
Introductory Quantum Chemistry

Chem 570a: Lecture Notes

Prof. Victor S. Batista

Room: Sterling Chemistry Laboratories (SCL) 19
Tuesdays and Thursdays 9:00 – 10:15 am

Yale University - Department of Chemistry

1



Contents
1 Syllabus 7

2 The Fundamental Postulates of Quantum Mechanics 8

3 Continuous Representations 11

4 Vector Space 11
4.1 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Stationary States 15
5.1 Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Exercise 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Exercise 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Particle in the Box 16
6.1 Exercise 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Commutator 18
7.1 Exercise 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Uncertainty Relations 18
8.1 Exercise 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.2 EPR Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9 Exercise 9 20
9.1 Copenhagen Interpretation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.2 Feynman Interview: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.3 Momentum Operator: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.4 EPR Paradox: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.5 Schrödinger’s cat paradox: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10 Heisenberg Representation 21

11 Fourier Grid Hamiltonian 24
11.1 Computational Problem FGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

12 Variational Theorem 25

13 Digital Grid-Based Representations 27
13.1 Computational Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
13.2 Computational Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2



13.3 Computational Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
13.4 Computational Problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

14 SOFT Method 30
14.1 Computational Problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
14.2 Imaginary time propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
14.3 Ehrenfest Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
14.4 Exercise: Real and Imaginary Time Evolution . . . . . . . . . . . . . . . . . . . . 33
14.5 Computational Problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
14.6 Computational Problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
14.7 Computational Problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
14.8 Computational Problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

15 Time Independent Perturbation Theory 35
15.1 Exercise 9: How accurate is first order time-independent perturbation theory? 36

16 Time Dependent Perturbation Theory 37
16.1 Exercise 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
16.2 Exercise 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

17 Golden Rule 43
17.1 Monochromatic Plane Wave . . . . . . . . . . . . . . . . . . . . . . 43
17.2 Vibrational Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
17.3 Electron Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

18 Problem Set 49
18.1 Exercise 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
18.2 Exercise 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
18.3 Exercise 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
18.4 Exercise 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
18.5 Time Evolution Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

18.5.1 Evolution in the basis of eigenstates: . . . . . . . . . . . . . . . . . . . . . 51
18.5.2 Trotter expansion of the time evolution operator: . . . . . . . . . . . . . . 51
18.5.3 Numerical Comparison: . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

19 Adiabatic Approximation 52

20 Two-Level Systems 53

21 Harmonic Oscillator 57
21.1 Exercise 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
21.2 Exercise: Analytical versus SOFT Propagation . . . . . . . . . . . . . . . . . . . 60

3



22 Problem Set 61
22.1 Exercise 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
22.2 Exercise 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
22.3 Exercise 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
22.4 Exercise 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
22.5 Exercise 20: Morse Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

23 Angular Momentum 65
23.1 Exercise 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
23.2 Exercise 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
23.3 Exercise 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
23.4 Exercise 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
23.5 Exercise 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

24 Spin Angular Momentum 74
24.1 Exercise 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
24.2 Exercise 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
24.3 Exercise 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
24.4 Exercise 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

25 Central Potential 79
25.1 Exercise 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

26 Two-Particle Rigid-Rotor 82
26.1 Exercise 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

27 Problem Set 82
27.1 Exercise 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
27.2 Exercise 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
27.3 Exercise 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
27.4 Exercise 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
27.5 Exercise 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
27.6 Exercise 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

28 Hydrogen Atom 83
28.1 Exercise 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
28.2 Exercise 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
28.3 Exercise 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
28.4 Exercise 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
28.5 Exercise 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

29 Helium Atom 88

4



30 Spin-Atom Wavefunctions 89

31 Pauli Exclusion Principle 90

32 Lithium Atom 91
32.1 Exercise 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

33 Spin-Orbit Interaction 92
33.1 Exercise 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

34 Periodic Table 94
34.1 Exercise 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
34.2 Exercise 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

35 Problem Set 96
35.1 Exercise 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
35.2 Exercise 49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
35.3 Exercise 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
35.4 Exercise 51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

36 LCAO Method: H+
2 Molecule 97

36.1 Exercise 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
36.2 Exercise 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

37 H2 Molecule 101
37.1 Heitler-London(HL) Method: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
37.2 Exercise 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

38 Homonuclear Diatomic Molecules 103
38.1 Exercise 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

39 Conjugated Systems: Organic Molecules 108

40 Self-Consistent Field Hartree-Fock Method 110
40.1 Restricted Closed Shell Hartree-Fock . . . . . . . . . . . . . . . . . . . . . . . . 114
40.2 Configuration Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
40.3 Supplement: Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

41 Second Quantization Mapping 123
41.1 Single-Particle Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
41.2 Occupation Number Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
41.3 Creation and Anihilation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 124
41.4 Operators in Second Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . 125
41.5 Change of basis in Second Quantization . . . . . . . . . . . . . . . . . . . . . . . 127

5



41.6 Mapping into Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 127

42 Density Functional Theory 129
42.1 Hohenberg and Kohn Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
42.2 Kohn Sham Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
42.3 Thomas-Fermi Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
42.4 Local Density Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

43 Quantum Mechanics/Molecular Mechanics Methods 136

44 Empirical Parametrization of Diatomic Molecules 137
44.1 Exercise 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
44.2 Exercise 57 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

45 Discrete Variable Representation 143
45.1 Multidimensional DVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
45.2 Computational Problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

46 Tunneling Current: Landauer Formula 147
46.1 WKB Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

47 Solutions to Computational Assignments 153
47.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
47.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
47.3 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
47.4 Problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
47.5 Problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
47.6 Problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
47.7 Problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
47.8 Problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
47.9 Problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6



1 Syllabus

The goal of this course is to introduce fundamental concepts of Quantum Mechanics with emphasis
on Quantum Dynamics and its applications to the description of molecular systems and their inter-
actions with electromagnetic radiation. Quantum Mechanics involves a mathematical formulation
and a physical interpretation, establishing the correspondence between the mathematical elements
of the theory (e.g., functions and operators) and the elements of reality (e.g., the observable proper-
ties of real systems).1 The presentation of the theory will be mostly based on the so-called Orthodox
Interpretation, developed in Copenhagen during the first three decades of the 20th century. How-
ever, other interpretations will be discussed, including the ’pilot-wave’ theory first suggested by
Pierre De Broglie in 1927 and independently rediscovered by David Bohm in the early 1950’s.

Textbooks: The official textbook for this class is:
R1: Levine, Ira N. Quantum Chemistry; 5th Edition; Pearson/Prentice Hall; 2009.
However, the lectures will be heavily complemented with material from other textbooks including:
R2: ”Quantum Theory” by David Bohm (Dover),
R3: ”Quantum Physics” by Stephen Gasiorowicz (Wiley),
R4: ”Quantum Mechanics” by Claude Cohen-Tannoudji (Wiley Interscience),
R5: ”Quantum Mechanics” by E. Merzbacher (Wiley),
R6: ”Modern Quantum Mechanics” by J. J. Sakurai (Addison Wesley),
All these references are ’on-reserve’ at the Kline science library.
References to specific pages of the textbooks listed above are indicated in the notes as follows:
R1(190) indicates “for more information see Reference 1, Page 190”.
Furthermore, a useful mathematical reference is R. Shankar, Basic Training in Mathematics. A
Fitness Program for Science Students, Plenum Press, New York 1995.
Useful search engines for mathematical and physical concepts can be found at
http://scienceworld.wolfram.com/physics/ and http://mathworld.wolfram.com/
The lecture notes are posted online at: (http://ursula.chem.yale.edu/∼batista/classes/vvv/v570.pdf)

Grading: Grading and evaluation is the same for both undergraduate and graduate students. The
mid-terms will be on 10/12 and 11/07. The date for the Final Exam is determined by Yale’s calendar
of final exams. Homework includes exercises and computational assignments due one week after
assigned.

Contact Information and Office Hours: Prof. Batista will be glad to meet with students
at SCL 115 as requested by the students via email to victor.batista@yale.edu, or by phone at (203)
432-6672.

1Old Story: Heisenberg and Schrödinger get pulled over for speeding. The cop asks Heisenberg ”Do you know how
fast you were going?” Heisenberg replies, ”No, but we know exactly where we are!” The officer looks at him confused
and says ”you were going 108 miles per hour!” Heisenberg throws his arms up and cries, ”Great! Now we’re lost!”
The officer looks over the car and asks Schröinger if the two men have anything in the trunk. ”A cat,” Schrödinger
replies. The cop opens the trunk and yells ”Hey! This cat is dead.” Schrödinger angrily replies, ”Well he is now.”

7
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2 The Fundamental Postulates of Quantum Mechanics

Quantum Mechanics can be formulated in terms of a few postulates (i.e., theoretical principles
based on experimental observations). The goal of this section is to introduce such principles, to-
gether with some mathematical concepts that are necessary for that purpose. To keep the notation
as simple as possible, expressions are written for a 1-dimensional system. The generalization to
many dimensions is usually straightforward.

Postulate 1 : Any system in a pure state can be described by a wave-function , ψ(t, x), where t is
a parameter representing the time and x represents the coordinates of the system. Such a function
ψ(t, x) must be continuous, single valued and square integrable.
Note 1: As a consequence of Postulate 4, we will see that P (t, x) = ψ∗(t, x)ψ(t, x)dx represents
the probability of finding the system between x and x+ dx at time t, first realized by Max Born. 2

Postulate 2 : Any observable (i.e., any measurable property of the system) can be described by
an operator. The operator must be linear and hermitian.

What is an operator ? What is a linear operator ? What is a hermitian operator?

Definition 1: An operator Ô is a mathematical entity that transforms a function f(x) into another
function g(x) as follows, R4(96)

Ôf (x ) = g(x ),

where f and g are functions of x.

Definition 2: An operator Ô that represents an observable O is obtained by first writing the clas-
sical expression of such observable in Cartesian coordinates (e.g., O = O(x, p)) and then substi-
tuting the coordinate x in such expression by the coordinate operator x̂ as well as the momentum p
by the momentum operator p̂ = −i~∂/∂x.

Definition 3: An operator Ô is linear if and only if (iff),

Ô(af(x) + bg(x)) = aÔf(x) + bÔg(x),

where a and b are constants.
Definition 4: An operator Ô is hermitian iff,∫

dxφ∗n(x)Ôψm(x) =

[∫
dxψ∗m(x)Ôφn(x)

]∗
,

2Note that this probabilistic interpretation of ψ has profound implications to our understanding of reality. It es-
sentially reduces the objective reality to P (t, x). All other properties are no longer independent of the process of
measurement by the observer. A. Pais’ anecdote of his conversation with A. Einstein while walking at Princeton em-
phasizes the apparent absurdity of the implications: [Rev. Mod. Phys. 51, 863914 (1979), p. 907]: ’We often discussed
his notions on objective reality. I recall that during one walk Einstein suddenly stopped, turned to me and asked whether
I really believed that the moon exists only when I look at it.’
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where the asterisk represents the complex conjugate.

Definition 5: A function φn(x) is an eigenfunction of Ô iff,

Ôφn(x) = Onφn(x),

where On is a number called eigenvalue.

Property 1: The eigenvalues of a hermitian operator are real.
Proof: Using Definition 4, we obtain∫

dxφ∗n(x)Ôφn(x)−
[∫

dxφ∗n(x)Ôφn(x)

]∗
= 0,

therefore,

[On −O∗n]

∫
dxφn(x)∗φn(x) = 0.

Since φn(x) are square integrable functions, then,

On = O∗n.

Property 2: Different eigenfunctions of a hermitian operator (i.e., eigenfunctions with different
eigenvalues) are orthogonal (i.e., the scalar product of two different eigenfunctions is equal to
zero). Mathematically, if Ôφn = Onφn, and Ôφm = Omφm, with On 6= Om, then

∫
dxφ∗nφm = 0.

Proof: ∫
dxφ∗mÔφn −

[∫
dxφ∗nÔφm

]∗
= 0,

and
[On −Om]

∫
dxφ∗mφn = 0.

Since On 6= Om, then
∫
dxφ∗mφn = 0.

Postulate 3 : The only possible experimental results of a measurement of an observable are the
eigenvalues of the operator that corresponds to such observable.

Postulate 4 : The average value of many measurements of an observable O, when the system is
described by ψ(x) as equal to the expectation value Ō, which is defined as follows,

Ō =

∫
dxψ(x)∗Ôψ(x)∫
dxψ(x)∗ψ(x)

.

Postulate 5 :The evolution of ψ(x, t) in time is described by the time-dependent Schrödinger
equation :
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i~
∂ψ(x, t)

∂t
= Ĥψ(x, t),

where Ĥ = − ~2
2m

∂2

∂x2
+ V̂ (x), is the operator associated with the total energy of the system, E =

p2

2m
+ V (x).

Expansion Postulate : R5(15), R4(97)
The eigenfunctions of a linear and hermitian operator form a complete basis set. Therefore,

any function ψ(x) that is continuous, single valued, and square integrable can be expanded as a
linear combination of eigenfunctions φn(x) of a linear and hermitian operator Â as follows,

ψ(x) =
∑
j

Cjφj(x),

where Cj are numbers (e.g., complex numbers ) called expansion coefficients.
Note that Ā =

∑
j CjC

∗
j aj , when ψ(x) =

∑
j Cjφj(x),

Âφj(x) = ajφj(x), and
∫
dxφj(x)∗φk(x) = δjk.

This is because the eigenvalues aj are the only possible experimental results of measurements of Â
(according to Postulate 3), and the expectation value Ā is the average value of many measurements
of Â when the system is described by the expansion ψ(x) =

∑
j Cjφj(x) (Postulate 4). Therefore,

the product CjC∗j can be interpreted as the probability weight associated with eigenvalue aj (i.e.,
the probability that the outcome of an observation of Â will be aj).

Hilbert-Space
According to the Expansion Postulate (together with Postulate 1), the state of a system described

by the function Ψ(x) can be expanded as a linear combination of eigenfunctions φj(x) of a linear
and hermitian operator (e.g., Ψ(x) = C1φ1(x) + C2φ2(x) + . . .). Usually, the space defined by
these eigenfunctions (i.e., functions that are continuous, single valued and square integrable) has
an infinite number of dimensions. Such space is called Hilbert-Space in honor to the mathematician
Hilbert who did pioneer work in spaces of infinite dimensionality.R4(94)

A representation of Ψ(x) in such space of functions corresponds to a vector-function,

6
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where C1 and C2 are the projections of Ψ(x) along φ1(x) and φ2(x), respectively. All other
components are omitted from the representation because they are orthogonal to the “plane” defined
by φ1(x) and φ2(x).

3 Continuous Representations

Certain operators have a continuous spectrum of eigenvalues. For example, the coordinate operator
is one such operator since it satisfies the equation x̂ δ(x0−x) = x0 δ(x0−x), where the eigenvalues
x0 define a continuum. Delta functions δ(x0 − x) thus define a continuous representation (the so-
called ’coordinate representation’) for which

ψ(x) =

∫
dx0Cx0δ(x0 − x),

where Cx0 = ψ(x0), since∫
dxδ(x− β)ψ(x) =

∫
dx

∫
dαCαδ(x− β)δ(α− x) = ψ(β).

When combined with postulates 3 and 4, the definition of the expansion coefficients Cx0 =
ψ(x0) implies that the probability of observing the system with coordinate eigenvalues between x0

and x0 + dx0 is P (x0) = Cx0C
∗
x0
dx0 = ψ(x0)ψ(x0)∗dx0 (see Note 1).

In general, eigenstates φ(α, x) with a continuum spectrum of eigenvalues α define continuous
representations,

ψ(x) =

∫
dαCαφ(α, x),

with Cα =
∫
dxφ(α, x)∗ψ(x). Delta functions and the plane waves are simply two particular

examples of basis sets with continuum spectra.
Note 2: According to the Expansion Postulate, a function ψ(x) is uniquely and completely defined
by the coefficients Cj , associated with its expansion in a complete set of eigenfunctions φj(x).
However, the coefficients of such expansion would be different if the same basis functions φj
depended on different coordinates (e.g., φj(x′) with x′ 6= x). In order to eliminate such ambiguity
in the description it is necessary to introduce the concept of vector-ket space.R4(108)

4 Vector Space

Vector-Ket Space ε: The vector-ket space is introduced to represent states in a convenient space
of vectors |φj >, instead of working in the space of functions φj(x). The main difference is that
the coordinate dependence does not need to be specified when working in the vector-ket space.
According to such representation, function ψ(x) is the component of vector |ψ > associated with

11



index x (vide infra). Therefore, for any function ψ(x) =
∑

j Cjφj(x), we can define a ket-vector
|ψ > such that,

|ψ >=
∑
j

Cj|φj >.

The representation of | ψ > in space ε is,

6

-�
�
�
�
�
��

........................................

...

...

...

...

...

...

..

Ket-Space ε

C2

|φ2 >

C1 |φ1 >

|ψ >

Note that the expansion coefficients Cj depend only on the kets | ψj > and not on any specific
vector component. Therefore, the ambiguity mentioned above is removed.
In order to learn how to operate with kets we need to introduce the bra space and the concept of
linear functional. After doing so, this section will be concluded with the description of Postulate
5, and the Continuity Equation.

Linear functionals
A functional χ is a mathematical operation that transforms a function ψ(x) into a number. This

concept is extended to the vector-ket space ε, as an operation that transforms a vector-ket into a
number as follows,

χ(ψ(x)) = n, or χ(|ψ >) = n,

where n is a number. A linear functional satisfies the following equation,

χ(aψ(x) + bf(x)) = aχ(ψ(x)) + bχ(f(x)),

where a and b are constants.
Example: The scalar product,R4(110)

n =

∫
dxψ∗(x)φ(x),

is an example of a linear functional, since such an operation transforms a function φ(x) into a
number n. In order to introduce the scalar product of kets, we need to introduce the bra-space.

Bra Space ε∗: For every ket |ψ > we define a linear functional < ψ|, called bra-vector, as follows:

< ψ|(|φ >) =
∫
dxψ∗(x)φ(x).

12



Note that functional < ψ| is linear because the scalar product is a linear functional. Therefore,

< ψ|(a|φ > +b|f >) = a < ψ|(|φ >) + b < ψ|(|f >).

Note: For convenience, we will omit parenthesis so that the notation < ψ|(|φ >) will be equivalent
to < ψ||φ >. Furthermore, whenever we find two bars next to each other we can merge them into
a single one without changing the meaning of the expression. Therefore,

< ψ||φ >=< ψ|φ > .

The space of bra-vectors is called dual space ε∗ simply because given a ket |ψ >=
∑

j Cj|φj >,
the corresponding bra-vector is < ψ| =

∑
j C
∗
j < φj|. In analogy to the ket-space, a bra-vector

< ψ| is represented in space ε∗ according to the following diagram:

6

-�
�
�
�
�
��

........................................

...

...

...

...

...

...

..

Dual-Space ε∗

C∗2

< φ2|

C∗1 < φ1|

< ψ|

where C∗j is the projection of < ψ | along < φj |.

Projection Operator and Closure Relation
Given a ket | ψ > in a certain basis set |φj >,

|ψ >=
∑
j

Cj|φj >, (1)

where < φk|φj >= δkj ,
Cj =< φj|ψ > . (2)

Substituting Eq. (2) into Eq.(1), we obtain

|ψ >=
∑
j

|φj >< φj|ψ > . (3)

From Eq.(3), it is obvious that∑
j

|φj >< φj| = 1̂, Closure Relation

13



where 1̂ is the identity operator that transforms any ket, or function, into itself.
Note that P̂j = |φj >< φj| is an operator that transforms any vector |ψ > into a vector pointing

in the direction of |φj > with magnitude < φj|ψ >. The operator P̂j is called the Projection
Operator. It projects |φj > according to,

P̂j|ψ >=< φj|ψ > |φj > .

Note that P̂ 2
j = P̂j , where P̂ 2

j = P̂jP̂j . This is true simply because < φj|φj >= 1.

4.1 Exercise 1
Prove that

i~
∂P̂j
∂t

= [Ĥ, P̂j],

where [Ĥ, P̂j] = ĤP̂j − P̂jĤ .

Continuity Equation

4.2 Exercise 2
Prove that

∂(ψ∗(x, t)ψ(x, t))

∂t
+

∂

∂x
j(x, t) = 0,

where

j(x, t) =
~

2mi

(
ψ∗(x, t)

∂ψ(x, t)

∂x
− ψ(x, t)

∂ψ∗(x, t)

∂x

)
.

In general, for higher dimensional problems, the change in time of probability density, ρ(x, t) =
ψ∗(x, t)ψ(x, t), is equal to minus the divergence of the probability flux j,

∂ρ(x, t)

∂t
= −∇ · j.

This is the so-called Continuity Equation .
Note: Remember that given a vector field j, e.g., j(x, y, z) = j1(x, y, z)̂i+j2(x, y, z)ĵ+j3(x, y, z)k̂,
the divergence of j is defined as the dot product of the “del” operator∇ = ( ∂

∂x
, ∂
∂y
, ∂
∂z

) and vector j
as follows:

∇ · j =
∂j1

∂x
+
∂j2

∂y
+
∂j3

∂z
.
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5 Stationary States
Stationary states are states for which the probability density ρ(x, t) = ψ∗(x, t)ψ(x, t) is constant
at all times (i.e., states for which ∂ρ(x,t)

∂t
= 0, and therefore ∇ · j = 0). In this section we will show

that if ψ(x, t) is factorizable according to ψ(x, t) = φ(x)f(t), then ψ(x, t) is a stationary state.
Substituting ψ(x, t) in the time dependent Schrödinger equation we obtain:

φ(x)i~
∂f(t)

∂t
= −f(t)

~2

2m

∂2φ(x)

∂x2
+ f(t)V (x)φ(x),

and dividing both sides by f(t)φ(x) we obtain:

i~
f(t)

∂f(t)

∂t
= − ~2

2mφ(x)

∂2φ(x)

∂x2
+ V (x). (4)

Since the right hand side (r.h.s) of Eq. (4) can only be a function of x and the l.h.s. can only be a
function of t for any x and t, and both functions have to be equal to each other, then such function
must be equal to a constant E. Mathematically,

i~
f(t)

∂f(t)

∂t
= E ⇒ f(t) = f(0)exp(− i

~
Et),

− ~2

2mφ(x)

∂2φ(x)

∂x2
+ V (x) = E ⇒ Ĥφ(x) = Eφ(x) .

The boxed equation is called the time independent Schrödinger equation.
Furthermore, since f(0) is a constant, function φ̃(x) = f(0)φ(x) also satisfies the time independent
Schrödinger equation as follows,

Ĥφ̃(x) = Eφ̃(x) , (5)

and
ψ(x, t) = φ̃(x)exp(− i

~
Et).

Eq. (5) indicates that E is the eigenvalue of Ĥ associated with the eigenfunction φ̃(x).

5.1 Exercise 3
Prove that Ĥ is a Hermitian operator.

5.2 Exercise 4
Prove that -i~∂/∂x is a Hermitian operator.
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5.3 Exercise 5
Prove that if two hermitian operators Q̂ and P̂ satisfy the equation Q̂P̂ = P̂ Q̂, i.e., if P and Q
commute (vide infra), the product operator Q̂P̂ is also hermitian.
Since Ĥ is hermitian, E is a real number⇒ E = E∗ (see Property 1 of Hermitian operators), then,

ψ∗(x, t)ψ(x, t) = φ̃∗(x)φ̃(x).

Since φ̃(x) depends only on x, ∂
∂t

(φ̃∗(x)φ̃(x)) = 0, then, ∂
∂t
ψ∗(x, t)ψ(x, t) = 0. This demonstration

proves that if ψ(x, t) = φ(x)f(t), then ψ(x, t) is a stationary function.

6 Particle in the Box
The particle in the box can be represented by the following diagram:R1(22)

6

-

6

V (x) ∞ Box

V =∞ V = 0 V =∞

0 a
x
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The goal of this section is to show that a particle with energy E and mass m in the box-potential
V(x) defined as

V (x) =

{
0, when 0 ≤ x ≤ a,

∞, otherwise,

has stationary states and a discrete absorption spectrum (i.e., the particle absorbs only certain
discrete values of energy called quanta). To that end, we first solve the equation Ĥφ̃(x) = Eφ̃(x),
and then we obtain the stationary states ψ(x, t) = φ̃(x)exp(− i

~Et).
Since φ̃(x) has to be continuous, single valued and square integrable (see Postulate 1), φ̃(0) and
φ̃(a) must satisfy the appropriate boundary conditions both inside and outside the box. The bound-
ary conditions inside the box lead to:

− ~2

2m

∂

∂x2
Φ(x) = EΦ(x), ⇒ Φ(x) = A Sin(K x). (6)

Functions Φ(x) determine the stationary states inside the box. The boundary conditions outside the
box are,

− ~2

2m

∂

∂x2
Φ(x) +∞Φ(x) = EΦ(x), ⇒ Φ(x) = 0,
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and determine the energy associated with Φ(x) inside the box as follows. From Eq. (6), we obtain:
~2
2m
AK2 = EA, and, Φ(a) = ASin(K a) = 0,

⇒ Ka = nπ, with n = 1, 2, ... ⇒
Note that the number of nodes of Φ (i.e., the number of coordinates where Φ(x) = 0), is equal to
n− 1 for a given energy, and the energy levels are,

E =
~2

2m

n2π2

a2
, with n = 1, 2, ...

e.g.,

E(n = 1) =
~2

2m

π2

a2
,

E(n = 2) =
~2

2m

4π2

a2
, ...

Conclusion: The energy of the particle in the box is quantized! (i.e., the absorption spectrum of
the particle in the box is not continuous but discrete).

6.1 Exercise 6
(i) Using the particle in the box model for an electron in a quantum dot (e.g., a nanometer size
silicon material) explain why larger dots emit in the red end of the spectrum, and smaller dots emit
blue or ultraviolet.

(ii) Consider the molecule hexatriene CH2 = CH − CH = CH − CH = CH2 and assume that
the 6 π electrons move freely along the molecule. Approximate the energy levels using the particle
in the box model. The length of the box is the sum of bond lengths with C-C = 1.54 Å, C=C = 1.35
Å, and an extra 1.54 Å, due to the ends of the molecule. Assume that only 2 electrons can occupy
each electronic state and compute:
(A) The energy of the highest occupied energy level.
(B) The energy of the lowest unoccupied energy level.
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(C) The energy difference between the highest and the lowest energy levels, and compare such
energy difference with the energy of the peak in the absorption spectrum at λMAX=268nm.
(D) Predict whether the peak of the absorption spectrum for CH2 = CH−(CH = CH)n−CH =
CH2 would be red- or blue-shifted relative to the absorption spectrum of hexatriene.

7 Commutator
The commutator [Â, B̂] is defined as follows:R4(97)

[Â, B̂] = ÂB̂ − B̂Â.

Two operators Â and B̂ are said to commute when [Â, B̂] = 0.

7.1 Exercise 7
Prove that [x̂,−i~ ∂

∂x
] = i~. Hint: Prove that [x̂,−i~ ∂

∂x
]ψ(x) = i~ψ(x), where ψ(x) is a function

of x.
Note: Mathematically, we see that the momentum and position operators do not commute simply
because p̂ = −i~∂/∂x, so p̂x = −i~(1+x∂/∂x) is not the same as xp̂ = −i~x∂/∂x. Conceptually,
it means that one cannot measure the position without affecting the state of motion since measuring
the position would perturb the momentum. To measure the position of a particle it is necessary
to make it leave a mark on a sensor/detector (e.g., a piece chalk needs to leave a mark on the
blackboard to report its position). That process unavoidably slows it down, affecting its momentum.

8 Uncertainty Relations

The goal of this section is to show that the uncertainties ∆A =

√
< (Â− < Â >)2 > and ∆B =√

< (B̂− < B̂ >)2 >, of any pair of hermitian operators Â and B̂, satisfy the uncertainty rela-
tion:R3(437)

(∆A)2(∆B)2 ≥ 1

4
< i[A,B] >2 . (7)

In particular, when Â = x̂ and B̂ = p̂, we obtain the Heisenberg uncertainty relation :

∆x ·∆p ≥ ~
2
. (8)

Proof:
Û ≡ Â− < A >, φ(λ, x) ≡ (Û + iλV̂ )Φ(x),
V̂ ≡ B̂− < B >, I(λ) ≡

∫
dxφ∗(λ, x)φ(λ, x) ≥ 0,
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I(λ) =

∫
dx[(Â− < A >)Φ(x) + iλ(B̂− < B >)Φ(x)]∗[(Â− < A >)Φ(x) + iλ(B̂− < B >)Φ(x)],

I(λ) =< Φ|U2|Φ > +λ2 < Φ|V 2|Φ > −iλ < Φ|UV − V U |Φ >≥ 0, (9)

The minimum value of I(λ), as a function of λ, is reached when ∂I/∂λ = ∂I/∂λ∗ = 0.
This condition implies that

2λ(∆B)2 = i < [A,B] >, => λ =
i < [A,B] >

2(∆B)2
.

Substituting this expression for λ into Eq. (9), we obtain:

(∆A)2 +
i2 < A,B >2

4(∆B)2
− i2 < A,B >2

2(∆B)2
≥ 0,

(∆A)2(∆B)2 ≥ i2 < A,B >2

4
.

8.1 Exercise 8
Compute < X >, < P >, ∆X and ∆P for the particle in the box in its minimum energy state and
verify that ∆X and ∆P satisfy the uncertainty relation given by Eq. (7)?

8.2 EPR Paradox
Gedankenexperiments (i.e., thought experiments) have been proposed to determine “hidden” vari-
ables. The most famous of these proposals has been the Einstein-Podolski-Rosen (EPR) gedanken-
experiment [Phys. Rev. (1935) 47:777-780] , where a system of 2 particles is initially prepared
with total momentum pt. At a later time, when the two particles are far apart from each other, the
position x1 is measured on particle 1 and the momentum p2 is measured on particle 2. The paradox
is that the momentum of particle 1 could be obtained from the difference p1 = pt − p2. Therefore,
the coordinate x1 and momentum p1 of particle 1 could be determined with more precision than
established as possible by the uncertainty principle, so long as the separation between the two par-
ticles could prevent any kind of interaction or disturbance of one particule due to a measurement
on the other.

The origin of the paradox is the erroneous assumption that particles that are far apart from
each other cannot maintain instantaneous correlations. However, quantum correlations between
the properties of distant noninteracting systems can be maintained, as described by Bohm and
Aharonov [Phys. Rev. (1957) 108:1070-1076] for the state of polarization of pairs of correlated
photons. Within the Bohmian picture of quantum mechanics, these quantum correlations are estab-
lished by the quantum potential VQ(q), even when the particles are noninteracting (i.e., V (q) = 0).
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Quantum correlations between distant noninteracting photons were observed for the first time
by Aspect and co-workers in 1982 [Phys. Rev. Lett. (1982) 49:91-94] , 47 years after the EPR
paradox was presented. These quantum correlations constitute the fundamental physics exploited
by teleportation (i.e., the transmission and reconstruction of quantum states over arbitrary large
distances) [Nature (1997) 390:575-579] and ghost imaging (i.e., a technique where the object and
the image system are on separate optical paths) [Am. J. Phys. (2007) 75:343-351] . Most recently,
a ’spooky action at a distance’ record of 1,203 kilometers has been demonstrated in preparation for
quantum communication through the internet.

9 Exercise 9

9.1 Copenhagen Interpretation:
Describe the Copenhagen (probabilistic) formulation of Quantum Mechanics and show that a con-
sequence of Postulates 1 and 4 is that P (t, x) = ψ∗(t, x)ψ(t, x)dx represents the probability of
observing the system described by ψ(x, t) between x and x+ dx at time t.

9.2 Feynman Interview:
Watch Feynman talking about Quantum Mechanics at the (Interview) and comment on his obser-
vations in the context of the postulates of Quantum Mechanics.

9.3 Momentum Operator:
Show that the momentum operator must be defined as

p̂ = −i~ ∂
∂x
, (10)

20

http://ursula.chem.yale.edu/~batista/classes/v572/Aspect.pdf
http://ursula.chem.yale.edu/~batista/classes/v572/tele.pdf
http://ursula.chem.yale.edu/~batista/classes/v572/ghost3.pdf
http://ursula.chem.yale.edu/~batista/classes/vvv/Micius.pdf
https://www.youtube.com/watch?v=gV6KJPK8J0s


and the eigenfunction of the momentum operator with eigenvalue pj as a plane wave

〈x|pj〉 =
e
i
~pjx

√
2π~

, (11)

since
p̂δ(p− pj) = pjδ(p− pj). (12)

Hint: Use the integral form of Dirac’s delta function: δ(p− pj) = 1
2π~

∫∞
−∞ dxe

i
~x(p−pj).

9.4 EPR Paradox:
In 1935, Einstein, Podolsky, and Rosen proposed a thought experiment where two systems that
interact with each other are then separated so that they presumably interact no longer. Then, the
position or momentum of one of the systems is measured, and due to the known relationship be-
tween the measured value of the first particle and the value of the second particle, the observer is
aware of the value in the second particle. A measurement of the second value is made on the second
particle, and again, due to the relationship between the two particles, this value can then be known
in the first particle. This outcome seems to violate the uncertainty principle, since both the position
and momentum of a single particle would be known with certainty.

Explain what is wrong with this paradox.

9.5 Schrödinger’s cat paradox:
A cat is placed in a steel box along with a Geiger counter, a vial of poison, a hammer, and a
radioactive substance. When the radioactive substance decays, the Geiger detects it and triggers
the hammer to release the poison, which subsequently kills the cat. The radioactive decay is a
random process, and there is no way to predict when it will happen. The atom exists in a state
known as a superposition both decayed and not decayed at the same time.

Until the box is opened, an observer doesn’t know whether the cat is alive or dead because
the cat’s fate is intrinsically tied to whether or not the atom has decayed and the cat would, as
Schrödinger put it, be ”living and dead ... in equal parts” until it is observed.

In other words, until the box was opened, the cat’s state is completely unknown and therefore,
the cat is considered to be both alive and dead at the same time until it is observed.

The obvious contradiction is that the cat can not be both dead and alive, so there must be a
fundamental flaw of the paradox or of the Copenhagen interpretation. Explain what aspect of the
Copenhagen interpretation of quantum mechanics is questioned by this gedanken experiment and
what is wrong with the paradox.

10 Heisenberg Representation
With the exception of a few concepts (e.g., the Exclusion Principle that is introduced later in these
lectures), the previous sections have already introduced most of Quantum Theory. Furthermore, we

21



have shown how to solve the equations introduced by Quantum Theory for the simplest possible
problem, which is the particle in the box. There are a few other problems that can also be solved
analytically (e.g., the harmonic-oscillator and the rigid-rotor described later in these lectures).
However, most of the problems of interest in Chemistry have equations that are too complicated to
be solved analytically. This observation has been stated by Paul Dirac as follows: The underlying
physical laws necessary for the mathematical theory of a large part of Physics and the whole of
Chemistry are thus completed and the difficulty is only that exact application of these laws leads to
the equations much too complicated to be soluble. It is, therefore, essential, to introduce numerical
and approximate methods (e.g., perturbation methods and variational methods).

In this section, we describe the matrix representation, introduced by Heisenberg, which is most
useful for numerical methods to solve the eigenvalue problem,R4(124) R3(240)

Ĥ|ψl〉 = El|ψl〉, (13)

for an arbitrary state |ψl〉 of a system (e.g., an atom, or molecule) expanded in a basis set {φj}, as
follows:

|ψl〉 =
∑
j

C
(j)
l |φj〉, (14)

where C(j)
l = 〈φj|ψl〉, and 〈φj|φk〉 = δjk. Substituting Eq. (14) into Eq. (13) we obtain:∑

j

Ĥ|φj〉C(j)
l =

∑
j

ElC
(j)
l |φj〉.

Applying the functional 〈φk| to both sides of this equation, we obtain:∑
j

〈φk|Ĥ|φj〉C(j)
l =

∑
j

El〈φk|φj〉C(j)
l , (15)

where 〈φk|φj〉 = δkj and k = 1, 2, ..., n.
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Introducing the notation Hkj = 〈φk|Ĥ|φj〉 we obtain,

(k = 1) →
(k = 2) →

...
(k = n) →


H11C

(1)
l +H12C

(2)
l +H13C

(3)
l + ...+H1nC

(n)
l = ElC

(1)
l + 0C

(2)
l + ...+ 0C

(n)
l ,

H21C
(1)
l +H22C

(2)
l +H23C

(3)
l + ...+H2nC

(n)
l = 0C

(1)
l + ElC

(2)
l + ...+ 0C

(n)
l ,

...

Hn1C
(1)
l +Hn2C

(2)
l +Hn3C

(3)
l + ...+HnnC

(n)
l = 0C

(1)
l + 0C

(2)
l + ...+ ElC

(n)
l ,

(16)
that can be conveniently written in terms of matrices and vectors as follows,

H11 H12 ... H1n

H21 H22 ... H2n

...
Hn1 Hn2 ... Hnn



C

(1)
l

C
(2)
l

...

C
(n)
l

 =


El 0 ... 0
0 El ... 0
...
0 0 ... El



C

(1)
l

C
(2)
l

...

C
(n)
l

 . (17)

This is the Heisenberg representation of the eigenvalue problem introduced by Eq. (13). According
to the Heisenberg representation, also called matrix representation, the ket |ψl〉 is represented by
the vectorCl, with componentsC(j)

l = 〈φj|ψl〉, with j = 1, ..., n, and the operator Ĥ is represented
by the matrix H with elements Hjk = 〈φj|Ĥ|φk〉.
The expectation value of the Hamiltonian,

〈ψl|H|ψl〉 =
∑
j

∑
k

C
(k)∗
l 〈φk|Ĥ|φj〉C(j)

l ,

can be written in the matrix representation as follows,

〈ψl|H|ψl〉 = C†l HCl =
[
C

(1)∗
l C

(2)∗
l ... C

(n)∗
l

]
H11 H12 ... H1n

H21 H22 ... H2n

...
Hn1 Hn2 ... Hnn



C

(1)
l

C
(2)
l

...

C
(n)
l

 .
Note:
(1) It is important to note that according to the matrix representation the ket-vector |ψl〉 is repre-
sented by a column vector with components C(j)

l = 〈φj|ψl〉, and the bra-vector 〈ψl| is represented
by a row vector with components C(j)∗

l .
(2) If an operator is hermitian (e.g., Ĥ), it is represented by a hermitian matrix (i.e., a matrix
where any two elements which are symmetric with respect to the principal diagonal are complex
conjugates of each other). The diagonal elements of a hermitian matrix are real numbers, therefore,
its eigenvalues are real.
(3) The eigenvalue problem has a non-trivial solution only when the determinant det[H − 1̂E]
vanishes:

det[H− 1̂E] = 0, where 1̂ is the unity matrix.
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This equation has n roots, which are the eigenvalues of H.
(3) Finally, we note that the matrix of column eigenvectors C satisfy the equation, HC = CE,
where E is the diagonal matrix of eigenvalues:
H11 H12 ... H1n

H21 H22 ... H2n

...
Hn1 Hn2 ... Hnn



C

(1)
1 C

(1)
2 · · · C

(1)
n

C
(2)
1 C

(2)
2 · · · C

(2)
n

... ... ... ...

C
(n)
1 C

(n)
2 · · · C

(n)
n

 =


C

(1)
1 C

(1)
2 · · · C

(1)
n

C
(2)
1 C

(2)
2 · · · C

(2)
n

... ... ... ...

C
(n)
1 C

(n)
2 · · · C

(n)
n



E1 0 ... 0
0 E2 ... 0
...
0 0 ... En

 .
(18)

11 Fourier Grid Hamiltonian

The goal of this section is to introduce the Fourier grid Hamiltonian (FGH),

H(j, j′) = V (xj)〈xj|x′j〉+
∆x∆p

2π~

np∑
k=1

e
i
~ (xj′−xj)pk p

2
k

2m
,

= V (xj)δjj′ +
∆x∆p

2π~

np∑
k=1

e
i
~ (xj′−xj)pk p

2
k

2m
,

(19)

as described by Marston and Balint-Kurti [J. Chem. Phys. (1989) 91:3571-3576] . We write the
Hamiltonian as a matrix in the representation of equally spaced delta functions δ(x − xj), with
coordinates

xj = (j − nx/2)∆x, (20)

where ∆x = (xmax − xmin)/nx and j = 1–nx, and momenta pk = ∆p(k − np/2) with ∆p =
2π/(xmax − xmin). Equation (19) is derived by writing the kinetic energy in the basis of plane
waves, as follows:

〈xl|T̂ |xj〉 = 〈xl|
p̂2

2m
|xj〉,

=

∫
dp

∫
dp′〈xl|p′〉〈p′|

p̂2

2m
|p〉〈p|xj〉,

=

∫
dp

∫
dp′〈xl|p′〉

p2

2m
〈p′|p〉〈p|xj〉,

=

∫
dp〈xl|p〉

p2

2m
〈p|xj〉 =

∆x

2π~

∫
dpe

i
~ (xl−xj)p p

2

2m
,

=
∆x∆p

2π~

np∑
k=1

e
i
~ (xl−xj)pk p

2
k

2m
,

(21)

since the identity operator is I =
∑

j |xj〉∆x〈xj|, in the discretized version of the delta function
representation, and ∆x〈xj|xk〉 = δjk.

24

http://ursula.chem.yale.edu/~batista/classes/v572/fourier_grid_hamiltonian.pdf


11.1 Computational Problem FGH
Write a program to solve the time independent Schrödinger equation by using the FGH method and
apply it to find the first 5 eigenvalues and eigenfunctions of the particle in the box with m = a = 1.
Compare your numerical and analytical solutions. Modify the potential to obtain the analogous
eigenstates for the Harmonic oscillator introduced by Eq. (28) with m = 1 and ω = 1. Verify that
the eigenvalues are E(ν) = (1/2 + ν)~ω, ν = 0–4.

The link (http://ursula.chem.yale.edu/∼batista/classes/vvv/pbox.m) provides a Matlab solution
to the FGH computational assignment.

The link http://ursula.chem.yale.edu/∼batista/classes/vvv/M1.pdf provides a Matlab tutorial
with a detailed explanation of the solution to the computational assignment, prepared by Dr. Videla.

The link (http://ursula.chem.yale.edu/∼batista/classes/vvv/hbox.m) provides the corresponding
Matlab solution to the harmonic well potential.

The link (http://ursula.chem.yale.edu/∼batista/classes/vvv/2DFGH.tar) provides the correspond-
ing Matlab solution to the 2-dimensional harmonic well potential.

12 Variational Theorem
The expectation value of the Hamiltonian, computed with any trial wave function, is always higher
or equal than the energy of the ground state. Mathematically,

< ψ|Ĥ|ψ >≥ E0,

where Ĥφj = Ejφj .
Proof: ψ =

∑
j Cjφj , where {φj} is a basis set of orthonormal eigenfunctions of the Hamiltonian

Ĥ .

< ψ|Ĥ|ψ > =
∑
j

∑
k

C∗kCj < φk|Ĥ|φj >,

=
∑
j

∑
k

C∗kCjEjδkj,

=
∑
j

C∗jCjEj ≥ E0

∑
j

C∗jCj,

where,
∑

j C
∗
jCj = 1.

Variational Approach: Starting with an initial trial wave function ψ defined by the expansion
coefficients {C(0)

j }, the optimum solution of an arbitrary problem described by the Hamiltonian
Ĥ can be obtained by minimizing the expectation value < ψ|Ĥ|ψ > with respect to the expan-
sion coefficients. The link (http://ursula.chem.yale.edu/∼batista/classes/vvv/VT570.tar) , provides
a Matlab implementation of the variational method as applied to the calculation of the ground and
excited states of a harmonic well.

The link http://ursula.chem.yale.edu/∼batista/classes/vvv/M2.pdf , provides a detailed descrip-
tion of the solution to the computational assignment, prepared by Dr. Pablo Videla.
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13 Digital Grid-Based Representations
The standard formulation of quantum mechanics, presented in previous sections, relies upon the
tools of calculus (e.g., derivatives, integrals, etc.) and involves equations and operations with in-
finitesimal quantities as well as states in Hilbert-space (the infinite dimensional space of functions
L2). The equations, however, seldom can be solved analytically. Therefore, computational solu-
tions are necessary. However, computers can not handle infinite spaces since they have only limited
memory. In fact, all they can do is to store and manipulate discrete arrays of numbers. Therefore,
the question is: how can we represent continuum states and operators in the space of memory of
digital computers?

In order to introduce the concept of a grid-representation, we consider the state,

Ψ0(x) =
(α
π

)1/4

e−
α
2

(x−x0)2+ip0(x−x0), (22)

which can be expanded in the infinite basis set of delta functions δ(x− x′) as follows,

Ψ0(x) =

∫
dx′c(x′)δ(x− x′), (23)

where c(x′) ≡ 〈x′|Ψ0〉 = Ψ0(x′). All expressions are written in atomic units, so ~ = 1.
Note that in a discrete representation, Ψ0(x) = ∆

∑
cjgj(x), where cj = 〈gj|Ψ0〉. So, the par-

ticular representation with gj(x) = δ(x−xj) gives cj =
∫
dxδ(x−xj)Ψ(x) = Ψ0(xj). Therefore,

Ψ0(x) =
∑

Ψ0(xj)δ(x− xj).
A grid-based representation of Ψ0(x) can be obtained, in the coordinate range x = (xmin, xmax),

by discretizing Eq. (23) as follows,

Ψ0(x) = ∆
n∑
j=1

cjδ(x− xj), (24)

where the array of numbers cj ≡ 〈xj|Ψ0〉 represent the state Ψ0 on a grid of equally spaced coordi-
nates xj = xmin + (j − 1)∆ with finite resolution ∆ = (xmax − xmin)/(n− 1).

Note that the grid-based representation, introduced by Eq. (24), can be trivially generalized to
a grid-based representation in the multidimensional space of parameters (e.g., xj , pj , γj , ... etc.)
when expanding the target state Ψ0(x) as a linear combination of basis functions 〈x|xj, pj, γj〉, with
expansion coefficients as cj ≡ 〈xj, pj, γj|Ψ0〉.

13.1 Computational Problem 1
Write a computer program to represent the wave-packet, introduced by Eq. (22) on a grid of equally
spaced coordinates xj = xmin + (j − 1)∆ with finite resolution ∆ = (xmax − xmin)/(n − 1) and
visualize the output. Choose x0 = 0 and p0 = 0, in the range x=(-20,20), with α = ωm, where
m = 1 and ω = 1.
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Next, we consider grid-based representations in momentum space:

Ψ0(p) = 〈p|Ψ0〉. (25)

Inserting the closure relation 1̂ =
∫
dx|x〉〈x| in Eq. (25), we obtain that

〈p|Ψ0〉 =

∫
dx〈p|x〉〈x|Ψ0〉 = (2π)−1/2

∫
dxe−ipx〈x|Ψ0〉. (26)

is the Fourier transform of the initial state. The second equality in Eq. (26) was obtained by using:

〈x|p〉 = (2π)−1/2eipx, (27)

which is the eigenstate of the momentum operator p̂ = −i∇, with eigenvalue p, since p̂〈x|p〉 =
p〈x|p〉.

The Fourier transform can be computationally implemented in O(N log(N)) steps by using
the Fast Fourier Transform (FFT) algorithm [see, Ch. 12 of Numerical Recipes by W.H. Press,
B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Cambridge University Press, Cambridge, 1986
(f12-2.pdf)] when 〈x|Ψ0〉 is represented on a grid with N = 2n points (where n is an integer).
In contrast, the implementation of the Fourier transform by quadrature integration would require
O(N2) steps.

13.2 Computational Problem 2
Write a computer program to represent the initial state, introduced by Eq. (22), in the momentum
space by applying the FFT algorithm to the grid-based representation generated in Problem 1 and
visualize the output. Represent the wave-packet amplitudes and phases in the range p=(-4,4) and
compare your output with the corresponding values obtained from the analytic Fourier transform
obtained by using:∫

dx exp(−a2x
2 + a1x+ a0) =

√
π/a2 exp(a0 + a2

1/(4a2)).

Next, we consider the grid-based representation of operators (e.g., x̂, p̂, V (x̂), and T̂ = p̂2/(2m))
and learn how these operators act on states represented on grids in coordinate and momentum
spaces. For simplicity, we assume that the potential is Harmonic:

V (x̂) =
1

2
mω2(x̂− x̄)2. (28)

Consider first applying the potential energy operator to the initial state, as follows,

V (x̂)Ψ0(x) = V (x)Ψ0(x) ≡ Ψ̃0(x). (29)

Since Ψ̃0(x) is just another function, Eq. (29) indicates that V (x̂) can be represented on the same
grid of coordinates as before (i.e., equally spaced coordinates xj = xmin + (j − 1)∆, with finite
resolution ∆ = (xmax − xmin)/(n − 1)). Since for each xj , Ψ̃0(xj) = V (xj)Ψ(xj), the operator
V (x̂) can be represented just as an array of numbers V (xj) associated with the grid-points xj , and
its operation on a state is represented on such a grid as a simple multiplication.
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13.3 Computational Problem 3
Write a computer program to compute the expectation values of the position x(0) = 〈Ψ0|x̂|Ψ0〉 and
the potential energy V = 〈Ψ0|V (x̂)|Ψ0〉, where V (x) is defined according to Eq. (28) for the initial
wave-packet, introduced by Eq. (22), with various possible values of x0 and p0, with α = ωm,
where m = 1 and ω = 1.

Now consider applying the momentum operator, p̂ = −i∇, to the initial state Ψ0(x) as follows,

G(x) = 〈x|p̂|Ψ0〉 = −i∇Ψ0(x). (30)

One simple way of implementing this operation, when Ψ0(x) is represented on a grid of equally
spaced points xj = xmin + (j − 1)∆, is by computing finite-increment derivatives as follows:

G(xj) = −iΨ0(xj+1)−Ψ0(xj−1)

2∆
. (31)

However, for a more general operator (e.g., T̂ = p̂2/(2m)) this finite increment derivative
procedure becomes complicated. In order to avoid such procedures one can represent the initial
state in momentum-space (by Fourier transform of the initial state); apply the operator by simple
multiplication in momentum space and then transform the resulting product back to the coordinate
representation (by inverse-Fourier transform). This method can be derived by inserting the closure
relation 1̂ =

∫
dp|p〉〈p|, in Eq. (30),

G(x) = 〈x|p̂|Ψ0〉 =

∫
dp〈x|p̂|p〉〈p|Ψ0〉 = (2π)−1/2

∫
dpeipxp〈p|Ψ0〉, (32)

since 〈p|Ψ0〉 is defined according to Eq. (26) as the Fourier transform of the initial state. Note that
the second equality of Eq. (32) is obtained by introducing the substitution

〈x|p〉 = (2π)−1/2eixp̂. (33)

While Eq. (32) illustrates the method for the specific operator p̂, one immediately sees that any
operator which is a function of p̂ (e.g., T̂ = p̂2/(2m)) can be computed analogously according to
the Fourier transform procedure.

