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MODULE:1 

 
 
1. Molecular mass transport 
 
1.1 Introduction to mass transfer 
1.2 Properties of mixtures 
 3.2.1 Concentration of species 
 3.2.2 Mass Averaged velocity 
1.3 Diffusion flux 
 3.3.1 Pick’s Law 
 3.3.2 Relation among molar fluxes 
1.4 Diffusivity 
 3.4.1 Diffusivity in gases 
 3.4.2 Diffusivity in liquids 
 3.4.3 Diffusivity in solids 
 
1.5 Steady state diffusion 
 3.5.1 Diffusion through a stagnant gas film 
 3.5.2 Pseudo – steady – state diffusion through a stagnant gas film. 
 3.5.3 Equimolar counter diffusion. 
 3.5.4 Diffusion into an infinite stagnant medium. 
 3.5.5 Diffusion in liquids 
 3.5.6 Mass diffusion with homogeneous chemical reaction. 
 3.5.7 Diffusion in solids 
 
1.6 Transient Diffusion. 
 
1.1  Introduction of Mass Transfer 
 
When a system contains two or more components  whose concentrations vary 
from point to point, there is a natural tendency for mass to be transferred, 
minimizing the concentration differences within a system. The transport of one 
constituent from a region of higher concentration to that of a lower concentration 
is called mass transfer. 
 
The transfer of mass within a fluid mixture or across a phase boundary is a 
process that plays a major role in many industrial processes. Examples of such 
processes are: 
 

(i) Dispersion of gases from stacks 
(ii) Removal of pollutants from plant discharge streams by absorption 
(iii) Stripping of gases from waste water 
(iv) Neutron diffusion within nuclear reactors 

(v) Air conditioning 
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Many of air day-by-day experiences also involve mass transfer, for example: 
 

(i) A lump of sugar added to a cup of coffee eventually dissolves and then 
eventually diffuses to make the concentration uniform. 

(ii) Water evaporates from ponds to increase the humidity of passing-air-
stream 

(iii) Perfumes presents a pleasant fragrance which is imparted throughout 
the surrounding atmosphere. 

 
The mechanism of mass transfer involves both molecular diffusion and 
convection. 
 
1.2  Properties of Mixtures 
 
Mass transfer always involves mixtures.  Consequently, we must account for the 
variation of physical properties which normally exist in a given system. When a 
system contains three or more components, as many industrial fluid streams do, 
the problem becomes unwidely very quickly. The conventional engineering 
approach to problems of multicomponent system is to attempt to reduce them to 
representative binary (i.e., two component) systems. 
 
In order to understand the future discussions, let us first consider definitions and 
relations which are often used to explain the role of components within a mixture. 
 
1.2.1 Concentration of Species: 
 
Concentration of species in multicomponent mixture can be expressed in many 

ways. For species A, mass concentration denoted by A is defined as the mass 
of A,mA  per unit volume of the mixture. 
 

V

m A
A         ------------------------------------    (1) 

 

The total mass concentration density  is the sum of the total mass of the mixture 
in unit volume: 
 


i

i       

 

where  i  is the concentration of species i in the mixture. 
 
Molar concentration of, A, CA is defined as the number of moles of  A present per 
unit volume of the mixture. 
 
By definition, 
 



 4 

                                
Aofweightmolecular

Aofmass
molesofNumber   

 
 

                                  

A

A
A

M

m
n         -----------------------------  (2) 

 
Therefore from (1) & (2) 
 

                           

A

AA
A

MV

n
C


  

 
For ideal gas mixtures, 
 

                         
TR

Vp
n

A
A        [ from Ideal gas law PV = nRT] 

                   

                       
TR

p

V

n
C AA
A         

where pA  is the partial pressure of species A in the mixture. V is the volume of 
gas, T is the absolute temperature, and R is the universal gas constant. 
 
The total molar concentration or molar density of the mixture is given by 
 

                              
i

iCC  

 
1.2.2  Velocities 
 
In a multicomponent system the various species will normally move at different 
velocities; and evaluation of velocity of mixture requires the averaging of the 
velocities of each species present. 
 

If  I is the velocity of species i with respect to stationary fixed coordinates, then 
mass-average velocity for a multicomponent mixture defined in terms of mass 
concentration is, 
 

                      









i
i

i

i
i

i
i

i 




  
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By similar way, molar-average velocity of the mixture  *  is 
 

                                             
C

VC
i

ii
*  

 

For most engineering problems, there will be title difference in  *  and   and so 

the mass average velocity, , will be used in all further discussions. 
 
The velocity of a particular species relative to the mass-average or molar 
average velocity is termed as diffusion velocity 
 

(i.e.)  Diffusion velocity =  i -  
 
The mole fraction for liquid and solid mixture, x A ,and for gaseous mixtures,  y A, 
are the molar concentration of species A divided by the molar density of the 
mixtures. 

 

C

C
x A
A        (liquids and solids) 

 

C

C
y A
A     (gases). 

 
The sum of the mole fractions, by definition must equal 1; 
 

(i.e.)                    
i

ix 1 

 

                             
i

iy 1 

 
by similar way, mass fraction of A in mixture is; 
 

                                         

 A

Aw   

 
10. The molar composition of a gas mixture at 273 K and 1.5 * 10 5 Pa is: 
 
 O 2  7% 
 CO 10% 
 CO 2  15% 
 N 2 68% 
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Determine  
 

a) the composition in weight percent 
b) average molecular weight of the gas mixture 

c) density of gas mixture 

d) partial pressure of O 2. 
 
Calculations: 
 Let the gas mixture constitutes 1 mole.  Then  
 
 O 2  = 0.07 mol 
 CO = 0.10 mol 
 CO 2  = 0.15 mol 
 N 2 = 0.68 mol 
 
Molecular weight of the constituents are: 
 
 O 2  = 2 * 16 = 32 g/mol 
 CO = 12 + 16 = 28 g/mol 
 CO 2  = 12 + 2 * 16 = 44 g/mol 
 N 2 = 2 * 14 = 28 g/mol 
 
Weight of the constituents are: (1 mol of gas mixture) 
 
 O 2  = 0.07 * 32 = 2.24 g 
 CO = 0.10 * 28 = 2.80 g 
 CO 2  = 0.15 * 44 = 6.60 g 
 N 2 = 0.68 * 28 = 19.04 g 
 
Total weight of gas mixture = 2.24 + 2.80 + 6.60 + 19.04   
    = 30.68 g 
 
Composition in weight percent: 

 %30.7100*
68.30

24.2
2 O  

 %13.9100*
68.30

80.2
CO  

 %51.21100*
68.30

60.6
2 CO  

 %06.62100*
68.30

04.19
2 N  
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Average molecular weight of the gas mixture 
molesofNumber

mixturegasofWeight
M  

     molgM 68.30
1

68.30
  

 
Assuming that the gas obeys ideal gas law, 
  PV = nRT 
 

 
RT

P

V

n
  

 

m
V

n  densitymolar  

Therefore, density (or mass density) =  mM 
 Where M is the molecular weight of the gas. 
 
 

3
5

273*8314

68.30*10*5.1
mkg

RT

PM
MDensity m    

        = 2.03 kg/m 3 
 
Partial pressure of O 2 = [mole fraction of O 2] * total pressure 
 

         510*5.1*
100

7
  

         = 0.07 * 1.5 * 10 5 
         = 0.105 * 10 5 Pa 
 
 
1.3  Diffusion flux 
 
Just as momentum and energy (heat) transfer have two mechanisms for 
transport-molecular and convective, so does mass transfer. However, there are 
convective fluxes in mass transfer, even on a molecular level. The reason for this 
is that in mass transfer, whenever there is a driving force, there is always a net 
movement of the mass of a particular species which results in a bulk motion of 
molecules. Of course, there can also be convective mass transport due to 
macroscopic fluid motion. In this chapter the focus is on molecular mass transfer. 
 
The mass (or molar) flux of a given species is a vector quantity denoting the 
amount of the particular species, in either mass or molar units, that passes per 
given increment of time through a unit area normal to the vector. The flux of 
species defined with reference to fixed spatial coordinates, NA is 
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                                     AAA CN                ---------------------- (1) 

 

This could be written in terms of diffusion velocity of A, (i.e.,   A  -  ) and 

average velocity of mixture, , as 
 

                            AAAA CCN  )(    --------------- (2) 

 
By definition 
 

                      
C

C
i

ii



 *  

 
Therefore, equation (2) becomes 

                                 
i

ii
A

AAA C
C

C
CN  )(  

 

                                         
i

iiAAA CyC  )(  

 
For systems containing two components A and B, 
 

                          )()( BBAAAAAA CCyCN           

                                  )()( BAAAA NNyC    

                          NyCN AAAA  )(        ----------- (3) 

 
The first term on the right hand side of this equation is diffusional molar flux of A, 
and the second term is flux due to bulk motion. 
 
1.3.1  Fick’s law: 
 
An empirical relation for the diffusional molar flux, first postulated by Fick and, 
accordingly, often referred to as Fick’s first law, defines the diffusion of 
component A in an isothermal, isobaric system. For diffusion in only the Z 
direction, the Fick’s rate equation is 
 

                                         
Zd

Cd
DJ A

BAA   

 
where D AB  is diffusivity or diffusion coefficient for component A diffusing through 
component B, and dCA / dZ is the concentration gradient in the Z-direction. 
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A more general flux relation which is not restricted to isothermal, isobasic system 
could be written as 
 

                        
Zd

yd
DCJ A

BAA            ----------------- (4) 

 
using this expression, Equation (3) could be written as 
 

                              Ny
Zd

yd
DCN A

A
BAA      --------------- (5) 

 
 
1.3.2 Relation among molar fluxes: 
 
For a binary system containing A and B, from Equation (5), 
 

                     NyJN AAA   

          or        NyNJ AAA      ----------------------- (6) 

 
Similarly, 
 

                       NyNJ BBB      -------------------- (7) 

 
Addition of Equation (6) & (7) gives, 
 

                     NyyNNJJ BABABA )(      ---------- (8) 

 
By definition N = N A + N B and y A + y B = 1. 
Therefore equation (8) becomes, 
                                J A + J B = 0 
                                J A  = -J B 

 

                  
Zd

yd
DC

zd

yd
DC B

BA
A

AB      --------------- (9) 

 
From     y A + y B = 1 
              dy A  = - dy B 

 

Therefore Equation (9) becomes, 
 
                     D AB  = D BA    -----------------------------------   (10) 
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This leads to the conclusion that diffusivity of A in B is equal to diffusivity of B in 
A. 
 
 
1.4  Diffusivity 
 
Fick’s law proportionality, D AB, is known as mass diffusivity (simply as diffusivity) 
or as the diffusion coefficient. D AB  has the dimension of L 2 / t, identical to the 

fundamental dimensions of the other transport properties: Kinematic viscosity,  

= ( / ) in momentum transfer, and thermal diffusivity,  (= k /  C  ) in heat 
transfer. 
 
