EE101: Op Amp circuits (Part 1)

M. B. Patil
 mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

* The Operational Amplifier (Op Amp) is a versatile building block that can be used for realizing several electronic circuits.

- * The Operational Amplifier (Op Amp) is a versatile building block that can be used for realizing several electronic circuits.
- The use of Op Amps frees the user from cumbersome details such as transistor biasing and coupling capacitors.

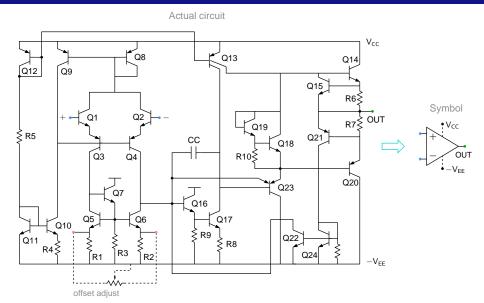
- * The Operational Amplifier (Op Amp) is a versatile building block that can be used for realizing several electronic circuits.
- * The use of Op Amps frees the user from cumbersome details such as transistor biasing and coupling capacitors.
- * The characteristics of an Op Amp are nearly ideal → Op Amp circuits can be expected to perform as per theoretical design in most cases.

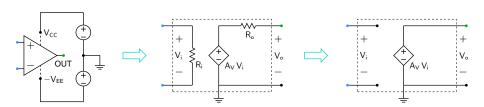
- * The Operational Amplifier (Op Amp) is a versatile building block that can be used for realizing several electronic circuits.
- * The use of Op Amps frees the user from cumbersome details such as transistor biasing and coupling capacitors.
- * The characteristics of an Op Amp are nearly ideal → Op Amp circuits can be expected to perform as per theoretical design in most cases.
- * Amplifiers built with Op Amps work with DC input voltages as well → useful in sensor applications (e.g., temperature, pressure)

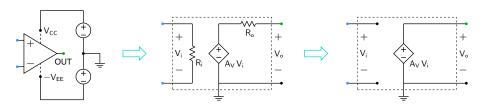
- * The Operational Amplifier (Op Amp) is a versatile building block that can be used for realizing several electronic circuits.
- The use of Op Amps frees the user from cumbersome details such as transistor biasing and coupling capacitors.
- * The characteristics of an Op Amp are nearly ideal → Op Amp circuits can be expected to perform as per theoretical design in most cases.
- * Amplifiers built with Op Amps work with DC input voltages as well → useful in sensor applications (e.g., temperature, pressure)
- * The user can generally carry out circuit design without a thorough knowledge of the intricate details (next slide) of an Op Amp. This makes the design process simple.

- * The Operational Amplifier (Op Amp) is a versatile building block that can be used for realizing several electronic circuits.
- The use of Op Amps frees the user from cumbersome details such as transistor biasing and coupling capacitors.
- The characteristics of an Op Amp are nearly ideal → Op Amp circuits can be expected to perform as per theoretical design in most cases.
- * Amplifiers built with Op Amps work with DC input voltages as well → useful in sensor applications (e.g., temperature, pressure)
- * The user can generally carry out circuit design without a thorough knowledge of the intricate details (next slide) of an Op Amp. This makes the design process simple.
- * However, as Einstein has said, we should "make everything as simple as possible, but not simpler." → need to know where the ideal world ends, and the real one begins.

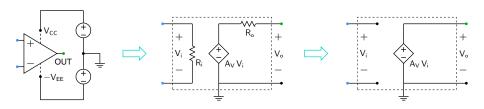
Op Amp 741



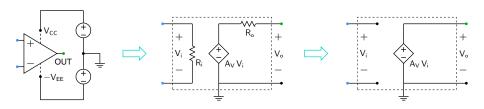




* The external resistances (\sim a few k Ω) are generally much larger than R_o and much smaller than $R_i \to \text{we}$ can assume $R_i \to \infty$, $R_o \to 0$ without significantly affecting the analysis.

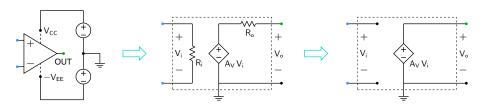


- * The external resistances (\sim a few k Ω) are generally much larger than R_o and much smaller than $R_i \to \text{we}$ can assume $R_i \to \infty$, $R_o \to 0$ without significantly affecting the analysis.
- * V_{CC} and $-V_{EE}$ $(\sim \pm 5~V$ to $\pm 15~V)$ must be supplied; an Op Amp will not work without them!



- * The external resistances (\sim a few k Ω) are generally much larger than R_o and much smaller than $R_i \to \text{we}$ can assume $R_i \to \infty$, $R_o \to 0$ without significantly affecting the analysis.
- * V_{CC} and $-V_{EE}$ $(\sim \pm 5~V$ to $\pm 15~V)$ must be supplied; an Op Amp will not work without them!

