

Unit – I RDBMS with DB2

St Joseph’s Degree & Pg College 1

Unit - I: Database Concepts & Basics of DB2

Database Concepts and Definitions: Data, Information, metadata, Database. DBMS, Advantages of

Database Management System.

Basics of DB2: Introduction to DB2, DB2 Environment, Architecture of DB2, DB2 Physical Objects

Data Base Installation, Understanding Command Line & GUI Features of IBM DB2, Usage of Control Center.

Database Concepts and Definitions:

Data:

➢ Data is one of the most critical assets of any business. Data is defined as collection of raw facts &

figures about a place, person, and thing or object involving in the transactions of an organization

and can be stored in a computer. These Facts & Figures that can be analyzed or used in an effort

to gain knowledge or make some business decisions;

➢ Data can be represented in various forms like text, numbers, images, audio, video, graphs,

document files, etc.

➢ Data is one of the important assets of the modern business; it becomes relevant based on the

context.

➢ Examples: your name, age, height, weight, etc are some data related to you. A picture, image,

file, pdf etc can also be considered data.

Information

➢ Information can be defined as processed data that increases the knowledge of end user and it is

the result of processing raw data to reveal its meaning.

➢ Information is the set of data that has been organized for direct utilization of mankind,

as information helps users in their decision making process. However, in common usage, the

terms "data" and "information" are used synonymously.

➢ Good, accurate and timely information is used in decision making.

➢ The quality of data influences the quality of information.

➢ Information can be presented in the tabular form, bar graph or an image.

➢ Examples: Time Table, Merit List, Report card, Headed tables, printed documents,

Metadata
➢ Metadata is a special data that describes the characteristics or properties of the data.

➢ Metadata consists of name, data type, length, min, max, description, special constraints.

http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

Unit – I RDBMS with DB2

St Joseph’s Degree & Pg College 2

➢ Metadata allows the database designers and users understand what data exists and what data

means.

➢ Metadata is generally stored in a repository.

➢ For example, data dictionaries and repositories provide information about the data elements in a

database. Digital cameras store meta-data in the image files that include the date the photo was

taken along with camera settings (see EXIF). Digital music files contain meta-data such as song

title and artist name.

Database:

➢ Database can be defined as organized collection of logically related information so that it can be

easily accessed, managed and updated.

➢ Databases support storage and manipulation of data it makes data management easy.

➢ Database can be of any size and complexity.

➢ Data are structured so as to be easily stored, manipulated, and retrieved by users. It can be

organized into rows, columns and tables, and it is indexed to make it easier to find relevant

information.

➢ In computing, databases are sometimes classified according to their organizational approach.

➢ There are many different kinds of databases, ranging from the most prevalent approach,

the relational database, to a distributed database, cloud database or NoSQL database.

➢ Examples: Collection of information about all the students of a college, a big company can store

the data of all activities of the organization which helps in decision making.

DBMS:
➢ Database management system (DBMS) can be defined as reorganized collection of logically

related data and a set of programs used for creating, storing, updating and retrieval of data from

the database. DBMS acts as a mediator between end-user and the database.

➢ In other words, a database management system, or simply DBMS, is a set of software tools that

control access, organize, store, manage, retrieve and maintain data in a database. In practical use,

the terms database, database server, database system, data server, and database management

systems are often used interchangeably.

➢ DBMS is actually a software tool used to perform any kind of operation on data in database; it

enables data to be shared and integrates many users’ view of the data.

➢ DBMS eliminates most of file system’s problems.

➢ A few examples of popular dbms - MySQL, Oracle, Sybase, MS-Access and IBM DB2 etc.

http://www.yourdictionary.com/exif#computer
https://searchsqlserver.techtarget.com/definition/information
https://searchoracle.techtarget.com/definition/distributed-database
https://searchcloudapplications.techtarget.com/definition/cloud-database

Unit – I RDBMS with DB2

St Joseph’s Degree & Pg College 3

RDBMS:

➢ An RDBMS is a DBMS designed specifically for relational databases, therefore, RDBMSes are a

subset of DBMSes.

➢ A relational database refers to a database that stores data in a structured format,

using rows and columns. This makes it easy to locate and access specific values within the

database. It is "relational" because the values within each table are related to each other.

➢ Most well known DBMS applications fall into the RDBMS category. Examples include Oracle

Database, MySQL, Microsoft SQL Server, and IBM DB2.

Types of DBMS:

1. Hierarchical - The hierarchical model organizes its data using a tree structure. The root of the tree is

the parent followed by child nodes. A child node cannot have more than one parent, though a parent

can have many child nodes.

https://techterms.com/definition/dbms
https://techterms.com/definition/relational_database
https://techterms.com/definition/database
https://techterms.com/definition/row
https://techterms.com/definition/column
https://techterms.com/definition/table
https://techterms.com/definition/application

Unit – I RDBMS with DB2

St Joseph’s Degree & Pg College 4

2. Network DBMS - this type of DBMS supports many-to-many relations. This usually results in complex

database structures. RDM Server is an example of a database management system that implements

the network model.

In 1969, CODASYL (Committee on Data Systems Languages) released its first specification about the

network data model.

3. Relational DBMS - The relational data model is simple and elegant. It has a solid mathematic

foundation based on sets theory and predicate calculus and is the most used data model for

databases today. Examples of relational database management systems include MySQL, Oracle, and

Microsoft SQL Server database.

4. Object Oriented Relation DBMS - The Object-Relational (OR) model is very similar to the relational

model; however, it treats every entity as an object (instance of a class), and a relationship as an

inheritance. Some features and benefits of an Object-Relational model are: Support for complex, user

defined types

Advantages of a DBMS:

➢ Improved data sharing: A database is designed as a shared resource. Authorized users are granted

permission to use the database, and each user is provided one or more user views. DBMS provides
better access to data and better-managed data.

➢ Improved data security: When number of users increases to access the data, the risk of data security
increases. But, DBMS provides a framework for better enforcement of data privacy and security
policies. A database can be accessed only by proper authentication usually by verifying login and
password.

➢ Better data integration: DBMS integrates the many different users' views into a single data
repository. This gives clear picture of the organization's operations. It becomes much easier to see
how actions in one segment of the company affect other segments.

➢ Improved decision making: Now a day business success depends on decision making which is based
on quality information generated by databases. In DBMS, better-managed data and improved data
access make it possible to generate quality information, on which better decisions are based.

➢ Improved data access: The DBMS makes it possible to produce quick answers to any queries. A query
is a request or a question put to the DBMS for data manipulation or retrieval. Without any
programming experience, one can retrieve and display data very easily. The language used to write
queries is called Structured Query Language (SQL). For example, records from EMP table can be
displayed using the query “SELECT * FROM EMP”

➢ Minimized data inconsistency: Data inconsistency exists when different versions of the same data
appear in different places. In a DBMS, by eliminating this data redundancy, we can improve data
consistency. For example, if a customer address is stored only once, updating that becomes simple.

➢ Program-Data Independence: The separation of data description (metadata) from the application
programs that use the data is called data independence. With the database approach, data
descriptions are stored in a central location called the repository. This allows an organization’s data
to change without changing the application programs that process the data.

Unit – I RDBMS with DB2

St Joseph’s Degree & Pg College 5

Basics of DB2

Introduction to DB2:

➢ DB2 is a product of IBM’s Relational Database Management System for MVS (Multiple Virtual Storage

– Mainframe Platform) Operating system.

➢ DB2 is designed to store, analyze and retrieve the data efficiently.

➢ DB2 database supports Object Oriented features and non relational structure with XML.

➢ IBM Db2 is a family of hybrid data management products offering a complete suite of AI-empowered

capabilities designed to help you manage both structured and unstructured data on premises as well

as in private and public cloud environments.

➢ DB2 is built on an intelligent common SQL engine designed for scalability and flexibility.

History of DB2:

The name DB2, or IBM Database 2, was first given to the Database Management System or DBMS in 1983

when IBM released DB2 on its MVS mainframe platform. It was originally released by IBM as the

company’s first commercially available relational database. Initially DB2 was developed for specific

platform of IBM. In 1990, it was developed as a Universal Database (UDB) DB2 Server, which can run on

any authoritative operating systems such as Linux, UNIX, and Windows.

“DB2” was used to indicate a shift from hierarchical databases—such as the Information

Management System (IMS) popular at the time—to the new relational databases. DB2 development

continued on mainframe platforms as well as on distributed platforms.1 Figure 1.1 shows some of the

highlights of DB2 history.

https://www.ibm.com/analytics/relational-database

Unit – I RDBMS with DB2

St Joseph’s Degree & Pg College 6

DB2 Editions:

1. DB2 Enterprise Server Edition (ESE): A multi-user object relational database management system

for complex configurations and large database needs for platforms ranging from Intel to UNIT to

SMPs. ESE offers connectivity and integration for other enterprise DB2 and Informix data sources.

2. DB2 Universal Database Connect Enterprise Edition: Enables local and remote client applications

to create, update, control, and manage DB2 databases and host systems using Structured Query

Language (SQL), DB2 APIs (Application Programming Interfaces), ODBC (Open Database

Connectivity), JDBC (Java Database Connectivity), SQLJ (Embedded SQLJ for Java), or DB2 CLI (Call

Level Interface). In addition, DB2 Connect supports Microsoft Windows data interfaces such as

ActiveX Data Objects (ADO), Remote Data Objects (RDO), and Object Linking and Embedding (OLE)

DB.

3. DB2 Workgroup Server Edition (WSE): A multi-user, object relational DBMS for applications and

data shared in a PC LAN-based workgroup.

4. DB2 Universal Database Personal Edition (PE): A single-user, object-relational database

management system for use on a PC.

5. DB2 Universal Database Express Edition V8.2: A specially tailored full feature relational database

for small and medium business.

6. DB2 Universal Database Connect Application Server Edition: It is identical to the DB2 Connect

Enterprise Server in its technology. It is designed for large 7 scale demanding environments.

7. DB2 Universal Database Connect Unlimited Edition: A unique package offering that allows

complete flexibility of DB2 Connect deployment and simplifies product selection and licensing.

This product contains both DB2 Connect Personal Edition and DB2 Connect Enterprise Edition with

license terms and conditions that allow the unlimited deployment of any DB2 Connect product.

Figure illustrates the different editions and the types of servers they typically run on. By default, DB2

takes advantage of all the processing power it is given. The figure also shows that DB2 is a scalable

product. With the exception of DB2 Everyplace, the functions, features, and benefits of an edition shown

on the bottom of the figure are included in each subsequent edition as you move up the figure. The

following sections provide more detail on the functionality of each edition.

Unit – I RDBMS with DB2

St Joseph’s Degree & Pg College 7

DB2 Environment:

The following figure provides an overview of the DB2 environment. Consider the following when you

review this figure:

Unit – I RDBMS with DB2

St Joseph’s Degree & Pg College 8

1. An Instance

In DB2, an instance provides an independent environment where databases can be created and

applications can be run against them. Because of these independent environments, databases in separate

instances can have the same name. For example, in above Figure the database called MYDB2 is

associated to instance DB2, and another database called MYDB2 is associated to instance myinst.

Instances allow users to have separate, independent environments for production, test, and development

purposes.

When DB2 is installed on the Windows platform, an instance named DB2 is created by default. In the

Linux and UNIX environments, if you choose to create the default instance, it is called db2inst1.

• To create an instance explicitly, use

db2icrt instance_name

• To drop an instance, use

db2idrop instance_name

• To start the current instance, use

db2start

• To stop the current instance, use

db2stop

When an instance is created on Linux and UNIX, logical links to the DB2 executable code are generated.

For example, if the server in Figure 2.4 was a Linux or UNIX server and the instances DB2 and myinst were

created, both of them would be linked to the same DB2 code. A logical link works as an alias or pointer to

another program.

2. The Database Administration Server

The Database Administration Server (DAS) is a daemon or process running on the database server that

allows for remote graphical administration from remote clients using the Control Center. If you don’t

need to administer your DB2 server using a graphical interface from a remote client, you don’t need to

start the DAS. There can only be one DAS per server regardless of the number of instances or DB2 install

copies on the server. Note that the DAS needs to be running at the data server you are planning to

administer remotely, not at the DB2 client. If you choose to administer your data servers using the DSAC,

the DAS is not required.

• To start the DAS, use the following command:

db2admin start

• To stop the DAS, use the following command:

Unit – I RDBMS with DB2

St Joseph’s Degree & Pg College 9

db2admin stop

3. Configuration Files and the DB2 Profile Registries

Like many other RDBMSs, DB2 uses different mechanisms to influence the behavior of the database

management system. These include:

a) Environment variables

b) DB2 profile registry variables

c) Configuration parameters

a). Environment Variables:

Environment variables are defined at the operating system level. On Windows you can create a new entry

for a variable or edit the value of an existing one by choosing Control Panel > Sys-tem > Advanced Tab >

Environment Variables.

The DB2INSTANCE environment variable allows you to specify the current active instance to which all

commands apply. If DB2INSTANCE is set to myinst, then issuing the command CREATE DATABASE mydb

will create a database associated to instance myinst. If you wanted to create this database in instance

DB2, you would first change the value of the DB2INSTANCE variable to DB2.

• To check the current setting of this variable, you can use any of these three commands:

echo %DB2INSTANCE% (Windows only)

set DB2INSTANCE

db2 get instance

• For a list of all available instances in your system, issue the following command:

db2ilist

b). the DB2 Profile Registry:

The word “registry” always causes confusion when working with DB2 on Windows. The DB2 profile

registry variables, or simply the DB2 registry variables, have no relation whatsoever with the Windows

Registry variables. The DB2 registry variables provide a centralized location where some key variables

influencing DB2’s behavior reside.

The DB2 Profile Registry is divided into four categories:

▪ The DB2 instance-level profile registry

▪ The DB2 global-level profile registry

▪ The DB2 instance node-level profile registry

Unit – I RDBMS with DB2

St Joseph’s Degree & Pg College 10

▪ The DB2 instance profile registry

The first two are the most common ones. The main difference between the global-level and the instance-

level profile registries, as you can tell from their names, is the scope to which the variables apply. Global-

level profile registry variables apply to all instances on the server. As we can see from Figure, this registry

has been drawn outside of the two instance boxes. Instance-level profile registry variables apply to a

specific instance.

• To view the current DB2 registry variables, issue the following command from the CLP:

db2set -all

You may get output like this:

 DB2INSTPROF=C:\PROGRAM FILES\SQLLIB

 DB2SYSTEM=PRODSYS

As you may have already guessed, [i] indicates the variable has been defined at the instance level,

while [g] indicates that it has been defined at the global level.

The following are a few other commands related to the DB2 Registry variables.

• To view all the registry variables that can be defined in DB2, use this command:

db2set –lr

c). Configuration Parameters:

Configuration parameters are defined at two different levels: the instance level and the database

level. The variables at each level are different (not like DB2 registry variables, where the same

variables can be defined at different levels).

At the instance level, variables are stored in the Database Manager Configuration file (dbm cfg).

Changes to these variables affect all databases associated to that instance, which is why the

figure shows a Database Manager Configuration file box defined per instance and outside the

databases.

• To view the contents of the Database Manager Configuration file, issue the command:

db2 get dbm cfg

• To update the value of a specific parameter, use

db2 update dbm cfg using parameter value

For example

db2 update dbm cfg using INTRA_PARALLEL YES

Unit – I RDBMS with DB2

St Joseph’s Degree & Pg College

 11

Many of the Database Manager Configuration parameters are now “configurable online,”

meaning the changes are dynamic—you don’t need to stop and start the instance.

At the database level, parameter values are stored in the Database Configuration file (db cfg).

Changes to these parameters only affect the specific database the Database Configuration file

applies to. In Figure we can see there is a Database Configuration file box inside each of the

databases defined.

• To view the contents of the Database Configuration file, issue the command:

db2 get db cfg for dbname

For example

db2 get db cfg for mydb2

• To update the value of a specific variable, use

db2 update db cfg for dbname using parameter value

For example

db2 update db cfg for mydb2 using MINCOMMIT 3

Many of these parameters are configurable online, meaning that the change is dynamic, and you

no longer need to disconnect all connections to the database for the change to take effect.

4. Connectivity and DB2 Directories

In DB2, directories are used to store connectivity information about databases and the servers on

which they reside. There are four main directories and the corresponding commands to set up

database and server connectivity are also included; however, many users find the Configuration

Assistant graphical tool very convenient to set up database and server connectivity.

a). System Database Directory

The system database directory (or system db directory) is like the main “table of contents” that

contains information about all the databases to which you can connect from your DB2 server. As

you can see from Figure, the system db directory is stored at the instance level.

To list the contents of the system db directory, use the command:

db2 list db directory

Any entry from the output of this command containing the word Indirect indicates that the entry

is for a local database, that is, a database that resides on the data server on which you are

working.

Unit – I RDBMS with DB2

St Joseph’s Degree & Pg College

 12

Any entry containing the word Remote indicates that the entry is for a remote database—a

database residing on a server other than the one on which you are currently working.

• To enter information into the system database directory, use the catalog command:

db2 catalog db dbname as alias at node nodename

• For example

db2 catalog db mydb as yourdb at node mynode

b). Local Database Directory

The local database directory contains information about databases residing on the server where

you are currently working. Figure shows the local database directory overlapping the data-base

box. This means that there will be one local database directory associated to all of the data-bases

residing in the same location (the drive on Windows or the path on Linux or UNIX). The local

database directory does not reside inside the database itself, but it does not reside at the

instance level either; it is in a layer between these two.

To list the contents of the local database directory, issue the command:

db2 list db directory on drive / path

where drive can be obtained from the item Database drive (Windows) or path from the item

Local database directory (Linux or UNIX) in the corresponding entry of the system db directory.

c). Node Directory:

The node directory stores all connectivity information for remote database servers. For example,

if you use the TCP/IP protocol, this directory shows entries such as the host name or IP address of

the server where the database to which you want to connect resides, and the port number of the

associated DB2 instance.

• To list the contents of the node directory, issue the command:

db2 list node directory

• To enter information into the node directory, use

db2 catalog tcpip node node_name

remote hostname or IP_address

server service_name or port_number

• For example

db2 catalog tcpip node mynode

Unit – I RDBMS with DB2

St Joseph’s Degree & Pg College

 13

remote 192.168.1.100

server 60000

d). Database Connection Services Directory:

The Database Connection Services (DCS) directory contains connectivity information for host

databases residing on System z (z/OS or OS/390) or System i (OS/400) server. You need to have

DB2 Connect software installed.

• To list the contents of the DCS directory, issue the following command:

db2 list dcs directory

• To enter information into the DCS directory, use

db2 catalog dcs db dbname as location_name

• For example

db2 ctalog dcs db mydb as db1g

5. Databases

A database is a collection of information organized into interrelated objects like table spaces,

tables, and indexes. Databases are closed and independent units associated to an instance.

Because of this independence, objects in two or more databases can have the same name. For

example, Figure shows a table space called MyTablespace1 inside the database MYDB1

associated to instance DB2. Another table space with the name MyTablespace1 is also used inside

the database MYDB2, which is also associated to instance DB2.

You create a database with the command CREATE DATABASE. This command automatically

creates three table spaces, a buffer pool, and several configuration files, which is why this

command can take a few seconds to complete.

6. Table Spaces

Table Spaces are logical objects used as a layer between logical tables and physical containers.

Containers are where the data is physically stored in files, directories, or raw devices. When you

create a table space, you can associate it to a specific buffer pool (database cache) and to specific

containers.

Three table spaces—SYSCATSPACE (holding the Catalog tables), TEMPSPACE1 (system temporary

space), and USERSPACE1 (the default user table space)—are automatically created when you

Unit – I RDBMS with DB2

St Joseph’s Degree & Pg College

 14

create a database. SYSCATSPACE and TEMPSPACE1 can be considered system structures, as they

are needed for the normal operation of your database. SYSCATSPACE contains the catalog tables

containing metadata (data about your database objects) and must exist at all times. Some other

RDBMSs call this structure a “data dictionary.”

A system temporary table space is the work area for the database manager to perform

operations, such as joins and overflowed sorts. There must be at least one system temporary

table space in each database.

The USERSPACE1 table space is created by default, but you can delete it. To create a table in a

given table space, use the CREATE TABLE statement with the IN table_space_name clause. If a

table space is not specified in this statement, the table will be created in the first user-created

table space. If you have not yet created a table space, the table will be created in the

USERSPACE1 table space.

7. Tables, Indexes, and Large Objects

A table is an unordered set of data records consisting of columns and rows. An index is an

ordered set of pointers associated with a table, and is used for performance purposes and to

ensure uniqueness. Non-traditional relational data, such as video, audio, and scanned

documents, are stored in tables as large objects (LOBs). Tables and indexes reside in table spaces.

Chapter 8 describes these in more detail.

8. Logs

Logs are used by DB2 to record every operation against a database. In case of a failure, logs are

crucial to recover the database to a consistent point.

9. Buffer Pools

A buffer pool is an area in memory where all index and data pages other than LOBs are

processed. DB2 retrieves LOBs directly from disk. Buffer pools are one of the most important

objects to tune for database performance.

10. The Internal Implementation of the DB2 Environment

We have already discussed DB2 registry variables, configuration files, and instances. In this

section we illustrate how some of these concepts physically map to directories and files in the

Windows environment.

DB2 Unit - I

St. Joseph’s Degree & PG College 15

Architecture of DB2:

General information about DB2 Architecture and Processes can help you understand detailed

information provided for specific topics. The following figure shows a general overview of the

architecture and processes for IBM® DB2 Version 9.5.

Architecture and Processes Overview

On the client side, either local or remote applications, or both, are linked with the DB2 client library.

Local clients communicate using shared memory and semaphores; remote clients use a protocol such

as Named Pipes (NPIPE) or TCP⁄IP.

DB2 Unit - I

St. Joseph’s Degree & PG College 16

On the server side, activity is controlled by engine dispatch able units (EDUs). In all figures in this

section, EDUs are shown as circles or groups of circles. EDUs are implemented as threads on all

platforms in Version 9.5. DB2 agents are the most common type of EDUs. These agents perform most

of the SQL and XQuery processing on behalf of applications. Prefetchers and page cleaners are other

common EDUs.

A set of subagents might be assigned to process the client application requests. Multiple subagents can

be assigned if the machine where the server resides has multiple processors or is part of a partitioned

database. For example, in a symmetric multiprocessing (SMP) environment, multiple SMP subagents

can exploit the many processors.

All agents and subagents are managed using a pooling algorithm that minimizes the creation and

destruction of EDUs.

Buffer pools are areas of database server memory where database pages of user table data, index

data, and catalog data are temporarily moved and can be modified. Buffer pools are a key determinant

of database performance because data can be accessed much faster from memory than from disk. If

more of the data needed by applications is present in a buffer pool, less time is required to access the

data than to find it on disk.

The configuration of the buffer pools, as well as prefetcher and page cleaner EDUs, controls how

quickly data can be accessed and how readily available it is to applications.

▪ Prefetchers retrieve data from disk and move it into the buffer pool before applications need

the data. For example, applications needing to scan through large volumes of data would have

to wait for data to be moved from disk into the buffer pool if there were no data prefetchers.

Agents of the application send asynchronous read-ahead requests to a common prefetch

queue. As prefetchers become available, they implement those requests by using big-block or

scatter-read input operations to bring the requested pages from disk to the buffer pool. If you

have multiple disks for storage of the database data, the data can be striped across the disks.

Striping data lets the prefetchers use multiple disks at the same time to retrieve data.

▪ Page cleaners move data from the buffer pool back out to disk. Page cleaners are background

EDUs that are independent of the application agents. They look for pages that have been

DB2 Unit - I

St. Joseph’s Degree & PG College 17

modified and write those changed pages out to disk. Page cleaners ensure that there is room in

the buffer pool for the pages being retrieved by the prefetchers.

▪ Without the independent prefetchers and the page cleaner EDUs, the application agents would

have to do all of the reading and writing of data between the buffer pool and disk storage.

DB2 Physical Objects:

Logical Data Modeling and Physical Data Modeling are two tasks that we need to perform to design

a DB2 database.

To design a database, you perform two general tasks. The first task is logical data modeling, and the

second task is physical data modeling. In logical data modeling, you design a model of the data without

paying attention to specific functions and capabilities of the DBMS that stores the data. In fact, you

could even build a logical data model without knowing which DBMS you will use. Next comes the task

of physical data modeling. This is when you move closer to a physical implementation. The primary

purpose of the physical design stage is to optimize performance while ensuring the integrity of the

data.

After completing the logical and physical design of your database, you implement the design.

▪ Logical database design using entity-relationship modeling: Before you implement a database,

you should plan or design it so that it satisfies all requirements. This first task of designing a

database is called logical design.

▪ Logical database design with Unified Modeling Language: UML modeling is based on object-

oriented programming principals. UML defines a standard set of modeling diagrams for all

stages of developing a software system.

▪ Physical database design: The physical design of your database optimizes performance while

ensuring data integrity by avoiding unnecessary data redundancies. During physical design, you

transform the entities into tables, the instances into rows, and the attributes into columns.

Physical database design consists of defining database objects and their relationships.You can create

the following database objects in a Db2® database:

▪ Tables

https://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_logicaldbdesignentityrelationshp.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_logicaldatabasedesignwithuml.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_physicaldatabasedesign.html?view=kc

DB2 Unit - I

St. Joseph’s Degree & PG College 18

▪ Constraints

▪ Indexes

▪ Triggers

▪ Sequences

▪ Views

▪ Usage lists

We can use Data Definition Language (DDL) statements or tools such as IBM® Data Studio to create

these database objects. The DDL statements are generally prefixed by the keywords CREATE or ALTER.

Understanding the features and functionality that each of these database objects provides is important

to implement a good database design that meets your current business's data storage needs while

remaining flexible enough to accommodate expansion and growth over time.

Concepts common to most database objects

▪ Tables

Tables are logical structures maintained by the database manager and are made up of columns

and rows. Db2 databases store persistent data in tables, but there are also tables that are used

for presenting results, summary tables and temporary tables.

