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3 - HIGHER-ORDER LADDER PASSIVE AND ACTIVE FILTERS

In Fig. 2-1, two approaches to designing active filters were shown.  One of the

approaches uses cascaded, first- and second-order active filters and was discussed in Sec.

2.  The other approach uses a ladder configuration and is presented in this section.  Both

approaches are used to design successful higher-order active filters.  The cascade approach

is easier to design and tune but does not have the insensitivity to component variation found

in the ladder approach.

The concepts of normalization and frequency transformation developed for cascade

active filters will also be used in the design of ladder active filters.  The starting point for a

ladder design is an RLC passive circuit rather than a transfer function or the roots of a

transfer function.  This means that our design manipulations will be with circuit elements

rather than with roots.  These two approaches are among the more widely used approaches

for designing active filters.

Sensitivity of an Active Filter

Sensitivity is a measure of the dependence of the filter performance upon the passive

and active components of the filter design.  Sensitivity is generally expressed as percentage

change of some performance aspect to the percentage change in an active or passive

component.  For example, we can express the relative sensitivity of a performance aspect

designated as "p" to the variation of some component "x" as

S
p
x  = 

∂p
p
∂x
x

  = 
x
p 

∂p
∂x   . (3-1)

For example, the relative sensitivity of the pole-Q of the Tow-Thomas, low-pass realization

of Fig. 1-16 to R1 can be found by letting p = Q and x = R1 and applying Eq. (3-1) to Eq.

(1-59) to get
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Furthermore, we can show that the sensitivity of the pole-Q of Fig. 1-16 to R2 is -0.5.

Another interpretation of sensitivity is as follows.  If the component x changes by dx/x,

then the performance changes by the product of Sp
x  times dx/x.  For example, the pole-Q

will change by +10% if R1 changes by +10%.  If the relationship between p and x is

nonlinear, the sensitivity measure is only good for small changes.  Consequently, changes

much over 10% should be calculated using nonlinear sensitivity methods or point

sensitivity calculations.

Sensitivity calculations can become complex if the expression relating the

performance to the component is complicated.  Fortunately we only wish to use the concept

of sensitivity to compare the two different approaches to higher-order active filter design

shown in Fig. 2-1.  Although we have not yet developed the ladder filter, it can be

distinguished from the cascaded filter by its dependence upon the passive and active

components of the filter realization.   The performance of the ladder filter always depends

on more than one passive or active component.  As a result, the performance is not strongly

dependent upon any one component but rather on all components.  However, the

performance of the cascaded filter may depend upon only one component.  If this

component is inaccurate or off in value, the cascade filter performance can be strongly

influenced while the same component change may not be noticed in the performance of the

ladder filter.  This advantage of the ladder filter becomes a disadvantage when tuning the

filter.  It is almost impossible to tune a ladder filter because no single component dominates

the performance of the filter.

Normalized, RLC, Low-Pass Ladder Filters

RLC, low-pass ladder filters are the result of modern network synthesis techniques

and are based on techniques well known in circuit theory†.  The resulting realizations of

these synthesis techniques always start with a load resistor of 1 ohm and works toward the

                                    
† M.E. Van Valkenburg, Introduction to Modern Network Synthesis, Chapter 10, John Wiley & Sons,
Inc., New York, 1960.
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input of the filter.  Fig. 3-1 shows the form for a singly-terminated RLC filter for the case

of even and odd order functions with the numbering of components going from the output

to the input of the filter.
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Figure 3-1 - Singly-terminated, RLC filters. (a.) N even.  (b.) N odd.

The RLC ladder filters of Fig. 3-1 are normalized to a passband of 1 rps.  The

denormalizations of Table 2-1 are applicable to the elements of Fig. 3-1.  Fig. 3-2 shows

the normalized ladder filters for doubly-terminated, RLC filters.  It is seen that these filters

are similar to  those of Fig. 3-1 except for a series source resistance.
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Figure 3-2 - Doubly-terminated, RLC filters. (a.) N even.  (b.) N odd.

The tabular information for the design of RLC filters consists of the normalized

component values of Figs. 3-1 and 3-2.  Each of the many different types of filter
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approximations have been tabulated for values of N up to 10 or more† .  Tables 3-1 and 3-2

are typical of this tabularized information for the Butterworth and 1-dB Chebyshev

approximation for the singly-terminated and doubly-terminated, RLC filters of Figs. 3-1

and 3-2.

Use these component designations for even order of Fig. 3-1a and Fig. 3-2a.
N C1n L2n C3n L4n C5n L6n C7n L8n C9n L10n
2 0.7071 1.4142
3 0.5000 1.3333 1.5000 Butterworth (1 rps passband)
4 0.3827 1.0824 1.5772 1.5307
5 0.3090 0.8944 1.3820 1.6944 1.5451
6 0.2588 0.7579 1.2016 1.5529 1.7593 1.5529
7 0.2225 0.6560 1.0550 1.3972 1.6588 1.7988 1.5576
8 0.1951 0.5576 0.9370 1.2588 1.5283 1.7287 1.8246 1.5607
9 0.1736 0.5155 0.8414 1.1408 1.4037 1.6202 1.7772 1.8424 1.5628
10 0.1564 0.4654 0.7626 1.0406 1.2921 1.5100 1.6869 1.8121 1.8552 1.5643
2 0.9110 0.9957
3 1.0118 1.3332 1.5088 1-dB ripple Chebyshev (1 rps passband)
4 1.0495 1.4126 1.9093 1.2817
5 1.0674 1.4441 1.9938 1.5908 1.6652
6 1.0773 1.4601 2.0270 1.6507 2.0491 1.3457
7 1.0832 1.4694 2.0437 1.6736 2.1192 1.6489 1.7118
8 1.0872 1.4751 2.0537 1.6850 2.1453 1.7021 2.0922 1.3691
9 1.0899 1.4790 2.0601 1.6918 2.1583 1.7213 2.1574 1.6707 1.7317
10 1.0918 1.4817 2.0645 1.6961 2.1658 1.7306 2.1803 1.7215 2.1111 1.3801

L1n C2n L3n C4n L5n C6n L7n C8n L9n C10n
Use these component designations for odd order of Fig. 3-1b.

Table 3-1 - Normalized component values for Fig. 3-1 for the Butterworth and Chebyshev

singly-terminated, RLC filter approximations.

