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1. BASIC THERMODYNAMICS 

1.1. Terms in thermodynamics 

System is the part of the world which we have a special interest in, e.g. a 

reaction vessel, an engine, an electric cell. 

 There are two points of view for the description of a system:  

 Phenomenological view: the system is a continuum. This is the method 

of thermodynamics.       

Particle view: the system is regarded as a set of particles, applied in 

statistical methods and quantum mechanics.   

Surroundings: everything outside the system. 

Isolated system: neither material nor energy cross the wall (see Fig. 1.1.) 

 

Closed system: energy can cross the wall (see Fig. 1.2), W: work, Q: heat. 

Open system:  both transport of material and energy is possible (Fig. 1.3). 

Homogeneous system: macroscopic properties are the same everywhere 

in the system, see example, Fig. 1.4 

Inhomogeneous system: certain macroscopic properties change from 

place to place; their distribution is described by continuous function. Example:  
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a copper rod is heated at one end, the temperature (T) changes along the rod, 

Fig. 1.5.  

 
 

 

Fig. 1.3 

 

 

 

Fig. 1.4 
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Fig. 1.5 

 
Heterogeneous system: discontinuous changes of macroscopic properties.  

Example: water-ice system, Fig. 1.6. 

 
 

 
 

     Fig. 1.6 
 

Phase: a well defined part of the system which is uniform throughout 

both in chemical composition and in physical state. The phase may be a 

disperse one, in this case the parts with the same composition belong to the 

same phase. 

Components: chemical constituents (see subsection 2.11). 

Fig 1.6 shows a system with one component but with two phases. 
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1.2. The state of the thermodynamic system 

The state of a thermodynamic system is characterized by the collection of the 

measurable physical properties. The expression ’measurable’ is very 

important since e.g. the form or the color (white) of the system can characterize 

the system but they are not measurable.  

The macroscopic parameters determined by the state of the system are 

called state functions. 

The basic state functions: 

   amount of substance: mass (m), chemical mass (n)  

   volume (V) 

   pressure (p) 

   temperature (T) 

   concentration (c) 

A system is in thermodynamic equilibrium if none of the state functions 

are changing. In equilibrium no macroscopic processes take place. 

In a non-equilibrium system the state functions change in time, the 

system tends to be in equilibrium. 

 Meta-stable state: the state is not of minimal energy, energy is necessary 

for crossing an energy barrier.   

A reversible change is one that can be reversed by an infinitesimal 

modification of one variable. 

A reversible process is performed through the same equilibrium positions 

from the initial state to the final state as from the final state to the initial state.  

Example: if a reversible compression of a gas means infinitesimal change 

of the gas pressure. This causes opposite infinitesimal change of the external 

pressure, then the system is in mechanical equilibrium with its environment 

(Fig. 1.7). 
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                                      Fig. 1.7 
   
Real processes are sometimes very close to the reversible processes.   
 
The following processes are frequently studied: 

isothermal ( T = const. )  

isobaric (p = const.)  

isochoric (V = const.)  

adiabatic (Q = 0, Q: heat)  

 

 The change of a state function depends only on the initial and the final 

state of the system.  It is independent of the path between the two states (e.g. 

potential energy in the gravitation field, or the electrostatic potential). 

 

Important state functions in thermodynamics:  

 

         U – internal energy 

H – enthalpy 

S – entropy 

A – Helmholtz free energy 

G – Gibbs free energy 

 pext

p
 gas  p = pext
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The change of the state functions is labeled with a great Greek delta, 

example: U. Their infinitesimal change is an exact differential, e.g. dU.  

Work and heat are not state functions. They depend on the path between 

the initial and final state. They are path functions. 

For example, an object is moved from A to B along two different paths on 

a horizontal frictious surface, Fig. 1.8. 

 
                

 
Fig. 1.8 

 
    
     The two works are different: 

 
W2  W1 

 

 
 
We do not use the expression „change” for work and heat (change is 

labeled by „d” like dH).     Infinitesimal values of work and heat are labeled 

by „”: W, Q, since they are not exact differentials. Further parameters have 

to be given for their integration.  

 

Another type of classification of thermodynamic terms: 

 

Extensive quantities: depend on the extent of the system and are additive  

 mass (m) 

  volume (V) 

 internal energy (U)  

 

Intensive quantities: do not depend on the extent of the system and are 

not additive:  

1

2

BA
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temperature (T) 

pressure (p) 

concentration (c) 

However, at the same time they are also state functions. 

 

Extensive quantities can be converted to intensive quantities, if they are 

related to unit mass, volume. For example: 

Density:  = m/V 

Molar volume: Vm = V/n (subscript m refer to molar) 

Molar internal energy: Um = U/n 

 

Equation of state: is a relationship among the state variables of the 

system in equilibrium. 

Example: the ideal gas is defined according to its equation of state:  

 

 pV=nRT (1.1) 

 

with p[Pa]; V[m3]; n[mol]; T[K]; R = 8.314 Jmol –1 K-1 (gas constant) 

 

The equations of states of real materials are given in forms of equation in 

closed mathematical formulas, as power series, or diagrams and/or tables. 

 

 A. Temperature 

The temperature scale used at present in science and in every day life at 

the great part of the world was defined by Anders Celsius in 1742. 

Two basic points: melting ice: 0 C  

             boiling water (at 1.013 bar): 100 C 
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Notice: in an important part of the world the Fahrenheit scale is used in 

every day life.  

The two basic points are 

   melting ice: 32 oF   

   boiling water (at 1.013 bar): 212 oF 

Several properties of different materials are used for measuring the 

temperature. 

Example: change of volume of liquids (mercury or ethanol). They cannot 

be used in wide temperature range. 

If the same thermometer is filled with different liquids, they show slightly 

different values at the same temperature. Reason: thermal expansion is 

different for the different liquids. For example: with Hg 28.7 C, with ethanol 

28.8 C is measured. 

The pVm product of an ideal gas has been selected for the basis of 

temperature measurement.  All real gases behave ideally if the pressure 

approaches zero. 

The temperature on the Celsius scale can be expressed as 

 

 (1.2) 

 

Substituting the exact values: 

 

 (1.3) 

 

On the absolute temperature scale:  

T = 273.15 + t 

and 

pVm = RT  or   pV = nRT 

100
)()(

)()(

0100

0 




mm

mtm

VpVp

VpVp
t

15.273
314.8

)(



 tmVp

t
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For the definition of thermodynamic temperature scale the triple point of 

water is used (at the triple point the gas, liquid and the solid states are in 

equilibrium), 0.01oC. One Kelvin (K) is equal to 1/273.16 times the 

temperature of the triple point of water on the thermodynamic temperature 

scale. 

The triple point of water is exactly 273.16 K on the thermodynamic 

temperature scale. 

1.3. Internal energy, the first law of thermodynamics 

The energy (E) of a system consists of the kinetic energy (Ekin) and the 

potential energy (Epot) of the system and its internal energy: 

 E = Ekin + Epot + U (1.4) 

Internal energy, U is the sum of the kinetic and potential energies of the 

particles relative to the center mass point of the system. Therefore it does not 

include the kinetic and potential energy of the system, i.e. it is assumed in the 

definition of U that the system itself does neither move, nor rotate.   

The idea of the internal energy covers the following the following energy 

types. 

1. Thermal energy is connected to the motion of atoms, molecules and 

ions (translation, rotation, vibration). 

2. Intermolecular energy is connected to the forces between 

molecules.   

3. Chemical energy is connected to chemical bonds. 

4. Nuclear energy (nuclear reactions). 

Very important is Einstein’s fundamental equation, E = mc2,  the mass is 

equivalent to energy, e.g. a photon behaves like a wave or like a particle.   

We cannot determine the absolute value of U, only its change, U. 
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The first law of thermodynamics expresses the conservation of 

energy. 

For isolated systems:  U = 0 (1.5) 

For closed system:  U = W + Q (1.6) 

Where W: work, Q: heat. 

For infinitesimal changes:  dU = W + Q (1.7) 

For open systems see Fig. 1.3 and subsection 1.12. 

 

B. Work 

The mechanical work is the scalar product of force (F) and displacement (r) 

 

  (1.8) 

Work in changes of volume, expansion work (pV work) plays a special 

role in thermodynamics. In this case pex acts on surface A, reversible process in 

a reversible process: 

 

 Fig. 1.9 

 

 dVpW ex  

 

drFδW 
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 
2

1

V

V

exdVpW  (1.9) 

Remarks: 

a) The change in energy is considered always from the point of view of 

the system. 

b) The external pressure (pex) is used, reversible change:   p = pex.  

c) If the volume increases, the work is negative, if the volume decreases, 

the work is positive. 

d) If p = constant, it is easy to integrate (temperature is changed): 

 

  (1.10) 

 

The work in changes of volume can be illustrated in p-V diagrams. 

 

Fig. 10a 

 

Fig. 10b 

Expansion of the gas at constant 

temperature 

 

I. Cooling at constant volume to 

   the final pressure  

II. Heating at constant pressure 

 

Since Wa  Wb, the pV work is not a state function! 

 
2

1

V

V

VpdVpW
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There exist other types of work. In general the work can be expressed as 

the product of an intensive quantity and the change of an extensive quantity. 

Work Intensive quantity 
Extensive 

quantity 
Elementary work 

pV work Pressure (-p) Volume (V) W=-pdV 

Surface work Surface tension () Surface (A) W=dA 

Electric work Electric potential () Charge (q) W=dq 

 

The work is an energy transport through the boundary of the system. 

The driving force is the gradient of the intensive parameter (the potential 

function) belonging to the process. The temperature driven process is handled 

in thermodynamics otherwise (see below, C. Heat).  

 

C. Heat 

The heat is the transport of energy (without material transport) through the 

boundary of a system. The driving force is the gradient of the temperature. 

Processes accompanied by heat transfer: 

a) Warming, cooling 

b) Phase change 

c) Chemical reaction 

See detailed! 

a) Warming, cooling 

 Q = c · m · T (1.11)        

c = specific heat [J/kg·K], for water,  c = 4.18 kJ/kg·K 

Using the molar heat capacity Cm [J/mol.K] 

 Q = Cm · n · T (1.12) 

The equations 1.11 and 1.12 are approximations. The heat capacities are 

functions of temperature.  For the calculation of the heat Cm must be integrated: 
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  (1.13) 

where  

  (1.14) 

 

The heat (like the work) is not a state function. We have to specify the 

path.  

Most frequently heating and cooling are performed either at constant 

pressure or at constant volume.  

At constant pressure: 

  (1.15) 

At constant volume: 

  (1.16) 

  

During heating at constant pressure the volume changes, since pV work is 

necessary during the heating (expansion or contraction). Therefore Cmp> CmV.  

b) Phase change 

Phase changes are isothermal and isobaric processes. That means, both 

the temperature and the pressure are constant during the phase change.  

In case of pure substances either the temperature or the pressure can be 

freely selected (see section 2.4). For example, as it was already mentioned, at 

1.013 bar the boiling point of water is 100 oC. With changing pressure the 

boiling point changes, too.  

Heat of fusion and heat of vaporization are called latent heat, since the 

temperature does not change during these processes.   

c) Chemical reaction (see later, Section 1.8) 

 

 dTTCnQ
2

1

T

T

m

 
dT

Q

n

1
TCm




dTCnQ
2

1

T

T

mpp 

dTCnQ
2

1

T

T

mVv 
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D. Enthalpy 

QWU   

According to the first law of thermodynamics 

  (1.17) 

If there is no pV work done (W=0, V=0), the change of internal energy 

is equal to the heat: 

  (1.18) 

Equation 1.18 is valid for processes at constant volume and without pV 

work. Therefore processes at constant volume are well characterized by the 

internal energy. 

In chemistry constant pressure is more frequent than constant volume. 

Therefore we define a similar state function which is suitable for describing 

processes at constant pressure, the enthalpy (H): 

  (1.19) 

Since this is also an energy function, its unit is Joule (J). In differential 

from: 

  (1.20a) 

For final change: 

 H=U+pV+Vp  (1.20b)        

At constant pressure: 

    H = U +p.V      (1.20c)   

If only pV work is done and the process is reversible: 

  (1.21a) 

and for finite changes  (1.21b) 

Substituting 1.20a for 1.21b we have 

  (1.22) 

If the pressure is constant  

  (1.23a) 

vQU 

pVUH 

VdppdVdUdH 

QpdVdU 

QVpU  

VdpQdH  

pQdH 
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for finite changes 

  (1.23b) 

In an isobaric process (if no other than pV work is done) the change of 

enthalpy is equal to the heat. Therefore the enthalpy plays the same role for 

isobaric processes like the internal energy for isochoric processes.  

Calculation of enthalpy change in case of isobaric warming or cooling: 

   

  (1.24) 

 

Cmp is expressed in form of power series, like 

  (1.25) 

Substituting 1.24 for 1.25, the enthalpy change is calculated as 

 

  (1.26) 

 

Phase changes (isothermal and isobaric processes): 

Hm (vap):   - molar heat of vaporization 

Hm (fus):    - molar heat of fusion  

1.4. Ideal gas (perfect gas) 

Properties of an ideal gas: 

1. There is no interaction among molecules. 

2. The size of molecule is negligible. 

The ideal gas law (see equation 1.1) 

 pV = nRT (1.27) 

pQH 

dTCnH
2

1

T

T

mp

22
mp TdcTbTaC  

       



   3

1
3

2
1

1
1

2
2

1
2

212 TT
3

d
TTcTT

2

b
TTanH
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Fig. 1.11 introduces the potential energy between the atoms of a diatomic 

molecule as function of their distance. At the minimum the sum of forces is 

zero. 

At low pressures real gases approach the ideal gas behaviour.  

As it was already mentioned, in an ideal gas there is no potential energy 

between molecules. It means that the internal energy does not depend on 

pressure (or volume). Consequently, the internal energy of an ideal gas 

depends on temperature only. 

  (1.28a) 

 

and  

  (1.28b) 

 

Now looking the temperature dependence of enthalpy! According to the 

definition of enthalpy (1.19) and the ideal gas law (1.27) 

  H = U + pV=U + nRT  

Since U depends also on T only, 

    

  (1.29a) 

0
V

U

T











0
p

U

T












0
V

H

T










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and 

   (1.29b) 

1.5. Relation between Cmp and Cmv (ideal gas) 

As it was already mentioned,   , 

because the gas expands when heated at constant pressure -pV work is done. 

According to equations .15, 1.16, 1.18 and 1.23 

   (1.30a) 

and 

   (1.30b) 

Since H=U+nRT 

   (1.31) 

 

 

Therefore for ideal gas 

   (1.32) 

 

1.6. Reversible changes of ideal gases (isobaric, isochor, 
isothermal) 

In case of gases reversible processes are good approximations for real 

(irreversible) processes (this approach is less applicable at high pressures).  

Fig. 1.12 shows the isobaric (perpendicular to the ordinate), isochoric 

(perpendicular to the abscissa) and isothermal (parabola) processes in a p-V 

diagram.   

0
p

H

T












mvmp CC 

dT

dU

n

1

dT

Q

n

1
C v

mv 


dT

dH

n

1

dT

Q

n

1
C p

pm 


  





  nR
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nRTU
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a. Isobaric process 

p-V work: 

   (133a) 

 pdV=nRdT 

Heat (change of enthalpy, see 1.23b)  

   (1.33b) 

Change of internal energy: 

   (1.33c) 

 

 

b. Isochor process 

p-V work: 

 W=0  (1.34a) 

Heat (change of internal energy)  

   (1.34b) 

 

Change of enthalpy 

   (1.34c) 

 

c. Isothermal process     U = 0     Q = -W        H = 0  

     
2

1
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V
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 
2

1

V

V

pdVW  

p-V work: 

 

 

   (1.35a) 

 

According to Boyle’s law       and 
2

1

1

2

p

p

V

V
  

         Therefore     (1.35b) 

 

Heat:      

     (1.35c) 
For ideal gases in any process: 

     (1.36a) 

Fig. 1.13 introduces a process in p-V diagram. Since the internal energy is 

a state function, we can carry out the process in two parts U is independent of 

the path.  

 

 Fig. 1.13 

Let us perform the process in two steps (position 1: V1, T1, p1)  

I.  isothermal (expansion to V2, T1=const.) 
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II. isochor (warming to T2 , V2=const.) 

U = UI + UII 

UI = 0 


2

1

T

T

mV.II dT·CnU  

Similarly, in an ideal gas for any process: 

   

     (1.36b) 

 

The summary of the equations for the changes of the U, H, W and Q 

functions for gases during different processes are listed in Table 1.1.  For 

adiabatic reversible processes see also subsection 1.7. 

 

Table 1.1.  Calculation of thermodynamic functions of gases 
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1.7. Adiabatic reversible changes of ideal gases 

Adiabatic processes are charcterized by volume changes under the 

following conditions: 

 Q=0  (1.37a) 

  U=W  (1.37b) 

Volume changes: 

Compression, the work done on the system increases the internal energy  

 T increases. 

Expansion, a part  of the  internal  energy  is used  up  for  doing work  

T decreases. 

In adiabatic processes all the three state functions (T, p and V) change. 

In a p - V diagram adiabats are steeper than isotherms, look at Fig. 1.14! 

 



26 Physical Chemistry 

www.interkonyv.hu © Grofcsik András, Billes Ferenc 

 

 

Derivation of adiabats 

a. Relation of V and T 

    

Reversibility is introduced here:   

 

 Ideal gas:   

 

 

 

Integrating between initial (1) and final (2) states (We neglect the T-

dependence of Cmv (and Cmp ): 

 

 

 

 

According to equation 1.32: 
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Devided by Cmv: 

 

The Poisson constant  , (1.37c) 

 

 

 

 and  

The final relation is 

   (1.37d) 

To find the relationship between p and V and between p and T we use the 

ideal  gas law (pV = nRT) and equation 1.37d.  

b. Relation of p and V 
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Finally: 

   (1.37e) 

 

c. Relation of p and T 
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At last we have:  

  (1.37f) 

 

1.8. The standard reaction enthalpy 

In a chemical reaction the molecular energies change during the breaking of 

old and forming of new chemical bonds.  

Example: in the reaction 2H2 + O2 = 2H2O the  H-H and O-O bonds 

break and  O-H bonds are formed. 

Exothermic reaction:   energy is liberated. 

Endothermic reaction: energy is needed to perform the reaction at 

constant temperature. 

Table 1.2 introduces the differences in adiabatic and isothermic 

exothermic and endothermic rections.  

 

Table 1.2. Comparison of the adiabatic and isothermal processes 

 

 

Heat of isothermal reaction 





 


1

22

1

11 pTpT

.constTp
1








1. Basic thermodynamics 29 

© Grofcsik András, Billes Ferenc www.interkonyv.hu  

Fig. 1.15 intriduces an isothermal reactor.  

  

 Fig. 1.15.  

Heat of reaction is the heat entering the reactor (or exiting from the 

reactor) if the amounts of substances expressed in the reaction equation react at 

constant temperature. The subscript r refers to „reaction”. 

