EE101: BJT basics

> M. B. Patil
> mbpatil@ee.iitb.ac.in
> www.ee.iitb.ac.in/ ${ }^{\sim}$ sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

Bipolar Junction Transistors

Bipolar Junction Transistors

* Bipolar: both electrons and holes contribute to conduction

Bipolar Junction Transistors

* Bipolar: both electrons and holes contribute to conduction
* Junction: device includes two p-n junctions (as opposed to a "point-contact" transistor, the first transistor)

Bipolar Junction Transistors

* Bipolar: both electrons and holes contribute to conduction
* Junction: device includes two p-n junctions (as opposed to a "point-contact" transistor, the first transistor)
* Transistor: "transfer resistor"

When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.
(http://amasci.com/amateur/trshort.html)

Bipolar Junction Transistors

* Bipolar: both electrons and holes contribute to conduction
* Junction: device includes two p-n junctions (as opposed to a "point-contact" transistor, the first transistor)
* Transistor: "transfer resistor"

When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.
(http://amasci.com/amateur/trshort.html)

* invented in 1947 by Shockley, Bardeen, and Brattain at Bell Laboratories.

Bipolar Junction Transistors

* Bipolar: both electrons and holes contribute to conduction
* Junction: device includes two p-n junctions (as opposed to a "point-contact" transistor, the first transistor)
* Transistor: "transfer resistor"

When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.
(http://amasci.com/amateur/trshort.html)

* invented in 1947 by Shockley, Bardeen, and Brattain at Bell Laboratories.
* "A BJT is two diodes connected back-to-back."

Bipolar Junction Transistors

* Bipolar: both electrons and holes contribute to conduction
* Junction: device includes two p-n junctions (as opposed to a "point-contact" transistor, the first transistor)
* Transistor: "transfer resistor"

When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.
(http://amasci.com/amateur/trshort.html)

* invented in 1947 by Shockley, Bardeen, and Brattain at Bell Laboratories.
* "A BJT is two diodes connected back-to-back."

WRONG! Let us see why.

Bipolar Junction Transistors

Consider a pnp BJT in the following circuit:

Bipolar Junction Transistors

Consider a pnp BJT in the following circuit:

If the transistor is replaced with two diodes connected back-to-back, we get,

Bipolar Junction Transistors

Consider a pnp BJT in the following circuit:

If the transistor is replaced with two diodes connected back-to-back, we get,

Assuming $V_{\text {on }}=0.7 V$ for D1, we get
$I_{1}=\frac{5 V-0.7 V}{R_{1}}=4.3 \mathrm{~mA}$,
$I_{2}=0$ (since D2 is reverse biased), and
$I_{3} \approx I_{1}=4.3 \mathrm{~mA}$.

Bipolar Junction Transistors

Using a more accurate equivalent circuit for the BJT, we obtain,

Bipolar Junction Transistors

Using a more accurate equivalent circuit for the BJT, we obtain,

We now get,
$I_{1}=\frac{5 V-0.7 V}{R_{1}}=4.3 \mathrm{~mA}$ (as before),

Bipolar Junction Transistors

Using a more accurate equivalent circuit for the BJT, we obtain,

We now get,
$I_{1}=\frac{5 V-0.7 V}{R_{1}}=4.3 \mathrm{~mA}$ (as before),
$I_{2}=\alpha I_{1} \approx 4.3 \mathrm{~mA}$ (since $\alpha \approx 1$ for a typical BJT), and

Bipolar Junction Transistors

Using a more accurate equivalent circuit for the BJT, we obtain,

We now get,
$\iota_{1}=\frac{5 V-0.7 \mathrm{~V}}{R_{1}}=4.3 \mathrm{~mA}$ (as before),
$I_{2}=\alpha I_{1} \approx 4.3 \mathrm{~mA}$ (since $\alpha \approx 1$ for a typical BJT), and
$I_{3}=I_{1}-I_{2}=(1-\alpha) I_{1} \approx 0 \mathrm{~A}$.

Bipolar Junction Transistors

Using a more accurate equivalent circuit for the BJT, we obtain,

We now get,
$\iota_{1}=\frac{5 V-0.7 \mathrm{~V}}{R_{1}}=4.3 \mathrm{~mA}$ (as before),
$I_{2}=\alpha I_{1} \approx 4.3 \mathrm{~mA}$ (since $\alpha \approx 1$ for a typical BJT), and
$I_{3}=I_{1}-I_{2}=(1-\alpha) I_{1} \approx 0 \mathrm{~A}$.
The values of I_{2} and I_{3} are dramatically different than the ones obtained earlier.

Bipolar Junction Transistors

Using a more accurate equivalent circuit for the BJT, we obtain,

We now get,
$I_{1}=\frac{5 V-0.7 \mathrm{~V}}{R_{1}}=4.3 \mathrm{~mA}$ (as before),
$I_{2}=\alpha I_{1} \approx 4.3 \mathrm{~mA}$ (since $\alpha \approx 1$ for a typical BJT), and
$I_{3}=I_{1}-I_{2}=(1-\alpha) I_{1} \approx 0 \mathrm{~A}$.
The values of I_{2} and I_{3} are dramatically different than the ones obtained earlier.
Conclusion: A BJT is NOT the same as two diodes connected back-to-back (although it does have two $p-n$ junctions).

Bipolar Junction Transistors

What is wrong with the two-diode model of a BJT?

Bipolar Junction Transistors

What is wrong with the two-diode model of a BJT?

* When we replace a BJT with two diodes, we assume that there is no interaction between the two diodes, which may be expected if they are "far apart."

Bipolar Junction Transistors

What is wrong with the two-diode model of a BJT?

* When we replace a BJT with two diodes, we assume that there is no interaction between the two diodes, which may be expected if they are "far apart."

