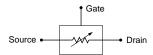
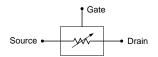
EE101: JFET operation and characteristics

M. B. Patil

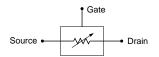
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay





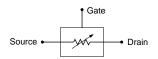
* A Field-Effect Transistor (FET) has a gate (G) terminal which controls the current flow between the other two terminals, viz., source (S) and drain (D).



- * A Field-Effect Transistor (FET) has a gate (G) terminal which controls the current flow between the other two terminals, viz., source (S) and drain (D).
- * In simple terms, a FET can be thought of as a resistance connected between S and D, which is a function of the gate voltage V_G .

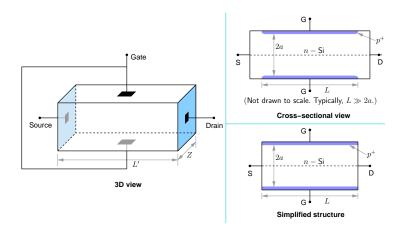


- * A Field-Effect Transistor (FET) has a gate (G) terminal which controls the current flow between the other two terminals, viz., source (S) and drain (D).
- In simple terms, a FET can be thought of as a resistance connected between S
 and D, which is a function of the gate voltage V_G.
- * The mechanism of gate control varies in different types of FETs, e.g., JFET, MESFET, MOSFET, HEMT.

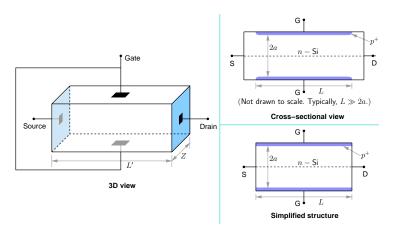


- * A Field-Effect Transistor (FET) has a gate (G) terminal which controls the current flow between the other two terminals, viz., source (S) and drain (D).
- * In simple terms, a FET can be thought of as a resistance connected between S and D, which is a function of the gate voltage V_G .
- * The mechanism of gate control varies in different types of FETs, e.g., JFET, MESFET, MOSFET, HEMT.
- * FETs can be used for analog and digital applications. In each case, the fact that the gate is used to control current flow between S and D plays a crucial role.

Junction Field-effect transistors (JFET)

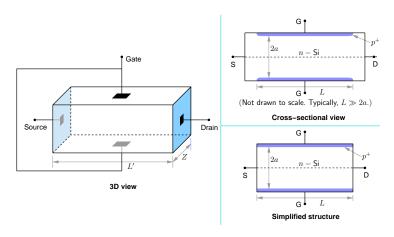


Junction Field-effect transistors (JFET)

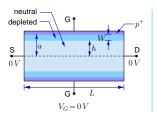


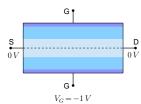
* The n-type region between the top and bottom p^+ regions offers a resistance to current flow. The resistance depends on V_G .

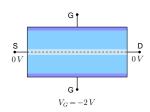
Junction Field-effect transistors (JFET)

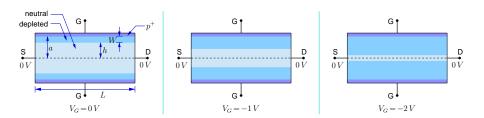


- * The *n*-type region between the top and bottom p^+ regions offers a resistance to current flow. The resistance depends on V_G .
- * We will first consider the case, $V_D = V_S = 0 V$.

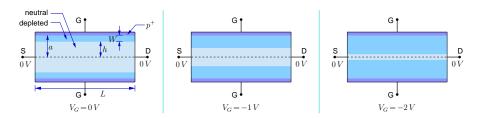




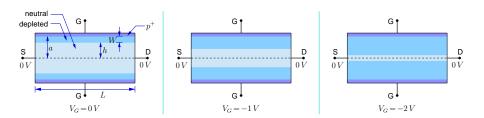




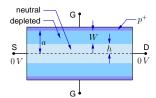
* The bias across the *p-n* junction is $(V_G - V_S)$, i.e., V_G , since $V_S = V_D = 0 \ V$.

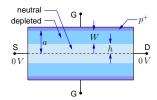


- * The bias across the *p-n* junction is $(V_G V_S)$, i.e., V_G , since $V_S = V_D = 0 \ V$.
- * As the reverse bias across the junction is increased (by making V_G more negative), the depletion region widens, and the resistance offered by the n-region increases.