 

At constant volume: rU, at constant pressure: rH is measured. 

For example:  2H2 + O2 = 2H2O 

 rU = 2Um(H2O) - 2Um(H2) - Um(O2) 

rH = 2Hm(H2O) - 2Hm(H2) - Hm(O2) 

The heat of reaction defined this way depends on T, p and the 

concentrations of the reactants and products. 

Standardization: the pressure and the concentrations are fixed but not the 

temperature.  

Standard heat of reaction: is the heat entering the reactor (or exiting 

from the reactor) if the amounts of substances expressed in the reaction 

equation react at constant temperature, and both the reactants and the products 

are pure substances at po pressure.  

Therefore standardization means: pure substances and po pressure (105 

Pa). Temperature is not fixed but most data are available at 25 oC. 
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The standard state will always be denoted by a superscript 0, i.e. 

standard pressure is denoted with p0, 105 Pa = 1 bar. 

The standard heat of reaction is the change of enthalpy according to the 

definition of enthalpy (H=Qp , equ. 1.23).  

The general model of a reaction: 

   AMA = BMB
      (1.38)   

where means stoichiometric coefficient, M: molecules, A-s stand for 

reactants, B-s stand for products. 

The standard heat of reaction (enthalpy of reaction): 

  (1.39) 

 
0
mH  is the standard molar enthalpy. 

Example:  2H2 + O2 = 2H2O 

Therefore  

We have to specify the reaction equation (very important, see the 

examples), the state of the participants and the temperature.  

Example reactions  

 Standard reaction                      Enthalpy at 25 oC 

   2H2(g) + O2 (g)= 2H2O(l) -571,6 kJ 

   H2(g) + 1/2O2 (g)= H2O(l) -285,8 kJ 

   H2(g) + 1/2O2 (g)= H2O(g) -241,9 kJ 

Compare the first and the second reaction, only the stoichiometric 

coefficients are different! The comparison of the second and third reaction 

shows the phase effect.  
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1.9. Measurement of heat of reaction 

Calorimeters are used for measuring heats of reaction. Bomb calorimeter (Fig. 

1.16) is suitable for measuring heat of combustion. The substance is burned in 

excess of oxygen under pressure.  

 

Fig. 1.16 

The heat of reaction can be determined from change of the temperature 

during the reaction (T): 

  q = C·T  (1.40) 

C is the heat capacity of the calorimeter (including everything inside the 

insulation, wall of the vessel, water, bomb, etc.). Determination of C is possible 

with known amount of electrical energy, which causes T´ temperature rise: 

  V·I·t = C·T´  (1.41) 

V is the power, I is the current and t is the time of heating. 

In a bomb calorimeter rU is measured because the volume is constant. 

The subscript r refers to „reaction”. 

   H = U +pV 

               rH = rU +r(pV)  (1.42) 

The pV product changes if the number of molecules of the gas phase 

components changes. In ideal gas approximation (pV=nRT) 
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  r(pV) = rngRT  (1.43) 

rng is the change of the stochiometric coefficients for gaseous components: 

 rng = ng(products) -  ng(reactants) (1.44) 
Example: 

      C6H5COOH(s) +7.5O2(g) =  7CO2(g) +3H2O(l) 

                      rng= 7 – 7.5 = -0.5 

The difference of rU and rH is usually small. 

1.10. Hess`s law 

As it was already defined, enthalpy is a state function. Its change depends on 

the initial and final states only. (It is independent of the intermediate states). 

This statement can be applied also for the reaction enthalpy. This theorem can 

be applied also for the reaction enthalpy. 

Example 

 The reaction enthalpy of the reaction   

C(graphite) + O2 = CO2      (1)  

 is equal to the sum of reaction enthalpies of the following two reactions: 

C(graphite) + 1/2O2 = CO    (2)  

CO +1/2 O2 = CO2              (3) 

We can write: 

rH(1) = rH(2) + rH(3) 

So if we know two of the three reaction enthalpies, the third one can be 

calculated. This is Hess’s law. He discovered it in 1840! 

The significance of Hess`s law is that reaction enthalpies, which are 

difficult to measure, can be determined by calculation.  

The reaction enthalpies can be calculated from heats of combustion or 

heats of formation. 

Calculation of heat of reaction from heats of combustions (subscript c) 
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Suppose we burn the reactants and then we perform a reverse combustion 

in order to make the products. 

 

  

The heat of reaction is obtained if we subtract the sum of the heats of 

combustion of the products from the sum of the heats of combustion of 

reactants: 
 

  rH = - r(cH)  (1.45) 
Example:      

  3C2H2 = C6H6 

            rH = 3cH(C2H2) - cH(C6H6) 

The heat of formation (enthalpy of formation) of a compound is the 

enthalpy change of the reaction, in which the compound is formed (from the 

most stable forms) of its elements. It is denoted by fH. 

Example:  

The heat of formation of SO3 is the heat of the following reaction 

                      S +3/2O2 = SO3 

It follows from the definition that the heat of formation of an element is 

zero (at standard temperature). 

 

Calculation of heat of reaction from heats of formations (subscript f) 

 Suppose we first decompose the reactants to their elements (reverse of 

the formation reaction), then we compose the products from the elements.  
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The heat of reaction is obtained if we subtract the sum of the heats of 

formation of the reactants from the sum of the heats of formation of the 

products.  
 

  rH =  r(fH)  (1.46) 

Example:       

 3C2H2 = C6H6 

 rH = fH(C6H6) - 3fH(C2H2) 

1.11 Standard enthalpies 

We do not try to determine the absolute values of enthalpies and internal 

energies (remember, they have not absolute values). 

The standard enthalpies of compounds and elements are determined by 

international convention.  

1. At 298,15 K (25 oC) and po = 105 Pa the enthalpies of the stable forms 

of the elements are taken zero: 

 For elements 

    0298ΔH0
m     (1.47) 

At temperatures different from 25 oC the enthalpy is not zero.  
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The standard molar enthalpy of an element which is solid at 25 oC 

but gaseous at  T can be calculated as follows: 

 

 

 

 

(1.48)

 

The standard enthalpy of a compound at 298.15 K (25 oC) is taken equal to 

its heat of formation since that of the elements is zero. 

 

     (1.49) 

 

At any other temperature the enthalpy differs from the heat of formation. 

In tables: standard molar enthalpies at 298 K and molar heat capacity 

(Cmp) functions are given. 

The simplest way is to calculate the enthalpy of reaction at T is to 

calculate the enthalpy of each component at T then take the difference. 

If there is no phase change from 298 K to T, 

 

     (1.50) 

 

In case of phase change(s) of elements use the formula (1.48). For compounds 

use a formula similar to (1.48). If the compound is solid at 25 oC but gaseous 

at T: 
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  (1.51) 

1.12. The first law for open systems, steady state systems 

In an open system (see Fig. 1.3) both material and energy exchange with the 

surroundings are allowed.  Here we deal with open systems since technological 

processes are usually performed in open systems. Fig. 1.17 introduces an open 

system. A piston compresses with pin prsssure the input Vin volume material 

(cross section Ain, length Iin) into the system. The Vout output (cross section 

Aout, length Iout) has pout pressure.     The substances entering and leaving the 

system carry energy. Their transport also needs energy. 

 

 
From the point of view of the system the input increases, the output 

decreases its energy. Therefore   

U = Q + W + Uin - Uout + pinVin - poutVout 

According to the definiton of the enthalpy (H=U+pV) 
 

U = Q + W + Hin - Hout  (1.52) 

 

This equation is the first law of thermodynamics for open systems. 
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In technical processes the inputs are the volume streams ( inV and outV ) 

substitute the volumes since the processes take place in time. Similarly, the 

time derivatives of the energy functions are used.    

A steady state system is an open system where the state functions change 

in space but do not change in time.  Energy does not come into being and does 

not disappear:   

 U = 0   (1.53a) 

Therefore we have the balance for enthalpy (see 1.52)  

 WQHH inout    (1.53b) 

The difference between the total exiting and total entering energies (the 

enthalpy balance) is equal to the heat and the work balance of the steady state 

system.  

If there is no chemical reaction, Hout - Hin is the enthalpy change of the 

substance going through the system: 

 H = Q + W  (1.54) 

We shall discuss three examples important in industry: 

1) Expansion of gases through throttle 

2) Adiabatic compressor 

3) Steady state chemical reaction 

 

1) Expansion of gases through throttle 

The purpose is to reduce the pressure of the gas. 
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The operation is continuous, the state 

functions of the gas do not change in 

time (steady state). 

Adiabatic process: Q = 0  (1.55a) 

No work done: W= 0        (1.55b) 

Therefore (see 1.54)  H=0   (1.56) 

 

2) Continuous adiabatic compressor 

 

 Q = 0     (adiabatic)    (1.57) 

Acciording to 1.52                         

 H = W   (1.58) 

W is the work of the compressor. 

 

3) Steady state reactor 

Here we can apply equation 1.54: 

   WQHnHn inm,inoutm,out)HH( inout  (1.59) 

 

1.13. The second law of thermodynamics 

I. law: conservation of energy. It does not say anything about the direction of 

processes. 

II. law: it gives information about the direction of processes in nature. 

We have also possibility of the thermodynamic definiton of the entropy. 

 

Imagine the following phenomenon: Heat transfers from the cold table to the 

hot water (Fig. 1.19): 
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This is not possible. The source of the necessary heat comes from some 

system of higher temperature than the temperature of the water in the glass.  

In spontaneous processes heat always goes from bodies of higher 

temperature to bodies of lower temperature. 

Processes in nature  dissipation of energy 

and 

Ordered system   disordered system. 

Now we try to define the function characterizes the disorder. We use the 

name entropy (S) for it.  Its most important property must be: in spontaneous 

processes (in isolated system) it always increases. 

For definition of entropy consider the first law (Equ. 1.7): 

                                    dU=  W + Q    

It is valid both for reversible and for irreversible processes. 

For a reversible process:   

   dU=  Wrev + Qrev       (1.60)  

For pV work:   

  Wrev = -p·dV   (1.61) 

 

We try to describe the heat similarly to other energy types like pV work. 

It is straightforward that the intensive parameter is the temperature. The 

corresponding extensive parameter is the entropy.  For reversible processes we 

define the elementary heat as 
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  Qrev = T·dS         (1.62)  

From this expression dS is  

    (1.63) 

 

(1.63) is the thermodynamic definition of entropy. Entropy is a state 

function. Its unit is J/K. The finite change of entropy is if the system goes from 

state “A” to state “B”  

 

    (1.64) 

 

In isothermal processes  

    

    (1.65) 

since the temperature is constant. 

 

Applying the expession of the elementary heat (1.62) and the expression 

of the elementary p-V work (1.61) the equation 1.60 (dU=W+Q) contains 

the entropy in the form 

 

  dU = -pdV + TdS  (1.66) 

This is the fundamental equation for the change of the internal energy 

in closed systems, the exact differential of U in closed systems. 

1.14. Change of entropy in closed systems 

We apply the equation of finite changes of entropy (1.64): 
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 For isobaric processes  
B

A

rev

T

Q
S

  

    (1.67) 

Therefore 

    (1.68) 

 

Equation 1.68 means, the entropy increases by heating (T2>T1) and 

decreases by cooling (T2<T1). 

For isochor  processes: 

    (1.69) 

Therefore 

    (1.70) 

 

Equation 1.70 means, that also for isochor processes the entropy increases 

by heating (T2>T1) and decreases by cooling (T2<T1). 

For isothermal processes 

The equation 1.65 is valid: 

   

 

     For isothermal reversible process in an ideal gas:  

since U = 0,   therefore Q = -W,  consequently  

   and   

So we have 

   (1.71) 

 

  Entropy increases at expansion, decreases at contraction. 

Changes of entropy in state changes (isothermal, isobaric processes): 
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m

fus
fus T

H
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   (1.72a) 

   

    (1.72b) 

 

Entropy increases at melting and evaporation, decreases at freezing and 

condensation.  

Change of S in closed systems 

S increases S decreases 

warming Cooling 

melting  Freezing 

evaporation Condensation 

expansion Compression 

mixing Separation 

dissolving Precipitation 

Disorder increases Disorder decreases 

1.15. The second law and entropy 

The examination of entropy changes in real (irreversible) processes has 

practical importance. The following examples will be discussed: 

1. Two bodies of different temperature are in 

contact. Heat goes from the body of 

higher temperature to the body of lower 

temperature. 

2. The temperatures in the two sub-systems 

are equal, but the pressures are initially 

different. 

b

vap
vap T

H
S


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1. The two bodies are in thermal contact but together they are isolated from 

the surroundings. Look at the model on Fig. 1.20!  

   

   Fig. 1.20 

Removing the wall between the two parts of the system: there is no change in 

the volumes, since V1=V2, therefore dV1=dV2. According to the first law of 

thermodynamics in our isolated system U1+U2=const., therefore   

  dU = dU1 + dU2 = 0    and   dU2 = -dU1. 

Applying the second law dU1 = T1dS1 and  dU2 = T2dS2. 

The overall entropy change: 

      

At last 

 

     (1.73) 

  

Discussion of equation 1.73: 

a) If body 2 is the warmer: 

          T2-T1 > 0 

 dU1 > 0    (because heat goes to body 1) 

 dS > 0 

b) If body 1 is the warmer: 

          T2-T1 < 0 

 dU1 < 0    (because heat goes from body 1) 

 dS > 0 
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Since both T2-T1 and dU1 have the same, the sign of dS has positive sign in 

both cases, i.e. the entropy increases:  

  dS > 0   (1.74) 

 Heat goes (spontaneously) from the higher to lower temperature place 

according to the experience. 

 

2. The two bodies have the same temperature but their pressure is different 

(the pressures are changeable with a piston T=const., p1 p2 Together they 

are isolated from the surroundings. Look at the model on Fig. 1.21!  

 

Fig. 1.21 

  For ideal gas 

dU2 = -dU1      (because of isolation) 

dV2 = -dV1      (the total volume is constant) 

Applying second law of thermodynamics: 

 dU1 = -p1dV1+TdS1     and      dU2 = -p2dV2+TdS2 

We have 

    

 

At last: 

 

    (1.75) 
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a) If p1 > p2 and dV1 > 0 (the gas of higher pressure expands) 

b) If p1 < p2 and dV1 < 0 

Since in both cases the values have the same sign in (1.75), the entropy 

increases: 

  dS > 0  (1.76) 

 

Summarizing: in general, if a macroscopic process takes place in an 

isolated system, the entropy increases. At equilibrium the entropy has a 

maximum value. 

According to the second law of thermodynamics in an isolated system 

  S  0  (1.77) 

If the system is not isolated, the entropy change of the surroundings 

must also be taken into account: 

  Ssystem + Ssurroundings  0 (1.78) 

Macroscopic processes are always accompanied by the 

increase of entropy. 

1.16. Statistical approach of entropy 

We stated that the entropy is measure of the disorder (see 1.63): 

 

 

According to this equation if we speak on entropy it is always in contact 

with heat. We shall discuss whether it is always so.  

Examine the expansion of an ideal gas into vacuum: 

  Q = 0   W = 0   U = 0 

We expect the increase of S.   For the calculation of entropy is this case let us 

show a model on Fig. 1.22! 

T

Q
dS rev


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  Fig. 1.22 

The wall is removed instantly. Therefore we try to expand the gas reversible. 

On Fig. 1.22 F is the acting force. 

 

  Fig. 1.23 

The final state is the same in both cases but the process is performed reversibly 

(W0, Q0). 

Equations for isothermal reversible expansion of an ideal gas: 

 

The entropy change based on these equations is for isothermal reversible 

expansion 

    (1.79) 

 

i. e. the entropy increases.  

 The process A  B (Fig. 1.22) goes spontaneously. The process B  A 

never goes spontaneously. For understanding this why it is so, we have to be 

familiar with some probability calculations, with the statistical interpretation 

of entropy.   

 First we discuss the probability of the presence of molecules in a vessel. 

1
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If only one molecule exists in the half of the vessel, the probability of its 

presence in the vessel is ½ (either in one half or in the other half). 

 If two molecules are present, the probability of their presence in the same 

half is 
2

2

1






  (possible distributions for molecules a and b are: ab 0, a b, b a, 0 

ba, altogether 4 possible distributions).  

 It we have N molecules, the number of the possible distributions is 2N, the 

probability is 
N

2

1






 . The probability decreases with increasing number of the 

molecules. 

 This result means that there exists beside the thermal disorder also the 

spatial (structural) disorder.  

 The thermodynamic definition of the entropy (1.63) 

 

 

 does not say about the spatial disorder and also about the absolute value of the 

entropy (see subsection 1.18). The statistical definition of the entropy helps us: 

  lnWkS    (1.80) 

Here k is the Boltzmann constant, the ratio of gas constant (R) to the Avogadro 

constant (NA) 

  J/K101.380656
N

R
k 23

A

   

 W is the thermodynamic probability: the number of possible 

configurations of the given state. We calculated similar probabilities for 

molecules in a vessel the (2N probabilities for N molecules).  

 Example 1  

Calculate the entropy of 1 mol CO at 0 K. There is no thermal entropy but 

there is structural disorder (Fig. 1.24).  

T

Q
dS rev


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 Fig. 1.24 

The dipole moment of the CO molecules is small. Each molecule can be 

oriented two ways in the crystal (Fig. 1.24). In 1 mol there are NA molecules. 

The thermodynamic probability is for NA molecules  

 

Example 2. 

 HCl has a large dipole moment. Each molecule is oriented one way.  

At  0 K  the thermodynamic probability is W = 1, lnW = 0, and therefore S = 0.  

In these examples we calculated the entropy arising from structural disorder. 

 Thermal disorder 

According to quantum theory the energies of particles are quantized.  

Example  

10 particles, three energy levels, 0< 1 <2, see Fig. 1.25. 

 

 

  Fig. 1.25 

 Left figure: at 0 K all molecules are on level 0 : W = 1,  thermal entropy 

is 0.  

 Right figure: If one molecule is on level 1, the number of possibilities is 

10, the thermal entropy is S= k  lnW 1.380656 ln101023  =3.17911023J/K. 

Comparing this result with those for 1 mol CO, this entropy is higher, this 

system is less ordered.  
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 In case of N molecules the number of possibilities is N. 

If 2 molecules are on level 1, the number of possibilities is N(N-1)/2.   

If T increases, more and more molecules get to the higher levels  

 W increases  S increases.  

Some definitions 

 Microstate: a possible distribution of particles in system under the energy 

levels.  

 Macrostate: sum of microstates with identical energy. 

Thermodynamic probability of a system containing N atoms its energy is 

distributed under r levels, i=0,1,2,..,r, the energy levels are 0,1,.,r, indices of 

N refer on the level: 

 

    (1.81) 

 

    (1.82) 

For the total energy   

    (1.83) 

 This model is analogous to model, where the number of possibilities of 

putting N balls in boxes so that we put N1 in the first box, N2 in the second one, 

and so on. 

