x S(x)) IFF Vx NOT(S(x))

Problem 3.30. (a) Verify that the propositional formula
(P IMPLIES Q) OR (Q IMPLIES P)

is valid.

(b) The valid formula of part (a) leads to sound proof method: to prove that an im-
plication is true, just prove that its converse is false.> For example, from elementary
calculus we know that the assertion

If a function is continuous, then it is differentiable
is false. This allows us to reach at the correct conclusion that its converse,
If a function is differentiable, then it is continuous

is true, as indeed it is.

But wait a minute! The implication
If a function is differentiable, then it is not continuous
is completely false. So we could conclude that its converse
If a function is not continuous, then it is differentiable,

should be true, but in fact the converse is also completely false.

So something has gone wrong here. Explain what.

5This problem was stimulated by the discussion of the fallacy in [4].
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Class Problems

Problem 3.31.

A media tycoon has an idea for an all-news television network called LNN: The
Logic News Network. Each segment will begin with a definition of the domain of
discourse and a few predicates. The day’s happenings can then be communicated
concisely in logic notation. For example, a broadcast might begin as follows:

THIS IS LNN. The domain of discourse is
{Albert, Ben, Claire, David, Emily}.

Let D(x) be a predicate that is true if x is deceitful. Let L(x, y)
be a predicate that is true if x likes y. Let G(x, y) be a predicate that
is true if x gave gifts to y.

Translate the following broadcasts in logic notation into (English) statements.

(a)

NOT(D(Ben) OrR D(David)) IMPLIES
(L (Albert, Ben) AND L(Ben, Albert)).

(b)

Vx. ((x = Claire AND NOT(L (x,Emily))) OR (x # Claire AND L(x, Emily)))
AND
Vx. ((x = David AND L(x, Claire)) OR (x # David AND NOT(L (x, Claire))))

(©
NOT(D(Claire)) IMPLIES (G (Albert, Ben) AND dx. G(Ben, x))

(d)
Vx3y3dz (y # z) AND L(x, y) AND NOT(L(x, 2)).

(e) How could you express “Everyone except for Claire likes Emily” using just
propositional connectives without using any quantifiers (V, 3)? Can you generalize
to explain how any logical formula over this domain of discourse can be expressed
without quantifiers? How big would the formula in the previous part be if it was
expressed this way?
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Problem 3.32.

The goal of this problem is to translate some assertions about binary strings into
logic notation. The domain of discourse is the set of all finite-length binary strings:
A, 0,1, 00,01, 10, 11, 000, 001, .... (Here A denotes the empty string.) In your
translations, you may use all the ordinary logic symbols (including =), variables,
and the binary symbols 0, 1 denoting 0, 1.

A string like 01x0y of binary symbols and variables denotes the concatenation
of the symbols and the binary strings represented by the variables. For example, if
the value of x is 011 and the value of y is 1111, then the value of 01x0y is the
binary string 0101101111.

Here are some examples of formulas and their English translations. Names for
these predicates are listed in the third column so that you can reuse them in your
solutions (as we do in the definition of the predicate NO-1S below).

Meaning Formula Name
x is a prefix of y Az (xz = y) PREFIX(X, y)
x is a substring of y Judv (uxv = y) SUBSTRING(x, y)

X is empty or a string of 0’s  NOT(SUBSTRING(1, x)) NO-1S(x)
(a) x consists of three copies of some string.
(b) x is an even-length string of 0’s.
(¢) x does not contain bothaOanda 1.
(d) x is the binary representation of 2¥ 4 1 for some integer k > 0.
(e) An elegant, slightly trickier way to define NO-1S(x) is:
PREFIX(x, 0X). *)

Explain why (¥) is true only when Xx is a string of 0’s.

Problem 3.33.

For each of the logical formulas, indicate whether or not it is true when the do-
main of discourse is N, (the nonnegative integers 0, 1, 2, ...), Z (the integers), Q
(the rationals), R (the real numbers), and C (the complex numbers). Add a brief
explanation to the few cases that merit one.
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Ix.x2 =2
Vxdy.x2 =y
‘v’y.Elx.x2 =y

Vx #03dy.xy =1
dx.dy.x+2y =2 AND 2x +4y =5

Problem 3.34.
Show that
(Vx3y. P(x,y)) — Vz. P(z,2)

is not valid by describing a counter-model.

Homework Problems

Problem 3.35.

Express each of the following predicates and propositions in formal logic notation.
The domain of discourse is the nonnegative integers, N. Moreover, in addition to
the propositional operators, variables and quantifiers, you may define predicates
using addition, multiplication, and equality symbols, and nonnegative integer con-
stants (0, 1,...), but no exponentiation (like x”). For example, the predicate “n is
an even number” could be defined by either of the following formulas:

dm. 2m = n), dm. (m +m = n).
(a) m is a divisor of n.
(b) n is a prime number.

(¢) n is a power of a prime.

Problem 3.36.
Translate the following sentence into a predicate formula:

There is a student who has e-mailed at most two other people in the
class, besides possibly himself.

The domain of discourse should be the set of students in the class; in addition,
the only predicates that you may use are
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e cquality, and

e FE(x,y), meaning that “x has sent e-mail to y.”

Problem 3.37. (a) Translate the following sentence into a predicate formula:

There is a student who has e-mailed at most n other people in the class,
besides possibly himself.

The domain of discourse should be the set of students in the class; in addition, the
only predicates that you may use are

e equality,

e FE(x,y), meaning that “x has sent e-mail to y.”

(b) Explain how you would use your predicate formula (or some variant of it) to
express the following two sentences.

1. There is a student who has emailed at least n other people in the class, besides
possibly himself.

2. There is a student who has emailed exactly n other people in the class, besides
possibly himself.

Exam Problems

Problem 3.38.
For each of the logic formulas below, indicate the smallest domain in which it is
true, among

N(nonnegative integers), Z(integers), Q(rationals), R(reals), C(complex numbers),
or state “none” if it is not true in any of them.
i. Vx3dy.y =3x
ii. Vx3dy.3y =x
iii. Vx3dy.y?2 =x
iv. Vxdy.y <x

v. Vx3y.y3 =x
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vi. Vx #0.3y,2.y Az AND y?2 = x =22

Problem 3.39.
The following predicate logic formula is invalid:

Vx,3y.P(x,y) — Iy, Vx.P(x,y)
Which of the following are counter models for it?
1. The predicate P(x,y) = ‘y - x = 1’ where the domain of discourse is Q.
2. The predicate P(x,y) = ‘y < x’ where the domain of discourse is R.

3. The predicate P(x,y) = ‘y - x = 2’ where the domain of discourse is R
without 0.

4. The predicate P(x,y) = ‘yxy = x’ where the domain of discourse is the
set of all binary strings, including the empty string.

Problem 3.40.

Some students from a large class will be lined up left to right. There will be at least
two students in the line. Translate each of the following assertions into predicate
formulas with the set of students in the class as the domain of discourse. The only
predicates you may use are

e cquality and,

e F(x,y), meaning that “x is somewhere to the left of y in the line.” For
example, in the line “CDA”, both F'(C, A) and F(C, D) are true.

Once you have defined a formula for a predicate P you may use the abbreviation
“P” in further formulas.

(a) Student x is in the line.
(b) Student x is first in line.
(c) Student x is immediately to the right of student y.

(d) Student x is second.
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Problem 3.41.
We want to find predicate formulas about the nonnegative integers N in which < is
the only predicate that appears, and no constants appear.

For example, there is such a formula defining the equality predicate:

[x=y]u:=[x <y AND y < x].

Once predicate is shown to be expressible solely in terms of <, it may then be used
in subsequent translations. For example,

[x > 0] := Jy. NOT(x = y) AND y < x.
(a) [x =0].

() [x =y +1].

Hint: If an integer is bigger than y, then it must be > x.

(¢c) x = 3.

Problem 3.42.
Predicate Formulas whose only predicate symbol is equality are called “pure equal-
ity” formulas. For example,

VxVy.x=y (1-element)

is a pure equality formula. Its meaning is that there is exactly one element in the
domain of discourse.® Another such formula is

JdaIbVx.x =a ORx = b. (< 2-elements)

Its meaning is that there are at most two elements in the domain of discourse.
A formula that is not a pure equality formula is

x <y. (not-pure)

Formula (not-pure) uses the less-than-or-equal predicate < which is not allowed.’

(a) Describe a pure equality formula that means that there are exactly two ele-
ments in the domain of discourse.

6Remember, a domain of discourse is not allowed to be empty.
7In fact, formula (not-pure) only makes sense when the domain elements are ordered, while pure
equality formulas make sense over every domain.
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(b) Describe a pure equality formula that means that there are exactly three ele-
ments in the domain of discourse.

Problem 3.43. (a) A predicate R on the nonnegative integers is true infinitely often
(i.0.) when R(n) is true for infinitely many n € N.

We can express the fact that R is true i.0. with a formula of the form:

Q1 Q2. R(n),
where Q1, Q; are quantifiers from among

Vn, dn, VYn>ng, 3dn > ny,
Vng, dno, Vno>=n, dng =n,

and n, ng range over nonnegative integers.

Identify the proper quantifers:
Qi

Q2

(b) A predicate S on the nonnegative integers is true almost everywhere (a.e.)
when S(n) is false for only finitely many n € N.

We can express the fact that S is true a.e. with a formula of the form

Q3 Q4. S(n),
where Q3, Q4 are quantifiers from those above:

Vn, dn, Vn>ng, 3In>nyp,
Vno, dng, Vno>n, 3Ing>n.

Identify the proper quantifers:
Qs

Q4

Problem 3.44.
Let f : N — R be a real-valued total function. A limit point of f is a real number
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r € R such that f(n) is close to r for infinitely many n, where “close to” means
within distance € for whatever positive real number € you may choose.

We can express the fact that r is a limit point of f with a logical formula of the
form:

Qo Q1 Qa2 [f(n)—r| e,
where Qg, Q1, Q2 is a sequence of three quantifiers from among:
Vn, dn, Vn > ng, 3n > nyg.

Vno, dng, Vno >n, 3dng > n.
Ve >0, dJe>0, Ve>0, de>0.

Here the n, no range over nonnegative integers, and € ranges over real numbers.
Identify the proper quantifers:
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We have assumed that you’ve already been introduced to the concepts of sets, se-
quences, and functions, and we’ve used them informally several times in previous
sections. In this chapter, we’ll now take a more careful look at these mathemati-
cal data types. We’ll quickly review the basic definitions, add a few more such as
“images” and “inverse images” that may not be familiar, and end the chapter with
some methods for comparing the sizes of sets.

4.1 Sets

Informally, a set is a bunch of objects, which are called the elements of the set.
The elements of a set can be just about anything: numbers, points in space, or even
other sets. The conventional way to write down a set is to list the elements inside
curly-braces. For example, here are some sets:

A = {Alex, Tippy, Shells, Shadow} dead pets
B = {red, blue, yellow} primary colors
C ={{a,b},{a,c}, {b,c}} a set of sets

This works fine for small finite sets. Other sets might be defined by indicating how
to generate a list of them:

D :=1{1,2,4,8,16,...} the powers of 2

The order of elements is not significant, so {x, y} and {y, x} are the same set
written two different ways. Also, any object is, or is not, an element of a given set—
there is no notion of an element appearing more than once in a set.! So, writing
{x, x} is just indicating the same thing twice: that x is in the set. In particular,
{x,x} = {x}.

The expression “e € S asserts that e is an element of set S. For example,
32 € D and blue € B, but Tailspin ¢ A—yet.

Sets are simple, flexible, and everywhere. You’ll find some set mentioned in
nearly every section of this text.

!1t’s not hard to develop a notion of multisets in which elements can occur more than once, but
multisets are not ordinary sets and are not covered in this text.




“mecs” — 2017/6/5 — 19:42 — page 98 — #106

98 Chapter 4 Mathematical Data Types

4.1.1 Some Popular Sets

Mathematicians have devised special symbols to represent some common sets.

symbol set elements

@ the empty set none

N nonnegative integers {0,1,2,3,...}

Z integers {...,—-3,-2,—-1,0,1,2,3,...}
Q rational numbers %, —%, 16, etc.

R real numbers T, e, —9, \/5, etc.

C complex numbers i 179, V2 —2i, etc.

A superscript “*” restricts a set to its positive elements; for example, R* denotes
the set of positive real numbers. Similarly, Z~ denotes the set of negative integers.

4.1.2 Comparing and Combining Sets

The expression S C T indicates that set S is a subset of set T, which means that
every element of S is also an element of 7. For example, N C 7Z because every
nonnegative integer is an integer; Q € R because every rational number is a real
number, but C € R because not every complex number is a real number.

As a memory trick, think of the “C” symbol as like the “<” sign with the smaller
set or number on the left-hand side. Notice that just as n < n for any number 7,
also S C S for any set S.

There is also a relation C on sets like the “less than” relation < on numbers.
S C T means that S is a subset of 7', but the two are not equal. So justasn £ n
for every number n, also A ¢ A, for every set A. “S C T is read as “S is a strict
subset of T'.”

There are several basic ways to combine sets. For example, suppose

X ==1{1,2,3},
Y :=1{2,3,4}.

Definition 4.1.1.

e The union of sets A and B, denoted A U B, includes exactly the elements
appearing in A or B or both. That is,

x€eAUB 1IFF x € AORx € B.

SoXUY ={1,2,3,4.
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e The intersection of A and B, denoted A N B, consists of all elements that
appear in both A and B. That is,
xX€ANB IFF x € AAND X € B.

So, X NY ={2,3}.
e The set difference of A and B, denoted A — B, consists of all elements that
are in A, but not in B. That is,

xe€eA—B IFF xe€ AANDXx ¢ B.

So,X —Y ={l}and Y — X = {4}.

Often all the sets being considered are subsets of a known domain of discourse
D. Then for any subset A of D, we define A4 to be the set of all elements of D not

in A. That is,
Au=D — A.

The set A is called the complement of A. So
A=0 1FF A= D.
For example, if the domain we’re working with is the integers, the complement
of the nonnegative integers is the set of negative integers:
N=7".
We can use complement to rephrase subset in terms of equality

A C B is equivalentto AN B = 0.

4.1.3 Power Set
The set of all the subsets of a set A4 is called the power set pow(A) of A. So

B epow(A) 1FF B C A.

For example, the elements of pow({1,2}) are @, {1}, {2} and {1, 2}.
More generally, if A has n elements, then there are 2" sets in pow(A)—see The-

orem 4.5.5. For this reason, some authors use the notation 24 instead of pow(4).
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4.1.4 Set Builder Notation

An important use of predicates is in set builder notation. We’ll often want to talk
about sets that cannot be described very well by listing the elements explicitly or
by taking unions, intersections, etc., of easily described sets. Set builder notation
often comes to the rescue. The idea is to define a set using a predicate; in particular,
the set consists of all values that make the predicate true. Here are some examples
of set builder notation:

A:={n e N|nisaprimeand n = 4k + 1 for some integer k},
B:i={xeR|x3-3x+1>0},
C:={a+bi eCla®>+2b*><1},
D ::={L € books | L is cited in this text}.

The set A consists of all nonnegative integers n for which the predicate

“n is a prime and n = 4k + 1 for some integer k”
is true. Thus, the smallest elements of A4 are:
5,13,17,29,37,41,53,61,73, . ...

Trying to indicate the set A by listing these first few elements wouldn’t work very
well; even after ten terms, the pattern is not obvious. Similarly, the set B consists
of all real numbers x for which the predicate

x3-3x+1>0

is true. In this case, an explicit description of the set B in terms of intervals would
require solving a cubic equation. Set C consists of all complex numbers a + bi
such that:

a* +2b* <1
This is an oval-shaped region around the origin in the complex plane. Finally, the
members of set D can be determined by filtering out journal articles in from the list
of references in the Bibliography 22.5.

4.1.5 Proving Set Equalities

Two sets are defined to be equal if they have exactly the same elements. That is,
X = Y means that z € X if and only if z € Y, for all elements z.2 So, set
equalities can be formulated and proved as “iff”” theorems. For example:

2This is actually the first of the ZFC axioms for set theory mentioned at the end of Section 1.3
and discussed further in Section 8.3.2.
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Theorem 4.1.2. [Distributive Law for Sets] Let A, B and C be sets. Then:
ANBUC)=(ANB)UANC) 4.1)
Proof. The equality (4.1) is equivalent to the assertion that
zeANBUC) iff ze(ANB)UANC) 4.2)

for all z. Now we’ll prove (4.2) by a chain of iff’s.
Now we have

ze AN(BUC)

iff (z€e A AND(z€ BUC) (def of N)
iff (z€ A AND(z€ BOrRz € () (def of U)
iff (ze AANDz € B)OR(z € AANDz € C) (AND distributivity (3.9))
iff zeANB)OR(ze ANC) (def of N)
iff ze(ANB)UANC) (def of U)
|

The proof of Theorem 4.1.2 illustrates a general method for proving a set equality
involving the basic set operations by checking that a corresponding propositional
formula is valid. As a further example, from De Morgan’s Law (3.14) for proposi-
tions

NOT(P AND Q) is equivalent to P OR Q

we can derive (Problem 4.5) a corresponding De Morgan’s Law for set equality:

ANB=AUB. 4.3)

Despite this correspondence between two kinds of operations, it’s important not
to confuse propositional operations with set operations. For example, if X and Y
are sets, then it is wrong to write “X AND Y instead of “X N Y.” Applying AND
to sets will cause your compiler—or your grader—to throw a type error, because
an operation that is only supposed to be applied to truth values has been applied to
sets. Likewise, if P and Q are propositions, then it is a type error to write “P U Q”
instead of “P OR Q.”
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4.2 Sequences

Sets provide one way to group a collection of objects. Another way is in a sequence,
which is a list of objects called its components, members, or elements. Short se-
quences are commonly described by listing the elements between parentheses; for
example, the sequence (a, b, ¢) has three components. It would also be referred to
as a three element sequence or a sequence of length three. These phrases are all
synonyms—sequences are so basic that they appear everywhere and there are a lot
of ways to talk about them.

While both sets and sequences perform a gathering role, there are several differ-
ences.

e The elements of a set are required to be distinct, but elements in a sequence
can be the same. Thus, (a,b,a) is a valid sequence of length three, but
{a, b,a} is a set with two elements, not three.

e The elements in a sequence have a specified order, but the elements of a
set do not. For example, (a, b, c) and (a, c, b) are different sequences, but
{a,b,c} and {a, ¢, b} are the same set.

e Texts differ on notation for the empty sequence; we use A for the empty
sequence.

The product operation is one link between sets and sequences. A Cartesian
product of sets, S1 x Sp X --+ X Sy, is a new set consisting of all sequences where
the first component is drawn from S, the second from S5, and so forth. Length two
sequences are called pairs.> For example, N x {a, b} is the set of all pairs whose
first element is a nonnegative integer and whose second element is an a or a b:

N x {a,b} = {(0,a), (0,b), (1,a), (1,b), 2,a), (2,b),...}

A product of n copies of a set S is denoted S”. For example, {0, 1}3 is the set of
all 3-bit sequences:

{0,133 = {(0,0,0), (0,0, 1), (0, 1,0), (0, 1, 1), (1,0,0), (1,0, 1), (1,1,0), (1, 1, 1)}

3Some texts call them ordered pairs.
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4.3 Functions

4.3.1 Domains and Images

A function assigns an element of one set, called the domain, to an element of an-
other set, called the codomain. The notation

f:A— B

indicates that f is a function with domain A and codomain B. The familiar notation
“f(a) = b” indicates that f assigns the element b € B to a. Here b would be
called the value of f at argument a.

Functions are often defined by formulas, as in:

1
X) = —
fl( ) xz
where x is a real-valued variable, or

fa(y.z) i=yl0yz
where y and z range over binary strings, or

f3(x,n) ::= the length n sequence (x,...,x)
—_—————
nx’s
where n ranges over the nonnegative integers.
A function with a finite domain could be specified by a table that shows the value

of the function at each element of the domain. For example, a function f4(P, Q)
where P and Q are propositional variables is specified by:

P O /a(P.O)
T T T
T F F
F T T
F F T

Notice that f4 could also have been described by a formula:

f4(P, Q) ::= [P IMPLIES Q].

A function might also be defined by a procedure for computing its value at any
element of its domain, or by some other kind of specification. For example, define
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f5(») to be the length of a left to right search of the bits in the binary string y until
a 1 appears, so

f5(0010) =3,

f5(100) = 1,
f5(0000) is undefined.

Notice that f5 does not assign a value to any string of just 0’s. This illustrates
an important fact about functions: they need not assign a value to every element
in the domain. In fact this came up in our first example f1(x) = 1/x2, which
does not assign a value to 0. So in general, functions may be partial functions,
meaning that there may be domain elements for which the function is not defined.
The set of domain elements for which a function is defined is called the support of
the function. If a function assigns a value to every element of its domain, that is, its
support equals its domain, it is called a fotal function.

It’s often useful to find the set of values a function takes when applied to the
elements in a set of arguments. Soif f : A — B, and S is a subset of A, we define
f(S) to be the set of all the values that f takes when it is applied to elements of S.
That is,

f(S):={be B| f(s) =bforsomes € S}.

For example, if we let [r, s] denote set of numbers in the interval from r to s on the
real line, then f1([1,2]) = [1/4,1].

For another example, let’s take the “search for a 1” function f5. If we let X be
the set of binary words which start with an even number of 0’s followed by a 1,
then f5(X) would be the odd nonnegative integers.

Applying f to a set S of arguments is referred to as “applying f pointwise to
S”, and the set f(S) is referred to as the image of S under f.* The set of values
that arise from applying f to all possible arguments is called the range of f. That
is,

range( f) ::= f(domain( f)).

Some authors refer to the codomain as the range of a function, but they shouldn’t.
The distinction between the range and codomain will be important later in Sec-
tions 4.5 when we relate sizes of sets to properties of functions between them.

4There is a picky distinction between the function f which applies to elements of A and the
function which applies f pointwise to subsets of A4, because the domain of f is A, while the domain
of pointwise- f is pow(A). It is usually clear from context whether f or pointwise- f is meant, so
there is no harm in overloading the symbol f in this way.
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4.3.2 Function Composition

Doing things step by step is a universal idea. Taking a walk is a literal example, but
so is cooking from a recipe, executing a computer program, evaluating a formula,
and recovering from substance abuse.

Abstractly, taking a step amounts to applying a function, and going step by step
corresponds to applying functions one after the other. This is captured by the op-
eration of composing functions. Composing the functions f and g means that first
f is applied to some argument, x, to produce f(x), and then g is applied to that
result to produce g( f(x)).

Definition 4.3.1. For functions f : A — B and g : B — C, the composition,
go f,of g with f is defined to be the function from A to C defined by the rule:

(g0 f)x) == g(f(x)),
for all x € A.

Function composition is familiar as a basic concept from elementary calculus,
and it plays an equally basic role in discrete mathematics.

4.4 Binary Relations

Binary relations define relations between two objects. For example, “less-than” on
the real numbers relates every real number a to a real number b, precisely when
a < b. Similarly, the subset relation relates a set A to another set B precisely when
A C B. A function f : A — B is a special case of binary relation in which an
element a € A is related to an element b € B precisely when b = f(a).

In this section we’ll define some basic vocabulary and properties of binary rela-
tions.

Definition 4.4.1. A binary relation R consists of a set A, called the domain of R,
a set B called the codomain of R, and a subset of A x B called the graph of R.

A relation whose domain is A and codomain is B is said to be “between A and
B”, or “from A to B.” As with functions, we write R : A — B to indicate that R
is a relation from A to B. When the domain and codomain are the same set A we
simply say the relation is “on A.” It’s common to use “a R b” to mean that the pair
(a, b) is in the graph of R.}

SWriting the relation or operator symbol between its arguments is called infix notation. Infix
expressions like “m < n” or “m + n” are the usual notation used for things like the less-then relation
or the addition operation rather than prefix notation like “< (m, n)” or “+(m,n).”
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Notice that Definition 4.4.1 is exactly the same as the definition in Section 4.3
of a function, except that it doesn’t require the functional condition that, for each
domain element a, there is at most one pair in the graph whose first coordinate is
a. As we said, a function is a special case of a binary relation.

The “in-charge of” relation Chrg for MIT in Spring *10 subjects and instructors
is a handy example of a binary relation. Its domain Fac is the names of all the
MIT faculty and instructional staff, and its codomain is the set SubNums of subject
numbers in the Fall ’09-Spring *10 MIT subject listing. The graph of Chrg contains
precisely the pairs of the form

({instructor-name) , (subject-num))

such that the faculty member named (instructor-name) is in charge of the subject
with number (subject-num) that was offered in Spring *10. So graph(Chrg) con-
tains pairs like
(T. Eng, 6 .UAT)

(G. Freeman, 6.011)
(G. Freeman, 6.UAT)

6.881)
(G. Freeman, 6.882)
(J. Guttag, 6.00)
(A. R. Meyer, 6.042) (4.4)
(A. R. Meyer, 18.062)
(A. R. Meyer, 6.844)
(T. Leighton, 6.042)
(T. Leighton, 18.062)

(G. Freeman,

Some subjects in the codomain SubNums do not appear among this list of pairs—
that is, they are not in range(Chrg). These are the Fall term-only subjects. Simi-
larly, there are instructors in the domain Fac who do not appear in the list because
they are not in charge of any Spring term subjects.

4.4.1 Relation Diagrams

Some standard properties of a relation can be visualized in terms of a diagram. The
diagram for a binary relation R has points corresponding to the elements of the
domain appearing in one column (a very long column if domain(R) is infinite). All
the elements of the codomain appear in another column which we’ll usually picture
as being to the right of the domain column. There is an arrow going from a point a
in the left-hand, domain column to a point b in the right-hand, codomain column,
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precisely when the corresponding elements are related by R. For example, here are
diagrams for two functions:

A B A B
a ——— 1 a ——— 1
b 2 b 2
c 3 c 3
d 4 d 4
e 5

Being a function is certainly an important property of a binary relation. What it
means is that every point in the domain column has at most one arrow coming out
of it. So we can describe being a function as the “< 1 arrow out” property. There
are four more standard properties of relations that come up all the time. Here are
all five properties defined in terms of arrows:

Definition 4.4.2. A binary relation R is:
e a function when it has the [< 1 arrow out] property.

e surjective when it has the [> 1 arrows in] property. That is, every point in
the right-hand, codomain column has at least one arrow pointing to it.

e fotal when it has the [> 1 arrows out] property.
e injective when it has the [< 1 arrow in] property.

e bijective when it has both the [= 1 arrow out] and the [= 1 arrow in] prop-
erty.

From here on, we’ll stop mentioning the arrows in these properties and for ex-
ample, just write [< 1 in] instead of [< 1 arrows in].

So in the diagrams above, the relation on the left has the [= 1 out] and [> 1 in]
properties, which means it is a total, surjective function. But it does not have the
[< 1 in] property because element 3 has two arrows going into it; it is not injective.

The relation on the right has the [= 1 out] and [< 1 in] properties, which means
it is a total, injective function. But it does not have the [> 1 in] property because
element 4 has no arrow going into it; it is not surjective.

The arrows in a diagram for R correspond, of course, exactly to the pairs in the
graph of R. Notice that the arrows alone are not enough to determine, for example,
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if R has the [> 1 out], total, property. If all we knew were the arrows, we wouldn’t
know about any points in the domain column that had no arrows out. In other
words, graph(R) alone does not determine whether R is total: we also need to
know what domain(R) is.

Example 4.4.3. The function defined by the formula 1/x? has the [> 1 out] prop-
erty if its domain is R™, but not if its domain is some set of real numbers including
0. It has the [= 1 in] and [= 1 out] property if its domain and codomain are both
RT, but it has neither the [< 1 in] nor the [> 1 out] property if its domain and
codomain are both R.

4.4.2 Relational Images

The idea of the image of a set under a function extends directly to relations.

Definition 4.4.4. The image of a set Y under a relation R written R(Y), is the set
of elements of the codomain B of R that are related to some element in Y. In terms
of the relation diagram, R(Y) is the set of points with an arrow coming in that starts
from some point in Y. The range range(R) of R is the image R(A) of the domain
A of R. That is, range(R) is the set of all points in the codomain with an arrow
coming in.

For example, the set of subject numbers that Meyer is in charge of in Spring *10
is exactly Chrg(A. Meyer). To figure out what this is, we look for all the arrows
in the Chrg diagram that start at “A. Meyer,” and see which subject-numbers are
at the other end of these arrows. Looking at the list (4.4) of pairs in graph(Chrg),
we see that these subject-numbers are {6.042, 18.062, 6.844}. Similarly, to find the
subject numbers that either Freeman or Eng are in charge of, we can collect all the
arrows that start at either “G. Freeman,” or “T. Eng” and, again, see which subject-
numbers are at the other end of these arrows. This is Chrg({G. Freeman, T. Eng}).
Looking again at the list (4.4), we see that

Chrg({G. Freeman, T. Eng}) = {6.011, 6.881, 6.882, 6.UAT}

Finally, Fac is the set of all in-charge instructors, so Chrg(Fac) is the set of all the
subjects listed for Spring *10.

Inverse Relations and Images

Definition 4.4.5. The inverse, R~! of arelation R : A — B is the relation from B
to A defined by the rule
bR Ya IFF a R b.
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In other words, R™! is the relation you get by reversing the direction of the
arrows in the diagram of R.

Definition 4.4.6. The inverse image of a set X C B under the relation R is defined
to be R~!(X), namely, the set of elements in A connected by an arrow to some
element in B. The support support(R) is defined to R~!(B), namely, the set of
domain elements with at least one arrow out. The support of R is also called the
domain of definition of R.

Continuing with the in-charge example above, the set of instructors in charge
of 6.UAT in Spring ’10 is exactly the inverse image of {6.UAT} under the Chrg
relation. From the list (4.4), we see that Eng and Freeman are both in charge of
6.UAT, that is,

{T. Eng, D. Freeman} C Chrg™ ! ({6.UAT}).

We can’t assert equality here because there may be additional pairs further down
the list showing that additional instructors are co-incharge of 6.UAT.

Now let Intro be the set of introductory course 6 subject numbers. These are the
subject numbers that start with “6.0.” So the set of names of the instructors who
were in-charge of introductory course 6 subjects in Spring 10, is Chrg™ ! (Intro).
From the part of the Chrg list shown in (4.4), we see that Meyer, Leighton, Free-
man, and Guttag were among the instructors in charge of introductory subjects in
Spring *10. That is,

{Meyer, Leighton, Freeman, Guttag} € Chrg™ ! (Intro).

