## EE101: JFET operation and characteristics



M. B. Patil<br>mbpatil@ee.iitb.ac.in<br>www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay



* A Field-Effect Transistor (FET) has a gate (G) terminal which controls the current flow between the other two terminals, viz., source (S) and drain (D).


## Field-effect transistors



* A Field-Effect Transistor (FET) has a gate (G) terminal which controls the current flow between the other two terminals, viz., source (S) and drain (D).
* In simple terms, a FET can be thought of as a resistance connected between S and D , which is a function of the gate voltage $V_{G}$.


## Field-effect transistors



* A Field-Effect Transistor (FET) has a gate (G) terminal which controls the current flow between the other two terminals, viz., source (S) and drain (D).
* In simple terms, a FET can be thought of as a resistance connected between S and D , which is a function of the gate voltage $V_{G}$.
* The mechanism of gate control varies in different types of FETs, e.g., JFET, MESFET, MOSFET, HEMT.


## Field-effect transistors



* A Field-Effect Transistor (FET) has a gate (G) terminal which controls the current flow between the other two terminals, viz., source (S) and drain (D).
* In simple terms, a FET can be thought of as a resistance connected between S and D , which is a function of the gate voltage $V_{G}$.
* The mechanism of gate control varies in different types of FETs, e.g., JFET, MESFET, MOSFET, HEMT.
* FETs can be used for analog and digital applications. In each case, the fact that the gate is used to control current flow between S and D plays a crucial role.


## Junction Field-effect transistors (JFET)



(Not drawn to scale. Typically, $L \gg 2 a$.)
Cross-sectional view


Simplified structure

## Junction Field-effect transistors (JFET)


(Not drawn to scale. Typically, $L \gg 2 a$.)
Cross-sectional view


Simplified structure

* The $n$-type region between the top and bottom $p^{+}$regions offers a resistance to current flow. The resistance depends on $V_{G}$.


## Junction Field-effect transistors (JFET)



3D view

(Not drawn to scale. Typically, $L \gg 2 a$.)
Cross-sectional view


Simplified structure

* The $n$-type region between the top and bottom $p^{+}$regions offers a resistance to current flow. The resistance depends on $V_{G}$.
* We will first consider the case, $V_{D}=V_{S}=0 \mathrm{~V}$.


## JFET with $V_{S}=V_{D}=0 V$



## JFET with $V_{S}=V_{D}=0 V$



* The bias across the $p$ - $n$ junction is $\left(V_{G}-V_{S}\right)$, i.e., $V_{G}$, since $V_{S}=V_{D}=0 V$.


## JFET with $V_{S}=V_{D}=0 V$



* The bias across the $p-n$ junction is $\left(V_{G}-V_{S}\right)$, i.e., $V_{G}$, since $V_{S}=V_{D}=0 V$.
* As the reverse bias across the junction is increased (by making $V_{G}$ more negative), the depletion region widens, and the resistance offered by the $n$-region increases.


## JFET with $V_{S}=V_{D}=0 V$



* The bias across the $p-n$ junction is $\left(V_{G}-V_{S}\right)$, i.e., $V_{G}$, since $V_{S}=V_{D}=0 V$.
* As the reverse bias across the junction is increased (by making $V_{G}$ more negative), the depletion region widens, and the resistance offered by the $n$-region increases.
* When the reverse bias becomes large enough, the depletion region consumes the entire $n$-region. The corresponding $V_{G}$ is called the "pinch-off" voltage.


## JFET: pinch-off voltage



## JFET: pinch-off voltage



* $V_{P}=V_{G}$ for which $h=0$, i.e., $W=a$.


## JFET: pinch-off voltage



* $V_{P}=V_{G}$ for which $h=0$, i.e., $W=a$.
* For a $p^{+}{ }_{-n}$ junction, $W=\sqrt{\frac{2 \epsilon\left(V_{\mathrm{bi}}-V\right)}{q N_{d}}}$, where $V_{\mathrm{bi}}$ is the built-in potential of the junction.


## JFET: pinch-off voltage



* $V_{P}=V_{G}$ for which $h=0$, i.e., $W=a$.
* For a $p^{+}-n$ junction, $W=\sqrt{\frac{2 \epsilon\left(V_{\mathrm{bi}}-V\right)}{q N_{d}}}$, where $V_{\mathrm{bi}}$ is the built-in potential of the junction.
* For pinch-off, $W=a=\sqrt{\frac{2 \epsilon\left(V_{\mathrm{bi}}-V\right)}{q N_{d}}}$
$\Rightarrow V_{P}=V_{\mathrm{bi}}-\frac{q N_{d} a^{2}}{2 \epsilon}$.


