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222AGENDA

♦ Efficient RTL;

♦ Synthesis;

♦ Static Timing Analysis;

♦ Design for Testability and Fault Coverage.
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444Design Entry
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555The Coding Style

MY_ASIC.vhd

Readable

Synthesis

Verification

Simulation 
Speed

Re-use
Portability

Maintenance
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666Readable VHDL

• use consistent style for signal names, variables, functions,   
processes, etc. (e.g. DT_name_77, CK_125, START_L, 
I_instance_name, P_process_name,...) 

• use the same name or similar names for ports and signal that are 
connected to.

• use a consistent ordering of bits  (e.g. MSB downto LSB).

• use indentation.

• use comments.

• use functions instead of repeating same sections of code.

• use loops and arrays.

• don’t mix component instantiation and RTL code.
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777Simulation speed

It takes days to simulate few milliseconds of circuit real life!

Therefore it is very important to write HDL code that doesn’t 
slow down the verification process.

• use arrays as much as possible instead of loops.

• priority on low frequency control signals.

• avoid process with heavy sensitivity lists (each signal in the 
sensitivity list will trig the process).
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888Verification

The VHDL and the consequent inferred circuit architecture
must be thought for a exhaustive verification.

•Avoid architectures for which is not clear what is the worst case or will 
create difficult-to-predict problems (e.g. asynchronous clocking and 
latches).

•Poor practices on clock generations (gated clocks, using both falling and 
rising clock edges in the design, etc.)

•Never use clocks where generated.

•Always double-check your design with a logic synthesis tool as early as 
possible. (VHDL compilers don’t check the sensitivity lists and don’t warn 
you about latches)`
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999The VHDL - RTL Subset

NO
• Timing delays
• Multidimensional arrays (latest l.s. tools allows it)
• Implicit finite state machines

YES
• Combinatorial circuits 
• Registers
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101010Recommended Types

YES
• std_ulogic for signals;
• std_ulogic_vector for buses;
• unsigned for buses used in circuits implementing arithmetic 
functions.

NO
• bit and bit_vector: some simulators don’t provide           
built-in arithmetic functions for these types and, however, is
only a two states signal (‘X’ state is not foreseen);
• std_logic(_vector): multiple drivers will be resolved for 
simulation (lack of precise synthesis semantics).
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111111Design re-use

Nowadays, designs costs too much to use them for only one 
project. Every design or larger building block must be 
thought of as intellectual property (IP).

Reuse means:
• use of the design with multiple purposes;
• design used by other designers;
• design implemented in other technologies;

Therefore, it is necessary to have strong coding style rules, 
coded best practices, architectural rules and templates.  
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121212Maintenance

Design that are implemented following rules and coding styles 
shared by the design community are easy to understand and to 
upgrade, prolonging its life cycle.

For the same purposes a good documentation is a must. On the 
other hand, the documentation itself can be shorter, dealing only 
with the general description of the block, since most of the 
details will be clear from the design practices and guidelines.
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131313Documentation
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141414Some HDL guidelines and examples
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151515Combinatorial Processes

process(sensitivity list)
begin

statement_1;
…

statement_n;
end process;

! Only signals in the sensitivity list activate the process. If 
the list is not complete, the simulation will show poor 
results;

! Not assigning signals in every branch of the concurrent 
statements will lead to inferred latches. 
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161616
Concurrent Assignments Inside 
Processes
P_MUX1: process(sel,a,b)
begin

case sel is
when ‘0’ =>

y <= a;
when others =>

y < b;
end case;

end process;

P_MUX2: process(sel,a,b)
begin

if SEL = ‘0’ then
y <= a;

else
y <= b;

end if;
end process;

0

1

a

b

sel

y
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171717Tips on Conditional Statements

EASY TO WRITE, DIFFICULT TO VERIFY AND MAINTAIN:

if cond1 then
…

elsif
…

else
…

end if;