* However, in a BJT, exactly the opposite is true. For a higher performance, the base region is made as short as possible (subject to certain constraints), and the two diodes therefore cannot be treated as independent devices.

Bipolar Junction Transistors

What is wrong with the two-diode model of a BJT?

* When we replace a BJT with two diodes, we assume that there is no interaction between the two diodes, which may be expected if they are "far apart."

* However, in a BJT, exactly the opposite is true. For a higher performance, the base region is made as short as possible (subject to certain constraints), and the two diodes therefore cannot be treated as independent devices.

* Later, we will look at the "Ebers-Moll model" of a BJT, which is a fairly accurate representation of the transistor action.

BJT in active mode

BJT in active mode

* In the active mode of a BJT, the B-E junction is under forward bias, and the $B-C$ junction is under reverse bias.
- For a pnp transistor, $V_{E B}>0 V$, and $V_{C B}<0 V$.
- For an npn transistor, $V_{B E}>0 V$, and $V_{B C}<0 V$.

BJT in active mode

* In the active mode of a BJT, the B-E junction is under forward bias, and the $B-C$ junction is under reverse bias.
- For a pnp transistor, $V_{E B}>0 V$, and $V_{C B}<0 V$.
- For an npn transistor, $V_{B E}>0 V$, and $V_{B C}<0 V$.
* Since the B-E junction is under forward bias, the voltage (magnitude) is typically 0.6 to 0.75 V .

BJT in active mode

* In the active mode of a BJT, the B-E junction is under forward bias, and the $B-C$ junction is under reverse bias.
- For a pnp transistor, $V_{E B}>0 V$, and $V_{C B}<0 V$.
- For an npn transistor, $V_{B E}>0 V$, and $V_{B C}<0 V$.
* Since the B-E junction is under forward bias, the voltage (magnitude) is typically 0.6 to 0.75 V .
* The B-C voltage can be several Volts (or even hundreds of Volts), and is limited by the breakdown voltage of the B-C junction.

BJT in active mode

* In the active mode of a BJT, the B-E junction is under forward bias, and the $B-C$ junction is under reverse bias.
- For a pnp transistor, $V_{E B}>0 V$, and $V_{C B}<0 V$.
- For an npn transistor, $V_{B E}>0 V$, and $V_{B C}<0 V$.
* Since the B-E junction is under forward bias, the voltage (magnitude) is typically 0.6 to 0.75 V .
* The B-C voltage can be several Volts (or even hundreds of Volts), and is limited by the breakdown voltage of the B-C junction.
* The symbol for a BJT includes an arrow for the emitter terminal, its direction indicating the current direction when the transistor is in active mode.

BJT in active mode

* In the active mode of a BJT, the B-E junction is under forward bias, and the $B-C$ junction is under reverse bias.
- For a pnp transistor, $V_{E B}>0 V$, and $V_{C B}<0 V$.
- For an npn transistor, $V_{B E}>0 V$, and $V_{B C}<0 V$.
* Since the B-E junction is under forward bias, the voltage (magnitude) is typically 0.6 to 0.75 V .
* The B-C voltage can be several Volts (or even hundreds of Volts), and is limited by the breakdown voltage of the B-C junction.
* The symbol for a BJT includes an arrow for the emitter terminal, its direction indicating the current direction when the transistor is in active mode.
* Analog circuits, including amplifiers, are generally designed to ensure that the BJTs are operating in the active mode.

BJT in active mode

BJT in active mode

* In the active mode, $I_{C}=\alpha I_{E}, \alpha \approx 1$ (slightly less than 1).

BJT in active mode

* In the active mode, $I_{C}=\alpha I_{E}, \alpha \approx 1$ (slightly less than 1).
* $I_{B}=I_{E}-I_{C}=I_{E}(1-\alpha)$.

BJT in active mode

* In the active mode, $I_{C}=\alpha I_{E}, \alpha \approx 1$ (slightly less than 1).
* $I_{B}=I_{E}-I_{C}=I_{E}(1-\alpha)$.
* The ratio I_{C} / I_{B} is defined as the current gain β of the transistor.

$$
\beta=\frac{I_{C}}{I_{B}}=\frac{\alpha}{1-\alpha} .
$$

BJT in active mode

* In the active mode, $I_{C}=\alpha I_{E}, \alpha \approx 1$ (slightly less than 1).
* $I_{B}=I_{E}-I_{C}=I_{E}(1-\alpha)$.
* The ratio I_{C} / I_{B} is defined as the current gain β of the transistor.
$\beta=\frac{I_{C}}{I_{B}}=\frac{\alpha}{1-\alpha}$.
* β is a function of I_{C} and temperature. However, we will generally treat it as a constant, a useful approximation to simplify things and still get a good insight.

BJT in active mode

$\beta=\frac{I_{C}}{I_{B}}=\frac{\alpha}{1-\alpha}$

α	β
0.9	9
0.95	19
0.99	99
0.995	199

BJT in active mode

$\beta=\frac{I_{C}}{I_{B}}=\frac{\alpha}{1-\alpha}$

* β is a sensitive function of α.

α	β
0.9	9
0.95	19
0.99	99
0.995	199

BJT in active mode

$\beta=\frac{I_{C}}{I_{B}}=\frac{\alpha}{1-\alpha}$

α	β
0.9	9
0.95	19
0.99	99
0.995	199

* β is a sensitive function of α.
* Transistors are generally designed to get a high value of β (typically 100 to 250, but can be as high as 2000 for "super- β " transistors).

BJT in active mode

$\beta=\frac{I_{C}}{I_{B}}=\frac{\alpha}{1-\alpha}$

α	β
0.9	9
0.95	19
0.99	99
0.995	199

* β is a sensitive function of α.
* Transistors are generally designed to get a high value of β (typically 100 to 250, but can be as high as 2000 for "super- β " transistors).
* A large $\beta \Rightarrow I_{B} \ll I_{C}$ or I_{E} when the transistor is in the active mode.

