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MACROMOLECULES IN SOLUTION

e Macromolecules size, conformation and statistics in
dilute solutions
e The thermodynamics of polymer solutions
e Characterization of polymer molecules in dilute
polymer solutions
a) End-group analysis
b) Osmotic pressure
c) Light scattering (static)
d) Ultra centrifugation (equilibrium - and velocity
sedimentation)
¢) Diffusion
f) Viscosity

g) Gel permeation chromatography (GPC)



e Introduction of the scaling notion

The size, conformation and statistics of random
coils

In order to describe the conformation of random coils
two parameters are used:

e End-to-end Distance

e Radius of Gyration

With experimental measurements one may measure
the radius of gyration, but not the end-to-end
distance. The end-to-end distance is though of
theoretical interest in connection with polymer

statistics.



End-to end distance, r, for a conformation of a

random coil.

Radius of gyration, Rg: The distance from the center
of gravity that all the mass can be gathered into
without changing the moment of inertia of the

molecule
Moment of inertia = mass - R

&

Centre of
gravity

2, myr
R =1 —— (la)



If all mass points have an identical mass, M):

Zmiriz = MOZriz and > m; =n-M,
1 1 1
(n = number of monomer units)

From equ. (1c):

o\ /2

D Ti
i

RG:
n

(1b)

(Ic)

(2a)



R = (2b)
G /2
S
1
RG = (2¢)
n

The molecular weight dependency of the radius of

Sphere:
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Rg =const: M /3 (3)
Rod:
L
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The rod has a cross section with an area A.
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Ry =const.: L

Rg =const- M (4)

Random coil

Thermodynamic good conditions:

Rg oc M*®®  ("Mean-field” approximation)

R, o M"*%  (“Renormalization group theory”)

¢-Conditions: Rgoc M0

The relation between R and the end-to-end

distance, r;, in the molecule




For linear flexible polymers the following relation
between chain distance (1) and the radius of gyration

1s valid:

2 2 —1)2
Ré:%; (rz) :(6Ré) (5)

(---)1/ 2 Root-mean-square (r.m.s.)-average.

1/2
(r_z)l/z _ nyIf + 0,15 +eeen;r
ny + n, +00ni

Models for random coils

1) Chain molecules with a kind of given, locked,

rigid structure.
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a) Totally extended chain:

0—-0—-0—-0—0-‘-0
.

LK =|n

n = number of bonds; 1 = bond length; Ly = contour length

b) Chain with a zigzag structure

%"

. 0
:n.l. —
r sm(2)

This chain has a /ocked bond angle that assures that
the chain may have only one conformation, and that it

1s completely rigid.
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2) Chain without restrictions

(bonds that may assume every possible direction with

the same probability)

This kind of chain is called freely joint chain, and 1t
exhibits statistics that 1s called random walk, or drunk

mans walk.

r (the resultant vector)=(1; +1; +13 +eee]; ) = ili

=1
r =E=(,§Ej( nﬂ) =221 ;

i=1 i=lj=1

) represents 1=

When i= jil; -1, =1 %(1is the lenght of the vector)

12



If we have n monomers in the chain, we have (n-1)=n
vectors. We assume that all bonds is of the same
length 1 and multiply out all 1=}, we get the square-

average of the end-to-end-distance

(Py=n-2+ T30 (%)) (6)

i=lj=1
For |; - [y with 1 # J, we get:

R j> =1%. (cos@); where 4 is the angle between the vectors.

For a random coil all values of 6 are equally probable

(cos0) =0; (r2> =n-1°

(ry=n"%.1 (7)
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For a rod like particle the equivalent expression is:

r=n-1 (8)

3) Free rotation, fixed bond angle

In this case one lets the bond angle be set at a fixed

value. One allows free rotation around the bond.

In this case, the last part of the equ. (6) is not zero due

to the fixed bond angle.
<r2>:n.12.1+cose )
1—cos0

(This locking of the bond angle gives an increase of

(1)).
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Equ. (8) and (9) is only valid when the end-to-end

distance exhibits a Gauss distribution.

If we 1dentify this bond angle with the tetraeder-angle

(60 =109°) we get equ. (9):

(r*y=2.00-n-1 (10)

If we compare this result with the experimental result

for polyethylene:

(r*)=(6.7£0.3)-n-1

we observe that this model gives too small values.
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4) Hindered rotation

We will now take into consideration a fact that is
often the case for polymer chains, namely when the

rotation around the single bonds is not free.

For a complete description of the conformation of a

model chain, we have to have information of both the
bond angle (0) and the rotation angle ($) (torsion

angle).

2 I+cos® 1+ (cosd)
1—cosO 1—{cosd)

(r*y=n-1 (1)

(cos@) = 0 (free rotation) ; (cos¢) # 0 (hindered rotation)
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Equ. (11) takes into account trans- and gauche-

conformations. If the gauche- and trans-

conformations have the same energy: cos¢ =0

Real polymer chains (short-range interactions)

The end-to-end distance, r, for a polymer chain with a
fixed bound angle, 0, and the rotation angle, ¢, may

be written as:

012 .1+cos(9.1+<cos¢>
1—cosO 1—{cosd)

(r*y =

Let us now replace the real bound length 1 with a
fictive bound length, 3, which is called the effective

bound length:

(r*y=n-p*
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p

The ratio T 1s a measure of the stiffness of the

polymer chain.

2
C= ?—2 : the characteristic ratio.
Ex.: Polymer C
Polyethylene 6.8
Polystyrene 9.9

Polyethylene oxide 4.1

Polybuthadiene 4.8
Definition of the Kuhn length 1y,
We may generally describe a statistic chain molecule
with the aid of the concept equivalent statistic
segment. In this case we imagine that instead of
contemplating a chain that consists of real segments
with a hindered rotation around the bonds and fixed

bond angles, we make a hypothetical statistic chain
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with the same chain length and the same end-to-end

distance as the real chain. (n=30, N, =5)

Model:
- 2\ A2
We got the following equation: <r > = Cnl
By using the Kuhn-model, we get
2 2

<I‘ > = Ny -liw
For a fully outstretched chain, we get the contour
length L

Lk =n-1
For the hypothetical chain

Ly = Ny * Iy

We got:n - [ =Ny - Ik

19



We see from these two equations that the stiffer the
molecule, the longer is the Kuhn-segment, while there

will be a smaller number of Kuhn-segments.

Polymer chains and excluded volume effects

(’long-range”-interactions)

A
Non-perturbed Chain Excluded Volume Effect
(6-conditions) (Good conditions)

20



a = expansion coefficient.
S\ 172 , .
<r >0 = the 1deal conformation or the non-perturbed

dimension.

/2

Polymer molecules have the dimension <r2>0 ina &

solvent (ideal solvent).

Thermodynamic good solvents: o> 1
0-solvents: a=1

Thermodynamic poor solvents: o <1
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Interactions and size of chain molecules at different

thermodynamic conditions.

Potential curve

f————ry

——
Lennard-Jones

12 6
potential: V(r) = 4V, (l) _ (ij

Iy

1. At short distances repulsion between the
monomers
2. At long distances attractive interactions between

the monomers
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Poor conditions

®

G-conditions

Good conditions

@

Rg o M Y-©

”Globule”
attractive mon.-
mon. interactions.
a<l;v<O0

v 1s the excluded
volume parameter

The attractive and
repulsive
Interactions
compensate each
other.

Ideal chain
a=1;v=0
Gaussian statistics

Repulsive
interactions leads
to an expansion of
the chain.
a>1;v>0
Excluded volume
statistics

23




Look at how the thermodynamic conditions change

with temperature. (e.g. Polystyrene/cyclohexane; 6-

temperature 35 °C)

e b)

>

Temperatur

<)

a) Good conditions
b) ©6-conditions
c) “Collapse” region
v=a’ (1-2¢))
v = Excluded volume parameter
a = Monomer radius

g1 = Flory-Huggins interaction parameter

At O-conditions, v =0 and g; = 0.50.
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Microscopic structure and macromolecular

conformations

(a} {b)

a) Microscopic structure of PE

b) Macroscopic conformation of PE

Different conformations of polymers.

