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3 - HHIGHER-ORDER LADDER PASSIVE AND ACTIVE FILTERS

In Fig. 2-1, two approaches to designing active filters were shown. One of the
approaches uses cascaded, first- and second-order active filters and was discussed in Sec.
2. The other approach uses a ladder configuration and is presented in this section. Both
approaches are used to design successful higher-order active filters. The cascade approach
iseasier to design and tune but does not have the insensitivity to component variation found
in the ladder approach.

The concepts of normalization and frequency transformation developed for cascade
activefilterswill aso be used in the design of ladder active filters. The starting point for a
ladder design is an RLC passive circuit rather than a transfer function or the roots of a
transfer function. This means that our design manipulations will be with circuit elements
rather than with roots. These two approaches are among the more widely used approaches
for designing activefilters.

Sensitivity of an Active Filter

Sensitivity isameasure of the dependence of the filter performance upon the passive
and active components of the filter design. Sensitivity is generaly expressed as percentage
change of some performance aspect to the percentage change in an active or passive
component. For example, we can express the relative sensitivity of a performance aspect

designated as "p" to the variation of some component "X" as

op

p_p _xdp

Sx =9x =pox - (3-1)
X

For example, the relative sensitivity of the pole-Q of the Tow-Thomas, low-pass redization
of Fig. 1-16 to R1 can be found by letting p = Q and x = R1 and applying Eqg. (3-1) to Eq.

(1-59) to get

Q ___ R H[ & H_
SR1 - C; O R2R3C2E =1. (3-2)
RI\RZRsC,
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Furthermore, we can show that the sensitivity of the pole-Q of Fig. 1-16 to Ry is -0.5.
Another interpretation of sengitivity is as follows. If the component x changes by dx/x,
then the performance changes by the product of SQ times dx/x. For example, the pole-Q
will change by +10% if R1 changes by +10%. If the relationship between p and X is
nonlinear, the sensitivity measureisonly good for small changes. Consequently, changes
much over 10% should be calculated using nonlinear sensitivity methods or point
sensitivity calculations.

Sengitivity calculations can become complex if the expression relaing the
performance to the component is complicated. Fortunately we only wish to use the concept
of sengitivity to compare the two different approaches to higher-order active filter design
shown in Fig. 2-1. Although we have not yet developed the ladder filter, it can be
distinguished from the cascaded filter by its dependence upon the passive and active
components of the filter realization. The performance of the ladder filter always depends
on more than one passive or active component. As aresult, the performanceis not strongly
dependent upon any one component but rather on al components. However, the
performance of the cascaded filter may depend upon only one component. If this
component is inaccurate or off in value, the cascade filter performance can be strongly
influenced while the same component change may not be noticed in the performance of the
ladder filter. This advantage of the ladder filter becomes a disadvantage when tuning the
filter. Itisamost impossible to tune aladder filter because no single component dominates
the performance of the filter.

Normalized, RLC, Low-Pass Ladder Filters

RLC, low-pass ladder filters are the result of modern network synthesis techniques

and are based on techniques well known in circuit theoryt. The resulting realizations of

these synthesis techniques aways start with aload resistor of 1 ohm and works toward the

T M.E. Van Valkenburg, Introduction to Modern Network Synthesis, Chapter 10, John Wiley & Sons,
Inc., New Y ork, 1960.
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input of the filter. Fig. 3-1 shows the form for a singly-terminated RLC filter for the case

of even and odd order functions with the numbering of components going from the output

to the input of the filter.

M - "M o
t I—N,n I—2n +
Vin(sn) CNan— Can == Cin == 105 Vout(sn)
' 5
(@)
YN R AAA A nYmm o
+ Lnn L3n L1n +
Vin(Sn) CN-in— Con—== 10 Vout(Sn)
o
(b)

Figure 3-1 - Singly-terminated, RLC filters. (a.) N even. (b.) N odd.
The RLC ladder filters of Fig. 3-1 are normalized to a passband of 1 rps. The
denormaizations of Table 2-1 are gpplicable to the elements of Fig. 3-1. Fig. 3-2 shows
the normalized ladder filters for doubly-terminated, RLC filters. It is seen that these filters

aresimilar to those of Fig. 3-1 except for a series source resistance.

nmm _——— nm
+ W‘V LN’n L2n 3-
Vin(sn) CN-1n=— Can == Cihn=—=—10 Vout(Sn)
o
(a)
M e —YMN nmm
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Vin(sn) CN-1n =} Con—= 1Q Vout(Sn)
o
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Figure 3-2 - Doubly-terminated, RLC filters. (&) N even. (b.) N odd.
The tabular information for the design of RLC filters consists of the normalized

component values of Figs. 3-1 and 3-2. Each of the many different types of filter
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approximations have been tabulated for values of N up to 10 or moret . Tables 3-1 and 3-2
are typical of this tabularized information for the Butterworth and 1-dB Chebyshev
approximation for the singly-terminated and doubly-terminated, RLC filters of Figs. 3-1
and 3-2.

Use these component designations for even order of Fig. 3-1aand Fig. 3-2a

Cin L2n C3an Lan Csn Lén C7n L8n Con | LioOn

0.7071 | 1.4142

0.5000 | 1.3333 | 1.5000 Butterworth (1 rps passband)

0.3827]1.0824 | 1.5772 | 1.5307

0.3090 | 0.8944 ] 1.3820 [ 1.6944 | 1.5451

0.2588 [ 0.7579 [ 1.2016 [ 1.5529 [ 1.7593 | 1.5529

0.2225(0.6560 [ 1.0550 | 1.3972| 1.6588 | 1.7988 | 1.5576

0.1951 [ 0.5576 [ 0.9370[ 1.2588 | 1.5283 | 1.7287 | 1.8246 | 1.5607

0.1736 [ 0.5155(0.8414 [ 1.1408 | 1.4037 | 1.6202 | 1.7772 | 1.8424 | 1.5628

0.1564 ] 0.4654 | 0.7626 [ 1.0406 | 1.2921 | 1.5100 | 1.6869 | 1.8121 | 1.8552 | 1.5643