A simple BJT circuit

Assume the BJT to be in the active mode $\Rightarrow V_{B E}=0.7 \mathrm{~V}$ and $I_{C}=\alpha I_{E}=\beta I_{B}$.

A simple BJT circuit

Assume the BJT to be in the active mode $\Rightarrow V_{B E}=0.7 \mathrm{~V}$ and $I_{C}=\alpha I_{E}=\beta I_{B}$. $I_{B}=\frac{V_{B B}-V_{B E}}{R_{B}}=\frac{2 V-0.7 V}{100 \mathrm{k}}=13 \mu \mathrm{~A}$.

A simple BJT circuit

Assume the BJT to be in the active mode $\Rightarrow V_{B E}=0.7 \mathrm{~V}$ and $I_{C}=\alpha I_{E}=\beta I_{B}$.
$I_{B}=\frac{V_{B B}-V_{B E}}{R_{B}}=\frac{2 V-0.7 V}{100 \mathrm{k}}=13 \mu \mathrm{~A}$.
$I_{C}=\beta \times I_{B}=100 \times 13 \mu A=1.3 \mathrm{~mA}$.

A simple BJT circuit

Assume the BJT to be in the active mode $\Rightarrow V_{B E}=0.7 \mathrm{~V}$ and $I_{C}=\alpha I_{E}=\beta I_{B}$.
$I_{B}=\frac{V_{B B}-V_{B E}}{R_{B}}=\frac{2 V-0.7 V}{100 \mathrm{k}}=13 \mu \mathrm{~A}$.
$I_{C}=\beta \times I_{B}=100 \times 13 \mu A=1.3 \mathrm{~mA}$.
$V_{C}=V_{C C}-I_{C} R_{C}=10 V-1.3 \mathrm{~mA} \times 1 \mathrm{k}=8.7 \mathrm{~V}$.

A simple BJT circuit

Assume the BJT to be in the active mode $\Rightarrow V_{B E}=0.7 \mathrm{~V}$ and $I_{C}=\alpha I_{E}=\beta I_{B}$.
$I_{B}=\frac{V_{B B}-V_{B E}}{R_{B}}=\frac{2 V-0.7 V}{100 \mathrm{k}}=13 \mu \mathrm{~A}$.
$I_{C}=\beta \times I_{B}=100 \times 13 \mu A=1.3 \mathrm{~mA}$.
$V_{C}=V_{C C}-I_{C} R_{C}=10 \mathrm{~V}-1.3 \mathrm{~mA} \times 1 \mathrm{k}=8.7 \mathrm{~V}$.
Let us check whether our assumption of active mode is correct. We need to check whether the B-C junction is under reverse bias.

A simple BJT circuit

Assume the BJT to be in the active mode $\Rightarrow V_{B E}=0.7 \mathrm{~V}$ and $I_{C}=\alpha I_{E}=\beta I_{B}$.
$I_{B}=\frac{V_{B B}-V_{B E}}{R_{B}}=\frac{2 V-0.7 V}{100 \mathrm{k}}=13 \mu \mathrm{~A}$.
$I_{C}=\beta \times I_{B}=100 \times 13 \mu A=1.3 \mathrm{~mA}$.
$V_{C}=V_{C C}-I_{C} R_{C}=10 \mathrm{~V}-1.3 \mathrm{~mA} \times 1 \mathrm{k}=8.7 \mathrm{~V}$.
Let us check whether our assumption of active mode is correct. We need to check whether the B-C junction is under reverse bias.
$V_{B C}=V_{B}-V_{C}=0.7 V-8.7 V=-8.0 V$,
i.e., the $B-C$ junction is indeed under reverse bias.

A simple BJT circuit (continued)

What happens if R_{B} is changed from 100 k to 10 k ?

A simple BJT circuit (continued)

What happens if R_{B} is changed from 100 k to 10 k ?
Assuming the BJT to be in the active mode again, we have $V_{B E} \approx 0.7 \mathrm{~V}$, and $I_{C}=\beta I_{B}$.

A simple BJT circuit (continued)

What happens if R_{B} is changed from 100 k to 10 k ?
Assuming the BJT to be in the active mode again, we have $V_{B E} \approx 0.7 V$, and $I_{C}=\beta I_{B}$.
$I_{B}=\frac{V_{B B}-V_{B E}}{R_{B}}=\frac{2 V-0.7 \mathrm{~V}}{10 \mathrm{k}}=130 \mu \mathrm{~A}$.
$I_{C}=\beta \times I_{B}=100 \times 130 \mu A=13 \mathrm{~mA}$.
$V_{C}=V_{C C}-I_{C} R_{C}=10 V-13 \mathrm{~mA} \times 1 \mathrm{k}=-3 V$.

A simple BJT circuit (continued)

What happens if R_{B} is changed from 100 k to 10 k ?
Assuming the BJT to be in the active mode again, we have $V_{B E} \approx 0.7 V$, and $I_{C}=\beta I_{B}$.
$I_{B}=\frac{V_{B B}-V_{B E}}{R_{B}}=\frac{2 V-0.7 V}{10 \mathrm{k}}=130 \mu \mathrm{~A}$.
$I_{C}=\beta \times I_{B}=100 \times 130 \mu A=13 \mathrm{~mA}$.
$V_{C}=V_{C C}-I_{C} R_{C}=10 V-13 \mathrm{~mA} \times 1 \mathrm{k}=-3 V$.
$V_{B C}=V_{B}-V_{C}=0.7 V-(-3) V=3.7 V$,

A simple BJT circuit (continued)

What happens if R_{B} is changed from 100 k to 10 k ?
Assuming the BJT to be in the active mode again, we have $V_{B E} \approx 0.7 V$, and $I_{C}=\beta I_{B}$.
$I_{B}=\frac{V_{B B}-V_{B E}}{R_{B}}=\frac{2 V-0.7 V}{10 \mathrm{k}}=130 \mu \mathrm{~A}$.
$I_{C}=\beta \times I_{B}=100 \times 130 \mu A=13 \mathrm{~mA}$.
$V_{C}=V_{C C}-I_{C} R_{C}=10 V-13 \mathrm{~mA} \times 1 \mathrm{k}=-3 V$.
$V_{B C}=V_{B}-V_{C}=0.7 V-(-3) V=3.7 V$,
$V_{B C}$ is not only positive, it is huge!
The BJT cannot be in the active mode, and we need to take another look at the circuit.