Diffusivity is normally reported in cm2 / sec; the SI unit being m2 / sec. 
 
Diffusivity depends on pressure, temperature, and composition of the system. 
 
In table, some values of DAB are given for a few gas, liquid, and solid systems. 
 
Diffusivities of gases at low density are almost composition independent, incease 
with the temperature and vary inversely with pressure. Liquid and solid 
diffusivities are strongly concentration dependent and increase with temperature. 
 
General range of values of diffusivity:  
 
Gases :              5 X 10 –6           -------------        1 X 10-5      m2 / sec. 
Liquids :             10 –6                 -------------        10-9             m2 / sec. 
Solids :               5 X 10 –14         -------------        1 X 10-10      m2 / sec. 
                               
In the absence of experimental data, semi theoretical expressions have been 
developed which give approximation, sometimes as valid as experimental values, 
due to the difficulties encountered in experimental measurements. 
 
1.4.1  Diffusivity in Gases: 
 
Pressure dependence of diffusivity is given by 
 

                     
p

D AB
1

     (for moderate ranges of pressures, upto 25 atm). 

And temperature dependency is according to 

                        2
3

TD AB   
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Diffusivity of a component in a mixture of components can be calculated using 
the diffusivities for the various binary pairs involved in the mixture. The relation 
given by Wilke is 
         

                    

n

n
mixture

D

y

D

y

D

y
D



 








131

3

21

2
1

...........

1
 

 
Where D 1-mixture is the diffusivity for component 1 in the gas mixture; D 1-n is the 
diffusivity for the binary pair, component 1 diffusing through component n; and 

ny   is the mole fraction of component n in the gas mixture evaluated on a 

component –1 – free basis, that is 

                                     

nyyy

y
y

.......32

2
2 

  

9. Determine the diffusivity of Co 2 (1), O 2 (2) and N 2 (3) in a gas mixture having 
the composition: 
 
Co2 : 28.5 %, O2 : 15%, N 2 : 56.5%, 
 
The gas mixture is at 273 k and 1.2 * 10 5 Pa.  The binary diffusivity values are 
given as: (at 273 K) 
 
 D 12 P = 1.874 m 2 Pa/sec 
 D 13 P = 1.945 m 2 Pa/sec 
 D 23 P = 1.834 m 2 Pa/sec 
 
Calculations: 
 Diffusivity of Co 2 in mixture 
 
  

13

3

12

2

1
1

D

y

D

y
D m 


  

where 21.0
565.015.0

15.0

32

2
2 







yy

y
y  

 79.0
565.015.0

565.0

32

3
3 







yy

y
y  
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Therefore 

945.1

79.0

874.1

21.0

1
1


PD m  

   = 1.93 m 2.Pa/sec 
 
Since P = 1.2 * 10 5 Pa, 
 

 sec10*61.1
10*2.1

93.1 25

51 mD m
  

 
Diffusivity of O 2 in the mixture, 
 

 

23

3

21

1

2
1

D

y

D

y
D m 


  

 Where 335.0
565.0285.0

285.0

31

1
1 







yy

y
y  

(mole fraction on-2 free bans). 
 
and  

 665.0
565.0285.0

565.0

31

3
3 







yy

y
y  

and  
 D 21 P = D 12 P = 1.874 m 2.Pa/sec 
 
Therefore  
 

 

834.1

665.0

874.1

335.0

1
2


PD m  

      = 1.847 m 2.Pa/sec 
 

 sec10*539.1
10*2.1

847.1 25

52 mmD   

 
By Similar calculations Diffusivity of N 2 in the mixture can be calculated, and is 
found to be, D 3m = 1.588 * 10 –5 m 2/sec. 
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1.4.2 Diffusivity in liquids: 
 
Diffusivity in liquid are exemplified by the values given in table … Most of these 
values are nearer to 10-5 cm2 / sec, and about ten thousand times shower than 
those in dilute gases. This characteristic of liquid diffusion often limits the overall 
rate of processes accruing in liquids (such as reaction between two components 
in liquids). 
 
In chemistry, diffusivity limits the rate of acid-base reactions; in the chemical 
industry, diffusion is responsible for the rates of liquid-liquid extraction. Diffusion 
in liquids is important because it is slow. 
 
Certain molecules diffuse as molecules, while others which are designated as 
electrolytes ionize in solutions and diffuse as ions.  For example, sodium chloride 
(NaCl), diffuses in water as ions Na + and Cl-. Though each ions has a different 
mobility, the electrical neutrality of the solution indicates the ions must diffuse at 
the same rate; accordingly it is possible to speak of a diffusion coefficient for 
molecular electrolytes such as NaCl.  However, if several ions are present, the 
diffusion rates of the individual cations and anions must be considered, and 
molecular diffusion coefficients have no meaning. 
 
Diffusivity varies inversely with viscosity when the ratio of solute to solvent ratio 
exceeds five.  In extremely high viscosity materials, diffusion becomes 
independent of viscosity. 
 
1.4.3  Diffusivity in solids: 
 
Typical values for diffusivity in solids are shown in table.  One outstanding 
characteristic of these values is their small size, usually thousands of time less 
than those in a liquid, which are inturn 10,000 times less than those in a gas. 
 
Diffusion plays a major role in catalysis and is important to the chemical 
engineer. For metallurgists, diffusion of atoms within the solids is of more 
importance. 
 
1.5  Steady State Diffusion 
 
In this section, steady-state molecular mass transfer through simple systems in 
which the concentration and molar flux are functions of a single space coordinate 
will be considered. 
 
In a binary system, containing A and B, this molar flux in the direction of z, as 
given by Eqn (5) is [section 1.3.1] 

                       )( BAA
A

ABA NNy
zd

yd
DCN    --- (1) 
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1.5.1  Diffusion through a stagnant gas film 
 
The diffusivity or diffusion coefficient for a gas can be measured, experimentally 
using Arnold diffusion cell.  
 
The narrow tube of uniform cross section which is partially filled with pure liquid 
A, is maintained at a constant temperature and pressure. Gas B which flows 
across the open end of the tub, has a negligible solubility in liquid A, and is also 
chemically inert to A. (i.e. no reaction between A & B). 
 
Component A vaporizes and diffuses into the gas phase; the rate of vaporization 
may be physically measured and may also be mathematically expressed interms 
of the molar flux. 
 

Consider the control volume S  z, where S is the cross sectional area of the 
tube. Mass balance on A over this control volume for a steady-state operation 
yields 
 

[Moles of A leaving at z + z] – [Moles of A entering at z] = 0. 
 

(i.e.)       .0
 zAzzA NSNS                -------------- (1) 

 

Dividing through by the volume, SZ, and evaluating in the limit as Z 
approaches zero, we obtain the differential equation 

                            0
zd

Nd A      ------------------------- (2) 

 
This relation stipulates a constant molar flux of A throughout the gas phase from 
Z1 to Z2. 
 
A similar differential equation could also be written for component B as, 
 

                                       ,0
Zd

Nd B  

 
and accordingly, the molar flux of B is also constant over the entire diffusion path 
from z1 and z 2. 
 
Considering only at plane z1, and since the gas B is insoluble is liquid A, we 
realize that NB, the net flux of B, is zero throughout the diffusion path; accordingly 
B is a stagnant gas. 
 
From equation (1) (of section 1.5) 
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                                 )( BAA
A

ABA NNy
zd

yd
DCN   

 
Since N B = 0, 
 

                                  AA
A

ABA Ny
zd

yd
DCN                

 
Rearranging, 
 

                                 
zd

yd

y

DC
N A

A

AB
A 




1
                ------------ (3) 

 
This equation may be integrated between the two boundary conditions: 
                           at z = z1              YA = YA1 
              And       at z = z2              YA = yA2  
 
Assuming the diffusivity is to be independent of concentration, and realizing that 
NA is constant along the diffusion path, by integrating equation (3) we obtain 
 

                                 



2

1

2

1
1

A

A

y

y A

A
AB

Z

Z
A

y

yd
DCzdN        

 
 

                               













1

2

12 1

1
ln

A

AAB
A

y

y

ZZ

DC
N   --------------(4) 

 
The log mean average concentration of component B is defined as 
 

                  











1

2

12
,

ln
B

B

BB
lmB

y
y

yy
y  

 

Since  AB yy 1 , 
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



















1

2

21

1

2

12
,

lnln

)1()1(

A

A

AA

A

A

AA
lmB

y
y

yy

y
y

yy
y     ------- (5) 

 
Substituting from Eqn (5) in Eqn (4), 
 
 

                       

lmB

AAAB
A

y

yy

zZ

DC
N

,

21

12

)( 


     -------------------- (6) 

 

For an ideal gas   
TR

p

V

n
C   ,  and 

 

     for mixture of ideal gases 
P

p
y A
A   

 
Therefore, for an ideal gas mixture equation. (6) becomes 
 

                        

lmB

AAAB
A

p

pp

zzRT

D
N

,

21

12

)(

)(




  

 
This is the equation of molar flux for steady state diffusion of one gas through a 
second stagnant gas. 
 
Many mass-transfer operations involve the diffusion of one gas component 
through another non-diffusing component; absorption and humidification are 
typical operations defined by these equation. 
 

12. Oxygen is diffusing in a mixture of oxygen-nitrogen at 1 std atm, 25C.  
Concentration of oxygen at planes 2 mm apart are 10 and 20 volume % 
respectively.  Nitrogen is non-diffusing. 
 

(a) Derive the appropriate expression to calculate the flux oxygen.  Define 
units of each term clearly. 

(b) Calculate the flux of oxygen.  Diffusivity of oxygen in nitrogen = 1.89 * 10 –

5 m 2/sec. 
 