DIFFICULT TO WRITE, EASY TO VERIFY AND MAINTAIN:
case sel is

when choice_1 => …
when choice_2 => …
when others => …

end if;
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181818Frequent Errors

if a=“00” then
y0 <= ‘0’;

elsif a=“11” then
y0 <= ‘1’;
y1 <= ‘0’;

else
y0 <= ‘0’;
y1 <= ‘1’;

end if;

y1 not always assigned => INFERRED LATCH
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191919The Use of ‘for loops’

signal a,b,y: std_ulogic_vector(7 downto 0);

for I in y’range loop
y(I)<= a(I) and b(I);

end loop;
a(7)

y(7)
b(7)

...

a(0)
y(0)

b(0)
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202020Tips for ‘for loop’ Implementation

The for loop statement is supported by synthesis tools 
when the range bounds in the loop are globally static. 
When the range is not static (e.g. when one of the bounds 
is a signal value), the synthesis result is not a simple 
hardware duplication.

In other words, the for loop must be un-foldable.

! Often the use of for loop can be avoided using 
vectors.
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212121Avoiding for loops

signal a: std_ulogic_vector(15 downto 0);

P_SHIFT: process(a)
begin

for I in 0 to 14 loop
a(I) <= a(I+1);

end loop;
a(15) <= a(0);

end process;

OR

a(14 downto 0) <= a(15 downto 1);
a(15) <= a(0);
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222222The Edge Triggered Enabled flip flop

process(CK,STARTL)
begin
if STARTL = ‘0’ then
Q <= ‘0’;

elsif CK=‘1’ and CK’event then
if EN = ‘1’ then

Q <= D;
end if;

end if;
end process;

0

1D

EN

CK

Q

STARTL
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232323Finite State Machines

Only synchronous finite state machines are the only ones 
accepted by synthesis tools.

Basics:
• The automaton is always in one of its possible sates: the 
current state (stored in the state register).
• The next state may be computed using the current state and the 
input values.
• Output values are computed depending on either the current 
state or the transition between two states (Moore or Mealy).
• During each clock period, the state register is updated with the 
previously computed state (next state)
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242424Moore and Mealy

STATELOGIC LOGIC

CK

IN OUT

STATELOGIC LOGIC

CK

IN OUT

Moore

Mealy
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252525FSM template

P_NXT_STATE: process(STATE, IN)
begin

STATE_NXT <= … logic …
end process;

P_STORE: process(CK, STARTL)
begin

if STARTL = ‘0’ then
STATE <= (others => ‘0’);

elsif CK’event and CK=‘1’ then
STATE <= STATE_NXT;

end if;
end process;

P_OUT: process(STATE, IN)
begin

OUT <= logic(STATE, IN)
end process;

PRESENT ONLY 
IF MEALY
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262626One-hot vs binary coded

One-hot encoding sets one bit in the state register for each 
state. This seems wasteful (a FSM with N states requires 
exactly N flip-flops instead of log2N with binary 
encoding).

One-hot encoding simplifies the logic and the interconnect 
between the logic resulting often in smaller and faster FSMs.

Especially in FPGAs, where routing resources are limited, 
one-hot encoding is sometimes the best choice.
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272727The Metastability Phenomenon

Metastability may occur when the data input changes too 
close to the clock edges (setup or hold violation). In such 
cases the flip-flop cannot decide whether its output should 
be a ‘1’ or a ‘0’ for a long time. This situation is called an 
upset.

This cannot occur in fully synchronous design if timing 
constraints were met. However it may rise the opportunity to 
register signals that come from the outside world (or form 
another clock domain).
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282828Metastability Theory

Experimentally was found that the probability of upset is:

where tr is the time the flip-flop has to resolve the output, T0 and 
τc are flip-flop constant.
The Mean Time Between Upsets (MTBU) is

Therefore even if the data is changing slowly, simple
oversampling is not an error-free technique.

c

rt

eTp τ
−

= 0

DTCK ffp
MTBU

⋅⋅
=

1
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292929Input Synchronisation

Using two flip-flops in cascade greatly reduces the overall 
value of τc and T0 and as a consequence the probability of 
upset, p.

When the first flip-flop capture an intermediate voltage 
level (‘X’)  the flip-flop takes some time to resolve in a ‘0’ 
or ‘1’ level. The resolution time is usually several times
longer than the clock-to-out time of the flip-flop, but less 
than the clock period. However the second flip-flop is 
always capturing stable data.