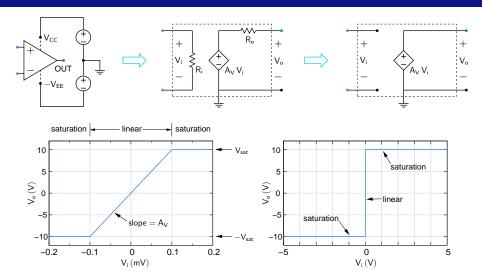
In Op Amp circuits, the supply voltages are often not shown explicitly.

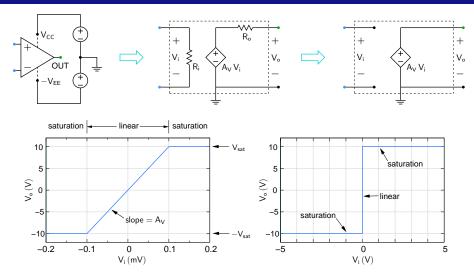


- * The external resistances (\sim a few k Ω) are generally much larger than R_o and much smaller than $R_i \to \text{we}$ can assume $R_i \to \infty$, $R_o \to 0$ without significantly affecting the analysis.
- * V_{CC} and $-V_{EE}$ $(\sim \pm 5~V$ to $\pm 15~V)$ must be supplied; an Op Amp will not work without them!

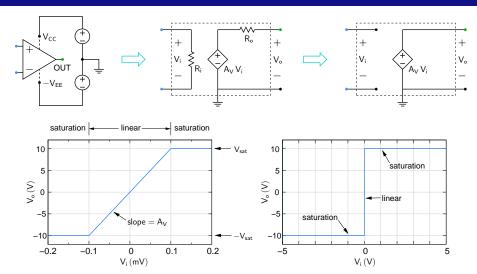
In Op Amp circuits, the supply voltages are often not shown explicitly.

	Parameter	Ideal Op Amp	741
*	A_V	∞	10 ⁵ (100 dB)
	R_i	∞	2 ΜΩ
	Ro	0	75 Ω

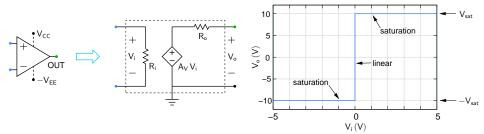


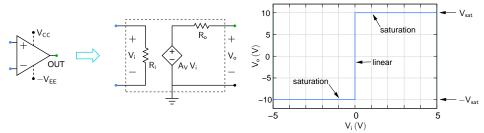


* The output voltage V_o is limited to $\pm V_{\rm sat}$, where $V_{\rm sat} \sim 1.5 \ V$ less than V_{CC} .

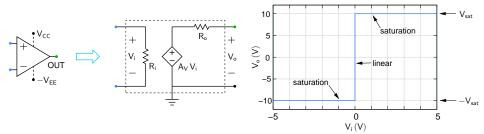


- * The output voltage V_o is limited to $\pm V_{\rm sat}$, where $V_{\rm sat} \sim 1.5~V$ less than V_{CC} .
- * For $-V_{\rm sat} < V_o < V_{\rm sat}$, $V_i = V_+ V_- = V_o/A_V$, which is very small $\rightarrow V_+$ and V_- are *virtually* the same.

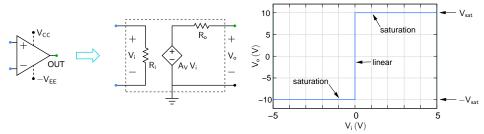




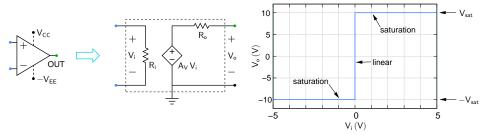
* Broadly, Op Amp circuits can be divided into two categories:



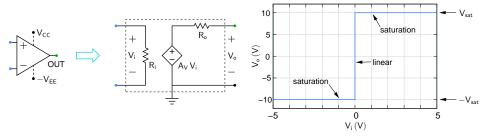
- * Broadly, Op Amp circuits can be divided into two categories:
 - Op Amp operating in the linear region



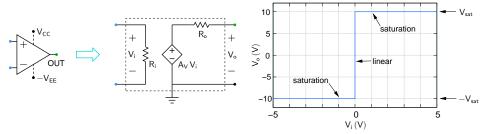
- * Broadly, Op Amp circuits can be divided into two categories:
 - Op Amp operating in the linear region
 - Op Amp operating in the saturation region



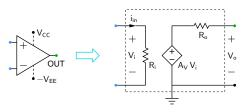
- * Broadly, Op Amp circuits can be divided into two categories:
 - Op Amp operating in the linear region
 - Op Amp operating in the saturation region
- * Whether an Op Amp in a given circuit will operate in linear or saturation region depends on

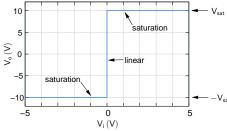


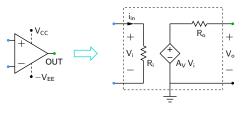
- * Broadly, Op Amp circuits can be divided into two categories:
 - Op Amp operating in the linear region
 - Op Amp operating in the saturation region
- * Whether an Op Amp in a given circuit will operate in linear or saturation region depends on
 - input voltage magnitude

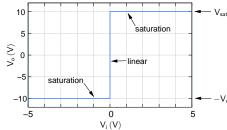


- * Broadly, Op Amp circuits can be divided into two categories:
 - Op Amp operating in the linear region
 - Op Amp operating in the saturation region
- * Whether an Op Amp in a given circuit will operate in linear or saturation region depends on
 - input voltage magnitude
 - type of feedback (negative or positive)
 (We will take a qualitative look at feedback later.)