Finally, Chrg~!(SubNums) is the set of all instructors who were in charge of a
subject listed for Spring *10.

4.5 Finite Cardinality

A finite set is one that has only a finite number of elements. This number of ele-
ments is the “size” or cardinality of the set:

Definition 4.5.1. If A is a finite set, the cardinality |A| of A is the number of
elements in A4.

A finite set may have no elements (the empty set), or one element, or two ele-
ments,. . ., so the cardinality of finite sets is always a nonnegative integer.
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Now suppose R : A — B is a function. This means that every element of A
contributes at most one arrow to the diagram for R, so the number of arrows is at
most the number of elements in A. That is, if R is a function, then

|A| > #arrows.

If R is also surjective, then every element of B has an arrow into it, so there must
be at least as many arrows in the diagram as the size of B. That is,

#arrows > | B|.

Combining these inequalities implies that if R is a surjective function, then |A| >
|B|.

In short, if we write A surj B to mean that there is a surjective function from
A to B, then we’ve just proved a lemma: if A surj B for finite sets A, B, then
|A| > | B]|. The following definition and lemma lists this statement and three similar
rules relating domain and codomain size to relational properties.

Definition 4.5.2. Let A, B be (not necessarily finite) sets. Then
1. A surj B iff there is a surjective function from A to B.
2. A inj B iff there is an injective total relation from A to B.
3. A bij B iff there is a bijection from A4 to B.

Lemma 4.5.3. For finite sets A, B:
1. If A surj B, then |A| > |B|.
2. If A inj B, then |A| < |B|.
3. If Abij B, then |A| = |B|.

Proof. We’ve already given an “arrow” proof of implication 1. Implication 2. fol-
lows immediately from the fact that if R has the [< 1 out], function property, and
the [> 1 in], surjective property, then R™! is total and injective, so A surj B iff
B inj A. Finally, since a bijection is both a surjective function and a total injective
relation, implication 3. is an immediate consequence of the first two. |

Lemma 4.5.3.1. has a converse: if the size of a finite set A is greater than or equal
to the size of another finite set B then it’s always possible to define a surjective
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function from A to B. In fact, the surjection can be a total function. To see how
this works, suppose for example that

A ={ap,a1,a2,a3,a4,as}
B = {bo, b1, b2, b3}.

Then define a total function f : A — B by the rules
flao) m=bo, f(ar) :=0b1, flaz) ==ba, f(a3z) = f(as) = f(as) 1= b3.

More concisely,
f(di) n= bmin(i,3)a

for 0 <i < 5. Since 5 > 3, this f is a surjection.

So we have figured out that if A and B are finite sets, then | A| > | B| if and only if
A surj B. All told, this argument wraps up the proof of a theorem that summarizes
the whole finite cardinality story:

Theorem 4.5.4. [Mapping Rules] For finite sets A, B,

Al > |B| iff AsurjB, 4.5)
|Al < |B| iff Ainj B, (4.6)
|A| = |B| iff Abij B, 4.7)

4.5.1 How Many Subsets of a Finite Set?

As an application of the bijection mapping rule (4.7), we can give an easy proof of:

Theorem 4.5.5. There are 2" subsets of an n-element set. That is,
|A| =n implies |pow(A)| =2".
For example, the three-element set {a1, as, a3} has eight different subsets:

Y a1} {az} {ai, a2}
{az} l{ay,as} {az.as} {ai,az.as}

Theorem 4.5.5 follows from the fact that there is a simple bijection from subsets
of A to {0, 1}, the n-bit sequences. Namely, let ay,as,...,a, be the elements
of A. The bijection maps each subset of S C A to the bit sequence (b1, ..., by)
defined by the rule that

bl‘=1 iff aiES.
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For example, if n = 10, then the subset {a;, as,as,a7,aio} maps to a 10-bit
sequence as follows:

subset: { a, as, as, az, ap }
sequence: ( O, 1, 1, 0, 1, 0, 1, 0, O, 1)

Now by bijection case of the Mapping Rules 4.5.4.(4.7),
| pow(A4)| = {0, 1}*].

But every computer scientist knows® that there are 2" n-bit sequences! So we’ve
proved Theorem 4.5.5!

Problems for Section 4.1

Practice Problems

Problem 4.1.
For any set A, let pow(A) be its power set, the set of all its subsets; note that A is
itself a member of pow(A). Let @ denote the empty set.

(a) The elements of pow({1, 2}) are:
(b) The elements of pow ({0, {@}}) are:

(¢) How many elements are there in pow({1,2,...,8})?

Problem 4.2.

Express each of the following assertions about sets by a formula of set theory.’
Expressions may use abbreviations introduced earlier (so it is now legal to use “="
because we just defined it).

(a) x = 0.

(b) x ={y,z}.

() x € y. (x is a subset of y that might equal y.)

®In case you're someone who doesn’t know how many n-bit sequences there are, you'll find the
2" explained in Section 15.2.2.
7See Section 8.3.2.
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Now we can explain how to express “x is a proper subset of y” as a set theory
formula using things we already know how to express. Namely, letting “x # y”
abbreviate NOT(x = y), the expression

(x €y AND x #y),

describes a formula of set theory that means x C y.
From here on, feel free to use any previously expressed property in describing
formulas for the following:

dx=yUz.
(&) x =y —z.
() x = pow(y).
(@ x =U,ey 2

This means that y is supposed to be a collection of sets, and x is the union of all of
them. A more concise notation for “_J, y Z’ 1s simply “Uy?”

Class Problems

Problem 4.3.
Set Formulas and Propositional Formulas.

(a) Verify that the propositional formula (P AND Q) OR (P AND Q) is equivalent
to P.

(b) Prove that
A=(A—-B)U(ANB)

for all sets, A, B, by showing

x€ AIFFx € (A—B)Uu(ANB)

for all elements x using the equivalence of part (a) in a chain of IFF’s.

Problem 4.4.
Prove

Theorem (Distributivity of union over intersection).

AU(BNC)=(AUB)N(AUC) (4.8)




“mcs” — 2017/6/5 — 19:42 — page 114 — #122

114 Chapter 4 Mathematical Data Types

for all sets, A, B, C, by using a chain of iff’s to show that
xe€ AUMBNC)IFFx € (AUB)N(AUC)

for all elements x. You may assume the corresponding propositional equivalence 3.10.

Problem 4.5.
Prove De Morgan’s Law for set equality

ANB=AUB. 4.9)

by showing with a chain of IFF’s that x € the left-hand side of (4.9) iff x € the
right-hand side. You may assume the propositional version (3.14) of De Morgan’s
Law.

Problem 4.6.
Powerset Properties.
Let A and B be sets.

(a) Prove that
pow(A N B) = pow(A) N pow(B).

(b) Prove that
(pow(A4) U pow(B)) < pow(A4 U B),

with equality holding iff one of A or B is a subset of the other.

Problem 4.7.

Subset take-away® is a two player game played with a finite set A of numbers.
Players alternately choose nonempty subsets of A with the conditions that a player
may not choose

e the whole set A, or

e any set containing a set that was named earlier.

8From Christenson & Tilford, David Gale’s Subset Takeaway Game, American Mathematical
Monthly, Oct. 1997
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The first player who is unable to move loses the game.

For example, if the size of A is one, then there are no legal moves and the second
player wins. If A has exactly two elements, then the only legal moves are the two
one-element subsets of A. Each is a good reply to the other, and so once again the
second player wins.

The first interesting case is when A has three elements. This time, if the first
player picks a subset with one element, the second player picks the subset with the
other two elements. If the first player picks a subset with two elements, the second
player picks the subset whose sole member is the third element. In both cases, these
moves lead to a situation that is the same as the start of a game on a set with two
elements, and thus leads to a win for the second player.

Verify that when A has four elements, the second player still has a winning strat-

egy.9

Homework Problems

Problem 4.8.
Let A, B and C be sets. Prove that

AUBUC =(A—B)UB-C)U(C—A)UMANBNC) (4.10)

using a chain of IFF’s as Section 4.1.5.

Problem 4.9.
Union distributes over the intersection of two sets:

AU(BNC)=(AUB)N(AUC) 4.11)

(see Problem 4.4).
Use (4.11) and the Well Ordering Principle to prove the Distributive Law of
union over the intersection of n sets:

—(AUB)N---N(AU By_1) N (AU By) 4.12)

Extending formulas to an arbitrary number of terms is a common (if mundane)
application of the WOP.

9David Gale worked out some of the properties of this game and conjectured that the second
player wins the game for any set A. This remains an open problem.
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Exam Problems

Problem 4.10.
You’'ve seen how certain set identities follow from corresponding propositional
equivalences. For example, you proved by a chain of iff’s that

(A—B)U(ANB)=4

using the fact that the propositional formula (P AND Q)OR (P AND Q) is equivalent
to P.

State a similar propositional equivalence that would justify the key step in a proof
for the following set equality organized as a chain of iff’s:

A-B=(A-C)u(BNC)U((AuB)nC) (4.13)

(You are not being asked to write out an iff-proof of the equality or to write out
a proof of the propositional equivalence. Just state the equivalence.)

Problem 4.11.
You’ve seen how certain set identities follow from corresponding propositional
equivalences. For example, you proved by a chain of iff’s that

(A-B)U(ANB)=A4

using the fact that the propositional formula (P AND Q) OR (P AND Q) is equivalent
to P.

State a similar propositional equivalence that would justify the key step in a proof
for the following set equality organized as a chain of iff’s:

ANBNC=AUB-A4A)UC

(You are not being asked to write out an iff-proof of the equality or to write out
a proof of the propositional equivalence. Just state the equivalence.)

Problem 4.12.
The set equation
ANB=AUB

follows from a certain equivalence between propositional formulas.

(a) What is the equivalence?

(b) Show how to derive the equation from this equivalence.
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Problems for Section 4.2

Homework Problems

Problem 4.13.
Prove that for any sets A, B, C and D, if the Cartesian products 4 x B and C x D
are disjoint, then either A and C are disjoint or B and D are disjoint.

Problem 4.14. (a) Give a simple example where the following result fails, and
briefly explain why:
False Theorem. For sets A, B, C and D, let

L:=(AUB)x(CUD,),
R:=(AxC)U(BxD).

Then L = R.

(b) Identify the mistake in the following proof of the False Theorem.

Bogus proof. Since L and R are both sets of pairs, it’s sufficient to prove that
(x,y) e L «<— (x,y) € Rforall x, y.

The proof will be a chain of iff implications:

(x,y) €R
iff (x,y)e(AxC)U(BxD)
iff (x,y)eAxC,or(x,y)e BxD
iff (xeAandy e C)orelse(x € Band y € D)
iff eitherx € Aorx € B,andeithery e Cory € D
iff xeAUBandyeCUD
iff (x,y) € L.

(¢) Fix the proof to show that R C L.
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Problems for Section 4.4

Practice Problems

Problem 4.15.
The inverse R™1 of a binary relation R from A to B is the relation from B to A
defined by:

bR 'a iff aRb.

In other words, you get the diagram for R~! from R by “reversing the arrows” in
the diagram describing R. Now many of the relational properties of R correspond
to different properties of R~!. For example, R is total iff R~ is a surjection.

Fill in the remaining entries is this table:

Ris iff R71is
total a surjection
a function

a surjection
an injection
a bijection

Hint: Explain what’s going on in terms of “arrows” from A to B in the diagram
for R.

Problem 4.16.
Describe a total injective function [= 1 out], [< 1 in,] from R — R that is not a
bijection.

Problem 4.17.
For a binary relation R : A — B, some properties of R can be determined from
just the arrows of R, that is, from graph(R), and others require knowing if there
are elements in the domain A or the codomain B that don’t show up in graph(R).
For each of the following possible properties of R, indicate whether it is always
determined by

1. graph(R) alone,
2. graph(R) and A alone,
3. graph(R) and B alone,
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4. all three parts of R.

Properties:

(a) surjective
(b) injective
(c) total

(d) function

(e) bijection

Problem 4.18.

For each of the following real-valued functions on the real numbers, indicate whether
it is a bijection, a surjection but not a bijection, an injection but not a bijection, or
neither an injection nor a surjection.

@ x—>x+2
(b) x — 2x

() x —> x2

(d) x - x3
() x — sinx

(f) x — xsinx

(g x > e*

Problem 4.19.

Let f: A— Bandg: B — C be functionsand & : A — C be their composition,
namely, h(a) ::= g(f(a)) foralla € A.

(a) Prove thatif f and g are surjections, then so is /.

(b) Prove that if f and g are bijections, then so is 4.

(¢) If f is a bijection, then sois f 1.




“mcs” — 2017/6/5 — 19:42 — page 120 — #128

120

Chapter 4 Mathematical Data Types

Problem 4.20.
Give an example of a relation R that is a total injective function from a set A to
itself but is not a bijection.

Class Problems

Problem 4.21. (a) Prove that if A surj B and B surj C, then A surj C.
(b) Explain why A surj B iff B inj A.
(c) Conclude from (a) and (b) that if A inj B and B inj C, then A inj C.

(d) According to Definition 4.5.2, A inj B requires a total injective relation. Ex-
plain why A inj B iff there is a total injective function from A to B.

Problem 4.22.
Five basic properties of binary relations R : A — B are:

1. R is a surjection [> 1 in]
2. R isaninjection [< I in]
3. Ris a function [> 1 out]
4. Ristotal [> 1 out]

5. Risempty [= 0 out]

Below are some assertions about R. For each assertion, indicate all the properties
above that the relation R must have. For example, the first assertion impllies that R
is a total surjection. Variables a,aq, ... range over A and b, by, ... range over B.

(@) YaVb.a R b.

(b) NoT(Ya Vb.a R D).

(¢) YaVb. NOT(a R b).

(d) Ya3b.a R b.

(e) Ybda.a R b.

(f) R is a bijection.

(g) YVadbya R by A\ Vb.a R b IMPLIES b = b;.
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(h) Ya,b.a RbORa # b.

(i) Vby1,bs,a. (a R by AND a R by) IMPLIES by = bs.

(j) Yai,az,b. (a1 R b ANDay R b) IMPLIES a; = a5.

(k) VYai,az,by,bs. (ay R by AND as R by AND ay # ap) IMPLIES by # bs.

() Yaiy,az,b1,bs. (a1 R by AND az R by AND by # by) IMPLIES a; # as.

Problem 4.23.
Let R : A — B be a binary relation. Each of the following formulas expresses
the fact that R has a familiar relational “arrow” property such as being surjective
or being a function.

Identify the relational property expressed by each of the following relational
expressions. Explain your reasoning.

(a) RoR™! Cldp
(b) R"'o R Cldy
(c) R1oRDIdy
(d RoR!DIdp

Homework Problems

Problem 4.24.

Let f: A— Bandg: B — C be functions.

(a) Prove that if the composition g o f is a bijection, then f is a total injection
and g is a surjection.

(b) Show there is a total injection f and a bijection, g, such that g o f is not a
bijection.

Problem 4.25.
Let A, B and C be nonempty sets, and let f : B — C and g : A — B be
functions. Let h ::= f o g be the composition function of f and g, namely, the

function with domain A and codomain C such that 2(x) = f(g(x)).

(a) Prove that if A is surjective and f is total and injective, then g must be surjec-
tive.
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Hint: contradiction.

(b) Suppose that & is injective and f is total. Prove that g must be injective and
provide a counterexample showing how this claim could fail if f was not total.

Problem 4.26.

Let A, B and C be sets, and let f : B — C and g : A — B be functions. Let
h : A — C be the composition f o g; thatis, h(x) ::= f(g(x)) for x € A. Prove
or disprove the following claims:

(a) If & is surjective, then f must be surjective.
(b) If A is surjective, then g must be surjective.
(c¢) If & is injective, then f must be injective.

(d) If & is injective and f is total, then g must be injective.

Problem 4.27. (a)

Let R: D — D be a binary relation on a set D. Let x, y be variables ranging over
D. Indicate the expressions below whose meaning is that R is an injective relation
[< 1in]. Remember that R(x) ::={y | x R y}, and R is not necessarily a function
or a total relation.

(i) RxX)NR(y) =0
(i) R(x) = R(y) IMPLIES x = y
(iii)) R(x) N R(y) = @ IMPLIES x # y
(iv) x # y IMPLIES R(x) # R(y)

(v) R(x) N R(y) # @ IMPLIES X # y
(vi) R(x) N R(y) # @ IMPLIES x = y
(vi)) RN (R(x)) = {x}

(vii) R™1(R(x)) € {x}

(ix) R™'(R(x)) 2 {x}

x) R(R7(x)) € {x}

(xi) R(R71(x)) 2 {x}

(xii) x # y IMPLIES R(x) N R(y) =@
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(b) Give an example of a set S such that there is no total injective relation from S
to the real interval [0, 1].

Problem 4.28.
The language of sets and relations may seem remote from the practical world of
programming, but in fact there is a close connection to relational databases, a
very popular software application building block implemented by such software
packages as MySQL. This problem explores the connection by considering how to
manipulate and analyze a large data set using operators over sets and relations. Sys-
tems like MySQL are able to execute very similar high-level instructions efficiently
on standard computer hardware, which helps programmers focus on high-level de-
sign.

Consider a basic Web search engine, which stores information on Web pages and
processes queries to find pages satisfying conditions provided by users. At a high
level, we can formalize the key information as:

e A set P of pages that the search engine knows about

e A binary relation L (for link) over pages, defined such that p; L p, iff page
p1 links to p»

o A set E of endorsers, people who have recorded their opinions about which
pages are high-quality

e A binary relation R (for recommends) between endorsers and pages, such
that e R p iff person e has recommended page p

o A set W of words that may appear on pages

e A binary relation M (for mentions) between pages and words, where p M w
iff word w appears on page p

Each part of this problem describes an intuitive, informal query over the data,
and your job is to produce a single expression using the standard set and relation
operators, such that the expression can be interpreted as answering the query cor-
rectly, for any data set. Your answers should use only the set and relation symbols
given above, in addition to terms standing for constant elements of £ or W, plus
the following operators introduced in the text:

e set union U.
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e set intersection .
e set difference —.

e relational image—for example, R(A) for some set A, or R(a) for some spe-
cific element a.

e relational inverse ~1.

e ...and one extra: relational composition which generalizes composition of
functions
a(RoS)c:=3be B.(aSb)AaND (bR c).

In other words, a is related to ¢ in R o § if starting at a you can follow an S
arrow to the start of an R arrow and then follow the R arrow to get to ¢.'°

Here is one worked example to get you started:
e Search description: The set of pages containing the word “logic”
e Solution expression: M ~!(“logic”)

Find similar solutions for each of the following searches:
(a) The set of pages containing the word “logic” but not the word “predicate”

(b) The set of pages containing the word “set” that have been recommended by
6£Meyer9’

(c) The set of endorsers who have recommended pages containing the word “al-
gebra”

(d) The relation that relates endorser e and word w iff e has recommended a page
containing w

(e) The set of pages that have at least one incoming or outgoing link

(f) The relation that relates word w and page p iff w appears on a page that links
to p

(g) The relation that relates word w and endorser e iff w appears on a page that
links to a page that e recommends

(h) The relation that relates pages p; and p» iff p, can be reached from p; by
following a sequence of exactly 3 links

10Note the reversal of R and S in the definition; this is to make relational composition work like
function composition. For functions, f o g means you apply g first. That is, if we let 2 be f o g,

then h(x) = f(g(x)).
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Exam Problems

Problem 4.29.

Let A be the set containing the five sets: {a}, {b,c},{b,d},{a,e},{e, f}, and let
B be the set containing the three sets: {a,b},{b,c,d},{e, f}. Let R be the “is
subset of” binary relation from A to B defined by the rule:

XRY IFF X CY.

(a) Fill in the arrows so the following figure describes the graph of the relation,
R:

A arrows B
laj
la, b}
b, c;
{b,c.d}
b, d}
le. f}
la. e}
le. /3

(b) Circle the properties below possessed by the relation R:

function total injective surjective bijective

(¢) Circle the properties below possessed by the relation R™!:

function total injective surjective bijective
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Problem 4.30. (a) Five assertions about a binary relation R : A — B are bulleted
below. There are nine predicate formulas that express some of these assertions.
Write the numbers of the formulas next to the assertions they express. For example,
you should write “4” next to the last assertion, since formula (4) expresses the
assertion that R is the identity relation.

Variables a, ay, . . . range over the domain A and b, by, . . . range over the codomain
B. More than one formula may express one assertion.

e R is a surjection

e R is an injection

R is a function

R is total

R is the identity relation.

Vb.Ja.a R b.

Va.3b.a R b.

Va.a R a.

Ya,b.a R b1FFa = b.

Ya,b.a RboORa # b.

Vbi,b,a. (a R by AND a R by) IMPLIES by = bs.

Yai,az,b. (ay R b AND ay R b) IMPLIES a1 = as.

Yai,as,b1,bs. (a1 R by AND az R by AND a1 # ap) IMPLIES by # b;.

A SR BRSO o e

VYai,asz,b1,bs. (a1 R by AND az R by AND by # by) IMPLIES a1 # as.

(b) Give an example of a relation R that satisfies three of the properties surjection,
injection, total, and function (you indicate which) but is not a bijection.

Problem 4.31.

Let f : D — D be a total function from some nonempty set D to itself. In the
following propositions, x and y are variables ranging over D, and g is a variable
ranging over total functions from D to D. Indicate all of the propositions that are
equivalent to the proposition that f is an injection:

L. x=yo0r f(x)# f(y)

2. x = y IMPLIES f(x) = f(y)
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98]

. X # y IMPLIES f(x) # f(y)
4. f(x) = f(y) IMPLIES x = y

5. NOT[3IxTy(x # y AND f(x) = f(¥))
6. NOT[FzVx(f(x) # 2)

7. 3gVx(g(f(x)) = x)

8. dgVx(f(g(x)) = x)

Problem 4.32.
Prove that if relation R : A — B is a total injection, [> 1 out], [< 1 in], then

R 'oR =1dy4,

where Id 4 is the identity function on A.
(A simple argument in terms of “arrows” will do the job.)

Problem 4.33.
Let R : A — B be a binary relation.
(a) Prove that R is a function iff R o R~! C Idp.
Write similar containment formulas involving R71oR, RoR™1, Id,, Id g equivalent
to the assertion that R has each of the following properties. No proof is required.

(b) total.
(c) asurjection.

(d) ainjection.

Problem 4.34.
Let R: A — Band S : B — C be binary relations such that S o R is a bijection
and [A| = 2.

Give an example of such R, S where neither R nor S is a function. Indicate ex-
actly which properties—total, surjection, function, and injection—your examples
of R and S have.

Hint: Let |B| = 4.
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Problem 4.35.
The set {1, 2, 3} consists of the infinite sequences of the digits 1,2, and 3, and
likewise {4, 5}? is the set of infinite sequences of the digits 4,5. For example

123123123... € {1,2,3}?,
222222222222... €{1,2,3}%,
4554445554444 ... €{4,5}?.

(a) Give an example of a total injective function
f:{1,2,3}° — {4,5}*.
(b) Give an example of a bijection g : ({1, 2, 3}* x {1, 2, 3}*) — {1, 2, 3}“.

(c) Explain why there is a bijection between {1, 2, 3}* x {1, 2, 3} and {4, 5}“.
(You need not explicitly define the bijection.)

Problems for Section 4.5

Practice Problems

Problem 4.36.
Assume f : A — B is total function, and A is finite. Replace the * with one of
<, =, > to produce the strongest correct version of the following statements:

(@) [f(A)| *|B].

(b) If f is a surjection, then |A| x | B].
(c) If f is a surjection, then | f(A)| » | B].
(d) If f is an injection, then | f(A)| * | A|.

(e) If f is a bijection, then |A| * | B|.

Class Problems

Problem 4.37.

Let A = {a¢,a1,...,an—1} be a set of size n, and B = {bo, b1,...,bm—1} a set
of size m. Prove that |A x B| = mn by defining a simple bijection from A x B to
the nonnegative integers from O to mn — 1.
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Problem 4.38.
Let R : A — B be a binary relation. Use an arrow counting argument to prove the
following generalization of the Mapping Rule 1.

Lemma. If R is a function, and X C A, then

|X] = [R(X)].
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|
5 Induction

Induction is a powerful method for showing a property is true for all nonnegative
integers. Induction plays a central role in discrete mathematics and computer sci-
ence. In fact, its use is a defining characteristic of discrete—as opposed to contin-
uous—mathematics. This chapter introduces two versions of induction, Ordinary
and Strong, and explains why they work and how to use them in proofs. It also
introduces the Invariant Principle, which is a version of induction specially adapted
for reasoning about step-by-step processes.

5.1 Ordinary Induction

To understand how induction works, suppose there is a professor who brings a
bottomless bag of assorted miniature candy bars to her large class. She offers to
share the candy in the following way. First, she lines the students up in order. Next
she states two rules:

1. The student at the beginning of the line gets a candy bar.

2. If a student gets a candy bar, then the following student in line also gets a
candy bar.

Let’s number the students by their order in line, starting the count with 0, as usual
in computer science. Now we can understand the second rule as a short description
of a whole sequence of statements:

e If student O gets a candy bar, then student 1 also gets one.
e If student 1 gets a candy bar, then student 2 also gets one.

e If student 2 gets a candy bar, then student 3 also gets one.

Of course, this sequence has a more concise mathematical description:

If student n gets a candy bar, then student n + 1 gets a candy bar, for
all nonnegative integers 7.
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So suppose you are student 17. By these rules, are you entitled to a miniature candy
bar? Well, student O gets a candy bar by the first rule. Therefore, by the second
rule, student 1 also gets one, which means student 2 gets one, which means student
3 gets one as well, and so on. By 17 applications of the professor’s second rule,
you get your candy bar! Of course the rules really guarantee a candy bar to every
student, no matter how far back in line they may be.

5.1.1 A Rule for Ordinary Induction

The reasoning that led us to conclude that every student gets a candy bar is essen-
tially all there is to induction.

The Induction Principle.

Let P be a predicate on nonnegative integers. If

e P(0) is true, and

e P(n) IMPLIES P(n + 1) for all nonnegative integers n
then

e P(m) is true for all nonnegative integers m.

Since we’re going to consider several useful variants of induction in later sec-
tions, we’ll refer to the induction method described above as ordinary induction
when we need to distinguish it. Formulated as a proof rule as in Section 1.4.1, this
would be

Rule. Induction Rule

P(0), VneN.P(n)IMPLIES P(n + 1)
Vm € N. P(m)

This Induction Rule works for the same intuitive reason that all the students get
candy bars, and we hope the explanation using candy bars makes it clear why the
soundness of ordinary induction can be taken for granted. In fact, the rule is so
obvious that it’s hard to see what more basic principle could be used to justify it.!
What’s not so obvious is how much mileage we get by using it.

IBut see Section 5.3.
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5.1.2 A Familiar Example

Below is the formula (5.1) for the sum of the nonnegative integers up to n. The
formula holds for all nonnegative integers, so it is the kind of statement to which
induction applies directly. We’ve already proved this formula using the Well Or-
dering Principle (Theorem 2.2.1), but now we’ll prove it by induction, that is, using
the Induction Principle.

Theorem 5.1.1. Foralln € N,

1
1+2+3+---+n:@ 5.1)

To prove the theorem by induction, define predicate P (n) to be the equation (5.1).
Now the theorem can be restated as the claim that P () is true for all n € N. This
is great, because the Induction Principle lets us reach precisely that conclusion,
provided we establish two simpler facts:

e P(0) is true.
e Foralln € N, P(n) IMPLIES P(n + 1).

So now our job is reduced to proving these two statements.

The first statement follows because of the convention that a sum of zero terms
is equal to 0. So P(0) is the true assertion that a sum of zero terms is equal to
000+ 1)/2=0.

The second statement is more complicated. But remember the basic plan from
Section 1.5 for proving the validity of any implication: assume the statement on
the left and then prove the statement on the right. In this case, we assume P (n)—
namely, equation (5.1)—in order to prove P(n + 1), which is the equation

n+DHn+2)
—

These two equations are quite similar; in fact, adding (n + 1) to both sides of
equation (5.1) and simplifying the right side gives the equation (5.2):
nn+1
1+2+3+---+n+(n+1):¥+(n+1)
_ (n+2)(n+1)
B 2

Thus, if P(n) is true, then so is P(n + 1). This argument is valid for every non-
negative integer n, so this establishes the second fact required by the induction
proof. Therefore, the Induction Principle says that the predicate P (m) is true for
all nonnegative integers m. The theorem is proved.

142434 +n+@m+1) = (5.2)
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5.1.3 A Template for Induction Proofs

The proof of equation (5.1) was relatively simple, but even the most complicated
induction proof follows exactly the same template. There are five components:

1.

State that the proof uses induction. This immediately conveys the overall
structure of the proof, which helps your reader follow your argument.

Define an appropriate predicate P(n). The predicate P(n) is called the
induction hypothesis. The eventual conclusion of the induction argument
will be that P(n) is true for all nonnegative n. A clearly stated induction
hypothesis is often the most important part of an induction proof, and its
omission is the largest source of confused proofs by students.

In the simplest cases, the induction hypothesis can be lifted straight from the
proposition you are trying to prove, as we did with equation (5.1). Sometimes
the induction hypothesis will involve several variables, in which case you
should indicate which variable serves as n.

Prove that P (0) is true. This is usually easy, as in the example above. This
part of the proof is called the base case or basis step.

Prove that P(n) implies P(n + 1) for every nonnegative integer n. This
is called the inductive step. The basic plan is always the same: assume that
P(n) is true, and then use this assumption to prove that P(n + 1) is true.
These two statements should be fairly similar, but bridging the gap may re-
quire some ingenuity. Whatever argument you give must be valid for every
nonnegative integer 7, since the goal is to prove that all the following impli-
cations are true:

P(0) — P(1), P(1) = P(2), P(2) = P(3),....

. Invoke induction. Given these facts, the induction principle allows you to

conclude that P(n) is true for all nonnegative n. This is the logical capstone
to the whole argument, but it is so standard that it’s usual not to mention it
explicitly.

Always be sure to explicitly label the base case and the inductive step. Doing
so will make your proofs clearer and will decrease the chance that you forget a key
step—Ilike checking the base case.
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5.1.4 A Clean Writeup

The proof of Theorem 5.1.1 given above is perfectly valid; however, it contains a
lot of extraneous explanation that you won’t usually see in induction proofs. The
writeup below is closer to what you might see in print and should be prepared to
produce yourself.

Revised proof of Theorem 5.1.1. We use induction. The induction hypothesis P (n)
will be equation (5.1).

Base case: P(0) is true, because both sides of equation (5.1) equal zero when
n=0.