The penalty is an extra clock cycle latency.
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303030Pipelining and Parallel Processing

Pipelining transformation  leads to a reduction in the critical path, 
which can be exploited to either increase the sample speed or to reduce 
power consumption at same speed. 
Pipelining reduces the effective critical path by introducing pipelining 
delays along the datapath.

In parallel processing, multiple outputs are computed in a clock period. 
Parallel processing increase the sampling rate by replicating the 
hardware so that several inputs can be processed a the same time.

Therefore, the effective sampling speed is increased by the level of 
parallelism. 
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313131Pipelining

The pipelining latches can only be placed across any feed-forward cutset of the 
graph. We can arbitrarily place latches on a feed-forward cutset without affecting 
the functionality of the algorithm.

In an M-level pipelined system, the number of delay elements in any path from
input to output is (M-1) greater than that in the same path in the original system.

The two main drawbacks of the pipelining are increase in the number of latches 
(area) and in system latency.

D

f.f. cutset cutset
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323232Parallel Processing

To obtain a parallel processing system, the SISO (single input –
single output) system must be converted into a MIMO (multiple 
input – multiple output).

In a parallelized system the critical path remain the same. It is 
important to understand that in a parallel system the clock period 
Tck and the sample period TS are different. In an M-level 
parallelized system holds

Tck=M TS
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333333
Pipelining and Parallel Processing 
Dualism (1)

Parallel processing and pipelining techniques are duals of each 
other. If a computation can be pipelined, it can also be processed 
in parallel and vice versa.

While independent sets of computation are performed in an 
interleaved manner in a pipelined system, they are computed in 
parallel processing mode by means of duplicate hardware.
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343434
Pipelining and Parallel Processing 
Dualism (2)

x[n] y[n]

x[2n]

x[2n+1]

y[2n]

y[2n+1]
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353535Folding

It is  important  to minimize the silicon area of the integrated circuits, 
which is achieved by reducing the number of functional units, 
registers, multiplexers, and interconnection wires.

By executing multiple algorithm operations on a single functional unit, 
the number of functional units in the implementation is reduced,
resulting in a smaller silicon area.

Folding provides a means for trading area for time in a DSP 
architecture. In general, folding can be used to reduce the number of 
hardware functional units by a factor N at the expense of increasing the 
computation time by a factor of N.
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363636Folding Example

+ +

b(n) c(n)

y(n)a(n)

D+
a(n)

b(n) c(n)

y(n)
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373737Case Study: Frame Aligner

FAW payload FAW
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383838Using for-loop

entity ROT_FOR7 is
Port (PHASE     : In    std_ulogic_vector (6 downto 0);

STACK : In std_ulogic_vector (255 downto 0);
DT_OUT    : Out   std_ulogic_vector (127 downto 0) 

);
end ROT_FOR7;

architecture BEHAVIORAL of ROT_FOR7 is
CONSTANT N : Integer :=7;
signal INT_PHASE :integer range 0 to 127;

begin
INT_PHASE <= conv_integer(unsigned(PHASE));

p1 : process(INT_PHASE, STACK)
begin

for i in 0 to (2**N-1) loop
DT_OUT(i) <= STACK(i+INT_PHASE+1);

end loop;
end process;

end BEHAVIORAL;
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393939Using a low level description

architecture BEHAVIORAL of ROT_STK7 is
CONSTANT N : Integer :=7;

CONSTANT DIM0 : Integer := 2**(N+1) -1;     -- 255
CONSTANT DIM1 : Integer := DIM0 - 2**(N-1); -- 191
[ ... ]

CONSTANT DIM7 : Integer := DIM6 - 2**(N-7); -- 128

begin  
p1 : process(PHASE, STACK)
VARIABLE stack0 : std_ulogic_vector(DIM0-1 downto 0);

[...]
VARIABLE stack7 : std_ulogic_vector(DIM7-1 downto 0);
begin

stack0(DIM0-1 downto 0) := STACK(DIM0 downto 1);
IF (PHASE(N-1) = '1') THEN stack1(DIM1-1 downto 0)  :=  stack0(DIM0-1 downto DIM0-DIM1);