▪ Constraints

Within any business, data must often adhere to certain restrictions or rules. For example, an

employee number must be unique. The database manager provides constraints as a way to

enforce such rules.

▪ Indexes

An index is a set of pointers that are logically ordered by the values of one or more keys. The

pointers can refer to rows in a table, blocks in an MDC or ITC table, XML data in an XML storage

object, and so on.

▪ Triggers

A trigger defines a set of actions that are performed in response to an insert, update, or delete

operation on a specified table. When such an SQL operation is executed, the trigger is said to

have been activated. Triggers are optional and are defined using the CREATE TRIGGER

statement.

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.dbobj.doc/com.ibm.db2.luw.admin.dbobj.doc-gentopic1.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.dbobj.doc/doc/c0004098.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.dbobj.doc/doc/c0004111.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.dbobj.doc/doc/c0023327.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.dbobj.doc/doc/c0004113.html?view=kc

DB2 Unit - I

St. Joseph’s Degree & PG College 19

▪ Sequences

A sequence is a database object that allows the automatic generation of values, such as cheque

numbers. Sequences are ideally suited to the task of generating unique key values. Applications

can use sequences to avoid possible concurrency and performance problems resulting from

column values used to track numbers. The advantage that sequences have over numbers

created outside the database is that the database server keeps track of the numbers generated.

A crash and restart will not cause duplicate numbers from being generated.

▪ Views

A view is an efficient way of representing data without the need to maintain it. A view is not an

actual table and requires no permanent storage. A virtual table is created and used.

▪ Cursors

A cursor is used in an application program to select a set of rows and then process that

returned data one row at a time. When a SELECT statement in an embedded SQL application

returns multiple rows of data, you need a mechanism that makes this returned data or result

set available to your application program, one row after another.

▪ Member subsets overview

A member subset is a database object that expresses a relationship between a database alias

and a server list. The server list is composed of a set of members in a Db2 instance.

▪ Usage lists

A usage list is a database object that records each DML statement section that references a

particular table or index. A section is the executable form of the query. Statistics are captured

for each statement section as it executes. Use usage lists when you want to determine which

DML statements, if any, affected a table or index.

Data Base Installation:

To install DB2 on a Windows operating system, complete the following steps:

1. Log on with a user ID that has Administrator authority on Windows.

2. Insert the DB2 product DVD into the DVD drive or use the extracted DB2 installation

image. Windows Autorun starts the launchpad.

3. If you are using Windows Autorun, the installation program should start in 15-30 seconds. If the

installation program does not start, complete one of the following steps:

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.dbobj.doc/doc/c0023175.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.dbobj.doc/doc/c0004106.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.dbobj.doc/doc/c0060560.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.dbobj.doc/doc/c0060914.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.dbobj.doc/doc/c0058647.html?view=kc

DB2 Unit - I

St. Joseph’s Degree & PG College 20

a. In a command prompt, to start the DB2 set up page, go to DVD-ROM\server_folder or go

to web_image_extraction\server_folderand run the setup.exe command.

b. In Windows Explorer, go to DVD-ROM\server_folder or go

to web_image_extraction\server_folder, and double-click the setup.exe file.

4. Where server_folder in the preceding steps is the location of the DB2 installation program.

5. In the DB2 Setup Launchpad, click Install a Product.

6. Click Install New for DB2 Version 10.5 Fix Pack 4 Workgroup, Enterprise and Advanced

Editions.

7. On the welcome page of the DB2 Setup wizard, click Next.

8. On the Software License Agreement page, review and accept the license agreement, and

click Next.

9. On the Select the installation type page, click Typical, and click Next.

10. On the Select the installation, response file creation, or both page, select Install DB2 Server

Edition on this computer and save my settings in a response file.

DB2 Unit - I

St. Joseph’s Degree & PG College 21

11. Enter a response file name or accept the default, and click Next.

12. On the Select the installation folder page, enter a directory or accept the default, and

click Next.

13. On the Select the IBM SSH server installation folder and startup option page, enter a directory

or accept the default, and click Next.

14. On the Set user information for the DB2 Administration Server page, enter the following user

information:

a. Leave the Domain field blank.

b. In the User name field, type the DB2 user ID that you want to use or accept the default.

c. In the Password field, type a password and confirm the password by typing it again in

the Confirm password field.

DB2 Unit - I

St. Joseph’s Degree & PG College 22

15. Select the Use the same account for the remaining DB2 services check box and click Next.

16. On the Configure DB2 instances page, click Next.

17. On the Set up notifications page, clear the Set up your DB2 server to send notifications check

box, and click Next.

18. On the Enable operating system security for DB2 objects page, accept the defaults, and

click Next.

19. The default is to enable operating system security.

20. Note: If you installed DB2 before on this system, and the DB2ADMS group exists, when you

click Next, the following message is displayed:

21. On the Start copying files and create response file page, review the current settings, and

click Finish.

DB2 Unit - I

St. Joseph’s Degree & PG College 23

22. On the Setup is complete page, review the information, and click Next.

23. On the Install additional products page, do not install more products, click Finish. The setup

wizard closes and DB2 First Steps interface opens.

24. Restart the system.

Understanding Command Line & GUI Features of IBM DB2:

The Command Editor interface:

The Command Editor is available as two different interfaces. It can be opened as part of the Control

Center (embedded) or in a stand-alone view. Both versions offer the same set of functions and both

allow you to open multiple Command Editors.

Embedded

Using the Command Editor within the Control Center allows you to control the number of windows

open on your desktop. The Command Editor opens as a tile inside the Control Center. Connections

DB2 Unit - I

St. Joseph’s Degree & PG College 24

made by the Control Center are remembered by the Command Editor and can quickly be selected as

targets for commands and SQL statements.

To open an embedded Command Editor, expand the Control Center object tree until you find a DB2

database for Linux, UNIX, and Windows, z/OS and OS/390 system or subsystem, or IMSplex. Right-click

the object and select Query from the pop-up menu. A Command Editor tile opens in the Control

Center.

Stand-alone

Using the stand-alone Command Editor allows you to execute commands and SQL statements without

opening the Control Center.

To open a stand-alone Command Editor, select Start > Programs > IBM DB2 > Command Line

Tools > Command Editor.

Working in the Command Editor

The Command Editor is a notebook with a page for entering commands and pages for retrieving

results. The appearance of this notebook changes depending on the target for your commands.

DB2 databases

The Command Editor appears as a three page notebook:

1. Commands page. Use this page to enter your commands and SQL statements. Command results

are displayed in the output area of this page. The results of multiple SQL queries or queries

executed as part of a script are also displayed in the output area. The results of a single SQL

query can be returned on the Query Results page. You can also use this page to generate the

access plan for SQL statements. The access plan appears in graphical form on the Access

Plan page.

DB2 Unit - I

St. Joseph’s Degree & PG College 25

2. Query Results page. Use this page to view and work with the results of a single SQL query.

Results are displayed in an editable table. Use the Command Editor page of the Tools

Settings notebook to change this option.

3. Access Plan page. Use this page to view a graphical representation of the access plan for

explainable SQL statements (for example, SELECT, INSERT, and UPDATE). An access plan

indicates the order of operations for accessing requested data.

GUI Features of IBM DB2:

The graphical user interface (GUI) tools enable you to perform your job easily; however, you need to

understand how the GUI works and become familiar with its features. Here are some basic GUI

concepts you should be familiar with.

▪ Start Menu: The Start menu is the starting point for using the GUI Administration tools in

Windows® operating environments. From the Start menu, select IBM DB2 —> General

Administration Tools —> Control Center. You can also start other centers or tools such as the

Journal, the Replication Center, and the Task Center from the Start menu as well as select the

command line tools, the development tools, the monitoring tools, and the Information Center.

▪ Windows: Windows are panels that open and enable you to enter information pertaining to the

action you want to perform, for example, you can type information into fields within a window. In

the DB2 interface, fields that must be filled in are surrounded by a thick red border.

▪ Notebooks: A notebook is used to logically organize data into groups when there is too much

information to fit on one page. The resulting pages are organized with tabs that reflect the

particular page content.

▪ Wizards: Wizards are integrated into the administration tools. They assist you in completing a

single task by stepping you through the task. To select a wizard, from the Control Center window,

select Tools —> Wizards. The wizard task overview on the first page of the wizard lists any

prerequisite steps and briefly describes every page of the wizard.

▪ Advisors: Advisors are integrated into the administration tools. They assist you with more complex

tasks, such as tuning and performance tasks, by gathering information and recommending options

that you may not have considered. You can accept or reject the advice of the advisor. To select an

advisor, from the Control Center window, select Tools —> Wizards.

▪ Launchpads: Launchpads are integrated into the administration tools. They assist you in completing

DB2 Unit - I

St. Joseph’s Degree & PG College 26

high-level tasks by stepping you through a set of tasks in the right order. Launchpads can call

wizards or other dialogs to accomplish the high-level task. To select a launchpad, from the Control

Center window, select Tools —> Wizards.

▪ Menu bars: The Menu bar is a special panel that is displayed at the top of the window. It contains

menu options that allow you to access drop-down menus. From the drop-down menus, you can

select menu items. Items in the menu bar include actions that affect the objects in the center you

are using. For example, menu items under Control Center include actions that affect the entire

Control Center.

▪ Toolbars: Toolbars are panels that contain icons representing functions you can perform. Toolbars

are located below the menu bar. To see a brief description of a tool, place your cursor over its icon

and hover help will tell you what function each icon represents. Toolbars provide quick access to

the functions you can perform. The functions can also be selected in the View menu. A Contents

pane toolbar is located below the contents pane. It allows you to tailor the information in the

contents pane.

▪ Object trees: Object trees display the system and database objects graphically in the left navigation

pane, enabling you to see the hierarchical relationship between different objects and to work with

those objects. You can expand the object tree to expose the objects that are contained within the

object. The exposed objects are displayed as folders beneath the object. Each folder represents an

object type. If the object tree is collapsed, the folders contained within the object no longer appear

in the view of the object tree.

▪ Infopops: An infopop is a pop-up window that is displayed when a control in a window or notebook

has focus and you press F1. Holding the mouse cursor over a control in a window or notebook also

causes the infopop to display. Infopops contain a description of the field or control. They may also

list restrictions and requirements or provide instructions. Infopops are disabled or re-enabled from

the General page of the Tools Settings notebook.

▪ Filtering: Filtering enables you to work with a subset of displayed objects in the Control Center.

Two forms of filtering exists. The first form of filtering allows you to create a customized view of

objects which you would like to appear in the Contents pane of the Control Center. You select the

subset of objects by right clicking the object folder in the object tree and selecting Filter —> Create.

The Filter notebook opens allowing you to select which columns you would like to have in your

customized view.

DB2 Unit - I

St. Joseph’s Degree & PG College 27

DB2 GUI tools. It explains what each tool is used for and why you might want to use it. It tells you how

to invoke a tool and presents basic usage information. You can select the following tools from the

toolbar:

➢ Control Center

➢ Replication Center

➢ Satellite Administration Center

➢ Data Warehouse Center

➢ Command Center

➢ Task Center

➢ Information Catalog Center

➢ Health Center

➢ Journal

➢ License Center

➢ Development Center

➢ Information Center

Usage of Control Center:

Among the many talents of the DB2 Control Center includes its capability to control the state of DB2

instances. More specifically, the DB2 Control Center allows you to start and stop an instance, and

thereby take its related databases offline or bring them online. To perform an instance startup or

shutdown, simply highlight the instance in the Control Center, as shown in Figure, and right-click or use

the Selected menu to bring up the list of options.

An installation under Windows provides an IBM DB2 folder from the Start menu’s All Programs list.

Assuming that you retained the default DB2 Copy name of DB2COPY1, navigate through the menus

DB2COPY1 (Default)

➤ General Administration Tools ➤ Control Center to launch the Control Center.

Start and Stop are pretty self-explanatory. When you stop an instance, you see a confirmation dialog

box, which includes a useful option to disconnect any existing connections.

DB2 Unit - I

St. Joseph’s Degree & PG College 28

Tasks from the Control Center:

The following are some of the key tasks that you can perform with the Control Center:

▪ Add DB2 database systems, federated systems, DB2 for z/OS and OS/390® systems,

IMSysplexes, instances, databases, and database objects to the object tree.

▪ Manage database objects. You can create, alter, and drop databases, table spaces, tables,

views, indexes, triggers, and schemas. You can also manage users.

▪ Manage data. You can load, import, export, and reorganize data. You can also gather statistics.

▪ Perform preventive maintenance by backing up and restoring databases or table spaces.

▪ Configure and tune instances and databases.

▪ Manage database connections, such as DB2 Connect™ servers and subsystems.

▪ Manage IMS systems.

▪ Manage DB2 UDB for z/OS and OS/390 subsystems.

▪ Manage applications.

▪ Analyze queries using Visual Explain to look at access plans.

▪ Launch other tools such as the Command Editor and the Health Center.

In many cases, advisors, launch pads, and wizards are available to help you perform these tasks quickly

and easily.

The Control Center interface:

The Control Center interface is available in three different views:

▪ Basic. This view provides core DB2 database functionality, which includes the essential objects,

such as databases, tables, and stored procedures.

▪ Advanced. This view displays all objects and actions available in the Control Center. This is the

view that you should select if you are working in an enterprise environment and want to

connect to DB2 for z/OS or IMS.

▪ Custom. This view gives you the ability to tailor the object tree and the object actions to your

specific needs.

DB2 Unit - I

St. Joseph’s Degree & PG College 29

You can select or change your view by choosing Tools from the menu bar and selecting Customize the

Control Center. You can then use your Control Center view to work with the various folders and the

objects that they contain (the objects within a folder are called folder objects).

https://youtu.be/Pjvwm4rC5Ok - basics

https://youtu.be/O8CZXCpUyz8 - Architecture

https://youtu.be/2AtSEHC6iAQ - installation

https://youtu.be/Ns3h5wM7_64 - basics and sample db

https://youtu.be/a2UjLxVzxCQ - IBM DB2 Installation on Windows System

https://youtu.be/flMDot7Uqq8 - How to create a database in IBM DB2

https://youtu.be/Pjvwm4rC5Ok%20-
https://youtu.be/O8CZXCpUyz8
https://youtu.be/2AtSEHC6iAQ
https://youtu.be/Ns3h5wM7_64
https://youtu.be/a2UjLxVzxCQ
https://youtu.be/flMDot7Uqq8

UNIT - II

Data Modeling & Relational Database Design Concepts

Data Modeling: Data Model, Purpose of Data Models, Entity Relationship Model: Entities, Attributes &

Relationships.

Relational Database Design Concepts: Defining a Relation, Keys, Entity Integrity and Referential Integrity

Concepts, Functional dependencies, Normalization, Normal Forms, Codd's Rules, De-normalization.

Data Modeling

Data Model:

Database design focuses on how the database structure will be used to store and manage end-

user data. Data modeling, the first step in designing a database, refers to the process of creating

a specific data model for a determined problem domain. (A problem domain is a clearly defined

area within the real-world environment, with a well-defined scope and boundaries that will be

systematically addressed.) Data Model is like architect's building plan which helps to build a

conceptual model and set the relationship between data items. Within the database

environment, a data model represents data structures and their characteristics, relations,

constraints, transformations, and other constructs with the purpose of supporting a specific

problem domain.

▪ A data model is a relatively simple representation, usually graphical, of more complex real-

world data structures. A model’s main function is to help you understand the complexities

of the real-world environment.

▪ Data modeling helps in the visual representation of data and enforces business rules,

regulatory compliances, and government policies on the data.

▪ Data Models ensure consistency in naming conventions, default values, semantics,

security while ensuring quality of the data.

▪ Data model emphasizes on what data is needed and how it should be organized instead

of what operations need to be performed on the data.

▪ Data modeling is an iterative, progressive process. You start with a simple understanding

of the problem domain, and as your understanding increases, so does the level of detail

of the data model. When done properly, the final data model effectively is a “blueprint”

with all the instructions to build a database that will meet all end-user requirements.

An implementation-ready data model should contain at least the following components:

▪ A description of the data structure that will store the end-user data

▪ A set of enforceable rules to guarantee the integrity of the data

▪ A data manipulation methodology to support the real-world data transformations

The Purpose of Data Model: The major goals of using data model are -

▪ Ensures that all data objects required by the database are accurately represented.

Omission of data will lead to creation of faulty reports and produce incorrect results.

▪ A data model helps design the database at the conceptual, physical and logical levels.

▪ Data Model structure helps to define the relational tables, primary and foreign keys and

stored procedures.

▪ It provides a clear picture of the base data and can be used by database developers to

create a physical database.

▪ It is also helpful to identify missing and redundant data.

Advantages of Data model:

▪ The main goal of a designing data model is to make certain that data objects offered by

the functional team are represented accurately.

▪ The data model should be detailed enough to be used for building the physical database.

▪ The information in the data model can be used for defining the relationship between

tables, primary and foreign keys, and stored procedures.

▪ Data Model helps business to communicate the within and across organizations.

▪ Data model helps to documents data mappings in ETL process

▪ Help to recognize correct sources of data to populate the model

Entity Relationship (ER) Model:

In the mid 1970’s, Peter Chen proposed the entity-relationship (E-R) data model. This was to be

an alternative to the relational, CODASYL, and hierarchical data models. He proposed thinking of

a database as a collection of instances of entities.

Entity-Relationship Model:

An entity–relationship model (E-R model) is a systematic way of describing and defining a

business process. An -ER model is typically implemented as a database. The E-R model defines

the conceptual view of a database, and is based on the notion of real-world entities and

relationships among them. While formulating real-world scenario into the database model, the

E-R Model creates entity set, relationship set, general attributes and constraints.

The development of an entity-relationship model for an application domain is the first step of the

conceptual view during which the process - and implementation-independent architecture of the

data of the application domain is established.

▪ The application domain, described by the problem statement, is scrutinized for its business

object types, the relationships between them, and for business constraints. As a result of

the scrutiny, an entity-relationship model is established visualizing and structuring the

business object types of the application domains as entity types; illustrating the relationship

types between the entity types resulting from the business relationship types of the

application domain; and modeling the constraints for the entity types and relationship types

imposed by the business constraints.

▪ The entity-relationship model is the basis for all subsequent design steps. A wrong assumption for

the entity- relationship model will produce incorrect results for the subsequent steps. The

development of the entity-relationship model is not a one-time affair.

▪ The entity-relationship model is maintained constantly and changed as the subsequent steps reveal

errors or discover undocumented business object types, business relationship types, or business

constraints. If the problems found concern undocumented items of the application domain or items

not properly described in the problem statement, the problem statement must be corrected as well.

It should be corrected by the domain expert.

ER diagram-
• ER diagram or Entity Relationship diagram is a conceptual model that gives the graphical

representation of the logical structure of the database.

• It shows all the constraints and relationships that exist among the different components.

Components of E-R Model - Entities, Attributes and Relationships:

The relational data model uses formal terms to define its concepts. We use formal relational terminology

like: attribute, domain, tuple, relation, schema, candidate key, primary key and foreign key.

Entity:

• An entity set is a set of same type of entities.

• An entity refers to any object having-

o Either a physical existence such as a particular person, office, house or car.

o Or a conceptual existence such as a school or a company.

• An entity can be represented by rectangle symbol in E-R diagram

• An entity set may be of the following two types-

o Strong entity:- An entity that has primary key of its own

o Weak entity:-: an entity that depends for primary key on another table

Example-

 Consider the following Student table-

 Roll_no Name Age

1 Akshay 20

2 Rahul 19

3 Pooja 20

4 Aarti 19

 This complete table is referred to as “Student Entity Set” and each row represents an “entity”.

Representation of above table in ER Diagram-

 The above table may be represented as ER diagram as-

 Here,

• Student is an entity , Roll_no, Name and Age are attributes .

• Roll_no is a primary key that can identify each entity uniquely.

• Thus, by using student’s roll number, a student can be identified uniquely.

1. Strong Entity Set-
• A strong entity set is an entity set that contains sufficient attributes to uniquely identify all its

entities. in other words A strong entity set possess its own primary key.

• Primary key of a strong entity set is represented by underlining it.

• It is represented using a single rectangle.

2. Weak Entity Set-

• A weak entity set is an entity set that does not contain sufficient attributes to uniquely identify
its entities.

• In other words, a primary key does not exist for a weak entity set. However, it contains a partial
key called as a discriminator.

• Discriminator can identify a group of entities from the entity set, Discriminator is represented
by underlining with a dashed line.

• A weak entity set do not possess its own primary key.

• It is represented using a double rectangle.

• In the above example the entity EMPLOYEE has an attribute E-id that can qualify as primary key

therefore it is a strong entity.

• The entity DEPENDENT is not possessing any attribute that can qualify as a primary key therefore

it is a weak entity

• As per the relational Database rules every entity should possess a primary key therefore primary

key for DEPENDENT entity was build using the primary key of EMPLOYEE entity.

Example-

 Consider the following ER diagram-

 In this ER diagram,

• One strong entity set “Building” and one weak entity set “Apartment” are related to each other.

• Strong entity set “Building” has building number as its primary key.

• Door number is the discriminator of the weak entity set “Apartment”.

• This is because door number alone cannot identify an apartment uniquely as there may be sev-
eral other buildings having the same door number.

• Double line between Apartment and relationship set signifies total participation.

• It suggests that each apartment must be present in at least one building.

• Single line between Building and relationship set signifies partial participation

• It suggests that there might exist some buildings which has no apartment.

EMPLOYEE HAS

E-id

E-name
E-add D-Name

D-age

DEPENDENT

To uniquely identify any apartment,

First, building number is required to identify the particular building.

Secondly, door number of the apartment is required to uniquely identify the apartment.

 Thus,

Primary key of Apartment:

= Primary key of Building + Its own discriminator

= Building number + Door number

Differences between Strong entity set and Weak entity set-

Strong entity set Weak entity set

A single rectangle is used for the representation
of a strong entity set.

A double rectangle is used for the representa-
tion of a weak entity set.

It contains sufficient attributes to form its pri-
mary key.

It does not contain sufficient attributes to form
its primary key.

A diamond symbol is used for the representation
of the relationship that exists between the two
strong entity sets.

A double diamond symbol is used for the repre-
sentation of the identifying relationship that ex-
ists between the strong and weak entity set.

A single line is used for the representation of the
connection between the strong entity set and
the relationship.

A double line is used for the representation of
the connection between the weak entity set and
the relationship set.

Total participation may or may not exist in the
relationship.

Total participation always exists in the identify-
ing relationship.

Attribute:

An attribute is a characteristic of data. A real-world data feature, modeled in the database, will

be represented by an attribute. An attribute has to have a name, so you can refer to that feature,

and the name has to be as relevant as possible for that feature.

For example: for a person the attributes can be: Name, gender, DateOfBirth. Informal terms used

to define an attribute are: column in a table or field in a data file.

• Each table can have one or more attributes. Attributes are classified into different cate-

gories

o Required and optional attributes

o Primary key attribute

o Composite and simple attribute

o Single-valued or Multi-valued attributes

o Derived attributes

o Primary key(Identifier)

Required and Optional Attribute:

▪ Required attribute: An attribute that must have a value. These attributes does not allow

NULL values

▪ Optional attribute: An attribute that may or may not have a value. These attributes allows

NULL values

 Figure 1

▪ In the above figure the attributes S-No, S-Name, S-Addr, S-DOB are required attributes and the

attribute S-Phone is an optional attribute.

Primary Key Attribute (Identifier):

▪ One or more attributes that uniquely identify an entity instance

▪ Primary key attributes of an entity are underlined by solid line in ER diagrams.

▪ Each entity has only one primary key.

▪ It does not allow null values

▪ In the above example S-No is a primary key for STUDENT entity

Composite and Simple Attribute:

▪ Composite attribute: An attribute that can be further subdivided to yield additional attributes

STUDENT

S-Name
S-Addr S-DOB

S-No

S-Phone

▪ Simple attributes: An attribute that cannot be further subdivided

In the figure 1 S-Name attribute is a composite attribute so it is sub-divided into FName, MName,

LName and the transformed entity is shown

Figure 2

Single-valued and Multi-valued attributes:

• Single-valued attribute is an attribute that can take single value only.It need not be a simple at-

tribute it can also be composite.

• Multi-valued attributes are attributes that can have many values. They are shown by a double line

connecting the attribute to the entity.

 Example:

In the above example mob_no and Email_id are multi-valued attributes and the remaining attributes are

single valued attributes

Derived attributes:

▪ An attribute whose value is derived from the other attributes value.

▪ They are referred as computed attributes

▪ Saves storage space but requires CPU cycles

▪ It can be represented by dashed oval symbol.

STUDENT

S-Addr
S-DOB

S-No

S-Phone

FName

MName

LName

S-Name

▪ In the above diagram age is derived attributed which is deriving from DOB. the value of the

age is a derived from DOB therefore age is derived attribute.

Relationships:

Relationship defines an association among several entities. A relationship set is a set of same type

of relationships. When the basic data model components were introduced, three types of rela-

tionships among data were illustrated: one-to-many (1:M), many-to-many (M:N), and one-to-one

(1:1). The ER model uses the term connectivity to label the relationship types. The name of the

relationship is usually an active or passive verb. A relationship set is a set of relationships of same

type.

 A relationship set may be of the following two types-

1.Strong Relationship Set- A strong relationship exists between two strong entity sets. It is repre-

sented using a diamond symbol.

 2. Weak Relationship Set- A weak or identifying relationship exists between the strong and weak

entity set. It is represented using a double diamond symbol.

Example- ‘Enrolled in’ is a relationship that exists between entities Student and Course.

Connectivity and Cardinality of a Relationship:

The ER Model uses the term connectivity to label the type of relationship. There are three types of

relationships based on cardinality

One-One Relationship (1:1):

• Implies one instance of entity set can be related to only one instance of another entity set

▪ An employee can be head of only one DEPARTMENT

▪ A DEPARTMENT will have one and only one HOD

One-Many Relationship (1: M):

• Implies one instance of entity set can be related to many instances of another entity set

▪ The department offers zero or more courses

▪ Each course is offered by one and only one department.

Many- Many Relationship (M:N):

▪ Implies many instances of entity set can be related to many instances of another entity set.