Solution: 
 
Let us denote oxygen as A and nitrogen as B.  Flux of A (i.e.) N A is made up of 
two components, namely that resulting from the bulk motion of A (i.e.), Nx A and 
that resulting from molecular diffusion J A: 
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 AAA JNxN    ---------------------------------- (1) 

 
From Fick’s law of diffusion,  
 

 
zd

Cd
DJ

A
ABA    ----------------------------------------- (2) 

 
Substituting this equation (1) 
 

  
zd

Cd
DNxN

A
ABAA    ----------------------------- (3) 

 
Since N = N A + N B and x A = C A / C equation (3) becomes  
 

  
zd

Cd
D

C

C
NNN

A
AB

A
BAA     

 
Rearranging the terms and integrating between the planes between 1 and 2, 
  

    
 2

1

A

A

C

C
BAAA

A

AB NNCCN

dC

cD

zd
  -------------- (4) 

 
Since B is non diffusing N B = 0.  Also, the total concentration C remains 
constant.  Therefore, equation (4) becomes 
 

  
 2

1

A

A

C

C
AAA

A

AB CNCN

dC

CD

z
 

       

1

2
ln

1

A

A

A CC

CC

N 


  

 
Therefore, 
 

  

1

2
ln

A

AAB
A

CC

CC

z

CD
N




   ---------------------------- (5) 

 
Replacing concentration in terms of pressures using Ideal gas law, equation (5) 
becomes 
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1

2
ln

At

AttAB
A

PP

PP

RTz

PD
N




   --------------------------- (6) 

 
where  
 D AB = molecular diffusivity of A in B 
 P T = total pressure of system 
 R = universal gas constant 
 T = temperature of system in absolute scale 
 z = distance between two planes across the direction of diffusion  
 P A1 = partial pressure of A at plane 1, and  
 P A2 = partial pressure of A at plane 2 
 
Given: 
 D AB = 1.89 * 10 –5 m2/sec 
 P t = 1 atm = 1.01325 * 10 5 N/m 2 

 T = 25C = 273 + 25 = 298 K 
 z = 2 mm = 0.002 m 
 P A1 = 0.2 * 1 = 0.2 atm (From Ideal gas law and additive pressure rule) 
 P A2 = 0.1 * 1 = 0.1 atm 
 
Substituting these in equation (6) 
 

 
  

      













2.01

1.01
ln

002.02988314

10*01325.110*89.1 55

AN  

  = 4.55 * 10 –5 kmol/m 2.sec 
 
 
1.5.2  Psuedo steady state diffusion through a stagnant film: 
 
In many mass transfer operations, one of the boundaries may move with time. If 
the length of the diffusion path changes a small amount over a long period of 
time, a pseudo steady state diffusion model may be used. When this condition 
exists, the equation of steady state diffusion through stagnant gas’ can be used 
to find the flux. 
 
 
If the difference in the level of liquid A over the time interval considered is only a 
small fraction of the total diffusion path, and t0 – t is relatively long period of time, 
at any given instant in that period, the molar flux in the gas phase may be 
evaluated by 
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lmB

AAAB
A

zy

yyDC
N

,

21 )( 
     ------------------ (1) 

 
where z equals z 2 – z1, the length of the diffusion path at time t. 
 
The molar flux NA  is related to the amount of A leaving the liquid by 
 

                              
td

zd

M
N

A

LA
A

,
     -------------------------- (2) 

 

where  

A

LA

M

,
 is the molar density of A in the liquid phase 

 
under Psuedo steady state conditions, equations (1) & (2) can be equated to give 
 

lmB

AAAB

A

LA

yz

yyDC

td

zd

M ,

21, )( 



         --------------- (3) 

 
Equation. (3) may be integrated from t = 0 to t and from z = z t0 to z = zt as:  
 

                                  




t

t

Z

ZAAAB

AlmBLA
t

t

dzz
yyDC

My
dt

0
)( 21

,,

0


 

 
yielding 

                      








 



2)(

2
0

2

21

,, tt

AAAB

AlmBLA zz

yyDC

My
t


    -------- (4) 

 
This shall be rearranged to evaluate diffusivity DAB as, 
 

                                








 



2)(

2
0

2

21

,, tt

AAA

lmBLA
AB

zz

tyyCM

y
D


 

 
1. A vertical glass tube 3 mm in diameter is filled with liquid toluene to a 

depth of 20mm from the top openend.  After 275 hrs at 39.4 C and a total 
pressure of 760 mm Hg the level has dropped to 80 mm from the top.  
Calculate the value of diffusivity. 
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Data: 

 vapor pressure of toluene at 39.4C = 7.64 kN / m2, 
 density of liquid toluene = 850 kg/m3  
 Molecular weight of toluene = 92 
   (C 6 H6 CH3) 
 

   








 



2

2
0

2

21

, tt

AAA

BlmLA
AB

ZZ

tyyCM

y
D


        

where 















1

2

12
,

ln
B

B

BB
mlB

y

y

yy
y  

 y B2 = 1 – y A2   y B1 = 1 – y A1 

 
3.101

64.71
1 

P

p
y

A
A      (760 mm Hg = 101.3 kN/m2) 

  = 0.0754   y B1 = 1 – 0.0754 = 0.9246  
 y A2 = 0   y B = 1 – y A2 = 1 

Therefore 9618.0

9246.0

1
ln

9246.01
, 










lmBy  

 

 4.39273*8314

10*01325.1 5




TR

P
C  

  = 0.039 k mol /m3  
 
Therefore  
 

  








 



2

02.008.0

3600*275*00754.0*039.0*92

9618.0*850 22

ABD  

 = 1.5262 * 10 –3 (0.08 2 – 0.02 2) 
 = 9.1572 * 10-6 m2/sec. 
 
  
1.5.3   Equimolar counter diffusion: 
 
A physical situation which is encountered in the distillation of two constituents 
whose molar latent heats of vaporization are essentially equal, stipulates that the 
flux of one gaseous component is equal to but acting in the opposite direction 
from the other gaseous component; that is, NA = - NB. 
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The molar flux NA, for a binary system at constant temperature and pressure is 
described by 
 

                     )( BAA
A

ABA NNy
zd

yd
DCN   

or                )( BAA
A

ABA NNy
zd

Cd
DN            ------- (1) 

 
with the substitution of NB = - NA, Equation (1) becomes, 
 
                           

                      
zd

Cd
DN A
ABA     -----------------  (2) 

 
For steady state diffusion Equation. (2) may be integrated, using the boundary 
conditions: 
                      at   z = z1         CA  =  CA1 

                            and   z = z2        CA  =  CA2 
 
Giving, 

                        
2

1

2

1

A

A

C

C
AAB

Z

Z
A CdDzdN  

from which 
                        
                               

                 )( 21
12

AA
AB

A CC
zz

D
N 


         ------------------- (3) 

 

For ideal gases,   
TR

p

V

n
C AA
A   .   Therefore Equation. (3) becomes 

 

                               )(
)(

21
12

AA
AB

A PP
zzTR

D
N 


   ---------- (4) 

 
This is the equation of molar flux for steady-state equimolar counter diffusion. 
 
Concentration profile in these equimolar counter diffusion may be obtained from, 
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                   0)( AN
zd

d
   (Since NA is constant over the diffusion path). 

 
And   from equation. (2) 
                      

                        
zd

Cd
DN A
ABA  . 

 
Therefore  

                           0









zd

Cd
D

zd

d A
AB . 

 

   or                  .0
2

2


zd

Cd A  

 
This equation may be solved using the boundary conditions to give 
 

                                      

21

1

2

1

1
zz

zz

CC

CC

A

A

A

A








   -------------- (5) 

 
Equation, (5) indicates a linear concentration profile for equimolar counter 
diffusion. 
 
3. Methane diffuses at steady state through a tube containing helium.  At point 1 
the partial pressure of methane is p A1 = 55 kPa and at point 2, 0.03 m apart P A2 
= 15 KPa.  The total pressure is 101.32 kPa, and the temperature is 298 K.  At 
this pressure and temperature, the value of diffusivity is 6.75 * 10 –5 m 2/sec. 
 

i) calculate the flux of CH 4 at steady state for equimolar counter 
diffusion. 

ii) Calculate the partial pressure at a point 0.02 m apart from point 1. 
 
Calculation: 
 
For steady state equimolar counter diffusion, molar flux is given by 
 

  21 AA
AB

A pp
zTR

D
N    --------------------------- (1) 

 
Therefore;  
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  
sec.

1555
03.0*298*314.8

10*75.6
2

5

m

kmol
N A 


 

  
sec

10*633.3
2

5

m

kmol  

 
And from (1), partial pressure at 0.02 m from point 1 is: 
 

  Ap


 55
02.0*298*314.8

10*75.6
10*633.3

5
5

 

 
 p A = 28.33 kPa 
 
11. In a gas mixture of hydrogen and oxygen, steady state equimolar counter 

diffusion is occurring at a total pressure of 100 kPa and temperature of 20C.  If 
the partial pressures of oxygen at two planes 0.01 m apart, and perpendicular to 
the direction of diffusion are 15 kPa and 5 kPa, respectively and the mass 
diffusion flux of oxygen in the mixture is 1.6 * 10 –5 kmol/m 2.sec, calculate the 
molecular diffusivity for the system. 
 
Solution: 
 
For equimolar counter current diffusion: 
 

  21 AA
AB

A pp
RTz

D
N   ------------------------ (1) 

 
where 
 
 N A = molar flux of A (1.6 * 10 –5 kmol/m 2.sec): 
 D AB = molecular diffusivity of A in B 
 R = Universal gas constant (8.314 kJ/kmol.k) 
 T = Temperature in absolute scale (273 + 20 = 293 K) 
 z = distance between two measurement planes 1 and 2 (0.01 m) 
 P A1 = partial pressure of A at plane 1 (15 kPa); and 
 P A2 = partial pressure of A at plane 2 (5 kPa) 
 
Substituting these in equation (1) 
 

        515
01.0293314.8

10*6.1 5  ABD
 

Therefore, D AB = 3.898 * 10 –5 m 2/sec 
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2. A tube 1 cm in inside diameter that is 20 cm long is filled with Co2 and H2 at a 

total pressure of 2 atm at 0C.  The diffusion coefficient of the Co2 – H2 system 
under these conditions is 0.275 cm2/sec.  If the partial pressure of Co2 is 1.5 atm 
at one end of the tube and 0.5 atm at the other end, find the rate of diffusion for: 
 

i) steady state equimolar counter diffusion (N A = - N B) 
ii) steady state counter diffusion where N B = -0.75 N A, and 
iii) steady state diffusion of Co2 through stagnant H2 (NB = 0) 

 

i)  BAA
A

ABA NNy
zd

yd
DCN   

Given  
 N B = - N A 
 

Therefore 
zd

Cd
D

zd

yd
DCN

A
AB

A
ABA   

 

(For ideal gas mixture 
TR

p
C A
A   where pA is the partial pressure of A; such 

that p A + p B = P) 
 

Therefore 
 

zd

RTpd
DN A

BAA   

For isothermal system, T is constant  
 

Therefore 
zd

pd

RT

D
N

AAB
A


  

 

(i.e.)   
2

1

2

1

A

A

P

P
A

AB
Z

Z
A pd

RT

D
zdN  

 21 AA
AB

A pp
zRT

D
N    ---------------------------------- (1) 

 
where Z = Z 2 – Z 1  
 

Given: D AB = 0.275 cm 2/sec = 0.275 * 10 –4 m 2 /sec ; T = 0C = 273 k 
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 55
4

10*01325.1*5.010*01325.1*5.1
2.0*273*8314

10*275.0




AN  

 
sec

10*138.6
2

6

m

molk  

 
Rate of diffusion = N A S 
 
Where S is surface area  
 

Therefore rate of diffusion = 6.138 * 10-6 *  r 2  

    = 6.138 * 10 –6 *  (0.5 * 10 –2) 2 
    = 4.821 * 10 –10 k mol/sec  
    = 1.735 * 10 –3 mol/hr. 
 