 

 Example:  

 N0 = 5, N1 = 3, N2 = 2, N = 10.  This is a microstate (see Fig. 1.26). 

   

  Fig. 1.26 
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 The statistical weight of the microstate (configuration) therefore it 

characterizes the measure of the disorder, (remember Eq. 1.80: S=k.lnW) In 

case of our example: 

  

1.17. T-S diagram  

The p-V diagram is suitable for illustrating the changes of state of gases.  In 

practice we need H or S values. For pure substances we use tables or 

diagrams. For describing the state it is enough to give two (properly chosen) 

intensive state parameters. 

 In technical diagrams specific units are applied. The state functions in 

specific values of these functions are labeled by the corresponding low case 

letters, like h or s. The applied technical diagrams are t-s, h-p and h-s ones. 

Enthalpy is used in kJ/kg units, entropy in kJ/kgK, temperature in oC, pressure 

in bar, volume m3/kg units.    

  

 Our example is the very important water T-Sm diagram (Fig. 1.27), where 

the phases and the binary phase area are well observable.     

Fig. 1.27 

 

I: solid phase 

II: liquid phase 

III: gas phase 

IV: fluid state 

V: solid-liquid 

VI: solid-vapor 

VII: liquid-vapor 

 

2520
!2!3!5

!10
W 


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DB: solid (in eq. with vapor) 

BAF: triple point 

BE: solid (in eq. with liquid) 

AJ:liquid (in eq. with solid) 

AC: liquid (in eq: with vapor) 

CF: vapor (in eq. with liquid) 

FH: vapor (in eq. with solid) 

C: critical point 

KCG: border of fluid state 

                                           Sm: molar entropy (Jmol-1K-1) 

   

 The next figure is a part of the t-s diagram of water. The area below the 

bell curve is the area where liquid and vapor are in equilibrium. For the 

determination of the ratio of phases in mixed area use the: lever rule (see Fig. 

1.29 and text below it). 

 The isochors are labeled with v, the isobars with p, the isenthalpic curves 

with h (they characterizes the adiabatic throttles).   
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Calculation of work:  W = U - Q = H -(pV) –Q  (1.8 4) 

In steady state process:  W = H - Q   (1.85) 

 For the application of the level rule for the determination of the ratio of 

phases in the mixed are look at Fig. 1.29.   

 

Fig. 1.29 

A

B

CB

AC

m

m

ss

ss



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    inverse proportion 

How to apply the level rule? 

sA: specific entropy of liquid  

sB: specific entropy of vapor  

m: mass 

 

mA(sC-sA) = mB(sB-sC) 

 BCmACm BA 
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1.18. The third law of thermodynamics 

 The third law is in connection with the absolute zero (0K) temperature. If 

we wish to arrive low temperatures special experiments are necessary 

 Joule-Thomson effect (see subsection 2.18): expanding of gases 

through a throtle.  Usually this is used for cooling down. The following data 

demonstrate the history of cooling down. 

 List of liquefied gases in the 19th century:  

 oxygen: 90K 

 nitrogen 77K 

 hydrogen 20K 

in 1908 

 helium  4K 

 For reaching temperatures below 4K the adiabatic demagnetization is 

applied.  

 Paramagnetic materials: In a magnetic field the particles act as little 

magnets, and are oriented in the direction of the field   ordered magnetic 

dipoles.  

 First step of cooling: the external magnetic field (as magnetic induction, 

B) orders the dipoles. This is an isothermal step, the entropy decreases. 

 Second step of cooling: the magnetic field is switched off, the alignment 

of little magnets disappears. Adiabatic step, therefore the entropy does not 

change, the temperature decreases. 

 See the method of adiabatic demagnetization on T-S diagram (Fig. 1.30)! 

One can observe the isothermal 1st step and the isentropic 2nd step. 
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Fig. 1.30 

The experiment: 

1. The cell containing the paramagnetic material (e.g. gadolinium 

sulfate) is cooled down (by liquid helium) to about 1.5 K.  Magnetic 

field is switched to the system. 

2. Helium is pumped out, the magnetic field is slowly reduced to zero. 

The isothermal and adiabatic steps are repeated several times (see Fig. 1.30).  

 

 Here you can see some date introducing the development in approaching 

of   the absolute zero: 
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1933 0.25K 

1950 0.0014K 

1995 8104  K 

  1999 K101 10  

 The conclusion of the experiment is one formulation of the third law of 

thermodynamics:  it is impossible in any procedure to reduce the 

temperature of any system to the absolute zero in a finite number of 

operations.  

 Approaching the absolute zero: 

If we approach 0 K, S approaches 0. i.e. in isothermal processes (e.g. 

reactions), if we approach 0 K, 0S  .  

 At 0 K thermal entropy is 0 (should be zero).  The entropy arising from 

structural disorder may be greater than 0 at 0K.  

Examples: 

 defects in crystals (CO crystal, Fig. 1.24, 

 mixture of isotopes (e.g. Cl2) .  

 Another formulation of the third law of thermodynamics: the zero point 

entropy of pure, perfect crystals is 0. 

 As consequence, in contrast to H and U, S has an absolute value. 

 Therefore we use the standard molar entropy of a substance, which is in 

gaseous state at temperature T 

  

     (1.86) 
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2. THERMODYNAMICS OF SYSTEMS 

2.1 The Helmholtz free energy (A) 

In a not isolated system the entropy increases, considering both the system and 

ist environment (see 1.78): 

  Ssystem +Ssurroundings  0  (1.78) 

 The addition of the surroundings is important. For example: 

 During the adsorption of a vapor on an adsorbent, entropy decrease, 

however, the vapor density decreases, its entropy increases, and consequently, 

the entropy of the full system increases. 

 We define two further thermodynamic functions which are suitable for 

describing processes in closed but not isolated systems: 

At constant T and V: Helmholtz free energy (A) 

At constant T and p:  Gibbs free energy (G). 

 Constant T and V the only interaction with the surroundings is the Q heat 

exchange. See Fig. 2.1, there is a closed flask in which a slow process is taking 

place. The system (1) is taken into a heat bath (2). 

 

 

Fig. 2.1 

 According to 1.78 we have 

S1 +S2  0 
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 For the bath 
T

Q
ΔS rev

2   since it losses heat. Substituting it 

 

 Rerranging 

  0STQ 1rev    

At constant volume: Qrev = U1.  Leaving out the subscript 1:  

    (2.1) 

 So we can define the Helmholtz free energy function which decreases in 

isothermal-isochor processes and has a minimum at equilibrium, The 

Helmholtz 
   

  A = U – TS  (2.2) 

In closed systems the direction of isothermal-isochor processes and the 

equilibrium can be expressed as follows: 

  0ΔA VT,   (W=0)  (2.3a) 

  dAT,V  0  (W=0)  (2.3b) 

 According to the 2.3 equations in a closed system of constant temperature 

and volume (if no work is done) the Helmholtz free energy decreases in a 

spontaneous process and has a minimum at equilibrium. 

The differential expression of Helmholtz free energy is using 2.2 

dA = dU - TdS - SdT   since      dU = - pdV + TdS 

Therefore 

  dA = - pdV – SdT  (2.4) 

 The change of Helmholtz free energy in an isothermal reversible process 

is equal to the work.  

 We can prove this in the statement following way.  At constant 

temperature   

  dAT = dU – TdS  

0
T

Q
ΔS rev

1 

0ΔSTΔU 
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Since  

  TdS = Qrev  and   dU = Wrev + Qrev  

We have 

  dAT = Wrev   (2.5a) 

and  AT = Wrev  (2.5b) 

 This is why A is sometimes called the work function (Arbeit = work in 

German). It is called also „free” energy. Namely, in the expression of internal 

energy  

  U = A + TS 

TS cannot converted to work  ”bound” energy in contrary to A, the „free” work 

function. 

2.2 Gibbs free energy (G) 

This function describes systems, which are in thermal and mechanical 

interaction with the surroundings (T1 = T2, p1 = p2).  Fig. 2.1 is a closed flask in 

which a slow process is taking place. The only interaction with the 

surroundings is the heat (Q) exchange.  

 

Fig. 2.2 

 For the entropy one can write 

S1 +S2  0 
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T

Q
S rev

2   

The negative sign indicates the loss of the surroundings. Therefore the sum of 

the entropy change is 

   T0
T

Q
ΔS rev

1   

rearranged                                            

 

At constant pressure no other work is done,  

  Qrev = H1.  

 Leave out the subscript 1:   

  0ΔSTΔH    (2.6) 

 So we can define a function which decreases in isobar-isochor processes 

and has a minimum at equilibrium, the Gibbs free energy function: 

  G = H – TS  (2.7) 

In closed systems the direction of isobar-isochor processes and the 

equilibrium can be expressed as follows: 

AT,V  0    (no other than pVwork done)   (2.8a)         

dAT,V  0    (no other than pV work done)  (2.8b) 

 In a closed system of constant temperature and pressure, if no other than 

pV work is done, the Gibbs free energy decreases in a spontaneous process, 

and it has a minimum at equilibrium. 

 The relationship between G and A is, as follows 

  G = H - TS = U + pV - TS = A + pV (2.9) 

In differential form: 

  dG = dU +pdV +Vdp- TdS - SdT  (2.10) 

If there is pV work only: 
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  dG = Vdp – SdT  (2.11) 

 At constant temperature and pressure (in a reversible process), if there is 

no other than pV work: 

  dGp,T = 0  (2.12) 

 If there is other (non-pV) work: 

  dU = Wother-pdV +TdS 

  dG = dU +pdV +Vdp- TdS - SdT  

As results we have  

  dGp,T = Wother  (2.13a) 

  Gp,T = Wother  (2.13b) 

 So we can say, in an isothermal, isobaric reversible process the change of 

Gibbs free energy is equal to the non-pV work. 

 We introduce the idea of the chemical potential. The chemical potential 

of a pure substance (J/mol) is 

     (2.14) 

 

Since the chemical potential is some of the central ideas of the chemical 

thermodynamics, we shall later deal with it in detail (subsection 2.9). 

2.3 The first and second derivatives of the 
thermodynamic functions 

Useful relationships can be obtained from the four thermodynamic functions 

(U, H, A, G) by partial derivation. The relations between the second derivatives 

are called Maxwell relations.  The result is independent of the order of 

derivation, for example: 
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  VS
U

SV
U 22








 (2.15) 

 Internal energy (U) 

   dU = -pdV + TdS  (2.16a) 

The first derivatives: 

 

   And  (2.16b) 

 

The second derivatives, based on (2.16b): 

 

     (2.16c) 

 

 Enthalpy (H) 

 H = U + pV   (1.19)    and    dH = dU + pdV + Vdp  (1.20a) 

Substituting (2.16a) for dU 

  dH = Vdp + TdS  (2.17a) 

The first derivatives: 

   

  and        (2.17b) 

 

The second derivatives, based on (2.17b) 

 

    (2.17c) 

 

 Helmholtz free energy function (A) 

  dA = -pdV – SdT  (2.18a) 

The first derivatives: 
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  p
V

A

T











 and S
T

A

V









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 (2.18b) 

The second derivatives, based on (2.18b): 

     

Consequently     
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  (2.18c) 

 Gibbs free energy function (G) 

   dG = Vdp – SdT  (2.19a) 

The first derivatives  

  V
p

G

T












 and S
T

G

p
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








 (2.19b) 

The second derivatives, based on (2.19b) 

    

 So 

    
pT
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
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  (2.19c) 

 Applying the (2.18c) and (2.19c) equations, the S-V and the S-p functions  

can be determined from measurable quantities, namely from p-T and V-T 

functions, respectively. 

 The pressure dependence of enthalpy at constant temperature can be 

expressed as 

    H = G + TS              

 Derivating with respect to T    
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Considering (2.19) we have 

    

      (2.20) 

  

 Using this formula we can prove that the enthalpy of an ideal gas is 

independent of pressure (at constant temperature). 

 Thermodynamic functions of state for closed system, pV work 

only.  

Internal energy: U = W + Q U =  QV (2.21a) 

Enthalpy:           H = U + pV H =  Qp (2.21b) 

Helmholtz function:   A = U – TS AT,V   0 (2.21c) 

Gibbs function:       G = H – TS GT,p   0 (2.21d) 

 According to the equations (2.21) 

  U = A + TS;  G = A + pV; H = U + pV= A+TS+pV 

Therefore A is the smallest and H is the largest, see equation 2.22 and the 

figure 2.3: 

   A < G < U < H  (2.22) 

     

    

    Fig. 2.3 
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2.4. p-T phase diagram 

 The p-T phase diagram of a pure compound is presented in Fig. 2.4. 

 

 

 A is the triple point is the only state, where all the three phases, solid, 

liquid and gas are together present and in equilibrium at well defined pressure 

and temperature.  C is the critical point, at higher presures and temperatures 

neither liquids nor gases present, the compound is in this case in the very 

special fluid state.  

 OA is the sublimation curve, along this curve both solid and gas states 

are present and are  in equilibrium.  

 AB is the melting curve, along this curve both solid and liquid states are 

present and are  in equilibrium.  

 AO is the vaporization curve, along this curve both liquid and gas states 

are present and are  in equilibrium.  
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 Looking at the figure one can find that all these curves have positive 

slopes. One important exception exists: the melting curve of water has positive 

slope. 

  

 The equlibria of two phases along the mentioned curves mean that p and 

T are not independent in these cases.  

 Some examples: 

 The triple point of water is at 6.11 mbar and 273.16K. 

 The triple point of carbon dioxide is at 5.11 bar and 216.8K. 

  

 C: critical point: The difference between liquid and vapor phase 

diminishes. At greater temperatures and pressures only one phase exists: fluid 

(supercritical) state. 

 Let us heat a liquid-vapor system in a vessel of an appropriate volume 

(Fig. 2.5) We are going from left to right on the vapor pressure curve (Fig. 2.4). 

It can be observed: The density of the liquid decreases, the density of the vapor 

increases. 

 

Fig.2.5 

 Other physical properties (e.g. refractive index) also approach each other. 

Finally we reach to a point where the difference between the two phases 

diminishes aproaching the critical point. 

 Critical temperature is thee temperature, above which the gas cannot be 

liquefied. 
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 Critical pressure, what is necessary to liquefy the gas at the critical 

temperature yet. 

 Critical volume, what 1 mole gas occupies at the critical pressure and 

temperature. 

 The critical data are characteristic of the substance. 

Some examples for the critical data: 

 Water:    TC = 647.4 K,  pC = 221.2 bar 

 CO2:     TC = 304.2 K,  pC = 73.9 bar 

 TC  values below room temperature are:  O2, N2, CO, CH4 

 TC values above room temperature are:  CO2, NH3, Cl2, C3H8. These 

gases can be liquefied at room temperature.  

2.5 Thermodynamic interpretation of the  p-T diagram 
(the Clapeyron equation) 

 

 At given T and p the condition of equilibrium is the minimum of G. 

 Let have one component, two phases (a and b) in a flask (Fig. 2.6). 

 

 

Fig. 2.6 

 

 At equilibrium the molar Gibbs free energy of the component must be 

equal in the two phases. Otherwise there is a flow of the substance from the 

phase where Gm=G/n is higher to the phase where Gm is lower. 

 Three cases are possible: 

  

a b 
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 1. b
m

a
m GG  : substance goes from a to b  

 2. b
m

a
m GG   : substance goes from b to a  

 3. 
b
m

a
m GG   : equilibrium  

 In cases 1 and 2: macroscopic process takes place, in case 3:no 

macroscopic process take place. 

 On the molecular level there are changes in thermodynamic equilibrium. 

The rates of the processes in opposite direction are the same (e.g. in liquid 

vapor equilibrium the macroscopic rates of evaporation and of condensation 

are equal). However, the equilibrium is dynamic (and not static at the 

molecular level), fluctuation occurs.    

 The Clapeyron equation describes the phase equilibrium. We shall derive 

it using the previous considerations.  

 In equilibrium   

     (2.23) 

If we change T slightly, p and G  also change. The condition of maintaining 

equilibrium: 

   

Since 

     (2.19a) 

 

 

rearranging 

      

Introducing 
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at last we have the Clapeyron equation, the equation of one component phase 

equilibrium.  

 

     (2.24) 

 

Nothing was neglected in this derivation. The Clapeyron equation is valid for 

one component liquid-vapor, liquid-liquid, solid-liquid, solid-vapor and solid-

solid equilibria. 

 We can obtain the curves of the p-T diagram by integration of the 

Clapeyron equation. For exact integration Hm and Vm have to be known as 

functions of temperature.  

 First approach: the slopes of the phase-phase equilibrium curves in Fig. 

2.4 dp/dT. 

 Some important notes: 

 1. The melting point curve is the steepest. Reason: Vm is small and is in 

the denominator. 

 2. Near the triple point the sublimation curve is steeper than the boiling 

point curve. Reason:     

    Hm,subl = Hm,fus +  Hm,evap  (2.25) 

Vm (sublimation) is roughly equal to Vm,vapor. 

 3. In most cases the melting point curve has a positive slope because Vm 

is positive (the substance expands at melting). There exists an important 

exception, the water: Vm < 0, (see Fig. 2.7), since water contracts until 4 oC. 

The attractive forces are stronger between 0 oC and 4 oC than the effect of the 

increasing of the molecular velocities with the temperature. 

m
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   The slope of AB curve is negative. The melting point decreases as the 

pressure increases (operation of ice-skate).   

2.6. One component liquid-vapor equilibria, the 
Clapeyron Clausius equation 

According to the experience the vapor pressure of a pure liquid depends on 

temperature only (Fig. 2.8). The function is exponential. 

 

 If the logarithm of the vapor pressure is plotted against the reciprocal of 

temperature, we obtain a straight line (Fig. 2.9). 

     (2.26) 
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A and B are constants, tan=-A.  Since the variable of the lg function must be 

dimensionless, we use for the pressure  

 

This notation does not change the value of the pressure. However, in the 

practive the p notation is used in the same sense.  

 The Clapeyron Clausius equation is suitable for the description of the 

liquid-vapor equlibrium. We start with the Clapeyron equation (2.24).     

 

     (2.24) 

 

 Some neglections are used before the integration of this equation: 

 1. step: Neglection of the molar volume of the liquid (compared to vapor),  

 2. step: The vapor is regarded as ideal gas: 

   

  

  3.step: Hm will be and regarded independent of temperature and 

denoted by  

      

so     (2.27) 
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 The expression dp/p = dlnp, because dlnp/dp = 1/p (derivative of ln p), 

similarly, dT/T2 = -d(1/T),  because d(1/T)/dT = -1/T2. Therefore 

 

 

 Problem 1. Determination of  from ln{p}-1/T diagram. Droe the slope 

of the experimental curve (blue), Fig. 2.10! 

 

 

Although  

 

The practical unit is often kPa and 

     (2.28) 

     

Problem 2, integration. Like already mentioned,  is taken independent of T. 

Empirical formula 

     (2.29) 

with  

   

(2.29) is the Clapeyron Clausius equation with two contants. 