Inductive step: Assume that P(n) is true, that is equation (5.1) holds for some
nonnegative integer n. Then adding n + 1 to both sides of the equation implies that

nn—+1
1+2+3+-~-+n+(n+1)=¥+(n+1)
1 2
= (n—i_)z& (by simple algebra)
which proves P(n + 1).
So it follows by induction that P (n) is true for all nonnegative . |

It probably bothers you that induction led to a proof of this summation formula
but did not provide an intuitive way to understand it, nor did it explain where the
formula came from in the first place.? This is both a weakness and a strength. It is a
weakness when a proof does not provide insight. But it is a strength that a proof can
provide a reader with a reliable guarantee of correctness without requiring insight.

5.1.5 A More Challenging Example

During the development of MIT’s famous Stata Center, as costs rose further and
further beyond budget, some radical fundraising ideas were proposed. One rumored
plan was to install a big square courtyard divided into unit squares. The big square
would be 2" units on a side for some undetermined nonnegative integer n, and
one of the unit squares in the center® occupied by a statue of a wealthy potential
donor—whom the fund raisers privately referred to as “Bill.” The n = 3 case is
shown in Figure 5.1.

A complication was that the building’s unconventional architect, Frank Gehry,
was alleged to require that only special L-shaped tiles (shown in Figure 5.2) be

ZMethods for finding such formulas are covered in Part III of the text.
3In the special case n = 0, the whole courtyard consists of a single central square; otherwise,
there are four central squares.
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21’[

2)1

Figure 5.1 A 2" x 2" courtyard for n = 3.

Figure 5.2 The special L-shaped tile.

used for the courtyard. For n = 2, a courtyard meeting these constraints is shown
in Figure 5.3. But what about for larger values of n? Is there a way to tile a 2" x 2"
courtyard with L-shaped tiles around a statue in the center? Let’s try to prove that
this is so.

Theorem 5.1.2. For all n > 0 there exists a tiling of a 2" x 2"* courtyard with Bill
in a central square.

Proof. (doomed attempt) The proof is by induction. Let P(n) be the proposition
that there exists a tiling of a 2" x 2" courtyard with Bill in the center.

Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that there is a tiling of a 2" x 2" courtyard with Bill in the
center for some n > 0. We must prove that there is a way to tile a 271 x 271
courtyard with Bill in the center ... . |

Now we’re in trouble! The ability to tile a smaller courtyard with Bill in the
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Figure 5.3 A tiling using L-shaped tiles for n = 2 with Bill in a center square.

center isn’t much help in tiling a larger courtyard with Bill in the center. We haven’t
figured out how to bridge the gap between P(n) and P(n + 1).

So if we’re going to prove Theorem 5.1.2 by induction, we’re going to need some
other induction hypothesis than simply the statement about n that we’re trying to
prove.

When this happens, your first fallback should be to look for a stronger induction
hypothesis; that is, one which implies your previous hypothesis. For example,
we could make P (n) the proposition that for every location of Bill in a 2" x 2"
courtyard, there exists a tiling of the remainder.

This advice may sound bizarre: “If you can’t prove something, try to prove some-
thing grander!” But for induction arguments, this makes sense. In the inductive
step, where you have to prove P(n) IMPLIES P(n + 1), you're in better shape
because you can assume P(n), which is now a more powerful statement. Let’s see
how this plays out in the case of courtyard tiling.

Proof (successful attempt). The proof is by induction. Let P(n) be the proposition
that for every location of Bill in a 2" x 2" courtyard, there exists a tiling of the
remainder.

Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that P (n) is true for some n > 0; that is, for every location
of Bill in a 2" x 2" courtyard, there exists a tiling of the remainder. Divide the
2n+1 5 27+ courtyard into four quadrants, each 2” x 2", One quadrant contains
Bill (B in the diagram below). Place a temporary Bill (X in the diagram) in each of
the three central squares lying outside this quadrant as shown in Figure 5.4.
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2)1

2il

n 2n

Figure 5.4 Using a stronger inductive hypothesis to prove Theorem 5.1.2.

Now we can tile each of the four quadrants by the induction assumption. Replac-
ing the three temporary Bills with a single L-shaped tile completes the job. This
proves that P(n) implies P(n + 1) for all n > 0. Thus P (m) is true for all m € N,
and the theorem follows as a special case where we put Bill in a central square. W

This proof has two nice properties. First, not only does the argument guarantee
that a tiling exists, but also it gives an algorithm for finding such a tiling. Second,
we have a stronger result: if Bill wanted a statue on the edge of the courtyard, away
from the pigeons, we could accommodate him!

Strengthening the induction hypothesis is often a good move when an induction
proof won’t go through. But keep in mind that the stronger assertion must actually
be true; otherwise, there isn’t much hope of constructing a valid proof. Sometimes
finding just the right induction hypothesis requires trial, error, and insight. For
example, mathematicians spent almost twenty years trying to prove or disprove
the conjecture that every planar graph is 5-choosable.* Then, in 1994, Carsten
Thomassen gave an induction proof simple enough to explain on a napkin. The
key turned out to be finding an extremely clever induction hypothesis; with that in
hand, completing the argument was easy!

45-choosability is a slight generalization of 5-colorability. Although every planar graph is 4-
colorable and therefore 5-colorable, not every planar graph is 4-choosable. If this all sounds like
nonsense, don’t panic. We’ll discuss graphs, planarity, and coloring in Part II of the text.
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5.1.6 A Faulty Induction Proof

If we have done a good job in writing this text, right about now you should be
thinking, “Hey, this induction stuff isn’t so hard after all—just show P (0) is true
and that P(n) implies P(n + 1) for any number n.” And, you would be right,
although sometimes when you start doing induction proofs on your own, you can
run into trouble. For example, we will now use induction to “prove” that all horses
are the same color—just when you thought it was safe to skip class and work on
your robot program instead. Sorry!

False Theorem. All horses are the same color.

Notice that no n is mentioned in this assertion, so we’re going to have to re-
formulate it in a way that makes an n explicit. In particular, we’ll (falsely) prove
that

False Theorem 5.1.3. In every set of n > 1 horses, all the horses are the same
color.

This is a statement about all integers n > 1 rather > 0, so it’s natural to use a
slight variation on induction: prove P(1) in the base case and then prove that P (n)
implies P(n + 1) for all n > 1 in the inductive step. This is a perfectly valid variant
of induction and is not the problem with the proof below.

Bogus proof. The proof is by induction on n. The induction hypothesis P (n) will
be
In every set of n horses, all are the same color. (5.3)

Base case: (n = 1). P(1) is true, because in a size-1 set of horses, there’s only one
horse, and this horse is definitely the same color as itself.

Inductive step: Assume that P(n) is true for some n > 1. That is, assume that in
every set of n horses, all are the same color. Now suppose we have a set of n + 1
horses:

hi, ha, ..., hy, hpt.

We need to prove these n + 1 horses are all the same color.
By our assumption, the first n horses are the same color:

h]a h2’ ceey hn’hn—i—l
~—_———
same color

Also by our assumption, the last n horses are the same color:

hl, h2, e ooy hn, hn+1

same color
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So hj is the same color as the remaining horses besides /i, —that s, hs, ..., hy.
Likewise, h,41 is the same color as the remaining horses besides /;—that is,
ha, ..., hy, again. Since Ay and A, are the same color as Ay, ..., Ay, alln + 1
horses must be the same color, and so P(n + 1) is true. Thus, P(n) implies
P(n+1).

By the principle of induction, P (n) is true for all n > 1. |

We’ve proved something false! Does this mean that math broken and we should
all take up poetry instead? Of course not! It just means that this proof has a mistake.
The mistake in this argument is in the sentence that begins “So A is the same

color as the remaining horses besides %, +1—that is ks, ..., h,,....” The ellipis
notation (“...”) in the expression “hy, hs, ..., hy, hy41” creates the impression
that there are some remaining horses—namely A5, ..., h, —besides i1 and /1.
However, this is not true when n = 1. In that case, hy, ha, ..., hy, hy41 is just

h1, hy and there are no “remaining” horses for hy to share a color with. And of
course, in this case /1 and &, really don’t need to be the same color.

This mistake knocks a critical link out of our induction argument. We proved
P (1) and we correctly proved P(2) — P(3), P(3) — P(4), etc. But we failed
to prove P(1) — P(2), and so everything falls apart: we cannot conclude that
P(2), P(3), etc., are true. And naturally, these propositions are all false; there are
sets of n horses of different colors for all n > 2.

Students sometimes explain that the mistake in the proof is because P (n) is false
for n > 2, and the proof assumes something false, P (n), in order to prove P(n+1).
You should think about how to help such a student understand why this explanation
would get no credit on a Math for Computer Science exam.

5.2 Strong Induction

A useful variant of induction is called strong induction. Strong induction and ordi-
nary induction are used for exactly the same thing: proving that a predicate is true
for all nonnegative integers. Strong induction is useful when a simple proof that
the predicate holds for n + 1 does not follow just from the fact that it holds at 7,
but from the fact that it holds for other values < n.
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5.2.1 A Rule for Strong Induction

Principle of Strong Induction.

Let P be a predicate on nonnegative integers. If
e P(0) is true, and

e foralln e N, P(0), P(1), ..., P(n) together imply P(n + 1),

then P (m) is true for all m € N.

The only change from the ordinary induction principle is that strong induction
allows you make more assumptions in the inductive step of your proof! In an
ordinary induction argument, you assume that P(#n) is true and try to prove that
P(n 4+ 1) is also true. In a strong induction argument, you may assume that P (0),
P(1),...,and P(n) are all true when you go to prove P(n+1). So you can assume
a stronger set of hypotheses which can make your job easier.

Formulated as a proof rule, strong induction is

Rule. Strong Induction Rule

P0), VneN. (P(O) AND P(1) AND ... AND P(n)) IMPLIES P(n + 1)
Vm € N. P(m)

Stated more succintly, the rule is

Rule.
P(©0), [Yk <neN.P(k)] IMPLIES P(n + 1)

Vm € N. P(m)

The template for strong induction proofs is identical to the template given in
Section 5.1.3 for ordinary induction except for two things:

e you should state that your proof is by strong induction, and

e you can assume that P(0), P(1), ..., P(n) are all true instead of only P (n)
during the inductive step.

5.2.2 Fibonacci numbers

The numbers that bear his name arose out of the Italian mathematician Fibonacci’s
models of population growth at the beginning of the thirteenth century. Fibonacci
numbers turn out to describe the growth of lots of interesting biological quantities
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such as the shape of pineapple sprouts or pine cones, and they also come up regu-
larly in Computer Science where they describe the growth of various data structures
and computation times of algorithms.

To generate the list of successive Fibonacci numbers, you start by writing 0, 1
and then keep adding another element to the list by summing the two previous
ones:

0,1,1,2,3,5,8,13,21,....

Another way to describe this process is to define nth Fibonacci number F(n) by
the equations:

F(0):=0,
F():=1,
Fn):=Fnh—-1)4+Fn-2) forn > 2.

Note that because the general rule for finding the Fibonacci F(n) refers to the two
previous values F(n — 1) and F(n — 2), we needed to know the two values F'(0)
and F (1) in order to get started.

One simple property of Fibonacci numbers is that the even/odd pattern of Fi-
bonacci numbers repeats in a cycle of length three. A nice way to say this is that
foralln > 0,

F(n) is even IFF F(n 4+ 3) is even. 54

We will verify the equivalence (5.4) by induction, but strong induction is called for
because properties of F'(n) depend not just on F(n — 1) but also on F(n — 2).

Proof. The (strong) induction hypothesis P (n) will be (5.4).

Base cases:
e (n=0). F(0) =0and F(3) = 2 are both even.

e (n=1). F(1) = 1 and F(4) = 3 are both not even.

Induction step: For n > 1, we want to prove P(n + 1) is true assuming by strong
induction that P(n) and P(n — 1) are true.
Now it is easy to verify that for all integers k, m,

m + k is even IFF [m is even IFF k is even]. (*)
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Soforn > 1,

F(n + 1)iseven
IFF F(n) + F(n — 1) is even (defof F(n + 1))
IFF [F(n) is even IFF F(n — 1) is even|] (by (*))
IFF [F(n + 3) is even IFF F(n + 2) is even)]

(by strong ind. hyp. P(n), P(n — 1))
IFF F(n + 3) 4+ F(n 4 2) is even (by (*))
IFF F(n + 4) is even (by def of F(n + 4)).

This shows that
F(n 4+ 1)iseven IFF F(n + 4) is even,

which means that P(n + 1) is true, as required. |

There is a long standing community of Fibonacci number enthusiasts who have
been captivated by the many extraordinary properties of these number—a few fur-
ther illustrative properties appear in Problems 5.8, 5.25, and 5.30.

5.2.3 Products of Primes

We can use strong induction to re-prove Theorem 2.3.1 which we previously proved
using Well Ordering.

Theorem. Every integer greater than 1 is a product of primes.

Proof. We will prove the Theorem by strong induction, letting the induction hy-
pothesis P(n) be
n is a product of primes.

So the Theorem will follow if we prove that P(n) holds for all n > 2.

Base Case: (n = 2): P(2) is true because 2 is prime, so it is a length one product
of primes by convention.

Inductive step: Suppose that n > 2 and that every number from 2 to n is a product
of primes. We must show that P (n + 1) holds, namely, that n + 1 is also a product
of primes. We argue by cases:

If n + 1 is itself prime, then it is a length one product of primes by convention,
and so P(n + 1) holds in this case.

Otherwise, n + 1 is not prime, which by definition means #n + 1 = k - m for some
integers k, m between 2 and n. Now by the strong induction hypothesis, we know
that both k and m are products of primes. By multiplying these products, it follows
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Figure 5.5 One way to make 26 Sg using Strongian currency

immediately that k - m = n + 1 is also a product of primes. Therefore, P(n + 1)
holds in this case as well.
So P(n + 1) holds in any case, which completes the proof by strong induction
that P(n) holds for all n > 2.
|

5.2.4 Making Change

The country Inductia, whose unit of currency is the Strong, has coins worth 3Sg
(3 Strongs) and 5Sg. Although the Inductians have some trouble making small
change like 4Sg or 7Sg, it turns out that they can collect coins to make change for
any number that is at least 8 Strongs.

Strong induction makes this easy to prove for n + 1 > 11, because then (n +
1) — 3 > 8, so by strong induction the Inductians can make change for exactly
(n + 1) — 3 Strongs, and then they can add a 3Sg coin to get (n + 1)Sg. So the only
thing to do is check that they can make change for all the amounts from 8 to 10Sg,
which is not too hard to do.

Here’s a detailed writeup using the official format:

Proof. We prove by strong induction that the Inductians can make change for any
amount of at least 8Sg. The induction hypothesis P (n) will be:

There is a collection of coins whose value is n 4+ 8 Strongs.

We now proceed with the induction proof:

Base case: P(0) is true because a 3Sg coin together with a 5Sg coin makes 8Sg.
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Inductive step: We assume P (k) holds for all k¥ < n, and prove that P(n + 1)
holds. We argue by cases:

Case (n + 1 = 1): We have to make (n + 1) + 8 = 9Sg. We can do this using
three 3Sg coins.

Case (n + 1 =2): We have to make (n + 1) + 8 = 10Sg. Use two 5Sg coins.

Case (n + 1 > 3): Then 0 < n — 2 < n, so by the strong induction hypothesis,
the Inductians can make change for (n —2) + 8Sg. Now by adding a 3Sg coin, they
can make change for (n + 1) 4+ 8Sg, so P(n + 1) holds in this case.

Since n > 0, we know that n 4+ 1 > 1 and thus that the three cases cover
every possibility. Since P(n + 1) is true in every case, we can conclude by strong
induction that for all n > 0, the Inductians can make change for n + 8 Strong. That
is, they can make change for any number of eight or more Strong. |

5.2.5 The Stacking Game

Here is another exciting game that’s surely about to sweep the nation!

You begin with a stack of n boxes. Then you make a sequence of moves. In each
move, you divide one stack of boxes into two nonempty stacks. The game ends
when you have n stacks, each containing a single box. You earn points for each
move; in particular, if you divide one stack of height a + b into two stacks with
heights a and b, then you score ab points for that move. Your overall score is the
sum of the points that you earn for each move. What strategy should you use to
maximize your total score?

As an example, suppose that we begin with a stack of # = 10 boxes. Then the
game might proceed as shown in Figure 5.6. Can you find a better strategy?

Analyzing the Game

Let’s use strong induction to analyze the unstacking game. We’ll prove that your
score is determined entirely by the number of boxes—your strategy is irrelevant!

Theorem 5.2.1. Every way of unstacking n blocks gives a score of n(n — 1)/2
points.

There are a couple technical points to notice in the proof:

e The template for a strong induction proof mirrors the one for ordinary induc-
tion.

e As with ordinary induction, we have some freedom to adjust indices. In this
case, we prove P(1) in the base case and prove that P(1),..., P(n) imply
P(n + 1) for all n > 1 in the inductive step.




“mcs” — 2017/6/5 — 19:42 — page 146 — #154

146 Chapter 5  Induction
Stack Heights Score
10
5 5 25 points
5 3 2 6
4 3 2 1 4
2 321 2 4
2 22121 2
1 221211 1
1 121 2111 1
1 111 21111 1
1 111111111 1
Total Score = 45 points

Figure 5.6 An example of the stacking game with n = 10 boxes. On each line,
the underlined stack is divided in the next step.

Proof. The proof is by strong induction. Let P(n) be the proposition that every
way of unstacking n blocks gives a score of n(n — 1)/2.

Base case: If n = 1, then there is only one block. No moves are possible, and so
the total score for the game is 1(1 — 1)/2 = 0. Therefore, P (1) is true.

Inductive step: Now we must show that P(1), ..., P(n) imply P(n + 1) for all
n > 1. So assume that P(1), ..., P(n) are all true and that we have a stack of
n + 1 blocks. The first move must split this stack into substacks with positive sizes
aand b wherea +b =n + 1 and 0 < a,b < n. Now the total score for the game
is the sum of points for this first move plus points obtained by unstacking the two
resulting substacks:

total score = (score for 1st move)

+ (score for unstacking a blocks)

+ (score for unstacking b blocks)
a(a—1 b(b—-1
(a —1) n (b-1)

=ab + 7 7 by P(a) and P(b)
_(a+b?—(a+b)  (a+b)((a+b)—1)

B 2 B 2

_(n+Dn

=

This shows that P(1), P(2), ..., P(n) imply P(n + 1).
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Therefore, the claim is true by strong induction. |

5.3 Strong Induction vs. Induction vs. Well Ordering

Strong induction looks genuinely “stronger” than ordinary induction —after all,
you can assume a lot more when proving the induction step. Since ordinary in-
duction is a special case of strong induction, you might wonder why anyone would
bother with the ordinary induction.

But strong induction really isn’t any stronger, because a simple text manipula-
tion program can automatically reformat any proof using strong induction into a
proof using ordinary induction—just by decorating the induction hypothesis with
a universal quantifier in a standard way. Still, it’s worth distinguishing these two
kinds of induction, since which you use will signal whether the inductive step for
n + 1 follows directly from the case for n or requires cases smaller than 7, and that
is generally good for your reader to know.

The template for the two kinds of induction rules looks nothing like the one for
the Well Ordering Principle, but this chapter included a couple of examples where
induction was used to prove something already proved using well ordering. In fact,
this can always be done. As the examples may suggest, any well ordering proof
can automatically be reformatted into an induction proof. So theoretically, no one
need bother with the Well Ordering Principle either.

But it’s equally easy to go the other way, and automatically reformat any strong
induction proof into a Well Ordering proof. The three proof methods—well order-
ing, induction, and strong induction—are simply different formats for presenting
the same mathematical reasoning!

So why three methods? Well, sometimes induction proofs are clearer because
they don’t require proof by contradiction. Also, induction proofs often provide
recursive procedures that reduce large inputs to smaller ones. On the other hand,
well ordering can come out slightly shorter and sometimes seem more natural and
less worrisome to beginners.

So which method should you use? There is no simple recipe. Sometimes the
only way to decide is to write up a proof using more than one method and compare
how they come out. But whichever method you choose, be sure to state the method
up front to help a reader follow your proof.
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Figure 5.7 Gehry’s new tile.

Problems for Section 5.1

Practice Problems

Problem 5.1.
Prove by induction that every nonempty finite set of real numbers has a minimum
element.

Problem 5.2.

Frank Gehry has changed his mind. Instead of the L-shaped tiles shown in fig-
ure 5.3, he wants to use an odd offset pattern of tiles (or its mirror-image reflection),
as shown in 5.7. To prove this is possible, he uses reasoning similar to the proof
in 5.1.5. However, unlike the proof in the text, this proof is flawed. Which part of
the proof below contains a logical error?

False Claim. The proof is by induction. Let P(n) be the proposition that for every
location of Bill in a 2" x 2" courtyard, there exists a tiling of the remainder with
the offset tile pattern.

False proof. Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that P (n) is true for some n > 0; that is, for every location
of Bill in a 2" x 2" courtyard, there exists a tiling of the remainder. Divide the
271 27+ courtyard into four quadrants, each 2 x 2". One quadrant contains
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Figure 5.8 The induction hypothesis for the false theorem.

Bill (B in the diagram below). Place a temporary Bill (X in the diagram) in each of
the three squares lying near this quadrant as shown in Figure 5.8.

We can tile each of the four quadrants by the induction assumption. Replacing
the three temporary Bills with a single offset tile completes the job. This proves
that P(n) implies P(n + 1) for all n > 0. Thus P (m) is true for all m € N, and the
ability to place Bill in the center of the courtyard follows as a special case where
we put Bill in a central square. |

Class Problems

Problem 5.3.
Use induction to prove that

M)z‘ (5.5)

13+23+---+n3=( 5

foralln > 1.
Remember to formally
1. Declare proof by induction.
2. Identify the induction hypothesis P (n).

3. Establish the base case.
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4. Prove that P(n) = P(n + 1).
5. Conclude that P(n) holds foralln > 1.

as in the five part template.

Problem 5.4.
Prove by induction on » that
rn+1 -1
1+r+r2+...+rn:—1 (56)
r —
for all n € N and numbers r # 1.
Problem 5.5.
Prove by induction:
I+ 1 + : +--+ 1 2 1 6.7
— —_ oo — < - —, .
4 9 n? n

foralln > 1.

Problem 5.6. (a) Prove by induction that a 2" x 2" courtyard with a 1 x 1 statue
of Bill in a corner can be covered with L-shaped tiles. (Do not assume or reprove
the (stronger) result of Theorem 5.1.2 that Bill can be placed anywhere. The point
of this problem is to show a different induction hypothesis that works.)

(b) Use the result of part (a) to prove the original claim that there is a tiling with
Bill in the middle.

Problem 5.7.

We’ve proved in two different ways that

n(n+1)
2

But now we’re going to prove a contradictory theorem!

1+2+34 - +n=

False Theorem. Foralln > 0,

nn+1)

24344+t =—
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Proof. We use induction. Let P(n) be the propositionthat2 +3 +4 +---+n =
nn+1)/2.

Base case: P(0) is true, since both sides of the equation are equal to zero. (Recall
that a sum with no terms is zero.)

Inductive step: Now we must show that P(n) implies P(n + 1) for alln > 0. So
suppose that P(n) is true; thatis,2 +3 +4 +---+n = n(n + 1)/2. Then we can
reason as follows:

24344+ dn+ @+ D) =243 +4++nl+m+1)

nn+1)

=T+(l’l+l)

_(n+Dn+2)
B 2
Above, we group some terms, use the assumption P(n), and then simplify. This

shows that P(n) implies P(n + 1). By the principle of induction, P(n) is true for
alln € N. |

Where exactly is the error in this proof?

Homework Problems

Problem 5.8.
The Fibonacci numbers F'(n) are described in Section 5.2.2.
Prove by induction that for alln > 1,

Fin—1)-F(n+1)—F@n)*> = (-)". (5.8)

Problem 5.9.
For any binary string « let num (&) be the nonnegative integer it represents in binary
notation. For example, num (10) = 2, and num (0101) = 5.

An n + 1-bit adder adds two n + 1-bit binary numbers. More precisely, an
n + 1-bit adder takes two length n + 1 binary strings

Oy :=dy ...Aaiqop,
ﬂn = bn .o .blbo,

and a binary digit c¢ as inputs, and produces a length-(n + 1) binary string

Op i=58...5150,
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and a binary digit ¢, as outputs, and satisfies the specification:
num (ot,) + num (B,) + co = 2" ¢, 41 + num (o) . (5.9

There is a straighforward way to implement an n 4 1-bit adder as a digital circuit:
an n + 1-bit ripple-carry circuit has 1 + 2(n + 1) binary inputs

ans---1a19a07bn’---’blvb01609

and n 4+ 2 binary outputs,
Cn-i-l,Sna LRI ,Sl,SO.

As in Problem 3.6, the ripple-carry circuit is specified by the following formulas:

S; '=a; XOR b; XOR ¢; (5.10)
Ci+1 ::= (aj AND b;) OR (a; AND c;j) OR (b; AND ¢;),. (5.11)

for0 <i <n.

(a) Verify that definitions (5.10) and (5.11) imply that
an + by + cn = 2¢n+1 + Sn. (5.12)
foralln € N.

(b) Prove by induction on n that an n + 1-bit ripple-carry circuit really is an n 4 1-
bit adder, that is, its outputs satisfy (5.9).

Hint: You may assume that, by definition of binary representation of integers,

num (et 11) = ap+12" ! + num (o) - (5.13)

Problem 5.10.
Divided Equilateral Triangles® (DETs) can be built up as follows:

e A single equilateral triangle counts as a DET whose only subtriangle is itself.

o If T::= A is a DET, then the equilateral triangle 7" built out of four
copies of 7" as shown in in Figure 5.9 is also a DET, and the subtriangles of
T’ are exactly the subtriangles of each of the copies of T'.

5 Adapted from [49].
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RAVA

Figure 5.9 DET 7"’ from Four Copies of DET T

Figure 5.10 Trapezoid from Three Triangles

(a) Define the length of a DET to be the number of subtriangles with an edge on
its base. Prove by induction on length that the total number of subtriangles of a
DET is the square of its length.

(b) Show that a DET with one of its corner subtriangles removed can be tiled with
trapezoids built out of three subtriangles as in Figure 5.10.

Problem 5.11.

The Math for Computer Science mascot, Theory Hippotamus, made a startling
discovery while playing with his prized collection of unit squares over the weekend.
Here is what happened.

First, Theory Hippotamus put his favorite unit square down on the floor as in
Figure 5.11 (a). He noted that the length of the periphery of the resulting shape was
4, an even number. Next, he put a second unit square down next to the first so that
the two squares shared an edge as in Figure 5.11 (b). He noticed that the length
of the periphery of the resulting shape was now 6, which is also an even number.
(The periphery of each shape in the figure is indicated by a thicker line.) Theory
Hippotamus continued to place squares so that each new square shared an edge with
at least one previously-placed square and no squares overlapped. Eventually, he
arrived at the shape in Figure 5.11 (c). He realized that the length of the periphery
of this shape was 36, which is again an even number.

Our plucky porcine pal is perplexed by this peculiar pattern. Use induction on
the number of squares to prove that the length of the periphery is always even, no
matter how many squares Theory Hippotamus places or how he arranges them.
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(a) (b) (©

Figure 5.11 Some shapes that Theory Hippotamus created.

Problem 5.12.
Prove the Distributive Law of intersection over the union of » sets by induction:

AN Lnj B = CJ(A N B;). (5.14)

i=1 i=1

Hint: Theorem 4.1.2 gives the n = 2 case.

Problem 5.13.
Here is an interesting construction of a geometric object known as the Koch snowflake.
Define a sequence of polygons Sy, S7 recursively, starting with Sp equal to an equi-
lateral triangle with unit sides. We construct S, 41 by removing the middle third
of each edge of S, and replacing it with two line segments of the same length, as
illustrated in Figure 5.12.

Let a, be the area of S,,. Observe that ag is just the area of the unit equilateral
triangle which by elementary geometry is +/3/4.

Prove by induction that for n > 0, the area of the n™™ snowflake is given by:

. 8 3/4\" 515
G GHO o
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Figure 5.12 S(), Sl, Sz and S3.

Exam Problems

Problem 5.14.
Prove by induction that

D kkl=@m+D-1. (5.16)
1

Problem 5.15.
Prove by induction:

1 2
O3+13+23++}13:(n(n2—+)) ,VI’IZO.

using the equation itself as the induction hypothesis P (7).
(a) Prove the

base case (n = 0).
(b) Now prove the

inductive step.
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Problem 5.16.
Suppose P (n) is a predicate on nonnegative numbers, and suppose

Vk. P(k) IMPLIES P(k + 2). (5.17)

For P’s that satisfy (5.17), some of the assertions below Can hold for some,
but not all, such P, other assertions Always hold no matter what the P may be,
and some Never hold for any such P. Indicate which case applies for each of the
assertions and briefly explain why.

(@) Vn > 0. P(n)

(b) NOT(P(0)) AND Vi > 1. P(n)

(¢) Vn > 0. NOT(P(n))

(d) (Vn <100. P(n)) AND (Vn > 100. NOT(P(n)))
(e) (Vn <100. NOT(P(n))) AND (VYn > 100. P(n))
(f) P(0) IMPLIES Vn. P(n + 2)

(g) [3n. P(2n)] IMPLIES Vn. P(2n + 2)

(h) P(1) IMPLIES Vn. P(2n + 1)

(i) [3n. P(2n)] IMPLIES Vn. P(2n + 2)

(j) In.Im > n.[P(2n) AND NOT(P (2m))]

(k) [3n. P(n)] IMPLIES Vn.3dm > n. P(m)

(I) NOT(P(0)) IMPLIES Vn. NOT(P(2n))

Problem 5.17.

We examine a series of propositional formulas Fy, F, ..., Fy, ... containing propo-
sitional variables P;, P>, ..., Py, ... constructed as follows

F1 (Pl) L= P1

Fy(Py, P») = P; IMPLIES P,

F3(Pq, Py, P3) = (P; IMPLIES P;) IMPLIES P3

F4(P1, Py, P3, Py) = ((P1 IMPLIES P5) IMPLIES P3) IMPLIES P4

F5(Py, Py, P3, P4, P5) = (((P1 IMPLIES P,) IMPLIES P3) IMPLIES P4) IMPLIES P5
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Let 7, be the number of different true/false settings of the variables Py, Ps, ..., Py,
for which F,(Py, P, ..., Py) is true. For example, 7> = 3 since F»>(Pq, P>) is
true for 3 different settings of the variables P; and P;:

Py | Fy(P1. P2)

NN
NN TN
NN

(a) Explain why

Tpir1 =2"T1 T, (5.18)
(b) Use induction to prove that

B on+1 4 (_l)n

Ty 3

()

forn > 1.

