ESE 680-003

Special topics in electrical and systems engineering: Systems Biology

Pappas Kumar Rubin Julius Halász

Basics of molecular cell biology

Topics

- Evolution and the origin of life
- Atoms and molecules
- Carbohydrates, proteins and lipids
- Parts and functions of the cell
- DNA and gene expression

Origin of life

- Started on Earth 4.5 billion years ago
- Volcanism: H₂O, CH₄, NH₃, H₂S
 - Reducing atmosphere
 - Early ocean
- Loss of hydrogen: N₂, CO, CO₂, H₂O
 - Energy (Sun, UV, electrical discharges)
 - Catalytic effect of solid state surfaces
 - Enrichment of organic molecules in the ocean

Origin of life

- Prebiotic broth hypothesis
 - Macromolecules
 - Molecular aggregates
 - Simple compartmented pathways
 - Enzymes (low temperature reactions)
 - Directed synthesis and reproduction
- First cells end of abiotic evolution

Evolution

Prokaryotes

- simple organisms
- 1-10 microns in length
- Single cell
- No compartments
- Simple cell division

Eukaryotes

- higher organisms
- 10-100 microns
- multicellular
- mucleus, cytosol, organelles
- mitosis and meiosis

Evolution

- Prokaryotes have sexual reproduction
 - Genetic material comes from two non-symmetric sources (fertilized egg)
- Parasites do not have their own metabolism
 - E.g. viruses rely on other organisms
- Aerobic vs. anaerobic
- Multicellular organisms have differentiated cells
 - Same genotype, different phenotype

Topics

- Evolution and the origin of life
- Atoms and molecules
- Carbohydrates, proteins and lipids
- Parts and functions of the cell
- DNA and gene expression

Chemical bonds and forces

Shell model of atoms

- Nucleus: positively charged heavy
- Electrons on <u>shells</u>
- Electrostatics and quantum mechanics

Molecules

- Atoms linked by bonds
- Bonds are formed by the interaction of the electrons of different atoms

Structure of water molecule

Chemical bonds and forces

- Several types of bonds
 - Big differences in strength
- Electrostatic
 - Very strong, e.g. Na⁺Cl⁻ (salt, a crystal)
 - Atoms exchange electrons to achieve complete shell
 - Remain bound due to electrostatic attraction
- Covalent
 - Very strong, e.g. C (diamond, a crystal)
 - Electrons are shared between several atoms
 - Molecular orbitals
 - Forms (backbone of) molecules

Chemical bonds and forces

- Weaker types of bonds
- Polar molecules
 - H₂O: electrons are more attracted to the oxygen atom
 - Hydrogen atoms become positively charged
- Hydrogen bonds
 - Polarized hydrogen attracted to negatively charged parts of other molecules
 - 4.0 kJ/mol
- Van der Walls forces
 - Induced polarization of electron clouds
 - -0.4 kJ/mol
 - Of both signs: optimal distance

Structure of water molecule

Topics

- Evolution and the origin of life
- Atoms and molecules
- Carbohydrates, proteins and lipids
- Parts and functions of the cell
- DNA and gene expression

Organic molecules

- Typically have a carbon chain
- Certain groupings of atoms tend to be conserved within many different molecules
 - Functional groups
 - Stability due to special configuration, electron orbits
 - Some are polar
- Classified by functional groups, structure

Functional groups

Hydroxyl

Amino

Hydroxil:

- Linked to absorbtion and release of water (condensation, hydrolysis)
- Alcohols

Carbonyl
C=O

Carbonyl:

Ketone, located in a carbon chain

Aldehydes

Aldehyde, located at the end of a chain

Ketones

Important in carbohydrates

Carboxyl

Carboxyl

often dissociates

Organic acids

$$H^+$$
 $O-C=O$

Amino $-\stackrel{1}{\mathsf{C}} - \stackrel{1}{\mathsf{N}}$

- Amino acids have an amino and a carboxyl group
- Crucial role as part of the catalytic domain of enzymes

- Bridging ligand in large molecules
- Di- and tri-phosphates act as energy unit
- Regulation of enzyme activities (MAP kinases)

Classes of molecules: Carbohydrates

- Energy storage
- General formula: C_n(H₂O)_n
- Monosaccharides: 3-7 carbon atoms
- Polysaccharides

Classes of molecules: Lipids

- Non-polar therefore hydrophobic (not soluble in water)
- Tend to form nonpolar associations or membranes
- Three types of lipids
 - Neutral lipids (storage fat)
 - Phospolipids (membranes)
 - Steroids (four condensed carbon rings, hormones)