Example      3-1     -       Use      of     the      Table      3-1     to      Find     a   Singly-Terminated,      RLC   Low-pass      Filter  

Find a singly-terminated, normalized, RLC filter for a 4th-order Butterworth filter.

Solution   

Using Table 3-1 and using the component designations at the top of the table gives

Fig. 3-3.

                                    
† L. Weinburg, Network Analysis and Synthesis, McGraw-Hill Book Co., 1962, R.E. Krieger Publishing 

Co., Huntington, NY, 1975.
A.I. Zverev, Handbook of Filter Synthesis, John Wiley & Sons, Inc., NY, 1967.
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Figure 3-3 - Fourth-order, Butterworth, normalized low-pass RLC filter realization.

Use these component designations for even order of Fig. 3-2a, R = 1Ω.
N C1n L2n C3n L4n C5n L6n C7n L8n C9n L10n
2 1.4142 1.4142
3 1.0000 2.0000 1.0000 Butterworth (1 rps passband)
4 0.7654 1.8478 1.8478 0.7654
5 0.6180 1.6180 2.0000 1.6180 0.6180
6 0.5176 1.4142 1.9319 1.9319 1.4142 0.5176
7 0.4450 1.2470 1.8019 2.0000 1.8019 1.2740 0.4450
8 0.3902 1.1111 1.6629 1.9616 1.9616 1.6629 1.1111 0.3902
9 0.3473 1.0000 1.5321 1.8794 2.0000 1.8794 1.5321 1.0000 0.3473
10 0.3129 0.9080 1.4142 1.7820 1.9754 1.9754 1.7820 1.4142 0.9080 0.3129
3 2.0236 0.9941 2.0236 1-dB ripple Chebyshev (1 rps passband)
5 2.1349 1.0911 3.0009 1.0911 2.1349
7 2.1666 1.1115 3.0936 1.1735 3.0936 1.1115 2.1666
9 2.1797 1.1192 3.1214 1.1897 3.1746 1.1897 3.1214 1.1192 2.1797

L1n C2n L3n C4n L5n C6n L7n C8n L9n C10n

Use these component designations for odd order of Fig. 3-2b, R = 1Ω.

Table 3-2 - Normalized component values for Fig. 3-2 for the Butterworth and 1-dB

Chebyshev doubly-terminated, RLC approximations.

We note that no solution exists for the even-order cases of the doubly-terminated,

RLC Chebyshev approximations for R = 1 Ω.  This is a special result for R = 1 Ω and is

not true for other values of R.  We also can see that the gain in the passband will be no

more than -6 dB because of the equal source and load resistances causing an gain of 0.5 at

low frequencies where the inductors are short-circuits and the capacitors are open-circuits.

Example      3-2     -       Use      of      Table      3-2 to   Find     a      Doubly-Terminated,      RLC   Low-pass      Fi    lter  

Find a doubly-terminated, RLC filter for a fifth-order Chebyshev filter approximation

having 1 dB ripple in the passband and a source resistance of 1 Ω.

Solution   
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Using Table 3-2 and using the component designations at the bottom of the table

gives Fig. 3-4.
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Figure 3-4 - Fifth-order, doubly-terminated, normalized, Chebyshev low-pass RLC filter

realization.

Low-Pass, RLC Filter Design

In some cases, such as high frequency, the designer may choose a passive realization

over an active realization.  In this case, the filter has no active elements such as op amps.

The design procedure is simply to find the normalized, low-pass, filter approximation

which satisfies the filter specifications and then denormalize the frequency and the

impedance.  An example will illustrate the procedure.

Example      3-3     -      Design      of     a      Passive,      Low-Pass   Filter 

A low-pass filter using the Butterworth approximation is to have the following

specifications:

TPB = -3 dB, TSB = -40 dB, fPB = 500 kHz, and fSB = 1 MHz.

Design this filter using a passive RLC realization and denormalize the impedances by 103.

Solution   

First we see that Ωn  = fSB/fPB  = 2 and then try various values of N in Eq. (2-11)

using ε = 1 to get  TSB = -30.1 dB for N = 5, TSB = -36.1 dB for N = 6, and TSB = -42.14

dB for N = 7.   From Table 3-1 for N = 7 for the Butterworth approximation we get L1n =

0.2225 H, C2n = 0.6560 F, L3n = 1.0550 H, C4n = 1.3972 F, L5n = 1.6588 H, C6n =

1.7988 F, and L7n = 1.5576 H.  Next, we use the denormalizations in the bottom row of

Table 2-1 to get L1 = (103)(0.2225H)/(πx106) = 0.071 mH, C2 = (0.6560F)/(πx109) =

209 pF, L3 = (103)(1.0550H)/(πx106) = 0.336 mH, C4 = (1.3972F)/(πx109) = 445 pF,
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L5 = (103)(1.6588H)/(πx106) = 0.528 mH, C6 = (1.7988F)/(πx109) = 573 pF, and L7 =

(103)(1.5576H)/(πx106) = 0.496 mH.  The load resistor becomes 1 kΩ.  The final

realization is shown in Fig. 3-5.

1 kΩ

+

-

+

-

L1=0.071 mHL3=0.336 mHL5=0.528 mHL7=0.496 mH

C2=
209 pF

C4=
445 pF

C4=
573 pF

Vin(s) Vout(s)

Figure 3-5 - Seventh-order, Butterworth filter realization of Ex. 3-3.

We can see by the previous example, that the design of RLC filters is very simple.

However, the actual implementation of the filter requires careful consideration and effort.

In order to get the desired results, we must have the exact values of components that were

calculated in Ex. 3-3.  The cost of such accurate components is generally prohibitive.

Therefore, one adjusts each component before inserting it into the filter by the following

means.  For each capacitor, a small variable capacitor (i.e. 50 pF) can be placed in parallel

with a larger fixed capacitor whose value is slightly less than the desired value.  This

arrangement can be taken to a capacitor bridge or capacitance meter and the variable

capacitor trimmed until the desired value is achieved.  

The inductors are typically made by winding low-resistance wire around a cylindrical

insulator.  Inside the cylindrical insulator is a magnetic cylinder whose position is adjusted

by a screw which causes the inductance of the inductor to vary.  The inductors are custom

made by winding the necessary number of turns to achieve an inductance less than desired

with the magnetic core removed.  Then the magnetic core is inserted and adjusted to achieve

the desired inductance.

