
Application Specific Integrated Circuits
Design and Implementation

Maurizio Skerlj

mailto: maurizio.skerlj@alcatel.it
maurizio.skerlj@ieee.org

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

222AGENDA

♦ Efficient RTL;

♦ Synthesis;

♦ Static Timing Analysis;

♦ Design for Testability and Fault Coverage.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

333References

M. J. S. Smith: Application-Specific Integrated Circuits, Addison-
Wesley (1997).

K. K. Parhi: VLSI Digital Signal Processing Systems, John Wiley &
Sons, Inc. (1999).

R. Airiau, J. Berge, V. Olive: Circuit Synthesis with VHDL, Kluwer
Academic Publishers (1991).

D. L. Perry: VHDL (Computer Hardware Description Language),
McGraw Hill (1991).

P. Kurup, T. Abbasi: Logic Synthesis Using Synopsis, Kluwer
Academic Publishers (1997).

K. Rabia: HDL coding tips for multi-million gate ICs, EEdesign
(december 2002).

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

444Design Entry

d e s i g n e n t r y
(1)

l o g i c
s y n t h e s is

(2)

s y s t e m
p a r t i t io n i n g

(3)

f l o o r -
p la n n i n g

(5)

p l a c e m e n t
(6)

r o u tin g
(7)

c i r c u i t
e x t r a c tio n

(8)

p o s tla y o u t
s im u l a t i o n

(9)

p r e l a y o u t
s im u l a t i o n

(4)

s t a r t

e n d

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

555The Coding Style

MY_ASIC.vhd

Readable

Synthesis

Verification

Simulation
Speed

Re-use
Portability

Maintenance

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

666Readable VHDL

• use consistent style for signal names, variables, functions,
processes, etc. (e.g. DT_name_77, CK_125, START_L,
I_instance_name, P_process_name,...)

• use the same name or similar names for ports and signal that are
connected to.

• use a consistent ordering of bits (e.g. MSB downto LSB).

• use indentation.

• use comments.

• use functions instead of repeating same sections of code.

• use loops and arrays.

• don’t mix component instantiation and RTL code.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

777Simulation speed

It takes days to simulate few milliseconds of circuit real life!

Therefore it is very important to write HDL code that doesn’t
slow down the verification process.

• use arrays as much as possible instead of loops.

• priority on low frequency control signals.

• avoid process with heavy sensitivity lists (each signal in the
sensitivity list will trig the process).

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

888Verification

The VHDL and the consequent inferred circuit architecture
must be thought for a exhaustive verification.

•Avoid architectures for which is not clear what is the worst case or will
create difficult-to-predict problems (e.g. asynchronous clocking and
latches).

•Poor practices on clock generations (gated clocks, using both falling and
rising clock edges in the design, etc.)

•Never use clocks where generated.

•Always double-check your design with a logic synthesis tool as early as
possible. (VHDL compilers don’t check the sensitivity lists and don’t warn
you about latches)`

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

999The VHDL - RTL Subset

NO
• Timing delays
• Multidimensional arrays (latest l.s. tools allows it)
• Implicit finite state machines

YES
• Combinatorial circuits
• Registers

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

101010Recommended Types

YES
• std_ulogic for signals;
• std_ulogic_vector for buses;
• unsigned for buses used in circuits implementing arithmetic
functions.

NO
• bit and bit_vector: some simulators don’t provide
built-in arithmetic functions for these types and, however, is
only a two states signal (‘X’ state is not foreseen);
• std_logic(_vector): multiple drivers will be resolved for
simulation (lack of precise synthesis semantics).

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

111111Design re-use

Nowadays, designs costs too much to use them for only one
project. Every design or larger building block must be
thought of as intellectual property (IP).

Reuse means:
• use of the design with multiple purposes;
• design used by other designers;
• design implemented in other technologies;

Therefore, it is necessary to have strong coding style rules,
coded best practices, architectural rules and templates.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

121212Maintenance

Design that are implemented following rules and coding styles
shared by the design community are easy to understand and to
upgrade, prolonging its life cycle.