0.9110| 0.9957

1.0118] 1.3332| 1.5088 1-dB ripple Chebyshev (1 rps passband)

1.0495] 1.4126| 1.9093| 1.2817

1.0674( 1.4441] 1.9938| 1.5908]| 1.6652

1.0773[ 1.4601] 2.0270| 1.6507| 2.0491| 1.3457

1.0832( 1.4694] 2.0437| 1.6736| 2.1192] 1.6489( 1.7118

1.0872] 1.4751| 2.0537| 1.6850( 2.1453| 1.7021 | 2.0922( 1.3691

1.0899] 1.4790| 2.0601| 1.6918| 2.1583( 1.7213| 2.1574| 1.6/07| 1.7317

5| ©f oo ~| o] o1 B wof o] 5| o] oo i o ] N wo v 2

1.0918] 1.4817] 2.0645| 1.6961 | 2.1658( 1.7306( 2.1803| 1.7215] 2.1111] 1.3801

Lin | Con | Lan | Can | L5n | Cen | L7n | Csen | Lon | Cion

Use these component designations for odd order of Fig. 3-1b.

Table 3-1 - Normalized component values for Fig. 3-1 for the Butterworth and Chebyshev
singly-terminated, RLC filter approximations.

Example 3-1 - Use of the Table 3-1 to Find a Singly-Terminated, RL C L ow-pass Filter

Find a singly-terminated, normalized, RLC filter for a 4th-order Butterworth filter.
Solution

Using Table 3-1 and using the component designations at the top of the table gives

Fig. 3-3.

TL. Weinburg, Network Analysis and Synthesis, McGraw-Hill Book Co., 1962, R.E. Krieger Publishing
Co., Huntington, NY, 1975.
A.l. Zverev, Handbook of Filter Synthesis, John Wiley & Sons, Inc., NY, 1967.
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Figure 3-3 - Fourth-order, Butterworth, normalized low-pass RLC filter realization.
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Use these component designations for even order of Fig. 3-2a, R = 1Q.
N Cin L2n C3an Lan Csn Lén C7n Lan Con | L10On
2 (14142 | 1.4142
3 |{1.0000 | 2.0000 | 1.0000 Butterworth (1 rps passband)
4 1[0.7654 | 1.8478[1.8478|0.7654
510.6180 1.6180 | 2.0000 | 1.6180 | 0.6180
6 ||0.5176]1.414211.9319|1.9319|1.4142 | 0.5176
7 110.4450] 1.2470 | 1.8019 | 2.0000 [ 1.8019 | 1.2740 | 0.4450
8 0.3902]1.11111.6629] 1.9616 | 1.9616 | 1.6629 [ 1.1111 | 0.3902
9 [10.3473]1.0000 [ 1.5321] 1.8794 [ 2.0000 | 1.8794 [ 1.5321 | 1.0000 | 0.3473
10](0.3129]0.9080 [ 1.4142|1.7820] 1.9/54 [ 1.9754 | 1.7820 [ 1.4142] 0.9080 | 0.3129
3 ][ 2.0236] 0.9941| 2.0236 1-dB ripple Chebyshev (1 rps passband)
51 2.1349] 1.0911| 3.0009]| 1.0911( 2.1349
7 || 2.1666| 1.1115| 3.0936]| 1.1735( 3.0936| 1.1115( 2.1666
912.1797] 1.1192] 3.1214] 1.1897] 3.1746] 1.1897] 3.1214[ 1.1192| 2.1/97]
L1n Con L3n Can L5n Cén L7n Can Lon | C1i0n
Use these component designations for odd order of Fig. 3-2b, R = 1Q.

Table 3-2 - Normalized component values for Fig. 3-2 for the Butterworth and 1-dB

Chebyshev doubly-terminated, RLC approximations.

We note that no solution exists for the even-order cases of the doubly-terminated,

RLC Chebyshev approximationsfor R=1 Q. Thisis aspecia result for R=1Q and is

not true for other values of R. We also can see that the gain in the passband will be no

more than -6 dB because of the equal source and load resistances causing an gain of 0.5 &

low freguencies where the inductors are short-circuits and the capacitors are open-circuits.

Example 3-2 - Use of Table 3-2 to Find a Doubly-Terminated, RLC L ow-pass Filter

Find a doubly-terminated, RL C filter for afifth-order Chebyshev filter approximation

having 1 dB ripple in the passband and a source resistance of 1 Q.

Solution
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Using Table 3-2 and using the component designations at the bottom of the table

gives Fig. 3-4.
L5n=2.1349 H L3,=3.0009 H L1,=2.1349 H
AN nYm YN YN o
10 c +
Cun= on—
Vin(sn) 1.0911 F—— 1.0911 F— 103 Vou(sn)
o

Figure 3-4 - Fifth-order, doubly-terminated, normalized, Chebyshev low-pass RLC filter

realization.

Low-Pass, RLC Filter Design

In some cases, such as high frequency, the designer may choose a passive redization
over an active redlization. In this case, the filter has no active elements such as op amps.
The design procedure is ssmply to find the normalized, low-pass, filter approximation
which satisfies the filter specifications and then denormalize the frequency and the

impedance. An examplewill illustrate the procedure.

Example 3-3 - Design of aPassive, Low-Pass Filter

A low-pass filter using the Butterworth approximation is to have the following

specifications:
Tpg = -3 dB, Tsg = -40 dB, fpg = 500 kHz, and fsg = 1 MHz.

Design thisfilter using a passive RLC realization and denormalize the impedances by 103,
Solution

First we see that Q, = fgg/fpg = 2 and then try various values of N in Eq. (2-11)
usnge=1toget Tgg =-30.1dB for N =5, Tgg =-36.1dB for N =6, and Tgg = -42.14
dB for N=7. From Table 3-1 for N = 7 for the Butterworth approximation we get L1 =
0.2225 H, Cpn = 0.6560 F, Lzn = 1.0550 H, Cyn = 1.3972 F, Lsy = 1.6588 H, Cgn =
1.7988 F, and L7, = 1.5576 H. Next, we use the denormalizations in the bottom row of
Table 2-1 to get L1 = (103)(0.2225H)/(1x106) = 0.071 mH, C» = (0.6560F)/(Tx109) =
209 pF, L3 = (103)(1.0550H)/(1x108) = 0.336 mH, C4 = (1.3972F)/(Tx10%) = 445 pF,
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L5 = (103)(1.6588H)/(Tx106) = 0.528 mH, Cg = (1.7988F)/(rx109) = 573 pF, and L7 =
(103)(1.5576H)/(Tx106) = 0.496 mH. The load resistor becomes 1 kQ. The find
realization is shownin Fig. 3-5.