Ebers-Moll model for a pnp transistor

Active mode ("forward" active mode): B-E in f. b., B-C in r. b.

Ebers-Moll model for a pnp transistor

Active mode ("forward" active mode): B-E in f. b., B-C in r. b.

Reverse active mode: B-E in r. b., B-C in f. b.

Ebers-Moll model for a pnp transistor

Active mode ("forward" active mode): B-E in f. b., B-C in r. b.

Reverse active mode: B-E in r. b., B-C in f. b.

In the reverse active mode, emitter \leftrightarrow collector. (However, we continue to refer to the terminals with their original names.)

Ebers-Moll model for a pnp transistor

Active mode ("forward" active mode): B-E in f. b., B-C in r. b.

Reverse active mode: B-E in r. b., B-C in f. b.

In the reverse active mode, emitter \leftrightarrow collector. (However, we continue to refer to the terminals with their original names.)
The two α 's, α_{F} ("forward" α) and α_{R} ("reverse" α) are generally quite different.

Ebers-Moll model for a pnp transistor

Active mode ("forward" active mode): B-E in f. b., B-C in r. b.

Reverse active mode: B-E in r. b., B-C in f. b.

In the reverse active mode, emitter \leftrightarrow collector. (However, we continue to refer to the terminals with their original names.)
The two α 's, α_{F} ("forward" α) and α_{R} ("reverse" α) are generally quite different.
Typically, $\alpha_{F}>0.98$, and α_{R} is in the range from 0.02 to 0.5 .

Ebers-Moll model for a pnp transistor

Active mode ("forward" active mode): B-E in f. b., B-C in r. b.

Reverse active mode: B-E in r. b., B-C in f. b.

In the reverse active mode, emitter \leftrightarrow collector. (However, we continue to refer to the terminals with their original names.)
The two α 's, α_{F} ("forward" α) and α_{R} ("reverse" α) are generally quite different.
Typically, $\alpha_{F}>0.98$, and α_{R} is in the range from 0.02 to 0.5 .
The corresponding current gains (β_{F} and β_{R}) differ significantly, since $\beta=\alpha /(1-\alpha)$.

Ebers-Moll model for a pnp transistor

Active mode ("forward" active mode): B-E in f. b., B-C in r. b.

Reverse active mode: B-E in r. b., B-C in f. b.

In the reverse active mode, emitter \leftrightarrow collector. (However, we continue to refer to the terminals with their original names.)
The two α 's, α_{F} ("forward" α) and α_{R} ("reverse" α) are generally quite different.
Typically, $\alpha_{F}>0.98$, and α_{R} is in the range from 0.02 to 0.5 .
The corresponding current gains (β_{F} and β_{R}) differ significantly, since $\beta=\alpha /(1-\alpha)$.
In amplifiers, the BJT is biased in the forward active mode (simply called the "active mode") in order to make use of the higher value of β in that mode.

Ebers-Moll model for a pnp transistor

The Ebers-Moll model combines the forward and reverse operations of a BJT in a single comprehensive model.

Ebers-Moll model for a pnp transistor

The Ebers-Moll model combines the forward and reverse operations of a BJT in a single comprehensive model.

The currents I_{E}^{\prime} and I_{C}^{\prime} are given by the Shockley diode equation:
$I_{E}^{\prime}=I_{E S}\left[\exp \left(\frac{V_{E B}}{V_{T}}\right)-1\right], \quad I_{C}^{\prime}=I_{C S}\left[\exp \left(\frac{V_{C B}}{V_{T}}\right)-1\right]$.

Ebers-Moll model for a pnp transistor

The Ebers-Moll model combines the forward and reverse operations of a BJT in a single comprehensive model.

The currents I_{E}^{\prime} and I_{C}^{\prime} are given by the Shockley diode equation:
$I_{E}^{\prime}=I_{E S}\left[\exp \left(\frac{V_{E B}}{V_{T}}\right)-1\right], \quad I_{C}^{\prime}=I_{C S}\left[\exp \left(\frac{V_{C B}}{V_{T}}\right)-1\right]$.

Mode	B-E	B-C	
Forward active	forward	reverse	$I_{E}^{\prime} \gg I_{C}^{\prime}$
Reverse active	reverse	forward	$I_{C}^{\prime} \gg I_{E}^{\prime}$
Saturation	forward	forward	I_{E}^{\prime} and I_{C}^{\prime} are comparable.
Cut-off	reverse	reverse	I_{E}^{\prime} and I_{C}^{\prime} are negliglbe.

Ebers-Moll model

pnp transistor

$$
\begin{aligned}
& I_{E}^{\prime}=I_{E S}\left[\exp \left(V_{E B} / V_{T}\right)-1\right] \\
& I_{C}^{\prime}=I_{C S}\left[\exp \left(V_{C B} / V_{T}\right)-1\right]
\end{aligned}
$$

npn transistor

$I_{E}^{\prime}=I_{E S}\left[\exp \left(V_{B E} / V_{T}\right)-1\right]$
$I_{C}^{\prime}=I_{C S}\left[\exp \left(V_{B C} / V_{T}\right)-1\right]$

Ebers-Moll model

pnp transistor

$$
\begin{aligned}
& I_{E}^{\prime}=I_{E S}\left[\exp \left(V_{E B} / V_{T}\right)-1\right] \\
& I_{C}^{\prime}=I_{C S}\left[\exp \left(V_{C B} / V_{T}\right)-1\right]
\end{aligned}
$$

npn transistor

$I_{E}^{\prime}=I_{E S}\left[\exp \left(V_{B E} / V_{T}\right)-1\right]$
$I_{C}^{\prime}=I_{C S}\left[\exp \left(V_{B C} / V_{T}\right)-1\right]$

For an npn transistor, the same model holds with current directions and voltage polarities suitably changed.