EMPLOYEE

DEPARTMENT HOD

DEPARTMENT

COURSE Offers

CUSTOMER

PRODUCT

Purchases

• A customer may purchase one or more products.

• A product can be purchased by more than one customer.

Existence Dependence:

• An entity is said to be existence dependent if it can exist in the database only when it is associ-

ated with another entity occurrence.

• In implementation terms, an entity is existence dependent if it has a mandatory foreign key.

• If an entity can exist apart from one or more related entities, then it is referred as existence-in-

dependent.

-

• In the above example the entity DEPENDENT is existence dependent on the entity EMPLOYEE.

Relationship Strength:

• Relationship strength is based on the primary key of the participating entities.

Weak(Non-identifying) Relationships

A weak relationship also known as a non-identifying relationship, exists if the participating entities

have attributes that qualify as Primary Key.

EMPLOYEE

DEPENDENT Has

COURSE

 CLASS

Crs-Id

Crs-name Class-id

Class-name

Generate
s

In the above example both the entities are having attributes that qualify themselves as primary key, there-

fore the relationship GENERATES is weak relationship.

Strong (Identifying) Relationships:

A strong relationship also known as a identifying relationship, exists if one of the participating entity does

not have any attributes that qualify themselves as Primary Key. So the primary key of such an entity is

formed using the primary key of other participating entities.

In the above example the entity DEPENDENT does not have any attribute that can become primary key.

So the attribute E-id of EMPLOYEE becomes the primary key for the DEPENDENT entity.

Relationship Participation in ER Diagram:

• Participation in an entity relationship is either optional or mandatory.

• Optional participation means that one entity occurrence does not require a corresponding en-

tity occurrence in a particular relationship.

• Mandatory participation means that one entity occurrence requires a corresponding entity oc-

currence in a particular relationship.

Relationship Degree:

• A relationship degree indicates the number of entities or participants associated with a relation-

ship.

• There are three types of relationships based on the degree, they are

o Unary relationship

o Binary relationship

o Ternary relationship

Unary Relationship:

▪ In unary relationship the entity has relationship with itself.

EMPLOYEE Has

E-id

E-name
E-add D-Name

D-age

DEPENDENT

▪ One instance of the entity is related with another instance of the same entity.

▪ It is also called recursive relationship.

▪ Employee manages zero or more employees.

▪ Each employee is managed by only one manager

Binary Relationship:

▪ A binary relationship exists when two entities are associated in a relationship.

▪ A binary relationship can be weak or strong based on the participating entities.

▪ Each customer can purchase one or more products.

▪ Each product can be purchased by more than one

Ternary relationship: A simultaneous relationship that exists between instances of three entities is

called ternary relationship.

Case - 1:

EMPLOYEE

Manage
s

CUSTOMER

PRODUCT

Purchases

DOCTOR

PATIENT

DR
UG

Prescripti
on

Pres_Date

▪ A Doctor writes one or more prescriptions.

▪ A Patient may receive one or more prescriptions.

▪ A Drug may appear in one or more prescriptions.

▪ Prescription is an associative entity since many to many relationships exist between participating

entities.

Case- 2:

▪ A Vendor may supply one or more Parts to a Warehouse.

▪ A Warehouse may receive one or more Parts from Vendor.

▪ A Part may be supplied by one or more Vendor to the Warehouse.

▪ Supplies is an associative entity since many to many relationships exist between participating

entities.

VENDOR

WAREHOUSE

 PART

Supplies

ShippingMode Unit_cost

Relational Database Design Concepts

Defining a Relation:

A relation is the core of the relational data. According to introduction to database systems a relation on

domains D1, D2, …, Dn (not necessarily distinct) consists of a heading and a body.

▪ The heading consists of a fixed set of attributes A1, A2, …, An, such that each attribute Ai corre-

sponds to exactly one of the underlying domains Di (i=1, 2, …, n).

▪ The body consists of a time-varying set of tuples, where each tuple in turn consists of a set of

attribute-value pairs (Ai:vi) (i=1, 2, …, n), one such pair for each attribute Ai in the heading. For

any given attribute-value pair (Ai:vi), vi is a value from the unique domain Di that is associated

with the attribute Ai.

▪ A relation degree is equivalent with the number of attributes of that relation. The relation from

Figure 2.2 has a degree of 6. A relation of degree one is called unary, a relation of degree two

binary, a relation of degree three ternary, and so on. A relation of degree nis called nary.

▪ Relation cardinality is equivalent with the number of tuples of that relation. The relation from

Figure 2.2 has a cardinality equal to 5. The cardinality of a relation changes with time, whereas

the degree does not change that often.

Keys:

A DBMS key is an attribute or set of an attribute which helps you to identify a row(tuple) in a relation(ta-

ble). They allow you to find the relation between two tables. Keys help you uniquely identify a row in a

table by a combination of one or more columns in that table.

Example:

Employee ID FirstName LastName

11 Andrew Johnson

22 Tom Wood

33 Alex Hale

In the above example, employee ID is a primary key because it uniquely identifies an employee record. In

this table, no other employee can have the same employee ID.

Here, are reasons for using Keys in the DBMS system.

• Keys help you to identify any row of data in a table. In a real-world application, a table could con-

tain thousands of records. Moreover, the records could be duplicated. Keys ensure that you can

uniquely identify a table record despite these challenges.

• Allows you to establish a relationship between and identify the relation between tables

• Help you to enforce identity and integrity in the relationship.

DBMS has following seven types of Keys each have their different functionality:

1. Super Key

2. Primary Key

3. Candidate Key

4. Foreign Key

5. Composite Key

1. Super Key-

• A super key is a set of attributes that can identify each tuple uniquely in the given relation.

• A super key is not restricted to have any specific number of attributes.

• Thus, a super key may consist of any number of attributes.

 Example- Consider the following Student schema-

Student (rollno , name , gender , age , address , class , section)

 Given below are the examples of super keys since each set can uniquely identify each student

in the Student table-

• (rollno , name , gender , age , address , class , section)

• (class , section , rollno)

• (class , section , rollno , gender)

• (name , address)

NOTE- All the attributes in a super key are definitely sufficient to identify each tuple uniquely in

the given relation but all of them may not be necessary.

2. Candidate Key-

A minimal super key is called as a candidate key.
OR

A set of minimal attribute(s) that can identify each tuple uniquely in the given relation is
called as a candidate key.

 Example-

 Consider the following Student schema-

Student (rollno , name , gender , age , address , class , section)

 Given below are the examples of candidate keys since each set consists of minimal attrib-

utes required to identify each student uniquely in the Student table-

• (class , section , rollno)

• (name , address)

 NOTES-

 All the attributes in a candidate key are sufficient as well as necessary to identify each tuple

uniquely.

• Removing any attribute from the candidate key fails in identifying each tuple uniquely.

• The value of candidate key must always be unique.

• The value of candidate key can never be NULL.

• It is possible to have multiple candidate keys in a relation.

• Those attributes which appears in some candidate key are called as prime attributes.

3. Primary Key-

A primary key is a candidate key that the database designer selects while designing the data-
base.

OR
Candidate key that the database designer implements is called as a primary key.

NOTES-

• The value of primary key can never be NULL.

• The value of primary key must always be unique.

• The values of primary key can never be changed i.e. no updating is possible.

• The value of primary key must be assigned when inserting a record.

• A relation is allowed to have only one primary key.

Remember-

4. Alternate Key-

 Candidate keys that are left unimplemented or unused after implementing the primary key
are called as alternate keys.

OR
Unimplemented candidate keys are called as alternate keys.

5. Foreign Key-

An attribute ‘X’ is called as a foreign key to some other attribute ‘Y’ when its values are depend-

ent on the values of attribute ‘Y’.

• The attribute ‘X’ can assume only those values which are assumed by the attribute ‘Y’.

• Here, the relation in which attribute ‘Y’ is present is called as the referenced relation.

• The relation in which attribute ‘X’ is present is called as the referencing relation.

• The attribute ‘Y’ might be present in the same table or in some other table.

 Example-

 Consider the following two schemas-

Here, t_dept can take only those values which are present in dept_no in Department table

since only those departments actually exist.

NOTES-

 Foreign key references the primary key of the table.

• Foreign key can take only those values which are present in the primary key of the referenced

relation.

• Foreign key may have a name other than that of a primary key.

• Foreign key can take the NULL value.

• There is no restriction on a foreign key to be unique.

• In fact, foreign key is not unique most of the time.

• Referenced relation may also be called as the master table or primary table.

• Referencing relation may also be called as the foreign table.

6. Composite Key-

A primary key comprising of multiple attributes and not just a single attribute is called as a

composite key.

If a table do have a single columns that qualifies for a Candidate key, then you have to select 2

or more columns to make a row unique. Like if there is no EmployeeID or SSN columns, then

you can make FullName + DateOfBirth as Composite primary Key. But still there can be a narrow

chance of duplicate row.All super keys can’t be candidate keys but its reverse is true. In a

relation, number of super keys are more than number of candidate keys.

Example:

Student{ID, F_name, M_name, L_name, Age}

Here only ID can be primary key because the name, age and address can be same but ID can’t

be same.

Constraints in DBMS-

• Relational constraints are the restrictions imposed on the database contents and opera-

tions.

• They ensure the correctness of data in the database.

Entity Integrity and Referential Integrity Concepts:

In a relational data model, data integrity can be achieved using integrity rules or constraints. Those rules

are general, specified at the database schema level, and they must be respected by each schema instance.

If we want to have a correct relational database definition, we have to declare such constraints.

If a user attempts to execute an operation that would violate the constraint then the system must

then either reject the operation or in more complicated situations, perform some compensating action

on some other part of the database. This would ensure that the overall result is still in a correct state.

Entity Integrity Constraint-

Entity integrity constraint specifies that no attribute of primary key must contain a null value in any

relation. This is because the presence of null value in the primary key violates the uniqueness property.

The justification for the entity integrity constraint is:

▪ Database relations correspond to entities from the real-world and by definition entities in the

real-world are distinguishable, they have a unique identification of some kind .

▪ Primary keys perform the unique identification function in the relational model

▪ Therefore, a null primary key value would be a contradiction in terms because it would be saying

that there is some entity that has no identity that does not exist.

 Example-

 Consider the following Student table-

 STU_ID Name Age

S001 Akshay 20

S002 Abhishek 21

S003 Shashank 20

 Rahul 20

This relation does not satisfy the entity integrity constraint as here the primary key contains a

NULL value.

Referential Integrity Constraint-

This constraint is enforced when a foreign key references the primary key of a relation. It specifies

that all the values taken by the foreign key must either be available in the relation of the primary

key or be null. The referential integrity constraint says that if a relation R2 includes a foreign key FK

matching the primary key PK of other relation R1, then every value of FK in R2 must either be equal to

the value of PK in some tuple of R1 or be wholly null (each attribute value participating in that FK value

must be null). R1 and R2 are not necessarily distinct. The justification for referential integrity constraint

is:

o If some tuple t2 from relation R2 references some tuple t1 from relation R1, then tuple t1 must exist,

otherwise it does not make sense.

o Therefore, a given foreign key value must have a matching primary key value somewhere in the ref-

erenced relation if that foreign key value is different from null

o Sometimes, for practical reasons, it is necessary to permit the foreign key to accept null values

 Important Results-

 The following two important results emerges out due to referential integrity constraint-

• We cannot insert a record into a referencing relation if the corresponding record does not ex-

ist in the referenced relation.

• We cannot delete or update a record of the referenced relation if the corresponding record

exists in the referencing relation.

Example-

 Consider the following two relations- ‘Student’ and ‘Department’.

Here, relation ‘Student’ references the relation ‘Department’.

 Student

STU_ID Name Dept_no

S001 Akshay D10

S002 Abhishek D10

S003 Shashank D11

 S004 Rahul D14

 Department

Dept_no Dept_name

D10 ASET

D11 ALS

D12 ASFL

D13 ASHS

Here,

• The relation ‘Student’ does not satisfy the referential integrity constraint.

• This is because in relation ‘Department’, no value of primary key specifies department no. 14.

• Thus, referential integrity constraint is violated.

Functional Dependency:

Functional dependency in DBMS, as the name suggests is a relationship between attributes of a

table dependent on each other. Introduced by E. F. Codd, it helps in preventing data redundancy

and gets to know about bad designs. The functional dependency is a relationship that exists be-

tween two attributes. It typically exists between the primary key and non-key attribute within a

table.

 X → Y

The left side of FD is known as a determinant, the right side of the production is known as a de-
pendent.

For example:

Assume we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address. Here
Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table because if
we know the Emp_Id, we can tell that employee name associated with it.

Functional dependency can be written as:

Emp_Id → Emp_Name

We can say that Emp_Name is functionally dependent on Emp_Id.

There are three Inference Rules (Properties)of functional dependency:

1. Reflexivity: If B is a subset of attributes in set A, then A → B. (by trivial FD)

2. Augmentation: If A → B and C is another attribute, then AC → BC

Applying reflexivity to this rule, we can also say that, AC → B.

3. Transitivity: If A → B and B → C, then A → C.

Advantages of Functional Dependency

• Functional Dependency avoids data redundancy. Therefore same data do not repeat at
multiple locations in that database

• It helps you to maintain the quality of data in the database
• It helps you to defined meanings and constraints of databases
• It helps you to identify bad designs

Normalization:

Normalization:- Normalization is a process for evaluating and correcting table’s

structures to minimize data redundancy thereby avoiding the occurring of data

anomalies.

Database Normalization is a technique of organizing the data in the database.

Normalization is a systematic approach of decomposing tables to eliminate data

redundancy and thereby avoiding data anomalies like Insertion, Update and Deletion. It

is a multi-step process that puts data into tabular form by removing duplicated data from

the relation tables.

Need for Normalization

• To minimize data redundancy

• To avoid data anomalies resulting during insert, update or delete operations.

The Normalization Process

• The objective of normalization is to ensure that each table conforms to the

concept of well-defined relations that satisfy the following characteristics

o Each table represents a single subject

o No data item will be unnecessarily stored in more than one table.

o All nonprime attributes in a table are dependent on the primary key.

o Each table should not exhibit insert, update and delete anomalies.

• Normalization process takes us through the steps that lead us through normal

form to accomplish the above objective.

Anomalies in DBMS:

The problems arise from relations that are generated directly from user views are called anomalies. There

are three types of anomalies that occur when the database is not normalized. These are – Insertion,

update and deletion anomaly.

Example: Suppose a manufacturing company stores the employee details in a table named employee that

has four attributes: emp_id for storing employee’s id, emp_name for storing employee’s name,

emp_address for storing employee’s address and emp_dept for storing the department details in which

the employee works. At some point of time the table looks like this:

emp_id emp_name emp_address emp_dept

101 Rick Delhi D001

101 Rick Delhi D002

123 Maggie Agra D890

166 Glenn Chennai D900

166 Glenn Chennai D004

The above table is not normalized. The problems that we face when a table is not normalized.

▪ Update anomaly: In the above table we have two rows for employee Rick as he belongs to two

departments of the company. If we want to update the address of Rick then we have to update

the same in two rows or the data will become inconsistent. If somehow, the correct address gets

updated in one department but not in other then as per the database, Rick would be having two

different addresses, which is not correct and would lead to inconsistent data.

▪ Insert anomaly: Suppose a new employee joins the company, who is under training and currently

not assigned to any department then we would not be able to insert the data into the table if

emp_dept field doesn’t allow nulls.

▪ Delete anomaly: Suppose, if at a point of time the company closes the department D890 then

deleting the rows that are having emp_dept as D890 would also delete the information of em-

ployee Maggie since she is assigned only to this department.

To overcome these anomalies, we need to normalize the data.

Normal Forms:

Normalization works through a series of stages called normal form. Following are the different normal

forms:-

1. First normal form(1NF)

2. Second normal form(2NF)

3. Third normal form(3NF)

4. Boyce Codd normal form(BCNF)

1. First Normal Form (1NF)

As per First Normal Form, no two Rows of data must contain repeating group of

information i.e each set of column must have a unique value, such that multiple

columns cannot be used to fetch the same row.

• It is performed by the three steps

1. Eliminate the repeating groups.

2. Identifying the primary key

3. Identify all the functional dependencies

Example: Suppose a company wants to store the names and contact details of its employees. It creates a

table that looks like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur
8812121212

9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore
9990000123

8123450987

Two employees (Jon & Lester) are having two mobile numbers so the company stored them in the same

field as you can see in the table above.

This table is not in 1NF as the rule says “each attribute of a table must have atomic (single) values”, the

emp_mobile values for employees Jon & Lester violates that rule.

To make the table complies with 1NF we should have the data like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur 8812121212

102 Jon Kanpur 9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore 9990000123

104 Lester Bangalore 8123450987

2. Second normal form (2NF)

A relation or a table is in second normal form if it is satisfies the following condi-

tions

• In should be in first normal from(1NF)

• Every non-key attribute should fully functionally dependent on the primary

key.

If any relation or table is not satisfying the above conditions it is said not to be

2NF and the following steps are to convert the relation into the second normal

form:-

a. Step:-1 write each key component on a separate line.

b. Step:-2 Assign corresponding dependent attributes

c. Step3: create a separate table for each determinant and its dependencies.

Example: Suppose a school wants to store the data of teachers and the subjects they teach. They

create a table that looks like this: Since a teacher can teach more than one subjects, the table can

have multiple rows for a same teacher.

teacher_id subject teacher_age

111 Maths 38

111 Physics 38

222 Biology 38

333 Physics 40

333 Chemistry 40

Candidate Keys: {teacher_id, subject}

Non prime attribute: teacher_age

The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF because

non prime attribute teacher_age is dependent on teacher_id alone which is a proper subset of

candidate key. This violates the rule for 2NF as the rule says “no non-prime attribute is dependent

on the proper subset of any candidate key of the table”.

To make the table complies with 2NF we can break it in two tables like this:

teacher_details table:

teacher_id teacher_age

111 38

222 38

333 40

teacher_subject table:

teacher_id subject

111 Maths

111 Physics

222 Biology

333 Physics

333 Chemistry

Now the tables comply with Second normal form (2NF).

3. Third Normal form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

• Table must be in 2NF

• Transitive functional dependency of non-prime attribute on any super key should be re-

moved.

Or

• A relation is in third normal form (3NF) if it satisfies the following conditions.

1. The relation should be in 2 NF

2. Transitive dependency between the attributes should not exist.

An attribute that is not part of any candidate key is known as non-prime attribute.

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for each functional

dependency X-> Y at least one of the following conditions hold:

• X is a super key of table

• Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

Example: Suppose a company wants to store the complete address of each employee, they create a table

named employee_details that looks like this:

emp_id emp_name emp_zip emp_state emp_city emp_district

1001 John 282005 UP Agra Dayal Bagh

1002 Ajeet 222008 TN Chennai M-City

1006 Lora 282007 TN Chennai Urrapakkam

1101 Lilly 292008 UK Pauri Bhagwan

1201 Steve 222999 MP Gwalior Ratan

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on

Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any candidate

keys.

https://beginnersbook.com/2015/04/transitive-dependency-in-dbms/
https://beginnersbook.com/2015/04/candidate-key-in-dbms/
https://beginnersbook.com/2015/04/super-key-in-dbms/

Here, emp_state, emp_city & emp_district dependent on emp_zip. And, emp_zip is dependent on emp_id

that makes non-prime attributes (emp_state, emp_city & emp_district) transitively dependent on super

key (emp_id). This violates the rule of 3NF.

To make this table complies with 3NF we have to break the table into two tables to remove the

transitive dependency:

employee table:

emp_id emp_name emp_zip

1001 John 282005

1002 Ajeet 222008

1006 Lora 282007

1101 Lilly 292008

1201 Steve 222999

employee_zip table:

emp_zip emp_state emp_city emp_district

282005 UP Agra Dayal Bagh

222008 TN Chennai M-City

282007 TN Chennai Urrapakkam

292008 UK Pauri Bhagwan

222999 MP Gwalior Ratan

4. Boyce Codd normal form (BCNF)

• It is an advance version of 3NF that’s why it is also referred as 3.5NF. BCNF is stricter than 3NF.

A table complies with BCNF if it is in 3NF and for every functional dependency X->Y, X should

be the super key of the table.

https://beginnersbook.com/2015/04/functional-dependency-in-dbms/

• A table is in Boyce-Codd Normal Form (BCNF) when every determinant in the table is a candi-

date key.

• When a table contains only one candidate key then 3NF and BCNF are equivalent.

• When a table contains more than one candidate key then the table need to be corrected so

that it contains only one candidate key.

Example: Suppose there is a company wherein employees work in more than one department. They store

the data like this:

emp_id emp_nationality emp_dept dept_type dept_no_of_emp

1001 Austrian Production and planning D001 200

1001 Austrian stores D001 250

1002 American design and technical support D134 100

1002 American Purchasing department D134 600

Functional dependencies in the table above:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate key: {emp_id, emp_dept}

The table is not in BCNF as neither emp_id nor emp_dept alone are keys.

To make the table comply with BCNF we can break the table in three tables like this:

emp_nationality table:

emp_id emp_nationality

1001 Austrian

1002 American

emp_dept table:

emp_dept dept_type dept_no_of_emp

Production and planning D001 200

stores D001 250

design and technical support D134 100

Purchasing department D134 600

emp_dept_mapping table:

emp_id emp_dept

1001 Production and planning

1001 stores

1002 design and technical support

1002 Purchasing department

Functional dependencies:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate keys:

For first table: emp_id

For second table: emp_dept

For third table: {emp_id, emp_dept}

This is now in BCNF as in both the functional dependencies left side part is a key.

Normal forms in a nutshell

Codd's Rules:

➢ Dr E.F Codd was a Computer Scientist who invented Relational model for

Database management. Based on relational model, Relation database was

created.

➢ Codd proposed 13 rules popularly known as Codd's 12 rules to test DBMS's

concept against his relational model.

➢ Codd's rule actually define what quality a DBMS requires in order to become a

Relational Database Management System (RDBMS).

➢ Till now, there is hardly any commercial product that follows all the 13 Codd's

rules. Even Oracle follows only eight and half out (8.5) of 13.

The Codd's 12 rules are as follows:

Rule 0:

This rule states that for a system to qualify as an RDBMS, it must be able to manage
database entirely through the relational capabilities.

Rule 1: Information rule

All information (including metadata) is to be represented as stored data in cells of

tables. The rows and columns have to be strictly unordered.

Rule 2: Guaranteed Access

Each unique piece of data (atomic value) should be accessible by: Table Name +
primary key (Row) + Attribute (column).

NOTE: Ability to directly access via POINTER is a violation of this rule.

Rule 3: Systematic treatment of NULL

Null has several meanings, it can mean missing data, not applicable or no value. It

should be handled consistently. Primary key must not be null. Expression
on NULL must give null.

Rule 4: Active Online Catalog

Database dictionary (catalog) must have description of Database. Catalog to be gov-
erned by same rule as rest of the database. The same query language to be used on

catalog as on application database.

Rule 5: Powerful language

One well defined language must be there to provide all manners of access to data.
Example: SQL. If a file supporting table can be accessed by any manner except SQL
interface, then it’s a violation to this rule.

Rule 6: View-Updation rule

All view that are theoretically updatable should be updatable by the system.

Rule 7: Relational Level Operation

There must be Insert, Delete, and Update operations at each level of relations. Set

operation like Union, Intersection and minus should also be supported.

Rule 8: Physical Data Independence

The physical storage of data should not matter to the system. If say, some file sup-

porting table were renamed or moved from one disk to another, it should not affect
the application.

Rule 9: Logical Data Independence

If there is change in the logical structure (table structures) of the database the user

view of data should not change. Say, if a table is split into two tables, a new view
should give result as the join of the two tables. This rule is most difficult to satisfy.

Rule 10: Integrity Independence

The database should be able to conforce its own integrity rather than using other
programs. Key and Check constraints, trigger etc. should be stored in Data Diction-

ary. This also make RDBMS independent of front-end.

Rule 11: Distribution Independence

A database should work properly regardless of its distribution across a network. This
lays foundation of distributed database.

Rule 12: Non-subversion rule

De-Normalization:

The problem with normalization is that as tables are decomposed to conform to

normalization requirements, the number of database tables expands. Therefore, in

order to generate information, data must be put together from various tables. Joining

a large number of tables takes additional input/output (I/O) operations and

processing logic, thereby reducing system speed. Most relational database systems

are able to handle joins very efficiently. However, rare and occasional circumstances

may allow some degree of de-normalization so processing speed can be increased.

De-normalization is the process of taking a normalized database and modifying

table structures to allow controlled redundancy for increased database performance.

1. It is a strategy which involves adding redundant data to a normalized database

to reduce certain types of problems with database queries that combine data

from various tables into a single table.

2. In many cases, denormalization involves creating separate tables or structures

so that queries on one piece of information will not affect any other information

tied to it.

3. The basic criteria for denormalization would be-

• It should reduce the frequency of joins between the tables, and hence making

the query faster.

• Most of the cases, when we have joins on tables, full table scan is performed

to fetch the data. Hence if the tables are huge, we can think of denormali-

zation.

• The column should not be updated more frequently. Also the column should

very small to get rejoined with the table. Huge columns are again overhead

to the table and cost of performance.

• The developer should have very good knowledge of data, when he denormal-

izes it. He should know very clearly about all the factors, frequency of joins

/ access, updates, column and table size etc.

Methods of De-normalization:

1. Adding redundant columns- we can add redundant columns to eliminate fre-

quent joins.

2. Adding Derived columns- it can help to eliminate joins and reduce the time

needed to produce aggregate values.

3. Combining tables- Collapsing the two tables into one can improve performance

by eliminating the join.

4. Repeating groups- These can be stored as nested table within the original ta-

ble.

5. Creating extract tables- It allow users to access extract table directly.

6. Partitioning relations- Instead of combining relations together, decompose

them into a number of smaller and more manageable partitions.

Ex: Adding columns - In this method, only the redundant column which is frequently

used in the joins is added to the main table. The other table is retained as it is.

For example, consider EMPLOYEE and DEPT tables. Suppose we have to generate a

report where we have to show employee details and his department name. Here we

need to have join EMPLOYEE with DEPT to get department name.