Problem 3. Integration between limits: 
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In more paractical form: 

     (2.30) 

 It is suitable for calculation of pressure p2 at T2, if p1 and T1 is known. If 

you know the four mentioned parameters,  is calculable.  

 Beside the Clapeyron Clausius equation also other equations are applied 

but they use more then two constants. One of them is the Antoine equation 

with three constants: 

     

Here a temperature correction is introduced for straitening the curve on Fig. 

2.10.  

2.7 Standard Gibbs free energies 

The Gibbs free energies are significant in calculation of chemical equilibria. 

Therefore we deal and shall deal with them later.  

 The standard states are of the Gibbs free energy are fixed (similarly to 

enthalpies, subsection 1.8) by international conventions: 

Gas: ideal gas at p0 (105 Pa) pressure 

Liquid: pure liquid at p0 pressure 

Solid: the most stable crystal state at p0 pressure 

The 0 as superscript refer to standard pressure. 

 In the definition of Gibbs free energy both enthalpy and entropy take 

part: G = H – TS (2.7). Remember: The zero level of entropy is fixed by the 

third law of thermodynamics: the entropy of pure crystalline substance is zero 
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at zero K (subsection 1.18). The zero level of enthalpy is not fixed in the same 

way. 

  By convention: At 298.15 K (25 oC) and po = 105 Pa pressure the 

enthalpy of the stable modification of an element is taken zero, that of a 

compound is taken equal to the enthalpy of formation. 

  A similar convention for G does not exist but it is calculated from the 

standards for H and S. The standard molar Gibbs free energy is 

  
0
mm

0
m TSHG     (2.32) 

 So the standard molar Gibbs free energy of the elements at 298 K is 

not zero. 

 Standard Gibbs free energy of formation: the Gibbs free energy change 

of the reaction, in which the compound is formed from its elements so that all 

the reactants are in their standard state. It is denoted by fG
0. 

 Standard Gibbs free energy of reaction, rG
0, can be calculated from the 

Standard Gibbs free energies of reactants and products:   

 

      (2.33) 

or from standard Gibbs free energies of formation:  this is valid for at any  

temperature  

      0
fr

0
r GΔΔGΔ   (2.34) 

Example 

Reaction:      2SO2 +O2 = 2SO3 

Rection Gibbs free energy:  rG
0 = 2 0

mG (SO3) - 2
0
mG (SO2)- 

0
mG (O2) 

 Or   rG
0  = 2 0

f GΔ (SO3) - 2
0

f GΔ (SO2)- 
0

f GΔ (O2) 

  0OGΔ 2
0

f   since O2 is an element and threfore its standard free energy of 

formation is zero. 

0
mAA

0
mBB

0
r GΣνGΣνGΔ 
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 The standard Gibbs free energies of compounds and elements are given in 

tables (as functions of temperature). An applied function is 

    

       (2.35a) 

 

containing the standard molar enthalpy at 298.15K and the temperature 

dependence of the standard molar Gibbs free energy.    

 Another applied function is 

    
T

HG 0
m,0

0
Tm, 

  (2.35b) 

containing the standard molar enthalpy at 0 K (different from the usual 

convention), the enthalpy of a compound is taken equal to the enthalpy of 

formation at 0 K.  

 Advantage: these quantities only slightly depend on temperature. It is 

easier to interpolate. 

 

2.8 Gibbs free energy of an ideal gas 

 The pressure dependence of the molar Gibbs free energy is studied here 

(at constant temperature). 

 The complete differential of the Gibbs free energy has the form (for 1 mol 

substance):  

    dGm = Vmdp - SmdT (2.36) 

 At constant temperature the second term can be neglected, Vm can be 

expressed from the ideal gas law: 

     

So integrating from p0 to p 
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0
00

mm p

p
RT)ppRT(GG lnlnln   

     

Rearranging 

      (2.37) 

 

Expressing (2.37) with chemical potentials 

    0
0

p

p
RTμμ ln  (2.38) 

Consequence: The Gibbs free energy (chemical potential, (2.14)) increases 

with increasing pressure (the entropy decreases). 

2.9 The chemical potential 

The idea of chemical potential was introduced by Gibbs in 1875. Like it was 

already used  ((2.14),( 2.38)) it is denoted by  [Joule/mol], The word 

„potential” refers to physical analogies: masses fall from higher to lower 

gravitational potential, charges move from higher to lower electric potential. 

 The chemical substance moves from place where the chemical potential is 

higher to a place where it is lower (e. g. by diffusion). 

 Problem: What is the advance of the chemical potential? Why is 

concentration not sufficient to describe the direction of transport of 

substances?       

 Example 1. Two aqueous solutions of NaCl of different concentrations 

are layered on each other (Fig. 2.11):   

  cNaCl(1) > cNaCl(2)  and    NaCl(1) > NaCl(2)  

0
0
mm p

p
RTGG ln
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Fig. 2.11 

 The salt diffuses from the place where the concentration (and the 

chemical potential) is higher to the place where the concentration (and the 

chemical potential) is lower.  

 Consequence: To explain this process we do not needthe chemical 

potencial. 

 Example 2. 2. There are two different solvents, water and CCl4 . The 

solute is iodine. The concentration of iodine is higher in CCl4 than in water 

(Fig. 2.12). 

  ciodine(1) > ciodine(2)  

 However, one find that the iodine move in the direction of layer 2, in 

CCl4 (extraction). So it must be valid: 

  iodine(1) < iodine(2)  

 

    Fig. 2.12 



2. Thermodynamics of systems 77 

© Grofcsik András, Billes Ferenc www.interkonyv.hu  

Consequence: Here we need the chemical potential. The chemical potential is 

very important when we study solutions. The chemical potential considers 

the effect of chemical environment. 

 So far we have mainly dealt with closed systems where the amount of 

substance does not change. The complete differentials of the four 

thermodynamic functions for closed systems if there is only pV work  (no other 

work) are described as follows: 

dG = Vdp - SdT         G = G(T,p) (2.39a) 

dA = -pdV - SdT         A = A(T,V) (2.39b) 

dH = Vdp + TdS         H = H(p,S) (2.39c) 

dU = -pdV + TdS        U = U(V,S) (2.39d) 

 

 If the amount of substance  also changes, open systems, the functions of 

state  depend on ni-s, too: 

   G = G(T,p,n1,n2,...) 

   A = A(T,V,n1,n2,...) 

   H = H(p,S,n1,n2,...) 

   U = U(V,S,n1,n2,...) 

 The complete differentials include the amounts of substances, too. For 

example for the Gibbs function 

    

      (2.40) 

 

where  ni = n1 ,n2, n3, etc. and  j  i. 

 This differential has as many terms as the number of components. For a 

two-component system 

 

      (2.41) 
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 The derivatives of (2.41) with respect to the amounts of a substance are called 

chemical potentials of the substance in the solution. 

 The chemical potential of the component i is 

 2.42ij
n

G
μ

jnp,T,i
i 











  

 The chemical potential of a component is equal to the change of the 

Gibbs free energy of the system if one mol component is added to infinite 

amount of substance. It is Infinite in the sense that the composition does not 

change. 

 The complete differential of G in an open system is like (2.41) 

  

In short, considering (2.19a) and (2.19b) 

      (2.43) 

 

At constant temperature and pressure: 

 For many components   

      (2.44a) 

 For two components: 

     

 Integrating at constant temperature and pressure (see Fig. 2.13, 

„integration” with increasing the amount of the mixture): 

     

and with integration of (2.44a) 
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      (2.44b)

           

For two components 

        

 The Gibbs free energy of the system can be calculated from the chemical 

potentials at constant p and T. 

 Very important: 

    G  Gmi·ni (2.45) 

(2.45) means: in solutions S, A and G are not additive from the 

corresponding values of molar values of the pure components.  

The solvent effect leads to  

 

Detailed:  

      (2.46) 

 

 This equation (2.46) means the molar Gibbs free energy of component i in 

the solution is not equal to its partial molar Gibbs free energy (chemical 

potential) in the same solution. 

 Relation between and Helmholtz free energy: 

  A = G -pV    and         dA = dG -pdV –Vdp 

Substituting (2.43) 

      (2.47) 

 Pay attention on the extension of the interpetation of the idea chemical 

potential: 

At constant volume and temperature: 

      (2.48) 

 

Similarly, it can be proved like (2.42) for G 
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      (2.49a) 

 

 

      (2.49b) 

 

      (2.49c) 

 

The chemical potential of one component (pure) substances can be expressed 

since (see also 2.42)  

    G = n·Gm (2.5 0) 

We have  

      (2.51) 

 

i.e. the chemical potential of a pure substance is equal to the molar Gibbs free 

energy. If our work material is ideal gas, the chemical potential can calculated 

as 

      (2.52a) 

or more simple 

 

      (2.52b) 

since  

      (2.53a)

  

and      (2.53b) 

 The standard chemical potential = standard molar Gibbs free energy, it 

is the Gibbs free energy of 1 mol ideal gas at p0 pressure and at the given 

temperature, see (2.53b). 
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2.10. Conditions for phase equilibria 

Consider a multicomponent system with several phases! 

 Our example is the butanol (Bu)-water (W) vapor-liquid system (see Fig. 

2.14). There exist two liquid phases since the two liquids mix only limited, in 

one of the liquid phases the butanol is the majority, in the other one the water. 

Therefore C = 2 and P  = 3 (P: number of phases, C: number of components). 

Conclusion: the limited mikxing increases the number of phases. 

 

 

 In equilibrium the pressure and temperature are equal in all the phases.  

    
i

iip.T 1,2,...Ci0dnμdG  (2.54a) 

Extending (2.54a) for C components and P phases  

 

      (2.54b) 

 Suppose that dni mol of component i goes from phase j to phase k) at 

constant pressure and temperature (the amounts of all the other components 

remain unchanged): 

 

therefore 

 

so 

0dnμdG
P

1j

C

1i

j
i

j
iTp,  

 

i
j

ii
k
i dndndndn 

j
i

j
i

k
i

k
i dndndG  

j
ii

k
ii dndndG  



82 Physical Chemistry 

www.interkonyv.hu © Grofcsik András, Billes Ferenc 

 

Now we have the result 

      (2.55)

 Consequences of (2.55): 

1. In equilibrium dG = 0, dni  0, therefore 

      (2.56a) 

The chemical potential of component i is equal in the two selected phases. 

This equation is valid for any phases (P phases): 

 

      (2.56b) 

 In equilibrium the chemical potential of a component is equal in all the 

phases which are in contact (see also 2.23). 

2. No equilibrium. Spontaneous process:  

                             dGp,T < 0                                 (2.57) 

 In a spontaneous process any component goes from the phase where its 

chemical potential is larger to the phase where its chemical potential is 

smaller: 

 

Substance i goes from phase j to phase k, since its chemical potential in phase j 

is higher than in phase k. 

2.11 The phase rule 

The phase rule determines the number of parameters that can be independently 

varied in equilibrium systems. This number depends on the number of phases 

and the number of components. 

 Phase: a state of matter that is uniform throughout, not only in chemical 

composition but also in physical state. 
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 The number of Components: the minimum number of independent 

species necessary to define the composition of all the phases present in the 

system. 

 For example, the NaCl - water system has two components. 

The number of the Na+ and the Cl- ions is not independent. Because of 

electroneutrality their numbers must be equal. 

 The CaCO3, CaO and CO2 system has two components, too. 

Three chemical substances but one reaction between them: 

                          CaCO3 = CaO + CO2 

This is an equilibrium! 

 It was mentioned already the dependence of the phases at the mixing of 

the components (mixed phases, see Fig. 2.14). 

 The number of degrees of Freedom (variance): is the number of intensive 

variables that can be changed independently without changing the number of 

phases. 

 The phase rule is  

    F = C - P + 2 (2.58) 

Derivation of (2.58): pressure + temperature: 2 degrees, the rest (C-P) is the 

number of concentrations varied independently (see the mentioned examples of 

their dependence).  

 In case of P phases and C components C·P concentration data exist but 

not all of them are independent: 
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 In each phase C-1 concentrations are sufficient. For example the vapor-

liquid methane-ethane-propane gas mixture. If we know the mole fraction of 

the first two, the third one can be calculated:             

    ypr = 1- (ym +ye)            (y: mole fraction) 

In case of  

    P(C-1) (2.59) 

concentrations are sufficient.    

 In equilibrium the concentrations of a component in different phases (A, 

B, C, …) are not independent (distribution in equilibrium, see also equation 

2.56b): 

...μμμ...μμμ C
2

B
2

A
2

C
1

B
1

A
1   

This equation means P-1 relationships for each component. For C components 

C(P-1) has to be subtracted from (2.59): 

   F=2+P(C-1)-C(P-1)=C-P+2 (2.60) 

or     F+P=C+2 

 For one component systems (Fig. 2.15) the degrees of freedom are 

      

P F 

1 2 (T and p 

2 1 (T or p) 

3 0 (triple point) 
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Two component systems  

  With increasing of the number of components F increases, in this case the 

concentration as the mole fraction of one component (x) is added:  

P F 

1 3 (T, p and x) 

 2 2 (two of them) 

3 1 (one of them) 

 

 For plotting in two dimensions a vapor-liquid equilibrium of a two 

component system one parameter has to be kept constant (p or T), Fig. 2.16 

(the temperature in oC is often labeled with ’t’). 

Fig. 2.16 
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2.12 Equation of state for real gases 

Ideal gas, see subsection 1.4: 

1. No interaction between molecules (the potential energy of interaction is 0). 

2. The molecules are mass points. 

 We study in this subsection the real gas equations:  

1. the van der Waals and  

2. the virial equations of state. 

 The potential energy between two molecules as the function of distance r 

is plotted in Fig. 2.17 (see also the similar figure 1.11). 

 

 1. The van der Waals equation of state 

 Van der Waals modified the ideal gas law with two constants in order to 

include the molecules’ own sizes and the (attractive) interactions.  

 According to the ideal gas law is  

     
mV

RT
p    

 Correction of volume: because of the size of the molecules the volume 

available for motion is smaller: negative correction of  Vm, ’b’: 
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     bV

RT
p

m 
  (2.61a) 

 Correction of pressure: Because of attractive forces molecule pairs are 

formed temporarily (decreasing the pressure). If it is an equilibrium reaction: 

 

   2MMM  →    22 MKM   (2.61b) 

 The decrease of pressure is proportional to the concentration. The 

concentration is the reciprocal of the molar volume, correction with ’a’. 

Summarizing the 2.61 equations: 

     

 

 

Rearranging this equation we have the van der Waals equation of state: 

 
      (2.62) 

 

 Other forms of the van der Waals equation: 

   

      (2.63a) 

For n moles     

     

      (2.63b) 

 

 The van der Waals equation is cubic for V. 

That means, in a certain range three different volumes belong to one pressure.  

These parts of the isotherms have no physical reality, see Fig. 2.18. 
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 Advantage of the van der Waals equation: it has two constants only. It is 

simple in comparison of a lot of other types of real gas equations. 

 Disadvantage: it is not accurate enough, look at the maxima of the 

isotherms, consider the physical irreality since in some cases three different 

volumes can belong to the same pressure. 

 

2. The virial equation of state 

 The virial equation of state (2.64) is basically a power series of the 

concentration (1/Vm ). B(T), C(T) and D(T) are the second, third and fourth 

virial coefficients. 

 

      (2.64) 

 

Substituting V/n for Vm we have 

 

      (2.65) 
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2.13 The principle of corresponding states 

The deviation from the ideal gas law can be expressed with the compressibility 

factor:  

 

      (2.66) 

 The z value characterizes the compressibility of the gas: 

z = 1        ideal gas 

z > 1       less compressible than the ideal gas - repulsive forces dominate.  

                   (at higher pressures are higher temperatures) 

z < 1       more compressible than the ideal gas - attractive forces dominate.  

                   (at intermediate pressures are lower temperatures) 

 The compressibility depends on p and T and on the material 

    z = z(p,T, material) (2.67) 

 The behavior of real gases is found very similar if their properties are 

studied as functions of reduced pressure. The pressure divided by the critical 

pressure is the reduced pressure (π), the reduced temperature ( is the 

temperature divided by the critical temperature and the volume divided by the 

critical volume is the reduced volume (): 

 

      (2.68) 

 

 Law of corresponding states: if two reduced parameters of two different 

gases are equal then the third ones are equal, too.  In short, for gases A and B 

  if A = B and   A =  B then A = B. 

In this case the two gases are in “corresponding state”. Their compressibility 

factors are nearly the same. If the reduced pressures and reduced temperatures 

of two gases are the same (i.e. they are in corresponding state) then their 

compressibility factors are the same, too. Therefore 
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pV
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  if A = B and   A =  B then zA = zB   

 This is not a strict law, rather an empirical rule for practical use. 

 We can plot a general reduced compressibility diagram valid for all the 

gases (see Figs. 2.19a and b).  Fig. 19a introduces the structure of such a 

diagram, Fig. 19b is a diagram for the practice, abscissa: reduced pressure (pr), 

ordinate: compressibility factor (z), the reduced isotherms (Tr) are plotted.    

 

 

 Near =0 each curve approaches z=1 (ideal gas). 
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 There exist two types of problems with these diagrams. 

A) p and T are known and Vm has to be determined. 

1. step: calculate  = T/TC , and select the corresponding isotherm; 

2. step: at  = p/pC  read z (look at Fig. 2.20); 

3. step: calculate    
p

zRT
Vm    (2.69) 

 

Fig. 2.20 
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B) Vm and T are known and p has to be determined 

 Both p and z are unknown. Applying the definition of    (2.68): 

      

      (2.70) 

This is a linear equation. The slope is z/ (Fig. 2.21): 

     
RT

Vp
αtan

π

z mC  

 

 

Fig. 2.21 

Where the straight line crosses the corresponding isotherm, we can read both z 

and , since 

      

 

2.14 The Joule-Thomson effect 

The expansion of gases through throttles it is frequently applied in industry. 

For example, in chemical works high pressure steam network are used often. 

On the site of application reduced pressure is needed.  

 If high pressure gases are expanded adiabatically through a throttle, the 

temperature usually changes. Most frequently the temperature drops, this is the 

basis of liquefying gases.  A well known application is the production of dry 

π
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ice in a lab (see Fig. 2.22). The expanding gas cools down so that a part of it 

gets frozen. The pressure of its triple point is higher than atmospheric pressure, 

therefore CO2 does not exist in liquid state on atmospheric pressure (see 

subsection 2.14).  

 

Fig. 2.22 

 Now we discuss the experiment of Joule and Thomson. The scheme of 

the experiment is presented in Fig. 2.23. 

 A) We apply the first law for the throttle as an open system (see 

subsection 1.12). 

    U = Q + W + Hin - Hout (1.52) 

Since this is a steady state system, U=0 and also adiabatic, therefore Q=0.  

Besides, no work done in the throttle,  W = 0. As a consequence, H=0. 

 B) We apply the first law for the whole system including the cylinders, 

the gas and the pistons. This is regarded as a closed system, U = W +Q.  