The above procedures work well if there are no parasitic elements that will effect the

filter performance.  The important parasitics are the capacitors from each node to ground

and the resistance of the inductors.  For precise filter applications, these influences must be
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incorporated into the design phase.  This results in a more complex filter design procedure

which is beyond the scope of our treatment.

High-Pass, RLC, Ladder Filter Design

The design of high-pass and bandpass, RLC ladder filters is made simple by the

frequency transformations of the previous section.  The frequency transformation from the

normalized, low-pass to normalized high-pass was given by Eq. (2-23).  If we apply this

transformation to an inductor of a normalized, low-pass realization, we obtain

slnLln  = 



1

shn
  Lln = 

1
shnChn

   . (3-3)

Similarly, if applying the transformation to a capacitor, Cln, of a normalized, low-pass

realization, we obtain

1
slnCln

  = 



shn

1  
1

Cln
  = shnLhn . (3-4)

From Eqs. (3-3) and (3-4), we see that the normalized, low-pass to normalized, high-pass

frequency transformation takes an inductor, Lln, and replaces it by a capacitor, Chn, whose

value is 1/Lln.  This transformation also takes a capacitor, Cln, and replaces it by an

inductor, Lhn, whose value is 1/Cln.  Fig. 3-6 illustrates these important relationships.

sln → 1
shn

Normalized Low-
Pass Network

Normalized High-
Pass Network

Lln

Cln
Lhn = 1

Cln

Chn = 1
Lln

Figure 3-6 - Influence of the normalized, low-pass to normalized, high-pass frequency

transformation on the inductors and capacitors.

From the above results, we see that to achieve a normalized, high-pass RLC filter, we

replace each inductor, Lln, with a capacitor, Chn, whose value is 1/Lln and each capacitor,

Cln, with an inductor, Lhn, whose value is 1/Cln.  Once, the elements have been
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transformed, then both a frequency and impedance denormalization can be performed to

result in the final filter design.

Example      3-4     -      Design      of     a       High-Pass,      RLC      Filter  

A filter is to be designed to provide a passband with a ripple of no more than 3 dB

above 100 kHz and a stopband attenuation of at least 45 dB below 50 kHz.  The output of

this filter will be connected to a 50-ohm cable and will serve as the load resistor.  Select a

suitable RLC filter approximation and give the values of all components.

Solution   

We know from Eq. (2-26) that Ωn = 2.  Using Eq. (2-11) gives an N = 8 (TSB = -

48.2 dB) for a Butterworth approximation.  Eq. (2-19) gives N = 5 (TSB = -45.3 dB) for a

Chebyshev approximation.  Let us choose the Chebyshev approximation since there are

almost half the components.  We must choose the singly-terminated filter because the

doubly-terminated filter has a maximum passband gain of -6 dB.  Therefore, from Table 3-

1 we have L1ln = 1.0674 H, C2ln = 1.4441 F, L3ln = 1.9938 H, C4ln = 1.5908 F, and

L5ln = 1.6652 H.

Next, we apply the normalized, low-pass to normalized, high-pass frequency

transformation to each element to get C1hn = 1/L1ln = 1/1.0674 = 0.9369 F, L2hn = 1/C2ln

= 1/1.4441 = 0.6925 H, C3hn = 1/L3ln = 1/1.9938 = 0.5016 F, L4hn = 1/C4ln = 1/1.5908

= 0.6286 H, and C5hn = 1/L5ln = 1/1.6652 = 0.6005 F.  Finally, we denormalize the

frequency by 2πx100 kHz = 2πx105 and the impedance by 50 in order to represent the

connection of the 50-ohm cable to the output of the filter.  The actual values for the filter are

C1h = 0.9369/(50x2πx105) = 59.6 nF, L2h = 0.6925x(50)/(2πx105) = 110 µH, C3h =

0.5016/(50x2πx105) = 31.9 nF, L4h = 0.6286x(50)/(2πx105) = 100 µH, and C5h =

0.6005/(50x2πx105) = 38.3 nF.  Fig. 3-7 shows the final realization for this example.
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L4h = 
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Figure 3-7 - Denormalized, Chebyshev, high-pass filter realization for Ex. 3-4.

Bandpass, RLC, Ladder Filter Design

The design of RLC bandpass ladder filter follows exactly the same approach as used

in the previous section except the transformations are applied to the passive components of

the normalized low-pass filter rather than the roots.  The first step in designing a bandpass

filter is to apply the bandpass normalization of Eq. (2-32) to the components of the low-

pass filter.  Next, we apply the normalized, low-pass to normalized, bandpass

transformation of Eq. (2-33).  Both of these steps are incorporated in Eq. (2-31).  Lastly,

we denormalize the normalized, bandpass filter by ωr and by the desired impedance

denormalization.

Let us first consider the inductor, Lln, of a normalized, low-pass filter.  Let us

simultaneously apply the bandpass normalization and the frequency transformation by

using Eq. (2-31).  The normalized, inductance Lln can be expressed as

slnLln = 












ωr

BW 



(sbn +  

1
sbn

)   Lln

= sbn



ωr Lln

BW   + 
1

sbn



ωr Lln

BW   = sbnLbn + 
1

sbnCbn
   . (3-5)

Thus we see that the bandpass normalization and frequency transformation takes an

inductance, Lln, and replaces it by an inductor, Lbn, in series with a capacitor, Cbn, whose

values are given as

Lbn = 



ωr

BW   Lln = 
Lln
Ωb

  (3-6)

and
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Cbn = 




BW

ωr
 

1
Lln

   = 
Ωb
Lln

   . (3-7)

Now we apply Eq. (2-31) to a normalized capacitance, Cln, to get

1
slnCln

  = 
1













ωr

BW 



(sbn +  

1
sbn

)  Cl n

   

=  
1

sbn



ωr

BW  C ln +  
1

sbn



ωrCln

BW

   =  
1

sbnCbn + 
1

sbnLbn

   . (3-8)

From Eq. (3-8), we see that the bandpass normalization and frequency transformation takes

a capacitor, Cln, in a low-pass circuit and transfors to a capacitor, Cbn, in parallel with an

inductor, Lbn, whose values are given as

Cbn = 



ωr

BW   Cln = 
Cln
Ωb

  (3-9)

and

Lbn = 




BW

ωr
 

1
Cln

   = 
Ωb
Cln

   . (3-10)

Eqs. (3-6), (3-7), (3-9), and (3-10) are very important in the design of RLC bandpass

filters and are illustrated in Fig. 3-8.