ii)  BAA
A

ABA NNy
zd

yd
DCN   

 given: N B = - 0.75 N A  
  

Therefore  AAA
A

ABA NNy
zd

yd
DCN 75.0  

 

  AA
A

BA Ny
zd

yd
DC 25.0  

 
zd

yd
DCNyN

A
ABAAA  25.0  

 

A

A
ABA

y

yd
DCzdN

25.01
  

for constant N A and C 
 

  


2

1

2

1
25.01

A

A

y

y A

A
AB

Z

Z
A

y

yd
CDzdN  

         









 xba
bxba

xd
ln

1
 

      2

1
25.01ln

25.0

1
A

A

y

yAABA yDCzN 





 

  
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 















1

2

25.01

25.01
ln

4

A

AAB
A

y

y

z

CD
N   ---------------------------------- (2) 

 
Given: 

 
3

5

0893.0
273*8314

10*01325.1*2
mmolK

TR

p
C   

 75.0
2

5.11
1 

P

p
y

A
A  

 25.0
2

5.02
2 

P

p
y

A
A  

Substituting these in equation (2), 
 

 











75.0*25.01

25.0*25.01
ln

2.0

10*275.0*0893.0*4 4

AN  

  
sec

10*028.7
2

6

m

kmol  

Rate of diffusion = N A S = 7.028 * 10 –6 *  * (0.5 * 10 –2) 2 
          = 5.52 * 10 –10 kmol/sec 
          = 1.987 * 10 –3 mol/hr. 
 

iii)  BAA
A

ABA NNy
zd

yd
CDN   

 
Given: N B = 0 
 

Therefore AA
A

ABA Ny
zd

yd
CDN   

 


2

1

2

1
1

A

A

y

y A

A
AB

Z

Z
A

y

yd
CDzdN  

  















1

2

1

1
ln

A

AAB

y

y

Z

CD
 

  





















75.01

25.01
ln

2.0

10*275.0*0893.0 4
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sec.

10*349.1
2

5

m

kmol  

 

Rate of diffusion = 1.349 8 10 –5 *  * (0.5 * 10 –2) 2 
 
       = 1.059 Kmol / sec 
       = 3.814 mol/hr 
 
1.5.4 Diffusion into an infinite standard medium: 
 Here we will discuss problems involving diffusion from a spherical particle 
into an infinite body of stagnant gas. The purpose in doing this is to demonstrate 
how to set up differential equations that describe the diffusion in these 
processes. The solutions, obtained are only of academic interest because a large 
body of gas in which there are no convection currents is unlikely to be found in 
practice. However, the solutions developed here for these problems actually 
represent a special case of the more common situation involving both molecular 
diffusion and convective mass transfer. 
 
a) Evaporation of a spherical Droplet: 
 As an example of such problems, we shall consider the evaporation of 
spherical droplet such as a raindrop or sublimation of naphthalene ball. The 
vapor formed at the surface of the droplet is assumed to diffuse by molecular 
motions into the large body of stagnant gas that surrounds the droplet. 
Consider a raindrop, at any moment, when the radius of the drop is r 0, the flux of 
water vapor at any distance r from the center is given by 

  BAA
A

ABA NNy
rd

yd
DCN   

Here N B = 0 (since air is assumed to be stagnant) 
Therefore,  

 AA
A

ABA Ny
rd

yd
DCN   

Rearranging, 

 
rd

yd

y

DC
N

A

A

AB
A 




1
 __________  (1) 

 The flux N A is not constant, because of the spherical geometry; decreases 
as the distance from the center of sphere increases. But the molar flow rate at r 

and r + r are the same. 
This could be written as, 

 
rrArA NANA


   __________  (2) 

where A = surface area of sphere at r or r + r. 

Substituting for A = 4  r 2 in equation (2), 
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 044 22 
 r

A
rr

A NrNr 


 

or 

 0lim

22

0





 r

NrNr
r

A
rr

A

r 



 

   02 ANr
dr

d
  __________  (3) 

Integrating, 

 constant2 ANr  __________  (4) 

From equation (4), 
0

2
0

2
AA NrNr   

Substituting for N A from equation (1), 
           

 
0

2
0

2

1
A

A

A

AB
Nr

rd

yd

y

DCr





 

   


A

A
ABA

y

yd
DC

r

rd
Nr

12

2
0 0

  __________  (5) 

Boundary condition : 
 At r = r 0 y A = y AS 
And 

 At r =  y A = y A  
Therefore equation (5) becomes, 

    








A

AS

y

yAAB
r

A yDC
r

Nr 1ln
1

0

0

2
0

 

Simplifying, 

 













 

SA

AAB
A

y

y

r

DC
N

1

1
ln

0
0

  __________  (6) 

Time required for complete evaporation of the droplet may be evaluated from 
making mass balance. 
 

timeunit

droplettheleavingwaterofmoles

timeunit

diffusingwaterofMoles
  

 











A
A

M
r

dt

d
Nr L


 3

00
2
0 3

4
4  
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td

rd

M
r

A

L 02
04


  __________  (7) 

Substituting for N A0 from equation (6) in equation (7), 

 
td

rd

My

y

r

DC

AAS

AAB L 0

0 1

1
ln

















 __________  (8) 

Initial condition : 
 When t = 0 r 0 = r 1 
Integrating equation (8) with these initial condition, 

 





















0

00
0 1

1

1
ln

11

r

SA

AABA

t

rdr

y

yDCM
td

L


 

 



















SA

AABA

y

y

r

DCM
t

L

1

1
ln

2

1
2

1


  __________  (9) 

Equation (9) gives the total time t required for complete evaporation of spherical 
droplet of initial radius r 1. 
 
b) Combustion of a coal particle: 
 The problem of combustion of spherical coal particle is similar to 
evaporation of a drop with the exception that chemical reaction (combustions) 
occurs at the surface of the particle. During combustion of coal, the reaction

 C + O 2  CO 2 
cccurs. According to this reaction for every mole of oxygen that diffuses to the 
surface of coal (maximum of carbon), react with 1 mole of carbon, releases 1 
mole of carbon dioxide, which must diffuse away from this surface. This is a case 
of equimolar counter diffusion of CO 2 and O 2. Normally air (a mixture of N 2 and 
O 2) is used for combustion, and in this case N 2 does not takes part in the 

reaction, and its flux is zero.  0i.e.
2
NN . 

 The molar flux of O 2 could be written as 

 
2222

2

22 NCOOO

O

gasOO NNNy
rd

yd
DCN     

        __________  (1) 

Where gasOD 2
 is the diffusivity of O 2 in the gas mixture. 

 Since 0
2
NN , and from stoichiometry 

22 COO NN   , equation 

(1) becomes 
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rd

yd
DCN

O

gasOO
2

22   __________  (2) 

For steady state conditions, 

   0
2

2 ONr
rd

d
 __________  (3) 

Integrating, 

 sOO NrNr
22

2
0

2 constant   __________  (4) 

Where r 0 is the radius of coal particle at any instant, and sON 2
 is the flux of O 2 

at the surface of the particle. 

  Substituting for 
2ON from equation (2) in equation (4), 

 sO

O

gasO Nr
rd

yd
DCr

2

2

2

2
0

2    __________  (5) 

Boundary condition : 

 At  sOO yyrr
220   

And 

 At   
22 OO yyr  

With these boundary condition, equation (5) becomes 

 







2

2

22

0

0 2

2
0

O

sO

y

y
OgasO

r
A ydDC

r

rd
Nr  

which yields 

  



22

2

2
0

OsO

gasO

sO yy
r

DC
N  __________  (6) 

For fast reaction of O 2 with coal, the mole fraction of O 2 at the surface of particle 

iz zero. (i.e.,) 0
2

sOy . 

 And also at some distance away from the surface of the particle 

21.0
22

 OO yy  (because air is a mixture of 21 mole % O 2 and 79 mole 

% N 2) 
 
With these conditions, equation (6) becomes, 

 

0

2

2

21.0

r

DC
N

gasO

sO


   ____________  (7) 

5. A sphere of naphthalene having a radius of 2mm is suspended in a large 
volume of shell air at 318 K and 1 atm.  The surface pressure of the naphthalene 
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can be assumed to be at 318 K is 0.555 mm Hg.  The D AB of naphthalene in air 
at 318 K is 6.92 * 10 –6

 m
 2/sec.  Calculate the rate of evaporation of naphthalene 

from the surface. 
 
Calculation 
 

Steady state mass balance over a element of radius r and r + r leads to  
 

 0
 rrArA NSNS


  ---------------------------- (1) 

where S is the surface are (= 4  r 2) 
 

dividing (1) by Sr, and taking the limit as r approaches zero, gives: 
 

 
 

0

2


rd

Nrd A
 

Integrating r 2 N A = constant (or) 4  r 2 N A = constant  
 
We can assume that there is a film of naphthalene – vapor / air film around 
naphthalene through which molecular diffusion occurs. 
 
Diffusion of naphthalene vapor across this film could be written as, 
 

  BAA
A

ABA NNy
rd

yd
CDN   

   N B = 0 (since air is assumed to be stagnant in the film) 

 AA
A

ABA Ny
rd

yd
CDN   

 

 













A

A
ABA

y

y

rd

d
CDN

1
    

 
  
rd

yd
CDN

A
ABA




1ln
 

 

W A = Rate of evaporation = 4  r 2 N A R = constant. 
 

 
  

rd

ydCDr
W

AAB
A




1ln4 2
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     AABA ydCD
r

rd
W 1ln4

2
  

Boundary condition: 
 

 At r = R  
410*303.7

760

555.0 Ay  

     ln (1 – y A) = - 7.3 * 10 –4 

 At r =    y A = 0  ln (1-y A) = 0  
 

Therefore   





0

10*3.7
2

4

1ln4 AAB
R

A ydCD
r

rd
W   

   0
10*3.7 41ln4

1









AAB
R

A yCD
r

W   

  410*3.704
1

0 



  CD

R
W ABA   

 W A = 4  R D AB C * 7.3 * 10 –4  

 
318*8314

10*01325.1

*tan

5


TtconsGas

P
C  

     = 0.0383 kmol/m 3  
 
Initial rate of evaporation: 
 
Therefore W A = 4 * 3.142 * 2 * 10 –3 * 6.92 * 10 –6 * 0.0383 * 7.3 * 10 –4  
  = 4.863 * 10 –12 kmol/sec 
  = 1.751 * 10 –5 mol/hr. 
 