$I_{C}-V_{C E}$ characteristics

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}^{\prime}=\mathrm{I}_{\mathrm{ES}}\left[\exp \left(\mathrm{~V}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \mathrm{I}_{\mathrm{C}}^{\prime}=\mathrm{I}_{\mathrm{CS}}\left[\exp \left(\mathrm{~V}_{\mathrm{BC}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \alpha_{\mathrm{F}}=0.99, \quad \mathrm{I}_{\mathrm{SE}}=1 \times 10^{-14} \mathrm{~A} \\
& \alpha_{\mathrm{R}}=0.50, \quad \mathrm{I}_{\mathrm{SC}}=2 \times 10^{-14} \mathrm{~A}
\end{aligned}
$$

A BJT is a three-terminal device, and its $I-V$ chatacteristics can therefore be represented in several different ways. The I_{C} versus $V_{C E}$ characteristics are very useful in amplifiers.

$I_{C}-V_{C E}$ characteristics

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}^{\prime}=\mathrm{I}_{\mathrm{ES}}\left[\exp \left(\mathrm{~V}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \mathrm{I}_{\mathrm{C}}^{\prime}=\mathrm{I}_{\mathrm{CS}}\left[\exp \left(\mathrm{~V}_{\mathrm{BC}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \alpha_{\mathrm{F}}=0.99, \quad \mathrm{I}_{\mathrm{SE}}=1 \times 10^{-14} \mathrm{~A} \\
& \alpha_{\mathrm{R}}=0.50, \quad \mathrm{I}_{\mathrm{SC}}=2 \times 10^{-14} \mathrm{~A}
\end{aligned}
$$

A BJT is a three-terminal device, and its $I-V$ chatacteristics can therefore be represented in several different ways. The I_{C} versus $V_{C E}$ characteristics are very useful in amplifiers.
To start with, we consider a single point, $I_{B}=10 \mu A, V_{C E}=5 \mathrm{~V}$.

$I_{C}-V_{C E}$ characteristics

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}^{\prime}=\mathrm{I}_{\mathrm{ES}}\left[\exp \left(\mathrm{~V}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \mathrm{I}_{\mathrm{C}}^{\prime}=\mathrm{I}_{\mathrm{CS}}\left[\exp \left(\mathrm{~V}_{\mathrm{BC}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \alpha_{\mathrm{F}}=0.99, \quad \mathrm{I}_{\mathrm{SE}}=1 \times 10^{-14} \mathrm{~A} \\
& \alpha_{\mathrm{R}}=0.50, \quad \mathrm{I}_{\mathrm{SC}}=2 \times 10^{-14} \mathrm{~A}
\end{aligned}
$$

A BJT is a three-terminal device, and its $I-V$ chatacteristics can therefore be represented in several different ways. The I_{C} versus $V_{C E}$ characteristics are very useful in amplifiers.
To start with, we consider a single point, $I_{B}=10 \mu A, V_{C E}=5 \mathrm{~V}$.
There are several ways to assign $V_{B E}$ and $V_{C B}$ so that they satisfy the constraint:
$V_{C B}+V_{B E}=\left(V_{C}-V_{B}\right)+\left(V_{B}-V_{E}\right)=V_{C E}=5 V$.

$I_{C}-V_{C E}$ characteristics

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}^{\prime}=\mathrm{I}_{\mathrm{ES}}\left[\exp \left(\mathrm{~V}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \mathrm{I}_{\mathrm{C}}^{\prime}=\mathrm{I}_{\mathrm{CS}}\left[\exp \left(\mathrm{~V}_{\mathrm{BC}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \alpha_{\mathrm{F}}=0.99, \quad \mathrm{I}_{\mathrm{SE}}=1 \times 10^{-14} \mathrm{~A} \\
& \alpha_{\mathrm{R}}=0.50, \quad \mathrm{I}_{\mathrm{SC}}=2 \times 10^{-14} \mathrm{~A}
\end{aligned}
$$

A BJT is a three-terminal device, and its $I-V$ chatacteristics can therefore be represented in several different ways. The I_{C} versus $V_{C E}$ characteristics are very useful in amplifiers.
To start with, we consider a single point, $I_{B}=10 \mu A, V_{C E}=5 \mathrm{~V}$.
There are several ways to assign $V_{B E}$ and $V_{C B}$ so that they satisfy the constraint:
$V_{C B}+V_{B E}=\left(V_{C}-V_{B}\right)+\left(V_{B}-V_{E}\right)=V_{C E}=5 V$.
Let us consider some of these possibilities.

$I_{C}-V_{C E}$ characteristics

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}^{\prime}=\mathrm{I}_{\mathrm{ES}}\left[\exp \left(\mathrm{~V}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \mathrm{I}_{\mathrm{C}}^{\prime}=\mathrm{I}_{\mathrm{CS}}\left[\exp \left(\mathrm{~V}_{\mathrm{BC}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \alpha_{\mathrm{F}}=0.99, \quad \mathrm{I}_{\mathrm{SE}}=1 \times 10^{-14} \mathrm{~A} \\
& \alpha_{\mathrm{R}}=0.50, \quad \mathrm{I}_{\mathrm{SC}}=2 \times 10^{-14} \mathrm{~A}
\end{aligned}
$$

Constraints: $I_{B}=10 \mu A, V_{C E}=5 \mathrm{~V}$.