Sphere
Ellipsoide
Branched Random coil /\/—7
chain Rigid Chain

25



Conformation of branched polymers

_ (Ré )(branched)

;<09
(R )(linear)

Ex.: Star shaped polymer with function =6

g(star) = 3ff; 2 =04(f =6)

>K

The thermodynamic properties of polymer

solutions

Thermodynamic functions for mixtures.

The total Gibbs energy for a solution:G =3 n; -u;
1

n; = number of mol of the component 1

u; = chemical potential of the component 1
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Change in Gibbs molar energy for a mixture:

0 0
AGy, = Zni(ui — 1 ) =G —2nj;
1 1

chemical potential in the standard condition

0
Hi

(pure substance).

In the same way the change in mixing enthalpy 1is

defined:

AH,, = Zni(Hi —H?) =H-Yn;H}
i

and mixing entropy:

ASy, = Zni(si —S?) =S-¥n;S}
i i

AG,, = AH, —TAS,, (Gibbs- Helmholz)

27



Ex.: Look at a two-component system

6 6, 6
1 + Hy | ===> H
S 1 82 S
A (solvent) B (dissolved A+B
substance)

AGm :G—(Gl +G2); AHm :H—(Hl +H2)

ASm ZS—(SI +Sz)

These quantities is related in the usual way:

AG, =AH,_ —T-AS,, (12)
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Partial molar and partial specific quantities

Intensive quantities: Quantities that are independent

of the size of the system (e.g. temperature and

pressure).

Extensive quantities: Quantities that are dependent of

the size of the system (e.g. weight, volume, Gibbs

energy, enthalpy and entropy).

Partial molar quantities

Y = (G_Yj
on; T,P,n.

j#l

Partial molar volume:

Vi - (5_\’)
on; T,P.,n.

i#]

_ avj
Vi=|—~— 13
1 (8111 T.P )

9
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Partial molar Gibbs energy:

n :
X, = L, mol fraction
n, +n,

30

(14)




Partial specific quantities.:

y _(G_Y)
1 agl T>P>gj¢i

g; is the weight of component 1.

Partial specific volume:

=t
Vi=|—
agl Tapagj;éi

The relation between partial molar and partial specific

quantities is:

-~V
Vi =

; where M; 1s the molecular weight of
1
component 1
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Calculation of the ideal statistic contribution to
ASm

0[0|0[(0|0|®/0|0
0|®[(0O|0[0[0[0|e
olle]le]l llel(ell l[e)
®0/®|0|0[0|0|0
O|0|0[0O|e[O]e|O|
e/Ole[o]o|0|e|O
O[0|0|0|®|0|0|0|
Ol@(O|0[0[0]|® Of

Dissolved

0 Solvent '®  Substance

S =k - InQ (15)

QQ = Number of different micro conditions

k = Boltzman's constant

This equation gives the basis for a molecular

understanding of macroscopic conditions
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Statistical considerations of a two/component system

No=N; + N,
Ny = total number of lattice positions

N; = number of solvent molecules
N, = number of molecules of the dissolved substance

There are Ny ways to arrange the first molecule, and
No-1 ways to arrange the second molecule in the
lattice. There are No(Ny-1) ways to arrange the two

first molecules etc.

Q'= Ny(Ng ~1):(Ny=2)-(Ng=3)-~= N!

We have to correct €2’ with the number of ways N;

and N, molecules may be permutated

33



N, !

Q=—-0"_
N; N, !

(16)

For the pure components:

N Nyl

=T TN

1
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N0:3;N1:1;N2:2

1 molecule A and 2 molecules B

Q:%:3 ; ABB; BAB; BBA

Ex 2 NO:4;N1:2;N2:2

2 molecules A and 2 molecules B

1.2-3-4

(2.1 =6 ; AABB; ABAB; BAAB; BABA;

Q=

ABBA; BBAA

35



ASm :S_SI_SZ
AS,, =k-InQ-k-InQ; -k-InQ,

From combination of equ. (15) and (16):

AS,, =k(InNy-InN;-InN,!) (17)

Since all N are /arge numbers, we may use Stirlings

approximation.

InN!'=N-InN-N

ASm = k[(Nl +N2)-1n(N1 +N2)—(N1 +N2)—

—Nl-lnN1+N1—N2~lnN2+N2]
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ASm = k[Nl '1H(N1 +N2)+N2 'hl(Nl +N2)—

—Nl—Nz—Nl-lnN1+N1—N2-lnN2 +N2 ]

ASm :—k’[—Nl '11'1(N1 +N2)—N2 -ln(Nl +N2)+

+N1 '11’1N1 +N2 'lnNz]

AS,, = —k| N; 1nL+N21nL (18)
Nl +N2 1+N2

2
n1+n2 n1+n2

AS,, =-R(nyInX;+n,-InX,) (19)
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If we assume that the solution is ideal, then AH,, = 0.

From equ. (12):

AG, =R-T-(n;-InX; +n,-InX,) (20)

Flory-Huggins model (“mean-field” consideration)

for binary polymer solutions

In this case, the x chain segments are coupled together
with each other. Except from this, the deduction will

be analog with the earlier case.

EEEEEEE
ololo| etetele [0
I (e
olo|e|o|o]|e|0]|o
olete|O|et® (0|0
olé]ololé[ololo
O|0|0]|0]|0]|0]0]|0
olo|o|o|o|o]o|o

Polymer

0 Solvent ¢ se gment
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NO :N1+X'N2

AS,, =-k| N;-In Ny +N,-In XN, (21)
N1+X'N2 N1+X‘N2

Compare with equ. (18).

The volume fraction for the solvent (®;) and for the

polymer (®,).

CD1:N ! , O, = XN

AS,, =-R(n;-In®; +n,-In®,) (22)

It i1s important to point out equ. (22) only represent the

configuration entropy of the mixture.
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In addition there may exist an other type of entropy
that 1s due to specific interactions between polymer-

and solvent molecules.

In Flory-Huggins theory we assume that 0H # 0
because the polymer-solvent interaction energies are
different from the polymer-polymer and solvent-

solvent interaction energies.

Mixing enthalpy for polymer and solvent

Type of contacts Interaction energies
Solvent-solvent (1,1) W11
Polymer-polymer (2,2) W22
Solvent-polymer (1,2) W12

40



The dissolving process may be written as the change

of these contacts:

(LD)-1/2+(2,2)-1/2—>(1,2)
The difference in energy, Ay, is:

Ay =Wip —(Wy +Wpp)-1/2

If the average number of 1,2 contacts in the solution is
P, (over all lattice configurations), the mixing
enthalpy is:

AHm = Aw - P1’2

P1,2 ZX'N2°(I)1'Z
AH, =x-N,-®-Z-Aw

@, = the probability of 1,2 contacts
7. = the coordination number for a certain lattice

position

41



From the definition of volume fraction, we get (by

dividing these with each other):

X'Nz'q)l :NI.CDZ;AHH’I :N1°(D2°Z'AW

Let us now define a new parameter ¢, (Flory-Huggins

parameter) that expresses polymer-solvent
Interactions:
Z-Aw

Z'AWZSI'k'T; glzﬁ

AHm:Nl‘q)z‘Slk'T:nlq)z‘Sl'R'T (23)
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We now got equations for AS,, (equ. 22) and AH,y:

AG,, =R -T(n; @, -g;+n;In®@ +n, InD,)|  (24)

This equation transforms into equ. (20) when

x=1and g =0.