For the same purposes a good documentation is a must. On the
other hand, the documentation itself can be shorter, dealing only
with the general description of the block, since most of the
details will be clear from the design practices and guidelines.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

131313Documentation

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

141414Some HDL guidelines and examples

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

151515Combinatorial Processes

process(sensitivity list)
begin

statement_1;
…

statement_n;
end process;

! Only signals in the sensitivity list activate the process. If
the list is not complete, the simulation will show poor
results;

! Not assigning signals in every branch of the concurrent
statements will lead to inferred latches.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

161616
Concurrent Assignments Inside
Processes
P_MUX1: process(sel,a,b)
begin

case sel is
when ‘0’ =>

y <= a;
when others =>

y < b;
end case;

end process;

P_MUX2: process(sel,a,b)
begin

if SEL = ‘0’ then
y <= a;

else
y <= b;

end if;
end process;

0

1

a

b

sel

y

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

171717Tips on Conditional Statements

EASY TO WRITE, DIFFICULT TO VERIFY AND MAINTAIN:

if cond1 then
…

elsif
…

else
…

end if;

DIFFICULT TO WRITE, EASY TO VERIFY AND MAINTAIN:
case sel is

when choice_1 => …
when choice_2 => …
when others => …

end if;

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

181818Frequent Errors

if a=“00” then
y0 <= ‘0’;

elsif a=“11” then
y0 <= ‘1’;
y1 <= ‘0’;

else
y0 <= ‘0’;
y1 <= ‘1’;

end if;

y1 not always assigned => INFERRED LATCH

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

191919The Use of ‘for loops’

signal a,b,y: std_ulogic_vector(7 downto 0);

for I in y’range loop
y(I)<= a(I) and b(I);

end loop;
a(7)

y(7)
b(7)

...

a(0)
y(0)

b(0)

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

202020Tips for ‘for loop’ Implementation

The for loop statement is supported by synthesis tools
when the range bounds in the loop are globally static.
When the range is not static (e.g. when one of the bounds
is a signal value), the synthesis result is not a simple
hardware duplication.

In other words, the for loop must be un-foldable.

! Often the use of for loop can be avoided using
vectors.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

212121Avoiding for loops

signal a: std_ulogic_vector(15 downto 0);

P_SHIFT: process(a)
begin

for I in 0 to 14 loop
a(I) <= a(I+1);

end loop;
a(15) <= a(0);

end process;

OR

a(14 downto 0) <= a(15 downto 1);
a(15) <= a(0);

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

222222The Edge Triggered Enabled flip flop

process(CK,STARTL)
begin
if STARTL = ‘0’ then
Q <= ‘0’;

elsif CK=‘1’ and CK’event then
if EN = ‘1’ then

Q <= D;
end if;

end if;
end process;

0

1D

EN

CK

Q

STARTL

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

232323Finite State Machines

Only synchronous finite state machines are the only ones
accepted by synthesis tools.

Basics:
• The automaton is always in one of its possible sates: the
current state (stored in the state register).
• The next state may be computed using the current state and the
input values.
• Output values are computed depending on either the current
state or the transition between two states (Moore or Mealy).
• During each clock period, the state register is updated with the
previously computed state (next state)

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

242424Moore and Mealy

STATELOGIC LOGIC

CK

IN OUT

STATELOGIC LOGIC

CK

IN OUT

Moore

Mealy

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

252525FSM template

P_NXT_STATE: process(STATE, IN)
begin

STATE_NXT <= … logic …
end process;

P_STORE: process(CK, STARTL)
begin

if STARTL = ‘0’ then
STATE <= (others => ‘0’);

elsif CK’event and CK=‘1’ then
STATE <= STATE_NXT;

end if;
end process;

P_OUT: process(STATE, IN)
begin

OUT <= logic(STATE, IN)
end process;

PRESENT ONLY
IF MEALY

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

262626One-hot vs binary coded

One-hot encoding sets one bit in the state register for each
state. This seems wasteful (a FSM with N states requires
exactly N flip-flops instead of log2N with binary
encoding).