Since it is adiabatic Q=0.  

 Follow Fig. 2.23! 
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     Fig. 2.23 

Initial state (state 1), all the gas is in the left hand side. 

Final state (state 2), all the gas is in the right hand side.  

 Since Q=0, U=W. Therefore the work is  

    W=U2 – U1 = p1V1 – p2V2 (2.71) 

 Namely, in the left hand side, work is done on the system, while in the 

right hand side, work is done by the system. Rearranging (2.71) 

  U2+p2V2=U1+p1V1 that means H1=H2, so if a gas gets through a 

throttle adiabatically, its enthalpy does not change, H=0. 

 In contrary to the enthalpy the temperature can change during this 

process. 

 In case of an ideal gas T does not change. Enthalpy depends on T only, if 

H does not change, T does not change either. 

 For real gas the Joule-Thomson coefficient is defined: 

     

      (2.72) 

 

This coefficient can be positive, zero and negative. 

 JT >0: the gas cools down (dp is always negative!); 

 JT <0: the gas warms up; 

 JT=0: the temperature does not change.  

H
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 This last case is possible since there are certain temperatures and 

pressures for real gases, too, where we cannot find a temperature change when 

performing the Joule-Thomson experiment. 

 Fig. 2.24 can explain the situation. The inversion curve is the border 

between warming and cooling area. Practically, at higher temperature and 

pressure the gas wars up. Cooling is possible between limited temperatures and 

lower pressures.  

 

 

Isothermal Joule-Thomson effect 

 This is expansion without a throttle. The isothermal compressibility of a 

gas is characterized by the isothermal compressibility coefficient:  

     

      (2.73) 

 

 The negative sign expresses that the volume increases with decreasing 

pressure.  Substituting the equation of the state of the ideal gas (1.1) for 

equation (2.73) we have 

      (2.74) 

 

i.e. the higher pressure the lower the compressibility in the isothermal process.   
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The work of the expansion for the ideal gas is 

      

      (2.71) 

For the expansion of a real gas we have 

 

      (2.75) 

  

 An interesting application of the isothermal JT effect is the air sampling 

for environmental analysis. On the spot a balloon is filled under a little higher 

pressure than the atmospheric. It is locked up with a valve.   

   In the lab a little sample is added to the chromatographic carrying gas 

stream (lower pressure), or into a vacuum cell of an IR spectrometer. For the 

analysis of such kind samples GC-MS or GC-IR coupled methods are applied. 
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3. MIXTURES 

3.1 Quanties of mixtures  

 A mixture is system where any phase containing more than one 

component. A mixture may be gas, liquid or solid.  

 In mixing, extensive quantities are seldom additive. For example, if 1 litre 

sulphuric acid is mixed with 1 litre water, the volume of the mixture will be 

about 1.8 litre.  

 Mass is always additive. V, H are additive in ideal mixtures (see later, 

equation 3.8). A and G are never additive, because entropy of mixing is 

positive (see subsection 3.8).  

 Mixtures can be characterised by the deviation from additivity. (We 

define these quantities for two component mixtures). Le tus see an example. 

 Volume of mixing, that is the change of volume in mixing: 

 

      (3.1) 

 

V is the volume of the mixture, Vm1 and Vm2 are the molar volumes of 

componets 1 and 2, respectively.  In general, rewriting (3.1), let E any 

extensive property (H, S, G, A, etc.) 

      

       (3.2) 

The followig definitions are valid for isothermal-isobaric processes, i.e. T and 

p are the same after mixing as before, see Subsection 2.2.   

 For one mole of mixture – i.e. the molar volume of mixing (x is the mole 

fraction).  

 

      (3.3) 
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 The reason of the mixing is the intermolecular interaction, i.e. the  

molecules form associates, e.g. hydrogen bonds (see subsection 3.2.). 

This is demostrated in Fig. 3.1. 

 

 

 We can form the molar enthalpy of mixing (division by n=n1+n2) 

substituting V in (3.2) for H:    

 

      (3.4) 

 

The first term on the right side is the molar entahalpy of the mixture: 

    
21

m nn

H
H


  

the starred quantities refer to the pure component.  

 If mixHm > 0, the mixing is endothermic, the mixture cools down during 

the mixing,  - we must add heat to the system to keep the temperature 

unchanged 

 If mixHm < 0, the mixing is exothermic, the mixture warm up during the 

mixing, heat is given away by the system. 
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 In physical chemistry mole fractions are applied in diagrams (see e.g. Fig. 

3.1), however, in technical diagrams weight fractions (mass fractions) are 

prefered, look e.g. at Fig. 3.2. Besides, mass units (kg) are used in these 

diagrams.  In this figure the specific enthalpy of mixing of water-ethanol 

system at three temperatures (w: weight fraction). The changes reflect the 

changes in intermolecular interactions with heating. 

 

 

3.2 Intermolecular interactions 

The intermolecular interactions  maybe 

    - electrostatic, e.g. benzene-toluene mixture; 

    - dipole-dipole, e.g. acetone-thiophene; 

    - hydrogen bond, e.g. ethanol-water. 

   It is possible also that  

- only molecules of one component build associates (selfassociation), 

and  

- the interaction with the molecules of the other component(s) is weak.  
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 We shall study the hydrogen bond interaction on the ethanol-water liquid 

mixture, on some models. Starred atoms or electron pairs can participate in H-

bonds. 

 The components are 

 

 

 

  

Fig. 3.3.a 

 

 Below you can see two different models for the ethanol-water interactions.  

 

 

 

 

 

Fig. 3.3b 

 

 There are some different definition in the field of mixtures. Pay attention!   

The solution is a mixture. The mixture is called solution if one component is 
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the bulk of the mixture, this is the solvent. All other components in smaller 

concentrations are the solutes.   

 The form of  theGibbs free energy of mixing  mixG is similar to other 

functions of mixing (see e.g. equation 3.4). 

      

   mixGm = mixHm - T mixSm (3.5) 

 

 The first term may be negative or positive, the second term is always 

positive.  

 In a spontaneous process at constant temperature and pressure G 

decreases, (2.57).  Both enthalpy and entropy depend on temperature but here 

we assume constant temperature. 

 The mixture building is a spontaneous process. Therefore the entropy  

will be increase during mixing.  

 Remember: S=k*lnW    (Subsection 1.16 and Equ.1.80) 

k: Boltzmann constant 

W: Thermodynamic probability: number of microstates belonging to system 

with N atom. 

Microstate: a possible distribution of particles under the energy levels of the 

system. 

 On Figs. 3.4 you will find diferent types of dependence of the molar 

Gibbs function from the mole fraction. 

 

 

 

 total   total  patly partly  

 miscibility  immisibility miscibility  miscibility 
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  a    b  c d   

  total    total  partly partly 

 miscibility  immiscibility miscibility miscibility 

Fig. 3.4 

 The partial molar volume is the function of concentration, function of the 

intermolecular interactions in the mixture. 

 Example:  the partial molar volume of water is 

  18 cm3/mol in water and  

   14 cm3/mol in ethanol. 

 The definition of partial molar volumes are(in a two component system) 
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  (3.6a) 

 The partial molar volume of a component is the change of volume of the 

mixture if one mole of a component is added to infinite amount of mixture at 

constant temperature and pressure.  

    Infinite: so that the composition (theoretically) does not change (see 

subsection 2.9). 

 Fig. 3.5 introduces the changes of the partial molar voluimes as function 

of the mole fraction on the water-ethanol liquid system. 
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Fig. 3.5 

 At constant temperature and pressure the volume of a two component 

system depends on the amounts of components only:   

    V = V(n1, n2) 

The complete differential is 

    

       (3.6b) 

 

The short form of (3.6b) is 

       (3.6c) 

Integrating (3.6b) means the increase the mixture volume at constant 

composition:  

     V = V1n1 +V2n2 (3.7) 

 

Technically is this integrating very simple (Fig. 3.6): 
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 The volume of the mixture equals the number of moles of A times the 

partial volume of A, plus the number of moles of B times the partial volume of 

B. It is valid both for ideal and for real solutions. 

 We can rewrite (3.7) for ideal solution 

 

    (3.8) 

The quantities with starred subscripts refer to the pure components, since in 

ideal mixtures the partial molar volume is equal to the molar volume of the 

pure component in the full mole fraction region.   

 Other extensive parameters (H, G, etc.) also have partial molar quantities. 

In general, let E an extensive quantity  

      

       (3.9) 

  

 The partial molar value of an extensive quantity is the change of that 

quantity if one mole of the component is added to infinite amount of mixture at 

constant temperature and pressure. In a two component system 

      

       (3.10a) 

Integrating (3.10a) 

 

    E = E1n1 +E2n2 (3.10b) 

For a multicomponent system: 
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       (3.10c) 

Integrating (3.10c) 

       (3.10d) 

 

 The extensive quantity of the mixture is the sum of partial molar quantities 

times the amounts in moles. 

 The partial molar Gibbs function is chemical potential: 

 

The Gibbs function is for a two component system at constant temperature and 

pressure   

       (3.12a) 

the integrated form 

       (3.12b) 

(3.12b) means the Gibbs function of the mixture is the sum of chemical 

potentials times the amounts in moles. 

 The Gibbs-Duham equation 

 Here it is derived for chemical potentials but it is valid for other partial 

molar quantities, too. The equations (2.44) will be applied. 

 According to (3.12a) 

    

The corresponding integrated form is (3.12b) 

  

 

The complete differential of (3.12b) is at constant p and T  
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Subtracting (3.12b) from this equation the result is the Gibbs-Duhem equation: 

  

       (3.13) 

 The Gibbs-Duham equation is valid when T and p does not change, i.e. 

only the composition changes. The consequence of this equation is that the 

chemical potentials of the two components are not independent.  

 If we know the dependence of 1 on the composition, we can calculate 

that of 2. Since n1 and n2 are always positive, if 1 increases, 2 decreases, and 

the other way round. Where one of them has a maximum (d1= 0), the other 

one has a minimum (d2 = 0, too).  

 Gibbs-Duhem like equations are valid also for other extensive properties, 

e.g. for volumes: 

       (3.14) 

So we can interpret the partial molar volume diagram of the water-ethanol 

system (see Fig. 3.5). 

3.4 Determination of partial molar quantities 

 We shall discuss two methods on the example the partial molar volume. 

1. Method of slopes 

 We introduce the method as example on the partial molar volume (3.15): 

 

       (3.15) 

 

 We put a known amount of component 1 in a vessel then add component 

2 in small but known amounts. The volume is measured after each step. The 
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mole fraction and the slope have to be determined at several points of the curve. 

We obtain V2-n2 data pairs. Look at Fig. 3.7! 

 

     Fig. 3.7 

2. The method of intercepts 

 Follow the derivation of the necessary equation (3.16)! 

 

 Dividing by  n1+n2     

   

 

 

  

 Substituting the differential quotient for the volume difference we have 

the result 

 

       (3.16) 2
2

m
1m x

dx

dV
VV 
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This is the equation of the tangent of the Vm-x2 curve. The intercepts of the 

tangents of the Vm-x2 curve produce the partial molar volumes See Fig. 3.8! 

 

 

Fig. 3.8 

This method is more accurate than the method of slopes. 

      However, the measurement itself needs attention and high precision. One 

has to consider and analyze the possible error sources of the measurement.  

3.5 Raoult´s law 

The concept of the ideal gas plays an important role in discussions of the 

thermodynamics of gases and vapors (even if the deviation from ideality is 

sometimes large).  

 In case of mixtures it is also useful to define the ideal behavior. The real 

systems are characterized by the deviation from ideality. 

 Ideal gas: complete absence of cohesive forces (Subsection 1.4). 
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 Ideal mixture (liquid, solid): complete uniformity of cohesive forces. If 

there are two components A and B, the intermolecular forces between A and A, 

B and B and A and B are all the same. This means 

     

    mixV = 0,    mixH = 0 (3.17) 

 The partial vapor pressure of a component is the measure of the tendency 

of the component to escape from the liquid phase into the vapor phase.  

 High vapor pressure means great escaping tendency, and high chemical 

potential. The other way round:  small chemical potential in liquid phase means 

small partial pressure in the vapor phase.  

 Raoult´s law: In an ideal liquid mixture the partial vapor pressure of a 

component in the vapor phase is proportional to its mole fraction (x) in the 

liquid phase (3.18):  

       (3.18) 

 For a pure component xi = 1, so *
ii pp  . 

*
ip is the vapor pressure of pure 

component at the specified temperature. 

 Since                         and   

     

     21 ppp   (3.19) 

 

 The p(x) diagram for ideal mixture of two volatile components has the 

shape like Fig. 3.9. Look at the straight lines and their additivity!  

 

*
iii pxp 

*
111 pxp  *

222 pxp 
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Fig. 3.9. 

 If only component (1) is volatile like in solutions of solids, Fig. 3.9 is 

modified, see Fig. 3.10. In this case the vapor pressure is determined only by 

component 1. 

 

Fig. 3.10 
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Vapor pressure lowering.  

 Based on equations (3.18) and (3.19): 

 

 

       (3.20) 

 

According to (3.20) the relative vapor pressure lowering is equal to the mole 

fraction of the solute (component 2). 

 Solute, solvent, solution: see definitions in subsection 3.2! 

3.6 Deviations from the ideality 

1. Negative deviation: The cohesive forces between unlike molecules are 

greater than those between the like molecules in pure liquid („like”: the same 

component). So the „escaping tendency” is smaller than in ideal solution. The 

activity (a) replaces the mole fraction (3.21). 

 Contraction: mixV < 0       

 Exothermic solution: mixH < 0     

 Activity must be used: 
*
iii pap    (3.21) 

  i.e. *
iii pxp  ,  

The activity coefficient represents the deviation (3.22): 

    ai = i·xi  (3.22) 

In this case i < 1. 

 Fig. 3.11 is the isothermal vapor pressure diagram of a two component 

mixture with negative deviation. The total vapor pressure may have a 

minimum. 

*
1

1
*
1

2 p

pp
x



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Fig. 3.11 

Components: 1: chloroform, 2: acetone. 

2. Positive deviation: The cohesive forces between unlike molecules are 

smaller than those between the like molecules in pure liquids („unlike”: from 

other component) (see subsection 3.2). So the „escaping tendency” is greater 

than in ideal liquid mixture. 

 Expansion: mixV >0       

 Endothermic solution: mixH > 0     

 Activity must be used: 
*
iii pap    (3.21) 

  i.e. *
iii pxp  ,  

The activity coefficient represents the deviation (3.22): 

    ai = i·xi  (3.22) 

In this case i > 1. 

 Fig. 3.12 is the isothermal vapor pressure diagram of a two component 

mixture with positive deviation. The total vapor pressure may have a 

maximum. 
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Fig. 3.12 

Components: 1: water, 2: dioxane.  

3.7 Chemical potential in liquid mixtures 

 In this subsection  

 1. We derive a formula for calculation of the chemical potential. 

 2. We use Raoult´s law (see subsection 3.5).  In 

equilibrium the chemical potential of a component is equal in all phases (see 

subsection 2.10). 

 3. The vapor is regarded as ideal gas (see subsection 1.4). 

 Let us denote the component i in gas (vapor) phase as g
i , in liquid phase 

as i . In equilibrium 

       (3.23) 

 

  

1. Ideal liquid mixture 

 Since    we have from (3.23)   

0
i0

i
g
ii p

p
RT ln

*
iii pxp 
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rearranged 

 

 

where the first two terms depend only on temperature. Labeling the first to 

terms as 

     0
i0

ii p

p
RT

*
* ln   

we have now 

       (3.24) 

2. Real liquid mixture 

 Since    we have from (3.23)   

  

 

rearranged

 

 

where the first two terms depend only on temperature. Labeling the first to 

terms similarly as 

     0
i0

ii p

p
RT

*
* ln   

we have now 

       (3.25) 

with iii xa  .  

For a pure substance both xi and i are 1, and therefore also ai is 1. 

 *
i  is the chemical potential of the pure substance at the given temperature 

and p0 pressure, the standard chemical potential. For a pure substance 

0
ii0

ii p
px

RT
*

ln




i0
i0

ii xRT
p
p

RT lnln
*



iii xRT ln* 

0
ii0

ii p

pa
RT

*

ln




i0
i0

ii aRT
p

p
RT lnln

*



iii aRT ln* 

*
iii pap 
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**
mii G  (3.26) 

 

 The activity is a function which replaces the mole fraction in the 

expression of the chemical potential in case of real solutions. 

 As long as the activity is the “effective” mole fraction, the fugacity is the 

“effective” pressure in gas phase: 

 

       (3.27) 

 

Here i is the fugacity coefficient, yi is the mole fraction in gas phase.  The 

fugacity is 

     fi=i.xi  (3.28) 

 

The first two term on the right hand side of (3.27) describe the ideal behavior, 

 idi  the third term expresses the deviation from the ideality 

 

        iRTidreal  ln  (3.29) 

 

 Dependence of the chemical potential on the mole fraction in an ideal 

liquid mixture is (3.24),     Fig. 3.13 introduces this 

function. As the mole fraction approaches zero, the chemical potential 

approaches minus infinity. The infinite chemical potential has not any physical 

meaning! 

 

iiiiiii RTyRTyRT  lnln)ln( **

iii xRT ln* 



116 Physical Chemistry 

www.interkonyv.hu © Grofcsik András, Billes Ferenc 

 

Fig. 3.13 

 

 For most substances the standard chemical potential (3.30) is negative.  

 

   
****
mimimii TSHG   (3.30) 

 

 The first term on the right hand side of (3.30) may be either positive or 

negative, while the standard molar entropy is always positive (the mixing 

increases the disorder).  

 Fig. 3.14 introduces the mole fraction dependence in case of negative 

chemical potential. 
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Fig. 3.14 

 

 Determination of the activity coefficient from liquid-vapor equilibrium 

data of a two component system: 

 According to Dalton’s law if the vapor is an ideal gas   

       pyp ii                                  (3.31) 

We apply both Raoult’s law for real mixtures and Dalton’s law for the vapor 

phase. The partial vapor pressure of a component is independent of the mode of 

expression:  

     pypxp 11111  *
 (3.32a) 

     pypxp 22222  *
 (3.32b) 

From these equations we have 

 

       (3.33) 

 

 The total pressure and the mole fractions in the liquid and vapor phase are 

measured. If the vapor pressures of the pure components are known, the 

activity coefficients can be calculated. 

**
22

2
2

11

1
1 px

py
px
py


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3.8 Entropy of mixing and Gibbs free energy of mixing 

The quantities of mixing (mixV, mixH, mixS and other) are defined at 

constant temperature and pressure.  

 We study three important cases of mixing: 

 Mixing of ideal gases 

 Ideal mixture of liquids 

 Real mixtures 

 

1. Mixing of ideal gases  

 Modell before mixing: the two gas components (1 and 2) are separated by 

wall, see Fig. 3.15a.   

 

 Then the wall is removed. Both gases fill the space (Fig. 3.15b).                    