4. SELECT e.EMP_ID, e.EMP_NAME, e.ADDRESS, d.DEPT_NAME

5. FROM EMPLOYEE e, DEPT d

6. WHERE e.DEPT_ID = d.DEPT_ID;

But joining the huge EMPLOYEE and DEPT table will affect the performance

of the query. But we cannot merge DEPT with EMPLOYEE. At the same time,

we need to have a separate DEPT table with many other details, apart from

its ID and Name. In this case, what we can do is add the redundant column

DEPT_NAME to EMPLOYEE, so that it avoids join with DEPT and thus increas-

ing the performance.

SELECT e.EMP_ID, e.EMP_NAME, e.ADDRESS, e.DEPT_NAME

FROM EMPLOYEE e;

Now no need to join with DEPT to get the department name to get details. But it

creates a redundancy of data on DEPT_NAME.

Advantages of Denormalization:

➢ Obviously, the biggest advantage of the denormalization process is increased

performance.

➢ It makes retrieval of data easier to express and perform.

➢ Minimizing the need for joins.

➢ Reducing the no.of relations.

➢ Sometimes it makes the database easier to understand.

------<<<<<@@@@@>>>>>-------

Unit – III RDBMS with DB2

1

UNIT - III

Database Objects & DDL, DML & DCL Commands

Database Objects: Database, Tables, Table Spaces, Schema, Views, Indexes, Sequences.

DB2 Data Types, Data Definition Language (DDL), Data Manipulation Language (DML), Data

Control Language (DCL).

Database Objects

Database Objects Overview:

A database is a collection of database objects. We can create a database on one or more database

partitions. A database partition, as its name implies, is part of a database. The below Figure

illustrates database objects in a database created in a single-partition environment (database

partition 0).

1. Database:

A database is a collection of information organized into interrelated objects such as table spaces,

partition groups, and tables. Each database is an independent unit containing its own system

information, temporary space, transaction logs, and configuration files, as illustrated in Figure.

Figure shows two databases, MYDB1 and MYDB2, inside the Instance DB2 in a single-

partition environment (Database Partition 0). The box showing Database Partition 0 is included

for completeness; in a single-partition environment you can ignore this box. Since databases are

Unit – III RDBMS with DB2

2

independent units, object names from different databases can be the same. For example, the

name of the table space MyTablespace1 is used in both databases in the figure.

Figure also shows the three table spaces that DB2 creates by default when you create a database:

SYSCATSPACE, TEMPSPACE1, and USERSPACE1.

To create a database, use the CREATE DATABASE command. To perform operations against

database objects, we first need to connect to the database using the CONNECT statement.

The following are commands to maintain databases in DB2

➢ Find all databases for a certain instance: db2 list database directory

➢ Check for active databases: db2 list active databases

➢ Create database: db2 create db dbname

➢ Drop database: db2 drop db dbname

➢ Start/Activate database: db2 activate db dbname

➢ Deactivate database: db2 deactivate db

➢ Find table structure: db2 describe table

Unit – III RDBMS with DB2

3

Database Partitions:

We can create a single-partition or a multi-partition database, depending on your needs. In a

multi-partition environment, a database partition (or simply partition) is an independent part

of a database containing its own data, indexes, configuration files, and transaction logs.

Database functions are also distributed between all the database partitions. This provides for

unlimited scalability. Multiple database partitions can reside on one physical server; these are

sometimes referred to as logical partitions sharing the resources of the machine.

Figure shows two databases, MYDB1 and MYDB2, in a multi-partition environment with

three database partitions.

Partition Groups: A database partition group is a set of one or more database partitions for

the same database. By grouping database partitions, we can perform database operations at

the partition group level rather than individually on each partition. This allows for database

administration flexibility.

2. Tables:

A table is an unordered set of records, consisting of rows and columns. Each column has a defined

data type, and each row represents an entry in the table. Figure shows an example of a table with

n rows and m columns. The sales_person column with a VARCHAR data type is the first column

in the table, followed by the region column with a CHAR data type, and the year column with an

INTEGER data type. The info column is the mth column in the table and has an XML data type.

Unit – III RDBMS with DB2

4

Table Classification:

Tables in DB2 can be classified as illustrated in following figure 7.10.

a) System Catalog Tables:
DB2 automatically creates system catalog tables when a database is created. They always

reside in the SYSCATSPACE table space. System catalog tables contain information about all

the objects in the database.

For example, when you create a table space, its information will be loaded into one or

more system catalog tables. When this table space is referenced during a later operation, DB2

Unit – III RDBMS with DB2

5

checks the corresponding system catalog tables to see whether the table space exists and

whether the operation is allowed. Without the system catalog tables, DB2 will not be able to

function.

Some of the information contained in system catalog tables includes the following:

▪ Definitions of all database objects

▪ Column data types of the tables and views

▪ Defined constraints

▪ Object privileges

▪ Object dependencies

System catalog tables or views use the SYSIBM, SYSCAT, or SYSSTAT schemas.

▪ The SYSIBM schema is used for the base system catalog tables.

▪ The SYSCAT schema is used for views defined on the system catalog tables. DB2 users

should normally query the SYSCAT views rather than the SYSIBM tables for

information.

▪ The SYSSTAT schema is used for views containing information about database

statistics and is also based on the system catalog tables.

b) User Tables:

User tables are used to store a user’s data. A user can create, alter, drop, and manipulate user

tables.

To create a user table, use the CREATE TABLE statement. You can specify the following:

▪ The name of the table

▪ The columns of the table and their data types

▪ The table spaces where you want the table, index, and long objects to be stored

within the database

▪ The constraints you want DB2 to build and maintain on the table, such as referential

constraints and unique constraints

The following example illustrates the creation of the table myemployees with four columns.

CREATE TABLE myemployees (

 empID INT NOT NULL PRIMARY KEY,

 empname VARCHAR(30) NOT NULL,

 info XML,

 history CLOB)

Once you have created a table, you cannot change the column names or data types; however,

you are allowed to increase the length of VARCHAR columns or add new columns to the end of

Unit – III RDBMS with DB2

6

the table. You can do this with the ALTER TABLE statement. For example, to add the column

address to the table myemployees, use this statement:

ALTER TABLE myemployees ADD COLUMN address CHAR(45)

We cannot remove a column from a table using the ALTER TABLE statement. If you want to

remove a column from a table, you have two choices:

▪ Use a view to hide the column you want removed.

▪ Drop the table and recreate it.

To drop a table and all its contents, use the DROP TABLE statement, for example:

DROP TABLE myemployees

c) Partitioned Tables

With partitioned tables you can now create a table that can span multiple table spaces. In

addition, queries can be directed automatically only to the partitions where the data resides.

For example, if you partition a table based on the month, and a user runs a query that is

calculating the total sales for March, the query need only access the data for March, not the

data for any other month.

d) Default Values:

In the CREATE TABLE statement, you can use the DEFAULT clause for a given column to provide

a default value for the column. This means that when you use an INSERT statement to insert

a row that does not provide a value for the column, the default value specified in the DEFAULT

clause will be used.

For example, let’s say you create the table company with this statement:

CREATE TABLE company (

Unit – III RDBMS with DB2

7

 companyID INTEGER,

 companyName VARCHAR(30),

 city VARCHAR(20) DEFAULT 'TORONTO'

)

e) Using NULL Values:

NULL values represent an unknown state. For example, let’s review the contents of the table

student, which contains NULL values.

-

John and Tom were sick the day of the exam, therefore the teacher put NULL values for their

marks. This is different than giving them a mark of zero. If you issue this statement:

SELECT avg(mark) as average FROM student

The result is:

f) Constraints:
Constraints allow you to create rules for the data in your tables. You can define four types of

constraints on a table.

▪ A unique constraint ensures that no duplicate key values can be entered in the table.

▪ A referential constraint ensures that a value in one table must have a corresponding entry

in a related table.

▪ A check constraint ensures that the values you enter into the column are within the rules

specified when the table was defined.

▪ An informational constraint allows you to enforce or not enforce a constraint.

g) Table Compression:

Unit – III RDBMS with DB2

8

We can compress tables to a certain extent by using the VALUE COMPRESSION clause of the

CREATE TABLE statement. This clause tells DB2 that it can use a different internal format for

the table rows so that they occupy less space.

In a sense, this clause turns on compression for the table; however, you need to specify

another clause, COMPRESS SYSTEM DEFAULT, for each column that you want to compress.

Only the columns whose values are normally NULL or the system default value of 0 can be

compressed. Also, the data type must not be DATE, TIME, or TIMESTAMP. If the data type is a

varying-length string, this clause is ignored. Here’s an example:

CREATE TABLE company (

 company_ID INTEGER NOT NULL PRIMARY KEY,

 name CHAR(10),

 address VARCHAR(30) COMPRESS SYSTEM DEFAULT,

 no_employees INTEGER NOT NULL COMPRESS SYSTEM DEFAULT

)

 VALUE COMPRESSION

h) Materialized Query Tables and Summary Tables:

Materialized query tables (MQTs) allow users to create tables with data based on the results

of a query. The DB2 optimizer can later use these tables to determine whether a query can

best be served by accessing an MQT instead of the base tables. Here is an example of an MQT:

CREATE SUMMARY TABLE my_summary

AS (SELECT city_name, population

 FROM country A, city B

 WHERE A.country_id = B.country_no)

 DATA INITIALLY DEFERRED

 REFRESH DEFERRED

The SUMMARY keyword is optional. The DATA INITIALLY DEFERRED clause indicates that DB2

will not immediately populate the my_summary MQT table after creation, but will populate it

following the REFRESH TABLE statement:

REFRESH TABLE my_summary

i) Temporary Tables:

Temporary tables can be classified as system or user tables. DB2 manages system temporary

tables in the system temporary table space. DB2 creates and drops these tables automatically.

Users don’t have control over system temporary tables.

We create user temporary tables inside a user temporary table space. For example, the

following statement creates a user temporary table space called usrtmp4k.

Unit – III RDBMS with DB2

9

3. Table Spaces:

A table space is a logical object in your database. It is used to associate your logical tables and

indexes to their physical storage devices (containers or storage paths) and physical memory

(buffer pools). All tables and indexes must reside in table spaces.

1. Table Space Classification:

When you create a new database, the database manager creates some default tablespaces for

database. These tables pace are used as a storage for user and temporary data. Each database

must contain at least three table spaces as given here:

1. Catalog tablespace

2. User tablespace

3. Temporary tablespace

▪ Catalog tablespace: It contains system catalog tables for the database. It is named as

SYSCATSPACE and it cannot be dropped.

▪ User tablespace: This tablespace contains user-defined tables. In a database, we have one

default user tablespace, named as USERSPACE1. If you do not specify user-defined tablespace

for a table at the time you create it, then the database manager chooses default user

tablespace for you.

▪ Temporary tablespace: A temporary tablespace contains temporary table data. This

tablespace contains system temporary tablespaces or user temporary tablespace.

▪ System Temporary Table Space: This is used to store all the temporary data during SQL

process such as Sorting, reorganizing, joining etc. There must be at least one Temporary

TS per database; the default one created at the time of database creation is

TEMPSPACE1.

▪ User temporary Table Space: These can be used to store the declares temporary tables.

These are not mandatory, can be created if necessary.

2. Tablespaces and storage management:

Tablespaces can be setup in different ways, depending on how you want to use them. You can

setup the operating system to manage tablespace allocation, you can let the database manager

allocate space or you can choose automatic allocation of tablespace for your data.

The following three types of managed spaces are available:

▪ System-managed space (SMS): This type of table space is managed by the operating

system and requires minimal administration.

▪ Database-managed space (DMS): This type of table space is managed by the

DB2database manager, and it requires some administration.

▪ Automatic Storage: This type of table space can be either SMS or DMS, and the space is

managed by the DB2 database manager, but it requires minimal administration. The

Unit – III RDBMS with DB2

10

database manager determines which containers are to be assigned to the table space,

based upon the storage paths that are associated with the database.

To create a table space, use the CREATE TABLESPACE statement. A table space can be created

with any of these page sizes: 4K, 8K, 16K, and 32K. A corresponding buffer pool of the same page

size must exist prior to issuing this statement.

The following are commands to maintain databases in DB2

➢ To list all tablespaces: list tablespaces;

➢ To list all tablespaces with details: list tablespaces show detail;

4. Schemas:

A schema is a database object used to logically group other database objects together.

Every database object name has two parts:

schema_name.object_name

This two-part name (also known as the fully qualified name) must be unique within the database.

Here are some examples:

db2admin.tab1

mary.idx1

sales.tblspace1

A schema can contain tables, functions, indices, tablespaces, procedures, triggers etc.

For example, you create two different schemas named as "Regular" and "Parttime" for an

"employee" database. You can also create two different tables with the same name

"Employee" where one table has regular information and the other has part time information

of employee. It doesn't have actually two tables with the same name in spite they have two

different schemas "Regular" and "Part time". It facilitates user to work with both without

facing any problem. This feature is useful when there are constraints on the naming of tables.

To create the schema user1, use the CREATE SCHEMA statement as follows:

Unit – III RDBMS with DB2

11

CREATE SCHEMA user1

Or, if you are connected to the database as user1, when you create the first new object using this

connection without explicitly typing the schema name, DB2 will automatically create the schema

user1 and then the object. This assumes you have the appropriate authorization, in this case, the

IMPLICIT_SCHEMA privilege.

The following statement creates the schema user1, followed by the table table1.

CREATE TABLE table1 (mycol int)

You are connected to the database as user1;

you can also create objects under a different schema.

In this case, explicitly indicate the schema name, for example:

CREATE TABLE newuser.table1 (mycol int)

This statement creates a table called table1 in the schema new user. If the schema doesn’t

already exist, it is created.

When you access a database object, you can omit the schema name. Let’s say you are connected

to the database as user1, and you issue the following statement:

SELECT * FROM table1

This statement references table user1.table1.

If the table you want to access is newuser.table1, you must explicitly include the schema name:

SELECT * FROM newuser.table1

You cannot alter a schema, but you can drop it (as long as no objects exist within the schema)

and recreate it with the new definition.

Use the DROP SCHEMA statement to drop a schema:

DROP SCHEMA newuser RESTRICT

We must specify the RESTRICT keyword; it is part of the DROP SCHEMA syntax and serves as a

reminder that you cannot drop a schema unless it is unused.

5. Views:

A view is a virtual table derived from one or more tables or other views. It is virtual because it

does not contain any data, but a definition of a table based on the result of a SELECT statement.

Figure 7.26 illustrates view view1 derived from table table1.

Unit – III RDBMS with DB2

12

A view does not need to contain all the columns of the base table. Its columns do not need to

have the same names as the base table, either. This is illustrated in Figure, where the view

consists of only two columns, and the first column of the view has a different name than the

corresponding column in the base table. This is particularly useful for hiding confidential

information from users. You can create a view using the CREATEVIEW statement. For example,

to create the view view1 shown in Figure, issue this statement.

CREATE VIEW view1 (id, name)

 AS SELECT employee_id, name FROM table1

To display the contents of view1, use the following statement.

SELECT * FROM view1

You can also create views based on multiple tables. The below Figure shows a view created from

two tables.

Here is the corresponding CREATEVIEW statement for the above Figure.

CREATE VIEW view2 (id, name, region)

AS SELECT table1.employee_id, table1.name, table2.region

 FROM table1, table2

 WHERE table1.employee_id = table2.employee_id

With this statement we have combined the information of table1 and table2 into view2, while

limiting access to the salary information.

When you create a view, its definition is stored in the system catalog table SYSCAT.VIEWS. This

table contains information about each view such as its name, schema, whether or not it is read-

only, and the SQL statement used to create the view.

Unit – III RDBMS with DB2

13

When a view is referenced in a query, DB2 reads and executes the view definition from the

SYSCAT.VIEWS table, pulls the data from the base table, and presents it to the users.

To remove a view, use the DROPVIEW statement.

For example, to remove the view view1 use DROP VIEW view1

1. Views Classification:

Views are classified by the operations they allow. There are four classes of views:

a) Deleteable views

b) Updatable views

c) Insertable views

d) Read-only views

In the SYSCAT.VIEWS catalog table, when the value of the column READ-ONLY is Y, this indicates

that the view is read-only; otherwise, it is either a deleteable, updatable, or insertable view. The

Figure shows view2 is a read-only view, but view1 is not. Figure illustrates the relationship

between the different types of views.

a) Deleteable Views:

A deleteable view allows you to execute the DELETE statement against it. All of the

following must be true.

b) Updatable Views:

An updatable view is a special case of a deleteable view. A view is updatable when at least

one of its columns is updatable. All of the following must be true.

You can update view1 using the UPDATE statement, and the changes will be applied to its base

table.

For example, the following statement changes the value of column employee_id to 100 for

records with the name value of Mary in table1.

UPDATE view1 SET id='100' WHERE name = 'Mary';

c) Insertable Views:

An insertable view allows you to execute the INSERT statement against it. A view is

insertable when all of its columns are updatable. For example, view1 fits this rule. The

following statement will insert a row into table1, which is the base table of view1.

Unit – III RDBMS with DB2

14

INSERT INTO view1 VALUES ('200', 'Ben');

d) Read-Only Views:

A read-only view is not deleteable. Its read-only property is also stored in the

SYSCAT.VIEWS table as shown below.

2. Nested Views:

Nested views are ones based on other views, for example:

CREATE VIEW view4

 AS SELECT * FROM view3

In this example, view4 has been created based on view3, which was used in earlier

examples.

The WITHCHECKOPTION clause specified in view3 is still in effect for view4; therefore, the

following INSERT statement fails for the same reason it fails when inserting into view3.

INSERT INTO view4 VALUES ('007','Shawn',201)

When a view is defined with the WITHCHECKOPTION clause, the search condition is

propagated through all the views that depend on it.

6. Indexes:

An index is a data structure that exists physically on disk. It consists of one or more columns in order and

pointers to rows in the table. It is by definition a partial duplication of the data, but is tied to the data by

the DBMS so that an index cannot be different than the data in the table

Indexes are database objects that are built based on one or more columns of a table. They are

used for two main reasons:

▪ To improve query performance. Indexes can be used to access the data faster using

direct access to rows based on the index key values.

Unit – III RDBMS with DB2

15

▪ To guarantee uniqueness when they are defined as unique indexes.

1. Working with Indexes:

To create an index, use the CREATE INDEX statement. This statement requires at a minimum:

▪ The name of the index

▪ The name of the associated table

▪ The columns that make up the index (also known as index keys)

In addition, you can specify the following:

▪ Whether the index is unique (enforce uniqueness for the key values) or non-unique

(allow duplicates)

▪ Which order DB2 should use to build and maintain the key values: ascending (ASC, the

default) or descending (DESC) order

▪ Whether to create INCLUDE columns that are not part of the index key but are columns

often retrieved by your queries

For example, let’s consider the following statement.

CREATE UNIQUE INDEX company_ix

 ON company (company_ID ASC, name DESC)

 INCLUDE (no_employees)

This statement creates a unique index company_ix. This index is associated to the table

company based on the columns company_ID in ascending order and name in descending

order.

In addition, an INCLUDE column no_employees were added to the index definition. This

column does not belong to the index key, that is, the index will not be built and maintained

taking this column into consideration. Instead, an INCLUDE column is useful for performance

reasons.

Once an index has been created, it cannot be modified. To add or remove a key column from

the index, you must drop and recreate the index. To drop an index, use the DROP INDEX

statement.

For example:

DROP INDEX index1

Indexes can improve query performance considerably; however, the more indexes you define

on a table, the more the cost incurred when updating the table because the indexes will also

need to be updated.

2. Clustering Indexes:

Unit – III RDBMS with DB2

16

Clustered indexes are indexes where the actual data in the table is placed at least roughly in

order of the index. If a clustered index exists on a table, DB2 will attempt to insert data in the

order of the clustering index. A clustering index is created so that the index pages physically

map to the data pages. That is, all the records that have the same index key are physically

close together. Figure 7.21 illustrates how index1 works when created as a clustering index

using the CLUSTER clause as follows.

CREATE INDEX index1 ON sales (sales_person) CLUSTER

In the figure, when you issue this query:

SELECT * FROM sales WHERE sales_person = 'Sam'

DB2 would still use index index1 but it requires less I/O access to the disk because the desired

data pages are clustered together on extents 4 and 5.

Advantages of indexes::

To improve performance

To access data faster

To cluster the data

To make sure that particular row is unique

To provide index only to access data

7. Sequences:

A sequence is a database object that allows automatic generation of values. A sequence is a

software function that generates integer numbers in either ascending or descending order,

within a definite range. Unlike identity columns, this object does not depend on any table—the

same sequence object can be used across the database. You use sequence for availing integer

numbers say, for employee_id or transaction_id. A sequence can support SMALLINT, BIGINT,

INTEGER, and DECIMAL data types. A sequence can be shared among multiple applications. A

Unit – III RDBMS with DB2

17

sequence is incremented or decremented irrespective of transactions. To create a sequence, use

the CREATE SEQUENCE statement.

The following parameters are used for sequences:

➢ Data type: This is the data type of the returned incremented value. (SMALLINT, BIGINT,

INTEGER, NUMBER, DOUBLE)

➢ START WITH: The reference value, with which the sequence starts.

➢ MINVALUE: A minimum value for a sequence to start with.

➢ MAXVALUE: A maximum value for a sequence.

➢ INCREMENT BY: step value by which a sequence is incremented.

➢ Sequence cycling: the CYCLE clause causes generation of the sequence repeatedly. The

sequence generation is conducted by referring the returned value, which is stored into the

database by previous sequence generation.

Example:

CREATE SEQUENCE myseq AS INTEGER

 START WITH 1 INCREMENT BY 1

 NO MAXVALUE

 NO CYCLE

 CACHE 5

This statement creates the sequence myseq, which is of type INTEGER. The sequence starts with

a value of 1 and then increases by 1 each time it’s invoked for the next value.

The NO MAXVALUE clause indicates there is no explicit maximum value in which the sequence

will stop; therefore, it will be bound by the limit of the data type, in this case, INTEGER.

The NO CYCLE clause indicates the sequence will not start over from the beginning once the limit

is reached. CACHE 5 indicates five sequence numbers will be cached in memory, and the sixth

number in the sequence would be stored in a catalog table. Sequence numbers are cached in

memory for performance reasons; otherwise, DB2 needs to access the catalog tables constantly

to retrieve the next value in line.

The following table shows different operation we can do on sequences:

Unit – III RDBMS with DB2

18

DB2 Data Types:

A data type indicates what type of data can be saved in a column or variableand how large it can

be. DB2 data types are either:

1. Built-in data types

2. User-defined types (UDTs)

1. DB2 Built-in Data Types:

DB2 provides several built-in data types, which can be classified into the following categories:

a) Numeric

b) String

c) Datetime

d) Extensible Markup Language

Figure 7.8 summarizes the built-in data types supported in DB2.

Unit – III RDBMS with DB2

19

a) Numeric Data Types:

The numeric data types include the following:

▪ Small integer (SMALLINT) - uses the least amount of storage in the database for each

value. The data value range for a SMALLINT is –32768 to 32767. The precision for a

SMALLINT is 5 digits to the left of the decimal. Each SMALLINT column value uses 2

bytes of database storage.

▪ Integer (INT or INTEGER) - An INTEGER uses twice as much storage as a SMALLINT

but has a greater range of possible values. The data value range for an INTEGER data

type is –2,147,483,648 to 2,147,483,647. The precision for an INTEGER is 10 digits to

the left of the decimal. Each INTEGER column value uses 4 bytes of database storage.

▪ Big integer (BIGINT) - The BIGINT data type is available for supporting 64-bit integers.

The value range for BIGINT is –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807. Since platforms include native support for 64-bit

integers, processing large numbers with BIGINT is more efficient than processing with

DECIMAL and more precise than using DOUBLE or REAL. Each BIGINT column value

uses 8 bytes of database storage. The SMALLINT, INTEGER, and BIGINT data types do

not allow any digits to the right of the decimal.

▪ DECIMAL/NUMERIC - A DECIMAL or NUMERIC data type is used for numbers with

fractional and whole parts. The DECIMAL data is stored in a packed format. The

precision is the total number of digits (ranging from 1 to 31 digits), and the scale is

the number of digits in the fractional part of the number.

▪ REAL/FLOAT - data type is an approximation of a number. The approximation

requires 32 bits or 4 bytes of storage. To specify a single-precision number using the

REAL data type, you must define its length between 1 and 24.

▪ DOUBLE/FLOAT - data type is also an approximation of a number. The approximation

Unit – III RDBMS with DB2

20

requires 64 bits or 8 bytes of storage. To specify a double-precision number using the

FLOAT data type, you must define its length between 25 and 53.

▪ Decimal floating-point (DECFLOAT) - data type, new in DB2 9.5, is useful in business

applications that deal with exact decimal values such as financial applications where

monetary values are manipulated. It supports the 16-digit and 34-digit decimal

floating-point encodings, corresponding to 8 bytes and 16 bytes of storages

respectively.

b) String Data Types:

You can define string or character columns as either fixed length or variable length. The

character

string data types include the following:

▪ Character (CHAR) - A CHAR column is stored as a fixed-length field in the database; if

the string you enter is shorter than the defined length of the column, the string will

be padded with blanks. A fixed-length character column can have a maximum length

of 254 characters. If no length is specified, DB2 will use the default length of 1

character.

▪ Variable character (VARCHAR) - A VARCHAR column stores only the characters

entered for the string, and its maximum size closely corresponds to the page size for

the table. For example, for a table created in a table space with a 32K page size, the

maximum length of a VARCHAR string is 32,672 characters.

▪ Long variable character (LONG VARCHAR) - A LONG VARCHAR column also stores

only the characters entered for the string, but it does not store them in the data

object with the other columns. LONG VARCHAR is a special data type stored in a

separate long object. The maximum length of a LONG VARCHAR string is 32,700

characters.

▪ GRAPHIC - GRAPHIC data types use 2 bytes of storage to represent a single character.

