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Where to divide Analog and Digital?
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Analog-Digital Comparison
Low SNR: Analog / High SNR: Digital

[Sarpeskar 1997]



Analog-Digital Comparison
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SNR < 10bits

• What if exponentially spaced FFT?

Practical Interpretation of CostLow SNR: Analog / High SNR: Digital

[Sarpeskar 1997]
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Circuit Issues for Filters

High Signal-to-Noise Ratio (resolution):
Ratio of the largest signal and the smallest signal

Largest signal: Harmonic Distortion (continuous-time filters), Range limitations
Smallest Signal: Noise

Insensitivity to environmental fluctuations: 
Power-supply:Power Supply Rejection Ratio (PSRR)
Temperature, etc.

Programmability / Tunability: flexibility and complexity
Available for digital (clocks/ crystals) as well as 

some analog (e.g. Floating-Gate) filters

Not a problem for digital filters, 
but can be the cause of several
problems to other analog circuits

Typically, sampling in amplitude / time results in, 
• the more complexity is needed ( S/H blocks, anti-aliasing filters), 
• more power / lower-frequency / area
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Design of Analog Filters

H(s) or H(z)

H1(s) H2(s) H3(s)

GND

V1[n]
Vout[n]

GND

GND

As basic building blocks we have 
• integrators, delay elements
• first-order (low-pass / bandpass)
• second order functions 

(low-pass / bandpass / highpass)

The “circuit” design question is 
how to make these functions
what inputs / outputs / internal variables 

should be voltages / currents, etc. 



Design of Analog Filters
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Choosing H(s) or H(z) for a filter

Ideal lowpass filter
• we can get other filters from lowpass

|H(s)|

frequency

Gain in db = 20 log10( amplitude )
= 10 log10(signal power)

fpb

Passband



H(s) or H(z) for a lowpass filter
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H(s) or H(z) for a Highpass filter
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H(s) or H(z) for a Highpass filter
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Four Canonical Cont-Time 
Filters

Butterworth: Maximally flat in passband…moderate rolloff

Chebyshev :  Faster rolloff by allowing ripples in passband or stopband

Elliptic:         Fastest rollff by appowing ripples in both passband and stopband

Bessel:          Near linear phase, slow rolloff

Classic Analog Filters (IIR digital filters):



Four Canonical Cont-Time 
Filters

Butterworth: Maximally flat in passband…moderate rolloff

Chebyshev :  Faster rolloff by allowing ripples in passband or stopband

Elliptic:         Fastest rollff by appowing ripples in both passband and stopband

Bessel:          Near linear phase, slow rolloff

Other FIR (digital) filters….
Other filter design (H(s) or H(z)) techniques: Optimization approaches 

Should we choose H(s) or H(z) for our representation?
Partially due to particular circuit tradeoffs 

(tunability? tools? continuous tunability? Accuracy? power consumption?)

Classic Analog Filters (IIR digital filters):
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T(s) = 
1

(1 + j sτ)N
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Butterworth Filter Design

Tpb = 
√

1

1 + ε2

Definition of ε:Transfer Function: (low-pass)

T(s) = 1
1 + (-1)N+1 ε sNτN

Tpb = 1/ √2  for ε = 1

(fsb τ = 2π )

√
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|T(jω)| = 
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Butterworth Filter Design

Tpb = 
√

1

1 + ε2

Definition of ε:Transfer Function: (low-pass)

T(s) = 1
1 + j(-1)N+1 ε2 sNτN

Tpb = 1/ √2  for ε = 1

Need to solve to meet the specification of Tsb at fsb : Filter Order (N)

(fsb τ = 2π )

Tsb
2 (  1   + ε2(fsb / fpb )2N ) = 1

√
1

1 + ε2 ω2Nτ2N
|T(jω)| = 

To meet specifications, one chooses
the next largest integer

Pole locations: (ε = 1) 

1/τk = (1/τ)(sin( (2k-1)π/(2N) )  + j cos( (2k-1)π/(2N) ) ), k=1…N

T(jω) = 
1

(1 + s τ1 ) (1 + s τ2 ) … (1 + s τN )



Butterworth Filter Design
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Chebyshev Filter Design

Tpb = 
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Definition of ε:

Tpb = 1/ √2  for ε = 1
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Transfer Function(low-pass)
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= ωτ <1
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Chebyshev Filter Design

Tpb = 
√

1

1 + ε2

Definition of ε:

Tpb = 1/ √2  for ε = 1

(fsb τ = 2π )

Transfer Function(low-pass)

Need to solve to meet the specification of Tsb at fsb : Filter Order (N)

Pole locations: 

Where k goes from 1, 2, ….N

√
1

1 + ε2 cos2( N cos-1( ωτ ) )
|T(jω)| = ωτ >1

√ 1 + ε2 cosh2( N cosh-1( ωτ ) )
= ωτ <1

( 1 + ε2 cosh2( N cosh-1(fsb / fpb ) )  ) Tsb
2 = 1

1/τk = (1/τ)(sin( (2k-1)π/(2N) )  sinh( (1/N) sinh-1(1/ ε) )

+ j cos( (2k-1)π/(2N) ) cosh( (1/N) sinh-1(1/ ε) ) )



Chebyshev Filter Design
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Specs: ε = 1, fpb =1e4, 
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Fewer stages, higher Qs….



Transformations between s and z

z-1 = e-sT
Simple Transformation

s ~ 

z-1 ~  1 - sT

(1 - z-1 ) 
T

1

T = sampling period



Transformations between s and z

Bilinear transform
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General Filter Topology
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General Filter Topology

N*N parameters

N poles, N zeros for N-th order filter

Problem is underspecified…therefore can optimize
for SNR, complexity, etc…



Partitioning H(s) for Circuit 
Implementation

“Partition” the transfer function into simple parts  

• Factorization into first order and second order terms
• Nearest neighbor feedback (~LC ladder filter network)
• Addition of factors 

(maybe out of an approximation of an FIR filter)
• Additional feedback / feedforward terms

Similar for either H(s) or H(z)



Typical Filter Topologies
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Cascade of First and Second-Order Sections



Typical Filter Topologies
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Conclusions

Basic directions for integrated circuit filters

• Continuous or Discrete: Time and/or Amplitude

• High level specifications of filters

• Obtaining a  filter function (H(s) or H(z))

• Implementing the filter function into basic blocks
(first and second-order filter sections, integrators, delays, etc.)