Problem 5.18.

You are given n envelopes, numbered O, 1,...,n — 1. Envelope 0 contains 20 =1
dollar, Envelope 1 contains 21 =2 dollars, ..., and Envelope n — 1 contains on-1
dollars. Let P(n) be the assertion that:

For all nonnegative integers k < 2", there is a subset of the n envelopes
whose contents total to exactly k dollars.

Prove by induction that P (n) holds for all integers n > 1.

Problem 5.19.
Prove by induction that
nn+ 1)(n +2)

1:242-34+3-4+---+nn+1)= 3 (5.19)

for all integers n > 1.
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-1

AND-circuit

NOT-gate

Figure 5.13 OR-circuit from AND-circuit.

Problem 5.20.
A k-bit AND-circuit is a digital circuit that has k 0-1 valued inputs® dg, d1, . .., di—_1
and one 0-1-valued output variable whose value will be

dy AND di AND --- AND dj_1.

OR-circuits are defined in the same way, with “OR” replacing “AND.”

(a) Suppose we want an OR-circuit but only have a supply of AND-circuits and
some NOT-gates (“inverters”) that have one 0-1 valued input and one 0-1 valued
output. We can turn an AND-circuit into an OR-circuit by attaching a NOT-gate to
each input of the AND-circuit and also attaching a NOT-gate to the output of the
AND-circuit. This is illustrated in Figure 5.13. Briefly explain why this works.

Large digital circuits are built by connecting together smaller digital circuits as
components. One of the most basic components is a two-input/one-output AND-
gate that produces an output value equal to the AND of its two input values. So
according the definition in part (a), a single AND-gate is a 1-bit AND-circuit.

We can build up larger AND-circuits out of a collection of AND-gates in several
ways. For example, one way to build a 4-bit AND-circuit is to connect three AND-
gates as illustrated in Figure 5.14.

More generally, a depth-n tree-design AND-circuit—*“depth-n circuit” for short—
has 2" inputs and is built from two depth-(n — 1) circuits by using the outputs of
the two depth-(n — 1) circuits as inputs to a single AND-gate. This is illustrated in
Figure 5.15. So the 4-bit AND-circuit in Figure 5.14 is a depth-2 circuit. A depth-1
circuit is defined simply to be a single AND-gate.

SFollowing the usual conventions for digital circuits, we’re using 1 for the truth value T and O for
F.
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Figure 5.14 A 4-bit AND-circuit.

Figure 5.15 An n-bit tree-design AND-circuit.
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(b) Let gate#(n) be the number of AND-gates in a depth-n circuit. Prove by in-
duction that
gate#(n) = 2" — 1 (5.20)

foralln > 1.

Problems for Section 5.2

Practice Problems

Problem 5.21.
Some fundamental principles for reasoning about nonnegative integers are:

1. The Induction Principle,
2. The Strong Induction Principle,

3. The Well Ordering Principle.

Identify which, if any, of the above principles is captured by each of the following
inference rules.

(a)
P(0),Vm. (Vk <m. P(k)) IMPLIES P(m + 1)
Vn. P(n)
(b)
P(b),Yk = b. P(k) IMPLIES P(k + 1)
Vk > b. P(k)
(©
dn. P(n)
dm. [P(m) AND (Vk. P(k) IMPLIES k > m)]
(d)
P(0),Vk > 0. P(k) iMPLIES P(k + 1)
Vn. P(n)
(e)

Vm. (Vk < m. P(k)) IMPLIES P(m)
Vn. P(n)
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Problem 5.22.
The Fibonacci numbers F(n) are described in Section 5.2.2.

Indicate exactly which sentence(s) in the following bogus proof contain logical
errors? Explain.

False Claim. Every Fibonacci number is even.

Bogus proof. Let all the variables n, m, k mentioned below be nonnegative integer
valued. Let Even(n) mean that F(n) is even. The proof is by strong induction with
induction hypothesis Even(n).

base case: F'(0) = 0 is an even number, so Even(0) is true.

inductive step: We assume may assume the strong induction hypothesis
Even(k) for0 < k <n,

and we must prove Even(n + 1).

Then by strong induction hypothesis, Even(n) and Even(n — 1) are true, that
is, F(n) and F(n — 1) are both even. But by the definition, F(n + 1) equals the
sum F(n) + F(n — 1) of two even numbers, and so it is also even. This proves
Even(n + 1) as required.

Hence, F(m) is even for all m € N by the Strong Induction Principle.

Problem 5.23.
Alice wants to prove by induction that a predicate P holds for certain nonnegative
integers. She has proven that for all nonnegative integersn = 0, 1, ...

P(n) IMPLIES P(n + 3).

(a) Suppose Alice also proves that P(5) holds. Which of the following proposi-
tions can she infer?

P(n) holds foralln > 5

P(3n) holds foralln > 5

P(n) holds forn = 8,11, 14, . ..
P (n) does not hold forn < 5
Vn. P(3n +5)
Vn>2.P(Bn—-1)

S o e
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7. P(0) IMPLIES Vn. P(3n + 2)
8. P(0) IMPLIES Vn. P(3n)

(b) Which of the following could Alice prove in order to conclude that P (#) holds
forall n > 5?7

P(0)

P(5)

P(5) and P(6)

P(0), P(1) and P(2)
P(5), P(6) and P(7)
P(2), P(4) and P(5)
P(2), P(4) and P(6)
P(3), P(5) and P(7)

© N R LD -

Problem 5.24.
Prove that every amount of postage of 12 cents or more can be formed using just
4-cent and 5-cent stamps.

Class Problems

Problem 5.25.
The Fibonacci numbers are described in Section 5.2.2.

Prove, using strong induction, the following closed-form formula for the Fi-
bonacci numbers.’

" —q"
Fn) =
NE
where p = # and g = %g
Hint: Note that p and g are the roots of x> —x —1 = 0, and so p? = p + 1 and
q>=q+1.
Problem 5.26.

A sequence of numbers is weakly decreasing when each number in the sequence is

7This mind-boggling formula is known as Binet’s formula. We’ll explain in Chapter 16, and again
in Chapter 22, how it comes about.
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> the numbers after it. (This implies that a sequence of just one number is weakly
decreasing.)
Here’s a bogus proof of a very important true fact, every integer greater than 1 is
a product of a unique weakly decreasing sequence of primes—a pusp, for short.
Explain what’s bogus about the proof.

Lemma. Every integer greater than 1 is a pusp.

For example, 252 = 7-3 -3 -2 -2, and no other weakly decreasing sequence of
primes will have a product equal to 252.

Bogus proof. We will prove the lemma by strong induction, letting the induction
hypothesis P(n) be
n is a pusp.

So the lemma will follow if we prove that P(n) holds for all n > 2.

Base Case (n = 2): P(2) is true because 2 is prime, and so it is a length one
product of primes, and this is obviously the only sequence of primes whose product
can equal 2.

Inductive step: Suppose that n > 2 and that i is a pusp for every integer i where
2 <i < n+ 1. We must show that P(n + 1) holds, namely, that n + 1 is also a
pusp. We argue by cases:

If n 4 1 is itself prime, then it is the product of a length one sequence consisting
of itself. This sequence is unique, since by definition of prime, » 4 1 has no other
prime factors. So n + 1 is a pusp, thatis P(n + 1) holds in this case.

Otherwise, n + 1 is not prime, which by definition means n + 1 = km for
some integers k,m such that 2 < k,m < n + 1. Now by the strong induction
hypothesis, we know that k and m are pusps. It follows that by merging the unique
prime sequences for k and m, in sorted order, we get a unique weakly decreasing
sequence of primes whose product equals n + 1. Son + 1 is a pusp, in this case as
well.

So P(n + 1) holds in any case, which completes the proof by strong induction
that P(n) holds for all n > 2.

|

Problem 5.27.

Define the potential p(S) of a stack of blocks S to be k(k — 1)/2 where k is the
number of blocks in S. Define the potential p(A) of a set of stacks A to be the sum
of the potentials of the stacks in A.
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Generalize Theorem 5.2.1 about scores in the stacking game to show that for any
set of stacks A if a sequence of moves starting with A leads to another set of stacks
B then p(A) > p(B), and the score for this sequence of moves is p(A4) — p(B).

Hint: Try induction on the number of moves to get from A to B.

Homework Problems

Problem 5.28.

A group of n > 1 people can be divided into teams, each containing either 4 or
7 people. What are all the possible values of n? Use induction to prove that your
answer is correct.

Problem 5.29.

The following Lemma is true, but the proof given for it below is defective. Pin-
point exactly where the proof first makes an unjustified step and explain why it is
unjustified.

Lemma. For any prime p and positive integers n, x1, Xz, ..., Xn, if p | X1X2 ... Xn,
then p | x; for some 1 <i <n.

Bogus proof. Proof by strong induction on n. The induction hypothesis P(n) is
that Lemma holds for #.

Base case n = 1: Whenn = 1, we have p | x1, therefore we can leti = 1 and
conclude p | x;.

Induction step: Now assuming the claim holds for all £ < n, we must prove it
forn 4 1.

Sosuppose p | X1xX2 -+ Xp41- Let Yy = XpXp4+1,80 X1X2 + - Xp+1 = X1X2 - Xn—1Vn-
Since the right-hand side of this equality is a product of n terms, we have by induc-
tion that p divides one of them. If p | x; for some i < n, then we have the desired
i. Otherwise p | y,. But since y, is a product of the two terms x,, X, +1, we have
by strong induction that p divides one of them. So in this case p | x; fori = n or
i=n+1. |

Exam Problems

Problem 5.30.
The Fibonacci numbers F'(n) are described in Section 5.2.2.
These numbers satisfy many unexpected identities, such as

F(0)> + F(1)> 4+ -4+ F(n)> = F(n)F(n + 1). (5.21)
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Equation (5.21) can be proved to hold for all # € N by induction, using the equation
itself as the induction hypothesis P (n).

(a) Prove the
base case (n = 0).
(b) Now prove the

inductive step.

Problem 5.31.
Use strong induction to prove that n < 3"/3 for every integer n > 0.

Problem 5.32.
A class of any size of 18 or more can be assembled from student teams of sizes 4
and 7. Prove this by induction (of some kind), using the induction hypothesis:

S(n) ::=aclass of n + 18 students can be assembled from teams of sizes 4 and 7.

Problem 5.33.

Any amount of ten or more cents postage that is a multiple of five can be made
using only 10¢ and 15¢ stamps. Prove this by induction (ordinary or strong, but say
which) using the induction hypothesis

S(n) ::= (5n + 10)¢ postage can be made using only 10¢ and 15¢ stamps.
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6 State Machines

State machines are a simple, abstract model of step-by-step processes. Since com-
puter programs can be understood as defining step-by-step computational processes,
it’s not surprising that state machines come up regularly in computer science. They
also come up in many other settings such as designing digital circuits and mod-
eling probabilistic processes. This section introduces Floyd’s Invariant Principle
which is a version of induction tailored specifically for proving properties of state
machines.

One of the most important uses of induction in computer science involves prov-
ing one or more desirable properties continues to hold at every step in a process.
A property that is preserved through a series of operations or steps is known as a
preserved invariant.

Examples of desirable invariants include properties such as a variable never ex-
ceeding a certain value, the altitude of a plane never dropping below 1,000 feet
without the wingflaps being deployed, and the temperature of a nuclear reactor
never exceeding the threshold for a meltdown.

6.1 States and Transitions

Formally, a state machine is nothing more than a binary relation on a set, except
that the elements of the set are called “states,” the relation is called the transition
relation, and an arrow in the graph of the transition relation is called a transition.
A transition from state g to state r will be written ¢ — r. The transition relation
is also called the state graph of the machine. A state machine also comes equipped
with a designated start state.

A simple example is a bounded counter, which counts from 0 to 99 and overflows
at 100. This state machine is pictured in Figure 6.1, with states pictured as circles,
transitions by arrows, and with start state 0 indicated by the double circle. To be

start
state

9

Figure 6.1 State transitions for the 99-bounded counter.
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precise, what the picture tells us is that this bounded counter machine has

states ::= {0, 1,..., 99, overflow},
start state ::= 0,
transitions :={n —n+ 1|0 <n < 99}

U {99 — overflow, overflow —> overflow}.

This machine isn’t much use once it overflows, since it has no way to get out of its
overflow state.

State machines for digital circuits and string pattern matching algorithms, for in-
stance, usually have only a finite number of states. Machines that model continuing
computations typically have an infinite number of states. For example, instead of
the 99-bounded counter, we could easily define an “unbounded” counter that just
keeps counting up without overflowing. The unbounded counter has an infinite
state set, the nonnegative integers, which makes its state diagram harder to draw.

State machines are often defined with labels on states and/or transitions to indi-
cate such things as input or output values, costs, capacities, or probabilities. Our
state machines don’t include any such labels because they aren’t needed for our
purposes. We do name states, as in Figure 6.1, so we can talk about them, but the
names aren’t part of the state machine.

6.2 The Invariant Principle

6.2.1 A Diagonally-Moving Robot

Suppose we have a robot that starts at the origin and moves on an infinite 2-
dimensional integer grid. The state of the robot at any time can be specified by
the integer coordinates (x, y) of the robot’s current position. So the start state
is (0,0). At each step, the robot may move to a diagonally adjacent grid point, as
illustrated in Figure 6.2.

To be precise, the robot’s transitions are:

{m,n) — mx1l,nxtl)|m,neZ}.

For example, after the first step, the robot could be in states (1, 1), (1,—1), (—1, 1)
or (—1,—1). After two steps, there are 9 possible states for the robot, includ-
ing (0, 0). The question is, can the robot ever reach position (1, 0)?

If you play around with the robot a bit, you’ll probably notice that the robot can
only reach positions (m, n) for which m + n is even, which of course means that it




“mcs” — 2017/6/5 — 19:42 — page 169 — #177

6.2. The Invariant Principle 169

y

.| X X

' X X

0 1 2 3

Figure 6.2 The Diagonally Moving Robot.

can’t reach (1, 0). This follows because the evenness of the sum of the coordinates
is a property that is preserved by transitions. This is an example of a preserved
invariant.

This once, let’s go through this preserved invariant argument, carefully high-
lighting where induction comes in. Specifically, define the even-sum property of
states to be:

Even-sum((m, n)) ::= [m + n is even].

Lemma 6.2.1. For any transition ¢ —> r of the diagonally-moving robot, if Even-
sum(q), then Even-sum(r ).

This lemma follows immediately from the definition of the robot’s transitions:
(m,n) — (m £ 1,n £ 1). After a transition, the sum of coordinates changes by
(£1) + (£1), that is, by 0, 2, or -2. Of course, adding 0, 2 or -2 to an even number
gives an even number. So by a trivial induction on the number of transitions, we
can prove:

Theorem 6.2.2. The sum of the coordinates of any state reachable by the diagonally-
moving robot is even.
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Figure 6.3 Can the Robot get to (1,0)?
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Proof. The proof is induction on the number of transitions the robot has made. The
induction hypothesis is

P(n) ::=if g is a state reachable in n transitions, then Even-sum(g).

Base case: P(0) is true since the only state reachable in O transitions is the start
state (0, 0), and 0 + 0 is even.

Inductive step: Assume that P(n) is true, and let r be any state reachable inn + 1
transitions. We need to prove that Even-sum(r) holds.

Since r is reachable in n + 1 transitions, there must be a state g reachable in n
transitions such that g — r. Since P (n) is assumed to be true, Even-sum(g) holds,
and so by Lemma 6.2.1, Even-sum(r) also holds. This proves that P(n) IMPLIES
P(n + 1) as required, completing the proof of the inductive step.

We conclude by induction that for all n > 0, if g is reachable in n transitions, then
Even-sum(q). This implies that every reachable state has the Even-sum property.

|

Corollary 6.2.3. The robot can never reach position (1, 0).

Proof. By Theorem 6.2.2, we know the robot can only reach positions with coor-
dinates that sum to an even number, and thus it cannot reach position (1, 0). |

6.2.2 Statement of the Invariant Principle

Using the Even-sum invariant to understand the diagonally-moving robot is a sim-
ple example of a basic proof method called The Invariant Principle. The Principle
summarizes how induction on the number of steps to reach a state applies to invari-
ants.

A state machine execution describes a possible sequence of steps a machine
might take.

Definition 6.2.4. An execution of the state machine is a (possibly infinite) sequence
of states with the property that

e it begins with the start state, and
e if g and r are consecutive states in the sequence, then ¢ —> r.
A state is called reachable if it appears in some execution.

Definition 6.2.5. A preserved invariant of a state machine is a predicate P on
states, such that whenever P(q) is true of a state ¢ and ¢ — r for some state r
then P(r) holds.
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The Invariant Principle

If a preserved invariant of a state machine is true for the start state,
then it is true for all reachable states.

The Invariant Principle is nothing more than the Induction Principle reformulated
in a convenient form for state machines. Showing that a predicate is true in the start
state is the base case of the induction, and showing that a predicate is a preserved
invariant corresponds to the inductive step.'

Preserved invariants are commonly just called “invariants” in the literature on program correct-
ness, but we decided to throw in the extra adjective to avoid confusion with other definitions. For
example, other texts (as well as another subject at MIT) use “invariant” to mean “predicate true of
all reachable states.” Let’s call this definition “invariant-2.” Now invariant-2 seems like a reason-
able definition, since unreachable states by definition don’t matter, and all we want to show is that
a desired property is invariant-2. But this confuses the objective of demonstrating that a property is
invariant-2 with the method of finding a preserved invariant—which is preserved even at unreachable
states—to show that it is invariant-2.
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Robert W. Floyd

The Invariant Principle was formulated by Robert W. Floyd at Carnegie Tech
in 1967. (Carnegie Tech was renamed Carnegie-Mellon University the following
year.) Floyd was already famous for work on the formal grammars that trans-
formed the field of programming language parsing; that was how he got to be
a professor even though he never got a Ph.D. (He had been admitted to a PhD
program as a teenage prodigy, but flunked out and never went back.)

In that same year, Albert R. Meyer was appointed Assistant Professor in the
Carnegie Tech Computer Science Department, where he first met Floyd. Floyd
and Meyer were the only theoreticians in the department, and they were both de-
lighted to talk about their shared interests. After just a few conversations, Floyd’s
new junior colleague decided that Floyd was the smartest person he had ever met.

Naturally, one of the first things Floyd wanted to tell Meyer about was his new,
as yet unpublished, Invariant Principle. Floyd explained the result to Meyer, and
Meyer wondered (privately) how someone as brilliant as Floyd could be excited
by such a trivial observation. Floyd had to show Meyer a bunch of examples be-
fore Meyer understood Floyd’s excitement —not at the truth of the utterly obvious
Invariant Principle, but rather at the insight that such a simple method could be so
widely and easily applied in verifying programs.

Floyd left for Stanford the following year. He won the Turing award—the
“Nobel prize” of computer science—in the late 1970’s, in recognition of his work
on grammars and on the foundations of program verification. He remained at
Stanford from 1968 until his death in September, 2001. You can learn more about
Floyd’s life and work by reading the eulogy at

http://oldwww.acm.org/pubs/membernet/stories/floyd.pdf

written by his closest colleague, Don Knuth.



http://courses.csail.mit.edu/6.042/spring13/floyd-eulogy-by-knuth.pdf
http://oldwww.acm.org/pubs/membernet/stories/floyd.pdf
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6.2.3 The Die Hard Example

The movie Die Hard 3: With a Vengeance includes an amusing example of a state
machine. The lead characters played by Samuel L. Jackson and Bruce Willis have
to disarm a bomb planted by the diabolical Simon Gruber:

Simon: On the fountain, there should be 2 jugs, do you see them? A 5-
gallon and a 3-gallon. Fill one of the jugs with exactly 4 gallons of water
and place it on the scale and the timer will stop. You must be precise;
one ounce more or less will result in detonation. If you’re still alive in 5
minutes, we’ll speak.

Bruce: Wait, wait a second. I don’t get it. Do you get it?
Samuel: No.

Bruce: Get the jugs. Obviously, we can’t fill the 3-gallon jug with 4 gal-
lons of water.

Samuel: Obviously.

Bruce: All right. I know, here we go. We fill the 3-gallon jug exactly to
the top, right?

Samuel: Uh-huh.

Bruce: Okay, now we pour this 3 gallons into the 5-gallon jug, giving us
exactly 3 gallons in the 5-gallon jug, right?

Samuel: Right, then what?
Bruce: All right. We take the 3-gallon jug and fill it a third of the way...
Samuel: No! He said, “Be precise.” Exactly 4 gallons.

Bruce: Sh - -. Every cop within 50 miles is running his a - - off and I'm
out here playing kids games in the park.

Samuel: Hey, you want to focus on the problem at hand?

Fortunately, they find a solution in the nick of time. You can work out how.

The Die Hard 3 State Machine

The jug-filling scenario can be modeled with a state machine that keeps track of
the amount b of water in the big jug, and the amount / in the little jug. With the 3
and 5 gallon water jugs, the states formally will be pairs (b, [) of real numbers such
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that 0 < b < 5,0 <[ < 3. (We can prove that the reachable values of b and / will
be nonnegative integers, but we won’t assume this.) The start state is (0, 0), since
both jugs start empty.

Since the amount of water in the jug must be known exactly, we will only con-
sider moves in which a jug gets completely filled or completely emptied. There are
several kinds of transitions:

1. Fill the little jug: (b,l) — (b, 3) for [ < 3.

2. Fill the big jug: (b,]) — (5,1) for b < 5.

3. Empty the little jug: (b,!) — (b,0) for ! > 0.
4. Empty the big jug: (b,l) —> (0,/) for b > 0.

5. Pour from the little jug into the big jug: for/ > 0,

(b+1,0) iftbh+1<5,

(b, 1) — .
(5,l —(5—0b)) otherwise.

6. Pour from big jug into little jug: for b > 0,

0,b +1) ifh+1 <3,

(b,1) — .
(b—(3—=1),3) otherwise.

Note that in contrast to the 99-counter state machine, there is more than one pos-
sible transition out of states in the Die Hard machine. Machines like the 99-counter
with at most one transition out of each state are called deterministic. The Die Hard
machine is nondeterministic because some states have transitions to several differ-
ent states.

The Die Hard 3 bomb gets disarmed successfully because the state (4,3) is reach-
able.

Die Hard Permanently

The Die Hard series is getting tired, so we propose a final Die Hard Permanently.
Here, Simon’s brother returns to avenge him, posing the same challenge, but with
the 5 gallon jug replaced by a 9 gallon one. The state machine has the same spec-
ification as the Die Hard 3 version, except all occurrences of “5” are replaced by
«g

Now, reaching any state of the form (4, /) is impossible. We prove this using
the Invariant Principle. Specifically, we define the preserved invariant predicate
P((b,1)) to be that b and [/ are nonnegative integer multiples of 3.
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To prove that P is a preserved invariant of Die-Hard-Once-and-For-All machine,
we assume P (g) holds for some state g ::= (b,/) and that ¢ —> r. We have to
show that P(r) holds. The proof divides into cases, according to which transition
rule is used.

One case is a “fill the little jug” transition. This means r = (b, 3). But P(q)
implies that b is an integer multiple of 3, and of course 3 is an integer multiple of
3, s0 P(r) still holds.

Another case is a “pour from big jug into little jug” transition. For the subcase
when there isn’t enough room in the little jug to hold all the water, that is, when
b+1>3,wehaver = (b—(3—1),3). But P(q) implies that b and / are integer
multiples of 3, which means b — (3 — /) is too, so in this case too, P(r) holds.

We won’t bother to crank out the remaining cases, which can all be checked
just as easily. Now by the Invariant Principle, we conclude that every reachable
state satisifies P. But since no state of the form (4, /) satisifies P, we have proved
rigorously that Bruce dies once and for all!

By the way, notice that the state (1,0), which satisfies NOT(P), has a transition
to (0,0), which satisfies P. So the negation of a preserved invariant may not be a
preserved invariant.

6.3 Partial Correctness & Termination

Floyd distinguished two required properties to verify a program. The first property
is called partial correctness; this is the property that the final results, if any, of the
process must satisfy system requirements.

You might suppose that if a result was only partially correct, then it might also
be partially incorrect, but that’s not what Floyd meant. The word “partial” comes
from viewing a process that might not terminate as computing a partial relation.
Partial correctness means that when there is a result, it is correct, but the process
might not always produce a result, perhaps because it gets stuck in a loop.

The second correctness property, called termination, is that the process does
always produce some final value.

Partial correctness can commonly be proved using the Invariant Principle. Termi-
nation can commonly be proved using the Well Ordering Principle. We’ll illustrate
this by verifying a Fast Exponentiation procedure.
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6.3.1 Fast Exponentiation
Exponentiating

The most straightforward way to compute the bth power of a number « is to multi-
ply a by itself b —1 times. But the solution can be found in considerably fewer mul-
tiplications by using a technique called Fast Exponentiation. The register machine
program below defines the fast exponentiation algorithm. The letters x, y, z, r de-
note registers that hold numbers. An assignment statement has the form “z := a”
and has the effect of setting the number in register z to be the number a.

A Fast Exponentiation Program
Given inputs a € R, b € N, initialize registers x, y, z to a, 1, b respectively, and
repeat the following sequence of steps until termination:

e if z = O return y and terminate

e r := remainder(z, 2)

e z := quotient(z, 2)

o ifr =1,then y :=xy

e X =X

We claim this program always terminates and leaves y = ab.

To begin, we’ll model the behavior of the program with a state machine:
1. states:=R xR x N,
2. start state ::= (a, 1, b),

3. transitions are defined by the rule

(x2, y, quotient(z,2)) if z is nonzero and even,
(e, y.2) — 13 , . .
(x*, xy, quotient(z, 2)) if z is nonzero and odd.

The preserved invariant P((x, y, z)) will be
z € NAND yx? = a®. (6.1)

To prove that P is preserved, assume P((x, y,z)) holds and that (x, y,z) —
(x¢, y¢, z:). We must prove that P((x;, y¢, z¢)) holds, that is,

z; € NAND y;x;/' = ab. (6.2)
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Since there is a transition from (x, y,z), we have z # 0, and since z € N
by (6.1), we can consider just two cases:
If z is even, then we have that x; = x2,y, = y,z; = z/2. Therefore, z; € N
and
2y2/2
vexit = y ()

— yx2-z/2
= yxz
=a" (by (6.1))

If z is odd, then we have that x;, = x2,y; = xy,z, = (z — 1)/2. Therefore,
z; € Nand

yexp' = xy(x*) D2

— yx!2G-D/2

_ yxl—i-(z—l)

z

= yXx
=a" (by (6.1))

So in both cases, (6.2) holds, proving that P is a preserved invariant.

Now it’s easy to prove partial correctness: if the Fast Exponentiation program
terminates, it does so with a? in register y. This works because 1-a? = a®, which
means that the start state (a, 1, b) satisifies P. By the Invariant Principle, P holds
for all reachable states. But the program only stops when z = 0. If a terminated
state (x, y, 0) is reachable, then y = yx% = ab as required.

Ok, it’s partially correct, but what’s fast about it? The answer is that the number
of multiplications it performs to compute ab is roughly the length of the binary
representation of b. That is, the Fast Exponentiation program uses roughly log 5>
multiplications, compared to the naive approach of multiplying by a a total of b —1
times.

More precisely, it requires at most 2([logb| + 1) multiplications for the Fast
Exponentiation algorithm to compute ab for b > 1. The reason is that the number
in register z is initially b, and gets at least halved with each transition. So it can’t
be halved more than [log b7 + 1 times before hitting zero and causing the program
to terminate. Since each of the transitions involves at most two multiplications, the
total number of multiplications until z = 0 is at most 2([logh] + 1) for b > 0 (see
Problem 6.6).

2 As usual in computer science, log b means the base two logarithm log, b. We use, Inb for the
natural logarithm log, b, and otherwise write the logarithm base explicitly, as in logq b.
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6.3.2 Derived Variables

The preceding termination proof involved finding a nonnegative integer-valued
measure to assign to states. We might call this measure the “size” of the state.
We then showed that the size of a state decreased with every state transition. By
the Well Ordering Principle, the size can’t decrease indefinitely, so when a mini-
mum size state is reached, there can’t be any transitions possible: the process has
terminated.

More generally, the technique of assigning values to states—not necessarily non-
negative integers and not necessarily decreasing under transitions—is often useful
in the analysis of algorithms. Potential functions play a similar role in physics. In
the context of computational processes, such value assignments for states are called
derived variables.

For example, for the Die Hard machines we could have introduced a derived
variable f : states — R for the amount of water in both buckets, by setting
f((a,b)) ::=a+ b. Similarly, in the robot problem, the position of the robot along
the x-axis would be given by the derived variable x-coord, where x-coord((i, j))::=1i.

There are a few standard properties of derived variables that are handy in ana-
lyzing state machines.

Definition 6.3.1. A derived variable f : states — R is strictly decreasing iff

g — ¢’ IMPLIES f(q)) < f(q).

It is weakly decreasing iff

q — q' IMPLIES f(¢') < f(q).
Strictly increasingweakly increasing derived variables are defined similarly.?

We confirmed termination of the Fast Exponentiation procedure by noticing that
the derived variable z was nonnegative-integer-valued and strictly decreasing. We
can summarize this approach to proving termination as follows:

Theorem 6.3.2. If f is a strictly decreasing N-valued derived variable of a state
machine, then the length of any execution starting at state q is at most f(q).

Of course, we could prove Theorem 6.3.2 by induction on the value of f(g), but
think about what it says: “If you start counting down at some nonnegative integer
f(q), then you can’t count down more than f(g) times.” Put this way, it’s obvious.

3Weakly increasing variables are often also called nondecreasing. We will avoid this terminology
to prevent confusion between nondecreasing variables and variables with the much weaker property
of not being a decreasing variable.
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6.3.3 Termination with Well ordered Sets (Optional)

Theorem 6.3.2 generalizes straightforwardly to derived variables taking values in a
well ordered set (Section 2.4.

Theorem 6.3.3. If there exists a strictly decreasing derived variable whose range
is a well ordered set, then every execution terminates.

Theorem 6.3.3 follows immediately from the observation that a set of numbers
is well ordered iff it has no infinite decreasing sequences (Problem 2.23).

Note that the existence of a weakly decreasing derived variable does not guaran-
tee that every execution terminates. An infinite execution could proceed through
states in which a weakly decreasing variable remained constant.