The use of Flory-Huggins theory to calculate the

partial molar Gibbs energy

AG] = (M) . diff.equ. (24)
T,P

8n1
AG1:RT-(aDj o, +
on, ), @,

E

2

1

.o
ny

n,

'7+81

2

2

1

® |

43
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Use ®; + @, =1 and differentiate:

(i(u'v)—u'd—VJrVd—u)

dx dx dx

d (u) v(du/dx)—u(dv/dx)
(== 5 )
dx\v v

(Dl _ ny Dy = X-Ny

Il1-|-X'Il2’ 2 I11+X°1’12

AG1 :R-T-{ln(l—d)z)Jr(l—lj Dy +g m%} (26)
X

For dilute solutions: ®, << 1. We may use a

polynomial approximation (Mac-Laurin)

2 -3
D®; D
Infl—-®dH )~ —DHy ——=——=— ...
3
— () ()
AG] =R-T- ——2—(1—81)@%——2— ..... (26a)
X 2 3

(see equation 14)
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When
\Y% \Y \Y%
X = 2;(1)2 =n, 2 :c-zczcons(mass)
V] nl 'Vl +n2 V2 M2
V; | .
V. = = (p; =densit
M p y)

R e
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A 1s the second virial coefficient.

H:c-R'T(L+A2c+...) (27a)
M,

Discussion of Flory-Huggins interaction parameter

e ¢ 1s often dependent of the polymer concentration

e ¢;is also temperature dependent
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e The experimental value of €; often diverges from
the theoretical value. This is related to the fact that
the Flory-Huggins parameter, €, consists of both

an enthalpy part and an entropy part.

€ = gy t €g; €5 1S constant
and

ey = —TS—;; the enthalpy 1s dependent of T

47



Flory-Krigbaum theory of dilute polymer solutions

¢ R
P

i

Dilute Solution

The factor 5 €1 may be viewed as a measure of the

deviation from the properties of an ideal solution.

This contribution to Gibbs molar energy is called

AG%3 , and may consist of both enthalpy- and entropy

components:

—E
AGE =R -T-(y] - 1)) @3 (28)

E="excess”
T = enthalpy parameter
) = entropy parameter

—~AGy =—AH[ +T-AS; (29)
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AHE =R -T-1, - @3

ASI =R-y; - @3

1
(Wl—ﬁ):§—81

AGY =0 0-AST = AHT

0-R-y;-®3=R-T-1,-®3
e:T"L’l

v
V1 1 =WV1 T 7 1

(30)

(1)

(32)

One may express the expansion factor a in terms of

the Flory-temperature 0

o’ —a’ =2-Cy -wl-(l—%)-Ml/z

C,, 1S a constant.

49

(33)



We see that at the 6-temperature (T=0), a=1. For high

molecular weights, equ 33 gives o’ o« M'* =

aoc M o = Rg o Rg :

R (good) oc Y

Phase equilibriums

Let us consider a two-component system that consists
of a polymer dissolved in a thermodynamic poor

solvent that gets better with increasing temperature.

46

X, (mol fraction pol.)
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Two phases o and [ shares a common tangent. A

homogenous phase 1s stabile if X, < a, or X, > f3.

Thermodynamically unstable in the area o < X, < 3.

At T one has a system that 1s completely mixable.

Ty = critical temperature for solubility.

D and E represents inflection points on the curve.

The striped red curve (the turbidity curve) represents

the heterogeneous two-phase region.
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For the inflection points D and E the following

mathematical relation 1s valid:

2 3
A A
(AG) g O'(AGw)
0D 0D;
because D and E converge in the critical point. We

have used volume fraction, but the same 1s valid if

one uses mol fraction X.

2
AGi:a(AGm):ui; aul =0 and 0 Ml:O
oD, o0, oD

We got: (see equ. 26)
PO - n( =y )+ (1= 1)@ + 6,03
RT X

O =——1 +(1—l)+2-81C(D2C =0

8(132 1_(D2,C X ’ ’

2

’w _ (=D-(=D)
2 2

0Py  (1-Dy)

—2'8190 =0
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We may write the equations above in the following

way:
Loa-Yoog @, =0 (a)
I_CDZ,C X IL,c*2,c
1
2—2-81,020 (b)
(I-Dy )

By combining equation (a) and (b), we can derive the

following relations:
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From equ. (32):  wy|—11 =V, -(I—Qj = l—81
T/ 2
( _Ej_l_l_L_L
VI L) T2 2 o (12
b
1/2
E:1+2X X
Ie Vi
b
1/2
Lol x (34)
Te 0 Vi

When x-—>o0, T.=60

] 1 A
605 o, ©¢015 0.0
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1 N 1
e /2
i:l. 1_|_2X X
T. © Y
1 : | 1
Plot of . aganst -+
TL X 2X
1/7, *10°
— Psfeykloh.
'J,S'T PI 1

— PIB/diisobiéylketon
34}

T
(1/x1/2+1/2x]'102
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Upper critical solution temperature (UCST) and

Lower critical solution temperature (LCST)

Hlustration with example:

Temperatur (K)

wf

L2 ] S T PS/<yklopenian

~————— F7000

qag [ 400000 LCST &x293 K

L_...-—"n =2, lob

UesT
M=2,¥00%

!.3 ..--—-—-1“:.‘&0000
™

000
u! L 1 L L [l J_‘I’ooo
© o0t o0 o5 0,0 qi5020

w,(weight fraction)

Characterizing polymer solutions

Analyses of end groups:

e Estimation of the number of end groups. If the
chemical structure of the molecule is known, Mp

can be determined.
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Methods that are used for analyses:

a) Chemical: Titration methods 1s often used

(carboxyl, hydroxyl, amino groups) (polyester and
polyamides)

b) Radio chemical: Introduction of radioactive

groups under polymerization in order to measure
the radioactivity of the produced polymer

c) Spectroscopic: (IR and UV)

These methods may be used together with e.g.
osmometry in order to gain information of

polymerization mechanisms and branching reactions.
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Osmotic pressure (11)

B-side
solution

o-side
solvent

_;:.—--— — o s —]

Semi permeable membrane

a-side: Pure solvent; component 1

[-side: Polymer solution; polymer (component 2)

+ solvent (component 1)

At start: n =pui (1 atm)
0
M? < Hp

P
At equilibrium: p{* :u?+ [ (%) - OP
pp P/
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From thermodynamics:

(aulj =V (mol.vol. of solvent)
oP T,nn,

uf —uP = vy (P-Py)

AG1 :M? —u? =-I1-V]

From equ. (26):

AG1 =R.T.[1n(1—q>2)+(1—1)<b2 +g] -q)%}
X

Polynomial approximation:

In(1-@y)=-By——2——2_

(D, <<1)

2 3
I1= ®2+g+g_®2+g_gl.®% g
2 3 X Vi
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3

X 3 Vi
v Vi
Dy, =c-vy ;X=_—2; Vi =
Vl Mi
c = polymer concentration; v, = partial specific

volume of the polymer.

= 2
AY

M=R-T- °12Y1+(1_81).__2.02+
2 Vi

+ -
M,Va M3V, \2 M3V,
(35b)
72 3
1_I:R T : + ;72 -(1—8) c+1-§/2
C Mn Mn'Vl 2 3 Mn'Vl
(35¢)
l_I:R-T-[l +A2-c+A3-c2+-}
C Mn

(35d)
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Where the second virial coefficient is:

At low concentrations (¢ < 1%)

m=R-Ic (Van't Hoff's equation)

n

At high concentrations:

E:R-T-(ML+A2-c+A3-c2+--j

C n

/¢ s
]
RT |32
Mn a1
: »
c (kons.)
/c
q L | | | I i
3} -
8 -—_—.—_‘__'___.__‘—-0—' -
2 psfnek
] 2 g

c (kg/m3)
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Low concentrations and different thermodynamic

conditions. We examine the following system:

a) PMMA/toluene
b) PMMA/Acetone

c¢) PMMA/Acrylnitrile (0) €, =0.5; A, =0

m/c
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1)
2)
3)

4)

Rods and coils in good solvents
Compact spheres
Coils in &solvents

Poor solvents A, < 0

/c a

» C
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Viscosity

Definition of viscosity:

Force F -9
, ( — 1‘:*;:’ V:locity
:_-_—Q_' ca
L—» X = -
Stationary

The viscosity of a liquid 1s an expression for its

resistance to flow.