Classes of molecules: Proteins

- Roles:
 - Cytoskeletal framework
 - Catalytic enzymes for highly specific biochemical reactions -> control of metabolism
- Polypeptide chain
 - 20 types of amino acids covalently linked
- Primary structure given by the element on the chain
- Secondary & tertiary structures
 - α-helix and β-strand
 - folding

Classes of molecules: Nucleic acids

- DNA, RNA
- Polymers built up of covalently bound mononucleotides
- Mononucleotides
 - Nitrogen-containing base
 - Pentose
 - One or more phosphate groups
- Four (five) different bases:
 - Cytosine, Thymine, Adenine, Guanine, Uracyl

Classes of molecules: Nucleic acids

- DNA: ATGC; RNA: AUGC
- Phosphate groups link nucleotides together forming the backbone of one strand
- DNA consists of two antiparallel strands, linked together by hydrogen bonds between pairs of complementary bases
 - A-T, G-C
- RNA occurs as a single strand

Nucleic acids

Topics

- Evolution and the origin of life
- Atoms and molecules
- Carbohydrates, proteins and lipids
- Parts and functions of the cell
- DNA and gene expression

Structure of the cell

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Cell membrane

- Lipid bilayer, with membrane proteins inserted
- Fluid mosaic model
- Also acts as a selective filter for nutrients and byproducts
- Ability to form a cavity that pinches off as a vesicle
 - transport

Nucleus

- Prokaryotes store genetic information in a single, circular, double stranded DNA, and sometimes smaller plasmids
- Eukaryotes have a nucleus which occupies about 10% of cell volume
- Nuclear envelope, with regulated traffic between the nucleus and the cytosol
- Genetic material forms the chromatin
- Chromosomes consist of two identical chromatids
 - each is a double stranded DNA
 - wound around histones (protein complexes)

Cytosol

- Fills the space between the organelles of the cytoplasm
- About 50% of cell volume
- Contains the cytoskeletal framework
 - Protein filaments
 - Responsible for coordination of cytoplasmatic movements
 - Three types: actin, microtubules, intermediate
- Actin
 - cell shape, muscle contraction
- Microtubules
 - rapid motions, e.g. flagella
- Intermediate
 - fibrous proteins; mechanical resistance

Organelles

- Mitochondria ("power plants")
 - Only in eukaryotes
 - Size of a bacterium
 - Partially autonomous; have their own DNA
 - Produce the bulk of ATP in the cell
- Endoplasmatic reticulum (ER)
 - Biosynthesis of membrane lipids
- Golgi complex, lysosomes, peroxisomes, veiscles

Cell cycle

- Interphase and M-phase
- M-phase division itself
 - Nuclear division
 - Cytokinesis (division of cytoplasm)
- Eukaryotic cells have two copies of each chromosome (diploid)
 - Mitosis
 - Meiosis

Topics

- Evolution and the origin of life
- Atoms and molecules
- Carbohydrates, proteins and lipids
- Parts and functions of the cell
- DNA and gene expression

Gene expression

- Genes are regions of DNA which are transcribed separately into mRNA
- mRNA is further processed (spliced)
- mRNA is transferred outside the nucleus
- mRNA binds to ribosomes which transcribes its sequence into a polypeptide chain
- Newly formed chain folds into the protein

Transcription

- Performed by RNA polymerase (RNAP)
- Promoter site
 - Initially binds RNAP (initiation complex)
 - Its affinity to RNAP, activity state determine transcription of the gene
- Elongation phase
 - RNAP moves along the DNA and synthesizes complementary RNA
 - DNA unwinds and rewinds as RNAP advances
- Termination
 - Rho-independent (GC-rich hairpin structure)
 - Rho factor binds to newly formed RNA

Transcription

mRNA processing

- Prokaryotes
- Introns (nontranslating regions)
- Exons bound together after splicing out the introns
- Transport of mature mRNA into cytosol
- Transport to specific locations

Translation

- Coding mRNA is processed by ribosomes
- mRNA is the "message", serves as a blueprint
- The final product is the protein that is synthesized using elementary amino-acids
- tRNA is used to bring in the matching (cognate) amino-acid to the translating ribosome

Translation

Regulation of gene expression

- Multiple modalities
- Transcriptional
 - Repression
 - Activation
- Post-translational

Organizational issues

- Schedule: MW 9:30 11:00
- Room: Towne 303
- Instructors:
 - George Pappas: pappasg@seas.upenn.edu (TBA)
 - Vijay Kumar: kumar@me.upenn.edu
 - Harvey Rubin: rubinh@mail.med.upenn.edu
 - Agung Julius: <u>agung@seas.upenn.edu</u> (Tue 3-4)
 - Adam Halasz: halasz@grasp.upenn.edu (Mon 11-12)
- Website: www.seas.upenn.edu/~agung/ese680.htm
- Default mailing list for registered students