6.3.4 A Southeast Jumping Robot (Optional)

Here’s a simple, contrived example of a termination proof based on a variable that
is strictly decreasing over a well ordered set. Let’s think about a robot that travels
around the nonnegative integer quadrant N2,

If the robot is at some position (x, y) different from the origin (0, 0), the robot
must make a move, which may be

e a unit distance West—that is, (x, y) — (x — 1, y) for x > 0, or

e aunit distance South combined with an arbitrary jump East—that is, (x, y) —
(z,y—1)forz > x,

providing the move does not leave the quadrant.
Claim 6.3.4. The robot will always get stuck at the origin.

If we think of the robot as a nondeterministic state machine, then Claim 6.3.4 is
a termination assertion. The Claim may seem obvious, but it really has a different
character than termination based on nonnegative integer-valued variables. That’s
because, even knowing that the robot is at position (0, 1), for example, there is no
way to bound the time it takes for the robot to get stuck. It can delay getting stuck
for as many seconds as it wants by making its next move to a distant point in the
Far East. This rules out proving termination using Theorem 6.3.2.

So does Claim 6.3.4 still seem obvious?

Well it is if you see the trick. Define a derived variable v mapping robot states
to the numbers in the well ordered set N 4 [F of Lemma 2.4.6. In particular, define
v : N2 — N + T as follows

, V) i=vy + .
v(x,y)i=y o
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Brad 2 Jennifer

Billy Bob | 2 Angelina

Figure 6.4 Preferences for four people. Both men like Angelina best and both
women like Brad best.

Now it’s easy to check that if (x, y) —> (x/, y’) is a legitimate robot move, then
v((x’,y")) < v((x,y)). In particular, v is a strictly decreasing derived variable, so
Theorem 6.3.3 implies that the robot always get stuck—even though we can’t say
how many moves it will take until it does.

6.4 The Stable Marriage Problem

Suppose we have a population of men and women in which each person has pref-
erences of the opposite-gender person they would like to marry: each man has his
preference list of all the women, and each woman has her preference list of all of
the men.

The preferences don’t have to be symmetric. That is, Jennifer might like Brad
best, but Brad doesn’t necessarily like Jennifer best. The goal is to marry every-
one: every man must marry exactly one woman and vice versa—no polygamy and
heterosexual marriages only.* Moreover, we would like to find a matching between
men and women that is stable in the sense that there is no pair of people who prefer
one another to their spouses.

For example, suppose Brad likes Angelina best, and Angelina likes Brad best, but
Brad and Angelina are married to other people, say Jennifer and Billy Bob. Now
Brad and Angelina prefer each other to their spouses, which puts their marriages
at risk. Pretty soon, they’re likely to start spending late nights together working on
problem sets!

This unfortunate situation is illustrated in Figure 6.4, where the digits “1” and “2”
near a man shows which of the two women he ranks first and second, respectively,
and similarly for the women.

4Same-sex marriage is an interesting but separate case.
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More generally, in any matching, a man and woman who are not married to each
other and who like each other better than their spouses is called a rogue couple. In
the situation shown in Figure 6.4, Brad and Angelina would be a rogue couple.

Having a rogue couple is not a good thing, since it threatens the stability of the
marriages. On the other hand, if there are no rogue couples, then for any man and
woman who are not married to each other, at least one likes their spouse better than
the other, and so there won’t be any mutual temptation to start an affair.

Definition 6.4.1. A stable matching is a matching with no rogue couples.

The question is, given everybody’s preferences, can you find a stable set of mar-
riages? In the example consisting solely of the four people in Figure 6.4, we could
let Brad and Angelina both have their first choices by marrying each other. Now
neither Brad nor Angelina prefers anybody else to their spouse, so neither will be
in a rogue couple. This leaves Jen not-so-happily married to Billy Bob, but neither
Jen nor Billy Bob can entice somebody else to marry them, and so this is a stable
matching.

It turns out there always is a stable matching among a group of men and women.
We don’t know of any immediate way to recognize this, and it seems surprising. In
fact, in the apparently similar same-sex or “buddy” matching problem where people
are supposed to be paired off as buddies, regardless of gender, a stable matching
may not be possible. An example of preferences among four people where there is
no stable buddy match is given in Problem 6.22. But when men are only allowed
to marry women, and vice versa, then there is a simple procedure to produce a
stable matching and the concept of preserved invariants provides an elegant way to
understand and verify the procedure.

6.4.1 The Mating Ritual

The procedure for finding a stable matching can be described in a memorable way
as a Mating Ritual that takes place over several days. On the starting day, each man
has his full preference list of all the women, and likewise each woman has her full
preference list of all the men. Then following events happen each day:

Morning: Each man stands under the balcony of the woman on the top of his
list, that is the woman he prefers above all the other remaining women. Then he
serenades her. He is said to be her suitor. If a man has no women left on his list, he
stays home and does his math homework.

Afternoon: Each woman who has one or more suitors says to her favorite among
them, “We might get engaged. Please stay around.” To the other suitors, she says,
“No. I will never marry you! Take a hike!”
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Evening: Any man who is told by a woman to take a hike crosses that woman
off his preference list.

Termination condition: When a day arrives in which every woman has at most
one suitor, the ritual ends with each woman marrying her suitor, if she has one.

There are a number of facts about this Mating Ritual that we would like to prove:

e The Ritual eventually reaches the termination condition.
e Everybody ends up married.

e The resulting marriages are stable.

To prove these facts, it will be helpful to recognize the Ritual as the description
of a state machine. The state at the start of any day is determined by knowing for
each man, which woman, if any, he will serenade that day—that is, the woman
at the top of his preference list after he has crossed out all the women who have
rejected him on earlier days.

Mating Ritual at Akamai

The Internet infrastructure company Akamai, cofounded by Tom Leighton, also
uses a variation of the Mating Ritual to assign web traffic to its servers.

In the early days, Akamai used other combinatorial optimization algorithms
that got to be too slow as the number of servers (over 65,000 in 2010) and requests
(over 800 billion per day) increased. Akamai switched to a Ritual-like approach,
since a Ritual is fast and can be run in a distributed manner. In this case, web
requests correspond to women and web servers correspond to men. The web
requests have preferences based on latency and packet loss, and the web servers
have preferences based on cost of bandwidth and co-location.



www.akamai.com
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6.4.2 There is a Marriage Day

It’s easy to see why the Mating Ritual has a terminal day when people finally get
married. Every day on which the ritual hasn’t terminated, at least one man crosses
a woman off his list. (If the ritual hasn’t terminated, there must be some woman
serenaded by at least two men, and at least one of them will have to cross her off his
list). If we start with n men and n women, then each of the n men’s lists initially
has n women on it, for a total of n2 list entries. Since no women ever gets added
to a list, the total number of entries on the lists decreases every day that the Ritual
continues, and so the Ritual can continue for at most n2 days.

6.4.3 They All Live Happily Ever After...

We will prove that the Mating Ritual leaves everyone in a stable marriage. To do
this, we note one very useful fact about the Ritual: if on some morning a woman has
any suitor, then her favorite suitor will still be serenading her the next morning—his
list won’t have changed. So she is sure to have today’s favorite suitor among her
suitors tomorrow. That means she will be able to choose a favorite suitor tomorrow
who is at least as desirable to her as today’s favorite. So day by day, her favorite
suitor can stay the same or get better, never worse. This sounds like an invariant,
and it is. Namely, let P be the predicate

For every woman w and man m, if w is crossed off m’s list, then w has
a suitor whom she prefers over m.

Lemma 6.4.2. P is a preserved invariant for The Mating Ritual.

Proof. Woman w gets crossed off m’s list only when w has a suitor she prefers to
m. Thereafter, her favorite suitor doesn’t change until one she likes better comes
along. So if her favorite suitor was preferable to m, then any new favorite suitor
will be as well.

|

Notice that the invariant P holds vacuously at the beginning since no women are
crossed off to start. So by the Invariant Principle, P holds throughout the Ritual.
Now we can prove:

Theorem 6.4.3. Everyone is married at the end of the Mating Ritual.

Proof. Assume to the contrary that on the last day of the Mating Ritual, some
man—call him Bob—is not married. This means Bob can’t be serenading anybody,
that is, his list must be empty. So every woman must have been crossed off his
list and, since P is true, every woman has a suitor whom she prefers to Bob. In
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particular, every woman has some suitor, and since it is the last day, they have only
one suitor, and this is who they marry. But there are an equal number of men and
women, so if all women are married, so are all men, contradicting the assumption
that Bob is not married. |

Theorem 6.4.4. The Mating Ritual produces a stable matching.

Proof. Let Brad and Jen be any man and woman, respectively, that are not married
to each other on the last day of the Mating Ritual. We will prove that Brad and Jen
are not a rogue couple, and thus that all marriages on the last day are stable. There
are two cases to consider.

Case 1: Jen is not on Brad’s list by the end. Then by invariant P, we know that
Jen has a suitor (and hence a husband) whom she prefers to Brad. So she’s
not going to run off with Brad—Brad and Jen cannot be a rogue couple.

Case 2: Jen is on Brad’s list. Since Brad picks women to serenade by working
down his list, his wife must be higher on his preference list than Jen. So
he’s not going to run off with Jen—once again, Brad and Jen are not a rogue
couple. |

6.4.4 ...Especially the Men

Who is favored by the Mating Ritual, the men or the women? The women seem
to have all the power: each day they choose their favorite suitor and reject the rest.
What’s more, we know their suitors can only change for the better as the Ritual
progresses. Similarly, a man keeps serenading the woman he most prefers among
those on his list until he must cross her off, at which point he serenades the next
most preferred woman on his list. So from the man’s perspective, the woman he is
serenading can only change for the worse. Sounds like a good deal for the women.

But it’s not! We will show that the men are by far the favored gender under the
Mating Ritual.

While the Mating Ritual produces one stable matching, stable matchings need
not be unique. For example, reversing the roles of men and women will often yield
a different stable matching among them. So a man may have different wives in
different sets of stable marriages. In some cases, a man can stably marry every one
of the women, but in most cases, there are some women who cannot be a man’s wife
in any stable matching. For example, given the preferences shown in Figure 6.4,
Jennifer cannot be Brad’s wife in any stable matching because if he was married to
her, then he and Angelina would be a rogue couple. It is not feasible for Jennifer to
be stably married to Brad.
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Definition 6.4.5. Given a set of preferences for the men and women, one person is
a feasible spouse for another person when there is a stable matching in which these
two people are married.

Definition 6.4.6. Let O be the predicate: for every woman w and man m, if w is
crossed off m’s list, then w is not a feasible spouse for m.

Lemma 6.4.7. Q is a preserved invariant® for The Mating Ritual.

Proof. Suppose Q holds at some point in the Ritual and some woman Alice is
about to be crossed off some man’s, Bob’s, list. We claim that Alice must not be
feasible for Bob. Therefore Q will still hold after Alice is crossed off, proving that
Q is invariant.

To verify the claim, notice that when Alice gets crossed of Bob’s list, it’s because
Alice has a suitor, Ted, she prefers to Bob. What’s more, since Q holds, all Ted’s
feasible wives are still on his list, and Alice is at the top. So Ted likes Alice better
than all his other feasible spouses. Now if Alice could be married to Bob in some
set of stable marriages, then Ted must be married to a wife he likes less than Alice,
making Alice and Ted a rogue couple and contradicting stability. So Alice can’t be
married to Bob, that is, Alice is not a feasible wife for Bob, as claimed. [ |

Definition 6.4.8. Given a set of preferences for the men and women, a person’s
optimal spouse is their most preferred feasible spouse. A person’s pessimal spouse
is their least preferred feasible spouse.

Everybody has an optimal and a pessimal spouse, since we know there is at least
one stable matching, namely, the one produced by the Mating Ritual. Lemma 6.4.7
implies a key property the Mating Ritual:

Theorem 6.4.9. The Mating Ritual marries every man to his optimal wife.

Proof. 1f Bob is married to Alice on the final day of the Ritual, then everyone above
Alice on Bob’s preference list was crossed off, and by property Q, all these crossed
off women were infeasible for Bob. So Alice is Bob’s highest ranked feasible
spouse, that is, his optimal wife. [ |

Lemma 6.4.10. Given a set of preferences for the men and women, everyone is the
pessimal spouse of their optimal spouse.

SWe appeal to P in justifying O, so technically it is P AND Q which is actually the preserved
invariant. But let’s not be picky.
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Proof. By symmetry, it is enough to prove that every man is the pessimal husband
of his optimal wife.

Suppose Alice is Bob’s optimal wife. Then in any stable set of marriages, if Alice
liked her husband less Bob, then Bob must be married to someone not optimal, and
therefore Alice and Bob would be a rogue couple. So Alice must like all her feasible
husbands at least as much as Bob. That is, Bob is Alice’s pessimal husband. |

Corollary 6.4.11. The Mating Ritual marries every woman to her pessimal hus-
band.

6.4.5 Applications

The Mating Ritual was first announced in a paper by D. Gale and L.S. Shapley in
1962, but ten years before the Gale-Shapley paper was published, and unknown to
them, a similar algorithm was being used to assign residents to hospitals by the Na-
tional Resident Matching Program (NRMP). The NRMP has, since the turn of the
twentieth century, assigned each year’s pool of medical school graduates to hospi-
tal residencies (formerly called “internships”), with hospitals and graduates playing
the roles of men and women.® Before the Ritual-like algorithm was adopted, there
were chronic disruptions and awkward countermeasures taken to preserve unsta-
ble assignments of graduates to residencies. The Ritual resolved these problems so
successfully, that it was used essentially without change at least through 1989.” For
this and related work, Shapley was awarded the 2012 Nobel prize in Economics.

Not surprisingly, the Mating Ritual is also used by at least one large online dat-
ing agency. Of course there is no serenading going on—everything is handled by
computer.

Problems for Section 6.3

Practice Problems

Problem 6.1.
Which states of the Die Hard 3 machine below have transitions to exactly two
states?

®In this case there may be multiple women married to one man, but this is a minor complication,
see Problem 6.23.

7Much more about the Stable Marriage Problem can be found in the very readable mathematical
monograph by Dan Gusfield and Robert W. Irving, [27].



http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=7676

“mcs” — 2017/6/5 — 19:42 — page 188 — #196

188 Chapter 6  State Machines

Die Hard Transitions
1. Fill the little jug: (b,1) — (b,3) for ] < 3.
2. Fill the big jug: (b,]) — (5,1) for b < 5.
3. Empty the little jug: (b,!) — (b,0) for [ > 0.
4. Empty the big jug: (b,]) — (0,/) for b > 0.
5. Pour from the little jug into the big jug: for / > 0,

(b +1,0) ifb+1<5,

(b,l) — .
(5,l = (5—0b)) otherwise.

6. Pour from big jug into little jug: for b > 0,

0,b +1) ifb+1 <3,

(b, 1) — .
(b—3B—-1),3) otherwise.

Homework Problems

Problem 6.2.

In the late 1960s, the military junta that ousted the government of the small re-
public of Nerdia completely outlawed built-in multiplication operations, and also
forbade division by any number other than 3. Fortunately, a young dissident found
a way to help the population multiply any two nonnegative integers without risking
persecution by the junta. The procedure he taught people is:

procedure multiply(x, y: nonnegative integers)

ri=X;
s:i=Yy;
a:=0;
while s # 0 do
if 3 | s then
r.=r—+r+r,;
s:=s5/3;
elseif 3 | (s — 1) then
a.=a-+r;
re=r-—+r+r,
s:=(—-1)/3;

else
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a:=a-+r-—+r;
r:=r+r+r;
s:=(s—2)/3;

return a;

We can model the algorithm as a state machine whose states are triples of non-
negative integers (r, s, @). The initial state is (x, y, 0). The transitions are given by
the rule that for s > 0:

(3r,s5/3,a) if 3]s
(r.s,a) = 3 QBr,(s—1)/3,a+7r) if3](s—1)
(3r,(s —2)/3,a + 2r) otherwise.

(a) List the sequence of steps that appears in the execution of the algorithm for
inputs x = 5and y = 10.

(b) Use the Invariant Method to prove that the algorithm is partially correct—that
is,if s = 0, thena = xy.

(c) Prove that the algorithm terminates after at most 1 4 logs y executions of the
body of the do statement.

Problem 6.3.
A robot named Wall-E wanders around a two-dimensional grid. He starts out at
(0,0) and is allowed to take four different types of steps:

1. (+2,-1)
2. (+1,-2)
3. (+1,+1)

4. (=3,0)

Thus, for example, Wall-E might walk as follows. The types of his steps are
listed above the arrows.

0,0) 5> 2. =1) > (3,0) > (4,-2) > (1,-2) — ...

Wall-E’s true love, the fashionable and high-powered robot, Eve, awaits at (0, 2).
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(a) Describe a state machine model of this problem.

(b) Will Wall-E ever find his true love? Either find a path from Wall-E to Eve, or
use the Invariant Principle to prove that no such path exists.

Problem 6.4.

A hungry ant is placed on an unbounded grid. Each square of the grid either con-
tains a crumb or is empty. The squares containing crumbs form a path in which,
except at the ends, every crumb is adjacent to exactly two other crumbs. The ant is
placed at one end of the path and on a square containing a crumb. For example, the
figure below shows a situation in which the ant faces North, and there is a trail of
food leading approximately Southeast. The ant has already eaten the crumb upon
which it was initially placed.

o 8E &
& |

8

The ant can only smell food directly in front of it. The ant can only remember
a small number of things, and what it remembers after any move only depends on
what it remembered and smelled immediately before the move. Based on smell and
memory, the ant may choose to move forward one square, or it may turn right or
left. It eats a crumb when it lands on it.

The above scenario can be nicely modelled as a state machine in which each state
is a pair consisting of the “ant’s memory” and “everything else”—for example,
information about where things are on the grid. Work out the details of such a
model state machine; design the ant-memory part of the state machine so the ant
will eat all the crumbs on any finite path at which it starts and then signal when it
is done. Be sure to clearly describe the possible states, transitions, and inputs and
outputs (if any) in your model. Briefly explain why your ant will eat all the crumbs.

Note that the last transition is a self-loop; the ant signals done for eternity. One
could also add another end state so that the ant signals done only once.
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Problem 6.5.
Suppose that you have a regular deck of cards arranged as follows, from top to
bottom:

AQ20.. . KO A2 .. KOS AR2&... K& AO 2. KO

Only two operations on the deck are allowed: inshuffling and outshuffling. In
both, you begin by cutting the deck exactly in half, taking the top half into your
right-hand and the bottom into your left. Then you shuffle the two halves together
so that the cards are perfectly interlaced; that is, the shuffled deck consists of one
card from the left, one from the right, one from the left, one from the right, etc. The
top card in the shuffled deck comes from the right-hand in an outshuffle and from
the left-hand in an inshuffie.

(a) Model this problem as a state machine.

(b) Use the Invariant Principle to prove that you cannot make the entire first half
of the deck black through a sequence of inshuffles and outshuffles.

Note: Discovering a suitable invariant can be difficult! This is the part of a
correctness proof that generally requires some insight, and there is no simple recipe
for finding invariants. A standard initial approach is to identify a bunch of reachable
states and then look for a pattern—some feature that they all share.

Problem 6.6.
Prove that the fast exponentiation state machine of Section 6.3.1 will halt after

[log, n] + 1 6.3)

transitions starting from any state where the value of z isn € Z™T.
Hint: Strong induction.

Class Problems

Problem 6.7.

In this problem you will establish a basic property of a puzzle toy called the Fifteen
Puzzle using the method of invariants. The Fifteen Puzzle consists of sliding square
tiles numbered 1,...,15 held in a 4 x 4 frame with one empty square. Any tile
adjacent to the empty square can slide into it.
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The standard initial position is

11234
5161718
9 10|11 |12
13|14 |15

We would like to reach the target position (known in the oldest author’s youth as
“the impossible”):

15114 13|12
11110 9 | 8
716154
31211

A state machine model of the puzzle has states consisting of a 4 x 4 matrix with
16 entries consisting of the integers 1,..., 15 as well as one “empty” entry—Ilike
each of the two arrays above.

The state transitions correspond to exchanging the empty square and an adjacent
numbered tile. For example, an empty at position (2, 2) can exchange position with
tile above it, namely, at position (1, 2):

ni nyp ns ng ni ns nyg
n n n n n n n
5 6 7 5 2 6 7
ng | ng | Nnio | 111 ng | ng | nNio | n11
ni2 | n13 | N14 | N15 n12 | N13 | N14 | N15

We will use the invariant method to prove that there is no way to reach the target
state starting from the initial state.

We begin by noting that a state can also be represented as a pair consisting of
two things:

1. a list of the numbers 1, ..., 15 in the order in which they appear—reading
rows left-to-right from the top row down, ignoring the empty square, and

2. the coordinates of the empty square—where the upper left square has coor-
dinates (1, 1), the lower right (4, 4).

(a) Write out the “list” representation of the start state and the “impossible” state.

Let L be a list of the numbers 1,...,15 in some order. A pair of integers is
an out-of-order pair in L when the first element of the pair both comes earlier in
the list and is larger, than the second element of the pair. For example, the list
1,2, 4,5, 3 has two out-of-order pairs: (4,3) and (5,3). The increasing list 1,2...n
has no out-of-order pairs.
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Let a state S be a pair (L, (i, j)) described above. We define the parity of S to
be 0 or 1 depending on whether the sum of the number of out-of-order pairs in L
and the row-number of the empty square is even or odd. that is

parity(S) 1= if p( ) + i 1s even
1 otherwise.

(b) Verify that the parity of the start state and the target state are different.

(c) Show that the parity of a state is preserved under transitions. Conclude that
“the impossible” is impossible to reach.

By the way, if two states have the same parity, then in fact there is a way to get
from one to the other. If you like puzzles, you’ll enjoy working this out on your
own.

Problem 6.8.

The Massachusetts Turnpike Authority is concerned about the integrity of the new
Zakim bridge. Their consulting architect has warned that the bridge may collapse
if more than 1000 cars are on it at the same time. The Authority has also been
warned by their traffic consultants that the rate of accidents from cars speeding
across bridges has been increasing.

Both to lighten traffic and to discourage speeding, the Authority has decided to
make the bridge one-way and to put tolls at both ends of the bridge (don’t laugh, this
is Massachusetts). So cars will pay tolls both on entering and exiting the bridge, but
the tolls will be different. In particular, a car will pay $3 to enter onto the bridge and
will pay $2 to exit. To be sure that there are never too many cars on the bridge, the
Authority will let a car onto the bridge only if the difference between the amount
of money currently at the entry toll booth and the amount at the exit toll booth is
strictly less than a certain threshold amount of $7j.

The consultants have decided to model this scenario with a state machine whose
states are triples (A4, B, C) of nonnegative integers, where

e A is an amount of money at the entry booth,
e B is an amount of money at the exit booth, and
e (C is a number of cars on the bridge.

Any state with C > 1000 is called a collapsed state, which the Authority dearly
hopes to avoid. There will be no transition out of a collapsed state.
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Since the toll booth collectors may need to start off with some amount of money
in order to make change, and there may also be some number of “official” cars
already on the bridge when it is opened to the public, the consultants must be ready
to analyze the system started at any uncollapsed state. So let Ag be the initial
number of dollars at the entrance toll booth, By the initial number of dollars at the
exit toll booth, and Cy < 1000 the number of official cars on the bridge when it is
opened. You should assume that even official cars pay tolls on exiting or entering
the bridge after the bridge is opened.

(a) Give a mathematical model of the Authority’s system for letting cars on and off
the bridge by specifying a transition relation between states of the form (4, B, C)
above.

(b) Characterize each of the following derived variables
A,B,A+ B,A—B,3C —A,2A—-3B,B +3C,2A—-3B —-6C,2A—-2B —-3C

as one of the following

constant C
strictly increasing SI
strictly decreasing SD

weakly increasing but not constant ~ WI
weakly decreasing but not constant WD
none of the above N

and briefly explain your reasoning.

The Authority has asked their engineering consultants to determine 7" and to
verify that this policy will keep the number of cars from exceeding 1000.

The consultants reason that if C¢ is the number of official cars on the bridge
when it is opened, then an additional 1000 — Cy cars can be allowed on the bridge.
So as long as A — B has not increased by 3(1000 — Cyp), there shouldn’t more than
1000 cars on the bridge. So they recommend defining

To ::= 3(1000 — Co) + (Ao — Bo). (6.4)

where A is the initial number of dollars at the entrance toll booth, By is the initial
number of dollars at the exit toll booth.

(c) Use the results of part (b) to define a simple predicate P on states of the tran-
sition system which is satisfied by the start state—that is P(Ag, Bo, Co) holds—is
not satisfied by any collapsed state, and is a preserved invariant of the system. Ex-
plain why your P has these properties. Conclude that the traffic won’t cause the
bridge to collapse.
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(d) A clever MIT intern working for the Turnpike Authority agrees that the Turn-
pike’s bridge management policy will be safe: the bridge will not collapse. But she
warns her boss that the policy will lead to deadlock—a situation where traffic can’t
move on the bridge even though the bridge has not collapsed.

Explain more precisely in terms of system transitions what the intern means, and
briefly, but clearly, justify her claim.

Problem 6.9.
Start with 102 coins on a table, 98 showing heads and 4 showing tails. There are
two ways to change the coins:

(1) flip over any ten coins, or

(i1) let n be the number of heads showing. Place n + 1 additional coins, all
showing tails, on the table.

For example, you might begin by flipping nine heads and one tail, yielding 90
heads and 12 tails, then add 91 tails, yielding 90 heads and 103 tails.

(a) Model this situation as a state machine, carefully defining the set of states, the
start state, and the possible state transitions.

(b) Explain how to reach a state with exactly one tail showing.

(c) Define the following derived variables:

C ::= the number of coins on the table, | H ::= the number of heads,
T = the number of tails, C, = remainder(C/2),
H, ::= remainder(H/2), T, = remainder(7/2).

Which of these variables is

strictly increasing
weakly increasing
strictly decreasing
weakly decreasing

A

constant

(d) Prove that it is not possible to reach a state in which there is exactly one head
showing.
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Problem 6.10.
A classroom is designed so students sit in a square arrangement. An outbreak of
beaver flu sometimes infects students in the class; beaver flu is a rare variant of bird
flu that lasts forever, with symptoms including a yearning for more quizzes and the
thrill of late night problem set sessions.

Here is an illustration of a 6 x 6-seat classroom with seats represented by squares.
The locations of infected students are marked with an asterisk.

* *

Outbreaks of infection spread rapidly step by step. A student is infected after a
step if either

o the student was infected at the previous step (since beaver flu lasts forever),
or

o the student was adjacent to at least two already-infected students at the pre-
vious step.

Here adjacent means the students’ individual squares share an edge (front, back,
left or right); they are not adjacent if they only share a corner point. So each student
is adjacent to 2, 3 or 4 others.

In the example, the infection spreads as shown below.

* * * | % *

K| ¥ | K| ¥

K| K| ¥ | ¥ | %%

K| K| K| ¥ | *
X | K| ¥ | *|*

* * X | X x

In this example, over the next few time-steps, all the students in class become
infected.

Theorem. If fewer than n students among those in an n xn arrangment are initially
infected in a flu outbreak, then there will be at least one student who never gets
infected in this outbreak, even if students attend all the lectures.




“mcs” — 2017/6/5 — 19:42 — page 197 — #205

6.4. The Stable Marriage Problem 197

Prove this theorem.

Hint: Think of the state of an outbreak as an n x n square above, with asterisks
indicating infection. The rules for the spread of infection then define the transitions
of a state machine. Find a weakly decreasing derived variable that leads to a proof
of this theorem.

Exam Problems

Problem 6.11.
Token replacing-1-2 is a single player game using a set of tokens, each colored
black or white. Except for color, the tokens are indistinguishable. In each move,
a player can replace one black token with two white tokens, or replace one white
token with two black tokens.

We can model this game as a state machine whose states are pairs (1, 714, ) Where
np > 0 equals the number of black tokens, and n,, > 0 equals the number of white
tokens.

(a) List the numbers of the following predicates that are preserved invariants.

np + ny rem(ng + 1y, 3) #2 (6.5)
Ny — nprem(ny —np, 3) =2 (6.6)
np —nyrem(ny —ny, 3) =2 6.7)
np +ny >5 (6.8)
np +ny <5 (6.9

Now assume the game starts with a single black token, that is, the start state is
(1,0).

(b) List the numbers of the predicates above are true for all reachable states:

(¢) Define the predicate T (np, ny ) by the rule:

T(np,ny) := rem(ny — np, 3) = 2.

We will now prove the following:
Claim. If T (np, ny), then state (np, ny) is reachable.
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Note that this claim is different from the claim that 7" is a preserved invariant.

The proof of the Claim will be by induction in # using induction hypothesis P (n)::=

V(np,ny). [(np + ny = n) AND T (np, ny)] IMPLIES (np, 1y ) is reachable.

The base cases will be when n < 2.

e Assuming that the base cases have been verified, complete the Inductive
Step.

e Now verify the Base Cases: P(n) forn < 2.

Problem 6.12.
Token Switching is a process for updating a set of black and white tokens. The
process starts with a single black token. At each step,

(i) one black token can be replaced with two white tokens, or

(i1) if the numbers of white and black tokens are not the same, the colors of all
the tokens can be switched: all the black tokens become white, and the white
tokens become black.

We can model Token Switching as a state machine whose states are pairs (b, w)
of nonnegative integers, where b equals the number of black tokens, and w equals
the number of white tokens. So the start state is (1, 0).

(a) Indicate which of the following states can be reached from the start state in
exactly two steps:

(0,0), (1,0), (0,1), (1,1), (0,2), (2,0), (2,1), (1,2), (0,3), (3,0)

(b) Define the predicate F (b, w) by the rule:

F(b,w) := (b — w)is not a multiple of 3.

Prove the following
Claim. If F(b,w), then state (b, w) is reachable from the start state.

67777 5108

(c) Explain why state (11 8) is not a reachable state.

Hint: Do not assume F' is a preserved invariant without proving it.
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Problem 6.13.
Token replacing-1-3 is a single player game using a set of tokens, each colored
black or white. In each move, a player can replace a black token with three white
tokens, or replace a white token with three black tokens. We can model this game
as a state machine whose states are pairs (b, w) of nonnegative integers, where b is
the number of black tokens and w the number of white ones.

The game has two possible start states: (5, 4) or (4, 3).

We call a state (b, w) eligible when

rem(b —w, 4) = 1, AND (6.10)
min{b, w} > 3. (6.11)

This problem examines the connection between eligible states and states that are
reachable from either of the possible start states.

(a) Give an example of a reachable state that is not eligible.

(b) Show that the derived variable b + w is strictly increasing. Conclude that state
(3,2) is not reachable.