There is no interaction (mixH= 0). The pressures of the components are 

reduced to p1and p2 partial pressures: 

 

  p1=  y1p  and  p2 = y2p    (3.34) 
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Pressure dependence of entropy (at constant temperature): the entropy of 

mixing is the sum of the two entropy changes, see equation (1.71) 

 

       (3.35) 

 

therefore (p y1p, p y2p) 

    

  

since  n1 = n·y1    and     n2 = n·y2 

 

       (3.36a) 

for one mol dividing by n: 

   

       (3.36b) 

Generalizing for more than two components: 

 

       (3.36c) 

Since the mole fractions are smaller than 1 so each term is negative (lny<1). 

Therefore the entropy of mixing is always positive. 

 The Gibbs function of mixing is  

 

    mixG = mixH - T mixS (3.37) 

Since the enthalpy term is zero for ideal mixtures, substituting (3.36a)  

1

2

p

p
lnnRS 

p

py
lnRn

p

py
lnRnSSS 2

2
1

121mix  

 2211mix ylnyylnynRS 

 2211mmix ylnyylnyRS 

 iimix ylnynR)id(S
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        (3.38) 

that is always negative. 

 

2. Ideal mixture of liquids 

 First we calculate the Gibbs function of mixing.  

Before mixing: 

 

 

 After mixing: 

 

 

       

Therefore   

 

Detailed 

     

 

The Gibbs function of mixing is 

 

 

Considering 

   n1 = n·x1       and      n2 = n·x2  

 iimix ylnynRT)id(G

*
22

*
11 nn)initial(G  

1
*
11 xlnRT  2

*
22 xlnRT 

2211 nn)mixture(G  

22
*
2211

*
11 xlnRTnnxlnRTnn)mixture(G  

2211mix xlnRTnxlnRTn)initial(G)mixture(GG 
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For two components 

        

Generalizing for more than two components 

 

       (3.39) 

 Pay attention on the similarity of equations (3.38) and (3.39).Both refer 

to ideal mixtures. 

 Since mixG = mixH - T mixS and for ideal mixtures the enthalpy term is 

zero  

      

  

       (3.40) 

It is always positive since the disorder increases by mixing. This is reflected in 

the negative values of lnx multipliers. 

 We obtained the same expressions for ideal gases and ideal liquid 

mixtures, compare for entropies (3.37) and (3.40), for Gibbs functions (3.38) 

and (3.39), respectively. All equations contain the sums of mole fractions times 

logarithms of mole fractions.  

 Fig. 3.16 introduces the changes of thermodynamic functions as functions 

of mole fraction at about room temperature for ideal mixtures. Since the 

change of the molar enthalpy of mixing is in this case zero, therefore the molar 

Gibbs function of mixing is in this case equal to the absolute value of TmSm. 

 2211mix xlnxxlnxnRT)id(G 

 iimix xlnxnRT)id(G

   
T

idG
idS mix

mix

 

 iimix xlnxnR)id(S
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Fig. 3.16 

 

3. Studying real mixtures, 

 the mole fraction dependence of the thermodynamic functions mHm, TmSm 

and mGm depends on the values and signs of the first two ones. The subscripts 

‘m’-s of the -s refer to mixture like in Fig. 3.16. 

 The next three figures introduce the three possibilities of the relations 

between the mentioned functions. 

 For the better understanding of the properties of mixtures see also 

subsections 3.1, 3.2 and 3.3. 

 Real mixture 

 Case 1: negative deviation of mHm from the ideal behavior:  

TmSm > mGm . The entropy of mixing is smaller in real mixtures than in ideal 

mixtures because there is partial ordering (see subsection 3.2), Fig. 3.17.  There 

is complete miscibility: compare this figure with Fig. 3.4a). 
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Fig. 3.17 

 Case 2. If both mHm>0 and TmSm>0, then two cases are possible. 

 Case 2a. mHm > TmSm, therefore mGm>0. Therefore the two 

components are immisible (see Fig. 3.18, compare with Fig. 3.4b). 

 

     Fig. 3.18 

 Case 2b. mHm < TmSm, therefore mGm<0. Therefore the components 

are miscible (see Fig. 3.19, compare it with Fig. 3.4a). 
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Fig. 3.19 

 

3.9. Vapor pressure and boiling point diagrams of 
miscible liquids  

According to the phase rule: F = C - P + 2  (2.58). In a two component system: 

F = 4 – P,   in case of one phase there are 3 degrees of freedom.  

 In case of two phases one parameter has to be kept constant: 

either t = constant:  the diagram is called vapor pressure diagram;  

     or p = constant, in this case the diagram is called boiling point diagram. 

Ideal solutions [See (3.18) and (3.19)] 

 We derive Konovalov’s first law. 

 According to Raoult’s law:   *
111 pxp   and *

222 pxp   

  The total pressure is p = p1 +p2 

 Dividing the expressions of the two partial pressures by one another 

     *
22

*
11

2

1

2

1

px

px

y

y

p

p




  
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Rearranging this equation, applying 1xx 21   ,  

    *
2

*
1

2

2

2

2

p

p

x

x1

y

y1






 

assuming 
*
2

*
1 pp  , we have 

1
x

1
1

y

1

22

  

Therefore    22 xy    (3.41) 

 This is Konovalov’s first law, i.e. the mole fraction of the more volatile 

component is higher in the vapor than in the liquid. It is always true when the 

vapor pressure does not have a maximum or minimum.  

 Fig. 3.20 is a vapor pressure diagram, L: liquid curve, V: vapor curve. 

The vapor pressure diagram is determined by 

     

       (3.42) 

On the vapor pressure diagram the mole fractions of both liquid and vapor 

phases are readable on the abscissa through projecting from ordinate p on the 

L and V curves, respectively.   

 

Fig. 3.20 

p

px

p

p
y

*
222

2



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 Looking at Fig. 3.20 on the primed quantities, you can see Konovalov’s 

first law is valid.  

 In practice the boiling point diagram (temperature-composition 

diagram) is more important than the vapor pressure diagram (pressure-

composition diagram). Distillation at constant pressure is more common than 

distillation at constant temperature. 

 

      Fig. 3.21 

The boiling point of the more volatile component is lower. 

 Fig. 3.21 introduces how it is possible to determine on the boiling point 

diagram isothermal (x,y) mole fraction pair. V is the vapor curve (condensation 

curve), L is the liquid curve (boiling point curve). 

 Compare the forms of the vapor pressure and the boiling point diagrams!   

 

The level rule 

We derive it for a two phase system (Fig. 3.22), superscript „l” means liquid 

phase, „v” vapor phase. 
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Fig. 3.22 

  

 

Rearanging: 

 

and 

 

According the meaning of a and b 

 

       (3.43) 

 

Equation 3.43 is the level rule, this is an inverse ratio.   Looking at Fig 3.22: to 

smaller “a” belong larger amount of the liquid phase on the double phase area 

between the curves L and V. A longer “b” means smaller amount of the vapor 

phase.  

 

 

   t
22

v
2

t
2

l xynxxn 

b

a

n

n

l

v


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Real solution 

Case 1: Vapor pressure, positive deviation from ideal (Fig. 3.23)  

 The total vapor pressure may have a maximum: the azeotrope where the 

vapor and the liquid composition is equal. Examples: water-dioxane and water-

ethanol. At “1” both mole fractions of component “1” are 1.  

 

 

Fig. 3.23 

 Corresponding boiling point - positive deviation from ideal  

 The azeotrope on the boiling point diagram at positive deviation appears 

at minimum. See Fig. 3.24! L is boiling point curve, V is the condensation 

curve.  Cooling the vapor and arriving the V curve the condensation begins. 

Left from the azeotrope point in the two phase area the relation is x1>y1, right 

from this point in the two phase region the relation is x2<y2.  
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Fig. 3.24 

Case 2 Vapor pressure, negative deviation 

The total vapor pressure may have a minimum: azeotrope with minimum. 

 See the vapor pressure diagram on Fig. 3.25! Examples are: aceton-

methanol, acetone-chloroform and water-nitric acid.  

 

Fig. 3.25 
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 The corresponding boiling point diagram has a maximum, i.e. it is a high 

boiling azeotrope (Fig. 3.26). 

 

Fig. 3.26 

3.10 Thermodynamic interpretation of azeotropes 

1. We start from Gibbs-Duham equation (3.13) in the liquid phase.  

2. The chemical potentials are expressed in terms of vapor pressures. 

3. The change of total pressure is expressed with respect to mole fraction 

(dp/dx2). 

       (3.13) 
Dividing by n: 

  

 

At constant T,  depends on composition only. 

 

0dμndμn 2211 

0dμxdμx 2211 
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   

 Since (3.13) 

 

 

  

Two component system: 

 In equilibrium the chemical potential of a component is equal in the two 

phases (2.56): 

 

     and          

Therefore 

     and  

 

 So  

 

Rearranged considering that dlnp=dp/p 

  

 

Since x1=1-x2 
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 According to (3.44) if the partial mole fraction increases, the partial 

pressure also increases: 

    0
dx

dp

2

2   

Case A: 0
dx

dp

2

 , the total vapor pressure has a maximum or minimum. 

 

 

Applying Dalton’s law:   p1 = y1p =(1-y2)p  and   p2 = y2p 

Based on  (3.44) 

 

 

rearranged 

 

 

from this equation 

 

and  

 

 

Consequently        

       (3.45) 

 

This is Konovalov’s third law. When the total vapor pressure has a maximum 

or minimum, the composition of the vapor is equal to the composition of the 

liquid.  

 This is the azeotrope point. Azeotrope is not a compound, the azeotrope 

composition depends on pressure. 
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Case B. 0
dx

dp

2

 . Extreme value does not exist. 

 

 

Applying Dalton’s law:   p1 = y1p =(1-y2)p  and   p2 = y2p 

We have 

      

Rearranging 

 

 

Therefore 

 

and 

 

Therefore 

        (3.46) 

 This is Konovalov’s second law. The component has higher mole fraction 

in the vapor than in the liquid, if its increasing amount increases the total 

vapor pressure. One can control of Konovalov’s second law on Figs. 3.23 and 

3.25. 

3.11 Boiling point diagrams of partially miscible and 
immiscible liquids 

Partial miscibility occurs in case of positive deviation. If the attractive forces 

between A and B molecules are much less than those between A and A 

molecules and B and B molecules, A and B become partially miscible or 

immiscible in the liquid phase.  E.g. butanol and water are partially miscible. 
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 Fig. 3.27 presents a boiling point diagram, the effect of  partial 

miscibility in the liquid phase.  

 

Fig. 3.27 

 Along the the A-C-B line equilibrium of three phases exists, thedegree of 

freedom: F=1 (see equation 2.58). A: component 1 is saturated with 2, B: 

component 2 is saturated with 1. C labels the boiling temperature of the two-

phase region, L is the boiling point curve, V is the condensation curve. „l” is 

the liquid B rigth from the minimum of the V curve and it is labels the liquid A 

left from this minimum, both A and B are present at the two-liquid phase area 

(„l+l”), „v” labels the vapor phase.  

 Example:  butanol(1)-water(2). 

 Calculation of the equilibrium vapor pressure [see also (3.21), (3.22)]:  

    

       (3.47) 

 Raoult´s law is conveniently written for the component which behaves as 

solvent, in our example water. 

 In equilibrium the activity (expressed in terms of mole fractions) of a 

component is equal in all the phases. 
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 Complete immiscibility: The components keep their phase properties in 

the mixture.  The drops of one component are dispersed in the other component, 

like on Fig. 3.28.  Example: the water-toluene mixture. 

 

Fig. 3.28 

Each component exerts its total vapor pressure, as if it were alone in the 

system: 

    
*
2

*
1 ppp    (see 

2.48) 

The boiling point is lower than that of any component, i.e. p reaches the 

external pressure at lower T than either
*
2

*
1 porp . This is the principle of 

steam distillation. 

 Fig. 3.29 is the boiling point diagram in case of complete immiscibility in 

the liquid phase. The boiling temperature is independent of the composition of 

the mixture, the L vaporozation curve is horizontal.  
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Fig. 3.29 

 Fig. 3.29 is the boiling point diagram in case of complete immiscibility in 

the liquid phase. The boiling temperature is independent of the composition of 

the mixture, the L vaporization curve is horizontal.  

 Theory of the steam distillation: calculation of molar ratio of the 

components in the vapor phase. steam distillation is a method for distilling 

compounds which are heat-sensitive. 

 For steam distillation . 1: water,  2: organic material.  

 According to Dalton´s law.: p1 = y1p   and   p2 = y2p 

Therefore 

 

 Applying n=m/M  

    

 

 And at last 
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This method is suitable also for determination of molar mass. 
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3.12 Solid - liquid equilibria: simple eutectic diagrams 

The components are miscible in liquid (l) phase (above the melting points) but 

they are immiscible in the solid (s) phase (e.g. they have different crystal 

structure). 

Example: benzene and naphthalene. 

 Fig. 3.30 is a solid-liquid  phase diagram of  miscible liquids. 

 

Fig. 3.30 

F: freezing point curve, E: eutectic point, T0: melting point, pure component. 

Find the similarity to the boiling point diagram of immiscible liquids (Fig. 

3.29). 

 Derivation of the freezing point curve (F) 

 Equilibrium: 

       (3.50) 

Detailed: 

       (3.51) 

Since the starred chemical potentials are the molar Gibbs functions of the pure 

components, 
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 Where aA is the activity of A in the saturated solution. 

 Since G = H - TS and   dG =Vdp –SdT at constant pressure   

    S
T

G

p















 

 Differenciating G/T with respect to T we have (H=G+TS) 

 

 

       (3.52) 

 

This equation is called Gibbs-Helmholtz equation. 

 We apply now this equation to our earlier result: 

 

 

 

 Based on (3.52) 

 

 

Rearranged we have the enthalpy of fusion (fus): 

 

 

 So far we have not used any approximation. 

 In order to integrate from the melting point of the pure substance A to T, 

we take the enthalpy of fusion independent of temperature (approximation). 
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       (3.53) 

 

Observed the similarity to the Clausius-Clapeyron equation (2.30)! 

 It is now possible to express the temperature as a function of mole 

fraction: 

 

       (3.54) 

  

  

 The shape of the ideal solubility curve is independent of the other 

component. The expression for the solubility curve of A includes the melting 

point and enthalpy of fusion of A. And the expression for the solubility curve 

of B includes the melting point and enthalpy of fusion of B. 

 The eutectic point is the crossing point of the two curves. 

 

Fig. 3.31 

 The mole fraction of the component with lower melting point is used here 

as abscissa, this choice between the components is arbitrary. 
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3.13 Solid-liquid phase diagrams 

One can find a great similarity to liquid-vapor equilibria. The main types of 

this kind phase diagrams are: 

 1. Complete miscibility in solid state 

 2. Partial miscibility in solid state 

 3. Complete immiscibility in solid state 

 4. Formation of compounds 

Now we studied the individual cases in detail. 

 1. Complete miscibility in solid state.  

 Case A) There does not exist minimal temperature of melting.  

Look at Fig. 3.32 and compare it to Fig. 3.21 or Fig.3.22! 

 

Fig. 3.32 

 Case B) Minimal temperature of melting exist. Look at Fig. 3.33 and 

compare it with Fig. 3.24! 
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Fig. 3.33 

 2. Partial miscibility in solid state. Compare Fig.3.34 to Fig. 3.27!  

 

Fig. 3.34 

 Fig. 3.34 is complicate. One finds several different regions. Liquid state 

(l) is one phase, the solid one contains two. The two solid states (s) are small 

amount of copper is solved in silver (left hand side) and small amount of silver 
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in copper (right hand side) both at lower temperatures. Similarly, at lower 

temperatures both solid phases exist at lower temperatures (s+s).  

 3. Complete immiscibility in solid state  

 See Fig. 3.35 and compare it with Fig. 3.29! 

 

Fig. 3.35 

 The naphthalene-benzene system has such kind property. 

The diagram has a characteristic point. At the eutectic point E (composition) 

the melting and the freezing temperature is equal. The melting point is 

independent of the composition, the curve is a horizontal line.   

 4. Formation of compounds 

 Case A), Congruent melting (Fig. 3.36). The figure has a shape like two 

figures of type 3.35 are present in it. The reason is the formation of a 

compound in solid state, in this case at mole fraction 0.5. This compound 

behaves like a new component. 

 This type of melting is called congruent melting.  See detailed Fig. 3.37. 
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Fig. 3.36 

Example is the phenol(A)-aniline (B)system, the compound C is formed in 

solid state (Fig. 3.37). The liquid state (melt) is homogeneous, one phase. 

 

     Fig. 3.37   

Pay attention on the several regions! Always only two solid phases exist 

together, A+C or C+B. 
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 Case B), Incongruent melting 

During the melting a compound decomposes (Fig. 3.38). 

  

Fig. 3.38 

 In comparison to the congruent melting here the compound C formed and 

exists in solid state decomposes at the peritectic point (P).  Over this 

temperature it does not exist neither in solid state.  

 By heating the compound of composition xC, and reaching the peritectic 

temperature, the compound decomposes to a melt of peritectic composition and 

to pure solid compound B. Heating further B is gradually melting, as well. 

 If the melt of composition xC is cooled, first pure B is precipitated and 

then, reaching the peritectic temperature, the crystals of the compound of 

composition xC is formed (from the crystals of B and from the melt of 

peritectic composition). 

 Example: Na-K incongruent melting (Fig. 3.39) Formation of a compound 

during the cooling (here:Na2K).  Cooling Na: formation: Na deposits,then 

fromation of Na2K (peritectic temperature), at last solid Na+Na2K. Minimum 

is in the K+Na2K region: eutectic point.  The diagram contains two two-

compound solid regions: K+Na2K and Na2K+Na but Na2K exists only in solid 

state. 
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Fig. 3.39 
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4. ADVANCED CHEMICAL 
THERMODYNAMICS 

4.0 Colligative properties 

Colligative means depending on quantity. The following phenomena are 

colligative: 

Vapor pressure lowering: see subsection 4.1 

Boiling point elevation: see subsection 4.1 

Freezing point depression: see subsection 4.2 

Osmotic pressure:  see subsection 4.3 

 In dilute mixtures these quantities depend on the number and not the 

properties of the dissolved particles. 

4.1.Vapor pressure lowering and boiling point elevation 
of dilute liquid mixtures 

In a dilute solution Raoult´s law is valid for the solvent (See subsection 3.5). 

However, real mixtures show negative or positive deviations from it (Fig. 4.1). 

 

Fig. 4.1 
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 We derive the vapor pressure lowering (if component 2 is non-volatile) 

expressing first the partial pressure of component 1: 

 

     

 

 

 

Now we have the relative vapor pressure lowering, see also (3.22)  

 

       (4.1) 

 

 Fig. 4.2 is the p-T diagram of the solvent (black) and  the solution  (red), 

see also Fig. 2.4, Tf denoteste  freezing point lowering, Tb boiling point 

elevation. 