ELSE stack1(DIM1-1 downto 0)  :=  stack0(DIM1-1 downto 0); END IF;
IF (PHASE(N-2) = '1') THEN stack2(DIM2-1 downto 0)  := stack1(DIM1-1 downto DIM1-DIM2);

ELSE stack2(DIM2-1 downto 0)  := stack1(DIM2-1 downto 0); END IF;
IF (PHASE(N-3) = '1') THEN stack3(DIM3-1 downto 0)  := stack2(DIM2-1 downto DIM2-DIM3);

ELSE stack3(DIM3-1 downto 0)  := stack2(DIM3-1 downto 0); END IF;
IF (PHASE(N-4) = '1') THEN stack4(DIM4-1 downto 0)  := stack3(DIM3-1 downto DIM3-DIM4);

ELSE stack4(DIM4-1 downto 0)  := stack3(DIM4-1 downto 0); END IF;
IF (PHASE(N-5) = '1') THEN stack5(DIM5-1 downto 0) := stack4(DIM4-1 downto DIM4-DIM5);

ELSE stack5(DIM5-1 downto 0) := stack4(DIM5-1 downto 0); END IF;
IF (PHASE(N-6) = '1') THEN stack6(DIM6-1 downto 0) := stack5(DIM5-1 downto DIM5-DIM6);

ELSE stack6(DIM6-1 downto 0) := stack5(DIM6-1 downto 0); END IF;
IF (PHASE(N-7) = '1') THEN stack7(DIM7-1 downto 0) := stack6(DIM6-1 downto DIM6-DIM7);

ELSE stack7(DIM7-1 downto 0) := stack6(DIM7-1 downto 0); END IF;
DT_OUT <= stack7;

end process;
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404040Synthesis report: Area 
synthesis report: area

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

stack

for

bus

stack 18 71.5 185 454 1087 2487.5

for 70.5 242.5 1249 4514 15767 88585.5

bus 30.5 117.5 391.5 1432 5550 21766.5

2 3 4 5 6 7
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414141Synthesis: CPU Time
synthesis report: CPU time

0:00:00

0:28:48

0:57:36

1:26:24

1:55:12

2:24:00

2:52:48

3:21:36

STACK

FOR

BUS

STACK 0:00:20 0:00:08 0:00:09 0:00:14 0:00:24 0:00:48

FOR 0:00:35 0:00:32 0:00:51 0:05:52 0:11:32 3:07:57

BUS 0:00:19 0:00:13 0:00:13 0:00:36 0:02:34 0:17:03

1 2 3 4 5 6
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424242Functional Verification
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434343Pre- and Post Layout Simulation
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444444Logic Synthesis
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454545RTL Block Synthesis
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Area & Timing Goals
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464646Technology Library

cell ( AND2_3 ) {
area : 8.000 ;
pin ( Y ) {

direction : output;
timing ( ) {

related_pin : "A" ;
timing_sense : positive_unate ;
rise_propagation (drive_3_table_1) {

values ("0.2616, 0.2608, 0.2831,..)
}
rise_transition (drive_3_table_2) {

values ("0.0223, 0.0254, ...)
. . . . 

}
function : "(A & B)";
max_capacitance :  1.14810 ;
min_capacitance :  0.00220 ;

}
pin ( A ) {

direction : input;
capacitance : 0.012000;
}

. . . . 

Cell Name

Cell Area

Nominal Delays

Cell Functionality

Design Rules for 
Output Pin

Electrical Characteristics of 
Input Pins

Y = A + B

t
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474747Wire-load Model

With the shrinking of process geometries, the delays incurred by the 
switching of transistors become smaller. On the other hand, delays due to 
physical characteristics (R, C) connecting the transistors become larger.

Logical synthesis tools do not take into consideration “physical” information 
like placement when optimizing the design. Further the wire load models 
specified in the technology library are based on statistical estimations.