Newtonian liquids at laminar flow:
F n-dv : :

— = ; 1 = viscosit 36
Ay " y (36)
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The relation between the force F, that pulls the plate

with an area A in contact with the liquid, 1s called

shear stress © = E The relation ? 1s called shear
y

rate y = d—V
= d
F
"= A _OC_ shear stress (37)
dv ¢y  shear rate
dy

For Newtonian liquids, this relation is constant. The

dimension for the quantities is:

N -1 N-s
m

m2
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Non-Newtonian liquids.

N Newtonian region
'? .8 /
?E': 0 — Sphere
\ Random coil

' log y

Generally the broadness of the Newtonian region will

decrease with increasing molecular weight.

Viscosity in polymer solutions

In a polymer solution, the change in the viscosity is

dependent of a number of factors:

e Solvent (thermodynamically good or poor solvents)
o Type of polymer (size and conformation)

o The molecular weight of the polymer
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e The polymer concentration

o Temperature

Einstein's equation.

Ng =No(1+25-Dy) (38)

B
=

_,,____—m
N~ ha Na—
___‘_::_ﬁ_._‘*

Ns = the solution viscosity
No = the solvent viscosity
®, = the volume fraction of particles

Equ. (38) is valid for rigid spheres at low
concentrations.

For particles of other geometric shapes than spherical,
the following relation is valid:
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Mg =Mo (1+B-Dy)

(39)

where the parameter 3 is a function of the asymmetry

of the molecule.

Different types capillary viscosity meters:

I Rotational

 movement of

( the polymer
molecule

qllll

i

Ostwald: dependent on the volume of the liquid

Ubbelohde: not dependent on the volume of the liquid

68



Ostwald Ubbelohde

Poiseuilles equation.

dv ot p
= 40
dt 8nL (40)
r = capillary radius
(il\t] = the volume of a liquid that flows through the
capillary
L = the length of the capillary
N = viscosity
p = the average pressure that produces flow
p=h-p-g (41)

h = the level of the liquid
p = the density of the liquid
g = the acceleration of gravity
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If we substitute equ. (41) in (40) and assumes

constant flow velocity we get:

4
= 42
' 8-L-V (42)

Equ. (42) 1s valid for Newtonian flow.

2-V-p

<1000 (Laminar flow)
mr-mn-t

Reynolds number:Rey =

Re > 1000 (turbulent flow)
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Determination of the intrinsic viscosity [nl

: : : t-
Relative viscosity: Nr = n__"P
No %o Po
0 indicates solvent.
In dilute solutions, p = po.
. : : t—1tp
Specific viscosity: Nsp =Ny —1= o
0
. . Nsp
Reduced viscosity: —
C
. . . Msp
Intrinsic viscosity: [n] =lim-——; ¢—>0
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Empirical relation that represents the concentration

dependence of the reduced viscosity:

”% —[n]+ K] (43)

k" = Huggins constant.

% (kg "m7) Nsp

N
- -//‘:I('D?K Good
0,3 b

=02 " solvent
02 |
oy | T Poor solvent
0,10 ¢ | [} {
o 1w 20 36 H#o ' kons.

Flexible polymer coils in dilute solutions:

k'~ 0.5 (8-conditions); k' < 0.5 (good conditions)
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Staudinger-Mark-Houwinks equation

Experimental determination of the relation between

[n] and M.

[n]=K-M" (44)

Relation between molecular shape and exponent
Sphere: [nN]=2.5-M’;a=0

rCompact: M=K -M";a=0.5

N\

Coil:  yRandom (good conditions): [n] =K - M*’

| Random (0-conditions): [n] =K - M

Rod: [n]=K-M'"* a=1.8

ity

Y

»ig M
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Random coils and Flory-Fox equation

Ng =MNo(1+25-®»)

Nns= solution viscosity
®, = ¢ * vy; vi, = hydrodynamic volume

no= 5 =142.5.¢c-v,

No
Nsp =n,—-1=25-c-vy

P _fn]=25v, (45)
c—>0 C

lim
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Let us assume that a random coil will behave as an

equivalent sphere with a radius Re:

Rezw'RG;sz'S

The hydrodynamic volume for the particle is:

This 1s the hydrodynamic volume pr. sphere, but we
are interested in the hydrodynamic volume pr. weight

unit of the macromolecule.

vy, = YhNa
M
4m-y> RE Ny
Vh =

3-M
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From Einstein's equation (45) we get:

_0-R§
[n]= " (46)

b ~ 2.8 - 10°' (0-solvent); ¢ ~ 2.0 - 10*' (in good

solvents). Equ. (46) (Flory-Fox equation)

Kirkwood-Riseman:

_Nj-fy-b-RE RERp
L e v | A vaun IS0

fo = (6mmoRp) the friction coefficient when ¢ — 0

No = solvent viscosity
b =bond length

Rp = hydrodynamic or dynamic radius
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Gel permeatation chromatography (GPC)

Direction of the flow

Small chains may enter into
the pores, while the large
chains passes by the pores.

GPC is a method for separation of large molecules
(separates by molecular size). This method is used to

determine the molecular weight and the molecular

M
weight distribution (M—Wj of polymers.

n
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Principal sketch of GPC equipment

[Njecting | e
of sample

Solvent L , Collection flask

[

Printer

GPC is a method where the polymers are fractionated
according to the size of the molecules, and
accordingly by the molecular weight. However, the
molecular weigh may not be determined directly, but
only by calibrating of the system by measuring the
eludating volume for a number of monodisperse

polymer fractions with a known molecular weight.
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Illustration of a GPC experiment.

o 4

axrome |

8]
of
Q

%

iE

00,
020%

050
05080

()
(]
Og

The gel particles consist of a cross-linked polymer

and have variable pore sizes.

Polymer: Ex.: Styragel (co-polymerization of styrene
with divinyle benzene) and dextran

(sephadex)

Pore diameter: 25-10.000 A.
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The stationary phase of the column: The gel particles

included the liquid that is bond inside the pores.

The mobile phase of the column: The eludating

sample that flows through the column between the gel

particles.

The sample with polymer: A small volume is injected

at the top of the column.

Detector: UV-absorption, refractive index

(differential refractometer).

Retention time: The time that a certain fraction is in

the column.
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The flow of the polymer particles through the column
is a function of the Brownian motion and the size of
the polymer molecules.

Calibrating: With monodisperse polymers (PS, PEO)

of a known molecular weight.
logM=a+b-V,

M = molecular weight
V. = retention volume
a and b are constants

1os
1

-

10° 1 L " L L
26 30 36 40 45 S0
Elution volume (6-ml counts)

Fig. 159 M. ight of mwo di se polystyrene standards as
a lunction of elution volume in tetrabydrofuran. [From M. Kolinsky
and J. Janca, J. Polymer Sci., Chem. Ed., 12, 1181 (1974).]
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Universal calibrating: [n]-M plotted against V.- [n]-M

correspond  to a  hydrodynamic volume

3
= W.RG
[nl=",

107 - T -T T T T T T
F 3 ]
7 =

ok \ :
L A
i LI ]
f % _

\

1 b '® 4
10° - 1
Y -

[ 4
' 4
(m 4
L 4
4 4
I \. -

«d

(] (M)

-
= e
=]
x

Polystyrene (linesr)
Paolystyrene {"'comb’) \
Polystyrene (“star”) ‘S,

Polystyrene - mlvlmmrlmhnrvlmlck
copolymer (heterograft) %

T rTrrrr
o e

w @@
+
L1 1 Lill

B
1

L

"
]

Poly(methyimethacrylate) (linear)
Polylvinylchloride )

Polystyrene - poly|methyimethacrylate)
copolymer (gratt-comb)

Poly{pheny! siloxane)

Polystyrene - poly{methylmethacrylate]
copolymer {statistical-linear)

Polybutadiene 1

r1rrrrrs
Ll 1 L L1l

- n.-..,.-.q

T

o B 9 0 =

10% - i i i i I L

18 20 22 24 26 8 30
Elution volume (5-ml counts, THF solvent)

Fig. 15,8 Universal calibration in gel-permeation chromatography
for a variety of polymers in tetrahydrofuran, [Reproduced from
Z. Grubisic, P. Rempp and H. Benoit, Polymer Letr., 8, 753 (1967);
with permission of John Wiley & Sons, Inc., New York.]
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Light scattering

Inhomogeneities in the sample (fluctuations in
refractive index) causes light scattering:
a) Density fluctuations

b) Concentration fluctuations

Light scattering (static) gives information of
molecular weight (My), the radius of gyration (Rg)
and thermo dynamical properties (e.g. A»).