L7=0.496 mH L5=0.528 mH L3=0.336 mH L;=0.071 mH

AN A N N 9
+
. Cy= _1_ Cy= L Co= L
Vin(9) 53pF - aspr [ 208pr [ 1keS Vol

O

Figure 3-5 - Seventh-order, Butterworth filter realization of Ex. 3-3.

We can see by the previous example, that the design of RLC filters is very simple.
However, the actua implementation of the filter requires careful consideration and effort.
In order to get the desired results, we must have the exact values of components that were
caculated in Ex. 3-3. The cost of such accurate components is generaly prohibitive.
Therefore, one adjusts each component before inserting it into the filter by the following
means. For each capacitor, asmall variable capacitor (i.e. 50 pF) can be placed in parald
with a larger fixed capacitor whose value is dightly less than the desired value. This
arrangement can be taken to a capacitor bridge or capacitance meter and the variable
capacitor trimmed until the desired value is achieved.

The inductors are typically made by winding low-resistance wire around a cylindrical
insulator. Inside the cylindrical insulator is a magnetic cylinder whose position is adjusted
by a screw which causes the inductance of the inductor to vary. The inductors are custom
made by winding the necessary number of turns to achieve an inductance less than desired
with the magnetic core removed. Then the magnetic coreisinserted and adjusted to achieve
the desired inductance.

The above procedures work well if there are no parasitic elements that will effect the
filter performance. The important parasitics are the capacitors from each node to ground

and the resistance of the inductors. For precise filter applications, these influences must be
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incorporated into the design phase. This results in a more complex filter design procedure
which is beyond the scope of our treatment.
High-Pass, RLC, Ladder Filter Design

The design of high-pass and bandpass, RLC ladder filters is made smple by the
frequency transformations of the previous section. The frequency transformation from the
normalized, low-pass to normalized high-pass was given by Eq. (2-23). If we apply this
transformation to an inductor of anormalized, low-pass redlization, we obtain

10 1
Sinkin = %ﬁm Lin= ShnChn

(3-3)

Similarly, if applying the transformation to a capacitor, Cj,, of a normalized, low-pass

realization, we obtain

SnCin = 01 Gy = Shnkhn - (3-4)
From Egs. (3-3) and (3-4), we see that the normalized, low-pass to normalized, high-pass
frequency transformation takes an inductor, L, and replacesit by a capacitor, Chn, whose
vaue is 1/Ljn. This transformation also takes a capacitor, Cin, and replaces it by an

inductor, Lnn, whose value is 1/C,. Fig. 3-6 illustrates these important rel ationships.

Lin Chn = _LTn
n Sh = &
I Sn Ln =
o o CIn
[ oo
Normalized Low- Normalized High-
Pass Network Pass Network

Figure 3-6 - Influence of the normalized, low-pass to normalized, high-pass frequency
transformation on the inductors and capacitors.

From the above results, we see that to achieve a normalized, high-pass RLC filter, we
replace each inductor, L, with a capacitor, Cpp, whose vaue is 1/Lj, and each capacitor,

Cin, with an inductor, Lpy, whose vaue is 1/Cj,. Once, the edements have been
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transformed, then both a frequency and impedance denormalization can be performed to

result in the final filter design.

Example 3-4 - Design of aHigh-Pass, RLC Filter

A filter is to be designed to provide a passband with a ripple of no more than 3 dB
above 100 kHz and a stopband attenuation of at least 45 dB below 50 kHz. The output of
thisfilter will be connected to a 50-ohm cable and will serve as the load resistor. Select &
suitable RLC filter approximation and give the values of al components.

Solution

We know from EqQ. (2-26) that Q, = 2. Using Eg. (2-11) givesan N = 8 (Tsg = -
48.2 dB) for a Butterworth approximation. EQ. (2-19) givesN =5 (Tsg = -45.3 dB) for g
Chebyshev approximation. Let us choose the Chebyshev approximation since there are
amost half the components. We must choose the singly-terminated filter because the
doubly-terminated filter has a maximum passband gain of -6 dB. Therefore, from Table 3-
1 we have L1y = 1.0674 H, Con = 1.4441 F, L3n = 1.9938 H, Cyp = 1.5908 F, and
Lsin = 1.6652 H.

Next, we apply the normalized, low-pass to normalized, high-pass frequency:
transformation to each element to get Cinn = UL 1in = 1/1.0674 = 0.9369 F, Lopy = YColy
=1/1.4441 = 0.6925 H, C3nn = VL3n = 1/1.9938 = 0.5016 F, Lgnn = 1/Cygn = 1/1.5908;
= 0.6286 H, and Csphy = 1/Lgny = 1/1.6652 = 0.6005 F. Finaly, we denormalize the
frequency by 2mx100 kHz = 2mx10° and the impedance by 50 in order to represent the
connection of the 50-ohm cable to the output of the filter. The actual valuesfor the filter are
Cin = 0.9369/(50x2mx105) = 59.6 nF, Lon = 0.6925x(50)/(2mx105) = 110 pH, Cap

0.5016/(50x2mx10%) = 31.9 nF, L4n = 0.6286x(50)/(2mx10%) = 100 pH, and Csp
0.6005/(50x21x10°) = 38.3 nF. Fig. 3-7 shows the final realization for this example.
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Csn =38.3nF Czn =31.9nF Cqp =59.6 nF

I I I .
n | | | 3

. Lon = Lan = 50 ohm
Vm(S) 110 LlH % 100 HH % Cd)|e_> Vout(s)

o}

Figure 3-7 - Denormalized, Chebyshev, high-pass filter realization for Ex. 3-4.