One-hot encoding simplifies the logic and the interconnect
between the logic resulting often in smaller and faster FSMs.

Especially in FPGAs, where routing resources are limited,
one-hot encoding is sometimes the best choice.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

272727The Metastability Phenomenon

Metastability may occur when the data input changes too
close to the clock edges (setup or hold violation). In such
cases the flip-flop cannot decide whether its output should
be a ‘1’ or a ‘0’ for a long time. This situation is called an
upset.

This cannot occur in fully synchronous design if timing
constraints were met. However it may rise the opportunity to
register signals that come from the outside world (or form
another clock domain).

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

282828Metastability Theory

Experimentally was found that the probability of upset is:

where tr is the time the flip-flop has to resolve the output, T0 and
τc are flip-flop constant.
The Mean Time Between Upsets (MTBU) is

Therefore even if the data is changing slowly, simple
oversampling is not an error-free technique.

c

rt

eTp τ
−

= 0

DTCK ffp
MTBU

⋅⋅
=

1

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

292929Input Synchronisation

Using two flip-flops in cascade greatly reduces the overall
value of τc and T0 and as a consequence the probability of
upset, p.

When the first flip-flop capture an intermediate voltage
level (‘X’) the flip-flop takes some time to resolve in a ‘0’
or ‘1’ level. The resolution time is usually several times
longer than the clock-to-out time of the flip-flop, but less
than the clock period. However the second flip-flop is
always capturing stable data.

The penalty is an extra clock cycle latency.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

303030Pipelining and Parallel Processing

Pipelining transformation leads to a reduction in the critical path,
which can be exploited to either increase the sample speed or to reduce
power consumption at same speed.
Pipelining reduces the effective critical path by introducing pipelining
delays along the datapath.

In parallel processing, multiple outputs are computed in a clock period.
Parallel processing increase the sampling rate by replicating the
hardware so that several inputs can be processed a the same time.

Therefore, the effective sampling speed is increased by the level of
parallelism.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

313131Pipelining

The pipelining latches can only be placed across any feed-forward cutset of the
graph. We can arbitrarily place latches on a feed-forward cutset without affecting
the functionality of the algorithm.

In an M-level pipelined system, the number of delay elements in any path from
input to output is (M-1) greater than that in the same path in the original system.

The two main drawbacks of the pipelining are increase in the number of latches
(area) and in system latency.

D

f.f. cutset cutset

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

323232Parallel Processing

To obtain a parallel processing system, the SISO (single input –
single output) system must be converted into a MIMO (multiple
input – multiple output).

In a parallelized system the critical path remain the same. It is
important to understand that in a parallel system the clock period
Tck and the sample period TS are different. In an M-level
parallelized system holds

Tck=M TS

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

333333
Pipelining and Parallel Processing
Dualism (1)

Parallel processing and pipelining techniques are duals of each
other. If a computation can be pipelined, it can also be processed
in parallel and vice versa.

While independent sets of computation are performed in an
interleaved manner in a pipelined system, they are computed in
parallel processing mode by means of duplicate hardware.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

343434
Pipelining and Parallel Processing
Dualism (2)

x[n] y[n]

x[2n]

x[2n+1]

y[2n]

y[2n+1]

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

353535Folding

It is important to minimize the silicon area of the integrated circuits,
which is achieved by reducing the number of functional units,
registers, multiplexers, and interconnection wires.

By executing multiple algorithm operations on a single functional unit,
the number of functional units in the implementation is reduced,
resulting in a smaller silicon area.