13.4 Computational Problem 4
Write a computer program to compute the expectation values of the initial momentum p(0) =
〈Ψ0|p̂|Ψ0〉 and the kinetic energy T = 〈Ψ0|p̂2/(2m)|Ψ0〉 by using the Fourier transform procedure,
where Ψ0 is the initial wave-packet introduced by Eq. (22), with x0 = 0, p0 = 0, and α = ωm,
where m = 1 and ω = 1. Compute the expectation value of the energy E = 〈Ψ0|Ĥ|Ψ0〉, where
Ĥ = p̂2/(2m) + V (x̂), with V (x) defined according to Eq. (28) and compare your result with the
zero-point energy E0 = ω/2.
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14 SOFT Method
The Split-Operator Fourier Transform (SOFT) method is a numerical approach for solving

the time-dependent Schrödinger equation by using grid-based representations of the time-evolving
states and operators. It relies on the Fourier transform procedure to apply operators that are func-
tions of p̂ by simple multiplication of array elements. As an example, we will illustrate the SOFT
algorithm as applied to the propagation of the harmonic oscillator, which can also be described
analytically as follows:

Ψt(x) =

∫
dx′〈x|e−iĤt|x′〉〈x′|Ψ0〉, (34)

where the Kernel 〈x|e−iĤt|x′〉 is the quantum propagator

〈x|e−iĤt|x′〉 =

√
mω

2πsinh(itω)
exp

(
− mω

2sinh(ωit)
[(x2 + x′2)cosh(ωit)− 2xx′]

)
. (35)

The essence of the method is to discretize the propagation time on a grid tk = (k − 1)τ , with
k = 1, ..., n and time-resolution τ = t/(n − 1), and obtain the wave-packet at the intermediate
times tk by recursively applying Eq. (34) as follows,

Ψtk+1
(x) =

∫
dx′〈x|e−iĤτ |x′〉〈x′|Ψtk〉. (36)

If τ is a sufficiently small time-increment (i.e., n is large), the time-evolution operator can be
approximated according to the Trotter expansion to second order accuracy,

e−iĤτ = e−iV (x̂)τ/2e−ip̂
2τ/(2m)e−iV (x̂)τ/2 +O(τ 3), (37)

which separates the propagator into a product of three operators, each of them depending either on
x̂, or p̂.

14.1 Computational Problem 5
Expand the exponential operators in both sides of Eq. (37) and show that the Trotter expansion is
accurate to second order in powers of τ .

Substituting Eq. (37) into Eq. (36) and inserting the closure relation 1̂ =
∫
dp|p〉〈p| gives,

Ψtk+1
(x) =

∫
dp

∫
dx′e−iV (x̂)τ/2〈x|p〉e−ip2τ/(2m)〈p|x′〉e−iV (x′)τ/2Ψtk(x

′). (38)

By substituting 〈p|x′〉 and 〈x|p〉 according to Eqs. (27) and (33), respectively, we obtain:

Ψtk+1
(x) = e−iV (x̂)τ/2 1√

2π

∫
dpeixpe−ip

2τ/(2m) 1√
2π

∫
dx′e−ipx

′
e−iV (x′)τ/2Ψtk(x

′). (39)

According to Eq. (39), then, the computational task necessary to propagate Ψt(x) for a time-
increment τ involves the following steps:
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1. Represent Ψtk(x
′) and e−iV (x′)τ/2 as arrays of numbers Ψtk(xj) and e−iV (xj)τ/2 associated

with a grid of equally spaced coordinates xj = xmin + (j − 1)∆, with finite resolution
∆ = (xmax − xmin)/(n− 1).

2. Apply the potential energy part of the Trotter expansion e−iV (x′)τ/2 to Ψtk(x
′) by simple

multiplication of array elements:

Ψ̃tk(xj) = e−iV (xj)τ/2Ψtk(xj).

3. Fourier transform Ψ̃tk(xj) to obtain Ψ̃tk(pj), and represent the kinetic energy part of the
Trotter expansion e−ip

2τ/(2m) as an array of numbers e−ip
2
jτ/(2m) associated with a grid of

equally spaced momenta pj = j/(xmax − xmin).

4. Apply the kinetic energy part of the Trotter expansion e−ip2τ/(2m) to the Fourier transform
Ψ̃tk(p) by simple multiplication of array elements:

Ψ̃tk(pj) = e−ip
2
jτ/(2m)Ψ̃tk(pj).

5. Inverse Fourier transform Ψ̃tk(pj) to obtain Ψ̃tk(xj) on the grid of equally spaced coordinates
xj .

6. Apply the potential energy part of the Trotter expansion e−iV (x′)τ/2 to Ψ̃tk(x
′) by simple

multiplication of array elements,

Ψtk+1
(xj) = e−iV (xj)τ/2Ψ̃tk(xj).

14.2 Imaginary time propagation
Note that with the variable substitution τ → −it, with real t, the time evolution operator be-
comes a decaying exponential e−Ĥt/~ that reduces the amplitude of the initial wavepacket Ψ0(x) =∑

j cjφj(x), as follows:

Ψt(x) = e−iĤτ/~Ψ0(x) =
∑
j

cje
−Ejtφj(x), (40)

where Ĥφj(x) = Ejφj(x). Terms with higherEj are reduced more than those with smallerEj . Af-
ter renormalizing the resulting wavefunction Ψt(x) (by dividing it by the square root of its norm),
we get a state enriched with low energy components. The imaginary time propagation and renor-
malization procedure can be repeated several times until the function stops changing since it com-
posed solely by the ground state φ0(x), after removal of all other components (of higher energies)
at a faster rate.

Having found φ0, we can proceed to find φ1 as done for φ0 but including orthogonalization
relative to φ0, Ψt(x)→ Ψt(x)− 〈φ0|Ψt〉φ0(x), after each propagation step, right before renormal-
ization. Higher energy states are found analogously, by orthogonalization of the propagated state
relative to all previously found eigenstates.
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14.3 Ehrenfest Dynamics
The goal of this section is to show that the expectation values 〈x̂〉 = 〈ψ|x̂|ψ〉 and 〈p̂〉 = 〈ψ|p̂|ψ〉
are conjugate variables in the sense that they evolve according to the classical equations of motion
(i.e., Hamilton’s equaitons):

d

dt
〈x̂〉 = 〈∂Ĥ

∂p̂
〉

=
〈p̂〉
m
,

d

dt
〈p〉 = −〈∂Ĥ

∂x̂
〉

= −〈V ′〉,

(41)

where Ĥ = p̂2/2m+V (x̂). This remarkable result, introduced by Eq. (41), is known as Ehrenfest’s
theorem and can be demonstrated, as follows.

First, we show that since ψ evolves according to the Schrödinger equation:

i~
∂ψ

∂t
= Ĥψ, (42)

then
〈p̂〉 = m

d

dt
〈x̂〉. (43)

Using integration by parts, we obtain:

〈p̂〉 = −i~〈ψ| ∂
∂x
|ψ〉,

= −i~
2
〈ψ| ∂

∂x
+

∂

∂x
|ψ〉,

= −i~
2

∫
dx

[
ψ∗
∂ψ

∂x
+ ψ∗

∂ψ

∂x

]
,

= −i~
2

∫
dx

[
ψ∗
∂ψ

∂x
− ψ∂ψ

∗

∂x

]
,

= m

∫
j dx,

= −m
∫
x
∂j

∂x
dx,

(44)

where the current j = − i~
2m

[
ψ∗ ∂ψ

∂x
− ψ ∂ψ∗

∂x

]
satisfies the continuity equation,

d

dt
ψ∗ψ +

∂j

∂x
= 0. (45)
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Therefore,

〈p̂〉 = m

∫
x
d

dt
ψ∗ψ dx,

= m
d

dt

∫
ψ∗xψ dx,

= m
d

dt
〈x̂〉.

(46)

Next, we show that

d

dt
〈p̂〉 = −〈V ′〉, (47)

by substituting Eq. (42) into Eq. (44) and integrating by parts, as follows:

d

dt
〈p̂〉 = m

d

dt

∫ ∞
−∞

dx j,

= −i~
2

∫ ∞
−∞

dx

[
dψ∗

dt

∂ψ

∂x
+ ψ∗

∂

∂x

dψ

dt
− dψ

dt

∂ψ∗

∂x
− ψ ∂

∂x

dψ∗

dt

]
= i~

∫ ∞
−∞

dx

[
dψ

dt

∂ψ∗

∂x
+
dψ∗

dt

∂ψ

∂x

]
=

∫ ∞
−∞

dx

[
− ~2

2m

∂2ψ

∂x2

∂ψ∗

∂x
+ V ψ

∂ψ∗

∂x
+ c.c.

]
=

∫ ∞
−∞

dx

[
− ~2

2m

∂

∂x

(
∂ψ

∂x

∂ψ∗

∂x

)
+ V

(
ψ
∂ψ∗

∂x
+ ψ∗

∂ψ

∂x

)]
,

=

∫ ∞
−∞

dxV

(
ψ
∂ψ∗

∂x
+ ψ∗

∂ψ

∂x

)
,

(48)

since ∂ψ
∂x

∂ψ∗

∂x
= 0 when evaluated at x = ±∞. Therefore,

d

dt
〈p̂〉 =

∫ ∞
−∞

dx
∂ψ∗ψ

∂x
V,

= −
∫ ∞
−∞

dxψ∗
∂V

∂x
ψ.

(49)

14.4 Exercise: Real and Imaginary Time Evolution
1. Write a Matlab code to simulate the evolution of a wavepacket bouncing back and forth on a
harmonic well, described by the Hamiltonian H = p2/(2 ∗ m) + V (x), with V (x) = 0.5 ∗ x2

after initializing the state according to the ground state displaced from its equilibrium position, as
follows: ψ(x, 0) = exp(−(x− 1)2/2)/ 4

√
π.
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2. Compute the expectation values of position and momentum as a function of time x(t) and
p(t) and compare them to the corresponding classical values obtained by integrating Hamilton’s
equation with the Velocity-Verlet algorithm:

pj+1 = pj + (F (xj) + F (xj+1))τ/2,

xj+1 = xj + pjτ/m+ F (xj)τ
2/(2m),

(50)

with x0 = 1 and p0 = 0 the initial position and momentum of the harmonic oscillator and xj and
pj the position and momentum at time t = j ∗ τ , while F (xj) = −V ′(xj) = −xj .

3. Compute the expectation values of position and momentum as a function of time x(t) and
p(t) and compare them to the Ehrenfest trajectory obtained by integrating Hamilton’s equation,
using mean force:

〈p〉j+1 = 〈p〉j + (〈F (x)〉j + 〈F (x)〉j+1)τ/2,

〈x〉j+1 = 〈x〉j + 〈p〉jτ/m+ 〈F (x)〉jτ 2/(2m),
(51)

with 〈x〉0 = 1 and 〈p〉0 = 0 the initial position and momentum of the harmonic oscillator and 〈x〉j
and 〈p〉j the mean position and momentum at time t = j ∗τ , while 〈F (x)〉j = −〈V ′(x)〉j = −〈x〉j .

4. Find the ground state of the harmonic well by propagating the wavepacket in imaginary
time (i.e., using the propagation time increment τ = −it, with real t) and renormalizing the wave
function after each propagation step.

5. Find the first excited state of the harmonic well by propagating the wavepacket in imaginary
time (i.e., using the propagation time increment τ = −it, with real t), projecting out the ground
state component and renormalizing the wave function after each propagation step.

6. Find the first 9 excited states, iteratively, by imaginary time propagation as in item 4, pro-
jecting out lower energy states and renormalizing after each propagation step.

7. Change the potential to that of a Morse oscillator V (x) = De(1− exp(−a(x− xe)))2, with
xe = 0, De = 8, and a =

√
k/(2De), where k = mω2. Recompute the wave-packet propagation

with x0 = −0.5 and p0 = 0 for 100 steps with τ = 0.1 a.u. Compare the expectation values
x(t) and p(t) to the corresponding classical and Ehrenfest trajectories obtained according to the
Velocity-Verlet algorithm.

Solution:The link (http://ursula.chem.yale.edu/∼batista/classes/vvv/HO570.tar) provides a Matlab
implementation of the SOFT method as applied to the simulation of evolution of a wavepacket in a
harmonic well in real time. In addition, the Matlab code implements the SOFT propagation method
to find the lowest 10 eigenstates of the harmonic oscillator by ‘evolution’ in imaginary time.

14.5 Computational Problem 6
Write a computer program that propagates the initial state Ψ0(x) for a single time increment (τ =
0.1 a.u.). Use x0 = −2.5, p0 = 0, and α = ωm, where m = 1 and ω = 1. Implement the SOFT
method for the Hamiltonian Ĥ = p̂2/(2m) + V (x̂), where V (x) is defined according to Eq. (28).
Compare the resulting propagated state with the analytic solution obtained by substituting Eq. (35)
into Eq. (34).
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14.6 Computational Problem 7
Loop the computer program developed in Problem 5 with x0 = −2.5 and p0 = 0 for 100 steps with
τ = 0.1 a.u. For each step compute the expectation values of coordinates x(t) and momenta p(t)
as done in Problems 3 and 4, respectively. Compare your calculations with the analytic solutions
obtained by substituting Eq. (35) into Eq. (34). Verify that these correspond to the classical trajec-
tories x(t) = x̄ + (x0 − x̄)cos(ωt) and p(t) = p0 − (x0 − x̄)ωm sin(ωt), which can be computed
according to the Velocity-Verlet algorithm:

pj+1 = pj + (F (xj) + F (xj+1))τ/2

xj+1 = xj + pjτ/m+ F (xj)τ
2/(2m).

(52)

14.7 Computational Problem 8
Change the potential to that of a Morse oscillator V (x̂) = De(1− exp(−a(x̂−xe)))2, with xe = 0,
De = 8, and a =

√
k/(2De), where k = mω2. Recompute the wave-packet propagation with

x0 = −0.5 and p0 = 0 for 100 steps with τ = 0.1 a.u., and compare the expectation values x(t)
and p(t) with the corresponding classical trajectories obtained by recursively applying the Velocity-
Verlet algorithm.

14.8 Computational Problem 9
Simulate the propagation of a wave-packet with x0 = −5.5 and initial momentum p0 = 2 colliding
with a barrier potential V (x) = 3, if abs(x) < 0.5, and V (x) = 0, otherwise. Hint: In order
to avoid artificial recurrences you might need to add an absorbing imaginary potential Va(x) =
i(abs(x)− 10)4, if abs(x) > 10, and Va(x) = 0, otherwise.

15 Time Independent Perturbation Theory
Consider the time independent Schrödinger equation,R2(453)

Ĥφn(x) = Enφn(x), (53)

for a system described by the Hamiltonian Ĥ = p̂2/2m+ V̂ , and assume that all the eigenfunctions
φn(x) are known. The goal of this section is to show that these eigenfunctions φn(x) can be used
to solve the time independent Schrödinger equation of a slightly different problem: a problem
described by the Hamiltonian Ĥ ′ = Ĥ + λω̂. This is accomplished by implementing the equations
of Perturbation Theory derived in this section.
Consider the equation

(Ĥ + λω̂)Φ̃n(λ, x) = Ẽn(λ)Φ̃n(λ, x), (54)

where λ is a small parameter, so that both Φ̃n(λ) and Ẽn(λ) are well approximated by rapidly
convergent expansions in powers of λ (i.e., expansions where only the first few terms are important).
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Expanding Φ̃n(λ) we obtain,
Φ̃n(λ, x) =

∑
j

Cjn(λ)φj(x).

Substituting this expression in the time independent Schrödinger equation we obtain,∑
j

Cjn(λ)[Ĥφj(x) + λω̂φj(x)] = Ẽn(λ)
∑
k

Ckn(λ)φk(x).,

therefore,
Cln(λ)El + λ

∑
j

Cjn(λ) < φl|ω̂|φj >= Ẽn(λ)Cln(λ). (55)

Expanding Ckj and Ẽn in powers of λ we obtain,
Ckj(λ) = C

(0)
kj + C

(1)
kj λ+ C

(2)
kj λ

2 + ...,
and
Ẽn(λ) = E

(0)
n + E

(1)
n λ+ E

(2)
n λ2 + ...

Substituting these expansions into Eq. ( 55) we obtain,
(C

(0)
ln El − E

(0)
n C

(0)
ln ) + λ(C

(1)
ln El +

∑
j C

(0)
jn < φl|ω̂|φj > −E(0)

n C
(1)
ln − E

(1)
n C

(0)
ln ) +

× λ2(C
(2)
ln El +

∑
j C

(1)
jn < φl|ω̂|φj > −E(2)

n C
(0)
ln − E

(0)
n C

(2)
ln − E

(1)
n C

(1)
ln ) + ... = 0.

This equation must be valid for any λ. Therefore, each of the terms in between parenthesis must be
equal to zero.

Zeroth order in λ


C

(0)
ln (El − E(0)

n ) = 0,

if l 6= n, then C(0)
ln = 0,

if l = n, then C(0)
nn = 1, and El = E

(0)
n .

First order in λ


C

(1)
ln (El − E(0)

n ) = E
(1)
n C

(0)
ln −

∑
j C

(0)
jn < φl|ω̂|φj >,

if l 6= n, then C(1)
ln (El − E(0)

n ) = −C(0)
nn < φl|ω̂|φn >,

if l = n, then E(1)
n C

(0)
ln = C

(0)
nn < φn|ω̂|φn > .

Note that C(1)
nn is not specified by the equations listed above. C(1)

nn is obtained by normalizing the
wave function written to first order in λ.

2nd order in λ



C
(2)
ln (El − En) +

∑
j C

(1)
jn < φl|ω̂|φj >= E

(2)
n C

(0)
ln + E

(1)
n C

(1)
ln ,

if l = n, then E(2)
n =

∑
j 6=nC

(1)
jn < φn|ω̂|φj > = −

∑
j 6=n

<φn|ω̂|φj><φj |ω̂|φn>
(Ej−E

(0)
n )

,

if l 6= n, then C(2)
ln (El − E(0)

n ) = −
∑

j C
(1)
jn < φl|ω̂|φj >− <φn|ω̂|φn><φl|ω̂|φn>

(El−E
(0)
n )

=

=
∑

j
<φj |ω̂|φn><φl|ω̂|φj>

(Ej−E
(0)
n )

− <φn|ω̂|φn><φl|ω̂|φn>
(El−E

(0)
n )

.

15.1 Exercise 9: How accurate is first order time-independent perturbation
theory?

1. Calculate the energies predicted by first order perturbation theory for the first 5 states of the
particle in the box described by the ’bottle bottom’ potential, W (x) = λsin(π

a
(a

2
−x)), with λ = 1:
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6

-

6

∞ ∞

−a/2 a/2

x

2. Compare the energies to the numerical results obtained by diagonalization of the corresponding
Fourier grid Hamiltonian.
3. Compare the % error for each eigenvalue to the corresponding results when λ = 2.

The link (http://ursula.chem.yale.edu/∼batista/classes/vvv/pbottle.m) , provides a Matlab solu-
tion to the ’particle in the bottle’ computational assignment.

16 Time Dependent Perturbation Theory
Given an arbitary state,R2(410)

ψ̃(x, t) =
∑
j

CjΦj(x)e−
i
~Ejt,

for the initially unperturbed system described by the Hamiltonian Ĥ , for which ĤΦ̂j = EjΦj and
i~∂ψ̃

∂t
= Ĥψ̃, let us obtain the solution of the time dependent Schrödinger equation:

i~
∂ψ

∂t
= [Ĥ + λω̂(t)]ψ, (56)

assuming that such solution can be written as a rapidly convergent expansion in powers of λ,

ψλ(x, t) =
∑
j

∞∑
l=0

Cjl(t)λ
lΦj(x)e−

i
~Ejt. (57)

Substituting Eq. (57) into Eq. (56) we obtain,

i~
∞∑
l=0

(
Ċkl(t)λ

l + Ckl(t)λ
l(− i

~
Ek)

)
e−

i
~Ekt =

∑
j

∞∑
l=0

Cjl(t)λ
l (< Φk|Φj > Ej + λ < Φk|ω̂|Φj >) e−

i
~Ejt.

Terms with λ0: (Zero-order time dependent perturbation theory)

+i~[Ċk0(t)e
− i

~Ekt + Ck0(t)(−
i

~
Ek)e

− i
~Ekt] =

∑
j

Cj0(t)δkjEje
− i

~Ejt = Ck0(t)Eke
− i

~Ekt.
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Since,
Ċk0(t) = 0, ⇒ Ck0(t) = Ck0(0).

Therefore, the unperturbed wave function is correct to zeroth order in λ.
Terms with λ: (First-order time dependent perturbation theory)

i~[Ċk1(t)e
− i

~Ekt+Ck1(t)(−
i

~
Ek)e

− i
~Ekt] =

∑
j

Cj1(t)δkjEje
− i

~Ejt+Cj0(t) < Φk|ω̂|Φj > e−
i
~Ejt,

Ċk1(t) = − i
~
∑
j

(
Cj0(0) < Φk|ω̂|Φj > e−

i
~ (Ej−Ek)t

)
.

Therefore,

Ċk1(t) = − i
~
∑
j

Cj0(0) < Φk|e
i
~Ektω̂e−

i
~Ejt|Φj >= − i

~
∑
j

Cj0(0) < Φk|e
i
~ Ĥtω̂e−

i
~ Ĥt|Φj >,

(58)
Eq. (58) was obtained by making the substitution e−

i
~ Ĥt|Φj >= e−

i
~Ejt|Φj >, which is justified

in the note that follows this derivation. Integrating Eq. (58) we obtain,

Ck1(t) = − i
~

∫ t

−∞
dt′
∑
j

Cj0(0) < Φk|e
i
~ Ĥt

′
ω̂e−

i
~ Ĥt

′ |Φj > .

which can also be written as follows:

Ck1(t) = − i
~

∫ t

−∞
dt′ < Φk|e

i
~ Ĥt

′
ω̂e−

i
~ Ĥt

′ |ψ̃0 > .

This expression gives the correction of the expansion coefficients to first order in λ.
Note: The substitution made in Eq. (58) can be justified as follows. The exponential function is
defined in powers series as follows,

eA =
∞∑
n=0

An

n!
= 1 + A+

1

2!
AA+ ...., R4(169)

In particular, when A = −iĤt/~,

e−
i
~ Ĥt = 1 + (− i

~
Ĥt) +

1

2!
(− i

~
t)2ĤĤ + ....

Furthermore, since
Ĥ|Φj >= Ej|Φj >,

and,
ĤĤ|Φj >= EjĤ|Φj >= E2

j |φj >,
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we obtain,

e−
i
~ Ĥt|Φj >= [1 + (− i

~
Ejt) +

1

2!
(− i

~
t)2E2

j + ...]|Φj >= e−
i
~Ejt|Φj >,

which is the substitution implemented in Eq. (58).
Terms with λ2: (Second-order time dependent perturbation theory)

i~[Ċk2(t) + Ck2(t)(−
i

~
Ek)]e

− i
~Ekt =

∑
j

[Cj2(t)δkjEj + Cj1(t) < Φk|ω̂|Φj >]e−
i
~Ejt,

Ċk2(t) = − i
~
∑
j

< Φk|e
i
~ Ĥtω̂e−

i
~ Ĥt|Φj > Cj1(t),

Ck2(t) =

(
− i
~

)∫ t

−∞
dt′
∑
j

< Φk|e
i
~ Ĥt

′
ω̂e−

i
~ Ĥt

′ |Φj > Cj1(t
′),

Ck2(t) =

(
− i
~

)2∑
j

∫ t

−∞
dt′
∫ t′

−∞
dt′′ < Φk|e

i
~ Ĥt

′
ω̂e−

i
~ Ĥt

′|Φj >< Φj|e
i
~ Ĥt

′′
ω̂e−

i
~ Ĥt

′′ |ψ̃0 > .

Since 1 =
∑

j |Φj >< Φj|,

Ck2(t) =

(
− i
~

)2 ∫ t

−∞
dt′
∫ t′

−∞
dt′′ < Φk|e

i
~ Ĥt

′
ω̂e−

i
~ Ĥ(t′−t′′)ω̂e−

i
~ Ĥt

′′ |ψ̃0 > .

This expression gives the correction of the expansion coefficients to second order in λ.
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Limiting Cases
(1) Impulsive Perturbation:
The perturbation is abruptly ”switched on”:R2(412)

6

w(t)

ω̄

0
t

According to the equations for first order time dependent perturbation theory,

Ck1(t) = − i
~
∑
j

< Φk|ω̄|Φj > Cj0(0)

∫ t

0

dt′e−
i
~ (Ej−Ek)t′ ,

therefore,

Ck1(t) = (− i
~

)
∑
j

Cj0(0) < Φk|ω̄|Φj >(
− i

~(Ej − Ek)
) [

e−
i
~ (Ej−Ek)t − 1

]
.

Assuming that initially: Cj = δlj, ⇒ Cj0 = δlj. Therefore,

Ck1(t) = −< Φk|ω̄|Φl >

(El − Ek)
[1− e−

i
~ (El−Ek)t],

when k 6= l. Note that Cl1(t) must be obtained from the normalization of the wave function
expanded to first order in λ.

16.1 Exercise 10
Compare this expression of the first order correction to the expansion coefficients, due to an im-
pulsive perturbation, with the expression obtained according to the time-independent perturbation
theory.

(2) Adiabatic limit:
The perturbation is ”switched-on” very slowly (dωt

dt
<< ε, with ε arbitrarily small):R2(448)
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6

−∞ ∞

ω̄

ω(t)

t

-

............................................................

Ck1(t) = (− i
~

)

∫ t

−∞
dt′ < Φk|ω(t′)|Φl > e−

i
~ (El−Ek)t′ .

Integrating by parts we obtain,

Ck1(t) = (− i
~

)

 e−
i
~ (El−Ek)t′

(− i
~)(El − Ek)

< Φk|ω(t′)|Φl >

∣∣∣∣∣
t′=t

t′=−∞

−
∫ t

−∞
dt′

e−
i
~ (El−Ek)t′

(− i
~)(El − Ek)

< Φk|
∂w

∂t′
|Φl >

 ,
and, since < Φk|w(−∞)|Φl >= 0,

Ck1(t) =
< Φk|ω(t)|Φl >

(El − Ek)
e−

i
~ (El−Ek)t,

when k 6= l. Note that Cl1(t) must be obtained from the normalization of the wave function
expanded to first order in λ.

16.2 Exercise 11
Compare this expression for the first order correction to the expansion coefficients, due to an adi-
abatic perturbation, with the expression obtained according to the time-independent perturbation
theory.

(3) Sinusoidal Perturbation:
The sinusoidal perturbation is defined as follows, ω̂(t, x) = ω̄(x)Sin(Ωt) when t ≥ 0 and ω̂(t, x) =
0, otherwise.
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ω(x, t)

ω̄(x)

t
-

6

It is, however, more conveniently defined in terms of exponentials,

ω̂ =
ω̄(x)

2i
[eiΩt − e−iΩt].

Therefore,

Ck1(t) = − i
~

∫ t

0

dt′ < Φk|e
i
~ Ĥt

′
ω̂(t′)e−

i
~ Ĥt

′ |ψ̃0 >, (59)

with |ψ̃0 >=
∑

j Cj|Φj >, and ĤΦj = EjΦj . Substituting these expressions into Eq. (16) we
obtain,

Ck1(t) = − 1

2~
∑
j

Cj < Φk|ω̄|Φj >

∫ t

0

dt′
(
e
i
~ [(Ek−Ej)+~Ω]t − e

i
~ [(Ek−Ej)−~Ω]t

)
,

and therefore,

Ck1(t) =
1

i2~
∑
j

Cjω̄kj

[
1− e i~ [(Ek−Ej)+~Ω]t

Ek−Ej
~ + Ω

− 1− e i~ [(Ek−Ej)−~Ω]t

Ek−Ej
~ − Ω

]
.

Without lost of generality, let us assume that Cj = δnj (i.e., initially only state n is occupied). For
k ≥ n we obtain,

|Ck1(t)|2 =
|ω̄kn|2

4~2

∣∣∣∣∣1− ei[
(Ek−En)

~ +Ω]t

(Ek−En)
~ + Ω

− 1− ei[
(Ek−En)

~ −Ω]t

(Ek−En)
~ − Ω

∣∣∣∣∣
2

.

Factor |ω̄|kn determines the intensity of the transition (e.g., the selection rules). The first term
(called anti-resonant) is responsible for emission. The second term is called resonant and is re-
sponsible for absorption.
For k 6= n, Pk1(t) = λ2|Ck1(t)|2 is the probability of finding the system in state k at time t (to first
order in λ).

41



Pk1(t)

Ω

∆Ω = 4π
t

�
�
�	

(Ek−En)
~

t2λ2|ω̄kn|2
4~2

-

6

..................................................

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

..

...

...

...

...

...

...

..-�

It is important to note that Pk1 << 1 indicates that the system has been slightly perturbed. Such
condition is satisfied only when t << 2~

|ω̄kn|λ
. Therefore, the theory is useful only at sufficiently

short times.

17 Golden Rule

The goal of this section is to introduce the so-called Fermi Golden Rule expression, given by first-
order time dependent perturbation theory.

We consider a system initially prepared in state |i〉. At time t = 0, we turn on the perturbation
W (t) and we analyze the decay to the final state |f〉, as described by first order time-dependent
perturbation theory:

cf (t) = − i
~

∫ t

0

dt′〈f |Ŵ (t′)|i〉e
i
~ (Ef−Ei)t′ , (60)

Therefore, the probability of observing the system in the final state is

Pfi(t) =
1

~2

∫ t

0

dt′′
∫ t

0

dt′〈i|Ŵ ∗(t′′)|f〉〈f |Ŵ (t′)|i〉e
i
~ (Ef−Ei)(t′−t′′), (61)

17.1 Monochromatic Plane Wave
Assuming that the perturbation involves a single frequency component, Ŵ (t′) = Âe−iwt

′ , we ob-
tain:

cf (t) = 〈f |Â|i〉 [1− e
i(wfi−w)t]

~(wfi − ω)
,

= − i
~
t〈f |Â|i〉ei(wfi−w)t/2 sin[(wfi − w)t/2]

(wfi − ω)t/2
.

(62)

Therefore, the probability of observing the system in the final state is

Pfi(t) =
t2

~2
|〈f |Â|i〉|2 sin2[(wfi − w)t/2]

[(wfi − ω)t/2]2
. (63)
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To compute the survival probability that the system remains in the initial state, we must add up the
probability over all possible final states,

P (t) = 1− t2

~2

∑
f

|〈f |Â|i〉|2 sin2[(wfi − w)t/2]

[(wfi − ω)t/2]2

= 1− t2

~2

∫ ∞
−∞

dEfρ(Ef )|〈f |Â|i〉|2
sin2[(wfi − w)t/2]

[(wfi − ω)t/2]2

(64)

If the very short time limit, P (t) = exp(−αt2) ≈ 1− αt2 + · · · , where

α = lim
t→0

1

~2

∫ ∞
−∞

dEf |〈f |Â|i〉|2ρ(Ef )
sin2[(Ef − Ei − ~w)t/(2~)]

[(Ef − Ei − ~w)t/(2~)]2
,

=
1

~2

∫ ∞
−∞

dEf |〈f |Â|i〉|2ρ(Ef ),

(65)

In the longer time limit, the kernel of Eq. (64) is approximated as the delta function to obtain:

P (t) = 1− t

~2

∫ ∞
−∞

d(tEf )ρ(Ef )|〈f |Â|i〉|2πδ((Ef t− (Ei + ~w)t)/(2~))

= 1− t2π
~

∫ ∞
−∞

dξρ(ξ2~/t)|〈f |Â|i〉|2δ(ξ − (Ei + ~w)t/(2~))

= 1− t2π
~
ρ(Ei + ~w)|〈Ei + ~w|Â|i〉|2

(66)

so P (t) = exp(−Γt) ≈ 1− Γt+ · · · , where

Γ =
2π

~
ρ(Ei + ~w)|〈Ei + ~w|Â|i〉|2,

=
2π

~

∫ ∞
−∞

dEfρ(Ef )|〈f |Â|i〉|2δ(Ef − (Ei + ~w)),
(67)

or as a discrete sum over states,

Γ =
2π

~
∑
f

|〈f |Â|i〉|2δ(Ef − Ei − ~w), (68)

which is known as Fermi’s Golden rule.

17.2 Vibrational Cooling
In the subsection, we illustrate the Golden Rule as applied to the description of vibrational cooling
of a harmonic diatomic molecule coupled to a metal surface as implemented by Head-Gordon and
Tully [J. Chem. Phys. (1992) 96:3939-3949] .
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For a molecule interacting with a surface, the general form of the coupling matrix element Afi
follows from the Born-Oppenheimer approximation in which the nuclear kinetic energy term is ne-
glected when obtaining the electronic wave functions. The states are Born-Oppenheimer products
of nuclear (vibrational) and electronic wave functions which we write, as follows:

|i〉 = |νi〉|ei〉,
|f〉 = |νf〉|ef〉,

(69)

Therefore, the coupling between the two states is the matrix element of the nuclear kinetic-energy
operator (for simplicity, we consider only a single normal mode x, which will be the high-frequency
adsorbate vibration):

〈f |Â|i〉 = − ~2

2m
〈νfef |

∂2

∂x2
|νiei〉

= − ~2

2m

[
〈νf |νi〉〈ef |

∂2

∂x2
|ei〉+ 2〈νfef |

∂

∂x
|ei〉

∂

∂x
|νi〉
] (70)

where m is the reduced mass of the vibrational mode x.
To obtain a tractable expression, the nuclear and electronic coordinates in the matrix element

must be separated. Following Brivio and Grimley (G. P. Brivio and T. B. Grimley, J. Phys. C
10, 2351 (1977); G. P. Brivio and T. B. Grimley, Surf. Sci. 89, 226 (1979)), this can be done
by observing that since the amplitude of vibration is small (about 1/100 of the bondlength for
diatomics in low vibrational states), it is reasonable to expand the electronic matrix elements in
powers of the displacement x, keeping only the leading term. If we also assume that the electronic
states |ei〉 and |ef〉 represent parallel potential-energy surfaces then |ν〉 and |ν ′〉 will be orthogonal
members of the same complete set, and the first term of Eq. (70) vanishes, leaving

〈f |Â|i〉 = −~2

m

[
〈νf |

∂

∂x
|νi〉〈ef |

∂

∂x
|ei〉
]

(71)

To compute 〈νf | ∂∂x |νi〉, we assume that the vibrational states can be approximated as harmonic
oscillator wave functionsm with frequency w, for which:

â|ν〉 =
√
ν|ν − 1〉,

N̂ |ν〉 = ν|ν〉 = â†â|ν〉 =
√
νâ†|ν − 1〉,

(72)

so â†|ν〉 =
√
ν + 1|ν + 1〉, with â = 1√

2
(x̃ + ip̃), â† = 1√

2
(x̃ − ip̃). Here, x̃ = x̂

√
mw
~ and

p̃ = p̂
√

1
~mw , with p̂ = −i~ ∂

∂x
. Therefore, â− â† = i

√
2

~mw p̂ =
√

2~
mw

∂
∂x

which gives,

〈νf |
∂

∂x
|νi〉 =

√
mw

2~
[
〈νf |â|νi〉 − 〈νf |â†|νi〉

]
,

=

√
mw

2~
[√
νiδνf ,νi−1 −

√
νi + 1δνf ,νi+1

] (73)
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Substituting Eq. (73) into Eq. (71), with νf = νi − 1, we obtain:

〈f |Â|i〉 = −~
√

~wνi
2m
〈ef |

∂

∂x
|ei〉. (74)

and

|〈f |Â|i〉|2 = ~2~wνi
2m
|〈ef |

∂

∂x
|ei〉|2. (75)

Substituting Eq. (75) into Eq. (68), we obtain:

Γ =
~
m

∑
f

~wνi|〈ef |
∂

∂x
|ei〉|2δ(ef − ei − ~w), (76)

Integrating over the number of electrons that could be promoted to an unoccupied state by absorbing
a quantum of energy ~w, we obtain the total vibrational linewidth:

Γ = 2
~
m

∫
dei

ρ(ei)

eβ(ei−µF ) + 1

∑
f

~wνi|〈ef |
∂

∂x
|ei〉|2δ(ef − ei − ~w),

= 2
~
m

∫
dei

∫
def

ρ(ei)

eβ(ei−µF ) + 1

ρ(ef )

e−β(ef−µF ) + 1
~wνi|〈ef |

∂

∂x
|ei〉|2δ(ef − ei − ~w),

(77)

where µF is the Fermi energy. In the low-temperature limit (β →∞), for νi = 1, we obtain:

Γ = 2
~
m

∑
i<F

∑
f>F

~w|〈ef |
∂

∂x
|ei〉|2δ(ef − ei − ~w) (78)

Reinserting the kernel of Eq. (65) and introducing the change of variables ∆ = ef − ei, we can
rewrite Eq. (77), as follows:

Γ = 2
~
m

∫
dei

ρ(ei)

eβ(ei−µF ) + 1

∑
f

~wνi|〈ef |
∂

∂x
|ei〉|2δ(ef − ei − ~w),

= 2
~
m

∑
∆

∑
i

ρ(ei)

eβ(ei−µF ) + 1

ρ(ei + ∆)

e−β(ei+∆−µF ) + 1
~wνi|〈ei + ∆| ∂

∂x
|ei〉|2

sin2[(∆− ~w)t/(2~)]

[(∆− ~w)t/(2~)]2
,

=
∑

∆

f(∆)
sin2[(∆− ~w)t/(2~)]

[(∆− ~w)t/(2~)]2
,

(79)

where

f(∆) =
∑
i

ρ(ei)

eβ(ei−µF ) + 1

ρ(ei + ∆)

e−β(ei+∆−µF ) + 1
~wνi|〈ei + ∆| ∂

∂x
|ei〉|2, (80)

and t is a time sufficiently long so that the decay is no longer Gaussian but rather exponential so
that Γ is time independent.
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17.3 Electron Transfer
The rate of electron transfer from the initial state |i〉 = |νi〉|ei〉 to the final state |f〉 = |νf〉|ef〉
of weakly coupled redox species can also be described according to the Golden rule expression
derived from first order perturbation theory:

Γi ≈
2π

~
∑
f

|〈f |Â|i〉|2δ(Ef − ~(wi + w)),

≈ 2π

~
|Hif |2

∑
f

|〈νf |νi〉|2δ(Ef − Ei −∆E),
(81)

where Hif = 〈ef |Â|ei〉 is the coupling between electronic states, assumed to be independent of
vibrational coordinates, and ∆E = ~ω is the change in vibrational energy.

For the harmonic potentials shown in Fig. (17.3), it can be shown that∑
f

|〈νf |νi〉|2δ(Ef − Ei −∆E) ≈ 1

~Ωπxifk∗
, (82)

when Ei, Ef > E∗, with k∗ =
√

2m(Ei − E∗)/~ and xif =
√

2Eλ/(mΩ2), giving

Γi ≈ 2|Hif |2
1√

2~Eλ/m
√

2m(Ei − E∗)

≈ |Hif |2
1

~
√
Eλ
√

(Ei − E∗)

(83)

Computing the thermal average over all initial states, we obtain the overall rate:

Γ ≈ |Hif |2
1

~
√
Eλ

∫
dEiexp(−βEi) 1√

(Ei−E∗)∫
dEiexp(−βEi)

≈ |Hif |2
1

~
√
Eλ

exp(−βE∗)
∫
dEexp(−βE) 1√

E∫
dEexp(−βE)

≈ |Hif |2
1

~
√
Eλ

exp(−βE∗)
∫∞

0
dp2pexp(−βp2)1

p∫
dEexp(−βE)

≈ |Hif |2
1

~
√
Eλ

exp(−βE∗)
∫∞

0
dpexp(−βp2)∫
dEexp(−βE)

≈ |Hif |2
1

~
√
Eλ

exp(−βE∗)
√
π/β

β−1

≈ |Hif |2
1

~
√
Eλ

exp(−βE∗)
√
πβ

≈ |Hif |2
√

2πβ/m

~Ωxif
exp(−βE∗)

(84)
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Figure 17.3 shows a schematic description of the energy diagram, assuming that the potential
energy surfaces along the vibronic coordinates are parabolas displaced in xfi = xf − xi with
frequency Ω, we have Vi = 1/2mΩ2(x− xi)2 and Vf = 1/2mΩ2(x− xf )2 −∆E, which cross at
x∗ with energy

E∗ = (Eλ −∆E)2/(4Eλ). (85)

To derive Eq. (85), we observe that E∗ = 1/2mΩ2(x∗ − xi)2 = 1/2mΩ2(x∗ − xi − xfi)2 −∆E.
Therefore, E∗ = 1/2mΩ2(x∗ − xi)2 + 1/2mΩ2x2

fi −mΩ2(x∗ − xi)xfi −∆E which gives E∗ =
E∗ + Eλ − mΩ2(x∗ − xi)xfi − ∆E. Simplifying, we obtain: Eλ = mΩ2(x∗ − xi)xfi + ∆E =

mΩ2
√

2E∗/(mΩ2)
√

2Eλ/(mΩ2) + ∆E.
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18 Problem Set

18.1 Exercise 11
Consider a distribution of charges Qi, with coordinates ri, interacting with plane polarized radia-
tion. Assume that the system is initially in the eigenstate φj of the unperturbed charge distribution.
(A) Write the expression of the sinusoidal perturbation in terms of Qi, ri, and the radiation fre-
quency ω and amplitude ε0.
Solution: The dipole moment is defined as the sum of the product of charges and their correspond-
ing coordinates, as follows: µ =

∑
j Qjrj . Thus, the perturbation under the dipolar approximation

is Ŵ (t) = −µ · E(t), with the electric field defined, as follows: E(t) = ε0e
iωt + c.c. Therefore,

Ŵ (t) = −
∑

j Qjrj · ε0eiωt + c.c.
(B) Expand the time dependent wave function ψ of the charge distribution in terms of the eigen-
functions φk of the unperturbed charge distribution.
Solution: ψ(r, t) =

∑
k ck(t)e

− i
~Ektφk(r), with ck(0) = δjk.

(C) Find the expansion coefficients, according to first order time dependent perturbation theory.
Solution: ck(t) = −

(
i
~

) ∫ t
0
dt′〈φk|e

i
~Ekt

′
Ŵ (t′)e−

i
~Ejt

′|φj〉 =
(
i
~

)
〈φk|µ ·ε|φj〉

∫ t
0
dt′e−

i
~ (Ejk−~ω)t′+

e−
i
~ (Ejk+~ω)t′ , withEjk = Ej−Ek. So, ck(t) = 〈φk|µ·ε|φj〉

([
e
− i~ (Ejk−~ω)t−1

(−Ejk+~ω)

]
−
[
e
− i~ (Ejk+~ω)t−1

(Ejk+~ω)

])
.

(D) What physical information is given by the square of the expansion coefficients?
Solution: The square of the expansion coefficient ck(t) gives the probability of observing the
system in state k at time t.
(E) What frequency would be optimum to populate state k? Assume Ek ≥ Ej .
Solution: The optimum frequency is ω =

Ek−Ej
~ since it maximizes ck(t) by bringing in resonance

the second square bracket in the expression of ck(t).
(F) Which other state could be populated with radiation of the optimum frequency found in term
(E)?
Solution: The other state that could be populated by a perturbation with frequency ω is a state k
with Ek < Ej such that Ejk = ~ω since it would blow up the first square bracket in the expression
of ck(t).
(G) When would the transition j → k be forbidden?
Solution: A transition would be forbidden when 〈φk|µ · ε|φj〉 = 0 since ck(t) = 0 for all values of
ω.

18.2 Exercise 12
A particle in the ground state of a square box of length |a| is subject to a perturbation ω(t) =
axe−t

2/τ .
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(A) What is the probability that the particle ends up in the first excited state after a long time
t >> τ?
Solution: We represent the time dependent wavefunction as a linear combination of eigenfunc-
tion φj of the particle in the box Hamiltonian: ψ(x, t) =

∑
j cj(t)e

− i
~Ejtφj(x), with cj(0) = δj1

and ck(t) = −
(
i
~

) ∫ t
−∞ dt

′〈φk|e
i
~Ekt

′
axe−t

′2/τe−
i
~Ejt

′ |φ1〉. Therefore, the probability that the par-
ticle ends up in the first excited state after a long time t << τ is P21 = | limt→∞ c2(t)|2, with

limt→∞ c2(t) = −
(
i
~

)
〈φ2|ax|φ1〉

∫∞
−∞ dt

′e−t
′2/τe−

i
~Ejkt

′
= −

(
i
~

)
〈φ2|ax|φ1〉

√
πτe−

E2
jk

4~2 τ .
(B) How does that probability depend on τ?

Solution: The probability depends on τ , as follows: P21 =
(

1
~2
)
|〈φ2|ax|φ1〉|2πτe−

E2
jk

2~2 τ .

18.3 Exercise 13

0 a x

Figure 1

V0

-

6

(a) Compute the minimum energy stationary state for a particle in the square well (See Fig.1) by
solving the time independent Schrödinger equation.
Solution: A solution can be obtained analytically by solving the problem piecewise (for the regions
with x < 0, 0 < x < a, and x > a), and enforcing continuity at the boundaries of each piece as
described by Vern Lindberg.
(b) What would be the minimum energy absorbed by a particle in the potential well of Fig.1?
Solution: Having found the eigenvalues Ej in (a), the minimum energy absorbed by the particle
would be E = E2 − E1 where E1 is the ground energy and E2 is the first excited state.
(c) What would be the minimum energy of the particle in the potential well of Fig.1?
Solution: The minimum energy of the particle would be E1 .
(d) What would be the minimum energy absorbed by a particle in the potential well shown in Fig.
2? Assume that λ is a small parameter give the answer to first order in λ.
Solution: Having found the eigenvalues Ej and eigenfunctions φj for the unperturbed potential
in (a), the minimum energy minimum energy absorbed by a particle in the potential well shown
in Fig. 2 would be E = E2 − E1 + E

(1)
2 − E

(1)
1 , where E(1)

j = 〈φj|V |φj〉, with V (x) = λ for
0.5 < x < 1 and V (x) = 0 otherwise.
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18.4 Exercise 14
(a) Prove that P̂ = e−Ĥ is a hermitian operator.
(b) Prove that P̂ = Cos(Ĥ) is a hermitian operator.

18.5 Time Evolution Operator
18.5.1 Evolution in the basis of eigenstates:

Show that
e−

i
~ Ĥt|ψj〉 = e−

i
~ Êjt|ψj〉 (86)

when |ψj〉 is an eigenstate of Ĥ with eigenvalue Ej .

18.5.2 Trotter expansion of the time evolution operator:

Show that
e−iĤτ = e−iV (x̂)τ/2e−ip̂

2τ/(2m)e−iV (x̂)τ/2 +O(τ 3). (87)

Hint: Expand the exponential operators in both sides of Eq. (87) and show that the Trotter expan-
sion is accurate to second order in powers of τ .

18.5.3 Numerical Comparison:

Consider a particle of unit mass (m=1) in a box of unit length (L=1), initially prepared in the
superposition state

ψ(x, 0) =
1√
2

(φ1(x)− φ2(x))

where φ1(x) and φ2(x) are the eigenstates with eigenvalues E1 and E2 obtained by solving the
time-independent Schrödinger equation

Ĥφj(x) = Ejφ)j(x)
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Compute the time evolved wavefunction at time t = 10τ (with τ = 1) by analytically applying
the time evolution operator e−iĤt to ψ(x, 0) term by term. Compare ψ(x, t) to the resulting wave-
function obtained by numerically applying the Trotter expansion of e−iĤτ 10 times to the initial
superposition state.

19 Adiabatic Approximation
The goal of this section is to solve the time dependent Schrödinger equation,

i~
∂ψ

∂t
= Ĥψ, (88)

for a time dependent Hamiltonian, Ĥ = − ~2
2m
∇2 + V (x, t), where the potential V (x, t) undergoes

significant changes but in a very ”large” time scale (e.g., a time scale much larger than the time
associated with state transitions).R2(496) Since V(x,t) changes very slowly, we can solve the time
independent Schrödinger equation at a specific time t’,

Ĥ(t′)Φn(x, t′) = En(t′)Φn(x, t′).

Assuming that ∂Φn
∂t
≈ 0, since V(x,t) changes very slowly, we find that the function,

ψn(x, t) = Φn(x, t)e−
i
~
∫ t
0 En(t′)dt′ ,

is a good approximate solution to Eq. (88). In fact, it satisfies Eq. (88) exactly when ∂Φn
∂t

= 0.
Expanding the general solution ψ(x, t) in the basis set Φn(x, t) we obtain:

ψ(x, t) =
∑
n

Cn(t)Φn(x, t)e−
i
~
∫ t
0 En(t′)dt′ ,

and substituting this expression into Eq. (88) we obtain,

i~
∑
n

(ĊnΦn + CnΦ̇n −
i

~
EnCnΦn)e−

i
~
∫ t
0 En(t′)dt′ =

∑
n

CnEnΦne
− i

~
∫ t
0 En(t′)dt′ ,

where,
Ċk = −

∑
n

Cn < Φk|Φ̇n > e−
i
~
∫ t
0 dt
′(En(t′)−Ek(t′)). (89)

Note that,
∂H

∂t
Φn +HΦ̇n =

∂En
∂t

Φn + EnΦ̇n,

then,

< Φk|
∂H

∂t
|Φn > + < Φk|H|Φ̇n >=

∂Ek
∂t

δkn + En < Φk|Φ̇n >,

since < Φk|H|Φ̇n > = < Φ̇n|H|Φk >
∗ .
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Furthermore, if k 6= n then,

< Φk|Φ̇n >=
< Φk|∂H∂t |Φn >

En − Ek
.

Substituting this expression into Eq. (89) we obtain,

Ċk = −Ck < Φk|Φ̇k > −
∑
n6=k

Cn
< Φk|∂H∂t |Φn >

(En − Ek)
e−

i
~
∫ t
0 dt
′(En(t′)−Ek(t′)).