## JFET: pinch-off voltage



## JFET: pinch-off voltage



* For pinch-off, $W=a=\sqrt{\frac{2 \epsilon\left(V_{\mathrm{bi}}-V\right)}{q N_{d}}} \Rightarrow V_{P}=V_{\mathrm{bi}}-\frac{q N_{d} a^{2}}{2 \epsilon}$.


## JFET: pinch-off voltage



* For pinch-off, $W=a=\sqrt{\frac{2 \epsilon\left(V_{\mathrm{bi}}-V\right)}{q N_{d}}} \Rightarrow V_{P}=V_{\mathrm{bi}}-\frac{q N_{d} a^{2}}{2 \epsilon}$.
* Example: $N_{d}=2 \times 10^{15} \mathrm{~cm}^{-3}, a=1.5 \mu \mathrm{~m}, V_{\mathrm{bi}}=0.8 \mathrm{~V}$.


## JFET: pinch-off voltage



* For pinch-off, $W=a=\sqrt{\frac{2 \epsilon\left(V_{\mathrm{bi}}-V\right)}{q N_{d}}} \Rightarrow V_{P}=V_{\mathrm{bi}}-\frac{q N_{d} a^{2}}{2 \epsilon}$.
* Example: $N_{d}=2 \times 10^{15} \mathrm{~cm}^{-3}, a=1.5 \mu \mathrm{~m}, V_{\mathrm{bi}}=0.8 \mathrm{~V}$.

$$
\begin{aligned}
W & =0.8-\frac{\left(1.6 \times 10^{-19} \mathrm{Coul}\right)\left(2 \times 10^{15} \mathrm{~cm}^{-3}\right)\left(\left(1.5 \times 10^{-4}\right)^{2} \mathrm{~cm}^{2}\right)}{2 \times 11.7 \times 8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}} \\
& =0.8-3.48 \approx-2.7 \mathrm{~V}
\end{aligned}
$$

## JFET: pinch-off voltage



* For pinch-off, $W=a=\sqrt{\frac{2 \epsilon\left(V_{\mathrm{bi}}-V\right)}{q N_{d}}} \Rightarrow V_{P}=V_{\mathrm{bi}}-\frac{q N_{d} a^{2}}{2 \epsilon}$.
* Example: $N_{d}=2 \times 10^{15} \mathrm{~cm}^{-3}, a=1.5 \mu \mathrm{~m}, V_{\mathrm{bi}}=0.8 \mathrm{~V}$.

$$
\begin{aligned}
W & =0.8-\frac{\left(1.6 \times 10^{-19} \mathrm{Coul}\right)\left(2 \times 10^{15} \mathrm{~cm}^{-3}\right)\left(\left(1.5 \times 10^{-4}\right)^{2} \mathrm{~cm}^{2}\right)}{2 \times 11.7 \times 8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}} \\
& =0.8-3.48 \approx-2.7 \mathrm{~V}
\end{aligned}
$$

$\Rightarrow$ If a gate voltage $V_{G}=-2.7 V$ is applied, the $n$-channel gets pinched off, and the device resistance becomes very large.

## JFET with $V_{G}=$ constant, $V_{D} \neq 0 \mathrm{~V}$



## JFET with $V_{G}=$ constant, $V_{D} \neq 0 V$



* Consider an $n$-JFET with $V_{G}$ constant (and not in pinch-off mode).


## JFET with $V_{G}=$ constant, $V_{D} \neq 0 V$



* Consider an n-JFET with $V_{G}$ constant (and not in pinch-off mode). If a positive $V_{D}$ is applied, the potential $V(x)$ inside the channel from $S$ to $D$ (along the dashed line) increases from $0 V$ to $V_{D}$.


## JFET with $V_{G}=$ constant, $V_{D} \neq 0 \mathrm{~V}$



* Consider an $n$-JFET with $V_{G}$ constant (and not in pinch-off mode). If a positive $V_{D}$ is applied, the potential $V(x)$ inside the channel from $S$ to $D$ (along the dashed line) increases from $0 V$ to $V_{D}$.
Note that $W$ and $h$ are now functions of $x$ such that, $W(x)+h(x)=a$.


