EE101: Diode circuits

> M. B. Patil
> mbpatil@ee.iitb.ac.in
> www.ee.iitb.ac.in/ ${ }^{\sim}$ sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

Diodes

Diodes

* A diode may be thought of as an electrical counterpart of a directional valve ("check valve").

Diodes

* A diode may be thought of as an electrical counterpart of a directional valve ("check valve").
* A check valve presents a small resistance if the pressure $p>0$, but blocks the flow (i.e., presents a large resistance) if $p<0$.

Diodes

* A diode may be thought of as an electrical counterpart of a directional valve ("check valve").
* A check valve presents a small resistance if the pressure $p>0$, but blocks the flow (i.e., presents a large resistance) if $p<0$.
* Similarly, a diode presents a small resistance in the forward direction and a large resistance in the reverse direction.

Diodes

* A diode may be thought of as an electrical counterpart of a directional valve ("check valve").
* A check valve presents a small resistance if the pressure $p>0$, but blocks the flow (i.e., presents a large resistance) if $p<0$.
* Similarly, a diode presents a small resistance in the forward direction and a large resistance in the reverse direction.
* In the forward direction, the diode resistance $R_{D}=V / i$ would be a function of V. However, it is often a good approximation to treat it as a constant (small) resistance.

Diodes

* A diode may be thought of as an electrical counterpart of a directional valve ("check valve").
* A check valve presents a small resistance if the pressure $p>0$, but blocks the flow (i.e., presents a large resistance) if $p<0$.
* Similarly, a diode presents a small resistance in the forward direction and a large resistance in the reverse direction.
* In the forward direction, the diode resistance $R_{D}=V / i$ would be a function of V. However, it is often a good approximation to treat it as a constant (small) resistance.
* In the reverse direction, the diode resistance is much larger and may often be treated as infinite (i.e., the diode may be replaced by an open circuit).

$$
\begin{array}{l:ll}
\stackrel{i}{\rightarrow} & \xrightarrow{i} & \begin{array}{l}
R=R_{\text {on }} \text { if } V>0 \\
+V-W-
\end{array}
\end{array}
$$

Simple models: $R_{\text {on }} / R_{\text {off }}$ model

$$
\begin{array}{l:ll}
i \\
+V-D & \rightarrow W & \begin{array}{l}
R=R_{\text {on }} \text { if } V>0 \\
+V=R_{\text {off }} \text { if } V<0
\end{array}
\end{array}
$$

* Since the resistance is different in the forward and reverse directions, the $i-V$ relationship is not symmetric.

Simple models: $R_{\text {on }} / R_{\text {off }}$ model

$$
\begin{array}{l:ll}
i \\
+V-D & \rightarrow W & \begin{array}{l}
R=R_{\text {on }} \text { if } V>0 \\
+V=R_{\text {off }} \text { if } V<0
\end{array}
\end{array}
$$

* Since the resistance is different in the forward and reverse directions, the $i-V$ relationship is not symmetric.
* Examples:

Simple models: $R_{\text {on }} / R_{\text {off }}$ model

* Since the resistance is different in the forward and reverse directions, the $i-V$ relationship is not symmetric.
* Examples:

Simple models: ideal switch

Simple models: ideal switch

* $V>0$ Volts $\rightarrow \mathrm{S}$ is closed (a perfect contact), and it can ideally carry any amount of current. The voltage drop across the diode is 0 V .

Simple models: ideal switch

* $V>0$ Volts $\rightarrow \mathrm{S}$ is closed (a perfect contact), and it can ideally carry any amount of current. The voltage drop across the diode is 0 V .
* $V<0$ Volts $\rightarrow S$ is open (a perfect open circuit), and it can ideally block any reverse voltage. The current through the diode is 0 A .

Simple models: ideal switch

* $V>0$ Volts $\rightarrow S$ is closed (a perfect contact), and it can ideally carry any amount of current. The voltage drop across the diode is 0 V .
* $V<0$ Volts $\rightarrow S$ is open (a perfect open circuit), and it can ideally block any reverse voltage. The current through the diode is 0 A .
* The actual values of V and i for a diode in a circuit get determined by the $i-V$ relationship of the diode and the constraints on V and i imposed by the circuit.

Shockley diode equation

$$
\begin{aligned}
& i=I_{s}\left[\exp \left(\frac{V}{V_{T}}\right)-1\right], \text { where } V_{T}=k_{B} T / q . \\
& k_{B}=\text { Boltzmann's constant }=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} . \\
& q=\text { electron charge }=1.602 \times 10^{-19} \mathrm{Coul} . \\
& T=\text { temperature in }{ }^{\circ} \mathrm{K} . \\
& V_{T} \approx 25 \mathrm{~m} V \text { at room temperature }\left(27^{\circ} \mathrm{C}\right) .
\end{aligned}
$$

Shockley diode equation

$$
\begin{aligned}
& i=I_{S}\left[\exp \left(\frac{V}{V_{T}}\right)-1\right] \text {, where } V_{T}=k_{B} T / q .
\end{aligned}
$$

$$
\begin{aligned}
& k_{B}=\text { Boltzmann's constant }=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} . \\
& q=\text { electron charge }=1.602 \times 10^{-19} \text { Coul. } \\
& T=\text { temperature in }{ }^{\circ} \mathrm{K} \text {. } \\
& V_{T} \approx 25 \mathrm{~m} V \text { at room temperature }\left(27^{\circ} \mathrm{C}\right) \text {. }
\end{aligned}
$$

* I_{s} is called the "reverse saturation current."

Shockley diode equation

$$
\begin{aligned}
& i=I_{S}\left[\exp \left(\frac{V}{V_{T}}\right)-1\right] \text {, where } V_{T}=k_{B} T / q .
\end{aligned}
$$

$$
\begin{aligned}
& k_{B}=\text { Boltzmann's constant }=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} . \\
& q=\text { electron charge }=1.602 \times 10^{-19} \text { Coul. } \\
& T=\text { temperature in }{ }^{\circ} \mathrm{K} \text {. } \\
& V_{T} \approx 25 \mathrm{~m} V \text { at room temperature }\left(27^{\circ} \mathrm{C}\right) \text {. }
\end{aligned}
$$

* I_{s} is called the "reverse saturation current."
* For a typical low-power silicon diode, I_{s} is of the order of $10^{-13} \mathrm{~A}$.