Let us suppose that the system starts with Cn(0) = δnj , then solving by successive approximations
we obtain that for k 6= j:

Ċk =
< Φk|∂H∂t |Φj >

(Ek − Ej)
e−

i
~
∫ t
0 dt
′(Ej(t′)−Ek(t′)).

Assuming that Ej(t) and Ek(t) are slowly varying functions in time:

Ck ≈
< Φk|∂H∂t |Φj >
i
~(Ej − Ek)2

[e−
i
~ (Ej−Ek)t − e−

i
~ (Ej−Ek)t0 ],

since |e−
i
~ (Ej−Ek)t − e−

i
~ (Ej−Ek)t0| ≤ 2.

Therefore,

|Ck|2 ≈
4~2| < Φk|∂H∂t |Φj > |2

(Ej − Ek)4
.

The system remains in the initially populated state at all times whenever ∂H
∂t

is sufficiently small,∣∣∣∣< Φk|
∂H

∂t
|Φj >

∣∣∣∣ << (Ej − Ek)2

~
, (90)

even when such state undergoes significant changes. This is the so-called adiabatic approximation.
It breaks down when Ej ≈ Ek because the inequality introduced by Eq. (90) can not be satisfied.
Mathematically, the condition that validates the adiabatic approximation can also be expressed in
terms of the frequency ν defined by the equation Ej − Ek = hν = h

τ
, (or the time period τ of the

light emitted with frequency ν) as follows,

τ
2π
| < Φk|∂H∂t |Φj > | << (Ej − Ek).

20 Two-Level Systems
There are many problems in Quantum Chemistry that can be modeled in terms of the two-level
Hamiltonian (i.e., a state-space with only two dimensions). Examples include electron transfer,
proton transfer, and isomerization reactions.
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Consider two states |φ1 > and |φ2 >, of a system. Assume that these states have similar
energies, E1 and E2, both of them well separated from all of the other energy levels of the system,

Ĥ0|φ1 >= E1|φ1 >,

Ĥ0|φ2 >= E2|φ2 > .

In the presence of a perturbation,

W =

(
0 ∆
∆ 0

)
,

the total Hamiltonian becomes H = H0 + W . Therefore, states |φ1 > and |φ2 > are no longer
eigenstates of the system.

The goal of this section is to compute the eigenstates of the system in the presence of the
perturbation W. The eigenvalue problem,(

H11 H12

H21 H22

)(
C

(1)
l

C
(2)
l

)
=

(
El 0
0 El

)(
C

(1)
l

C
(2)
l

)
,

is solved by finding the roots of the characteristic equation, (H11 − El)(H22 − El)−H12H21 = 0.
The values of El that satisfy such equation are,

E±l =
(E1 + E2)

2
±

√(
E1 − E2

2

)2

+ ∆2.

These eigenvalues E±l can be represented as a function of the energy difference (E1−E2), accord-
ing to the following diagram:

-

6

?

H
HHH

HHH
HHH

HHH
HHH

HHH
HHH

HHH
HHHH�

��
�
��

�
��

��
��

�
��

�
��

�
��

�
��

�
��
�

.......................................................

.......................................................

Em + ∆

Em −∆

Em = 1
2
(E1 + E2)

E+

E1

E1 − E2

E2E−

0

Note that E1 and E2 cross each other, but E− and E+ repel each other. Having found the eigen-
values E±, we can obtain the eigenstates |ψ± >= C

(1)
± |φ1〉+C

(2)
± |φ2〉 by solving for C(1)

± and C(2)
±
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from the following equations:
C

(1)
± (H11 − E±) + C

(2)
± H12 = 0,∑2

j=1 C
(j)∗
± C

(j)
± = 1.

We see that in the presence of the perturbation the minimum energy state |ψ− > is always more
stable than the minimum energy state of the unperturbed system.

Example 1. Resonance Structure

��

@@

@@@@

����

φ1 φ2

E1 = E2 = Em


����

@@
@@

@@

��

The coupling between the two states makes the linear combination of the two more stable than
the minimum energy state of the unperturbed system.

Example 2. Chemical Bond

u
H+

re u
H+ ← |φ2 >

u
H+

r
e

u
H+ ← |φ1 >

The state of the system that involves a linear combination of these two states is more stable than
Em because < φ1|H|φ2 >6= 0.

Time Evolution
Consider a two level system described by the Hamiltonian H = H0 + W , with H0 | φ1 >= E1 |
φ1 >. Assume that the system is initially prepared in state | ψ(0) >=| φ1 >. Due to the presence
of the perturbation W , state | φ1 > is not a stationary state. Therefore, the initial state evolves in
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time according to the time-dependent Schrödinger Equation,

i~
∂|ψ >
∂t

= (H0 +W ) |ψ >,

and becomes a linear superposition of states |φ1 > and |φ2 >,

|ψ(t) >= C1(t)|φ1 > +C2(t)|φ2 > .

State | ψ(t) > can be expanded in terms of the eigenstates |ψ± > as follows,

|ψ(t) >= C+(t)|ψ+ > +C−(t)|ψ− >,

where the expansion coefficients C±(t) evolve in time according to the following equations,

i~
∂C+(t)

∂t
= E+C+(t),

i~
∂C−(t)

∂t
= E−C−(t).

Therefore, state |ψ(t) > can be written in terms of |ψ± > as follows,

|ψ(t) >= C+(0)e−
i
~E+t|ψ+ > +C−(0)e−

i
~E−t|ψ− > .

The probability amplitude of finding the system in state |φ2 > at time t is,

P12(t) = | < φ2|ψ(t) > |2 = C2(t)∗C2(t),

which can also be written as follows,

P12(t) = |C2+C+(0)|2 + |C2−C−(0)|2 + 2Re[C∗2+C
∗
+(0)C2−C−(0)e−

i
~ (E−−E+)t],

where C2± =< φ2 | Ψ± >. The following diagram represents P12(t) as a function of time:

Rabi Oscillations
6

-

P12(t)

0 tπ~
E+−E−

The frequency ν = (E+ − E−)/(π~) is called Rabi Frequency. It is observed, e.g., in the
absorption spectrum of H+

2 (see Example 2). It corresponds to the frequency of the oscillating
dipole moment which fluctuates according to the electronic configurations of |φ1 > and |φ2 >,
respectively. The oscillating dipole moment exchanges energy with an external electromagnetic
field of its own characteristic frequency and, therefore, it is observed in the absorption spectrum of
the system.
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21 Harmonic Oscillator
Many physical systems, including molecules with configurations near their equilibrium positions,
can be described (at least approximately) by the Hamiltonian of the harmonic oscillator :R4(483)
R1(62) click

Ĥ =
P̂ 2

2m
+

1

2
mω2x̂2.

In order to find the eigenfunctions of Ĥ we introduce two operators called creation â+ and annihi-
lation â, which are defined as follows:

â+ ≡ 1√
2
(x̃− ip̃), and â ≡ 1√

2
(x̃+ ip̃), where x̃ = x̂

√
mω
~ , and p̃ = p̂√

mω~ .

Using these definitions of â+ and â, we can write Ĥ as follows,
Ĥ = (â+â+ 1

2
)~ω.

Introducing the number operator N̂ , defined in terms of â+ and â as follows,
N̂ ≡ â+â,

we obtain that the Hamiltonian of the Harmonic Oscillator can be written as follows,
Ĥ = (N̂ + 1/2)~ω.

21.1 Exercise 15
Show that if Φν is an eigenfunction of Ĥ with eigenvalue Eν , then Φν is an eigenfunction of N̂
with eigenvalue ν = Eν

~ω −
1
2
. Mathematically, if Ĥ|Φν >= Eν |Φν >, then N̂ |Φν >= ν|Φν >, with

ν = Eν
~ω −

1
2
.

Solution: If Ĥ|Φν >= Eν |Φν >, then (N̂~ω + ~ω
2

)|Φν >= Eν |Φν > since Ĥ = (N̂ + 1/2)~ω.
Therefore, N̂~ω|Φν >= (Eν − ~ω

2
)|Φν >, and N̂ |Φν >= (Eν~ω −

1
2
)|Φν >.

Theorem I
The eigenvalues of N̂ are greater or equal to zero, i.e., ν ≥ 0.

Proof:∫
dx| < x|â|Φν > |2 ≥ 0,

< Φν |â+â|Φν >≥ 0,
ν < Φν |Φν >≥ 0.

As a consequence: â|Φ0 >= 0,
1√
2
[x̂
√

mω
~ + i p̂√

mω~ ]|Φ0 >= 0,

p̂ = −i~ ∂
∂x
,

xΦ0(x) + ~
mω

∂Φ0(x)
∂x

= 0,
∂lnΦ0(x) = −mω

~ x∂x,

Φ0(x) = A exp(−mω
~2

x2),
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where A = 4
√

mω
π~ . The wave function Φ0(x) is the eigenfunction of N̂ with ν = 0 (i.e., the ground

state wave function because ν ≥ 0).

Theorem II
If ν > 0, state â|Φν > is an eigenstate of N̂ with eigenvalue equal to (ν -1).
Proof:
In order to prove this theorem we need to show that,

N̂ â|Φν >= (ν − 1)â|Φν > . (91)

We first observe that,
[N̂ , â] = −â.

Therefore,
[N̂ , â] = â+ââ− ââ+â,
[N̂ , â] = [â+, â]â,
[N̂ , â] = −1â, because [â+, â] = −1,
[â+, â] = 1

2~(x̂x̂+ ix̂p̂− ip̂x̂+ p̂p̂− (x̂x̂− ix̂p̂+ ip̂x̂+ p̂p̂)),
[â+, â] = i

2~2[x̂, p̂] = −1, since [x̂, p̂] = i~.
Applying the operator −â to state |Φν > we obtain,

(N̂ â− âN̂)|Φν >= −â|Φν >,
and, therefore,

N̂ â|Φν > −âν|Φν >= −â|Φν >, which proves the theorem.
A natural consequence of theorems I and II is that ν is an integer number greater or equal to zero.
The spectrum of N̂ is therefore discrete and consists of integer numbers that are ≥ 0. In order to
demonstrate such consequence we first prove that,

N̂ âp|Φν >= (ν − p)âp|Φν > . (92)

In order to prove Eq. (92) we apply â to both sides of Eq. (91):

âN̂ â|Φν >= (ν − 1)â2|Φν >,

and since [N̂ , â] = −â we obtain,

(â+ N̂ â)â|Φν >= (ν − 1)â2|Φν >,

and
N̂ â2|Φν >= (ν − 2)â2|Φν > . (93)

Applying â to Eq. (93) we obtain,

âN̂ â2|Φν >= (ν − 2)â3|Φν >,
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and substituting âN̂ by â+ N̂ â we obtain,

N̂ â3|Φν >= (ν − 3)â3|Φν > .

Repeating this procedure p times we obtain Eq. (92).

Having proved Eq. (92) we now realize that if ν = n, with n an integer number,

âp|Φn >= 0,

when p > n. This is because state ân|Φn > is the eigenstate of N̂ with eigenvalue equal to zero,
i.e., ân|Φn >= |Φ0 >. Therefore â|Φ0 >= âp|Φn >= 0, when p > n. Note that Eq. (93) would
contradict Theorem I if ν was not an integer, because starting with a nonzero function |Φν > it
would be possible to obtain a function âp|Φν > different from zero with a negative eigenvalue.

Eigenfunctions of N̂
In order to obtain eigenfunctions of N̂ consider that,

N̂ |Φν >= ν|Φν >,

and
N̂ â|Φν+1 >= νâ|Φν+1 > .

Therefore, â|Φν+1 > is proportional to |Φν >,

â|Φν+1 >= Cν+1|Φν > (94)

Applying â+ to Eq. (94) we obtain,

N̂ |Φν+1 >= Cν+1â
+|Φν >,

|Φν+1 >=
Cν+1

(ν + 1)
â+|Φν >,

< Φν+1|Φν+1 >= 1 =
C2
ν+1

(ν + 1)2
< Φν |N̂ + 1|Φν >,

Cν+1 =
√
ν + 1.

Therefore,

|Φν+1 >=
1√
ν + 1

â+|Φν >=
(â+)ν+1√
(ν + 1)!

|Φ0 >

The eigenfunctions of N̂ can be generated from |Φ0 > as follows,

|Φν >=
1√
ν!

2−ν/2
(
x̂

√
mω

~
− i p̂√

~ωm

)ν
|Φ0 >,
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Φν(x) =
1√
ν!

2−ν/2
(
x

√
mω

~
− ~√

~ωm
∂

∂x

)ν
Φ0(x).

For example,

Φ1(x) = 2−ν/2

(
x

√
mω

~
+

√
~
mω

mω

~
x

)
Ae−

mω
2~ x

2

,

Φ1(x) =

√
mω

2~
2x︸︷︷︸ 4

√
mω

π~
e−

mω
2~ x

2

.

The pre-exponential factor is the Hermite polynomial for ν = 1.

Time Evolution of Expectation Values
In order to compute a time-dependent expectation value,

Āt =< ψt|Â|ψt >,

it is necessary to compute |ψt > by solving the time dependent Schrödinger equation, i~∂|ψt >
/∂t = Ĥ|ψt >. This can be accomplished by first finding all eigenstates of Ĥ , Φn, with eigenvalues
En, and then computing |ψt > as follows,

〈x|ψt〉 =
∑
n

Cne
− i

~Ent〈x|Φn〉, (95)

where the expansion coefficients Cn are determined by the initial state < x|ψ0 >. The time depen-
dent expectation value < ψt|Â|ψt > is, therefore,

Āt =
∑
nm

C∗mCne
− i

~~ω(n−m)t < Φm|Â|Φn > .

21.2 Exercise: Analytical versus SOFT Propagation
1. Write a code to simulate the SOFT propagation of a wavepacket bouncing back and forth on a
harmonic well, as described by the Hamiltonian H = p2/(2 ∗m) + V (x), with m = 1 and V (x) =
0.5 ∗ x2 after initializing the state according to the ground state displaced from its equilibrium
position, as follows: ψ(x, 0) = exp(−(x− 1)2/2)/ 4

√
π.

2. Compute the first 5 eigenvalues En and eigenstates Φn with n =1–5 of the harmonic oscillator
by using imaginary time propagation.
3. Compare the quantum dynamics simulation based on the SOFT method to the corresponding
simulation based on the superposition of the first 5 eigenstates (Eq. (95) on p. 59 of the lecture
notes). Note that both methods agree with each other, although the SOFT method by-passes the
need of computing the eigenvalues and eigenfunctions of the Hamiltonian.

Solution:The link (http://ursula.chem.yale.edu/∼batista/classes/vvv/HO570.tar) provides a Matlab
implementation of the SOFT method to the simulation of evolution of a wavepacket in a harmonic
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well in real time, as solved for Exercise 5. In addition, the Matlab code implements the SOFT
propagation method to find the lowest 5 eigenstates of the harmonic oscillator by ‘evolution’ in
imaginary time.

22 Problem Set

22.1 Exercise 16

(A) Show that, < Φn′ |x|Φn >=
√

~
2mω

[
√
n+ 1δn′,n+1 +

√
nδn′,n−1].

Solution: Solving for x from â = 1√
2
(x̃ + ip̃) and â† = 1√

2
(x̃ − ip̃), with x̃ = x̂

√
mω
~ and

p̃ = p̂
√

1
~mω , we obtain: â + â† = 2√

2
x̂
√

mω
~ , or x =

√
~

2mω
(â† + â). Therefore, 〈Φn′|x|Φn〉 =√

~
2mω

(〈Φn′|â†|Φn〉 + 〈Φn′|â|Φn〉). Considering that â|Φn〉 =
√
n|Φn−1〉, and therefore â†|Φn〉 =

√
n+ 1|Φn+1〉, we obtain

√
~

2mω
(〈Φn′ |â†|Φn〉+〈Φn′|â|Φn〉) =

√
~

2mω
(
√
n+ 1δn′,n+1+

√
nδn′,n−1).

(B) Show that, < Φn′|p̂|Φn >= i
√

m~ω
2

[
√
n+ 1δn′,n+1 −

√
nδn′,n−1].

Solution: Analogously to (A), we solve for p̂ from â = 1√
2
(x̃ + ip̃) and â† = 1√

2
(x̃ − ip̃),

with x̃ = x̂
√

mω
~ and p̃ = p̂

√
1

~mω , to obtain: â − â† = 2i√
2
p̂
√

1
~mω , or p̂ = −i

√
~mω

2
(â −

â†). Therefore, 〈Φn′|p̂|Φn〉 = −i
√

~mω
2

(〈Φn′|â|Φn〉 − 〈Φn′ |â†|Φn〉). Considering that â|Φn〉 =
√
n|Φn−1〉, and therefore â†|Φn〉 =

√
n+ 1|Φn+1〉, we obtain i

√
~mω

2
(〈Φn′|â|Φn〉−〈Φn′ |â†|Φn〉) =

i
√

~mω
2

(
√
nδn′,n−1 −

√
n+ 1δn′,n+1).

(C) Show that, â†|Φν〉 =
√
ν + 1|Φν+1〉; â|Φν〉 =

√
ν|Φν−1〉.

Solution: â|Φν〉 = Cν |Φν−1〉. Squaring, we obtain: 〈Φν |â†â|Φν〉 = C2
ν = ν. Therefore, Cν =

√
ν.

In addition, â†â|Φν+1〉 = (ν + 1)|Φν+1〉, or according to the result âΦν+1 =
√
ν + 1Φν , we obtain

â†
√
ν + 1|Φν〉 = (ν + 1)|Φν+1〉. Therefore, â†|Φν〉 =

√
ν + 1|Φν+1〉.

(D) Compute the ratio between the minimum vibrational energies for bonds C-H and C-D, assuming
that the force constant k = mω2 is the same for both bonds.
Solution: The minimum vibrational energy is E0 = ~ω

2
. Considering that k = mCDω

2
CD =

mCHω
2
CH , we obtain ωCD

ωCH
=
√

mCH
mCD

, or ECD
ECH

=
√

mCH
mCD

, where 1
mCD

= 1
mC

+ 1
mD

, or mCD =

mCmD
mC+mD

and mCH
mCD

= mCmH(mC+mD)
mCmD(mC+mH)

= (mC+2mH)
2(mC+mH)

= 14
26

. Therefore, ECD
ECH

=
√

7
13
≈
√

1
2
.

(E) Estimate the energy of the first excited vibrational state for a Morse oscillator defined as follows:
V (R) = De(1− exp(−a(R−Req)))

2.
Solution: Expanding the Morse potential to second order around R = Req, we obtain:

V (R) = De(1− exp(−a(R−Req)))
2 ≈ V (Req) + V ′(Req)(R−Req) +

1

2
V ′′(Req)(R−Req)

2,
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where V (Req) = 0, V ′(Req) = De2(1 − exp(−a(Req − Req)))aexp(−a(Req − Req)) = 0, and
V ′′(Req) = De2a

2. Therefore, near the equilibrium postion,

V (R) = Dea
2(R−Req)

2 =
1

2
mω2(R−Req)

2,

with ω =
√

2Dea2

m
. So, the first excited state has energy E1 = ~

√
2Dea2

m
(1

2
+ 1).

22.2 Exercise 17
Prove that < Φk|∂Ĥ∂t |Φn >= (En − Ek) < Φk| ∂∂t |Φn >, when n 6= k and < Φk|Φn >= δkn, with

Ĥ(t)Φj(x, t) = Ej(t)Φj(x, t).

Solution: Starting with Ĥ(t)Φj(x, t) = Ej(t)Φj(x, t), we compute the derivative with respect to
time of both sides of that equation to obtain: ∂Ĥ

∂t
|Φj〉+ Ĥ|∂Φj(x,t)

∂t
〉 =

∂Ej(t)

∂t
|Φj(t)〉+Ej(t)|∂Φj(t)

∂t
〉.

Therefore, 〈Φk|∂Ĥ∂t |Φj〉 + 〈Φk|Ĥ|∂Φj(x,t)

∂t
〉 =

∂Ej(t)

∂t
〈Φk|Φj(t)〉 + Ej(t)〈Φk|∂Φj(t)

∂t
〉, which gives

〈Φk|∂Ĥ∂t |Φj〉+ Ek〈Φk|∂Φj(x,t)

∂t
〉 = Ej(t)〈Φk|∂Φj(t)

∂t
〉, when k 6= j.

22.3 Exercise 18
Prove that∇ · j = 0, where j ≡ ~

2mi
(ψ∗ ∂ψ

∂x
− ψ ∂ψ∗

∂x
) and ψ = R(x)e−

i
~Et.

Solution: According to the continuity equation, ∇ · j = −∂ρ
∂t

, with ρ = ψ∗ψ. Since, ψ =

R(x)e−
i
~Et then ρ = |R(x)|2 and ∂ρ

∂t
= 0. Thus,∇ · j = 0.

22.4 Exercise 19
Consider a harmonic oscillator described by the following Hamiltonian,

Ĥ0 =
1

2m
p2 +

1

2
mω2x2.

Consider that the system is initially in the ground state Φ0, with

Ĥ0Φk = EkΦk, with Ek = ~ω(
1

2
+ k).

Compute the probability of finding the system in state Φ2 at time t after suddenly changing the
frequency of the oscillator to ω′.
Solution: The time dependent perturbation isW (t) = 1

2
m(ω′2−ω2)x2, when t > 0 andW (t) = 0,

otherwise. Therefore, c2(t) = − i
~

∫ t
0
dt′〈φ2|e

i
~E2t′ 1

2
m(ω′2 − ω2)x2e−

i
~E0t′ |φ0〉 = − i

~〈φ2|12m(ω′2 −

ω2)x2|φ0〉
∫ t

0
dt′e

i
~ (E2−E0)t′ = −m

2
(ω′2 − ω2)〈φ2|x2|φ0〉 (e

i
~E20t−1)
E20

, or

c2(t) = −m
2

(ω′2 − ω2)〈φ2|x2|φ0〉e
i
~E20

t
2
t

2~
(e

i
~E20

t
2 − e− i

~E20
t
2 )

E20
t

2~
.
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Thus, the probability of finding the system in state Φ2 at time t is

P2(t) = c2(t)∗c2(t) =
m2

4
(ω′2 − ω2)2|〈φ2|x2|φ0〉|2~−2t2sin2(E20t/(2~)).

22.5 Exercise 20: Morse Oscillator
Show that the radial component of the two dimensional harmonic oscillator:

Ĥh =
p2
x

2m
+

p2
y

2m
+

1

2
mω2(x2 + y2),

=
~ω
2

(
p̃2
x + p̃2

y + x̃2 + ỹ2
)
,

(96)

can be mapped into the Morse oscillator,

Ĥm =
p2
ρ

2m
+D(e−2aρ − 2e−aρ), (97)

as discussed by Berrondo, 1987 and Copper, 1993 , with aρ = ln(2K
r2

), D = K2

2m
~2a2, and r =√

x̃2 + ỹ2, where x̃ = x̂
√

mω
~ , ỹ = ŷ

√
mω
~ , and p̃x = p̂x

1√
mω~ = −i

√
~
mω

∂
∂x

= −i ∂
∂x̃

.
Solution: Introducing the polar coordinates, x̃ = rcos(θ) and ỹ = rsin(θ) and considering that

p̃x = −i ∂
∂x̃

= −i ∂θ
∂x̃

∂

∂θ
− i ∂r

∂x̃

∂

∂r
,

p̃y = −i d
dỹ

= −i∂θ
∂ỹ

∂

∂θ
− i∂r

∂ỹ

∂

∂r
,

(98)

so r = (x̃2 + ỹ2)1/2 and ∂r
∂x̃

= x̃
(x̃2+ỹ2)1/2

= x̃
r

= cos(θ), ∂r
∂ỹ

= ỹ
r

= sin(θ), and tan(θ) = ỹ
x̃
, so

1
cos2(θ)

∂θ
∂ỹ

= 1
x̃
, or ∂θ

∂ỹ
= cos(θ)

r
and 1

cos2(θ)
∂θ
∂x̃

= − ỹ
x̃2

or ∂θ
∂x̃

= − sin(θ)
r

. Therefore,

p̃x = −i ∂
∂x̃

= i
sin(θ)

r

∂

∂θ
− icos(θ) ∂

∂r
,

p̃y = −i d
dỹ

= −icos(θ)
r

∂

∂θ
− isin(θ)

∂

∂r
,

(99)

and

p̃2
x = −sin

2(θ)

r2

∂2

∂θ2
− sin(θ)cos(θ)

r2

∂

∂θ
− cos2(θ)

∂2

∂r2
− sin(θ)cos(θ)

r2

∂

∂θ
− sin2(θ)

r

∂

∂r

+ 2
sin(θ)cos(θ)

r

∂2

∂θ∂r

p̃2
y = −cos

2(θ)

r2

∂2

∂θ2
+
sin(θ)cos(θ)

r2

∂

∂θ
− cos2(θ)

r

∂

∂r
− 2

cos(θ)sin(θ)

r

∂2

∂θ∂r

− sin2(θ)
∂2

∂r2
+
sin(θ)cos(θ)

r2

∂

∂θ
.

(100)
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Therefore,

p̃2
x + p̃2

y = − 1

r2

∂2

∂θ2
− ∂2

∂r2
− 1

r

∂

∂r
, (101)

giving the Hamiltonian,

Ĥh =
~ω
2

(
− 1

r2

∂2

∂θ2
− ∂2

∂r2
− 1

r

∂

∂r
+ r2

)
, (102)

and eigenvalue equation

ĤhΦ(θ)Ψ(r) =
~ω
2

(
−Ψ

r2

∂2Φ

∂θ2
− Φ

∂2Ψ

∂r2
− Φ

r

∂Ψ

∂r
+ r2Φ(θ)Ψ(r)

)
,

E =
~ω
2

(
− 1

Φr2

∂2Φ

∂θ2
− 1

Ψ

∂2Ψ

∂r2
− 1

Ψr

∂Ψ

∂r
+ r2

)
.

(103)

Therefore,

−∂
2Φ

∂θ2
= l2Φ, (104)

with Φ(θ) = e±ilθ/
√

2π and

−∂
2Ψ

∂r2
− 1

r

∂Ψ

∂r
+

(
r2 +

l2

r2

)
Ψ = (N + 1)Ψ, (105)

where N is defined, as follows: E = ~ω
2

(N + 1).
Equation (105) is the eigenvalue equation for the radial part of the 2-dimensional harmonic

oscillator that can be rewritten as the eigenvalue equation for the Morse potential by introducing
the change of variables: r2 = 2Ke−R, or ln(r) = −R

2
+ 1

2
ln(2K), or R = −2ln(r) + ln(2K), so:

∂

∂r
=
∂R

∂r

∂

∂R
,

= −2

r

∂

∂R
= − 2√

2K
eR/2

∂

∂R
,

1

r

∂

∂r
= − 2

(2K)
eR

∂

∂R
,

∂2

∂r2
=

4

(2K)
eR

∂2

∂R2
+

2

(2K)
eR

∂

∂R

(106)
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Therefore,

− 2

K
eR
∂2Ψ

∂R2
+

(
2Ke−R +

l2

2Ke−R

)
Ψ = (N + 1)Ψ,

−∂
2Ψ

∂R2
+

(
K2e−2R +

l2

4

)
Ψ = (N + 1)

K

2
e−RΨ,

−∂
2Ψ

∂R2
+K2

(
e−2R − (N + 1)

2K
e−R

)
Ψ = − l

2

4
Ψ,

−∂
2Ψ

∂R2
+K2

(
e−2R − 2e−R

)
Ψ = εΨ,

(107)

where ε ≡ −l2/4 and K ≡ (N + 1)/4. Completing squares, we obtain:

−∂
2Ψ

∂R2
+K2

(
e−R − 1

)2
Ψ = (ε+K2)Ψ,

− ~2

2m

∂2Ψ

∂R2
+
D

a2

(
e−2R − 2e−R

)
Ψ =

E

a2
Ψ,

(108)

where D/a2 ≡ K2~2/(2m), E/a2 ≡ (ε+K2)~2/(2m). Therefore,

− ~2

2m

∂2Ψ

∂ρ2
+D

(
e−2aρ − 2e−aρ

)
Ψ = EΨ, (109)

where R = aρ.

23 Angular Momentum
The angular momentum operator L is obtained by substituting r and p by their corresponding
quantum mechanical operators r̂ and −i~∇r in the classical expression of the angular momentum
L = r × p. The Cartesian components of L are:

Lx = −i~(y
∂

∂z
− z ∂

∂y
) = ypz − zpy,

Ly = −i~(z
∂

∂x
− x ∂

∂z
) = zpx − xpz,

Lz = −i~(x
∂

∂y
− y ∂

∂x
) = xpy − ypx.
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These components satisfy the following commutation relations

[Lx, Ly] = [ypz − zpy, zpx − xpz],
= [ypz, zpx]− [ypz, xpz]− [zpy, zpx] + [zpy, xpz],

= y[pz, z]px − x[pz, z]py,

= −i~(ypx − xpy),
= i~Lz.

23.1 Exercise 21
Show that,

L× L = i~L .

Hint: Show that, i~Lx = [Ly, Lz].
Solution:

L× L = îLyLz − LzLy − ĵLxLz − LzLx + k̂LxLy − LyLx,
= îi~Lx − ĵ(−i~)Ly + k̂i~Lz,
= i~(̂iLx + ĵLy + k̂Lz),

= i~L.

Note, that this expression corresponds to the cyclic permutation where y is substituted by z,
x by y, and z by x, in the commutation relation i~Lx = [Ly, Lz]. Cyclic permutations can be
represented by the following diagram:

z y

x�

?

=⇒
[Ly, Lz] = i~Lx,

[Lz, Lx] = i~Ly.

Having obtained the commutation relations we can show that L2 commutes with the Cartesian
components of L, e.g.,

[L2, Lx] = 0.

We consider that,
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[L2, Lx] = [L2
x + L2

y + L2
z, Lx],

[L2, Lx] = [L2
y, Lx] + [L2

z, Lx],
[L2, Lx] = Ly[Ly, Lx] + [Ly, Lx]Ly + Lz[Lz, Lx] + [Lz, Lx]Lz, and
since [Ly, Lx] = −i~Lz, [Ly, Lx] = −i~Lz, [Lz, Lx] = i~Ly, then,

[L2, Lx] = 0.

Due to the cyclic permutations we can also conclude that,

[L2, Ly] = 0, and [L2, Lz] = 0.

According to these equations both the magnitude of the angular momentum and one (any) of its
components can be simultaneously determined, since there is always a set of eigenfunctions that is
common to L2 and any of the three Cartesian components. Remember, however, that none of the
individual components commute with each other. Therefore, if one component is determined the
other two are completely undetermined.

Eigenvalues of L2 and Lz: Ladder Operators
In order to find eigenfunctions Y that are common to L2 and Lz,

L2Y = aY, (110)

and
LzY = bY, (111)

we define the ladder operators,
L+ = Lx + iLy,
L− = Lx − iLy,

where L+ is the raising operator, and L− is the lowering operator.
In order to show the origin of these names, we operate Eq. (111) with L+ and we obtain,

L+LzY = bL+Y.
Then, we substitute L+Lz by [L+, Lz] + LzL+, where

[L+, Lz] = [Lx + iLy, Lz] = [Lx, Lz] + i[Ly, Lz].
Since, [Lx, Lz] = −i~Ly, and [Ly, Lz] = i~Lx, then

L+Lz − LzL+ = −i~(Ly − iLx) = −~L+.
Consequently,

(−~L+ + LzL+)Y = bL+Y,
and,

Lz(L+Y ) = (b+ ~)(L+Y ).
Thus the ladder operator L+ generates a new eigenfunction of Lz (e.g., L+Y ) with eigenvalue
(b + ~) when such operator is applied to the eigenfunction of Lz with eigenvalue b (e.g., Y). The
operator L+ is therefore called the raising operator.
Applying p times the raising operation to Y, we obtain:

LZL
p
+Y = (b+ ~p)Lp+Y.
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23.2 Exercise 22
Show that:

LZL
p
−Y = (b− ~p)Lp−Y.

Solution:
L−LzY = bL−Y.

Then, we substitute L−Lz by [L−, Lz] + LzL−, where
[L−, Lz] = [Lx − iLy, Lz] = [Lx, Lz]− i[Ly, Lz].

Since, [Lx, Lz] = −i~Ly, and [Ly, Lz] = i~Lx, then
L−Lz − LzL− = −i~(Ly + iLx) = ~L−.

Consequently,
(~L− + LzL−)Y = bL−Y,

and,
Lz(L−Y ) = (b− ~)(L−Y ).

Therefore L+ and L− generate the following ladder of eigenvalues:
... b− 3~ b− 2~ b− ~ b b+ ~ b+ 2~ b+ 3~ ...

Note that all functions Lp±Y generated by the ladder operators are eigenfunctions of L2 with eigen-
value equal to a (see Eq. (110)).
Proof:

L2Lp±Y = Lp±L
2Y = Lp±aY,

since [L2, Lx] = [L2, Ly] = [L2, L±] = 0, and therefore, [L2, Lp±] = 0.
Note that the ladder of eigenvalues must be bound:

LzYk = bkYk,

with Yk = Lk±Y , and bk = b± k~.
Therefore,

L2
zYk = b2

kYk,
L2Yk = aYk,
(L2

x + L2
y)Yk︸ ︷︷ ︸ = (a− b2

k)Yk.

non-negative physical quantity =⇒ (a− b2
k) has to be positive:

a ≥ b2
k,=⇒ a

1
2 ≥ |bk|,

a
1
2 ≥ bk ≥ −a

1
2

In order to avoid contradictions,

L+Ymax = 0, and L−Ymin = 0.

L+L−Ymin = 0,
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L+L− = (Lx + iLy)(Lx − iLy),
L+L− = L2

x − i(LxLy − LyLx︸ ︷︷ ︸) + L2
y,

i~Lz
L+L− = L2

x + L2
y + ~Lz = L2 − L2

z + ~Lz.
Therefore,

a− b2
min + ~bmin = 0, (112)

because,
L2
zYmin = b2

minYmin, L
2Ymin = aYmin, LzYmin = bminYmin.

Analogously,
L−L+Ymax = 0.

⇓
(L2 − L2

z − ~Lz)Ymax = 0, and

a− b2
max − ~bmax = 0. (113)

Eqs. (112) and (113) provide the following result:

(b2
min − b2

max)− ~(bmin + bmax) = 0 ⇒ bmin = −bmax .

Furthermore, we know that bmax = bmin + n~, because all eigenvalues of Lz are separated by units
of ~. Therefore,

2bmax = n~ =⇒ bmax = n
2
~ = j~, where j = n

2
,

a = b2
min − ~bmin = j2~2 + ~2j = ~2j(j + 1), and b = −j~, (−j + 1)~, (−j + 2)~, ..., j~.

Note that these quantization rules do not rule out the possibility that j might have half-integer
values. In the next section we will see that such possibility is, however, ruled out by the requirement
that the eigenfunctions of L2 must be 2π-periodic.

Spherical Coordinates
Spherical coordinates are defined as follows,

z = rCosθ,
y = rSinθSinφ,
x = rSinθCosφ,

where θ, and φ are defined by the following diagram,

�
�

�
�
�
�

�
�
�
��

...

...

...

...

...

...

...

...

...

...

...............

...............

...
...
...
...
...

x

y

z

φ

θ
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23.3 Exercise 23
Write the Cartesian components of the linear momentum operator p̂: p̂x, p̂y and p̂z in spherical
coordinates.
Hint: (

∂g

∂x

)
y,z

=

(
∂θ

∂x

)
y,z

(
∂f

∂θ

)
φ,r

+

(
∂φ

∂x

)
y,z

(
∂f

∂φ

)
θ,r

+

(
∂r

∂x

)
y,z

(
∂f

∂r

)
θ,φ

,

where g = g(x, y, z), and f = f(r(x, y, z), θ(x, y, z), φ(x, y, z)).
r =

√
(x2 + y2 + z2),

y
x

= tanφ,
Cosθ = z

r
= z

(x2+y2+z2)
1
2

.

(
∂Cosθ
∂x

)
y,z

= −

(
∂θ

∂x

)
y,z

Sinθ = −1

2

z 2x

(x2 + y2 + z2)
3
2

⇒

(
∂θ

∂x

)
y,z

= +
r2CosθSinθCosφ

r3Sinθ
,

(
∂tanφ
∂x

)
y,z

=
1

Cos2φ

(
∂φ

∂x

)
y,z

= − y

x2
⇒

(
∂φ

∂x

)
y,z

= −rSinθSinφCos2φ

r2Sin2θCos2φ
,

(
∂r

∂x

)
y,z

=
1

2

2x

r
⇒

(
∂r

∂x

)
y,z

=
rSinθCosφ

r
.

23.4 Exercise 24
Show that,

Lx = i~
(

Sinφ
∂

∂θ
+

Cosθ
Sinθ

Cosφ
∂

∂φ

)
,

Ly = −i~
(

Cosφ
∂

∂θ
− Cosθ

Sinθ
Sinφ

∂

∂φ

)
,

and
Lz = −i~ ∂

∂φ
.

Squaring Lx, Ly and Lz we obtain,

L2 = −~2

(
∂2

∂θ2
+

Cosθ
Sinθ

∂

∂θ
+

1

Sin2θ

∂2

∂φ2

)
.
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Eigenfunctions of L2

Since L2 does not depend on r,⇒ Y = Y (θ, φ). Furthermore, if Y is an eigenfunction of Lz then,

LzY = bY.

−i~∂Y
∂φ

= bY ⇒ ∂lnY
∂φ

=
1

Y

∂Y

∂φ
= − b

i~
.

Y = A exp
(
ibφ

~

)
.

Since Y (φ+ 2π) = Y (φ), we must have

ei
2πb
~ = 1, ⇒ 2π

b

~
= 2πm, with m = 0,±1,±2, ...

Therefore, b = m~ , where m is an integer.
In order to find eigenfunctions that are common to Lz and L2 we assume A to be a function of
theta, A = A(θ):

L2Y = −~2

(
∂2A

∂θ2
+

Cosθ
Sinθ

∂A

∂θ
+

1

Sin2θ

(
− b

2

~2

)
A

)
exp

(
ibφ

~

)
= aA(θ)exp

(
ibφ

~

)
,

−~2

(
Sin2θ

∂2A

∂θ2
+ SinθCosθ

∂A

∂θ
− b2

~2
A

)
= aA(θ)Sin2θ. (114)

Making the substitution x = Cosθ we obtain,

(1− x2)
d2A

dx2
− 2x

dA

dx
+

(
a

~2
− m2

1− x2

)
A = 0. (115)

23.5 Exercise 25
Obtain Eq. (115) from Eq. (114).
Solution: Since x = cosθ, then sinθ = (1 − x2)1/2 and ∂x/∂θ = −sinθ = −(1 − x2)1/2.
Therefore,

∂

∂θ
=
∂x

∂θ

∂

∂x
,

= −sinθ = −(1− x2)1/2 ∂

∂x
,
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and

∂2

∂θ2
=
∂x

∂θ

∂

∂x

[
−(1− x2)1/2 ∂

∂x

]
,

= −(1− x2)1/2 ∂

∂x

[
−(1− x2)1/2 ∂

∂x

]
,

= (1− x2)1/2

[
(1− x2)1/2 ∂

2

∂x2
+

1

2
(1− x2)−1/2(−2x)

∂

∂x

]
,

= (1− x2)
∂2

∂x2
− x ∂

∂x
.

In addition,

sinθcosθ
∂

∂θ
= x(1− x2)1/2 ∂

∂θ
,

= −x(1− x2)
∂

∂x
.

Eq. (115) is the associated Legendre equation, whose solutions exist only for a = ~2l(l + 1),
and b = −l~, (−l + 1)~, ..., l~ (i.e., the quantum number l is an integer greater or equal to zero,
with |m| ≤ l). The solutions of the associated Legendre equations are the associated Legendre
polynomials , A(l,m) = P

|m|
l (Cosθ),

For example, the normalized polynomials for various values of l and m are:
A(0, 0) = 1/

√
2,

A(1, 0) =
√

3/2Cosθ,
A(1,±1) =

√
3/4Sinθ,

...
The eigenstates that are common to L2 and Lz are called spherical harmonics and are defined as
follows,

Y m
l (θ, φ) = P

|m|
l (Cosθ)eimφ .

The spherical harmonics are normalized as follows,∫ 2π

0

dφ

∫ 1

−1

dCosθ Y m′

l′
∗
(θ, φ)Y m

l (θ, φ) = δll′δmm′ .

Rotations and Angular Momentum
A coordinate transformation that corresponds to a rotation can be represented by the following
diagram:
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This diagram shows that vector ~r can be specified either relative to the axes (x, y, z), or relative
to the axes (x’, y’, z’), where these two sets of coordinates are defined relative to each other as
follows,

r̄′ = R(α, z)r̄ , (116)

where, r̄′ is the same vector r̄ but with components expressed in the primed coordinate system.

α : Angle, z : Rotation axis

x = rCosφ,
y = rSinφ,
x′ = rCos(φ− α) = r(CosφCosα + SinφSinα),
y′ = rSin(φ− α) = r(SinφCosα− CosφSinα),
z′ = z,
x′ = xCosα + ySinα,
y′ = yCosα− xSinα.

Therefore, the coordinate transformation can be written in matrix representation as follows, x′

y′

z′

 =

 Cosα Sinα 0
−Sinα Cosα 0

0 0 1

 x
y
z

 .

The operator associated with the coordinate transformation is PR(α), defined as follows:

P̂R(α, z)f(r̄) = f [R−1(α, z)r̄],

where R−1 is the transpose of R, i.e., R−1 =

Cosα −Sinα 0
Sinα Cosα 0

0 0 1

 .

Therefore, P̂R(α, z)f(r̄) = f(xCosα− ySinα, xSinα + yCosα, z).
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An infinitesimal rotation is defined as follows,
P̂R(δ, z)f(r̄) = f(x− yδ, xδ + y, z),
P̂R(δ, z)f(r̄) = f(x, y, z)− yδ ∂f

∂x
+ xδ ∂f

∂y
,

P̂R(δ, z)f(r̄) = f(x, y, z) + δ(x ∂
∂y
− y ∂

∂x
)f(x, y, z)

recall that, −i~(x ∂
∂y
− y ∂

∂x
) = Lz, therefore,

P̂R(δ, z)f(r̄) = (1 + i
~δLz)f(r̄).

A finite rotation through an angle α can be defined according to n infinitesimal rotations, after
subdividing α into n angle increments, α = nδ, and taking the limit n→∞, and δ → 0.

P̂R(α, z) = lim
n→∞δ→0

(
1 + i

δ

~
Lz

)n
= e

i
~αLz .

In general, a finite rotation through an angle α around an arbitrary axis specified by a unit vector n̂
is defined as follows,

P̂R(α, n̂) = e
i
~αn̂·L .

This equation establishes the connection between the operator associated with a coordinate trans-
formation and the angular momentum operator.
Note:
It is important to note that if coordinates are transformed according to r̄′ = Rr̄, the Hamiltonian is
transformed according to a similarity transformation, which is defined as follows:

Ĥ ′ = P̂RĤP̂
−1
R .

Proof:
Consider, f(r) ≡ Ĥ(r)φ(r) = Eφ(r),
P̂Rf(r) = P̂RH(r)P̂−1

R P̂Rφ(r) = Eφ(R−1r),
P̂RH(r)P̂−1

R φ(R−1r) = Eφ(R−1r) = H(R−1r)φ(R−1r).
Therefore, H(R−1r) = P̂RH(r)P̂−1

R .
It is, therefore, evident that the Hamiltonian is an invariant operator (i.e., H(r) = H(R−1r)) un-
der a coordinate transformation, r̄′ = Rr̄, whenever the operator associated with the coordinate
transformation commutes with the Hamiltonian, [P̂R, H] = 0.

24 Spin Angular Momentum
The goal of this section is to introduce the spin angular momentum S, as a generalized angular
momentum operator that satisfies the general commutation relations S × S = i~S . The main dif-
ference between the angular momenta S, and L, is that S can have half-integer quantum numbers.
Note: Remember that the quantization rules established by the commutation relations did not rule
out the possibility of half-integer values for j. However, such possibility was ruled out by the
periodicity requirement, Y (θ + 2π) = Y (θ), associated with the eigenfunctions of Lz and L2.
Since the spin eigenfunctions (i.e., the spinors) do not depend on spatial coordinates, they do not
have to satisfy any periodicity condition and therefore their eigenvalues can be half-integer.
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Electron Spin:
A particular case of half-integer spin is the spin angular momentum of an electron with l = 1/2
(see Goudsmit’s historical recount of the discovery of the electron spin). In discussing the spin
properties of a particle we adopt the notation l = S, and m = ms.
The spin functions α and β are eigenfunctions of Sz with eigenvalues +1

2
~ and −1

2
~, respectively.

These eigenfunctions are normalized according to,

1/2∑
ms=−1/2

|α(ms)|2 = 1,

1/2∑
ms=−1/2

|β(ms)|2 = 1, (117)

since ms can be either 1
2
, or −1

2
. Also, since the eigenfunctions α and β correspond to different

eigenvalues of Sz, they must be orthogonal:

1/2∑
ms=−1/2

α∗(ms)β(ms) = 0. (118)

In order to satisfy the conditions imposed by Eqs. (117) and (118),

α(ms) = δms,1/2, and, β(ms) = δms,−1/2.

It is useful to define the spin angular momentum ladder operators, S+ = Sx + iSy and S− = Sx − iSy .
Here, we prove that the raising operator S+ satisfies the following equation:

S+β = ~α .

Proof:
Using the normalization condition introduced by Eq. ( 117) we obtain,

1/2∑
ms=−1/2

α∗(ms)α(ms) =

1/2∑
ms=−1/2

(Ŝ+
β

c
)∗(Ŝ+

β

c
) = 1,

and
|c|2 =

∑
ms

(Ŝ+β)∗(Ŝxβ + iŜyβ).

Now, using the hermitian property of Sx and Sy,∑
ms

f ∗Sxg =
∑
ms

gS∗xf
∗,

we obtain:
|c|2 =

∑
ms
βS∗x(S+β)∗ + iβS∗y(S+β)∗,

where,
|c|2 =

∑
ms
β∗SxS+β − iβ∗SyS+β,
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|c|2 =
∑

ms
β∗S−S+β,

|c|2 =
∑

ms
β∗(S2 − S2

z − ~Sz)β,
|c|2 =

∑
ms
β∗(3

4
~2 − ~2

4
+ ~2

2
)β,

|c|2 = ~2.
Since the phase of c is arbitrary, we can choose c=~.
Similarly, we obtain S−α = ~β .
Since α is the eigenfunction with highest eigenvalue, the operator S+ acting on it must annihilate
it as follows,

S+α = 0, and S−β = 0.

Sxα = (S+ + S−)α
2

= ~
2
β, ⇒ Sxα =

1

2
~β.

Syβ = (S+ − S−) β
2i

= ~
2i
α, ⇒ Syβ = −1

2
i~α.

Similarly, we find Sxβ =
1

2
~α , and Syα =

1

2
i~β .

< |Sx| > α β
α 0 ~/2
β ~/2 0

< |Sy| > α β
α 0 −i~/2
β +i~/2 0

< |Sz| > α β
α ~/2 0
β 0 −~/2

Therefore, S = 1
2
~σ, where σ are the Pauli matrices defined as follows,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

where, σ2
x = σ2

y = σ2
z = 1.

24.1 Exercise 26
Prove that the Pauli matrices anti-commute with each other, i.e.,

σiσj + σjσi = 0,

where i 6= j, and i, j = (x, y, z).
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In order to find the eigenfunctions of Sz, called eigenspinors, consider the following eigenvalue
problem:

Sz

(
u±
v±

)
= ±~

2

(
u±
v±

)
,(

1 0
0 −1

)(
u±
v±

)
= ±

(
u±
v±

)
,(

u±
−v±

)
= ±

(
u±
v±

)
, ⇒

(
u+

−v+

)
=

(
u+

v+

)
, ⇒ v+ = 0 , u+ = 1 .

Similarly we obtain, u− = 0 , and v− = 1 . Therefore, electron eigenspinors satisfy the eigen-
value problem,

Szχ± = ±~
2
χ±,

with,

χ− =

(
0
1

)
, and χ+ =

(
1
0

)
.

Any spinor can be expanded in the complete set of eigenspinors as follows,(
α+

α−

)
= α+

(
1
0

)
+ α−

(
0
1

)
,

where |α+|2, and |α−|2, are the probabilities that a measurement of Sz yields the value +1
2
~, and

−1
2
~, respectively, when the system is described by state

(
α+

α−

)
.

24.2 Exercise 27
Prove that, S2χ+ = ~2

2
(1

2
+ 1)χ+.

24.3 Exercise 28
Consider an electron localized at a crystal site. Assume that the spin is the only degree of freedom
of the system and that due to the spin the electron has a magnetic moment,

M = − eg

2mc
S,

where g ≈ 2, m is the electron mass, e is the electric charge and c is the speed of light. Therefore,
in the presence of an external magnetic field B the Hamiltonian of the system is,

H = −M ·B.
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Assume that B points in the z direction and that the state of the system is,

ψ(t) = eiωt
(
α+

α−

)
.

Consider that initially (i.e., at time t = 0) the spin points in the x direction (i.e., the spinor is an
eigenstate of σx with eigenvalue 1

2
~).

Compute the expectation values of Sx and Sy at time t.

Addition of Angular Momenta
Since L depends on spatial coordinates and S does not, then the two operators commute (i.e.,
[L, S] = 0). It is, therefore, evident that the components of the total angular momentum,

J = L+ S,

satisfy the commutation relations,
J × J = i~J.

Eigenfunctions of J2 and Jz are obtained from the individual eigenfunctions of two angular mo-
mentum operators L1 and L2 with quantum numbers (l1, m1) and (l2, m2), respectively, as follows:

ψmj =
∑

l1,m1,l2,m2

C(jm, l1m1 l2m2)︸ ︷︷ ︸φm1
l1
φm2
l2
,

Clebsch-Gordan Coefficients

where,
J2ψjm = ~2j(j + 1)ψjm,

Jzψjm = ~mψjm.