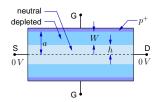


- * The bias across the p-n junction is $(V_G V_S)$, i.e., V_G , since $V_S = V_D = 0 V$.
- * As the reverse bias across the junction is increased (by making V_G more negative), the depletion region widens, and the resistance offered by the n-region increases.
- * When the reverse bias becomes large enough, the depletion region consumes the entire n-region. The corresponding V_G is called the "pinch-off" voltage.

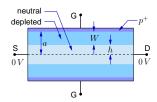




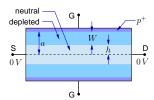
* $V_P = V_G$ for which h = 0, i.e., W = a.

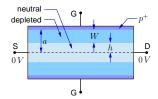


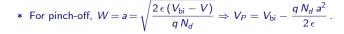
- * $V_P = V_G$ for which h = 0, i.e., W = a.
- * For a p^+ -n junction, $W = \sqrt{\frac{2 \epsilon (V_{bi} V)}{q N_d}}$, where V_{bi} is the built-in potential of the junction.

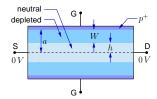


- * $V_P = V_G$ for which h = 0, i.e., W = a.
- * For a p^+ -n junction, $W = \sqrt{\frac{2 \epsilon (V_{bi} V)}{q N_d}}$, where V_{bi} is the built-in potential of the junction.
- * For pinch-off, $W = a = \sqrt{\frac{2 \epsilon (V_{\rm bi} V)}{q N_d}}$ $\Rightarrow V_P = V_{\rm bi} - \frac{q N_d a^2}{2 \epsilon}.$

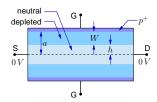






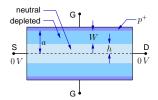


- * For pinch-off, $W = a = \sqrt{\frac{2 \epsilon (V_{bi} V)}{q N_d}} \Rightarrow V_P = V_{bi} \frac{q N_d a^2}{2 \epsilon}$.
- * Example: $N_d = 2 \times 10^{15} \text{ cm}^{-3}$, $a = 1.5 \,\mu\text{m}$, $V_{\text{bi}} = 0.8 \,V$.



- * For pinch-off, $W = a = \sqrt{\frac{2 \epsilon (V_{bi} V)}{q N_d}} \Rightarrow V_P = V_{bi} \frac{q N_d a^2}{2 \epsilon}$.
- * Example: $N_d = 2 \times 10^{15} \text{ cm}^{-3}$, $a = 1.5 \,\mu\text{m}$, $V_{\text{bi}} = 0.8 \,V$.

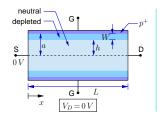
$$W = 0.8 - \frac{(1.6 \times 10^{-19} \, \text{Coul})(2 \times 10^{15} \, \text{cm}^{-3})((1.5 \times 10^{-4})^2 \, \text{cm}^2)}{2 \times 11.7 \times 8.85 \times 10^{-14} \, F/\text{cm}}$$
$$= 0.8 - 3.48 \approx -2.7 \, V.$$

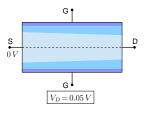


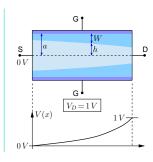
- * For pinch-off, $W = a = \sqrt{\frac{2 \epsilon (V_{bi} V)}{q N_d}} \Rightarrow V_P = V_{bi} \frac{q N_d a^2}{2 \epsilon}$.
- * Example: $N_d = 2 \times 10^{15} \text{ cm}^{-3}$, $a = 1.5 \,\mu\text{m}$, $V_{\text{bi}} = 0.8 \,V$.

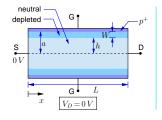
$$W = 0.8 - \frac{(1.6 \times 10^{-19} \, \text{Coul})(2 \times 10^{15} \, \text{cm}^{-3})((1.5 \times 10^{-4})^2 \, \text{cm}^2)}{2 \times 11.7 \times 8.85 \times 10^{-14} \, F/\text{cm}}$$
$$= 0.8 - 3.48 \approx -2.7 \, V.$$

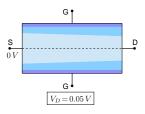
 \Rightarrow If a gate voltage $V_G = -2.7~V$ is applied, the *n*-channel gets pinched off, and the device resistance becomes very large.