Bandpass, RLC, Ladder Filter Design

The design of RLC bandpass ladder filter follows exactly the same approach as used
in the previous section except the transformations are applied to the passive components of
the normalized low-passfilter rather than theroots. The first step in designing a bandpass
filter is to apply the bandpass normdization of Eq. (2-32) to the components of the low-
pass filter. Next, we apply the normalized, low-pass to normalized, bandpass
transformation of Eq. (2-33). Both of these steps are incorporated in Eq. (2-31). Lastly,
we denormalize the normalized, bandpass filter by wy and by the desired impedance
denormalization.

Let us first consider the inductor, L, of a normalized, low-pass filter. Let us
simultaneously apply the bandpass normalization and the frequency transformation by

using Eq. (2-31). The normalized, inductance L |, can be expressed as

Wy 1
SinLin= %Sbn + %)% Lin

or LinO 1 [y Lin» 1
= Sn(TBW 0% 557,0BW 0= Snkbn +5,Cporr - (3-5)

Thus we see that the bandpass normalization and frequency transformation takes an

inductance, L, and replaces it by an inductor, Ly, in series with a capacitor, Cpp, whose

values are given as

gy [ Lin
Lon=BwOLin=0q, (3-6)

and
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_BWpl O
Con = Oy Obn ~Lin (3-7)

Now we apply Eq. (2-31) to a normalized capacitance, Cj, to get

1 1
SnCin ~ o 1
W%Sbn*‘%) Cin
1

1

Duy O 1 O0Cin0 _1 - (38)
s Oy Cie o+ In sonCbn + 5o
nBWOCIn * 5, 0BW U Sonk-bn

From Eq. (3-8), we see that the bandpass normalization and frequency transformation takes
acapacitor, Cjp, in a low-pass circuit and transfors to a capacitor, Cpp, in parald with an

inductor, Lpn, whose values are given as

Hoy [ Cin
Con=BWOCIn=1Qp (3-9)
and
W1l Qp

Lpn = Doy Cin =T - (3-10

Egs. (3-6), (3-7), (3-9), and (3-10) are very important in the design of RLC bandpass
filtersand areillustrated in Fig. 3-8.

= W Chyn= BW) 1
(L:m ( X bon (BW)LIn on |(( (Or) Lin
In Sn RS Sh +—1) ||Cbn:&CIn
o_“_o BWA™" " sp N l jW
NLormaIFi)zed — 'L' b‘_n:(B\N 1
NGOWOTk. il

Normalized Bandpass Network
Figure 3-8 - Illustration of the influence of the normalized, low-pass to the normalized,

bandpass transformation of Eq. (2-31) on an inductor and capacitor of alow-passfilter.
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Once the normalized, low-pass redization has been transformed to a normalized,
bandpass redlization, then al that is left is to denormdize the passive elements. An

example will serveto illustrate the design approach.

Example 3-5 - Design of an RLC Bandpass Filter

A 1-dB ripple, Chebyshev approximation is to be used to design a bandpass filter
with apassband of 10 kHz and a stopband of 50 kHz geometrically centered a 100 kHz.
The attenuation in the stopband should be at least 45 dB. Assume that the load resistor i
300 ohms. Giveafina filter schematic with the actual component values.
Solution

From the specification and Eq. (2-41), we know that Q, = 5. Substituting N = 3 intc
Eq. (2-19) gives an attenuation of 47.85 dB. The values of the third-order, normalized
Chebyshev approximation are L1jn = 1.0118 H, Cy, = 1.3332 F, and L3 = 1.5088 H.

The vdue of Qp, defined in Eq. (2-35), is Qp = 10/100 = 0.1. Applying the
normalized, low-pass to normalized, bandpass transformation gives the following results.
For Lyjn we get L1pny = 1.0118/0.1 = 11.018 H and Cypn = 0.1/0.11018 = 0.090761 F.
For Coin we get Copn = 1.3332/0.1 = 13.332 F and Lopy = 0.1/0.13332 = 0.075008 H.
Finally, for L3n we get L3pn = 1.5088/0.1 = 15.088 H and Czpn = 0.1/1.5088 = 0.066278
F.

Finally, we frequency and impedance denomalize each element by 21x10° and 300,

respectively. The resulting bandpass filter is shown in Fig. 3-9.

Csp=3.516nF C1p=4.815nF
I nnm |
[ Lip=
. _ 5 261mH \V/ S
70.73nF r 358uH

Figure 3-9 - Chebyshev, bandpass realization for Ex. 3-5.

Design of Other Types of RLC Filters
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There are several types of RLC filters that we will not cover in this section but we
should briefly mention them. One type are filters that have jw axis zeros such as the one
shown in Fig. 2-18. Normalized, low-pass RLC filters have been developed and tabulated
for this type of filter. They are smilar in form to the ladder filters of Figs. 3-1 and 3-2
except that the series inductor is replaced by a parale inductor and capacitor or the shunt
capacitor is replaced by a series capacitor and inductor.

There is also bandstop filters which we have not considered. These filters can be
developed by first applying the normalized, low-pass to normalized, high-pass
transformation to the low-pass normalized realization. Next, the low-pass to bandpass
transformation of Eq. (2-31) is applied to the normaized high-pass filter. The result is a
bandstop filter having a stopband of BW geometrically centered a wy. The passband is
geometrically centered around wy and has the width of Q,BW where BW is the bandwidth
of abandpass filter. If Ex. 3-5 were repeated for a bandstop filter with a stopband of 10
kHz and a passband of 50 kHz geometrically centered at 100 kHz, the result would be
similar to Fig. 3-9 except L1y and Cyp (L3p and Cgp) would in paradle and Cop and Lop
would bein series. The values would be different because of the normalized, low-pass to
normalized, high-pass transformation (see PA3-1).