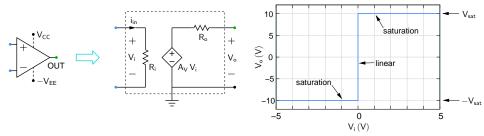






In the linear region,

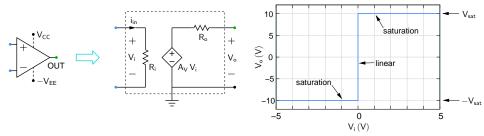
*
$$V_+ - V_- = V_o/A_V$$
, which is very small $ightarrow \boxed{V_+ pprox V_-}$



In the linear region,

- * $V_+ V_- = V_o/A_V$, which is very small $\rightarrow V_+ \approx V_-$
- * Since R_i is typically much larger than other resistances in the circuit, we can assume $R_i \to \infty$.

$$\rightarrow i_{in} \approx 0$$

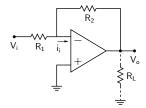


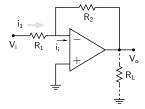
In the linear region,

- * $V_+ V_- = V_o/A_V$, which is very small $ightarrow \overline{V_+ pprox V_-}$
- * Since R_i is typically much larger than other resistances in the circuit, we can assume $R_i \to \infty$.

$$\rightarrow i_{in} \approx 0$$

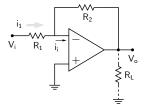
These two "golden rules" enable us to understand several Op Amp circuits.





Since $V_+ \approx V_-$, $V_- \approx 0 \ V \rightarrow \emph{i}_1 = (V_\emph{i} - 0)/R = V_\emph{i}/R$.

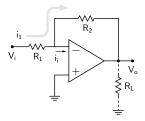
(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)



Since $V_+ \approx V_-$, $V_- \approx 0 \ V \rightarrow i_1 = (V_i - 0)/R = V_i/R$.

(The non-inverting input is at *real* ground here, and the inverting input is at *virtual* ground.)

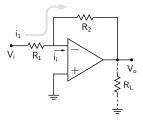
Since i_i (current entering the Op Amp) is zero, i_1 goes through R_2 .



Since $V_+ \approx V_-$, $V_- \approx 0 \ V \rightarrow i_1 = (V_i - 0)/R = V_i/R$.

(The non-inverting input is at *real* ground here, and the inverting input is at *virtual* ground.)

Since i_i (current entering the Op Amp) is zero, i_1 goes through R_2 .

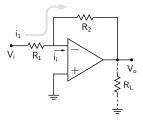


Since $V_+ \approx V_-$, $V_- \approx 0 \ V \rightarrow i_1 = (V_i - 0)/R = V_i/R$.

(The non-inverting input is at *real* ground here, and the inverting input is at *virtual* ground.)

Since i_i (current entering the Op Amp) is zero, i_1 goes through R_2 .

$$\to V_o = V_- - i_1 R_2 = 0 - \left(\frac{V_i}{R_1}\right) R_2 = -\left(\frac{R_2}{R_1}\right) V_i.$$



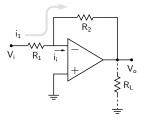
Since $V_+ \approx V_-$, $V_- \approx 0 \ V \rightarrow i_1 = (V_i - 0)/R = V_i/R$.

(The non-inverting input is at *real* ground here, and the inverting input is at *virtual* ground.)

Since i_i (current entering the Op Amp) is zero, i_1 goes through R_2 .

$$\rightarrow V_{o} = V_{-} - i_{1} R_{2} = 0 - \left(\frac{V_{i}}{R_{1}}\right) R_{2} = -\left(\frac{R_{2}}{R_{1}}\right) V_{i}.$$

The circuit is called an "inverting amplifier."



Since $V_+ \approx V_-$, $V_- \approx 0 \ V \rightarrow i_1 = (V_i - 0)/R = V_i/R$.

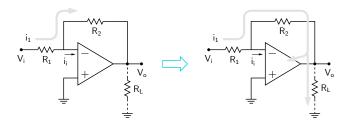
(The non-inverting input is at *real* ground here, and the inverting input is at *virtual* ground.)