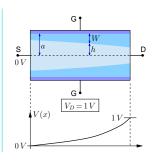




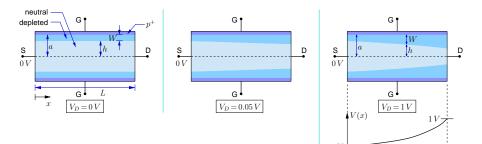




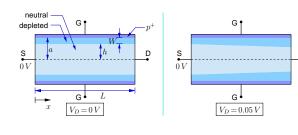


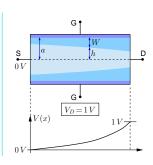


* Consider an n-JFET with V_G constant (and not in pinch-off mode).



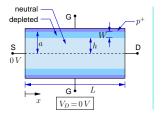
* Consider an *n*-JFET with V_G constant (and not in pinch-off mode). If a positive V_D is applied, the potential V(x) inside the channel from S to D (along the dashed line) increases from 0 V to V_D .

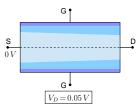


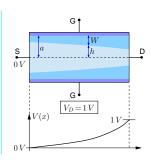


* Consider an *n*-JFET with V_G constant (and not in pinch-off mode). If a positive V_D is applied, the potential V(x) inside the channel from S to D (along the dashed line) increases from 0 V to V_D . Note that W and h are now functions of x such that, W(x) + h(x) = a.

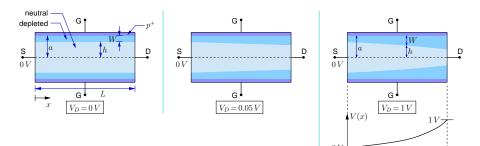
D



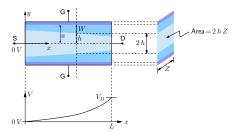


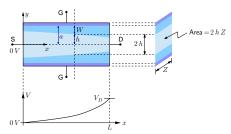


- * Consider an *n*-JFET with V_G constant (and not in pinch-off mode). If a positive V_D is applied, the potential V(x) inside the channel from S to D (along the dashed line) increases from 0 V to V_D . Note that W and h are now functions of x such that, W(x) + h(x) = a.
- * Since the p-n junction bias at a given x is $(V_G V(x))$, the drain end of the channel has a larger reverse bias than the source end.



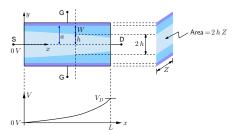
- * Consider an *n*-JFET with V_G constant (and not in pinch-off mode). If a positive V_D is applied, the potential V(x) inside the channel from S to D (along the dashed line) increases from 0 V to V_D . Note that W and h are now functions of x such that, W(x) + h(x) = a.
- * Since the p-n junction bias at a given x is (V_G − V(x)), the drain end of the channel has a larger reverse bias than the source end.
 ⇒ the depletion region is wider at the drain.





Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the x direction, and given by,

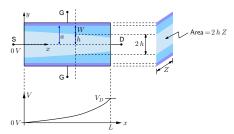
$$J_n = q\mu_n nE + qD_n \frac{dn}{dx} \approx q\mu_n nE = q\mu_n N_d \frac{dV}{dx}$$
,



Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the x direction, and given by,

$$J_n = q\mu_n nE + qD_n \frac{dn}{dx} \approx q\mu_n nE = q\mu_n N_d \frac{dV}{dx}$$
,

where we have neglected the diffusion current, since $n \approx N_d \Rightarrow \frac{dn}{dx} = 0$.

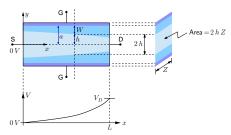


Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the x direction, and given by,

$$J_n = q\mu_n nE + qD_n \frac{dn}{dx} \approx q\mu_n nE = q\mu_n N_d \frac{dV}{dx}$$
,

where we have neglected the diffusion current, since $n \approx N_d \Rightarrow \frac{dn}{dx} = 0$.

Note that only the neutral part of the n-Si conducts since there are no carriers in the depletion regions.