There are three types:

o GRAPHIC: fixed length with a maximum of 127 characters

o VARGRAPHIC: varying length with a maximum of 16,336 characters

o LONG VARGRAPHIC: varying length with a maximum of 16,350 characters

▪ When a VARCHAR data type’s maximum size of 32,672 bytes is not enough to hold

your data, use large objects. Large objects (LOBs) can store data greater than 32K up

to 2GB in size. They are typically used to store information such as an audio file, or a

picture. Though XML documents can also be stored as LOBs, with DB2 9 we

recommend you to use the XML data type instead in order to take advantage of pure

XML technology.

Three kinds of LOB data types are provided with DB2:

o Binary large object (BLOB)

o Single-byte character large object (CLOB)

o Double-byte character large object (DBCLOB)

Unit – III RDBMS with DB2

21

BLOB - store variable-length data in binary format and are ideal for storing video or

audio information in your database. This data type has some restrictions; for

example, you cannot sort by this type of column.

CLOB - CLOBs store large amounts of variable-length single-byte character set (SBCS)

or multibyte character set (MBCS) character strings, for example, large amounts of

text such as white papers or long documents.

DBCLOBs store large amounts of variable-length double-byte character set (DBCS)

character strings, such as large amounts of text in Chinese.

▪ VARGRAPHIC& LONG VARGRAPHIC - Similar to LONG VARCHAR and LONG

VARGRAPHIC data types, LOBs are accessed directly from disk without going through

the buffer pool, so using LOBs is slower than using other data types.

c) Date& Time Data Types

Date and time data types are special character data types used to store date and/or time

values inspecific formats. These data types are stored in an internal format by DB2, and

use an externalformat for the users. DB2 supports three datetime data types: DATE, TIME,

and TIMESTAMP.

▪ The DATE type stores a date value (month, day, and year). Its external format is

MMDD-YYYYor MM/DD/YYYY.

▪ The TIME type stores a time value (hour, minute, and second). Its external format

isHH:MM:SS or HH.MM.SS.

▪ The TIMESTAMP type combines the DATE and TIME types but also stores the

timedown to the nanosecond. Its external format is MM-DD-YYYY-

HH.MM.SS.NNNNNN.

d) Extensible Markup Language Data Type:

The Extensible Markup Language data type, XML, is a data type that is part of the SQL

standardwith XML extensions(SQL/XML). This newdata type allowsfor storing well-

formedXMLdocuments natively(in a parsed-hierarchical manner) internally in a DB2

database.

2. User-Defined Types:

User-defined types (UDTs) allow database users to create or extend the use of data types to

theirown needs. UDTs can be classified as DISTINCT, STRUCTURE, or REFERENCE.

A DISTINCT UDT can enforce business rules and prevent data from being used

improperly.UDTs are built on top of existing DB2 built-in data types. To create a UDT, use the

CREATEDISTINCTTYPE statement:

CREATE DISTINCT TYPE type_name AS built-in_datatype WITH COMPARISONS

For example, let’s say you create two UDTs, celsius and fahrenheit:

Unit – III RDBMS with DB2

22

CREATE DISTINCT TYPE celsius AS integer WITH COMPARISONS

CREATE DISTINCT TYPE fahrenheit AS integer WITH COMPARISONS

The first statement creates a casting function named celsius, and the second statement

creates acasting function named fahrenheit.

Now, let’s say you create a table using the newly created UDTs:

CREATE TABLE temperature

 (country varchar(100),

 average_temp_c celsius,

 average_temp_f fahrenheit

)

 Table temperature keeps track of the average temperature of each country in the world in

bothCelsius and Fahrenheit. If you would like to know which countries have an average

temperaturehigher than 35 degrees Celsius, you can issue this query:

SELECT country FROM temperature WHERE average_temp_c > 35

Would this query work? At first, you may think it will, but remember that average_temp_c has

data type celsius, while 35 is an INTEGER. Even though celsius was created based on the

INTEGER built-in

data type, this comparison cannot be performed as is. To resolve this problem, use the casting

function generated with the creation of the Celsius UDT as shown below:

SELECT country FROM temperature WHERE average_temp_c > celsius(35)

UDTs enforce business rules by preventing illegitimate operations. For example, the

followingquery will not work:

SELECT country FROM temperature WHERE average_temp_c = average_temp_f

Because column average_temp_c and average_temp_f are of different data types, this query

willresult in an error. If UDTs had not been created and the INTEGER built-in data type had

beenused instead for both columns, the query would have worked.

Choosing the Proper Data Type:It is important to choose the proper data type because this

affects performance and disk space.To choose the correct data type, you need to understand

how your data will be used and its possiblevalues.SQL statements allow you to work with the

relational and XML data stored in your database. The statements are applied against the

database you are connected to, not against the entire DB2 environment.

SQL (Structured Query Language):There are different classes of SQL statements.

Unit – III RDBMS with DB2

23

Data Definition Language (DDL):

Data Definition Language (DDL) statements are used to define the database structure or schema.

Data Definition Language understanding with database schemas and describes how the data

Unit – III RDBMS with DB2

24

should consist in the database, therefore language statements like CREATE TABLE or ALTER TABLE

belongs to the DDL. DDL is about "metadata".

For example:
CREATE INDEX ix1 ON t1 (salary)

ALTER TABLE t1 ADD hiredate DATE

 DROP VIEW view1

DDL includes commands such as CREATE, ALTER and DROP statements. DDL is used to CREATE,

ALTER OR DROP the database objects (Table, Views, Users).

 Data Definition Language (DDL) are used different statements:

• CREATE - to create objects in the database

• ALTER - alters the structure of the database

• DROP - delete objects from the database

• TRUNCATE - remove all records from a table, including all spaces allocated for the

records are removed

• RENAME - rename an object

The Create Table Command

The create table command defines each column of the table uniquely. Each column has

minimum of three attributes.

• Name

• Data type

• Size(column width).

Each table column definition is a single clause in the create table syntax. Each table column

definition is separated from the other by a comma. Finally, the SQL statement is terminated

with a semicolon.

The Structure of Create Table Command

Table name is Student

 Column name Data type Size

 Reg_no varchar2 10

 Name Char 30

 DOB Date

 Address varchar2 50

Example:

CREATE TABLE Student

 (Reg_no varchar2(10),

 Name char(30),

Unit – III RDBMS with DB2

25

 DOB date,

 Address varchar2(50));

The DROP Command

Syntax:

DROP TABLE <table_name>

Example:

DROP TABLE Student;

It will destroy the table and all data which will be recorded in it.

The TRUNCATE Command

Syntax:

TRUNCATE TABLE <Table_name>

Example:

TRUNCATE TABLE Student;

The RENAME Command

Syntax:

RENAME <OldTableName> TO <NewTableName>

Example:

RENAME <Student> TO <Stu>

The old name table was Student now new name is the Stu.

The ALTER Table Command

By The use of ALTER TABLE Command we can modify our exiting table.

Adding New Columns

Syntax:

ALTER TABLE <table_name>

 ADD (<NewColumnName><Data_Type>(<size>),......n)

Example:

ALTER TABLE Student ADD (Age number(2), Marks number(3));

The Student table is already exist and then we added two more

columns Age and Marks respectively, by the use of above command.

Dropping a Column from the Table

Syntax:

Unit – III RDBMS with DB2

26

ALTER TABLE <table_name> DROP COLUMN <column_name>

Example:

ALTER TABLE Student DROP COLUMN Age;

This command will drop particular column

Modifying Existing Table

Syntax:

ALTER TABLE <table_name> MODIFY (<column_name><NewDataType>(<NewSize>))

Example:

ALTER TABLE Student MODIFY (Name Varchar2(40));

The Name column already exist in Student table, it was char and size 30, now it is modified by

Varchar2 and size 40.

Restriction on the ALTER TABLE

Using the ALTER TABLE clause the following tasks cannot be performed.

• Change the name of the table

• Change the name of the column

• Decrease the size of a column if table data exists

Data Manipulation Language (DML):

Data Manipulation Language (DML) statements are used for managing data within schema

objects DML deals with data manipulation, and therefore includes most common SQL statements

such SELECT, INSERT, etc. DML allows to add / modify / delete data itself.

DML is used to manipulate with the existing data in the database objects (insert, select, update,

delete).

DML Commands:

1.INSERT

2.SELECT

3.UPDATE

4.DELETE

Select -Viewing Data in the Table (Select Command)

Once data has been inserted into a table, the next most logical operation would be to view what

has been inserted. The SELECT SQL verb is used to achieve this.

All Rows and All Columns

Syntax: SELECT * FROM Table_name;

eg: Select * from Student; It will show all the table records.

Unit – III RDBMS with DB2

27

SELECT First_name, DOB FROM STUDENT WHERE Reg_no = 'S101';

This Command will show one row. Because you have given condition for only one row and

particular records. If condition which has given in WHERE Clause is true then records will be

fetched otherwise it will show no records selected.

Eliminating Duplicates:

A table could hold duplicate rows. In such a case, you can eliminate duplicates.

Syntax: SELECT DISTINCT col, col, .., FROM table_name;

eg : SELECT DISTINCT * FROM Student;

or : SELECT DISTINCT first_name, city, pincode FROM Student;

It scans through entire rows, and eliminates rows that have exactly the same contents in each

column.

Sorting DATA:

The Rows retrieved from the table will be sorted in either Ascending or Descending order

depending on the condition specified in select statement, the Keyword has used ORDER BY.

SELECT * FROM Student ORDER BY First_Name;

it will in show records as alphabetical order from A to Z ascending order. If you want

Descending order means Z to A then used DESC Keyword at last.

eg : SELECT first_name, city,pincode FROM Student

 ORDER BY First_name DESC;

Insert command:
To insert a new row into a table, you use the INSERT statement. The following shows the

syntax:

INSERT INTOtable_name (column_list)VALUES(value_list);
Or
INSERT INTOtable_name VALUES(value_list);
In this syntax:

• First, specify the name of the table to which you want to insert a new row after
the INSERT INTO keywords followed by comma-separated column list enclosed in

parentheses.
• Then, specify the comma-list of values after the VALUES keyword. The values list is

also surrounded by parentheses. The order of values in the value list must be
corresponding to the order of columns in the column list.

If you don’t specify a column of a table in the column list, you must ensure that Db2 can
provide a value for insertion or an error will occur.

Unit – III RDBMS with DB2

28

Ex:

INSERT INTO lists(list_name,
created_at)VALUES('Monthly Digest', DEFAULT);

Update Statement:it is used to update the values in a table.

Syntax: UPDATE table-name SET Column-name = value

Ex: update table set b='y' where b='x'

Update student set marks1=67 where marks2=56;

Data Control Language (DCL):
DCL is the abstract of Data Control Language. Data Control Language includes commands such as

GRANT, and concerns with rights, permissions and other controls of the database system. DCL is

used to grant / revoke permissions on databases and their contents. DCL is simple, but MySQL

permissions are a bit complex. DCL is about security. DCL is used to control the database

transaction.DCL statement allow you to control who has access to specific object in your

database.

1. GRANT

2. REVOKE

GRANT: It provides the user's access privileges to the database. In the MySQL database offers

both the administrator and user a great extent of the control options. By the administration side

of the process includes the possibility for the administrators to control certain user privileges

over the

It creates an entry in the security system that allows a user in the current database to work

with data in the current database or execute specific statements.

Syntax :

Syntax:GRANT names of privileges/ALL ON database object name TOuser name;

Normally, a database administrator first uses CREATE USER to create an account, then GRANT

to define its privileges and characteristics.

For example:

CREATE USER 'arjun'@'localhost' IDENTIFIED BY 'mypass';

GRANT ALL ON db1.* TO 'arjun'@'localhost';

GRANT SELECT ON child TO 'arjun'@'localhost';

GRANT USAGE ON *.* TO 'arjun'@'localhost' WITH MAX_QUERIES_PER_HOUR 90;

Unit – III RDBMS with DB2

29

REVOKE : The REVOKE statement enables system administrators and to revoke the privileges

from MySQL accounts.

Syntax :

REVOKE ALL PRIVILEGES, GRANT OPTION

FROM user [, user] ...

For example:

mysql> REVOKE INSERT ON *.* FROM 'arjun'@'localhost';

TCL Operations in DB2

It is a TRANSACTION CONTROL LANGUAGE. and it is not used directly in DB2, rather it is used in

COBOL DB2 program inside the application program. Once you have created the COBOL DB2

program inside the program we can use DCL operation.

In TCL we have two statements:

i) COMMIT– It is used in an application program to commit the changes. For Example, if you

want to COMMIT changes at a particular point, you can just give COMMIT in the program.

ii) ROLLBACK– It is used in the application program to roll back the changes. ROLLBACK has

used to blackout the changes.

For Example, we want to back out the changes due to some condition or due to an event.

Unit – IV RDBMS with DB2

1

UNIT - IV

Retrieving Data& Functions in DB2

Retrieving Data from multiple tables: Joins, Union operations in DB2, Grouping, Sub Queries,

DB2 Functions and Procedures, Scalar Functions, Column Functions, Row functions.

Retrieving Data from multiple tables:

The related tables of a large database are linked through the use of foreign and primary keys or

what are often referred to as common columns. The ability to join tables will enable you to add

more meaning to the result table that is produced. For 'n' number tables to be joined in a query,

minimum (n-1) join conditions are necessary. Based on the join conditions, Oracle combines the

matching pair of rows and displays the one which satisfies the join condition.

JOINS:

Joins are classified as below

 Inner Join - (also known as an equijoin or a simple join) - Creates a join by using a

commonly named and defined columns based on some condition

 Natural join – It is a variation of inner join with a small change in its syntax. No condition

is required to join the tables.

 Self-join - Joins a table to itself.

 Outer join - Includes records of a table in output when there's no matching record in the

other table.

 Cartesian join (also known as a Cartesian product or cross join) - Replicates each row from

the first table with every row from the second table. Creates a join between tables by

displaying every possible record combination.

1. Inner Join:
The INNER JOIN is one of the join clauses that allow you to query data from two or more related
tables. The INNER JOIN clause combines each row from the first table with every row from the
second table, keeping only the rows in which the join condition evaluates to true. The following
shows the syntax of joining two tables using the INNER JOIN clause:

 SELECT column list FROM Table1 INNER JOIN Table2 ON join condition;

In this syntax, the join_condition is a Boolean expression that evaluates to true, false, and

unknown. Typically, it matches the values of the columns in the table Table1 with the values of

the columns in the table Table2 using the equality operator (=).

https://www.db2tutorial.com/db2-basics/db2-join/

Unit – IV RDBMS with DB2

2

class table class_info table Result Table

Query: SELECT class.ID, class.Name, class_info.Address FROM class

INNER JOIN class_info ON class.ID=class_info.ID;

The INNER JOIN keyword selects all rows from both tables as long as there is a match between

the columns. If there are records in the “class" table that do not have matches in “class_info",

these orders will not be shown.

2. Natural Join

 Natural Join is a type of Inner join which is based on column having same name and same

datatype present in both the tables to be joined.

 Natural Join: Guidelines

o The associated tables have one or more pairs of identically named columns.

o The columns must be the same data type.

o Don’t use ON clause in a natural join.

 Natural Join Syntax : Select * from table1 NATURAL JOIN table2;

Example of Natural JOIN:

Query: SELECT * FROM class NATURAL JOIN class_info;

Unit – IV RDBMS with DB2

3

In the above example, both the tables being joined have ID column(same name and same

datatype), hence the records for which value of ID matches in both the tables will be the result of

Natural Join of these two tables.

class table class_info table Result Table

There are some limitations regarding the NATURAL JOIN. You cannot specify a LOB column with

a NATURAL JOIN. Also, columns involved in the join cannot be qualified by a table name or alias.

Join with USING Clause

Using Natural joins, Oracle implicitly identify columns to form the basis of join. Many situations

require explicit declaration of join conditions. In such cases, we use USING clause to specify the

joining criteria. Since, USING clause joins the tables based on equality of columns, it is also

known as Equijoin. They are also known as Inner joins or simple joins.

Syntax:

SELECT <column list>

FROM TABLE1 JOIN TABLE2

USING (column name)

Consider the below SELECT query, EMPLOYEES table and DEPARTMENTS table are joined using

the common column DEPARTMENT_ID.

SELECT E.first_nameNAME,D.department_name DNAME

FROM employees E JOIN departments D

USING (department_id);

3. Self Join

A SELF-JOIN operation produces a result table when the relationship of interest exists among

rows that are stored within a single table. In other words, when a table is joined to itself, the join

is known as Self Join.

Unit – IV RDBMS with DB2

4

Consider EMPLOYEES table, which contains employee and their reporting

managers. To find manager's name for an employee would require a join on the EMPLOYEES

table itself. This is a typical candidate for Self Join.

SELECT e1.FirstNameManager,e2.FirstNameEmployee

FROM employees e1 JOIN employees e2

ON (e1.employee_id = e2.manager_id)

ORDER BY e2.manager_id DESC;

4. Outer Joins

An Outer Join is used to identify situations where rows in one table do not match rows in a

second table, even though the two tables are related.

 There are three types of outer joins: the LEFT, RIGHT, and FULL OUTER JOIN.

 They all begin with an INNER JOIN, and then they add back some of the rows that have

been dropped.

 A LEFT OUTER JOIN adds back all the rows that are dropped from the first (left) table in

the join condition, and output columns from the second (right) table are set to NULL.

 A RIGHT OUTER JOIN adds back all the rows that are dropped from the second (right)

table in the join condition, and output columns from the first (left) table are set to NULL.

 The FULL OUTER JOIN adds back all the rows that are dropped from both the tables.

5. Left Outer Join

 A LEFT OUTER JOIN adds back all the rows that are dropped from the first (left) table in the

join condition, and output columns from the second (right) table are set to NULL. The left

outer join returns a result table with the matched data of two tables then remaining rows of

the left table and null for the right table's column.

 syntax:

Select column-list from Table1 LEFT OUTER JION Table2 ON Table1.column-name =
Table2.column-name;

Example of Left Outer JOIN:
Left Outer Join query will be:

Unit – IV RDBMS with DB2

5

Select * from class LEFT OUTER JOIN class_info ON (class.ID =class_info.ID);

class table class_info table Result Table

6. Right Outer Join

 A RIGHT OUTER JOIN adds back all the rows that are dropped from the second (right) table

in the join condition, and output columns from the first (left) table are set to NULL.

 The right outer join returns a result table with the matched data of two tables then remaining

rows of the right table and null for the left table's columns.

 syntax:

Select column-list from Table1 RIGHT OUTER JION Table2 ON Table1.column-name

=Table2.column-name;

Example of Left Outer JOIN:

Right Outer Join query will be:

Select * from class RIGHT OUTER JOIN class_info ON (class.ID =class_info.ID);

Unit – IV RDBMS with DB2

6

class table class_info table Result Table

7. Full Outer Join

 The FULL OUTER JOIN adds back all the rows that are dropped from both the tables.

 The full outer join returns a result table with the matched data of two table then remaining

rows of both left table and then the right table.

 syntax:
Select column-list from Table1 FULL OUTER JION Table2 ON Table1.column-name

=Table2.column-name;

Example of Left Outer JOIN:
Full Outer Join query will be:
Select * from class FULL OUTER JOIN class_info ON (class.ID =class_info.ID);

class table class_info table Result Table

Unit – IV RDBMS with DB2

7

8. Cartesian product or Cross join

 A cross join, also known as a Cartesian product join, returns a result table where each row

from the first table is combined with each row from the second table.

 The number of rows in the result table is the product of the number of rows in each table. If

the tables involved are large, this join can take a very long time.

 For two entities A and B, A * B is known as Cartesian product. A Cartesian product consists

of all possible combinations of the rows from each of the tables. Therefore, when a table

with 10 rows is joined with a table with 20 rows, the Cartesian product is 200 rows (10 * 20

= 200).For example, joining the employee table with eight rows and the department table

with three rows will produce a Cartesian product table of 24 rows (8 * 3 = 24).

 A Cartesian product result table is normally not very useful. In fact, such a result table can be
terribly misleading.

Example: Suppose that the following tables exist.

Table A

ACOL1 ACOL2

A1 AA1

A2 AA2

A3 AA3

Table B

ACOL1 ACOL2

BCOL1 BCOL2

B1 BB1

B2 BB2

The following two select statements produce identical results.
 SELECT * FROM A CROSS JOIN B
 SELECT * FROM A, B

The result table for either of these SELECT statements looks like this.

ACOL1 ACOL2 BCOL1 BCOL2

A1 AA1 B1 BB1

A1 AA1 B2 BB2

A2 AA2 B1 BB1

A2 AA2 B2 BB2

A3 AA3 B1 BB1

Unit – IV RDBMS with DB2

8

ACOL1 ACOL2 BCOL1 BCOL2

A3 AA3 B2 BB2

Unions:

The UNION operator is used to combine the results of two or more SELECT queries into a single

result set. The union operation is different from using joins that combine columns from two

tables. The union operation creates a new table by placing all rows from two source tables into

a single result table, placing the rows on top of one another. The UNION operation eliminates the

duplicate rows from the combined result set, by default.

These are basic rules for combining the result sets of two SELECT queries by using UNION:

 The number and the order of the columns must be the same in all queries.

 The data types of the corresponding columns must be compatible.

When these criteria are met, the tables are union-compatible:

Syntax:

SELECT column_list FROM table1_name

UNION SELECT column_list FROM table2_name;

Example:

The First table

ID Name

1 abhi

2 adam

The second table

ID Name

2 adam

3 Chester

Union SQL query will be:

select * from First UNION select * from second;

The result will be

ID NAME

Unit – IV RDBMS with DB2

9

1 abhi

2 adam

3 Chester

UNION ALL:

The SQL UNION ALL operator is used to combine the result sets of 2 or more SELECT statements.

It does not remove duplicate rows between the various SELECT statements (all rows are

returned). Each SELECT statement within the UNION ALL must have the same number of fields in

the result sets with similar data types.

What is the difference between UNION and UNION ALL?

 UNION removes duplicate rows.

 UNION ALL does not remove duplicate rows.

Syntax:The syntax for the UNION ALL operator in SQL is:

SELECT expression1, expression2, ... expression_n

FROM tables

[WHERE conditions]

UNION ALL

SELECT expression1, expression2, ... expression_n

FROM tables

[WHERE conditions];

Note:

 There must be same number of expressions in both SELECT statements

 The corresponding expressions must have the same data type in the SELECT statements.

For example: expression1 must be the same data type in both the first and second SELECT

statement.

 See also the UNION operator.

Example:

The First table

ID Name

1 abhi

2 adam

https://www.techonthenet.com/sql/union.php
https://www.techonthenet.com/sql/union.php

Unit – IV RDBMS with DB2

10

The second table

ID Name

2 adam

3 Chester

Union SQL query will be:

select * from First UNION ALL select * from second;

The result will be

ID NAME

1 Abhi

2 Adam

2 Adam

3 Chester

Grouping:
Group by clause is used to group the results of a SELECT query based on one or more columns. It

is also used with SQL functions to group the result from one or more tables.

 GROUP BY clause is used with the SELECT statement.

 In the query, GROUP BY clause is placed after the WHERE clause.

 In the query, GROUP BY clause is placed before ORDER BY clause if used any.

Syntax:

SELECT column_name, function(column_name)

FROM table_name

WHERE condition

GROUP BY column_name

Example of Group by in a Statement

Consider the following Emp table.

eid name age salary

Unit – IV RDBMS with DB2

11

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 9000

405 Tiger 35 8000

If we want to find name and age of employees grouped by their salaries or in other words, we

will be grouping employees based on their salaries, hence, as a result, we will get a data set, with

unique salaries listed, along side the first employee's name and age to have that salary.

group by is used to group different row of data together based on any one column. SQL query for

the above requirement will be,

SELECT name, age FROM Emp GROUP BY salary

Result will be,

name Age

Rohan 34

Shane 29

Anu 22

Example of Group by in a Statement with WHERE clause

Consider the following Emp table

eid Name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

Unit – IV RDBMS with DB2

12

404 Scott 44 9000

405 Tiger 35 8000

SQL query will be,

SELECT name, salary FROM Emp WHERE age > 25 GROUP BY salary;

Output:

name Salary

Rohan 6000

Shane 8000

Scott 9000

We must remember that Group By clause will always come at the end of the SQL query, just like

the Order by clause.

HAVING Clause:

We can use HAVING clause to place conditions to decide which group will be the part of final

result-set. Also we cannot use the aggregate functions like SUM(), COUNT() etc. with WHERE

clause. So we have to use HAVING clause if we want to use any of these functions in the

conditions.

 HAVING filters records that work on summarized GROUP BY results.

 HAVING applies to summarized group records, whereas WHERE applies to individual

records.

 Only the groups that meet the HAVING criteria will be returned.

 HAVING requires that a GROUP BY clause is present.

 WHERE and HAVING can be in the same query.

Syntax:

SELECT column1, function_name(column2)

FROM table_name

WHERE condition

GROUP BY column1, column2

Unit – IV RDBMS with DB2

13

HAVING condition

ORDER BY column1, column2;

function_name: Name of the function used for example, SUM() , AVG().

table_name: Name of the table.

condition: Condition used.

Example:

SELECT NAME, SUM(SALARY) FROM Employee

GROUP BY NAME

HAVING SUM(SALARY)>3000;

Output:

As you can see in the above output only one group out of the three groups appears in the result-

set as it is the only group where sum of SALARY is greater than 3000. So we have used HAVING

clause here to place this condition as the condition is required to be placed on groups not

columns.

Example: List the number of customers in each country. Only include countries with more than

10 customers.

SELECT COUNT(Id), Country

FROM Customer

GROUP BY Country

HAVING COUNT(Id) > 10

Results: 3 records

Count Country

11 France

11 Germany

13 USA

ORDER BY:

 SELECT returns records in no particular order.

 To ensure a specific order use the ORDER BY clause.

 ORDER BY allows sorting by one or more columns.

http://cdncontribute.geeksforgeeks.org/wp-content/uploads/Screenshot-56.png

Unit – IV RDBMS with DB2

14

 Records can be returned in ascending or descending order.