Since i_i (current entering the Op Amp) is zero, i_1 goes through R_2 .

$$\rightarrow V_{o} = V_{-} - i_{1} R_{2} = 0 - \left(\frac{V_{i}}{R_{1}}\right) R_{2} = -\left(\frac{R_{2}}{R_{1}}\right) V_{i}.$$

The circuit is called an "inverting amplifier."

Where does the current go?



Since
$$V_+ \approx V_-$$
, $V_- \approx 0 \ V \rightarrow i_1 = (V_i - 0)/R = V_i/R$.

(The non-inverting input is at *real* ground here, and the inverting input is at *virtual* ground.)

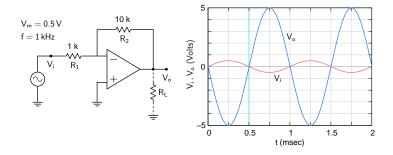
Since i_i (current entering the Op Amp) is zero, i_1 goes through R_2 .

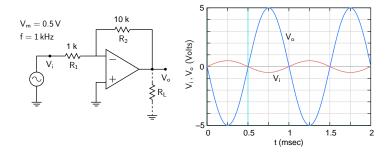
$$V_0 = V_- - i_1 R_2 = 0 - \left(\frac{V_i}{R_1}\right) R_2 = -\left(\frac{R_2}{R_1}\right) V_i$$

The circuit is called an "inverting amplifier."

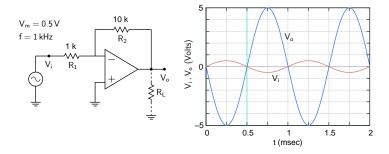
Where does the current go?

Op Amp circuits: inverting amplifier

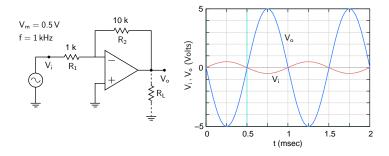




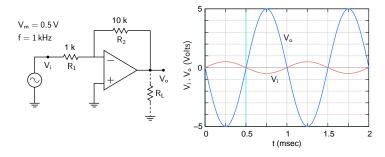
* The gain of the inverting amplifier is $-R_2/R_1$. It is called the "closed-loop gain" (to distinguish it from the "open-loop gain" of the Op Amp which is $\sim 10^5$).



- * The gain of the inverting amplifier is $-R_2/R_1$. It is called the "closed-loop gain" (to distinguish it from the "open-loop gain" of the Op Amp which is $\sim 10^5$).
- * The gain can be adjusted simply by changing R_1 or R_2 !

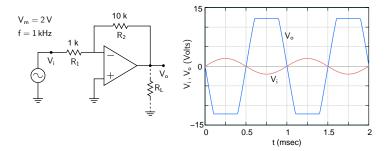


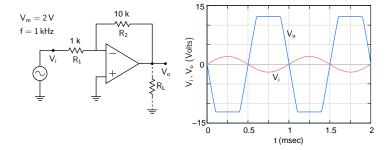
- * The gain of the inverting amplifier is $-R_2/R_1$. It is called the "closed-loop gain" (to distinguish it from the "open-loop gain" of the Op Amp which is $\sim 10^5$).
- * The gain can be adjusted simply by changing R_1 or R_2 !
- * For the common-emitter amplifier, on the other hand, the gain $-g_m(R_C \parallel R_L)$ depends on how the BJT is biased (since g_m depends on I_C).



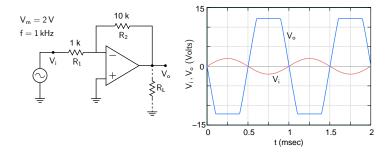
- * The gain of the inverting amplifier is $-R_2/R_1$. It is called the "closed-loop gain" (to distinguish it from the "open-loop gain" of the Op Amp which is $\sim 10^5$).
- * The gain can be adjusted simply by changing R_1 or R_2 !
- * For the common-emitter amplifier, on the other hand, the gain $-g_m(R_C \parallel R_L)$ depends on how the BJT is biased (since g_m depends on I_C).

```
(SEQUEL file: ee101_inv_amp_1.sqproj)
```

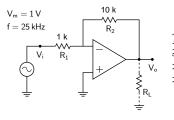


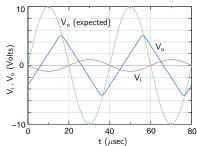


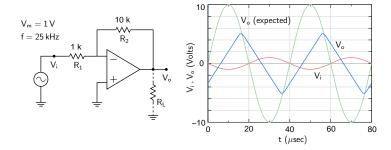
* The output voltage is limited to $\pm V_{\mathsf{sat}}$.



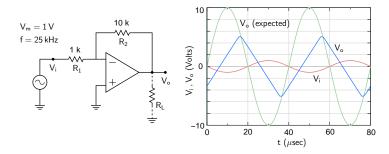
- * The output voltage is limited to $\pm V_{\rm sat}$.
- * $V_{\rm sat}$ is $\sim 1.5\,{
 m V}$ less than the supply voltage V_{CC} .