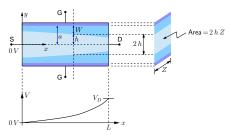
Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the x direction, and given by,

$$J_n = q\mu_n nE + qD_n \frac{dn}{dx} \approx q\mu_n nE = q\mu_n N_d \frac{dV}{dx}$$
,

where we have neglected the diffusion current, since $n \approx N_d \Rightarrow \frac{dn}{dx} = 0$.

Note that only the neutral part of the n-Si conducts since there are no carriers in the depletion regions.

At a given x, the current I_D is obtained by integrating J_n over the area of the neutral channel region (see figure on the right). Since J_n is constant over this area,



Consider a slice of the device. The current density at any point in the neutral region is assumed to be in the x direction, and given by,

$$J_n = q\mu_n nE + qD_n \frac{dn}{dx} \approx q\mu_n nE = q\mu_n N_d \frac{dV}{dx}$$
,

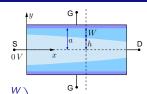
where we have neglected the diffusion current, since $n \approx N_d \Rightarrow \frac{dn}{dv} = 0$.

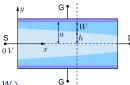
Note that only the neutral part of the n-Si conducts since there are no carriers in the depletion regions.

At a given x, the current I_D is obtained by integrating J_n over the area of the neutral channel region (see figure on the right). Since J_n is constant over this area,

$$I_D(x) = \int\!\!\int J_n dx\, dz = 2hZ \times \left(q\mu_n N_d \frac{dV}{dx}\right) = 2qZ\mu_n N_d a \frac{dV}{dx} \left(1 - \frac{W}{a}\right),$$

where we have used h = a - W, i.e., h = a(1 - W/a).





$$I_D(x) = 2 q Z \mu_n N_d a \frac{dV}{dx} \left(1 - \frac{W}{a}\right).$$

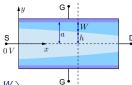
Since $I_D(x)$ is constant from x = 0 to x = L, we get,

$$\int_0^L I_D dx = I_D L = 2q Z \mu_n N_d a \int_0^{V_D} \left(1 - \sqrt{\frac{2\epsilon}{q N_d a^2}} \sqrt{V_{bi} - (V_G - V)}\right) dV,$$

where we have used, for the depletion width \ensuremath{W} ,

$$W(x) = \sqrt{\frac{2\epsilon}{qN_d} \left[V_{bi} - (V_G - V) \right]}.$$

JFET: derivation of I_D equation



$$I_D(x) = 2 q Z \mu_n N_d a \frac{dV}{dx} \left(1 - \frac{W}{a}\right).$$

Since $I_D(x)$ is constant from x = 0 to x = L, we get,

$$\int_0^L I_D dx = I_D L = 2q Z \mu_n N_d a \int_0^{V_D} \left(1 - \sqrt{\frac{2\epsilon}{q N_d a^2}} \sqrt{V_{bi} - (V_G - V)}\right) dV,$$

where we have used, for the depletion width W,

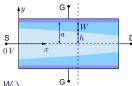
$$W(x) = \sqrt{\frac{2\epsilon}{qN_d}\left[V_{\rm bi} - (V_G - V)\right]}$$
.

Evaluating the integral and using $V_{\rm bi}-V_P=rac{qN_da^2}{2\epsilon}$, we get (do this!)

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\},$$

where $G_0 = 2qZ\mu_nN_da/L$

JFET: derivation of I_D equation



$$I_D(x) = 2 q Z \mu_n N_d a \frac{dV}{dx} \left(1 - \frac{W}{a}\right).$$

Since $I_D(x)$ is constant from x = 0 to x = L, we get,

$$\int_0^L I_D dx = I_D L = 2q Z \mu_n N_d a \int_0^{V_D} \left(1 - \sqrt{\frac{2\epsilon}{q N_d a^2}} \sqrt{V_{bi} - (V_G - V)}\right) dV,$$

where we have used, for the depletion width W,

$$W(x) = \sqrt{rac{2\epsilon}{qN_d}\left[V_{\mathsf{bi}} - (V_{\mathsf{G}} - V)\right]}\,.$$

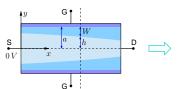
Evaluating the integral and using $V_{\rm bi}-V_P=\frac{qN_da^2}{2\epsilon}$, we get (do this!)