(c) Suppose (b, w) is eligible and b > 6. Verify that (b — 3, w + 1) is eligible.
For the rest of the problem, you may—and should—assume the following Fact:
Fact. If max{h, w} < 5 and (b, w) is eligible, then (b, w) is reachable.

(This is easy to verify since there are only nine states with b, w € {3, 4, 5}, but
don’t waste time doing this.)

(d) Define the predicate P(n) to be:
Y(b,w).[b + w =n AND (b, w) is eligible] IMPLIES (b, w) is reachable.
Prove that P(n — 1) IMPLIES P(n + 1) foralln > 1.
(e) Conclude that all eligible states are reachable.
(f) Prove that (47 + 1,4° + 2) is not reachable.

(g) Verify that rem(3b —w, 8) is a derived variable that is constant. Conclude that
no state is reachable from both start states.
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Problem 6.14.

There is a bucket containing more blue balls than red balls. As long as there are
more blues than reds, any one of the following rules may be applied to add and/or
remove balls from the bucket:

(i) Add ared ball.

(i1)) Remove a blue ball.
(ii1) Add two reds and one blue.
(iv) Remove two blues and one red.

(a) Starting with 10 reds and 16 blues, what is the largest number of balls the
bucket will contain by applying these rules?
Let b be the number of blue balls and r be the number of red balls in the bucket
at any given time.

(b) Prove that b — r > 0 is a preserved invariant of the process of adding and
removing balls according to rules (i)—(iv).

(c) Prove that no matter how many balls the bucket contains, repeatedly applying
rules (i)—(iv) will eventually lead to a state where no further rule can be applied.

Problem 6.15.
The following problem is a twist on the Fifteen-Puzzle considered earlier in Prob-
lem 6.7.

Let A be a sequence consisting of the numbers 1,...,n in some order. A pair
of integers in A is called an out-of-order pair when the first element of the pair
both comes earlier in the sequence, and is larger, than the second element of the
pair. For example, the sequence (1,2,4,5,3) has two out-of-order pairs: (4, 3)
and (5, 3). We let 1(A) equal the number of out-of-order pairs in A. For example,
1((1,2,4,5,3)) = 2.

The elements in A can be rearranged using the Rotate-Triple operation, in which
three consecutive elements of A are rotated to move the smallest of them to be first.

For example, in the sequence (2,4, 1,5, 3), the Rotate-Triple operation could
rotate the consecutive numbers 4, 1, 5, into 1, 5, 4 so that

(2,4’ 1’573) — (2’ 1’5’4’3)'

The Rotate-Triple could also rotate the consecutive numbers 2,4, 1 into 1,2, 4
so that
(2,4,1,5,3) — (1,2,4,5,3).
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We can think of a sequence A as a state of a state machine whose transitions
correspond to possible applications of the Rotate-Triple operation.

(a) Argue that the derived variable ¢ is weakly decreasing.

(b) Prove that having an even number of out-of-order pairs is a preserved invariant
of this machine.

(c) Starting with
S :=(2014,2013,2012,...,2,1),

explain why it is impossible to reach

T:=(1,2,...,2012,2013,2014).

Problems for Section 6.4

Practice Problems

Problem 6.16.
Four Students want separate assignments to four VI-A Companies. Here are their

preference rankings:

Student Companies
Albert: | HP, Bellcore, AT&T, Draper
Sarah: | AT&T, Bellcore, Draper, HP
Tasha: | HP, Draper, AT&T, Bellcore
Elizabeth: | Draper, AT&T, Bellcore, HP

Company Students
AT&T: | Elizabeth, Albert, Tasha, Sarah
Bellcore: | Tasha, Sarah, Albert, Elizabeth
HP: | Elizabeth, Tasha, Albert, Sarah
Draper: | Sarah, Elizabeth, Tasha, Albert

(a) Use the Mating Ritual to find two stable assignments of Students to Compa-
nies.

(b) Describe a simple procedure to determine whether any given stable marriage
problem has a unique solution, that is, only one possible stable matching. Briefly
explain why it works.
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Problem 6.17.
Suppose that Harry is one of the boys and Alice is one of the girls in the Mating
Ritual. Which of the properties below are preserved invariants? Why?

a. Alice is the only girl on Harry’s list.
b. There is a girl who does not have any boys serenading her.
c. If Alice is not on Harry’s list, then Alice has a suitor that she prefers to Harry.

d. Alice is crossed off Harry’s list, and Harry prefers Alice to anyone he is
serenading.

e. If Alice is on Harry’s list, then she prefers Harry to any suitor she has.

Problem 6.18.
Prove that whatever the marriage preferences among the men and women, every
man is the pessimal husband of his optimal wife.

Hint: Follows directly from the definition of “rogue couple.”

Problem 6.19.

In the Mating Ritual for stable marriages between an equal number of boys and
girls, explain why there must be a girl to whom no boy proposes (serenades) until
the last day.

Class Problems

Problem 6.20.
The preferences among 4 boys and 4 girls are partially specified in the following
table:

Bl: GI G2 - —
B2: G2 Gl - -
B3: - - G4 G3
B4 - - G3 G4
Gl: B2 Bl - -
G2: Bl B2 - -
G3: - - B3 B4
G4: - - B4 B3
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(a) Verity that
(B1,G1),(B2,G2),(B3,G3),(B4,G4)

will be a stable matching whatever the unspecified preferences may be.

(b) Explain why the stable matching above is neither boy-optimal nor boy-pessimal
and so will not be an outcome of the Mating Ritual.

(c) Describe how to define a set of marriage preferences among n boys and n girls
which have at least 2"/2 stable assignments.

Hint: Arrange the boys into a list of n/2 pairs, and likewise arrange the girls into
a list of n/2 pairs of girls. Choose preferences so that the kth pair of boys ranks
the kth pair of girls just below the previous pairs of girls, and likewise for the kth
pair of girls. Within the kth pairs, make sure each boy’s first choice girl in the pair
prefers the other boy in the pair.

Problem 6.21.

The Mating Ritual of Section 6.4.1 for finding stable marriages works even when
the numbers of men and women are not equal. As before, a set of (monogamous)
marriages between men and women is called stable when it has no “rogue couples.”

(a) Extend the definition of rogue couple so it covers the case of unmarried men
and women. Verify that in a stable set of marriages, either all the men are married
or all the women are married.

(b) Explain why even in the case of unequal numbers of men and women, applying
the Mating Ritual will yield a stable matching.

Homework Problems

Problem 6.22.

Suppose we want to assign pairs of “buddies,” who may be of the sex, where each
person has a preference rank for who they would like to be buddies with. For the
preference ranking given in Figure 6.5, show that there is no stable buddy assign-
ment. In this figure Mergatroid’s preferences aren’t shown because they don’t even
matter.

Problem 6.23.
The most famous application of stable matching was in assigning graduating med-
ical students to hospital residencies. Each hospital has a preference ranking of
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Bobby Joe

Mergatroid

Figure 6.5 Some preferences with no stable buddy matching.

students, and each student has a preference ranking of hospitals, but unlike finding
stable marriages between an equal number of boys and girls, hospitals generally
have differing numbers of available residencies, and the total number of residen-
cies may not equal the number of graduating students.

Explain how to adapt the Stable Matching problem with an equal number of boys
and girls to this more general situation. In particular, modify the definition of stable
matching so it applies in this situation, and explain how to adapt the Mating Ritual
to handle it.

Problem 6.24.

Give an example of a stable matching between 3 boys and 3 girls where no person
gets their first choice. Briefly explain why your matching is stable. Can your
matching be obtained from the Mating Ritual or the Ritual with boys and girls
reversed?

Problem 6.25.

In a stable matching between an equal number of boys and girls produced by the

Mating Ritual, call a person lucky if they are matched up with someone in the top

half of their preference list. Prove that there must be at least one lucky person.
Hint: The average number of times a boy gets rejected by girls.

Problem 6.26.
Suppose there are two stable sets of marriages. So each man has a first wife and a
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second wife , and likewise each woman has a first husband and a second husband.
Someone in a given marriage is a winner when they prefer their current spouse
to their other spouse, and they are a loser when they prefer their other spouse to
their current spouse. (If someone has the same spouse in both of their marriages,
then they will be neither a winner nor a loser.)
We will show that

In each of the marriages, someone is a winner iff their spouse is a loser. (WL)

(a) The left to right direction of (WL) is equivalent to the assertion that married
partners cannot both be winners. Explain why this follows directly from the defini-
tion of rogue couple.

The right to left direction of (WL) is equivalent to the assertion that a married
couple cannot both be losers. This will follow by comparing the number of winners
and losers among the marriages.

(b) Explain why the number of winners must equal the number of losers among
the two sets of marriages.

(c) Complete the proof of (WL) by showing that if some married couple were both
losers, then there must be another couple who were both winners.

(d) Conclude that in a stable set of marriages, someone’s spouse is optimal iff they
are pessimal for their spouse.

Problem 6.27.

Suppose there are two stable sets of marriages, a first set and a second set. So
each man has a first wife and a second wife (they may be the same), and likewise
each woman has a first husband and a second husband. We can form a third set
of marriages by matching each man with the wife he prefers among his first and
second wives.

(a) Prove that this third set of marriages is an exact matching: no woman is mar-
ried to two men.

(b) Prove that this third marriage set is stable.

Hint: You may assume the following fact from Problem 6.26.

In every marriage, someone is a winner iff their spouse is a loser. (SL)
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Problem 6.28.
A state machine has commuting transitions if for any states p,q,r

(p — g AND p —> r) IMPLIES dt.q —>t AND r —> 1.
The state machine is confluent if
(p —* g AND p —™ r) IMPLIES 3t.q —* t AND r —* 1.

(a) Prove that if a state machine has commuting transitions, then it is confluent.

Hint: By induction on the number of moves from p to g plus the number from p
tor.

(b) A final state of a state machine is one from which no transition is possible.
Explain why, if a state machine is confluent, then at most one final state is reachable
from the start state.

Problem 6.29.

According to the day-by-day description of the Mating Ritual of Section 6.4.1, at
the end of each day, every man’s list is updated to remove the name of the woman
he who rejected him. But it’s easier, and more flexible, simply to let one women
reject one suitor at a time.

In particular, the states of this Flexible Mating Ritual state machine will be the
same as for the day-by-day Ritual: a state will be a list, for each man, of the women
who have not rejected him. But now a transition will be to choose two men who
are serenading the same woman—that is, who have the same woman at the top
of their current lists—and then have the woman reject whichever of the two she
likes less. So the only change in state is that the name of the serenaded woman
gets deleted from the top of the list of the man she liked less among two of her
serenaders—everything else stays the same.

It’s a worthwhile review to verify that the same preserved invariants used to es-
tablish the properties of the Mating Ritual will apply to the Flexible Mating Ritual.
This ensures that the Flexible Ritual will also terminate with a stable set of mar-
riages.

But now a new issue arises: we know that there can be many sets of possible
sets of stable marriages for the same set of men/women preferences. So it seems
possible that the Flexible Ritual might terminate with different stable marriage sets,
depending on which choice of transition was made at each state. But this does
not happen: the Flexible Ritual will always terminate with the same set of stable
marriages as the day-by-day Ritual.




“mcs” — 2017/6/5 — 19:42 — page 207 — #215

6.4. The Stable Marriage Problem 207

To prove this, we begin with a definition: a state machine has commuting transi-
tions if for any states p,q,r,

(p — q AND p —> r) IMPLIES 3t.q —> t AND r —> .

(a) Verity that the Flexible Mating Ritual has commuting transitions.

(b) Now conclude from Problem 6.28 that the Flexible Mating Ritual always ter-
minate with the same set of stable marriages as the day-by-day Ritual.

Exam Problems

Problem 6.30.

Four unfortunate children want to be adopted by four foster families of ill repute.
A child can only be adopted by one family, and a family can only adopt one child.
Here are their preference rankings (most-favored to least-favored):

Child | Families
Bottlecap: | Hatfields, McCoys, Grinches, Scrooges
Lucy: | Grinches, Scrooges, McCoys, Hatfields
Dingdong: | Hatfields, Scrooges, Grinches, McCoys
Zippy: | McCoys, Grinches, Scrooges, Hatfields

Family | Children
Grinches: | Zippy, Dingdong, Bottlecap, Lucy
Hatfields: | Zippy, Bottlecap, Dingdong, Lucy
Scrooges: | Bottlecap, Lucy, Dingdong, Zippy
McCoys: | Lucy, Zippy, Bottlecap, Dingdong

(a) Exhibit two different stable matching of Children and Families.

Family | Child in 1st match | Child in 2nd match
Grinches:
Hatfields:
Scrooges:
McCoys:

(b) Examine the matchings from part a, and explain why these matchings are the
only two possible stable matchings between Children and Families.

Hint: In general, there may be many more than two stable matchings for the same
set of preferences.
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Problem 6.31.
The Mating Ritual 6.4.1 for finding stable marriages works without change when
there are at least as many, and possibly more, men than women. You may assume
this. So the Ritual ends with all the women married and no rogue couples for these
marriages, where an unmarried man and a married woman who prefers him to her
spouse is also considered to be a “rogue couple.”

Let Alice be one of the women, and Bob be one of the men. Indicate which of
the properties below that are preserved invariants of the Mating Ritual 6.4 when
there are at least as many men as women. Briefly explain your answers.

(a) Alice has a suitor (man who is serenading her) whom she prefers to Bob.
(b) Alice is the only woman on Bob’s list.

(¢) Alice has no suitor.

(d) Bob prefers Alice to the women he is serenading.

(e) Bob is serenading Alice.

(f) Bob is not serenading Alice.

(g) Bob’s list of women to serenade is empty.

Problem 6.32.
We want a stable matching between n boys and n girls for a positive integer n.

(a) Explain how to define preference rankings for the boys and the girls that allow
only one possible stable matching. Briefly justify your answer.

(b) Mark each of the following predicates about the Stable Marriage Ritual P if it
is a Preserved Invariant, N if it is not, and “U” if you are very unsure. “Bob’s list”
refers to the list of the women he has not crossed off.

(1) Alice is not on Bob’s list.
(i1) No girl is on Bob’s list.
(iii) Bob is the only boy serenading Alice.
(iv) Bob has fewer than 5 girls on his list.
(v) Bob prefers Alice to his favorite remaining girl.
(vi) Alice prefers her favorite current suitor to Bob.

(vii) Bob is serenading his optimal spouse.
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(viii) Bob is serenading his pessimal spouse.
(ix) Alice’s optimal spouse is serenading her.

(x) Alice’s pessimal spouse is serenading her.
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7 Recursive Data Types

Recursive data types play a central role in programming, and induction is really all
about them.

Recursive data types are specified by recursive definitions, which say how to
construct new data elements from previous ones. Along with each recursive data
type there are recursive definitions of properties or functions on the data type. Most
importantly, based on a recursive definition, there is a structural induction method
for proving that all data of the given type have some property.

This chapter examines a few examples of recursive data types and recursively
defined functions on them:

e strings of characters,

e “balanced” strings of brackets,
e the nonnegative integers, and
e arithmetic expressions.

e two-player games with perfect information.

7.1 Recursive Definitions and Structural Induction

We’ll start off illustrating recursive definitions and proofs using the example of
character strings. Normally we’d take strings of characters for granted, but it’s
informative to treat them as a recursive data type. In particular, strings are a nice
first example because you will see recursive definitions of things that are easy to
understand, or that you already know, so you can focus on how the definitions work
without having to figure out what they are supposed to mean.

Definitions of recursive data types have two parts:

e Base case(s) specifying that some known mathematical elements are in the
data type, and

e Constructor case(s) that specify how to construct new data elements from
previously constructed elements or from base elements.

The definition of strings over a given character set A follows this pattern:
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Definition 7.1.1. Let A be a nonempty set called an alphabet, whose elements are
referred to as characters (also called letters, symbols, or digits). The recursive data
type A* of strings over alphabet A is defined as follows:

e Base case: the empty string A is in A™*.

e Constructor case: If a € A and s € A*, then the pair (a,s) € A*.

So {0, 1}* are the binary strings.

The usual way to treat binary strings is as sequences of 0’s and 1’s. For example,
we have identified the length-4 binary string 1011 as a sequence of bits, the 4-tuple
(1,0,1,1). But according to the recursive Definition 7.1.1, this string would be
represented by nested pairs, namely

(1,0, (1, (1. A)))) .

These nested pairs are definitely cumbersome and may also seem bizarre, but they
actually reflect the way that such lists of characters would be represented in pro-
gramming languages like Scheme or Python, where (a,s) would correspond to
cons(a, s).

Notice that we haven’t said exactly how the empty string is represented. It really
doesn’t matter, as long as we can recognize the empty string and not confuse it with
any nonempty string.

Continuing the recursive approach, let’s define the length of a string.

Definition 7.1.2. The length |s| of a string s is defined recursively based on Defi-
nition 7.1.1.

Base case: |A| ::= 0.
Constructor case: | (a,s)|::= 1+ |s].

This definition of length follows a standard pattern: functions on recursive data
types can be defined recursively using the same cases as the data type definition.
Specifically, to define a function f on a recursive data type, define the value of f
for the base cases of the data type definition, then define the value of f in each
constructor case in terms of the values of f on the component data items.

Let’s do another example: the concatenation s -t of the strings s and ¢ is the
string consisting of the letters of s followed by the letters of . This is a per-
fectly clear mathematical definition of concatenation (except maybe for what to do
with the empty string), and in terms of Scheme/Python lists, s - # would be the list
append(s, ¢). Here’s a recursive definition of concatenation.
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Definition 7.1.3. The concatenation s - t of the strings s,¢ € A* is defined recur-
sively based on Definition 7.1.1:

Base case:

Constructor case:
(a,s)-t = {a,s-t).
7.1.1 Structural Induction

Structural induction is a method for proving that all the elements of a recursively
defined data type have some property. A structural induction proof has two parts
corresponding to the recursive definition:

e Prove that each base case element has the property.

e Prove that each constructor case element has the property, when the construc-
tor is applied to elements that have the property.

For example, in the base case of the definition of concatenation 7.1.3, we defined
concatenation so the empty string was a “left identity,” namely, A -s ::=s. We want
the empty string also to be “right identity,” namely, s - A = s. Being a right identity
is not part of Definition 7.1.3, but we can prove it easily by structural induction:

Lemma 7.1.4.
S-A=3s

forall s € A*.

Proof. The proof is by structural induction on the recursive definition 7.1.3 of con-
catenation. The induction hypothesis will be

P(s):=[s-A =s].

Base case: (s = A).

=1 (A is a left identity by Def 7.1.3)
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Constructor case: (s = a - t).

s-A=(a-t)-A
=a-(t-A) (Constructor case of Def 7.1.3)
=a-t by induction hypothesis P(¢)
=s.

So P(s) holds. This completes the proof of the constructor case, and we conclude
by structural induction that equation (7.1.4) holds for all s € A*. |

We can also verify properties of recursive functions by structural induction on
their definitions. For example, let’s verify the familiar fact that the length of the
concatenation of two strings is the sum of their lengths:

Lemma.
Is-t| = [s] + [£]

forall s,t € A*.

Proof. By structural induction on the definition of s € A*. The induction hypoth-
esis is
P(s):= VYt e A* . |s-t]| = |s| + |t].

Base case (s = A):

|s-t] = [A-1]
= |¢] (base case of Def 7.1.3 of concatenation)
=0+ ¢
= |s| + |¢] (Def of |A]).

Constructor case: (s ::= (a, r)).

s 1] = [({a.r)-1]
=|{a,r-t)] (constructor case of Def of concat)
=1+|r- ¢ (constructor case of def length)
=1+ (r|+t]) (ind. hyp. P(r))
= (L+1r) + I
=|{a,r) |+ |¢| (constructor case, def of length)
= [s| + [t].

This proves that P (s) holds, completing the constructor case. By structural induc-
tion, we conclude that P (s) holds for all strings s € A™*. |
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These proofs illustrate the general principle:

The Principle of Structural Induction.
Let P be a predicate on a recursively defined data type R. If

e P(b) is true for each base case element b € R, and

e for all two-argument constructors c,
[P(r) AND P(s)] IMPLIES P(c(r,s))

forallr,s € R,
and likewise for all constructors taking other numbers of arguments,

then
P(r)is true for all r € R.

7.2 Strings of Matched Brackets

Let {].[ }* be the set of all strings of square brackets. For example, the following
two strings are in {], [ }*:

CITCCCCCE]] and [LCTICTIL] (7.1)

A string s € {],[}* is called a matched string if its brackets “match up” in
the usual way. For example, the left-hand string above is not matched because its
second right bracket does not have a matching left bracket. The string on the right
is matched.

We’re going to examine several different ways to define and prove properties
of matched strings using recursively defined sets and functions. These properties
are pretty straightforward, and you might wonder whether they have any particular
relevance in computer science. The honest answer is “not much relevance any
more.” The reason for this is one of the great successes of computer science, as
explained in the text box below.
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Expression Parsing

During the early development of computer science in the 1950’s and 60’s, creation
of effective programming language compilers was a central concern. A key aspect
in processing a program for compilation was expression parsing. One significant
problem was to take an expression like

x4+ y=x* z2 = y+7
and put in the brackets that determined how it should be evaluated—should it be

[[x + y] * z% = y] + 7, or,
x+[yxz2=[y+7) or
[x +[y*z2]] = [y + 7] or...2

The Turing award (the “Nobel Prize” of computer science) was ultimately be-
stowed on Robert W. Floyd, for, among other things, discovering simple proce-
dures that would insert the brackets properly.

In the 70’s and 80’s, this parsing technology was packaged into high-level
compiler-compilers that automatically generated parsers from expression gram-
mars. This automation of parsing was so effective that the subject no longer
demanded attention. It had largely disappeared from the computer science cur-
riculum by the 1990’s.

The matched strings can be nicely characterized as a recursive data type:

Definition 7.2.1. Recursively define the set RecMatch of strings as follows:

e Base case: A € RecMatch.

e Constructor case: If s, € RecMatch, then

[ s]¢ € RecMatch.

Here [ s ] ¢ refers to the concatenation of strings which would be written in full
as
[-(G--0).

ER]

From now on, we’ll usually omit the “-’s
Using this definition, A € RecMatch by the base case, so letting s = ¢t = A in
the constructor case implies

[AJA =[] € RecMatch.
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Now,
[A1[]1 =1111 € RecMatch (lettings = A,t =[])
[T11A =111]1 € RecMatch (lettings =[], = A)
[[11[1 € RecMatch (lettings =[],z =11

are also strings in RecMatch by repeated applications of the constructor case; and
SO on.

It’s pretty obvious that in order for brackets to match, there had better be an equal
number of left and right ones. For further practice, let’s carefully prove this from
the recursive definitions, beginning with a recursive definition of the number # (i)
of occurrences of the character ¢ € 4 in a string s:

Definition 7.2.2.
Base case: #.(1) ::= 0.

Constructor case:

() ifa # c,

#C(<a’s>)::_ 1_|_#c(s) ifa =c.

The following Lemma follows directly by structural induction on Definition 7.2.2.
We’ll leave the proof for practice (Problem 7.9).

Lemma 7.2.3.
#e(s 1) =#c(s) + #c(1).

Lemma. Every string in RecMatch has an equal number of left and right brackets.

Proof. The proof is by structural induction with induction hypothesis
P(s) = [#[ (5) = # (s)] .
Base case: P (1) holds because
#[ A =0= #] 1)

by the base case of Definition 7.2.2 of #.().
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Constructor case: By structural induction hypothesis, we assume P(s) and P(?)
and must show P ([ s]¢):

# ([s]?) = # () + # (s) + # a + # (t) (Lemma 7.2.3)
= 1+#[(5) +0+# (1) (def #] ())
=1+ #] (s) +0+ #] () (by P(s)and P(t))
= 0+#] () + 1 +#] (1)
=# (D) +#] () +# ) +# () (def #) ()
= #] (I[s]D) (Lemma 7.2.3)

This completes the proof of the constructor case. We conclude by structural induc-
tion that P (s) holds for all s € RecMatch. |

Warning: When a recursive definition of a data type allows the same element
to be constructed in more than one way, the definition is said to be ambiguous.
We were careful to choose an unambiguous definition of RecMatch to ensure that
functions defined recursively on its definition would always be well-defined. Re-
cursively defining a function on an ambiguous data type definition usually will not
work. To illustrate the problem, here’s another definition of the matched strings.

Definition 7.2.4. Define the set, AmbRecMatch C {], [ }* recursively as follows:
e Base case: A € AmbRecMatch,

e Constructor cases: if 5,7 € AmbRecMatch, then the strings [ s ] and st are
also in AmbRecMatch.

It’s pretty easy to see that the definition of AmbRecMatch is just another way
to define RecMatch, that is AmbRecMatch = RecMatch (see Problem 7.19). The
definition of AmbRecMatch is arguably easier to understand, but we didn’t use it
because it’s ambiguous, while the trickier definition of RecMatch is unambiguous.
Here’s why this matters. Let’s define the number of operations f(s) to construct a
matched string s recursively on the definition of s € AmbRecMatch:

S) =0, (f base case)
fs1) =14+ f(s),
f(st) = 1+ f(s)+ f(2). (f concat case)
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This definition may seem ok, but it isn’t: f(A1) winds up with two values, and
consequently:

0= f(A) (f base case))
= f(A-1) (concat def, base case)
=1+ /f)+ f(d) (f concat case),
=1404+0=1 (f base case).

This is definitely not a situation we want to be in!

7.3 Recursive Functions on Nonnegative Integers

The nonnegative integers can be understood as a recursive data type.
Definition 7.3.1. The set N is a data type defined recursively as:

e 0 eN.

e Ifn € N, then the successorn + 1 of n is in N.

The point here is to make it clear that ordinary induction is simply the special
case of structural induction on the recursive Definition 7.3.1. This also justifies the
familiar recursive definitions of functions on the nonnegative integers.

7.3.1 Some Standard Recursive Functions on N

Example 7.3.2. The factorial function. This function is often written “n!.” You will
see a lot of it in later chapters. Here, we’ll use the notation fac(n):

e fac(0) :=1.
o fac(n + 1) :=(m + 1) - fac(n) forn > 0.

Example 7.3.3. Summation notation. Let “S(n)” abbreviate the expression “> 7 _; f(i).”
We can recursively define S(n) with the rules

o S(0)::=0.

e Sm+1)u=f(m+ 1)+ Skn) forn > 0.
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7.3.2 Ill-formed Function Definitions

There are some other blunders to watch out for when defining functions recursively.
The main problems come when recursive definitions don’t follow the recursive def-
inition of the underlying data type. Below are some function specifications that re-
semble good definitions of functions on the nonnegative integers, but really aren’t.

Sin) :=2+ fi(n —1). (7.2)

This “definition” has no base case. If some function f; satisfied (7.2), so would a
function obtained by adding a constant to the value of f1. So equation (7.2) does
not uniquely define an f7.

falmy =1 e =0 (1.3)
fo(n+ 1) otherwise.
This “definition” has a base case, but still doesn’t uniquely determine f>. Any
function that is O at O and constant everywhere else would satisfy the specification,
so (7.3) also does not uniquely define anything.

In a typical programming language, evaluation of f>(1) would begin with a re-
cursive call of f2(2), which would lead to a recursive call of f>(3), ... with recur-
sive calls continuing without end. This “operational” approach interprets (7.3) as
defining a partial function f; that is undefined everywhere but 0.

0, ifn is divisible by 2,
f3(n) ::= 41, ifnis divisible by 3, (7.4)
2, otherwise.
This “definition” is inconsistent: it requires f3(6) = 0 and f3(6) = 1, so (7.4)
doesn’t define anything.

Mathematicians have been wondering about this function specification, known
as the Collatz conjecture for a while:

1, ifn <1,
Ja(n) 2= 1 fa(n/2) if n > 11is even, (7.5)
fa(Bn +1) ifn > 1isodd.

For example, f4(3) = 1 because

SaB) = fa(10) = f4(5) = fa(16) = fa(8) = fa(4) = fa(2) = fa(1) =1
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The constant function equal to 1 will satisfy (7.5), but it’s not known if another
function does as well. The problem is that the third case specifies f4(n) in terms
of f4 at arguments larger than n, and so cannot be justified by induction on N. It’s
known that any f; satisfying (7.5) equals 1 for all # up to over 1018,

A final example is the Ackermann function, which is an extremely fast-growing
function of two nonnegative arguments. Its inverse is correspondingly slow-growing—
it grows slower than log n, loglog n, logloglogn, ..., but it does grow unboundly.
This inverse actually comes up analyzing a useful, highly efficient procedure known
as the Union-Find algorithm. This algorithm was conjectured to run in a number
of steps that grew linearly in the size of its input, but turned out to be “linear”
but with a slow growing coefficient nearly equal to the inverse Ackermann func-
tion. This means that pragmatically, Union-Find is linear, since the theoretically
growing coefficient is less than 5 for any input that could conceivably come up.

The Ackermann function can be defined recursively as the function A4 given by
the following rules:

A(m,n) = 2n ifm=0orn <1, (7.6)
A(m,n) = A(m — 1, A(m,n — 1)) otherwise. 7.7

Now these rules are unusual because the definition of A(m, n) involves an eval-
uation of A at arguments that may be a lot bigger than m and n. The definitions
of f, above showed how definitions of function values at small argument values in
terms of larger one can easily lead to nonterminating evaluations. The definition of
the Ackermann function is actually ok, but proving this takes some ingenuity (see
Problem 7.25).

7.4 Arithmetic Expressions

Expression evaluation is a key feature of programming languages, and recognition
of expressions as a recursive data type is a key to understanding how they can be
processed.

To illustrate this approach we’ll work with a toy example: arithmetic expressions
like 3x2 4 2x + 1 involving only one variable, “x.” We’ll refer to the data type of
such expressions as Aexp. Here is its definition:

Definition 7.4.1.

o Base cases:




“mcs” — 2017/6/5 — 19:42 — page 222 — #230

222 Chapter 7 Recursive Data Types

— The variable x is in Aexp.

— The arabic numeral k for any nonnegative integer k is in Aexp.

e Constructor cases: If e, f € Aexp, then

— [e+ f] € Aexp. The expression [ e + f] is called a sum. The Aexp’s
e and f are called the components of the sum; they’re also called the
summands.

- [e* f] € Aexp. The expression [e * f] is called a product. The
Aexp’s e and f are called the components of the product; they’re also
called the multiplier and multiplicand.

— -[e] € Aexp. The expression - [ e] is called a negative.