## JFET with $V_{G}=$ constant, $V_{D} \neq 0 \mathrm{~V}$



* Consider an $n$-JFET with $V_{G}$ constant (and not in pinch-off mode). If a positive $V_{D}$ is applied, the potential $V(x)$ inside the channel from $S$ to $D$ (along the dashed line) increases from $0 V$ to $V_{D}$.
Note that $W$ and $h$ are now functions of $x$ such that, $W(x)+h(x)=a$.
* Since the $p$ - $n$ junction bias at a given $x$ is $\left(V_{G}-V(x)\right)$, the drain end of the channel has a larger reverse bias than the source end.


## JFET with $V_{G}=$ constant, $V_{D} \neq 0 \mathrm{~V}$



* Consider an n-JFET with $V_{G}$ constant (and not in pinch-off mode). If a positive $V_{D}$ is applied, the potential $V(x)$ inside the channel from $S$ to $D$ (along the dashed line) increases from $0 V$ to $V_{D}$.
Note that $W$ and $h$ are now functions of $x$ such that, $W(x)+h(x)=a$.
* Since the $p$ - $n$ junction bias at a given $x$ is $\left(V_{G}-V(x)\right)$, the drain end of the channel has a larger reverse bias than the source end.
$\Rightarrow$ the depletion region is wider at the drain.



## JFET: derivation of $I_{D}$ equation



Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the $x$ direction, and given by,
$J_{n}=q \mu_{n} n E+q D_{n} \frac{d n}{d x} \approx q \mu_{n} n E=q \mu_{n} N_{d} \frac{d V}{d x}$,

## JFET: derivation of $I_{D}$ equation



Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the $x$ direction, and given by,
$J_{n}=q \mu_{n} n E+q D_{n} \frac{d n}{d x} \approx q \mu_{n} n E=q \mu_{n} N_{d} \frac{d V}{d x}$,
where we have neglected the diffusion current, since $n \approx N_{d} \Rightarrow \frac{d n}{d x}=0$.

## JFET: derivation of $I_{D}$ equation



Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the $x$ direction, and given by,
$J_{n}=q \mu_{n} n E+q D_{n} \frac{d n}{d x} \approx q \mu_{n} n E=q \mu_{n} N_{d} \frac{d V}{d x}$,
where we have neglected the diffusion current, since $n \approx N_{d} \Rightarrow \frac{d n}{d x}=0$.
Note that only the neutral part of the $n$-Si conducts since there are no carriers in the depletion regions.

## JFET: derivation of $I_{D}$ equation



Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the $x$ direction, and given by,
$J_{n}=q \mu_{n} n E+q D_{n} \frac{d n}{d x} \approx q \mu_{n} n E=q \mu_{n} N_{d} \frac{d V}{d x}$,
where we have neglected the diffusion current, since $n \approx N_{d} \Rightarrow \frac{d n}{d x}=0$.
Note that only the neutral part of the $n$-Si conducts since there are no carriers in the depletion regions.

At a given $x$, the current $I_{D}$ is obtained by integrating $J_{n}$ over the area of the neutral channel region (see figure on the right). Since $J_{n}$ is constant over this area,

## JFET: derivation of $I_{D}$ equation



Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the $x$ direction, and given by,
$J_{n}=q \mu_{n} n E+q D_{n} \frac{d n}{d x} \approx q \mu_{n} n E=q \mu_{n} N_{d} \frac{d V}{d x}$,
where we have neglected the diffusion current, since $n \approx N_{d} \Rightarrow \frac{d n}{d x}=0$.
Note that only the neutral part of the $n$-Si conducts since there are no carriers in the depletion regions.

At a given $x$, the current $I_{D}$ is obtained by integrating $J_{n}$ over the area of the neutral channel region (see figure on the right). Since $J_{n}$ is constant over this area,
$I_{D}(x)=\iint J_{n} d x d z=2 h Z \times\left(q \mu_{n} N_{d} \frac{d V}{d x}\right)=2 q Z \mu_{n} N_{d} a \frac{d V}{d x}\left(1-\frac{W}{a}\right)$,
where we have used $h=a-W$, i.e., $h=a(1-W / a)$.

## JFET: derivation of $I_{D}$ equation



## JFET: derivation of $I_{D}$ equation

$I_{D}(x)=2 q Z \mu_{n} N_{d} a \frac{d V}{d x}\left(1-\frac{W}{a}\right)$.