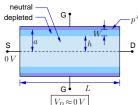
$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\},$$

where $G_0 = 2qZ\mu_nN_da/L$.

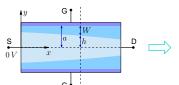
channel.

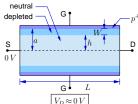
Note that G_0 is the channel conductance if there was no depletion, i.e., if h(x) = a throughout the



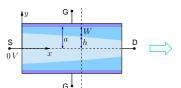


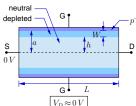
$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}$$



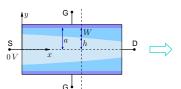


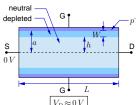
$$\begin{split} I_D &= G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[\left(\frac{V_D + V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\} \\ &\approx G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right)^{-1/2} \left[\frac{3}{2} V_D \left(V_{\text{bi}} - V_G \right)^{1/2} \right] \right\} \quad \text{(using Taylor's series)} \end{split}$$





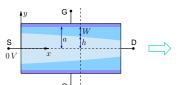
$$\begin{split} I_D &= G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[\left(\frac{V_D + V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\} \\ &\approx G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right)^{-1/2} \left[\frac{3}{2} V_D \left(V_{\text{bi}} - V_G \right)^{1/2} \right] \right\} \quad \text{(using Taylor's series)} \\ &= G_0 V_D \left\{ 1 - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{1/2} \right\}. \end{split}$$

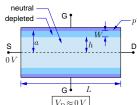




$$\begin{split} I_D &= G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[\left(\frac{V_D + V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\} \\ &\approx G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right)^{-1/2} \left[\frac{3}{2} V_D \left(V_{\text{bi}} - V_G \right)^{1/2} \right] \right\} \quad \text{(using Taylor's series)} \\ &= G_0 V_D \left\{ 1 - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{1/2} \right\}. \end{split}$$

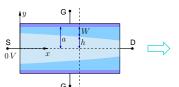
Since
$$W = \frac{2\epsilon}{qN_d} (V_{bi} - V_G)^{1/2}$$
, and $a = \frac{2\epsilon}{qN_d} (V_{bi} - V_P)^{1/2}$, we get

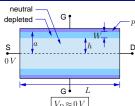




$$\begin{split} I_D &= G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[\left(\frac{V_D + V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\} \\ &\approx G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right)^{-1/2} \left[\frac{3}{2} V_D \left(V_{\text{bi}} - V_G \right)^{1/2} \right] \right\} \quad \text{(using Taylor's series)} \\ &= G_0 V_D \left\{ 1 - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{1/2} \right\}. \end{split}$$

Since
$$W = \frac{2\epsilon}{qN_d} (V_{\rm bi} - V_G)^{1/2}$$
, and $a = \frac{2\epsilon}{qN_d} (V_{\rm bi} - V_P)^{1/2}$, we get $I_D = G_0 V_D \left\{ 1 - \frac{W}{2} \right\}$.



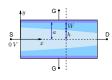


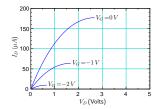
$$\begin{split} I_D &= G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[\left(\frac{V_D + V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\} \\ &\approx G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right)^{-1/2} \left[\frac{3}{2} V_D \left(V_{\text{bi}} - V_G \right)^{1/2} \right] \right\} \quad \text{(using Taylor's series)} \\ &= G_0 V_D \left\{ 1 - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{1/2} \right\}. \end{split}$$

Since
$$W = \frac{2\epsilon}{qN_d} (V_{\rm bi} - V_G)^{1/2}$$
, and $a = \frac{2\epsilon}{qN_d} (V_{\rm bi} - V_P)^{1/2}$, we get

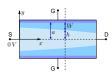
$$I_D = G_0 V_D \left\{ 1 - \frac{W}{a} \right\}.$$

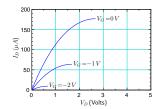
This simply shows that the channel conductance reduces linearly with W (as seen before the $V_S = V_S = 0$ V condition), and for $V_G = V_P$ (i.e., W = a), the conductance becomes zero.





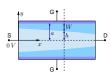
$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}.$$

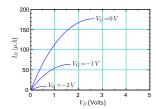




$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}.$$

For a given V_G , I_D reaches a maximum at $V_D = V_G - V_P$ (show this by differentiating the above equation).