Shockley diode equation

$$
\begin{aligned}
& i=I_{S}\left[\exp \left(\frac{V}{V_{T}}\right)-1\right], \text { where } V_{T}=k_{B} T / q \\
& k_{B}=\text { Boltzmann's constant }=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& q=\text { electron charge }=1.602 \times 10^{-19} \mathrm{Coul} . \\
& T=\text { temperature in }{ }^{\circ} \mathrm{K} . \\
& V_{T} \approx 25 \mathrm{mV} \text { at room temperature }\left(27^{\circ} \mathrm{C}\right) .
\end{aligned}
$$

* I_{s} is called the "reverse saturation current."
* For a typical low-power silicon diode, I_{s} is of the order of $10^{-13} \mathrm{~A}$.
* Although I_{s} is very small, it gets multiplied by a large exponential factor, giving a diode current of several $m A$ for $V \approx 0.7 \mathrm{~V}$.

Shockley diode equation

$$
\begin{aligned}
& i=I_{S}\left[\exp \left(\frac{V}{V_{T}}\right)-1\right], \text { where } V_{T}=k_{B} T / q \\
& k_{B}=\text { Boltzmann's constant }=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} . \\
& q=\text { electron charge }=1.602 \times 10^{-19} \mathrm{Coul} . \\
& T=\text { temperature in }{ }^{\circ} \mathrm{K} . \\
& V_{T} \approx 25 \mathrm{mV} \text { at room temperature }\left(27^{\circ} \mathrm{C}\right) .
\end{aligned}
$$

* I_{s} is called the "reverse saturation current."
* For a typical low-power silicon diode, I_{s} is of the order of $10^{-13} \mathrm{~A}$.
* Although I_{s} is very small, it gets multiplied by a large exponential factor, giving a diode current of several mA for $V \approx 0.7 \mathrm{~V}$.
* The "turn-on" voltage ($V_{\text {on }}$) of a diode depends on the value of I_{s}. $V_{\text {on }}$ may be defined as the voltage at which the diode starts carrying a substantial forward current (say, a few mA).
For a silicon diode, $V_{\text {on }} \approx 0.7 \mathrm{~V}$. For a GaAs diode, $V_{\text {on }} \approx 1.1 \mathrm{~V}$.

Shockley diode equation

$$
\begin{array}{l:c:c}
{ }^{\mathrm{i}} \mathrm{H} & \rightarrow & i=I_{S}\left[\exp \left(\frac{V}{V_{T}}\right)-1\right], \text { where } V_{T}=k_{B} T / q \\
+V-\mathrm{p} \mid \mathrm{n} & +\mathrm{V}- & \text { Example: } I_{S}=1 \times 10^{-13} A, V_{T}=25 \mathrm{mV}
\end{array}
$$

Shockley diode equation

Example: $I_{s}=1 \times 10^{-13} A, V_{T}=25 \mathrm{mV}$.

V	$x=V / V_{T}$	e^{x}	$i($ Amp $)$
0.1	3.87	0.479×10^{2}	0.469×10^{-11}
0.2	7.74	0.229×10^{4}	0.229×10^{-9}
0.3	11.6	0.110×10^{6}	0.110×10^{-7}
0.4	15.5	0.525×10^{7}	0.525×10^{-6}
0.5	19.3	0.251×10^{9}	0.251×10^{-4}
0.6	23.2	0.120×10^{11}	0.120×10^{-2}
0.62	24.0	0.260×10^{11}	0.260×10^{-2}
0.64	24.8	0.565×10^{11}	0.565×10^{-2}
0.66	25.5	0.122×10^{12}	0.122×10^{-1}
0.68	26.3	0.265×10^{12}	0.265×10^{-1}
0.70	27.1	0.575×10^{12}	0.575×10^{-1}
0.72	27.8	0.125×10^{13}	0.125

Shockley diode equation

Example: $I_{S}=1 \times 10^{-13} A, V_{T}=25 \mathrm{mV}$.

V	$x=V / V_{T}$	e^{x}	$i($ Amp $)$
0.1	3.87	0.479×10^{2}	0.469×10^{-11}
0.2	7.74	0.229×10^{4}	0.229×10^{-9}
0.3	11.6	0.110×10^{6}	0.110×10^{-7}
0.4	15.5	0.525×10^{7}	0.525×10^{-6}
0.5	19.3	0.251×10^{9}	0.251×10^{-4}
0.6	23.2	0.120×10^{11}	0.120×10^{-2}
0.62	24.0	0.260×10^{11}	0.260×10^{-2}
0.64	24.8	0.565×10^{11}	0.565×10^{-2}
0.66	25.5	0.122×10^{12}	0.122×10^{-1}
0.68	26.3	0.265×10^{12}	0.265×10^{-1}
0.70	27.1	0.575×10^{12}	0.575×10^{-1}
0.72	27.8	0.125×10^{13}	0.125

Shockley equation and simple models

$$
\begin{array}{l:l:l}
\rightarrow \mathrm{i} & & \rightarrow \mathrm{p} \mid \mathrm{n}
\end{array} \quad \mathrm{i}=\mathrm{I}_{\mathrm{s}}\left[\mathrm{e}^{\left.\mathrm{V} / \mathrm{V}_{\mathrm{T}}-1\right], \mathrm{I}_{\mathrm{S}}=10^{-13} \mathrm{~A}, \mathrm{~V}_{\mathrm{T}}=25 \mathrm{mV} .}\right.
$$

Shockley equation and simple models

$$
\mathrm{i}=\mathrm{I}_{\mathrm{s}}\left[\mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{T}}}-1\right], \mathrm{I}_{\mathrm{s}}=10^{-13} \mathrm{~A}, \mathrm{~V}_{\mathrm{T}}=25 \mathrm{mV} .
$$

Shockley equation and simple models

Shockley equation and simple models

$$
\mathrm{i}=\mathrm{I}_{\mathrm{s}}\left[\mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{T}}}-1\right], \mathrm{I}_{\mathrm{s}}=10^{-13} \mathrm{~A}, \mathrm{~V}_{\mathrm{T}}=25 \mathrm{mV}
$$

* For many circuits, Model 1 is adequate since $R_{\text {on }}$ is much smaller than other resistances in the circuit.

