
C U R R I C U L U M M O D U L E SEI-CM-24

Carnegie Mellon University
Software Engineering Institute

Concepts of
Concurrent
Programming

.
David W. Bustard
University of Ulster

April 1990

Approved for public release.
Distribution unlimited.

SEI-CM-24 Concepts of Concurrent Programming i

Preface

A concurrent program is one defining actions that may be performed
simultaneously. This module discusses the nature of such programs
and provides an overview of the means by which they may be
constructed and executed. Emphasis is given to the terminology used
in this field and the underlying concepts involved.

This module is largely concerned with explicit concurrency, where
concurrent behavior is specified by the program designer. Particular
attention is paid to programs that can be considered inherently
concurrent, that is, programs that are constructed to control or model
physical systems that involve parallel activity. The module also
includes a brief introduction to performance-oriented concurrency,
where concurrency is used to improve program performance by taking
advantage of hardware support for parallel processing.

The module is divided into three sections. The first deals with basic
concepts in concurrent programming, covering characteristic
attributes, formal properties, standard design problems, and execution
details. The second section discusses the steps in constructing
concurrent programs from specification to coding. The final section
briefly examines concurrency from the point of view of some common
application areas.

The module gives a foundation for a deeper study of specific topics in
concurrent programming. It also provides the preparatory material for
a study of the concurrent aspects of application areas such as real-time
(embedded) systems, database systems, operating systems, and many
simulation systems.

A sequential program is really just a concurrent program in which a
single activity is defined. This is not a fanciful idea. In practice, most
software design techniques yield program structures that are naturally

Capsule
Description

Scope

Philosophy

ii Concepts of Concurrent Programming SEI-CM-24

concurrent, and developers need to go to some lengths to convert such
designs into a sequential form (for an example see [Sutcliffe88]).

Traditionally, this avoidance of a concurrent program representation
has occurred for two main reasons. One is the lack of a suitable
implementation language for the application concerned; the other is a
belief that the concurrency concept is too difficult for the average
programmer. In the experience of practitioners [Brinch Hansen77,
Gelernter88], the latter argument is unfounded. Language support has
indeed been a problem but is one that is diminishing rapidly for most
application areas [Wegner89]. At the current rate of progress it seems
likely that most programming languages will support the
representation of concurrency by the turn of the century. In that event,
a study of the concepts of concurrent programming will become an
essential first step in understanding programming in general. This
module is a contribution to that vision.

I am very grateful to Gary Ford for his guidance and encouragement
through every stage in the production of this module. Linda Pesante
also earns my sincere thanks for her infectious enthusiasm and her
ability to turn apparently neat phrases into much neater ones. I am
also indebted to Karola Fuchs, Sheila Rosenthal, and Andy Shimp, who
provided an excellent library service that managed to be both efficient
and friendly.

The technical content of the module has benefited significantly from
suggestions made by Mark Ardis, Lionel Deimel, and Robert Firth. I
am also grateful to Daniel Berry, who gathered some initial material.

Finally, I would like to thank Norm Gibbs for the opportunity to produce
this module and for his concern that the experience should be enjoyable.
It was!

Comments on this module are solicited, and may be sent to the SEI
Software Engineering Curriculum Project or to the author:

David W. Bustard
Department of Computing Science
University of Ulster
Coleraine BT52 1SA
Northern Ireland

Acknowledge-
ments

Author’s
Address

SEI-CM-24 Concepts of Concurrent Programming 1

Concepts of
Concurrent
Programming

1. Basic Concepts
1.1. The Nature of Concurrent Programs

1.1.1. Implicit and explicit concurrency
1.1.2. Processes and concurrent programs: basic definitions
1.1.3. Distinguishing concurrent, parallel, and distributed

programs
1.1.4. Distinguishing concurrent programs and concurrent

systems
1.1.5. Nondeterminism
1.1.6. Process interaction

1.2. Problems in Concurrent Programs
1.2.1. Violating mutual exclusion
1.2.2. Deadlock
1.2.3. Indefinite postponement (or starvation or lockout)
1.2.4. Unfairness
1.2.5. Busy waiting
1.2.6. Transient errors

1.3. Properties of Concurrent Programs
1.3.1. Safety
1.3.2. Liveness

1.4. Executing Concurrent Programs
1.4.1. Measures of concurrency
1.4.2. Execution environments
1.4.3. Patterns of execution
1.4.4. Process states
1.4.5. Process scheduling

Outline

2 Concepts of Concurrent Programming SEI-CM-24

2. Program Construction
2.1. Development Methods
2.2. A Requirements View

2.2.1. Temporal logic
2.2.2. Petri nets
2.2.3. Process models
2.2.4. Finite state machines
2.2.5. Data flow diagrams

2.3. A Design View
2.4. A Coding View

2.4.1. Interaction via shared variables
2.4.2. Interaction by message passing

2.5. Concurrent Program Evaluation

3. Common Applications
3.1. Real-Time Systems
3.2. General-Purpose Operating Systems
3.3. Simulation Systems
3.4. Database Systems

1. Basic Concepts
This section provides introductory definitions and discussion of the main
concepts and terms used in concurrent programming. Further explanations,
with illustrations, may be found in any basic text in this area [Ben-Ari82,
Bustard88, Schiper89, Whiddett87]. Concurrency concepts are also covered in
most books on operating systems [Deitel84, Habermann76, Lister85] and in
texts addressing the concurrent aspects of specific programming languages
[Burns85, Gehani84, Gehani85, Holt83]. An introduction to distributed and
parallel programming may be found in [Critchlow88, Perrott87].

1.1. The Nature of Concurrent Programs

1.1.1. Implicit and explicit concurrency

In principle, most programs may be considered concurrent in that
they are likely to:
• contain independent processing steps (at the block, statement, or

expression level) that may be executed in parallel; or
• trigger device operations that may proceed in parallel with the

execution of the program.

This may be termed implicit concurrency. Explicit concurrency is
where concurrent behavior is specified by the program designer.

An introduction to the detection of implicit concurrency in a program
may be found in [Perrott87]. A more detailed discussion is presented
in [Polychronopoulous88].

Annotated
Outline

SEI-CM-24 Concepts of Concurrent Programming 3

Generally, the detection of concurrency implies the identification of
sequences of independent array or arithmetic operations that might be
executed in parallel (e.g. setting array elements to zero). Such
analysis is carried out to improve the performance of existing
sequential code. Typical improvements are, however, only a fraction
of the potential speed-up that might be achieved by restructuring the
programs involved.

The remainder of this module is concerned with explicit concurrency.

1.1.2. Processes and concurrent programs: basic definitions

A sequential program specifies sequential execution of a list of
statements; its execution is called a process. A concurrent program
specifies two or more sequential programs that may be executed
concurrently as parallel processes [Andrews83]. In many languages,
process is also the name of the construct used to describe process
behavior [Bustard88, Gehani89, Holt83]; one notable exception is Ada,
which uses the name task for this purpose [Burns85].

1.1.3. Distinguishing concurrent, parallel, and distributed
programs

In the literature, a concurrent program is commonly discussed in the
same context as parallel or distributed programs. Unfortunately, few
authors give precise meanings to these terms and the meanings that
are offered tend to conflict. On balance, the following definitions
seem appropriate:
• A concurrent program defines actions that may be performed

simultaneously.
• A parallel program is a concurrent program that is designed for

execution on parallel hardware.
• A distributed program is a parallel program designed for

execution on a network of autonomous processors that do not share
main memory [Bal89].

Thus, concurrent program is a generic term used to describe any
program involving actual or potential parallel behavior; parallel and
distributed programs are sub-classes of concurrent program that are
designed for execution in specific parallel processing environments.

Where it is known that a single processor will be used to execute a
program expressed in a concurrent form, the concurrency involved is
sometimes referred to as pseudoparallelism [Bal89, Schiper89]. A
quasiparallel program [Schiper89] is a pseudoparallel program in
which processes execute cooperatively by transferring control to each
other using a coroutine mechanism. (This is the basis of the
concurrency model supported in the programming language Modula-2
[Ford86].)

1.1.4. Distinguishing concurrent programs and concurrent
systems

A concurrent program is primarily a coherent unit of software. If two
pieces of communicating software run concurrently, the result is a
concurrent program when the two pieces form a conceptual whole;
otherwise, the situation is viewed as two programs communicating
through an agreed protocol. The communicating programs do,

4 Concepts of Concurrent Programming SEI-CM-24

however, constitute a concurrent system (or parallel system or
distributed system, as appropriate).

1.1.5. Nondeterminism

A sequential program imposes a total ordering on the actions it
specifies. A concurrent program imposes a partial ordering, which
means that there is uncertainty over the precise order of occurrence of
some events; this property is referred to as nondeterminism . A
consequence of nondeterminism is that when a concurrent program
is executed repeatedly it may take different execution paths even
when operating on the same input data.

The classification of a program as deterministic or nondeterministic
will depend on which of its actions are considered significant. Most
programs are nondeterministic when viewed at a low enough level in
their execution but it is generally external behavior that dictates the
overall classification.

1.1.6. Process interaction

All concurrent programs involve process interaction. This occurs for
two main reasons:
1. Processes compete for exclusive access to shared resources, such

as physical devices or data.
2. Processes communicate to exchange data.

In both cases it is necessary for the processes concerned to
synchronize their execution, either to avoid conflict, when acquiring
resources, or to make contact, when exchanging data.

Processes can interact in one of two ways: through shared variables,
or by message passing from one to another. Process interaction may
be explicit within a program description or occur implicitly when the
program is executed. In particular, there is implicit management of
machine resources, such as processor power and memory, that are
needed to run a program. (Further details may be found in Section
1.4)

1.1.6.1. Resource management

A process wishing to use a shared resource (e.g. a printer) must
first acquire the resource, that is, obtain permission to access it.
When the resource is no longer required, it is released; that is, the
process relinquishes its right of access.

If a process is unable to acquire a resource, its execution is
usually suspended until that resource is available. Resources
should be administered so that no process is delayed unduly.

A process may require access to one or more resources
simultaneously, and those resources may be of the same or
different types. The resources may be defined statically within
the program or created and destroyed as the program executes.
Also, some resources may be acquired for exclusive use by one
process while others may be shared if used in a particular way.
For example, several processes may inspect a data item
simultaneously but only one process at a time may modify it. See
[Bustard88] for a detailed discussion of these possibilities.

SEI-CM-24 Concepts of Concurrent Programming 5

1.1.6.2. Communication

Inter-process communication is one of the following:
• Synchronous, meaning that processes synchronize to exchange

data.
• Asynchronous, meaning that a process providing data may

leave it for a receiving process without being delayed if the
receiving process is unable to take the data immediately; the
data is held temporarily in a communication buffer (a shared
data structure). Where several data items are buffered, these
are made available to the receiving process in the order in
which they arrive at the buffer.

1.2. Problems in concurrent programs

1.2.1. Violating mutual exclusion

Some operations in a concurrent program may fail to produce the
desired effect if they are performed by two or more processes
simultaneously. The code that implements such operations constitutes
a critical region or critical section. If one process is in a critical
region, all other processes must be excluded until the first process has
finished. When constructing any concurrent program, it is essential
for software developers to recognize where such mutual exclusion is
needed and to control it accordingly.