Since $I_{D}(x)$ is constant from $x=0$ to $x=L$, we get,
$\int_{0}^{L} I_{D} d x=I_{D} L=2 q Z \mu_{n} N_{d} a \int_{0}^{V_{D}}\left(1-\sqrt{\frac{2 \epsilon}{q N_{d} a^{2}}} \sqrt{V_{\mathrm{bi}}-\left(V_{G}-V\right)}\right) d V$,
where we have used, for the depletion width $W$,
$W(x)=\sqrt{\frac{2 \epsilon}{q N_{d}}\left[V_{\mathrm{bi}}-\left(V_{G}-V\right)\right]}$.

## JFET: derivation of $I_{D}$ equation

$I_{D}(x)=2 q Z \mu_{n} N_{d} a \frac{d V}{d x}\left(1-\frac{W}{a}\right)$.


Since $I_{D}(x)$ is constant from $x=0$ to $x=L$, we get,
$\int_{0}^{L} I_{D} d x=I_{D} L=2 q Z \mu_{n} N_{d} a \int_{0}^{V_{D}}\left(1-\sqrt{\frac{2 \epsilon}{q N_{d} a^{2}}} \sqrt{V_{\mathrm{bi}}-\left(V_{G}-V\right)}\right) d V$,
where we have used, for the depletion width $W$,
$W(x)=\sqrt{\frac{2 \epsilon}{q N_{d}}\left[V_{\text {bi }}-\left(V_{G}-V\right)\right]}$.
Evaluating the integral and using $V_{b i}-V_{P}=\frac{q N_{d} a^{2}}{2 \epsilon}$, we get (do this!)
$I_{D}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}$,
where $G_{0}=2 q Z \mu_{n} N_{d} a / L$.

## JFET: derivation of $I_{D}$ equation

$I_{D}(x)=2 q Z \mu_{n} N_{d} a \frac{d V}{d x}\left(1-\frac{W}{a}\right)$.


Since $I_{D}(x)$ is constant from $x=0$ to $x=L$, we get,
$\int_{0}^{L} I_{D} d x=I_{D} L=2 q Z \mu_{n} N_{d} a \int_{0}^{V_{D}}\left(1-\sqrt{\frac{2 \epsilon}{q N_{d} a^{2}}} \sqrt{V_{\mathrm{bi}}-\left(V_{G}-V\right)}\right) d V$,
where we have used, for the depletion width $W$,
$W(x)=\sqrt{\frac{2 \epsilon}{q N_{d}}\left[V_{\mathrm{bi}}-\left(V_{G}-V\right)\right]}$.
Evaluating the integral and using $V_{\mathrm{bi}}-V_{P}=\frac{q N_{d} a^{2}}{2 \epsilon}$, we get (do this!)
$I_{D}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}$,
where $G_{0}=2 q Z \mu_{n} N_{d} a / L$.
Note that $G_{0}$ is the channel conductance if there was no depletion, i.e., if $h(x)=a$ throughout the channel.

## Special case: $V_{D} \approx 0 V$



$$
\begin{aligned}
I_{D} & =G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\} \\
& \approx G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)^{-1 / 2}\left[\frac{3}{2} V_{D}\left(V_{\mathrm{bi}}-V_{G}\right)^{1 / 2}\right]\right\} \text { (using Taylor's series) } \\
& =G_{0} V_{D}\left\{1-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{1 / 2}\right\} .
\end{aligned}
$$

Since $W=\frac{2 \epsilon}{q N_{d}}\left(V_{\mathrm{bi}}-V_{G}\right)^{1 / 2}$, and $a=\frac{2 \epsilon}{q N_{d}}\left(V_{\mathrm{bi}}-V_{P}\right)^{1 / 2}$, we get

## Special case: $V_{D} \approx 0 V$



$$
\begin{aligned}
I_{D} & =G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\} \\
& \approx G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)^{-1 / 2}\left[\frac{3}{2} V_{D}\left(V_{\mathrm{bi}}-V_{G}\right)^{1 / 2}\right]\right\} \text { (using Taylor's series) } \\
& =G_{0} V_{D}\left\{1-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{1 / 2}\right\} .
\end{aligned}
$$

Since $W=\frac{2 \epsilon}{q N_{d}}\left(V_{\mathrm{bi}}-V_{G}\right)^{1 / 2}$, and $a=\frac{2 \epsilon}{q N_{d}}\left(V_{\mathrm{bi}}-V_{P}\right)^{1 / 2}$, we get $I_{D}=G_{0} V_{D}\left\{1-\frac{W}{a}\right\}$.