24.4 Exercise 29
Show that, ψm+1/2

j = C1Y
m
l χ+ + C2Y

m+1
l χ−, is a common eigenfunction of J2 and Jz when,

C1 =
√

l+m+1
2l+1

, and C2 =
√

l−m
2l+1

, or when, C1 =
√

l−m
2l+1

, and C2 = −
√

l+m+1
2l+1

.
Hint: Analyze the particular case j = l − 1/2, and j = l + 1/2. Note that,
J2 = L2 + S2 + 2LS = L2 + S2 + 2LzSz + L+S− + L−S+,
Jz = Lz + Sz,
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25 Central Potential
Consider a two-particle system represented by the following diagram,R1(123) R3(168)
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ŷ

ẑ
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m1

m2
~r1

~r

~r2

u u

where x, y and z represent distances between the two particles along the three Cartesian axes,
where ~r = (x, y, z) = ~r2 − ~r1, with ~r1 and ~r2 the position vectors of particles 1 and 2, respectively.
The central potential V (x, y, z) is a function of |r̄| =

√
x2 + y2 + z2, rather than a function of the

individual Cartesian components. Assuming that such function defines the interaction between the
two particles, the Hamiltonian of the system has the form,

H =
P 2

1

2m1

+
P 2

2

2m2

+ V (|~r2 − ~r1|) = T + V (|~r2 − ~r1|),

where, T = m1

2
|~̇r1|2 + m2

2
|~̇r2|2, with |~̇r1|2 = ~̇r1 · ~̇r1.

Changing variables ~r1, and ~r2, by the center-of-mass coordinates ~R, and the relative coordinates,
~r = ~r2 − ~r1, where,

~R ≡ m1~r1 +m2~r2

m1 +m2

; ~r = ~r2 − ~r1,

we obtain,
~r1 = ~R− m2

m1 +m2

~r, ~r2 = ~R +
m1

m1 +m2

~r.

Therefore,

T =
m1

2

(
~̇R− m2

m1 +m2

~̇r

)(
~̇R− m2

m1 +m2

~̇r

)
+
m2

2

(
~̇R +

m1

m1 +m2

~̇r

)(
~̇R +

m1

m1 +m2

~̇r

)
,

or,

T =
m1 +m2

2
| ~̇R|2 +

1

2

m1m2

m1 +m2

|~̇r|2 =
1

2
M | ~̇R|2 +

1

2
µ|~̇r|2,
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where M = m1 + m2 is the total mass of the system, and µ ≡ m1m2

m1+m2
is the reduced mass of the

two-particle system. Therefore, the total Hamiltonian of the system can be written as follows,

H =
1

2
M | ~̇R|2 +

1

2
µ|~̇r|2 + V (|~r|) =

~P 2
M

2M
+
~P 2
µ

2µ
+ V (|~r|),

where the first term corresponds to the kinetic energy of a particle of mass M , and the second
and third terms constitute the Hamiltonian of a single particle with coordinates r. Therefore, the
time-independent Schrödinger equation for the system is,[

~P 2
M

2M
+
~P 2
µ

2µ
+ V (|~r|)

]
ψ(~R,~r) = Eψ(~R,~r).

Trying a factorizable solution, by separation of variables,

ψ(~r, ~R) = ψµ(~r)ψM(~R),

we obtain,

−~2ψµ∇R
2ψM

ψµψM2M︸ ︷︷ ︸−
~2ψM∇r

2ψµ
ψµψM2µ

+
ψµψM
ψµψM

V (|~r|)︸ ︷︷ ︸ = E
ψµψM
ψµψM

.

depends on R depends on r
Therefore, each one of the parts of the Hamiltonian have to be equal to a constant,

− ~2

2M

1

ψM
∇R

2ψM = EM , (119)

− ~2

2µ

1

ψµ
∇r

2ψµ + V (|~r|) = Eµ, with EM + Eµ = E. (120)

Eq. (120) is the Schrödinger equation for a free particle with massM . The solution of such equation
is,

ψM(R) = (2π~)−3/2eik̄R̄, where
|k̄|2~2

2M
= EM . (121)

According to Eq. (121), the energy Eµ is found by solving the equation,

− ~2

2µ
∇r

2ψµ + V (|r̄|)ψµ = Eµψµ . (122)

Equations ((121)) and ((122)) have separated the problem of two particles interacting according to
a central potential V (|r̄2 − r̄1|) into two separate one-particle problems that include:
(1) The translational motion of the entire system of mass M.
(2) The relative (e.g., internal) motion.
These results apply to any problem described by a central potential (e.g., the hydrogen atom, the
two-particle rigid rotor, and the isotropic multidimensional harmonic-oscillator).
Consider Eq. (122), with∇2 ≡ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, and V (|r̄|) a spherically-symmetric potential, i.e.,

a function of the distance r = |r̄|. It is natural to work in spherical coordinates.
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25.1 Exercise 30
Prove that the Laplacian∇2 can written in spherical coordinates as follows,

∇2 =
∂2

∂r2
+

2

r

∂

∂r
− 1

r2~2
L̂2, where L̂2 = −~2

(
∂2

∂θ2
+

Cosθ
sinθ

∂

∂θ
+

1

sin2θ

∂2

∂φ2

)
.

It is important to note that the commutator

[∇2, L2] =

[
∂2

∂r2
+

2

r

∂

∂r
, L̂2

]
−
[

1

r2~2
L̂2, L̂2

]
= 0,

because L̂2 does not involve r, but only θ and φ. Also, since L̂2 does not involve r, and V is a
function of r,

[V, L2] = 0.

Consequently,
[H,L2] = 0,

whenever the potential energy of the system is defined by a central potential. Furthermore, [H,Lz] =
0, because L̂z = −i~ ∂

∂φ
.

Conclusion: A system described by a central-potential has eigenfunctions that are common to the
operators H , L2 and LZ :

Ĥψµ = Eµψµ,

L̂2ψµ = ~2l(l + 1)ψµ, l = 0, 1, 2, ...

L̂zψµ = ~mψµ, m = −l,−l + 1, ..., l.
Substituting these results into Eq. (122) we obtain,

− ~2

2µ

(
∂2

∂r2
+

2

r

∂

∂r

)
ψµ +

~2

2µ

~2

r2~2
l(l + 1)ψµ + V (|r̄|)ψµ = Eµψµ.

Since the eigenfunctions of L̂2 are spherical harmonics Y m
l (θ, φ), we consider the solution,

ψµ = R(r)Y m
l (θ, φ),

and we find that R(r) must satisfy the equation,

− ~2

2µ

(
∂2R

∂r2
+

2

r

∂R

∂r

)
+

~2

2µr2
l(l + 1)R + V (|r̄|)R = EµR. (123)

80



26 Two-Particle Rigid-Rotor
The rigid-rotor is a system of two particles for which the distance between them |r̄| = d is constant.
The Hamiltonian of the system is described by Eq. (123), where the first two terms are equal to zero,
and Eµ = ~2

2µd2
l(l + 1) + V (d), with ψµ = Y m

l (θ, φ).
The moment of inertia of a system of particles is Iζ ≡

∑2
i=1 mir

2
i , where mi is the mass of particle

i and ri is the particle distance to the ζ axis.

26.1 Exercise 31
Prove that I = µd2 for the two-particle rigid rotor, where µ = m1m2

m1+m2
, d = r2− r1, and ζ is an axis

with the center of mass of the system and is perpendicular to the axis that has the center of mass of
both particles. Assume that the center of mass lies at the origin of coordinates, and that the x axis
has the center of mass of both particles in the system.

The rotational energy levels of the rigid rotor are:

Eµ =
~2

2I
l(l + 1), with l = 0, 1, 2, ... (124)

These energy levels usually give a good approximation of the rotational energy levels of di-
atomic molecules (e.g., the HCl molecule).

27 Problem Set

27.1 Exercise 32
32.1. Solve problems 6.5 and 6.6 of reference 1.
32.2. Prove that the angular momentum operator L = r × p is hermitian.

27.2 Exercise 33
Prove that,

Ψ(x+ a) = e(i/~)apΨ(x),

where p = −i~∂/∂x, and a is a finite displacement.

27.3 Exercise 34
Let Ĥ be the Hamiltonian operator of a system. Denote ψk the eigenfunctions of Ĥ with eigenval-
ues Ek. Prove that < ψn|[Q̂, Ĥ]|ψk >= 0, for any arbitrary operator Q̂, when n = k.
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27.4 Exercise 35
Prove that,

[x,H] = i~p/m,

where, H = p2/(2m) + V (x).

27.5 Exercise 36
Prove that,

L−Y
m
l = ~

√
(l +m)(l −m+ 1)Y m−1

l ,

where LzY m
l = m~Y m

l , and L2Y m
l = ~2l(l + 1)Y m

l .

27.6 Exercise 37
Consider a system described by the Hamiltonian matrix,

H =

(
−E0 ∆
∆ E0

)
,

where the matrix elements Hjk =< ψj|Ĥ|ψk >. Consider that the system is initially prepared in
the ground state, and is then influenced by the perturbation W (t) defined as follows,

W (t) =

(
0 e−t

2/τ2−iωt

e−t
2/τ2+iωt 0

)
.

Calculate the probability of finding the system in the excited state at time t >> τ .

28 Hydrogen Atom
Consider the hydrogen atom , or hydrogen-like ions (e.g., He+, Li2+, ... etc.), with nuclear charge
+ze, and mass M , and the electron with charge −e, and mass m. The potential energy of the
system is a central potential (e.g., the Coulombic potential),

V = −ze
2k

r
,

where r is the electron-nucleus distance and k =

{
1 in a.u.
1/4πε0 in SI units

The total Hamiltonian is,

Ĥ = − ~2

2(me +mn)
∇2
R −

~2

2µ
∇2
r + V (r),
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where µ = memn
mn+me

. Note that µ ≈ me , since me << mn. The Hamiltonian that includes only

the second and third terms of Ĥ is represented by the symbol Ĥel and is called the electronic
Hamiltonian because it depends only on the electronic coordinate r. In order to find the electronic
eigenvalues, we must solve the equation,

Ĥelψel = Eelψel. (125)

Eq. (125) is the eigenvalue problem of a one particle central-potential. We consider the factorizable
solution,

ψel = R(r)Y m
l (θ, φ), with, l = 0, 1, 2, ... |m| < l,

where R(r) satisfies the equation,

− ~2

2µ

[
∂2R

∂r2
+

2

r

∂R

∂r
− ~2

~2r2
l(l + 1)R

]
− Ze2R

r
= ER. (126)

This equation could be solved by first transforming it into the associated Laguerre equation, for
which solutions are well-known. Here, however, we limit the presentation to note that Eq. ( 126)
has solutions that are finite, single valued and square integrable only when

E = −Z
2µe4

2~2n2
, or E = −Z

2e2

2an2
, (127)

where n = 1, 2, 3, ..., and a = ~2
µe2

is the Bohr radius.
These are the bound-state energy levels of hydrogen-like atoms responsible for the discrete nature
of the absorption spectrum. In particular, the wavenumbers of the spectral lines are

ω̄ =
E2 − E1

hc
= −Z

2µe4

hc2~2

(
1

n2
2

− 1

n2
1

)
.

The eigenvalues can be represented by the following diagram:

-

6

n = 4
n = 3

n = 2

n = 1

r

E

Degeneracy: Since the energy E depends only on the principal quantum number n, and the wave
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function ψel depends on n, l and m, there are n2 possible states with the same energy. States with
the same energy are called degenerate states. The number of states with the same energy is the
degeneracy of the energy level.

n=1, 2, 3, ...
l=0, 1, 2, ... n-1 } these are n states
m=-l, -l+1, ..., 0, 1, 2, ...l } these are 2 l + 1 states

28.1 Exercise 38
Prove that the degeneracy of the energy level En is n2.

The complete hydrogen-like bound-state wave functions with quantum numbers n, l and m are,

ψnlm(r, θ, φ) = Rnl(r)P
m
l (θ)

1√
2π
eimφ,

where Pm
l (θ) are the associated Legendre polynomials and Rnl(r) are the Laguerre associated

polynomials,

Rnl(r) = rle−
zr
na

n−l−1∑
j=0

bjr
j, where a ≡ ~2

µe2
= 0.529177Å,

and,

bj+1 =
2z

na

j + l + 1− n
(j + 1)(j + 2l + 2)

bj.

Example 1: Consider the ground state wave function of the H atom with n = 1, l = 0,m = 0 :

R10(r) = e−
z
a
rb0 ,

where, b2
0 = 1/

∫∞
0
drr2e−

2zr
a , and b0 = 2( z

a
)3/2.

Therefore,

ψ100(r, θ, φ) = 2(
z

a
)3/2 1√

2π

1√
2
e−

z
a
r.

Note: An alternative notation for wave functions with orbital quantum number l = 0, 1, 2, ... is

l 0

s

1

p

2

d

3

f

4...

g...
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Example 2: The possible wave functions with n = 2 are:
2s 2p0 2p1 2p−1,
ψ200 ψ210, ψ211 ψ21−1,

28.2 Exercise 39
Show that,

ψ2s =
1√
π

(
z

2a
)3/2(1− zr

2a
)e−zr/2a, ψ2p−1 =

1

8
√
π

(
z

a
)5/2re−zr/2asinθe−iφ,

ψ2p0 =
1√
π

(
z

2a
)5/2re−zr/2aCosθ, ψ2p1 =

1

8
√
π

(
z

a
)5/2re−zr/2asinθeiφ.

28.3 Exercise 40
Compute the ionization energy of He+.

28.4 Exercise 41
Use perturbation theory to first order to compute the energies of states ψ210, ψ211, and ψ21−1 when
a hydrogen atom is perturbed by a magnetic field ~B = Bẑ, according to ω = −β~L. ~B, where
β = e~

2mc
. (The splitting of spectroscopic lines, due to the perturbation of a magnetic field, is called

Zeeman effect ).

Radial Distribution Functions
The probability of finding the electron in the region of space where r is between r to r + dr, θ
between θ to θ + dθ and φ between φ and φ+ dφ is,

P = R∗(r)R(r)Y m
l (θ)∗Y m

l (θ)r2sinθdrdθdφ.

Therefore, the total probability of finding the electron with r between r and r + dr is,

P τ (r) =

[∫ π

0

dθ

∫ 2π

0

dφY m
l (θ)∗Y m

l (θ)sinθ
]
R∗(r)R(r)r2dr,

where
∫ π

0
dθ
∫ 2π

0
dφY m

l (θ)∗Y m
l (θ)sinθ = 1. For example, the radial probability for m=0 and l=1,

can be visualized as follows:
Pictures of atomic orbitals with n ≤ 10 are available here .
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Real Hydrogen-like Functions
Any linear combination of degenerate eigenfunctions of energy E is also an eigenfunction of

the Hamiltonian with the same eigenvalue E. Certain linear combinations of hydrogen-like wave-
functions generate real eigenfunctions. For example, when l = 1,

1√
2

(ψn11 + ψn1−1) = Rn1(r)sinθCosφ ≡ ψP2x ,

1√
2i

(ψn11 − ψn1−1) = Rn1(r)sinθSinφ ≡ ψP2y ,

ψ210 ≡ ψ2Pz ,

are real and mutually orthogonal eigenfunctions.
Function ψ2Pz is zero in the xy plane, positive above such plane, and negative below it. Func-

tionsψ2Px andψ2Py are zero at the zy and xz planes, respectively. ψ2P−1 andψ2P1 are eigenfunctions
of L̂2 with eigenvalue 2~2. However, since ψ2P−1 and ψ2P1 are eigenfunctions of L̂z with different
eigenvalues (e.g., with eigenvalues ~ and −~, respectively), linear combinations ψ2Px , and ψ2Py ,
are eigenfunctions of L̂2 but not eigenfunctions of Lz.

28.5 Exercise 42
(A) What is the most probable value of r, for the ground state of a hydrogen atom? Such value is
represented by rM .
(B) What is the total probability of finding the electron at a distance r ≤ rM?
(C) Verify the orthogonality of functions 2Px, 2Py, and 2Pz.
(D) Verify that the ground state of the hydrogen atom is an eigenstate of Ĥ , but that such state is
not an eigenstate of T̂ , or V̂ .
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29 Helium Atom
The helium atom is represented by the following diagram,

H
HHH

HH

�
���

��

r r
u

−e

r2

−e

r1

r12

2e+

This diagram represents two electrons with charge −e, and a nucleus with charge +2.
The Hamiltonian of the Helium atom is,

Ĥ = − ~2

2µ
∇2
r1
− 2e2

r1

− ~2

2µ
∇2
r2
− 2e2

r2

+
e2

r12

.

Note that the term e2

r12
couples two one-electron hydrogenlike Hamiltonians. In order to find a

solution to the eigenvalue problem,
Ĥψ = Eψ,

we implement an approximate method. We first solve the problem by neglecting the coupling term.
Then we consider such term to be a small perturbation, and we correct the initially zeroth-order
eigenfunctions and eigenvalues by using perturbation theory.
Neglecting the coupling term, the Hamiltonian becomes,

Ĥ(0) = − ~2

2µ
∇2
r1
− ~2

2µ
∇2
r2
− 2e2

r1

− 2e2

r2

,

the sum of two independent one-electron Hamiltonians. The eigenfunctions of such Hamiltonian
are,

ψ = Rnl(r1)Pm
l (θ1)

1√
2π
eimφ1Rnl(r2)Pm

l (θ2)
1√
2π
eimφ2 ,

and the eigenvalues are,

E(0)
n1n2

= −z
2µe4

2~2n2
1

− z2µe4

2~2n2

.

Exercise 43 Prove that,

< ψ100|
e2

r12

|ψ100 >=
5

8
e2 z

a
.
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In order to illustrate how to correct the zeroth order solutions by implementing perturbation theory,
we compute the first order correction to the ground state energy as follows,

E = E
(0)
11 + < ψ100|

e2

r12

|ψ100 >= −z
2µe4

~2
+

5

8
e2 z

a
.

Alternatively, the variational method could be implemented to obtain better results with simple
functions ψ̃, e.g., products of hydrogenlike orbitals with an effective nuclear charge z′:

ψ̃ = A2e−
z′
a

(r1+r2).

According to the variational theorem, the expectation value < ψ̃|Ĥ|ψ̃ > is always higher than the
ground state energy. Therefore, the optimum coefficient z′ minimizes the expectation value,

Ẽ(z′) =< ψ̃|Ĥ|ψ̃ >, where

Ĥ = − ~2

2µ
∇2
r1
− z′e2

r1

− ~2

2µ
∇2
r2
− z′e2

r2

− (2− z′)e2

r1

− (2− z′)e2

r2

+
e2

r12

.

Computing the expectation value of Ĥ analytically we obtain,

Ẽ(z′) = −z
′2e2

a
− 2A2

∫
dre−

z′2r
a r2 (2− z′)

r
e2 + A2

∫
dr1

∫
dr2

e−
2z′
a

(r1+r2)r2
2e

2r2
1

r1 − r2

,

Ẽ(z′) = −z
′2e2

a
− 2z′

(2− z′)
a

e2 +
5

8
z′
e2

a
.

Therefore, the optimum parameter z′ is obtained as follows,

∂Ẽ(z′)

∂z′
= 0,→ z′opt = 2− 5

16
,→ Ẽ(z′opt) =

(
2− 5

16

)2
e2

a
−2

(
2− 5

16

)
2
e2

a
+

5

8

(
2− 5

16

)2
e2

a
.

30 Spin-Atom Wavefunctions
The description of atoms can be formulated to a very good approximation under the assumption
that the total Hamiltonian depends only on spatial coordinates (and derivatives with respect to
spatial coordinates), but not on spin variables. We can, therefore, separate the stationary-state wave
function according to a product of spatial and spin wavefunctions.
Example 1: The spin-atom wavefunction of the hydrogen atom can be approximated as follows,

ψel = ψ(x, y, z)g(ms),
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where g(ms) = α, β, when mS = 1/2,−1/2, respectively. Since the Hamiltonian operator is
assumed to be independent of spin variables, it does not affect the spin function, and the eigenvalues
of the system are the same as the energies found with a wave function that did not involve spin
coordinates. Mathematically,

Ĥ[ψ(x, y, z)g(ms)] = g(ms)Ĥψ(x, y, z) = Eg(ms)ψ(x, y, z).

The only consequence of modeling the hydrogen atom according to a spin-atom wavefunction is
that the degeneracy of the energy levels is increased.
Example 2: The ground electronic state energy of the helium atom has been modeled according
to the zeroth-order wave function 1S(1) 1S(2). In order to take spin into account we must multiply
such spatial wavefunction by a spin eigenfunction. Since each electron has two possible spin states,
there are in principle four possible spin functions:

α(1)α(2), α(1)β(2), β(1)α(2), and β(1)β(2).

Functions α(1)β(2), and β(1)α(2), however, are not invariant under an electron permutation (i.e.,
these functions make a distinction between electron 1 and electron 2). Therefore, such functions
are inadequate to describe the state of a system of indistinguishable quantum particles, such as
electrons. Instead of working with functions α(1)β(2) and β(1)α(2), it is necessary to construct
linear combinations of such functions, e.g.,

1√
2

[α(1)β(2)± β(1)α(2)] ,

with correct exchange properties associated with indistinguishable particles,

P̂12ψ(1,2) = ±ψ(2,1).

The two linear combinations, together with functions α(1)α(2) and β(1)β(2), form the basis of
four normalized two-electron spin eigenfunctions of the helium atom.

31 Pauli Exclusion Principle
Pauli observed that relativistic quantum field theory requires that particles with half-integer spin
(s=1/2, 3/2, ...) must have antisymmetric wave functions and particles with integer spin (s=0, 1,
...) must have symmetric wave functions. Such observation is usually introduced as an additional
postulate of quantum mechanics: The wave function of a system of electrons must be antisymmetric
with respect to interchange of any two electrons.

As a consequence of such principle is that two electrons with the same spin cannot have the
same coordinates, since the wavefunction must satisfy the following condition:

ψ(x1,x2) = −ψ(x2,x1),
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and, therefore, ψ(x1,x1) = 0. For this reason the principle is known as the Pauli Exclusion Principle.
Another consequence of the Pauli Principle is that since the ground state wave function of the

He atom must also be anti-symmetric, and since the spatial part of the zeroth order wave function
is symmetric, Ψ = 1S(1)1S(2), then the spin wave function χ must be anti-symmetric,

χ =
1√
2

∣∣∣∣α(1) β(1)
α(2) β(2)

∣∣∣∣ ,
and the overall zeroth-order wave function becomes,

ψ = 1S(1)1S(2)
1√
2

[α(1)β(2)− β(1)α(2)] . (128)

Note that this anti-symmetric spin-atom wave function can be written in the form of the Slater
determinant,

ψ =
1√
2

∣∣∣∣1S(1)α(1) 1S(1)β(1)
1S(2)α(2) 1S(2)β(2)

∣∣∣∣ .

32 Lithium Atom
The spin factor affects primarily the degeneracy of the energy levels associated with the hydrogen
and helium atoms. To a good approximation, the spin factors do not affect the energy levels of such
atoms.

The lithium atom, however, has three electrons. An antisymmetric spin wave function of three
electrons could in principle be written as the Slater determinant,

χ =
1√
6

∣∣∣∣∣∣
α(1) β(1) α(1)
α(2) β(2) α(2)
α(3) β(3) α(3)

∣∣∣∣∣∣ . (129)

Such Slater determinant, however, is equal to zero because two of the columns are equal to
each other. This fact rules out the possibility of having a zero order wave function that is the Fock
product of three hydrogenlike functions:

ψ(0) = 1S(1) 1S(2) 1S(3) (130)

Only if the construction of an antisymmetric spin wave function was possible, we could proceed
in analogy to the Helium atom and compute the perturbation due to repulsive coupling terms as
follows,

E(1) =< ψ| e
2

r12

|ψ > + < ψ| e
2

r23

|ψ > + < ψ| e
2

r13

|ψ >

where ψ is the product of hydrogenlike functions of Eq. (130).

90



Having ruled out such possibility, we construct the zeroth order ground-state wave function for
lithium in terms of a determinant similar to Eq. (47), but where each element is a spin-orbital (i.e.,
a product of a one electron spatial orbital and one-electron spin function),

ψ(0) =
1√
6

∣∣∣∣∣∣
1S(1)α(1) 1S(1)β(1) 2S(1)α(1)
1S(2)α(2) 1S(2)β(2) 2S(2)α(2)
1S(3)α(3) 1S(3)β(3) 2S(3)α(3)

∣∣∣∣∣∣ , (131)

where the third column includes the spatial orbital 2S, instead of the orbital 1S, because the Pauli
exclusion principle rules out the possibility of having two electrons in the same spin-orbital. It is
important to note that Eq. (131) is not simply a product of spatial and spin parts as for the H and
He atoms. In contrast, the wave function of Li involves a linear combination of terms which are
products of non-factorizable spatial and spin wavefunctions.

32.1 Exercise 44
Show that for the lithium atom, treating the electron-electron repulsion interaction Ĥrep as a per-
turbation,

E(0) = E
(0)
1S + E

(0)
1S + E

(0)
2S ,

and,

E(1) = 2 < 1S(1)2S(2)| e
2

r12

|1S(1)2S(2) > + < 1S(1)1S(2)| e
2

r12

|1S(1)1S(2) >

− < 1S(1)2S(2)| e
2

r12

|2S(1)1S(2) > .

33 Spin-Orbit Interaction
Although neglected up to this lecture, the interaction between the electron-spin and the orbital
angular momentum must also be included in the atomic Hamiltonian. Such interaction is described
according to the spin-orbit Hamiltonian defined as follows,

ĤSO =
1

2mec2

1

r

(
∂V

∂r

)
L̂ · Ŝ = ξL̂ · Ŝ, (132)

where V is the Coulombic potential of the electron in the field of the atom. Note that the spin-orbit
interaction is proportional to L̂ · Ŝ. A proper derivation of Eq. (132) requires a relativistic treatment
of the electron which is beyond the scope of these lectures.
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Note: A classical description of such interaction also gives a perturbation proportional to L̂ · Ŝ.
This is because from the reference frame of the electron, the nucleus is a moving charge that gen-
erates a magnetic field B, proportional to L̂. Such magnetic field interacts with the spin magnetic
moment ms = −e/meŜ. Therefore, the interaction between B and ms is proportional to L̂ · Ŝ.
Unfortunately, however, the proportionality constant predicted by such classical model is incorrect,
and a proper derivation requires a relativistic treatment of the electron as mentioned earlier in this
section.

In order to compute the spin-orbit Hamiltonian of a many-electron atom, it is necessary to
compute first an approximate effective potential Vi for each electron i in the total electric field of
electrons and nuclear charges. Then, we can compute the sum over all electrons as follows,

ĤSO ≈
1

2mec2

∑
i

1

ri

∂Vi
∂ri

L̂i · Ŝi =
∑
i

ξiL̂i · Ŝi. (133)

The correction of eigenfunctions and eigenvalues, due to the spin-orbit coupling, is usually
computed according to perturbation theory after solving the atomic eigenvalue problem in the ab-
sence of the spin-orbit interaction. For example, the spin-orbit correction to the eigenvalue of state
| Ψ〉 for a one-electron atom is,

E
(1)
S.O. ≈ 〈Ψ | ξL̂ · Ŝ | Ψ〉. (134)

Note that the L ·S product can be written in terms of J2, L2 and S2 as follows,L ·S = 1
2
(J2−L2−

S2), because, J2 = J · J = (L+ S)(L+ S) = L2 + S2 + 2L · S, and, since the unperturbed wave
function is an eigenfunction of L2, S2 and J2,

L · S|ψ >=
1

2
~2(J(J + 1)− L(L+ 1)− S(S + 1))|ψ > .

Therefore,

ES.O. ≈
1

2
~2 < ξ > [J(J + 1)− L(L+ 1)− S(S + 1)] .

It is important to note that, due to the spin-orbit coupling, the total energy of a state depends
on the value of the total angular momentum quantum number J . Furthermore, each of the energy
levels is (2J+1) times degenerate, as determined by the possible values of MJ . For example, when
L=1, and S=1/2, then the possible values of J are 1/2 and 3/2, since (J=L+S, L+S-1, ..., L-S).

The spin orbit interaction is, therefore, responsible for the splitting of spectroscopic lines in
atomic spectra.

It is possible to remove the degeneracy of energy levels by applying an external magnetic field
that perturbs the system as follows, HB = −m ·B, where m = mL +mS , with mL = − e

2me
L, and

mS = − e
me
S. The external perturbation is, therefore, described by the following Hamiltonian,

HB = − e

2me

(L+ 2S) ·B = − e

2me

(J + S) ·B.
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The energy correction according to first-order perturbation theory is:

EB = − e

2me

B(~MJ+ < Sz >) = ABMJ ,

where < Sz >= ~MJ
J(J+1)−L(L+1)+S(S+1)

2J(J+1)
and A is a proportionality constant. Therefore, the

perturbation of an external magnetic field splits the energy level characterized by quantum number
J into 2J+1 energy sub-levels. These sub-levels correspond to different possible values of MJ , as
described by the following diagram:

Ĥ0 Ĥ0 + Ĥrep Ĥ0 + Ĥrep + Ĥso Ĥ0 + Ĥrep + Ĥso + ĤB

1s2p

(S = 0)

1P

(S = 1)

3P

2S + 1

1P1

3P0

3P1

3P2

J Levels States MJ

1
0
−1

0

1
0
−1

2
1
0
−1
−2

33.1 Exercise 45
(A). Calculate the energy of the spectroscopic lines associated with transitions 3S→ 3P for Na in
the absence of an external magnetic field. (B). Calculate the spectroscopic lines associated with
transitions 3S→ 3P for Na atoms perturbed by an external magnetic field Bz as follows:

ĤB = −m̂ ·B = βeB~−1(Ĵz + Ŝz),

and EB =< ψ|ĤB|ψ >= βeBMJg, with g = 1 + J(J+1)−L(L+1)+S(S+1)
2J(J+1)

.

34 Periodic Table
Previous sections of these lectures have discussed the electronic structure of H, He and Li atoms.
The general approach implemented in those sections is summarized as follows. First, we neglect
the repulsive interaction between electrons and write the zeroth order ground state wave functions
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as antisymmetrized products of spin-orbitals (Slater determinants), e.g.,

ψgrHe =
1√
2

∣∣∣∣1S(1)α(1) 1S(1)β(1)
1S(2)α(2) 1S(2)β(2)

∣∣∣∣ = 1S(1)1S(2)
1√
2

[α(1)β(2)− β(1)α(2)] ,

ψgrLi =
1√
6

∣∣∣∣∣∣
1S(1)α(1) 1S(1)β(1) 2S(1)α(1)
1S(2)α(2) 1S(2)β(2) 2S(2)α(2)
1S(3)α(3) 1S(3)β(3) 2S(3)α(3)

∣∣∣∣∣∣ ,
with zeroth order energies,

E
(0)
He = 2E(1S), and E

(0)
Li = 2E(1S) + E(2S),

represented by the following diagram:

6Energy

2S

1S

Helium

6Energy

2S

1S

Lithium

It is important to note that these approximate wave functions are found by assuming that the elec-
trons do not interact with each other. This is, of course, a very crude approximation. It is, nonethe-
less, very useful because it is the underlying approximation for the construction of the periodic
table. Approximate zeroth order wave functions can be systematically constructed for all atoms in
the periodic table by considering the energy order of hydrogenlike atomic orbitals in conjunction
with Hund’s Rules.
Hund’s First Rule: Other things being equal, the state of highest multiplicity is the most stable.
Hund’s Second Rule: Among levels of equal electronic configuration and spin multiplicity, the
most stable level is the one with the largest angular momentum.
These rules establish a distinction between the zeroth order wave functions of ground and excited
electronic state configurations. For example, according to Hund’s rules the lithium ground state
wave function is,

ψgr =
1√
6

∣∣∣∣∣∣
1S(1)α(1) 1S(1)β(1) 2S(1)α(1)
1S(2)α(2) 1S(2)β(2) 2S(2)α(2)
1S(3)α(3) 1S(3)β(3) 2S(3)α(3)

∣∣∣∣∣∣ , (135)
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and the first excited state wave function is,

ψexc =
1√
6

∣∣∣∣∣∣
1S(1)α(1) 1S(1)β(1) 2P (1)α(1)
1S(2)α(2) 1S(2)β(2) 2P (2)α(2)
1S(3)α(3) 1S(3)β(3) 2P (3)α(3)

∣∣∣∣∣∣ .
Note that the energy order of hydrogenlike atomic orbitals, En = − z2e2

2an2 , is not sufficient to distin-
guish between the two electronic configurations. According to such expression, orbitals 2p and 2s
have the same energy E2. However, Hund’s second rule distinguishes the ground electronic state
as the one with higher angular momentum. This is verified by first order perturbation theory, since
the perturbation energy of ψexc is higher than the perturbation energy computed with ψgr.

34.1 Exercise 46
Prove that according to first order perturbation theory, the energy difference ∆E between the two
states is

∆E(ψgr → ψexc) = 2(J1S,2P − J1S,2S)− (K1S,2P −K1S,2S),

where Jφ1,φ2 =< φ
(i)
1 φ

(j)
2 | erij |φ

(i)
1 φ

(j)
2 >≡ Coulomb Intergral,

and Kφ1,φ2 =< φ
(i)
1 φ

(j)
2 | erij |φ

(i)
2 φ

(j)
1 >≡ Exchange Integral.

34.2 Exercise 47
Use Hund’s Rules to predict that the ground states of nitrogen, oxygen and fluorine atoms are
4S, 3P and 2P , respectively.

35 Problem Set

35.1 Exercise 48
Use the variational approach to compute the ground state energy of a particle of mass m in the
potential energy surface defined as follows, V (x) = λX4.
Hint: Use a Gaussian trial wave-function,

φ(x) = 4

√
α

π
exp−

α
2
x2 .

From tables,∫ ∞
−∞

dxx4e−αx
2

=
3

4α2

√
π

α
;

∫ ∞
−∞

dxe−αx
2

=

√
π

α
;

∫ ∞
−∞

dxx2e−αx
2

=
1

2α

√
π

α
.
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35.2 Exercise 49
Compute the eigenvalues and normalized eigenvectors of σ = σy + σz, where,

σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
.

35.3 Exercise 50
Construct two excited state wavefunctions of He that obey the Pauli Exclusion principle, with one
electron in a 1S orbital and the other electron in the 2S orbital. Explain the symmetry of spin and
orbital wave-functions?

35.4 Exercise 51
Consider a spin 1/2 represented by the spinor,

χ =

(
Cosα
sinα eiβ

)
.

What is the probability that a measurement of Sy would yield the value −~
2

when the spin is de-
scribed by χ?

36 LCAO Method: H+
2 Molecule

The H+
2 molecule can be represented by the following diagram :

-

6

���
���

���
���:

�
�
�
�
�
�
�
�
�
�
���

@
@
@
@@R

@
@

@
@@I

MB

RB

u

u

r

MA

RA

RAB
r

rB

rA

e,m
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where A and B represent two hydrogen nuclei and e represents the electron. The Hamiltonian of
the system is,R1(376)

Ĥ = − ~2

2MA

∇2
RA
− ~2

2MB

∇2
RB

+Hel, (136)

where,

Ĥel = − ~2

2m
∇2
r −

e2

rA
− e2

rB
+

e2

RAB

. (137)

This is another three-body Hamiltonian, similar to the Helium atom Hamiltonian, where instead of
having two electrons and one nucleus we have two nuclei and one electron. In order to compute
the eigenstates, we assume that the kinetic energy of the nuclei can be neglected when compared
to the other terms in the Hamiltonian (Born-Oppenheimer approximation). The electronic energy
is computed at various internuclear distances RAB, by considering that the term e2

RAB
, in Eq. (137)

is a constant factor parametrized by RAB. (In practice, this constant factor is ignored when solving
the eigenvalue problem, since it can be added at the end of the calculation).

According to the linear combination of atomic orbitals (LCAO) method, a convenient trial state
for H+

2 can be written as follows,

| Ψ >= CA | φA > +CB | φB >,

where | φA >, and | φB >, are 1S atomic orbitals of atoms A and B, respectively.
According to the variational theorem, the optimum coefficients CA and CB can be found by

minimizing the expectation value of the energy,

< E >=
< ψ|Ĥ ′el|ψ >
< ψ|ψ >

=
C2
AHAA + 2CACBHAB + C2

BHBB

C2
ASAA + 2CACBSAB + C2

BSBB
,

with respect to CA and CB. Here, Hjk =< φj|Ĥ ′el|φk >, Sjk =< φj|φk >, and

Ĥ ′el = − ~2

2m
∇2
r −

e2

rA
− e2

rB
.

36.1 Exercise 52
Show that the condition,(

∂<E>
∂CA

)
CB

= 0 implies (HAA− < E > SAA)CA + (HAB− < E > SAB)CB = 0,

and(
∂<E>
∂CB

)
CA

= 0 implies (HAB− < E > SAB)CA + (HBB− < E > SBB)CB = 0,

with Sjj = 〈φj|φj〉 = 1.
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In matrix form, these equations (called secular equations) can be written in compact form, as
follows:

(H− ES)C = 0, (138)

where H is the Hamiltonian matrix, C is the matrix of column eigenvectors, E is the diagonal
matrix of eigenvalues, and S is the overlap matrix.

The secular equations have a nontrivial solution (i.e., a solution different from the trivial solu-
tion CA = 0, CB = 0), when the determinant of (H−ES) (i.e., the so-called secular determinant)
vanishes: ∣∣∣∣ HAA− < E > HAB − SAB < E >

HBA − SBA < E > HBB− < E >

∣∣∣∣ = 0.

Since | φA > and | φB > are 1S orbitals, HAA = HBB, and SAB = SBA = S. Therefore,

(HAA− < E >)2 − (HAB − S < E >)2 = 0,

and
E± =

HAA ±HAB

1± S
.

Substituting < E >+ in the secular equations we obtain,

CA± = ±CB±.

Therefore,
ψ+ = CA+(φA + φB), where CA+ = 1√

2+2S
,

ψ− = CA−(φA − φB), where CA− = 1√
2−2S

.

The strategy followed in this section for solving the eigenvalue problem of H+
2 can be summarized

as follows:
1. Expand the solution | Ψ > according to a linear combination of atomic orbitals (LCAO).
2. Obtain a set of n secular equations according to the variational approach.
3. Solve the secular determinant by finding the roots of the characteristic equation, a polynomial
of degree n in E.
4. Substitute each root into the secular equations and find the eigenvectors (e.g., the expansion
coefficients in the LCAO) that correspond to such root.

The energies < E >± are functions of HAA, HAB and S. The integral HAA is defined as the
sum of the energy of an electron in a 1S orbital and the attractive energy of the other nucleus:

HAA =

∫
dτφ∗A

[
− ~2

2m
∇2
r −

e2

rA
− e2

rB

]
φA = E1S(H)−

∫
dτφ∗A

e2

rB
φA. (139)

As the nuclei A and B are brought closer together, the second term in Eq. (139) (i.e., the term∫
dτφ∗A

e2

rB
φA) tends to make the energy ofH+

2 more negative, increasing the stability of the molecule.
The term e2

RAB
is responsible for the repulsion between nuclei and increases monotonically as the

two nuclei get closer together, counteracting the stabilization caused by − e2

rB
. Therefore, the sum

98



HAA + e2

RAB
is not responsible for the stabilization of the system as the nuclei are brought closer

together.
The integral HAB defined as follows,

HAB =

∫
dτφ∗A

(
− ~2

2m
∇2
r −

e2

rA
− e2

rB

)
φB, (140)

is called resonance integral and takes into account the fact that the electron is not restricted to any
of the two 1S atomic orbitals, but it can rather be exchanged between the two orbitals.
At large values of RAB, the resonance integral HAB goes to zero. Decreasing RAB, HAB becomes
more negative and stabilizes the molecule relative to the asymptotically separated atoms. The
eigenvalues < E >± can be represented as a function of RAB by the following diagram:

-

6

E(A) + E(B)

Energy

< E >−

< E >+

RAB

�
< E >+ is always larger or equal than E0

�
Exact answer for E0︸ ︷︷ ︸

At short distances RAB the internuclear repulsion e2

RAB
dominates

Note that < E >+ is lower than < E >− because HAA and HAB are negative.
In analogy to the variational approach implemented to study the Helium atom, one could further im-
prove the variational solution of H+

2 by optimizing the exponents ξ (e.g., effective nuclear charges)
in the functions that represent φA and φB,

φA/B =
( ξ

2a
)3/2

√
π

e−
ξrA/B

2a . (141)

Such variational correction of the effective nuclear charge is known as scaling.

36.2 Exercise 53
According to the quantum mechanical description of H+

2 explain:
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(1) Why do molecules form? What is a chemical bond?
(2) Consider state ψ+ = (2 + 2S)−1/2(χA +χB) where nucleus A is at RA = (R

2
, 0, 0) and nucleus

B is at RB = (−R
2
, 0, 0). Compute ψ∗ψ at the coordinate (0,0,0), and compare such probability

density to the sum of probability amplitudes due to φA and φB.

37 H2 Molecule
The H2 molecule can be represented by the following diagram:

-

6

�
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�
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. .
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. .
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. .

.

u u

rr

A

rB2 rA1

e2

rA2

RAB

r12

B

rB1

e1

The diagram includes two electrons, represented by e1 and e2, and two protons A and B. The
Hamiltonian of the system is,

Ĥ = − ~2

2MA

∇2
RA
− ~2

2MB

∇2
RB

+ Ĥel,

where

Ĥel = − ~2

2m
∇2

1 −
e2

rA1

− e2

rB1

− ~2

2m
∇2

2 −
e2

rA2

− e2

rB2

+
e2

r12

+
e2

RAB

.

In analogy to the He atom, it is possible to identify one-electron Hamiltonians (i.e., associated with
electrons 1 and 2),

H+
2 (1) = − ~2

2m
∇2

1 −
e2

rA1

− e2

rB1

,
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and,

H+
2 (2) = − ~2

2m
∇2

2 −
e2

rA2

− e2

rB2

.

A zeroth order solution is obtained by neglecting the repulsion between electrons. Since e2

RAB
contributes only with a constant value to the energy (e.g., a constant parametrized by RAB), we
can make use of the theorem of separation of variables and obtain the solution of the eigenvalue
problem,

Ĥ | ψ >= E | ψ >,

as the product
| ψ >= A | Φ1 >| Φ2 >, (142)

where | Φ1 > and | φ2 > are eigenstates of the H+
2 Hamiltonian and A is the anti-symmetrizing

spin wave function,

A =
1

N
√

2
[α(1)β(2)− β(1)α(2)] .

Note that the hydrogen molecule occupies the same place in the theory of molecular electronic
structure as the helium atom in the theory of atomic electronic structure. Therefore, the correction
due to electronic repulsion can be calculated according to first order perturbation theory as follows,

E = 2EH+
2

(RAB)+ < ψ| e
2

r12

|ψ > − e2

RAB

. (143)

Note that the last term discounts the repulsion between nuclei that has been over-counted.
The equilibrium distance, R(eq)

AB , is obtained by minimizing E with respect to RAB. Substituting
such value into Eq. (143), we obtain the minimum energy of the H2 molecule.
The complete ground state of H2 is described as follows,

ψ =
1

N
√

2
[α(1)β(2)− β(1)α(2)] [1SA(1)1SA(2) + 1SA(1)1SB(2) + 1SB(1)1SA(2) + 1SB(1)1SB(2)] ,

(144)
where N is a normalization factor, obtained by substituting | Φ1 > and | Φ2 > in Eq. (144), by the
ground state wave function of H+

2 ,

Φj =
1√
N

[1SA(j) + 1SB(j)] . (145)

According to Eq. (145), the probability of finding both electrons close to nucleus A (i.e., the proba-
bility of finding the electronic configuration H−A H

+
B ), is determined by the square of the expansion

coefficient associated with the term 1SA(1)1SA(2). Analogously, the probability of finding both
electrons close to nucleus B is proportional to the square of the expansion coefficient associated
with the term 1SB(1)1SB(2). Therefore, terms 1SA(1)1SA(2), 1SB(1)1SB(2) describe ionic con-
figurations, while terms 1SA(1)1SB(2) and 1SB(1)1SA(2) describe covalent structures.
Unfortunately, the LCAO wavefunction, introduced by Eq. (145), predicts the same probability
for ionic and covalent configurations, H+

AH
−
B , H−A H+

B , and HAHB, respectively. This is quite
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unsatisfactory since it is contrary to the chemical experience. The LCAO model predicts that upon
dissociation half of the H2 molecules break into ions H− and H+. Contrary to such prediction, the
H2 molecule dissociates almost always into two hydrogen atoms.

37.1 Heitler-London(HL) Method:
The Heitler-London approach aims to correct the shortcomings of the LCAO description by ne-
glecting the ionic terms altogether. Therefore, the HL wave function of H2 includes only covalent
terms as follows,

ψHL =
1

N ′
√

2
[α(1)β(2)− β(1)α(2)] [1SA(1)1SB(2) + 1SB(1)1SA(2)] .

This wave function gives a better description of the energy as a function of RAB and predicts the
proper asymptotic behavior at large internuclear distances.

37.2 Exercise 54
Prove that, according to the HL approach,

E =
J +K

1 + S2
,

with
J =< 1SA(1)1SB(2)|H|1SA(1)1SB(2) >,

and
K =< 1SA(1)1SB(2)|H|1SB(1)1SA(2) > .

38 Homonuclear Diatomic Molecules
Other homonuclear diatomic molecules (e.g., Li2, O2, He2, F2, N2, ...) can be described ac-
cording to the LCAO approach introduced with the study of the H+

2 molecule. A general feature
of the LCAO method is that a combination of two atomic orbitals on different centers gives two
molecular orbitals (MO). One of these molecular orbitals is called bonding and the other one is
called antibonding. The bonding state is more stable than the system of infinitely separated atomic
orbitals. On the other hand, the antibonding state is less stable than the isolated atomic orbitals. The
description of the H+

2 molecule discussed in previous sections can be summarized by the following
diagram:
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This diagram introduces the nomenclature of states of homonuclear diatomic molecules, which is
determined by the following aspects:

1. Nature of the atomic orbitals in the linear combination (e.g., 1S orbitals in the study of the
H+

2 molecules).
2. Eigenvalue of L̂z, with z the internuclear axis (e.g., such eigenvalue is zero for the H+

2

molecule and, therefore, the orbital is called σ).
3. Eigenvalue of the inversion operator through the center of the molecule (e.g., g when the

eigenvalue is 1, and u when the eigenvalue is -1).
4. Stability with respect to the isolated atoms (e.g., an asterisk indicates that the state is unstable

relative to the isolated atoms).
Other homonuclear diatomic molecules involve linear combinations of p orbitals. Such linear

combinations give rise to σ type orbitals when there is no component of the angular momentum
in the bond axis (e.g., we choose the bond axis to be the z axis). An example of such linear
combination is represented by the following diagram:
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In order to classify molecular states according to eigenvalues of L̂z, we make linear combinations
of eigenfunctions of L̂z with common eigenvalues. There are four possible states:

m= 1: 2P+1(A)± 2P+1(B),

⊕︷ ︸︸ ︷
πu2P+1,

	︷ ︸︸ ︷
π∗g2P+1,

m=-1: 2P−1(A)± 2P−1(B), πu2P−1, π
∗
g2P−1.

All of these linear combinations are π states, because λ = |m| = 1 for all of them. In order to
justify their symmetry properties with respect to inversion we analyze the following particular case,

πu2P+1 = 2P+1(A) + 2P+1(B) =
1

8
√
π

(
z

a
)5/2(eiφAe−

zrA
2a rAsinθA + eiφBe−

zrB
2a rBsinθB),

which is represented by the following diagram:
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πu2P+1 orbital

A

(x, y, z)

rA

θA

θA′

rA′

θB′

θB

B

r′B

rB

u u

r

r
(−x,−y,−z)

z nodal line

This diagram shows that under inversion through the origin, coordinates are transformed as follows,
rA → rB, θA → θB,
rB → rA, θB → θA,
φA = φB = φ,
φ→ φ+ π,
ei(φ+π) = eiφeiπ = −eiφ, because eiπ = Cosπ︸ ︷︷ ︸

−1

+iSinπ︸︷︷︸
0

.

The states constructed with orbitals P−1 differ, relative to those constructed with orbitals p+1, only
in the sign of phase φ introduced by the following expression,

π∗g2P+1 =
1

8
√
π

(
z

a
)5/2eiφ(e−

zrA
2a rAsinθA + e−

zrB
2a rBsinθB).

This function has a nodal xy plane and is described by the following diagram:
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nodal xy plane

105



Since atomic orbitals 2px, and 2py are linear combinations of atomic orbitals 2p+1 and 2p−1 molec-
ular orbitals πu2p+1 and πu2p−1 can be combined to construct molecular orbitals πu2px, and πu2py
as follows,

πu2px = 2px(A) + 2px(B),
πu2py = 2py(A) + 2py(B).

Note, however, that molecular orbitals πu2px, and πu2py are not eigenfunctions of L̂z.
The order of increasing energy for homonuclear diatomic orbitals is described by the following
diagram:
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The electronic structure of homonuclear diatomic molecules can be approximated to zeroth order
by filling up the unperturbed states according to the Pauli exclusion principle. However, we should
always keep in mind that we are using the H+

2 molecular orbitals (i.e., the unperturbed states) and,
therefore, we are neglecting the repulsive interaction between electrons.
This is the same kind of approximation implemented in the construction of zeroth order wave func-
tions of atoms according to hydrogenlike atomic orbitals, where the repulsion energy between elec-
trons was disregarded and the electronic configuration was constructed by filling up hydrogenlike
atomic orbitals according to the Pauli exclusion principle.

38.1 Exercise 55
(A) Predict the multiplicity of the ground state of O2.
(B) Show that the ground electronic state of C2 is a singlet.
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39 Conjugated Systems: Organic Molecules
The Hamiltonian of a molecule containing n electrons and N nuclei can be described according to
the Born-Oppenheimer approximation as follows,

Ĥel =
n∑
i=1

(
− ~2

2mi

∇2
ri
−

N∑
j=1

zje
2

rji

)
+

n∑
i

n∑
k>i

e2

rik
.