The SQL ORDER BY syntax

SELECT column-names

FROM table-name

WHERE condition

ORDER BY column-names

Example - Sorting Results in Ascending Order

To sort your results in ascending order, you can specify the ASC attribute. If no value (ASC or

DESC) is provided after a field in the ORDER BY clause, the sort order will default to ascending

order. Let's explore this further.

In this example, we have a table called customers with the following data:

customer_id last_name first_name favorite_website

4000 Jackson Joe techonthenet.com

5000 Smith Jane digminecraft.com

6000 Ferguson Samantha bigactivities.com

7000 Reynolds Allen checkyourmath.com

8000 Anderson Paige NULL

9000 Johnson Derek techonthenet.com

Enter the following SQL statement:

SELECT *

FROM customers

ORDER BY last_name;

There will be 6 records selected. These are the results that you should see:

customer_id last_name first_name favorite_website

8000 Anderson Paige NULL

6000 Ferguson Samantha bigactivities.com

4000 Jackson Joe techonthenet.com

9000 Johnson Derek techonthenet.com

7000 Reynolds Allen checkyourmath.com

Unit – IV RDBMS with DB2

15

customer_id last_name first_name favorite_website

5000 Smith Jane digminecraft.com

This example would return all records from the customers sorted by the last_name field in

ascending order and would be equivalent to the following SQL ORDER BY clause:

SELECT *

FROM customers

ORDER BY last_name ASC;

Most programmers omit the ASC attribute if sorting in ascending order.

Example - Sorting Results in descending order

When sorting your result set in descending order, you use the DESC attribute in your ORDER BY

clause. Let's take a closer look.

In this example, we have a table called suppliers with the following data:

supplier_id supplier_name city state

100 Microsoft Redmond Washington

200 Google Mountain View California

300 Oracle Redwood City California

400 Kimberly-Clark Irving Texas

500 Tyson Foods Springdale Arkansas

600 SC Johnson Racine Wisconsin

700 Dole Food Company Westlake Village California

800 Flowers Foods Thomasville Georgia

900 Electronic Arts Redwood City California

Enter the following SQL statement:

SELECT *

FROM suppliers

WHERE supplier_id > 400

ORDER BY supplier_id DESC;

There will be 5 records selected. These are the results that you should see:

Unit – IV RDBMS with DB2

16

supplier_id supplier_name city state

900 Electronic Arts Redwood City California

800 Flowers Foods Thomasville Georgia

700 Dole Food Company Westlake Village California

600 SC Johnson Racine Wisconsin

500 Tyson Foods Springdale Arkansas

This example would sort the result set by the supplier_id field in descending order.

Example - Using both ASC and DESC attributes

When sorting your result set using the SQL ORDER BY clause, you can use the ASC and DESC

attributes in a single SELECT statement.

In this example, let's use the same products table as the previous example:

product_id product_name category_id

1 Pear 50

2 Banana 50

3 Orange 50

4 Apple 50

5 Bread 75

6 Sliced Ham 25

7 Kleenex NULL

SELECT *

FROM products

WHERE product_id <> 7

ORDER BY category_id DESC, product_name ASC;

There will be 6 records selected. These are the results that you should see:

product_id product_name category_id

5 Bread 75

https://www.techonthenet.com/sql/select.php

Unit – IV RDBMS with DB2

17

product_id product_name category_id

4 Apple 50

2 Banana 50

3 Orange 50

1 Pear 50

6 Sliced Ham 25

This example would return the records sorted by the category_id field in descending order, with

a secondary sort by product_name in ascending order.

Sub Queries:

SQL Sub queries are the queries which are embedded inside another query. The embedded

queries are called as INNER query & container query is called as OUTER query.

The subqueries are the queries which are executed inside of another query. The result SQL query

totally depends on the result of a subquery. First, the INNER query gets executed & the result of

an INNER query is passed as input to the outer query.

SQL Sub-Query Syntax:

Let’s look at the basic syntax of the SQL Sub query command:

Three types of sub queries are supported in SQL are – Scalar, Row and Table sub queries.

 The Scalar subquery result returns only a single row and single column.

 The Row subquery result returns only a single row with single/multiple column(s).

 The Table subquery result returns can be return single/multiple row(s) or column(s).

In the Sub query you may use the different operators to filter out the result like [=, >, =, <=, !=,].

These Sub queries can be used conjunction with INSERT, UPDATE and DELETE queries.

https://www.softwaretestingclass.com/sql-sub-queries/

Unit – IV RDBMS with DB2

18

Suppose you want to find the name of the department in which employee_id = 100 is currently

working on.

Let’s see how this subquery is constructed & executed inside of another query:

SELECT department_name FROM department

WHERE department_id =

(SELECT department_id FROM employee WHERE employee_id = 100);

Following is the result upon executing the above SQL Sub query:

In above Row Sub-Queries, the result of INNER query can is returned only one value.

Let’s take a look at the other Sub query type who returns can be return single/multiple row(s) or

column(s) i.e. Table sub-query:

Suppose you want get list of employee’s Name and Phone number who’s working in other than

Quality department & date of birth is not registered in Employee tracking system.

SELECT Full_name,Phone FROM Employee

WHERE date_of_birth is NULL and department_id IN

(SELECT department_id FROM department WHERE department_name <> ‘Quality’)

Following is the result upon executing the above SQL Sub query:

https://www.softwaretestingclass.com/sql-sub-queries/

Unit – IV RDBMS with DB2

19

So let’s discuss how the result of above query is calculated:

You can use multiple INNER queries inside INNER queries, the SQL supports INNER queries up to

32 levels.

In above examples we have seen INNER queries up to two levels; here we are seeing three level

INNER query:

Sub queries contain two parts, one is INNER query & other is OUTER query. The result of INNER

query is passed to OUTER query as input.

 Sub queries are simple & easy to understand. It can be easily broken down into logical

steps, so it offers more flexibility.

 The Sub queries are used in conjunction with SELECT, INSERT, UPDATE & DELETE

commands.

 In this article we have learnt about three types of SQL supb queries: scalar, row and table

sub queries.

 In SQL server, The Nested query can be used up to 32 levels.

 As compare with Joins, the performance of Sub query is low. Joins are 500 times faster

than Sub queries.

https://www.softwaretestingclass.com/sql-sub-queries/
https://www.softwaretestingclass.com/sql-sub-queries/

Unit – IV RDBMS with DB2

20

For performance issues, when it comes to getting data from multiple tables, it is strongly

recommended to use JOINs instead of sub queries. Sub queries should only be used with good

reason. So in the next article I am covering basics of Joins & what all types of Joins offered in the

SQL server.

DB2 Functions and Procedures:

We can use functions and expressions to control the appearance and values of rows and columns

in your result tables. DB2® offers many built-in functions, including aggregate functions and scalar

functions.

Scalar Functions:

 A scalar function can be used wherever an expression can be used.

 The restrictions on the use of aggregate functions do not apply to scalar functions, because a

scalar function is applied to single set of parameter values rather than two sets of values.

 The argument of a scalar function can be a function. However, the restrictions that apply to

the use of expressions and aggregate functions also apply when an expression or aggregate

function is used within a scalar function.

 As opposed to aggregate functions, scalar functions operate against a single value and return

a single value.

 Scalar functions can be placed anywhere but Aggregate functions can be placed only in select

statement or with the clause having.

Example: The following SELECT statement calls for the employee number, last name, and age of

each employee in department D11 in the sample table DSN8A10.EMP. To obtain the ages, the

scalar function YEAR is applied to the expression:

ABSVAL or ABS Converts a value of any numeric data type to its absolute value.

ACOS Returns the arc-cosine of the argument as an angle expressed in radians.

BLOB Converts a string or ROWID data type into a value of data type BLOB.

CEILING or CEIL Converts the argument, represented as any numeric data type, to the smallest

integer value greater than or equal to the argument value.

CHAR Converts a DB2 date, time, timestamp, ROWID, floating point, integer, or

decimal value to a character value. For example

 SELECT CHAR(HIREDATE, USA)

Unit – IV RDBMS with DB2

21

 FROM DSN8810.EMP

 WHERE EMPNO = '000140';

CLOB Converts a string or ROWID data type into a value of data type CLOB.

CONCAT Converts two strings into the concatenation of the two strings.

DATE Converts a value representing a date to a DB2 date. The value to be converted

can be a DB2 timestamp, a DB2 date, a positive integer, or a character string.

DAY Returns the day portion of a DB2 date or timestamp.

DAYOFMONTH Similar to DAY except DAYOFMONTH cannot accept a date duration or time

duration as an argument.

DAYOFWEEK Converts a date, timestamp, or string representation of a date or timestamp

into an integer that represents the day of the week. The value 1 represents

Sunday, 2 Monday, 3Tuesday, 4 Wednesday, 5 Thursday, 6 Friday,

and 7Saturday.

DAYS Converts a DB2 date or timestamp into an integer value representing one

more than the number of days since January 1, 0001.

DBCLOB Converts a string or ROWID data type into a value of data type DBCLOB.

DECIMAL or DEC Converts any numeric value, or character representation of a numeric value,

to a decimal value.

EXP Returns the exponential function of the numeric argument.

The EXP and LOG functions are inverse operations.

FLOOR Converts the argument, represented as any numeric data type, to the largest

integer value less than or equal to the argument value.

GRAPHIC Converts a string data type into a value of data type GRAPHIC.

GREATEST Returns the maximum value in a supplied set of values. The argument values

can be of any built-in data type other than CLOB, DBCLOB, BLOB, or ROWID.

HEX Converts any value other than a long string to hexadecimal.

Unit – IV RDBMS with DB2

22

HOUR Returns the hour portion of a time, a timestamp, or a duration.

IFNULL -Returns the first argument in a set of two arguments that is not null. For

example

 SELECT EMPNO, IFNULL(WORKDEPT, 'N/A')

 FROM DSN8810.EMP;

 This SQL statement returns the value for WORKDEPT for all employees,

unless WORKDEPT is null, in which case it returns the string 'N/A'.

LAST_DAY Returns the last day of the month for the specified DB2 date or

timestamp, or character representation of a date or timestamp.

LEAST Returns the minimum value in a supplied set of values. The argument

values can be of any built-in data type other than CLOB, DBCLOB, BLOB,

or ROWID.

LEFT Returns a string containing only the leftmost characters of the string in

the first argument, starting at the position indicated by the second

argument. For example

 SELECT LEFT('THIS IS RETURNED', 4)

 FROM SYSIBM.SYSDUMMY1;

 This SQL statement returns 'THIS', which is the four leftmost characters

of the first argument.

LENGTH Returns the length of any column, which may be null. Does not include

the length of null indicators or variable character-length control values,

but does include trailing blanks for character columns.

LOCATE Returns the position of the first occurrence of the first string the second

string. For example

 SELECT LOCATE('I', 'CRAIG MULLINS')

 FROM SYSIBM.SYSDUMMY1;

 This SQL statement returns the value 4, because the value 'I' first

appears in position four within the searched string. It also appears in the

Unit – IV RDBMS with DB2

23

11th position, but that is of no concern to the LOCATE function.

Optionally, a third argument can be supplied indicating where the search

should start. For example

 SELECT LOCATE('I', 'CRAIG MULLINS', 7)

 FROM SYSIBM.SYSDUMMY1;

 This SQL statement returns the value 11, because after position 7, the

value 'I' first appears in the 11th position. When the third argument is

not specified, LOCATE defaults to the beginning of the second string.

LOG or LN Returns the natural logarithm of the numeric argument.

The EXP and LOG functions are inverse operations.

LOG10 Returns the base 10 logarithm of the numeric argument.

LOWER or LCASE Converts a character string into all lowercase characters.

LTRIM Removes the leading blanks from a character string.

MICROSECOND Returns the microsecond component of a timestamp or the character

representation of a timestamp.

MINUTE Returns the minute portion of a time, a timestamp, a character

representation of a time or timestamp, or a duration.

MONTH Returns the month portion of a date, a timestamp, a character

representation of a date or timestamp, or a duration.

NEXT_DAY Returns a timestamp indicating the first day of the week as specified in

the second argument that is later than the date expression specified in

the first argument. Valid values for the second argument are text

representations of the days of the week; that is, MONDAY, TUESDAY,

and so on. For example

 SELECT NEXT_DAY(CURRENT DATE, 'FRIDAY')

 FROM SYSIBM.SYSDUMMY1;

 This SQL statement returns a timestamp specifying the first Friday after

today.

NULLIF Returns a null when two specified expressions are equal; if not equal,

the first expression is returned.

Unit – IV RDBMS with DB2

24

 This SQL statement returns the value 10; the value 'ADMIN'first appears

in the 10th position.

POWER Returns the value of the first argument raised to the power of the

second argument.

RADIANS Returns the number of radians for the numeric argument expressed in

degrees.

REPLACE Returns a character string with the value of the second argument

replaced by each instance of the third argument in the first argument.

For example

 SELECT REPLACE('BATATA', 'TA', 'NA')

 FROM SYSIBM.SYSDUMMY1;

 This SQL statement replaces all instances of 'TA' with 'NA'changing the

character string 'BATATA' into 'BANANA'.

RIGHT Returns a string containing only the rightmost characters of the string in

the first argument, starting at the position indicated by the second

argument. For example

 SELECT RIGHT('RETURN ONLY THIS', 4)

 FROM SYSIBM.SYSDUMMY1;

 This SQL statement returns 'THIS', which is the four rightmost characters

of the first argument.

ROUND Rounds the first numeric argument to the number of places specified in

the second argument.

RTRIM Removes the trailing blanks from a character string.

SPACE Returns a string of blanks whose length is specified by the numeric argument.

The string of blanks is an SBCS character string.

SQRT Returns the square root of the numeric argument.

SUBSTR Returns the specified portion of a character column from any starting point

to any ending point.

Unit – IV RDBMS with DB2

25

TRUNCATE or

TRUNC

Converts the first numeric argument by truncating it to the right of the

decimal place by the integer number specified in the second numeric

argument. For example

 SELECT TRUNC(3.014015,2)

 FROM SYSIBM.SYSDUMMY1;

UPPER or UCASE Converts a character string into all uppercase characters.

VARCHAR Converts a character string, date, time, timestamp, integer, decimal, floating point,

or ROWID value into a corresponding variable character string representation.

VARGRAPHIC Converts a character string to a graphic string.

WEEK Returns an integer between 1 and 54 based on the week of the year in which a

date, timestamp, or string representation of a date or timestamp falls. The

assumption is that a week begins on Sunday and ends on Saturday. The value 1

represents the first week, 2 the second week, and so on.

YEAR Returns the year portion of a date, a timestamp, or a duration.

Column Functions:

Column functions compute, from a group of rows, a single value for a designated column or

expression. This provides the capability to aggregate data, thereby enabling you to perform

statistical calculations across many rows with one SQL statement. To fully appreciate the column

functions, you must understand SQL's set-level processing capabilities.

This list shows some rules for the column functions:

 Column functions can be executed only in SELECT statements.

 A column function must be specified for an explicitly named column or expression.

 Each column function returns only one value for the set of selected rows.

 If you apply a column function to one column in a SELECT statement, you must apply column

functions to any other columns specified in the same SELECT statement, unless you also use

the GROUP BY clause.

 Use GROUP BY to apply a column function to a group of named columns. Any other column

named in the SELECT statement must be operated on by a column function.

Unit – IV RDBMS with DB2

26

 The result of any column function (except the COUNT and COUNT_BIG functions) will have

the same data type as the column to which it was applied. The COUNT function returns an

integer number; COUNT_BIG returns a decimal number.

 The result of any column function (except the COUNT and COUNT_BIG functions) can be

null. COUNT and COUNT_BIG always return a numeric result.

 Columns functions will not return a SQLCODE of +100 if the predicate specified in

the WHEREclause finds no data. Instead, a null is returned. For example, consider the

following SQL statement:

SELECT MAX(SALARY)

FROM DSN8810.EMP

WHERE EMPNO = '999999';

 There is no employee with an EMPNO of '999999' in the DSN8810.EMP table. This statement

therefore returns a null for the MAX(SALARY). Of course, this does not apply

to COUNT and COUNT_BIG, both of which always return a value, never a null.

 When using the AVG, MAX, MIN, STDDEV, SUM, and VARIANCE functions on nullable

columns, all occurrences of null are eliminated before applying the function.

 You can use the DISTINCT keyword with all column functions to eliminate duplicates before

applying the given function. DISTINCT has no effect, however, on

the MAX and MIN functions.

 You can use the ALL keyword to indicate that duplicates should not be eliminated. ALL is the

default.

A column function can be specified in a WHERE clause only if that clause is part of a subquery of

a HAVING clause. Additionally, every column name specified in the expression of the column

function must be a correlated reference to the same group.

The column functions are:

AVG, COUNT, COUNT_BIG, MAX, MIN, STDDEV, SUM, and VARIANCE.

AVG Function:

The AVG function computes the average of the values for the column or expression specified as

an argument. This function operates only on numeric arguments. The following example

calculates the average salary of each department:

SELECT WORKDEPT, AVG(SALARY)

FROM DSN8810.EMP

GROUP BY WORKDEPT;

The AVG function is the preferred method of calculating the average of a group of values.

Although an average, in theory, is nothing more than a sum divided by a count, DB2 may not

Unit – IV RDBMS with DB2

27

return equivalent values for AVG(COL_NAME) and SUM(COL_NAME)/COUNT(*). The reason is

that the COUNT function will count all rows regardless of value, whereas SUM ignores nulls.

The COUNT Function

The COUNT function counts the number of rows in a table, or the number of distinct values for a

given column. It can operate, therefore, at the column or row level. The syntax differs for each.

To count the number of rows in the EMP table, issue this SQL statement:

SELECT COUNT (*)

FROM DSN8810.EMP;

It does not matter what values are stored in the rows being counted. DB2 will simply count the

number of rows and return the result. To count the number of distinct departments represented

in the EMP table, issue the following

SELECT COUNT (DISTINCT WORKDEPT)

FROM DSN8810.EMP;

The keyword DISTINCT is not considered an argument of the function. It simply specifies an

operation to be performed before the function is applied. When DISTINCT is coded, duplicate

values are eliminated.

If DISTINCT is not specified, then ALL is implicitly specified. ALL also can be explicitly specified in

the COUNT function. When ALL is specified, duplicate values are not eliminated.

Note: The argument of the COUNT function can be of any built-in data type other than a large

object: CLOB, DBCLOB, or BLOB. Character string arguments can be no longer 255 bytes and

graphic string arguments can be no longer than 127 bytes. The result of the COUNT function

cannot be null. COUNT always returns an INTEGER value greater than or equal to zero.

The COUNT_BIG Function

The COUNT_BIG function is similar to the COUNT function. It counts the number of rows in a

table, or the number of distinct values for a given column. However, the COUNT_BIG function

returns a result of data type DECIMAL(31,0), whereas COUNT can return a result only as large as

the largest DB2 integer value, namely +2,147,483,647.

The COUNT_BIG function works the same as the COUNT function, except it returns a decimal

value. Therefore, the example SQL for COUNT is applicable to COUNT_BIG. Simply

substitute COUNT_BIG for COUNT. For example, the following statement counts the number of

rows in the EMP table (returning a decimal value, instead of an integer):

Unit – IV RDBMS with DB2

28

SELECT COUNT_BIG(*)

FROM DSN8810.EMP;

NOTE: The COUNT_BIG function has the same restrictions as the COUNT function. The argument

of the COUNT_BIG function can be of any built-in data type other than a large

object: CLOB, DBCLOB, or BLOB. Character string arguments can be no longer than 255 bytes and

graphic string arguments can be no longer than 127 bytes. The result of the COUNT_BIG function

cannot be null. COUNT_BIG returns a decimal value greater than or equal to zero.

The MAX Function:

The MAX function returns the largest value in the specified column or expression. The following

SQL statement determines the project with the latest end date:

SELECT MAX(ACENDATE)

FROM DSN8810.PROJACT;

NOTE: The result of the MAX function is of the same data type as the column or expression on

which it operates. The argument of the MAX function can be of any built-in data type other than

a large object: CLOB, DBCLOB, or BLOB. Character string arguments can be no longer than 255

bytes and graphic string arguments can be no longer than 127 bytes.

A somewhat more complicated example using MAX is shown below. It returns the largest salary

paid to a man in department D01:

SELECT MAX(SALARY)

FROM DSN8810.EMP

WHERE WORKDEPT = 'D01'

AND SEX = 'M';

The MIN Function

The MIN function returns the smallest value in the specified column or expression. To retrieve

the smallest bonus given to any employee, issue this SQL statement:

SELECT MIN(BONUS)

FROM DSN8810.EMP;

NOTE: The result of the MIN function is of the same data type as the column or expression on

which it operates. The argument of the MIN function can be of any built-in data type other than

a large object: CLOB, DBCLOB, or BLOB. Character string arguments can be no longer than 255

bytes and graphic string arguments can be no longer than 127 bytes.

Unit – IV RDBMS with DB2

29

The STDDEV Function

The STDDEV function returns the standard deviation of a set of numbers. The standard deviation

is calculated at the square root of the variance. For example:

SELECT STDDEV(SALARY)

FROM DSN8810.EMP

WHERE WORKDEPT = 'D01';

NOTE: The argument of the STDDEV function can be any built-in numeric data type. The resulting

standard deviation is a double precision floating-point number.

The SUM Function:

The accumulated total of all values in the specified column or expression are returned by the SUM

column function. For example, the following SQL statement calculates the total yearly monetary

output for the corporation:

SELECT SUM(SALARY+COMM+BONUS)

FROM DSN8810.EMP;

This SQL statement adds each employee's salary, commission, and bonus. It then aggregates

these results into a single value representing the total amount of compensation paid to all

employees.

NOTE: The argument of the SUM function can be any built-in numeric data type. The resulting

sum must be within the range of acceptable values for the data type. For example, the sum of

an INTEGER column must be within the range –2,147,483,648 to +2,147,483,647. This is because

the data type of the result is the same as the data type of the argument values, except:

 The sum of SMALLINT values returns an INTEGER result.

 The sum of single precision floating point values returns a double precision floating-point

result.

The VARIANCE Function

The VARIANCE function returns the variance of a set of numbers. The result is the biased variance

of the set of numbers. The variance is calculated as follows:

VARIANCE = SUM(X**2)/COUNT(X) - (SUM(X)/COUNT(X))**2

NOTE: The argument of the VARIANCE function can be any built-in numeric data type. The

resulting variance is a double precision floating-point number. For brevity and ease of

coding, VARIANCE can be shortened to VAR.

Unit – IV RDBMS with DB2

30

Row Functions:

A row function can be used only in contexts that are specifically described for the function.

UNPACK

The UNPACK function returns a row of values that are derived from unpacking the input binary

string. It is used to unpack a string that was encoded according to the PACK function.

>>-UNPACK-- (--expression--) ------------------------------------><

The schema is SYSIBM.

expression

An expression that returns the string value to be unpacked. The expression must be a binary string

that is not a BLOB and that is not null. The format of the binary string must match the one that is

produced by the PACK function.

The UNPACK function can only be specified in the SELECT list.

The result of the function is a row of fields corresponding to the data elements that were encoded

in the input packed string. The result is not null.

Example: Assume that a user-defined function named myUDF returns a VARBINARY result. The

body of the function includes the following invocation of the PACK function to pack some data

into a binary string:

 SET :udf_result = PACK(CCSID 1208, 'Alina', DATE('1977-08-01'),

 DOUBLE(0.5));

The following SELECT statement unpacks the result of the myUDF function and returns a row of

individual column values:

 SELECT UNPACK(myUDF(C1)).* AS(Name VARCHAR(40) CCSID UNICODE,

 DOB DATE,

 Score DOUBLE)

FROM T1;

The use of ".*" indicates that the result of the UNPACK function should be flattened into a list of

result column values. When the UNPACK function is used in a select clause, an AS clause is

specified to provide the names and data types for the resulting values.

https://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/sqlref/src/tpc/db2z_bif_unpack.html?view=kc

UNIT V

DB2 Storage: Backup & Recovery

DB2 Backup & Recovery: DB2 Logging, DB2 Backup: Taking Backup from Control Center,

Table space backup, Online and Offline Backups, Incremental and Delta backup, Database

recovery using Control Center.

DB2 Utilities on Linux / UNIX: Import Utility, Export Utility, Load Utility, db2move Utility

UNLOAD, LOAD, COPY, RECOVERY, REORG, RUNSTATS, STOSPACE

Basic Concepts of OLAP & Data Warehousing, Data Migration (DB2/Oracle/MS SQL/Sybase)

DB2 Backup & Recovery Concepts:

Recovery Scenarios:

To prevent the loss of your data, you need to have a recovery strategy, ensure that it works, and

consistently practice and follow it. The following are some recovery scenarios you should

consider.

• System outage: A power failure, hardware failure, or software failure can cause your

database to be in an inconsistent state.

• Transaction failure: Users may inadvertently corrupt your database by modifying it

with incorrect data or deleting useful data.

• Media failure: If your disk drive becomes unusable, you may lose all or part of your

data.

• Disaster: The facility where your database server is located may be damaged by fire,

flooding, power loss, or other catastrophe.

Unit of Work (Transaction):

A unit of work (UOW), also known as a transaction, consists of one or more SQL statements

that end with a COMMIT or ROLLBACK statement. All of the statements inside this UOW

are treated as a complete entity, which ensures data and transactional consistency.

Types of Recovery:

There are three types of recovery in DB2:

• Crash recovery

• Version recovery

• Roll forward recovery

1. Crash Recovery - Crash recovery protects a database from being left in an inconsistent

state following an abnormal termination. An example of an abnormal termination is a

power failure. Using the banking example above, if a power failure occurred after the

update statements, but prior to the COMMIT statement, the next time DB2 is restarted

and the database accessed, DB2 will ROLLBACK the UPDATE statements. Note that

statements are rolled back in the reverse order that they were performed originally. This

ensures that the data is consistent, and that the person still has the $100 in his or her

savings account.

2. Version Recovery - Version recovery allows you to restore a snapshot of the database

taken at a point in time using the BACKUP DATABASE command.

The restored database will be in the same state it was in when the BACKUP command

completed. If further activity was performed against the database after this backup was

taken, those updates are lost. For example, assume you back up a database and then

create two tables, table1 and table2. If you restore the database using the backup image,

your restored database will not contain these two tables.