Normalized
Low-Pass
Network

Lln

Cln sn → ωr
BW

sbn + 1
sbn

Normalized Bandpass Network

Lbn= ωr
BW

Lln Cbn= BW
ωr

1
Lln

Lbn= BW
ωr

1
Cln

Cbn= ωr
BW

Cln

Figure 3-8 - Illustration of the influence of the normalized, low-pass to the normalized,

bandpass transformation of Eq. (2-31) on an inductor and capacitor of a low-pass filter.
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Once the normalized, low-pass realization has been transformed to a normalized,

bandpass realization, then all that is left is to denormalize the passive elements.  An

example will serve to illustrate the design approach.

Example      3-5     -      Design      of     an      RLC   Bandpass      Filter  

A 1-dB ripple, Chebyshev approximation is to be used to design a bandpass filter

with a passband of 10 kHz  and a stopband of 50 kHz geometrically centered at 100 kHz.

The attenuation in the stopband should be at least 45 dB.  Assume that the load resistor is

300 ohms.  Give a final filter schematic with the actual component values.

Solution   

From the specification and Eq. (2-41), we know that Ωn = 5.  Substituting N = 3 into

Eq. (2-19) gives an attenuation of 47.85 dB.  The values of the third-order, normalized

Chebyshev approximation are L1ln = 1.0118 H, C2ln = 1.3332 F, and L3ln = 1.5088 H.

The value of Ωb, defined in Eq. (2-35), is Ωb = 10/100 = 0.1.  Applying the

normalized, low-pass to normalized, bandpass transformation gives the following results.

For L1ln we get L1bn = 1.0118/0.1 = 11.018 H and C1bn = 0.1/0.11018 = 0.090761 F .

For C2ln we get C2bn = 1.3332/0.1 = 13.332 F and L2bn = 0.1/0.13332 = 0.075008 H.

Finally, for L3ln we get L3bn = 1.5088/0.1 = 15.088 H and C3bn = 0.1/1.5088 = 0.066278

F.

Finally, we frequency and impedance denomalize each element by 2πx105 and 300,

respectively.  The resulting bandpass filter is shown in Fig. 3-9.

300 Ω

+

-

+

-

Vin(s) Vout(s)

C3b=3.516nF C1b=4.815nF

C2b=
70.73nF

L2b=
358µH

L3b=
7.204mH

L1b=
5.261mH

Figure 3-9 - Chebyshev, bandpass realization for Ex. 3-5.

Design of Other Types of RLC Filters
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There are several types of RLC filters that we will not cover in this section but we

should briefly mention them.  One type are filters that have jω axis zeros such as the one

shown in Fig. 2-18.  Normalized, low-pass RLC filters have been developed and tabulated

for this type of filter.  They are similar in form to the ladder filters of Figs. 3-1 and 3-2

except that the series inductor is replaced by a parallel inductor and capacitor or the shunt

capacitor is replaced by a series capacitor and inductor.

There is also bandstop filters which we have not considered.  These filters can be

developed by first applying the normalized, low-pass to normalized, high-pass

transformation to the low-pass normalized realization.  Next, the low-pass to bandpass

transformation of Eq. (2-31) is applied to the normalized high-pass filter.  The result is a

bandstop filter having a stopband of BW geometrically centered at ωr.  The passband is

geometrically centered around ωr and has the width of ΩnBW where BW is the bandwidth

of a bandpass filter.  If Ex. 3-5 were repeated for a bandstop filter with a stopband of 10

kHz and a passband of 50 kHz geometrically centered at 100 kHz, the result would be

similar to Fig. 3-9 except L1b and C1b (L3b and C3b) would in parallel and C2b and L2b

would be in series.  The values would be different because of the normalized, low-pass to

normalized, high-pass transformation (see PA3-1).

State Variable Equations for RLC Ladder Filters

The next step in the design of ladder filters is to show how to use active elements and

resistors and capacitors to realize a low-pass ladder filter.  Let us demonstrate the approach

by using an example.  Consider the doubly-terminated, fifth-order, RLC, low-pass ladder

filter of Fig. 3-10.  Note that we have reordered the numbering of the components to start

with the source and proceed to the load.  We are also dropping the "l" from the component

subscripts because we will only be dealing with low-pass structures in this discussion.
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+

-

C2n

L3nL1n

Vout(sn)
+

-

Vin(sn) C4n

L5nR0n

R6n
+

-

+

-

I1 I3 I5

V2 V4

Figure 3-10 - A fifth-order, low-pass, normalized RLC ladder filter.

The first step in realizing the RLC filter of Fig. 3-10 by active RC elements is to

assign a current Ij to every j-th series element (or combination of elements in series) of the

ladder filter and a voltage Vk to every k-th shunt element (or combination of elements in

shunt) ofthe ladder filter.  These currents and voltages for the example of Fig. 3-10 are

shown on the figure.  These variables are called state variables.  

The next step is to alternatively use loop (KVL) and node (KCL) equations expressed

in terms of the state variables only.  For example, we begin at the source of Fig. 3-10 and

write the loop equation

Vin(s) - I1(s)R0n - sL1nI1(s) - V2(s) = 0  . (3-11)

Next, we write the nodal equation

I1(s) - sC2nV2(s) - I3(s) = 0  . (3-12)

We continue in this manner to get the following state equations.

V2(s) - sL3nI3(s) - V4(s) = 0 (3-13)

I3(s) - sC4nV4(s) - I5(s) = 0 (3-14)

and

V4(s) - sL5nI5(s) - R6nI5n(s) = 0 (3-15)

Eqs. (3-11) through (3-15) constitute the state equations which completely describe the

ladder filter of Fig. 3-10.  A supplementary equation of interest is

Vout(s) = I5(s)R6n  . (3-16)

Once, the state equations for a ladder filter are written, then we define a voltage

analog, V'
 j   of current Ij  as

V'
 j   = R'Ij (3-17)
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where R' is an arbitrary resistance (normally 1 ohm).  The voltage analog concept allows

us to convert from impedance and admittance functions to voltage transfer functions which

is a useful step in the active-RC implementation of the ladder filter.  Now if for every

current in the state equations of Eq. (3-11) through Eq. (3-15) we replace currents I1, I3,

and I5 by their voltage analogs, we get the following modified set of state equations.