This Hamiltonian includes terms that describe both π and σ electrons. However, the distinctive
chemistry of conjugated organic molecules is usually relatively independently of σ-bonds, and
rather correlated with the electronic structure of π-electrons. For example, the spectroscopy of
conjugated organic molecules, as well as ionization potentials, dipole moments and reactivity, can
be described at least qualitatively by the electronic structure of the π-electron model. Therefore,
we make the approximation that the solution of the eigenvalue problem of a conjugated system can
be factorized as follows,

ψ = Âψσψπ,

where Â is an antisymmetrization operator upon exchange of σ and π electrons.
The potential due to the nuclei and the average field due to σ electrons, can be described by the
following Hamiltonian:

Ĥπ =
nπ∑
i=1

ĥcore(i) +
nπ∑
i=1

nπ∑
k>i

e2

rik
, (146)

where ĥcore includes kinetic energy of π electrons, interaction of π electrons with σ electrons,
and shielding of nuclear charges. An approximate solution can be obtained by disregarding the
repulsion between π electrons in Eq. (146), and by approximating the Hamiltonian of the system
as follows,

Ĥ(0)
π ≈

nπ∑
i=1

Heff(i), where Ĥeff(j) = − ~2

2mj

∇2
rj
−

N∑
k=1

z′ke
2

rkj
. (147)

The effective nuclear charge z′k incorporates the average screening of nuclear charges due to σ and
π electrons.
Since Ĥeff(j) depends only on coordinates of electron j, we can implement the separation of vari-
ables method and solve the eigenvalue problem,

Ĥ(0)
π |ψπ >= Eπ|ψπ >,

according to the factorizable solution |ψπ >=
∏nπ

j=1 |φj >, where,

Ĥeff(j) | φj >= εj | φj > . (148)

The energy Eπ is obtained by using the Pauli exclusion principle to fill up the molecular orbitals,
after finding the eigenvalues εj .
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Eq. (148) is solved by implementing the variational method, assuming that | φj > can be written
according to a linear combination of atomic orbitals,

|φj >=
N∑
k=1

Cjk|χk >,

where |χk > represents a 2pz orbital localized in atom k and the sum extends over all atoms in the
conjugated system.
Example:
Consider the ethylene molecule represented by the following diagram:

C C

H

H

H

H

1 2&%
'$

&%
'$&%

'$

&%
'$

The diagram shows σ bonds in the equatorial plane of the molecule, and π orbitals 1 and 2 that are
perpendicular to such plane.
The LCAO for ethylene is,

| φj >= cj1 | χ1 > +cj2 | χ2 > . (149)

Therefore, the secular equations can be written as follows,
(H11 − S11εj) cj1 + (H12 − S12εj) cj2 = 0,
(H21 − S21εj) cj1 + (H22 − S22εj) cj2 = 0.

Hückel Method:
The Hückel Method is a semi-empirical approach for solving the secular equations. The method
involves making the following assumptions:

1. Hkk = α, where α is an empirical parameter (vide infra).
2. Hjk = β, when j = k ± 1; and Hjk = 0, otherwise. The constant β is also an empirical

parameter (vide infra).
3. Sjk = 1, when k = j ± 1; and Sjk = 0, otherwise.

108



According to the Hückel model, the secular determinant becomes,∣∣∣∣α− εj β
β α− εj

∣∣∣∣ = 0.

Therefore, the eigenvalues of the secular determinant are εj = α± β and can be represented by the
following diagram:

6

..................................................α

Energy

E2 = α− β, | φ2 >= 1√
2

(| χ1 > − | χ2 >)

E1 = α + β, | φ1 >= 1√
2

(| χ1 > + | χ2 >)

Eπ = 2E1 = 2α + 2β, | φπ >= 1√
2
| φ1(1) >| φ1(2) > (αβ − βα) .

The energy difference between ground and excited states is ∆E = E2 − E1 = −2β. Parameter β
is usually chosen to make ∆E coincide with the peak of the experimental absorption band of the
molecule.

An interactive program to perform electronic structure calculations within the ”Simple Huckel
Molecular Orbital” approximation can be found here .

A tutorial to perform electronic structure calculations and simulations of electronic dynamics
within the ”Extended Huckel Molecular Orbital” method approximation can be found here .

40 Self-Consistent Field Hartree-Fock Method
The self-consistent field (SCF) Hartree-Fock (HF) method is a variational approach for finding the
Slater determinant of a system of n-electrons,

|Φ〉 = |χ1χ2...χn〉 (150)

that minimizes the expectation value of the energy:

Ē =
〈Φ|Ĥ|Φ〉
〈Φ|Φ〉

,
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for a fixed nuclear configuration.
The one-electron basis functions χi are typically expressed as linear combinations of spin or-

bitals φk, as follows:
χi =

∑
k

ckiφk, (151)

allowing for the variational approach to minimize Ē with respect to the expansion coefficients cki.
The energy is computed according to the usual Hamiltonian of a system of N nuclei and n

electrons, with a fixed nuclear configuration:

Ĥel =
n∑
i=1

ĥ(i) +
n∑
i

n∑
k>i

e2

rik
, (152)

where the spin-orbit coupling interactions are neglected. The first term in Eq. (152) is the sum of
1-electron core Hamiltonians,

ĥ(i) = − ~2

2me

∇2
ri
−

N∑
j=1

zje
2

rji
, (153)

describing a system of n non-interacting electrons in the electrostatic potential of the nuclei. The
second term in Eq. (152) is the sum of electron-electron interactions.

As a simple example, we consider the H2 molecule with n = 2, N = 2 and 〈r1, r2|Φ〉 =
2−1/2 (〈r1|χ1〉〈r2|χ2〉 − 〈r1|χ2〉〈r2|χ1〉),

〈r1, r2|Ĥel|Φ〉 = 2−1/2
[
〈r2|χ2〉〈r1|ĥ(1)|χ1〉 − 〈r2|χ1〉〈r1|ĥ(1)|χ2〉+ 〈r1|χ1〉〈r2|ĥ(2)|χ2〉

−〈r1|χ2〉〈r2|ĥ(2)|χ1〉+ e2

r12
[〈r1|χ1〉〈r2|χ2〉 − 〈r1|χ2〉〈r2|χ1〉]

]
(154)

and the energy expectation value

Ē = 〈Φ|Ĥel|Φ〉
= 1

2

[
〈χ1|ĥ(1)|χ1〉+ 〈χ2|ĥ(1)|χ2〉+ 〈χ2|ĥ(1)|χ2〉+ 〈χ1|ĥ(1)|χ1〉+

+[〈χ1χ2| − 〈χ2χ1|] e
2

r12
[|χ1χ2〉 − |χ2χ1〉]

]
= 〈χ1|ĥ(1)|χ1〉+ 〈χ2|ĥ(1)|χ2〉+ 1

2
[〈χ1χ2| e

2

r12
|χ1χ2〉

−〈χ1χ2| e
2

r12
|χ2χ1〉 − 〈χ2χ1| e

2

r12
|χ1χ2〉+ 〈χ2χ1| e

2

r12
|χ2χ1〉]

(155)

since ĥ(1) = ĥ(2), according to Eq. (153). In general,

Ē =
n∑
j=1

〈χj|ĥ(1)|χj〉+
1

2

n∑
j=1

∑
k 6=j

〈χjχk|
e2

r12

|χjχk〉 − 〈χjχk|
e2

r12

|χkχj〉, (156)

or

Ē =
n∑
j=1

〈χj|ĥ(1)|χj〉+
1

2

n∑
j=1

n∑
k=1

〈χjχk|
e2

r12

|χjχk〉 − 〈χjχk|
e2

r12

|χkχj〉, (157)
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since 〈χjχk| e
2

r12
|χjχk〉 − 〈χjχk| e

2

r12
|χkχj〉 = 0, when j = k.

To minimize Ē with respect to χj , subject to the constraint of orthonormal orbitals, we apply
the Lagrange multiplier method for the following functional:

L(χ1, ..., χn) = Ē +
∑
j

∑
k

εjk[〈χj|χk〉 − δjk], (158)

where εjk are the Lagrange multipliers. Varying the spin orbitals χj in an infinitesimal amount δj ,
with respect to the expansion coefficients ckj , we obtain:

δL(χ1, ..., χn) = δĒ +
n∑
j=1

n∑
k=1

εjk[〈δχj|χk〉+ 〈χj|δχk〉], (159)

where
δĒ =

∑n
j=1〈δχj|ĥ(1)|χj〉+ 〈χj|ĥ(1)|δχj〉

+1
2

∑n
j=1

∑n
k=1〈δχjχk|

e2

r12
|χjχk〉+ 〈χjδχk| e

2

r12
|χjχk〉

+〈χjχk| e
2

r12
|δχjχk〉+ 〈χjχk| e

2

r12
|χjδχk〉

−〈δχjχk| e
2

r12
|χkχj〉 − 〈χjδχk| e

2

r12
|χkχj〉

−〈χjχk| e
2

r12
|δχkχj〉 − 〈χjχk| e

2

r12
|χkδχj〉

(160)

Substituting Eq. (160) into Eq. (159) and simplifying, we obtain:

δL =
∑n

j=1〈δχj|ĥ(1)|χj〉+
∑n

j=1

∑n
k=1〈δχjχk|

e2

r12
|χjχk〉 − 〈δχjχk| e

2

r12
|χkχj〉

+
∑n

j=1

∑n
k=1 εjk〈δχj|χk〉+ c.c.

(161)

which gives,

δL =
∑n

j=1〈δχj(1)|
[
ĥ(1)|χj(1)〉+

∑n
k=1〈χk(2)| e2

r12
|χk(2)〉|χj(1)〉

−〈χk(2)| e2
r12
|χj(2)〉|χk(1)〉+

∑n
j=1

∑n
k=1 εjk|χk〉

]
+ c.c. = 0

(162)

Since δχj is arbitrary, it must be that the expression in square brackets is equal to zero for all j:[
ĥ(1) +

n∑
k=1

〈χk(2)| e
2

r12

[1− P̂12]|χk(2)〉

]
|χj(1)〉 =

n∑
j=1

n∑
k=1

εjk|χk〉 (163)

where the operator P̂12 permutes the states of electrons 1 and 2.
To write Eq. (163) in the canonical eigenvalue form, we change the basis set according to the

unitary transformation,
|χ′j〉 =

∑
k

|χk〉Γkj, (164)

with ΓΓ† = 1. Considering that the Lagrange multipliers matrix ε is Hermitian (since the func-
tional L is real), it is always possible to find a Γ that diagonalizes ε according to the similarity
transformation:

ε′ = Γ†εΓ (165)
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Such a transformation defines the set of canonical spin orbitals |χ′j〉 for which

f̂ (1)|χ′j〉 = ε′jj|χ′j〉. (166)

for j = 1 – n, where f̂ (1) is the Fock operator,

f̂ (1) = ĥ(1) + V̂ HF
1 , (167)

where V̂ HF
1 is the Hartree-Fock potential describing the electron-electron interactions, as follows:

V̂ HF
1 = J1(r1)− X̂1(r1), (168)

where J1(r1) is the Coulomb mean-field potential,

J1(r1) =
n∑
k=1

〈χ′k|
e2

r12

|χ′k〉. (169)

The matrix elements in Eq. (169) are integrals over the spatial and spin coordinates of electron 2.
Analogously, X̂1(r1) is defined as the exchange operator,

X̂1(r1) =
n∑
k 6=j

〈χ′k(2)| e
2

r12

P̂12|χ′k(2)〉. (170)

Equation (166) defines a self-consistent field (SCF) problem since the operator f̂ (1), required
to find the solutions χ′j , depends on those functions through J1 and X̂1. To solve this SCF prob-
lem, we first obtain approximate solutions χ′j by approximating f̂ (1) by ĥ(1) (i.e., neglecting the
electron-electron interactions introduced by J1 and X̂1), or by using a semiempirical method (like
the Hueckel method described later in these lectures). These approximate functions χ′j are then
used to compute J1 and X̂1, giving an approximate f̂ (1) that can be used to obtain improved func-
tions χ′j . The process is repeated until convergence.

To solve the Hartree-Fock Eq. (166) by solving a set of matrix equations, we substitute χ′j by
a linear combination of atomic orbitals, analogous Eq. (151): |χ′j〉 =

∑
k Ckj|ψk〉. Making the

substitution and multiplying from the left with 〈ψk′ |, we obtain:∑
k

〈ψk′|f̂(j)|ψk〉Ckj = εjj
∑
k

〈ψk′ |ψj〉Ckj, (171)

or, in matrix form,
FC = SCε′ (172)

where we have introduced the overlap matrix Sjk = 〈ψj|ψk〉, the Fock matrix Fjk = 〈ψj|f̂ |ψk〉, and
the matrix of column eigenvectors Ckj defining the canonical molecular orbitals χ′j , with energies
εjj , expressed in the basis of atomic orbitals |ψk〉.
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40.1 Restricted Closed Shell Hartree-Fock
The so-called closed-shell restricted Hartree-Fock method is essentially the Hartree-Fock approach
implemented for systems with an even number n of electrons, with each orbital j populated by 2
electrons with opposite spins (one with spin α, described by ψj , and the other one with spin β,
described by ψ̄j). It is called restricted to indicate that the spin states are restricted to be either α
or β, and closed shell to indicate that each shell ψj is full with 2 electrons. The system is described
by the Slater determinant,

|Φ〉 = |χ1χ2...χn〉
= |ψ1ψ̄1...ψn/2ψ̄n/2〉

(173)

where χ1 = ψ1, χ2 = ψ̄1, ..., χn−1 = ψn/2, χn = ψ̄n/2.
The energy of this closed-shell restricted Hartree-Fock wave function is computed, according

to Eq. (157), by replacing the sums over n spin-orbitals χj by sums over n/2 spin-orbitals with
spin α, ψj and n/2 spin-orbitals with spin β, ψ̄j , as follows:

Ē =
∑n/2

j=1〈ψj|ĥ(1)|ψj〉+ 1
2

∑n/2
j=1

∑n/2
k=1〈ψjψk| e

2

r12
|ψjψk〉 − 〈ψjψk| e

2

r12
|ψkψj〉

+1
2

∑n/2
j=1

∑n/2
k=1〈ψjψ̄k| e

2

r12
|ψjψ̄k〉 −

��
���

���
�XXXXXXXXX

〈ψjψ̄k| e
2

r12
|ψ̄kψj〉

+
∑n/2

j=1〈ψ̄j|ĥ(1)|ψ̄j〉+ 1
2

∑n/2
j=1

∑n
k=1〈ψ̄jψk|

e2

r12
|ψ̄jψk〉 −

��
���

���
�XXXXXXXXX

〈ψ̄jψk| e
2

r12
|ψkψ̄j〉

+1
2

∑n/2
j=1

∑n/2
k=1〈ψ̄jψ̄k| e

2

r12
|ψ̄jψ̄k〉 − 〈ψ̄jψ̄k| e

2

r12
|ψ̄kψ̄j〉,

(174)

where we can cross out the terms that cancel upon integration over the spin variable to obtain:

Ē = 2
∑n/2

j=1〈ψj|ĥ(1)|ψj〉+
∑n/2

j=1

∑n/2
k=1 2〈ψjψk| e

2

r12
|ψjψk〉 − 〈ψjψk| e

2

r12
|ψkψj〉. (175)

Analogously to the general case, we minimize Ē with respect to ψj , subject to the constraint of
orthonormal orbitals by applying the Lagrange multiplier method for the following functional:

L(ψ1, ..., ψn) = Ē +
∑
j

∑
k

εjk[〈ψj|ψk〉 − δjk], (176)

where εjk are the Lagrange multipliers. Varying the spin orbitals ψj in an infinitesimal amount δj ,
with respect to expansion coefficients ckj , we obtain:

δL(ψ1, ..., ψn) = δĒ +
n∑
j=1

n∑
k=1

εjk[〈δψj|ψk〉+ 〈ψj|δψk〉]. (177)

Varying the spatial orbitals ψj in an infinitesimal amount δj with respect to the expansion coef-
ficients cj , we obtain:

δĒ = 2
∑n/2

j=1〈δψj|ĥ(1)|ψj〉+
∑n/2

j=1

∑n/2
k=1 2〈δψjψk| e

2

r12
|ψjψk〉 − 〈δψjψk| e

2

r12
|ψkψj〉

+
∑n/2

j=1

∑n/2
k=1 2〈ψjδψk| e

2

r12
|ψjψk〉 − 〈ψjδψk| e

2

r12
|ψkψj〉

+2
∑n/2

j=1〈ψj|ĥ(1)|δψj〉+
∑n/2

j=1

∑n/2
k=1 2〈ψjψk| e

2

r12
|δψjψk〉 − 〈ψjψk| e

2

r12
|δψkψj〉

+
∑n/2

j=1

∑n/2
k=1 2〈ψjψk| e

2

r12
|ψjδψk〉 − 〈ψjψk| e

2

r12
|ψkδψj〉

(178)
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which gives

δĒ = 2
∑n/2

j=1〈δψj|ĥ(1)|ψj〉+ 2
∑n/2

j=1

∑n/2
k=1 2〈δψjψk| e

2

r12
|ψjψk〉 − 〈δψjψk| e

2

r12
|ψkψj〉+ c.c.

(179)
Substituting Eq. (179) into Eq. (177), we obtain:

δL = 2

n/2∑
j=1

〈δψj|

ĥ(1)|ψj〉+

n/2∑
k=1

2〈ψk|
e2

r12

|ψk〉|ψj〉 − 〈ψk|
e2

r12

P̂12|ψk〉|ψj〉+ εjk|ψk〉

+ c.c. = 0,

(180)
which is satisfied when ĥ(1) +

n/2∑
k=1

〈ψk|
e2

r12

[2− P̂12]|ψk〉

 |ψj〉 = εjk|ψk〉. (181)

To write Eq. (181) in the canonical eigenvalue form, we change the basis set according to the
unitary transformation,

|ψ′j〉 =
∑
k

|ψk〉Γkj, (182)

with ΓΓ† = 1. Considering that the Lagrange multipliers matrix ε is Hermitian (since the func-
tional L is real), it is always possible to find a Γ that diagonalizes ε according to the similarity
transformation:

ε′ = Γ†εΓ (183)

Such a transformation defines the set of canonical orbitals |ψ′j〉 for which

f̂
(1)
rhf |ψ

′
j〉 = ε′jj|ψ′j〉, (184)

for j = 1 – n/2, where f̂ (1)
rhf is the closed-shell restricted Hartree-Fock operator,

f̂
(1)
rhf = ĥ(1) + V̂ rhf

1 , (185)

where V̂ rhf
j is the restricted Hartree-Fock potential describing the interactions between electrons

of the same spin, as follows:
V̂ rhf

1 = 2J1(r1)− X̂1(r1), (186)

where J1(r1) is the Coulombic mean-field potential due to the presence of other electrons of the
same spin,

J1(r1) =

n/2∑
k=1

〈ψ′k(2)| e
2

r12

|ψ′k(2)〉. (187)

Analogously, X̂1(r1) is defined as the exchange operator,

X̂1(r1) =

n/2∑
k=1

〈ψ′k(2)| e
2

r12

P̂12|ψ′k(2)〉, (188)
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where the permutation operator P̂12 interchanges electrons 1 and 2.
Equation (184) defines a self-consistent field (SCF) problem since f̂ (1)

rhf depends on ψj through
V̂ rhf

1 . To solve this SCF problem, we first obtain approximate solutions ψj by approximating f̂ (1)
rhf

by ĥj (i.e., neglecting the electron-electron interactions introduced by J1 and X̂1), or by using a
semiempirical method (like the Hückel method described in these lectures). The resulting approx-
imate solutions ψj are then used to compute J1 and X̂1, giving a better approximation to f̂ (1)

rhf that
can be used to obtain improved functions ψj . The process is repeated until convergence.

In practice, the restricted Hartree-Fock eigenvalue problem, introduced by Eq. (184), is solved
with a set of matrix equations, obtained by substituting ψ′j by a linear combination of atomic
orbitals, analogous Eq. (151): |ψ′j〉 =

∑n/2
k=1Ckj|ζk〉. Making the substitution and multiplying

from the left with 〈ζk′ |, we obtain:
n/2∑
k=1

〈ζk′|f̂ (1)
rhf |ζk〉Ckj = εjj

n/2∑
k=1

〈ζk′|ζj〉Ckj, (189)

or, in matrix form,
FrhfC = SCε′ (190)

where we have introduced the overlap matrix Sjk = 〈ζj|ζk〉, the restricted Hartree Fock matrix

F rhf
jk = 〈ζj|f̂ (1)

rhf |ζk〉, (191)

and the matrix of column eigenvectors Ckj defining the canonical orbitals ψ′j , with energies εjj , in
the basis of atomic orbitals |ζk〉.

The electronic density ρ(r) of the system with 2 electrons per orbital, populating the lowest n/2
states (i.e., closed-shell Hartree-Fock density) can be computed, as follows:

ρ(r) = 2
∑n/2

k=1 ψ
′
k
∗(r)ψ′k(r)

= 2
∑

lm ζ
∗
l (r)ζm(r)

∑n/2
k=1C

∗
klCmk

= 2
∑

lm ζ
∗
l (r)ζm(r)Plm

(192)

where

Plm =

n/2∑
k=1

C∗klCmk (193)

define the elements of the electronic density matrix P.
The elements of the density matrix, Plm, are thus computed from the solution of the eigenvalue

problem, introduced by Eq. (190). The resulting elements of the density matrix Plm can be used to
compute not only the density, according to Eq. (192), but also the restricted Hartree-Fock matrix,
according to Eq. (191) since f̂ (1)

rhf = ĥ(1) + V̂ rhf
1 , with V̂ rhf

1 = 2J1(r1)− X̂(r1), where

J1(r1) =
∑n/2

k=1

∫
dr2ψ

′∗
k(r2) e

2

r12
ψ′k(r2)

=
∑n/2

k=1

∫
dr2

∑n/2
l=1

∑n/2
m=1C

∗
kmζ

∗
m(r2) e

2

r12
Clkζl(r2)

=
∑n/2

l=1

∑n/2
m=1

∑n/2
k=1C

∗
kmClk

∫
dr2ζ

∗
m(r2) e

2

r12
ζl(r2)

=
∑n/2

l=1

∑n/2
m=1 Pml

∫
dr2ζ

∗
m(r2) e

2

r12
ζl(r2)

(194)
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and
X̂1(r1) =

∑n/2
k=1〈ψ′k| e

2

rjk
P̂kj|ψ′k〉,

=
∑n/2

l=1

∑n/2
m=1 Pml

∫
dr2ζ

∗
m(r2) e

2

r12
P̂12ζl(r2).

(195)

Therefore,

f̂
(1)
rhf (r1) = ĥ(1) +

n/2∑
l=1

n/2∑
m=1

Pml

[
2〈ζm(r2)| e

2

r12

|ζl(r2)〉 − 〈ζm(r2)| e
2

r12

P̂12|ζl(r2)〉
]
, (196)

and
F rhf
jk = 〈ζj|f̂ (1)

rhf |ζk〉,
= Hcore

jk +Gjk,
(197)

with
Hcore
jk = 〈ζj(1)|ĥ(1)|ζk(1)〉, (198)

and

Gjk =

n/2∑
l=1

n/2∑
m=1

Pml

[
2〈ζj(r1)ζm(r2)| e

2

r12

|ζl(r2)ζk(r1)〉 − 〈ζj(r1)ζm(r2)| e
2

r12

P̂12|ζl(r2)ζk(r1)〉
]
.

(199)
To solve Eq. (190), we first diagonalize the overlap matrix by computing the matrix X = S−1/2

that transforms the overlap matrix into the identity matrix, as follows: X†SX = 1. Then, we
introduce the matrix C̃, as follows:

C = XC̃, (200)

that, according to Eq. (190), satisfies the eigenvalue problem:

FrhfXC̃ = SXC̃ε′ (201)

or
F̃rhfC̃ = C̃ε′ (202)

with
F̃rhf = X†FrhfX. (203)

These equations allow for the implementation of the self-consistent-field restricted Hartree-
Fock (SCF RHF) method, for a fixed nuclear configuration, as follows:

1. Calculate the matrix elements Sjk,Hcore
jk and the 2-electron integrals 〈ζj(r1)ζm(r2)| e2

r12
|ζl(r2)ζk(r1)〉

and 〈ζj(r1)ζm(r2)| e2
r12
|ζl(r1)ζk(r2)〉.

2. Diagonalize Sjk to obtain Xjk

3. Obtain an approximate density matrix Pjk, according to Eq. (193), by solving Eq. (190) with
f̂ (1) ≈ ĥ(1), or f̂ (1) ≈ ĥ

(1)
EH , where ĥ(1)

EH is the semiempirical extended-Hückel Hamiltonian
of the system.
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4. Compute the matrix elements Gjk, according to Eq. (199), using Pjk and the 2-electron
integrals.

5. Compute the Fock matrix F rhf
jk , according to Eq. (197), by using Hcore

jk , Pjk and the 2-
electron integrals.

6. Compute the transformed Fock matrix F̃ rhf
jk by using F rhf

jk and Xjk, according to Eq. (203).

7. Obtain C̃ and ε′ by solving Eq. (202).

8. Calculate C by using Eq. (200).

9. Compute a new density matrix P, according to Eq. (193), based on C obtained in (8).

10. If P has changed more than a given tolerance, relative to the previous iteration, go to (4).
Otherwise, the SCF calculation has converged and the solution is given by the current eigen-
vectors C and eigenvalues ε.

The total energy provided by Hartree-Fock theory is usually satisfactory since it is dominated
by high-density inner-shell electrons that are well described by HF. However, the description of
low-density valence electrons provided by HF theory is usually unsatisfactoy since it neglects im-
portant correlation energy terms. While correlation effects can be addressed through configuration-
interaction corrections, the complexity of the corrections, their sensitivity to the choice of basis
functions, and the increase in effort required with the decrease in spacing between energy lev-
els, preclude application to large systems. In addition, the long range of the Coulomb interaction
produces unrealistic features in the HF energy eigenvalues, such as vanishing density of states at
the Fermi level in metals, and unphysically large band gaps in insulators. The density-functional
theory, described in the following section, provides an alternative approach.

40.2 Configuration Interaction
Improvement over the one-determinant trial wave function can be achieved by using a trial wave
function that involves a linear combination of Slater determinants. This method is known as con-
figuration interaction. The energy correction over the Hartree-Fock energy,

Ecor = E − EHF ,

is known as correlation energy.

40.3 Supplement: Green’s Function
The goal of this supplementary section is to explain how to compute a function f(A) of a hermitian
matrix A and subsequently introduce the Green’s function. Analogously to the function f(x) of
simple variable x, f(A) can be expanded in powers of A:

f(A) =
∞∑
n=0

αnA
n. (204)
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with αn = 1
n!

∂f(x)
∂x

∣∣∣
x=0

. Equation (204) shows how to compute a function of a matrix as a sum of
products of such matrix.

Note that when the matrix is diagonal

A =


a1 0 · · · 0
0 a2 · · · 0
· · · · · · · · · · · ·
0 0 · · · aN

 , (205)

then

An =


an1 0 · · · 0
0 an2 · · · 0
· · · · · · · · · · · ·
0 0 · · · anN

 . (206)

When A is not diagonal, it can be diagonalized by the similarity transformation a = c†Ac,
where a is the diagonal matrix of eigenvalues a1, a2, · · · , aN and c is the matrix of column eigen-
vectors of A. Therefore,

An = [cac†]n,

= canc†
(207)

since c†c = 1. Substituting Eq. (207) into Eq. (204), we obtain:

f(A) = cf(a)c†. (208)

Optional Exercise: (A) Show that the matrix elements of the Green’s function G0 = (E1 −
H0)−1 can be computed, according to Eq. (208), as follows:

[G0]ik =
N∑
j=1

c
(i)
j c

(k)∗
j

E − E(0)
j

, (209)

where E(0)
j is the j-th eigenvalue of H0 associated with the eigenvector cj = (c

(1)
j , c

(2)
j , · · · , c(N)

j ).
(B) Show that the Green’s function

G = (E1− (H0 + V))−1, (210)

obeys the Dyson equation:
G = G0 + G0VG. (211)

Hint: Note that by multiplying both sides of Eq. (210) by G0(E1− (H0 + V)), we obtain:

G0(E1− (H0 + V))G = G0. (212)

As an application of the Green’s function, we consider the eigenvalue problem:[
Ĥ0 + V̂

]
ψE(x) = EψE(x), (213)
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which can be re-written, as follows:

( ˆE −H0)ψE(x) = φ(x), (214)

with φ(x) = V̂ ψE(x). Expanding ψE(x) and φ(x) in the basis of eigenfunctions of Ĥ0:

Ĥ0ψα(x) = E(0)
α ψα(x), (215)

we obtain:
ψE(x) =

∑
α

aα,Eψα(x), (216)

and
φ(x) =

∑
α

bαψα(x), (217)

where
bα =

∫
dxψ∗α(x)φ(x). (218)

In addition, substituting Eqs. (216) and (217) into Eq. (214), we obtain:∑
β

aβ,E(E − E(0)
β )ψβ(x) =

∑
β

bβψβ(x), (219)

and multiplying both sides of Eq. (219) by ψ∗α(x) and integrating over x, we obtain:

aα,E =
bα

E − E(0)
α

,

=
1

E − E(0)
α

∫
dx′ψ∗α(x′)φ(x′).

(220)

Substituting Eq. (220) into Eq. (216), we obtain:

ψE(x) =

∫
dx′
∑
α

ψ∗α(x′)ψα(x)

E − E(0)
α

φ(x′),

=

∫
dx′G0(x, x′;E)V (x′)ψE(x′),

(221)

where G0(x, x′;E) =
∑

α
ψ∗α(x′)ψα(x)

E−E(0)
α

has poles at values of E equal to the eigenvalues of Ĥ0.
As a by-product of Eq. (221), we note that in the particular case of φ(x′) = δ(x′ − x′′), we

obtain:

ψE(x) =
∑
α

ψ∗α(x′′)ψα(x)

E − E(0)
α

,

= G0(x, x′′;E).

(222)
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Substituting Eq. (222) into Eq. (214), we obtain:

( ˆE −H0)G0(x, x′′;E) = δ(x− x′′), (223)

or in matrix form,
(E1−H0)G0(E) = 1. (224)

Equation (222) shows that the Green’s function can be computed in terms of the eigenfunctions
ψα(x) and eigenvalues Eα of Ĥ0.

Analogously, we obtain the Green’s function of Ĥ = Ĥ0 + V̂ :

(E − Ĥ0 − V )G(x, x′′;E) = δ(x− x′′), (225)

or in matrix form,
(E1−H0 − V )G(E) = 1, (226)

which, according to Eq. (211), obeys the Dyson integral equation:

G(x, x′′;E) = G0(x, x′′;E) +

∫
dx′G0(x, x′;E)V (x′)G(x′, x′′;E), (227)

and has poles at values of E equal to the eigenvalues of Ĥ .
It is important to note that the Green’s function can be used to compute several functions,

including the density matrix ρ(x, x′′) =
∑

α nαψ
∗
α(x′′)ψα(x), as follows:

ρ(x, x′′) =
i

π

∫ ∞
−∞

dE n(E)G(x, x′′;E). (228)

To prove Eq. (228), we compute the integral

I(x, x′′) =

∫ ∞
−∞

dE n(E)G(x, x′′;E). (229)

Substituting Eq. (222) into Eq. (229), we obtain:

I(x, x′′) =
∑
α

ψ∗α(x′′)ψα(x)

∫ ∞
−∞

dE
n(E)

E − E(0)
α

=

∫ ∞
−∞

dE f(E)

(230)

with f(E) =
∑

α ψ
∗
α(x′′)ψα(x)n(E)/(E − E

(0)
α ). Note that the argument f(E) of this integral,

introduced by Eq. (230), has singularities (poles) at the energy values E = E
(0)
α . To evaluate that

integral we introduce the complex ’energy’ Z = Zr + iZi, with Zr = E, and the Cauchy principal
value P [f(Z)] (i.e., integral over the real axis excluding each singularity with an exclusion radius
ε), which converges to the desired integral in the limit with ε → 0 (see Fig. (1)). We note that
according to the residue theorem ,

∮
C
dZf(Z) = 0, since the overall integration contour C (i.e.,
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Figure 1: Poles of the integrand of Eq. (230) at E = E
(0)
α and integration contour.

including the real axis excluding the singularities, the half-circles around the singularities and the
big half-circle CR) encloses an area without singularities. In addition,∮

C

dZf(Z) = P [f(Z)] +
1

2

∑
α

∮
ζα

dZf(Z) +

∮
CR

dZf(Z). (231)

Since the full-circle contour integrals around the poles are:∮
ζα

f(Z)dZ = 2πi Res[f, Eα], (232)

with Res[f, Eα] = n(Eα)ψ∗α(x′′)ψα(x) and the integral over CR vanishes for R→∞, we obtain:∫ ∞
−∞

dE n(E)G(x, x′′;E) = P [f(Z)]

= −iπ
∑
α

Res[f, Eα]

= −iπ
∑
α

n(Eα)ψ∗α(x′′)ψα(x)

= −iπρ(x, x′′)

(233)

which is equivalent to Eq. (228).
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41 Second Quantization Mapping

The goal of this section is to introduce the single-particle basis {ψν1(r), ψν2(r), ψν3(r), · · · } for
representation of the N-particle state Ψ(r1, r2, · · · , rN) in terms of symmetrized product states
Ŝ±
∏N

j=1 ψνj(rj), and its correspondence to the occupation number representation |nν1 , nν2 , nν3 , · · · 〉,
where nνj is the number of particles in state ψνj(r) in the product state representation. Furthermore,
we introduce the creation â†j and anihilation âj operators (i.e., operators that raise or lower the occu-
pation numbers nνj by one unit) and we show that any single particle operator Â can be expressed
in terms of â†j and âj , as follows: Â =

∑
νj ,νk

Aνj ,νk â
†
j âk, with Aνj ,νk = 〈νj|Â|νk〉.

41.1 Single-Particle Basis
The state of the N-particle system Ψ(r1, r2, · · · , rN) can be represented in a complete orthonormal
basis composed of single-particle states {ψνj(r)}, satisfying that∑

νj

ψνj(r
′)∗ψνj(r) = δ(r′ − r), (234)

and ∫
dr ψνj(r)∗ψνk(r) = δνjνk . (235)

To represent Ψ(r1, r2, · · · , rN), we first project the state along the basis set of r1, as follows:

Ψ(r1, r
′
2, · · · , r′N) =

∑
ν1

ψν1(r1)

∫
dr′1ψν1(r

′
1)∗Ψ(r′1, r

′
2, · · · , r′N), (236)

and then we proceed analogously with the other coordinates, so we obtain:

Ψ(r1, r2, · · · , rN) =
∑

ν1,··· ,νN

cν1,··· ,νN

N∏
j=1

ψνj(rj), (237)

with

cν1,··· ,νN =

∫
dr′1ψν1(r

′
1)∗ · · ·

∫
dr′NψνN (r′N)∗Ψ(r′1, r

′
2, · · · , r′N). (238)

While the product states
∏N

j=1 ψνj(rj) form a complete basis for the N-particle Hilbert space, they
do not necessarily fulfill the indistinguishability requirement of bosons (or fermions) so they need to
be symmetrized (or anti-symmetrized). Applying the bosonic symmetrization Ŝ+ (or the fermionic
anti-symmetrization Ŝ−) operator, we obtain linear combinations of product states with the proper
symmetry to describe systems of N-bosons (or fermions), according to the following normalized
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permanents (or Slater determinants):

Ŝ±

N∏
j=1

ψνj (rj) =
1∏

ν

√
nν !

1√
N !

∣∣∣∣∣∣∣∣
ψν1(r1) ψν1(r2) · · · ψν1(rN )
ψν2(r1) ψν2(r2) · · · ψν2(rN )
· · · · · · · · · · · ·

ψνN (r1) ψνN (r2) · · · ψνN (rN )

∣∣∣∣∣∣∣∣
±

,

= 〈r|ψν1ψν2 · · ·ψνN 〉,

(239)

which are linear combinations of product states corresponding to all possible permutation on the
set of N coordinates. Each term of the Slater determinant has a sign (−1)p, corresponding to the
number of permutations p, while the bosonic permanent terms are all sing-less.

41.2 Occupation Number Basis
The product states, introduced by Eq. (239), are linear combinations of occupied single-particle
states. The occupation number representation |nν1 , nν2 , nν3 , · · · 〉, simply lists the number of par-
ticles nνj in each occupied state νj , with

∑
j nνj = N . Such states are eigenstates of the number

operators,
n̂νk |nν1 , nν2 , nν3 , · · · 〉 = nνk |nν1 , nν2 , nν3 , · · · 〉. (240)

For fermions, nνk = 0, 1 while for bosons nνk = 0, 1, 2, · · · is a positive integer.

41.3 Creation and Anihilation Operators
Bosons: The creation and anihilation operators of bosons, b̂†j and b̂j , are defined to ensure that the
number operator n̂νj = b̂†j b̂j gives the number of bosons in state νj as follows:

n̂νj |nν1 , nν2 , · · ·nνj , · · · 〉 = nνj |nν1 , nν2 , · · ·nνj , · · · 〉, (241)

and raise or lower the occupation of that state, as follows:

b̂†j|nν1 , nν2 , · · ·nνj , · · · 〉 = B+(nνj)|nν1 , nν2 , · · · (nνj + 1), · · · 〉,
b̂j|nν1 , nν2 , · · ·nνj , · · · 〉 = B−(nνj)|nν1 , nν2 , · · · (nνj − 1), · · · 〉,

(242)

where B+(nνj) and B−(nνj) are normalization constants. We further demand that the occupation
number of an unoccupied state (e.g., nνj = 0) cannot be further reduced, which is equivalent
to demand that b̂j|nν1 , nν2 , · · · 0, · · · 〉 = 0. Furthermore, we define the normalization constants
B+(0) = 1 and B−(1) = 1 so that

b̂†j|nν1 , nν2 , · · · 0, · · · 〉 = |nν1 , nν2 , · · · 1, · · · 〉,
b̂j|nν1 , nν2 , · · · 1, · · · 〉 = |nν1 , nν2 , · · · 0, · · · 〉.

(243)

Therefore,

b̂j b̂
†
j|nν1 , nν2 , · · · 0, · · · 〉 = |nν1 , nν2 , · · · 0, · · · 〉,

b̂†j b̂j|nν1 , nν2 , · · · 0, · · · 〉 = 0,
(244)

123



which can be summarized as b̂j b̂
†
j = n̂νj + 1 and [b̂j, b̂

†
j] = 1. When j 6= k, however, [b̂j, b̂

†
k] = 0.

The normalization constants for other states are found from Eq. (241), as follows:

〈nν1 , nν2 , · · ·nνj , · · · |b̂
†
j b̂j|nν1 , nν2 , · · ·nνj , · · · 〉 = nνj ,

〈nν1 , nν2 , · · ·nνj , · · · |b̂
†
j b̂j|nν1 , nν2 , · · ·nνj , · · · 〉 = B−(nνj)

2,
(245)

so B−(nνj) =
√
nνj . Analogously, we obtain

〈nν1 , nν2 , · · ·nνj , · · · |b̂j b̂
†
j|nν1 , nν2 , · · ·nνj , · · · 〉 = B+(nνj)

2,

(nνj + 1) = B+(nνj)
2,

(246)

B+(nνj) =
√
nνj + 1. Therefore,

(b̂†j)
nν |nν1 , nν2 , · · · 0, · · · 〉 =

√
nν !|nν1 , nν2 , · · ·nν , · · · 〉. (247)

or

|nν1 , nν2 , nν3 , · · · 〉 =
∏
j

(b̂†j)
nνj

√
nν !
|0, 0, 0, · · · 〉. (248)

Fermions: The creation and anihilation operators of fermions, ĉ†j and ĉj , are defined to ensure that
the number operator n̂νj = ĉ†j ĉj gives the number of fermions nνj = 0, 1 in state νj . This requires
that ĉ†j|1〉 = 0, ĉ†j|0〉 = |1〉, ĉj|0〉 = 0, and ĉ†j|0〉 = |1〉. Therefore, ĉj ĉ

†
j|0〉 = |0〉 and ĉj ĉ

†
j|0〉 = |0〉,

or ĉj ĉ
†
j + ĉ†j ĉj = 0.

41.4 Operators in Second Quantization
In this subsection we show that any single particle operator Â can be expressed in terms of b̂†j and
b̂j , as follows: Â =

∑
νj ,νk

Aνj ,νk b̂
†
j b̂k, with Aνj ,νk = 〈νj|Â|νk〉. As an example of a single particle

operator, we consider the kinetic energy T̂ =
∑N

k=1 T̂k, with T̂k =
p̂2k

2mk
:

〈r|T̂ |ψν1ψν2 · · ·ψνN 〉 =
∑
νj

〈r|ψνj〉〈ψνj |T̂ |ψν1ψν2 · · ·ψνN 〉

=
∑
νj

〈r|ψνj〉
N∑
k=1

〈ψνj |T̂k|ψν1ψν2 · · ·ψνN 〉

=
∑
νj

〈r|ψνj〉
N∑
k=1

〈ψνj |T̂k|ψνk〉〈r|b̂νk |ψν1ψν2 · · ·ψνN 〉

=
N∑
k=1

∑
νj ,νl

〈r|ψνj〉δνl,νkTνj ,νl〈r|b̂νk |ψν1ψν2 · · ·ψνN 〉

=
N∑
k=1

∑
νj ,νl

δνl,νkTνj ,νl〈r|b̂†νj b̂νk |ψν1ψν2 · · ·ψνN 〉

(249)
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Therefore,

T̂
[
b̂†ν1 · · · b̂

†
νN
|0〉
]

=
N∑
k=1

∑
νj ,νl

δνl,νkTνj ,νl b̂
†
νj
b̂νk b̂

†
ν1
· · · b̂†νN |0〉

=
N∑
k=1

∑
νj ,νl

δνl,νkTνj ,νl b̂
†
νj

n̂νk
nνk

b̂νk b̂
†
ν1
· · · b̂†νN |0〉

=
N∑
k=1

∑
νj ,νl

δνl,νkTνj ,νl
b̂†νj b̂νk

nνk

[
b̂†νk b̂νk b̂

†
ν1
· · · b̂†νN |0〉

]

=
∑
νj ,νl

Tνj ,νl

N∑
k=1

δνl,νk
b̂†νj b̂νk

nνk

[
b̂†ν1 · · · b̂

†
νN
|0〉
]

=
∑
νj ,νl

Tνj ,νl b̂
†
νj
b̂νl

N∑
k=1

δνl,νk
nνk

[
b̂†ν1 · · · b̂

†
νN
|0〉
]

=
∑
νj ,νl

Tνj ,νl b̂
†
νj
b̂νl

1

nνl

N∑
k=1

δνl,νk

[
b̂†ν1 · · · b̂

†
νN
|0〉
]

=
∑
νj ,νl

Tνj ,νl b̂
†
νj
b̂νl

[
b̂†ν1 · · · b̂

†
νN
|0〉
]

(250)

where p is the number of particles in state state ψνk for the N -particle system described by state
|ψν1ψν2 · · ·ψνN 〉 = b̂†ν1 · · · b̂

†
νN
|0〉, so according to Eq. (246), 〈ψν1ψν2 · · ·ψνN |b̂νk b̂†νk |ψν1ψν2 · · ·ψνN 〉 =

(nνk + 1). Therefore,

T̂ =
∑
νj ,νl

Tνj ,νl b̂
†
νj
b̂νl . (251)

Analogously, any 2-particle operator V̂ such as the pair-wise additive potential,

V̂ =
1

2

N∑
j=1

∑
k 6=j

V (xj, xk), (252)

can be written in second quantization, as follows:

V̂ =
∑

νj ,νi,νl,νk

Vνj ,νi,νl,νk b̂
†
νj
b̂†νi b̂νl b̂νk (253)

where Vνj ,νi,νl,νk = 〈ψνjψνi |V (x1, x2)|ψνlψνk〉.
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41.5 Change of basis in Second Quantization
We consider two different complete and ordered single-particle basis sets {|ψνj〉} and {|ψµj〉} with
j = 1–N . Using the completeness relationship we can write any element of one basis set as a linear
combination of elements of the other basis set, as follows:

|ψµj〉 =
∑
k

|ψνk〉〈ψνk |ψµj〉, (254)

where ψνk〉 = â†νk |0〉 and ψµj〉 = â†µj |0〉. Therefore,

âµj |0〉 =
∑
k

〈ψνk |ψµj〉âνk |0〉, (255)

or
âµj =

∑
k

〈ψνk |ψµj〉âνk , (256)

and
â†µj =

∑
k

〈ψνk |ψµj〉∗â†νk , (257)

41.6 Mapping into Cartesian Coordinates
Introducing the Cartesian operators x̃νj = 1√

2
[b̂†νj + b̂νj ] and p̃νj = i√

2
[b̂†νj − b̂νj ], with [x̃νj , p̃νj ] = i,

since x̃νj = x̂
√

mω
~ , p̃νj = p̂/

√
mω~ and [x̂νj , p̂νj ] = i~, for the harmonic oscillator Hamiltonian

H =
p̂νj

2

2m
+

1

2
mω2x̂2,

=
p̃νj

2

2m
mω~ +

1

2
mω2 ~

mω
x̃νj

2,

=
~ω
2

[
p̃2
νj

+ x̃2
νj

]
.

(258)

Considering that

n̂νj = b̂†νj b̂νj ,

b̂†νj =
1√
2

[
x̃νj − ip̃νj

]
,

b̂νj =
1√
2

[
x̃νj + ip̃νj

]
.

(259)

we obtain,

n̂νj =
1

2
(x̃νj − ip̃νj)(x̃νj + ip̃νj)

=
1

2
(x̃2

νj
+ i[x̃νj , p̃νj ] + p̃2

νj
)

=
1

2
(x̃2

νj
+ p̃2

νj
− 1)

(260)
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and

H = ~ω
(
n̂νj +

1

2

)
. (261)

Substituting the Cartesian expressions of bνj and b†νj into Eq. (251), we obtain:

T̂ =
1

2

∑
νj ,νl

Tνj ,νl
[
x̃νj − ip̃νj

]
[x̃νl + ip̃νl ] ,

=
1

2

∑
νj

Tνj ,νj(x̃
2
νj

+ p̃2
νj
− 1) +

1

2

∑
νj

∑
νl 6=νj

Tνj ,νl
[
x̃νj − ip̃νj

]
[x̃νl + ip̃νl ]

=
1

2

∑
νj

Tνj ,νj(x̃
2
νj

+ p̃2
νj
− 1) +

1

2

∑
νj

∑
νl 6=νj

Tνj ,νl
[
x̃νj x̃νl + p̃νj p̃νl

]
(262)

since [x̃νj , p̃νl ] = iδνl,νj while [x̃νj , x̃νl ] = 0 and [p̃νj , p̃νl ] = 0.
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42 Density Functional Theory

In the Kohn-Sham formulation of density functional theory (DFT), the total electronic energy is
expressed as a sum of electronic kinetic energy T , electron-nuclear interaction V , Coulomb self-
interaction U of the electron density ρ and the remaining part of the electron-electron repulsion
energy due to exchange-correlation EXC , all expressed as functionals of the density ρ, as follows:

E = T + V + U + EXC . (263)

Considering a spin-unrestricted format, as described by Pople , α and β electrons are assigned
to sets of orthonormal orbitals ψαi with i = 1, .., nα and ψβi with i = 1, .., nβ , respectively, defining
a single Slater determinant. The corresponding total density is then obtained as the sum of the α
and β densities,

ρ = ρα + ρβ, (264)

with

ρα =
nα∑
i=1

|ψαi |2,

ρβ =

nβ∑
j=1

|ψβj |2.
(265)

The energies T , V and U are defined, as follows:

T = −1

2

nα∑
i=1

〈ψαi |∇2|ψαi 〉 −
1

2

nβ∑
j=1

〈ψβj |∇2|ψβj 〉, (266)

V = −
Nnucl∑
j=1

Zj

∫
ρ(r)

|r− rj|
dr, (267)

U =
1

2

∫ ∫
ρ(r1)ρ(r2)

|r2 − r1|
dr1dr2. (268)

The exchange-correlation energy EXC is typically approximated by a functional f of the den-
sities and their gradients, as follows:

EXC =

∫
f(ρα, ρβ, γαα, γαβ, γββ)dr, (269)

where

γjk = ∇ρj · ∇ρk. (270)
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Expanding the orthonormal orbitals ψαi in the basis of atomic orbitals (AOs) φµ,

ψαi =
∑
µ

cαµ,iφµ, (271)

we obtain:

ρα =
nα∑
i=1

∑
µ

∑
ν

(cαµi)
∗cανiφ

∗
µφν ,

=
∑
µ

∑
ν

Pα
µ,νφ

∗
µφν ,

(272)

and similarly for ρβ , where Pα
µ,ν in Eq. (272) is the AO density matrix of α electrons. Substituting

these expressions into Eq. (263) and then minimizing with respect to the expansion coefficients, as
done for the Hartree-Fock method, we obtain the equations,∑

ν

(Fα
µν − εαi Sµν)cανi = 0, (273)

analogous to the Roothaan-Hall Eqs. (190) of Hartree-Fock theory. The only difference is that the
Fock matrix is replaced by the Fock-type matrices,

Fα
µν = Hcore

µν + Jµν + FXCα
µν ,

F β
µν = Hcore

µν + Jµν + FXCβ
µν .

(274)

Here, Sµν and Hcore
µν are the overlap and bare nucleus Hamiltonian matrices, Jµν is the Coulomb

matrix
Jµν =

∑
λσ

(
Pα
λσ + P β

λσ

)
〈µν|λσ〉. (275)

and FXCα
µν are given, as follows:

FXCα
µν =

∫
dr

[
∂f

∂ρα
φµφν +

(
2
∂f

∂γαα
∇ρα +

∂f

∂γαβ
∇ρβ

)
· ∇(φµφν)

]
. (276)

Expressions and Fortran codes for various versions of proposed f , defining popular functionals
such as LDA, PBE, B3LYP, etc., and the corresponding derivatives ∂f

∂ρα
, ∂f
∂γαα

and ∂f
∂γαβ

are available
at the CCLRC DFT repository . The Fortran codes were automatically generated with dfauto from
Maple expressions.

Once the equations have been solved to find the expansion coefficients cανi through an iterative
self-consistent procedure, the Kohn-Sham energy is obtained from Eq. (263), as follows:

E =
∑
µν

PµνH
core
µν +

1

2

∑
µν

∑
λσ

PµνPλσ〈µν|λσ〉+ EXC . (277)
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42.1 Hohenberg and Kohn Theorems
The underlying concept, introduced by Eq. (263), is that the minimum energy is a unique functional
of the ground state density (i.e., the minimum energy of a non-degenerate state is uniquely deter-
mined by the ground state density). Such concept is a consequence of the Hohenberg and Kohn
first theorem : ’For any system of interacting particles in an external potential V, the ground state
density is uniquely determined (i.e., the potential is a unique functional of the density, to within an
additive constant)’.