## Special case: $V_{D} \approx 0 V$

$$
\begin{aligned}
\end{aligned}
$$

Since $W=\frac{2 \epsilon}{q N_{d}}\left(V_{\text {bi }}-V_{G}\right)^{1 / 2}$, and $a=\frac{2 \epsilon}{q N_{d}}\left(V_{\text {bi }}-V_{P}\right)^{1 / 2}$, we get
$I_{D}=G_{0} V_{D}\left\{1-\frac{W}{a}\right\}$.
This simply shows that the channel conductance reduces linearly with $W$ (as seen before the $V_{S}=V_{S}=0 V$ condition), and for $V_{G}=V_{P}$ (i.e., $W=a$ ), the conductance becomes zero.

## JFET: pinch-off near drain




$$
I_{D}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\} .
$$

## JFET: pinch-off near drain



$I_{D}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}$.
For a given $V_{G}, I_{D}$ reaches a maximum at $V_{D}=V_{G}-V_{P}$ (show this by differentiating the above equation).

## JFET: pinch-off near drain



$I_{D}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}$.
For a given $V_{G}, I_{D}$ reaches a maximum at $V_{D}=V_{G}-V_{P}$ (show this by differentiating the above equation).
At this value of $V_{D}$, the bias across the $p-n$ junction at the drain end is $V_{G}-V_{D}=V_{P}$.

## JFET: pinch-off near drain



$I_{D}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}$.
For a given $V_{G}, I_{D}$ reaches a maximum at $V_{D}=V_{G}-V_{P}$ (show this by differentiating the above equation).
At this value of $V_{D}$, the bias across the $p-n$ junction at the drain end is $V_{G}-V_{D}=V_{P}$.
In other words, the drain end of the channel has just reached pinch-off.

## JFET: pinch-off near drain



$I_{D}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}$.
For a given $V_{G}, I_{D}$ reaches a maximum at $V_{D}=V_{G}-V_{P}$ (show this by differentiating the above equation).
At this value of $V_{D}$, the bias across the $p-n$ junction at the drain end is $V_{G}-V_{D}=V_{P}$. In other words, the drain end of the channel has just reached pinch-off.


## JFET: pinch-off near drain



$I_{D}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}$.
For a given $V_{G}, I_{D}$ reaches a maximum at $V_{D}=V_{G}-V_{P}$ (show this by differentiating the above equation).
At this value of $V_{D}$, the bias across the $p-n$ junction at the drain end is $V_{G}-V_{D}=V_{P}$. In other words, the drain end of the channel has just reached pinch-off.


What happens if $V_{D}$ is increased further?

## JFET: saturation



Consider a fixed $V_{G}$ with $V_{D}$ varying from $\sim 0 V$ to a value beyond condition $C$.

## JFET: saturation



Consider a fixed $V_{G}$ with $V_{D}$ varying from $\sim 0 V$ to a value beyond condition $C$.
In this situation, i.e., $V_{D}>V_{D}^{\text {sat }}$, a short high-field region develops near the drain end, and the "excess" voltage, $V_{D}-V_{D}^{\text {sat }}$ drops across this region.

## JFET: saturation



Consider a fixed $V_{G}$ with $V_{D}$ varying from $\sim 0 V$ to a value beyond condition $C$.
In this situation, i.e., $V_{D}>V_{D}^{\text {sat }}$, a short high-field region develops near the drain end, and the "excess" voltage, $V_{D}-V_{D}^{\text {sat }}$ drops across this region.

Because the high-filed region is confined to a very small distance, the conditions in the device are almost identical in C and D .

## JFET: saturation



Consider a fixed $V_{G}$ with $V_{D}$ varying from $\sim 0 V$ to a value beyond condition $C$.
In this situation, i.e., $V_{D}>V_{D}^{\text {sat }}$, a short high-field region develops near the drain end, and the "excess" voltage, $V_{D}-V_{D}^{\text {sat }}$ drops across this region.

Because the high-filed region is confined to a very small distance, the conditions in the device are almost identical in C and D .
$\Rightarrow$ The current in case D is almost the same as that for case C .