Folding provides a means for trading area for time in a DSP
architecture. In general, folding can be used to reduce the number of
hardware functional units by a factor N at the expense of increasing the
computation time by a factor of N.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

363636Folding Example

+ +

b(n) c(n)

y(n)a(n)

D+
a(n)

b(n) c(n)

y(n)

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

373737Case Study: Frame Aligner

FAW payload FAW

FAW

p
ay

lo
ad

p
ay

lo
ad

FAW

p
ay

lo
ad

Phase
Rotator

p
ay

lo
ad

FAW

N

N
2N

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

383838Using for-loop

entity ROT_FOR7 is
Port (PHASE : In std_ulogic_vector (6 downto 0);

STACK : In std_ulogic_vector (255 downto 0);
DT_OUT : Out std_ulogic_vector (127 downto 0)

);
end ROT_FOR7;

architecture BEHAVIORAL of ROT_FOR7 is
CONSTANT N : Integer :=7;
signal INT_PHASE :integer range 0 to 127;

begin
INT_PHASE <= conv_integer(unsigned(PHASE));

p1 : process(INT_PHASE, STACK)
begin

for i in 0 to (2**N-1) loop
DT_OUT(i) <= STACK(i+INT_PHASE+1);

end loop;
end process;

end BEHAVIORAL;

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

393939Using a low level description

architecture BEHAVIORAL of ROT_STK7 is
CONSTANT N : Integer :=7;

CONSTANT DIM0 : Integer := 2**(N+1) -1; -- 255
CONSTANT DIM1 : Integer := DIM0 - 2**(N-1); -- 191
[...]

CONSTANT DIM7 : Integer := DIM6 - 2**(N-7); -- 128

begin
p1 : process(PHASE, STACK)
VARIABLE stack0 : std_ulogic_vector(DIM0-1 downto 0);

[...]
VARIABLE stack7 : std_ulogic_vector(DIM7-1 downto 0);
begin

stack0(DIM0-1 downto 0) := STACK(DIM0 downto 1);
IF (PHASE(N-1) = '1') THEN stack1(DIM1-1 downto 0) := stack0(DIM0-1 downto DIM0-DIM1);

ELSE stack1(DIM1-1 downto 0) := stack0(DIM1-1 downto 0); END IF;
IF (PHASE(N-2) = '1') THEN stack2(DIM2-1 downto 0) := stack1(DIM1-1 downto DIM1-DIM2);

ELSE stack2(DIM2-1 downto 0) := stack1(DIM2-1 downto 0); END IF;
IF (PHASE(N-3) = '1') THEN stack3(DIM3-1 downto 0) := stack2(DIM2-1 downto DIM2-DIM3);

ELSE stack3(DIM3-1 downto 0) := stack2(DIM3-1 downto 0); END IF;
IF (PHASE(N-4) = '1') THEN stack4(DIM4-1 downto 0) := stack3(DIM3-1 downto DIM3-DIM4);

ELSE stack4(DIM4-1 downto 0) := stack3(DIM4-1 downto 0); END IF;
IF (PHASE(N-5) = '1') THEN stack5(DIM5-1 downto 0) := stack4(DIM4-1 downto DIM4-DIM5);

ELSE stack5(DIM5-1 downto 0) := stack4(DIM5-1 downto 0); END IF;
IF (PHASE(N-6) = '1') THEN stack6(DIM6-1 downto 0) := stack5(DIM5-1 downto DIM5-DIM6);

ELSE stack6(DIM6-1 downto 0) := stack5(DIM6-1 downto 0); END IF;
IF (PHASE(N-7) = '1') THEN stack7(DIM7-1 downto 0) := stack6(DIM6-1 downto DIM6-DIM7);

ELSE stack7(DIM7-1 downto 0) := stack6(DIM7-1 downto 0); END IF;
DT_OUT <= stack7;

end process;