The theorem is demonstrated by considering two external potentials V and V ′, differing by
more than a constant, giving the same ground state density ρ:

E ′ = 〈ψ′|H ′|ψ′〉 < 〈ψ|H ′|ψ〉 = 〈ψ|H + (V ′ − V )|ψ〉,

E ′ < E +

∫
drρ(r)(V ′(r)− V (r)),

(278)

where the inequality is strict because ψ and ψ′ are different (i.e., eigenstates of different Hamilto-
nians). Exchanging the primed and unprimed quantities, and assuming ρ = ρ′, we obtain:

E = 〈ψ|H|ψ〉 < 〈ψ′|H|ψ′〉 = 〈ψ′|H ′ + (V − V ′)|ψ′〉,

E < E ′ +

∫
drρ(r)(V (r)− V ′(r)),

(279)

Summing Eqs. (278) and (279), we obtain: E ′ + E < E + E ′ which is an absurd. Therefore, two
potentials that differ in more than a constant value cannot define the same density, so the density
defines a unique potential (except for a constant).

As mentioned above, a straightforward consequence of the first theorem is Hohenberg and Kohn
second theorem stating that the ground state energy E0 is uniquely determined by a functional of
the density, as follows:

E = F [ρ] +

∫
drρ(r)V (r), (280)

where F [ρ] is a a universal functional valid for any number of particles and any external potential
V . The second theorem can be proved by using the variational theorem with a trial state ψ, as
follows:

〈ψ|Ĥ|ψ〉 = F [ρ] +

∫
drρ(r)V (r) > E0. (281)

where the equality holds only when ψ is the ground state for V (r). Note that one can write the
energy as a functional of the density because the external potential is uniquely determined by
the density and since the potential in turn uniquely (except in degenerate situations) determines
the ground state wavefunction, all the other observables of the system such as kinetic energy are
uniquely determined.
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42.2 Kohn Sham Equations
Kohn and Sham mapped the system of interacting electrons onto a fictitious system of non-interacting
’electrons’, and wrote the variational problem for the Hohenberg-Kohn density-functional by intro-
ducing a Lagrange multiplier µ that constrains the number of electrons to N , as follows:

δ

[
F [ρ] +

∫
drρ(r)V (r)− µ

(∫
drρ(r)−N

)]
= 0. (282)

F [ρ] is separated into the kinetic energy T [ρ] of the non-interacting electron gas with density ρ, the
classical electrostatic potential, and the non-classical term due to exchange-correlation accounting
for the difference between the kinetic energies of the interacting and non-interacting electrons, as
follows:

F [ρ] = T [ρ] +
1

2

∫
dr

∫
dr′

ρ(r)ρ(r′)

|r− r′|
+ EXC [ρ]. (283)

The first two terms are simple and ’classical’ while the third term describes the complex behaviour
of correlated electrons and is usually approximated by using proper interpolation between asymp-
totic limits.

Substituting Eq. (283) into Eq. (282), we obtain:

δT [ρ]

δρ(r)
+ VKS(r) = µ, (284)

where the Kohn-Sham potential VKS(r) is defined, as follows:

VKS(r) =

∫
dr′

ρ(r′)

|r− r′|
+ VXC(r) + V (r). (285)

Here, we have introduced the exchange-correlation potential VXC(r) = δEXC [ρ]
δρ(r)

.
Equation (284) is equivalent to the description of a system of non-interacting electrons in an

external potential VKS(r) for which the ground state can be found by solving the one-electron
Schrödinger equation:

HKSψj(r) = Ejψj(r), (286)

where we have introduced the Kohn-Sham orbitals ψj that are eigenstates of the DFT Hamiltonian,

HKS = −1

2
∇2 + VKS(r). (287)

The density can be computed, as follows:

ρ(r) = 2

N/2∑
j=1

ψj(r)∗ψj(r), (288)

after obtaining the Kohn-Sham orbitals. However, to obtain the Kohn-Sham orbitals we need the
density since, according to Eq. (285), VKS(r) depends on the density ρ(r). So, it is necessary to
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solve Eq. (286) self-consistently. Having an initial guess for the density, approximate Kohn-Sham
orbitals ψj are found by solving Eq. (286) and the density ρ(r) is updated according to Eq. (288).
The procedure is repeated multiple times until the input and output densities are the same.

The total energy of the system of interacting electrons,

E = T [ρ] +
1

2

∫
dr

∫
dr′

ρ(r)ρ(r′)

|r− r′|
+

∫
drρ(r)V (r) + EXC [ρ], (289)

can be computed from the energy Enon−int of the non-interacting system,

Enon−int = 2

N/2∑
j=1

Ej = T [ρ] +

∫
drρ(r)VKS(r),

= T [ρ] +

∫
dr

∫
dr′

ρ(r)ρ(r′)

|r− r′|
+

∫
drρ(r)[VXC(r) + V (r)],

(290)

as follows:

E = Enon−int − 1

2

∫
dr

∫
dr′

ρ(r)ρ(r′)

|r− r′|
−
∫
drρ(r)VXC(r) + EXC [ρ]. (291)

42.3 Thomas-Fermi Functional
The Thomas-Fermi model functional assumes a uniform distribution of electrons in phase space,
with 2 electrons per element of phase-space volume h3. According to such uniform phase-space
distribution, the number of electrons ∆N(r) in a volume ∆V at r is

∆N(r) =
2

h3
∆V

4

3
πpF (r)3, (292)

where pF (r) is the maximum value of momentum for electrons in ∆V , as determined by the local
density ρ(r), as follows:

ρ(r) =
2

h3

4

3
πpF (r)3. (293)

The local density ρ(r) also determines the Wigner-Seitz radius rs(r), defined as the radius of a
sphere with the mean volume per electron (or, mean volume per atom in metals where each atom
contributes with a single electron to the electronic structure of interest), as follows:

4

3
πr3

s = ρ(r). (294)

The fraction of electrons with momentum between p and p+ dp is 4πp2dp/(4
3
πpF (r)3), since 4πp2

is the surface of a sphere of momentum p, while 4πp2dp is the volume between the surfaces of
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momentum p and p + dp and 4/3πp3
F is the total volume of mometum in the element of phase-

space volume h3. Therefore, the kinetic energy per unit volume is

T (r) = ρ(r)

∫ pF

0

dp
p2

2me

4πp2

4
3
πpF (r)3

,

=

∫ pF

0

dp
p2

2me

8πp2

h3
,

=
p5
F

10me

8π

h3
,

=

(
3h3ρ(r)

8π

)5/3
1

10me

8π

h3
,

=

(
3

8π

)2/3
3h2

10me

ρ(r)5/3.

(295)

giving the total kinetic energy as a functional of the density,

T =

(
3

8π

)2/3
3h2

10me

∫
drρ(r)5/3. (296)

The complete energy, can now be written as a functional of the density, as follows:

E[ρ] =

(
3

8π

)2/3
3h2

10me

∫
drρ(r)5/3 +

1

2

∫
dr

∫
dr′

ρ(r)ρ(r′)

|r− r′|
−
Nnucl∑
j=1

Zj

∫
ρ(r)

|r− rj|
dr+���

�
EXC [ρ] .

(297)
The Thomas-Fermi model functional neglects the EXC term in Eq (297). However, such an ap-
proximation usually introduces significant errors. For example, in the one-electron limit (ı.e., for
one-electron systems), EC = 0. Therefore, EXC = EX , withEX = −U according to Hartree-Fock
theory (see, Eq. (??)). Neglecting EXC would thus introduce error since the self-interaction energy
U would no longer cancel out with the exchange term. Self-interaction corrections (SIC) can be
introduced to avoid that error. The earliest SIC was proposed by E. Fermi and E. Amaldi [Accad.
Ital. Rome 6, 119 (1934)], who replaced U [ρ] by U [ρ] − NU [ρ/N ], where N is the number of
electrons in the system, giving the so-called Thomas-Fermi-Amaldi (TFA) functional:

ETFA =

(
3

8π

)2/3
3h2

10me

∫
drρ(r)5/3 +

1

2

N − 1

N

∫
dr

∫
dr′

ρ(r)ρ(r′)

|r− r′|
−

Nnucl∑
j=1

Zj

∫
ρ(r)

|r− rj|
dr.

(298)

42.4 Local Density Approximation
The local density approximation (LDA) states that if the charge density is sufficiently slowly vary-
ing, the exchange correlation energy is approximately

EXC [ρ] =

∫
drρ(r)EHEG

XC (ρ(r)), (299)
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where EHEG
XC (ρ(r)) is the exchange-correlation energy of a homogeneous electron gas (HEG) with

the same local charge density ρ(r).
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43 Quantum Mechanics/Molecular Mechanics Methods
A practical approach for describing the electronic structure of a molecular fragment in a complex
molecular environment is the so-called quantum mechanics/molecular mechanics (QM/MM) ap-
proach, where the environment (represented by sticks in the figure) is described in terms of a sum
of classical potentials VMM described by a molecular mechanics (MM) force field, while the molec-
ular fragment (R1 in the Figure below) is described by quantum chemistry (QM) methods, as for
example by a Slater determinant obtained according to the Hartree-Fock method. The interaction

between the molecular fragment and the environment is usually defined as the sum of the elec-
trostatic interaction between the atomic charges of the environment and the nuclear and electronic
charges in molecular fragment. If the fragment is covalently bound to the environment, the bond is
broken and the covalency is completed with a link atom (usually a H atom).

The interaction between the fragment and the environment is included as an additional term in
the one-electron core Hamiltonian ĥ(1), as follows:

ĥ(i) = − ~2

2me

∇2
ri
−

N∑
j=1

zje
2

rji
+

N∑
j=1

N∑
j′=1

zj′zje
2

rjj′
+ ĥ

(i)
QM/MM , (300)

with

ĥ
(i)
QM/MM = −

Ne∑
k=1

zke
2

rki
+

N∑
j=1

Ne∑
k=1

zkzje
2

rki
+

Ne∑
k=1

Vvdw(rki), (301)

where we have considered a molecular fragment with N nuclei embedded in an environment with
Ne electrostatic potential atomic charges. The third term in Eq. (301) is a van der Waals potential
that accounts for the interaction of the electrons in the molecular fragment with electrons in the
environment that are not explicitly considered. Implementing the Hartree-Fock method with the
one-electron core-Hamiltonian, introduced by Eq. (300), we obtain the Hartree Fock energy EQM
of the molecular fragment in the electrostatic field of the surrounding environment yielding the
total QM/MM energy of the system, as follows:

EQM/MM = EQM + VMM . (302)
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In this simple form, the molecular fragment is polarized by the surrounding environment. Polariza-
tion of the environment due to the distribution of charges in the molecular fragment can be included
by using a polarizable molecular mechanics force field, or a moving domain QM/MM approach,
where the charges in the environment are obtained self-consistently.

Another QM/MM approach is the ONIOM methodology, as implemented in Gaussian, where
the total energy is computed, as follows:

EONIOM = EQM + V system
MM − V fragment

MM , (303)

where V system
MM and V fragment

MM are the energies of the complete system and the fragment as described
by the molecular mechanics force field.

The force fields are usually parametrized to match the experimental or ab-initio ground state
potential energy surfaces as a function of nuclear coordinates. The following section illustrates the
parametrization of the potential energy surface for diatomic molecules.

44 Empirical Parametrization of Diatomic Molecules
The main features of chemical bonding by electron pairs are properly described by the HL model
of H2. According to such model, the covalent bond is described by a singlet state,

1ψHL = N1[α(1)β(2)− β(1)α(2)][χA(1)χB(2) + χA(2)χB(1)],

with energy
1E+ =<1 ψHL|H|1ψHL >=

J +K

1 + S2
,

where H = h(1) + h(2) + e2/r12, with
h(1) = − ~2

2m
∇2

1 − e2

r1A
− e2

r1B
,

h(2) = − ~2
2m
∇2

2 − e2

r2A
− e2

r2B
,

J =< χA(1)χB(2)|H|χA(1)χB(2) > Coulomb integral
K =< χA(1)χB(2)|H|χA(2)χB(1) > Exchange integral
S2 =< χA(1)χB(2)|χA(2)χB(1) > .

Similarly, the triplet state is described as follows,

3ψHL = N3[χA(1)χB(2)− χB(1)χA(2)]


[α(1)β(2) + β(1)α(2)]

α(1)α(2)

β(1)β(2)

,

and has energy
3E− =

(J −K)

(1− S2)
.

The energies of the singlet and triplet states are parametrized by the internuclear H-H distance and
can be represented by the following diagram,
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1E+

3E−

H-H bond length
R0

The energies 1E and 3E can be approximated by the following analytical functions:

1E+ ≈ D
[
e−2a(R−R0) − 2e−a(R−R0)

]
≡M(R),

3E− ≈
D

2

[
e−2a(R−R0) + 2e−a(R−R0)

]
≡M∗(R).

ParametersD and a can be obtained by fitting M(R) to the actual (experimental or ab-initio) ground
state potential energy surface. Such parametrization allows us to express the Coulombic and Reso-
nance integrals J and K in terms of available experimental (or ab initio) data as follows,

J ≈ 1

2
[(M +M∗) + S2(M −M∗)],

K ≈ 1

2
[(M −M∗) + S2(M +M∗)].

This parametrization of Hamiltonian matrix elements illustrates another example of semi-empirical
parametrization that can be implemented by using readily available experimental information (re-
member that in the previous section we described the semiempirical parametrization of the Hückel
model according to the absorption spectrum of the molecule).

The covalent nature of the chemical bond significantly changes when one of the two atoms in
the molecule is substituted by an atom of different electronegativity. Under those circumstances,
the wave function should include ionic terms, e.g.,

1ψionA = ÑχA(1)χA(2)[α(1)β(2)− β(1)α(2)],
and

1ψionB = ÑχB(1)χB(2)[α(1)β(2)− β(1)α(2)].
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The complete wave function (with both covalent and ionic terms) can be described as follows,
ψ = C1ψ1 + C2ψ2, where the covalent wave function is

ψ1 = [α(1)β(2)− β(1)α(2)](χA(1)χB(2) + χA(2)χB),
and the ionic wave function is

ψ2 = [α(1)β(2)− β(1)α(2)][χA(1)χA(2)ξ1 + χB(1)χB(2)(1− ξ1)],
where the parameter ξ1 is determined by the relative electronegativity of the two atoms. For exam-
ple, consider the HF molecule. For such molecule ξ1 =1, A represents the F atom, and B represents
the H atom (i.e., due to the electronegativity difference between the two atoms, the predominant
ionic configuration is H+F−). Therefore, the ground state energy Eg is obtained as the lowest
eigenvalue of the secular equation, ∣∣∣∣H11 − E H12

H12 H22 − E

∣∣∣∣ = 0. (304)

Here we have neglected S12, assuming that such approximation can be partially corrected according
to the parametrization of H12. The semiempirical parametrization strategy can be represented by
the following diagram:

............................................................................................................................................................................................................................................

-

6

..................................................................................................................................

..................................................................................................................................?

6

?

6

6

?

Energy

RH−F

H .F .

H+F−

DHF

H11

H22

Eg
D̄HF

0

This diagram represents the following curves:
H11 = M̄ = D̄[e−2a(R−R0−δ)− 2e−a(R−R0−δ)] is a covalent state represented by a Morse poten-

tial M̄ .
H22 = I − EA − 332

R
+ Ae−bR + CR−9, is the potential energy surface of the ionic state,

where the difference between the H ionization energy and the F electron affinity, I-EA, corresponds
to the energy of forming the ion pair H+ F−. The term −332

R
is the Coulombic interaction and

Ae−bR + CR−9 is the short range repulsive potential.
The ground state potential energy surfaceEg = M = D[e−2a(R−R0)−2e−a(R−R0)] is represented

by a Morse potential M . Parameters D and R0 can be obtained from the experimental bond-energy
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and bond-length. The parameter a can be adjusted to reproduce the vibrational frequency of the
diatomic molecule. The parameter D̄HF =

√
DHHDFF andδ = 0.05Å. Parameters A and C are

adjusted so that the minimum energy of H22 corresponds to the H-F bond-length (i.e., the sum of
ionic radii of H and F). This empirical parametrization allows us to solve Eq. (66) for H12,

H12 =
√

(H11 −M)(H22 −M),

and obtain the Hamiltonian matrix elements in terms of empirical parameters.
Conclusion: Potential energy surfaces parametrized by a few empirical parameters are able to
describe bonding properties of molecules associated with atoms of different electronegativity.

Dipole Moment
The dipole moment is one of the most important properties of molecules and can be computed as
follows,

µg =< ψg|µ̂|ψg >,

where
µ̂ = −

∑
i

eri +
∑
j

ezjRj.

The first term of this equation involves electronic coordinates ri and the second term involves
nuclear coordinates Rj .
For example, the dipole moment of HF can be computed as follows,

µg = C2
1 < ψ1|µ̂|ψ1 >︸ ︷︷ ︸

0

+C2
2 < ψ2|µ̂|ψ2 >︸ ︷︷ ︸

eR0

+2C1C2< ψ1|µ̂|ψ2 >︸ ︷︷ ︸
0

,

since ψ1 represents a covalent state and the overlap between ψ1 and ψ2 is assumed to be negligible.
The dipole moment is usually reported in Debye units, where 4.803 Debye is the dipole moment

of two charges of 1 a.u. with opposite sign and separated by 1 Å, from each other.

44.1 Exercise 56
Evaluate the dipole moment for HF using the following parameters for the semiempirical model of
HF potential energy surfaces (energies are expressed in kcal/mol, and distances in Å),

D=134; D̄=61; R0=0.92; a=2.27;
A=640; b=2.5; C=20; I=313; EA=83.

Polarization
The electric field of an external charge z located at coordinateR0 along the axis of the molecule

does not affect the energy of the covalent state H11, but affects the energy of the ionic state H22 as
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follows,
H ′22 = H22 +

ze

RH+C

− ze

RF−C
.

Therefore, the presence of an external charge perturbs the ground state energy of the molecule.
Such perturbation can be computed by re-diagonalizing Eq. (66), usingH ′22 instead ofH22. Solving
for the ground state energy we obtain,

E ′g =
1

2

[
(H ′22 +H11)− ((H ′22 −H11) + 4H2

12)1/2
]
.

44.2 Exercise 57
(1) Plot Eg, as a function of the internuclear distance R, for the HF molecule in the presence of an
external charge located in the axis of the molecule at 10 Å, to the left of the F atom.

(2) Compare your results with the analog Gaussian98 calculation by using the scan keyword.
Hint: The Gaussian98 input file necessary to scan the ground state potential energy surface of H2

is described as follows,

#hf/6-31G scan

potential scan for H2

0 1
H
H 1 R

R 0.9 5 0.1

This input file scans the potential energy of H2 by performing single point calculations at 5
internuclear distances. The output energies are represented by the following diagram:
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45 Discrete Variable Representation

The goal of this section is to introduce a generic discrete variable representation (DVR) method,
introduced by Colbert and Miller [J. Chem. Phys. (1992) 96:1982-1991] to solve the time-
independent Schrödinger equation,

HCj − CjEj = 0. (305)

The method obtains the eigenstates χj(x) in a grid-based representation: χ(x) =
∑

j Cjδ(x −
xj) and the corresponding eigenvalues Ej by simple diagonalization of the Hamiltonian matrix
H by using standard numerical diagonalization methods –e.g., TRED2, TQLI and EIGSRT, as
described in Numerical Recipes (Ch. 11, Numerical Recipes), or Lanczos-type (iterative linear
algebra methods) that exploit the sparsity of H. The representation is based on delta functions
δ(x− xj), equally spaced at coordinates xj as follows:

xj = xmin + j∆, with ∆ = (xmax − xmin)/N, (306)

with j = 1–N.
The rest of this section shows that the Hamiltonian matrix elements can be written in such a

discrete (grid-based) representation, as follows:

H(j, j′) = V (xj)δjj′ +
~2

2m∆2
(−1)j−j

′
(
δjj′

π2

3
+ (1− δjj′)

2

(j − j′)2

)
, (307)

when the delta functions δ(x − xj) are placed on a grid xj = j ∗ ∆ that extends over the interval
x = (−∞,∞) with j = 1, 2, .... Furthermore, we show that for the particular case of a radial
coordinate, defined in the interval x = (0,∞), the Hamiltonian matrix elements are:

H(j, j′) = V (xj)δjj′+
~2

2m∆2
(−1)j−j

′
(
δjj′

(
π2

3
− 1

2j2

)
+ (1− δjj′)

(
2

(j − j′)2
− 2

(j + j′)2

))
.

(308)
To derive Eq. (307) and Eq. (308), we consider the Hamiltonian,

Ĥ = T̂ + V (x̂), (309)

where V (x̂) and T̂ = p̂2

2m
are the potential energy and kinetic energy operators, respectively. The

potential energy matrix V (δ) is diagonal, with matrix elements defined as follows:

V (δ)(j, k) = 〈j|V (x̂)|k〉 =

∫
dxδ∗(x− xj)V (x̂)δ(x− xk),

= V (xk)δj,k.

(310)

The kinetic energy matrix T (δ) is expressed in the same grid-based representation, by first obtaining
the kinetic energy matrix T (φ) in the representation of eigenstates φn(x) of the particle in the box
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x = (xmin, xmax), and then rotating T (φ) to the representation of delta functions by using the
following similarity transformation:

T (δ) = Γ−1T (φ)Γ, (311)

where Γ is the transformation matrix defined by the linear combinations,

φk(x) =
∑
j

Γ(j, k)δ(x− xj)∆′, (312)

where
Γ(j, k) = φk(xj). (313)

Considering that 1 =
∫
dxφ∗k(x)φk(x) = (∆′)2

∫
dx
∑

j φk(xj)δ(x−xj)
∑

j′ φk(xj′)δ(x−xj′) we
obtain that ∆′ =

√
∆ since 1 = (∆′)2/∆

∑
j ∆φk(xj)φk(xj).

The eigenstates of the particle in the box are:

φk(x) =

√
2

xmax − xmin
Sin
(
k
π(x− xmin)

(xmax − xmin)

)
, (314)

with φk(xmin) = 0 and φk(xmax) = 0. Therefore,

T̂ φk(x) =
(~πk)2

2m
φk(x), (315)

and T (φ) is diagonal with matrix elements,

T̂ (φ)(j, k) = 〈φj|T̂ |φk〉 =
(~k)2

2m

π2

(xmax − xmin)2
δjk. (316)

Therefore, substituting Eq. (316) and Eq. (313) into Eq. (311) we obtain,

T (δ)(i, i′) =
N−1∑
j,k=1

Γ−1(i, j)T (φ)(j, k)Γ(k, i′) =
N−1∑
j,k=1

Γ(j, i)T (φ)(j, k)Γ(k, i′),

=
∆π2

(xmax − xmin)2

N−1∑
j,k=1

φj(xi)
(~k)2

2m
δjkφk(x

′
i) =

∆π2

(xmax − xmin)2

N−1∑
k=1

φk(xi)
(~k)2

2m
φk(x

′
i),

=
∆~2π2

2m(xmax − xmin)2

2

(xmax − xmin)

N−1∑
k=1

k2Sin
(
kπ

(xi − xmin)

(xmax − xmin)

)
Sin
(
kπ

(xi′ − xmin)

(xmax − xmin)

)
.

(317)

Finally, substituting Eq. (306) into Eq. (317) we obtain:

T (δ)(j, j′) =
~2π2

2m(xmax − xmin)2

2

N

N−1∑
k=1

k2Sin
(
kπj

N

)
Sin
(
kπj′

N

)
. (318)

143



To calculate the finite series introduced by Eq. (318) we first note that,

2Sin
(
kπj

N

)
Sin
(
kπj′

N

)
= Cos

(
kπ(j − j′)

N

)
− Cos

(
kπ(j + j′)

N

)
,

= Re

[
Exp

(
i
kπ(j − j′)

N

)
− Exp

(
i
kπ(j + j′)

N

)]
.

(319)

so that Eq. (318) can be written as follows:

T (δ)(j, j′) =
~2π2

2m(xmax − xmin)2

2

N

[
Re

N−1∑
k=1

k2Exp
(
i
kπ(j − j′

N

)
− Re

N−1∑
k=1

k2Exp
(
i
kπ(j + j′)

N

)]
.

(320)

Then, we consider the geometric series SN =
∑N−1

k=0 x
k and we note that SN − xSN = 1 − xN ,

therefore SN = (1− xN)/(1− x). Also, we note that

x
∂

∂x

N−1∑
k=0

xk =
N−1∑
k=0

kxk,

x2 ∂
2

∂x2

N−1∑
k=0

xk =
N−1∑
k=0

k2xk −
N−1∑
k=0

kxk,

(321)

Therefore,
N−1∑
k=1

k2xk = x2 ∂
2

∂x2

(
(1− xN)

(1− x)

)
+ x

∂

∂x

(
(1− xN)

(1− x)

)
. (322)

We evaluate the sums over k in Eq. (320) analytically to obtain:

T (δ)(j, j′) =
~2(−1)j−j

′

2m(xmax − xmin)2

π2

2

[
1

Sin2[π(j − j′)/(2N)]
− 1

Sin2[π(j + j′)/(2N)]

]
, (323)

for j 6= j′ and

T (δ)(j, j) =
~2

2m(xmax − xmin)2

π2

2

[
(2N2 + 1)

3
− 1

Sin2[πj/N ]

]
. (324)

Equation (307) is obtained from Eq. (323) and Eq. (324), by taking the limit xmin → −∞,
xmax →∞, at finite ∆. This requires N →∞. Furthermore, since ∆(j + j′) = xj + xj′ − 2xmin
and ∆(j − j′) = xj − xj′ , this limit implies (j + j′)→∞ while (j − j′) remains finite.

Equation (308) is obtained from Eq. (323) and Eq. (324), by making xmin = 0, and taking the
limit xmax → ∞, at finite ∆. This requires N → ∞. In this case, ∆(j + j′) = xj + xj′ and
∆(j − j′) = xj − xj′ , and therefore both (j + j′) and (j − j′) remain finite.
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45.1 Multidimensional DVR
The multidimensional version of the DVR is straightforward. For example, for three Cartesian
degrees of freedom (x,y,z), the Hamiltonian matrix is defined, as follows:

H(ijk, i′j′k′) = Tii′δjj′δkk′ + Tjj′δii′δkk′ + Tkk′δii′δjj′ + V (xi, xj, xk)δii′δjj′δkk′ . (325)

A simple implementation of the multidimensional Hamiltonian, introduced by Eq. (325), reduces
the three indices i, j, k to a single index l = (j−1)nkni+(i−1)nk+k and the three indices i′, j′, k′

to a single index l′ = (j′− 1)nkni + (i′− 1)nk +k′. The three indices i, j, k can be calculated from
l, by using the modulo function em mod, as follows: k = mod(l, (nk ∗ ni), giving the remainder
after division of l by nk∗ni. Analogously, i = 1+mod(l−k, nk) and j = 1+abs(l−(i−1)nk−k)
where ni, nj and nk are the number of grid points representing x, y and z, respectively.

45.2 Computational Problem 15
15.1 Write a program to solve the time independent Schrödinger equation by using the DVR method
and apply it to find the first 4 eigenvalues and eigenfunctions of the Harmonic oscillator introduced
by Eq. (28) withm = 1 and ω = 1. Verify that the eigenvalues are E(ν) = (1/2+ν)~ω, ν = 0–10.
15.2 Change the potential of the code written in 15.1 to that of a Morse oscillator V (x̂) = De(1−
exp(−a(x̂ − xe)))2, with xe = 0, De = 8, and a =

√
k/(2De), where k = mω2, and recompute

the eigenvalues and eigenfunctions.
15.3 Generalize the program developed in 15.1 to solve the 2-dimensional Harmonic oscillator
V (x, y) = 1/2mω2(x2 + y2) and apply it to find the first 4 eigenvalues and eigenfunctions of the
Harmonic oscillator introduced by Eq. (28) with m = 1 and ω = 1. Verify that the eigenvalues are
E(ν) = (1 + ν1 + ν2)~ω.
15.4 Change the potential of the code written in 15.3 to that of a 2-dimensional Morse oscillator
V (x̂, ŷ) = De(1 − exp(−a(x̂ − xe)))2 + De(1 − exp(−a(ŷ − xe)))2, with xe = 0, De = 8, and
a =

√
k/(2De), where k = mω2, and recompute the eigenvalues and eigenfunctions.

15.5 Propagate a 1-d or 2-d wavepacket, initialized as a superposition of ground ψ0 and first excited
state ψ1, ψ(0) = 1/

√
2ψ0 − 1/

√
2ψ1 of the 1-d or 2-d Morse oscillator defined in 15.2 and 15.3,

by using the DVR Hamiltonian of item 15.4 and the Lanczos propagation scheme in the Krylov
basis as implemented in Expokit . Compare your results with the analytic solution, based on the
eigenvalues and eigenvectors: ψ(t) = 1/

√
2ψ0exp(−iE0t)− 1/

√
2ψ1exp(−iE1t).
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46 Tunneling Current: Landauer Formula
We consider a 1-dimensional electron tunneling

Ĥψ =

[
− ~2

2m

∂2

∂x2
+ eV (x)

]
ψ, (326)

problem described by the Hamiltonian

Ĥ = − ~2

2m

∂2

∂x2
+ eV (x), (327)

where e is the charge of the electron and

V (x) =


Vl if x < 0,
Vb if 0 < x < a,
Vr if x > a,

(328)

where Vb defines the tunneling barrier, and ∆V = (Vl − Vr) defines the voltage drop across the
barrier. Outside the tunneling interval xl < x < xr, the solutions of the Schrödinger equation are
superpositions of plane waves since the potential is constant. For energy E > eVl and E > eVr,
there are two independent solutions ψl and ψr for incident electrons from the left and from the
right, respectively.

Considering the solution for incidence from the left, we obtain:

ψl(x) =


φ+
l + rlφ

−
l if x < 0

Aeikbx +Be−ikbx if 0 < x < a
trφ

+
r if x > a

(329)

where φ±j = k
−1/2
j e±ikjx, are defined divided by the square root of kj so they are normalized to

carry the unit of current density ~/m, as shown below). The labels j = l, r indicate the left (l) and
right (r) side of the barrier, kl =

√
2m(E − eVl)/~2 and kr =

√
2m(E − eVr)/~2.

Applying the continuity conditions for ψl and ∂ψl/∂x at x = 0 and x = a, we obtain:

k
−1/2
l + k

−1/2
l rl = A+B,

Aeikba +Be−ikba = k−1/2
r tre

ikra,

k
1/2
l (1− rl) = kb(A−B),

kb(Ae
ikba −Be−ikba) = k1/2

r tre
ikra.

(330)

The transmission amplitude tr, reflection amplitude rl and coefficients A and B can be obtained by
solving for them from Eq. (330).

The probability flux (or current density ) of incoming electrons from the left, described by the
incident wave ψi(x, t) = k

−1/2
l ei(klx−wt) with momentum kl and energy E(kl) = eVl + ~2k2

l /(2m),
is:

ji(x, t) =
~

2mi

(
ψ∗i (x, t)

∂ψi(x, t)

∂x
− ψi(x, t)

∂ψ∗i (x, t)

∂x

)
, (331)
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or

ji(x) =
1

2
ψ∗i (x, t)

(
−i ~
m

∂

∂x

)
ψi(x, t) + c.c.,

=
1

2
ψ∗i (x, t)

p̂

m
ψi(x, t) + c.c.,

= Re[ψ∗i (x, t)v̂ψi(x, t)] =
~
m
.

(332)

The flux of transmitted electrons described by transmitted wave ψt(x, t) = trk
−1/2
r ei(krx−wt), with

momentum kr and energy E(kr) = eVr + ~2k2
r/(2m), is:

jt(x) =
1

2
ψ∗t (x, t)

(
−i ~
m

∂

∂x

)
ψt(x, t) + c.c.,

= |tr|2
~
m
.

(333)

Therefore, the transmission coefficient Tl = jt/ji, defined as the transmitted flux jt over the inci-
dent flux at energy E is: Tl = |tr|2. The reflection coefficient Rl = 1− Tl is the reflected flux over
the incident flux.

Analogously, we consider incidence from the right of the tunneling barrier, as follows:

ψr(x) =


φ−r + rrφ

+
r if x > a

Aeikbx +Be−ikbx if 0 < x < a
tlφ
−
l if x < 0

(334)

Solving for tl, we obtained the transmission coefficient Tr = |tl|2, due to incidence from the right.
More generally, we can consider incoming waves from both left and right (φ+

l and φ−r , re-
spectively) with amplitudes cin = c

(l)
in , c

(r)
in that generate outgoing waves to the left and right (φ−l

and φ+
r , respectively) with amplitudes cout = c

(l)
out, c

(r)
out. The amplitudes of outgoing and incoming

waves are related by the linear transformation defined by the scattering matrix (or, ’S-matrix’) S,
as follows: cout = Scin: (

clout
crout

)
=

(
rl tl
tr rr

)(
clin
crin

)
(335)

Due to the conservation of probability, the S-matrix must be unitary: S−1 = S†. Therefore,
SS† = 1: (

rl tl
tr rr

)(
r†l t†r
t†l r†r

)
= 1 (336)

which gives

rlr
†
l + tlt

†
l = 1. (337)
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In addition, S†S = 1: (
r†l t†r
t†l r†r

)(
rl tl
tr rr

)
= 1 (338)

which gives

t†l tl + r†rrr = 1 (339)

Therefore, according to Eqs. (337) and (339), we obtain: 1 − tlt
†
l = rlr

†
l = r†rrr. For our 1-

dimensional case, we obtain:

|rl|2 = |rr|2 = R. (340)

Under stationary state, ∂ρ/∂t = 0, with ρ = |ψ∗ψ|. Then, according to the continuity equation
∂ρ/∂t = −∂j/∂x, we obtain: ∂j/∂x = 0. Therefore, jl for x < 0 must be equal to jl for x > a.
Also, jr for x < 0 must be equal to jr for x > a:

(1− |rl|2) = |tr|2, (341)

and
(1− |rr|2) = |tl|2. (342)

Dividing Eq. (341) by Eq. (342) and using (340), we obtain:

tl = tr. (343)

Therefore,

Tl(E) = |tr|2,
= |tl|2 = Tr(E),

(344)

so the transmission coefficient is the same for both directions of incidence and R + T = 1.
Considering that the number of electrons with energy E incident from the left and right of the

barrier are nl(E) and nr(E), respectively, the net flux of charge from left to right is:

I = 2e

∫ ∞
0

dklnl(kl)
~kl
m
Tl − 2e

∫ ∞
0

dkrnr(kr)
~kr
m
Tr,

=
2e

2π

∫ ∞
0

dE T (E)

(
nl(E)

~kl
m

∣∣∣∣∂kl∂E

∣∣∣∣− nr(E)
~kr
m

∣∣∣∣∂kr∂E

∣∣∣∣) ,
=

2e

2π

∫ ∞
0

dE T (E)

(
nl(E)

~kl
m

∣∣∣∣ m~2kl

∣∣∣∣− nr(E)
~kr
m

∣∣∣∣ m~2kr

∣∣∣∣) ,
=

2e

h

∫ ∞
0

dE T (E) (nl(E)− nr(E)) ,

(345)

where factor of 2 accounts for the two possible spin states, the first term on the r.h.s. accounts
for the forward flux (i.e., from left to right) and the second term accounts for the backward flux
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(i.e., from right to left). Note that in the second row of Eq. (345) we used the following equality:
1̂ =

∫
dE|E〉〈E| = 2π

∫
dk|k〉〈k|.

At equilibrium, the population of energy levels is determined by the Fermi-Dirac distribution:

n(E) =
1

eβ(E−EF ) + 1
, (346)

where EF is the Fermi level and the factor of 2 in the numerator accounts for the 2 possible spin
states. Considering the potentials for electrons at either side of the barrier, we obtain nl(E) =
n(E − eVl) and nr(E) = n(E − eVr). Therefore, we can expand these distributions, as follows:

nl(E) = n(E − EF ) +
∂n(E)

∂E
eVl + · · · ,

nr(E) = n(E − EF ) +
∂n(E)

∂E
eVr + · · · ,

(347)

and write the Landauer formula, giving the current in the form of the Ohm’s law, as follows:

I =
2e

h

∫ ∞
0

dE T (E) (nl(E)− nr(E)) ,

=
2e2

h

∫
dE T (E)

∂n(E)

∂E
∆V,

= G(E)∆V,

(348)

where G(E) = R−1 = G0

∫
dE T (E)∂n(E)

∂E
is the conductance, or inverse of the resistance R, with

G0 = 2e2

h
= [12.906 kΩ]−1 the quantum unit of conductance. Note that G0 defines the maximum

conductance (minimum resistance) per conduction channel with perfect transmission, T (E) = 1
(i.e., if the transport through the channel is ballistic and therefore the probability for transmitting
the electron that enters the channel is unity), as observed in experiments .

At low temperature (i.e., β →∞), the Fermi-Dirac distributions become step functions nl(E) =
2H(EF − (E − eVl)) and nr(E) = 2H(EF − (E − eVr)), with H(x) the Heaviside function equal
to 1 for x > 0, and 0 for x < 0. Therefore, ∂n(E)

∂E
= δ(EF − E), and

I =
2e2

h

∫
dE T (E)δ(EF − E)∆V,

=
2e2

h
T (EF )∆V.

(349)

In this low-temperature limit, the conductance is the transmission times the quantum of conduc-
tance, G(E) = 2e2

h
T (EF ).

46.1 WKB Transmission
The goal of this subsection is to show that the transmission coefficient T (E) can be estimated,
under the WKB approximation, as follows:

T (E) = e−2
∫ a
0 dx
√

2m|E−ξ(x)|/~2 , (350)
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where ξ(x) = Vb describes the tunneling barrier according to Eq. (328).
To derive Eq. (350), we consider the WKB approximate solution of Eq. (327), with the follow-

ing functional form:
ψ(x) = ψ0e

i
∫ x
0 k(x′)dx′ , (351)

where k(x) =
√

2m[E − V (x)]/~2. Note that when V (x) is constant, ψ(x) corresponds to a
particle moving to the right with constant momentum k. Substituting ψ(x) as defined in Eq. (351),
into Eq. (327), we obtain:

− ~2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) = Eψ(x)−∆, (352)

with ∆ = ik′(x) ~2
2m
ψ(x). Therefore, the WKB solution is a good approximation when |k′(x)| <<

k(x)2.
According to the WKB solution, the probability density |ψ(x)|2 remains constant on the left of

the tunneling barrier, when E > Vl, since ψ(x) = ψ(−∞)e−i
∫ x
−∞ dx′kl for x < 0. Inside the barrier,

however, the probability density decays exponentially:

ψ(x) = ψ(0)e−
∫ x
0 dx′
√

2m|E−ξ(x′)|/~2 , (353)
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since E < ξ(x). In particular, at x = a, the probability density is

|ψ(x)|2 = |ψ(0)|2e−2
∫ a
0 dx

′|k(x′)|. (354)

In the region with x > a, the probability density remains constant again sinceψ(x) = ψ(a)e−i
∫ x
a dx

′kr

and |ψ(x)|2 = |ψ(a)|2. Therefore, estimating the transmission coefficient as the ratio of the proba-
bility densities to the right and to the left of the barrier, we obtain

T (E) =
|ψ(a)|2

|ψ(0)|2
,

= e−2
∫ a
0 dx
√

2m|E−ξ(x)|/~2 .

(355)
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47 Solutions to Computational Assignments

47.1 Problem 1
Computational Problem 1: Write a computer program to represent the wave-packet, introduced
by Eq. (22) on a grid of equally spaced coordinates xj = xmin + (j − 1)∆ with finite resolution
∆ = (xmax − xmin)/(n − 1) and visualize the output. Choose x0 = 0 and p0 = 0, in the range
x=(-20,20), with α = ωm, where m = 1 and ω = 1.

To visualize the output of this program, cut the source code attached below save it in a file
named Problem1.f, compile it by typing

gfortran Problem1.f -o Problem1

run it by typing

./Problem1

Visualize the output as follows: type

gnuplot

then type

plot ‘‘arch.0000’’

That will show the representation of the Gaussian state, introduced in Eq. (6) in terms of an array
of numbers associated with a grid in coordinate space. To exit, type

quit
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Download from (http://ursula.chem.yale.edu/∼batista/classes/summer/P1/Problem1.f) ,

PROGRAM Problem_1
call Initialize()
CALL SAVEWF(0)
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE Initialize()

c
c Wave Packet Initialization: Gaussian centered at xk, with momentum pk
c

IMPLICIT NONE
INTEGER nptx,npts,kk
COMPLEX chi,EYE
REAL omega,xmin,xmax,dx,pi,mass,xk,pk,x,alpha
PARAMETER(npts=10,nptx=2**npts)
COMMON / wfunc/ chi(nptx)
common /xy/ xmin,xmax
common /packet/mass,xk,pk
xmin=-20.
xmax=20.
EYE=(0.0,1.0)
pi= acos(-1.0)
omega=1.
dx=(xmax-xmin)/real(nptx)
pk=0.0
xk=0.0
mass=1.0
alpha=mass*omega
do kk=1,nptx

x=xmin+kk*dx
chi(kk)=((alpha/pi)**0.25)

1 *exp(-alpha/2.*(x-xk)**2+EYE*pk*(x-xk))
end do
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE SAVEWF(j)

c
c Save Wave-packet in coordinate space
c

IMPLICIT NONE
INTEGER nptx,npts,kk,j
COMPLEX chi,EYE
REAL RV,omega,xmin,xmax,dx,pi,mass,xk,pk,x,alpha,Vpot,RKE
character*9 B
PARAMETER(npts=10,nptx=2**npts)
COMMON / wfunc/ chi(nptx)
common /xy/ xmin,xmax
common /packet/mass,xk,pk
write(B, ’(A,i4.4)’) ’arch.’, j
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OPEN(1,FILE=B)
dx=(xmax-xmin)/real(nptx)
do kk=1,nptx

x=xmin+kk*dx
WRITE(1,22) x,chi(kk)

end do
CLOSE(1)

22 FORMAT(6(e13.6,2x))
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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47.2 Problem 2
Computational Problem 2: Write a computer program to represent the initial state, introduced by
Eq. (22), in the momentum space by applying the FFT algorithm to the grid-based representation
generated in Problem 1 and visualize the output. Represent the wave-packet amplitudes and phases
in the range p=(-4,4) and compare your output with the corresponding values obtained from the
analytic Fourier transform obtained by using:∫

dx exp(−a2x
2 + a1x+ a0) =

√
π/a2 exp(a0 + a2

1/(4a2)).

In order to visualize the output of this program, cut the source code attached below save it in a
file named Problem2.f, compile it by typing

gfortran Problem2.f -o Problem2

run it by typing

./Problem2

Visualize the output as follows: type

gnuplot

then type

plot ‘‘nume.0000’’

That will show the representation of the amplitude of the Fourier transform of the Gaussian state,
introduced in Eq. (6), in terms of an array of numbers associated with a grid in momentum space.
In order to visualize the analytic results on top of the numerical values type

replot ‘‘anal.0000’’

In order to visualize the numerically computed phases as a function of p type

plot ‘‘nume.0000 u 1:3’’

and to visualize the analytic results on top of the numerical values type

replot ‘‘anal.0000’’

To exit, type

quit
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Download from (http://ursula.chem.yale.edu/∼batista/classes/summer/P2/Problem2.f) ,

PROGRAM Problem2
call Initialize()
CALL SAVEFT()
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE Initialize()

c
c Wave Packet Initialization: Gaussian centered at xk, with momentum pk
c

IMPLICIT NONE
INTEGER nptx,npts,kk
COMPLEX chi,EYE
REAL omega,xmin,xmax,dx,pi,rmass,xk,pk,x,alpha
PARAMETER(npts=10,nptx=2**npts)
COMMON / wfunc/ chi(nptx)
common /xy/ xmin,xmax
common /packet/rmass,xk,pk
xmin=-20.
xmax=20.
EYE=(0.0,1.0)
pi= acos(-1.0)
omega=1.
dx=(xmax-xmin)/real(nptx)
pk=0.0
xk=5.0
rmass=1.0
alpha=rmass*omega
do kk=1,nptx

x=xmin+kk*dx
chi(kk)=((alpha/pi)**0.25)

1 *exp(-alpha/2.*(x-xk)**2+EYE*pk*(x-xk))
end do
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine SAVEFT()

c
c Save wave-packet in momentum space
c

IMPLICIT NONE
INTEGER nptx,kx,nx,npts,j
REAL theta,wm,p,xmin,xmax,rmass,xk,pi,alenx,pk,rm,re,ri
COMPLEX eye,chi,Psip
character*9 B1,B2
parameter(npts=10,nptx=2**npts)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk
COMMON / wfunc/ chi(nptx)
j=0

156

http://ursula.chem.yale.edu/~batista/classes/summer/P2/Problem2.f


write(B1, ’(A,i4.4)’) ’anal.’, j
OPEN(1,FILE=B1)
write(B2, ’(A,i4.4)’) ’nume.’, j
OPEN(2,FILE=B2)
CALL fourn(chi,nptx,1,-1)
pi = acos(-1.0)
alenx=xmax-xmin
do kx=1,nptx

if(kx.le.(nptx/2+1)) then
nx=kx-1

else
nx=kx-1-nptx

end if
p=0.
if(nx.ne.0) p = real(nx)*2.*pi/alenx

c Numerical Solution
chi(kx)=chi(kx)*alenx/sqrt(2.0*pi)/nptx
re=chi(kx)
ri=imag(chi(kx))
IF(re.NE.0) theta=atan(ri/re)
rm=abs(chi(kx))
IF(abs(p).LE.(4.)) WRITE(2,22) p,rm,theta
IF(nx.EQ.(nptx/2)) WRITE(2,22)

c Analytic Solution
CALL FT_analy(Psip,p)
re=Psip
ri=imag(Psip)
IF(re.NE.0) theta=atan(ri/re)
rm=abs(Psip)
IF(abs(p).LE.(4.)) WRITE(1,22) p,rm,theta
IF(nx.EQ.(nptx/2)) WRITE(1,22)

end do
CALL fourn(chi,nptx,1,1)

22 FORMAT(6(e13.6,2x))
return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine FT_analy(Psip,p)

c
c Analytic Fourier Transform of the initial Gaussian wave-packet
c

IMPLICIT NONE
REAL p,pi,alpha,rmass,xk,pk,omega
COMPLEX Psip,c0,c1,c2,eye
common /packet/ rmass,xk,pk
eye=(0.0,1.0)
omega=1.
alpha = rmass*omega
pi=acos(-1.0)
c2=alpha/2.
c1=alpha*xk+eye*(pk-p)
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c0=-alpha/2.*xk**2-eye*pk*xk
Psip=sqrt(pi/c2)/sqrt(2.0*pi)*(alpha/pi)**0.25

1 *exp(c1**2/(4.0*c2))*exp(c0)
return
end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Subroutines from Numerical Recipes
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE FOURN(DATA,NN,NDIM,ISIGN)
REAL*8 WR,WI,WPR,WPI,WTEMP,THETA
DIMENSION NN(NDIM),DATA(*)
NTOT=1
DO 11 IDIM=1,NDIM

NTOT=NTOT*NN(IDIM)
11 CONTINUE

NPREV=1
DO 18 IDIM=1,NDIM

N=NN(IDIM)
NREM=NTOT/(N*NPREV)
IP1=2*NPREV
IP2=IP1*N
IP3=IP2*NREM
I2REV=1
DO 14 I2=1,IP2,IP1

IF(I2.LT.I2REV)THEN
DO 13 I1=I2,I2+IP1-2,2

DO 12 I3=I1,IP3,IP2
I3REV=I2REV+I3-I2
TEMPR=DATA(I3)
TEMPI=DATA(I3+1)
DATA(I3)=DATA(I3REV)
DATA(I3+1)=DATA(I3REV+1)
DATA(I3REV)=TEMPR
DATA(I3REV+1)=TEMPI

12 CONTINUE
13 CONTINUE

ENDIF
IBIT=IP2/2

1 IF ((IBIT.GE.IP1).AND.(I2REV.GT.IBIT)) THEN
I2REV=I2REV-IBIT
IBIT=IBIT/2
GO TO 1

ENDIF
I2REV=I2REV+IBIT

14 CONTINUE
IFP1=IP1

2 IF(IFP1.LT.IP2)THEN
IFP2=2*IFP1
THETA=ISIGN*6.28318530717959D0/(IFP2/IP1)
WPR=-2.D0*DSIN(0.5D0*THETA)**2
WPI=DSIN(THETA)
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WR=1.D0
WI=0.D0
DO 17 I3=1,IFP1,IP1

DO 16 I1=I3,I3+IP1-2,2
DO 15 I2=I1,IP3,IFP2

K1=I2
K2=K1+IFP1
TEMPR=SNGL(WR)*DATA(K2)-SNGL(WI)*DATA(K2+1)
TEMPI=SNGL(WR)*DATA(K2+1)+SNGL(WI)*DATA(K2)
DATA(K2)=DATA(K1)-TEMPR
DATA(K2+1)=DATA(K1+1)-TEMPI
DATA(K1)=DATA(K1)+TEMPR
DATA(K1+1)=DATA(K1+1)+TEMPI

15 CONTINUE
16 CONTINUE

WTEMP=WR
WR=WR*WPR-WI*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI

17 CONTINUE
IFP1=IFP2
GO TO 2

ENDIF
NPREV=N*NPREV

18 CONTINUE
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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47.3 Problem 3
Computational Problem 3: Write a computer program to compute the expectation values of the
position x(0) = 〈Ψ0|x̂|Ψ0〉 and the potential energy V = 〈Ψ0|V (x̂)|Ψ0〉, where V (x) is defined
according to Eq. (28) for the initial wave-packet, introduced by Eq. (22), with various possible
values of x0 and p0, with α = ωm, where m = 1 and ω = 1.