$I_{C}-V_{C E}$ characteristics

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}^{\prime}=\mathrm{I}_{\mathrm{ES}}\left[\exp \left(\mathrm{~V}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \mathrm{I}_{\mathrm{C}}^{\prime}=\mathrm{I}_{\mathrm{CS}}\left[\exp \left(\mathrm{~V}_{\mathrm{BC}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \alpha_{\mathrm{F}}=0.99, \quad \mathrm{I}_{\mathrm{SE}}=1 \times 10^{-14} \mathrm{~A} \\
& \alpha_{\mathrm{R}}=0.50, \quad \mathrm{I}_{\mathrm{SC}}=2 \times 10^{-14} \mathrm{~A}
\end{aligned}
$$

Constraints: $I_{B}=10 \mu A, V_{C E}=5 \mathrm{~V}$.

$I_{C}-V_{C E}$ characteristics

Constraints: $I_{B}=10 \mu A, V_{C E}=5 \mathrm{~V}$.

D1 and D2 are both off, and we cannot satisfy the condition, $I_{B}=10 \mu A$, since all currents are much smaller than $10 \mu \mathrm{~A}$.

$I_{C}-V_{C E}$ characteristics

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}^{\prime}=\mathrm{I}_{\mathrm{ES}}\left[\exp \left(\mathrm{~V}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \mathrm{I}_{\mathrm{C}}^{\prime}=\mathrm{I}_{\mathrm{CS}}\left[\exp \left(\mathrm{~V}_{\mathrm{BC}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \alpha_{\mathrm{F}}=0.99, \quad \mathrm{I}_{\mathrm{SE}}=1 \times 10^{-14} \mathrm{~A} \\
& \alpha_{\mathrm{R}}=0.50, \quad \mathrm{I}_{\mathrm{SC}}=2 \times 10^{-14} \mathrm{~A}
\end{aligned}
$$

Constraints: $I_{B}=10 \mu A, V_{C E}=5 \mathrm{~V}$.

D1 and D2 are both off, and we cannot satisfy the condition, $I_{B}=10 \mu A$, since all currents are much smaller than $10 \mu \mathrm{~A}$.
\Rightarrow This possibility (and similarly others with both junctions reverse biased) is ruled out.

$I_{C}-V_{C E}$ characteristics

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}^{\prime}=\mathrm{I}_{\mathrm{ES}}\left[\exp \left(\mathrm{~V}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \mathrm{I}_{\mathrm{C}}^{\prime}=\mathrm{I}_{\mathrm{CS}}\left[\exp \left(\mathrm{~V}_{\mathrm{BC}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \alpha_{\mathrm{F}}=0.99, \quad \mathrm{I}_{\mathrm{SE}}=1 \times 10^{-14} \mathrm{~A} \\
& \alpha_{\mathrm{R}}=0.50, \quad \mathrm{I}_{\mathrm{SC}}=2 \times 10^{-14} \mathrm{~A}
\end{aligned}
$$

Constraints: $I_{B}=10 \mu A, V_{C E}=5 \mathrm{~V}$.

$I_{C}-V_{C E}$ characteristics

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}^{\prime}=\mathrm{I}_{\mathrm{ES}}\left[\exp \left(\mathrm{~V}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \mathrm{I}_{\mathrm{C}}^{\prime}=\mathrm{I}_{\mathrm{CS}}\left[\exp \left(\mathrm{~V}_{\mathrm{BC}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \alpha_{\mathrm{F}}=0.99, \quad \mathrm{I}_{\mathrm{SE}}=1 \times 10^{-14} \mathrm{~A} \\
& \alpha_{\mathrm{R}}=0.50, \quad \mathrm{I}_{\mathrm{SC}}=2 \times 10^{-14} \mathrm{~A}
\end{aligned}
$$

Constraints: $I_{B}=10 \mu A, V_{C E}=5 \mathrm{~V}$.

$I_{C}-V_{C E}$ characteristics

Constraints: $I_{B}=10 \mu A, V_{C E}=5 \mathrm{~V}$.

D1 and D2 are both conducting; however, the forward bias for the B-E junction is impossibly large.

$I_{C}-V_{C E}$ characteristics

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}^{\prime}=\mathrm{I}_{\mathrm{ES}}\left[\exp \left(\mathrm{~V}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \mathrm{I}_{\mathrm{C}}^{\prime}=\mathrm{I}_{\mathrm{CS}}\left[\exp \left(\mathrm{~V}_{\mathrm{BC}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \alpha_{\mathrm{F}}=0.99, \quad \mathrm{I}_{\mathrm{SE}}=1 \times 10^{-14} \mathrm{~A} \\
& \alpha_{\mathrm{R}}=0.50, \quad \mathrm{I}_{\mathrm{SC}}=2 \times 10^{-14} \mathrm{~A}
\end{aligned}
$$

Constraints: $I_{B}=10 \mu A, V_{C E}=5 \mathrm{~V}$.

D1 and D2 are both conducting; however, the forward bias for the B-E junction is impossibly large.
\Rightarrow This possibility is also ruled out.

$I_{C}-V_{C E}$ characteristics

Constraints: $I_{B}=10 \mu A, V_{C E}=5 \mathrm{~V}$.