 

 Have a look on Fig. 4.2! There are compared the solvent (black curve) and 

the solution (red curve) properties in a p-T diagram.  

     The vapor pressure decreases in comparison of the p-T diagrams of the 

solvent and the solution. At a constant T’ temperature the p*-p vapor pressure 

lowering is observable.  
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 Have a look on Fig. 4.2! There are compared the solvent (black curve) and 

the solution (red curve) properties in a p-T diagram.  

     The vapor pressure decreases in comparison of the p-T diagrams of the 

solvent and the solution. At a constant T’ temperature the p*-p is observable.  

 The boiling point increases (Tb). On the figure you can see it at 

atmospheric pressure. 

 In contrary to the behavor of the boiling point the freezing point decreases 

as effect of the solving (Tf).  

 Understanding the boiling point elevation based on equivalence of the 

chemical potentials in equlibrium: 

 

 

 

See also equation (3.24)! The chemical potencials of the pure component are 

equal to the molar Gibbs functions (starred), in dilute solutions the activity 

coefficient of the solute is pratically one, the mole fraction is used. 

 So we can write 

         (4.2) 

 

Since G = H - TS and dG =Vdp –SdT,  
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also according to (2.21).  

 Now we derive the important Gibbs-Hemholtz equation. We 

differenciate G/T with respect to T, using the rule of fraction differenciation: 
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We apply (4.3) to our former equation (4.2) in form 

  

 

Differenciating 

 

 

Introducing the enthalpy like in (4.3) 

 

      

The enthalpy difference is the heat of vaporization: 

 

 

 

Assume that the molar heat of vaporization is independent of temperature, and 

integrate from the boiling point of the pure component (Tb) to T: 

 

       (4.4) 

 

Substitute the mole fraction of the solute: x1 = 1-x2. Take the power series of 

ln(1-x2), and ignore the higher terms since they are negligible (x2<<1): 

 

 

 

The terms containig higher power than 1 of x2 are very small and negligible. 
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our result is at last 

       (4.5) 

 

 In dilute liquid solutions molality (m = mol solute per kg solvent) or 

concentration (molarity) (c = mol solute per dm3 solution) are used (instead 

of mole fraction). 

 

 

 

Where m2: molality of solute and M1: molar mass of solvent.  With this 

 

       (4.6) 

 

Since the first multiplier on the right hand side depends on the parameters of 

the solvent only, it is regarded as constant, the molal boiling point elevation: 

 

 

We can right 

       (4.7) 

Examples (pay attention on the molality units!): 

 Kb(water) = 0.51 K·kg/mol 

 Kb(benzene) = 2.53 K·kg/mol 

Applications: determination of molar mass, 

                    determination of degree of dissociation. 

 These measurements are possible since the boiling point elevation 

depends on the number of dissolved particles. 
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4.2 Freezing point depression of dilute solutions 

The equation of the freezing point curve in dilute solutions has the following 

form (see equation 3.53): 

 

       (4.8) 

 

 with x1: mole fraction of solvent, Hm(fus): molar heat of fusion of 

solvent,  

T0: freezing point (melting point) of pure solvent, T: freezing point of solution. 

 Since  

  

 We have from (4.8)                             

 

       (4.9) 

 

Let T0 - T = T  and  2
00 TTT  we have from (4.9) 
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Rearranging (4.10) the  freezing point depression is 

 

       (4.11) 

 

Observe its similarity to (4.6)! Since x2  m2M1, we have 
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The first multiplier on the right hand side contains solvent parameters only. 

This is the molal freezing point depression: 

 

 

 

So we can express the freezing point depression as   

 

       (4.13) 

 Examples are given in molality units: 

  Kf(water) = 1.83 K·kg/mol 

  Kf(benzene) = 5.12 K·kg/mol 

  Kf(camphor) = 40 K·kg/mol 

 Pay attention on the very high Kf value of camphor.  If the investigated 

compound is soluble in camphor, the determination of its molar weight is 

highly sensitive.  

4.3 Osmotic pressure 

Osmosis: two solutions of the same substance with different concentrations are 

separated by a semi-permeable membrane (a membrane permeable for the 

solvent but not for the solute).  

 Then the solvent starts to go through the membrane from the more 

dilute solution towards the more concentrated solution.  The reason: the 

chemical potential of the solvent is greater in the more dilute solution. 

 We discuss the case: the „more dilute” solution may be a pure solvent, 

the component 1. 

 If the more concentrated solution cannot expand freely, its pressure 

increases, increasing the chemical potential. Sooner or later an equilibrium is 

attained. (The chemical potential of the solvent is equal in the two solutions.) 
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The measured pressure difference between the two sides of the semipermeable 

membrane is called osmotic pressure (). 

 van´t Hoff found (1885) for dilute solutions (solute:component 2): 

    V = n2RT  (4.14) 

or     = c2RT  (4.15) 

The equation (4.14) is similar to the ideal gas law (1.27). 

 The effect of osmotic pressure is illustrated on Fig. 4.3. 

 

Fig. 4.3 

 Now we interpret Fig. 4.3. The condition for equilibrium is 

 

       (4.16) 

 The right hand side of (4.16) is the sum of a pressure dependent and a 

mole fraction dependent term: 

 

       (4.17) 

 

 The chemical potential of a pure substance (molar Gibbs function) 
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Discussing this equation, the left hand side and the first term on the right and 

side is equal. The pressure dependence of 1 is negligible since  

 

  therefore the corresponding partial molar quantity is   

(see 2.19b). 

The patial molar volume of the solent is paractically independent of the 

pressure. So the integral is only V1. We have now  

    0 = V1 +1(x1)  

Rearranged 

     111 xV   (4.18) 

 This equation is good both for ideal and for real solutions. Measuring the 

osmotic pressure we can determine  (and the activity). 

 In an ideal solution: 1(x1) = RTlnx1    (see 3.24). 

 For dilute solution as already mentioned -lnx1 = -ln(1-x2)  x2, and we can 

write 

    V1 = -RTlnx1  RTx2 

Rearraging 

       (4.19) 

 

Since 21 nn  and 11
*
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 With this restrictions the result is the van’t Hoff equation for the osmotic 
pressure, in forms  
 
           (4.20a) 
 
or  
 (4.20b) 
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 The osmotic pressure is an important phenomenon in living organisms. 

Think on the cell – cell membrane – intercellular solution systems.  

4.4 Enthalpy of mixing 

Mixing is usually accompanied by change of energy. Mixing processes are 

studied at constant pressure. 

 The heat of mixing (Qs)is equal to the  enthalpy of mixing (Hmix): 

  (4.21a) 

Dividing theat of mixing by the number of moles (n=n1+n2) we have the molar 

heat of mixing: 

  (4.21b)

 The molar heat of mixing  (called also integral heat of solution, and molar 

enthalpy of mixing) is  the enthalpy change when 1 mol solution is produced 

from the components at constant temperature and pressure. 

 In case of ideal solutions the enthalpy is additive, Qms= 0, if there does 

not exist change of state. In real solutions Qms (also in case of change in phase, 

like the molar heat of fusion) is not zero.  The next figures present the 

deviations from the ideal behavior. 

 Real solution with positive deviation (the attractive forces between unlike 

molecules are smaller than those between the like molecules), Fig. 4.4. 

 In this case Qms>0. Endothermic process, see section 3.1: 

  in an isothermal process we must add heat; 

                in an adiabatic process the mixture cooles down. 

)HnHn(HHQ *
2m2

*
1m1mixs  

)HxHx(HHQ *
2m2

*
1m1mmmixms  
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Fig. 4.4 

 Real solution with negative deviation (the attractive forces between unlike 

molecules are greater than those between the like molecules), Fig. 4.5. 

 In this case Qms < 0. Exothermic process, see section 3.1.     

   in an isothermal process we must distract heat; 

   in an adiabatic process the mixture warmes up. 

 

Fig. 4.5 

 Differential heat of solution is the heat exchange when one mole of 

component is added to infinite amount of solution at constant temperature and 

pressure.  Therefore the differential heat of solution is the partial molar heat of 

solution: 
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     and   (4.22) 

 

 The determination of the differencial heats of solution is possible e.g. with 

the method of intercepts, Fig. 4.6  (see also e.g. Fig. 3.8): 

 

 

Fig. 4.6 

 Explanation to Fig. 4.6.  

    [Like (3.2)] 

Differentiating with respect to the amount: 

 

 

 

 

According to the definition of of the differential heat of solution (4.22) 

 

   (4.23) 

That means, the differencial heat of solution is equal to the partial molar 

enthalpy minus the enthalpy of pure component. 

 Enthalpy diagrams 

The enthalpy of solution is plotted as the function of composition at different 
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 the solutions and temperatures. These diagrams can be used for the calculation 

of the heat effects. Fig. 4.7 is a model of  a solution enthalpy diagram, the 

ethanol - water system. Technical units are used! Compare Fig. 4.7 with Fig. 

3.2! 

 

Fig. 4.7 

Fig. 4.8 introduces the isothermal mole fraction depence of heat of solution of 

the dioxane-water system. 
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 Isothermal mixing: we are on the same isotherm before and after 

mixing.(see Fig. 4.8). According to (3.2) we have 

   Qs = (m1+m2)h - (m1h1+m2h2) (4.24) 

h, h1, h2 can be read from the diagram, using the tangent. 

 Adiabatic mixing: the point corresponding to the solution is on the straight 

line connecting the two initial states (see Fig. 4.9).  

 

Fig. 4.9 

Abbreviatons to the figure: the mole fraction of the selected component is 

denoted by x, A an B are the initial solutions: xA, HmA, xB, HmB; nA = n – nB. 

 Material balance: 

  (n-nB)xA+nBxB = nx      and      (n-nB)HmA+nBHmB = nHm 

 Rearranging these equations: 

  nB(xB - xA) = n(x - xA)  and nB(HmB-HmA) = n(Hm-HmA) 

 Dividing these equations by one another 

    (4.25) 
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 At last we have 

    (4.26) 

 

 This is a straight line equation, like 

 

 

4.5 Henry’s law 

In a very dilute solution every dissolved molecule is surrounded by solvent 

molecules (Fig. 4.10): 

 

Fig. 4.10 

 If a further solute molecule is put into the solution, it will also be 

surrounded by solvent molecules. It will get into the same molecular 

environment. So the vapor pressure and other macroscopic properties will be 

proportional to the mole fraction of the solute: Henry’s law.  

 Henry’s law is valid for low mole fractions. Look at Fig 4.11 and observe 

deviations from the ideal behavior! 
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Here component 2 is the solute on the left hand side of Fig. 4.11: 

 

   (4.27) 

kH is the Henry constant. 

In the same range the Raoult´s law applies to the solvent (component 1): 

      

    [like (3.18)] 

  

The two equations are similar. There is a difference in the constants. p1* has an 

exact physical meaning (the vapor pressure of pure substance) while kH does 

not have any exact meaning. 

 Summing up, in a dilute solution the Raoult´s law is valid for the solvent 

and Henry´s law is valid for the solute. 

 

 

 

 

 

22 xkp H 
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4.6 Solubility of gases 

The solution of gases in liquids are generally dilute, so we can use Henry´s law. 

The partial pressure of the gas above the solution is proportional to the mole 

fraction in the liquid phase.  

 Usually the mole fraction (or other parameter expressing the composition) 

is plotted against the pressure. If Henry´s law applies, this function is a straight 

line. See examples of the solubilty of some gases on Fig. 4.12! 

 

Fig. 4.12 

 In case of N2 and H2 the function is linear up to several hundred bars 

(Henry´s law applies), in case of O2 the function is not linear even below 100 

bar. 

 Absorption – desorption: Temperature dependence of solubility of gases  

 Le Chatelier´s principle: a system in equilibrium, when subjected to a 

perturbation, responds in a way that tends to minimize its effect. See its 

applications below. 

 Solution of a gas is a change of state: gas  liquid. It is usually an 

exothermic process. The increasing temperature decreases the solubility. 
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 Increase of temperature: the equilibrium is shifted towards the 

endothermic direction  desorption. The endothermic process works against 

the desorption, decreasing the temperature. 

 The solubility of gases usually decreases with increasing the temperature. 

4.7 Thermodynamic stability of solutions 

One requirement for the stability is the negative Gibbs function of mixing. The 

negative Gibbs function of mixing does not mean necessary the solubility (see 

Fig. 4.13d diagram, next figure).   

 There exists another requirement: the second derivative of the Gibbs free 

energy of mixing with respect to composition must be positive. 

 Some examples of the dependence of molar Gibbs free energy as a 

function of mole fraction are presented in Fig. 4.13. 

 

 

 

 

Summing up, the conditions for stability are 
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   0Gmmix    (4.28)

 and  0
x

G

p,T

2
mmix

2





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




 
  (4.29) 

  

 Limited miscibility: see diagram 4.13d. Its critical part is in red. Follow 

the countour of this part from left to right!  First thedirection of the tangent (the 

first derivative) is positive but ite absolute value decreases, then it is zero and 

have negative signwith increasing absolute value. The change of the forst 

derivative characterizes the second one. The second derivative increases, 

therefore in this mole fraction region the mixture is not stable (4.29), although 

according to (4.28) the mixibility is possible.  

  Look at Fig. 4.14! At the marked points the first derivative changes it sign 

from negative to positive, according to the requirements of (4.29). 

 

Fig. 4.14 

  

 

    Remember! The chemical potential is the partial molar Gibbs function. 
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 Partial molar quantity of Gibbs function of mixing is the change of chemical 

potential when mixing takes place: 1, 2.  The chemical potential of a 

component must be the same in the two phases: 1 must be the same in the 

phase rich in 1 as in the phase rich in 2 according to ther requirement of 

equilibrium, the same applies to 2. 

 Fig. 4.14: The common tangent of the two curves produces 1 and 2 

(method of intercepts, Fig. 3.7).  

4.8 Liquid - liquid phase equilibria 

The mutual solubility depends on temperature. In most cases the solubility 

increases with increasing temperature (thermal motion of molecules increases). 

 We can discribe the miscibility of liquids using the thermodynamic 

definition:  

   mixGm=mixHm-TmixSm<0  

See subsection 3.8 and the definition of the definition of the Gibbs free energy 

of mixing (3.37).  

 We can understand the possibility of mixing at molcular level. The 

components of molecules can interact with some another. These may be 

associates between own ((like) of friend (unlike) molecules. There exist 

equilibria between the individual molecules and the associates. The strengths 

of theswe associates can determine the miscibility.  

 In some cases the miscibility of liquid components is limited. Three types 

exist: 

 Upper critical temperature of miscibility (Fig. 4.15), 

 Lower critical temperature of miscibility (Fig. 4.16), 

 Mixtures with both lower and upper critical temperatures of mixibitily 

(Fig. 4.17) 
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 The backgrounds of the different behavior of the mixtures are the 

chemical properties of molecules and the interactions between the similar 

(“like”) and different (“unlike”) molecules, i.e. the equilibria (molecular 

description). Of course, also the entropy of mixing play role (thermodynamic 

description).  

 Upper (u) critical temperature (tuc) of miscibility (Fig. 4.15) 

 In this case a weak complex is building between the molecules of one of 

the components at low temperature. So the interaction between the “like” 

molecules hinders the mixing. At higher temperatures this weak complex 

dissociates (the equilibrium shifts to the direction of the single molecules). So 

the mole fraction region of miscibility extends with temperature and at tuc the 

miscibility will be complete.  In case of our example, the n-hexane – 

nitrobenzene mixture, the nitrobenzene – nitrobenzene complex is building. 

Pay attention on the low tuc temperature.   

 

Fig. 4.15 

 Upper (l) critical temperature (tlc) of miscibility (Fig. 4.16). 

 In this case the interaction between the molecules of the two components 

(“unlike” molecules) is stronger at lower temperatures than that between the 

“like” molecules. However, with increasing temperature the equilibria between 
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the “unlike” molecules shifts to the individual molecules and the equilibria 

between the “like” molecules shift to their selfassociations, the two phases 

form stepwise from one phase.  One can follow the shifts of the equilibria with 

the narrowing of mole fraction region of one phase. In our example, the 

trimethylamine – water system the trimethylamine molecules cannot associate 

with one another since the trimethyl group is too large.  At higher temperatures 

the water-water association dominates over the trimethylamine - water one.   

 

Fig. 4.16 

 Both lower and upper critical temperatures of mixibitily (Fig. 4.17) 

This is a very special case. Namely, the equilibria formed at lower temperature 

shift to indicidual molecules and at higher temperature stepwise new equlibia 

forms and system consist again from one phase. Such kind systems are rare, the 

nicotine – water system is a well-known example. 
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Fig. 4.17 

4.9 Distribution equilibria 

We discuss the case when a solute is distributed between two solvents, which 

are immiscible.  

 In equilibrium the chemical potential of the solute is equal in the two 

solvents (A and B). 

     (4.30) 

 The chemical potential can be expressed as 

  

     [see (3.25)]

 The activity can be expressed in terms of concentration: 

    

      (4.31) 

 In this case the standard chemical potential depends on the solvent, too: 

 

      (4.32) 
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Rearraging 

    

 

The quantities on the right hand side depend on temperature only (i.e. they do 

not depend on composition). We can denote it by a constant 

 

 

 

Therefore 

     (4.33) 

 

The constant  

 

is also constant. K is the distribution constant (depends on T only).  

 In case of dilute solutions (Henry range, see subsection 4.5) we can use 

concentrations instead of activities. 

 

     (4.34) 

 

Kc is the distribution constant in terms of concentration. 

 Extraction: the processes based on distribution. 

Calculation of the efficiency of extraction in a lab 

 We assume that the solutions are dilute and their volume does not change 

during extraction. (The two solvents do not dissolve each other at all: Fig. 4.18).  

The component for extraction is solved in volume V in concentration c0, the 

solution is called mother liquor. The component concentration is after the first 

extraction step in volume V’ 
,
1c . The remaining concentration in V is c1. 
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. 

 Material balance for the component to be extracted: 

  

The distribution constant is 

    

 

Based on the last equations 

 

     (4.35) 

 

 

The constant   (4.36) 

   

is called  extraction coefficient. With this 

  

     (4.37) 

 

Repeating the extraction with the same amount of solvent: 
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After two steps  

 

 

After N repetitions 

 

 

     (4.38) 

4.10 Three component phase diagrams 

For three component liquid systems (one phase) according to the phase rule 

(subsection 2.11): F = C – P + 2 = 5 – P,  F maybe four. If p and T are kept 

constant, two degrees of freedom still remain: two mole fractions (xC = 1 - xA – 

xB).  

 Triangular coordinates are used for phase diagrams of three component 

systems: an equilateral triangle is suitable for representing the whole mole 

fraction range. Each composition corresponds to one point. Look at Fig. 4.19! 

Pay attention on the order of the components and the directions of the mole 

fractions! 

 Fig. 4.19 is a simple example, how to find a point on this kind diagrams. 

Let xA = 0.2 and xB = 0.5! 
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 How to use this diagram? We draw a parallel line with the line opposite 

the apex of the substance (orange line for xA, blue for xB). Their crossing point 

corresponds to the given composition.  The value of xC is given by a horizontal 

line through the crossing point.  