In order to visualize the output of this program, cut the source code attached below save it in a
file named Problem3.f, compile it by typing

gfortran Problem3.f -o Problem3

run it by typing

./Problem3

The printout on the screen includes the numerically expectation values 〈Ψt|V̂ |Ψt〉 and 〈Ψt|x̂|Ψt〉.
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Download from (http://ursula.chem.yale.edu/∼batista/classes/summer/P3/Problem3.f) ,

PROGRAM Problem3
IMPLICIT NONE
REAL x,VENERGY
CALL Initialize()
CALL PE(VENERGY)
CALL Px(x)
PRINT *, "<Psi|V|Psi>=",VENERGY
PRINT *, "<Psi|x|Psi>=",x
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE Initialize()

c
c Wave Packet Initialization: Gaussian centered at xk, with momentum pk
c

IMPLICIT NONE
INTEGER nptx,npts,kk
COMPLEX chi,EYE
REAL omega,xmin,xmax,dx,pi,mass,xk,pk,x,alpha
PARAMETER(npts=10,nptx=2**npts)
COMMON / wfunc/ chi(nptx)
common /xy/ xmin,xmax
common /packet/mass,xk,pk
xmin=-20.
xmax=20.
EYE=(0.0,1.0)
pi= acos(-1.0)
omega=1.
dx=(xmax-xmin)/real(nptx)
pk=0.0
xk=0.0
mass=1.0
alpha=mass*omega
do kk=1,nptx

x=xmin+kk*dx
chi(kk)=((alpha/pi)**0.25)

1 *exp(-alpha/2.*(x-xk)**2+EYE*pk*(x-xk))
end do
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE PE(RV)

c
c Expectation Value of the Potential Enegy
c

IMPLICIT NONE
INTEGER nptx,npts,k
COMPLEX chi
REAL Vpot,RV,xmin,xmax,dx,x
PARAMETER(npts=10,nptx=2**npts)

161

http://ursula.chem.yale.edu/~batista/classes/summer/P3/Problem3.f


COMMON / wfunc/ chi(nptx)
common /xy/ xmin,xmax
dx=(xmax-xmin)/real(nptx)
RV=0.0
do k=1,nptx

x=xmin+k*dx
CALL VA(Vpot,x)
RV=RV+chi(k)*Vpot*conjg(chi(k))*dx

end do
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE Px(RV)

c
c Expectation Value of the position
c

IMPLICIT NONE
INTEGER nptx,npts,k
COMPLEX chi
REAL RV,xmin,xmax,dx,x
PARAMETER(npts=10,nptx=2**npts)
COMMON / wfunc/ chi(nptx)
common /xy/ xmin,xmax
dx=(xmax-xmin)/real(nptx)
RV=0.0
do k=1,nptx

x=xmin+k*dx
RV=RV+chi(k)*x*conjg(chi(k))*dx

end do
RETURN
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE VA(V,x)

c
c Potential Energy Surface: Harmonic Oscillator
c

IMPLICIT NONE
REAL V,x,mass,xk,pk,rk,omega
common /packet/ mass,xk,pk
omega=1.0
rk=mass*omega**2
V=0.5*rk*x*x
RETURN
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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47.4 Problem 4
Computational Problem 4: Write a computer program to compute the expectation values of the
initial momentum p(0) = 〈Ψ0|p̂|Ψ0〉 and the kinetic energy T = 〈Ψ0|p̂2/(2m)|Ψ0〉 by using the
Fourier transform procedure, where Ψ0 is the initial wave-packet introduced by Eq. (22), with
x0 = 0, p0 = 0, and α = ωm, where m = 1 and ω = 1. Compute the expectation value of the
energy E = 〈Ψ0|Ĥ|Ψ0〉, where Ĥ = p̂2/(2m) + V (x̂), with V (x) defined according to Eq. (28)
and compare your result with the zero-point energy E0 = ω/2.

In order to visualize the output of this program, cut the source code attached below save it in a
file named Problem4.f, compile it by typing

gfortran Problem4.f -o Problem4

run it by typing

./Problem4

The printout on the screen includes the numerically expectation values 〈Ψt|p̂|Ψt〉, 〈Ψt|T̂ |Ψt〉 and
〈Ψt|Ĥ|Ψt〉. Note that the analytic value of 〈Ψt|T̂ |Ψt〉 is ~ω/2 = 0.5 in agreement with the numer-
ical solution.
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Download from (http://ursula.chem.yale.edu/∼batista/classes/summer/P4/Problem4.f),

PROGRAM Problem4
CALL Initialize()
CALL Pp(p)
PRINT *, "<Psi|p|Psi>=",p
CALL KE(RKE)
PRINT *, "<Psi|T|Psi>=",RKE
CALL PE(RV)
PRINT *, "<Psi|H|Psi>=",RKE+RV
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE Initialize()

c
c Wave Packet Initialization: Gaussian centered at xk, with momentum pk
c

IMPLICIT NONE
INTEGER nptx,npts,kk
COMPLEX chi,EYE
REAL omega,xmin,xmax,dx,pi,mass,xk,pk,x,alpha
PARAMETER(npts=10,nptx=2**npts)
COMMON / wfunc/ chi(nptx)
common /xy/ xmin,xmax
common /packet/mass,xk,pk
xmin=-20.
xmax=20.
EYE=(0.0,1.0)
pi= acos(-1.0)
omega=1.
dx=(xmax-xmin)/real(nptx)
pk=0.0
xk=0.0
mass=1.0
alpha=mass*omega
do kk=1,nptx

x=xmin+kk*dx
chi(kk)=((alpha/pi)**0.25)

1 *exp(-alpha/2.*(x-xk)**2+EYE*pk*(x-xk))
end do
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE PE(RV)

c
c Expectation Value of the Potential Enegy
c

IMPLICIT NONE
INTEGER nptx,npts,k
COMPLEX chi
REAL Vpot,RV,xmin,xmax,dx,x
PARAMETER(npts=10,nptx=2**npts)
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COMMON / wfunc/ chi(nptx)
common /xy/ xmin,xmax
dx=(xmax-xmin)/real(nptx)
RV=0.0
do k=1,nptx

x=xmin+k*dx
CALL VA(Vpot,x)
RV=RV+chi(k)*Vpot*conjg(chi(k))*dx

end do
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE KE(RKE)

c
c Expectation value of the kinetic energy
c

IMPLICIT NONE
INTEGER kk,nptx,kx,nx,npts
REAL dp,RKE,p,xmin,xmax,pi,alenx,dx,mass,xk,pk
COMPLEX eye,chi,Psip,chic
parameter(npts=10,nptx=2**npts)
DIMENSION chic(nptx)
common /xy/ xmin,xmax
common /packet/mass,xk,pk
COMMON / wfunc/ chi(nptx)
RKE=0.0
pi = acos(-1.0)
dx=(xmax-xmin)/nptx
dp=2.*pi/(xmax-xmin)
do kk=1,nptx

chic(kk)=chi(kk)
end do
CALL fourn(chic,nptx,1,1)
do kx=1,nptx

if(kx.le.(nptx/2+1)) then
nx=kx-1

else
nx=kx-1-nptx

end if
p=0.
if(nx.ne.0) p = real(nx)*dp
chic(kx)=p**2/(2.0*mass)*chic(kx)/nptx

end do
CALL fourn(chic,nptx,1,-1)
do kk=1,nptx

RKE=RKE+conjg(chi(kk))*chic(kk)*dx
end do
return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE Pp(pe)
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c
c Expectation value of the momentum
c

IMPLICIT NONE
INTEGER kk,nptx,kx,nx,npts
REAL dp,pe,p,xmin,xmax,pi,alenx,dx,mass,xk,pk
COMPLEX eye,chi,Psip,chic
parameter(npts=10,nptx=2**npts)
DIMENSION chic(nptx)
common /xy/ xmin,xmax
common /packet/mass,xk,pk
COMMON / wfunc/ chi(nptx)
pe=0.0
pi = acos(-1.0)
dx=(xmax-xmin)/nptx
dp=2.*pi/(xmax-xmin)
do kk=1,nptx

chic(kk)=chi(kk)
end do
CALL fourn(chic,nptx,1,1)
do kx=1,nptx

if(kx.le.(nptx/2+1)) then
nx=kx-1

else
nx=kx-1-nptx

end if
p=0.
if(nx.ne.0) p = real(nx)*dp
chic(kx)=p*chic(kx)/nptx

end do
CALL fourn(chic,nptx,1,-1)
do kk=1,nptx

pe=pe+conjg(chi(kk))*chic(kk)*dx
end do
return
end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE VA(V,x)

c
c Potential Energy Surface: Harmonic Oscillator
c

implicit none
REAL V,x,mass,xk,pk,rk,omega
common /packet/ mass,xk,pk
omega=1.0
rk=mass*omega**2
V=0.5*rk*x*x
RETURN
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Subroutines from Numerical Recipes
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE FOURN(DATA,NN,NDIM,ISIGN)
REAL*8 WR,WI,WPR,WPI,WTEMP,THETA
DIMENSION NN(NDIM),DATA(*)
NTOT=1
DO 11 IDIM=1,NDIM

NTOT=NTOT*NN(IDIM)
11 CONTINUE

NPREV=1
DO 18 IDIM=1,NDIM

N=NN(IDIM)
NREM=NTOT/(N*NPREV)
IP1=2*NPREV
IP2=IP1*N
IP3=IP2*NREM
I2REV=1
DO 14 I2=1,IP2,IP1

IF(I2.LT.I2REV)THEN
DO 13 I1=I2,I2+IP1-2,2

DO 12 I3=I1,IP3,IP2
I3REV=I2REV+I3-I2
TEMPR=DATA(I3)
TEMPI=DATA(I3+1)
DATA(I3)=DATA(I3REV)
DATA(I3+1)=DATA(I3REV+1)
DATA(I3REV)=TEMPR
DATA(I3REV+1)=TEMPI

12 CONTINUE
13 CONTINUE

ENDIF
IBIT=IP2/2

1 IF ((IBIT.GE.IP1).AND.(I2REV.GT.IBIT)) THEN
I2REV=I2REV-IBIT
IBIT=IBIT/2
GO TO 1

ENDIF
I2REV=I2REV+IBIT

14 CONTINUE
IFP1=IP1

2 IF(IFP1.LT.IP2)THEN
IFP2=2*IFP1
THETA=ISIGN*6.28318530717959D0/(IFP2/IP1)
WPR=-2.D0*DSIN(0.5D0*THETA)**2
WPI=DSIN(THETA)
WR=1.D0
WI=0.D0
DO 17 I3=1,IFP1,IP1

DO 16 I1=I3,I3+IP1-2,2
DO 15 I2=I1,IP3,IFP2

K1=I2
K2=K1+IFP1
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TEMPR=SNGL(WR)*DATA(K2)-SNGL(WI)*DATA(K2+1)
TEMPI=SNGL(WR)*DATA(K2+1)+SNGL(WI)*DATA(K2)
DATA(K2)=DATA(K1)-TEMPR
DATA(K2+1)=DATA(K1+1)-TEMPI
DATA(K1)=DATA(K1)+TEMPR
DATA(K1+1)=DATA(K1+1)+TEMPI

15 CONTINUE
16 CONTINUE

WTEMP=WR
WR=WR*WPR-WI*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI

17 CONTINUE
IFP1=IFP2
GO TO 2

ENDIF
NPREV=N*NPREV

18 CONTINUE
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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47.5 Problem 5
Computational Problem 5: Expand the exponential operators in both sides of Eq. (87) and show
that the Trotter expansion is accurate to second order in powers of τ .

Expanding the left-hand-side (l.h.s.) of Eq. (87) from the lecture notes gives:

e−iĤτ = 1− iĤτ − 1

2
Ĥ2τ2 +O(τ3), (356)

where Ĥ = p̂2/(2m) + V̂ . Therefore,

e−iĤτ = 1− iĤτ − 1

2

p̂4

4m2
τ2 − 1

2
V̂ 2τ2 − 1

2

p̂2

2m
V̂ τ2 − 1

2
V̂
p̂2

2m
τ2 +O(τ3), (357)

In order to show that the Trotter expansion, introduced by Eq. (87), is accurate to second order in τ , we
must expand the right-hand-side (r.h.s.) of Eq. (87) and show that such an expansion equals the r.h.s. of
Eq. (357).

Expanding the right-hand-side (r.h.s.) of Eq. (18) gives,

e−iV (x̂)τ/2e−ip̂
2τ/(2m)e−iV (x̂)τ/2 =

(
1− iV̂ τ/2− 1

2
V̂ 2τ2/4 +O(τ3)

)(
1− i p̂

2

2m
τ − 1

2

p̂4

4m2
τ2 +O(τ3)

)
×
(
1− iV̂ τ/2− 1

2
V̂ 2τ2/4 +O(τ3)

)
,

(358)

e−iV (x̂)τ/2e−ip̂
2τ/(2m)e−iV (x̂)τ/2 =

(
1− iV̂ τ/2− 1

2
V̂ 2τ2/4− i p̂

2

2m
τ − V̂ p̂2

2m
τ2/2− 1

2

p̂4

4m2
τ2 +O(τ3)

)
×
(
1− iV̂ τ/2− 1

2
V̂ 2τ2/4 +O(τ3)

)
,

(359)

e−iV (x̂)τ/2e−ip̂
2τ/(2m)e−iV (x̂)τ/2 = 1− iV̂ τ/2− 1

2
V̂ 2τ2/4− i p̂

2

2m
τ − V̂ p̂2

2m
τ2/2− 1

2

p̂4

4m2
τ2

− iV̂ τ/2− V̂ 2τ2/4− p̂2

2m
V̂ τ2/2− 1

2
V̂ 2τ2/4 +O(τ3),

(360)

e−iV (x̂)τ/2e−ip̂
2τ/(2m)e−iV (x̂)τ/2 = 1− iV̂ τ − i p̂

2

2m
τ − 1

2
V̂ 2τ2 − V̂ p̂2

2m
τ2/2− 1

2

p̂4

4m2
τ2

− p̂2

2m
V̂ τ2/2 +O(τ3).

(361)

Note that the r.h.s. of Eq. (361) is identical to the r.h.s. of E. (357), completing the proof that the Trotter
expansion, introduced by Eq. (18), is accurate to second order in τ .
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47.6 Problem 6
Computational Problem 6: Write a computer program that propagates the initial state Ψ0(x) for
a single time increment (τ = 0.1 a.u.). Use x0 = −2.5, p0 = 0, and α = ωm, where m = 1 and
ω = 1. Implement the SOFT method for the Hamiltonian Ĥ = p̂2/(2m) + V (x̂), where V (x) is
defined according to Eq. (28). Compare the resulting propagated state with the analytic solution
obtained by substituting Eq. (35) into Eq. (34).

In order to visualize the output of this program, cut the source code attached below save it in a
file named Problem6.f, compile it by typing

gfortran Problem6.f -o Problem6

run it by typing

./Problem6

and visualize the output as follows: type

gnuplot

then type

set dat sty line

then type

set yrange[0:6]

and the type

plot ‘‘arch.0002’’

That will show the numerical propagation after one step with τ = 0.1. In order to visualize the
analytic result on top of the numerical propagation, type

replot ‘‘arch.0002’’ u 1:3

To exit, type

quit
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Download from (http://ursula.chem.yale.edu/∼batista/classes/summer/P6/Problem6.f),

PROGRAM Problem6
c
c 1-D wave packet propagation
c

IMPLICIT NONE
INTEGER NN,npts,nptx,ndump
INTEGER istep,nstep
REAL dt,xc,pc
COMPLEX vprop,tprop,x_mean,p_mean
PARAMETER(npts=9,nptx=2**npts,NN=1)
DIMENSION vprop(nptx,NN,NN),tprop(nptx)
DIMENSION x_mean(NN),p_mean(NN)
COMMON /class/ xc,pc

c
CALL ReadParam(nstep,ndump,dt)
call Initialize()
CALL SetKinProp(dt,tprop)
CALL SetPotProp(dt,vprop)
DO istep=1,nstep+1

IF(mod(istep-1,10).EQ.0)
1 PRINT *, "Step=", istep-1,", Final step=", nstep

IF(istep.GE.1) CALL PROPAGATE(vprop,tprop)
IF(mod((istep-1),ndump).EQ.0) THEN

CALL SAVEWF(istep,ndump,dt)
END IF

END DO
22 FORMAT(6(e13.6,2x))

END
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine ReadParam(nstep,ndump,dt)
c
c Parameters defining the grid (xmin, xmax), integration time step (dt),
c mass (rmass), initial position (xk), initial momentum (pk),
c number of propagation steps (nstep), and how often to save a pic (ndump)
c

IMPLICIT NONE
INTEGER ntype,nstep,nrpt,ireport,ndump,nlit
REAL xmin,xmax,pk,rmass,xk,dt
common /packet/ rmass,xk,pk
common /xy/ xmin,xmax

c
xmin=-10.0
xmax= 10.0
dt=0.1
rmass=1.0
xk=-2.5
pk=1.0
nstep=1
ndump=1
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c
return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE Initialize()

IMPLICIT NONE
INTEGER NN,nptx,npts,kk
COMPLEX chi0,chi,EYE,CRV
REAL xc,pc,omega,xk2,xmin,xmax,dx,pi,rmass,xk,pk,x,alpha,alpha2
PARAMETER(npts=9,nptx=2**npts,NN=1)
DIMENSION CRV(NN,NN)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk
COMMON / wfunc/ chi(nptx,NN)
COMMON / iwfunc/ chi0(nptx,NN)
COMMON /class/ xc,pc

EYE=(0.0,1.0)
pi= acos(-1.0)
omega=1.
dx=(xmax-xmin)/real(nptx)
xc=kk
pc=pk

c
c Wave Packet Initialization: Gaussian centered at xk, with momentum pk
c

alpha=rmass*omega
do kk=1,nptx

x=xmin+kk*dx
chi(kk,1)=((alpha/pi)**0.25)

1 *exp(-alpha/2.*(x-xk)**2+EYE*pk*(x-xk))
chi0(kk,1)=chi(kk,1)

end do
c
c Hamiltonian Matrix CRV
c

do kk=1,nptx
x=xmin+kk*dx
CALL HAMIL(CRV,x)
WRITE(11,22) x,real(CRV(1,1))

END DO
22 FORMAT(6(e13.6,2x))

RETURN
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE HAMIL(CRV,x)

c
c Hamiltonian Matrix
c

IMPLICIT NONE
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INTEGER NN
REAL x,VPOT1
COMPLEX CRV
PARAMETER(NN=1)
DIMENSION CRV(NN,NN)

c
CALL VA(VPOT1,x)
CRV(1,1)=VPOT1

c
RETURN
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE VA(V,x)

c
c Potential Energy Surface: Harmonic Oscillator
c

implicit none
REAL V,x,rmass,xk,pk,rk,omega
common /packet/ rmass,xk,pk
omega=1.0
rk=rmass*omega**2
V=0.5*rk*x*x
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine SetKinProp(dt,tprop)

c
c Kinetic Energy part of the Trotter Expansion: exp(-i pˆ2 dt/(2 m))
c

IMPLICIT NONE
INTEGER nptx,kx,nx,npts
REAL xsc,xmin,xmax,propfacx,rmass,xk,pi,alenx,dt,pk
COMPLEX tprop,eye
parameter(npts=9,nptx=2**npts)
DIMENSION tprop(nptx)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk

c
eye=(0.,1.)
pi = acos(-1.0)
alenx=xmax-xmin
propfacx=-dt/2./rmass*(2.*pi)**2
do kx=1,nptx

if(kx.le.(nptx/2+1)) then
nx=kx-1

else
nx=kx-1-nptx

end if
xsc=0.
if(nx.ne.0) xsc=real(nx)/alenx
tprop(kx)=exp(eye*(propfacx*xsc**2))
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end do
c

return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine SetPotProp(dt,vprop)

c
c Potential Energy part of the Trotter Expansion: exp(-i V dt/2)
c

IMPLICIT NONE
INTEGER NN,ii,nptx,npts
REAL xmin,xmax,dx,dt,x,VPOT
COMPLEX vprop,eye
parameter(npts=9,nptx=2**npts,NN=1)
DIMENSION vprop(nptx,NN,NN)
common /xy/ xmin,xmax
eye=(0.,1.)
dx=(xmax-xmin)/real(nptx)

c
do ii=1,nptx

x=xmin+ii*dx
CALL VA(VPOT,x)
vprop(ii,1,1)=exp(-eye*0.5*dt*VPOT)/sqrt(nptx*1.0)

END DO
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE energies(energy)
IMPLICIT NONE
INTEGER j,NN
COMPLEX energy,RV,RKE
PARAMETER (NN=1)
DIMENSION RV(NN),RKE(NN),energy(NN)
CALL PE(RV)
CALL KE(RKE)
DO j=1,NN

energy(j)=RV(j)+RKE(j)
END DO
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
FUNCTION Psia(x,istep,dt)

c
c Analytic wave-packet <x|Psia(istep)> obtained by applying the
c harmonic propagator to the initial state,
c <x’|Psi(0)> = (alpha/pi)**.25*exp(-alpha/2*(x’-xk)**2+eye*pk*(x’-xk)),
c where the propagator is
c <x|exp(-beta H)|x’> = A exp(-rgamma*(x**2+x’**2)+rgammap*x*x’), with
c A = sqrt(m*omega/(pi*(exp(beta*omega)-exp(-beta*omega)))), beta = i*t,
c rgamma = 0.5*m*omega*cosh(beta*omega)/sinh(beta*omega) and
c rgammap = m*omega/sinh(beta*omega).
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c
IMPLICIT NONE
INTEGER istep
REAL pk,rmass,xk,dt,x,t,omega,pi,alpha
COMPLEX eye,Psia,beta,A,rgamma,rgammap,c0,c1,c2
common /packet/ rmass,xk,pk
eye=(0.0,1.0)
omega=1.0
alpha = omega*rmass
pi=acos(-1.0)
beta = eye*dt*istep
IF(abs(beta).EQ.0) beta = eye*1.0E-7
A = sqrt(rmass*omega/(pi*(exp(beta*omega)-exp(-beta*omega))))
rgamma=0.5*rmass*omega*(exp(beta*omega)+exp(-beta*omega))

1 /(exp(beta*omega)-exp(-beta*omega))
rgammap=2.*rmass*omega/(exp(beta*omega)-exp(-beta*omega))
c0=-eye*pk*xk-alpha/2.*xk**2
c1=rgammap*x+alpha*xk+eye*pk
c2=rgamma+alpha/2.

c
Psia = A*(alpha/pi)**.25*sqrt(pi/c2)*

1 exp(-rgamma*x**2)*exp(c0+c1**2/(4.0*c2))
c

return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE SAVEWF(je2,ndump,dt)

c
c Dump Time Evolved Wave packet
c

IMPLICIT NONE
INTEGER je2,nptx,npts,kk,NN,ncount,ndump,jj
COMPLEX chi,CRV,energy,psi,Psia
character*9 B
REAL V,x1,c1,c2,c1a,x,xmin,xmax,dx,EVALUES,dt
PARAMETER(npts=9,nptx=2**npts,NN=1)
DIMENSION CRV(NN,NN),energy(NN),EVALUES(NN)
DIMENSION psi(NN,NN)
common /xy/ xmin,xmax
COMMON / wfunc/ chi(nptx,NN)

c
CALL energies(energy)
jj=je2/ndump
write(B, ’(A,i4.4)’) ’arch.’, jj
OPEN(1,FILE=B)
dx=(xmax-xmin)/real(nptx)
ncount=(je2-1)/ndump

c
c Save Wave-packet components
c

do kk=1,nptx
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x=xmin+kk*dx
c1=chi(kk,1)*conjg(chi(kk,1))
c1a=Psia(x,je2,dt)*conjg(Psia(x,je2,dt))
write(1,33) x,sqrt(c1)+real(energy(1))

1 ,sqrt(c1a)+real(energy(1))
end do
write(1,33)
do kk=1,nptx

x=xmin+kk*dx
write(1,33) x

1 ,real(chi(kk,1))+real(energy(1))
1 ,real(Psia(x,je2,dt))+real(energy(1))
end do
write(1,33)

c
c Save Adiabatic states
c

do kk=1,nptx
x=xmin+kk*dx
CALL HAMIL(CRV,x)
write(1,33) x,CRV(1,1)

end do
CLOSE(1)

33 format(6(e13.6,2x))
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE PE(RV)

c
c Expectation Value of the Potential Enegy
c

IMPLICIT NONE
INTEGER nptx,npts,kk,NN,j
COMPLEX chi,EYE,RV
REAL Vpot,omega,xmin,xmax,dx,pi,rmass,xk,pk,x,alpha
PARAMETER(npts=9,nptx=2**npts,NN=1)
DIMENSION RV(NN)
COMMON / wfunc/ chi(nptx,NN)
common /xy/ xmin,xmax
common /packet/rmass,xk,pk

dx=(xmax-xmin)/real(nptx)
DO j=1,NN

RV(j)=0.0
do kk=1,nptx

x=xmin+kk*dx
IF(j.EQ.1) CALL VA(Vpot,x)
RV(j)=RV(j)+chi(kk,j)*Vpot*conjg(chi(kk,j))*dx

end do
END DO
RETURN
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END
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine KE(RKE)
c
c Expectation value of the kinetic energy
c

IMPLICIT NONE
INTEGER NN,kk,nptx,kx,nx,npts,j
REAL dp,theta,wm,p,xmin,xmax,rmass,xk,pi,alenx,pk,rm,re,ri,dx
COMPLEX eye,chi,Psip,chic,RKE
parameter(npts=9,nptx=2**npts,NN=1)
DIMENSION chic(nptx),RKE(NN)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk
COMMON / wfunc/ chi(nptx,NN)

c
pi = acos(-1.0)
dx=(xmax-xmin)/nptx
dp=2.*pi/(xmax-xmin)

c
DO j=1,NN

RKE(j)=0.0
do kk=1,nptx

chic(kk)=chi(kk,j)
end do
CALL fourn(chic,nptx,1,-1)
do kx=1,nptx

if(kx.le.(nptx/2+1)) then
nx=kx-1

else
nx=kx-1-nptx

end if
p=0.
if(nx.ne.0) p = real(nx)*dp
chic(kx)=p**2/(2.0*rmass)*chic(kx)/nptx

end do
CALL fourn(chic,nptx,1,1)
do kk=1,nptx

RKE(j)=RKE(j)+conjg(chi(kk,j))*chic(kk)*dx
end do

END DO
return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE PROPAGATE(vprop,tprop)

c
c Split Operator Fourier Transform Propagation Method
c J. Comput. Phys. 47, 412 (1982); J. Chem. Phys. 78, 301 (1983)
c

IMPLICIT NONE
INTEGER i,j,NN,ii,nptx,npts
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COMPLEX chi,vprop,chin1,chin2,tprop
PARAMETER(npts=9,nptx=2**npts,NN=1)
DIMENSION chin1(nptx),chin2(nptx)
DIMENSION tprop(nptx),vprop(nptx,NN,NN)
COMMON / wfunc/ chi(nptx,NN)

c
c Apply potential energy part of the Trotter Expansion
c

DO i=1,nptx
chin1(i)=0.0
DO j=1,NN

chin1(i)=chin1(i)+vprop(i,1,j)*chi(i,j)
END DO

END DO
c
c Fourier Transform wave-packet to the momentum representation
c

CALL fourn(chin1,nptx,1,-1)
c
c Apply kinetic energy part of the Trotter Expansion
c

DO i=1,nptx
chin1(i)=tprop(i)*chin1(i)

END DO
c
c Inverse Fourier Transform wave-packet to the coordinate representation
c

CALL fourn(chin1,nptx,1,1)
c
c Apply potential energy part of the Trotter Expansion
c

DO i=1,nptx
DO j=1,NN

chi(i,j)=vprop(i,j,1)*chin1(i)
END DO

END DO
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Subroutine for FFT from Numerical Recipes
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE FOURN(DATA,NN,NDIM,ISIGN)
REAL*8 WR,WI,WPR,WPI,WTEMP,THETA
DIMENSION NN(NDIM),DATA(*)
NTOT=1
DO 11 IDIM=1,NDIM

NTOT=NTOT*NN(IDIM)
11 CONTINUE

NPREV=1
DO 18 IDIM=1,NDIM

N=NN(IDIM)
NREM=NTOT/(N*NPREV)
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IP1=2*NPREV
IP2=IP1*N
IP3=IP2*NREM
I2REV=1
DO 14 I2=1,IP2,IP1

IF(I2.LT.I2REV)THEN
DO 13 I1=I2,I2+IP1-2,2

DO 12 I3=I1,IP3,IP2
I3REV=I2REV+I3-I2
TEMPR=DATA(I3)
TEMPI=DATA(I3+1)
DATA(I3)=DATA(I3REV)
DATA(I3+1)=DATA(I3REV+1)
DATA(I3REV)=TEMPR
DATA(I3REV+1)=TEMPI

12 CONTINUE
13 CONTINUE

ENDIF
IBIT=IP2/2

1 IF ((IBIT.GE.IP1).AND.(I2REV.GT.IBIT)) THEN
I2REV=I2REV-IBIT
IBIT=IBIT/2
GO TO 1

ENDIF
I2REV=I2REV+IBIT

14 CONTINUE
IFP1=IP1

2 IF(IFP1.LT.IP2)THEN
IFP2=2*IFP1
THETA=ISIGN*6.28318530717959D0/(IFP2/IP1)
WPR=-2.D0*DSIN(0.5D0*THETA)**2
WPI=DSIN(THETA)
WR=1.D0
WI=0.D0
DO 17 I3=1,IFP1,IP1

DO 16 I1=I3,I3+IP1-2,2
DO 15 I2=I1,IP3,IFP2

K1=I2
K2=K1+IFP1
TEMPR=SNGL(WR)*DATA(K2)-SNGL(WI)*DATA(K2+1)
TEMPI=SNGL(WR)*DATA(K2+1)+SNGL(WI)*DATA(K2)
DATA(K2)=DATA(K1)-TEMPR
DATA(K2+1)=DATA(K1+1)-TEMPI
DATA(K1)=DATA(K1)+TEMPR
DATA(K1+1)=DATA(K1+1)+TEMPI

15 CONTINUE
16 CONTINUE

WTEMP=WR
WR=WR*WPR-WI*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI

17 CONTINUE
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IFP1=IFP2
GO TO 2

ENDIF
NPREV=N*NPREV

18 CONTINUE
RETURN
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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47.7 Problem 7
Computational Problem 7: Loop the computer program developed in Problem 5 with x0 = −2.5
and p0 = 0 for 100 steps with τ = 0.1 a.u. For each step compute the expectation values of
coordinates x(t) and momenta p(t) as done in Problems 3 and 4, respectively. Compare your
calculations with the analytic solutions obtained by substituting Eq. (35) into Eq. (34). Verify that
these correspond to the classical trajectories x(t) = x̄ + (x0 − x̄)cos(ωt) and p(t) = p0 − (x0 −
x̄)ωm sin(ωt), which can be computed according to the Velocity-Verlet algorithm:

pj+1 = pj + (F (xj) + F (xj+1))τ/2

xj+1 = xj + pjτ/m+ F (xj)τ
2/(2m).

(362)

In order to visualize the output of this program, cut the source code attached below, compile it
by typing

gfortran Problem7.f -o Problem7

run it by typing

./Problem7

Visualize the output of time dependent expectation values as compared to classical trajectories as
follows: type

gnuplot

then type

set dat sty line

then type

plot ‘‘traj.0000’’

That will show the numerical computation of the expectation value < Ψt|x̂|Ψt > as a function of
time. In order to visualize the classical result on top of the quantum mechanical expectation value,
type

replot ‘‘traj.0000’’ u 1:4

In order to visualize the output of < Ψt|p̂|Ψt > as a function of time, type

plot ‘‘traj.0000’’ u 1:3

and to visualize the classical result on top of the quantum mechanical expectation value, type

replot ‘‘traj.0000’’ u 1:5

The plot of < Ψt|p̂|Ψt > vs. < Ψt|x̂|Ψt > can be obtained by typing
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plot ‘‘traj.0000’’ u 3:2

, and the corresponding classical results p(t) vs. x(t)

plot ‘‘traj.0000’’ u 5:4

To exit, type

quit

The snapshots of the time-dependent wave-packet can be visualized as a movie by typing

gnuplot<pp_7

where the file named

pp_7

has the following lines:
Download from (http://ursula.chem.yale.edu/∼batista/classes/summer/P7/pp 7)

set yrange[0:6]
set xrange[-10:10]
set dat sty l
plot "arch.0001" u 1:2 lw 3
pause .1
plot "arch.0002" u 1:2 lw 3
pause .1
plot "arch.0003" u 1:2 lw 3
pause .1
plot "arch.0004" u 1:2 lw 3
pause .1
plot "arch.0005" u 1:2 lw 3
pause .1
plot "arch.0006" u 1:2 lw 3
pause .1
plot "arch.0007" u 1:2 lw 3
pause .1
plot "arch.0008" u 1:2 lw 3
pause .1
plot "arch.0009" u 1:2 lw 3
pause .1
plot "arch.0010" u 1:2 lw 3
pause .1
plot "arch.0011" u 1:2 lw 3
pause .1
plot "arch.0012" u 1:2 lw 3
pause .1
plot "arch.0013" u 1:2 lw 3
pause .1
plot "arch.0014" u 1:2 lw 3
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pause .1
plot "arch.0015" u 1:2 lw 3
pause .1
plot "arch.0016" u 1:2 lw 3
pause .1
plot "arch.0017" u 1:2 lw 3
pause .1
plot "arch.0018" u 1:2 lw 3
pause .1
plot "arch.0019" u 1:2 lw 3
pause .1
plot "arch.0020" u 1:2 lw 3
pause .1
plot "arch.0021" u 1:2 lw 3
pause .1
plot "arch.0022" u 1:2 lw 3
pause .1
plot "arch.0023" u 1:2 lw 3
pause .1
plot "arch.0024" u 1:2 lw 3
pause .1
plot "arch.0025" u 1:2 lw 3
pause .1
plot "arch.0026" u 1:2 lw 3
pause .1
plot "arch.0027" u 1:2 lw 3
pause .1
plot "arch.0028" u 1:2 lw 3
pause .1
plot "arch.0029" u 1:2 lw 3
pause .1
plot "arch.0030" u 1:2 lw 3
pause .1
plot "arch.0031" u 1:2 lw 3
pause .1
plot "arch.0032" u 1:2 lw 3
pause .1
plot "arch.0033" u 1:2 lw 3
pause .1
plot "arch.0034" u 1:2 lw 3
pause .1
plot "arch.0035" u 1:2 lw 3
pause .1
plot "arch.0036" u 1:2 lw 3
pause .1
plot "arch.0037" u 1:2 lw 3
pause .1
plot "arch.0038" u 1:2 lw 3
pause .1
plot "arch.0039" u 1:2 lw 3
pause .1
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plot "arch.0040" u 1:2 lw 3
pause .1
plot "arch.0041" u 1:2 lw 3
pause .1
plot "arch.0042" u 1:2 lw 3
pause .1
plot "arch.0043" u 1:2 lw 3
pause .1
plot "arch.0044" u 1:2 lw 3
pause .1
plot "arch.0045" u 1:2 lw 3
pause .1
plot "arch.0046" u 1:2 lw 3
pause .1
plot "arch.0047" u 1:2 lw 3
pause .1
plot "arch.0048" u 1:2 lw 3
pause .1
plot "arch.0049" u 1:2 lw 3
pause .1
plot "arch.0050" u 1:2 lw 3
pause .1
plot "arch.0051" u 1:2 lw 3
pause .1
plot "arch.0052" u 1:2 lw 3
pause .1
plot "arch.0053" u 1:2 lw 3
pause .1
plot "arch.0054" u 1:2 lw 3
pause .1
plot "arch.0055" u 1:2 lw 3
pause .1
plot "arch.0056" u 1:2 lw 3
pause .1
plot "arch.0057" u 1:2 lw 3
pause .1
plot "arch.0058" u 1:2 lw 3
pause .1
plot "arch.0059" u 1:2 lw 3
pause .1
plot "arch.0060" u 1:2 lw 3
pause .1
plot "arch.0061" u 1:2 lw 3
pause .1
plot "arch.0062" u 1:2 lw 3
pause .1
plot "arch.0063" u 1:2 lw 3
pause .1
plot "arch.0064" u 1:2 lw 3
pause .1
plot "arch.0065" u 1:2 lw 3
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pause .1
plot "arch.0066" u 1:2 lw 3
pause .1
plot "arch.0067" u 1:2 lw 3
pause .1
plot "arch.0068" u 1:2 lw 3
pause .1
plot "arch.0069" u 1:2 lw 3
pause .1
plot "arch.0070" u 1:2 lw 3
pause .1
plot "arch.0071" u 1:2 lw 3
pause .1
plot "arch.0072" u 1:2 lw 3
pause .1
plot "arch.0073" u 1:2 lw 3
pause .1
plot "arch.0074" u 1:2 lw 3
pause .1
plot "arch.0075" u 1:2 lw 3
pause .1
plot "arch.0076" u 1:2 lw 3
pause .1
plot "arch.0077" u 1:2 lw 3
pause .1
plot "arch.0078" u 1:2 lw 3
pause .1
plot "arch.0079" u 1:2 lw 3
pause .1
plot "arch.0080" u 1:2 lw 3
pause .1
plot "arch.0081" u 1:2 lw 3
pause .1
plot "arch.0082" u 1:2 lw 3
pause .1
plot "arch.0083" u 1:2 lw 3
pause .1
plot "arch.0084" u 1:2 lw 3
pause .1
plot "arch.0085" u 1:2 lw 3
pause .1
plot "arch.0086" u 1:2 lw 3
pause .1
plot "arch.0087" u 1:2 lw 3
pause .1
plot "arch.0088" u 1:2 lw 3
pause .1
plot "arch.0089" u 1:2 lw 3
pause .1
plot "arch.0090" u 1:2 lw 3
pause .1
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plot "arch.0091" u 1:2 lw 3
pause .1
plot "arch.0092" u 1:2 lw 3
pause .1
plot "arch.0093" u 1:2 lw 3
pause .1
plot "arch.0094" u 1:2 lw 3
pause .1
plot "arch.0095" u 1:2 lw 3
pause .1
plot "arch.0096" u 1:2 lw 3
pause .1
plot "arch.0097" u 1:2 lw 3
pause .1
plot "arch.0098" u 1:2 lw 3
pause .1
plot "arch.0099" u 1:2 lw 3
pause .1
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Download from (http://ursula.chem.yale.edu/∼batista/classes/summer/P7/Problem7.f)

PROGRAM Problem7
c
c 1-D wave packet propagation and Velocity-Verlet propagation
c on a Harmonic potential energy surface
c

IMPLICIT NONE
INTEGER NN,npts,nptx,ndump
INTEGER istep,nstep,jj
REAL dt,xc,pc
COMPLEX vprop,tprop,x_mean,p_mean
character*9 Bfile
PARAMETER(npts=9,nptx=2**npts,NN=1)
DIMENSION vprop(nptx,NN,NN),tprop(nptx)
DIMENSION x_mean(NN),p_mean(NN)
COMMON /class/ xc,pc

c
jj=0
write(Bfile, ’(A,i4.4)’) ’traj.’, jj
OPEN(10,FILE=Bfile)
CALL ReadParam(nstep,ndump,dt)
call Initialize()
CALL SetKinProp(dt,tprop)
CALL SetPotProp(dt,vprop)
DO istep=1,nstep+1

IF(mod(istep-1,10).EQ.0)
1 PRINT *, "Step=", istep-1,", Final step=", nstep

IF(istep.GE.1) CALL PROPAGATE(vprop,tprop)
IF(mod((istep-1),ndump).EQ.0) THEN

CALL SAVEWF(istep,ndump,dt)
CALL XM(x_mean)
CALL PM(p_mean)
CALL VV(dt)
WRITE(10,22) (istep-1.)*dt

1 ,real(x_mean(1)),real(p_mean(1)),xc,pc
END IF

END DO
CLOSE(10)

22 FORMAT(6(e13.6,2x))
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine ReadParam(nstep,ndump,dt)

c
c Parameters defining the grid (xmin, xmax), integration time step (dt),
c rmass (rmass), initial position (xk), initial momentum (pk),
c number of propagation steps (nstep), and how often to save a pic (ndump)
c

IMPLICIT NONE
INTEGER ntype,nstep,nrpt,ireport,ndump,nlit
REAL xmin,xmax,pk,rmass,xk,dt
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common /packet/ rmass,xk,pk
common /xy/ xmin,xmax

c
xmin=-10.0
xmax= 10.0
dt=0.1
rmass=1.0
xk=-2.5
pk=0.0
nstep=100
ndump=1

c
return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE VV(dt)

c
c Velocity Verlet Algorithm J. Chem. Phys. 76, 637 (1982)
c

IMPLICIT NONE
REAL v,dx,dt,xc,pc,rmass,xk,pk,acc,xt,VPOT1,VPOT2,F
COMMON /class/ xc,pc
common /packet/ rmass,xk,pk

c
c Compute Force
c

dx=0.01
xt=xc+dx
CALL VA(VPOT1,xt)
xt=xc-dx
CALL VA(VPOT2,xt)
F=-(VPOT1-VPOT2)/(2.0*dx)
v=pc/rmass

c
c Advance momenta half a step
c

pc=pc+0.5*F*dt
c
c Advance coordinates a step
c

xc=xc+v*dt+0.5*dt**2*F/rmass
c
c Compute Force
c

dx=0.01
xt=xc+dx
CALL VA(VPOT1,xt)
xt=xc-dx
CALL VA(VPOT2,xt)
F=-(VPOT1-VPOT2)/(2.0*dx)

c
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c Advance momenta half a step
c

pc=pc+0.5*F*dt
c

return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE Initialize()

IMPLICIT NONE
INTEGER NN,nptx,npts,kk
COMPLEX chi0,chi,EYE,CRV
REAL xc,pc,omega,xk2,xmin,xmax,dx,pi,rmass,xk,pk,x,alpha,alpha2
PARAMETER(npts=9,nptx=2**npts,NN=1)
DIMENSION CRV(NN,NN)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk
COMMON / wfunc/ chi(nptx,NN)
COMMON / iwfunc/ chi0(nptx,NN)
COMMON /class/ xc,pc

EYE=(0.0,1.0)
pi= acos(-1.0)
omega=1.
dx=(xmax-xmin)/real(nptx)
xc=xk
pc=pk

c
c Wave Packet Initialization: Gaussian centered at xk, with momentum pk
c

alpha=rmass*omega
do kk=1,nptx

x=xmin+kk*dx
chi(kk,1)=((alpha/pi)**0.25)

1 *exp(-alpha/2.*(x-xk)**2+EYE*pk*(x-xk))
chi0(kk,1)=chi(kk,1)

end do
RETURN
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE HAMIL(CRV,x)

c
c Hamiltonian Matrix
c

IMPLICIT NONE
INTEGER NN
REAL x,VPOT1
COMPLEX CRV
PARAMETER(NN=1)
DIMENSION CRV(NN,NN)

c
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CALL VA(VPOT1,x)
CRV(1,1)=VPOT1

c
RETURN
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE VA(V,x)

c
c Potential Energy Surface: Harmonic Oscillator
c

implicit none
REAL V,x,rmass,xk,pk,rk,omega
common /packet/ rmass,xk,pk
omega=1.0
rk=rmass*omega**2
V=0.5*rk*x*x
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine SetKinProp(dt,tprop)

c
c Kinetic Energy part of the Trotter Expansion: exp(-i pˆ2 dt/(2 m))
c

IMPLICIT NONE
INTEGER nptx,kx,nx,npts
REAL xsc,xmin,xmax,propfacx,rmass,xk,pi,alenx,dt,pk
COMPLEX tprop,eye
parameter(npts=9,nptx=2**npts)
DIMENSION tprop(nptx)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk

c
eye=(0.,1.)
pi = acos(-1.0)
alenx=xmax-xmin
propfacx=-dt/2./rmass*(2.*pi)**2
do kx=1,nptx

if(kx.le.(nptx/2+1)) then
nx=kx-1

else
nx=kx-1-nptx

end if
xsc=0.
if(nx.ne.0) xsc=real(nx)/alenx
tprop(kx)=exp(eye*(propfacx*xsc**2))

end do
c

return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine SetPotProp(dt,vprop)
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c
c Potential Energy part of the Trotter Expansion: exp(-i V dt/2)
c

IMPLICIT NONE
INTEGER NN,ii,nptx,npts
REAL xmin,xmax,dx,dt,x,VPOT
COMPLEX vprop,eye
parameter(npts=9,nptx=2**npts,NN=1)
DIMENSION vprop(nptx,NN,NN)
common /xy/ xmin,xmax
eye=(0.,1.)
dx=(xmax-xmin)/real(nptx)

c
do ii=1,nptx

x=xmin+ii*dx
CALL VA(VPOT,x)
vprop(ii,1,1)=exp(-eye*0.5*dt*VPOT)/sqrt(nptx*1.0)

END DO
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE energies(energy)
IMPLICIT NONE
INTEGER j,NN
COMPLEX energy,RV,RKE
PARAMETER (NN=1)
DIMENSION RV(NN),RKE(NN),energy(NN)
CALL PE(RV)
CALL KE(RKE)
DO j=1,NN

energy(j)=RV(j)+RKE(j)
END DO
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
FUNCTION Psia(x,istep,dt)

c
c Analytic wave-packet <x|Psia(istep)> obtained by applying the
c harmonic propagator to the initial state,
c <x’|Psi(0)> = (alpha/pi)**.25*exp(-alpha/2*(x’-xk)**2+eye*pk*(x’-xk)),
c where the propagator is
c <x|exp(-beta H)|x’> = A exp(-rgamma*(x**2+x’**2)+rgammap*x*x’), with
c A = sqrt(m*omega/(pi*(exp(beta*omega)-exp(-beta*omega)))), beta = i*t,
c rgamma = 0.5*m*omega*cosh(beta*omega)/sinh(beta*omega) and
c rgammap = m*omega/sinh(beta*omega).
c

IMPLICIT NONE
INTEGER istep
REAL pk,rmass,xk,dt,x,t,omega,pi,alpha
COMPLEX eye,Psia,beta,A,rgamma,rgammap,c0,c1,c2
common /packet/ rmass,xk,pk
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eye=(0.0,1.0)
omega=1.0
alpha = omega*rmass
pi=acos(-1.0)
beta = eye*dt*istep
IF(abs(beta).EQ.0) beta = eye*1.0E-7
A = sqrt(rmass*omega/(pi*(exp(beta*omega)-exp(-beta*omega))))
rgamma=0.5*rmass*omega*(exp(beta*omega)+exp(-beta*omega))

1 /(exp(beta*omega)-exp(-beta*omega))
rgammap=2.*rmass*omega/(exp(beta*omega)-exp(-beta*omega))
c0=-eye*pk*xk-alpha/2.*xk**2
c1=rgammap*x+alpha*xk+eye*pk
c2=rgamma+alpha/2.

c
Psia = A*(alpha/pi)**.25*sqrt(pi/c2)*

1 exp(-rgamma*x**2)*exp(c0+c1**2/(4.0*c2))
c

return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE SAVEWF(je2,ndump,dt)

c
c Dump Time Evolved Wave packet
c

IMPLICIT NONE
INTEGER je2,nptx,npts,kk,NN,ncount,ndump,jj
COMPLEX chi,CRV,energy,psi,Psia
character*9 B
REAL V,x1,c1,c2,c1a,x,xmin,xmax,dx,EVALUES,dt
PARAMETER(npts=9,nptx=2**npts,NN=1)
DIMENSION CRV(NN,NN),energy(NN),EVALUES(NN)
DIMENSION psi(NN,NN)
common /xy/ xmin,xmax
COMMON / wfunc/ chi(nptx,NN)

c
CALL energies(energy)
jj=je2/ndump
write(B, ’(A,i4.4)’) ’arch.’, jj
OPEN(1,FILE=B)
dx=(xmax-xmin)/real(nptx)
ncount=(je2-1)/ndump

c
c Save Wave-packet components
c

do kk=1,nptx
x=xmin+kk*dx
c1=chi(kk,1)*conjg(chi(kk,1))
c1a=Psia(x,je2,dt)*conjg(Psia(x,je2,dt))
write(1,33) x,sqrt(c1)+real(energy(1))

1 ,sqrt(c1a)+real(energy(1))
end do
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write(1,33)
do kk=1,nptx

x=xmin+kk*dx
write(1,33) x

1 ,real(chi(kk,1))+real(energy(1))
1 ,real(Psia(x,je2,dt))+real(energy(1))
end do
write(1,33)

c
c Save Adiabatic states
c

do kk=1,nptx
x=xmin+kk*dx
CALL HAMIL(CRV,x)
write(1,33) x,CRV(1,1)

end do
CLOSE(1)

33 format(6(e13.6,2x))
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE XM(RV)

c
c Expectation Value of the Position
c

IMPLICIT NONE
INTEGER nptx,npts,kk,NN,j
COMPLEX chi,EYE,RV
REAL Vpot,omega,xmin,xmax,dx,pi,rmass,xk,pk,x,alpha
PARAMETER(npts=9,nptx=2**npts,NN=1)
DIMENSION RV(NN)
COMMON / wfunc/ chi(nptx,NN)
common /xy/ xmin,xmax
common /packet/rmass,xk,pk

dx=(xmax-xmin)/real(nptx)
DO j=1,NN

RV(j)=0.0
do kk=1,nptx

x=xmin+kk*dx
IF(j.EQ.1) CALL VA(Vpot,x)
RV(j)=RV(j)+chi(kk,j)*x*conjg(chi(kk,j))*dx

end do
END DO
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE PE(RV)

c
c Expectation Value of the Potential Enegy
c
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IMPLICIT NONE
INTEGER nptx,npts,kk,NN,j
COMPLEX chi,EYE,RV
REAL Vpot,omega,xmin,xmax,dx,pi,rmass,xk,pk,x,alpha
PARAMETER(npts=9,nptx=2**npts,NN=1)
DIMENSION RV(NN)
COMMON / wfunc/ chi(nptx,NN)
common /xy/ xmin,xmax
common /packet/rmass,xk,pk

dx=(xmax-xmin)/real(nptx)
DO j=1,NN

RV(j)=0.0
do kk=1,nptx

x=xmin+kk*dx
IF(j.EQ.1) CALL VA(Vpot,x)
RV(j)=RV(j)+chi(kk,j)*Vpot*conjg(chi(kk,j))*dx

end do
END DO
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine KE(RKE)

c
c Expectation value of the kinetic energy
c

IMPLICIT NONE
INTEGER NN,kk,nptx,kx,nx,npts,j
REAL dp,theta,wm,p,xmin,xmax,rmass,xk,pi,alenx,pk,rm,re,ri,dx
COMPLEX eye,chi,Psip,chic,RKE
parameter(npts=9,nptx=2**npts,NN=1)
DIMENSION chic(nptx),RKE(NN)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk
COMMON / wfunc/ chi(nptx,NN)

c
pi = acos(-1.0)
dx=(xmax-xmin)/nptx
dp=2.*pi/(xmax-xmin)

c
DO j=1,NN

RKE(j)=0.0
do kk=1,nptx

chic(kk)=chi(kk,j)
end do
CALL fourn(chic,nptx,1,-1)
do kx=1,nptx

if(kx.le.(nptx/2+1)) then
nx=kx-1

else
nx=kx-1-nptx
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end if
p=0.
if(nx.ne.0) p = real(nx)*dp
chic(kx)=p**2/(2.0*rmass)*chic(kx)/nptx

end do
CALL fourn(chic,nptx,1,1)
do kk=1,nptx

RKE(j)=RKE(j)+conjg(chi(kk,j))*chic(kk)*dx
end do

END DO
return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine PM(RKE)

c
c Expectation value of the kinetic energy
c

IMPLICIT NONE
INTEGER NN,kk,nptx,kx,nx,npts,j
REAL dp,theta,wm,p,xmin,xmax,rmass,xk,pi,alenx,pk,rm,re,ri,dx
COMPLEX eye,chi,Psip,chic,RKE
parameter(npts=9,nptx=2**npts,NN=1)
DIMENSION chic(nptx),RKE(NN)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk
COMMON / wfunc/ chi(nptx,NN)

c
pi = acos(-1.0)
dx=(xmax-xmin)/nptx
dp=2.*pi/(xmax-xmin)

c
DO j=1,NN

RKE(j)=0.0
do kk=1,nptx

chic(kk)=chi(kk,j)
end do
CALL fourn(chic,nptx,1,-1)
do kx=1,nptx

if(kx.le.(nptx/2+1)) then
nx=kx-1

else
nx=kx-1-nptx

end if
p=0.
if(nx.ne.0) p = real(nx)*dp
chic(kx)=p*chic(kx)/nptx

end do
CALL fourn(chic,nptx,1,1)
do kk=1,nptx

RKE(j)=RKE(j)+conjg(chi(kk,j))*chic(kk)*dx
end do
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END DO
return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE PROPAGATE(vprop,tprop)

c
c Split Operator Fourier Transform Propagation Method
c J. Comput. Phys. 47, 412 (1982); J. Chem. Phys. 78, 301 (1983)
c

IMPLICIT NONE
INTEGER i,j,NN,ii,nptx,npts
COMPLEX chi,vprop,chin1,chin2,tprop
PARAMETER(npts=9,nptx=2**npts,NN=1)
DIMENSION chin1(nptx),chin2(nptx)
DIMENSION tprop(nptx),vprop(nptx,NN,NN)
COMMON / wfunc/ chi(nptx,NN)

c
c Apply potential energy part of the Trotter Expansion
c

DO i=1,nptx
chin1(i)=0.0
DO j=1,NN

chin1(i)=chin1(i)+vprop(i,1,j)*chi(i,j)
END DO

END DO
c
c Fourier Transform wave-packet to the momentum representation
c

CALL fourn(chin1,nptx,1,-1)
c
c Apply kinetic energy part of the Trotter Expansion
c

DO i=1,nptx
chin1(i)=tprop(i)*chin1(i)

END DO
c
c Inverse Fourier Transform wave-packet to the coordinate representation
c

CALL fourn(chin1,nptx,1,1)
c
c Apply potential energy part of the Trotter Expansion
c

DO i=1,nptx
DO j=1,NN

chi(i,j)=vprop(i,j,1)*chin1(i)
END DO

END DO
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Subroutine for FFT from Numerical Recipes
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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SUBROUTINE FOURN(DATA,NN,NDIM,ISIGN)
REAL*8 WR,WI,WPR,WPI,WTEMP,THETA
DIMENSION NN(NDIM),DATA(*)
NTOT=1
DO 11 IDIM=1,NDIM

NTOT=NTOT*NN(IDIM)
11 CONTINUE

NPREV=1
DO 18 IDIM=1,NDIM

N=NN(IDIM)
NREM=NTOT/(N*NPREV)
IP1=2*NPREV
IP2=IP1*N
IP3=IP2*NREM
I2REV=1
DO 14 I2=1,IP2,IP1

IF(I2.LT.I2REV)THEN
DO 13 I1=I2,I2+IP1-2,2

DO 12 I3=I1,IP3,IP2
I3REV=I2REV+I3-I2
TEMPR=DATA(I3)
TEMPI=DATA(I3+1)
DATA(I3)=DATA(I3REV)
DATA(I3+1)=DATA(I3REV+1)
DATA(I3REV)=TEMPR
DATA(I3REV+1)=TEMPI

12 CONTINUE
13 CONTINUE

ENDIF
IBIT=IP2/2

1 IF ((IBIT.GE.IP1).AND.(I2REV.GT.IBIT)) THEN
I2REV=I2REV-IBIT
IBIT=IBIT/2
GO TO 1

ENDIF
I2REV=I2REV+IBIT

14 CONTINUE
IFP1=IP1

2 IF(IFP1.LT.IP2)THEN
IFP2=2*IFP1
THETA=ISIGN*6.28318530717959D0/(IFP2/IP1)
WPR=-2.D0*DSIN(0.5D0*THETA)**2
WPI=DSIN(THETA)
WR=1.D0
WI=0.D0
DO 17 I3=1,IFP1,IP1

DO 16 I1=I3,I3+IP1-2,2
DO 15 I2=I1,IP3,IFP2

K1=I2
K2=K1+IFP1
TEMPR=SNGL(WR)*DATA(K2)-SNGL(WI)*DATA(K2+1)
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TEMPI=SNGL(WR)*DATA(K2+1)+SNGL(WI)*DATA(K2)
DATA(K2)=DATA(K1)-TEMPR
DATA(K2+1)=DATA(K1+1)-TEMPI
DATA(K1)=DATA(K1)+TEMPR
DATA(K1+1)=DATA(K1+1)+TEMPI

15 CONTINUE
16 CONTINUE

WTEMP=WR
WR=WR*WPR-WI*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI

17 CONTINUE
IFP1=IFP2
GO TO 2

ENDIF
NPREV=N*NPREV

18 CONTINUE
RETURN
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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47.8 Problem 8
Computational Problem 8: Change the potential to that of a Morse oscillator V (x̂) = De(1 −
exp(−a(x̂ − xe)))

2, with xe = 0, De = 8, and a =
√
k/(2De), where k = mω2. Recompute

the wave-packet propagation with x0 = −0.5 and p0 = 0 for 100 steps with τ = 0.1 a.u., and
compare the expectation values x(t) and p(t) with the corresponding classical trajectories obtained
by recursively applying the Velocity-Verlet algorithm.