Shockley equation and simple models

$$
\mathrm{i}=\mathrm{I}_{\mathrm{s}}\left[\mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{T}}}-1\right], \mathrm{I}_{\mathrm{s}}=10^{-13} \mathrm{~A}, \mathrm{~V}_{\mathrm{T}}=25 \mathrm{mV}
$$

* For many circuits, Model 1 is adequate since $R_{\text {on }}$ is much smaller than other resistances in the circuit.
* If $V_{\text {on }}$ is much smaller than other relevant voltages in the circuit, we can use $V_{\text {on }} \approx 0 \mathrm{~V}$, and the diode model reduces to the ideal diode model seen earlier.

Shockley equation and simple models

$$
\mathrm{i}=\mathrm{I}_{\mathrm{s}}\left[\mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{T}}}-1\right], \mathrm{I}_{\mathrm{s}}=10^{-13} \mathrm{~A}, \mathrm{~V}_{\mathrm{T}}=25 \mathrm{mV}
$$

* For many circuits, Model 1 is adequate since $R_{\text {on }}$ is much smaller than other resistances in the circuit.
* If $V_{\text {on }}$ is much smaller than other relevant voltages in the circuit, we can use $V_{\text {on }} \approx 0 \mathrm{~V}$, and the diode model reduces to the ideal diode model seen earlier.
* Note that the "battery" shown in the above models is not a "source" of power! It can only absorb power (see the direction of the current), causing heat dissipation.

Reverse breakdown

Reverse breakdown

* In the reverse direction, an ideal diode presents a large resistance for any applied voltage.

Reverse breakdown

* In the reverse direction, an ideal diode presents a large resistance for any applied voltage.
* A real diode cannot withstand indefinitely large reverse voltages and "breaks down" at a certain voltage called the "breakdown voltage" (V_{BR}).

Reverse breakdown

* In the reverse direction, an ideal diode presents a large resistance for any applied voltage.
* A real diode cannot withstand indefinitely large reverse voltages and "breaks down" at a certain voltage called the "breakdown voltage" (V_{BR}).
* When the reverse bias $V_{R}>V_{\mathrm{BR}}$, the diode allows a large amount of current. If the current is not constrained by the external circuit, the diode would get damaged.

Reverse breakdown

Symbol for a Zener diode

Reverse breakdown

Symbol for a Zener diode

* A wide variety of diodes is available, with $V_{B R}$ ranging from a few Volts to a few thousand Volts! Generally, higher the breakdown voltage, higher is the cost.

Reverse breakdown

Symbol for a Zener diode

* A wide variety of diodes is available, with $V_{B R}$ ranging from a few Volts to a few thousand Volts! Generally, higher the breakdown voltage, higher is the cost.
* Diodes with high $V_{B R}$ are generally used in power electronics applications and are therefore also designed to carry a large forward current (tens or hundreds of Amps).

Reverse breakdown

Symbol for a Zener diode

* A wide variety of diodes is available, with $V_{B R}$ ranging from a few Volts to a few thousand Volts! Generally, higher the breakdown voltage, higher is the cost.
* Diodes with high $V_{B R}$ are generally used in power electronics applications and are therefore also designed to carry a large forward current (tens or hundreds of Amps).
* Typically, circuits are designed so that the reverse bias across any diode is less than the $V_{B R}$ rating for that diode.

Reverse breakdown

Symbol for a Zener diode

* A wide variety of diodes is available, with $V_{B R}$ ranging from a few Volts to a few thousand Volts! Generally, higher the breakdown voltage, higher is the cost.
* Diodes with high $V_{B R}$ are generally used in power electronics applications and are therefore also designed to carry a large forward current (tens or hundreds of Amps).
* Typically, circuits are designed so that the reverse bias across any diode is less than the $V_{B R}$ rating for that diode.
* "Zener" diodes typically have $V_{B R}$ of a few Volts, which is denoted by V_{Z}. They are often used to limit the voltage swing in electronic circuits.

Diode types

Apart from their use as switches, diodes are also used for several other purposes. The choice of materials used, fabrication techniques, and packaging depend on the functionality expected from the device.

Diode types

Apart from their use as switches, diodes are also used for several other purposes. The choice of materials used, fabrication techniques, and packaging depend on the functionality expected from the device.

* Light-emitting diodes (LEDs) emit light when a forward bias is applied. Typically, LEDs are made of III-V semiconductors.
An LED emits light of a specific wavelength (e.g., red, green, yellow, blue).
White LEDs combine individual LEDs that emit the three primary colors (red, green, blue) or use a phosphor material to convert monochromatic light from a blue or UV LED to broad-spectrum white light.

Diode types

Apart from their use as switches, diodes are also used for several other purposes. The choice of materials used, fabrication techniques, and packaging depend on the functionality expected from the device.

* Light-emitting diodes (LEDs) emit light when a forward bias is applied. Typically, LEDs are made of III-V semiconductors.
An LED emits light of a specific wavelength (e.g., red, green, yellow, blue).
White LEDs combine individual LEDs that emit the three primary colors (red, green, blue) or use a phosphor material to convert monochromatic light from a blue or UV LED to broad-spectrum white light.
* Semiconductor lasers are essentially light-emitting diodes with structural modifications that establish conditions for coherent light.

Diode types

Apart from their use as switches, diodes are also used for several other purposes. The choice of materials used, fabrication techniques, and packaging depend on the functionality expected from the device.