In-accuracies in wire-load models and the actual placement and routing can 
lead to synthesized designs which are un-routable or don’t meet timing 
requirements after routing.
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484848Post layout timing analysis (FPGA)
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494949Timing Analysis
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505050Timing Goals: Synchronous Designs

• Synchronous Designs:
• Data arrives from a clocked device
• Data goes to a clocked device 

• Objective:
• Define the timing constraints for all paths within a design:

• all input logic paths
• the internal (register to register) paths, and 
• all output paths
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515151Constraining the Input Paths

TO_BE_SYNTHESIZED

N
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525252
Constraining Output Paths of a 
Design

Clk

S
D  Q

Ts

TO_BE_SYNTHESIZED

D  Q

TT TSETUP

T

External Logic

U3 B

TClk-q

U3 Launches 
Data

External 
Flip-Flop 
captures 

data

TT + TSETUP

Launch Edge Capture Edge

TClk-q + TS

(Output Delay)

Clk

B Valid new data
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535353Static Timing Analysis

• Static Timing Analysis  can determine if a circuit meets timing constraints 
without dynamic simulation 

• This involves three main steps: 
• Design is broken down into sets of timing paths
• The delay of each path is calculated
• All path delays are checked to see if timing constraints have been met

D  QA

CLK

Z

Path 1

Path 3

Path 2
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545454Calculating a Path Delay

0.431.0
0.54

0.32

0.66

0.23
0.25

D1
U33

path_delay = (1.0 + 0.54 + 0.32 + 0.66 + 0.23 + 0.43 + 0.25) =  3.43 ns

To obtain the path delay you have to add all the net and cell 
timing arcs along the path.
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555555Post synthesis timing (FPGA)
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565656Test for Manufacturing Defects

• The manufacturing test is created to detect manufacturing defects and 
reject those parts before shipment

• Debug manufacturing process

• Improve process yield



ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

575757The importance of Test

Cost Operation description
$1  to fix an IC (throw it away)
$10  to find and replace a bad IC on a board
$100  to find a bad board in a system

$1000  to find a bad component in a fielded system
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585858Test Case Study

ASIC defect
level

Defective
ASICs

Total PCB
 repair cost

Defective
 boards

Total repair cost
at a system level

5% 5000 $1million 500 $5million
1% 1000 $200,000 100 $1milion

0.1% 100 $20,000 10 $100,000
0.01% 10 $2,000 1 $10,000

Assumptions
• the number of part shipped is 100,000;  
• part price is $10; 
• total part cost is $1million; 
• the cost of a fault in an assembled PCB is $200; 
• system cost is $5000; 
•the cost of repairing or replacing a system due to failure is $10,000.
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595959Manufacturing Defects

l Silicon Defects
l Photolithography Defects
l Mask Contamination
l Process Variations
l Defective Oxide

Physical Defects
l Shorts (Bridging Faults)
l Opens
l Transistor Stuck On/Open
l Resistive Short/Open
l Changes in Threshold Voltage

Electrical Effects

l Logic Stuck-at-0/1
l Slower Transitions (Delay Fault)
l AND-bridging, OR-bridging 

Logical Effects
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606060Fault models

Logical fault
Fault
level

Physical fault Degradation
fault

Open-circuit
fault

Short-circuit
fault

Chip
Leakage or short between package leads * *
Broken, misaligned, or poor wire bonding *
Surface contamination *
Metal migration, stress, peeling * *
Metallization (open/short) * *

Gate
Contact opens *
Gate to S/D junction short * *
Field-oxide parasitic device * *
Gate-oxide imperfection, spiking * *
Mask misalignement * *
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616161
How is Manufacturing Test 
Performed?

• Automatic Test Equipment (ATE) applies input stimulus to the Device Under Test 
(DUT) and measures the output response

• If the ATE observes a response different from the expected response, the DUT fails 
manufacturing test

• The process of generating the input stimulus and corresponding output response is 
known as Test Generation

DUT
In

p
u

ts

O
u

tp
u

ts
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626262ATE
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636363Stuck-at Fault Model

The single stuck-at fault (SSF) model assumes that there is just one fault in the 
logic we are testing. 

We use a SSF model because a multiple stuck-at fault model is too complicated 
to implement.

In the SSF model we further assume that the effect of the physical fault is to 
create only two kinds of logical fault (SA1 and SA0). The place where we inject 
faults is called the fault origin (net/input/output faults).