Most discussions of the need for mutual exclusion use the example of
two processes attempting to execute a statement of the form:

x := x + 1

Assuming that x has the value 12 initially, the implementation of the
statement may result in each process taking a local copy of this value,
adding one to it and both returning 13 to x (unlucky!).

Mutual exclusion for individual memory references is usually
implemented in hardware. Thus, if two processes attempt to write the
values 3 and 4, respectively, to the same memory location, one access
will always exclude the other in time leaving a value of 3 or 4 and not
any other bit pattern.

Techniques for implementing mutual exclusion are discussed in
Section 2.2.3.

1.2.2. Deadlock

A process is said to be in a state of deadlock if it is waiting for an
event that will not occur. Deadlock usually involves several
processes and may lead to the termination of the program. A
deadlock can occur when processes communicate (e.g., two processes
attempt to send messages to each other simultaneously and
synchronously) but is a problem more frequently associated with
resource management. In this context there are four necessary
conditions for a deadlock to exist [Coffman71]:
1. Processes must claim exclusive access to resources.
2. Processes must hold some resources while waiting for others (i.e.,

acquire resources in a piecemeal fashion).
3. Resources may not be removed from waiting processes (no pre-

emption).

6 Concepts of Concurrent Programming SEI-CM-24

4. A circular chain of processes exists in which each process holds
one or more resources required by the next process in the chain.

Techniques for avoiding or recovering from deadlock rely on
negating at least one of these conditions. One of the best documented
(though largely impractical) techniques for avoiding deadlock is
Dijkstra’s Banker’s Algorithm [Dijkstra68]. Dijkstra also posed what
has become a classic illustrative example in this field, that of the
Dining Philosophers [Dijkstra71].

1.2.3. Indefinite postponement (or starvation or lockout)

A process is said to be indefinitely postponed if it is delayed awaiting
an event that may not occur. This situation can arise when resource
requests are administered using an algorithm that makes no
allowance for the waiting time of the processes involved. Systematic
techniques for avoiding the problem place competing processes in a
priority order such that the longer a process waits the higher its
priority becomes. Dealing with processes strictly in their delay order
is a simpler solution that is applicable in many circumstances. See
[Bustard88] for a discussion of these techniques.

1.2.4. Unfairness

It is generally (but not universally) believed that where competition
exists among processes of equal status in a concurrent program, some
attempt should be made to ensure that the processes concerned make
even progress; that is, to ensure that there is no obvious unfairness
when meeting the needs of those processes. Fairness in a concurrent
system can be considered at both the design and system
implementation levels. For the designer, it is simply a guideline to
observe when developing a program; any neglect of fairness may
lead to indefinite postponement, leaving the program incorrect.

For a system implementor it is again a guideline. Most concurrent
programming languages do not address fairness. Instead, the issue
is left in the hands of the compiler writers and the developers of the
run-time support software.

Generally, when the same choice of action is offered repeatedly in a
concurrent program it must not be possible for any particular action to
be ignored indefinitely. This is a weak condition for fairness. A
stronger condition is that when an open choice of action is offered,
any selection should be equally likely.

1.2.5. Busy waiting

Regardless of the environment in which a concurrent program is
executed, it is rarely acceptable for any of its processes to execute a
loop awaiting a change of program state. This is known as busy
waiting. The state variables involved constitute a spin lock. It is not
in itself an error but it wastes processor power, which in turn may
lead to the violation of a performance requirement. Ideally, the
execution of the process concerned should be suspended and continued
only when the condition for it to make progress is satisfied.

1.2.6. Transient errors

In the presence of nondeterminism, faults in a concurrent program
may appear as transient errors; that is, the error may or may not occur
depending on the execution path taken in a particular activation of the

SEI-CM-24 Concepts of Concurrent Programming 7

program. The cause of a transient error tends to be difficult to
identify because the events that precede it are often not known
precisely and the source of the error cannot, in general, be found by
experimentation. Thus, one of the skills in designing any
concurrent program is an ability to express it in a form that
guarantees correct program behavior despite any uncertainty over the
order in which some individual operations are performed. That is,
there should be no part of the program whose correct behavior is time-
dependent.

1.3. Properties of Concurrent Programs

The requirements for a concurrent program can be defined in terms of
properties that it must possess. If the properties are expressed formally
(mathematically), then it may be possible to verify formally that an
implementation has these properties. Many properties can be classified
as either a safety or a liveness property [Lamport89].

1.3.1. Safety

Safety properties assert what a program is allowed to do, or
equivalently, what it may not do. Examples include:
• Mutual exclusion: no more than one process is ever present in a

critical region.
• No deadlock: no process is ever delayed awaiting an event that

cannot occur.
• Partial correctness: if a program terminates, the output is what is

required.

A safety property is expressed as an invariant of a computation; this is
a condition that is true at all points in the execution of a program.
Safety properties are proved by induction. That is, the invariant is
shown to hold true for the initial state of the computation and for every
transition between states of the computation.

1.3.2. Liveness

Liveness (or progress [Chandy88]) properties assert what a program
must do; they state what will happen (eventually) in a computation.
Examples include:
• Fairness (weak): a process that can execute will be executed.
• Reliable communication: a message sent by one process to

another will be received.
• Total correctness: a program terminates and the output is what is

required.

Liveness properties are expressed as a set of liveness axioms, and the
properties are proved by verifying these axioms. Safety properties can
be proved separately from liveness properties, but proofs of liveness
generally build on safety proofs.

1.4. Executing Concurrent Programs

1.4.1. Measures of concurrency

Concurrent behavior can be measured in several ways. In practice,
the measures are merely rough classifications of behavior that help
characterize a program. These measures are given names here, for
convenience, but there is no consensus on naming. In particular,

8 Concepts of Concurrent Programming SEI-CM-24

references to the term grain or granularity of concurrency in the
literature may mean any of the following measures:
• The unit of concurrency is the language component on which

process behavior is defined [Bal88]. It may be an element in an
expression; it may be a program statement; but most commonly it
is a program block.

• The level of concurrency is the mean number of active processes
present during the execution of a program.

• The scale of concurrency is the mean duration (or lifetime) of
processes in the execution of a program [Bustard88]; there is an
overhead in initiating a concurrent activity, and so ideally its
duration should be sufficiently long to make that overhead
negligible.

• The grain of concurrency is the mean computation time between
communications in the execution of a program [Bal89]; this should
be relatively large if a physical distribution of processes is
required.

1.4.2. Execution environments

Programs involving large-scale concurrent behavior (comprising
processes of relatively long duration) are executed most commonly on
a single processor computer in which the processor is shared among
the active processes. This is known as multiprogramming (or
multitasking). Multiprocessing occurs on a multiprocessor, a computer
in which several (usually identical) processors share a common
primary memory.

Multicomputers use separate primary memory, and their execution of
processes is known as distributed processing. Closely coupled
multicomputers have fast and reliable point-to-point interprocessor
links; loosely coupled systems communicate over a network that is
much slower and much less reliable. Components of a multicomputer
may be in the same vicinity or physically remote from each other. In
[Bal89] these are referred to as workstation-LANs (Local Area
Networks) and workstation-WANs (Wide Area Networks),
respectively.

Small-scale concurrent programs are usually executed by array or
vector processor computers that apply the same operation to a number
of data items at the same time. This is known as synchronous
processing [Perrott87]. Dataflow and reduction machines apply
different operations to different data items simultaneously
[Treleaven82]. These latter machines are still largely experimental.
A detailed presentation of the hardware available for parallel
processing is given in [Hwang84]. A collection of early papers on
parallel processing may be found in [Kuhn81].

1.4.3. Patterns of execution

Most commonly, a concurrent program starts as a single process and
subdivides into multiple processes at some point in its execution. The
spawned processes may be activated individually or in sets. The
processes thus activated may be able to subdivide in the same way.
There are two main models of execution:
1. The spawned processes, when activated, execute independently of

the process that triggers their execution.

SEI-CM-24 Concepts of Concurrent Programming 9

2. The triggering process forks into multiple processes which, when
complete, join to form a single process again.

Most programming languages support the fork-and-join model.

1.4.4. Process states

A process exists in one of three states (there is no agreement on the
names used):
1. Awake, meaning that the process is able to execute.
• Asleep (or blocked), meaning that the process is suspended

awaiting a particular event (e.g., message arrival or resource
available).

• Terminated , meaning that the execution of the process has
finished.

Processes that are awake can be further divided into those that are
running (executing) and those that are ready to run as soon as a
processor becomes available.

1.4.5. Process scheduling

In exceptional circumstances, a concurrent program may run
directly on bare hardware. More usually, however, it will execute on
top of support software that provides a more abstract interface to that
hardware. This is known as the system kernel or nucleus . One
component of the nucleus is the scheduler, which is responsible for the
allocation of processors to processes, that is, the resolution of the
mismatch between the number of processes that can execute and the
number of processors available to execute them. In distributed
systems, the scheduler itself may be distributed [Bamberger89].

The processes in some concurrent programs are assigned explicitly to
particular processors by the program designer. More commonly,
however, the mapping is handled implicitly by the scheduler.

Processes often execute with different priorities. One objective of the
scheduler is to ensure that all running processes have no lower a
priority than those that are in a ready state. Priorities may be
assigned explicitly by the program designer or be set and adjusted
implicitly by the scheduler.

The compilation of a concurrent program results in the generation of
calls to the kernel that may trigger scheduling operations. Any entry
to the kernel provides an opportunity to suspend the process involved
and select another for execution. In some cases, normal program
behavior may result in an acceptably even distribution of processor
power over the competing processes. However, when processing power
is scarce it is desirable to implement some form of time slicing to
ensure that all processes make steady progress. This is often
implemented with the assistance of a system clock that interrupts at
least one processor at regular intervals.

2. Program Construction
Most aspects of concurrent program construction are covered by other
curriculum modules. This section provides an introduction to that material
and adds supplementary information where appropriate.

10 Concepts of Concurrent Programming SEI-CM-24

2.1. Development Methods

Concurrent and sequential programs are developed in much the same
way [Scacchi87]. There are three main phases involved: requirements
analysis, software design, and software coding [Rombach90]. In practice,
these phases are not clearly distinguished [Swartout82]. This is
particularly evident in the notations used for describing the products of
each phase, as often the same notation can be applied in more than one
phase [Rombach90]. In what follows, methods are discussed under the
headings requirements, design, or coding to indicate their main level of
concern; however, it should be understood that the techniques involved
can often be used in several contexts.

2.2. A Requirements View

The nature and management of software requirements, in general, are
discussed in [Brackett90]. The small part of this material dealing with
concurrent systems is elaborated in [Gomma89]. The formal
specification of requirements is covered in [Berztiss87].

At the requirements level, properties of programs are emphasized rather
than their structure. This section identifies some techniques for
describing properties of concurrent systems formally, in the
mathematical sense. Note, however, that there are important properties
that cannot, at present, be expressed adequately this way. These include
performance requirements such as a stipulation of an average response
time to an event. Formal descriptions are therefore used in conjunction
with natural language statements of requirements as a way of making
them more precise.

2.2.1. Temporal logic

Temporal logic can be used for the formal description of either
concurrent or sequential programs. It is an extension of classical
logic to deal with time [Galton87].