* Light-emitting diodes (LEDs) emit light when a forward bias is applied. Typically, LEDs are made of III-V semiconductors.
An LED emits light of a specific wavelength (e.g., red, green, yellow, blue).
White LEDs combine individual LEDs that emit the three primary colors (red, green, blue) or use a phosphor material to convert monochromatic light from a blue or UV LED to broad-spectrum white light.
* Semiconductor lasers are essentially light-emitting diodes with structural modifications that establish conditions for coherent light.

* Solar cells are generally silicon diodes designed to generate current efficiently when solar radiation is incident on the device. A "solar panel" has a large number of individual solar cells connected in series/parallel configuration. A solar cell can be modelled as a diode in parallel with a current source (representing the photocurrent). In addition, parasitic series and shunt resistances need to be considered.

Diode types

* Solar cells are generally silicon diodes designed to generate current efficiently when solar radiation is incident on the device. A "solar panel" has a large number of individual solar cells connected in series/parallel configuration. A solar cell can be modelled as a diode in parallel with a current source (representing the photocurrent). In addition, parasitic series and shunt resistances need to be considered.

Diode types

* Solar cells are generally silicon diodes designed to generate current efficiently when solar radiation is incident on the device. A "solar panel" has a large number of individual solar cells connected in series/parallel configuration.
A solar cell can be modelled as a diode in parallel with a current source (representing the photocurrent). In addition, parasitic series and shunt resistances need to be considered.

* Photodiodes are used to detect optical signals (DC or time-varying) and to convert them into electrical signals which can be subsequently processed by electronic circuits. They are used in fibre-optic communication systems, image processing, etc.
A photodiode works on the same principle as a solar cell, i.e., it converts light into a current. However, its design is optimized for high-sensitivity, low-noise, or high-frequency operation, depending on the application.

Diode circuit analysis

* In DC situations, for each diode in the circuit, we need to establish whether it is on or off, replace it with the corresponding equivalent circuit, and then obtain the quantities of interest.

Diode circuit analysis

* In DC situations, for each diode in the circuit, we need to establish whether it is on or off, replace it with the corresponding equivalent circuit, and then obtain the quantities of interest.
* In transient analysis, we need to find the time points at which a diode turns on or off, and analyse the circuit in intervals between these time points.

Diode circuit analysis

* In DC situations, for each diode in the circuit, we need to establish whether it is on or off, replace it with the corresponding equivalent circuit, and then obtain the quantities of interest.
* In transient analysis, we need to find the time points at which a diode turns on or off, and analyse the circuit in intervals between these time points.
* In AC (small-signal) situations, the diode can be replaced by its small-signal model, and phasor analysis is used. We will illustrate this procedure for a BJT amplifier later.

Diode circuit analysis

* In DC situations, for each diode in the circuit, we need to establish whether it is on or off, replace it with the corresponding equivalent circuit, and then obtain the quantities of interest.
* In transient analysis, we need to find the time points at which a diode turns on or off, and analyse the circuit in intervals between these time points.
* In AC (small-signal) situations, the diode can be replaced by its small-signal model, and phasor analysis is used. We will illustrate this procedure for a BJT amplifier later.
* Note that there are diode circuits in which the exponential nature of the diode I-V relationship is made use of. For these circuits, computer simulation would be required to solve the resulting non-linear equations.

Diode circuit example

Diode circuit example

Case 1: D is off.

Diode circuit example

Case 1: D is off.

$\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{AC}}=\frac{3}{9} \times 36=12 \mathrm{~V}$,
which is not consistent with our assumption of D being off.

Diode circuit example

Case 1: D is off.

$\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{AC}}=\frac{3}{9} \times 36=12 \mathrm{~V}$,
which is not consistent with our assumption of D being off.
$\rightarrow \mathrm{D}$ must be on.

Diode circuit example

Case 1: D is off.

$\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{AC}}=\frac{3}{9} \times 36=12 \mathrm{~V}$,
which is not consistent with our assumption of D being off.
$\rightarrow \mathrm{D}$ must be on.

Case 2: D is on.

Diode circuit example

Case 1: D is off.

$\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{AC}}=\frac{3}{9} \times 36=12 \mathrm{~V}$,
which is not consistent with our assumption of D being off.
$\rightarrow \mathrm{D}$ must be on.

Case 2: D is on.

Taking $\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V}$,
$\frac{\mathrm{V}_{\mathrm{A}}-36}{6 \mathrm{k}}+\frac{\mathrm{V}_{\mathrm{A}}}{3 \mathrm{k}}+\frac{\mathrm{V}_{\mathrm{A}}-0.7}{1 \mathrm{k}}=0$,
$\rightarrow \mathrm{V}_{\mathrm{A}}=4.47 \mathrm{~V}, \mathrm{i}=3.77 \mathrm{~mA}$.

Diode circuit example

Case 1: D is off.

$\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{AC}}=\frac{3}{9} \times 36=12 \mathrm{~V}$,
which is not consistent with our assumption of D being off.
$\rightarrow \mathrm{D}$ must be on.

Case 2: D is on.

Taking $\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V}$,
$\frac{\mathrm{V}_{\mathrm{A}}-36}{6 \mathrm{k}}+\frac{\mathrm{V}_{\mathrm{A}}}{3 \mathrm{k}}+\frac{\mathrm{V}_{\mathrm{A}}-0.7}{1 \mathrm{k}}=0$,
$\rightarrow \mathrm{V}_{\mathrm{A}}=4.47 \mathrm{~V}, \mathrm{i}=3.77 \mathrm{~mA}$.

Remark: Often, we can figure out by inspection if a diode is on or off.

Diode circuit example

(a) Plot V_{0} versus V_{i} for $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5 \mathrm{~V}$.
(b) Plot $\mathrm{V}_{\mathrm{o}}(\mathrm{t})$ for a triangular input: -5 V to $+5 \mathrm{~V}, 500 \mathrm{~Hz}$.

Diode circuit example

(a) Plot V_{o} versus V_{i} for $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5 \mathrm{~V}$.
(b) Plot $\mathrm{V}_{\mathrm{o}}(\mathrm{t})$ for a triangular input:
-5 V to $+5 \mathrm{~V}, 500 \mathrm{~Hz}$.