Vin(s) - 





V'

 1(s)
R ' (R0n + sL1n)  - V2(s) = 0 (3-18)







V'

 1(s)
R '   - sC2nV2(s) - 






V'

  3( s )
R '   = 0 (3-19)

V2(s) - sL3n





V'

  3( s )
R '   - V4(s) = 0 (3-20)







V'

  3( s )
R '   - sC4nV4(s) - 






V'

  5( s )
R '   = 0 (3-21)

and

V4(s) - 





V'   5 ( s )

R ' (sL5n + R6n)  = 0 (3-22)

The next step is to use the 5 equations of Eqs. (3-18) through (3-22) to solve for each

of the state variables.  The result is

V'
 1(s)  = 

R '
sL1n

 





Vin(s) - V2(s) - 



R0n

R ' V'
 1(s)  (3-23)

V2(s) = 
1

sR'C2n
  [V'

 1(s)  - V'
  3(s) ] (3-24)

V'
  3(s)  = 

R '
sL3n

  [V2(s) - V4(s)] (3-25)

V4(s) =  
1

sR'C4n
  [ V'

   3(s)  - V'
   5(s) ] (3-26)

and

V'
   5(s)  =  

R '
sL5n

  [V4(s) - 
R6n
R '  V'

  5(s) ] . (3-27)
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However, we would prefer to have the variable Vout(s) used in place of V'
 5(s) .  From Eq.

(3-15) we get

 Vout(s) = 



R6n

R ' V'
  5(s)   . (3-28)

Combining Eqs. (3-26) and (3-27) with (3-28) gives

V4(s) =  
1

sR'C4n
  [ V'  3(s)  - 



R '

R6n
  Vout(s)] (3-29)

Vout(s) =  
R6n
sL5n

  [V4(s) - Vout(s)] . (3-30)
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Design of Low-Pass, Ladder Filters using Active-RC Elements

Finally, we are ready to synthesize an active-RC realization of Fig. 3-10.  This is

done by realizing that Eqs. (3-23), (3-24), (3-25), (3-29) and Eq. (3-30) are simple

integrators.  In each case, the state variable is expressed as the integration of itself or other

state variables.  The next step would be to go back to Sec. 4.1 and realize each of the five

equations with 5 positive integrators capable of summing more that one input.  However,

as we will recall, the positive integrator did not provide the flexibility and usefulness (i.e.

summing) found in the negative or inverting integrator.  We could realize the state

equations using positive integrators of the form shown in Fig. 3-11.  

A1 A2

R R

R R
Vj Vk

-Vk-Vl

Ck

Figure 3-11 - Positive integrator realization of the k-th integrator.

We can show that the output of Fig. 3-11 is given as

Vk(s) = 
1

sRCk
  [Vj(s) - Vl(s)] (3-31)

where Vj(s) is the input from the previous stage and -Vl(s) is the negative output of the next

stage.  Note that the inverter at the output of the integrator allows us to get either the

positive or negative output variable.

Fig. 3-11 works well for Eqs. (3-24), (3-25), and (3-29).  However, a different

approach is necessary for Eqs. (3-23) and (3-30) because the variable is a function of itself.

Solving for V'
 1(s)  and Vout(s) in Eqs. (3-23) and (3-31) gives

V'
 1(s)   = 







R '

L1n

s + 
R 0 n
L1n

{ }Vin(s) + [-V2(s)]  (3-32)

and
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Vout(s) = 







R6n
L5n

s + 
R 0 n
L5n

  V4(s)  , (3-33)

respectively.  We see that Eqs. (3-32) and (3-33) are nothing more than the first-order,

low-pass filter of Fig. 4.2-6c preceeded by a gain of -1 stage which also serves as a

summer for Eq. (3-32).  The implementation of Eq. (3-32) is shown in Fig. 3-12.

A1 A2

R R

RR
V1

' (sn)

-V2(sn)

Vin(sn)

L1n/R

R/R0nR'

R'

Figure 3-12 - Realization of Eq. (3-32).

A similar realization can be found for Eq. (3-33).  This realization will only have one input

to the inverter.

Unfortunately, the straight-forward application of Figs. 3-11 and 3-12 to realize the

state equations uses more op amps than is necessary.  A more efficient realization is

achieved by modification of the state equations.  One modification of Eqs. (3-23), (3-24),

(3-25), (3-29) and Eq. (3-30) is shown below.

V'
 1(s)  = 

R '
sL1n

 





Vin(s) - V2(s) - 



R0n

R ' V'
 1(s)  (3-34)

-V2(s) = 
-1

sR'C2n
  [V'

 1(s)  - V'
  3(s) ] (3-35)

-V'
  3(s)  = 

R '
sL3n

  [-V2(s) + V4(s)] (3-36)

V4(s) =  
-1

sR'C4n
  [- V'  3(s)  + 



R '

R6n
  Vout(s)] (3-37)

and

Vout(s) =  
R6n
sL5n

  [V4(s) - Vout(s)] . (3-38)

Another modification of the state equations is given as
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-V'
  1(s)  = 

-R'
sL1n

 





Vin(s) - V2(s) - 



R0n

R ' V'
 1(s)  (3-39)

-V2(s) = 
1

sR'C2n
  [-V'

 1(s)  + V'
  3(s) ] (3-40)

V'
  3(s)  = 

-R'
sL3n

  [-V2(s) + V4(s)] (3-41)

V4(s) =  
1

sR'C4n
  [ V'  3(s)  - 



R '

R6n
  Vout(s)] (3-42)

and

-Vout(s) =  
-R6n
sL5n

  [V4(s) - Vout(s)] . (3-43)

Fig. 3-13a shows the realization of the state equations of Eqs. (3-34) through (3-38).

Fig. 3-13b shows the realization of the state equations of Eqs. (3-39) through (3-43).  The

second modification has one less op amp but only -Vout(s) is available.  Fig. 3-13a saves

two op amps over the case where every integrator consists of two op amps and Fig. 3-13b

saves three op amps over the case where every integrator consists of two op amps.  It is

interesting to note that Fig. 3-13 turns out to be the interconnection of four, second-order,

Tow-Thomas filters of Fig. 1-16.  The inside filters have a Q of infinity because neither

integrator is damped.  The intercoupled second-order filters are distinctly different from the

cascade realization in that there is more than one path from the input to the output of the

filter.  This type of realization was first published by Girling and Good† and were called

"leapfrog" filters.