1.5.5 Diffusion in Liquids: 
 Equation derived for diffusion in gases equally applies to diffusion in 
liquids with some modifications. Mole fraction in liquid phases is normally written 
as ‘x’ (in gases as y). The concentration term ‘C’ is replaced by average molar 

density, 

avM






 

. 

a) For steady – state diffusion of A through non diffusivity B: 
N A = constant , N B = 0 

 21 AA
avBM

AB
A xx

Mxz

D
N 









 

where Z = Z 2 – Z 1, the length of diffusion path; and 
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











1

2

12

ln
B

B

BB
BM

X

X

XX
X  

b) For steady – state equimolar counter diffusion : 
 N A = - N B = const 

    2121 AA
av

AB
AA

AB
A xx

MZ

D
CC

Z

D
N 









 

4. Calculate the rate of diffusion of butanol at 20C under unidirectional steady 
state conditions through a 0.1 cm thick film of water when the concentrations of 
butanol at the opposite sides of the film are, respectively 10% and 4% butanol by 
weight.  The diffusivity of butanol in water solution is 5.9 * 10 –6 cm 2/sec.  The 

densities of 10% and 4% butanol solutions at 20C may be taken as 0.971 and 
0.992 g/cc respectively.  Molecular weight of Butanol (C 4 H 9 OH) is 74, and that 
of water 18. 
 
Calculations 
 
 For steady state unidirectional diffusion, 
 

 
 

lmB

AAAB
A

x

xx
C

z

D
N

,

21 
  

where C is the average molar density. 

  

avgM









 

Conversion from weight fraction the Mole fraction: 
 

 
 

  026.0
189.0741.0

741.0
1 


Ax  

 
 

  010.0
1896.07404.0

7404.0
2 


Ax  

 
Average molecular weight at 1 & 2: 
 

   KmolkgM 47.19
189.0741.0

1
1 


  

   KmolkgM 56.18
1896.07404.0

1
2 


  
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 
2

2211 MM

M avg

 









 

  
2

56.18992.047.19971.0 
  

  = 0.0517 gmol / cm 3  
  = 51.7 kmol/m 3  
 

 
   






















1

2

12

12

12
,

1

1
ln

11

ln

A

A

AA

BB

BB
lmB

x

x

xx

xx

xx
x  

(i.e.) 
   















026.01

01.01
ln

026.0101.01
,lmBx  

  982.0
0163.0

016.0
  

Therefore 
 

lmB

AA

avg

AB
A

x

xx

M

D
N

,

21

2











 

  
 

982.0

010.0026.0
*

10*1.0

7.51*10*10*9.5
2

46 





 

  
sec

10*97.4
2

7

m

kmol  

  
..

789.1
2 hrm

gmol
  

  
..

74*789.1
2 hrm

g
  

  
..

4.132
2 hrm

g
  

 
Mass diffusion with homogeneous chemical reaction: 
 Absorption operations involves contact of a gas mixture with a liquid and 
preferential dissolution of a component in the contacting liquid. Depending on the 
chemical nature of the involved molecules, the absorption may or may not 
involve chemical reaction. 
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 The following analysis illustrates the diffusion of a component from the gas 
phase into the liquid phase accompanied by a chemical reaction in the liquid 
phase. Consider a layer of absorbing medium (liquid). 
 
At the surface of the liquid, the composition of A is CA 0. The thickness of the 

film,  is so defined, that beyond this film the concentration of A is always zero ; 

that is C A = 0. If there is very little fluid motion within the film, 

  BA
AA

ABA NN
C

C

zd

Cd
DN    ____________  (1) 

If concentration of A in the film, C A is assumed small, equation (1) becomes 

 
zd

Cd
DN

A
ABA    ____________  (2) 

 The molar flux N A changes along the diffusion path. This change is due to 
the reaction that takes place in the liquid film. This changes could be written as 

   0 AA rN
zd

d
  ____________  (3) 

where –rA is the rate of disappearance of A. For a first order reaction, 

 BA
k   

 AA Ckr    ____________  (4) 

with the substitution from equation (4) and (2) in equation (3), 

 0







A

A
AB Ck

zd

Cd
D

zd

d
 

For constant Diffusivity, 

 0
2

2

 A
A

AB Ck
zd

Cd
D   ____________  (5) 

which is a second order ordinary differential equation. The general solution to this 
equation is  


















 z

D
khCz

D
khCC

ABAB
A sincos 21  _______  (6) 

The constants of this equation can be evaluated from the boundary conditions: 
 at  Z = 0  C A  =  C A0 

And at Z =   C A  =  0. 
 The constant C 1 is equal to C A0 , and C 2 is equal to 











AB

A

D
k

h

C

tan
0

 with this substitution equation (6) becomes, 
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



























z
D
kh

z
D
khC

z
D
khCC

BA

BA
A

AB
AA

tan

sin

cos

0

0  

_______  (7) 
 This equation gives the variation of concentration of A with z (i.e 
concentration profile of A in the liquid). The molar flux at the liquid surface can be 
determined by differentiating equation (7), and evaluating the derivative 

0at z
zd

Cd A
 

 Differentiating C A with respect to z,  






























AB

ABBA
A

ABBA
A

A

D
kh

z
D
kh

D
kC

z
D
kh

D
kC

zd

Cd

tan

cos

sin

0

0

       ____________  (8) 
Substituting z = 0 in equation (8) and from equation (2), 



































AB

ABAAB

ZA

D
kh

D
k

CD
N

tan

0

0
  ____________  (9) 

For absorption with no chemical reaction, the flux of A is obtained from equation 
(2) as 

 


0AAB

A

CD
N    ____________  (10) 

which is constant throughout the film of liquid. On comparison of equation (9) and 

(10), it is apparent that the term 






























ABAB D
kh

D
k tan  shows 

the influence of the chemical reactions. This terms a dimensionless quantity, is  
often called as Hatta Number. 
 
1.5.7 Diffusion in solids 
 In certain unit operation of chemical engineering such as in drying or in 
absorption, mass transfer takes place between a solid and a fluid phase. If the 
transferred species is distributed uniformly in the solid phase and forms a 
homogeneous medium, the diffusion of the species in the solid phase is said to 
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be structure independent. In this cases diffusivity or diffusion coefficient is 
direction – independent. 
 At steady state, and for mass diffusion which is independent of the solid 
matrix structure, the molar flux in the z direction is : 

 constant
zd

Cd
DN

A
ABA , as given by Fick’s law. 

Integrating the above equation, 

 
 
z

CCD
N

AAAB
A

21   

which is similar to the expression obtained for diffusion in a stagnant fluid with no 
bulk motion (i.e. N = 0). 
 
Diffusion in process solids: 
 In some chemical operations, such as heterogeneous catalysis, an 
important factor, affecting the rate of reaction is the diffusions of the gaseous 
component through a porous solid. The effective diffusivity in the solid is reduced 
below what it could be in a free fluid, for two reasons. First, the tortuous nature of 
the path increases the distance, which a molecule must travel to advance a given 
distance in the solid. Second, the free cross – sectional area is restricted. For 
many catalyst pellets, the effective diffusivity of a gaseous component is of the 
order of one tenth of its value in a free gas. 
 If the pressure is low enough and the pores are small enough, the gas 
molecules will collide with the walls more frequently than with each other. This is 
known as Knudsen flow or Knudsen diffusion. Upon hitting the wall, the 
molecules are momentarily absorbed and then given off in random directions. 
The gas flux is reduced by the wall collisions. 
 By use of the kinetic flux is the concentration gradient is independent of 
pressure ; whereas the proportionality constant for molecular diffusion in gases 
(i.e. Diffusivity) is inversely proportional to pressure. 
 Knudsen diffusion occurs when the size of the pore is of the order of the 
mean free path of the diffusing molecule. 
 
 
1.6 Transient Diffusion 
 Transient processes, in which the concentration at a given point varies 
with time, are referred to as unsteady state processes or time – dependent 
processes. This variation in concentration is associated with a variation in the 
mass flux. 
 These generally fall into two categories: 

i) the process which is in an unsteady state only during its initial 
startup, and 

ii) the process which is in a batch operation throughout its operation. 
In unsteady state processes there are three variables-concentration, time,  

and position. Therefore the diffusion process must be described by partial rather 
than ordinary differential equations. 
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 Although the differential equations for unsteady state diffusion are easy to 
establish, most solutions to these equations have been limited to situations 
involving simple geometries and boundary conditions, and a constant diffusion 
coefficient. 
 Many solutions are for one-directional mass transfer as defined by Fick’s 
second law of diffusion : 

 
2

2

z

C
D

t

C A
AB

A









  __________  (1) 

This partial differential equation describes a physical situation in which there is 
no bulk–motion contribution, and there is no chemical reaction. This situation is 
encountered when the diffusion takes place in solids, in stationary liquids, or in 
system having equimolar counter diffusion. Due to the extremely slow rate of 

diffusion within liquids, the bulk motion contribution of flux equation (i.e., y A  N i) 
approaches the value of zero for dilute solutions ; accordingly this system also 
satisfies Fick’s second law of diffusion. 
 The solution to Fick’s second law usually has one of the two standard 
forms. It may appear in the form of a trigonometric series which converges for 
large values of time, or it may involve series of error functions or related integrals 
which are most suitable for numerical evaluation at small values of time. These 
solutions are commonly obtained by using the mathematical techniques of 
separation of variables or Laplace transforms.  
 

Convective Mass Transfer 
 

2.1 Introduction  
2.2 Convective Mass Transfer coefficient  
2.3 Significant parameters in convective mass transfer 
2.4 The application of dimensional analysis to Mass Transfer 

2.4.1 Transfer into a stream flowing under forced convection 
2.4.2 Transfer into a phase whose motion is due to natural convection 

2.5 Analogies among mass, heat, and momentum transfer 
2.5.1 Reynolds analogy 
2.5.2 Chilton – Colburn analogy 

2.6 Convective mass transfer correlations 
2.6.1   For flow around flat plat 
2.6.2 For flow around single sphere 

       2.6.3   For flow around single cylinder 
2.6.4   For flow through pipes 

2.7 Mass transfer between phases 
2.8 Simultaneous heat and mass transfer 

2.8.1 Condensation of vapour on cold surface 
2.8.2 Wet bulb thermometer 
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2.1 Introduction 
 
Our discussion of mass transfer in the previous chapter was limited to molecular 
diffusion, which is a process resulting from a concentration gradient. In system 
involving liquids or gases, however, it is very difficult to eliminate convection from 
the overall mass-transfer process. 
 
 Mass transfer by convection involves the transport of material between a 
boundary surface (such as solid or liquid surface) and a moving fluid or between 
two relatively immiscible, moving fluids. 
 
 There are two different cases of convective mass transfer: 
 

1. Mass transfer takes place only in a single phase either to or from a phase 
boundary, as in sublimation of naphthalene (solid form) into the moving 
air. 

 
2. Mass transfer takes place in the two contacting phases as in extraction 

and absorption. 
 
In the first few section we will see equation governing convective mass transfer in 
a single fluid phase. 
 