3. Roll Forward Recovery - Roll forward recovery extends version recovery by using full

database and table space backups in conjunction with the database log files. A backup

must be restored first as a baseline, and then the logs are reapplied to this backup image.

Therefore, all committed changes you made after you backed up the database can be

applied to the restored database.

DB2 Transaction Logs:

DB2 uses transaction logs to record all changes to your database so that they can be rolled back

if you issue the ROLLBACK command, reapplied or rolled back in the event that you need to

restore a database backup, or during crash recovery.

Log File States:

The state of a log is determined by whether the transactions that are recorded in it have been

committed and whether or not they have been externalized to disk. There are three log file states:

active, online archive, and offline archive.

1. Active Logs

A log is considered active if any of the following applies:

• It contains transactions that have not yet been committed or rolled back.

• It contains transactions that have been committed but whose changes have not yet been

written to the database disk (externalized).

• It contains transactions that have been rolled back but whose changes have been written

to the database disk (externalized).

2. Online Archive Logs

Online archive logs are files that contain only committed, externalized transactions. In other

words, they are logs that are no longer active, and therefore no longer needed for crash

recovery.

Online archive logs still reside in the active log directory. This is why they are called

“online.” The term online archive logs may sound complicated, but all it means is that

inactive logs reside in the active log directory.

3. Offline Archive Logs

File systems and disk drives have limited space. If all of the online archive logs are kept in

the active log directory, this directory will soon be filled up, causing a log disk full condition.

Therefore, the online archive logs should be moved out of the active log directory as soon as

possible. You can do this manually, or DB2 can invoke a program or procedure to do this for

you. Once this has been done, these logs become offline archive logs.

Database Logging:

Database logging is an important part of your highly available database solution design because

database logs make it possible to recover from a failure, and they make it possible to synchronize

primary and secondary databases. All databases have logs associated with them. These logs keep

records of database changes. If a database needs to be restored to a point beyond the last full,

offline backup, logs are required to roll the data forward to the point of failure.

Logging Methods:
DB2 supports three logging methods: circular logging, archival logging, and infinite active logging.

1. Circular Logging

Circular logging is the default logging mode for DB2. As the name suggests, in this method the

logs are reused in a circular mode. For example, if you have three primary logs, DB2 uses them

in this order: Log #1, Log #2, Log #3, Log #1, Log #2….

Note that in the above sequence Log #1 and Log #2 are reused. When a log file is reused, its

previous contents are completely overwritten. Therefore, a log can be reused if and only if the

transactions it contains have already been committed or rolled back and externalized to the

database disk. In other words, the log must not be an active log. This ensures DB2 will have the

necessary logs for crash recovery if needed. Figure 14.3 shows how circular logging works.

Although the ability to recover from a crash is assured, you cannot reapply the transactions that

were in these logs, because they have been overwritten. Therefore, circular logging only

supports crash recovery and version recovery, not roll forward recovery.

"n" 1

Secondary Logs

Primary
Logs "n"

3

1

2

Figure 14.3 Circ u lar logging

2. Archival Logging

Archival logging keeps the log files even after they contain committed and externalized data. To

enable archival logging, you can change the value of the LOGARCHMETH1 database

configuration parameter. We will discuss the possible values for the LOGARCHMETH1

parameter later in this section.

With archival logging, roll forward recovery is supported. The contents of inactive logs are

saved rather than overwritten; therefore, they can be reapplied during roll forward recovery.

Depending on the value set in LOGARCHMETH1, you can have the log files copied or saved to

various locations. When the log is needed during roll forward recovery, DB2 retrieves it from

that location and restores it into the active log directory.

With archival logging, if you have three primary logs in a database, DB2 will allocate them in

this order: Use Log #1, use Log #2, use Log #3, archive Log #1 (when no longer active), create

and use Log #4, archive Log #2, create and use Log #5…. Notice that the log number increases

as new logs are required. Figure 14.4 shows how archival logging works.

How DB2 archives and retrieves a log file depends on the value set in the LOGARCHMETH1

database parameter. The possible values are OFF, LOGRETAIN, USEREXIT, TSM, and

VENDOR and are discussed in detail in Table 14.2.

Figure 14.4 Archival logging

Table 14.2 Additional Logging-Related Database Configuration Parameters

LOGARCHMETH1 Values Description/Usage

OFF
Archival logging is disabled and circular

logging is used.

LOGRETAIN The log files will be retained in the active log

directory.

(continues)

1 2

ACTIVE log directory

ACTIVE LOGS
Contains
noncommitted
or nonexternalized
transactions.

ONLINE
ARCHIVE LOGS

Contains committed
and externalized
transactions.
Stored in the ACTIVE
log subdirectory.

OFFLINE ARCHIVE LOGS
Archive logs copied from

Active log directory to
another media.

5 4 3

Logs moved manually or
automatically by DB2

Table 14.2 Additional Logging-Related Database Configuration Parameters (Continued)

LOGARCHMETH1 Values Description/Usage

USEREXIT The archive and retrieval of the logs are performed automatically

by a user-supplied user exit program called db2uext2.

DISK:directory With this setting, archival logging uses a similar algorithm as in

USEREXIT. The only difference is instead of calling the user exit

program, DB2 will automatically archive the logs from the active

log directory to the specified directory. During recovery, DB2

will automatically retrieve these logs back to the active log

directory.

TSM:[management class

name]

With this setting archival logging uses a similar algorithm as in

USEREXIT. The only difference is that the logs will be archived

on the local Tivoli Storage Manger (TSM) server. The

management class name parameter is optional. If not specified,

the default management class is used.

VENDOR:library With this setting, archival logging uses a similar algorithm as in

USEREXIT. The only difference is that logs are archived using

the specified vendor library.

You can optionally configure the LOGARCHMETH2 parameter. This parameter specifies the secondary

archive log method, and can be set using the same values as for LOGARCHMETH1. If set, logs will be

archived to both this destination and the destination specified by the LOGARCHMETH1 parameter.

In addition to LOGARCHMETH1 and LOGARCHMETH2, Table 14.3 lists a number of other logging-

related database parameters.

3. Infinite Active Logging

Infinite active logging is built on top of archival logging. With circular logging and archival

logging, log space can potentially be filled with active logs if you have very long running

transactions. If you have long-running transactions you can use infinite active logging so that

you do not run out of log, or log disk, space.

To enable infinite active logging:

• Archive logging must be enabled with one of the automatic archival methods; that is,

LOGARCHMETH1 must be set to one of USEREXIT, DISK, TSM, or VENDOR.

• Set the LOGSECOND database configuration parameter to –1.

When archival logging is enabled, a log is marked for archival as soon as it becomes full.

However, DB2 leaves the log in the log directory until it becomes inactive for performance

reasons, and then renames the file for reuse. With infinite logging, DB2 still archives the log as

soon as it is full, but it does not wait for it to become inactive before it renames the file for reuse.

This guarantees that the active log directory will never fill up, because any logs can be reused

once they are filled and archived. Note that the use of infinite active logging can prolong crash

recovery times as active logs may need to be retrieved from the archive site.

4. Log Mirroring:

Even with all the protection provided by DB2 logging, there is still a concern of someone

accidentally deleting an active log file, or a disk crash that causes data corruption in your

database. Mirroring the log files helps protect your database from these potential disasters. Log

mirroring allows you to specify a secondary path for the database to manage copies of the active

logs. DB2 will attempt to write the log buffer to the log files in both places. When one log path

is damaged for whatever reason, DB2 can continue to read and write to the other log path,

keeping the database up and running.

To enable log mirroring, set the MIRRORLOGPATH database configuration parameter to a

valid drive, path, or device.

Database Backup:

A database backup is a complete copy of your database objects. In addition to the data, a

backup copy contains information about the table spaces, containers, the system catalog,

database configuration file, the log control file, and the recovery history file. Note that a backup

does not contain the Database Manager Configuration file or the values of registry variables.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to perform a backup.

To perform an offline backup of the sample database and store the backup copy in the directory

d:\mybackups, use the following command on Windows.

The d:\mybackups directory must be created before the backup can be performed. To perform an

offline backup of the sample database and store the backup copy in two separate directories, use

the following command for Linux/UNIX shown in Figure 14.6:

BACKUP DATABASE sample (1) TO

/db2backup/dir1, /db2backup/dir2 (2)

WITH 4 BUFFERS (3) BUFFER 4096 (4)

PARALLELISM 2 (5)

 Figure 14.6 Backup Database command example

where:

(1) Indicates the name (or alias) of the database to back up.

(2) Specifies the location(s) where you want to store the backup file. DB2 will writeto

both locations in parallel.

(3) Indicates how many buffers from memory can be used during the backup opera-

tion. Using more than one buffer can improve performance.

(4) Indicates the size of each buffer in 4KB pages.

(5) Specifies how many media reader and writer threads are used to take the backup.

Table Space Backup:

In a database where only some of your table spaces change considerably, you may opt not to

back up the entire database but only specific table spaces. To perform a table space backup, you

can use the following syntax:

BACKUP DATABASE sample

TABLESPACE (syscatspace, userspace1, userspace2)

ONLINE

TO /db2tbsp/backup1, /db2tbsp/backup2

The keyword TABLESPACE indicates this is a table space backup, not a full database backup.

You can also see from the example that you can include as many table spaces as desired in the

backup. Temporary table spaces cannot be backed up using a table space level backup.

You should back up related table spaces together. For example, if using DMS table spaces where

one table space is used for the table data, another one for the indexes, and another one for LOBs,

you should back up all of these table spaces at the same time so that you have consistent

information. This is also true for table spaces containing tables defined with referential

constraints between them.

Incremental Backups:

As database sizes continue to grow, the time and resources required to back up and recover these

databases also grows substantially. Full database and table space backups are not always the best

approach when dealing with large databases, because the storage requirements for multiple

copies of such databases are enormous.

To address this issue, DB2 provides incremental backups. An incremental backup is a backup

image that contains only pages that have been updated since the previous backup was taken. In

addition to updated data and index pages, each incremental backup image also contains all of the

initial database metadata (such as database configuration, table space definitions, database

history, and so on) that is normally stored in full backup images.

There are two kinds of incremental backups.

• In incremental cumulative backups, DB2 backs up all of the data that has changed since

the last full database backup.

• In delta backups, DB2 backs up only the data that has changed since the last successful

full, cumulative, or delta backup.

Figure 14.7 illustrates these concepts.

 Figure 14.7 Incremental and delta backups

For incremental backups, if there was a crash after the incremental backup on Friday, you would

restore the first Sunday’s full backup, followed by the incremental backup taken on Friday.

For delta backups, if there was a crash after the delta backup on Friday, you would restore the

first Sunday’s full backup, followed by each of the delta backups taken on Monday through

Friday inclusive.

To enable incremental and delta backups, the TRACKMOD database configuration parameter

must be set to YES. This allows DB2 to track database modifications so that the backup utility

can detect which database pages must be included in the backup image. After setting this

parameter to YES, you must take a full database backup to have a baseline against which

incremental backups can be taken.

To perform a cumulative incremental backup on the SAMPLE database to directory /dev/rdir1,

issue:

BACKUP DB sample

INCREMENTAL TO /dev/rdir1

To perform a delta backup on the SAMPLE database to the directory /dev/rdir1, issue:

BACKUP DB sample

INCREMENTAL DELTA TO /dev/rdir1

Backing Up a Database with the Control Center:

You can use the Backup Wizard to perform backups. From the Control Center, expand your

database folder, right-click on the database name you wish to back up and select Backup. The

database Backup Wizard appears. Figure 14.8 shows that you can choose to perform either a

database-level backup or a table space-level backup. From here, the Backup Wizard will guide

you through the options.

Delta Backup

Full

Full

Full

Full

Incremental Cumulative Backup
Sunday Mon Tue Wed Fri Thu Sat Sunday

 Figure 14.8 Incremental and delta backups

The Backup Files

The backup images are stored as files. The name of the backup file contains the following parts:

• Database alias

• Type of backup (0=Full database, 3=Table space, 4=Copy from LOAD)

• Instance name

• Database partition (always NODE0000 for a single-partition database)

• Catalog partition number (always CATN0000 for a single-partition database)

• Timestamp of the backup

• The image sequence number

V9 The naming convention applies to all platforms. In Figure 14.9, you can see the full filename

of each backup image.

 Linux/UNIX/Windows Year Minute

 Alias Instance

 Type Node Catalog Node

 Month Second

 Figure 14.9 Backup file name hierarchy

For example, the command (on a Windows server):

BACKUP DATABASE sample to D:\tmp produces

the backup image shown in Figure 14.10.

D B ALIA S .D .0 B 2 IN S T.NODE00000.CATN0000.200 6 0 3 1 4 1 3 12 5 9.001

D a y
Se qu en c e

Hou r

 Figure 14.10 Backup file on Windows

The backup image can be found in the directory specified in the BACKUP DATABASE

command, or the directory where the command is issued from.

Database Recovery:

You can restore a backup image using the RESTORE DATABASE command. You can choose

to recover everything in the image, or just an individual table space, or multiple table spaces.

You can restore a database backup image and create a new database or you can restore over top

of an existing database. You need SYSADM, SYSCTRL, or SYSMAINT authority to restore

into an existing database, and SYSADM or SYSCTRL authority restore to a new database.

Figure 14.11 shows the syntax diagram of the RESTORE DATABASE command.

To perform a restore of the sample database, you can use the syntax shown in Figure 14.12.

RESTORE DATABASE sample

(1) FROM C:\DBBACKUP

(2) TAKEN AT 20070428131259 (3)

WITHOUT ROLLING FORWARD (4)

WITHOUT PROMPTING (5)

 Figure 14.12 Restore Database command example

where:

(1) Indicates the name of the database image to restore.

(2) Specifies the location where the input backup image is located.

(3) If there is more than one backup image in the directory, this option identifies

thespecific backup based on the timestamp, which is part of the backup filename.

(4) If a database has archival logging enabled, a restore operation puts the databasein

roll forward pending state, regardless of whether the backup was online or offline.

If restoring from an offline backup, you can choose not to roll forward. This option

tells DB2 not to place the database in roll forward pending state. When restoring

from an online backup, the “without rolling forward” option cannot be used, as you

must roll forward to at least the time that the backup completed.

(5) Specifies that the restore is to be performed unattended. Action that

normallyrequires user intervention will return an error message. When using a

removable media device, such as tape or diskette, you will be prompted when the

end of the device is reached, even if this option is specified.

Restoring a Database with the Control Center:

You can use the Restore Data Wizard to restore a database or a table space. In the Control

Center, expand the database folder, right-click on the database you want to restore, and select

Restore. The Restore Data Wizard is launched.

Figure 14.14 shows that you have the options to restore to an existing database, a new database,

or only the history file. The Restore Data Wizard guides you through the restore command

options. (We will discuss the history file in Section 14.7, Recovering a Dropped Table.)

 Figure 14.14 The Restore Data Wizard

Online and Offline Backups:

There are two types of backups we can perform using DB2 - offline and online. Offline backups

require users and applications to be disconnected from the databases thereby requiring a certain

down time. Online backups on the other hand, can be performed while users are still connected

to databases. Trove currently supports full offline backups for DB2.

The method that you choose to back up your data determines whether IBM Spectrum Control

remains online or offline during the backup process.

Advantages of an offline backup

The advantages of the offline backup method are:

• The offline backup method is the default method and it is easier than the online method to

configure and to maintain.

• The circular type of logging that is used for offline backups is easier to configure and

maintain than the type of logging that is used for online backups.

Disadvantages of an offline backup

The disadvantages of the offline backup method are:

• You must stop IBM Spectrum Control when you back up the data. So data is not collected

and your storage resources are not being monitored during the back up process.

• You cannot collect performance data for the disk subsystems and SAN fabrics when data

is being backed up.

• You might miss critical events, for example, failures within a SAN fabric, that occur

during the backup process.

To minimize the loss of data for your storage resources and to ensure that you do not miss

critical events, back up your data when your storage resources are not being used or when

storage usage is low.

Advantages of an online backup

The advantages of the online backup method are:

• You continue to collect data and monitor your storage resources during the backup process

because you do not have to stop IBM Spectrum Control.

• You continue to receive alerts and can respond quickly to critical events at any time of

day.

• You continue to collect performance data for your disk subsystems and SAN fabrics.

Disadvantages of an online backup

The disadvantages of the online backup method are:

• The archive type of logging that is used with this type of backup is a more advanced

method; it requires a good knowledge DB2® operation and administration.

• Software upgrades to IBM Spectrum Control that involve changes to the layout of the

database might not complete successfully. In such cases, you can use circular logging to

ensure that the software upgrade succeeds. You can switch back to archive logging after

the software upgrade is installed.

DB2 Utilities on Linux / UNIX:

Moving data from one database server to another is a very common task in a production

environment and in almost every phase of the development cycle. For example, a developer may

want to export data from a production database and load it into lower environment tables for

testing. In a production environment, a database administrator may want to export a few tables

from production to a test database server to investigate a performance problem.

DB2 provides a number of utilities so that we can accomplish these tasks very easily. Different

utilities • Different file formats used to move data

1. The EXPORT utility

2. The IMPORT utility

3. The LOAD utility

4. The DB2MOVE utility

THE DB2 EXPORT UTILITY:

The export utility extracts data from a table into a file. export to empdata.ixf of ixf select * from

employee Using the optional messages clause, you can specify a filename where warning and

error messages of the export operation are logged. If no message file accompanies the messages

clause, the messages are written to standard output. Though optional, we highly recommend you

use this clause so that all the messages generated by the utility are saved.

The export command also supports SELECT statements with joins, nested statements, and so

on. Thus, if you want to export data from two tables, they can be joined as shown in the

following example:

export to deptmgr.del of del messages deptmgr.out

select deptno, deptname, firstnme, lastname, salary

from employee, department

where empno = mgrno

File Type Modifiers Supported in the Export Utility:

The export utility exports data to a file using default file formats. For example, if you are

exporting a table to a file in DEL format, the default column delimiter is a comma, and the

default string delimiter is the double quote. What happens if the table data to be exported

contains these delimiters as part of the data? The file exported may contain data that can be

confused as a delimiter, making it impossible for an import or load operation to work correctly.

To customize the delimited file format to use different delimiters other than the defaults, use the

modified by clause.

Changing the Column Delimiter:

To use a column delimiter other than the comma, specify the coldel file type modifier in the

modified by clause. The following example specifies to use a semicolon as the column modifier.

Note that there is no space between the keyword coldel and the semicolon.

export to deptmgr.del of del

modified by coldel; messages deptmgr.out

select deptno, deptname, firstnme, lastname, salary

from employee, department

where empno = mgrno

Changing the Character Delimiter:

You can enclose character strings with a different delimiter by using the keyword chardel.

export to deptmgr.del of del

modified by coldel; chardel’’ messages deptmgr.out

select deptno, deptname, firstnme, lastname, salary

 from employee, department

where empno = mgrno

Changing the Date Format:

You can also export data in a specific date format you prefer by using the timestampformat

modifier.

export to deptmgr.del of del

modified by coldel; chardel’’ timestampformat=”yyyy.mm.dd hh:mm”

messages deptmgr.out

select deptno, deptname, firstnme, lastname, salary

from employee, department

where empno = mgrno

Exporting Large Objects:

DB2 supports the following types of large objects: character large objects (CLOBs), binary large

objects (BLOBs), and double-byte character large objects (DBCLOBs). LOB values can be as

large as 2GB for CLOBs and BLOBs and 1GB for DBCLOBs. Due to these sizes, the export

utility by default extracts only the first 32KB of data of the LOB values in the export file. To

extract the entire LOB, you must use the lobs to or lobfile clause or the lobsinfile modifier.

The lobs to clause specifies the directories in which the LOB files will be stored. If no lobs to

clause is found, LOB data is written to the current working directory.

For example, the following export command generates three files. One file is the message file,

mgrresume.out. Another file, mgrresume.del, is the data file, which contains all data columns for

the rows except the LOB data. The third file, resume.001, is the file containing the LOB values

for all rows.

export to mgrresume.del of del

lobs to c:\lobs

lobfile resume

modified by lobsinfile

messages mgrresume.out

select deptno, deptname, firstnme, lastname, resume

from employee a, emp_resume b

where a.empno = b.empno

THE DB2 IMPORT UTILITY:

The import utility inserts data from an input file into a table or a view. The utility performs

inserts as if it was executing INSERT statements.

import from employee.ixf of ixf

messages employee.out

insert into employee

Import Modes:

Mode Description

INSERT Adds the imported data to the table without changing the existing table data. The target

table must already exist.

INSERT_UPDATE Adds the imported data to the target table or updates existing rows with

matching primary keys. The target table must already exist defined with primary keys.

CREATE Creates the table, index definitions, and row contents. The input file must use the IXF

format because this is the only format that stores table and index definitions.

REPLACE Deletes all existing data from the table and inserts the imported data. The table

definition and index definitions are not changed.

REPLACE_CREATE If the table exists, this option behaves like the replace option. If the table

does not exist, this option behaves like the create option, which creates the table and index

definitions and then inserts the row contents. This option requires the input file to be in IXF

format.

The warningcount option indicates that the utility will stop after 10 warnings are received. If

this option is not specified or is set to zero, the import operation will continue regardless of the

number of warnings issued.

import from employee.del of del

messages empsalary.out

warningcount 10

replace into empsalary (salary, bonus, comm)

import from mgrresume.ixf of ixf

lobs from c:\lobs1, c:\lobs2, c:\lobs3

modified by lobsinfile commitcount 1000

messages mgrresume.out

create into newemployee in datats index in indexts long in lobts

THE DB2 LOAD UTILITY:

The load utility is another tool you can use to insert data into a table. Note that you cannot run

the load utility against a view; the target must be a table that already exists.

The major difference between a load and an import is that a load is much faster. Unlike the

import utility, data is not written to the database using normal insert operations. Instead, the load

utility reads the input data, formats data pages, and writes directly to the database. Database

changes are not logged and constraint validations (except unique constraint) are not performed

during a load operation.

The Load Process

Basically, a complete load process consists of four phases.

1. During the load phase, the load utility scans the input file for any invalid data rows that do

not comply with the table definition; for example, if a table column is defined as INTEGER

but the input data is stored as “abcd”. Invalid data will not be loaded into the table. The

rejected rows and warnings will be written to a dump file specified by the dumpfile modifier.

Valid data is then written into the table. At the same time, table statistics (if the statistics use

profile option was specified) and index keys are also collected. If the savecount option is

specified in the load command, points of consistency are recorded in the message file.

Consistency points are established by the load utility. They are very useful when it comes to

restarting the load operation. You can restart the load from the last successful consistency

point.

2. During the build phase, indexes are produced based on the index keys collected during the

load phase. The index keys are sorted during the load phase, and index statistics are collected

(if the statistics use profile option was specified).

3. In the load phase, the utility only rejects rows that do not comply with the column

definitions. Rows that violated any unique constraint will be deleted in the delete phase.

Note that only unique constraint violated rows are deleted. Other constraints are not checked

during this phase or during any load phase. You have to manually check it after the load

operation is complete.

4. During the index copy phase, index data is copied from a system temporary table space to

the original table space. This will only occur if a system temporary table space was specified

for index creation during a load operation with the read access option specified db2 "load

from abcd.del of del modified by coldel MESSAGES MSG.TXT insert into

schema_name.table_name NONRECOVERABLE"

Tables are in load pending state or not

db2 load query table RTOCM.UA_CONTACTHISTORY_ACCT_PROD

THE DB2MOVE IMPORT UTILITY:

The db2move utility retrieves a list of all user tables in a database from the system catalog. It

then exports these tables in PC/IXF format, which is a version of an adaptation of the Integration

Exchange Format (IXF) data interchange architecture.

The PC/IXF files can be imported or loaded to another local DB2 database on the same system,

or can be transferred to another workstation platform and imported or loaded to a DB2 database

on that platform. Files that db2movegenerates during an export operation are used as input files

for the ensuing import or load operation (see Table 1). If a db2move operation is to succeed, the

requesting user ID must have the correct authorization required by the underlying DB2 data

movement utilities. A database connection is not required prior to invoking

the db2move command; the utility does that for you.

The basic syntax of the db2move command is as follows:

Listing 1. The db2move command

 db2move <database-name> <action> [<option> <value>]

You must specify the name of the database whose tables you want to move, and the action

(export, import, or load) that is to be performed. You can then specify an option to define the

scope of the operation. For example, you can limit the operation to certain tables (-tn), table

spaces (-ts), table creators (-tc), or schema names (-sn). Specifying a subset of tables, table

spaces, or table creators is valid with the export action only. If multiple values are specified, they

must be separated by commas; no blanks are allowed between items in the list of values. The

maximum number of items that can be specified is 10.

Alternatively, you can specify the -tf option with the name of a file that lists the tables to export.

The fully qualified table names should be listed one per line. You can also specify:

-io import-option

Specifies one of the modes under which the DB2 import utility can run. Valid options are:

CREATE, INSERT, INSERT_UPDATE, REPLACE, and REPLACE_CREATE. The

default is REPLACE_CREATE. For more information about these modes, see the DB2 product

documentation.

-lo load-option

Specifies one of the modes under which the DB2 load utility can run. Valid options are:

INSERT and REPLACE. The default is INSERT. For more information about these modes, see

the DB2 product documentation.

-l lobpaths

Specifies the location in which LOB files are to be created or found. One or more absolute path

names must be specified. If multiple paths are specified, they must be separated by commas; no

blanks are allowed between values. The default is the current directory.

-u userid

Specifies a user ID with which the utility can log on to a remote system.

-p password

Specifies a password that authenticates the user; the utility requires a valid user ID and password

to log on to a remote system.

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp

UNLOAD:

The UNLOAD online utility copies data from one or more source objects to one or more BSAM

sequential data sets in external formats. The output records that the UNLOAD utility writes are

compatible as input to the LOAD utility. Therefore, you can use this output to reload the original

table or different tables.