                                    
† F.E.J. Girling and E.F. Good, "Active Filters 12: The Leap-Frog or Active-Ladder Synthesis," Wireless
World, vol. 76, July 1970, pp. 341-345.
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Example      3-6     -      Design      of     a      Low-Pass,      Butterworth   Ladder   Filter      using the      Active-RC

Elements  

Design a third-order, Butterworth, low-pass filter having a passband frequency of 1

kHz using the RC-active ladder realization of Fig. 3-13.  Assume that the source resistance

of the input voltage is zero.  Give a realization and the value of all components.

Solution   

The normalized, low-pass ladder filter is obtain from Table 3-1 and is shown in Fig.

3-14a.  Note that we have reversed the order of the subscripts to correspond with Fig. 3-

10.   Let us choose Fig. 3-13b as the realization form resulting in Fig. 3-14b where R0n =

0 and  R' = R = 1 Ω.  Frequency denormalizing this filter by 2πx103 and impedance

denormalizing by 104 (arbitrarily chosen) gives the realization of Fig. 3-14c.

+

-

+

-

Vin(sn) Vout(sn)

L1n=1.5000 H L3n=0.5000 H
C2n=

1.3333 F
R4n=
1 Ω

(a.)

(b.)

(c.)

= 1.5F = 1.3333F

A1 A2 A3 A4

1Ω

L 1n C 2n

-V2

1/R 4n

L 3n

V'1-

Vin(sn) Vout(sn)

=0.5 F

1Ω

1Ω
1Ω

1Ω 1Ω

1Ω

Vout(s)

A1 A2 A3 A4

10 kΩ

-V2V'1-

23.87 nF 21.22 nF 7.96 nF

Vin(s)

10 kΩ

10 kΩ10 kΩ
10 kΩ

10 kΩ10 kΩ

Figure 3-14 - Results of Ex. 3-6.  (a.) Normalized, low-pass RLC filter.  (b.)  Normalized,

low-pass, active-RC filter.  (c.)  Denormalized, low-pass, active-RC filter.
Example      3-7     -      A      Fifth-Order,      1      dB   Chebyshev,      Low-Pass,      Active-RC   Filter      Design   
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A fifth-order, low-pass, Chebyshev filter with a 1 dB ripple in the passband is to be

designed for a cutoff frequency of 1 kHz.  Design an active-RC ladder realization of this

filter.  Give a schematic and the value of all components.  The input voltage source is

assumed to have a source resistance of 1 kΩ.

Solution   

From Table 3-2, we get the normalized, low-pass, RLC ladder filter elements of R0n

= 1 Ω, L1n = 2.1349 H, C2n = 1.09011 F, L3n = 3.0009 H, C4n = 1.09011, L5n = 2.1349

H, and R6n = 1 Ω.  Note that we have reversed the order of the subscripts in Table 3-2 to

correspond to that of Fig. 3-10 (although in this particular case it makes no difference).  Let

us again select Fig. 3-13b as the realization because it has one less op amp.  The

component values above are directly substituted into Fig. 3-13b to achieve a normalized,

low-pass, active-RC, ladder realization.  To get the denormalized filter, we select R = 1000

Ω and frequency denormalize by 2πx103.  The values of the capacitor of each integrator,

from input to output are C1 = L1n/2πx106 = 2.1349/2πx106 = 0.340 µF, C2 = C2n/2πx106

= 1.09011/2πx106 = 0.174µF, C3 = L3n/2πx106 = 3.0009/2πx106 = 0.478 µF, C4 =

C4n/2πx106 = 1.09011/2πx106 = 0.174µF, and C5 = L5n/2πx106 = 2.1349/2πx106 =

0.340 µF.

Other Types of Ladder Filters using Active-RC Elements

High-pass, bandpass, and bandstop ladder filters can also be designed using active-

RC elements.  The design methods follow a simular procedure as for the low-pass filter.

Unfortunately, in the high-pass ladder filters, the state variables are realized by

differentiators rather than integrators if the state variables are the currents in the series

elements and the voltages across the shunt elements.  Integrator realization of the state

variables is possible if the state variables are the voltages across the series elements and the

currents through the shunt elements.  However, the equations are not as straight-forward to
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write as for the low-pass case.  Examples of high-pass ladder filter design can be found in

other references†.

We will illustrate the design of bandpass ladder filters using active-RC elements

because it is a straight-forward extension of the low-pass ladder filter design.  Once a

normalized, low-pass ladder filter has been found which meets the bandpass filter

specifications, we apply the element transformations illustrated in Fig. 3-8.  Thus, is the j-

th series element consists of a series resistor, Rjn, and a series inductor, Ljln, become the

series RLC circuit shown in Fig. 3-15a.  If the k-th shunt element consists of a shunt

resistor, Rkn, and a shunt capacitor, Ckln, the bandpass equivalent is the parallel RLC

circuit shown in Fig. 3-15b.   Normally, Rjn (Rkn)  is zero (infinity) except for the series or

shunt elements which include the terminating resistors of the ladder filter.  The values of

the series normalized bandpass components are

Ljbn = 



ωr

BW  Ljln ,     Cjbn = 




BW

ωr
 

1
Ljln

   . (3-44)

The values of the shunt normalized components are

Ckbn =  



ωr

BW  Cjln ,     Ljbn = 




BW

ωr
 

1
Cjln

   . (3-45)

(b.)(a.)

Ljbn Cjbn

Series Element

Rjn
+

-

+

-

Vj-1(snb) Vj+1(snb)

Ij(sbn)

Yjn(sbn)

Ckbn
LkbnRkn

Shunt Element

+

-

Zkn(sbn)

Ik-1(sbn) Ik+1(sbn)

Vk(sbn)

+

-

Vk(sbn)

Figure 3-15 - (a.) Series ladder element and (b.) shunt ladder element after the normalized,

low-pass to normalized, bandpass transformation of Fig. 3-8.