 
 
2.2 Convective Mass Transfer Coefficient 
 
In the study of convective heat transfer, the heat flux is connected to heat 
transfer coefficient as 
 

 ms tthqAQ    -------------------- (4.1) 

 
The analogous situation in mass transfer is handled by an equation of the form 
 

  AAscA CCkN    -------------------- (4.2) 

 
The molar flux N A  is measured relative to a set  of axes fixed in space. The 
driving force is the difference between the concentration at the phase boundary, 
CAS (a solid surface or a fluid interface) and the concentration at some arbitrarily 
defined point in the fluid medium, C A  . The convective mass transfer coefficient 
kC is a function of geometry of the system and the velocity and properties of the 
fluid similar to the heat transfer coefficient, h. 
 
2.3 Significant Parameters in Convective Mass Transfer 
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Dimensionless parameters are often used to correlate convective transfer data. 
In momentum transfer Reynolds number and friction factor play a major role. In 
the correlation of convective heat transfer data, Prandtl and Nusselt numbers are 
important. Some of the same parameters, along with some newly defined 
dimensionless numbers, will be useful in the correlation of convective mass-
transfer data. 
 
The molecular diffusivities of the three transport process (momentum, heat and 
mass) have been defined as: 
 


 ydiffusivit Momentum   ----------------------------- (4.3) 

 

pC

k


 ydiffusivit  Thermal  --------------------------- (4.4) 

 
and  

ABDydiffusivit Mass --------------------------- (4.5) 

 
It can be shown that each of the diffusivities has the dimensions of L2 / t, hence, a 
ratio of any of the two of these must be dimensionless. 
 
The ratio of the molecular diffusivity of momentum to the molecular diffusivity of 
heat (thermal diffusivity) is designated as the Prandtl Number 
 

K

Cp 



 Pr
y diffusivit Thermal

y diffusivit Momentum
    ------------------------ (4.6) 

 
The analogous number in mass transfer is Schmidt number given as 
 

ABAB DD
Sc





y diffusivit Mass

y diffusivit Momentum
  -------------- (4.7) 

 
The ratio of the molecular diffusivity of heat to the molecular diffusivity of mass is 
designated the Lewis Number, and is given by 
 

 

ABpAB DC

k

D
Le





y diffusivit Mass

y diffusivit Thermal
  ------------- (4.8) 

 
Lewis number is encountered in processes involving simultaneous convective 
transfer of mass and energy. 



 41 

 
Let us consider the mass transfer of solute A from a solid to a fluid flowing past 
the surface of the solid. For such a case, the mass transfer between the solid 
surface and the fluid may be written as 
 

   AAscA CCkN   ---------------------- (4.1 a) 

 
Since the mass transfer at the surface is by molecular diffusion, the mass 
transfer may also described by 
 

 

0


y

A
ABA

yd

Cd
DN   ------------------------- (4.9) 

 
When the boundary concentration, CAs is constant, equation (4.9) may be written 
as  
 

 
 

0




y

sAA
ABA

yd

CCd
DN   ---------------------- (4.10) 

 
Equation (4.1a) and (4.10) may be equated, since they define the same flux of 
component A leaving the surface and entering the fluid 
 

    
0

 
y

sAAABAsAc CC
yd

d
DCCk  --------------- 

(4.11) 
 
This relation may be rearranged into the following form: 
 

 
 
 

0




yAA

sAA

AB

c

CC

ydCCd

D

k
  -------------------- (4.12) 

 
Multiplying both sides of equation(4.12) by a characteristic length, L we obtain 
the following dimensionless expression: 
 

 

 
  LCC

ydCCd

D

Lk

ASA

ysAA

AB

c








 0

  ----------------- (4.13) 
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The right hand side of equation (4.13) is the ratio of the concentration gradient at 
the surface to an overall or reference concentration gradient; accordingly, it may 
be considered as the ratio of molecular mass-transport resistance to the 
convective mass-transport resistance of the fluid. This ratio is generally known as 
the Sherwood number, Sh and analogous to the Nusselt number Nu, in heat 
transfer. 
 
2.4 Application of Dimensionless Analysis to Mass Transfer 
 
One of the method of obtaining equations for predicting mass-transfer 
coefficients is the use of dimensionless analysis. Dimensional analysis predicts 
the various dimensionless parameters which are helpful in correlating 
experimental data. 
 
There are  two important mass transfer processes, which we shall consider, the 
transfer of mass into a steam flowing under forced convection and the transfer of 
mass into a phase which is moving as the result of natural convection associated 
with density gradients. 
 
2.4.1 Transfer into a stream flowing under forced convection 
 
Consider the transfer of mass from the walls of a circular conduit to a fluid flowing 
through the conduit.  The mass transfer is due to the concentration driving force            
C As – C A . 
 
These variables include terms descriptive of the system geometry, the flow and 
fluid properties and the quantity of importance, k c. 
 
By the Buckingham method of grouping the variables, the number of 

dimensionless  groups is equal to the number of variables minus the number of 
fundamental dimensions. Hence the number of dimensionless group for this 
problem will be three. 

With D AB,  and D as the core variables, the three  groups to be formed are 
 

c
cba

AB
kDD  1   ---------------------------- (4.14) 

 

 fed
AB

DD2   ---------------------------- (4.15) 

 

and  ihg
AB

DD3   ---------------------------- (4.16) 

 
 

Substituting the dimensions for  , 
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 c
cba

AB
kDD  1   ---------------------------- (4.17) 

 

   


























t

L
L

L

M

t

L c
ba

3

2

1   --------------------------- (4.18) 

 
Equating the exponents of the fundamental dimensions on both sides of the 
equation, we have 
 

L :  0 = 2a – 3b + c + 1 
 
t  : 0 = – a – 1 
 

 M : 0 = b 
 
Solving these equations, 
 
  a = –1,  b = 0 and  c = 1 
 

Thus 

AB

c

D

Dk
1  which is the Sherwood number. 

 

The other two  groups could be determined in the same manner, yielding 
 

 

ABD

D 2   --------------------------- (4.19) 

 

and  c
AB

S
D




 3  -------------------------------- (4.20) 

which is termed as Schmidt Number  
 

Dividing 2 by 3, we get  
 

 Re
3

2 




























 D

DD

D

ABAB

  ----------------- (4.21) 

 
which is the Reynolds Number 
 
The result of the dimensional analysis of mass transfer by forced convection in a 
circular conduit indicates that a correlating relation could be of the form, 
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  ScSh Re,   --------------------------- (4.22) 

 
Which is analogous to the heat transfer correlation 
 

  PrRe,Nu   ---------------------------- (4.23) 

 
 
2.4.2 Transfer into a phase whose motion is due to Natural Convection 
 
Natural convection currents develop if there exists any variation in density within 
the fluid phase. The density variation may be due to temperature differences or 
to relatively large concentration differences. 
 
According to Buckingham theorem, there will be three dimensionless groups. 

Choosing D AB, L and  as the core variables, the  groups to be formed are 
 

c
cba

AB
kLD  1   ---------------------------- (4.24) 

 

 fed
AB LD2   ---------------------------- (4.25) 

 

and A
ihg

AB
gLD  3   ---------------------------- (4.26) 

 
Solving for the dimensionless groups, we obtain 
 

 numberNusseltthe,1 Nu
D

Lk

AB

c   ---------------------- (4.27) 

 

 numberSchmidtofreciprocalthe,
1

2 Sc

D AB 



  -------- 

(4.28) 
  

and 

AB

A

D

gL








3

3   ------------------------------- (4.29) 

  

With the multiplication of 2 and 3, we obtain a dimensionless parameter 
analogous to the Grashof number in heat transfer by natural convection 
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D
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



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3

32  

      AB
A

Gr
gL





2

3




  -------------------------- (4.30) 

 
The result of the dimensional analysis of mass transfer by natural convection 
indicates that a correlating relation could be of the form, 
 

  ScGrSh AB,   ---------------------------- (4.31) 

  
2.5  Analysis among  Mass, Heat and Momentum Transfer 

 
Analogies among mass, heat and momentum transfer have their origin either in 
the mathematical description of the effects or in the physical parameters used for 
quantitative description. 
 
To explore those analogies, it could be understood that the diffusion of mass and 
conduction of heat obey very similar equations. In particular, diffusion in one 
dimension is described by the Fick’s Law as 
 

 
zd

Cd
DJ

A
ABA    ------------------------------ (4.32) 

 
Similarly, heat conduction is described by Fourier’s law as 
 

 
zd

Td
kq    --------------------------------- (4.33) 

 
Where k is the thermal conductivity. 
 
The similar equation describing momentum transfer as given by Newton’s law is 
 

 
zd

d    ----------------------------- (4.34) 

 

Where  is the momentum flux (or shear stress) and  is the viscosity of fluid. 
 
At this point it has become conventional to draw an analogy among mass,  heat 
and momentum transfer. Each process uses a simple law combined with a mass 
or energy or momentum balance. 
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In this section, we shall consider several analogies among transfer phenomenon 
which has been proposed because of the similarity in their mechanisms. The 
analogies are useful in understanding the transfer phenomena and as a 
satisfactory means for predicting behaviour of systems for which limited 
quantitative data are available. 
 
The similarity among the transfer phenomena and accordingly the existence of 
the analogies require that the following five conditions exist within the system 
 

1. The physical properties are constant 
 

2. There is no mass or energy produced within the system. This implies that 
there is no chemical reaction within the system 

 
3. There is no emission or absorption of radiant energy. 

 
4. There is no viscous dissipation of energy. 

 
5. The velocity profile is not affected by the mass transfer. This implies there 

should be a low rate of mass transfer. 
 
2.5.1 Reynolds Analogy 
 
The first recognition of the analogous behaviour of mass, heat and momentum 
transfer was reported by Osborne Reynolds in 1874. Although his analogy is 
limited in application, it served as the base for seeking better analogies. 
 
Reynolds postulated that the mechanisms for transfer of momentum, energy and 
mass are identical. Accordingly, 
 

 
2

f

C

hk

p

c 
 

  --------------------------------  (4.35)   

 
Here h is heat transfer coefficient 
         f is friction factor 

           is velocity of free stream 
 
The Reynolds analogy is interesting because it suggests a very simple relation 
between different transport phenomena. This relation is found to be accurate 
when Prandtl and Schmidt numbers are equal to one. This is applicable for mass 
transfer by means of turbulent eddies in gases. In this situation, we can estimate 
mass transfer coefficients from heat  transfer coefficients or from friction factors. 
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2.5.2 Chilton – Colburn Analogy 
 
Because the Reynold’s analogy was practically useful, many authors tried to 
extend it to liquids. Chilton and Colburn, using experimental data, sought 
modifications to the Reynold’s analogy that  would not have the restrictions that 
Prandtl and Schmidt numbers must be equal to one. They defined for the j factor 
for mass transfer as 
 

   32
Sc

k
j

c
D





  --------------------------- (4.36) 

 
The analogous j factor for heat transfer is 
 

 
32PrStj H    ----------------------------- (4.37) 

 

where St is Stanton number = 

pC

hNu




PrRe
 

   
Based on data collected in both laminar and turbulent flow regimes, they found 
 

 
2

f
jj HD    ----------------------------- (4.38) 

 
This analogy is valid for gases and liquids within the range of 0.6 < Sc < 2500 
and 0.6 <  Pr < 100. 
 