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

404040Synthesis report: Area
synthesis report: area

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

stack

for

bus

stack 18 71.5 185 454 1087 2487.5

for 70.5 242.5 1249 4514 15767 88585.5

bus 30.5 117.5 391.5 1432 5550 21766.5

2 3 4 5 6 7

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

414141Synthesis: CPU Time
synthesis report: CPU time

0:00:00

0:28:48

0:57:36

1:26:24

1:55:12

2:24:00

2:52:48

3:21:36

STACK

FOR

BUS

STACK 0:00:20 0:00:08 0:00:09 0:00:14 0:00:24 0:00:48

FOR 0:00:35 0:00:32 0:00:51 0:05:52 0:11:32 3:07:57

BUS 0:00:19 0:00:13 0:00:13 0:00:36 0:02:34 0:17:03

1 2 3 4 5 6

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

424242Functional Verification

design entry
(1)

logic
synthesis

(2)

system
partitioning

(3)

floor-
planning

(5)

placement
(6)

routing
(7)

circuit
extraction

(8)

postlayout
simulation

(9)

prelayout
simulation

(4)

start

end

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

434343Pre- and Post Layout Simulation

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

444444Logic Synthesis

design entry
(1)

logic
synthesis

(2)

system
partitioning

(3)

floor-
planning

(5)

placement
(6)

routing
(7)

circuit
extraction

(8)

postlayout
simulation

(9)

prelayout
simulation

(4)

start

end

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

454545RTL Block Synthesis

Constraints & Attributes
Area & Timing Goals

Simulate
OK?

Rewrite

Y

N

Major
Violations?

N

Y

N

Write RTL
HDL Code

Synthesize
HDL Code
To Gates

Met
Constraints?Analysis

Y

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

464646Technology Library

cell (AND2_3) {
area : 8.000 ;
pin (Y) {

direction : output;
timing () {

related_pin : "A" ;
timing_sense : positive_unate ;
rise_propagation (drive_3_table_1) {

values ("0.2616, 0.2608, 0.2831,..)
}
rise_transition (drive_3_table_2) {

values ("0.0223, 0.0254, ...)
. . . .

}
function : "(A & B)";
max_capacitance : 1.14810 ;
min_capacitance : 0.00220 ;

}
pin (A) {

direction : input;
capacitance : 0.012000;
}

. . . .

Cell Name

Cell Area

Nominal Delays

Cell Functionality

Design Rules for
Output Pin

Electrical Characteristics of
Input Pins

Y = A + B

t

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

474747Wire-load Model

With the shrinking of process geometries, the delays incurred by the
switching of transistors become smaller. On the other hand, delays due to
physical characteristics (R, C) connecting the transistors become larger.

Logical synthesis tools do not take into consideration “physical” information
like placement when optimizing the design. Further the wire load models
specified in the technology library are based on statistical estimations.

In-accuracies in wire-load models and the actual placement and routing can
lead to synthesized designs which are un-routable or don’t meet timing
requirements after routing.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

484848Post layout timing analysis (FPGA)

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

494949Timing Analysis

design entry
(1)

logic
synthesis

(2)

system
partitioning

(3)

floor-
planning

(5)

placement
(6)

routing
(7)

circuit
extraction

(8)

postlayout
simulation

(9)

prelayout
simulation

(4)

start

end

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

505050Timing Goals: Synchronous Designs

• Synchronous Designs:
• Data arrives from a clocked device
• Data goes to a clocked device

• Objective:
• Define the timing constraints for all paths within a design:

• all input logic paths
• the internal (register to register) paths, and
• all output paths

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

515151Constraining the Input Paths

TO_BE_SYNTHESIZED

N
D Q

Clk

M
D Q

TClk-q TM TN
TSETUP

Next edge
captures data

External Logic

Launch edge
triggers

data

A

Clk

(Input Delay)

(TClk-q + TM) (TN + TSETUP)

Clk

A Valid new data

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

525252
Constraining Output Paths of a
Design

Clk

S
D Q

Ts

TO_BE_SYNTHESIZED

D Q

TT TSETUP

T

External Logic

U3 B

TClk-q

U3 Launches
Data

External
Flip-Flop
captures

data

TT + TSETUP

Launch Edge Capture Edge

TClk-q + TS

(Output Delay)