The output of this program is analogous to Problem 6 but for a Morse potential. Cut the source
code attached below, save it in a file named Problem8.f, compile it by typing

gfortran Problem8.f -o Problem8

run it by typing

./Problem8

Visualize the output of the time dependent expectation values as compared to classical trajectories
as follows: type

gnuplot

then type

set dat sty line

then type

plot ‘‘traj.0000’’

That will show the numerical computation of the expectation value < Ψt|x̂|Ψt > as a function of
time. In order to visualize the classical result on top of the quantum mechanical expectation value,
type

replot ‘‘traj.0000’’ u 1:4

In order to visualize the output of < Ψt|p̂|Ψt > as a function of time, type

plot ‘‘traj.0000’’ u 1:3

and to visualize the classical result on top of the quantum mechanical expectation value, type

replot ‘‘traj.0000’’ u 1:5

The plot of < Ψt|p̂|Ψt > vs. < Ψt|x̂|Ψt > can be obtained by typing

plot ‘‘traj.0000’’ u 3:2

and the corresponding classical results p(t) vs. x(t)

plot ‘‘traj.0000’’ u 5:4
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To exit, type

quit

The snapshots of the time-dependent wave-packet can be visualized as a movie by typing

gnuplot<pp_8

where the file named

pp_8

has the following lines:
Download from (http://ursula.chem.yale.edu/∼batista/classes/summer/P8/pp 8)

set yrange[0:9]
set xrange[-5:25]
set dat sty l
plot "arch.0001" u 1:2 lw 3
pause .1
plot "arch.0002" u 1:2 lw 3
pause .1
plot "arch.0003" u 1:2 lw 3
pause .1
plot "arch.0004" u 1:2 lw 3
pause .1
plot "arch.0005" u 1:2 lw 3
pause .1
plot "arch.0006" u 1:2 lw 3
pause .1
plot "arch.0007" u 1:2 lw 3
pause .1
plot "arch.0008" u 1:2 lw 3
pause .1
plot "arch.0009" u 1:2 lw 3
pause .1
plot "arch.0010" u 1:2 lw 3
pause .1
plot "arch.0011" u 1:2 lw 3
pause .1
plot "arch.0012" u 1:2 lw 3
pause .1
plot "arch.0013" u 1:2 lw 3
pause .1
plot "arch.0014" u 1:2 lw 3
pause .1
plot "arch.0015" u 1:2 lw 3
pause .1
plot "arch.0016" u 1:2 lw 3
pause .1
plot "arch.0017" u 1:2 lw 3
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pause .1
plot "arch.0018" u 1:2 lw 3
pause .1
plot "arch.0019" u 1:2 lw 3
pause .1
plot "arch.0020" u 1:2 lw 3
pause .1
plot "arch.0021" u 1:2 lw 3
pause .1
plot "arch.0022" u 1:2 lw 3
pause .1
plot "arch.0023" u 1:2 lw 3
pause .1
plot "arch.0024" u 1:2 lw 3
pause .1
plot "arch.0025" u 1:2 lw 3
pause .1
plot "arch.0026" u 1:2 lw 3
pause .1
plot "arch.0027" u 1:2 lw 3
pause .1
plot "arch.0028" u 1:2 lw 3
pause .1
plot "arch.0029" u 1:2 lw 3
pause .1
plot "arch.0030" u 1:2 lw 3
pause .1
plot "arch.0031" u 1:2 lw 3
pause .1
plot "arch.0032" u 1:2 lw 3
pause .1
plot "arch.0033" u 1:2 lw 3
pause .1
plot "arch.0034" u 1:2 lw 3
pause .1
plot "arch.0035" u 1:2 lw 3
pause .1
plot "arch.0036" u 1:2 lw 3
pause .1
plot "arch.0037" u 1:2 lw 3
pause .1
plot "arch.0038" u 1:2 lw 3
pause .1
plot "arch.0039" u 1:2 lw 3
pause .1
plot "arch.0040" u 1:2 lw 3
pause .1
plot "arch.0041" u 1:2 lw 3
pause .1
plot "arch.0042" u 1:2 lw 3
pause .1
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plot "arch.0043" u 1:2 lw 3
pause .1
plot "arch.0044" u 1:2 lw 3
pause .1
plot "arch.0045" u 1:2 lw 3
pause .1
plot "arch.0046" u 1:2 lw 3
pause .1
plot "arch.0047" u 1:2 lw 3
pause .1
plot "arch.0048" u 1:2 lw 3
pause .1
plot "arch.0049" u 1:2 lw 3
pause .1
plot "arch.0050" u 1:2 lw 3
pause .1
plot "arch.0051" u 1:2 lw 3
pause .1
plot "arch.0052" u 1:2 lw 3
pause .1
plot "arch.0053" u 1:2 lw 3
pause .1
plot "arch.0054" u 1:2 lw 3
pause .1
plot "arch.0055" u 1:2 lw 3
pause .1
plot "arch.0056" u 1:2 lw 3
pause .1
plot "arch.0057" u 1:2 lw 3
pause .1
plot "arch.0058" u 1:2 lw 3
pause .1
plot "arch.0059" u 1:2 lw 3
pause .1
plot "arch.0060" u 1:2 lw 3
pause .1
plot "arch.0061" u 1:2 lw 3
pause .1
plot "arch.0062" u 1:2 lw 3
pause .1
plot "arch.0063" u 1:2 lw 3
pause .1
plot "arch.0064" u 1:2 lw 3
pause .1
plot "arch.0065" u 1:2 lw 3
pause .1
plot "arch.0066" u 1:2 lw 3
pause .1
plot "arch.0067" u 1:2 lw 3
pause .1
plot "arch.0068" u 1:2 lw 3
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pause .1
plot "arch.0069" u 1:2 lw 3
pause .1
plot "arch.0070" u 1:2 lw 3
pause .1
plot "arch.0071" u 1:2 lw 3
pause .1
plot "arch.0072" u 1:2 lw 3
pause .1
plot "arch.0073" u 1:2 lw 3
pause .1
plot "arch.0074" u 1:2 lw 3
pause .1
plot "arch.0075" u 1:2 lw 3
pause .1
plot "arch.0076" u 1:2 lw 3
pause .1
plot "arch.0077" u 1:2 lw 3
pause .1
plot "arch.0078" u 1:2 lw 3
pause .1
plot "arch.0079" u 1:2 lw 3
pause .1
plot "arch.0080" u 1:2 lw 3
pause .1
plot "arch.0081" u 1:2 lw 3
pause .1
plot "arch.0082" u 1:2 lw 3
pause .1
plot "arch.0083" u 1:2 lw 3
pause .1
plot "arch.0084" u 1:2 lw 3
pause .1
plot "arch.0085" u 1:2 lw 3
pause .1
plot "arch.0086" u 1:2 lw 3
pause .1
plot "arch.0087" u 1:2 lw 3
pause .1
plot "arch.0088" u 1:2 lw 3
pause .1
plot "arch.0089" u 1:2 lw 3
pause .1
plot "arch.0090" u 1:2 lw 3
pause .1
plot "arch.0091" u 1:2 lw 3
pause .1
plot "arch.0092" u 1:2 lw 3
pause .1
plot "arch.0093" u 1:2 lw 3
pause .1
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plot "arch.0094" u 1:2 lw 3
pause .1
plot "arch.0095" u 1:2 lw 3
pause .1
plot "arch.0096" u 1:2 lw 3
pause .1
plot "arch.0097" u 1:2 lw 3
pause .1
plot "arch.0098" u 1:2 lw 3
pause .1
plot "arch.0099" u 1:2 lw 3
pause .1
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Download from (http://ursula.chem.yale.edu/∼batista/classes/summer/P8/Problem8.f)

PROGRAM Problem8
c
c 1-D wave packet propagation and Velocity-Verlet propagation
c on a Morse potential energy surface
c

IMPLICIT NONE
INTEGER NN,npts,nptx,ndump
INTEGER istep,nstep,jj
REAL dt,xc,pc
COMPLEX vprop,tprop,x_mean,p_mean
character*9 Bfile
PARAMETER(npts=10,nptx=2**npts,NN=1)
DIMENSION vprop(nptx,NN,NN),tprop(nptx)
DIMENSION x_mean(NN),p_mean(NN)
COMMON /class/ xc,pc

c xo
jj=0
write(Bfile, ’(A,i4.4)’) ’traj.’, jj
OPEN(10,FILE=Bfile)
CALL ReadParam(nstep,ndump,dt)
call Initialize()
CALL SetKinProp(dt,tprop)
CALL SetPotProp(dt,vprop)
DO istep=1,nstep+1

IF(mod(istep-1,10).EQ.0)
1 PRINT *, "Step=", istep-1,", Final step=", nstep

IF(istep.GE.1) CALL PROPAGATE(vprop,tprop)
IF(mod((istep-1),ndump).EQ.0) THEN

CALL SAVEWF(istep,ndump,dt)
CALL XM(x_mean)
CALL PM(p_mean)
CALL VV(dt)
WRITE(10,22) (istep-1.)*dt

1 ,real(x_mean(1)),real(p_mean(1)),xc,pc
END IF

END DO
CLOSE(10)

22 FORMAT(6(e13.6,2x))
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine ReadParam(nstep,ndump,dt)

c
c Parameters defining the grid (xmin, xmax), integration time step (dt),
c rmass (rmass), initial position (xk), initial momentum (pk),
c number of propagation steps (nstep), and how often to save a pic (ndump)
c

IMPLICIT NONE
INTEGER ntype,nstep,nrpt,ireport,ndump,nlit
REAL xmin,xmax,pk,rmass,xk,dt
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common /packet/ rmass,xk,pk
common /xy/ xmin,xmax

c
xmin=-5.0
xmax=25.0
dt=0.2
rmass=1.0
xk=-.5
pk=0.0
nstep=100
ndump=1

c
return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE VV(dt)

c
c Velocity Verlet Algorithm J. Chem. Phys. 76, 637 (1982)
c

IMPLICIT NONE
REAL v,dx,dt,xc,pc,rmass,xk,pk,acc,xt,VPOT1,VPOT2,F
COMMON /class/ xc,pc
common /packet/ rmass,xk,pk

c
c Compute Force
c

dx=0.01
xt=xc+dx
CALL VA(VPOT1,xt)
xt=xc-dx
CALL VA(VPOT2,xt)
F=-(VPOT1-VPOT2)/(2.0*dx)
v=pc/rmass

c
c Advance momenta half a step
c

pc=pc+0.5*F*dt
c
c Advance coordinates a step
c

xc=xc+v*dt+0.5*dt**2*F/rmass
c
c Compute Force
c

dx=0.01
xt=xc+dx
CALL VA(VPOT1,xt)
xt=xc-dx
CALL VA(VPOT2,xt)
F=-(VPOT1-VPOT2)/(2.0*dx)

c
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c Advance momenta half a step
c

pc=pc+0.5*F*dt
c

return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE Initialize()

IMPLICIT NONE
INTEGER NN,nptx,npts,kk
COMPLEX chi0,chi,EYE,CRV
REAL xc,pc,omega,xk2,xmin,xmax,dx,pi,rmass,xk,pk,x,alpha,alpha2
PARAMETER(npts=10,nptx=2**npts,NN=1)
DIMENSION CRV(NN,NN)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk
COMMON / wfunc/ chi(nptx,NN)
COMMON / iwfunc/ chi0(nptx,NN)
COMMON /class/ xc,pc

EYE=(0.0,1.0)
pi= acos(-1.0)
omega=1.
dx=(xmax-xmin)/real(nptx)
xc=xk
pc=pk

c
c Wave Packet Initialization: Gaussian centered at xk, with momentum pk
c

alpha=rmass*omega
do kk=1,nptx

x=xmin+kk*dx
chi(kk,1)=((alpha/pi)**0.25)

1 *exp(-alpha/2.*(x-xk)**2+EYE*pk*(x-xk))
chi0(kk,1)=chi(kk,1)

end do
RETURN
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE HAMIL(CRV,x)

c
c Hamiltonian Matrix
c

IMPLICIT NONE
INTEGER NN
REAL x,VPOT1
COMPLEX CRV
PARAMETER(NN=1)
DIMENSION CRV(NN,NN)

c
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CALL VA(VPOT1,x)
CRV(1,1)=VPOT1

c
RETURN
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE VA(V,x)

c
c Potential Energy Surface: Morse Potential [Phys. Rev. (1929) 34:57]
c

implicit none
REAL V,x,rmass,xk,pk,rk,omega,De,xeq,a
common /packet/ rmass,xk,pk
xeq=0.0
omega=1.0
De=8.0
rk=rmass*omega**2
a=sqrt(rk/(2.0*De))
V=De*(1.0-exp(-a*(x-xeq)))**2
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine SetKinProp(dt,tprop)

c
c Kinetic Energy part of the Trotter Expansion: exp(-i pˆ2 dt/(2 m))
c

IMPLICIT NONE
INTEGER nptx,kx,nx,npts
REAL xsc,xmin,xmax,propfacx,rmass,xk,pi,alenx,dt,pk
COMPLEX tprop,eye
parameter(npts=10,nptx=2**npts)
DIMENSION tprop(nptx)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk

c
eye=(0.,1.)
pi = acos(-1.0)
alenx=xmax-xmin
propfacx=-dt/2./rmass*(2.*pi)**2
do kx=1,nptx

if(kx.le.(nptx/2+1)) then
nx=kx-1

else
nx=kx-1-nptx

end if
xsc=0.
if(nx.ne.0) xsc=real(nx)/alenx
tprop(kx)=exp(eye*(propfacx*xsc**2))

end do
c

return
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end
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine SetPotProp(dt,vprop)
c
c Potential Energy part of the Trotter Expansion: exp(-i V dt/2)
c

IMPLICIT NONE
INTEGER NN,ii,nptx,npts
REAL xmin,xmax,dx,dt,x,VPOT
COMPLEX vprop,eye
parameter(npts=10,nptx=2**npts,NN=1)
DIMENSION vprop(nptx,NN,NN)
common /xy/ xmin,xmax
eye=(0.,1.)
dx=(xmax-xmin)/real(nptx)

c
do ii=1,nptx

x=xmin+ii*dx
CALL VA(VPOT,x)
vprop(ii,1,1)=exp(-eye*0.5*dt*VPOT)/sqrt(nptx*1.0)

END DO
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE energies(energy)
IMPLICIT NONE
INTEGER j,NN
COMPLEX energy,RV,RKE
PARAMETER (NN=1)
DIMENSION RV(NN),RKE(NN),energy(NN)
CALL PE(RV)
CALL KE(RKE)
DO j=1,NN

energy(j)=RV(j)+RKE(j)
END DO
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE SAVEWF(je2,ndump,dt)

c
c Dump Time Evolved Wave packet
c

IMPLICIT NONE
INTEGER je2,nptx,npts,kk,NN,ncount,ndump,jj
COMPLEX chi,CRV,energy,psi,Psia
character*9 B
REAL V,x1,c1,c2,c1a,x,xmin,xmax,dx,EVALUES,dt
PARAMETER(npts=10,nptx=2**npts,NN=1)
DIMENSION CRV(NN,NN),EVALUES(NN)
DIMENSION psi(NN,NN)
common /xy/ xmin,xmax
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COMMON / wfunc/ chi(nptx,NN)
COMMON /ENER/ energy(NN)

c
IF(je2.EQ.1) CALL energies(energy)
jj=je2/ndump
write(B, ’(A,i4.4)’) ’arch.’, jj
OPEN(1,FILE=B)
dx=(xmax-xmin)/real(nptx)
ncount=(je2-1)/ndump

c
c Save Wave-packet components
c

do kk=1,nptx
x=xmin+kk*dx
c1=chi(kk,1)*conjg(chi(kk,1))
write(1,33) x,sqrt(c1)+real(energy(1))

end do
write(1,33)
do kk=1,nptx

x=xmin+kk*dx
write(1,33) x,real(energy(1))

end do
write(1,33)

c
c Save Adiabatic states
c

do kk=1,nptx
x=xmin+kk*dx
CALL HAMIL(CRV,x)
write(1,33) x,CRV(1,1)

end do
CLOSE(1)

33 format(6(e13.6,2x))
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE XM(RV)

c
c Expectation Value of the Position
c

IMPLICIT NONE
INTEGER nptx,npts,kk,NN,j
COMPLEX chi,EYE,RV
REAL Vpot,omega,xmin,xmax,dx,pi,rmass,xk,pk,x,alpha
PARAMETER(npts=10,nptx=2**npts,NN=1)
DIMENSION RV(NN)
COMMON / wfunc/ chi(nptx,NN)
common /xy/ xmin,xmax
common /packet/rmass,xk,pk

dx=(xmax-xmin)/real(nptx)
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DO j=1,NN
RV(j)=0.0
do kk=1,nptx

x=xmin+kk*dx
IF(j.EQ.1) CALL VA(Vpot,x)
RV(j)=RV(j)+chi(kk,j)*x*conjg(chi(kk,j))*dx

end do
END DO
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE PE(RV)

c
c Expectation Value of the Potential Enegy
c

IMPLICIT NONE
INTEGER nptx,npts,kk,NN,j
COMPLEX chi,EYE,RV
REAL Vpot,omega,xmin,xmax,dx,pi,rmass,xk,pk,x,alpha
PARAMETER(npts=10,nptx=2**npts,NN=1)
DIMENSION RV(NN)
COMMON / wfunc/ chi(nptx,NN)
common /xy/ xmin,xmax
common /packet/rmass,xk,pk

dx=(xmax-xmin)/real(nptx)
DO j=1,NN

RV(j)=0.0
do kk=1,nptx

x=xmin+kk*dx
IF(j.EQ.1) CALL VA(Vpot,x)
RV(j)=RV(j)+chi(kk,j)*Vpot*conjg(chi(kk,j))*dx

end do
END DO
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine KE(RKE)

c
c Expectation value of the kinetic energy
c

IMPLICIT NONE
INTEGER NN,kk,nptx,kx,nx,npts,j
REAL dp,theta,wm,p,xmin,xmax,rmass,xk,pi,alenx,pk,rm,re,ri,dx
COMPLEX eye,chi,Psip,chic,RKE
parameter(npts=10,nptx=2**npts,NN=1)
DIMENSION chic(nptx),RKE(NN)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk
COMMON / wfunc/ chi(nptx,NN)

c
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pi = acos(-1.0)
dx=(xmax-xmin)/nptx
dp=2.*pi/(xmax-xmin)

c
DO j=1,NN

RKE(j)=0.0
do kk=1,nptx

chic(kk)=chi(kk,j)
end do
CALL fourn(chic,nptx,1,-1)
do kx=1,nptx

if(kx.le.(nptx/2+1)) then
nx=kx-1

else
nx=kx-1-nptx

end if
p=0.
if(nx.ne.0) p = real(nx)*dp
chic(kx)=p**2/(2.0*rmass)*chic(kx)/nptx

end do
CALL fourn(chic,nptx,1,1)
do kk=1,nptx

RKE(j)=RKE(j)+conjg(chi(kk,j))*chic(kk)*dx
end do

END DO
return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine PM(RKE)

c
c Expectation value of the kinetic energy
c

IMPLICIT NONE
INTEGER NN,kk,nptx,kx,nx,npts,j
REAL dp,theta,wm,p,xmin,xmax,rmass,xk,pi,alenx,pk,rm,re,ri,dx
COMPLEX eye,chi,Psip,chic,RKE
parameter(npts=10,nptx=2**npts,NN=1)
DIMENSION chic(nptx),RKE(NN)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk
COMMON / wfunc/ chi(nptx,NN)

c
pi = acos(-1.0)
dx=(xmax-xmin)/nptx
dp=2.*pi/(xmax-xmin)

c
DO j=1,NN

RKE(j)=0.0
do kk=1,nptx

chic(kk)=chi(kk,j)
end do
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CALL fourn(chic,nptx,1,-1)
do kx=1,nptx

if(kx.le.(nptx/2+1)) then
nx=kx-1

else
nx=kx-1-nptx

end if
p=0.
if(nx.ne.0) p = real(nx)*dp
chic(kx)=p*chic(kx)/nptx

end do
CALL fourn(chic,nptx,1,1)
do kk=1,nptx

RKE(j)=RKE(j)+conjg(chi(kk,j))*chic(kk)*dx
end do

END DO
return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE PROPAGATE(vprop,tprop)

c
c Split Operator Fourier Transform Propagation Method
c J. Comput. Phys. 47, 412 (1982); J. Chem. Phys. 78, 301 (1983)
c

IMPLICIT NONE
INTEGER i,j,NN,ii,nptx,npts
COMPLEX chi,vprop,chin1,chin2,tprop
PARAMETER(npts=10,nptx=2**npts,NN=1)
DIMENSION chin1(nptx),chin2(nptx)
DIMENSION tprop(nptx),vprop(nptx,NN,NN)
COMMON / wfunc/ chi(nptx,NN)

c
c Apply potential energy part of the Trotter Expansion
c

DO i=1,nptx
chin1(i)=0.0
DO j=1,NN

chin1(i)=chin1(i)+vprop(i,1,j)*chi(i,j)
END DO

END DO
c
c Fourier Transform wave-packet to the momentum representation
c

CALL fourn(chin1,nptx,1,-1)
c
c Apply kinetic energy part of the Trotter Expansion
c

DO i=1,nptx
chin1(i)=tprop(i)*chin1(i)

END DO
c
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c Inverse Fourier Transform wave-packet to the coordinate representation
c

CALL fourn(chin1,nptx,1,1)
c
c Apply potential energy part of the Trotter Expansion
c

DO i=1,nptx
DO j=1,NN

chi(i,j)=vprop(i,j,1)*chin1(i)
END DO

END DO
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Subroutine for FFT from Numerical Recipes
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE FOURN(DATA,NN,NDIM,ISIGN)
REAL*8 WR,WI,WPR,WPI,WTEMP,THETA
DIMENSION NN(NDIM),DATA(*)
NTOT=1
DO 11 IDIM=1,NDIM

NTOT=NTOT*NN(IDIM)
11 CONTINUE

NPREV=1
DO 18 IDIM=1,NDIM

N=NN(IDIM)
NREM=NTOT/(N*NPREV)
IP1=2*NPREV
IP2=IP1*N
IP3=IP2*NREM
I2REV=1
DO 14 I2=1,IP2,IP1

IF(I2.LT.I2REV)THEN
DO 13 I1=I2,I2+IP1-2,2

DO 12 I3=I1,IP3,IP2
I3REV=I2REV+I3-I2
TEMPR=DATA(I3)
TEMPI=DATA(I3+1)
DATA(I3)=DATA(I3REV)
DATA(I3+1)=DATA(I3REV+1)
DATA(I3REV)=TEMPR
DATA(I3REV+1)=TEMPI

12 CONTINUE
13 CONTINUE

ENDIF
IBIT=IP2/2

1 IF ((IBIT.GE.IP1).AND.(I2REV.GT.IBIT)) THEN
I2REV=I2REV-IBIT
IBIT=IBIT/2
GO TO 1

ENDIF
I2REV=I2REV+IBIT
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14 CONTINUE
IFP1=IP1

2 IF(IFP1.LT.IP2)THEN
IFP2=2*IFP1
THETA=ISIGN*6.28318530717959D0/(IFP2/IP1)
WPR=-2.D0*DSIN(0.5D0*THETA)**2
WPI=DSIN(THETA)
WR=1.D0
WI=0.D0
DO 17 I3=1,IFP1,IP1

DO 16 I1=I3,I3+IP1-2,2
DO 15 I2=I1,IP3,IFP2

K1=I2
K2=K1+IFP1
TEMPR=SNGL(WR)*DATA(K2)-SNGL(WI)*DATA(K2+1)
TEMPI=SNGL(WR)*DATA(K2+1)+SNGL(WI)*DATA(K2)
DATA(K2)=DATA(K1)-TEMPR
DATA(K2+1)=DATA(K1+1)-TEMPI
DATA(K1)=DATA(K1)+TEMPR
DATA(K1+1)=DATA(K1+1)+TEMPI

15 CONTINUE
16 CONTINUE

WTEMP=WR
WR=WR*WPR-WI*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI

17 CONTINUE
IFP1=IFP2
GO TO 2

ENDIF
NPREV=N*NPREV

18 CONTINUE
RETURN
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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47.9 Problem 9
Computational Problem 9: Simulate the propagation of a wave-packet with x0 = −5.5 and
initial momentum p0 = 2 colliding with a barrier potential V (x) = 3, if abs(x) < 0.5, and
V (x) = 0, otherwise. Hint: In order to avoid artificial recurrences you might need to add an
absorbing imaginary potential Va(x) = i(abs(x)− 10)4, if abs(x) > 10, and Va(x) = 0, otherwise.

The output of this program can be generated and visualized as follows. Cut the source code
attached below, save it in a file named Problem9.f, compile it by typing

gfortran Problem9.f -o Problem9

run it by typing

./Problem9

The snapshots of the time-dependent wave-packet can be visualized as a movie by typing

gnuplot<pp_9

where the file named

pp_9

has the following lines:
Download from (http://ursula.chem.yale.edu/∼batista/classes/summer/P9/pp 9)

set yrange[0:4]
set xrange[-10:10]
set dat sty l
plot "arch.0001" u 1:2 lw 3
pause .1
plot "arch.0002" u 1:2 lw 3
pause .1
plot "arch.0003" u 1:2 lw 3
pause .1
plot "arch.0004" u 1:2 lw 3
pause .1
plot "arch.0005" u 1:2 lw 3
pause .1
plot "arch.0006" u 1:2 lw 3
pause .1
plot "arch.0007" u 1:2 lw 3
pause .1
plot "arch.0008" u 1:2 lw 3
pause .1
plot "arch.0009" u 1:2 lw 3
pause .1
plot "arch.0010" u 1:2 lw 3
pause .1
plot "arch.0011" u 1:2 lw 3
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pause .1
plot "arch.0012" u 1:2 lw 3
pause .1
plot "arch.0013" u 1:2 lw 3
pause .1
plot "arch.0014" u 1:2 lw 3
pause .1
plot "arch.0015" u 1:2 lw 3
pause .1
plot "arch.0016" u 1:2 lw 3
pause .1
plot "arch.0017" u 1:2 lw 3
pause .1
plot "arch.0018" u 1:2 lw 3
pause .1
plot "arch.0019" u 1:2 lw 3
pause .1
plot "arch.0020" u 1:2 lw 3
pause .1
plot "arch.0021" u 1:2 lw 3
pause .1
plot "arch.0022" u 1:2 lw 3
pause .1
plot "arch.0023" u 1:2 lw 3
pause .1
plot "arch.0024" u 1:2 lw 3
pause .1
plot "arch.0025" u 1:2 lw 3
pause .1
plot "arch.0026" u 1:2 lw 3
pause .1
plot "arch.0027" u 1:2 lw 3
pause .1
plot "arch.0028" u 1:2 lw 3
pause .1
plot "arch.0029" u 1:2 lw 3
pause .1
plot "arch.0030" u 1:2 lw 3
pause .1
plot "arch.0031" u 1:2 lw 3
pause .1
plot "arch.0032" u 1:2 lw 3
pause .1
plot "arch.0033" u 1:2 lw 3
pause .1
plot "arch.0034" u 1:2 lw 3
pause .1
plot "arch.0035" u 1:2 lw 3
pause .1
plot "arch.0036" u 1:2 lw 3
pause .1
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plot "arch.0037" u 1:2 lw 3
pause .1
plot "arch.0038" u 1:2 lw 3
pause .1
plot "arch.0039" u 1:2 lw 3
pause .1
plot "arch.0040" u 1:2 lw 3
pause .1
plot "arch.0041" u 1:2 lw 3
pause .1
plot "arch.0042" u 1:2 lw 3
pause .1
plot "arch.0043" u 1:2 lw 3
pause .1
plot "arch.0044" u 1:2 lw 3
pause .1
plot "arch.0045" u 1:2 lw 3
pause .1
plot "arch.0046" u 1:2 lw 3
pause .1
plot "arch.0047" u 1:2 lw 3
pause .1
plot "arch.0048" u 1:2 lw 3
pause .1
plot "arch.0049" u 1:2 lw 3
pause .1
plot "arch.0050" u 1:2 lw 3
pause .1
plot "arch.0051" u 1:2 lw 3
pause .1
plot "arch.0052" u 1:2 lw 3
pause .1
plot "arch.0053" u 1:2 lw 3
pause .1
plot "arch.0054" u 1:2 lw 3
pause .1
plot "arch.0055" u 1:2 lw 3
pause .1
plot "arch.0056" u 1:2 lw 3
pause .1
plot "arch.0057" u 1:2 lw 3
pause .1
plot "arch.0058" u 1:2 lw 3
pause .1
plot "arch.0059" u 1:2 lw 3
pause .1
plot "arch.0060" u 1:2 lw 3
pause .1
plot "arch.0061" u 1:2 lw 3
pause .1
plot "arch.0062" u 1:2 lw 3

218



pause .1
plot "arch.0063" u 1:2 lw 3
pause .1
plot "arch.0064" u 1:2 lw 3
pause .1
plot "arch.0065" u 1:2 lw 3
pause .1
plot "arch.0066" u 1:2 lw 3
pause .1
plot "arch.0067" u 1:2 lw 3
pause .1
plot "arch.0068" u 1:2 lw 3
pause .1
plot "arch.0069" u 1:2 lw 3
pause .1
plot "arch.0070" u 1:2 lw 3
pause .1
plot "arch.0071" u 1:2 lw 3
pause .1
plot "arch.0072" u 1:2 lw 3
pause .1
plot "arch.0073" u 1:2 lw 3
pause .1
plot "arch.0074" u 1:2 lw 3
pause .1
plot "arch.0075" u 1:2 lw 3
pause .1
plot "arch.0076" u 1:2 lw 3
pause .1
plot "arch.0077" u 1:2 lw 3
pause .1
plot "arch.0078" u 1:2 lw 3
pause .1
plot "arch.0079" u 1:2 lw 3
pause .1
plot "arch.0080" u 1:2 lw 3
pause .1
plot "arch.0081" u 1:2 lw 3
pause .1
plot "arch.0082" u 1:2 lw 3
pause .1
plot "arch.0083" u 1:2 lw 3
pause .1
plot "arch.0084" u 1:2 lw 3
pause .1
plot "arch.0085" u 1:2 lw 3
pause .1
plot "arch.0086" u 1:2 lw 3
pause .1
plot "arch.0087" u 1:2 lw 3
pause .1
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plot "arch.0088" u 1:2 lw 3
pause .1
plot "arch.0089" u 1:2 lw 3
pause .1
plot "arch.0090" u 1:2 lw 3
pause .1
plot "arch.0091" u 1:2 lw 3
pause .1
plot "arch.0092" u 1:2 lw 3
pause .1
plot "arch.0093" u 1:2 lw 3
pause .1
plot "arch.0094" u 1:2 lw 3
pause .1
plot "arch.0095" u 1:2 lw 3
pause .1
plot "arch.0096" u 1:2 lw 3
pause .1
plot "arch.0097" u 1:2 lw 3
pause .1
plot "arch.0098" u 1:2 lw 3
pause .1
plot "arch.0099" u 1:2 lw 3
pause .1
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Download from (http://ursula.chem.yale.edu/∼batista/classes/summer/P9/Problem9.f)

PROGRAM Problem9
c
c 1-D wave packet propagation of tunneling through a barrier
c

IMPLICIT NONE
INTEGER NN,npts,nptx,ndump
INTEGER istep,nstep,jj
REAL dt,xc,pc
COMPLEX vprop,tprop,x_mean,p_mean
PARAMETER(npts=10,nptx=2**npts,NN=1)
DIMENSION vprop(nptx,NN,NN),tprop(nptx)
DIMENSION x_mean(NN),p_mean(NN)
COMMON /class/ xc,pc

c
CALL ReadParam(nstep,ndump,dt)
call Initialize()
CALL SetKinProp(dt,tprop)
CALL SetPotProp(dt,vprop)
DO istep=1,nstep+1

IF(mod(istep-1,10).EQ.0)
1 PRINT *, "Step=", istep-1,", Final step=", nstep

IF(istep.GE.1) CALL PROPAGATE(vprop,tprop)
IF(mod((istep-1),ndump).EQ.0) THEN

CALL SAVEWF(istep,ndump,dt)
END IF

END DO
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine ReadParam(nstep,ndump,dt)

c
c Parameters defining the grid (xmin, xmax), integration time step (dt),
c rmass (rmass), initial position (xk), initial momentum (pk),
c number of propagation steps (nstep), and how often to save a pic (ndump)
c

IMPLICIT NONE
INTEGER ntype,nstep,nrpt,ireport,ndump,nlit
REAL xmin,xmax,pk,rmass,xk,dt
common /packet/ rmass,xk,pk
common /xy/ xmin,xmax

c
xmin=-13.0
xmax=13.0
dt=0.1
rmass=1.0
xk=-4.5
pk=1.
nstep=100
ndump=1

c
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return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE Initialize()

IMPLICIT NONE
INTEGER NN,nptx,npts,kk
COMPLEX chi0,chi,EYE,CRV
REAL xc,pc,omega,xk2,xmin,xmax,dx,pi,rmass,xk,pk,x,alpha,alpha2
PARAMETER(npts=10,nptx=2**npts,NN=1)
DIMENSION CRV(NN,NN)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk
COMMON / wfunc/ chi(nptx,NN)
COMMON / iwfunc/ chi0(nptx,NN)
COMMON /class/ xc,pc

EYE=(0.0,1.0)
pi= acos(-1.0)
omega=1.
dx=(xmax-xmin)/real(nptx)
xc=xk
pc=pk

c
c Wave Packet Initialization: Gaussian centered at xk, with momentum pk
c

alpha=rmass*omega
do kk=1,nptx

x=xmin+kk*dx
chi(kk,1)=((alpha/pi)**0.25)

1 *exp(-alpha/2.*(x-xk)**2+EYE*pk*(x-xk))
chi0(kk,1)=chi(kk,1)

end do
RETURN
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE HAMIL(CRV,x)

c
c Hamiltonian Matrix
c

IMPLICIT NONE
INTEGER NN
REAL x,VPOT1
COMPLEX CRV
PARAMETER(NN=1)
DIMENSION CRV(NN,NN)

c
CALL VA(VPOT1,x)
CRV(1,1)=VPOT1

c
RETURN
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END
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE VA(V,x)
c
c Potential Energy Surface: Barrier
c

implicit none
REAL V,x,rmass,xk,pk,rk,omega
common /packet/ rmass,xk,pk
V=0.0
IF(abs(x).LE.(.5)) V=3.
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine SetKinProp(dt,tprop)

c
c Kinetic Energy part of the Trotter Expansion: exp(-i pˆ2 dt/(2 m))
c

IMPLICIT NONE
INTEGER nptx,kx,nx,npts
REAL xsc,xmin,xmax,propfacx,rmass,xk,pi,alenx,dt,pk
COMPLEX tprop,eye
parameter(npts=10,nptx=2**npts)
DIMENSION tprop(nptx)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk

c
eye=(0.,1.)
pi = acos(-1.0)
alenx=xmax-xmin
propfacx=-dt/2./rmass*(2.*pi)**2
do kx=1,nptx

if(kx.le.(nptx/2+1)) then
nx=kx-1

else
nx=kx-1-nptx

end if
xsc=0.
if(nx.ne.0) xsc=real(nx)/alenx
tprop(kx)=exp(eye*(propfacx*xsc**2))

end do
c

return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine SetPotProp(dt,vprop)

c
c Potential Energy part of the Trotter Expansion: exp(-i V dt/2)
c

IMPLICIT NONE
INTEGER NN,ii,nptx,npts
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REAL xmin,xmax,dx,dt,x,VPOT,xa
COMPLEX vprop,eye
parameter(npts=10,nptx=2**npts,NN=1,xa=10.)
DIMENSION vprop(nptx,NN,NN)
common /xy/ xmin,xmax
eye=(0.,1.)
dx=(xmax-xmin)/real(nptx)

c
do ii=1,nptx

x=xmin+ii*dx
CALL VA(VPOT,x)
vprop(ii,1,1)=exp(-eye*0.5*dt*VPOT)/sqrt(nptx*1.0)
IF(abs(x).GT.(xa))

1 vprop(ii,1,1)=vprop(ii,1,1)*exp(-(abs(x)-xa)**4)
END DO
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE energies(energy)
IMPLICIT NONE
INTEGER j,NN
COMPLEX energy,RV,RKE
PARAMETER (NN=1)
DIMENSION RV(NN),RKE(NN),energy(NN)
CALL PE(RV)
CALL KE(RKE)
DO j=1,NN

energy(j)=RV(j)+RKE(j)
END DO
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE SAVEWF(je2,ndump,dt)

c
c Dump Time Evolved Wave packet
c

IMPLICIT NONE
INTEGER je2,nptx,npts,kk,NN,ncount,ndump,jj
COMPLEX chi,CRV,energy,psi,Psia
character*9 B
REAL V,x1,c1,c2,c1a,x,xmin,xmax,dx,EVALUES,dt
PARAMETER(npts=10,nptx=2**npts,NN=1)
DIMENSION CRV(NN,NN),EVALUES(NN)
DIMENSION psi(NN,NN)
common /xy/ xmin,xmax
COMMON / wfunc/ chi(nptx,NN)
COMMON /ENER/ energy(NN)

c
IF(je2.EQ.1) CALL energies(energy)
jj=je2/ndump
write(B, ’(A,i4.4)’) ’arch.’, jj
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OPEN(1,FILE=B)
dx=(xmax-xmin)/real(nptx)
ncount=(je2-1)/ndump

c
c Save Wave-packet components
c

do kk=1,nptx
x=xmin+kk*dx
c1=chi(kk,1)*conjg(chi(kk,1))
write(1,33) x,sqrt(c1)+real(energy(1))

end do
write(1,33)
do kk=1,nptx

x=xmin+kk*dx
write(1,33) x

1 ,real(chi(kk,1))+real(energy(1))
end do
write(1,33)

c
c Save Adiabatic states
c

do kk=1,nptx
x=xmin+kk*dx
CALL HAMIL(CRV,x)
write(1,33) x,CRV(1,1)

end do
CLOSE(1)

33 format(6(e13.6,2x))
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE PE(RV)

c
c Expectation Value of the Potential Enegy
c

IMPLICIT NONE
INTEGER nptx,npts,kk,NN,j
COMPLEX chi,EYE,RV
REAL Vpot,omega,xmin,xmax,dx,pi,rmass,xk,pk,x,alpha
PARAMETER(npts=10,nptx=2**npts,NN=1)
DIMENSION RV(NN)
COMMON / wfunc/ chi(nptx,NN)
common /xy/ xmin,xmax
common /packet/rmass,xk,pk

dx=(xmax-xmin)/real(nptx)
DO j=1,NN

RV(j)=0.0
do kk=1,nptx

x=xmin+kk*dx
IF(j.EQ.1) CALL VA(Vpot,x)
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RV(j)=RV(j)+chi(kk,j)*Vpot*conjg(chi(kk,j))*dx
end do

END DO
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine KE(RKE)

c
c Expectation value of the kinetic energy
c

IMPLICIT NONE
INTEGER NN,kk,nptx,kx,nx,npts,j
REAL dp,theta,wm,p,xmin,xmax,rmass,xk,pi,alenx,pk,rm,re,ri,dx
COMPLEX eye,chi,Psip,chic,RKE
parameter(npts=10,nptx=2**npts,NN=1)
DIMENSION chic(nptx),RKE(NN)
common /xy/ xmin,xmax
common /packet/ rmass,xk,pk
COMMON / wfunc/ chi(nptx,NN)

c
pi = acos(-1.0)
dx=(xmax-xmin)/nptx
dp=2.*pi/(xmax-xmin)

c
DO j=1,NN

RKE(j)=0.0
do kk=1,nptx

chic(kk)=chi(kk,j)
end do
CALL fourn(chic,nptx,1,-1)
do kx=1,nptx

if(kx.le.(nptx/2+1)) then
nx=kx-1

else
nx=kx-1-nptx

end if
p=0.
if(nx.ne.0) p = real(nx)*dp
chic(kx)=p**2/(2.0*rmass)*chic(kx)/nptx

end do
CALL fourn(chic,nptx,1,1)
do kk=1,nptx

RKE(j)=RKE(j)+conjg(chi(kk,j))*chic(kk)*dx
end do

END DO
return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE PROPAGATE(vprop,tprop)

c
c Split Operator Fourier Transform Propagation Method
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c J. Comput. Phys. 47, 412 (1982); J. Chem. Phys. 78, 301 (1983)
c

IMPLICIT NONE
INTEGER i,j,NN,ii,nptx,npts
COMPLEX chi,vprop,chin1,chin2,tprop
PARAMETER(npts=10,nptx=2**npts,NN=1)
DIMENSION chin1(nptx),chin2(nptx)
DIMENSION tprop(nptx),vprop(nptx,NN,NN)
COMMON / wfunc/ chi(nptx,NN)

c
c Apply potential energy part of the Trotter Expansion
c

DO i=1,nptx
chin1(i)=0.0
DO j=1,NN

chin1(i)=chin1(i)+vprop(i,1,j)*chi(i,j)
END DO

END DO
c
c Fourier Transform wave-packet to the momentum representation
c

CALL fourn(chin1,nptx,1,-1)
c
c Apply kinetic energy part of the Trotter Expansion
c

DO i=1,nptx
chin1(i)=tprop(i)*chin1(i)

END DO
c
c Inverse Fourier Transform wave-packet to the coordinate representation
c

CALL fourn(chin1,nptx,1,1)
c
c Apply potential energy part of the Trotter Expansion
c

DO i=1,nptx
DO j=1,NN

chi(i,j)=vprop(i,j,1)*chin1(i)
END DO

END DO
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Subroutine for FFT from Numerical Recipes
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE FOURN(DATA,NN,NDIM,ISIGN)
REAL*8 WR,WI,WPR,WPI,WTEMP,THETA
DIMENSION NN(NDIM),DATA(*)
NTOT=1
DO 11 IDIM=1,NDIM

NTOT=NTOT*NN(IDIM)
11 CONTINUE
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NPREV=1
DO 18 IDIM=1,NDIM

N=NN(IDIM)
NREM=NTOT/(N*NPREV)
IP1=2*NPREV
IP2=IP1*N
IP3=IP2*NREM
I2REV=1
DO 14 I2=1,IP2,IP1

IF(I2.LT.I2REV)THEN
DO 13 I1=I2,I2+IP1-2,2

DO 12 I3=I1,IP3,IP2
I3REV=I2REV+I3-I2
TEMPR=DATA(I3)
TEMPI=DATA(I3+1)
DATA(I3)=DATA(I3REV)
DATA(I3+1)=DATA(I3REV+1)
DATA(I3REV)=TEMPR
DATA(I3REV+1)=TEMPI

12 CONTINUE
13 CONTINUE

ENDIF
IBIT=IP2/2

1 IF ((IBIT.GE.IP1).AND.(I2REV.GT.IBIT)) THEN
I2REV=I2REV-IBIT
IBIT=IBIT/2
GO TO 1

ENDIF
I2REV=I2REV+IBIT

14 CONTINUE
IFP1=IP1

2 IF(IFP1.LT.IP2)THEN
IFP2=2*IFP1
THETA=ISIGN*6.28318530717959D0/(IFP2/IP1)
WPR=-2.D0*DSIN(0.5D0*THETA)**2
WPI=DSIN(THETA)
WR=1.D0
WI=0.D0
DO 17 I3=1,IFP1,IP1

DO 16 I1=I3,I3+IP1-2,2
DO 15 I2=I1,IP3,IFP2

K1=I2
K2=K1+IFP1
TEMPR=SNGL(WR)*DATA(K2)-SNGL(WI)*DATA(K2+1)
TEMPI=SNGL(WR)*DATA(K2+1)+SNGL(WI)*DATA(K2)
DATA(K2)=DATA(K1)-TEMPR
DATA(K2+1)=DATA(K1+1)-TEMPI
DATA(K1)=DATA(K1)+TEMPR
DATA(K1+1)=DATA(K1+1)+TEMPI

15 CONTINUE
16 CONTINUE
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WTEMP=WR
WR=WR*WPR-WI*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI

17 CONTINUE
IFP1=IFP2
GO TO 2

ENDIF
NPREV=N*NPREV

18 CONTINUE
RETURN
END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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