The Chilton-Colburn analogy has been observed to hold for many different 
geometries for example, flow over flat plates, flow in pipes, and flow around 
cylinders. 
 
13. A stream of air at 100 kPa pressure and 300 K is flowing on the top surface 
of a thin flat sheet of solid naphthalene of length 0.2 m with a velocity of 20 
m/sec.  The other data are: 
 
 Mass diffusivity of naphthalene vapor in air = 6 * 10 –6 m 2/sec 
 Kinematic viscosity of air = 1.5 * 10 –5 m 2.sc 
 Concentration of naphthalene at the air-solid naphthalene interface = 1 * 
10 –5 kmol/m3 
 
Calculate: 
 

(a) the overage mass transfer coefficient over the flat plate 
(b) the rate of loss of naphthalene from the surface per unit width 
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Note: For heat transfer over a flat plate, convective heat transfer coefficient for 
laminar flow can be calculated by the equation. 

  
3121

PrRe664.0
L

Nu   

 
you may use analogy between mass and heat transfer. 
 
Solution: 
 
Given: Correlation for heat transfer 
 

 
3121

PrRe664.0
L

Nu   

The analogous relation for mass transfer is 
 

 
3121

Re664.0 ScSh
L

   -----------------------------------------(1) 

 
where 
 
 Sh = Sherwood number = kL/D AB 

 Re L = Reynolds number = L/ 

 Sc = Schmidt number =  / ( D AB) 
 k = overall mass transfer coefficient  
 L = length of sheet 
 D AB = diffusivity of A in B 

  = velocity of air 

  = viscosity of air 

  = density of air, and  

 / = kinematic viscosity of air. 
 
Substituting for the known quantities in equation (1) 

 
     

31

6

521

56 10*6

10*5.1

10*5.1

202.0
664.0

10*6

2.0























k

 

  k = 0.014 m/sec 
 

Rate of loss of naphthalene = k (C Ai – C A) 
      = 0.014 (1 * 10 –5 – 0) = 1.4024 * 10 –7 kmol/m 2 sec 
 
Rate of loss per meter width = (1.4024 * 10 –7) (0.2) = 2.8048 * 10 –8 kmol/m.sec 
       = 0.101 gmol/m.hr. 
 

2.6 Convective Mass Transfer Correlations 
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Extensive data have been obtained for the transfer of mass between a moving 
fluid and certain shapes, such as flat plates, spheres and cylinders. The 
techniques include sublimation of a solid, vapourization of a liquid into a moving 
stream of air and the dissolution of a solid into water. 
 
These data have been correlated in terms of dimensionless parameters and the 
equations obtained are used to estimate the mass transfer coefficients in other 
moving fluids and geometrically similar surfaces. 
 

2.6.1 Flat Plate 
 
From the experimental measurements of rate of evaporation from a liquid surface 
or from the sublimation rate of a volatile solid surface into a controlled air-stream, 
several correlations are available. These correlation have been found to satisfy 
the equations obtained by theoretical analysis on boundary layers, 
 

   53121
10*3RelaminarRe664.0  LL

ScSh     ------------- 

(4.39) 
 

   5318.0
10*3ReturbulentRe036.0  LL

ScSh   ----------- 

(4.40) 
 
Using the definition of  j factor for mass transfer on equation (4.39) and (4.40) we 
obtain 
 

   521
10*3RelaminarRe664.0  

LLDj     ------------- (4.41) 

 

   52.0
10*3ReturbulentRe037.0  

LLDJ   ----------- (4.42) 

 
These equations may be used if the Schmidt number in the range 0.6 < Sc < 
2500. 
 
7. If the local Nusselt number for the laminar boundary layer that is formed over a 
flat plate is  
 

 
3/121Re332.0 ScNu xx   

 

Obtain an expression for the average film-transfer coefficient k c, when the 
Reynolds number for the plate is  
 

a) Re L = 100 000 
b) Re L = 1500 000 
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The transition from laminar to turbulent flow occurs at Re x = 3 * 10 5. 
 
Derivation: 

 By definition : 






L

o

L

o
c

c

dx

dxk

k  

and 

AB
x

AB

c
x

D
Sc

vx

D

xk
Nu







 ;Re; ; 

 
For Re L = 100 000 ; (which is less than the Reynolds number corresponding to 
Transition value of 3 * 10 5) 
 

 

L

xd
x

D
Sc

vx

k

AB
L

o
c

3

12

1

332.0 












  

 

 












L

o
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x

xd
D

L

v
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21

21
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
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  LoAB xD
v

Sc

L

21
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31

2

1

332.0













 

(i.e.) 
3121

Re664.0 Sc
D

Lk
L

AB

c        [answer (a)] 

 
For Re L = 1500 000 (> 3 * 10 5) 
 

L

x

xd
Sc

x

xd
Sc

Dk

x

L

L
x

L

o

ABc
t

t


















 31543121
Re0292.0Re332.0

 where L t is the distance from the leading edge of the plane to the 
transition point where Re x = 3 * 10 5. 
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  5454313121
ReRe0365.0Re664.0

tLt
ScSc   

315431543121
Re0365.0Re0365.0Re664.0 ScScSc

D

Lk
tLt

AB

c 

where Re t = 3 * 10 5  
 

2.6.2 Single Sphere 
 
Correlations for mass transfer from single spheres are represented as addition of 
terms representing transfer by purely molecular diffusion and transfer by forced 
convection, in the form 
 

 
nm

o ScCShSh Re   ---------------------- (4.43) 

 
Where  C, m and n are constants, the value of n is normally taken as 1/3 
For very low Reynold’s number, the Sherwood number should approach a value 
of 2. This value has been derived in earlier sections by theoretical consideration 
of molecular diffusion from a sphere into a large volume of stagnant fluid. 
Therefore  the generalized equation becomes 
 

 
31Re2 ScCSh m   -------------------------- (4.44) 

 
For mass transfer into liquid streams, the equation given by Brain and Hales 
 

   2132
21.14

AB
PeSh    -------------------------- (4.45) 

 
correlates the data that are obtained when the mass transfer Peclet number, Pe 

AB is less than 10,000. This Peclet number is equal to the product of Reynolds 
and Schmidt numbers (i.e.) 
 

 ScPe AB Re   ---------------------------------- (4.46) 

 
For Peclet numbers greater than 10,000, the relation given by Levich is useful 
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31

01.1
AB

PeSh     --------------------------- (4.47) 

 
The relation given by Froessling 
 

 
3121Re552.02 ScSh    ----------------------- (4.48) 

 
correlates the data for mass transfer into gases for at Reynold’s numbers ranging 
from 2 to 800 and Schmidt number ranging 0.6 to 2.7. 
 
For natural convection mass transfer the relation given by Schutz 
 

   41
59.02 ScGrSh AB   ----------------------- (4.49) 

 
is useful over the range 
 
2 * 10 8 < Gr AB Sc < 1.5 * 10 10 
 
6. The mass flux from a 5 cm diameter naphthalene ball placed in stagnant air at 

40C and atmospheric pressure, is 1.47 * 10 –3
  mol/m 2. sec.  Assume the vapor 

pressure of naphthalene to be 0.15 atm at 40C and negligible bulk concentration 
of naphthalene in air.  If air starts blowing across the surface of naphthalene ball 
at 3 m/s by what factor will the mass transfer rate increase, all other conditions 
remaining the same? 
 
For spheres : 
 
 Sh = 2.0 + 0.6 (Re) 0.5 (Sc)0.33 
 
Where Sh is the Sherwood number and Sc is the Schmids number.  The 
viscosity and density of air are 1.8 * 10 –5 kg/m.s and 1.123 kg/m 3, respectively 
and the gas constant is 82.06 cm 3 . atm/mol.K. 
 
Calculations: 
 

 

AB

c

D

Lk
Sh   where L is the characteristic dimension for sphere L = 

Diameter. 
 

 

ABD
Sc




  
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
vD

Rc   

 cKNfluxMass cA ,   ------------------------------(1) 

  
 Sh = 2.0 + 0.6 (Re) 0.5 (Sc) 0.33  
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  ----------------------- 

(2) 
 

also N = K G p A  

Therefore G
c

K
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k
  
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p
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10*47.1 7
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

ck  

  = 0.0252 cm/sec 
 k c = 2.517 * 10 –4 m/sec ------------------------------(3) 
 
Estimation of D AB: 
 
From (2), 

2
10*5*10*517.2 24




ABD
  (since v = 0) 

 
Therefore D AB = 6.2925 * 10 –6 m2/sec. 
 
And 
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7946 k c = 2 + 0.6 * (96.74) * (1.361) 
 
 k c = 0.0102 m/sec.  ----------------------------------------------------- (4) 
 

5.40
10*517.2

0102.0

)3(

)4(
4

1

2 


A

A

N

N
 

 
Therefore, rate of mass transfer increases by 40.5 times the initial conditions. 
 

2.6.3 Single Cylinder 
 
Several investigators have studied the rate of sublimation from a solid cylinder 
into air flowing normal to its axis. Bedingfield and Drew correlated the available 
data in the form 
 

   4.0/
56.0

Re281.0



m

G

G

ScPk
  ------------------------ (4.50) 

which is valid for 400 < Re / < 25000  
 
and  0.6 < Sc < 2.6 
 
Where Re / is the Reynold’s number in terms of the diameter of the cylinder, G m 
is the molar mass velocity of gas and P is the pressure. 
 

2.6.4 Flow Through Pipes 
 
Mass transfer from the inner wall of a tube to a moving fluid has been studied 
extensively. Gilliland and Sherwood, based on the study of rate of vapourization 
of nine different liquids into air given the correlation 
 

 
44.083.0,

Re023.0 Sc
P

p
Sh

mlB    -------------- (4.51) 

 
Where p B, lm is the log mean composition of the carrier gas, evaluated between 
the surface and bulk stream composition. P is the total pressure. This expression 
has been found to be valid over the range 
 
 2000 < Re < 35000 
 0.6 < Sc < 2.5 
 
Linton and Sherwood modified the above relation making it suitable for large 
ranges of Schmidt number. Their relation is given as 
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3183.0Re023.0 ScSh    --------------------- (4.52) 

 
and found to be valid for  
 
 2000 < Re < 70000 
and  1000 < Sc < 2260 
 

8. A solid disc of benzoic acid 3 cm in diameter is spin at 20 rpm and 25C.  
Calculate the rate of dissolution in a large volume of water.  Diffusivity of benzoic 
acid in water is 1.0 * 10 –5 cm 2/sec, and solubility is 0.003 g/cc.  The following 
mass transfer correlation is applicable: 
 
 Sh = 0.62 Re ½  Sc 1/3  
 

Where 


2

Re
D

  and  is the angular speed in radians/time. 