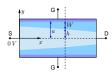


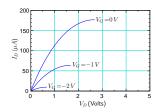


$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}.$$

For a given V_G , I_D reaches a maximum at $V_D = V_G - V_P$ (show this by differentiating the above equation).

At this value of V_D , the bias across the p-n junction at the drain end is $V_G - V_D = V_P$.

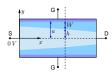


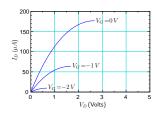


$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}.$$

For a given V_G , I_D reaches a maximum at $V_D = V_G - V_P$ (show this by differentiating the above equation).

At this value of V_D , the bias across the p-n junction at the drain end is $V_G - V_D = V_P$. In other words, the drain end of the channel has *just* reached pinch-off.

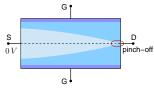


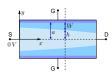


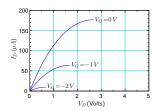
$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}.$$

For a given V_G , I_D reaches a maximum at $V_D = V_G - V_P$ (show this by differentiating the above equation).

At this value of V_D , the bias across the p-n junction at the drain end is $V_G - V_D = V_P$. In other words, the drain end of the channel has *just* reached pinch-off.



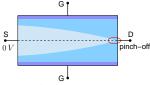


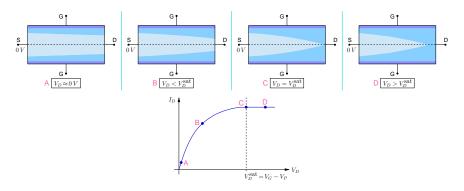


$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}.$$

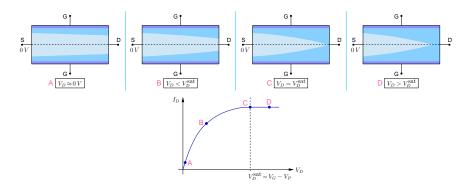
For a given V_G , I_D reaches a maximum at $V_D = V_G - V_P$ (show this by differentiating the above equation).

At this value of V_D , the bias across the p-n junction at the drain end is $V_G - V_D = V_P$. In other words, the drain end of the channel has *just* reached pinch-off.



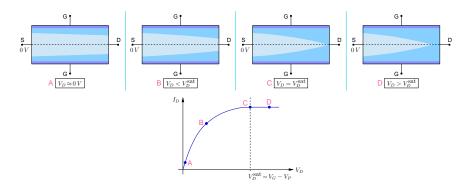


Consider a fixed V_G with V_D varying from $\sim 0 V$ to a value beyond condition C.



Consider a fixed V_G with V_D varying from \sim 0 V to a value beyond condition C.

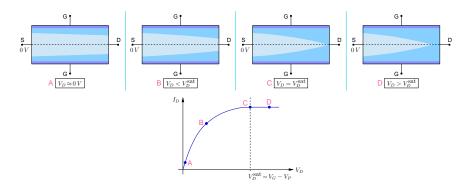
In this situation, i.e., $V_D > V_D^{\rm sat}$, a *short* high-field region develops near the drain end, and the "excess" voltage, $V_D - V_D^{\rm sat}$ drops across this region.



Consider a fixed V_G with V_D varying from $\sim 0 V$ to a value beyond condition C.

In this situation, i.e., $V_D > V_D^{\rm sat}$, a short high-field region develops near the drain end, and the "excess" voltage, $V_D - V_D^{\rm sat}$ drops across this region.

Because the high-filed region is confined to a very small distance, the conditions in the device are almost identical in C and $\mathsf{D}.$

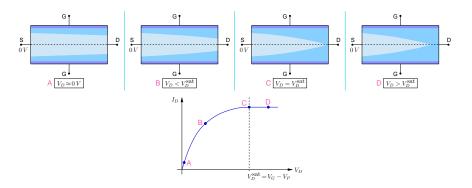


Consider a fixed V_G with V_D varying from $\sim 0 V$ to a value beyond condition C.

In this situation, i.e., $V_D > V_D^{\rm sat}$, a short high-field region develops near the drain end, and the "excess" voltage, $V_D - V_D^{\rm sat}$ drops across this region.

Because the high-filed region is confined to a very small distance, the conditions in the device are almost identical in C and $\mathsf{D}.$

⇒ The current in case D is almost the same as that for case C.