## JFET: saturation



Consider a fixed $V_{G}$ with $V_{D}$ varying from $\sim 0 V$ to a value beyond condition $C$.
In this situation, i.e., $V_{D}>V_{D}^{\text {sat }}$, a short high-field region develops near the drain end, and the "excess" voltage, $V_{D}-V_{D}^{\text {sat }}$ drops across this region.
Because the high-filed region is confined to a very small distance, the conditions in the device are almost identical in C and D .
$\Rightarrow$ The current in case D is almost the same as that for case C .
The region $V_{D}>V_{D}^{\text {sat }}$ is therefore called the "saturation region."

## JFET: example

An $n$-channel silicon JFET has the following parameters (at $T=300 \mathrm{~K}$ ): $a=1.5 \mu \mathrm{~m}, L=5 \mu \mathrm{~m}$, $Z=50 \mu \mathrm{~m}, N_{d}=2 \times 10^{15} \mathrm{~cm}^{-3}, V_{\mathrm{bi}}=0.8 V, \mu_{n}=300 \mathrm{~cm}^{2} / V$-sec.
(a) What is the pinch-off voltage?
(b) Write a program to generate $I_{D}-V_{D}$ characteristics for $V_{G}=0 \mathrm{~V},-0.5 \mathrm{~V},-1 \mathrm{~V},-1.5 \mathrm{~V}$, -2 V .
(c) For each of the above $V_{G}$ values, compute $V_{D}^{\text {sat }}$, and show it on the $I_{D}-V_{D}$ plot. The part of an $I_{D}-V_{D}$ corresponding to $V_{D}<V_{D}^{\text {sat }}$ is called the "linear" region, and that corresponding to $V_{D}>V_{D}^{\text {sat }}$ is called the "saturation" region.

## JFET: example

An $n$-channel silicon JFET has the following parameters (at $T=300 \mathrm{~K}$ ): $a=1.5 \mu \mathrm{~m}, L=5 \mu \mathrm{~m}$, $Z=50 \mu \mathrm{~m}, N_{d}=2 \times 10^{15} \mathrm{~cm}^{-3}, V_{\mathrm{bi}}=0.8 V, \mu_{n}=300 \mathrm{~cm}^{2} / V$-sec.
(a) What is the pinch-off voltage?
(b) Write a program to generate $I_{D}-V_{D}$ characteristics for $V_{G}=0 \mathrm{~V},-0.5 \mathrm{~V},-1 \mathrm{~V},-1.5 \mathrm{~V}$, -2 V .
(c) For each of the above $V_{G}$ values, compute $V_{D}^{\text {sat }}$, and show it on the $I_{D}-V_{D}$ plot. The part of an $I_{D}-V_{D}$ corresponding to $V_{D}<V_{D}^{\text {sat }}$ is called the "linear" region, and that corresponding to $V_{D}>V_{D}^{\text {sat }}$ is called the "saturation" region.
Answer:
(a) $V_{P}=-2.68 \mathrm{~V}$.
(b)


## JFET: simplified model for saturation

$$
I_{D}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}
$$

## JFET: simplified model for saturation

$$
I_{D}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}
$$

At saturtation, $V_{D}^{\text {sat }}=V_{G}-V_{P}$, giving
$I_{D}^{\text {sat }}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[1-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}$.

## JFET: simplified model for saturation

$I_{D}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}$.
At saturtation, $V_{D}^{\text {sat }}=V_{G}-V_{P}$, giving
$I_{D}^{\text {sat }}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[1-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}$.
The following approximate model is found to be adequate in circuit design:
$I_{D}^{\text {sat }}\left(V_{G}\right)=I_{D S S}\left(1-V_{G} / V_{P}\right)^{2}$, where $I_{D S S}=I_{D}^{\text {sat }}\left(V_{G}=0 V\right)$.

## JFET: simplified model for saturation

$I_{D}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}$.
At saturtation, $V_{D}^{\text {sat }}=V_{G}-V_{P}$, giving
$I_{D}^{\text {sat }}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[1-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}$.
The following approximate model is found to be adequate in circuit design:
$I_{D}^{\text {sat }}\left(V_{G}\right)=I_{D S S}\left(1-V_{G} / V_{P}\right)^{2}$, where $I_{D S S}=I_{D}^{\text {sat }}\left(V_{G}=0 V\right)$.
In amplifier design, we are interested in $g_{m}=\left.\frac{\partial I_{D}}{\partial V_{G}}\right|_{V_{D}=\text { constant }}$, which is obtained as:

## JFET: simplified model for saturation

$I_{D}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[\left(\frac{V_{D}+V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}$.
At saturtation, $V_{D}^{\text {sat }}=V_{G}-V_{P}$, giving
$I_{D}^{\text {sat }}=G_{0}\left\{V_{D}-\frac{2}{3}\left(V_{\mathrm{bi}}-V_{P}\right)\left[1-\left(\frac{V_{\mathrm{bi}}-V_{G}}{V_{\mathrm{bi}}-V_{P}}\right)^{3 / 2}\right]\right\}$.
The following approximate model is found to be adequate in circuit design:
$I_{D}^{\text {sat }}\left(V_{G}\right)=I_{D S S}\left(1-V_{G} / V_{P}\right)^{2}$, where $I_{D S S}=I_{D}^{\text {sat }}\left(V_{G}=0 V\right)$.
In amplifier design, we are interested in $g_{m}=\left.\frac{\partial I_{D}}{\partial V_{G}}\right|_{V_{D}=\text { constant }}$, which is obtained as:
$g_{m}=g_{m 0}\left(1-V_{G} / V_{P}\right)$,
where $g_{m 0}=-2 I_{D S S} / V_{P}=g_{m}\left(V_{G}=0 V\right)$.

## JFET: source/drain resistances



## JFET: source/drain resistances



In real JFETs, there is a separation between the source/drain contacts and the active channel. The $n$-type semiconductor regions between the active channel and the source/drain contacts can be modelled by resistances $R_{S}$ and $R_{D}$.

## JFET: small-signal model



* A small-signal model of a JFET is required in analysis of an amplifier.


## JFET: small-signal model



* A small-signal model of a JFET is required in analysis of an amplifier.
* The DC gate current, which is the reverse current of a $p-n$ junction, is generally insignificant and is therefore ignored.


## JFET: small-signal model



* A small-signal model of a JFET is required in analysis of an amplifier.
* The DC gate current, which is the reverse current of a $p-n$ junction, is generally insignificant and is therefore ignored.
* $g_{m}=\frac{\partial I_{D}}{\partial V_{G}}$ with $V_{D}=$ constant.


## JFET: small-signal model



* A small-signal model of a JFET is required in analysis of an amplifier.
* The DC gate current, which is the reverse current of a p-n junction, is generally insignificant and is therefore ignored.
* $g_{m}=\frac{\partial I_{D}}{\partial V_{G}}$ with $V_{D}=$ constant.
* $g_{d}=\frac{\partial I_{D}}{\partial V_{D}}$ with $V_{G}=$ constant.


## JFET: small-signal model




* A small-signal model of a JFET is required in analysis of an amplifier.
* The DC gate current, which is the reverse current of a $p-n$ junction, is generally insignificant and is therefore ignored.
* $g_{m}=\frac{\partial I_{D}}{\partial V_{G}}$ with $V_{D}=$ constant.
* $g_{d}=\frac{\partial I_{D}}{\partial V_{D}}$ with $V_{G}=$ constant.
* $g_{m}$ and $g_{d}$ can be obtained by differentiating $I_{D}\left(V_{G}, V_{D}\right)$. Note that, in our simple model, short-channel effects have not been included; we would therefore obtain $g_{d}=0 \mho$ in saturation. However, a real device would show a small increase in $I_{D}$ with an increase in $V_{D}$ in saturation, giving rise to a non-zero $g_{d}$.


## JFET: small-signal model




Amplifier example

* A small-signal model of a JFET is required in analysis of an amplifier.
* The DC gate current, which is the reverse current of a $p-n$ junction, is generally insignificant and is therefore ignored.
* $g_{m}=\frac{\partial I_{D}}{\partial V_{G}}$ with $V_{D}=$ constant.
* $g_{d}=\frac{\partial I_{D}}{\partial V_{D}}$ with $V_{G}=$ constant.
* $g_{m}$ and $g_{d}$ can be obtained by differentiating $I_{D}\left(V_{G}, V_{D}\right)$. Note that, in our simple model, short-channel effects have not been included; we would therefore obtain $g_{d}=0 \mho$ in saturation. However, a real device would show a small increase in $I_{D}$ with an increase in $V_{D}$ in saturation, giving rise to a non-zero $g_{d}$.
* The capacitances $C_{g s}$ and $C_{g d}$ are depletion capacitances of the p-n junction.