$I_{C}-V_{C E}$ characteristics

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}^{\prime}=\mathrm{I}_{\mathrm{ES}}\left[\exp \left(\mathrm{~V}_{\mathrm{BE}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \mathrm{I}_{\mathrm{C}}^{\prime}=\mathrm{I}_{\mathrm{CS}}\left[\exp \left(\mathrm{~V}_{\mathrm{BC}} / \mathrm{V}_{\mathrm{T}}\right)-1\right] \\
& \alpha_{\mathrm{F}}=0.99, \quad \mathrm{I}_{\mathrm{SE}}=1 \times 10^{-14} \mathrm{~A} \\
& \alpha_{\mathrm{R}}=0.50, \quad \mathrm{I}_{\mathrm{SC}}=2 \times 10^{-14} \mathrm{~A}
\end{aligned}
$$

Constraints: $I_{B}=10 \mu A, V_{C E}=5 \mathrm{~V}$.

$$
\begin{aligned}
& \mathrm{E} \text { (n) } \stackrel{-}{\mathrm{I}_{\mathrm{E}}} \stackrel{5 \mathrm{~V}+}{\mathrm{I}_{\mathrm{C}}(\mathrm{n})} \\
& { }^{-} 0.7 \mathrm{~V}_{+\mathrm{B}^{\mathrm{I}} \mathrm{I}_{\mathrm{B}}} 4.3 \mathrm{~V}^{+}
\end{aligned}
$$

$I_{C}-V_{C E}$ characteristics

Constraints: $I_{B}=10 \mu A, V_{C E}=5 \mathrm{~V}$.

D1 is on, D2 is off. This is a realistic possibility. Since the $B-C$ junction is under reverse bias, I_{C}^{\prime} and $\alpha_{R} I_{C}^{\prime}$ are much smaller than I_{E}^{\prime}, and therefore the lower branches in the Ebers-Moll model can be dropped (see next slide).

$I_{C}-V_{C E}$ characteristics

(The actual values for $V_{B E}$ and $V_{C B}$ obtained by solving the Ebers-Moll equations are $V_{B E}=0.656 \mathrm{~V}$ and $V_{C B}=4.344 \mathrm{~V}$.)
The BJT is in the active mode, and therefore
$I_{C}=\beta I_{B}=\frac{\alpha_{F}}{1-\alpha_{F}} I_{B}=99 \times 10 \mu A=0.99 \mathrm{~mA}$.

$I_{C}-V_{C E}$ characteristics

(The actual values for $V_{B E}$ and $V_{C B}$ obtained by solving the Ebers-Moll equations are
$V_{B E}=0.656 \mathrm{~V}$ and $V_{C B}=4.344 \mathrm{~V}$.)
The BJT is in the active mode, and therefore
$I_{C}=\beta I_{B}=\frac{\alpha_{F}}{1-\alpha_{F}} I_{B}=99 \times 10 \mu A=0.99 \mathrm{~mA}$.

$I_{C}-V_{C E}$ characteristics

(The actual values for $V_{B E}$ and $V_{C B}$ obtained by solving the Ebers-Moll equations are $V_{B E}=0.656 \mathrm{~V}$ and $V_{C B}=4.344 \mathrm{~V}$.)
The BJT is in the active mode, and therefore
$I_{C}=\beta I_{B}=\frac{\alpha_{F}}{1-\alpha_{F}} I_{B}=99 \times 10 \mu A=0.99 \mathrm{~mA}$.
If $V_{C E}$ is reduced to, say, 4 V , and I_{B} kept at $10 \mu A$, our previous argument holds, and once again, we find that $I_{C}=\beta I_{B}=0.99 \mathrm{~mA}$.

$I_{C}-V_{C E}$ characteristics

(The actual values for $V_{B E}$ and $V_{C B}$ obtained by solving the Ebers-Moll equations are $V_{B E}=0.656 \mathrm{~V}$ and $V_{C B}=4.344 \mathrm{~V}$.)
The BJT is in the active mode, and therefore
$I_{C}=\beta I_{B}=\frac{\alpha_{F}}{1-\alpha_{F}} I_{B}=99 \times 10 \mu A=0.99 \mathrm{~mA}$.
If $V_{C E}$ is reduced to, say, $4 V$, and I_{B} kept at $10 \mu A$, our previous argument holds, and once again, we find that $I_{C}=\beta I_{B}=0.99 \mathrm{~mA}$.
Thus, the plot of I_{C} versus $V_{C E}$ is simply a horizontal line.

$I_{C}-V_{C E}$ characteristics

(The actual values for $V_{B E}$ and $V_{C B}$ obtained by solving the Ebers-Moll equations are
$V_{B E}=0.656 \mathrm{~V}$ and $V_{C B}=4.344 \mathrm{~V}$.)
The BJT is in the active mode, and therefore
$I_{C}=\beta I_{B}=\frac{\alpha_{F}}{1-\alpha_{F}} I_{B}=99 \times 10 \mu A=0.99 \mathrm{~mA}$.
If $V_{C E}$ is reduced to, say, $4 V$, and I_{B} kept at $10 \mu A$, our previous argument holds, and once again, we find that $I_{C}=\beta I_{B}=0.99 \mathrm{~mA}$.
Thus, the plot of I_{C} versus $V_{C E}$ is simply a horizontal line.

$I_{C}-V_{C E}$ characteristics

(The actual values for $V_{B E}$ and $V_{C B}$ obtained by solving the Ebers-Moll equations are
$V_{B E}=0.656 \mathrm{~V}$ and $V_{C B}=4.344 \mathrm{~V}$.)
The BJT is in the active mode, and therefore
$I_{C}=\beta I_{B}=\frac{\alpha_{F}}{1-\alpha_{F}} I_{B}=99 \times 10 \mu A=0.99 \mathrm{~mA}$.
If $V_{C E}$ is reduced to, say, 4 V , and I_{B} kept at $10 \mu A$, our previous argument holds, and once again, we find that $I_{C}=\beta I_{B}=0.99 \mathrm{~mA}$.
Thus, the plot of I_{C} versus $V_{C E}$ is simply a horizontal line.
However, as $V_{C E} \rightarrow 0 V$, things change (see next slide).

$I_{C}-V_{C E}$ characteristics

When $V_{C E} \approx 0.7 V$ (and I_{B} kept at $\left.10 \mu A\right)$, the B-C drop is about $0 V$.