State Variable Equations for RLC Ladder Filters

The next step in the design of ladder filtersisto show how to use active elements and
resistors and capacitors to realize alow-pass ladder filter. Let us demondtrate the approach
by using an example. Consider the doubly-terminated, fifth-order, RLC, low-pass ladder
filter of Fig. 3-10. Note that we have reordered the numbering of the components to start
with the source and proceed to the load. We are also dropping the "I" from the component

subscripts because we will only be dealing with low-pass structures in this discussion.
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| 1 [ 3 | 5
— — —
nm nm nmm o)
+ I\I%/n\' Lan . L3n , Len +
Vin(sn) Con==V> Cisn=—=Va RenS Vou(sn)

o}

Figure 3-10 - A fifth-order, low-pass, normalized RLC |ladder filter.

The first step in redlizing the RLC filter of Fig. 3-10 by active RC ements is to
assign acurrent I to every j-th series element (or combination of elements in series) of the
ladder filter and a voltage V to every k-th shunt element (or combination of elements in
shunt) ofthe ladder filter. These currents and voltages for the example of Fig. 3-10 are
shown on the figure. These variables are called state variables.

The next step isto aternatively use loop (KVL) and node (KCL) equations expressed
in terms of the state variables only. For example, we begin at the source of Fig. 3-10 and
write the loop equation

Vin(s) - 11(S)Ron - sL.anl1(s) - V2(s) =0 . (3-11)
Next, we write the nodal equation
11(s) - SConV2(s) - 13(s) =0 . (3-12)

We continue in this manner to get the following state equations.

V2(s) - sLanl3(s) - V4(s) =0 (3-13)

13(S) - SCanV4(s) - Is(s) =0 (3-14)
and

V4(s) - sLenls(s) - Renlsn(s) =0 (3-19)

Egs. (3-11) through (3-15) condtitute the state equations which completely describe the
ladder filter of Fig. 3-10. A supplementary equation of interest is
Vout(s) = Is(s)Ren - (3-16)
Once, the state equations for a ladder filter are written, then we define a voltage
analog, \q" of current|j as

Vi =R (3-17)
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where R' is an arbitrary resistance (normally 1 ohm). The voltage analog concept allows
usto convert from impedance and admittance functions to voltage transfer functions which
is a useful step in the active-RC implementation of the ladder filter. Now if for every
current in the state equations of Eq. (3-11) through Eq. (3-15) we replace currents |1, 13,

and |5 by their voltage analogs, we get the following modified set of state equations.

(9 _
Vin(s) - R fRon+sL.1n) -V2(s) =0 (3-18)
‘(g0 (s)O
% - SConV2(9) - @@E =0 (3-19)
(s)O
Va(s) - m@'@% -V4(s) =0 (3-20)
(s)O ‘(s)O
@@E - SCanV 4(s) - % =0 (3-21)
and
OvVe(s)d
Va(s) - %#gasn +Ren) =0 (3-22)

The next step isto use the 5 equations of Egs. (3-18) through (3-22) to solve for each

of the state variables. Theresultis

Vi =g Bin() - Va(s) - om0 (3-23)
Va9 =sRee [ - W ] (3-22)
WO = g [VA9 - Vi) (3:25)
Va® = sRE= [V(9 - V(O | (3-26

and
' R' Ren
VE(s) = oo, Va9 - RO | - (3-27)
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However, we would prefer to have the variable V qut(S) used in place of V5'(s) . From Eq.
(3-15) we get
Ren] -
Voul® = FREEES - (3-28)

Combining Egs. (3-26) and (3-27) with (3-28) gives

1 ' R’
V4 = swce (MO - tren Voul)] (3-29)

Rén
Vout(s) = SLen [Va(s) - Vout(9)] - (3-30)



ECE 6414 - Continuous Time Filters (P. Allen) - Chapter 3 Page 3-17

Design of Low-Pass, Ladder Filters using Active-RC Elements

Finally, we are ready to synthesize an active-RC redization of Fig. 3-10. This is
done by redizing that Egs. (3-23), (3-24), (3-25), (3-29) and Eqg. (3-30) are smple
integrators. In each case, the state variable is expressed as the integration of itself or other
state variables. The next step would be to go back to Sec. 4.1 and redlize each of the five
equationswith 5 positive integrators capable of summing more that one input. However,
aswe will recall, the positive integrator did not provide the flexibility and usefulness (i.e.
summing) found in the negative or inverting integrator. We could redize the date
equations using positive integrators of the form shown in Fig. 3-11.

Ck R

R
vV -V
e
> (>

Figure 3-11 - Positive integrator realization of the k-th integrator.

We can show that the output of Fig. 3-11 isgiven as

VK = e Vi - Vi(d)] (3-31)
where Vj(s) isthe input from the previous stage and -V/(s) is the negative output of the next
stage. Note that the inverter a the output of the integrator allows us to get ether the
positive or negative output variable.

Fig. 3-11 works wdl for Egs. (3-24), (3-25), and (3-29). However, a different

approach is necessary for Egs. (3-23) and (3-30) because the variable is afunction of itself.
Solving for Vl'(s) and Vout(s) in Egs. (3-23) and (3-31) gives

.Ut —n
vie) = GlTO% Vin(®) + [-Va(9)), (3-32)

+ I—1n
and
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5 g
Vou(® = R Val® . (3-33)
9+ 1o

respectively. We see that Egs. (3-32) and (3-33) are nothing more than the first-order,
low-pass filter of Fig. 4.2-6¢ preceeded by a gain of -1 stage which also serves as a
summer for Eg. (3-32). The implementation of Eq. (3-32) isshown in Fig. 3-12.

R'R/Ron

. R L1 /RR'
-V 2(Sn) AAA— . —|

R
Vin(Sn) o-AAA— p P o V1(Sn)

Figure 3-12 - Redlization of Eqg. (3-32).
A similar realization can be found for Eq. (3-33). This redization will only have one input
to the inverter.

Unfortunately, the straight-forward application of Figs. 3-11 and 3-12 to redize the
state equations uses more op amps than is necessary. A more efficient redlization is
achieved by modification of the state equations. One modification of Egs. (3-23), (3-24),
(3-25), (3-29) and Eq. (3-30) is shown below.