Each execution of a program yields a computation that can be
expressed as a linear sequence of states and associated events. This
is known as a trace. Temporal logic is a formalism for specifying
structures of traces. Two varieties of temporal logic are in use,
distinguished by the view they take of the possible traces for a given
program [Pneuli86]:
• Linear time temporal logic considers traces individually.
• Branching time temporal logic assumes that the possible traces

form a computation tree that retains information about the states
at which nondeterministic choices were made.

In either case, a set of operators (and accompanying symbols) are
defined and used in the construction of temporal formulae. Pneuli
[Pneuli86] defines (strong) operators next, until, previous and since, on
which are built derived operators, such as eventually, henceforth and
unless. These in turn are used in formulae to make statements of the
form:
• if p now then eventually q
• every p is followed by a q

where p and q are state formulae evaluated for particular states of the
computation. Temporal logic is used to describe safety and liveness
properties of programs.

SEI-CM-24 Concepts of Concurrent Programming 11

2.2.2. Petri nets

Petri nets [Peterson81, Reisig85] offer a means of modeling
information flow in a concurrent system. There are several varieties
of net. In a “condition/event” net, events are linked by conditions.
Each event has a set of input and a set of output conditions. Output
conditions from one event may serve as input conditions to another,
thereby forming the net. An event occurs when all of the necessary
input conditions are satisfied. Events may occur simultaneously.
Each such event enables its output conditions, which in turn may
enable other events. For simple systems, the net can usefully be
summarized in a graphical form.

2.2.3. Process models

The behavior of a concurrent program can be described in terms of
communicating processes [Brinksma88, Hoare85, Milner89]. Each
process is described in terms of the actions or events in which it is
involved. There are, in general, three types of event specified:
1. An event internal to a single process.
2. A synchronization (communication) between one process and one

or more others.
3. A synchronization between one or more processes and the

environment of the system described.

Process descriptions compose events to constrain their order of
occurrence. Typically, processes are defined in a recursive fashion.
For example, the action of a clock (process) might be described as an
infinite sequence of tick and tock events, thus:

clock: (tick; tock; clock)

The precise notation and set of operators available for process
description vary from one notation to another, but each supports the
same basic approach to system specification.

2.2.4. Finite state machines

A finite state machine (FSM) may be used to model the behavioral
aspects of a process [Davis88]; concurrent systems may be described
by interacting FSMs [Harel88].

An FSM is defined by a set of states and transitions among them. A
state transition diagram is a graphical representation of an FSM in
which nodes represent states and arcs represent state transitions. An
FSM may also be described by a state transition matrix.

2.2.5. Data flow diagrams

A data flow diagram (DFD) is a graph showing data transformations
and repositories (as nodes) and the data flowing among them (as
connecting arcs). Such a description is inherently concurrent in that
it permits parallel data transformation. For more direct use in
describing concurrent systems, event flows and c o n t r o l
transformations (representing constraints on events) have been added
to the standard DFD notation [Ward85].

2.3. A Design View

A general introduction to program design is presented in [Budgen89] and
the design of concurrent systems covered in [Gomaa89]. Surveys of a

12 Concepts of Concurrent Programming SEI-CM-24

number of techniques in this area may be found in [Davis88]. Gomaa’s
module is primarily concerned with real-time programs but much of the
discussion is relevant to concurrent programs in general. He covers five
main methods in detail:
1. Structured Analysis and Design for Real-Time Systems [Ward85,

Yourdon89].
2. Naval Research Lab Software Cost Reduction Method [Parnas84].
3. Object-Oriented Design [Booch86].
4. Jackson System Development for Real-Time Systems [Sutcliffe88].
5 Design Approach for Real-Time Systems (DARTS) [Gomaa87].

Each method is discussed under six headings: overview, basic concepts,
steps in method, products of design process, assessment of method, and
extensions/variations. The first method is the one used most extensively
at present [Wood89], but the popularity of the object-oriented approach to
program development is increasing rapidly.

The design of parallel programs (those taking advantage of hardware
support for parallel processing) is discussed in [Carriero89]. The
following approaches are identified:
• Result parallelism, where the design is based on the data structure

produced by the program. Separate elements of the data structure can
be computed simultaneously.

• Agenda parallelism, where the design is based on the sequence of steps
in a computation. Some steps may be divided into computations that
are performed in parallel (fork-and-join concurrency).

• Specialist parallelism, where the design is based on components with a
clearly identifiable purpose. This is essentially object-oriented design
[Booch86]; the components cooperate, in parallel, to achieve the overall
purpose of the program.

The basic approach taken in any particular instance is largely dictated
by the nature of the application.

2.4. A Coding View

The representation of concurrent programs is discussed in [Feldman90].
Essentially the main concerns are:
• The representation of processes.
• The representation of a mechanism (or mechanisms) for process

interaction.

Concurrent behavior may be expressed directly in a programming
notation or implemented by system calls. In a programming notation, a
process is usually described in a program block and process instances
created through declaration or invocation references to that block.

Process interaction is via shared variables or by message passing from
one process to another. Programming languages tend to support only one
of these approaches, which are discussed separately in 2.4.1 and 2.4.2
below.

2.4.1. Interaction via shared variables

Shared variables are manipulated in a critical region. Mutual
exclusion can be implemented without special language features in
some circumstances (e.g., see Dekker’s algorithm in [Ben-Ari82]) but,

SEI-CM-24 Concepts of Concurrent Programming 13

in general, explicit protection is necessary. This protection is
implemented by code that encompasses the critical region, thus:

acquire exclusive access to region
critical region

release exclusive access to region

The main ways to provide the protection are now discussed briefly.
Further information may be found in [Raynal86].

2.4.1.1. Status variables

Entry to a critical region can be controlled by a status variable
(memory bit) that indicates whether or not the region is currently
occupied by a process. The status variable itself requires
exclusive access. This can be handled by an atomic operation that
both inspects and sets the variable without interruption. Most
computers provide such an instruction.

The status variable mechanism is simple to understand and
implement. However, it is insecure and also potentially wasteful
because it encourages busy waiting.

2.4.1.2. Semaphores

A semaphore can be regarded as a high-level abstraction for the
status variable mechanism described in Section 2.4.1.1. Entry to
and exit from a critical region is controlled by P and V
operations, respectively. The notation was proposed by Dijkstra
[Dijkstra68], and the operations can be read as “wait if necessary”
and “signal” (the letters actually represent Dutch words meaning
pass and release). Some semaphores are defined to give access to
competing processes in arrival order. The original definition,
however, does not stipulate an order; and even some appearing
recently [BSI89] are defined that way. The less strict definition
gives greater flexibility to the implementor but forces the program
designer to find other means of managing queues of waiting
processes.

Semaphores are the most commonly used mechanism for
controlling mutual exclusion. They are, however, insecure and
also too restrictive because they cannot be inspected directly [Ben-
Ari82].

2.4.1.3. Conditional critical regions

The conditional critical region concept was proposed by Hoare
and Brinch Hansen [Andrews83] to improve on the recognized
deficiencies of semaphores. Variables in a critical region are
defined as a named resource. Critical regions are then preceded
by the appropriate resource identification and (optionally) a
condition to be satisfied before entry can be effected.

This mechanism has only been implemented experimentally and
its relevance is largely historical. However, it has been an
important influence on modern programming notations.

2.4.1.4. Monitors

The monitor concept was proposed by Brinch Hansen [Brinch
Hansen77] and Hoare [Hoare74]. A monitor improves on the
conditional critical region construct by combining regions that

14 Concepts of Concurrent Programming SEI-CM-24

use the same resource in one program block. The monitor is less
convenient for the program developer, however, because the
suspension and reactivation of processes awaiting a program
event must be performed explicitly.

A monitor provides a set of procedures through which operations
on shared data are performed. The execution of one procedure by
any process causes all other processes attempting entry to the
monitor to be delayed until the first process has finished or has
been suspended. A comparison of the main implementations of
monitors in programming languages may be found in
[Bustard88].

2.4.2. Interaction by message passing

Process interaction through message passing has proved to be a more
popular model of behavior than that based on shared variables. This
is the model used most often by those considering formal aspects of
program description [Brinksma88, Hoare85, Milner89] and is the
model adopted by the major languages supporting the representation
of concurrent behavior: Ada [Burns85] and Concurrent C [Gehani89].
It is also a model amenable to implementation in a distributed
environment.

Communication may be synchronous or asynchronous (as discussed
in Section 1.1.5.2). In some formal models, communicating processes
name each other [Hoare78], but this does not occur in programming
languages because it makes the management of a process library
difficult. The alternatives are:
• Processes can name a shared communication channel [INMOS88].
• Processes can communicate asymmetrically, with only the

sending process naming the receiver [Burns85]. For example, in
Ada the instigating process invokes an entry procedure made
available by the receiving process and the receiving process
executes a statement to accept the call. Several processes
invoking the same entry procedure are made to wait in arrival
order. The receiving process may accept one from a number of
available entry calls and may put preconditions on their
acceptance. The basic communication mechanism, allowing
exchange of information, is called a rendezvous. Concurrent C
[Gehani89] also supports the rendezvous concept but in addition
permits asynchronous communication in which the sending
process is able to proceed without waiting for data supplied to be
accepted explicitly.

2.5. Concurrent Program Evaluation

A number of existing curriculum modules deal with the evaluation of
programs and their intermediate specification and design products. A
general introduction to validation and verification may be found in
[Collofello88], with specific details on testing and analysis provided by
[Morell89]. Formal verification is covered in [Berztiss88]. Some aspects
of validation and verification specific to concurrent systems are given in
[Gomaa89]. A survey of concurrent program evaluation techniques, with
particular emphasis on debugging, may be found in [McDowell89].

SEI-CM-24 Concepts of Concurrent Programming 15

3. Common Applications
This section looks very briefly at the characteristics of concurrent programs
in a few commonly occurring application areas. The first three areas are
discussed in greater detail in [Bustard88].

3.1. Real-Time Systems

Real-time systems are described in [Gomaa89]. Gomaa identifies six
distinguishing characteristics, some or all of which may be present in
any particular instance:

1. A real-time program may be a component of a larger
hardware/software system; this is known as an e m b e d d e d
application.

2. A real-time program typically interacts with an external
environment; the interaction may be with humans, but more
commonly, it is with equipment of various kinds.

3. All real-time programs have timing constraints, meaning that they
must perform certain actions within a defined time period.

4. A real-time program will often have to make control decisions based
on input data.

5. A real-time program is usually event driven (also known as reactive
[Pneuli86]), that is, it carries out operations in response to the input it
receives (including the passage of time indicated by a real-time
clock).

6. A real-time program is usually concurrent in order to respond to, or
control, events that may occur simultaneously.

It is normal, when designing a real-time program, to dedicate a separate
process to the management of each distinct event source, and this largely
dictates the concurrent structure of the program. Typically, process
interaction is more concerned with the communication of data rather
than the management of resources; indeed, to meet timing constraints
there should be no significant delay in a process obtaining what it
requires. Real-time programs may execute on top of a run-time kernel or
on top of a real-time operating system that implements some or all of the
low-level device handling functions.