Principal sketch of light scattering equipment

Sample cell

Inncomming light beam

oia t
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Scatter of light polarized in a plane from one particle:

Let us consider the scatter from light polarized in a
plane, with a frequency v, and wavelength A, from
one particle. The electric field, E, may be written in

the following way:

E = E(-cos(2nvt)

E( = max. amplitude,
v = frequency

A = wave length

t = time
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An oscillating field will cause the introduction of an

oscillating dipole moment, |, in the molecule:

u=7y-E=v-E,-cos(2nvt);y = polarize ability.
For polarized light of a wavelength A, Rayleigh
discovered the following relation between the
intensity Ip of the incoming light and the intensity Ig
of the scattered light from one particle, at an angle ¢

with respect to the incoming light:

I 16m*y?

. 2
- = -sin” ¢ (48a)
lg 2t

r = distance from the particle to the point of

observation
¢ = the angle between the axis of polarization and the

direction of the scattered light.

For unpolarized light the analogue expression is:
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I' 87t4y2
' ¢

.(1+cos> ) (48b)

0 = the angle between the incoming and the scattered
light.

We got I, oc A™* which means that blue light (=450
nm) (blue sky) scatter considerably more than red

light (A=630 nm) (red sunset).

Constructive and destructive interference

ANNS NN
EW

P

Yy =A-cos(2n-v-t+07); A= amplitude
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Yy =A-cos(2m-v-t+0,)

01 and O, represents the phase shift from particle 1 and
2, respectively. (The particles have unequal distance
from the source of radiation and additionally the
distance between the particles and the detector is

unequal.)

The collected succession of waves at P is:

V=Y +VY2
y=A-cos(2n-v-t+0;)+A-cos(2m-v-t+05)

A =&, - &) =n; - 180°; n; is an odd number multiple
of 180°, the succession of waves cancels each other
out (destructive interference).

AS = 0, or a multiple of 360°, the succession of waves

will amplify each other (constructive interference).
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If the two particles move independent of each other
(ideal gas), all Ao will be equal probable — the effect

of the interference will at average equal ().
At the observation point:

Ig = Is,l + Is,2

Solutions of macromolecules

Rayleigh scattering:

A
R <—
G ™90

We will now regard the excess light scattering that are

due to particles dissolved in the liquid.

Fluctuation theory (Einstein): One imagines that the
liquid is divided into volume elements that are less

than the wavelength of the light.
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The volume elements have a fluctuating
concentration of macromolecules. These
concentration fluctuations must necessarily be

dependent of the size of the macromolecules

(MW,RG) and interactions in the system (Ay:

thermodynamic properties).

ldeal solution: Classical electro magnetic theory:

nz—n(z):4n-N-y (49)

_number of particles

N ;N and n isthe

volume unit

refractive index of solvent and solution, respectively.
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(n—ng)-(n+ngp)=4n-N-y

y _n+ng n—-ng c
41 C N

@

(1) In a dilute solution: n + ny = 2ny

dn . :
(2) . refractive index increment
C

Na

3)[N=c-—— 50
B)N=c— 4 (50)

. dn M 51)
! 0 dc 2m- NA
We put this into Rayleigh's equ. (48b):
I' dn 1+cos> 0
TS =8ntng- ()7 M 20410 202
Lo dc r"AT(2m)" N4

(52)
2 2
PRI CARRVREL S
de WrPNA

90



Iy’ is the scatter from one particle, but we want to

: N
know the scatter from N particles (N =c- Y )

2
I_s_ > 2 dn 2.(1+cos 9)-C-M
=27 IIO 4 2 (53)
IO dC K T NA
2
I_S.—r 5 —Re—zﬂi 1’10 (dnj 41 -c-M
Iop 1+cos“ 0 de/ AN,

R g = reduced scattered intensity

R Rsolutlon Rsolvent
5 = _

dn 1
K= 275 nO (dc) 7\,4NA

K = constant for a given polymer system
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K 1
~e_ b (54)
Rg M
: IT 1 :
Compare the expression = — for osmotic
R-T-c

pressure at ideal conditions.

Real solution (at normal concentrations)

The concentration fluctuations are also dependent the

thermo dynamical conditions in the solution.
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Thermo dynamics may be described by the osmotic

o .., dIl
compressibility, 4
C

The degree of destructive interference will increase

with di and the light scattering will be reversible

dc
, d
proportional to —.
dc
K-R-T-c
Debye. R@ = T (55)
dc

n_ R-T-(L+A2c+A3c2 +--j

C M
di_ R.T-(i+2A2c+3A3c2 +~j
dc M
R = K-R-T-c

R-T-(1\14+2A2c+3A3c2+--j
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:ﬁ+2A2c+3A3c2 +-- (56)

K-c
0

o
K<
RO.L-. ~12A

w

— ¢

Rayleigh-Gans scattering (2&0 <Rg < %)
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In the preceding discussion, we have considered

particle where R < % When the dimensions of the

scattering particle are larger than this, the phase
difference becomes large enough to give destructive
interference. Large particles give destructive
interference that has the greatest effect at large

angles.

At zero angle we will not get any phase shift, and

thereby no destructive interference.
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Hlustration of scatter from large and small particles.

large
particles

small particles

270°

The scattering 'envelope'

Hlustration of the scattering envelope in the x-z plane

at different conditions:

z <) z

g, B, 5.
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a) Rayleigh-scattering (Rg < 210) of light polarized in
a plane

b) Rayleigh-scattering (Rg < 2&0) of unpolarized light

¢) Rayleigh-Gans-scattering (% <Rp < %) of

unpolarized light

The distribution of the angle of the scattered light is

dependent of several different factors:

a) the size of the particle
b) the shape of the particle
c) interactions between the particles

d) the size distribution of the particles
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At low scattering angles, 0, and at low
concentrations, the angular dependency s
independent of the shape of the particle and only
dependent on the average radius of gyration of the

particle.

In practical treatment of light scattering data, we
define a function P(0) = the particle-scattering factor

or the form factor.

1/P(©)

ﬁ Spheres
Random coils

Rods

» 3in2(©/2)
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3 R(0) (real particle)
R (0)(the same particle if it had produced Rayleigh - scattering)

P(0)

P(0) > 1when0 — 0 and P(0) <1for0>0

(RB )real = P(e) ) (RG )Rayleigh

From equ. (56)

gzi-(i+2A2-C+3A3-C2+-') (57)
Rg Pg \M

16752 . Ré . sinz- (2)

: 1
00 le(?@)) =1+ 2 (58)

We may now write the light scattering equation (57)

in this way

167r2-R2 -sinz-(e)
K-c G 2 1
=1+ -(—+2A2'C (59)
Rg 3.2 M

99



In order to determine the molecular weight, we have

to extrapolate to both ¢ = () and 6 = 0.