First, let us show that D_{1} on $\Rightarrow D_{2}$ off, and D_{2} on $\Rightarrow D_{1}$ off.

Diode circuit example

(a) Plot V_{o} versus V_{i} for $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5 \mathrm{~V}$.
(b) Plot $\mathrm{V}_{\mathrm{o}}(\mathrm{t})$ for a triangular input:
-5 V to $+5 \mathrm{~V}, 500 \mathrm{~Hz}$.

First, let us show that D_{1} on $\Rightarrow D_{2}$ off, and D_{2} on $\Rightarrow D_{1}$ off.
Consider D_{1} to be on $\rightarrow V_{A B}=0.7+1+i_{1} R_{1}$.

Diode circuit example

(a) Plot V_{o} versus V_{i} for $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5 \mathrm{~V}$.
(b) Plot $\mathrm{V}_{\mathrm{o}}(\mathrm{t})$ for a triangular input:
-5 V to $+5 \mathrm{~V}, 500 \mathrm{~Hz}$.

First, let us show that D_{1} on $\Rightarrow D_{2}$ off, and D_{2} on $\Rightarrow D_{1}$ off.
Consider D_{1} to be on $\rightarrow V_{A B}=0.7+1+i_{1} R_{1}$.
Note that $i_{1}>0$, since D_{1} can only conduct in the forward direction.
$\Rightarrow V_{A B}>1.7 V \Rightarrow D_{2}$ cannot conduct.

Diode circuit example

(a) Plot V_{o} versus V_{i} for $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5 \mathrm{~V}$.
(b) Plot $\mathrm{V}_{\mathrm{o}}(\mathrm{t})$ for a triangular input:
-5 V to $+5 \mathrm{~V}, 500 \mathrm{~Hz}$.

First, let us show that D_{1} on $\Rightarrow D_{2}$ off, and D_{2} on $\Rightarrow D_{1}$ off.
Consider D_{1} to be on $\rightarrow V_{A B}=0.7+1+i_{1} R_{1}$.
Note that $i_{1}>0$, since D_{1} can only conduct in the forward direction.
$\Rightarrow V_{A B}>1.7 \mathrm{~V} \Rightarrow D_{2}$ cannot conduct.
Similarly, if D_{2} is on, $V_{B A}>0.7 V$, i.e., $V_{A B}<-0.7 V \Rightarrow D_{1}$ cannot conduct.

Diode circuit example

(a) Plot V_{0} versus V_{i} for $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5 \mathrm{~V}$.
(b) Plot $\mathrm{V}_{\mathrm{o}}(\mathrm{t})$ for a triangular input:
-5 V to $+5 \mathrm{~V}, 500 \mathrm{~Hz}$.

First, let us show that D_{1} on $\Rightarrow D_{2}$ off, and D_{2} on $\Rightarrow D_{1}$ off.
Consider D_{1} to be on $\rightarrow V_{A B}=0.7+1+i_{1} R_{1}$.
Note that $i_{1}>0$, since D_{1} can only conduct in the forward direction.
$\Rightarrow V_{A B}>1.7 V \Rightarrow D_{2}$ cannot conduct.
Similarly, if D_{2} is on, $V_{B A}>0.7 V$, i.e., $V_{A B}<-0.7 V \Rightarrow D_{1}$ cannot conduct.
Clearly, D_{1} on $\Rightarrow D_{2}$ off, and D_{2} on $\Rightarrow D_{1}$ off.

Diode circuit example (continued)

* For $-0.7 V<V_{i}<1.7 V$, both D_{1} and D_{2} are off. \rightarrow no drop across R, and $V_{o}=V_{i}$.
(1)

Diode circuit example (continued)

* For $-0.7 V<V_{i}<1.7 V$, both D_{1} and D_{2} are off. \rightarrow no drop across R, and $V_{o}=V_{i}$.
* For $V_{i}<-0.7 \mathrm{~V}, D_{2}$ conducts. $\rightarrow V_{0}=-0.7-i_{2} R_{2}$. Use KVL to get $i_{2}: V_{i}+i_{2} R_{2}+0.7+R i_{2}=0$.
$\rightarrow i_{2}=-\frac{V_{i}+0.7}{R+R_{2}}$, and
$V_{o}=-0.7-R_{2} i_{2}=\frac{R_{2}}{R+R_{2}} V_{i}-0.7 \frac{R}{R+R_{2}}$.

Diode circuit example (continued)

* For $-0.7 V<V_{i}<1.7 V$, both D_{1} and D_{2} are off.
\rightarrow no drop across R, and $V_{o}=V_{i}$.
* For $V_{i}<-0.7 \mathrm{~V}, D_{2}$ conducts. $\rightarrow V_{0}=-0.7-i_{2} R_{2}$. Use KVL to get $i_{2}: V_{i}+i_{2} R_{2}+0.7+R i_{2}=0$.

$$
\begin{align*}
& \rightarrow i_{2}=-\frac{V_{i}+0.7}{R+R_{2}}, \text { and } \\
& V_{o}=-0.7-R_{2} i_{2}=\frac{R_{2}}{R+R_{2}} V_{i}-0.7 \frac{R}{R+R_{2}} . \tag{2}
\end{align*}
$$

* For $V_{i}>1.7 \mathrm{~V}, D_{1}$ conducts. $\rightarrow V_{o}=0.7+1+i_{1} R_{1}$.
 Use KVL to get $i_{1}:-V_{i}+i_{1} R+0.7+1+i_{1} R_{1}=0$.
$\rightarrow i_{1}=\frac{V_{i}-1.7}{R+R_{1}}$, and
$V_{o}=1.7+R_{1} i_{1}=\frac{R_{1}}{R+R_{1}} V_{i}+1.7 \frac{R}{R+R_{1}}$.