Consider a fixed V_G with V_D varying from $\sim 0~V$ to a value beyond condition C.

In this situation, i.e., $V_D > V_D^{\rm sat}$, a short high-field region develops near the drain end, and the "excess" voltage, $V_D - V_D^{\rm sat}$ drops across this region.

Because the high-filed region is confined to a very small distance, the conditions in the device are almost identical in C and $\mathsf{D}.$

 \Rightarrow The current in case D is almost the same as that for case C.

The region $V_D > V_D^{\rm sat}$ is therefore called the "saturation region."

JFET: example

An *n*-channel silicon JFET has the following parameters (at $T=300~\rm{K}$): $a=1.5~\mu\rm{m},~L=5~\mu\rm{m},~Z=50~\mu\rm{m},~N_d=2\times10^{15}~\rm{cm}^{-3},~V_{bi}=0.8~\rm{V},~\mu_n=300~\rm{cm}^2/\rm{V}\text{-sec}.$

- (a) What is the pinch-off voltage?
- (b) Write a program to generate I_D - V_D characteristics for $V_G=0\ V$, $-0.5\ V$, $-1\ V$, $-1.5\ V$, $-2\ V$.
- (c) For each of the above V_G values, compute $V_D^{\rm sat}$, and show it on the I_D - V_D plot. The part of an I_D - V_D corresponding to $V_D < V_D^{\rm sat}$ is called the "linear" region, and that corresponding to $V_D > V_D^{\rm sat}$ is called the "saturation" region.

JFET: example

An *n*-channel silicon JFET has the following parameters (at $T=300~\rm{K}$): $a=1.5~\mu\rm{m},~L=5~\mu\rm{m},~Z=50~\mu\rm{m},~N_d=2\times10^{15}~\rm{cm}^{-3},~V_{bi}=0.8~\rm{V},~\mu_n=300~\rm{cm}^2/\rm{V}\text{-sec}.$

- (a) What is the pinch-off voltage?
- (b) Write a program to generate I_D - V_D characteristics for $V_G=0\ V$, $-0.5\ V$, $-1\ V$, $-1.5\ V$, $-2\ V$.
- (c) For each of the above V_G values, compute $V_D^{\rm sat}$, and show it on the I_D - V_D plot. The part of an I_D - V_D corresponding to $V_D < V_D^{\rm sat}$ is called the "linear" region, and that corresponding to $V_D > V_D^{\rm sat}$ is called the "saturation" region.

Answer:

- (a) $V_P = -2.68 V$.

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}.$$

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}.$$

At saturtation, $V_D^{\rm sat} = V_G - V_P$, giving

$$I_D^{\text{sat}} = G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[1 - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}.$$

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}.$$

At saturtation, $V_D^{\rm sat} = V_G - V_P$, giving

$$I_D^{\text{sat}} = G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[1 - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}.$$

The following approximate model is found to be adequate in circuit design:

$$I_D^{\text{sat}}(V_G) = I_{DSS} (1 - V_G/V_P)^2$$
, where $I_{DSS} = I_D^{\text{sat}}(V_G = 0 \ V)$.

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}.$$

At saturtation, $V_D^{\rm sat} = V_G - V_P$, giving

$$I_D^{\text{sat}} = G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[1 - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}.$$

The following approximate model is found to be adequate in circuit design:

$$I_D^{\text{sat}}(V_G) = I_{DSS} (1 - V_G/V_P)^2$$
, where $I_{DSS} = I_D^{\text{sat}}(V_G = 0 \ V)$.

In amplifier design, we are interested in $g_m=\left.\frac{\partial I_D}{\partial V_G}\right|_{V_D={\rm constant}}$, which is obtained as:

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}.$$

At saturtation, $V_D^{\rm sat} = V_G - V_P$, giving

$$I_D^{\text{sat}} = G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[1 - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}.$$

The following approximate model is found to be adequate in circuit design:

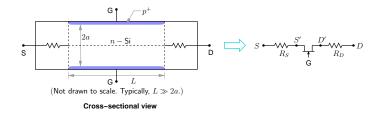
$$I_D^{\text{sat}}(V_G) = I_{DSS} (1 - V_G/V_P)^2$$
, where $I_{DSS} = I_D^{\text{sat}}(V_G = 0 \ V)$.