When a fault changes the circuit behaviour, the change is called the fault effect. 
Fault effects travel through the circuit to other logic cells causing other fault 
effects (fault propagation).
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646464
Single “Stuck-at” Fault Model: 
Example

Model manufacturing defects with a “Stuck-at” Fault

SA0
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656565Controllability

Ability to set internal nodes to a specific value

1/0
0
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666666Observability

Ability to propagate the fault effect from an internal node to 
a primary output port

1/0
1

0

1

-

1/0

1

0/1
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676767Fault collapsing

Stuck-at faults attached to different points may produce identical fault 
effects.
Using fault collapsing we can group these equivalent faults into a fault-
equivalent class (representative fault).

If any of the test that detect a fault B also detects fault A, but only some of 
the the test for fault A also detect fault B, we say that A is a dominant 
fault (some texts uses the opposite definition). To reduce the number of 
tests we will pick the test for the dominated fault B (dominant fault 
collapsing). 

Example: output SA0 for a two-input NAND dominates either input SA1 
faults.
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686868Fault Simulation and Fault Coverage

We use fault simulation to see what happens in a design when deliberately introduce 
faults. In a production test we only have access to the package pins: primary 
inputs/outputs (PI/PO).

To test an ASIC we must devise a series of sets of input patterns that will detect any 
faults. 

If the simulation shows that th POs of the faulty circuit are different than the PIs of 
the good circuit at any strobe time, then we have a detected fault; otherwise we have 
an undetected fault. At the end of the simulation we can find the fault coverage

faults detectable
faults detected

coveragefault =
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696969Fault Coverage and Defect Coverage

Fault Coverage Average defect level Average Quality Level (AQL)
50% 7% 93%
90% 3% 97%
95% 1% 99%
99% 0.1% 99.9%

99.9% 0.01% 99.99%

These results are experimental and they are the only justification for our 
assumptions in adopting the SSF model.
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707070Quiescent Leakage Current

A CMOS transistor in never completely off because of subthreshold and 
leakage current.

• Subthreshold current: VGS = 0 but trough the transistor a current of few 
pA/µm is flowing.

• Leakage current: The sources and drains of every transistor and the junctions 
between the wells and substrate form parasitic diodes. Reverse-biased diodes 
conducts a very small leakage current.

The quiescent leakage current (IDDQ) is the current measured when we test an 
ASIC with no signal activity and must have the same order of magnitude than 
the sum of the subthreshold and leakage current.

A measurement of more current than this in a non-active CMOS ASIC indicates 
a problem with the chip manufacture (or the design).
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717171Measuring the IDDQ Externally

♦ With specific ATE (Automatic Test Equipment)

• no dedicated circuits on chip;

• no impact on chip performance;

• external ad-hoc ATPG;

• time consuming.
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727272Measuring the IDDQ on Chip

♦ With a current sensor (BICM)

• dedicated circuitry;

• internal ATPG or scan to lead the device in the quiescent 
mode;

• impact on chip due to voltage drop over the BICM;

BICM

CUT

Vdd

Vss

Idd

In Out
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737373IDDQ Test

• The IDDQ test reveals shorts but not opens;

• A 100% coverage may be expensive;

• Multiple samples of the current are necessary for a meaning 
test.

• Quiescent IDD depends from the design but also mainly 
from process and  package; 
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747474
Testing a Multistage, Pipelined 
Design

Test for SA0 fault here

1

0

0

1

Need to set input pins to specific values so that 
nets within pipeline can be set to values which test 
for a fault

Need to observe results at the 
output of the design.

Each fault tested requires a predictive means for both controlling the input and 
observing the results downstream from the fault.
Each fault tested requires a Each fault tested requires a predictivepredictive means for both controlling the means for both controlling the inputinput and and 
observingobserving the results downstream from the fault.the results downstream from the fault.
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757575Scan Chains

Gains:

l Scan chain initializes nets within the design (adds controllability);

l Scan chain captures results from within the design (adds observability).

Paid price:

l Inserting a scan chain involves replacing all Flip-Flops with scannable 
Flip-Flops;

l Scan FF will affect the circuit timing and area.
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767676Inaccuracy Due to Scan Replacements

Additional fanout and
capacitive loading

DOTI

DI

TE

CLK

0

1 1

0

CLK

Larger setup time 
requirement

Larger area than non-scan registers; 

TI

DI
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777777Testability Violation: Example

D Q

SI

SE

N

SE

What would happen if, during test, a ‘1’ is shifted into the FF? We would 
never be able to “clock” the Flip-Flop!