Diode circuit example (continued)

* For $-0.7 V<V_{i}<1.7 V$, both D_{1} and D_{2} are off.
\rightarrow no drop across R, and $V_{o}=V_{i}$.
* For $V_{i}<-0.7 \mathrm{~V}, D_{2}$ conducts. $\rightarrow V_{0}=-0.7-i_{2} R_{2}$. Use KVL to get $i_{2}: V_{i}+i_{2} R_{2}+0.7+R i_{2}=0$.
$\rightarrow i_{2}=-\frac{V_{i}+0.7}{R+R_{2}}$, and
$V_{o}=-0.7-R_{2} i_{2}=\frac{R_{2}}{R+R_{2}} V_{i}-0.7 \frac{R}{R+R_{2}}$.
* For $V_{i}>1.7 \mathrm{~V}, D_{1}$ conducts. $\rightarrow V_{o}=0.7+1+i_{1} R_{1}$.

Use KVL to get $i_{1}:-V_{i}+i_{1} R+0.7+1+i_{1} R_{1}=0$.
$\rightarrow i_{1}=\frac{V_{i}-1.7}{R+R_{1}}$, and
$V_{o}=1.7+R_{1} i_{1}=\frac{R_{1}}{R+R_{1}} V_{i}+1.7 \frac{R}{R+R_{1}}$.

* Using Eqs. (1)-(3), we plot V_{o} versus V_{i}.
(SEQUEL file: ee101_diode_circuit_1.sqproj)

Diode circuit example (continued)

* For $-0.7 V<V_{i}<1.7 V$, both D_{1} and D_{2} are off.
\rightarrow no drop across R, and $V_{o}=V_{i}$.
* For $V_{i}<-0.7 \mathrm{~V}, D_{2}$ conducts. $\rightarrow V_{0}=-0.7-i_{2} R_{2}$. Use KVL to get $i_{2}: V_{i}+i_{2} R_{2}+0.7+R i_{2}=0$.
$\rightarrow i_{2}=-\frac{V_{i}+0.7}{R+R_{2}}$, and
$V_{o}=-0.7-R_{2} i_{2}=\frac{R_{2}}{R+R_{2}} V_{i}-0.7 \frac{R}{R+R_{2}}$.
* For $V_{i}>1.7 \mathrm{~V}, D_{1}$ conducts. $\rightarrow V_{o}=0.7+1+i_{1} R_{1}$. Use KVL to get $i_{1}:-V_{i}+i_{1} R+0.7+1+i_{1} R_{1}=0$.
$\rightarrow i_{1}=\frac{V_{i}-1.7}{R+R_{1}}$, and
$V_{o}=1.7+R_{1} i_{1}=\frac{R_{1}}{R+R_{1}} V_{i}+1.7 \frac{R}{R+R_{1}}$.
* Using Eqs. (1)-(3), we plot V_{o} versus V_{i}.
(SEQUEL file: ee101_diode_circuit_1.sqproj)

M. B. Patil, IIT Bombay

Diode circuit example (continued)

Point-by-point construction of V oversus t :
Two time points, t_{1} and t_{2}, are shown as examples.

Diode circuit example

Plot V_{o} versus V_{i} for $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5 \mathrm{~V}$.

Diode circuit example

Plot V_{o} versus V_{i} for $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5 \mathrm{~V}$.

Diode circuit example

Plot V_{o} versus V_{i} for $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5 \mathrm{~V}$.

Diode circuit example

Plot V_{o} versus V_{i} for $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5 \mathrm{~V}$.

At what value of V_{i} will the diode turn on?

Diode circuit example

Plot V_{o} versus V_{i} for $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5 \mathrm{~V}$.

At what value of V_{i} will the diode turn on?
In the off state, $V_{D}=\frac{R_{1}}{R_{1}+R_{2}} V_{i}$.

Diode circuit example

Plot V_{o} versus V_{i} for $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5 \mathrm{~V}$.

At what value of V_{i} will the diode turn on?
In the off state, $V_{D}=\frac{R_{1}}{R_{1}+R_{2}} V_{i}$.
For D to change to the on state, $V_{D}=0.7 V$.
i.e., $V_{i}=\frac{R_{1}+R_{2}}{R_{1}} \times 0.7=1.05 \mathrm{~V}$.

Diode circuit example

Plot V_{o} versus V_{i} for $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5 \mathrm{~V}$.

At what value of V_{i} will the diode turn on?
In the off state, $V_{D}=\frac{R_{1}}{R_{1}+R_{2}} V_{i}$.
For D to change to the on state, $V_{D}=0.7 V$.
i.e., $V_{i}=\frac{R_{1}+R_{2}}{R_{1}} \times 0.7=1.05 \mathrm{~V}$.
(SEQUEL file: ee101_diode_circuit_2.sqproj)

Diode circuit example

Plot V_{o} versus V_{i} for $-5 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5 \mathrm{~V}$.

At what value of V_{i} will the diode turn on?
In the off state, $V_{D}=\frac{R_{1}}{R_{1}+R_{2}} V_{i}$.
For D to change to the on state, $V_{D}=0.7 V$. i.e., $V_{i}=\frac{R_{1}+R_{2}}{R_{1}} \times 0.7=1.05 \mathrm{~V}$.
(SEQUEL file: ee101_diode_circuit_2.sqproj)

Diode circuit example

Diode circuit example

Plot V_{o} versus V_{i}.

For a current to flow, we have two possibilities:
D_{1} on (forward), D_{2} in reverse breakdown

$V_{o}=i R_{2}=\frac{V_{i}-5.7}{R_{1}+R_{2}} R_{2}$
Since $\mathrm{i}>0$, this can happen only when $\mathrm{V}_{\mathrm{i}}>5.7 \mathrm{~V}$.

Diode circuit example

Plot V_{o} versus V_{i}.

For a current to flow, we have two possibilities:
D_{1} on (forward), D_{2} in reverse breakdown

$V_{o}=i R_{2}=\frac{V_{i}-5.7}{R_{1}+R_{2}} R_{2}$
Since $\mathrm{i}>0$, this can happen only when $\mathrm{V}_{\mathrm{i}}>5.7 \mathrm{~V}$.
D_{2} on (forward), D_{1} in reverse breakdown

$V_{o}=-i R_{2}=\frac{V_{i}+5.7}{R_{1}+R_{2}} R_{2}$
Since $\mathrm{i}>0$, this can happen only when $\mathrm{V}_{\mathrm{i}}<-5.7 \mathrm{~V}$.