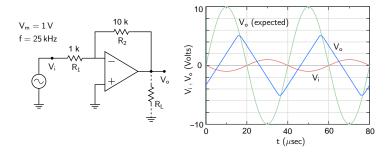




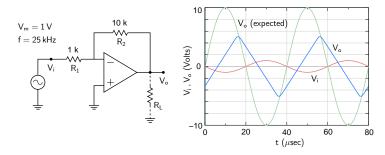
* If the signal frequency is too high, a practical Op Amp cannot keep up with the input due to its "slew rate" limitation.



- * If the signal frequency is too high, a practical Op Amp cannot keep up with the input due to its "slew rate" limitation.
- * The slew rate of an Op Amp is the maximum rate at which the Op Amp output can rise (or fall).

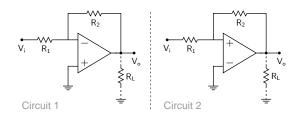


- * If the signal frequency is too high, a practical Op Amp cannot keep up with the input due to its "slew rate" limitation.
- * The slew rate of an Op Amp is the maximum rate at which the Op Amp output can rise (or fall).
- * For the 741, the slew rate is 0.5 $V/\mu{\rm sec.}$

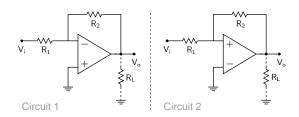


- * If the signal frequency is too high, a practical Op Amp cannot keep up with the input due to its "slew rate" limitation.
- * The slew rate of an Op Amp is the maximum rate at which the Op Amp output can rise (or fall).
- * For the 741, the slew rate is 0.5 $V/\mu{\rm sec.}$

```
(SEQUEL file: ee101_inv_amp_2.sqproj)
```

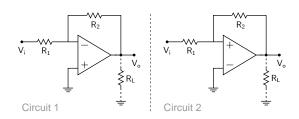


What if the + (non-inverting) and - (inverting) inputs of the Op Amp are interchanged?



What if the + (non-inverting) and - (inverting) inputs of the Op Amp are interchanged?

Our previous analysis would once again give us $V_{o}=-rac{R_{2}}{R_{1}}\;V_{i}$.

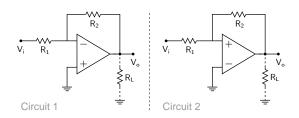


What if the + (non-inverting) and - (inverting) inputs of the Op Amp are interchanged?

Our previous analysis would once again give us $V_o = -\frac{R_2}{R_1} V_i$.

However, from Circuit 1 to Circuit 2, the nature of the feedback changes from negative to positive.

 \rightarrow Our assumption that the Op Amp is working in the linear region does not hold for Circuit 2, and $V_o = -\frac{R_2}{R_1} V_i$ does not apply any more.



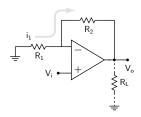
What if the + (non-inverting) and - (inverting) inputs of the Op Amp are interchanged?

Our previous analysis would once again give us $V_o = -\frac{R_2}{R_1} V_i$.

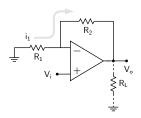
However, from Circuit 1 to Circuit 2, the nature of the feedback changes from negative to positive.

 \rightarrow Our assumption that the Op Amp is working in the linear region does not hold for Circuit 2, and $V_o=-\frac{R_2}{R_1}~V_i$ does not apply any more.

(Circuit 2 is also useful, and we will discuss it later.)

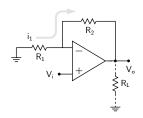


*
$$V_+ \approx V_- = V_i$$



*
$$V_{+} \approx V_{-} = V_{i}$$

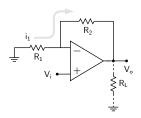
 $\rightarrow i_{1} = (0 - V_{i})/R_{1} = -V_{i}/R_{1}$.



*
$$V_{+} \approx V_{-} = V_{i}$$

 $\rightarrow i_{1} = (0 - V_{i})/R_{1} = -V_{i}/R_{1}$.

*
$$V_o = V_+ - i_1 R_2 = V_i - \left(-\frac{V_i}{R_1}\right) R_2 = V_i \left(1 + \frac{R_2}{R_1}\right).$$

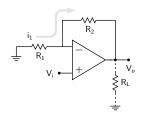


*
$$V_{+} \approx V_{-} = V_{i}$$

 $\rightarrow i_{1} = (0 - V_{i})/R_{1} = -V_{i}/R_{1}$.

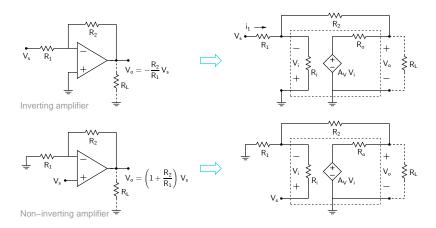
*
$$V_o = V_+ - i_1 R_2 = V_i - \left(-\frac{V_i}{R_1}\right) R_2 = V_i \left(1 + \frac{R_2}{R_1}\right).$$

* This circuit is known as the "non-inverting amplifier."