Notice that Aexp’s are fully bracketed, and exponents aren’t allowed. So the
Aexp version of the polynomial expression 3x2 4 2x + 1 would officially be written
as

[[3*[x*x]]+[[2*x] +1]]. (7.8)

These brackets and *’s clutter up examples, so we’ll often use simpler expressions
like “3x2+2x+1” instead of (7.8). But it’s important to recognize that 3x242x +1
is not an Aexp; it’s an abbreviation for an Aexp.

7.4.1 Evaluation and Substitution with Aexp’s

Evaluating Aexp’s

Since the only variable in an Aexp is x, the value of an Aexp is determined by the
value of x. For example, if the value of x is 3, then the value of 3x2 4+ 2x + 1
is 34. In general, given any Aexp e and an integer value n for the variable x we
can evaluate e to finds its value eval(e,n). It’s easy, and useful, to specify this
evaluation process with a recursive definition.

Definition 7.4.2. The evaluation function, eval : Aexp X Z — Z, is defined recur-
sively on expressions e € Aexp as follows. Let n be any integer.

e Base cases:

eval(x,n) :=n (value of variable x is n), (7.9)

eval(k,n) ==k (value of numeral k is k, regardless of x.)  (7.10)
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e Constructor cases:

eval([ e1 +ez],n) ::=eval(eq,n) + eval(ey, n), (7.11)
eval([ e1 * e2],n) ::=eval(ey,n) - eval(ep, n), (7.12)
eval(-[ e1],n) ::= —eval(eq, n). (7.13)

For example, here’s how the recursive definition of eval would arrive at the value
of 3 4+ x? when x is 2:

eval([ 3+[x *x]],2) =eval(3,2) +eval([ x *x],2) (byDef7.4.2.7.11)

=3 +4eval([x *x],2) (by Def 7.4.2.7.10)
= 3 + (eval(x,2) - eval(x, 2)) (by Def 7.4.2.7.12)
=34+(2-2) (by Def 7.4.2.7.9)
=34+4=".

Substituting into Aexp’s

Substituting expressions for variables is a standard operation used by compilers
and algebra systems. For example, the result of substituting the expression 3x for
x in the expression x(x — 1) would be 3x(3x — 1). We’ll use the general notation
subst( £, e) for the result of substituting an Aexp f for each of the x’s in an Aexp
e. So as we just explained,

subst(3x, x(x — 1)) = 3x(3x — 1).
This substitution function has a simple recursive definition:

Definition 7.4.3. The substitution function from Aexp x Aexp to Aexp is defined
recursively on expressions e € Aexp as follows. Let f be any Aexp.

e Base cases:

subst(f,x) ::= f  (subbing f for variable x just gives f,)  (7.14)
subst(f, k) 1=k (subbing into a numeral does nothing.) (7.15)

e Constructor cases:
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subst(f,[ e1 + e2]) ::=[ subst(f, e1) + subst( f, e2)] (7.16)
subst( f,[ e1 * e2]) ::= [ subst( f, e1) * subst( 1, e2)] (7.17)
subst( f,-[e1]) ::=-[ subst(f,e1)]. (7.18)

Here’s how the recursive definition of the substitution function would find the
result of substituting 3x for x in the expression x(x — 1):

subst(3x, x(x — 1))

=subst([3*x],[x*[x+-[1]1]]) (unabbreviating)
= [ subst([ 3 * x], x) *
subst([3* x],[x+-[1]1])] (by Def 7.4.37.17)
=[[3*x] *subst([3*x],[x+-[1]])] (by Def 7.4.37.14)
=[[3*x] *[ subst([ 3 *x], x)
+subst([3*x],-[1])]] (by Def 7.4.3 7.16)
=[[3%*x] *[[3*x] +-[ subst([3*x],1)]]] (byDef7.437.14 & 7.18)
=[[3*x] *[[3*x] +-[1]11] (by Def 7.4.37.15)
=3x(Bx—-1) (abbreviation)

Now suppose we have to find the value of subst(3x,x(x — 1)) when x = 2.
There are two approaches. First, we could actually do the substitution above to get
3x(3x — 1), and then we could evaluate 3x (3x — 1) when x = 2, that is, we could
recursively calculate eval(3x (3x — 1), 2) to get the final value 30. This approach is
described by the expression

eval(subst(3x, x(x — 1)), 2). (7.19)

In programming jargon, this would be called evaluation using the Substitution
Model. With this approach, the formula 3x appears twice after substitution, so
the multiplication 3 - 2 that computes its value gets performed twice.

The second approach is called evaluation using the Environment Model. Here, to
compute the value of (7.19), we evaluate 3x when x = 2 using just 1 multiplication
to get the value 6. Then we evaluate x(x — 1) when x has this value 6 to arrive at
the value 6 - 5 = 30. This approach is described by the expression

eval(x(x — 1), eval(3x, 2)). (7.20)

The Environment Model only computes the value of 3x once, and so it requires one
fewer multiplication than the Substitution model to compute (7.20).
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This is a good place to stop and work this example out yourself (Problem 7.26).

The fact that the final integer values of (7.19) and (7.20) agree is no surprise. The
substitution model and environment models will always produce the same final. We
can prove this by structural induction directly following the definitions of the two
approaches. More precisely, what we want to prove is

Theorem 7.4.4. For all expressions e, [ € Aexp andn € Z,

eval(subst( f, e),n) = eval(e, eval( f, n)). (7.21)

Proof. The proof is by structural induction on e.!

Base cases:

e Case[x]

The left-hand side of equation (7.21) equals eval( f,n) by this base case in
Definition 7.4.3 of the substitution function; the right-hand side also equals
eval( f, n) by this base case in Definition 7.4.2 of eval.

e Case[k].

The left-hand side of equation (7.21) equals k by this base case in Defini-
tions 7.4.3 and 7.4.2 of the substitution and evaluation functions. Likewise,
the right-hand side equals k by two applications of this base case in the Def-
inition 7.4.2 of eval.

Constructor cases:

e Case[[ e1 +e2]]

By the structural induction hypothesis (7.21), we may assume that for all
f €eAexpandn € Z,

eval(subst( f; e;),n) = eval(e;, eval( f, n)) (7.22)

fori = 1,2. We wish to prove that
eval(subst( f, [ e1 + e2]),n) = eval([ e1 + e2], eval( f,n)). (7.23)

The left-hand side of (7.23) equals

eval([ subst( f, e1) + subst( f,e2)],n)

IThis is an example of why it’s useful to notify the reader what the induction variable is—in this
case itisn’t n.
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by Definition 7.4.3.7.16 of substitution into a sum expression. But this equals
eval(subst( f, e1), n) + eval(subst( f; e2),n)

by Definition 7.4.2.(7.11) of eval for a sum expression. By induction hypoth-
esis (7.22), this in turn equals

eval(ey, eval( f, n)) + eval(e, eval( f,n)).

Finally, this last expression equals the right-hand side of (7.23) by Defini-
tion 7.4.2.(7.11) of eval for a sum expression. This proves (7.23) in this case.

o Case[[| e1 * e2]] Similar.
e Case[—[ e1]] Even easier.

This covers all the constructor cases, and so completes the proof by structural
induction.
|

7.5 Games as a Recursive Data Type

Chess, Checkers, Go, and Nim are examples of two-person games of perfect in-
formation. These are games where two players, Player-1 and Player-2, alternate
moves, and “perfect information” means that the situation at any point in the game
is completely visible to both players. In Chess, for example, the visible positions
of the pieces on the chess board completely determine how the rest of the game can
be played by each player. By contrast, most card games are not games of perfect
information because neither player can see the other’s hand.

In the section we’ll examine the win-lose two-person games of perfect informa-
tion, WL-2PerGm. We will define WL-2PerGm as a recursive data type, and then
we will prove, by structural induction, a fundamental theorem about winning strate-
gies for these games. The idea behind the recursive definition is to recognize that
the situation at any point during game play can itself be treated as the start of a new
game. This is clearest for the game of Nim.

A Nim game starts with several piles of stones. A move in the game consists of
removing some positive number of stones from a single pile. Player-1 and player-2
alternate making moves, and whoever takes the last stone wins. So if there is only
one pile, then the first player to move wins by taking the whole pile. On the other
hand, if the game starts with just two piles, each with the same number of stones,
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then the player who moves second can guarantee a win simply by mimicking the
first player. For example, this means that if the first player removes three stones
from one pile, then the second player removes three stones from the other pile. At
this point, it’s worth thinking for a moment about why the mimicking strategy
guarantees a win for the second player.

We can think of the first move in a Nim game as simply picking another Nim
game with different piles of stone to play next. For the Nim game Nim3 4 5y that
starts with piles of 3, 4 and 5 stones, the first player can remove between one and
three stones from the first pile leading to three possible piles of stones

(2,4,5),(1,4,5),(4,5).

Similarly, the first player has five possible ways to remove stones from the last pile,
leading to five possible piles of stones

(3,4,4),(3,4,3),(3,4,2),(3,4,1),(3,4).

So all the properties of Nims3 4 5) are captured by the set of 3 + 4 + 5 = 12 Nim
games that can result from the first move.
With this idea in mind, we now give the formal definition.

Definition 7.5.1. The class WL-2PerGm of two-person win-lose games of perfect
information is defined recursively as follows:

Base case: win and lose are WL-2PerGm'’s.

Constructor case: If G is a nonempty set of WL-2PerGm’s, then G is a WL-2PerGm
game. Each game M € G is called a possible first move of G.

A play of a WL-2PerGm game is a sequence of moves that ends with a win or
loss for the first player, or goes on forever without arriving at an outcome.” More
formally:

Definition. A play of a WL-2PerGm game G and its outcome is defined recursively
on the definition of WL-2PerGm:

Base case: (G = win). The sequence (win) of length one is a play of G. Its
outcome is a win.

Base case: (G = lose). The sequence (lose) of length one is a play of G. Its
outcome is a loss.

2In English, “Nim game” might refer to the rules that define the game, but it might also refer
to a particular play of the game—as in the once famous third game in the 1961 movie Last Year at
Marienbad. 1t’s usually easy to figure out which way the phrase in being used, and we won’t worry
about it.
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Constructor case: (G is a nonempty set of WL-2PerGm’s). A play of G is a
sequence that starts with G followed by a play Pjs of some game M € G. The
outcome of the play, if any, is the outcome of Pjy.

The basic rules of some games do allow plays that go on forever. In Chess for
example, a player might just keep moving the same piece back and forth, and if his
opponent did the same, the play could go on forever.® But the recursive definition
of WL-2PerGm games actually rules out the possibility of infinite play.

Lemma 7.5.2. Every play of a game G € WL-2PerGm has an outcome.

Proof. We prove Lemma 7.5.2 by structural induction, using the statement of the
Lemma as the induction hypothesis.

Base case: (G = win). There is only one play of G, namely the length one play
(win), whose outcome is a win.

Base case: (G = lose). Likewise with the outcome being a loss.

Constructor case: (G is a nonempty set of WL-2PerGm’s). A play of G by defini-
tion consists G followed by a play Pz for some M € G. By structural induction,
Pps must be a sequence of some finite length » that ends with an outcome. So this
play of G is a length n + 1 sequence that finishes with the same outcome. |

Among the games of Checker, Chess, Go and Nim, only Nim is genuinely a win-
lose game, The other games might end in a tie (draw, stalemate, jigo) rather than a
win or loss. However, by treating a tie in these games as a loss for the first player,
the results about win-lose games will apply to games with ties.

7.5.1 Game Strategies

A strategy for a player is a rule that tells the player which move to make whenever
it is their turn. More precisely, a strategy s is a function from games to games with
the property that s(G) € G for all games G. A pair of strategies for the two players
determines exactly which moves the players choose, and so it determines a unique
play of the game, depending on who moves first.

A key question about a game is what strategy will ensure that a player will win.
The Player-1 wants a strategy whose outcome is guaranteed to be a win, and Player-
2 wants a strategy whose outcome is guaranteed to be a loss for Player-1.

3Real chess tournaments rule this out by setting an advance limit on the number of moves, or by
forbidding repetitions of the same position more than twice.
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7.5.2 Fundamental Theorem for Win-Lose Games

The Fundamental Theorem for WL-2PerGm games says that one of the players
always has a fixed “winning” strategy that guarantees a win against every possible
opponent strategy.

Thinking about Chess for instance, this seems surprising. Serious chess players
are typically secretive about their intended play strategies, believing that an oppo-
nent could take advantage of knowing their strategy. Their concern seems to be that
for any strategy they choose, their opponent coulda tailor a strategy to beat it.

But the Fundamental Theorem says otherwise. In theory, in any win-lose-tie
game like Chess or Checkers, each of the players will have a strategy that guar-
antees a win or a stalemate, even if the strategy is known to their opponent. That
is,

e there is winning strategy for one of the players, or
e both players have strategies that guarantee them at worst a draw.

Even though the Fundamental Theorem reveals a profound fact about games, it
has a very simple proof by structural induction.

Theorem 7.5.3. [Fundamental Theorem for Win-Lose Games] For any WL-2PerGm
game G, one of the players has a winning strategy.

Proof. The proof is by structural induction on the definition of a G € WL-2PerGm.
The induction hypothesis is that one of the players has a winning strategy for G.

Base case: (G = win or lose). Then there is only one possible strategy for each
player, namely, do nothing and finish with outcome G.

Constructor case: (G is a nonempty set of WL-2PerGm’s). By structural induction
we may assume that for each M € G one of the players has a winning strategy.
Notice that since players alternate moves, the first player in G becomes the second
player in M.

Now if there is a move My € G where the second player in My has a winning
strategy, then the first player in G has a simple winning strategy: pick My as the
first move, and then follow the second player’s winning strategy for My.

On the other hand, if no M € G has a winning strategy for the second player in
M , then we can conclude by induction that every M € G has a winning strategy for
the first player in M. Now the second player in G has a simple winning strategy,
namely if the first player in G makes the move M, then the second player in G
should follow the follow the winning strategy for the first player in M. |
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Infinite Games

So where do we come upon games with an infinite number of first moves? Well,
suppose we play a tournament of n chess games for some positive integer n. This
tournament will be a WL-2PerGm if we agree on a rule for combining the payoffs
of the n individual chess games into a final payoff for the whole tournament.

There still are only a finite number of possible moves at any stage of the n-game
chess tournament, but we can define a meta-chess-tournament, whose first move is
a choice of any positive integer n, after which we play an n-game tournament. Now
the meta-chess-tournament has an infinite number of first moves.

Of course only the first move in the meta-chess-tournament is infinite, but then
we could set up a tournament consisting of n meta-chess-tournaments. This would
be a game with n possible infinite moves. And then we could have a meta-meta-
chess-tournament whose first move was to choose how many meta-chess-tournaments
to play. This meta-meta-chess-tournament will have an infinite number of infinite
moves. Then we could move on to meta-meta-meta-chess-tournaments . . ..

As silly or weird as these meta games may seem, their weirdness doesn’t dis-
qualify the Fundamental Theorem: in each of these games, one of the players will
have winning strategy.

Notice that although Theorem 7.5.3 guarantees a winning strategy, its proof gives
no clue which player has it. For the Subset Takeaway Game of Problem 4.7 and
most familiar 2PerGm’s like Chess, Go, ..., no one knows which player has a
winning strategy.*

7.6 Induction in Computer Science

Induction is a powerful and widely applicable proof technique, which is why we’ve
devoted two entire chapters to it. Strong induction and its special case of ordinary
induction are applicable to any kind of thing with nonnegative integer sizes—which
is an awful lot of things, including all step-by-step computational processes.

Structural induction then goes beyond number counting, and offers a simple,
natural approach to proving things about recursive data types and recursive compu-
tation.

In many cases, a nonnegative integer size can be defined for a recursively defined
datum, such as the length of a string, or the number of operations in an Aexp. It is
then possible to prove properties of data by ordinary induction on their size. But

4Checkers used to be in this list, but there has been a recent announcement that each player has a
strategy that forces a tie. (reference TBA)
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this approach often produces more cumbersome proofs than structural induction.

In fact, structural induction is theoretically more powerful than ordinary induc-
tion. However, it’s only more powerful when it comes to reasoning about infinite
data types—Ilike infinite trees, for example—so this greater power doesn’t matter in
practice. What does matter is that for recursively defined data types, structural in-
duction is a simple and natural approach. This makes it a technique every computer
scientist should embrace.

Problems for Section 7.1

Practice Problems

Problem 7.1.
The set OBT of Ordered Binary Trees is defined recursively as follows:

Base case: (leaf) is an OBT, and
Constructor case: if R and S are OBT’s, then (node, R, S) is an OBT.

If T is an OBT, let n7 be the number of node labels in 7" and /7 be the number
of leaf labels in 7.
Prove by structural induction that for all 7 € OBT,

Ir =np + 1. (7.24)

Class Problems

Problem 7.2.
Prove by structural induction on the recursive definition(7.1.1) of A* that concate-
nation is associative:

(r-s)y-t=r-(s-t) (7.25)
for all strings r, s, € A*.
Problem 7.3.
The reversal of a string is the string written backwards, for example, rev(abcde) =
edcba.

(a) Give a simple recursive definition of rev(s) based on the recursive defini-
tions 7.1.1 of s € A* and of the concatenation operation 7.1.3.
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(b) Prove that
rev(s -t) = rev(t) - rev(s), (7.26)
for all strings s, € A*. You may assume that concatenation is associative:

(r-s)y-t=r-(s-t)

for all strings r, s, € A* (Problem 7.2).

Problem 7.4.
The Elementary 18.01 Functions (F18’s) are the set of functions of one real variable
defined recursively as follows:

Base cases:
e The identity function id(x) ::= x is an F18,
e any constant function is an F18,

e the sine function is an F18,

Constructor cases:
If f, g are F18’s, then so are

l' f + g’ fg’ 2g7
2. the inverse function f~1,
3. the composition f o g.

(a) Prove that the function 1/x is an F18.

Warning: Don’t confuse 1/x = x~! with the inverse id ™! of the identity function
id(x). The inverse id~! is equal to id.

(b) Prove by Structural Induction on this definition that the Elementary 18.01
Functions are closed under taking derivatives. That is, show that if f(x) is an F18,
then so is [ ::= df/dx. (Just work out 2 or 3 of the most interesting constructor
cases; you may skip the less interesting ones.)

Problem 7.5.
Here is a simple recursive definition of the set E of even integers:
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Definition. Base case: 0 € E.
Constructor cases: If n € E, then so are n 4+ 2 and —n.

Provide similar simple recursive definitions of the following sets:
(a) The set S ::= {2K3™5" ¢ N | k,m,n € N}.

(b) The set T ::= {2k32k+msm+n ¢ N | k. m,n € N}.

(¢) The set L ::={(a,b) € Z? | (a — b) is a multiple of 3}.
Let L’ be the set defined by the recursive definition you gave for L in the previous

part. Now if you did it right, then L” = L, but maybe you made a mistake. So let’s
check that you got the definition right.

(d) Prove by structural induction on your definition of L’ that
L' CL.
(e) Confirm that you got the definition right by proving that

Lcl.

(f) See if you can give an unambiguous recursive definition of L.

Problem 7.6.

Definition. The recursive data type binary-2PG of binary trees with leaf labels L
is defined recursively as follows:

e Base case: (1eaf,!/) € binary-2PG, for all labels / € L.
e Constructor case: If G, G, € binary-2PG, then

(bintree, G1, G3) € binary-2PG.

The size |G| of G € binary-2PG is defined recursively on this definition by:

e Base case:
| (leaf,l)| =1, forall/ e L.

e Constructor case:

| (bintree,Gl, Gz) | = |G1| + |G2| + 1.
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lose win

Figure 7.1 A picture of a binary tree G.

For example, the size of the binary-2PG G pictured in Figure 7.1, is 7.

(a) Write out (using angle brackets and labels bintree, 1leaf, etc.) the binary-2PG
G pictured in Figure 7.1.

The value of flatten(G) for G € binary-2PG is the sequence of labels in L of the
leaves of G. For example, for the binary-2PG G pictured in Figure 7.1,

flatten(G) = (win, lose,win, win).

(b) Give a recursive definition of flatten. (You may use the operation of concate-
nation (append) of two sequences.)

(c) Prove by structural induction on the definitions of flatten and size that

2 -length(flatten(G)) = |G| + 1. (7.27)

Homework Problems

Problem 7.7.
The string reversal function, rev : A* — A* has a simple recursive definition.

Base case: rev(A) ::= A.

Constructor case: rev(as) ::=rev(s)a fors € A* anda € A.
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A string s is a palindrome when rev(s) = s. The palindromes also have a simple
recursive definition as the set RecPal.

Base cases: A € RecPal and a € RecPal fora € A.
Constructor case: If s € RecPal, then asa € RecPal fora € A.

Verifying that the two definitions agree offers a nice exercise in structural induc-
tion and also induction on length of strings. The verification rests on three basic
properties of concatenation and reversal proved in separate problems 7.2 and 7.3.

Fact.
(rs = uv AND |r| = |u|) IFF (r = u AND § = V) (7.28)
r-(s-t)y=(r-s)-t (7.29)
rev(st) = rev(t) rev(s) (7.30)

(a) Prove that s = rev(s) for all s € RecPal.

(b) Prove conversely that if s = rev(s), then s € RecPal.

Hint: By induction onn = |s|.

Problem 7.8.
Let m, n be integers, not both zero. Define a set of integers, L, 5, recursively as
follows:

e Base cases: m,n € Ly, 5.
e Constructor cases: If j, k € Ly, ,, then

1. —j € Ly,
2. j+keLpny.

Let L be an abbreviation for L,, , in the rest of this problem.

(a) Prove by structural induction that every common divisor of m and n also di-
vides every member of L.

(b) Prove that any integer multiple of an element of L is also in L.
(c) Show thatif j,k € L and k # 0, then rem(J, k) € L.

(d) Show that there is a positive integer g € L that divides every member of L.
Hint: The least positive integer in L.
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Figure 7.2 Constructing the Koch Snowflake.

(e) Conclude that g from part (d) is gcd(m, n), the greatest common divisor, of m
and n.

Problem 7.9.

Definition. Define the number #. (s) of occurrences of the character ¢ € A in the
string s recursively on the definition of s € A*:

base case: #.(A) ::= 0.

constructor case:

L #e(s) ifa # c,
#C(<a’s>)"_ 1+#c(s) ifa =c.

Prove by structural induction that for all s, € A* andc € A

#e(s - 1) = #e(s) +#c(0).

Problem 7.10.

Fractals are an example of mathematical objects that can be defined recursively.
In this problem, we consider the Koch snowflake. Any Koch snowflake can be
constructed by the following recursive definition.

e Base case: An equilateral triangle with a positive integer side length is a
Koch snowflake.

e Constructor case: Let K be a Koch snowflake, and let / be a line segment
on the snowflake. Remove the middle third of /, and replace it with two line
segments of the same length |/|, as is done in Figure 7.2

The resulting figure is also a Koch snowflake.

Prove by structural induction that the area inside any Koch snowflake is of the
form g +/3, where ¢ is a rational number.
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Problem 7.11.
The set RBT of Red-Black Trees is defined recursively as follows:

Base cases:
e (red) € RBT, and

e (black) € RBT.

Constructor cases: A, B are RBT’s, then
e if A, B start with black, then (red, A, B) is an RBT.
e if A, B start with red, then (black, A4, B) is an RBT.
For any RBT T, let
e r7 be the number of red labels in T,
e b7 be the number of black labels in 7', and
e nr ::= rp + by be the total number of labels in 7.

Prove that

2 1
If T starts with a red label, then HTT <rp < % (7.31)

Hint:
n/3<r T1FF 2/3)n=>=n-—r

Exam Problems

Problem 7.12.
The Arithmetic Trig Functions (Afrig’s) are the set of functions of one real variable
defined recursively as follows:

Base cases:

e The identity function id(x) ::= x is an Atrig,
e any constant function is an Atrig,

e the sine function is an Atrig,
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Constructor cases:
If f, g are Atrig’s, then so are

1. f+¢g
2. f-g
3. the composition f o g.

Prove by structural induction on this definition that if f(x) is an Arrig, then so is

f'u=df/dx.

Problem 7.13.

Definition. The set RAF of rational functions of one real variable is the set of
functions defined recursively as follows:

Base cases:
e The identity function, id(r) ::= r for r € R (the real numbers), is an RAF,

e any constant function on R is an RAF.

Constructor cases: If f, g are RAF’s, then so is f ® g, where ® is one of the
operations

1. addition +,
2. multiplication - or
3. division /.

(a) Describe how to construct functions e, f, g € RAF such that

eo(f+g) #(of)+(ecg). (7.32)

(b) Prove that for all real-valued functions e, f, g (not just those in RAF):
(e® flog=(e0g)®(fog), (7.33)

Hint: (e ® f)(x) m=e(x) ® f(x).
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(c) Let predicate P (h) be the following predicate on functions & € RAF:
P(h):=Vg e RAF. ho g € RAF.

Prove by structural induction on the definition of RAF that P (%) holds for all & €
RAF.

Make sure to indicate explicitly

e each of the base cases, and

e cach of the constructor cases.

Problem 7.14.
The 2-3-averaged numbers are a subset, N23, of the real interval [0, 1] defined
recursively as follows:

Base cases: 0,1 € N23.

Constructor case: If a, b are in N23, then so is L(a, b) where

2a + 3b

L(a,b)::= z

(a) Use ordinary induction or the Well-Ordering Principle to prove that
3 n
(—) € N23
5

(b) Prove by Structural Induction that the product of two 2-3-averaged numbers is
also a 2-3-averaged number.

for all nonnegative integers .

Hint: Prove by structural induction on c¢ that, if d € N23, then c¢d € N23.

Problem 7.15.
This problem is about binary strings s € {0, 1}*.

Let’s call a recursive definition of a set of strings cat-OK when all its constructors
are defined as concatenations of strings.

3The concatenation of two strings x and y, written xy, is the string obtained by appending x to
the left end of y. For example, the concatenation of 01 and 101 is 01101.
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For example, the set, Onel, of strings with exactly one 1 has the cat-OK defini-
tion:

Base case: The length-one string 1 is in Onel.

Constructor case: If s is in Onel, then so is Os and sO0.

(a) Give a cat-OK definition of the set E of even length strings consisting solely
of 0’s.

(b) Let rev(s) be the reversal of the string s. For example, rev(001) = 100. A
palindrome is a string s such that s = rev(s). For example, 11011 and 010010
are palindromes.

Give a cat-OK definition of the palindromes.

(c) Give a cat-OK definition of the set P of strings consisting solely of 0’s whose
length is a power of two.

Problems for Section 7.2

Practice Problems

Problem 7.16.
Define the sets F; and F; recursively:

o Fi:

- 5€ Fy,

— if n € Fy, then 5n € Fj.
o [5:

- 5€ F>,

—ifn,me Fi,thennm € F>.

(a) Show that one of these definitions is technically ambiguous. (Remember that
“ambiguous recursive definition” has a technical mathematical meaning which does
not imply that the ambiguous definition is unclear.)

(b) Briefly explain what advantage unambiguous recursive definitions have over
ambiguous ones.
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(c) A way to prove that F; = F3, is to show first that F; € F> and second that
F> C F1. One of these containments follows easily by structural induction. Which
one? What would be the induction hypothesis? (You do not need to complete a
proof.)

Problem 7.17. (a) To prove that the set RecMatch, of matched strings of Defini-
tion 7.2.1 equals the set AmbRecMatch of ambiguous matched strings of Defini-
tion 7.2.4, you could first prove that

Vr € RecMatch. r € AmbRecMatch,
and then prove that

Yu € AmbRecMatch. u € RecMatch.

Of these two statements, indicate the one that would be simpler to prove by struc-
tural induction directly from the definitions.

(b) Suppose structural induction was being used to prove that AmbRecMatch C
RecMatch. Indicate the one predicate below that would fit the format for a structural
induction hypothesis in such a proof.

e Py(n) ::=|s| < n IMPLIES s € RecMatch.

Pi(n) ::=|s| < n IMPLIES s € AmbRecMatch.

Py (s) ::= s € RecMatch.

P5(s) ::= s € AmbRecMatch.

P4(s) ::= (s € RecMatch IMPLIES s € AmbRecMatch).

(c) The recursive definition AmbRecMatch is ambiguous because it allows the
s - t constructor to apply when s or ¢ is the empty string. But even fixing that,
ambiguity remains. Demonstrate this by giving two different derivations for the
string [ ][ ][] according to AmbRecMatch but only using the s - ¢ constructor
when s # A and t # A.

Class Problems

Problem 7.18.
Let p be the string [ ]. A string of brackets is said to be erasable iff it can be
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reduced to the empty string by repeatedly erasing occurrences of p. For example,
to erase the string

RESRINRINE

start by erasing the three occurrences of p to obtain

[[1].

Then erase the single occurrence of p to obtain,

[1.

which can now be erased to obtain the empty string A.
On the other hand the string

[ITLCCCET] (7.34)

is not erasable, because when we try to erase, we get stuck. Namely, start by erasing
the two occurrences of p in (7.34) to obtain

IIRRINE

The erase the one remaining occurrence of p to obtain.

LT

At this point we are stuck with no remaining occurrences of p. ©
Let Erasable be the set of erasable strings of brackets. Let RecMatch be the
recursive data type of strings of matched brackets given in Definition 7.2.1

(a) Use structural induction to prove that

RecMatch C Erasable.

(b) Supply the missing parts (labeled by “(*)”) of the following proof that

Erasable C RecMatch.

Notice that there are many ways to erase a string, depending on when and which occurrences
of p are chosen to be erased. It turns out that given any initial string, the final string reached after
performing all possible erasures will be the same, no matter how erasures are performed. We take
this for granted here, although it is not altogether obvious. (See Problem 6.28 for a proof).
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Proof. We prove by strong induction that every length n string in Erasable is also
in RecMatch. The induction hypothesis is

P(n) ::= Vx € Erasable. |x| = n IMPLIES x € RecMatch.

Base case:
(*) What is the base case? Prove that P is true in this case.

Inductive step: To prove P(n + 1), suppose |x| = n + 1 and x € Erasable. We
need to show that x € RecMatch.

Let’s say that a string y is an erase of a string z iff y is the result of erasing a single
occurrence of p in z.

Since x € Erasable and has positive length, there must be an erase, y € Erasable,
of x. So |y] = n —1 > 0, and since y € Erasable, we may assume by induction
hypothesis that y € RecMatch.

Now we argue by cases:
Case (y is the empty string):
(*) Prove that x € RecMatch in this case.