16n24Ré-$n2(g)

c—0; Eﬁ:i-H >
o M 3
. 2A~H -

0—0; &=i+ 2°¢

Rg M k

In a Zimm-diagram is plotted against

Rg.
sin? (gj +k-c, where k is a constant (2000) that is

used to scatter the measured data.

sin?cel2)+ke
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RESULTS

Polymer RG(A)

Serum albumin (=6.6-10% (spherical) 29.8

Myosin (M=4.9- 10 (rod) 468
Polystyrene =110 (coil) 100
DNA (M=4-10% (rod) 1170
Polystyrene/butanone

My 1075 RG(A)
1770 437

940 306

524 222

230 163

101



DIFFUSION

The force for diffusion is the gradient of the chemic

potential (a—“) Substances diffuse spontaneously

ox
from a region with a high chemical potential to a
region with a low chemical potential; that 1s from a

concentrated to a dilute solution.

Solvent

— Boundary

Solution

When we have a concentration gradient in a solution,
we get a flux of matter, in a way that leads to a

leveling out of the concentration gradient.

102



J= —D-@ (Fick’s law) (60)

OX

J= flux(kg-m_2 -s_l)

D = the diffusion coefficient (mz-s’l)

C =cons.(k%)
m

In order to eliminate the flux, we may use the

continuity equation:

oc oJ
e 1
ot OX (61)

Combination of (60) and (61) give:

2
o _ D@ (Fick’s second law) (62)

a ox>
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Classical gradient technique

Solvent =2 Boundary h .o
/ i
1 LY R

ay
Solution

Optical system

2
(4x)"=2D -t (Brownian motion)

('Axlz
2D

» t

The flux of a substance is related to the negative

gradient of the chemical potential (— Z—Mj :
X
J- —L-Z—;‘ (63)

L = phenomenological coefficient
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Ildeal solutions:

u=u0+R-T-lnc

u_ou de_R-T o
OXx Oc OX c OX

Combination with equ. (63) gives:

L-R-T
C

J=-

oc
o (64)

The flux may also be expressed in another way:

J=c-v=- Ok
ox
v = velocity

Cc = concentration

In diffusion, the force (pr. mol) —2—“ is balanced by
X

the frictional force

F; (pr.molecule) =1, - v

Fg (pr.mol) =1, -v-N,
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fo= the frictional coefficient

C-V=L-fO-V-NA—>L:fO.(I:\IA (65)
We may now write equ. (64) in this way:

c-R-T Jc R-T Oc
__fo-NA-C'&__fo-NA.& (66)
Compare equ. (60) with equ. (66):

R-T
0 Do =
c— 0 f)-N A (67)
when ¢ >> 0
on
oc
D=M:(1-vy-c) %~ 68
(1=va-c) FNA (68)

R-T
NAa -f

D=

-(1—V2-C)-(1+2A2-M-C+3A3-M-02+-)(69)
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R-T
D = (I\Ifj 'Q(C)Thermodynamic factor
A’ Hydrodynamic factor
(69a

)
The concentration dependence of the diffusion
coefficient

D =Dg(l+kq-c)|; (empirical equ.) (70)

kq = coefficient that 1s dependent on hydrodynamic

and thermodynamic conditions

Dy

=y no‘ k‘

L » C (conc.)

kg =2AoM -k —-v»y

%
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ULTRA CENTRIFUGATION (Svedberg)

Velocity centrifugation (50.000-60.000 r.p.m.) gives

hydrodynamic information

Equilibrium centrifugation (5.000-6.000 r.p.m.) gives

thermodynamic information

Velocity centrifugation

Let us first look at a spherical particle (e.g. a ball) that

falls in a liquid medium under the influence of the

gravity force, g:

Fa m = the mass of the particle
Fep v, = the specific volume of the particle

p = the density of the liquid

. Fy=m-g g = the gravity acceleration
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Fr —F, —F; =m-a;after a short time, a = 0
Fr =F, +F;

m-g=m-Vv,-p-g+F;

m-v, represents the volume of displaced liquid

Fg = m-g(1-v,-p) represents the upwards pressure

mzﬁ; Fp=1-v

A

f = the friction coefficient, that is dependent of the
size and shape of the particles, and the viscosity of the

liquid.

f-v=

M (1=va) g (71)
A
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Macromolecules are far too small particles to
sediment in the earth's gravitational field, one
therefore need to apply a centrifugal field (ultra

centrifuge) in order to get the molecules to sediment.

Q = Angular -‘h:‘:- a F. = "

. g
velocity ./V ~ Sentrifug.
4 : Solution force
| ﬁ
l f
SAN

|
:
c" "‘L :

s -

-
\ﬂ

In a centrifugal field, g is replaced by Q°r

/

"

b ]

(200.000°2), where L2 is the angular velocity and r is

the distance from the rotor axis. Equ. (71) may now

be written as:

f-v:Nﬂ-a—vz-p)-Qz-r (72)
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60 000 r.p.m. Q*r=(27-1000)*(6 cm)=2.38-10° cm-s™

Svedberg introduced a parameter that is called the

sedimentation coefficient, S:

S:Q2. ;(v=—) (73)

A combination of equ. (72) and (73), and when we

additionally look at the situation when ¢ — 0:

S ~_M-(1-vjy-pg)
07 NAf
A o

(74)
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Illustration of how the boundary may be registered.

Y
I
/ Boundary
-
s *” n
' ]
I |
t . ;
ldC/dr' l '
I || !
1] I
| l |
- >r
T T R

The rotor 1s spinning around the axis with an angular
velocity Q. Schlieren optics is used to register the
concentration gradient; r, = the position of the

meniscus; r = the position of the boundary.
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r t
jgzs.gzjdt -
I'm T 0
inv, st
n-— =$.02% -t G B
rm
Inr=Inr, +S-Q7 -t (75)

The concentration dependence of the sedimentation

coefficient

For random coils, S 1s dependent on the
concentration, and this may be expressed using the

following empirical equation:

(1+kq -c) (76)

1
So

| —
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ks 1s a coefficient that expresses the concentration
dependence. kg 1s related to the hydrodynamic and

thermodynamic conditions of the system.

1/8
]

K, ng

1%

' »
o Cc

NAV

kg =12-A,M+—ATh

gt k=0 at UCST; system: PS(M=390

000)/ cyclohexane (0=35 °C)
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In order to determine the molecular weight in equ..

(74), we need to know f;. One may determine f,. from

R-T
N4 -fo

diffusion measurements (equ. (67)). D =

By combining equ. (67) and (74), we get the Svedberg

equation:

_ SeRT
Dy(1-v5-po)

(77)

Equilibrium centrifugation

If we let the rotor rotate at a relatively slow speed
(5.000-6.000 r.p.m.) we may get equilibrium in the
cell, so no net sedimentation 1s taking place. This

usually takes a long time (several days).
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V= % =S.0% ¢ (see equ. (73))

and the flux is:

Jg —c-v=c-S-0%r

Jp = —D-@ (Fick’s 1. law)
dr
At equilibrium:
JS + JD =0.
. : : dc
Vi assumes an ideal solution: S'Q -r-c—D- d— =0.
r
r C
E-Qz [r-dr= | de . ; M = meniscus
I'm Cm ¢
) N
542 -(rz—rr%) —ln——
2D Cm

S M(l V2p)
D R-T

From equ. (77):

116



M -(l—Vz-p)-Qz-(f2 —rr%l):ln-i
c

2.R-T N
2.R-T-ln °
C
M = o (78)
2 _2 2
Q7 (1-p-vy)-(r" —11)

Information from equilibrium sedimentation:

e We may determine the molecular weight by
observing the concentration as a function of the
distance (r). The concentration may be measured
with the aid of a refractive index detector or UV
detection.

e For polydisperse systems, one may in principle
determine the polydispersity index.

e For non-ideal solutions one may determine
thermodynamic interactions, e.g. A, and Aj,

e The biggest drawback of equilibrium centrifugation
is associated with the long time (several days) it
takes the system to reach equilibrium in the

centrifuge.
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INTRODUCTION OF "SCALING"

Concentration regions and concentration fluctuations

in polymer solutions

A DY
B

e A"lu'.