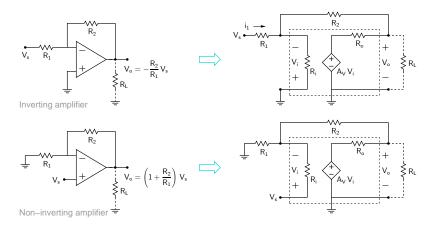
- * $V_{+} \approx V_{-} = V_{i}$ $\rightarrow i_{1} = (0 - V_{i})/R_{1} = -V_{i}/R_{1}$.
- * $V_o = V_+ i_1 R_2 = V_i \left(-\frac{V_i}{R_1}\right) R_2 = V_i \left(1 + \frac{R_2}{R_1}\right).$
- * This circuit is known as the "non-inverting amplifier."
- * Again, interchanging + and changes the nature of the feedback from negative to positive, and the circuit operation becomes completely different.

Inverting or non-inverting?



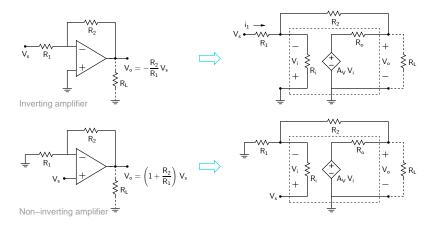
* If the sign of the output voltage is not a concern, which configuration should be preferred?

Inverting or non-inverting?

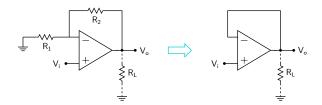


- * If the sign of the output voltage is not a concern, which configuration should be preferred?
- * For the inverting amplifier, since $V_- \approx 0 \ V$, $i_1 = V_s/R_1 \to R_{\rm in} = V_s/i_1 = R_1$.

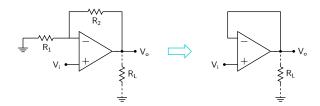
Inverting or non-inverting?



- * If the sign of the output voltage is not a concern, which configuration should be preferred?
- * For the inverting amplifier, since $V_- \approx 0 \ V$, $i_1 = V_s/R_1 \rightarrow R_{\rm in} = V_s/i_1 = R_1$.
- * For the non-inverting amplifier, $R_{\rm in} \sim R_i$ of the Op Amp, which is a few M Ω .
 - \rightarrow Non-inverting amplifier is better if a large R_{in} is required.

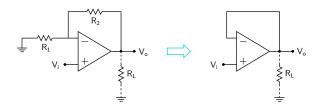


Consider $R_1 \to \infty$, $R_2 \to 0$.



Consider
$$R_1 \to \infty\,,\ R_2 \to 0\,.$$

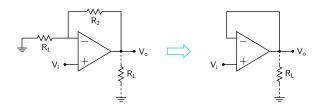
$$rac{V_o}{V_i}
ightarrow 1 + rac{R_2}{R_1}
ightarrow 1$$
 , i.e., $V_o = V_i$.



Consider $R_1 \to \infty$, $R_2 \to 0$.

$$rac{V_o}{V_i}
ightarrow 1 + rac{R_2}{R_1}
ightarrow 1$$
 , i.e., $V_o = V_i$.

This circuit is known as unity-gain amplifier/voltage follower/buffer.

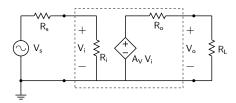


Consider $R_1 \to \infty$, $R_2 \to 0$.

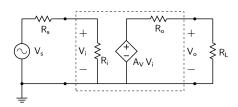
$$rac{V_o}{V_i}
ightarrow 1 + rac{R_2}{R_1}
ightarrow 1$$
 , i.e., $V_o = V_i$.

This circuit is known as unity-gain amplifier/voltage follower/buffer.

What has been achieved?

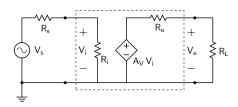


Consider an amplifier of gain A_V . We would like to have $V_o = A_V V_s$.



Consider an amplifier of gain A_V . We would like to have $V_o = A_V V_s$. However, the actual output voltage is,

$$V_o = \frac{R_L}{R_o + R_L} \times A_V \ V_i = A_V \times \frac{R_L}{R_o + R_L} \times \frac{R_i}{R_i + R_s} \ V_s \ . \label{eq:Vo}$$

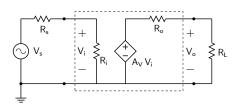


Consider an amplifier of gain A_V . We would like to have $V_o = A_V V_s$.

However, the actual output voltage is,

$$V_o = \frac{R_L}{R_o + R_L} \times A_V V_i = A_V \times \frac{R_L}{R_o + R_L} \times \frac{R_i}{R_i + R_s} V_s.$$

To obtain the desired V_o , we need $R_i
ightarrow \infty$ and $R_o
ightarrow 0$.