3.2. General-Purpose Operating Systems

A general-purpose operating system manages the resources of a
computing facility to provide a service to one or more users [Deitel84,
Habermann76, Lister85]. An operating system is a class of real-time
system and possesses most of the distinguishing characteristics listed in
Section 3.1 (i.e., 2, 3, 5, 6). As with real-time systems, processes are often
dedicated to device handling. Processes are also used to manage requests
issued by a user; there is generally one process per user that handles
basic communication and others that are created (spawned), when
necessary, to perform user-initiated operations.

Resource management is the main concern of an operating system, and
that is reflected in the literature. Historically, emphasis has been placed
on making best use of the resources available because computing
equipment was so expensive. This then tended to increase the likelihood
of deadlock and livelock in the systems constructed. Now that equipment
is cheaper, there is less sharing. Indeed, many functions of an operating

16 Concepts of Concurrent Programming SEI-CM-24

system are often distributed (e.g., dedicated file and print servers)
[Critchlow88, Tanenbaum85]. Consequently, deadlock and livelock
problems have become less common.

Examples of operating systems expressed in a monitor-based
programming language may be found in [Brinch Hansen77, Joseph84].

3.3. Simulation Systems

A good general introduction to the programming of simulation systems
may be found in [Kreutzer86]. Discrete event simulation, where the
simulation is driven by events occurring in the system being modeled, is
the approach that has been given most attention by computer scientists
[Birtwistle79].

Real-time and operating systems are often simulated before they are put
into live operation. In particular, this is essential when a program is
potentially life-threatening such as in the control system of an aircraft, a
pacemaker, or even the doors of an elevator. The real-time program may
be placed in a simulated environment or modified slightly to map its
environment operations onto standard devices and data files [Bustard88].

Simulation programs may also be constructed to model complex real-
world situations in order to gain a greater understanding of the systems
involved. Simulation programs are often constructed as sequential
programs. However, by using a concurrent structure it is usually
possible to model the system under investigation more directly. Because
simulation programs undergo frequent modification, to experiment with
the model they implement, it is desirable that they be easy to understand.

General simulation models may involve resource management and
process communication activities that are considerably more complex
than those found in real-time or operating systems. The one standard
requirement of simulation applications is a need to model time. In effect,
simulated time becomes the common synchronization mechanism for all
processes of a simulation program [Bustard88].

3.4. Database Systems

Introductions to database systems may be found in [Date86, Ullman82];
these cover the terms and techniques introduced below. In addition,
details of the programming of such systems may be found in [Hughes88].
Concurrency issues, including the management of distributed databases,
are given particular attention in [Bernstein87].

A database is a structured collection of data items. Databases are
generally concurrent systems because of the need to permit more than one
user to have access to the database simultaneously. A transaction is the
sets of actions performed on a set of data items, transforming the
database from one consistent state to another. The effect of executing
several transactions concurrently must be the same as executing them in
sequence.

Forcing transactions into a strict sequence by implementing mutual
exclusion for the complete database is one way to guarantee consistency.
However, to keep user response at an acceptable level, it is usually
essential to implement read and write locks on smaller data units. The
size of the unit defines the degree of granularity involved. A transaction
will generally require access to several data units simultaneously so
some mechanism for dealing with deadlock is required.

SEI-CM-24 Concepts of Concurrent Programming 17

Normally, no attempt is made to avoid deadlock. Instead, it is detected
and a recovery implemented by aborting one or more locked transactions
and undoing any changes made to the database by those transactions
(roll-back).

Another approach (optimistic scheduling), not involving locks, is to first
determine the modifications required and then commit the changes (two-
phase commit policy). At that point, the set of read and write operations on
the database are compared with those performed by concurrent
transactions that have already been committed. If a conflict is detected,
the candidate transaction is rejected; otherwise the database is updated.

Each definition given in the glossary has a reference to the section(s) in
the outline where the term appears. Definitions of other terms and, in
some cases, alternative interpretations of the terms defined below may
be found in [IEEE87].

agenda parallelism

a design technique for parallel programs that introduces
parallelism in the sequence of steps in a computation [2.3].

array processor

a set of identical processing elements synchronized to perform the
same instruction simultaneously on different data [1.4.2].

asleep

a process state in which the process is suspended awaiting a
particular event [1.4.4].

asynchronous communication

communication among processes that is achieved by the sender of
the information leaving it in a buffer for the receiver to collect
[1.1.6.2].

awake

a process state in which the process is able to execute [1.4.4].

blocked

a synonym for asleep.

branching time temporal logic

a version of temporal logic that treats the computations resulting
from the execution of a program as a tree that retains information
about the states at which nondeterministic choices were made [2.2.1].

Glossary

18 Concepts of Concurrent Programming SEI-CM-24

buffer

a shared data structure that supplies data items in the order in
which they were inserted [1.1.6.2].

busy waiting

the action of a process that executes a loop awaiting a change of
program state [1.2.5].

close coupling

a point-to-point interprocessor linkbetween computers [1.4.2].

communication channel

a logical link established between pairs of processes to enable them to
communicate [2.4.2].

concurrent program

(1) a program specifying two or more sequential programs [1.1.2];

(2) a program specifying actions that may be performed simultane-
ously [1.1.3].

concurrent system

a set of programs communicating through an agreed protocol [1.1.4].

conditional critical region

a language construct used to identify a critical region, the shared
variables that it accesses, and any preconditions for entry to the
region [2.4.1.3].

control transformation (Ward/Mellor Real-Time Structured Analysis)

a control function that is defined by means of a state transition
diagram [2.2.5].

critical region

a section of code that performs an operation that must not be
executed by more than one process at a time [1.2.1].

critical section

a synonym for critical region.

data flow diagram (DFD)

a graph that depicts data nodes (data sources, data sinks, data
storage, and processes performed on data) and data arcs (data flow
connecting data nodes) [2.2.5].

SEI-CM-24 Concepts of Concurrent Programming 19

database

a structured collection of data items [3.4].

dataflow machine

a set of processing elements that are triggered to produce a result by
the presence of the required operands [1.4.2].

deadlock

a program state in which a process is delayed awaiting an event that
will not occur [1.2.2].

degree of granularity

in databases, the size of the data item on which locks are imposed
[3.4].

discrete event simulation

a simulation mechanism in which all significant actions have
associated events, events are maintained in time order and the
model executes by advancing from one event to the next, performing
any required computation at each step [3.3].

distributed processing

the sharing of the processors of a multicomputer among a set of
competing processes [1.4.2].

distributed program

a parallel program designed to be executed on a network of
autonomous processors that do not share main memory [1.1.3].

distributed system

a parallel system executed on a network of autonomous processors
that do not share main memory [1.1.4].

embedded system

a hardware/software system with a real-time control program as a
component [3.1].

event-driven program

a synonym for reactive program.

event flow (Ward/Mellor Real-Time Structured Analysis)

a signal indicating that an event has taken place [2.2.5].

20 Concepts of Concurrent Programming SEI-CM-24

explicitly concurrency

the concurrency present in a program specifying actions that are
intended to be executed in parallel [Preface, 1.1.1].

explicit interaction

the interaction among processes of a concurrent program that is
specified explicitly [1.1.6].

fairness

(1) (weak) a mechanism for ensuring that when a choice among
possible actions is made repeatedly, no action is ignored
indefinitely (i.e., there is no indefinite postponement present)
[1.2.4, 1.3.2].

(2) (strong) a mechanism for ensuring that when a choice among
possible actions is made, each action has an equal probability of
selection [1.2.4, 1.4.5].

finite state machine (FSM)

a computational model consisting of a finite number of states and
transitions between those states [2.2.4].

fork-and-join concurrency

a model of process creation and termination in which a sequential
computation divides into parallel threads of execution that later
recombine [1.4.3].

grain of concurrency

the mean computation time between communications during the
execution of a concurrent program [1.4.1].

implicitly concurrency

the concurrency present in a program that is designed to be
sequential but which includes actions that can be executed in
parallel [1.1.1].

implicit interaction

the interaction among processes of a concurrent program that
occurs implicitly as a consequence of sharing resources needed for
execution [1.1.6].

indefinite postponement

a program state in which a process is delayed awaiting an event that
may never occur [1.2.3].

SEI-CM-24 Concepts of Concurrent Programming 21

inherent concurrency

the concurrency present in a program constructed to control or
model physical systems that involve parallel activity [Preface].

induction

a method of proof in which a property is shown to hold for an initial
state of a computation and for each change of state within that
computation [1.3.1].

invariant

a condition that is true at all points in a computation [1.3.1].

kernel

(1) that portion of an operating system that is kept in main memory
at all times;

(2) a software module that encapsulates an elementary function or
functions of a system [1.4.5].

level of concurrency

the mean number of active processes present during the execution of
a program [1.4.1].

linear time temporal logic

a version of temporal logic that applies to individual program
computations [2.2.1].

liveness

a program property that holds at some point in a computation [1.3.2].

lock

in databases, a mechanism for controlling read and write access to
data items; several processes may read a data item simultaneously
but only one at a time may modify it [3.4].

lockout

a synonym for indefinite postponement.

loose coupling

a network connection between computers [1.4.2].

message passing

a mechanism for enabling one process to make information
available to others by directing it to the processes concerned [1.1.6].

22 Concepts of Concurrent Programming SEI-CM-24

monitor

a data structure encapsulating shared variables and defining a set of
operations through which the variables may be manipulated; only
one process at a time may execute any of the operations [2.2.3.4].

multicomputer

a computer with several processors, each of which has private main
memory [1.4.2].

multiprocessing

the sharing of the processors of a multiprocessor among a set of
competing processes [1.4.2].

multiprocessor

a computer with several processors sharing a common main
memory [1.4.2].

multiprogramming

the sharing of a single processor among a set of competing processes
[1.4.2].

multitasking

a synonym for multiprogramming.

mutual exclusion

a mechanism for ensuring that only one process at a time performs
a specified action [1.2.1].

nondeterminism

a property of a program, in which that there is a partial ordering,
rather than a total ordering, on the actions it specifies [1.1.5].

nucleus

a synonym for kernel.

optimistic scheduling

a mechanism for controlling concurrent access to a database; free
access is permitted and any transaction that causes conflict is rolled
back; the database is modified through a two-phase commit
procedure [3.4].

parallel program

a concurrent program designed for execution on parallel hardware
[1.1.3].

SEI-CM-24 Concepts of Concurrent Programming 23

parallel system

a concurrent system executed on parallel hardware [1.1.4].

performance-oriented concurrency

the concurrency present in a program constructed to take advantage
of hardware supporting parallel processing [Preface].

Petri net

an abstract formal model of information flow, showing static and
dynamic properties of a system. A Petri net is usually represented
as a graph having two types of node (called places and transitions)
connected by arcs, and markings (called tokens) indicating dynamic
properties [2.2.2].

pipeline processor

a set of processing elements dedicated to performing the separate
low-level steps of an arithmetic operation in sequence [1.4.2].

process

(1) the execution of a sequential program [1.1.2];

(2) the name of a program construct used to describe the behavior of
a process [1.1.2].

pseudoparallel program

a concurrent program designed for execution by a single processor
[1.1.3].

quasiparallel program

a pseudoparallel program in which processes execute cooperatively
by transferring control to each other using a coroutine mechanism
[1.1.3].

reactive program

a program that carries out operations in response to the input it
receives [3.1].

ready

a process state in which the process is awake but unable to proceed
until it is assigned a processor [1.4.4].

reduction machine

a set of processing elements, each of which is triggered to obtain
operands by a request for a result [1.4.2].