Dilute x Semldllute Concentrated

Dilute solutions:

The polymer molecule behaves as separate entities

without intermolecular interactions.

Characteristic parameters: Rg, Rp and [n].

118



Static parameter:

Rg =Kg-MPG

Be =0.59 (good conditions)
Bg = 0.50 (6-conditions)

Dvynamical parameters:

Dy = R-T
NA'fO
Dozk-T k-T

fo  6mMp-Rp

Stoke’s law:

fo=6mMg - Rp ; Rp =Kp - MPD

At G-conditions, we always have g = Bp.

At good conditions: Bg = Pp only when M — o,
otherwise: Bp < Bg and the numerical value of Bp is

dependent on the considered molecular weight region.

Intrinsic viscosity:
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m]=k-M*

2
n]oc Rp RG o pp26e+po-

2 = —
b

‘e

E
..U
2

e 0r

i3 Cycloheione (8]
-

sk
g a 5 6 T B

lag M,

Fig. 5. Relation between 2eru-sheur-rale intrinsic viscusity [n)o snd weight-average molecular
weight M, for pulystyrene in benzerie at 25 or 30°C and in cyclohexane il the thets lemperature.
{0, @) present data; (3, &) Altares et al. (ref. 8); @; Berry (ref. 9): (Q. §) Fukuda et al. (ref. 7); {0,
-&) Yamamaoto et al. (ref 10}

Semidilute solutions:

In this concentration region, the intermolecular

interactions are dominating.
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At a certain concentration, c¢*,  (Coverlap
concentration™) the polymer molecules starts to
overlap with each other, and a transient network 1is

formed.

Static experiments:

oo M M3

R
c* oc M7 (good conditions)

c* oc M (B-conditions)

Dvynamical experiments:

o= L o MI"2BGBD

[n]
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Part of a network.

This network is characterized by a correlation
length” (”screening length™), &, that are independent

of the molecular weight of the polymer, but dependent

of the concentration of the solution.

B
1-3-Bg

good conditions)

E oc ¢” where x =

aOC C-O.77(

¢ o« ¢ (0-conditions)
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Scaling laws in the semidilute region is based on the

existence of an overlap concentration, c*, where the
concentration dependence of a given parameter (I1, S,

D) is changing.
In addition to the existence of a correlation length, &,

that are dependent on the polymer concentration, but

independent on the molecular weight of the polymer.

Concentrated solutions

A homogenous distribution of segments in the
solution. At a concentration, ¢', the chain dimensions

will be independent of the concentration and assume

their non-perturbed dimensions. (c>15 %); ¢* = [6]
Nle
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Illustration of characteristic lengths and concentration

regions

i_haracteristic length
& <
Re

e ————

!
|
\
\
|
[

Dilute  Semidilute “oncentrated

Concentration

Description of semidilute polymer solutions with

the aid of the '""Blob' model.

1IB|0bII
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A semidilute solution may be considered to consist of
a string of "blobs” of the size &. Each ”blob” has the

molecular weight (&g oc ¢P1-P)

1
M(&) cc-&2 oc ¢! 3P

Phenomenological consideration of osmotic pressure,

diffusion and sedimentation with the aid of Scaling-

laws

Osmotic pressure:

Hz—'T-(c+A202 +A3c3+--)
M

"Mean field" (Flory):

IT ~ ¢* (good conditions)
IT ~ ¢’ (B-conditions)
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"Scaling”’:

IT

C_M

R-T

"blob"

C

C

.§3

_3BG

[Tocc

We set Bg =0.59

1=-3BG

onditions)

(6-conditions)

Macromolecules

231
[Tocc (good ¢
T ¢’

100
e F
L B

'?'E B
> 0
o -
B F

SRR

NIRRT

+3]
o

Figure 4. Oamotic
at 25 °C. Thesymgoml.; 0,0

1 10 100
C x102(g9/cm3)

of poly{a-methylstyrenes) in toluene
., 05 Q, Q, .0, and-O denote data for

«-104, a-12, a-103, a-110, e-112, a-113, and a-111, respectively.
The data for a-112 were obtained by both osmotic pressure and

light sca

ing measurements, and the data for «-113 and a-111

ttering
were obtained by light scattering measurements.
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In order to simplify the analysis of diffusion- and

sedimentation data, we assume: M — oo, then

P =Pp =P and &6 = Cp = <.

Diffusion (cooperative):

k-T
— OC
6““0&

B
Do 1-34

-t

Do ¢’ (good conditions)
Doc'®  (B-conditions)

Sedimentation (cooperative):

L 2B
T1o3p

3
S:M.l—Vz'POC Mopqpy o c-g

occ-EJ2 oC C
Ny o f 6n-My-§ 6m-Mg-&

1-B
S occl3P
S oc ¢ (good conditions)
Socc!®  (0-conditions)
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o1 0.2 o5 1 2 5 10 20 S0 100 200

1g(s10'%%) c/kcma
125
Ps/toluehe
10 .
075+ -
0.50 |- “
025 - =
or -
-0.25 | b
-o0s0 | o
1g(c/ kgm~3)
o : \ . " . :
-10 -05 o 05 10 15 z.q . 25

FIG. S. Lg-ig plot of sedimentation coefficient as

asa
system (After 19): )" 0% ;
448 x 10°; () M, = 1.70 X 10*; 3525 10%; ¢
M4 o o, <->er ﬂ =11

PS/toluene at 25°C (nl)

—mhm*d-nhwmwm

1 1
2002 AL e
1g(s-10 3/s) c/kgm'3
a7s| PS/cyclopentane -
@ -Cond.
150 slops: -1.0 (theoretically predicted) T
125+ B
100 A
075 .
050+ —
025 B
or 4
-0.25 -
Iglc/ kgm‘a
_0-50 1 L 1 1 -
] 0.5 10 15 20 25
FIG. 9. Lg-ig plot of sedimentation asa (Imctlm of concentration for
system PS/cyclopentane at ZD'C (theta ) (After 19);

)My =448 X 10°;

(au?.., 00 X 10%; (nn?...n: 392 10%; (o)M=
11 x 10°%; (;)ﬂ..,-o 208 X
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Illustration of scaling behavior for diffusion and

sedimentation
IgDc N | gS‘h
I M,
M2
ME R
Ma
MMy >M3> My M7y > My > My
—
1§c l1gc

Temperature-concentration diagram

"Mean field” theory

T (K)

© » Conc.
M\N

I. Dilute solution and good thermodynamic

conditions

I1. Semidilute and concentrated solutions at good
conditions

I’. Gregion

IV. Phase separations curve
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“Scaling’’ theory

T-6
Reduced temperature: € = T

< C%H—AIEE—EIJS
1 /
" 1/4
I c¥= £
2 -1/4
Gt 111 RG o MC €
< % b4 » Conc
L s
f v "‘1.“‘-

I.  Dilute concentration regime

The I and II 1s separated by the overlap

concentration
M 43
c¥oc—— ckocM 5.g 3
3
RG

I’. Dilute 6-region

The function cg ~ M2 separates the O-region

from the dilute region (good conditions) (I) and

the O-region from the phase separation region
(IV).
II. The semidilute regime

III. The concentrated regime

1V. Phase separation region
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RHEOLOGY AND THE MECHANICAL

PROPERTIES OF POLYMERS

Rheology:

i) Viscous flow - irreversible deformation
i1)  Rubber elasticity - reversible deformation
1) Viscoelasticity - the deformation is reversible,
but time dependent
1v) "Hookean” elasticity - the motion of the chain
segment 1s very restricted, but involves bound

stretching and bound angle deformation

(Crystalline — first order transition (ice-water)

Polymers
Amorphous — chains that cannot be arranged in
. an ordered way
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”(Glass”’-rubber transitions

Simple mechanical relations:

Young's-modulus:

This modulus describes the coupling between elastic

and viscous properties of a polymer system.