. R' o
Vi =g Bin(9) - Va9 - St (9] (3-34)
1 . .
Va9 = 5wy (MO - K ] (3-35)
' R'
KO = gg [V + Va(S) (3-36)
-1 - R'
Va©® = e [ + e Voul®) (3-37)
and
Ren
Vou(® = gar [Va® - Vould)] (339

Another modification of the state equationsis given as
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: -R' nr
O =2 in(®) - Vals) - T 9

1 : .
Va(9) =sRC,, [ +\a(9) |

. -R'
8(9) = Fg, [Va(s) +Va(s)]

1 ' R'
Va© = s [ - e Vould)]
and

Vou(® = For [Va® - Vould)] -
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(3-39)

(3-40)

(3-41)

(3-42)

(3-43)

Fig. 3-13a shows the realization of the state equations of Eqgs. (3-34) through (3-38).

Fig. 3-13b showsthe realization of the state equations of Egs. (3-39) through (3-43). The

second modification has one less op amp but only -Vout(S) is available. Fig. 3-13a saves

two op amps over the case where every integrator consists of two op amps and Fig. 3-13b

saves three op amps over the case where every integrator consists of two op amps. It is

interesting to note that Fig. 3-13 turns out to be the interconnection of four, second-order,

Tow-Thomes filters of Fig. 1-16. The inside filters have a Q of infinity because neither

integrator is damped. The intercoupled second-order filters are distinctly different from the

cascade redlization in that there is more than one path from the input to the output of the

filter. This type of redization was first published by Girling and Good' and were called

"leapfrog” filters.

T F.E.J. Girling and E.F. Good, "Active Filters 12: The Leap-Frog or Active-Ladder Synthesis," Wireless

World, vol. 76, July 1970, pp. 341-345.



Page 3-20

ECE 6414 - Continuous Time Filters (P. Allen) - Chapter 3

"(s-€) ybnouyy (6e-€) 'sb3 jo uorrezieay (q) (8e-g) ubnoay: (g-¢) 'sh3 Jo uoiezipesy (e) - £T-¢ aunbi4

no N

no A




ECE 6414 - Continuous Time Filters (P. Allen) - Chapter 3 Page 3-21

Example 3-6 - Design of a L ow-Pass, Butterworth Ladder Filter using the Active-RC

Elements

Design a third-order, Butterworth, low-pass filter having a passband frequency of 1
kHz using the RC-active ladder realization of Fig. 3-13. Assume that the source resistance
of the input voltage is zero. Give arealization and the value of al components.
Solution

The normalized, low-pass ladder filter is obtain from Table 3-1 and is shown in Fig.
3-14a. Note that we have reversed the order of the subscripts to correspond with Fig. 3-
10. Let uschoose Fig. 3-13b asthe redization form resulting in Fig. 3-14b where Rop =
Oand R' =R =1Q. Frequency denormalizing this filter by 2rmx103 and impedance

denormalizing by 104 (arbitrarily chosen) givesthe realization of Fig. 3-14c.

YY) YN o)
+[T1n=1.5000 H[L3:=0.5000 H] %
. Con= _L_ Ran=< v
Vin(sn) 1383 16 S Voul®)
) o
(@)
10 g

Cyri= 1.3333F

>

Vin(sy) 1€ Vout(Sn)
o— AN\~ —o

NN
10kQ 10 KQ
AN
23.87 nF 10kO 21.22 nF 7.96 nF
Vout(S)
—o

Figure 3-14 - Results of Ex. 3-6. (a.) Normalized, low-pass RLC filter. (b.) Normalized,

low-pass, active-RC filter. (c.) Denormalized, low-pass, active-RC filter.
Example 3-7 - A Fifth-Order, 1 dB Chebyshev, L ow-Pass, Active-RC Filter Design
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A fifth-order, low-pass, Chebyshev filter with a 1 dB ripple in the passband is to be
designed for a cutoff frequency of 1 kHz. Design an active-RC ladder redlization of this
filter. Give a schematic and the value of al components. The input voltage source is
assumed to have a source resistance of 1 kQ.

Solution

From Table 3-2, we get the normalized, low-pass, RLC ladder filter elements of Ron
=1Q,L1n=21349H, Cp = 1.09011 F, L3 = 3.0009 H, Cyn = 1.09011, Lg, = 2.1349
H, and Rgn = 1 Q. Note that we have reversed the order of the subscripts in Table 3-2 to
correspond to that of Fig. 3-10 (although in this particular case it makes no difference). Let
us again sdlect Fig. 3-13b as the redization because it has one less op amp. The
component values above are directly substituted into Fig. 3-13b to achieve a normalized,
low-pass, active-RC, ladder realization. To get the denormalized filter, we select R = 1000
Q and frequency denormalize by 2mx103. The values of the capacitor of each integrator,
from input to output are C1 = L1/21mx106 = 2.1349/2mx106 = 0.340 pF, Cp = Cpn/2mx106
= 1.09011/2mx106 = 0.174pF, C3 = L3y/2mx106 = 3.0009/21mx106 = 0.478 pF, C4 =
Can/2T106 = 1.09011/21x106 = 0.174pF, and Cs = Lgy/2mx106 = 2.1349/21mx106 =
0.340 pF.

Other Types of Ladder Filters using Active-RC Elements

High-pass, bandpass, and bandstop ladder filters can aso be designed using active-
RC elements. The design methods follow a smular procedure as for the low-pass filter.
Unfortunately, in the high-pass ladder filters, the State variables are redized by
differentiators rather than integrators if the state variables are the currents in the series
elements and the voltages across the shunt elements. Integrator redlization of the dtate
variablesis possible if the state variables are the voltages across the series elements and the

currents through the shunt elements. However, the equations are not as straight-forward to
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write as for the low-pass case. Examples of high-pass ladder filter design can be found in
other referencest.