                                    
† P.E. Allen and E.Sa'  nchez-Sinencio, Switched Capacitor Circuits, Chapt. 4, Van Nostrand Reinhold
Company, Inc., New York, 1984.
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Each element of the bandpass filter can be realized by considering the admittance,

Yjn, of Fig. 3-15a and the impedance, Zkn, of Fig. 3-15b.  These driving-point functions

can be written as

Yjn(sbn) = 
Ij(sbn)
Vj(sbn)   = 

Ij(sbn)
Vj-1(sbn)-Vj+1(sbn)   =  





1

Ljbn
sbn

s
2
bn  + 



Rjn

Ljbn
sbn  +  

1
LjbnCjbn

 (3-46)

and

  Zkn(sbn) = 
Vk(sbn)
Ik(sbn)    = 

Vk(sbn)
Ik-1(sbn)-Ik+1(sbn)   =  





1

Ckbn
sbn

s
2
bn  + 



1

RknCkbn
sbn +  

1
LjbnCjbn

   . (3-47)

These driving-point functions can be turned into voltage transfer functions using the

concept of voltage analogs for the currents Ij and Ik.  Multiplying Eq. (3-46) by R' gives

      TYj(sbn) = 
R'Ij(sbn)
Vj(sbn)    =  

V
'
j (sbn)

Vj-1(sbn)-Vj+1(sbn)   =   




R '

Ljbn
sbn

s
2
bn  + 



Rjn

Ljbn
sbn  +  

1
LjbnCjbn

   (3-48)

or

V
'
j (sbn)  = 















R '

Ljbn
sbn

s
2
bn  + 



Rjn

Ljbn
sbn  +  

1
LjbnCjbn

 [Vj-1(sbn)-Vj+1(sbn)]  . (3-49)

If Rjn = 0, then Eq. (3-49) reduces to

V
'
j (sbn)   =   









R '

Ljbn
sbn

s
2
b n  +  

1
LjbnCjbn

 [Vj-1(sbn)-Vj+1(sbn)]   . (3-50)

Multiplying Eq. (3-47) by 1/R' gives

TZk(sbn) =  
Vk(sbn)

R'Ik(sbn)   = 
Vk(sbn)

V
'

k-1(sbn)-V
'

k+1(sbn)
   = 





1

R'Ckbn
sbn

s
2
bn  + 



1

RknCkbn
sbn +  

1
LjbnCjbn

   (3-

51)
or
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  Vk(sbn)  = 















1

R'Ckbn
sbn

s
2
bn  + 



1

RknCkbn
sbn +  

1
LjbnCjbn

 [V
'

k-1(sbn) -V
'

k+1(sbn) ]  . (3-52)

If Rkn = ∞, then Eq. (3-52) reduces to

 Vk(sbn)  = 









1

R'Ckbn
sbn

s
2
b n  +  

1
LjbnCjbn

 [V
'

k-1(sbn) -V
'

k+1(sbn) ]  . (3-53)

The second-order, bandpass, Tow-Thomas filter of Fig. 1-23 is a perfect realization

of Eq. (3-49) or Eq. (3-52).  The modification necessary is to add another input which is

simple to do because the op amps have their positive input terminals grounded.   Fig. 3-16

shows the general second-order realization of either Fig. 3-15a for the j-th series elements.

The realization of the k-th shunt element is exactly the same except for the subscript j.  For

the cases of Eq. (3-50) and Eq. (3-53), Rj4 = ∞.  The availability of both positive and

negative outputs simplifies the bandpass realization over the previous low-pass realizations.

A1 A3

R R

j- th element

-Vj
' (snb)

+Vj
' (snb)

Vj-1(snb)

Vj+1(snb)

Rj1

Rj1

Rj2Rj3

Rj4

Cj1

Cj2

A2

Figure 3-16 - Active-RC realization of either Fig. 3-15a or Fig. 3-15b (replace subscript j

by k and interchange primes).

Table 3-3 shows the design relationships for the implementation of Fig. 3-15 by the

Tow-Thomas circuit of Fig. 3-16.  An example will illustrate the approach to designing

active-RC bandpass, ladder filters.
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Parameters of Fig. 3-16 Design of Fig. 3-15a Design of Fig. 3-15b

Rj1 or Rk1
Rj1 = 

R
R '

Ljbn
Cjbn

 Rk1 = R'R 
Ckbn
Lkbn 

Rj4 or Rk4
Rj4 = 

R
Rjn

Ljbn
Cjbn

 Rk4 = RRkn
Ckbn
Lkbn 

Choose Rj2 = Rj3 = R or Rk2 = Rk3
= R, a convenient value:

Cj1 = Cj2 or Ck1 = Ck2

Cj1 = Cj2 = 
LjbnCjbn

R  Ck1 = Ck2 = 
LkbnCkbn

R  

Choose Cj1 = Cj2 = C or Ck1 = Ck2
= C, a convenient value:

Rj2 = Rj3 or Rk2 = Rk3
Rj2 = Rj3 = 

LjbnCjbn
C  Rk2 = Rk3 = 

LkbnCkbn
C  

R' is the scaling resistance of the voltage analog concept and is normally 1 Ω

Table 3-3 - Design relationships for the implementation of Fig. 3-15a or Fig. 3-15b by the

active-RC filter of Fig. 3-16.

Example      3-8     -      Design      of     a      Butterworth,   Bandpass,      Ladder      Active-RC   Filter 

Design a sixth-order, Butterworth, bandpass, doubly-terminated, ladder filter using

active-RC elements.  Assume the passband is an octave, centered geometrically about 1

kHz.  Impedance denormalize by a factor of 104 and give a schematic, or equivalent, with

all component values.

Solution   

The first thing we must do is find the bandwidth of the bandpass filter.  We know

from the specification that fPB2 = 2fPB1.  We also know that 1 kHz = fBP2fBP1 .  

Combining these 2 relationships gives fBP1 = 1/ 2  kHz and fPB2 = 2  kHz.  Thus the

bandwidth is 1/ 2  kHz.
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From Table 3-2, for a third-order, doubly-terminated Butterworth approximation we

find that L1n = 1 H, C2n = 2 F, and L3n = 1 H.  Since the filter is symmetrical, we don't

have to reorder the subscripts but can use them as they are.  The resulting, normalized,

low-pass filter is shown in Fig. 3-17a.

If we apply the normalized, low-pass to normalized, bandpass transformation of Eqs.

(3-44) and (3-45) to Fig. 3-17a we get the following normalized bandpass elements of Fig.