Ty K]
é- Lo

For elastic behavior of flexible polymer chains, the

shear stress 1S

o=
A

related to the stretching

£= LLLO by the following equation:
0
c=E-¢ (79)

where E 1s called Young's elasticity modulus.
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This modulus gives information of the stiffness of the
polymer. The higher E, the greater tendency the

polymer material has to resist stretching.

Ex.

Material E (Pa)
copper 1.2-10"
polystyrene 3-10°
soft rubber 2-10°

Shear modulus:

G= cS; s = shear deformation (shear angle)
S

Newton's law: The equation for an ideal liquid with
viscosity 1, may be written as:

ds
G=n-— 80
N (80)
ds :
E: shear deformation rate

Equ. (80) describes the viscosity for simple liquids at
low flow rates.
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Compliance and modulus

The modulus measures the stiffness or hardness for an
object, while the compliance, J, measures the
softness. The elastic compliance is defined in the

following way:

I=— (81)

Storage- and loss moduli

The complex Young's modulus:

E*=E'+1E"

E' =real part; iE" = imaginary part;

E'= storage modulus E’’ =loss modulus.

E' is a measure of the elastic energy that is stored
under deformation, and E" is a measure of the energy

that is converted to heat.
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i “\
.J.-.-..- ....-....._-v._.-.._i
.

The Young-Modulus' temperature dependence

1g (E/Pa)

>

Temperatur
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(1) The glass region.

Ex. PS and PMMA at 25 °C. Here E is
approximately constant. The size of E is often ca.
3-10° Pa. The molecular motion is limited to

vibrations and short distance rotations.

(2) The glass transition region.

In this region E often decreases with a factor of
1000 over a temperature region of 20-30 °C. The
stiffness of the polymer changes quite rapidly in

2g

this region. T, (d maksimumj is the glass

d1?
transition  temperature and represents the

transition from “glass - to rubber-like behavior.
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This region (2) may, from a molecular view, be
described as long-range coordinated molecular
motion. At temperatures under the glass transition
only /-4 chain atoms are involved in motions, while
at temperatures in the glass transition region /0-50

chain atoms are involved in a correlated motion.

Ex.Polymer T, (°C)  Number of chain atoms
PDMS 127 40
PS 100 40-100

polyisoprene -73 30-40

(2a) Illustrates the effect of crystallinity. Ty, is the

melting point of the polymer.
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(3) Rubber plateau region: In this region, E is

approximately constant (2-10° Pa). In this region,

the polymer exhibits rubber elasticity

1) Linear polymer: The extent of the plateau region
will primarily depend on the polymers molecular

weight.

R M1<M2<M3
M3

M, M2

®» Temperatur

11) Cross-linked polymer (3a)

Cross-linking gives "better” rubber elasticity.
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E = 3-n'R-T; n = number of active chain segments.
In region (3) the molecular motion may be described
by “reptation”.

'test' chain

(4) Rubber flow region: In this region, the polymer

has both rubber-elastic and flow properties,
dependent on which time scale the process is
regarded on.

1)Short times: The physical “entanglements”

do not have time to relax
(rubber)

i1)Long times: The chains move in a

coordinated way (flow).
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(5) The liquid flow region: Here the polymer exhibits

S . iy :
flow properties G = n.dt at 1deal conditions. This

)

region may also be describes by the “reptation’

model.

d
Viscous flow: ¢ =n- @

dt

S .
o = shear stress; a = the shear deformation rate

THE MOLECULAR WEIGHT DEPENDENCE OF

THE VISCOSITY

At molecular weights lower than the “entanglement”

molecular weight (Mg): nf oc M'?

140



Hlustration of different”’ entanglement”

situations

| I\

[. Temporary ”cross-link”
II. Local "link”
[II. ”Looping” of chains around each other in the form

of long-distance contour
MES ~ 37000: MEMMA ~10000; MEEO ~ 6000

For molecular weights over Mg: 1) oc M*
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lg}?T

p~M>T

7«-5- M0

Ty Mg > lgM

Time dependent viscosity effects:

"Thixotropic” liguid: the viscosity decreases with

time

"Rheopectic” liquid: the viscosity increases with

time

Viscoelasticity and models for stress relaxation:

Relaxation

Reference point -
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o = E-¢ (elastic tress)
G = shear stress

E = Young's modulus
€ = tension

de

G =1-— (viscous stress)

de

VOZ.(QT I/I/IOdel: O — Gelastic + Gviscous :E.g + n.i

dt

Maxwell model: de = (daj + (de)
dt dt elastic dt viscous

de_1 do o
dt E dt n
I E
E
in Li-[ 1/]
Voigt modell Maxwell modell

E = elastic element (spring)
N = viscous element (damping cylinder)
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In viscoelastic measurements, on may follow a
transient- or ’steady-state”’-response. Two common
transient experiments are stress relaxation and

creeping.

Stress relaxation:

A rapid external stress is applied at the time t = 0 and
the relaxation 1s measured as a function of time. The

Maxwell model is suitable to describe this:

€ = start tension = constant at the time t = 0.

Thereafter de =0.
dt
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The relation % 1S a constant with the dimension time,

and is called relaxation time, T,

T :g (82)

If 7 is large, the relaxation time is long, and the stress

relaxes slowly.

One often defines the relaxation time as the time it

1 :
takes for the stress to relax to — of its start value.
e

€x0/E G/E

L]
Time
Maxwell element Voigt element

Time
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Creep. In this experiment a constant external strain is
applied at the time t = (. The deformation is
measured as a function of time by keeping the stress

constant. To describe creep, Voigt's model is often

used: The stress is constant o = o,

oy =E-¢+ @ (83)
0 n dt
E-t
E.° = l—exp(— j (84)
Op N

The ratio % is called the retardation time of a creep

experiment.
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The four-element model

This model that consists of four elements, may be

used to describe many practical applications

t

g= 0+ 2 (l—e M)+ 2 -t
E, E, N3

nfEl

Reversible

Cree
Voiat clement
“"'!3 U"'Ilg__ 1--1"
6/E_ =" Non r*eversible

L‘.".!'h

'e) 0 Time

Four element method  Description of creep from this model
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RUBBER ELASTICITY

The natural material rubber (CsHg), (isoprene)

The following three conditions must be fulfilled for a

material to exhibit rubber properties:

1) It has to consist of long chain molecules with
bounds that permit free rotation

2) The forces between the molecules must be weak as
in a liquid

3) The molecules must be connected, cross-linked, at

certain points along the chains
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Elastomers (rubber) may, over their glass transition

temperature, be defined as an amorphous cross-linked

polymer.
r
Tr
o
l j
—f
' Relaxed Chain Exposed to external stress

The stress for an elastomer may be described in the

following way:

G=H-R-T-(OL—12)
o

L, = the distance from the start
L

L

densit ,
n= P _ Y between cross-links

M, molecular weight
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n represents the number of ”active” network segments

pr. unity volume.

THERMODYNAMICS FOR RUBBER

ELASTICITY

When one talks about equilibriums in systems that
changes in a reversible way (e.g. elastic deformation),

it 1s practical to introduce Helmholtz free energy, A,

defined by:

A =U -T-S; U = inner energy (85)

The backward-pulling force, f, which operates on the
elastomer, is dependent on the change in free energy

when the distance is changed:
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OA ou oS
EERECEC
/v /v /v (86)

For an ideal elastomer:

(5_U) _0
o/rt,v

for most other materials (e.g. a steel rod):

(%) -0
WY

One may show that there is a direct correlation

between the entropy and f:

(e Gy ®
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This leads to the state equation for rubber elasticity

EEmEE
/1y o1/ v

The first term on the right side in the equ. (88)

(88)

represents the energetic part (fe) and the second term

is a entropy part (fg): f = fe +f

N
&
\’?}
or
3

_@M
}m'a,., or-T(35)

} (g_tf} )‘r,v

TV

-

Temperature (K)
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