We will illustrate the design of bandpass ladder filters using active-RC elements
because it is a straight-forward extension of the low-pass ladder filter design. Once a
normalized, low-pass ladder filter has been found which meets the bandpass filter
specifications, we apply the element transformationsillustrated in Fig. 3-8. Thus, is the j-
th series element consists of a series resistor, Rjn, and a series inductor, Ljin, become the
series RLC circuit shown in Fig. 3-15a. If the k-th shunt element consists of a shunt
resistor, Rgkn, and a shunt capacitor, Ck|n, the bandpass equivalent is the parale RLC
circuit shown in Fig. 3-15b. Normally, Rjn (Rkn) is zero (infinity) except for the series or
shunt elements which include the terminating resistors of the ladder filter. The values of

the series normalized bandpass components are

_Owx O _Bw 1
Ljbn = (BwiLjin,  Cjon = Oy OLin (3-44)

The values of the shunt normalized components are

oy O W~ 1
Ckbn = BWLCiin, Ljbn= %Bm : (3-45)
lk1(Son) ket (Son)

+o

liGon) Ry, Libn  Gibn

ST AA ALY ||—o+ 7 Zyn(Spn)

Vj-l(Snb) Series Element Vj+1(Snb) Vi(Spn) Rk CrkorT— Vi(Stn)

Yijn(Sbn) -
o

Shunt [Element -
O

(a) (b.)
Figure 3-15 - (a.) Seriesladder element and (b.) shunt ladder element after the normalized,

low-pass to normalized, bandpass transformation of Fig. 3-8.

T P.E. Allen and E.S& nchez-Sinencio, Switched Capacitor Circuits, Chapt. 4, Van Nostrand Reinhold
Company, Inc., New York, 1984.
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Each element of the bandpass filter can be redlized by considering the admittance,

Yjn, of Fig. 3-15a and the impedance, Zkp, of Fig. 3-15b. These driving-point functions

can be written as

0l
lj(Son) lj(Son) LY bn%o

Yin(on) = Vi) = Viaon Vi - 2 1 (846
[ijn%b” LjbnCjon
and
o
Vk(Son) Vk(Son) 3 [Ckbn[FO"
Zien(Son) = (son) = Tk-1(Son)-Tk+1(Son) = 2 1 . (3-47)

L1 | 1
nt ERkanbn%bn * LionCibn
These driving-point functions can be turned into voltage transfer functions using the

concept of voltage analogs for the currents | and Ix. Multiplying Eq. (3-46) by R’ gives

: R’
_Rlj(son) Vj (Son) Ul—jbn%On
Tyj(son) = Vi(son) ~ Vj—l(son)'Vj+l(90n) 2 1 (3-48)
El—]bn%bn LjbnCibn
or
OR |
- H Dl—jbn%o
Vj (Son) = 2 1 Vj-1(son)-Vj+1(Son)] - (3-49)
[l—]bn%bn LjbnCibn
If Rjn =0, then Eq. (3-49) reducesto
R
' E ﬂl—]bn%on E
Vj (son) = gvj-l(son)'vjﬂ(son)] . (3-50)
* ijnCan
Multiplying EqQ. (3-47) by /R’ gives
1
Vk(Son) Vi(Son) DR'Ckbn%O
Tzk(Son) = R (sor) = 1 &

Vv -V [
k1(90n) k+1(9°”) Son + [Rkanbn%bn * LjonCion

51)
or
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L1 |
H DR'Ckbn%b” - -
Vik(son) = Hg 01 1 Via(sn) Vg (Son) 1 - (3-52)
[Rkanbn%bn * LjonCion
If Rkn = o0, then Eq. (3-52) reduces to
%ERCkbn%o E
Vi(son) = %bz 1 HVk 1(Son) Vk+1(Son)] (3-53)
ijnC]bn

The second-order, bandpass, Tow-Thomas filter of Fig. 1-23 is a perfect redization
of EQ. (3-49) or EqQ. (3-52). The modification necessary is to add another input which is
simple to do because the op amps have their positive input terminals grounded. Fig. 3-16
shows the genera second-order redlization of either Fig. 3-15a for the j-th series elements.
The redlization of the k-th shunt element is exactly the same except for the subscript j. For
the cases of Eq. (3-50) and Eq. (3-53), Rj4 = ». The availability of both positive and

negative outputs simplifies the bandpass realization over the previous low-pass redli zations.

Ris Cp Ri2

Ris
R; VVYV
j1

Vi-1(5m) oAMA4—| F—4——=———-0-Vj(sm)
Ri1 | G R o .
Vi+1(Snb) @ —o +Vj(Snp)
= j-theement=

Figure 3-16 - Active-RC redlization of either Fig. 3-15a or Fig. 3-15b (replace subscript j
by k and interchange primes).

Table 3-3 shows the design relationships for the implementation of Fig. 3-15 by the
Tow-Thomas circuit of Fig. 3-16. An example will illustrate the approach to designing

active-RC bandpass, |adder filters.



ECE 6414 - Continuous Time Filters (P. Allen) - Chapter 3 Page 3-26

Parameters of Fig. 3-16 Design of Fig. 3-15a Design of Fig. 3-15b
Rj]_ or Rk1 R [Cion

' o /Ckbn
Rii=R Cibn Rk1=RR Lkbn

Rizor R X
j4 k4 R _ [Lip Ckb
o Ljbn _ A /_n
Rja= Rin' \ Cjon Rka = RRkn"\| Tpp

Choose Rj2 = Rj3 = R or Rk2 = Rk3

=R, aconvenient value: ’/Li bnCibn A/LkonCrkbn
Ci1=C2="R Ck1=Ck2e="R
Cj1=Cjzor Cy1=Cy2
Choose Cj1 = Cj2 = C or Cy1 = Cy2
= C, aconvenient value: ‘/Li b”Ci bn A/LkonCibn
R2=R3="¢ Rke=Rk3="¢c

Rj2 = Rjz or Rk2 = Rk3

R' isthe scaling resistance of the voltage analog concept and is normally 1 Q

Table 3-3 - Design relationships for the implementation of Fig. 3-15a or Fig. 3-15b by the
active-RC filter of Fig. 3-16.

Example 3-8 - Design of aButterworth, Bandpass, L adder Active-RC Filter

Design a sixth-order, Butterworth, bandpass, doubly-terminated, ladder filter using
active-RC elements. Assume the passband is an octave, centered geometrically about 1
kHz. Impedance denormalize by a factor of 104 and give a schematic, or equivalent, with
all component values.