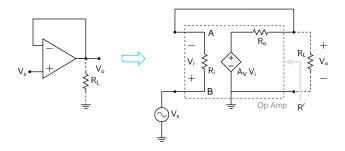
Consider an amplifier of gain A_V . We would like to have $V_o = A_V V_s$.

However, the actual output voltage is,

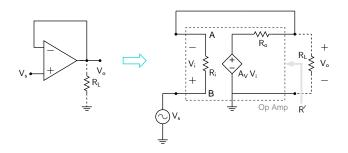
$$V_o = \frac{R_L}{R_o + R_L} \times A_V \ V_i = A_V \times \frac{R_L}{R_o + R_L} \times \frac{R_i}{R_i + R_s} \ V_s \ .$$

To obtain the desired V_o , we need $R_i \to \infty$ and $R_o \to 0$.

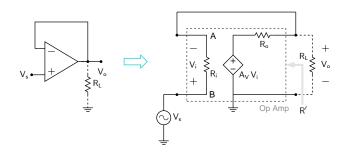
The buffer (voltage follower) provides this feature (next slide).



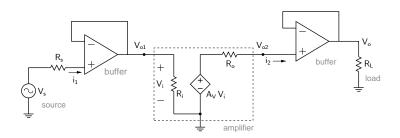
* The current drawn from the source (V_s) is small (since R_i of the Op Amp is large) \rightarrow the buffer has a large input resistance.



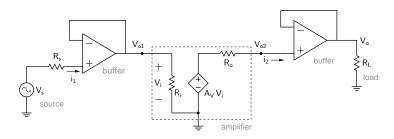
- * The current drawn from the source (V_s) is small (since R_i of the Op Amp is large) \rightarrow the buffer has a large input resistance.
- * As we have seen earlier, A_V is large \rightarrow $V_i \approx$ 0 V \rightarrow $V_A = V_B = V_s$.



- * The current drawn from the source (V_s) is small (since R_i of the Op Amp is large) \rightarrow the buffer has a large input resistance.
- * As we have seen earlier, A_V is large $o V_i pprox 0 \ V o V_A = V_B = V_s$.
- * The resistance seen by R_L is $R' \approx R_o$, which is small \to the buffer has a small output resistance. (To find R', deactivate the input voltage source $(V_s) \to A_V V_i = 0 \ V$.)

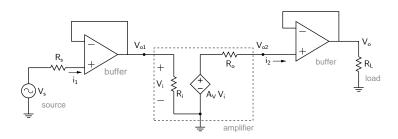


Op Amp buffer



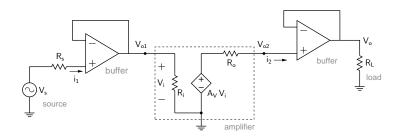
Since the buffer has a large input resistance, $i_1 \approx 0\,A$, and V_+ (on the source side) $= V_s \to V_{o1} = V_s$.

Op Amp buffer



Since the buffer has a large input resistance, $i_1\approx 0\,A$, and V_+ (on the source side) $=V_s\to V_{o1}=V_s$. Similarly, $i_2\approx 0\,A$, and $V_{o2}=A_V\,V_s$.

Op Amp buffer

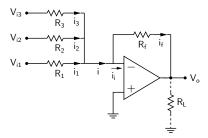


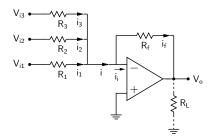
Since the buffer has a large input resistance, $i_1 \approx 0 \, A$,

and V_+ (on the source side) $=V_s
ightarrow V_{o1} = V_s$.

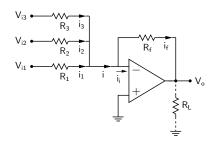
Similarly, $\emph{i}_2 \approx 0\,\emph{A}$, and $\emph{V}_{o2} = \emph{A}_\emph{V}\,\emph{V}_\emph{s}$.

Finally, $V_o = V_{o2} = A_V \ V_s$, as desired, irresepective of R_S and R_L .



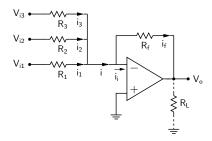


$$V_- \approx \, V_+ = 0 \; V \rightarrow i_1 = V_{i1}/R_1, \, i_1 = V_{i2}/R_2, \, i_1 = V_{i3}/R_3 \, . \label{eq:V-}$$



$$V_{-} \approx V_{+} = 0 V \rightarrow i_{1} = V_{i1}/R_{1}, i_{1} = V_{i2}/R_{2}, i_{1} = V_{i3}/R_{3}.$$

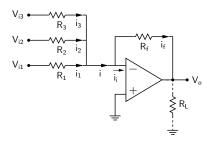
 $i = i_{1} + i_{2} + i_{3} = \left(\frac{V_{i1}}{R_{1}} + \frac{V_{i2}}{R_{2}} + \frac{V_{i3}}{R_{3}}\right).$



$$V_{-} \approx V_{+} = 0 \ V \rightarrow i_{1} = V_{i1}/R_{1}, \ i_{1} = V_{i2}/R_{2}, \ i_{1} = V_{i3}/R_{3}.$$

$$i = i_1 + i_2 + i_3 = \left(\frac{V_{i1}}{R_1} + \frac{V_{i2}}{R_2} + \frac{V_{i3}}{R_3}\right).$$