Clk

B Valid new data

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

535353Static Timing Analysis

• Static Timing Analysis can determine if a circuit meets timing constraints
without dynamic simulation

• This involves three main steps:
• Design is broken down into sets of timing paths
• The delay of each path is calculated
• All path delays are checked to see if timing constraints have been met

D QA

CLK

Z

Path 1

Path 3

Path 2

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

545454Calculating a Path Delay

0.431.0
0.54

0.32

0.66

0.23
0.25

D1
U33

path_delay = (1.0 + 0.54 + 0.32 + 0.66 + 0.23 + 0.43 + 0.25) = 3.43 ns

To obtain the path delay you have to add all the net and cell
timing arcs along the path.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

555555Post synthesis timing (FPGA)

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

565656Test for Manufacturing Defects

• The manufacturing test is created to detect manufacturing defects and
reject those parts before shipment

• Debug manufacturing process

• Improve process yield

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

575757The importance of Test

Cost Operation description
$1 to fix an IC (throw it away)
$10 to find and replace a bad IC on a board
$100 to find a bad board in a system

$1000 to find a bad component in a fielded system

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

585858Test Case Study

ASIC defect
level

Defective
ASICs

Total PCB
 repair cost

Defective
 boards

Total repair cost
at a system level

5% 5000 $1million 500 $5million
1% 1000 $200,000 100 $1milion

0.1% 100 $20,000 10 $100,000
0.01% 10 $2,000 1 $10,000

Assumptions
• the number of part shipped is 100,000;
• part price is $10;
• total part cost is $1million;
• the cost of a fault in an assembled PCB is $200;
• system cost is $5000;
•the cost of repairing or replacing a system due to failure is $10,000.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

595959Manufacturing Defects

l Silicon Defects
l Photolithography Defects
l Mask Contamination
l Process Variations
l Defective Oxide

Physical Defects
l Shorts (Bridging Faults)
l Opens
l Transistor Stuck On/Open
l Resistive Short/Open
l Changes in Threshold Voltage

Electrical Effects

l Logic Stuck-at-0/1
l Slower Transitions (Delay Fault)
l AND-bridging, OR-bridging

Logical Effects

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

606060Fault models

Logical fault
Fault
level

Physical fault Degradation
fault

Open-circuit
fault

Short-circuit
fault

Chip
Leakage or short between package leads * *
Broken, misaligned, or poor wire bonding *
Surface contamination *
Metal migration, stress, peeling * *
Metallization (open/short) * *

Gate
Contact opens *
Gate to S/D junction short * *
Field-oxide parasitic device * *
Gate-oxide imperfection, spiking * *
Mask misalignement * *

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

616161
How is Manufacturing Test
Performed?

• Automatic Test Equipment (ATE) applies input stimulus to the Device Under Test
(DUT) and measures the output response

• If the ATE observes a response different from the expected response, the DUT fails
manufacturing test

• The process of generating the input stimulus and corresponding output response is
known as Test Generation

DUT
In

p
u

ts

O
u

tp
u

ts

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

626262ATE

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

636363Stuck-at Fault Model

The single stuck-at fault (SSF) model assumes that there is just one fault in the
logic we are testing.

We use a SSF model because a multiple stuck-at fault model is too complicated
to implement.

In the SSF model we further assume that the effect of the physical fault is to
create only two kinds of logical fault (SA1 and SA0). The place where we inject
faults is called the fault origin (net/input/output faults).

When a fault changes the circuit behaviour, the change is called the fault effect.
Fault effects travel through the circuit to other logic cells causing other fault
effects (fault propagation).

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

646464
Single “Stuck-at” Fault Model:
Example

Model manufacturing defects with a “Stuck-at” Fault

SA0

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

656565Controllability

Ability to set internal nodes to a specific value

1/0
0

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

666666Observability

Ability to propagate the fault effect from an internal node to
a primary output port

1/0
1

0

1

-

1/0

1

0/1

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

676767Fault collapsing

Stuck-at faults attached to different points may produce identical fault
effects.
Using fault collapsing we can group these equivalent faults into a fault-
equivalent class (representative fault).