Case (y = [ s ]t for some strings s, € RecMatch): Now we argue by subcases.

e Subcase(x = py):
(*) Prove that x € RecMatch in this subcase.

o Subcase (x is of the form [ s’ ] # where s is an erase of s'):
Since s € RecMatch, it is erasable by part (b), which implies that s’ €
Erasable. But |s’| < |x|, so by induction hypothesis, we may assume that
s’ € RecMatch. This shows that x is the result of the constructor step of
RecMatch, and therefore x € RecMatch.

e Subcase (x is of the form [ s ] ¢’ where ¢ is an erase of ¢'):
(*) Prove that x € RecMatch in this subcase.

(*) Explain why the above cases are sufficient.

This completes the proof by strong induction on 7, so we conclude that P (n) holds
for all n € N. Therefore x € RecMatch for every string x € Erasable. That is,
Erasable € RecMatch. Combined with part (a), we conclude that

Erasable = RecMatch.
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Problem 7.19. (a) Prove that the set RecMatch of matched strings of Definition 7.2.1
is closed under string concatenation. Namely, Vs, € RecMatch. s -1 € RecMatch.

(b) Prove AmbRecMatch € RecMatch, where AmbRecMatch is the set of am-
biguous matched strings of Definition 7.2.4.

(¢) Prove that RecMatch = AmbRecMatch.

Homework Problems

Problem 7.20.

One way to determine if a string has matching brackets, that is, if it is in the set,
RecMatch, of Definition 7.2.1 is to start with O and read the string from left to right,
adding 1 to the count for each left bracket and subtracting 1 from the count for each
right bracket. For example, here are the counts for two sample strings:

[ ] Lo oot 1 111
01 0-101223432T10
LT 011011101
012 32121010

A string has a good count if its running count never goes negative and ends with 0.
So the second string above has a good count, but the first one does not because its
count went negative at the third step. Let

GoodCount ::= {s € {],[ }* | s has a good count}.

The empty string has a length O running count we’ll take as a good count by
convention, that is, A € GoodCount. The matched strings can now be characterized
precisely as this set of strings with good counts.

(a) Prove that GoodCount contains RecMatch by structural induction on the defi-
nition of RecMatch.
(b) Conversely, prove that RecMatch contains GoodCount.

Hint: By induction on the length of strings in GoodCount. Consider when the
running count equals O for the second time.

Problem 7.21.
Divided Equilateral Triangles (DETSs) were defined in Problem 5.10 as follows:
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Figure 7.3 DET T’ from Four Copies of DET T

Figure 7.4 Trapezoid from Three Triangles

e Base case: A single equilateral triangle is a DET whose only subtriangle is
itself.

o If T::= A is a DET, then the equilateral triangle 7" built out of four
copies of 7" as shown in in Figure 7.3 is also a DET, and the subtriangles of
T’ are exactly the subtriangles of each of the copies of 7.

Properties of DETs were proved earlier by induction on the length of a side of the
triangle. Recognizing that the definition of DETs is recursive, we can instead prove
properties of DETSs by structural induction.

(a) Prove by structural induction that a DET with one of its corner subtriangles
removed can be tiled with trapezoids built out of three subtriangles as in Figure 7.4.

(b) Explain why a DET with a triangle removed from the middle of one side can
also be tiled by trapezoids.

(c) In tiling a large square using L-shaped blocks as described in Section 5.1.5,
there was a tiling with any single subsquare removed. Part (b) indicates that trapezoid-
tilings are possible for DETs with a non-corner subtriangle removed, so it’s natural
to make the mistaken guess that DETs have a corresponding property:

False Claim. A DET with any single subtriangle removed can be trapezoid-tiled.

We can try to prove the claim by structural induction as in part (a).
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Bogus proof. The claim holds vacuously in the base case of a DET with a single
subtriangle.

Now let 7’ be a DET made of four copies of a DET T, and suppose we remove an
arbitrary subtriangle from 7.

The removed subtriangle must be a subtriangle of one of the copies of T. The
copies are the same, so for definiteness we assume the subtriangle was removed
from copy 1. Then by structural induction hypothesis, copy 1 can be trapezoid-
tiled, and then the other three copies of 7' can be trapezoid-tiled exactly as in the
solution to part(a). This yields a complete trapezoid-tiling of 7’ with the arbitrary
subtriangle removed.

We conclude by structural induction that any DET with any subtriangle removed
can be trapezoid-tiled. |

What’s wrong with the proof?
Hint: Find a counter-example and show where the proof breaks down.

We don’t know if there is a simple characterization of exactly which subtriangles
can be removed to allow a trapezoid tiling.

Problem 7.22.

A binary word is a finite sequence of 0’s and 1’s. In this problem, we’ll simply call
them “words.” For example, (1,1, 0) and (1) are words of length three and one,
respectively. We usually omit the parentheses and commas in the descriptions of
words, so the preceding binary words would just be written as 110 and 1.

The basic operation of placing one word immediately after another is called con-
catentation. For example, the concatentation of 110 and 1 is 1101, and the con-
catentation of 110 with itselfis 110110.

We can extend this basic operation on words to an operation on sets of words. To
emphasize the distinction between a word and a set of words, from now on we’ll
refer to a set of words as a language. Now if R and S are languages, then R - S is
the language consisting of all the words you can get by concatenating a word from
R with a word from S. That is,

R-S:={rs|re RANDs € S}.

For example,
{0,00}-{00,000} = {000,0000,00000}
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Another example is D - D, abbreviated as D?, where D = {1, 0}.
D? =1{00,01,10,11}.

In other words, D? is the language consisting of all the length-two words. More
generally, D" will be the language of length-n words.

If S is a language, the language you can get by concatenating any number of
copies of words in S is called S*—pronounced “S star.” (By convention, the empty
word A always included in S*.) For example, {0, 11}* is the language consisting
of all the words you can make by stringing together 0’s and 11’s. This language
could also be described as consisting of the words whose blocks of 1’s are always
of even length. Another example is (D?)*, which consists of all the even length
words. Finally, the language B of all binary words is just D*.

The Concatenation-Definable (C-D) languages are defined recursively:

e Base case: Every finite language is a C-D.

e Constructor cases: If L and M are C-D’s, then
L-M, LUM, andL
are C-D’s.

Note that the *-operation is not allowed. For this reason, the C-D languages are
also called the “star-free languages,” [36].

Lots of interesting languages turn out to be concatenation-definable, but some
very simple languages are not. This problem ends with the conclusion that the
language {00}* of even length words whose bits are all 0’s is not a C-D language.

(a) Show that the set B of all binary words is C-D. Hint: The empty set is finite.

Now a more interesting example of a C-D set is the language of all binary words
that include three consecutive 1’s:

B111B.

Notice that the proper expression here is “B-{111}- B.” But it causes no confusion
and helps readability to omit the dots in concatenations and the curly braces for sets
with only one element.

(b) Show that the language consisting of the binary words that start with 0 and
end with 1 is C-D.

(¢) Show that 0* is C-D.
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(d) Show that if R and S are C-D, thensois RN S.

(e) Show that {01}* is C-D.

Let’s say a language S is O-finite when it includes only a finite number of words
whose bits are all 0’s, that is, when S N 0* is a finite set of words. A langauge S is
0-boring—boring, for short—when either S or § is O-finite.

(f) Explain why {00}* is not boring.
(g) Verify that if R and S are boring, then sois R U S.

(h) Verify that if R and S are boring, then sois R - S.

Hint: By cases: whether R and S are both 0-finite, whether R or S contains no
all-0 words at all (including the empty word 1), and whether neither of these cases
hold.

(i) Conclude by structural induction that all C-D languages are boring.

So we have proved that the set (00)* of even length all-0 words is not a C-D
language.

Problem 7.23.

We can explain in a simple and precise way how digital circuits work, and gain the
powerful proof method of structural induction to verify their properties, by defining
digital circuits as a recursive data type DigCirc. The definition is a little easier to
state if all the gates in the circuit take two inputs, so we will use the two-input NOR
gate rather than a one-input NOT, and let the set of gates be

Gates ::= {NOR, AND, OR, XOR}.

A digital circuit will be a recursively defined list of gate connections of the form
(x,y,G,I) where G is a gate, x and y are the input wires, and / is the set of wires
that the gate output feeds into as illustrated in Figure 7.5.

Formally, we let W be a set wp, wy,... whose elements are called wires, and
O ¢ W be an object called the output.

Definition. The set of digital circuit DigCirc, and their inputs and internal wires,
are defined recursively as follows:
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Figure 7.5 Digital Circuit Constructor Step

Base case: If x, y € W, then C e DigCirc, where

C =list((x,y, G, {0})) for some G € Gates,
inputs(C) ::= {x, y},
internal (C) ::= @.

Constructor cases: If

C e DigCirc,
I C inputs(C), I # @,
x,y € W — (I Uinternal(C))

then D € DigCirc, where

D = cons((x,y,G,1),C) for some G € Gates,
inputs(D) ::= {x, y} U (inputs(C) — 1),
internal(D) ::= internal(C) U 1.

For any circuit C define

wires(C) ::= inputs(C) U internal(C) U {O}.
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A wire assignment for C is a function
a : wires(C) — {T,F}
such that for each gate connection (x, y,G,I) € C,
a(i) = (a(x) Ga(y)) foralli € I.

(a) Define an environment for C to be a function e : inputs(C) — {T, F}. Prove
that if two wire assignments for C are equal for each wire in inputs(C), then the
wire assignments are equal for all wires.

Part (a) implies that for any environment e for C, there is a unique wire assign-
ment &, such that

e(w) = e(w) for all w € inputs(C).
So for any input environment e, the circuit computes a unique output
eval(C, e) ::= o (0).

Now suppose F is a propositional formula whose propositional variables are the
input wires of some circuit C. Then C and F' are defined to be equivalent iff

eval(C,e) = eval(F,e)

for all environments e for C.

(b) Define a function E(C) recursively on the definition of circuit C, such that
E(C) is a propositional formula equivalent to C. Then verify the recursive defini-
tion by proving the equivalence using structural induction.

(c) Give examples where E(C) is exponentially larger than C.

Exam Problems

Problem 7.24.
Let P be a propositional variable.

(a) Show how to express NOT(P) using P and a selection from among the con-
stant True, and the connectives XOR and AND.

The use of the constant True above is essential. To prove this, we begin with
a recursive definition of XOR-AND formulas that do not use True, called the PXA
formulas.
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Definition. Base case: The propositional variable P is a PXA formula.
Constructor cases If R, S € PXA, then
e RXORS,
e RAND S
are PXA’s.
For example,
(((P XOR P) AND P) XOR (P AND P)) XOR (P XOR P)

is a PXA.

(b) Prove by structural induction on the definition of PXA that every PXA formula
A is equivalent to P or to False.

Problems for Section 7.3

Homework Problems

Problem 7.25.
One version of the the Ackermann function 4 : N> — N is defined recursively by
the following rules:
A(m,n) :=2n ifm=0orn <1, (A-base)
Am,n) = Am —1,A(m,n — 1)) otherwise. (AA)

Prove that if B : N> — N is a partial function that satisfies this same definition,
then B is total and B = A.

Problems for Section 7.4

Practice Problems
Problem 7.26. (a) Write out the evaluation of
eval(subst(3x, x(x — 1)),2)

according to the Environment Model and the Substitution Model, indicating where
the rule for each case of the recursive definitions of eval(, ) and [:=] or substitution
is first used. Compare the number of arithmetic operations and variable lookups.
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(b) Describe an example along the lines of part (a) where the Environment Model
would perform 6 fewer multiplications than the Substitution model. You need not
carry out the evaluations.

(c) Describe an example along the lines of part (a) where the Substitution Model
would perform 6 fewer multiplications than the Environment model. You need not
carry out the evaluations.

Class Problems

Problem 7.27.

In this problem we’ll need to be careful about the propositional operations that

apply to truth values and the corresponding symbols that appear in formulas. We’ll

restrict ourselves to formulas with symbols And and Not that correspond to the

operations AND, NOT. We will also allow the constant symbols True and False.
(a) Give a simple recursive definition of propositional formula F and the set

pvar(F') of propositional variables that appear in it.

Let V be a set of propositional variables. A truth environment e over V assigns
truth values to all these variables. In other words, e is a total function,

e:V - {T,F}.

(b) Give a recursive definition of the truth value, eval(F, e), of propositional for-
mula F in an environment e over a set of variables V' D pvar(F').

Clearly the truth value of a propositional formula only depends on the truth val-
ues of the variables in it. How could it be otherwise? But it’s good practice to work
out a rigorous definition and proof of this assumption.

(c) Give an example of a propositional formula containing the variable P but
whose truth value does not depend on P. Now give a rigorous definition of the as-
sertion that “the truth value of propositional formula F' does not depend on propo-
sitional variable P.”

Hint: Let e1, e; be two environments whose values agree on all variables other than
P.

(d) Give a rigorous definition of the assertion that “the truth value of a proposi-
tional formula only depends on the truth values of the variables that appear in it,”
and then prove it by structural induction on the definition of propositional formula.

(e) Now we can formally define F being valid. Namely, F is valid iff

Ve. eval(F,e) =T.
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Give a similar formal definition of formula G being unsatisfiable. Then use the
definition of eval to prove that a formula F is valid iff Not(F) is unsatisfiable.

Exam Problems

Problem 7.28.
A class of propositional formulas called the Multivariable AND-OR (MVAO) for-
mulas are defined recursively as follows:

Definition. Base cases: A single propositional variable, and the constants True
and False are MVAO formulas.
Constructor cases: If G, H € MVAO, then (GAND H ) and (GOR H ) are MVAOQO’s.

For example,
(((P OR Q) AND P) OR (R AND True)) OR (Q OR False)

is a MVAO.

Definition. A propositional formula G is False-decreasing when substituting the
constant False for some occurrences of its variables makes the formula “more
false.” More precisely, if G/ is the result of replacing some occurrences of vari-
ables in G by False, then any truth assignment that makes G false also makes G/
false.

For example, the formula consisting of a single variable P is False-decreasing
since P/ is the formula False. The formula G ::= P is not False-decreasing since
G is the formula False which is true even under a truth assignment where G is
false.

Prove by structural induction that every MVAO formula F is False-decreasing.

Homework Problems

Problem 7.29. (a) Give a recursive definition of a function erase(e) that erases all
the symbols in e € Aexp but the brackets. For example

erase([[3*[x*x]]1+[[2*x]+1]1]) =[[[11[[2*x] +1]1.
(b) Prove that erase(e) € RecMatch for all e € Aexp.

(¢) Give an example of a small string s € RecMatch such that [ s] # erase(e) for
any e € Aexp.




“mcs” — 2017/6/5 — 19:42 — page 254 — #262

254 Chapter 7 Recursive Data Types

Problems for Section 7.5

Practice Problems

Problem 7.30.
In the game tree for the game Tic-Tac-Toe, the root has nine children corresponding
to the nine boxes that the first player could mark with an “X”.
Each of these nine nodes will have eight children in the second level of the tree,
indicating where the second player can mark his “O”, giving a total of 72 nodes.
Answer the following questions about the game tree for Tic-Tac-Toe.
(a) How many nodes will be in the third level of the tree?

(b) What is the first level where this simple pattern of calculating nodes stops
working?

Homework Problems

Problem 7.31.

We’re going to characterize a large category of games as a recursive data type and
then prove, by structural induction, a fundamental theorem about game strategies.
We are interested in two person games of perfect information that end with a nu-
merical score. Chess and Checkers would count as value games using the values
1, —1, 0 for a win, loss or draw for the first player. The game of Go really does end
with a score based on the number of white and black stones that remain at the end.

Here’s the formal definition:

Definition. Let V' be a nonempty set of real numbers. The class VG of V -valued
two-person deterministic games of perfect information is defined recursively as fol-
lows:

Base case: A value v € V is a VG known as a payoff.

Constructor case: If G is a nonempty set of VG’s, then G is a VG. Each game
M € G is called a possible first move of G.

A strategy for a player is a rule that tells the player which move to make when-
ever it is their turn. That is, a strategy is a function s from games to games with the
property that s(G) € G for all games G. Given which player has the first move, a
pair of strategies for the two players determines exactly which moves the players
will choose. So the strategies determine a unique play of the game and a unique
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payoff.’
The max-player wants a strategy that guarantees as high a payoff as possible,
and the min-player wants a strategy that guarantees as low a payoff as possible.
The Fundamental Theorem for deterministic games of perfect information says
that in any game, each player has an optimal strategy, and these strategies lead to
the same payoff. More precisely,

Theorem (Fundamental Theorem for VG’s). Let V' be a finite set of real numbers
and G be a V-valued VG. Then there is a value v € V, called a max-value maxg
for G, such that if the max-player moves first,

o the max-player has a strategy that will finish with a payoff of at least maxg,
no matter what strategy the min-player uses, and

e the min-player has a strategy that will finish with a payoff of at most maxg,
no matter what strategy the max-player uses.

It’s worth a moment for the reader to observe that the definition of maxg implies
that if there is one for G, it is unique. So if the max-player has the first move,
the Fundamental Theorem means that there’s no point in playing the game: the
min-player may just as well pay the max-value to the max-player.

(a) Prove the Fundamental Theorem for VG’s.

Hint: VG’s are a recursively defined data type, so the basic method for proving that
all VG’s have some property is structural induction on the definition of VG. Since
the min-player moves first in whichever game the max-player picks for their first
move, the induction hypothesis will need to cover that case as well.

(b) (OPTIONAL). State some reasonable generalization of the Fundamental The-
orem to games with an infinite set V' of possible payoffs.

Problem 7.32.
Nim is a two-person game that starts with some piles of stones. A player’s move
consists of removing one or more stones from a single pile. The players alternate
making moves, and whoever takes the last stone wins.

It turns out there is a winning strategy for one of the players that is easy to carry
out but is not so obvious.

7We take for granted the fact that no VG has an infinite play. The proof of this by structural
induction is essentially the same as that for win-lose games given in Lemma 7.5.2.
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To explain the winning strategy, we need to think of a number in two ways: as
a nonnegative integer and as the bit string equal to the binary representation of the
number——possibly with leading zeroes.

For example, the XOR of numbersr, s, ... is defined in terms of their binary repre-
sentations: combine the corresponding bits of the binary representations of 7, s, ...
using XOR, and then interpret the resulting bit-string as a number. For example,

2XOR7XOR9 =12
because, taking XOR’s down the columns, we have

0 0 1 O (binaryrepof?2)
0 1 1 1 (binaryrepof7)
1 0 0 1 (binaryrepof9)
1 1 0 0 (binaryrepof 12)

This is the same as doing binary addition of the numbers, but throwing away the
carries (see Problem 3.6).

The XOR of the numbers of stones in the piles is called their Nim sum. In this
problem we will verify that if the Nim sum is not zero on a player’s turn, then the
player has a winning strategy. For example, if the game starts with five piles of
equal size, then the first player has a winning strategy, but if the game starts with
four equal-size piles, then the second player can force a win.

(a) Prove that if the Nim sum of the piles is zero, then any one move will leave a
nonzero Nim sum.

(b) Prove that if there is a pile with more stones than the Nim sum of all the other
piles, then there is a move that makes the Nim sum equal to zero.

(c) Prove that if the Nim sum is not zero, then one of the piles is bigger than the
Nim sum of the all the other piles.

Hint: Notice that the largest pile may not be the one that is bigger than the Nim
sum of the others; three piles of sizes 2,2,1 is an example.

(d) Conclude that if the game begins with a nonzero Nim sum, then the first player
has a winning strategy.

Hint: Describe a preserved invariant that the first player can maintain.

(e) (Extra credit) Nim is sometimes played with winners and losers reversed, that
is, the person who takes the last stone loses. This is called the misére version of the
game. Use ideas from the winning strategy above for regular play to find one for
misére play.
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This chapter is about infinite sets and some challenges in proving things about
them.

Wait a minute! Why bring up infinity in a Mathematics for Computer Science
text? After all, any data set in a computer is limited by the size of the computer’s
memory, and there is a bound on the possible size of computer memory, for the
simple reason that the universe is (or at least appears to be) bounded. So why not
stick with finite sets of some large, but bounded, size? This is a good question, but
let’s see if we can persuade you that dealing with infinite sets is inevitable.

You may not have noticed, but up to now you’ve already accepted the routine use
of the integers, the rationals and irrationals, and sequences of them. These are all
infinite sets. Further, do you really want Physics or the other sciences to give up the
real numbers on the grounds that only a bounded number of bounded measurements
can be made in a bounded universe? It’s pretty convincing—and a lot simpler—to
ignore such big and uncertain bounds (the universe seems to be getting bigger all
the time) and accept theories using real numbers.

Likewise in computer science, it’s implausible to think that writing a program to
add nonnegative integers with up to as many digits as, say, the stars in the sky—
billions of galaxies each with billions of stars—would be different from writing a
program that would add any two integers, no matter how many digits they had. The
same is true in designing a compiler: it’s neither useful nor sensible to make use of
the fact that in a bounded universe, only a bounded number of programs will ever
be compiled.

Infinite sets also provide a nice setting to practice proof methods, because it’s
harder to sneak in unjustified steps under the guise of intuition. And there has
been a truly astonishing outcome of studying infinite sets. Their study led to the
discovery of fundamental, logical limits on what computers can possibly do. For
example, in Section 8.2, we’ll use reasoning developed for infinite sets to prove
that it’s impossible to have a perfect type-checker for a programming language.

So in this chapter, we ask you to bite the bullet and start learning to cope with
infinity.
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8.1 Infinite Cardinality

In the late nineteenth century, the mathematician Georg Cantor was studying the
convergence of Fourier series and found some series that he wanted to say con-
verged “most of the time,” even though there were an infinite number of points
where they didn’t converge. As a result, Cantor needed a way to compare the size
of infinite sets. To get a grip on this, he got the idea of extending the Mapping Rule
Theorem 4.5.4 to infinite sets: he regarded two infinite sets as having the “same
size” when there was a bijection between them. Likewise, an infinite set A should
be considered “as big as” a set B when A surj B. So we could consider A4 to be
“strictly smaller” than B, which we abbreviate as A strict B, when A is not “as big
as” B:

Definition 8.1.1. A strict B iff NOT(A surj B).

On finite sets, this strict relation really does mean “strictly smaller.” This follows
immediately from the Mapping Rule Theorem 4.5.4.

Corollary 8.1.2. For finite sets A, B,

A strict B iff |A| < |B].

Proof.
A strict B iff NOT(A surj B) (Def 8.1.1)
iff NoT(|A| > |B]) (Theorem 4.5.4.(4.5))
iff |A| < |B]|.

Cantor got diverted from his study of Fourier series by his effort to develop a
theory of infinite sizes based on these ideas. His theory ultimately had profound
consequences for the foundations of mathematics and computer science. But Can-
tor made a lot of enemies in his own time because of his work: the general mathe-
matical community doubted the relevance of what they called “Cantor’s paradise”
of unheard-of infinite sizes.

A nice technical feature of Cantor’s idea is that it avoids the need for a definition
of what the “size” of an infinite set might be—all it does is compare “sizes.”

Warning: We haven’t, and won’t, define what the “size” of an infinite set is.
The definition of infinite “sizes” requires the definition of some infinite sets called
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ordinals with special well-ordering properties. The theory of ordinals requires get-
ting deeper into technical set theory than we need to go, and we can get by just
fine without defining infinite sizes. All we need are the “as big as” and “same size”
relations, surj and bij, between sets.

But there’s something else to watch out for: we’ve referred to surj as an “as big
as” relation and bij as a “same size” relation on sets. Of course, most of the “as big
as” and “same size” properties of surj and bij on finite sets do carry over to infinite
sets, but some important ones don’t—as we’re about to show. So you have to be
careful: don’t assume that surj has any particular “as big as” property on infinite
sets until it’s been proven.

Let’s begin with some familiar properties of the “as big as” and “same size”
relations on finite sets that do carry over exactly to infinite sets:

Lemma 8.1.3. For any sets A, B, C,
1. A surj B iff B inj A.
2. If A surj B and B surj C, then A surj C.
3. If Abij B and B bij C, then A bij C.
4. Abij B iff B bij A.

Part 1. follows from the fact that R has the [< 1 out, > 1 in] surjective function
property iff R~! has the [> 1 out, < 1 in] total, injective property. Part 2. follows
from the fact that compositions of surjections are surjections. Parts 3. and 4. fol-
low from the first two parts because R is a bijection iff R and R™! are surjective
functions. We’ll leave verification of these facts to Problem 4.21.

Another familiar property of finite sets carries over to infinite sets, but this time
some real ingenuity is needed to prove it:

Theorem 8.1.4. [Schroder-Bernstein] For any sets A, B, if A surj B and B surj A,
then A bij B.

That is, the Schréder-Bernstein Theorem says that if A is at least as big as B
and conversely, B is at least as big as A, then A is the same size as B. Phrased
this way, you might be tempted to take this theorem for granted, but that would be
a mistake. For infinite sets A and B, the Schroder-Bernstein Theorem is actually
pretty technical. Just because there is a surjective function f : A — B—which
need not be a bijection—and a surjective function g : B — A—which also need
not be a bijection—it’s not at all clear that there must be a bijectione : A — B. The
idea is to construct e from parts of both f and g. We’ll leave the actual construction
to Problem 8.12.
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Another familiar set property is that for any two sets, either the first is at least
as big as the second, or vice-versa. For finite sets this follows trivially from the
Mapping Rule. It’s actually still true for infinite sets, but assuming it is obvious
would be mistaken again.

Theorem 8.1.5. For all sets A, B,
Asurj B OR B surj A.

Theorem 8.1.5 lets us prove that another basic property of finite sets carries over
to infinite ones:

Lemma 8.1.6.
A strict B AND B strict C (8.1
implies
A strict C

forall sets A, B, C.

Proof. (of Lemma 8.1.6)

Suppose 8.1 holds, and assume for the sake of contradiction that NOT(A strict
C), which means that A surj C. Now since B strict C, Theorem 8.1.5 lets us
conclude that C surj B. So we have

A surj C AND C surj B,

and Lemma 8.1.3.2 lets us conclude that A surj B, contradicting the fact that
A strict B. |

We’re omitting a proof of Theorem 8.1.5 because proving it involves technical
set theory—typically the theory of ordinals again—that we’re not going to get into.
But since proving Lemma 8.1.6 is the only use we’ll make of Theorem 8.1.5, we
hope you won’t feel cheated not to see a proof.

8.1.1 Infinity is different

A basic property of finite sets that does not carry over to infinite sets is that adding
something new makes a set bigger. That is, if A is a finite set and b ¢ A, then
|AU{b}| = |A| + 1, and so A and A U {b} are not the same size. But if A4 is
infinite, then these two sets are the same size!

Lemma 8.1.7. Let A be a setand b ¢ A. Then A is infinite iff A bij A U {b}.
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Proof. Since A is not the same size as A U {b} when A is finite, we only have to
show that A U {b} is the same size as A when A is infinite.

That is, we have to find a bijection between A U {b} and A when A is infinite.
Here’s how: since A is infinite, it certainly has at least one element; call it ag. But
since A is infinite, it has at least two elements, and one of them must not equal to
ap; call this new element a1. But since A is infinite, it has at least three elements,
one of which must not equal both ag and a; call this new element a,. Continuing
in this way, we conclude that there is an infinite sequence ag,ay,as, ..., ds, ... of
different elements of A. Now it’s easy to define a bijectione : A U {b} — A:

e(b) ::=ayp,
e(anp) :=an+1 forn € N,
e(a) :=a fora €e A—1{b,ap,a1,...}.

8.1.2 Countable Sets

A set C is countable iff its elements can be listed in order, that is, the elements in
C are precisely the elements in the sequence

€O, ClyvvesCryenn.

Assuming no repeats in the list, saying that C can be listed in this way is formally
the same as saying that the function, f : N — C defined by the rule that f(i)::=c;,
is a bijection.

Definition 8.1.8. A set C is countably infinite iff N bij C. A set is countable iff it
is finite or countably infinite. A set is uncountable iff it is not countable.

We can also make an infinite list using just a finite set of elements if we allow
repeats. For example, we can list the elements in the three-element set {2, 4, 6} as

2,4,6,6,6,....

This simple observation leads to an alternative characterization of countable sets
that does not make separate cases of finite and infinite sets. Namely, a set C is
countable iff there is a list

C0,C1y-+-5Cpny...

of the elements of C, possibly with repeats.

Lemma 8.1.9. A set C is countable iff N surj C. In fact, a nonempty set C is
countable iff there is a total surjective function g : N — C.
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The proof is left to Problem 8.13.
The most fundamental countably infinite set is the set N itself. But the set Z of
all integers is also countably infinite, because the integers can be listed in the order:

0,-1,1,-2,2,-3,3,.... (8.2)

In this case, there is a simple formula for the nth element of the list (8.2). That is,
the bijection f : N — Z such that f(n) is the nth element of the list can be defined
as:

n/2 if n is even,

—(n+1)/2 ifnisodd.

There is also a simple way to list all pairs of nonnegative integers, which shows
that (N x N) is also countably infinite (Problem 8.23). From this, it’s a small
step to reach the conclusion that the set Q=° of nonnegative rational numbers is
countable. This may be a surprise—after all, the rationals densely fill up the space
between integers, and for any two, there’s another in between. So it might seem as
though you couldn’t write out all the rationals in a list, but Problem 8.11 illustrates
how to do it. More generally, it is easy to show that countable sets are closed under
unions and products (Problems 8.22 and 8.23) which implies the countability of a
bunch of familiar sets:

fn) ==

Corollary 8.1.10. The following sets are countably infinite:
Zt,Z,NxN,Q",Zx Z,Q.

A small modification of the proof of Lemma 8.1.7 shows that countably infinite
sets are the “smallest” infinite sets. Namely,

Lemma 8.1.11. If A is an infinite set, and B is countable, then A surj B.

We leave the proof to Problem 8.10.

Also, since adding one new element to an infinite set doesn’t change its size,
you can add any finite number of elements without changing the size by simply
adding one element after another. Something even stronger is true: you can add a
countably infinite number of new elements to an infinite set and still wind up with
just a set of the same size (Problem 8.15).

By the way, it’s a common mistake to think that, because you can add any finite
number of elements to an infinite set and have a bijection with the original set, that
you can also throw in infinitely many new elements. In general it isn’t true that just
because it’s OK to do something any finite number of times, it’s also OK to do it an
infinite number of times. For example, starting from 3, you can increment by 1 any
finite number of times, and the result will be some integer greater than or equal to
3. But if you increment an infinite number of times, you don’t get an integer at all.
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8.1.3 Power sets are strictly bigger

Cantor’s astonishing discovery was that not all infinite sets are the same size. In
particular, he proved that for any set A the power set pow(A) is “strictly bigger”
than A. That is,

Theorem 8.1.12. [Cantor] For any set A,
A strict pow(A).

Proof. To show 