Because of the large input resistance of the Op Amp, $i_i pprox 0
ightarrow i_f = i$, which gives,



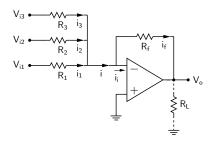
$$V_{-} \approx V_{+} = 0 V \rightarrow i_{1} = V_{i1}/R_{1}, i_{1} = V_{i2}/R_{2}, i_{1} = V_{i3}/R_{3}.$$

$$i = i_1 + i_2 + i_3 = \left(\frac{V_{i1}}{R_1} + \frac{V_{i2}}{R_2} + \frac{V_{i3}}{R_3}\right).$$

Because of the large input resistance of the Op Amp, $i_i pprox 0
ightarrow i_f = i$, which gives,

$$V_o = V_- - i_f R_f = 0 - \left(\frac{V_{i1}}{R_1} + \frac{V_{i2}}{R_2} + \frac{V_{i3}}{R_3}\right) R_f = -\left(\frac{R_f}{R_1} V_{i1} + \frac{R_f}{R_2} V_{i2} + \frac{R_f}{R_3} V_{i3}\right),$$

i.e., V_o is a weighted sum of V_{i1} , V_{i2} , V_{i3} .



$$V_- \approx \, V_+ = 0 \; V \rightarrow i_1 = V_{i1}/R_1, \, i_1 = V_{i2}/R_2, \, i_1 = V_{i3}/R_3 \, . \label{eq:V-}$$

$$i = i_1 + i_2 + i_3 = \left(\frac{V_{i1}}{R_1} + \frac{V_{i2}}{R_2} + \frac{V_{i3}}{R_3}\right).$$

Because of the large input resistance of the Op Amp, $i_i \approx 0 \rightarrow i_f = i$, which gives,

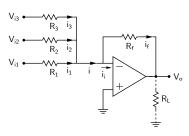
$$V_o = V_- - i_f R_f = 0 - \left(\frac{V_{i1}}{R_1} + \frac{V_{i2}}{R_2} + \frac{V_{i3}}{R_3}\right) R_f = -\left(\frac{R_f}{R_1} V_{i1} + \frac{R_f}{R_2} V_{i2} + \frac{R_f}{R_3} V_{i3}\right),$$

i.e., V_o is a weighted sum of V_{i1} , V_{i2} , V_{i3} .

If $R_1 = R_2 = R_3 = R$, the circuit acts as a <u>summer</u>, giving

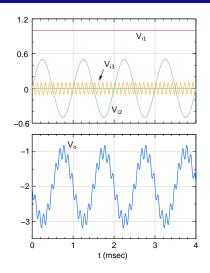
$$V_o = -K \left(V_{i1} + V_{i2} + V_{i3}\right)$$
 with $K = R_f/R$.

Summer example

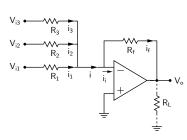


$$\begin{split} R_1 &= R_2 = R_3 = 1 \ k\Omega \\ R_f &= 2 \ k\Omega \\ &\rightarrow V_o = -2 \left(V_{i1} + V_{i2} + V_{i3} \right) \end{split}$$

SEQUEL file: ee101_summer.sqproj

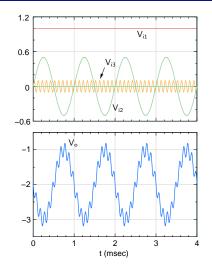


Summer example



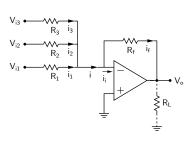
$$\begin{split} R_1 &= R_2 = R_3 = 1 \ k\Omega \\ R_f &= 2 \ k\Omega \\ &\rightarrow V_o = -2 \left(V_{i1} + V_{i2} + V_{i3} \right) \end{split}$$

SEQUEL file: ee101_summer.sqproj



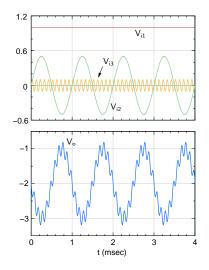
* Note that the summer also works with DC inputs. This is true about the inverting and non-inverting amplifiers as well.

Summer example



$$\begin{split} R_1 &= R_2 = R_3 = 1 \ k\Omega \\ R_f &= 2 \ k\Omega \\ &\rightarrow V_o = -2 \left(V_{i1} + V_{i2} + V_{i3} \right) \end{split}$$

SEQUEL file: ee101_summer.sqproj



- * Note that the summer also works with DC inputs. This is true about the inverting and non-inverting amplifiers as well.
- * Op Amps make life simpler! Think of adding voltages in any other way.