24 Concepts of Concurrent Programming SEI-CM-24

rendezvous

the synchronization of two processes to exchange information [2.4.2].

resource

(1) a facility in a computing system;

(2) in the conditional critical region mechanism, a construct in
which the variables referenced in a critical region are identified
[2.4.1.3].

result parallelism

a design technique for parallel programs that introduces
parallelism in the construction of the data structure produced by a
program [2.3].

roll-back

the mechanism for undoing a partial change to a database to restore
it to a consistent state [3.4].

running

a process state in which the process is awake and has been assigned
a processor [1.4.4].

safety

a program property that holds at every point in a computation [1.3.1].

scale of concurrency

the mean duration of processes in the execution of a program [1.4.1].

scheduler

the software responsible for administering the allocation of
processors to processes during the execution of a program [1.4.1].

semaphore

a variable used to control access to a critical region [2.4.1.2].

sequential program

a program specifying statements that are intended to be executed in
sequence [1.1.2].

shared resource

a facility of a concurrent program that is accessible to two or more
processes of that program [1.1.6.1].

SEI-CM-24 Concepts of Concurrent Programming 25

shared variables

a mechanism that enables one process to make information
available to others by leaving it in variables accessible to the
processes concerned [1.1.6].

specialist parallelism

a design technique for parallel programs that introduces
parallelism at the level of autonomous program components [2.3].

spin-lock

the state variables on which busy waiting is performed.

starvation

a synonym for indefinite postponement.

state formula

a predicate evaluated for a particular state of a computation [2.2.1].

state transition diagram

a graphical representation of a finite state machine in which nodes
represent states and arcs represent state transitions [2.2.4].

state transition matrix

a grid representation of a finite state machine in which system
states range across and down the grid, and grid elements identify
permitted state transitions [2.2.4].

synchronization

(1) the control of the execution of two or more interacting processes
so that they perform the same operation simultaneously;

(2) the control of the execution of two or more interacting processes
so that they exclude each other from performing the same
operation simultaneously [1.1.6].

synchronous communication

message passing between processes achieved by synchronizing their
execution to perform the transfer of information from one to another
[1.1.6.2].

task

the name of a program construct used to describe the behavior of a
process [1.1.2].

26 Concepts of Concurrent Programming SEI-CM-24

temporal logic

an extension of classical logic to deal with time; it is a formalism for
specifying structures of states [2.2.1].

temporal operator

a qualification of the range over which an assertion about the state of
a computation applies [2.2.1].

terminated

a process state in which the execution of the process is complete
[1.4.4].

time-dependent error

see transient error.

time slicing

a mode of concurrent program execution in which ready processes of
equal priority are allowed to execute in rotation for a small, fixed
period of processing time [1.4.5].

trace

a sequence of states and associated events in a computation [2.2.1].

transaction

the set of actions performed on a set of data items, transforming a
database from one consistent state to another [3.4].

transient error

an error that may not be repeatable because of nondeterministic
program behavior [1.2.6].

two-phase commit

a database transaction mechanism in which the transaction
changes are first determined and then committed if they are not in
conflict with any other transaction that has completed [3.4].

unit of concurrency

the language component on which program behavior is defined
[1.4.1].

vector processor

a pipeline processor that can execute the same instruction on a
vector of operands [1.4.2].

SEI-CM-24 Concepts of Concurrent Programming 27

workstation-LAN (local area network)

a multicomputer whose processors are in the same vicinity [1.4.2].

workstation-WAN (wide area network)

a multicomputer whose processors are physically remote [1.4.2].

28 Concepts of Concurrent Programming SEI-CM-24

Teaching
Considerations

The material in this curriculum module might be used in a course
dealing specifically with concurrent programming or in one where
concurrent programming is relevant. The latter case includes courses
devoted to specific programming languages and to specific application
areas. This defines four main classes of course:

1. A concurrent programming course, i.e., a course dedicated to all
aspects of concurrent programming.

2. A related computing course, i.e., a course requiring a broad
introduction to concurrent programming; examples include
hardware courses and formal courses on specification and
verification.

3. A language-specific course, i.e., a course largely devoted to a
particular programming language, such as Ada, where facilities
for concurrent programming are a major concern.

4 An application-specific course, i.e., a course largely devoted to a
particular application area, such as operating systems, where the
design of concurrent software is a major issue.

Following the philosophy outlined in the Preface, a concurrent
programming course should be the first computing course offered to
students! Until this view is more widely shared, it seems likely that
those starting a course involving concurrency will already be skilled in
the development of sequential programs. Thus, concurrent
programming will tend to be taught as a generalization of sequential
programming techniques. A report of one experience in this area may
be found in [Bustard90].

This module deals with fundamental material that should be covered in
total, regardless of where it is used. The presentation time will vary
according to the type of course involved, the depth of coverage required,

Potential
Audience

Prerequisites

Using the
Outline

SEI-CM-24 Concepts of Concurrent Programming 29

the number of examples used, and the experience of the intended
audience.

Advice is offered separately for each type of course identified above.

1. Concurrent Programming Course

A concurrent programming course should take a broad view of the
subject. In practice, this means covering a range of techniques for each
phase of the life cycle and studying several application areas. The
chances of achieving generality can be improved by devoting at least a
third of the available time to the requirements analysis and design
phases of software development.

2. Related Computing Course

Where concurrency is a component of a course, only a few topics can be
considered in detail. These will tend to be dictated by the nature of the
course. In all cases, however, it seems desirable to give adequate
coverage to the software engineering aspects of program development.
In practice, this means presenting a suitable software development
method in some detail.

3. Language-Specific Course

In a language-specific course, the need to cover details of the language
in preparation for practical exercises tends to encourage a rushed
treatment of requirements analysis and design. To ensure adequate
coverage, it may be necessary to present software development bottom-
up; that is, after basic concepts, cover language issues, then design, and
finally requirements.

4. Application-Specific Course

In an application-specific course, it is tempting to draw all of the
illustrative examples from the application area. This seems
undesirable as it tends to deny the generality of the concepts involved.
One compromise is to first discuss programming situations by analogy
with real-world interactions; this is particularly appropriate when
considering the basic concurrency concepts.

On covering the material outlined in this module, a student should
understand the nature of a concurrent program and the means by
which it can be constructed and executed. Such comprehension might
be assessed in a written or oral examination.

Objectives

30 Concepts of Concurrent Programming SEI-CM-24

More specifically, a student should:
• Understand the concepts of sequential process, sequential program

and concurrent program.
• Understand the differences between a concurrent program, a

parallel program and a distributed program.
• Appreciate the reasons for constructing a program in a concurrent

form.
• Be able to relate the process interactions that occur in a concurrent

program to real-world resource management and communication
situations.

• Understand the problems that are specific to concurrent programs
and the means by which such problems can be avoided or overcome.

• Be aware of the different environments in which a concurrent
program may be executed and the corresponding means of
execution that are appropriate.

• Be aware of the influence of the execution environment on program
design.

• Appreciate the role of formality in the description of concurrent
programs.

• Understand one or more techniques for specifying concurrent
behavior.

• Understand one or more techniques for designing concurrent
programs.

• Understand one or more of the implementation languages in which
a concurrent program can be expressed.

• Have knowledge of the historical development of mechanisms for
controlling process interaction in a concurrent program.

• Appreciate the main characteristics of the common concurrency
application areas.

With such comprehension, a student should then be able to:
• Undertake a deeper study of any concurrency-related topic.
• Examine in depth the concurrency aspects of any particular

application area.

There is no single textbook that covers all of the material outlined in this
module. Most textbooks have a particular focus, such as an application
area, a programming language, the formal expression of program
properties, machine architectures, software analysis and design, and so
on. References to textbooks with such emphases may be found in the
body of the outline, with some further detail presented in the
bibliography.

Resources

SEI-CM-24 Concepts of Concurrent Programming 31

Bibliography

The table of contents is shown for each book that is considered
particularly relevant to the material covered in this module, with the
number of pages in a chapter given in brackets after each chapter
heading.

Andrews83
Andrews, G. R., and Schneider, F. B. “Concepts and Notations for
Concurrent Programming.” ACM Computing Surveys 15, 1 (Mar.
1983), 3-43. Reprinted in [Gehani88].

Abstract: Much has been learned in the last decade about concurrent
programming. This paper identifies the major concepts of concurrent
programming and describes some of the more important language notations
for writing concurrent programs. The roles of processes, communication
and synchronization are discussed. Language notations for expressing
concurrent execution and for specifying process interaction are surveyed.
Synchronization primitives based on shared variables and on message
passing are described. Finally, three general classes of concurrent
programming languages are identified and compared.

Major developments since the appearance of this paper are surveyed in
[Bal89].

Bal89
Bal, H. E., Steiner, J. G., and Tanenbaum, A. S. “Programming
Languages for Distributed Computing Systems.” ACM Computing
Surveys 21, 3 (Sept. 1989), 261-322.

Abstract: When distributed systems first appeared, they were programmed
in traditional sequential languages, usually with the addition of a few
library procedures for sending and receiving messages. As distributed
applications became more commonplace and more sophisticated, this ad
hoc approach became less satisfactory. Researchers all over the world
began designing new programming languages specifically for implementing
distributed applications. These languages and their history, their underlying
principles, their design, and their use are the subject of this paper.

We begin by giving our view of what a distributed system is, illustrating
with examples to avoid confusion on this important and controversial point.
We then describe the three main characteristics that distinguish distributed
programming languages from traditional sequential languages, namely, how

32 Concepts of Concurrent Programming SEI-CM-24

they deal with parallelism, communication, and partial failures. Finally, we
discuss 15 representative distributed languages to give the flavor of each.
These examples include languages based on message passing, rendezvous,
remote procedure call, objects, and atomic transitions, as well as functional
languages, logic languages, and distributed data structure languages. The
paper concludes with a comprehensive bibliography listing over 200 papers
on nearly 100 distributed programming languages.

This is a very useful reference document. Note that the paper deals with
concurrency in general, despite its title. The only area not covered is
shared memory systems, details of which may be found in [Andrews83].

Bamberger89
Bamberger, J., Colket, C., Firth, R., Klein, D., and Van Scoy, V.
Kernel Facilities Definition (Version 3.0) . Technical Report
CMU/SEI-88-TR-16, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., Dec. 1989.

Table of Contents:
1. Kernel Background: rationale, definitions, kernel functional areas; 2.
Requirements: general, processor, process, semaphore, scheduling,
communication, interrupt, time, alarm, tool; 3. Kernel Primitives (matching
requirements).

This report defines the functionality of a distributed Ada real-time
kernel.

Ben-Ari82
Ben-Ari, M. Principles of Concurrent Programming. Prentice-Hall
International, 1982.

Table of Contents:
1. What is Concurrent Programming? (17); 2. The Concurrent
Programming Abstraction (11); 3. The Mutual Exclusion Problem (21);
4. Semaphores (23); 5. Monitors (20); 6. The Ada Rendezvous (16); 7. The
Dining Philosophers (10).