 

Reading the composition on the triangle diagram 

 That means to find the composition of the mixture at a given P point of 

the triangle diagram. See Fig. 4.20! 
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 For solving the task draw parallel lines with the lines opposite the apexes 

of the corresponding substances. The points where the broken lines cross the 

axes, gives the mole fractions. 

 A and B components are only partially miscible but both are completely 

miscible with C (Fig. 4.21) 

 

 The point P on Fig. 4.21 is the isothermal critical point of miscibility. 

curve on this diagram is the boundary of the two-phase reregion. The series of 

lines show the composition of the two phases there exist equilibrium. Along 

these curves both phases are present. Their ratio can calculated with the level 

rule (see subsection 3.9 and equation 3.43). 

Miscibility in three component sytems 

 1. A and B are only partially miscible but both are completely miscible 

with C. The point P on Fig. 4.21 is the isothermal critical point of miscibility. 

The curve on this diagram is the boundary of the two-phase reregion. The 

series of lines show the composition of the two phases there exist equilibrium. 

Along these curves both phases are present. Their ratio can calculated with the 

level rule (see subsection 3.9 and equation 3.43). 
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 2. A and B are completely miscible but both are partially miscible with C. 

Case a, see Fig. 4.22! 

 

Case b, see Fig. 4.23! 
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 Compare the relative positions of the one-phase abd two-phase areas on 

Figs. 4.22 and 4.23! 

 3. All the three components are partially miscible with one of them 

Case a, see Fig. 4.24! 

 

 

Case b, see Fig. 4.25, where even three-phase regions exist!    
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4.11 Activities and standard states 

Expression for the chemical potential is 

    (like 3.25) 

 

Left hand side the first term is the standard activity, the second one is the 

dimensionsless activity. 

1.) Ideal gases the activity is   (partial pressure per standard 

pressure) 

 Standard state: standard pressure and ideal behavior. 

2.) Real gases (see subsection 3.7).  The activity for ideal gases is defined with 

fugacity (see equations 3.27 and 3.28):  

    

      (4.39) 

 

 Ideal solution of real gases: the interaction between molecules cannot be 

neglected but the same interactions are assumed between unlike molecules as 

between like molecules. 
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 Lewis – Randall rule:     (4.40) 

This is  Dalton’s law (3.31) extended through the multiplier fugacity constant 

(). 

 Standard state:   

   p  1 bar; yi  1; i  1; fi  1 bar. 

Expression of the chemical potential for real gases according to (4.40) 

  

      (4.41) 

Compare to (3.27)! 

3.) Solutions1: the component is regarded as solvent. 

    Raoult´s law is applied. 

The chemical potential is like 

 

      (4.42) 

 

Standard state defines the pure liquid at p0 pressure with 

  xi  1; xi  1; ai  xi 

This defines the pure liquid at p0 pressure. 

. 

4.) Solutions2: the component is regarded as solute.  Henry´s law is applied. 

The composition is expressed in terms of concentration or molality.  

 Case A: concentration, c (mol/dm3) is applied. 

 

      (4.43) 
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 i
c is the activity coefficient applied to concentration, c0 is the unit 

concentration (1 mol/dm3).  The infinite dilution means in this case: 

 ci   0, ci  1 and ai  ci. 

We cannot choose the infinite dilute solution as standard state  because as ai 

approaches 0, its logaritm approaches -.   

 The standard state is a state where the activity is 1, i.e. ci   1 mol/dm3,  

ci  1 and ai  ci/c
0. This is a hypotetical (fictive) state: unit concentration 

beside infinite diluted solution. 

 Case B: molality (mi, mol solute / kg solvent), 

  

       (4.44) 

 

where i
m  is the activity coefficient applied to molality, m0is the  unit molality 

(1 mol/kg). 

 The standard state is fictive since unit molality and ideal behavior should 

be required. 

4.12 The thermodynamic equilibrium constant 

Chemical affinity  is the electronic property by which dissimilar chemical 

species are capable of forming chemical compounds.                                                              

The following considerations are applied: 

 1.) In equilibrium at a given temperature and pressure the Gibbs function 

of the system has a minimum;  

 2.)The Gibbs function can be expressed in terms of  chemical potentials:      

G = ni i; 
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 3.) The chemical potentials depend on the composition (i= 0
i + RT ln ai).   

In a reaction mixture there is one composition, where the Gibbs function has 

its minimum. This is the equilibrium composition. 

 Qualitative discussion      

 Three cases are shown below (Fir. 4.26). 

 

Fig. 4.26. 

We can conclude from this figure: 

  Curve a: the equilibrium lies close to pure products. The reaction „goes to 

completion”; 

 Curve b: the equilibrium corresponds to case where reactants and 

products present in similar proportions; 

 Curve c: the equilibrium lies close to pure reactants. The reaction „does 

not go”. 

 Quantitative discussion 

A: reactant, B: product 

       (4.45) 

 

Three cases exist depending on composition: 
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  Case 1: The reaction can go from left to right when G decreases: 

       (4.46) 

 

   

  Case 2: The reaction can go from right to left: 

 

       (4.47) 

 

  Case 3: The reaction stops at an equilibrium composition: 

     

       (4.48) 

 

  Rearraging  (4.48), at equilibrium 

 

       (4.49) 

Reaction Gibbs function is 

       (4.50) 

  

Since 

     

 Subsituting (4.49) for the chamical potential  

 

 

 Rearranging 

  

 

Applying the properties of the logarithm function 

     (4.51) 
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As result 

(4.52)  

The equilibrium constant is now  

     

     (4.53) 

For example for 

 

the equilibrium constant is 

 

 

 The equilibrium constant K depends on temperature only. K does not 

depend on either pressure or concentrations. (The concentrations or partial 

pressures take up values to fulfil the constancy of K).  

 The equilibrium constant is a very important quantity in thermodynamics 

that characterizes several types of equilibria of chemical reactions:  

      in gas, liquid, and solid-liquid phases; 

      in different types of reactions between  

      neutral and charged reactants; 

The equlibrium constant can be expressed using several parameters like 

pressure, mole fraction, (chemical) concentration, molality.               

4.13 Chemical equilibrium in gas phase 

Applications of the equilibrium constant (4.53). 

For ideal gases  

Therefore 

 

     (4.54a) 
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From this 

     (4.54b) 

 

and so 

     (4.55) 

where  is the change in number of molecules and 

    

     (4.56) 

 

Example for calculation of 

  The reaction:  SO2 + ½ O2 = SO3 

    = 1 – 0.5 – 1 = - 0.5 

 Kp is also constant because (p0)- is constant for a given reaction. The 

dimension of Kp is  pressure , e.g. Pa–1/2, bar–1/2  for the previous reaction.   

The value of Kp depends on the unit we use for pressure.  

 For real gases  

      (4.57) 

(4.57) is the Lewis-Randall rule (see also 3.28).  Applying the Lewis-Randell 

rule: 

      

     (4.58) 

      

or 

 

     (4.59) 

 

Extending (4.55) for real gases: 

 

  
 BA

A

B
0

A

B p
p

p
K










  
 0

p pKK

A

B

A

B
p p

p
K 








0
ii

0
i

i p

py

p

f
a




  
     BA

AA

BB

0

AA

BB p
py

py
K 






 

 
 

  













 

 0

A

B

A

B p
py

py
K

A

B

A

B

  



 0

p pKKK



4. Advanced chemical thermodynamics 183 

© Grofcsik András, Billes Ferenc www.interkonyv.hu  

     (4.60) 

 K depends only on T, K and Kp depend on p but their product deos not 

depend. 

 K is the „true” equlibrium constant.  

 Example: the pressure effect of the multipliers in (4.60) in the equlibrium 

constant of the gas reaction 1/2 N2 + 3/2 H2 = NH3   at 450 0C (see table). 

 

 

 

 

 

 

 

  

 Strong effect of fugacity coefficient is observed at higher pressures only. 

Observe the decreasing of K with pressure! 

4.14 Effect of pressure on equilibrium 

The equilibrium constant is independent of pressure. On the other hand, the 

equilibrium composition in a gas reaction can be influenced by the pressure. 

 We assume that the participants are ideal gases. According to (4.54a) 

 

 

 

 

 

 We express K with gas mole fractions considering Dalton’s law (pi = yi·p): 

p(bar) K Kp·103 
(bar)-1 

K·103 

10 0.995 6.6 6.6 

30 0.975 6.8 6.6 

50 0.95 6.9 6.6 

100 0,89 7,3 6,5 

300 0.70 8.9 6.2 
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where 

 

     (4.62) 

and 

 

     (4.63) 

The reaction quotient expressed in gas mole fractions: 

 

     (4.64) 

 

 Ky is not constant if the number of molecules changes but it is 

dimensionless. The effect of pressure on equilibrium composition depends on 

the sign of . 

 If   0 (the number of molecules increases), increasing the pressure, 

decreases Ky, that is, the equilibrium shifts towards the reactants (- is 

exponent!). 

 If   0 (the number of molecules decreases), increasing the pressure, 

favours the products  (Ky increases).  

 In equilibrium gas reactions: increasing the pressure, the equilibrium 

shifts towards the direction where the number of molecules decreases, 

according to the Le Chatelier’s principle: a system at equilibrium, when 

subjected to a perturbation, responds in a way that tends to minimize its effect 

(subsection 4.6). 
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 Reactions where the volume decreases at constant  pressure ( < 0) are 

to be performed at high pressure. For example for performing the reaction 

N2 +3H2 = 2NH3  ( = -2) several hundred bars are used. 

 Reactions where the volume increases at constant pressure ( > 0) are 

to be performed at low pressure or in presence of an inert gas. 

4.15 Gas - solid chemical equilibrium 

Heterogeneous reaction: at least one of the reactants or products is in a 

different phase.  

 The gas - solid heterogeneous reactions are very important in industry.  

For example:  

   C(s) + CO2 (g) = 2 CO (g) 

      CaCO3(s) = CaO (s) + CO2 (g)  

 1. In most cases the solid substance does not have any measurable vapor 

pressure. The reaction takes place on the surface of the solid phase.  

 We derive the equilibrium constant in the same way as before but we 

consider the differences in the expression of chemical potential of gas and solid 

substances. The Gibbs function of the heterogeneos reaction is in this case 

 

   

 

The gas components are assumed ideal gases: 

    

 

where 

 

 

The solid components are pure solids, their concentration does not change: 
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   i(s) = Gmi(s)  

Assume that the molar Gibbs function of a solid does not depend on pressure.  

Pressure dependence of G: 

   dG = Vdp – SdT     (see 2.19a) 

and 

       (see 2.19b) 

 

In case of solids the molar volume (Vm) is small. 

Example: C(graphite): 

 

 

 For such kind solid components we neglect the pressure dependence of , 

and we take the chemical potential equal to the molar Gibbs function of pure 

substance:  

 

 

 

 

 

 

 

 

We apply (4.54a) and at last 

 

     (4.65) 
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    a) For the calculation of rG
0 (change of Gibbs free energy during the 

reaction) the standard molar Gibbs functions of all the participants have to be 

taken into account.    

 b) Only the partial pressures of the gas components are included in the 

equilibrium constant.  

 Example reaction:                               

   C(s) + CO2 (g) = 2 CO (g=0 

    

 

 

 

The change of the Gibbs function in the reaction: 

 

 

 

 

 2. If a solid component has a measurable vapor pressure 

 Example: 

    H2(g) + I2 (s,g) = 2 HI(g)  

The iodine is present both in the solid and the gas phase (it sublimates). 

a) We regard the reaction as homogeneous gas reaction: 

  

  

 

 

 

Since the vapor pressure of iodine (
2Ip ) is constant, it can merged into K. It 

remains constant as long as solid iodine is present in the system. 
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 b) We regard the reaction as heterogeneous. Therefore the iodine as solid 

component is left out from the equilibrium constant. K’ differs from K! 

 

 

 

 

 Both methods lead to the same result.  

    For the calculation of K, the standard chemical potential of gaseous iodine 

is used.  For the calculation of K´, the standard chemical potential of solid 

iodine is used.  

4.16 Chemical equilibria in liquid state 

Three cases will be discussed. 

 

1. The components are present in high concentrations 

    (e.g. reactions between organic liquids).  

    Such equilibrium reaction is the formation of esters. Equations (4.52) and 

(4.53):  

 

 

The composition is expressed in terms of mole fraction: 

 

 

       (4.66a) 

 

     (4.66b) 
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   xKKK    (4.66c) 

 

     (4.66d) 

  

In ideal solutions Kx = const. 

 In real solutions, too, Kx may be constant if the dependence of activity 

coefficients on mole fraction is  not significant (K = const.). 

 Example: 

 CHCl2COOH + C5H10 = CHCl2COOC5H11  at 1000C 

Dichloro acetic acid +  pentene   =       ester 

 Varying the acid - pentene molar ratio between 1 and 15, it was obtained  

 Kx  2.25. 

Formation of esters from acids and alcohols are typical equlibrium reactions: 

R COOH + R’OH  = RCOOR’ + H2O 

 

     (4.67) 

 

 2. Reactions in solvents 

 The solvent does not take part in the reaction. Gases and solids, too, can 

react in the liquid phase. The composition is expressed in terms of 

concentration, c or molality, m. 

 if chemical concentrations  are used: 

 

 

     (4.68) 
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     (4.69) 

where 

 

     (4.70) 

 

 If molalities are used: 

     (4.71) 

 

 and     

     (4.72) 

 

 In dilute solutions (c < 1 mol/L) Kc, or Km are practically constant if 

neutral molecules take part in the reaction.   If ions also take part, the activity 

coefficients must be taken into account.  

 3. Equilibrium in electrolytes 

 Even very dilute solutions cannot be regarded ideal (because of the strong 

electrostatic interaction between ions). Still Kc can be frequently used as 

equilibrium constant (it is assumed that the activity coefficients are 

independent of concentration, so K is taken constant). 

 Dissociation equilibrium 

   KA = K+ +  A-  (4.73) 
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 K+: cation, A
-
: anion, c0 : initial concentration,  : degree of dissociation,  

0    1. 

 Applying (4.74) and the expressions for the concentrations of the 

components in the equilibrium 

     (4.74) 

  

The degree of dissociation () is the number of dissociated molecules per the 

number of all molecules (before dissociation).  depends on concentration (it is 

higher in more dilute solutions). 

 Below we introduce some important applications. 

 1. Autoprotolytic equilibrium of water  

   H2O+H2O = H3O
+ +OH- 

The equilibrium constant is 

   Kw = a(H3O
+)·a(OH-) (4.75) 

 The activity of water is missing because it is in great excess, its 

concentration is practically constant, and can be merged into the equilibrium 

constant. 

 The negative decimal logarithm of the activity of H3O
+ is marked with 

(and called) pH and is used for the expression of the acidity:  

   pH = -lg a(H3O+)   (4.76) 

At 25 0C:  Kw  10-14.  If the activities of H3O
+ and OH- are equal, 10-7 mol/dm3 

at 25 0C, the solution is neutral, pH=7. Acidic solutions have pH values below 

7, 

basic solutions higher than 7.   

 2. Ionization equilibrium of acids 

   HA+H2O = H3O
+ +A- (4.77) 

The ionization constant is 
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     (4.78) 

 

Its negative decimal logarithm is used: 

   pKa = - lgKa  (4.79) 

 pKa characterizes the strength of the acid. Strong acids have small pKa,                          

Examples:. for HF it is 3.17, for HNO3 it is -1.64.  

 3. Ionization equilibrium of bases 

 Ionization of bases:  

   B+H2O = BH+ +OH-
 (4.80) 

 The dissociation constant is 

  

     (4.81) 

 

The negative decimal logarithm is used: 

    pKb = - lgKb  (4.82) 

 Ka is also frequently used for bases, stronger basis - higher pKa, it is for 

CH3NH2 10.64, for NH4OH 9.23. The corresponding equilibrium is 

    BH+ +H2O = B + H3O
+  (4.83) 

The dissociation constant 

    

      (4.84) 

 

The product of the two constants: 

   Ka·Kb = Kw  (4.85) 

So for bases at 25 0C 

   pKa=14-pKb 

Therefore their pKa values are higher then 7 (see the mentioned examples). 
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4.17 Temperature dependence of the equilibrium constant 

The following equation shows that the equilibrium constant depends on 

temperature only. The standard chemical potentials depend on temperature 

only: 

      (see 4.52) 

  

 

Deriving lnK with respect to temperature 

    

 

Using the derivation of ratios  

   

     

 

The result is the Gibbs-Helmholtz equation (see equation 3.52 and before). 

 We apply this operation to rG
0, that is we substitute the negative 

standard reaction enthalpy for the temperature derivative for the standard Gibbs 

function of reaction. So the temperature dependence of equilibrium constant is 

given by 

van´t Hoff equation for the temperature dependence of the equlibrium constant.  

(d-s can be used instead of the sign of partial derivation because K depends on 

T only): 

     (4.86) 

 

 It is the standard reaction enthalpy that determines the temperature 

dependence of K.  The sign of dlnK/dT is the same as the sign of dK/dT 

(because dlnK/dT = 1/K· dK/dT). 

KlnRTG0
r 

T

G

R

1
Kln

0
r
















T

G

TR

1

T

Kln 0
r

 
222

p

p
T

H

T

GTS

T

G
T
G

T

T
T

G

































2

0ln

RT

H

dT

Kd r



194 Physical Chemistry 

www.interkonyv.hu © Grofcsik András, Billes Ferenc 

 In case of endothermic reactions (rH
0 > 0) the right hand side is positive. 

With increasing temperaure the right hand side decreases.  So dlnK/dT and so 

also lnK decreases with increasing temperature. Since K is the denominator on 

the left hand side, K increases with increasing temperature (see Fig. 4.27). 

 In case of exothermic reactions (rH
0 <0) K decreases (but lnK increases!) 

with increasing temperature (see Fig. 4.27). 

 We can undestand these results with Le Chatelier’s principle (see also 

subsection 4.6): The equilibrium shifts towards the endothermic direction if the 

temperature is raised, and in the exothermic direction if the temperature is 

lowered, endothermic: heat is absorbed form the environment, exothermic: heat 

is transmitted to the environment.  

 For exothermic reactions low temperature favours the equilibrium but at 

too low temperatures the rate of reaction becomes very low. We must find an 

optimum temperature.  

 For exact integration of van´t Hoff equation we must know the 

temperature dependence of the standard enthalpy of reaction.  

 In a not too large temperature range the reaction enthalpy is assumed 

constant. Then integration is easy:   

    

     (4.87) 

 

 If we plot the logarithm of the equilibrium constant against the reciprocal 

of the absolute temperature, we optain a linear function. The slope is 

determined by the standard reaction enthalpy.  

 Fig. 4.27 introduces the lnK - 1/T diagram for an endothermic (a) and for 

an exothermic (b) reaction. 
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Fig. 4.27 

 