Diode circuit example

$\mathrm{V}_{\text {on }}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{Z}}=5 \mathrm{~V}$.
Plot V_{o} versus V_{i}.

For a current to flow, we have two possibilities:
D_{1} on (forward), D_{2} in reverse breakdown

$V_{o}=i R_{2}=\frac{V_{i}-5.7}{R_{1}+R_{2}} R_{2}$
Since $\mathrm{i}>0$, this can happen only when $\mathrm{V}_{\mathrm{i}}>5.7 \mathrm{~V}$.
D_{2} on (forward), D_{1} in reverse breakdown

$V_{0}=-i R_{2}=\frac{V_{i}+5.7}{R_{1}+R_{2}} R_{2}$
Since $\mathrm{i}>0$, this can happen only when $\mathrm{V}_{\mathrm{i}}<-5.7 \mathrm{~V}$.
M. B. Patil, IIT Bombay

Diode circuit example

$\mathrm{V}_{\text {on }}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{Z}}=5 \mathrm{~V}$.
Plot V_{o} versus V_{i}.

For a current to flow, we have two possibilities:
D_{1} on (forward), D_{2} in reverse breakdown

$V_{o}=i R_{2}=\frac{V_{i}-5.7}{R_{1}+R_{2}} R_{2}$
Since $\mathrm{i}>0$, this can happen only when $\mathrm{V}_{\mathrm{i}}>5.7 \mathrm{~V}$.
D_{2} on (forward), D_{1} in reverse breakdown

$V_{0}=-i R_{2}=\frac{V_{i}+5.7}{R_{1}+R_{2}} R_{2}$
Since $\mathrm{i}>0$, this can happen only when $\mathrm{V}_{\mathrm{i}}<-5.7 \mathrm{~V}$.

Diode circuit example (voltage limiter)

Diode circuit example (voltage limiter)

For a current to flow, we have two possibilities:
D_{1} on (forward), D_{2} in reverse breakdown

Diode circuit example (voltage limiter)

$\mathrm{V}_{\mathrm{on}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{Z}}=5 \mathrm{~V}$.
Plot V_{o} versus V_{i}.

For a current to flow, we have two possibilities:
D_{1} on (forward), D_{2} in reverse breakdown

D_{2} on (forward), D_{1} in reverse breakdown

Diode circuit example (voltage limiter)

$\mathrm{V}_{\mathrm{on}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{Z}}=5 \mathrm{~V}$.
Plot V_{o} versus V_{i}.

For a current to flow, we have two possibilities:
D_{1} on (forward), D_{2} in reverse breakdown

D_{2} on (forward), D_{1} in reverse breakdown

In the range, $-5.7 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5.7 \mathrm{~V}$, no current flows, and $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{i}}$.

Diode circuit example (voltage limiter)

$\mathrm{V}_{\mathrm{on}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{Z}}=5 \mathrm{~V}$.
Plot V_{0} versus V_{i}.

For a current to flow, we have two possibilities:
D_{1} on (forward), D_{2} in reverse breakdown

D_{2} on (forward), D_{1} in reverse breakdown

In the range, $-5.7 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<5.7 \mathrm{~V}$, no current flows, and $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{i}}$.

Peak detector

Peak detector

Let $V_{o}(t)=0 V$ at $t=0$, and assume the diode to be ideal, with $V_{\text {on }}=0 V$.

Peak detector

Let $V_{o}(t)=0 V$ at $t=0$, and assume the diode to be ideal, with $V_{o n}=0 V$.
For $0<t<T / 4, V_{i}$ rises from 0 to V_{m}. As a result, the capacitor charges.

Peak detector

Let $V_{o}(t)=0 V$ at $t=0$, and assume the diode to be ideal, with $V_{\text {on }}=0 V$.
For $0<t<T / 4, V_{i}$ rises from 0 to V_{m}. As a result, the capacitor charges.
Since the on resistance of the diode is small, time constant $\tau \ll T / 4$; therefore the charging process is instantaneous $\Rightarrow V_{o}(t)=V_{i}(t)$.

Peak detector

Let $V_{o}(t)=0 V$ at $t=0$, and assume the diode to be ideal, with $V_{o n}=0 V$.
For $0<t<T / 4, V_{i}$ rises from 0 to V_{m}. As a result, the capacitor charges.
Since the on resistance of the diode is small, time constant $\tau \ll T / 4$; therefore the charging process is instantaneous $\Rightarrow V_{o}(t)=V_{i}(t)$.
For $t>T / 4, V_{i}$ starts falling. The capacitor holds the charge it had at $t=T / 4$ since the diode prevents discharging.

Peak detector

Let $V_{o}(t)=0 V$ at $t=0$, and assume the diode to be ideal, with $V_{o n}=0 V$.
For $0<t<T / 4, V_{i}$ rises from 0 to V_{m}. As a result, the capacitor charges.
Since the on resistance of the diode is small, time constant $\tau \ll T / 4$; therefore the charging process is instantaneous $\Rightarrow V_{o}(t)=V_{i}(t)$.
For $t>T / 4, V_{i}$ starts falling. The capacitor holds the charge it had at $t=T / 4$ since the diode prevents discharging.

SEQUEL file: ee101_diode_circuit_5.sqproj

Peak detector (continued)

Peak detector (continued)

If a resistor is added in parallel, a discharging path is provided for the capacitor, and the capacitor voltage falls after reaching the peak.

Peak detector (continued)

If a resistor is added in parallel, a discharging path is provided for the capacitor, and the capacitor voltage falls after reaching the peak.

When $V_{i}>V_{o}$, the capacitor charges again. The time constant for the charging process is $\tau=R_{\text {Th }} C$, where $R_{\text {Th }}=R \| R_{\text {on }}$ is the Thevenin resistance seen by the capacitor, $R_{\text {on }}$ being the on resistance of the diode.