In amplifier design, we are interested in $g_m=\left.\frac{\partial I_D}{\partial V_G}\right|_{V_D={\rm constant}}$, which is obtained as:

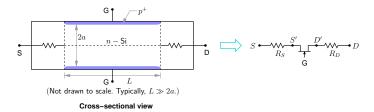
$$g_m = g_{m0} (1 - V_G/V_P),$$

where $g_{m0} = -2I_{DSS}/V_P = g_m(V_G = 0 \ V)$.

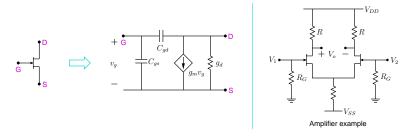
JFET: source/drain resistances



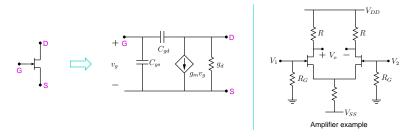
JFET: source/drain resistances



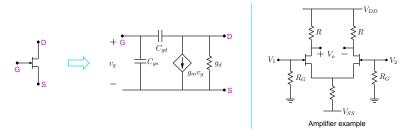
In real JFETs, there is a separation between the source/drain contacts and the active channel. The n-type semiconductor regions between the active channel and the source/drain contacts can be modelled by resistances R_S and R_D .



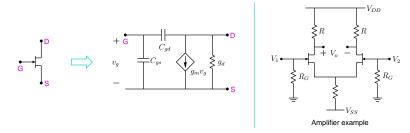
* A small-signal model of a JFET is required in analysis of an amplifier.



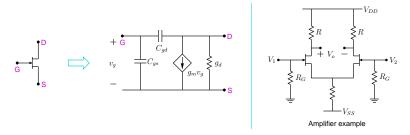
- * A small-signal model of a JFET is required in analysis of an amplifier.
- * The DC gate current, which is the reverse current of a *p-n* junction, is generally insignificant and is therefore ignored.



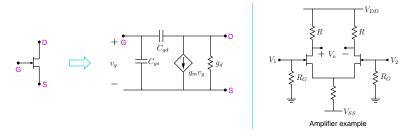
- * A small-signal model of a JFET is required in analysis of an amplifier.
- * The DC gate current, which is the reverse current of a *p-n* junction, is generally insignificant and is therefore ignored.
- * $g_m = \frac{\partial I_D}{\partial V_C}$ with $V_D = \text{constant}$.



- * A small-signal model of a JFET is required in analysis of an amplifier.
- * The DC gate current, which is the reverse current of a *p-n* junction, is generally insignificant and is therefore ignored.
- * $g_m = \frac{\partial I_D}{\partial V_G}$ with $V_D = \text{constant}$.
- * $g_d = \frac{\partial I_D}{\partial V_D}$ with $V_G = \text{constant.}$



- * A small-signal model of a JFET is required in analysis of an amplifier.
- * The DC gate current, which is the reverse current of a *p-n* junction, is generally insignificant and is therefore ignored.
- * $g_m = \frac{\partial I_D}{\partial V_G}$ with $V_D = \text{constant}$.
- * $g_d = \frac{\partial I_D}{\partial V_D}$ with $V_G = \text{constant}$.
- * g_m and g_d can be obtained by differentiating $I_D(V_G,V_D)$. Note that, in our simple model, short-channel effects have not been included; we would therefore obtain $g_d=0$ \mho in saturation. However, a real device would show a small increase in I_D with an increase in V_D in saturation, giving rise to a non-zero g_d .



- * A small-signal model of a JFET is required in analysis of an amplifier.
- * The DC gate current, which is the reverse current of a *p-n* junction, is generally insignificant and is therefore ignored.
- * $g_m = \frac{\partial I_D}{\partial V_G}$ with $V_D = \text{constant}$.
- * $g_d = \frac{\partial I_D}{\partial V_D}$ with $V_G = \text{constant}$.
- * g_m and g_d can be obtained by differentiating $I_D(V_G,V_D)$. Note that, in our simple model, short-channel effects have not been included; we would therefore obtain $g_d=0$ \mho in saturation. However, a real device would show a small increase in I_D with an increase in V_D in saturation, giving rise to a non-zero g_d .
- * The capacitances C_{gs} and C_{gd} are depletion capacitances of the p-n junction.