Although the function of the UNLOAD utility is often referred to as unloading data, the data is

not deleted from the source object. The utility just makes a copy of the data. That copy includes

the data only; it does not include all of the pages, such as the system pages and header pages, that

are included in an image copy.

The source for UNLOAD can be Db2 table spaces or Db2 image copy data sets. The source

cannot be a concurrent copy or a FlashCopy image copy.

You can unload rows from an entire table space or select specific partitions or tables to unload.

You can also select columns by using the field specification list. If a table space is partitioned,

you can unload all of the selected partitions into a single data set. Alternatively, you can unload

each partition in parallel into physically distinct data sets.

UNLOAD must be run on the system where the definitions of the table space and the table exist.

Output

UNLOAD generates an unloaded table space or partition.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• Ownership of the tables

• SELECT privilege on the tables

• DBADM authority for the database. If the object on which the utility operates is in an

implicitly created database, DBADM authority on DSNDB04 or the implicitly created

database is sufficient.

• DATAACCESS authority

• SYSADM authority

• SYSCTRL authority (catalog tables only)

• SQLADM authority (catalog tables only)

• System DBADM authority (catalog tables only)

• ACCESSCTRL authority (catalog tables only)

• SECADM authority (catalog tables only)

The UNLOAD utility operates in these phases:

1. UTILINIT initializes the environment.

2. UNLOAD unloads records to sequential data sets. One pass through the input data set is

made. If UNLOAD is processing a table space or partition, Db2 takes internal commits.

These commits provide commit points at which the utility can be restarted if the utility

stops in this phase.

3. UTILTERM cleans up the environment.

LOAD:

Use the LOAD online utility to load one or more tables of a table space. The LOAD utility loads

records into the tables and builds or extends any indexes that are defined on them.

If the table space already contains data, you can choose whether you want to add the new data to

the existing data or replace the existing data.

The loaded data is processed by any edit or validation routine that is associated with the table,

and any field procedure that is associated with any column of the table. The LOAD utility

ignores and does not enforce informational referential constraints.

To avoid the cost of running the RUNSTATS utility afterward, you can also specify the

STATISTICS option collect inline statistics when you run the LOAD utility.

You can use the LOAD utility in conjunction with z/OS DFSMS data set encryption with the

REPLACE option to encrypt or decrypt table spaces or indexes that use Db2-managed data sets.

The LOAD utility accepts encrypted input data sets.

Output

LOAD DATA generates one or more of the following forms of output:

• A loaded table space or partition.

• A discard file of rejected records.

• A summary report of errors that were encountered during processing; this report is

generated only if you specify ENFORCE CONSTRAINTS or if the LOAD utility

involves unique indexes.

• The output can be encrypted if a key label is defined for the output data set.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following

authorizations:

• Ownership of the table

• LOAD privilege for the database

• STATS privilege for the database is required if STATISTICS keyword is specified

• DBADM or DBCTRL authority for the database. If the database is implicitly created,

these privileges must be on the implicitly created database or on DSNDB04.

• DATAACCESS authority

• SYSCTRL or SYSADM authority

COPY:

The COPY online utility creates copies of certain objects. These copies, called image copies, can

later be used for recovery.

COPY can create up to five image copies: two sequential image copies for the local site, two

sequential image copies for the recovery site, and one FlashCopy image copy. These copies can

be created for any of the following objects:

• Table space

• Table space partition

• Data set of a non-partitioned table space

• Index space

• Index space partition

The sequential image copies can be either full or incremental. A full image copy is a copy of all

pages in a table space, partition, data set, or index space. An incremental image copy is a copy of

the system pages and only those data pages that have been modified since the last use of the

COPY utility.

The RECOVER utility uses image copies when recovering a table space or index space to the

most recent time or to a previous point in time. Copies can also be used by the MERGECOPY,

COPYTOCOPY, and UNLOAD utilities.

The COPY utility produces up to four sequential data sets that contain the image copy and

optionally one Flash Copy image copy. COPY also adds rows in the SYSIBM.SYSCOPY

catalog table that describe the image copy data sets that are available to the RECOVER utility.

Your installation is responsible for ensuring that these data sets are available if the RECOVER

utility requests them.

COPY resets COPY-pending status as follows:

• If the copy is a full image copy, Db2 resets any COPY-pending status for the copied table

spaces.

• If you copy a single table space partition, Db2 resets any COPY-pending status only for

the copied partition and not for the whole table space.

• If you copy a single piece of a multi-piece linear data set, Db2 does not reset any COPY-

pending status.

• If you copy an index space or index, Db2 resets any informational COPY-pending

(ICOPY) status.

• If you copy a NOT LOGGED table space, Db2 resets any informational COPY-pending

(ICOPY) status

RECOVER:

The RECOVER utility recovers data to the current state or to a previous point in time by

restoring a copy and then applying log records. The RECOVER utility can also recover data to a

previous point in time by backing out committed work.

The largest unit of data recovery is the table space or index; the smallest is the page. You can

recover a single object or a list of objects. The RECOVER utility recovers an entire table space,

index, a partition or data set, pages within an error range, or a single page. You can recover data

from sequential image copies of an object, a FlashCopy image copy of an object, a system-level

backup, or the log. Point-in-time recovery with consistency automatically detects the

uncommitted transactions that are running at the recover point in time and rolls back their

changes on the recovered objects. After recovery, objects will be left in their transactionally

consistent state.

You can use the RECOVER utility in conjunction with z/OS DFSMS data set encryption to

encrypt or decrypt table spaces or indexes.

Output

Output from RECOVER consists of recovered data (a table space, index, partition or data set,

error range, or page within a table space).

Authorization required

To run this utility, you must use a privilege set that includes one of the following authorities:

• RECOVERDB privilege for the database

• DBADM or DBCTRL authority for the database. If the object on which the utility

operates is in an implicitly created database, DBADM authority on the implicitly created

database or DSNDB04 is required.

• System DBADM authority

• DATAACCESS authority

• SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also run RECOVER, but only on a table space in

the DSNDB01 or DSNDB06 database.

RUNSTATS:

The RUNSTATS online utility gathers summary information about the characteristics of data in

table spaces, indexes, and partitions. Db2 records these statistics in the Db2 catalog and uses

them to select access paths to data during the bind process.

You can use these statistics to evaluate the database design and determine when table spaces or

indexes must be reorganized. To obtain the updated statistics, you can query the catalog tables.

The two formats for the RUNSTATS utility are RUNSTATS TABLESPACE and RUNSTATS

INDEX. RUNSTATS TABLESPACE gathers statistics on a table space and, optionally, on

tables, indexes or columns; RUNSTATS INDEX gathers statistics only on indexes. RUNSTATS

does not collect statistics for clone tables or index spaces.

RUNSTATS can collect statistics on any single column or set of columns.

RUNSTATS collects the following types of distribution statistics:

Frequency

The percentage of rows in the table that contain a value for a column or combination of values

for a set of columns.

Cardinality

The number of distinct values in the column or set of columns.

Output

RUNSTATS updates the Db2 catalog with table space or index space statistics, prints a report, or

both.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• STATS privilege for the database

• DBADM, DBCTRL, or DBMAINT authority for the database. If the object on which the

utility operates is in an implicitly created database, DBADM authority on the implicitly

created database or DSNDB04 is required.

• System DBADM authority

• SQLADM authority

• SYSCTRL or SYSADM authority

STOSPACE:

The STOSPACE online utility updates Db2 catalog columns that indicate how much space is

allocated for storage groups and related table spaces and indexes.

For user-defined spaces, STOSPACE does not record any statistics.

Output

The output from STOSPACE consists of updated values in the columns and tables in the

following list. In each case, an amount of space is given in kilobytes (KB). If the value is too

large to fit in the SPACE column, the SPACEF column is updated.

• SPACE in SYSIBM.SYSINDEXES shows the amount of space that is allocated to

indexes. If the index is not defined using STOGROUP, or if STOSPACE has not been

executed, the value is zero.

• SPACE in SYSIBM.SYSTABLESPACE shows the amount of space that is allocated to

table spaces. If the table space is not defined using STOGROUP, or if STOSPACE has

not been executed, the value is zero.

• SPACE in SYSIBM.SYSINDEXPART shows the amount of space that is allocated to

index partitions. If the partition is not defined using STOGROUP, or if STOSPACE has

not been executed, the value is zero.

• SPACE in SYSIBM.SYSTABLEPART shows the amount of space that is allocated to

table partitions. If the partition is not defined using STOGROUP, or if STOSPACE has

not been executed, the value is zero.

• SPACE in SYSIBM.SYSSTOGROUP shows the amount of space that is allocated to

storage groups.

• STATSTIME in SYSIBM.SYSSTOGROUP shows the timestamp for the time at which

STOSPACE was last executed.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following

authorities:

• STOSPACE privilege

• SYSCTRL or SYSADM authority

Execution phases of STOSPACE

The STOSPACE utility operates in these phases:

Phase Description

UTILINIT Performs initialization

STOSPACE Gathers space information and updates catalog

UTILTERM Performs cleanup

REORG INDEX:

The REORG INDEX online utility reorganizes an index space to improve access performance

and reclaim fragmented space. You can specify the degree of access to your data during

reorganization, and you can collect inline statistics by using the STATISTICS keyword.

You can determine when to run REORG INDEX by using the LEAFDISTLIMIT catalog query

option. If you specify the REPORTONLY option, REORG INDEX produces a report that

indicates whether a REORG is recommended; in this case, a REORG is not performed. These

options are not available for indexes on the directory.

To avoid the cost of running the RUNSTATS utility afterward, you can also specify the

STATISTICS option to collect inline statistics when you run the REORG INDEX utility.

You can use the REORG INDEX utility in conjunction with z/OS DFSMS data set encryption to

encrypt or decrypt indexes. REORG INDEX always allocates new Db2-managed data sets unless

the REUSE option is specified.

Output

The following list summarizes

• REORG INDEX output: REORG INDEX Reorganizes the entire index (all parts if

partitioning).

• REORG INDEX PART n Reorganizes PART n of a partitioning index or of a data-

partitioned secondary index

REORG TABLESPACE:

The REORG TABLESPACE online utility reorganizes a table space, partition, or range of

partitions to reclaim fragmented space and improve access performance. You can also run

REORG TABLESPACE to materialize pending definition changes.

You can use the DSNACCOX stored procedure to get recommendations on when to run REORG

TABLESPACE.

To avoid the cost of running the RUNSTATS utility after running REORG TABLESPACE, you

can request that REORG collect inline statistics by specifying the STATISTICS option.

Authorization required

To execute this utility on a user table space, you must use a privilege set that includes one of the

following authorities:

• REORG privilege for the database

• DBADM or DBCTRL authority for the database. If the object on which the utility

operates is in an implicitly created database, DBADM authority on the implicitly created

database or DSNDB04 is required.

• SYSCTRL authority

• SYSADM authority

• DATAACCESS authority

As data is inserted, deleted, and updated in the database, the data might not be physically placed in a

sequential order, which means that DB2 must perform additional read operations to access data. This

usually requires more disk I/O operations, and we all know such operations are costly. To minimize I/O

operations, you should consider physically reorganizing the table to the index so that related data are

located close to each other.

Basic Concepts of OLAP:

Online Analytical Processing Server (OLAP) is based on the multidimensional data model. It

allows managers, and analysts to get an insight of the information through fast, consistent, and

interactive access to information. This chapter cover the types of OLAP, operations on OLAP,

difference between OLAP, and statistical databases and OLTP.

Types of OLAP Servers

We have four types of OLAP servers −

• Relational OLAP (ROLAP)

• Multidimensional OLAP (MOLAP)

• Hybrid OLAP (HOLAP)

• Specialized SQL Servers

Relational OLAP - ROLAP servers are placed between relational back-end server and client

front-end tools. To store and manage warehouse data, ROLAP uses relational or extended-

relational DBMS.

ROLAP includes the following −

• Implementation of aggregation navigation logic.

• Optimization for each DBMS back end.

• Additional tools and services.

Multidimensional OLAP - MOLAP uses array-based multidimensional storage engines

for multidimensional views of data. With multidimensional data stores, the storage

utilization may be low if the data set is sparse. Therefore, many MOLAP server use two

levels of data storage representation to handle dense and sparse data sets.

Hybrid OLAP - Hybrid OLAP is a combination of both ROLAP and MOLAP. It offers higher

scalability of ROLAP and faster computation of MOLAP. HOLAP servers allows to store the

large data volumes of detailed information. The aggregations are stored separately in MOLAP

store.

Specialized SQL Servers - Specialized SQL servers provide advanced query language and

query processing support for SQL queries over star and snowflake schemas in a read-only

environment.

Data warehousing in DB2:

Data warehousing in Db2 is a suite of products that combines the strength of Db2 with a

datawarehousing infrastructure from IBM®.

You can use data warehousing in Db2 to build a complete data warehousing solution that

includes a highly scalable relational database, data access capabilities, and front-end analysis

tools.

The following components are provided in data warehousing in Db2:
Data warehousing in Db2 application server

• Administration Console

o SQL Warehousing (SQW) administration

o Cubing Services administration

▪ If you already have Cubing Services installed on your system, you can continue to use

it when you upgrade your version of data warehousing in Db2 to the newest version.

However, if Cubing Services is not already installed on your system, then it is not an

option as you upgrade to the newest version of data warehousing in Db2. Instead, you

can migrate to Cognos® Dynamic Cubes.

• IBM Data Server Client

• WebSphere® Application Server

Data warehousing in Db2 client

• Design Studio

o SQL Warehousing (SQW) Tool

• Administration Console Command Line Client

• Components of data warehousing in Db2”:

The components of data warehousing in Db2 provide an integrated platform for warehouse

administration and for the development of warehouse-based analytics.

The key components of data warehousing in Db2 are:

Data warehousing in Db2 Design Studio

The Design Studio provides a common design environment for creating physical data

models, OLAP cubes, SQL data flows, and control flows. The Design Studio is built on

the Eclipse Workbench, which is a development environment that you can customize,

Data warehousing in Db2 Administration Console

The data warehousing in Db2 Administration Console is a web application from which

you can deploy and manage applications, control flows, database resources, and system

resources. You can do the following types of tasks in the Administration Console:

Common configuration

Create and manage database and system resources, including driver definitions, log files,

and notifications.

SQL warehousing

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.dwe.welcome.doc/components.html?view=kc

Run and monitor data warehousing applications and view deployment histories and

execution statistics.

Mining

Run and monitor data mining applications.

Cognos Dynamic Cubes

You can use data warehousing in Db2 with Cognos Dynamic Cubes to leverage

substantial in-memory data assets as well as aggregate awareness in order to achieve high

performance interactive analysis & reporting over terabytes of warehouse data.

Cognos® 10 Business Intelligence For Reporting

IBM® Cognos 10 Business Intelligence For Reporting lets organizations implement a

rich set of business intelligence capabilities. It is an ideal solution for companies that

want to consolidate data marts, information silos, and business analytics to deliver a

single version of the truth to all users. It allows easy creation of reports and quick

analysis of data from the data warehouse.

IBM Optim™ Performance Manager Extended Edition

Optim Performance Manager Extended Edition is a follow on to Db2 Performance

Expert. Optim Performance Manager Extended Edition helps optimize the performance

and availability of mission critical databases and applications.

Intelligent Miner®

Data warehousing in Db2 includes the following mining features:

• Intelligent Miner Easy Mining

• Intelligent Miner Modeling

• Intelligent Miner Scoring

These features provide rapid enablement of data mining analysis in Data Warehousing,

eCommerce, or traditional Online Transaction Processing (OLTP) application programs.

While previously available as separately priced products, they are now available as an

integrated part of data warehousing in Db2.

Text Analysis

With data warehousing in Db2, you can create business insight from unstructured

information. You can extract information from text columns in your data warehouse then

use the extracted information in reports, multidimensional analysis, or as input for data

mining.

• Installation architecture for data warehousing in Db2 on multiple computers

Data warehousing in Db2 has a component-based architecture that consists of a data server

component group, an application server component group, and a client component group. In a

typical production environment, you install each of these component groups on different

computers to create a complete warehousing solution.

Data warehousing in Db2 has a component-based architecture that consists of a data server

component group, an application server component group, and a client component group. In a

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.dwe.welcome.doc/architecture_luw.html?view=kc

typical production environment, you install each of these component groups on different

computers to create a complete warehousing solution.

The following diagram illustrates the component architecture of the product and provides a basis

for planning your installation across multiple computers.

Figure: Data warehousing in Db2 working with data sources and databases

DB2 Warehouse integrated warehousing platform

Figure 7-9. DB2 Warehouse integrated warehousing platform

DB2 Data Warehouse is an integrated platform for warehouse-based analytics that runs on the DB2

LUW platforms. The Warehouse Tool component is the SQL Warehousing Tool (SQW) that is designed

to move data already in DB2 into data marts. The mining component is DB2 intelligent Miner and

includes a Miningblox component to facilitate reporting from a mining run via Alphablox. The OLAP

component is Cubing Services, which is designed to be an MDX gateway and an OLAP accelerator for

applications accessing a star schema stored in DB2. Alphablox is used as the in line analytics component.

The SQW, the data mining component, Cubing Services and the new Alphablox blox builder component

all share the same Eclipse-base development environment and all, except Alphablox, utilize the same

common Administration Console, a WebSphere Application Server application, for administration

purposes.

A Rational Data Architect plug-in is used to do physical data modeling.

Data Migration (DB2 / Oracle / MS SQL / Sybase):

Data migration is the process of transferring data between data storage systems, data formats or

computer systems. A data migration project is done for numerous reasons, which include

replacing or upgrading servers or storage equipment, moving data to third-party cloud providers,

https://searchdatamanagement.techtarget.com/definition/data
https://searchstorage.techtarget.com/definition/storage
https://searchwindowsserver.techtarget.com/definition/system
https://whatis.techtarget.com/definition/third-party
https://searchitchannel.techtarget.com/definition/cloud-service-provider-cloud-provider

website consolidation, infrastructure maintenance, application or database migration, software

upgrades, company mergers or data center relocation.

Creating a data migration plan

A data migration project can be a challenge because administrators must maintain data integrity,

time the project so there is minimal impact to the business and keep an eye on costs. Any

problem that occurs during the migration will affect the business, so a data migration plan is key

to ensuring minimal disruption and downtime to the active business processes.

Factors to consider during a data migration project include how long the migration will take; the

amount of downtime required; and the risk to the business due to technical compatibility

issues, data corruption, application performance issues, and missed data or data loss.

There are three broad categories of data movers.

1. Host-based software is best for application-specific migrations, such

as platform upgrades, database replication and file copying.

2. Array-based software is primarily used to migrate data between like systems.

3. Network appliances migrate volumes, files or blocks of data depending on their

configuration.

The following best practices should be used to protect data during a migration.

• Understand what data you are migrating, where it lives, what form it's in and the form it will

take at its new destination.

• Extract, transform and deduplicate data before moving it.

• Implement data migration policies so data is moved in an orderly manner.

• Test and validate the migrated data to ensure it is accurate.

• Audit and document the entire data migration process.

https://searchcio.techtarget.com/definition/migration
https://whatis.techtarget.com/definition/uptime-and-downtime
https://searchsqlserver.techtarget.com/definition/data-corruption
https://searchsoftwarequality.techtarget.com/definition/application
https://searchnetworking.techtarget.com/definition/host
https://searchservervirtualization.techtarget.com/definition/platform
https://searchdatamanagement.techtarget.com/definition/database-replication
https://searchstorage.techtarget.com/definition/array
https://whatis.techtarget.com/definition/appliance-network-appliance
https://searchstorage.techtarget.com/definition/volume
https://searchsqlserver.techtarget.com/definition/block
https://searchstorage.techtarget.com/definition/data-deduplication
https://searchcio.techtarget.com/definition/audit-trail

Types of data migrations and their challenges

The data migration process is performed on three levels.

Storage migration is justified through technology refreshes, and the process is used as an

optimal time to do data validation and reduction by identifying obsolete or corrupt data. The

process involves moving blocks of storage and files from one storage system to another, whether

it is on disk, tape or the cloud. There are numerous storage migration products and tools that help

smooth the process. Storage migration also offers the chance to remediate any orphaned

storageor inefficiencies.

Database migration is done when there is a need to change database vendors, upgrade the

database software or move a database to the cloud. In this type of migration, the underlying data

can change, which can affect the application layer when there is a change in protocol or data

language. Data migrations in databases deal with modifying the data without changing

the schema. Some key tasks include assessing the database size to determine how much storage

is needed, testing applications and guaranteeing data confidentiality. Compatibility problems can

occur during the migration process, so it is important to test the process first.

Application migration can occur when switching to another vendor application or platform.

This process has its own inherent layers of complexity because applications interact with other

applications, and each one has its own data model. Applications are not designed to be portable.

Management tools, operating systems and virtual machine configurations can all differ from

those in the environment where the application was developed or deployed. Successful

application migration may require the use of middleware products to bridge technology gaps.

Cloud migration is a major technology trend, as the cloud provides on-demand

flexibility, scalability and reduction of Capex for on-premises infrastructures. Public

cloud providers offer a variety of services for storage, database and application migrations.

Data Migration from Oracle to DB2

Migration from Oracle Database to the IBM® DB2® on z/OS® database is not completely

seamless and must be planned carefully. Administrators may face issues when migrating from

Oracle to DB2 on z/OS due to locking differences between the two databases (see Table 1).

However, these issues can be mitigated to a great extent.

https://searchsqlserver.techtarget.com/definition/data-corruption
https://searchstorage.techtarget.com/definition/hard-disk
https://searchdatabackup.techtarget.com/definition/magnetic-tape
https://searchstorage.techtarget.com/definition/cloud-storage
https://whatis.techtarget.com/definition/orphan-file
https://whatis.techtarget.com/definition/orphan-file
https://searchsqlserver.techtarget.com/definition/database
https://searchnetworking.techtarget.com/definition/protocol
https://searchsqlserver.techtarget.com/definition/schema
https://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA
https://whatis.techtarget.com/definition/compatibility
https://searchservervirtualization.techtarget.com/definition/platform
https://searchservervirtualization.techtarget.com/definition/virtual-machine
https://searchmicroservices.techtarget.com/definition/middleware
https://searchdatacenter.techtarget.com/definition/scalability
https://whatis.techtarget.com/definition/CAPEX-capital-expenditure
https://searchcloudcomputing.techtarget.com/definition/public-cloud
https://searchcloudcomputing.techtarget.com/definition/public-cloud

One of the key locking behavior differences between Oracle and DB2 on z/OS is that Oracle

does not hold any locks on a row while reading, and DB2 does. This difference can lead to a high

probability of increased lock waits and issues such as deadlocks and timeouts in applications

migrated from Oracle to DB2.

Oracle DB2 on z/OS

1 Read queries do not hold any

locks on the rows unless

explicitly requested by a FOR

UPDATE clause.

By default, the read queries

hold share-level locks.

2 Only row-level locking is

possible implicitly. The entire

table can be locked explicitly if

needed.

Default locking is at page

level, but locking also possible

at row, table, tablespace, and

LOB levels.

3 There is no concept of lock

escalation.

Lock escalation can happen if

the number of locks increases.

Escalation results in promotion

of row-level lock to table-level

lock and page-level lock to

tablespace-level lock, so that

the number of locks is

reduced.

4 Dirty read is not possible since

there is no concept of

Uncommitted read.

Uncommitted read is possible

and is one of the ways to read

rows without holding share-

level locks.

Table 1. Key locking differences between Oracle and DB2 on z/OS

To handle locking issues, mitigation strategies are required at the database, application, and

operational levels.

Data Migration from MySQL to DB2

MySQL-to-DB2 is a program to migrate MySQL databases to DB2 server. The program has high

performance due to direct connection to data source and destination databases (it does not use

ODBC or any other middleware software). Command line support allows to script, automate and

schedule the conversion process.

Features

• All versions of IBM DB2 are supported

• All versions of Unix and Windows MySQL are supported

• All MySQL data types and attributes are supported

• Indexes and foreign keys are converted

• Option to convert individual tables

• Filter data to convert via SELECT-queries

• Option to merge MySQL data into an existing DB2 database

• Conversion settings can be stored into profile

• Command line support

• Easy-to-use wizard-style interface

• Full install/uninstall support

• Unlimited 24/7 support service

• 1-year subscription for updates

Limitations

• Does not convert views, stored procedures and triggers

• Demo version does not convert foreign keys

• Demo version converts only 50 records per table

Distributed Database in DB2:

A distributed database appears to a user as a single database but is, in fact, a set of databases

stored on multiple computers. The data on several computers can be simultaneously accessed and

modified using a network. Each database server in the distributed database is controlled by its

local DBMS, and each cooperates to maintain the consistency of the global database. Figure

shows the distributed database.

The database managers in a distributed relational database communicate and cooperate with each

other in a way that allows a DB2® application program to use SQL to access data at any of the

interconnected computer systems.

A distributed relational database consists of a set of tables and other objects that are spread

across different, but interconnected, computer systems. Each computer system has a relational

database manager, such as DB2, that manages the tables in its environment. The database

managers communicate and cooperate with each other in a way that allows a DB2 application

program to use SQL to access data at any of the computer systems. The DB2 subsystem where

the application plan is bound is known as the local DB2 subsystem. Any database server other

than the local DB2 subsystem is considered a remote database server, and access to its data is a

distributed operation.

Distributed relational databases are built on formal requester-server protocols and functions. An

application requester component supports the application end of a connection. It transforms an

application's database request into communication protocols that are suitable for use in the

distributed database network. These requests are received and processed by an application

server component at the database server end of the connection. Working together, the application

requester and application server handle the communication and location considerations so that

the application is isolated from these considerations and can operate as if it were accessing a

local database.

• Connections

A connection is an association between an application process and a local or remote database

server. Connections are managed by applications.

• Distributed unit of work

The distributed unit of work facility provides for the remote preparation and execution of SQL

statements.

• Remote unit of work

The remote unit of work facility also provides for the remote preparation and execution of SQL

statements, but in a much more restricted fashion than the distributed unit of work facility.

https://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_connections.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_distributedunitofwork.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPEK_10.0.0/intro/src/tpc/db2z_remoteunitofwork.html?view=kc