3-17b.  L1bn = (ωr/BW)L1ln = (R(2))(1) = 2  H, C1bn = (BW/ωr/)(1/L1ln) = 1/ 2  F ,

C2bn = (ωr/BW)C2ln = ( 2 )(2) = 2 2  F, L2bn = (BW,ωr)(1/C2ln) = 1/2 2  H, L3bn =

(ωr/BW)L3ln = ( 2 )(1) = 2  H, and C3bn = (BW/ωr)(1/L3ln) = 1/ 2  F.  Therefore the

values of Y1n are R1n = 1 Ω, L1bn = 2  H, and C1bn = 1/ 2  F.  The values for Z2n are

R2n = ∞, C2bn = 2 2  F, and L2bn = 1/2 2  H.  The values for Y3n are R3n = 1 Ω, L3bn =

2  H, and C3bn = 1/ 2  F.

Finally, we use the design relationships of Table 3-3 to design three, second-order

active filters of the form given in Fig. 3-16.  We will select R = R' = 1 Ω.  For the first

element, Y1n, which is series we choose C11 = C12 = 1 F to get R12 = R13 = 1 Ω, and R11

= R14 = 2  Ω.  For the second element, Z2n, which is shunt we choose C21 = C22 = 1F to

get R22 = R23 = 1 Ω, R21 = 2 2  Ω, and R24 = ∞.  For the third element, Y3n, the values

are identical to those for Yn1.  If we frequency denormalize by 2πx103 and impedance

denormalize by 104 we get the realization of Fig. 3-17c.

The above example illustrates the general method by which bandpass ladder filters are

realized using active-RC elements.  This method is applicable to any bandpass filter whose

passband and stopband are geometrically centered about the frequency, ωr.  Other examples

of active-RC bandpass ladder filter design can be found in the problems.
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A11 A13

10 kΩ

A12

A21 A23

10kΩ

A22

A31 A33

10 k Ω

A32

C11 =
15.91nF

R11 =

R11 =
14.14kΩ

R13  = 10kΩ

R12  = 
10kΩ

10 kΩ

C12  = 15.91nF C22  = 15.91nF

C21  = 15.91nF

10kΩ

R21  = 
28.28kΩ

R21  = 
28.28kΩ

R23 = 10kΩ

R22  =
 10kΩ

R31  =

R34  =
 14.14kΩ

R33  = 10kΩ

R32  =
 10kΩ

C32  = 15.91nF

C31 = 
15.91nF

10 kΩVin(s) Vout(s)

Y1 Z2 Y3

14.14kΩ
14.14kΩ

R14  = 
14.14kΩ

-V'1 -V2

V2

-Vout

+

-

+

-

R4n=
1 ΩVin(sln) Vout(sln )

R0n=1 Ω L1ln=1 H L3ln =1 H
C2ln
= 2 F

+

-

+

-

L1bn 2  H

C1bn= 2 F

C2bn L2bn=

L3bn 2  H

C3bn

R4n
=1ΩVin (sbn) Vout(sbn )

Y1n Y3n

Z2n

R0n=1Ω 1/ =

2 F=

2 F1/=

2 1/ 2 2 H

=

(a.)

(b.)

(c.)

Figure 3-17 - Bandpass, active-RC ladder filter of Ex. 3-8.  (a.) Normalized, low-pass,

ladder filter.  (b.)  Normalized, bandpass ladder filter.  (c.)  Denormalized, active-RC

bandpass ladder filter.

Summary

The block diagram in Fig. 2-1 illustrated the two general design approaches normally

used to design active filters.  The first approach was the cascade of first- or second-order

stages and was covered in the previous section.  The second approach was the design of

ladder filters which has been the subject of this section.  Basically, the cascade approach is

easier to tune but is more sensitive to component tolerance than the ladder filters.

The starting point of the ladder active filter design is with the normalized, low-pass

RLC ladder filter.  These filter structures are the result of network synthesis methods and

are widely tabulated for the designer.  As in Sec. 2, we restricted ourselves to filters whose

zeros were at infinity or the origin of the complex frequency plane.  The design of high-
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pass and bandpass filters was achieved by direct application of the normalized frequency

transformations to the elements of the normalized, low-pass RLC filter.

To achieve an active-RC realization of the RLC ladder filters, we introduced the

concept of state variable.  By correctly selecting the state variables and using the concept of

voltage analog for current, we were able to synthesize the state variables using summing

integrators.  The resulting circuits were very similar to interconnected, second-order, low-

pass Tow-Thomas filters.  We saw that high-pass, active-RC ladder filters required a little

cleverness to be able to express all of the state variables so that they could be realized by

integrators.  Each element of the normalized, low-pass RLC resulted in a second-order

bandpass circuit when the normalized low-pass to normalized bandpass frequency

transformation was applied.  These second-order, bandpass circuits were easily realizable

as second-order, bandpass, Tow-Thomas filters.

One of the themes that hopefully has become evident to the reader is how filter design

all builds from the normalized, low-pass filters.  Using simple normalizations and

frequency transformations permits the design of complex filters.  One important constraint

to remember is that the bandpass and bandstop filters designed by these methods must have

passbands and stopbands geometrically centered  about a common frequency.  Other design

methods, not covered here, will allow the design of filters not subject to this constraint.

Some the important points of this section are summarized below for the convenience

of the reader.

• Sensitivity is a measure of some aspect of the filter performance on the components

of the filter.

• The normalized low-pass to normalized high-pass frequency transformation turns

inductors (capacitors) into capacitors (inductors) whose value is the reciprocal of the

low-pass component value.

• The normalized low-pass to normalized bandpass frequency transformation turns an

inductor into an inductor in series with a capacitor.  The value of the inductor is
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(ωr/BW)Lln and the value of the capacitor is (BW/ωrLln).  whose value is (inductors)

whose value is the reciprocal of the low-pass component value.

• The normalized low-pass to normalized bandpass frequency transformation turns a

capacitor into a capacitor in parallel with an inductor.  The value of the capacitor is

(ωr/BW)Cln and the value of the inductor is (BW/ωrCln).  

• In order to realize the state variables by integrators, the current through an inductor

and the voltage across a capacitor should be chosen as state variables.

• The Tow-Thomas second-order realization becomes a very useful active-RC filter for

realizing RLC ladder filters.