 
Calculations: 
 
 Dissolution rate = N A S ----------------------------(1) 
 
Where N A = mass flux, and 
 S = surface area for mass transfer 
 

 N A = k c (C As – C A )  -------------------------------- (2) 
 
Where C As is the concentration of benzoic and at in water at the surface of the 
dose. 

 C A is the concentration benzoic acid in wate for an from the surface of 
the disc. 
 
Given: 
 Sh = 0.62 Re ½  Sc 1/3  

(i.e.) 
3
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1
2
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
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



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ABAB

c

D

D

D

Dk







  ------------------ (3) 

 

 1 rotation = 2  radian  

Therefore 20 rotation per minute = 20 * 2  radian/min  

     sec2*
60

20
radian  

 For water  = 1 g/cm 3   = 1 centipoise = 0.01 g/cm.sec. 
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From (3), 
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  = 8.973 * 10 –4 cm/sec. 
 
From (2), 
 
 N A = 8.973 * 10 –4 (0.003 – 0) 
       = 2.692 * 10 –6 g/cm 2.sec 
 
From (1),  
 

 N A S = N A * (2r 2) 

  = 2.692 * 10 –6 * (2 * 1.5 2) 
  = 3.805 * 10 –5 g/sec 
  = 0.137 g/hr. 
 
 
2.7 Mass transfer between phases: 
 Instead of a fluid in contact with a solid, suppose we now consider two 
immiscible fluids, designated 1 and 2, in contact with each other. If fluid 1 has 
dissolved in it a substance A that is also soluble in fluid 2, then as soon as the 
two fluids are brought together, substance A will begin to diffuse into fluid 2. As 
long as the two phases remain in contact, the transport of A will continue until a 
condition of equilibrium is reached. 
 The situation discussed here occurs in a variety of engineering processes 
such as gas absorption, stripping, and in liquid – liquid extraction. In all these 
separation processes, two immiscible fluids are brought into contact and one or 
more components are transferred from one fluid phase to the 
other.Concentration CA1 and CA2 are the bulk phase concentrations. CAi is the 
concentration of A at the interface, and NA is the molar flux of A. For steady state 
conditions, we can define the flux of A as 

      212211 AAcAiAcAiAcA CCKCCkCCkN   

       _____________  (1) 
 
where k c = individual mass transfer coefficient defined in terms of the  

concentration difference in a single phase. 
 K c = overall mass transfer coefficient defined in terms of the overall  

difference in composition. 
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Equation (1) is analogous to that in heat transfer, where the individual 
coefficients h are related to the overall coefficient U. 
From equation (1), 

 

ccc Kkk

111

21

   _____________   (2) 

In equation (1), the potential for mass transfer is exposed in terms of 
composition. However, this is not always the most convenient way to express it. 
For example, if fluid 1 is a gas and fluid 2 a liquid, as in gas absorption, the 
potential in gas phase is often expressed in terms of partial pressures, while that 
in the liquid phase may be expressed in terms of concentrations. The expression 
for the molar flux is then written for the individual phases as: 

   ALAicAiAGpA CCKPPKN    __________   

(3) 
where 
 k p = individual mass transfer coefficient for the gas phase with the  

potential defined in terms of partial pressures. 
P AG , C AL = partial pressure and concentration of A in the bulk gas and liquid  

phases, respectively. 
P Ai , C Ai   = partial pressure and concentration of A, respectively, at the interface. 
 
 At the interface, it is usually assumed the two phases are in equilibrium. 
This means that P Ai and C Ai are related by an equilibrium relationship such as 
‘Henry’s law : 

 iAiA CHP   __________   (4) 

where H is Henry’s law constant. 
The flux N A can also be expressed in terms of overall mass transfer coefficients 
as, 

   ALAEcAEAGpA CCKPPKN   __________   (5) 

where 
K p = overall mass transfer coefficient with the overall potential defined  

in terms of partial pressures. 
K c = overall mass transfer coefficient with the overall potential defined  
 in terms of concentrations. 

P AE , C AE = equilibrium composition. 
 P AE is related to the bulk liquid composition C AL AS 

 ALAE CHP   __________   (6) 

similarly, 
H

P
C

AG
AE   __________   (7) 

 The relationship between the individual and overall coefficients is readily 
obtained through the use of equations (3) to (7) as 

 

ccpp K

H

k

H

kK


11
 __________   (8) 
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In many system, mass transfer resistance is mainly in one phase. For example, 
gases such as nitrogen and oxygen do not dissolve much in liquids. Their 

Henry’s law constant H is very large, thus K c  k c is a good approximation. In 
this case, the liquid phase controls the mass transfer press since mass transfer is 
slowest there. 
 
2.8  Simultaneous Heat and Mass Transfer 
 Diffusional mass transfer is generally accompanied by the transport of 
energy, even with in an isothermal system. Since each diffusing constituent 
carries its own individual enthalpy, the heat flux at a given plane is expressed as 

 i
i

i HNq   __________   (1) 

 where q is the heat flux due to diffusion of mass past the given plane, and 

iH  is the partial molar enthalpy of constituent i in the mixture. 

 When there is a temperature difference, energy transfer also occurs by 
one of the three heat transfer mechanisms (conduction, convection, radiation) ; 
for example, the equation for energy transport by convection and molecular 
diffusion becomes 

 i
i

i HNThq   __________   (2) 

 If the heat transfer is by conduction, the first term on the right hand side of 

equation (2) becomes 
L

Tk   where L is the thickness of the phase through 

which conduction takes place. 
 The most common examples of processes involving heat and mass 
transfer are condensation of mist on a cold surface and in wet bulb thermometer. 
There are a number of such processes involving simultaneous heat and mass 
transfer such as in formation of fog, and in cooling towers. 
 
2.8.1 Condensation of vapor on cold surface: 
 A process important in many engineering processes as well as in day – to 
– day events involve the condensation of a vapor upon a cold surface. Examples 
of this process include “sweating” on cold water pipes and the condensation of 
moist vapor on a cold surface. 
 
 The process which involves a film of condensed liquid following down a 
cold surface and a film of gas through which the condensate is transferred by 
molecular diffusion. This process involves the simultaneous transfer of mass and 
energy. 
 The heat flux passing through the liquid film is given by 

  32 TThq l    __________   (1) 

This flux is also equal to the total energy transported by convection and 
molecular diffusion in the gas film. 

 (i.e.,)    2121 HHMNTThq AAc   __________   (2) 
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where M A is the molecular weight of the diffusing constituent A. H 1 and H 2 are 
enthalpies of the vapor at plane 1 and liquid at plane 2. 
From equation (1) and (2) 

     212132 HHMNTThTThq AAcl       ________   (3) 

The molar flux NA is calculated by diffusion through stagnant gas model as 

 
Zd

yd

y

DC
N

A

A

AB
A 




1
 

substituting the appropriate limits, the integral form of equation is 

 

   
  lmB

AAavgAB

A
yZZ

yyDC
N

,12

21




  __________   (4) 

 
2.8.2 The Wet – bulb Thermometer 
 
The another example of simultaneous heat and mass transfer is that taking place 
in wet-bulb thermometer. This convenient device for measuring relative humidity 
of air consists of two conventional thermometer, one of which is clad in a cloth 
nick wet with water. The unclad dry-bulb thermometer measures the air’s 
temperature. The clad wet-bulb thermometer measures the colder temperature 
caused by evaporation of the water. 
 We want to use this measured temperature difference to calculate the 
relative humidity in air. This relative humidity is defined as the amount of water 
actually in the air divided by the amount at saturation at the dry-bulb temperature. 
To find this humidity, we can write equation for the mass and energy fluxes as: 

    AAiyAAicA yykCCkN   __________   (1) 

and  TThq i    __________   (2) 

 where C Ai and C A are the concentrations of water vapor at the wet bulb’s 
surface and in the bulk of air, y Ai and y A are the corresponding mole fractions ; Ti 

 is the wet-bulb temperature, and T is the dry-bulb temperature. It can be noted 
that y Ai is the value at saturation at Ti. 
  
 In the air-film surroundings the wet-bulb, the mass and energy fluxes are 
coupled as 

 qN A   __________   (3) 

where  is the latent heat of vaporization of water. 
Thus, 

    iAAiy TThyyk    

Rearranging, 

  AAi
y

i yy
h

k
TT 


  __________   (4) 

From Chilton – colbum analogy, 
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 j H  =  j D 

or     3
2

3
2

Pr
2

Sc
k

C

h c

p 
  __________   (5) 

For gas Pr  1 and Sc  1. 
Therefore equation (5) becomes, 

 

p

c

Ch

k 1
  (as k y C  k y  = k c) 

Therefore equation (4) becomes 

  AAi
p

i yy
C

TT 


 

where Cp is the bumid heat of air. By similar method, the other industrial 
processes of importance involving simultaneous heat and mass transfer such as 
humidification and drying can be analysed. 
 
 14. Air at 1 atm is blown past the bulb of a mercury thermometer.  The bulb is 
covered with a wick.  The wick is immersed in an organic liquid (molecular weight 

= 58).  The reading of the thermometer is 7.6 C.  At this temperature, the vapor 
pressure of the liquid is 5 kPa.  Find the air temperature, given that the ratio fo 
heat transfer coefficient to the mass transfer coefficient (psychrometric ratio) is 2 
kJ/kg.  Assume that the air, which is blown, is free from the organic vapor. 
 
Solution: 
 
For simultaneous mass and heat transfer, heat flux q and mass flux N A are 
related as  
 

 ANq    ----------------------------------------- (1) 

 

where  is the latent heat of vaporization.  Mass flux is given by 
 

  '' YYkN YA     ---------------------------------- (2) 

 
where  
 k Y = mass transfer coefficient  

 
'
Y = mass ratio of vapor in surrounding air at saturation; and 

 Y’ = mass ratio of vapor in surrounding air. 
 
Convective heat flux is given by 
 

  TThq    ----------------------------------- (3) 
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where  
 h = heat transfer coefficient; 

 T  = wet bulb temperature of air; and  
 T = dry bulb temperature of air. 
 
Substituting for N A and q from equation (2) and equation (3) in equation (1), 
 

     
''' YTkTTh y   

 
 

Ykh

YY
TT

'' 
 




  --------------------------------------------- (4) 

 

Given: Y ’ = 0;  = 360 kJ/kg; h/k Y = 2 kJ/kg.K; and T  = 7.6C 

 
airdrykg

saturationatvapororganickg' Y  

  1038.0
29

58

53.101

5



  

 
Substituting these in equation (4) 
 

 
   

69.18
2

01038.0360
6.7 


T  

  T = 18.69 + 7.6 = 26.29C 

Temperature of air = 26.29C. 
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