If any of the test that detect a fault B also detects fault A, but only some of
the the test for fault A also detect fault B, we say that A is a dominant
fault (some texts uses the opposite definition). To reduce the number of
tests we will pick the test for the dominated fault B (dominant fault
collapsing).

Example: output SA0 for a two-input NAND dominates either input SA1
faults.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

686868Fault Simulation and Fault Coverage

We use fault simulation to see what happens in a design when deliberately introduce
faults. In a production test we only have access to the package pins: primary
inputs/outputs (PI/PO).

To test an ASIC we must devise a series of sets of input patterns that will detect any
faults.

If the simulation shows that th POs of the faulty circuit are different than the PIs of
the good circuit at any strobe time, then we have a detected fault; otherwise we have
an undetected fault. At the end of the simulation we can find the fault coverage

faults detectable
faults detected

coveragefault =

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

696969Fault Coverage and Defect Coverage

Fault Coverage Average defect level Average Quality Level (AQL)
50% 7% 93%
90% 3% 97%
95% 1% 99%
99% 0.1% 99.9%

99.9% 0.01% 99.99%

These results are experimental and they are the only justification for our
assumptions in adopting the SSF model.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

707070Quiescent Leakage Current

A CMOS transistor in never completely off because of subthreshold and
leakage current.

• Subthreshold current: VGS = 0 but trough the transistor a current of few
pA/µm is flowing.

• Leakage current: The sources and drains of every transistor and the junctions
between the wells and substrate form parasitic diodes. Reverse-biased diodes
conducts a very small leakage current.

The quiescent leakage current (IDDQ) is the current measured when we test an
ASIC with no signal activity and must have the same order of magnitude than
the sum of the subthreshold and leakage current.

A measurement of more current than this in a non-active CMOS ASIC indicates
a problem with the chip manufacture (or the design).

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

717171Measuring the IDDQ Externally

♦ With specific ATE (Automatic Test Equipment)

• no dedicated circuits on chip;

• no impact on chip performance;

• external ad-hoc ATPG;

• time consuming.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

727272Measuring the IDDQ on Chip

♦ With a current sensor (BICM)

• dedicated circuitry;

• internal ATPG or scan to lead the device in the quiescent
mode;

• impact on chip due to voltage drop over the BICM;

BICM

CUT

Vdd

Vss

Idd

In Out

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

737373IDDQ Test

• The IDDQ test reveals shorts but not opens;

• A 100% coverage may be expensive;

• Multiple samples of the current are necessary for a meaning
test.

• Quiescent IDD depends from the design but also mainly
from process and package;

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

747474
Testing a Multistage, Pipelined
Design

Test for SA0 fault here

1

0

0

1

Need to set input pins to specific values so that
nets within pipeline can be set to values which test
for a fault

Need to observe results at the
output of the design.

Each fault tested requires a predictive means for both controlling the input and
observing the results downstream from the fault.
Each fault tested requires a Each fault tested requires a predictivepredictive means for both controlling the means for both controlling the inputinput and and
observingobserving the results downstream from the fault.the results downstream from the fault.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

757575Scan Chains

Gains:

l Scan chain initializes nets within the design (adds controllability);

l Scan chain captures results from within the design (adds observability).

Paid price:

l Inserting a scan chain involves replacing all Flip-Flops with scannable
Flip-Flops;

l Scan FF will affect the circuit timing and area.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

767676Inaccuracy Due to Scan Replacements

Additional fanout and
capacitive loading

DOTI

DI

TE

CLK

0

1 1

0

CLK

Larger setup time
requirement

Larger area than non-scan registers;

TI

DI

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

777777Testability Violation: Example

D Q

SI

SE

N

SE

What would happen if, during test, a ‘1’ is shifted into the FF? We would
never be able to “clock” the Flip-Flop!

