Image segmentation applied to cytology

Niels VAN VLIET <niels@lrde.epita.fr>

LRDE seminar, May 14, 2003

Table of contents

Introduction	2
Segmentation	17
[1/4] Extraction of the background	18
[2/4] Extraction of the heaps	23
[3/4] Extraction of the nuclei 's position	27
[4/4] Extraction of the nuclei 's boundaries	30
Conclusion	47

Introduction

The Automatic Detection of Healthy Or Cancerous Cells (**AD-HOC**) is divided into two parts:

- Extraction of the data from the image
- Analysis of the data (future work)

A few definitions

What is a (healthy) cell?

- Nucleus ' diameter $\approx 10 \mu$
- The nucleus 's boundary is regular
- The nucleus is round (≠ oval!)
- Nucleus darker than the cytoplasm
- Cytoplasm darker than the background
- Cytoplasm much bigger than the nucleus

What is a cancerous cell?

- $\bullet \ size of (nucleus)/size of (cytoplasm) \\ \ \text{is big}$
- Nucleus ' diameter $> 13\mu$
- Dark nucleus
- Irregular shape

A spot

A 2 cm spot magnified 400x:

Origin of the images

How to create a **spot**?

- Fine needle aspiration
- Chemical destruction of useless objects
- Separation of the cells in a bath
- Centrifugation
- Extraction of the cells sticked on the sides by a centrifuge

Problems

- Problems of the screening:
 - Slow
 - Harmful
 - Subjective
- Solution: Automation
 - Segmentation
 - Decision

Input

Output of the segmentation

Problems encountered

9 problems are going to be presented:

1. No color:

Normal case

2. Problems of contrast:

3. Fuzzy cells:

4. Different sizes:

5. Heterogeneous surfaces:

6. Heterogeneous shapes:

7. Multiple cells:

8. Heaps:

Finding something abnormal

We have to accept more than the normal (green) cells, but not to accept other objects (black).

Segmentation

Extraction of

- 1. The background
- 2. The heaps
- 3. The position of the nuclei
- 4. The boundary of the nuclei

[1/4] Extraction of the background

Using Watershed[Lezoray 98]

Using Watershed

Do not work well:

- No color
- Fuzzy boundaries between cytoplasm and background

[1/4] Using thresholds

K-Mean

Threshold using the histogram

Problems:

- Dust on the light
 - ⇒ Dark points in the background ⇒ Opening
- Impurities and heterogeneous cells
 - \Rightarrow White points in the cells \Rightarrow Closing

[1/4] Threshold and opening

Threshold

After the opening

[2/4] Extraction of the heaps

Separation of the **isolated** cells and the **heaps**

Heap 's boundary

 $Heap = Heap + isolated\ cells\ stick\ on\ the\ heap$

[2/4] Original/Threshold/Opening/Result

[3/4] Extraction of the nuclei 's position

[3/4] Original/Threshold + Erosion/Last Erosion

[3/4] **Result**

[4/4] Extraction of the nuclei 's boundaries

Now, the position of the nucleus is known (white cross)

The goal is to find the boundary of the nucleus (blue and green line)

Using Watershed[Lezoray98]

- The markers (where the water comes from) are the position of the nuclei
- The gradient of the image is needed
- The 'water' should not be stopped by the **impurities** of the cell

Beucher 's Gradient

Area Closing

Clear small dark areas

Extraction of nuclei's boundary using watershed

Result

Over-segmentation

Over-segmentation within the nuclei!

- ⇒ Union of regions that share a boundary
 - ⇒ Many nuclei sticked together share the same region!
 - ⇒ Separation of these regions with distance map

Separation of interconnected nuclei

Do not work well on heterogenous cells. Do not work well on fuzzy cells

Shape 's information

Research of elliptic objects[Wu, Barba, Gil 98]

Snakes [lee, Street 99]

Research of round objects[Bamford/Lovell]

Radius

• α coefficient

$$Cost = \alpha * circular_shape + (1 - \alpha) * bondary_matching$$

- $\Delta angle$ coefficient
- range

Problem: Our images are much more heterogeneous

Nagao filter

Image segmentation applied to cytology, Niels VAN VLIET - LRDE seminar, May 14, 2003

Problems of the radius technique

- The **centers** of the nuclei are not exact
- Cancerous cells are (sometime) oval and not circular
- Huge difference of size
 - \Rightarrow More radius, longer radius \Rightarrow Too slow to compute every path and harder to control

Results

Improving the segmentation 1/3

- Two segmentations [Bamford/Lovell]
- Using a **trust** degree (cost of the path)
- Detecting errors after the segmentation

Improving the segmentation 2/3

Using more information; example with the radius technique:

- Wider circles: Using the inclusion information
- Local information: Same gray level for the same nucleus / cytoplasm

Improving the segmentation 3/3

- **General** information (if x cells share 1 heap, at least 1 cell is bigger than size(heap)/x)
- Focus on **interesting parts** of the image (dark)

Conclusion

- Segmentation of **abnormal** cells \neq segmentation of normal cells
- Classification of the result can remove the wrong cells
- Using more informations
- The goal is not to replace the pathologist