Peak detector (continued)

If a resistor is added in parallel, a discharging path is provided for the capacitor, and the capacitor voltage falls after reaching the peak.

When $V_{i}>V_{o}$, the capacitor charges again. The time constant for the charging process is $\tau=R_{\text {Th }} C$, where $R_{\text {Th }}=R \| R_{\text {on }}$ is the Thevenin resistance seen by the capacitor, $R_{\text {on }}$ being the on resistance of the diode.

Since $\tau \ll T$, the charging process is instantaneous.

Peak detector (continued)

If a resistor is added in parallel, a discharging path is provided for the capacitor, and the capacitor voltage falls after reaching the peak.
When $V_{i}>V_{o}$, the capacitor charges again. The time constant for the charging process is $\tau=R_{\mathrm{Th}} C$, where $R_{\mathrm{Th}}=R \| R_{\mathrm{on}}$ is the Thevenin resistance seen by the capacitor, $R_{\text {on }}$ being the on resistance of the diode.

Since $\tau \ll T$, the charging process is instantaneous.
SEQUEL file: ee101_diode_circuit_5a.sqproj

Peak detector (with $V_{\text {on }}=0.7 \mathrm{~V}$)

Peak detector (with $V_{\text {on }}=0.7 \mathrm{~V}$)

With $V_{\text {on }}=0.7 V$, the capacitor charges up to $\left(V_{m}-0.7 V\right)$.

Peak detector (with $V_{\text {on }}=0.7 \mathrm{~V}$)

With $V_{\text {on }}=0.7 V$, the capacitor charges up to $\left(V_{m}-0.7 V\right)$.
Apart from that, the circuit operation is similar.

Peak detector (with $V_{\text {on }}=0.7 \mathrm{~V}$)

With $V_{\text {on }}=0.7 \mathrm{~V}$, the capacitor charges up to $\left(V_{m}-0.7 V\right)$.
Apart from that, the circuit operation is similar.
SEQUEL file: ee101_diode_circuit_5a.sqproj

Clamped capacitor

* Assume $V_{\text {on }}=0 V$ for the diode.

When D conducts, $V_{D}=-V_{o}=0 \Rightarrow V_{C}+V_{i}=0$, i.e., $V_{C}=-V_{i}$.

Clamped capacitor

* Assume $V_{\text {on }}=0 V$ for the diode. When D conducts, $V_{D}=-V_{o}=0 \Rightarrow V_{C}+V_{i}=0$, i.e., $V_{C}=-V_{i}$.
* V_{C} can only increase with time (or remain constant) since i_{D} can only be positive.

Clamped capacitor

* Assume $V_{\text {on }}=0 V$ for the diode. When D conducts, $V_{D}=-V_{o}=0 \Rightarrow V_{C}+V_{i}=0$, i.e., $V_{C}=-V_{i}$.
* V_{C} can only increase with time (or remain constant) since i_{D} can only be positive.
* The net result is that the capacitor gets charged to a voltage $V_{C}=-V_{i}$, corresponding to the maxmimum negative value of V_{i}, and holds that voltage thereafter. Let us call this voltage V_{C}^{0} (a constant).

Clamped capacitor

* Assume $V_{\text {on }}=0 V$ for the diode. When D conducts, $V_{D}=-V_{o}=0 \Rightarrow V_{C}+V_{i}=0$, i.e., $V_{C}=-V_{i}$.
* V_{C} can only increase with time (or remain constant) since i_{D} can only be positive.
* The net result is that the capacitor gets charged to a voltage $V_{C}=-V_{i}$, corresponding to the maxmimum negative value of V_{i}, and holds that voltage thereafter. Let us call this voltage V_{C}^{0} (a constant).
* $V_{o}(t)=V_{C}(t)+V_{i}(t)=V_{C}^{0}+V_{i}(t)$, which is a "level-shifted" version of V_{i}.

Clamped capacitor

* Assume $V_{\text {on }}=0 V$ for the diode.

When D conducts, $V_{D}=-V_{o}=0 \Rightarrow V_{C}+V_{i}=0$, i.e., $V_{C}=-V_{i}$.

* V_{C} can only increase with time (or remain constant) since i_{D} can only be positive.
* The net result is that the capacitor gets charged to a voltage $V_{C}=-V_{i}$, corresponding to the maxmimum negative value of V_{i}, and holds that voltage thereafter. Let us call this voltage V_{C}^{0} (a constant).
* $V_{o}(t)=V_{C}(t)+V_{i}(t)=V_{C}^{0}+V_{i}(t)$, which is a "level-shifted" version of V_{i}.
(SEQUEL file: ee101_diode_circuit_6.sqproj)

Voltage doubler

Voltage doubler

* The diode clamp shifts V_{A} up by V_{m} (the amplitude of the AC source), making V_{B} go from 0 to $2 V_{m}$.

Voltage doubler

* The diode clamp shifts V_{A} up by V_{m} (the amplitude of the AC source), making V_{B} go from 0 to $2 V_{m}$.
* The peak detector detects the peak of V_{B} ($2 V_{m}$ w.r.t. ground), and holds it constant.

Voltage doubler

* The diode clamp shifts V_{A} up by V_{m} (the amplitude of the AC source), making V_{B} go from 0 to $2 V_{m}$.
* The peak detector detects the peak of V_{B} ($2 V_{m}$ w.r.t. ground), and holds it constant.
* Note that it takes a few cycles to reach steady state. Plot $V_{C 1}, i_{D 1}, i_{D 2}$ versus t and explain the initial behaviour of the circuit.

Voltage doubler

* The diode clamp shifts V_{A} up by V_{m} (the amplitude of the AC source), making V_{B} go from 0 to $2 V_{m}$.
* The peak detector detects the peak of V_{B} ($2 V_{m}$ w.r.t. ground), and holds it constant.
* Note that it takes a few cycles to reach steady state. Plot $V_{C 1}, i_{D 1}, i_{D 2}$ versus t and explain the initial behaviour of the circuit.
(SEQUEL file: ee101_voltage_doubler.sqproj)