Solution

The first thing we must do is find the bandwidth of the bandpass filter. We know
from the specification that fpgy = 2fpg1. We aso know that 1 kHz = 4/fgpofgp1 .
Combining these 2 relationships gives fgp; = 1A/2 kHz and fpgp = /2 kHz. Thus the
bandwidth is 1/4/2 kHz.
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From Table 3-2, for athird-order, doubly-terminated Butterworth approximation we
findthat L1n=1H,Con =2 F, and L3y = 1 H. Since the filter is symmetrical, we don't
have to reorder the subscripts but can use them as they are. The resulting, normalized,
low-pass filter is shown in Fig. 3-17a.

If we apply the normalized, low-pass to normalized, bandpass transformation of Egs.
(3-44) and (3-45) to Fig. 3-17awe get the following normalized bandpass elements of Fig.
3-17b. Lipn = (@/BW)Lun = (R(2)(1) = V2 H, Cipon = (BW/wx/)(ULun) = W2 F,
Cabn = (/BW)Can = (V2)(2) = 242 F, Lapn = (BW,ax)(U/Coin) = U2V2 H, Lagpn =
(/BW)L3in=(2)(1) =42 H, and Capn = (BW/x)(U/L3n) = 1A/2 F. Therefore the
vauesof YinareRin=1Q, L1pn= V2 H, and Cipn = 1A/2 F. The values for Zop, are
Ron = 00, Copn = 242 F, and Lopn = U242 H. Thevauesfor Yz, aeR3n= 1 Q, Lapn =
\2 H, and Czpn = 12 F.

Finally, we use the design relationships of Table 3-3 to design three, second-order
active filters of the form given in Fig. 3-16. Wewill sdlect R=R' =1 Q. For the first
element, Y 15, which isserieswe choose C11 = Cip=1Ftoget R12=R13=1 Q, and R11
= R4 =42 Q. For the second element, Zop, Which is shunt we choose Co1 = Cy, = 1F to
get Ryo = Rp3=1Q, Ro1 = 24/2 Q, and Rog = . For the third element, Y 3p, the values
are identical to those for Yn1. If we frequency denormalize by 2mx103 and impedance

denormalize by 104 we get the realization of Fig. 3-17c.

The above example illustrates the general method by which bandpass ladder filters are
realized using active-RC elements. This method is applicable to any bandpass filter whose
passhband and stopband are geometrically centered about the frequency, wy. Other examples

of active-RC bandpass ladder filter design can be found in the problems.
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NN o
Lan=1H +
Ran™S Vour(sin)

Yo

(@)
Ron=1Q Yin Cipl/12F  Lagn=Y2ZH Y,

3on=1/V2F +

Cobn J__Z_é 2on= _ n Vout (Son)

:2W2F_|__I_rJJMH )

(b))

Rys = 10kQ Cz = 15.91nF

Rss = 10kQ Csz = 15.91nF

Ri1= R4 =

R34 =
14.14k Q) 14.14kQ 14.14kQ

Cu=

Ave Ry =
15.91nF e

4.14kQ| 15.91nF

Ru1=

v 1o AW '
=B

10KD | Vouls)

Figure 3-17 - Bandpass, active-RC ladder filter of Ex. 3-8. (a.) Normalized, low-pass,
ladder filter. (b.) Normalized, bandpass ladder filter. (c.) Denormalized, active-RC
bandpass |adder filter.
Summary

The block diagram in Fig. 2-1 illustrated the two general design approaches normally
used to design active filters. The first approach was the cascade of first- or second-order
stages and was covered in the previous section. The second approach was the design of
ladder filters which has been the subject of this section. Basically, the cascade approach is
easier to tune but is more sensitive to component tolerance than the ladder filters.

The starting point of the ladder active filter design is with the normalized, low-pass
RLC ladder filter. These filter structures are the result of network synthesis methods and
are widely tabulated for the designer. Asin Sec. 2, we restricted ourselves to filters whose

zeros were a infinity or the origin of the complex frequency plane. The design of high-
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pass and bandpass filters was achieved by direct application of the normalized frequency
transformations to the elements of the normalized, low-pass RLC filter.

To achieve an active-RC redlization of the RLC ladder filters, we introduced the
concept of state variable. By correctly selecting the state variables and using the concept of
voltage analog for current, we were able to synthesize the state variables using summing
integrators. The resulting circuits were very similar to interconnected, second-order, low-
pass Tow-Thomasfilters. We saw that high-pass, active-RC ladder filters required a little
cleverness to be able to express dl of the state variables so that they could be redized by
integrators. Each eement of the normalized, low-pass RLC resulted in a second-order
bandpass circuit when the normalized low-pass to normaized bandpass frequency
transformation was applied. These second-order, bandpass circuits were easily redizable
as second-order, bandpass, Tow-Thomas filters.

One of the themes that hopefully has become evident to the reader is how filter design
dl builds from the normalized, low-pass filters. Using smple normalizations and
frequency transformations permits the design of complex filters. One important constraint
to remember is that the bandpass and bandstop filters designed by these methods must have
passbands and stopbands geometrically centered about a common frequency. Other design
methods, not covered here, will allow the design of filters not subject to this constraint.

Some the important points of this section are summarized below for the convenience
of the reader.

» Senditivity is a measure of some aspect of the filter performance on the components
of thefilter.

* The normalized low-pass to normalized high-pass frequency transformation turns
inductors (capacitors) into capacitors (inductors) whose value is the reciproca of the
low-pass component value.

* The normalized low-pass to normaized bandpass frequency transformation turns an

inductor into an inductor in series with a capacitor. The vaue of the inductor is
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(w/BW)L |,y and the value of the capacitor is (BW/wyL|n). whose vaue is (inductors)
whose valueis the reciprocal of the low-pass component value.

* The normalized low-pass to normalized bandpass frequency transformation turns a
capacitor into a capacitor in paralel with an inductor. The value of the capacitor is
(w/BW)Cjy and the value of the inductor is (BW/wCyp).

* In order to redize the state variables by integrators, the current through an inductor
and the voltage across a capacitor should be chosen as state variables.

* The Tow-Thomas second-order realization becomes a very useful active-RC filter for

realizing RLC ladder filters.