A short but highly informative introduction to the basic concepts in
concurrent programming. All the major classical examples from the
literature are discussed. One distinctive feature of the book is that it
introduces a rigorous approach to the analysis of concurrent behavior
without resorting to mathematical notation.

An appendix provides an implementation kit for the simple concurrent
programming language Co-Pascal. The exercises are good.

Ben-Ari90
Ben-Ari, M. Principles of Concurrent & Distributed Programming .
Prentice-Hall International, 1990.

Just published. Details not yet available.

SEI-CM-24 Concepts of Concurrent Programming 33

Bernstein87
Bernstein, P. A., Hadzilacos, V., and Goodman, N. Concurrency
Control and Recovery in Database Systems . Reading, M.A.:
Addison-Wesley, 1987.

Berztiss87
Berztiss, A. Formal Specification of Software. Curriculum Module
SEI-CM-8-1.0, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., Oct. 1987.

Abstract: This module introduces methods for the formal specification of
programs and large software systems, and reviews the domains of
application of these methods. Its emphasis is on the functional properties of
software. It does not deal with the specification of programming languages,
the specification of user-computer interfaces, or the verification of
programs. Neither does it attempt to cover the specification of distributed
systems.

Birtwistle79
Birtwistle, G. M. Discrete Event Modeling on SIMULA. London:
Macmillan, 1979.

This is an introductory level text containing many examples in Simula
(credited as the first object-oriented language).

Booch86
Booch, G. “Object-Oriented Development.” IEEE Trans. Software
Eng. SE-12, 2 (Feb. 1986), 211-221.

Abstract: Object-oriented development is a partial-lifecycle software
development method in which the decomposition of a system is based upon
the concept of an object. This method is fundamentally different from
traditional functional approaches to design and serves to help manage the
complexity of massive software-intensive systems. The paper examines the
process of object-oriented development as well as the influences upon this
approach from advances in abstraction mechanisms, programming
languages and hardware. The concept of an object is central to object-
oriented development and so the properties of an object are discussed in
detail. The paper concludes with an examination of the mapping of object-
oriented techniques to Ada using a design case study.

Brackett90
Brackett, J. W. Software Requirements. Curriculum Module SEI-
CM-19-1.2, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., Jan. 1990.

Abstract: This curriculum module is concerned with the definition of
software requirements – the software engineering process of determining
what is to be produced – and the products generated in that definition. The
process involves all of the following: requirements identification,
requirements analysis, requirements representation, requirements

34 Concepts of Concurrent Programming SEI-CM-24

communication and development of acceptance criteria and procedures.
The outcome of requirements definition is a precursor of software design.

Brinch Hansen77
Brinch Hansen, P. The Architecture of Concurrent Programs.
Englewood Cliffs, N. J.: Prentice-Hall, 1977.

This is an edited collection of papers that describe the monitor-based
programming language Concurrent Pascal and its use in a number of
applications; the most significant example is the Solo Operating System.

Brinksma88
Brinksma, E., ed. Information Processing Systems - OSI - LOTOS - A
Formal Technique Based on Temporal Ordering of Observational
Behavior. Standard ISO IS 8807, 1988.

This standard for the formal description language LOTOS includes a
tutorial introduction to the notation.

BSI89
BSI. Draft British Standard for Programming Language Modula 2:
Third Working Draft. Standard ISO/IEC DP 10514, British Standards
Institute, Nov. 1989.

Defines a “Processes” and a “Semaphores” module. The semaphore
model makes no allowance for the waiting time of processes that are
delayed.

Burns85
Burns, A. Concurrent Programming in Ada. Cambridge:
Cambridge University Press, 1985.

Table of Contents:
1. The Ada Language (16); 2. The Nature and Uses of Concurrent
Programming (10); 3. Inter-Process Communication (22); 4. Ada Task
Types and Objects (12); 5. Ada Inter-Task Communication (16); 6. The
Select Statement (22); 7. Task Termination, Exceptions and Attributes (12);
8. Tasks and Packages (14); 9. Access Types for Tasks (10); 10. Resource
Management (20); 11. Task Scheduling (12); 12. Low-Level Programming
(16); 13. Implementation of Ada Tasking (16); 14. Portability (4); 15.
Programming Style for Ada Tasking (12); 16. Formal Specifications (8);
17. Conclusion (6).

Although this book focuses on one particular language supporting
concurrent programming, it provides an introduction to other notations
and to wider issues in program construction, such as formal
specification. No exercises are included.

Bustard88
Bustard, D. W., Elder, J. W. G., and Welsh, J. Concurrent Program
Structures. Prentice-Hall International, 1988.

SEI-CM-24 Concepts of Concurrent Programming 35

Table of Contents:
1. Introduction to Concurrency (12); 2. Execution of Concurrent Programs
(11); 3. Design of Concurrent Programs (20); 4. Representation of
Concurrent Programs (30); 5. Testing Concurrent Programs (21); 6.
Resource Management (46); 7. Communication Management (15); 8.
Discrete Event Simulation (32); 9. Real-Time Systems (23); 10. General
Purpose Operating Systems (24); 11. Representation of Process Interaction:
other approaches (25).

This book provides an introduction to the design and implementation of
concurrent programs. Particular emphasis is given to techniques for
managing process interaction in different circumstances, illustrated
using the shared variable communication model. An appendix gives
solutions to the exercises set.

Bustard90
Bustard, D. W. “An Experience of Teaching Concurrency: Looking
Forward, Looking Back.” CSEE '90 Fourth SEI Conference on
Software Engineering Education , Lionel Deimel, ed. Springer-
Verlag, Apr. 1990.

Abstract: The book Concurrent Program Structures [Bustard88] was
based on a course, Concurrent Systems, introduced at Queen's University,
Belfast in 1981. The purpose of this paper is to examine the successful and
less successful aspects of that course, with a view to making improvements
to the material presented.

Carriero89
Carriero, N., and Gelernter, D. “How to Write Parallel Programs: A
Guide to the Perplexed.” ACM Computing Surveys 21, 3 (Sept. 1989),
323-357.

Abstract: We present a framework for parallel programming, based on
three conceptual classes for understanding parallelism and three
programming paradigms for implementing parallel programs. The
conceptual classes are result parallelism, which centers on parallel
computation of all elements in a data structure; agenda parallelism, which
specifies an agenda of tasks for parallel execution; and specialist
parallelism, in which specialist agents solve problems cooperatively. The
programming paradigms center on live data structures that transform
themselves into result data structures; distributed data structures that are
accessible to many processes simultaneously; and message passing, in which
all data objects are encapsulated within explicitly communicating processes.

Chandy88
Chandy, K. M., and Misra, J. Parallel Program Design: A
Foundation. Addison-Wesley, 1988.

This is a very thorough, though specific treatment of the theory of
concurrent programming.

The book has the following stated goal: "The thesis of this book is that the
unity of the programming task transcends differences between the

36 Concepts of Concurrent Programming SEI-CM-24

architectures on which programs can be executed and the application
domains from which problems are drawn. Our goal is to show how
programs can be developed systematically for a variety of architectures
and applications. The foundation, on which program development is
based, is a simple theory: a model of computation and an associated proof
system."

Coffman71
Coffman, E. G., Elphick, M. J., and Shoshani, A. “System Deadlocks.”
ACM Computing Surveys 3, 2 (June 1971), 67-78.

Abstract: A problem of increasing importance in the design of large
multiprogramming systems is the, so-called, deadlock or deadly-embrace
problem. In this article we survey the work that has been done on the
treatment of deadlocks from both the theoretical and practical points of
view.

The main significance of this paper is that it defines four necessary
conditions for deadlock to occur.

Collofello88
Collofello, J. Introduction to Software Verification and Validation.
Curriculum Module SEI-CM-13-1.1, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa., Dec. 1988.

Abstract: Software verification and validation techniques are introduced
and their applicability discussed. Approaches to integrating these techniques
into comprehensive verification and validation plans are also addressed.
This curriculum module provides an overview needed to understand in-
depth curriculum modules in the verification and validation area.

Crichlow88
Crichlow, J. M. An Introduction to Distributed and Parallel
Computing. Prentice-Hall International, 1988.

Table of Contents:
1. Introduction (14); 2. Computer Organization for Parallel and Distributed
Computing (31); 3. Communications and Computer Networks (36); 4.
Operating Systems for Distributed and Parallel Computing (30); 5. Servers
in the Client-Server Network Model (24); 6. Distributed Database Systems
(30); 7. Parallel Programming Languages (25).

This book provides a broad bottom-up introduction to parallel processing,
starting with a review of the types of hardware available, moving up
through communication protocols to operating system and database
applications.

Date86
Date, C. J. An Introduction to Database Systems . Addison-Wesley,
1986. (2 volumes).

This is a general introduction to database design and management. One
chapter in Volume II is devoted to concurrency.

SEI-CM-24 Concepts of Concurrent Programming 37

Davis88
Davis, A. M. “A Comparison of Techniques for the Specification of
External System Behavior.” Comm. ACM 31, 9 (Sept. 1988), 1098-1115.

Davis summarizes and compares 11 techniques for specifying behavior,
including finite state machines, statecharts and Petri nets.

Deitel84
Deitel, H. M. An Introduction to Operating Systems. Reading, Mass.:
Addison-Wesley, 1984.

Table of Contents:
There are 22 chapters divided into 8 parts. The chapters most relevant to
concurrency are: 2. Process Concepts (20); 3. Asynchronous Concurrent
Processes (21); 4. Concurrent Programming: monitors, the Ada rendezvous
(24); 6. Deadlock (28); 10. Job and Processor Scheduling (22); 11.
Multiprocessing (32); 16. Network Operating Systems (30).

This a very popular text on operating systems. It is comprehensive and
well organized, and the material is clearly presented.

Dijkstra68
Dijkstra, E. W. “Cooperating Sequential Processes.” Programming
Languages, F. Genuys, ed. Academic Press, 1968, 43-112.

This classic paper in concurrent programming is divided into six
sections: 1. On the Nature of Sequential Processes; 2. Loosely Connected
Processes; 3. The Mutual Exclusion Problem Revisited; 4. The General
Semaphore; 5. Cooperation via Status Variables; 6. The Problem of Deadly
Embrace.

Dijkstra71
Dijkstra, E. W. “Hierarchical Ordering of Sequential Processes.”
Acta Informatica 1 (1971), 115-138.

This paper deals largely with operating system design but also examines
the general issue of mutual exclusion, with examples. It is also where the
classic problem of the Dining Philosophers was first presented.

Feldman90
Feldman, M. Language and System Support for Concurrent
Programming . Curriculum Module SEI-CM-25, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pa.,
Apr. 1990.

Abstract: This curriculum module is concerned with support for
concurrent programming provided to the application programmer by
operating systems and programming languages. This includes system calls
and language constructs for process creation, termination, synchronization,
and communication. Several readily-available languages are discussed and
compared; concurrent programming using system services of the UNIX
operating system is introduced for the sake of comparison and contrast.

38 Concepts of Concurrent Programming SEI-CM-24

Ford86
Ford, G. A., and Weiner, R. S. Modula-2: A Software Development
Approach. New York: Wiley, 1986.