$I_{C}-V_{C E}$ characteristics

When $V_{C E} \approx 0.7 V$ (and I_{B} kept at $10 \mu A$), the B-C drop is about $0 V$.
As $V_{C E}$ is reduced further, the B-C junction gets forward biased. For example, with $V_{C E}=0.3 \mathrm{~V}$, we may have a voltage distribution shown in the figure.
(The numbers are only representative; the actual $V_{B E}$ and $V_{B C}$ values can be obtained by solving the $\mathrm{E}-\mathrm{M}$ equations.)

$I_{C}-V_{C E}$ characteristics

When $V_{C E} \approx 0.7 V$ (and I_{B} kept at $10 \mu A$), the B-C drop is about $0 V$.
As $V_{C E}$ is reduced further, the B-C junction gets forward biased. For example, with $V_{C E}=0.3 \mathrm{~V}$, we may have a voltage distribution shown in the figure.
(The numbers are only representative; the actual $V_{B E}$ and $V_{B C}$ values can be obtained by solving the $\mathrm{E}-\mathrm{M}$ equations.)
Now, the component I_{C}^{\prime} in the E-M model becomes significant, $I_{C}=\alpha_{F} I_{E}^{\prime}-I_{C}^{\prime}$ reduces, and I_{C} becomes smaller than βI_{B}.

$I_{C}-V_{C E}$ characteristics

When $V_{C E} \approx 0.7 V$ (and I_{B} kept at $10 \mu A$), the B-C drop is about $0 V$.
As $V_{C E}$ is reduced further, the B-C junction gets forward biased. For example, with $V_{C E}=0.3 V$, we may have a voltage distribution shown in the figure.
(The numbers are only representative; the actual $V_{B E}$ and $V_{B C}$ values can be obtained by solving the $\mathrm{E}-\mathrm{M}$ equations.)
Now, the component I_{C}^{\prime} in the E-M model becomes significant, $I_{C}=\alpha_{F} I_{E}^{\prime}-I_{C}^{\prime}$ reduces, and I_{C} becomes smaller than βI_{B}.

The region where $I_{C}<\beta I_{B}$ is called the "saturation region."

$I_{C}-V_{C E}$ characteristics

If I_{B} is doubled (from $10 \mu A$ to $20 \mu A$), $I_{C}=\beta I_{B}$ changes by a factor of 2 in the linear region. Apart from that, there is no qualitative change in the $I_{C}-V_{C E}$ plot.

$I_{C}-V_{C E}$ characteristics

If I_{B} is doubled (from $10 \mu A$ to $20 \mu A$), $I_{C}=\beta I_{B}$ changes by a factor of 2 in the linear region. Apart from that, there is no qualitative change in the $I_{C}-V_{C E}$ plot.
Clearly, the $I_{C}-V_{C E}$ behaviour of a BJT is not represented by a single curve but by a family of curves, known as the "I $I_{C}-V_{C E}$ characteristics."

$I_{C}-V_{C E}$ characteristics

If I_{B} is doubled (from $10 \mu A$ to $20 \mu A$), $I_{C}=\beta I_{B}$ changes by a factor of 2 in the linear region. Apart from that, there is no qualitative change in the $I_{C}-V_{C E}$ plot.
Clearly, the $I_{C}-V_{C E}$ behaviour of a BJT is not represented by a single curve but by a family of curves, known as the "I $I_{C}-V_{C E}$ characteristics."

$I_{C}-V_{C E}$ characteristics

If I_{B} is doubled (from $10 \mu A$ to $20 \mu A$), $I_{C}=\beta I_{B}$ changes by a factor of 2 in the linear region. Apart from that, there is no qualitative change in the $I_{C}-V_{C E}$ plot.
Clearly, the $I_{C}-V_{C E}$ behaviour of a BJT is not represented by a single curve but by a family of curves, known as the "I $I_{C}-V_{C E}$ characteristics."
The $I_{E}-V_{C B}$ and $I_{C}-V_{B E}$ characteristics of a BJT are also useful in understanding BJT circuits.

A simple BJT circuit (revisited)

We are now in a position to explain what happens when R_{B} is decreased from 100 k to 10 k in the above circuit.

A simple BJT circuit (revisited)

We are now in a position to explain what happens when R_{B} is decreased from 100 k to 10 k in the above circuit.
Let us plot $I_{C}-V_{C E}$ curves for $I_{B} \approx \frac{V_{B B}-0.7 V}{R_{B}}$ for the two values of R_{B}.

A simple BJT circuit (revisited)

We are now in a position to explain what happens when R_{B} is decreased from 100 k to 10 k in the above circuit.
Let us plot $I_{C}-V_{C E}$ curves for $I_{B} \approx \frac{V_{B B}-0.7 \mathrm{~V}}{R_{B}}$ for the two values of R_{B}.
In addition to the BJT $I_{C}-V_{C E}$ curve, the circuit variables must also satisfy the constraint, $V_{C C}=V_{C E}+I_{C} R_{C}$, a straight line in the $I_{C}-V_{C E}$ plane.

A simple BJT circuit (revisited)

We are now in a position to explain what happens when R_{B} is decreased from 100 k to 10 k in the above circuit.
Let us plot $I_{C}-V_{C E}$ curves for $I_{B} \approx \frac{V_{B B}-0.7 V}{R_{B}}$ for the two values of R_{B}.
In addition to the BJT $I_{C}-V_{C E}$ curve, the circuit variables must also satisfy the constraint, $V_{C C}=V_{C E}+I_{C} R_{C}$, a straight line in the $I_{C}-V_{C E}$ plane.
The intersection of the load line and the BJT characteristics gives the solution for the circuit. For $R_{B}=10 \mathrm{k}$, note that the BJT operates in the saturation region, leading to $V_{C E} \approx 0.2 \mathrm{~V}$, and $I_{C}=9.8 \mathrm{~mA}$.