Therefore, the FF cannot be allowed to be part of a scan chain. Logic in the net 
‘N’ cannot be tested.

The above circuit

l violates good ‘DFT’ practices;

l reduces the fault coverage.
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787878Synthesizing for Test Summary

• Test is a design methodology: it has its own testability 
design rules.

• Most problems associated with test can be anticipated and 
corrected in advance, during the initial compile of the HDL
code.
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797979Built-in Self-test

Built-in Self-test (BIST) is a set of structured-test techniques for combinatorial and 
sequential logic, memories, etc.

The working principle is to generate test vectors, apply them to the circuit under 
test (CUT) and then check the response. In order to produce long test vectors linear 
feedback shift register (LFSR) are used. By correctly choosing the points at which 
we take the feedback form an n-bit SR we can produce a pseudo random binary 
sequence (PRBS) of a maximal length (2n-1).

CK CK CK
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808080Signature Analysis

If we apply a binary input sequence to IN, the shift register will perform data compression 
on the input sequence. At the end of the input sequence the shift-register contents, 
Q0Q1Q2, will form a pattern called signature.

If the input sequence and the serial-input signature register are long enough, it is 
unlikely that two different input sequences will produce the same signature.

If the input sequence comes form logic under test, a fault in the logic will cause the input 
sequence to change. This causes the signature to change from a known value and we 
conclude that the CUT is bad.

CK CK CK

Q0 Q1 Q2

IN
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818181The IEEE 1149.1 Standard

In 1985 a group of European manufacturers formed the Joint European Test Action 
Group, later renamed in JTAG (1986). The JTAG 2.0 test standard formed the basis 
of the IEEE Standard 1149.1 Test Port and Boundary-Scan Architecture (1990).

Boundary-Scan test (BST) is a method for testing boards using a four-wire interface 
(with a fifth optional master reset signal). The BST standard was designed to test 
boards , but it’s also useful to test ASICs.

We can automatically generate test vectors for combinational logic, but ATPG 
(Automatic Test Pattern Generation) is much harder to sequential logic.

In full scan design we replace every sequential element with a scan flip-flop. The result 
is an internal form of boundary scan and we can use the IEEE 1149.1 TAP to access an 
internal scan chain.
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828282Boundary Scan Chain

Each IO pin is replaced with a multi-purpose element called Boundary Scan 
cell.

CORE

PINs

BS cell

scan in

scan out
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838383The BS Architecture

CORE

TDI TDO

TEST DATA REGISTERS

INSTRUCTION REGISTERS

TAP CONTROLLER MUX

TCK TRSTTMS
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848484The BS Cell

D Q

CK

D Q

CK

MODE

DATAIN

SERIALIN

SHIFT/LOAD

CLOCK
UPDATE

DATAOUT

SERIAL OUT
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858585BISR: Increasing the Process Yield

Increasing size, density and complexity in memory technologies 
lead to higher defect density and, consequently, a decrease in 
process yield. 

A cost- and time-effective solution is built-in self-repair (BISR). It 
consists of replacing, on silicon, the defective memory columns by 
spare columns available next to the functional memory. BISR is 
implemented at the column, row, block or bit level. Using non-
volatile blocks to store the memory reconfiguration improves the
memory production yield.
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868686BISR: Increasing Reliability

Reliability aspect is also considered by chip manufacturers. High 
memory size and high-end memory technologies often lead to an 
increasing number of defects that happen during the product life. 

BISR solutions allow the memory to be tested in the filed and the 
defective memory blocks to be replaced by redundant blocks that 
are not defective. If the memory contains critical contents, 
transparent BISR allows defective blocks to be tested and replaced 
without losing the original memory content.
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878787Layout (ASICs)

• Placement

• Clock Tree Synthesis

• Routing

• Netlist Optimisation

• Physical Analysis
• Cross Talk

• Signal Integrity

• Electro Migration

• IR Drop 
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888888Layout & Floorplan (FPGAs)