Modula-2 provides a small set of primitives on which a process
abstraction module can be built. This book describes these primitives and
from them develops a series of standard modules for use in concurrent
programming. (The majority of the book is devoted to the development of
sequential programs). See also [BSI89].

Galton87
Temporal Logics and Their Applications. Anthony Galton, ed.
Academic Press, 1987.

This book was derived from a conference on Temporal Logic and Its
Applications, held in 1986. The first chapter gives a broad introduction to
the use of temporal logic in computer science and the second deals with
the use of temporal logic in the specification of concurrent systems.

Gehani84
Gehani, N. Ada: Concurrent Programming. Englewood Cliffs:
Prentice-Hall, 1984.

Table of Contents:
1. Concurrent Programming: a quick survey (28); 2. Tasking Facilities (52);
3. Task Types (18); 4. Exceptions and Tasking (10); 5. Device Drivers (12);
6. Real-Time Programming (20); 7. Some Issues in Concurrent
Programming (20); 8. More Examples (20); 9. Some Concluding Remarks
(6).

Gehani is mainly concerned with explaining the concurrency features of
Ada but also tackles some general issues. A large number of examples
are used but very few exercises are provided.

Gehani88
Concurrent Programming. N. Gehani and A. D. McGettrick, eds.
Addison-Wesley, 1988.

Table of Contents:
Organized into five sections, each of which is introduced briefly. There is no
index. The summary that follows shows the number of papers in each
section and the total page length involved.
1. Survey of Concurrent Programming (1:70); 2. Concurrent Programming
Languages (4:90); 3. Concurrent Programming Models (8:188); 4.
Assessment of Concurrent Programming Languages (9:216); 5. Concurrent
Programming Issues (2:21).

This book brings together a collection of papers that deal mostly with
language issues in concurrent programming.

SEI-CM-24 Concepts of Concurrent Programming 39

Gehani89
Gehani, N., and Roome, W. D. Concurrent C. Summit, N. J.: Silicon
Press, 1989.

Table of Contents:
1. Basics (32); 2. Advanced Facilities (46); 3. Run-time Environment (14); 4.
Large Examples (40); 5. Concurrent C++ (20); 6. Concurrent Programming
Models (14); 7. Concurrent Programming Issues (22); 8. Discrete Event
Simulation (22); Appendix: Comparison with Ada (and other topics).

This book is a programmer's guide to a set of concurrency extensions to
the programming language C. Alternative programming models and
basic concurrency concepts are also considered.

Gelernter88
Gelernter, D. “Parallel Programming: Experiences with Applica-
tions, Languages and Systems.” Sigplan Notices 23 , 9 (Sept. 1988).
ACM/Sigplan PPEALS.

This is the proceedings of an annual conference on parallel
programming. The foreword likens worries about the difficulty of
parallel programming to the initial reaction against Talking Pictures!

Gomma87
Gomma, H. “Using the DARTS Software Design Method for Real-
Time Systems.” Proc. 12th Structured Methods Conf. Chicago:
Structured Techniques Association, Aug. 1987, 76-90.

Abstract: The paper describes a software design method for real-time
systems and gives an example of its use. The method is called DARTS, the
Design Approach for Real-Time Systems.

This paper describes how DARTS can be used in conjunction with Real-
Time Structured Analysis [Ward85].

Gomma89
Gomma, H. Software Design Methods for Real-Time Systems.
Curriculum Module SEI-CM-22-1.0, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa., Dec. 1989.

Abstract: This module describes the concepts and methods used in the
software design of real-time systems. It outlines the characteristics of real-
time systems, describes the role of software design in real-time system
development, surveys and compares some software design methods for
real-time systems, and outlines techniques for the verification and validation
of real-time designs. For each design method treated, its emphasis, concepts
on which it is based, steps used in its application, and an assessment of the
methods are provided.

40 Concepts of Concurrent Programming SEI-CM-24

Habermann76
Habermann, A. N. Introduction to Operating System Design.
Science Research Associates, Inc., 1976.

This is a thorough, classic treatment of operating systems, concentrating
on principles of design rather that details of specific operating systems or
implementation languages.

Harel88
Harel, D. “On Visual Formalisms.” Comm. ACM 31, 5 (May 1988),
514-530.

Harel introduces the general concept of a "higraph" and shows its
application in the extension of state-transition diagrams to statecharts
that can describe concurrent systems.

Hoare74
Hoare, C. A. R. “Monitors: An Operating System Structuring
Concept.” Comm. ACM 17, 10 (1974), 549-557. Reprinted in
[Gehani88].

This paper introduces the monitor concept and demonstrates its use in a
series of examples.

Hoare78
Hoare, C. A. R. “Communicating Sequential Processes.” Comm.
ACM 21, 8 (Aug. 1978), 666-677. Reprinted in [Gehani88].

An earlier (and simpler) version of the notation described in [Hoare85].

Hoare85
Hoare, C. A. R. Communicating Sequential Processes. Prentice-
Hall International, 1985.

Table of Contents:
1. Processes (42); 2. Concurrency (36); 3. Nondeterminism (32); 4.
Communication (38); 5. Sequential Processes (26); 6. Shared Resources
(26); 7. Discussion (28).

This book gives a mathematical treatment to the description of concurrent
behavior. The formalism is developed gradually through a series of
small examples and linked to programming language concepts in the
final chapter. Note that the notation used differs in some respects from
that described in [Hoare78].

Holt83
Holt, R. C. Concurrent Euclid, The UNIX System and TUNIS.
Reading, Mass.: Addison-Wesley, 1983.

Table of Contents:
1. Concurrent Programming and Operating Systems (16); 2. Concurrency

SEI-CM-24 Concepts of Concurrent Programming 41

Problems and Language Features (42); 3. Concurrent Euclid: sequential
features (34); 4. Concurrent Euclid: concurrency features (22); 5. Examples
of Concurrent Programs (30); 6. UNIX: User Interface and File System
(18); 7. UNIX: User Processes and the Shell (14); 8. Implementation of the
UNIX Nucleus (18); 9. TUNIS: A UNIX Compatible Nucleus (18); 10.
Implementing a Kernel (30).

Largely a textbook dealing with the concurrency aspects of operating
system design, this book also introduces the monitor-based programming
language Concurrent Euclid.

Hughes88
Hughes, J. G. Database Technology: A Software Engineering
Approach. Prentice-Hall International, 1988.

This is a book on the design of relational database systems, with
implementation details illustrated in Modula-2. It contains a chapter on
the management of concurrent access to a database.

Hwang84
Hwang, K., and Briggs, F. A. Computer Architecture and Parallel
Processing. McGraw-Hill, 1984.

Table of Contents:
1. Introduction to Parallel Processing (51); 2. Memory and Input-Output
Subsystems (93); 3. Principles of Pipelining and Vector Processing (88); 4.
Pipeline Computers and Vectorization Methods (92); 5. Structures and
Algorithms for Array Processors (68); 6. SIMD Computers and
Performance Enhancement (66); 7. Multiprocessor Architecture and
Programming (98); 8. Multiprocessor Control and Algorithms (86); 9.
Example Multiprocessor Systems (89); 10. Data Flow Computers and VLSI
Computations (81).

A comprehensive coverage of the field at the time of publication. The
bibliography is extensive.

IEEE83
IEEE, IEEE Standard Glossary of Software Engineering
Terminology. ANSI/IEEE Std 729-1983, 1983.

INMOS88
 occam 2 Reference Manual. Prentice-Hall International, 1988.

This is a definition and tutorial guide to the programming language
occam. The design of this language is strongly influenced by Hoare's
CSP notation [Hoare85].

Joseph84
Joseph, M., Prasad, V. R., and Natarajan, N. A Multiprocessor
Operating System. Prentice-Hall International, 1984.

42 Concepts of Concurrent Programming SEI-CM-24

This book contains a detailed presentation of the structure and code of an
operating system for a multiprocessor. The implementation language,
CCN Pascal, is monitor-based [Hoare74].

Kreutzer86
Kreutzer, W. System Simulation Programming Styles and
Languages. Addison-Wesley, 1986.

This is a simulation text designed for computer scientists. It covers a
range of techniques and is well illustrated. The bibliography is good. (An
interesting cartoon introduces each chapter!)

Kuhn81
Tutorial on Parallel Processing. R. H. Kuhn and D. A. Padua, eds.
IEEE Computer Society Press, 1981.

This is a collection of some of the most significant papers on parallel
processing to appear in the 1970s. About half of the papers are on hardware
topics and half deal with software (46 in total).

Lamport83
Lamport, L. “Specifying Concurrent Program Modules.” ACM
Trans. Prog. Lang. Syst. 5, 2 (Apr. 1983), 190-222.

Abstract: A method for specifying program modules in a concurrent
program is described. It is based upon temporal logic, but uses new kinds of
temporal assertions to make the specifications simpler and easier to
understand. The semantics of the specification is described informally, and
a sequence of examples are given culminating in a specification of three
modules comprising the alternating-bit communication protocol. A formal
semantics is given in the appendix.

Lamport89
Lamport, L. “A Simple Approach to Specifying Concurrent
Systems.” Comm. ACM 32, 1 (Jan. 1989), 32-45.

Abstract: Over the past few years, I have developed an approach to the
formal specification of concurrent systems that I now call the transition
axiom method. The basic formalism is described in [Lamport83], but the
formal details tend to obscure the important concepts. Here, I attempt to
explain these concepts without discussing the details of the underlying
formalism.

This paper is organized as a series of questions and answers, addressing
such fundamental questions as "what is a formal specification?" and
"what is a system?" It gives particular emphasis to the concepts of safety
and liveness properties.

Lister84
Lister, A. M. Fundamentals of Operating Systems (3rd Edition).
Springer-Verlag, 1984.

SEI-CM-24 Concepts of Concurrent Programming 43

This is a long-standing text, demonstrating that the concepts involved are
changing little with the technology advances. One distinctive feature of
the book is that it discusses the structure of an operating system in layers,
from the nucleus (kernel) up to job control.

McDowell89
McDowell, C. E., and Helmbold, D. P. “Debugging Concurrent
Programs.” ACM Computing Surveys 21, 4 (Dec. 1989), 593-622.

Abstract: The main problems associated with debugging concurrent
programs are increased complexity, the "probe effect", nonrepeatability,
and the lack of a synchronized global clock. The probe effect refers to the
fact that any attempt to observe the behavior of a distributed system may
change the behavior of that system. For some parallel programs, different
executions with the same data will result in different results even without
any attempt to observe the behavior. Even when the behavior can be
observed, in many systems the lack of a synchronized clock makes the
results of the observation difficult to interpret. This paper discusses these
and other problems related to debugging concurrent programs and presents
a survey of current techniques. Systems using three general techniques are
described: traditional or breakpoint style debuggers, event monitoring
systems and static analysis systems. In addition, techniques for limiting,
organizing and displaying a large amount of data produced by the
debugging systems are discussed.

Milner89
Milner, R. Communication and Concurrency. Prentice-Hall Inter-
national, 1989.

This book describes a mathematical theory of communicating systems,
referred to here as a "process calculus." A large part of the book is
concerned with equivalence of formal descriptions – the basis of
verification.