Therefore, the FF cannot be allowed to be part of a scan chain. Logic in the net
‘N’ cannot be tested.

The above circuit

l violates good ‘DFT’ practices;

l reduces the fault coverage.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

787878Synthesizing for Test Summary

• Test is a design methodology: it has its own testability
design rules.

• Most problems associated with test can be anticipated and
corrected in advance, during the initial compile of the HDL
code.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

797979Built-in Self-test

Built-in Self-test (BIST) is a set of structured-test techniques for combinatorial and
sequential logic, memories, etc.

The working principle is to generate test vectors, apply them to the circuit under
test (CUT) and then check the response. In order to produce long test vectors linear
feedback shift register (LFSR) are used. By correctly choosing the points at which
we take the feedback form an n-bit SR we can produce a pseudo random binary
sequence (PRBS) of a maximal length (2n-1).

CK CK CK

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

808080Signature Analysis

If we apply a binary input sequence to IN, the shift register will perform data compression
on the input sequence. At the end of the input sequence the shift-register contents,
Q0Q1Q2, will form a pattern called signature.

If the input sequence and the serial-input signature register are long enough, it is
unlikely that two different input sequences will produce the same signature.

If the input sequence comes form logic under test, a fault in the logic will cause the input
sequence to change. This causes the signature to change from a known value and we
conclude that the CUT is bad.

CK CK CK

Q0 Q1 Q2

IN

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

818181The IEEE 1149.1 Standard

In 1985 a group of European manufacturers formed the Joint European Test Action
Group, later renamed in JTAG (1986). The JTAG 2.0 test standard formed the basis
of the IEEE Standard 1149.1 Test Port and Boundary-Scan Architecture (1990).

Boundary-Scan test (BST) is a method for testing boards using a four-wire interface
(with a fifth optional master reset signal). The BST standard was designed to test
boards , but it’s also useful to test ASICs.

We can automatically generate test vectors for combinational logic, but ATPG
(Automatic Test Pattern Generation) is much harder to sequential logic.

In full scan design we replace every sequential element with a scan flip-flop. The result
is an internal form of boundary scan and we can use the IEEE 1149.1 TAP to access an
internal scan chain.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

828282Boundary Scan Chain

Each IO pin is replaced with a multi-purpose element called Boundary Scan
cell.

CORE

PINs

BS cell

scan in

scan out

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

838383The BS Architecture

CORE

TDI TDO

TEST DATA REGISTERS

INSTRUCTION REGISTERS

TAP CONTROLLER MUX

TCK TRSTTMS

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

848484The BS Cell

D Q

CK

D Q

CK

MODE

DATAIN

SERIALIN

SHIFT/LOAD

CLOCK
UPDATE

DATAOUT

SERIAL OUT

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

858585BISR: Increasing the Process Yield

Increasing size, density and complexity in memory technologies
lead to higher defect density and, consequently, a decrease in
process yield.

A cost- and time-effective solution is built-in self-repair (BISR). It
consists of replacing, on silicon, the defective memory columns by
spare columns available next to the functional memory. BISR is
implemented at the column, row, block or bit level. Using non-
volatile blocks to store the memory reconfiguration improves the
memory production yield.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

868686BISR: Increasing Reliability

Reliability aspect is also considered by chip manufacturers. High
memory size and high-end memory technologies often lead to an
increasing number of defects that happen during the product life.

BISR solutions allow the memory to be tested in the filed and the
defective memory blocks to be replaced by redundant blocks that
are not defective. If the memory contains critical contents,
transparent BISR allows defective blocks to be tested and replaced
without losing the original memory content.

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

878787Layout (ASICs)

• Placement

• Clock Tree Synthesis

• Routing

• Netlist Optimisation

• Physical Analysis
• Cross Talk

• Signal Integrity

• Electro Migration

• IR Drop

ASIC, Design and Implementation - M. SkerljASIC, Design and Implementation ASIC, Design and Implementation -- M. SkerljM. Skerlj

888888Layout & Floorplan (FPGAs)