Morell89
Morell, L. J. Unit Testing and Analysis. Curriculum Module SEI-
CM-9-1.2, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., Apr. 1989.

Abstract: This module examines the techniques, assessment, and
management of unit testing and analysis. Testing and analysis strategies are
categorized according to whether their coverage goal is functional,
structural, error-oriented, or a combination of these.

Parnas84
Parnas, D., Clements, P., and Weiss, D. “The Modular Structure of
Complex Systems.” Proc. 7th Intl. Conf. Software. Eng., Long Beach,
California. IEEE Computer Society, 1984, 408-416.

Abstract: This paper discusses the organization of software that is
inherently complex because there are very many arbitrary details that must
be precisely right for the software to be correct. We show how the software
design technique known as information hiding or abstraction can be

44 Concepts of Concurrent Programming SEI-CM-24

supplemented by a hierarchically-structured document, which we call a
module guide. The guide is intended to allow both designers and maintainers
to identify easily the parts of the software that they must understand
without reading irrelevant details about other parts of the software. The
paper includes an extract from a software module guide to illustrate our
proposals.

Perrott88
Perrott, R. H. Parallel Programming. Addison-Wesley, 1988.

Table of Contents:
HISTORY AND DEVELOPMENT 1. Hardware Technology Developments
(13); 2. Software Technology Developments (9). ASYCHRONOUS
PARALLEL PROGRAMMING 3. Mutual Exclusion (12); 4. Process
Synchronization (11); 5. Message Passing Primitives (13); 6. Modula-2
(13); 7. Pascal Plus (15); 8. Ada (14); 9. occam: a distributed computing
language (16). SYNCHRONOUS PARALLEL PROGRAMMING Detection
of Parallelism Languages: 10. Cray-1 FORTRAN Translator (20); 11. CDC
Cyber Fortran (13); Expression of Machine Parallelism Languages: 12.
Illiac4 CDF FORTRAN (13); 13. Distributed Array Processor FORTRAN
(13). Expression of Problem Parallelism Languages: 14. ACTUS: a Pascal
based language (24). DATA FLOW PROGRAMMING 15. Data Flow
Programming (21).

This broad introduction to concurrency covers a wide range of
programming language representations and machine architectures.

Peterson81
Peterson, J. Petri Net Theory and the Modeling of Systems.
Englewood Cliffs, N. J.: Prentice-Hall, 1981.

This is a readable introduction to Petri nets and their application. See
also [Reisig85].

Pneuli86
Pneuli, A. “Applications of Temporal Logic to the Specification and
Verification of Reactive Systems: A Survey of Recent Trends.”
Current Trends in Concurrency, J. W. de Bakker et al, ed. New York:
Springer-Verlag, 1986, 510-584.

This long paper summarizes the work by Pneuli and others relating to
the specification and verification of reactive systems using temporal
logic. The paper is organized in four parts. Temporal logic is introduced
in the second part, the first dealing with various abstract and concrete
computational models.

Polychronopoulos88
Polychronopoulos, C. D. Parallel Programming and Compilers.
Boston: Kluwer Academic Publishers, 1988.

Table of Contents:
1. Parallel Architectures and Compilers (14); 2. Program Restructuring for
Parallel Execution (67); 3. A Comprehensive Environment for Automatic

SEI-CM-24 Concepts of Concurrent Programming 45

Packaging and Scheduling of Parallelism (31); 4. Static and Dynamic Loop
Scheduling (50); 5. Run-Time Overhead (15); 6. Static Program
Partitioning (17); 7. Static Task Scheduling (21); 8. Speedup Bounds for
Parallel Programs (13).

This is an advanced text on parallel processing that assumes a basic
knowledge of the subject area.

Raynal86
Raynal, M. Algorithms for Mutual Exclusion. Cambridge, Mass.:
The MIT Press, 1986.

Table of Contents:
1. The Nature of Control Problems in Parallel Processing (16); 2. The
Mutual Exclusion Problem in a Centralized Framework: Software
Solutions (22); 3. The Mutual Exclusion Problem in a Centralized
Framework: Hardware Solutions (10); 4. The Mutual Exclusion Problem
in a Distributed Framework: Solutions Based on State Variables (16); 5.
The Mutual Exclusion Problem in a Distributed Framework: Solutions
Based on Message Communication (22); 6. Two Further Control Problems
(12).

This is a comprehensive collection of the algorithms associated with
mutual exclusion in concurrent systems covering both shared memory
and distributed systems.

This is a translation of a book first published in French in 1984.

Reisig85
Reisig, W. Petri Nets: An Introduction. Springer-Verlag, 1985.

This is a short systematic introduction to Petri nets. It has an extensive
bibliography. See also [Peterson81].

Rombach90
Rombach, H. D. Software Specifications: A Framework.
Curriculum Module SEI-CM-11-2.1, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa., Jan. 1990.

A b s t r a c t : This curriculum module presents a framework for
understanding software product and process specifications. An unusual
approach has been chosen in order to address all aspects related to
“specification” without confusing the many existing uses of the term. In this
module, the term specification refers to any plan (or standard) according to
which products of some type are constructed or processes of some type are
performed, not to the products or processes themselves. In this sense, a
specification is itself a product that describes how products of some type
should look or how processes of some type should be performed. The
framework includes: a reference software life-cycle model and
terminology, a characterization scheme for software product and process
specifications, guidelines for using the characterization scheme to identify
clearly certain life cycle phases, and guidelines for using the
characterization scheme to select and evaluate specification techniques.

46 Concepts of Concurrent Programming SEI-CM-24

Scacchi87
Scacchi, W. Models of Software Evolution: Life Cycle and Process .
Curriculum Module SEI-CM-10-1.0, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa., Oct. 1987.

Abstract: This module presents an introduction to models of software
evolution and their role in structuring software development. It includes a
review of traditional life cycle models as well as software process models
that have been recently proposed. It identifies three kinds of alternative
models of software evolution that focus attention on either the products,
production processes, or production settings as the major source of
influence. It examines how different software engineering tools and
techniques can support life cycle or process approaches. It also identifies
techniques for evaluating the practical utility of a given model of software
evolution for development projects in different kinds of organizational
settings.

The material presented in this module is equally applicable to the
development of sequential and concurrent software.

Schiper89
Schiper, A. Concurrent Programming. Halsted Press; John Wiley &
Sons Inc., 1989.

Table of Contents:
1. Introduction (7); 2. Input/Output and Interrupts (9); 3. The Process
Concept (10); 4. Mutual Exclusion (18); 5. Cooperation Between Processes
(18); 6. Portal and Monitors (20); 7. Modula-2 and Kernels (23); 8. Ada
and Rendezvous (22); 9. An Example of Designing a Concurrent Program
(24).

This is a translation from a 1986 text Programmation Concurrente. It
provides a general introduction to concurrency topics but tends to give
emphasis to the execution of concurrent programs by a single processor.

Sutcliffe88
Sutcliffe, A. Jackson System Development. Prentice-Hall
International, 1988.

The early stages of the Jackson System Design technique develop a
system as a collection of interacting processes. The technique is used
most commonly for sequential (data processing) applications, so the
concurrent representation is usually converted into a sequential form by
a procedure known as "process inversion."

Swartout86
Swartout, W., and Balzer, R. “On the Inevitable Intertwining of
Specification and Implementation.” Software Specification
Techniques, Narhain Gehani; Andrew D. McGettrick, eds. Addison-
Wesley, 1986, 41-45.

SEI-CM-24 Concepts of Concurrent Programming 47

This is a fascinating short paper which suggests that, typically, some
implementation issues are decided before specification is complete and
that this situation is inevitable.

Tanenbaum85
Tanenbaum, A. S., and van Renesse, R. “Distributed Operating
Systems.” ACM Computing Surveys 17, 4 (Dec. 1985), 419-470.

Abstract: This paper is intended as an introduction to distributed operating
systems, and especially to current university research about them. After a
discussion of what constitutes a distributed operating system and how it is
distinguished from a computer network, various key design issues are
discussed. Then several examples of current research projects are examined
in some detail, namely, the Cambridge Distributed Computing System,
Amoeba, V, and Eden.

Treleaven82
Treleaven, P. C., Brownbridge, D. R., and Hopkins, R. P. “Data-
Driven and Demand-Driven Computer Architectures.” A C M
Computing Surveys 14, 1 (Mar. 1982), 93-143.

Abstract: Novel data-driven and demand-driven computer architectures
are under development in a large number of laboratories in the United
States, Japan, and Europe. These computers are not based on the traditional
von Neumann organization; instead, they are attempts to identify the next
generation of computer. Basically, in data-driven (e.g. data-flow)
computers the availability of operands triggers the execution of the
operation to be performed on them, whereas in demand-driven (e.g.
reduction) computers the requirement for a result triggers the operation
that will generate it. The aim of this paper is to identify the concepts and
relationships that exist both within and between the two areas of research.

Ullman82
Ullman, J. D. Principles of Database Systems, 2nd Edition. London:
Pitman, 1982.

This is a thorough treatment of database organization and access. The
final chapter deals with concurrent database operations.

Ward85
Ward, P. T., and Mellor, S. J. Structured Development for Real-Time
Systems. Yourdon Press, 1985. (three volumes).

Table of Contents:
Three volumes: 1. Introduction & Tools; 2. Essential Modelling Techniques;
3. Implementation Modelling Techniques.

This book describes real-time program development method in detail,
with illustrations.

48 Concepts of Concurrent Programming SEI-CM-24

Wegner89
Wegner, P. “Programming Language Paradigms.” A C M
Computing Surveys 21, 3 (Sept. 1989), 251-510.

Abstract: There are four papers: 1. Programming Languages for
Distributed Computing Systems (52); 2. How to Write Parallel Programs: a
Guide to the Perplexed (36); 3. Conception, Evolution and Application of
Functional Programming Languages (53); 4. The Family of Concurrent
Logic Programming Languages (98).

Concurrency emerged as the common theme across all four papers in this
special issue. Comments on the first two papers are given separately in
[Bal89; Carriero89].

Whiddett87
Whiddett, D. Concurrent Programming for Software Engineers.
Chichester: Ellis Horwood, 1987.

Table of Contents:
THE BASICS 1. The Concept of a Process (31); 2. Process Coordination
(35). THE MODELS 3. Procedure Based Interaction: monitors (24); 4.
Message Based Interaction (26); 5. Operation Oriented Programs (25); 6.
Comparison of Methods (11). THE PRAGMATICS 7. Interfacing to
Peripheral Devices (26); 8. Programming Distributed Systems (24).

This book is intended to provide an introduction to concurrent
programming for engineers and engineering students; it places greatest
emphasis on notation.

Wood89
Wood, D. P., and Wood, W. G. Comparative Evaluations of Four
Specification Methods for Real-Time Systems . Technical Report
CMU/SEI-89-TR-36, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., Dec. 1989.

This report compares four of the most commonly used real-time
specification methods. All belong to the family of Real-Time Structured
Analysis techniques [e.g., Ward85].

Yourdon89
Yourdon, E. Modern Structured Analysis. Prentice-Hall, 1989.

This is a large modern text on Structured Analysis that includes
coverage of the real-time extensions to this analysis and design method.

