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* A Field-Effect Transistor (FET) has a gate (G) terminal which controls the
current flow between the other two terminals, viz., source (S) and drain (D).
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Field-effect transistors
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* A Field-Effect Transistor (FET) has a gate (G) terminal which controls the
current flow between the other two terminals, viz., source (S) and drain (D).

* In simple terms, a FET can be thought of as a resistance connected between S
and D, which is a function of the gate voltage V.
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* A Field-Effect Transistor (FET) has a gate (G) terminal which controls the
current flow between the other two terminals, viz., source (S) and drain (D).

* In simple terms, a FET can be thought of as a resistance connected between S
and D, which is a function of the gate voltage V.

* The mechanism of gate control varies in different types of FETs, e.g., JFET,
MESFET, MOSFET, HEMT.
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Field-effect transistors

Source )N( Drain

* A Field-Effect Transistor (FET) has a gate (G) terminal which controls the
current flow between the other two terminals, viz., source (S) and drain (D).

* In simple terms, a FET can be thought of as a resistance connected between S
and D, which is a function of the gate voltage V.

* The mechanism of gate control varies in different types of FETs, e.g., JFET,
MESFET, MOSFET, HEMT.

* FETs can be used for analog and digital applications. In each case, the fact that
the gate is used to control current flow between S and D plays a crucial role.

M. B. Patil, IIT Bombay



Junction Field-effect transistors (JFET)
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* The n-type region between the top and bottom p™ regions offers a resistance to
current flow. The resistance depends on V.
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Junction Field-effect transistors (JFET)
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Simplified structure
* The n-type region between the top and bottom p™ regions offers a resistance to

current flow. The resistance depends on V.

* We will first consider the case, Vp=Vs=0V.
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JFET with Vs =Vp=0V
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JFET with Vs =Vp=0V
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* The bias across the p-n junction is (Vg — Vs), i.e., Vg, since Vs =Vp=0V.
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JFET with Vs =Vp=0V
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* The bias across the p-n junction is (Vg — Vs), i.e., Vg, since Vs =Vp=0V.

* As the reverse bias across the junction is increased (by making Vi more

negative), the depletion region widens, and the resistance offered by the n-region
increases.
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* The bias across the p-n junction is (Vg — Vs), i.e., Vg, since Vs =Vp=0V.

* As the reverse bias across the junction is increased (by making Vi more
negative), the depletion region widens, and the resistance offered by the n-region
increases.

* When the reverse bias becomes large enough, the depletion region consumes the
entire n-region. The corresponding V is called the “pinch-off’ voltage.
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JFET: pinch-off voltage
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JFET: pinch-off voltage
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* Vp =V for which h=0, i.e.,, W=a.
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JFET: pinch-off voltage
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* Vp =V for which h=0, i.e.,, W=a.
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* For a p-n junction, W = , where V4 is the built-in potential of

the junction.
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JFET: pinch-off voltage
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* Vp =V for which h=0, i.e.,, W=a.
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* For a p-n junction, W = N
q Ng

, where V4 is the built-in potential of
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JFET: pinch-off voltage
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JFET: pinch-off voltage
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* For pinch-off, W=a= M = Vp = Vi — qiNga
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JFET: pinch-off voltage
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* For pinch-off, W=a= M = Vp = Vi — qiNga
q Ny 2¢

* Example: Ng=2x 10%cm~—3, a=1.5um, \,; =0.8 V.
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JFET: pinch-off voltage
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* For pinch-off, W=a= M = Vp = Vi — M'
q Ny 2¢

* Example: Ng=2x 10%cm~—3, a=1.5um, \,; =0.8 V.

(1.6 x 10719 Coul)(2 x 10* cm™3)((1.5 x 10~%)? cm?)

W =0.8-—
2% 11.7 x 8.85 x 10~ F/cm

=08-348~-27V.
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JFET: pinch-off voltage
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* For pinch-off, W=a= M = Vp =V — M_
q Ny 2¢

* Example: Ng=2x 10%cm~—3, a=1.5um, \,; =0.8 V.

(1.6 x 10719 Coul)(2 x 10* cm™3)((1.5 x 10~%)? cm?)

W =0.8-—
2% 11.7 x 8.85 x 10~ F/cm

=08-348~-27V.

= If a gate voltage Vg =—2.7 V is applied, the n-channel gets pinched off, and
the device resistance becomes very large.
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JFET with Vg =constant, Vp A0V
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JFET with Vg =constant, Vp A0V
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* Consider an n-JFET with V( constant (and not in pinch-off mode).
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JFET with Vg =constant, Vp A0V

neutral
depleted G Pt G G
- ! L

sik bl sl ] o sl — D
oV (1A% oV

1 ' | | |

. Ge L G 3

»

x v
(1A%

* Consider an n-JFET with V( constant (and not in pinch-off mode).

If a positive Vpp is applied, the potential V/(x) inside the channel from S to D
(along the dashed line) increases from 0 V to Vp.
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JFET with Vg =constant, Vp A0V
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* Consider an n-JFET with V( constant (and not in pinch-off mode).

If a positive Vpp is applied, the potential V/(x) inside the channel from S to D
(along the dashed line) increases from 0 V to Vp.

Note that W and h are now functions of x such that, W(x) + h(x) = a.
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JFET with V¢ = constant,
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* Consider an n-JFET with V( constant (and not in pinch-off mode).
If a positive Vpp is applied, the potential V/(x) inside the channel from S to D
(along the dashed line) increases from 0 V to Vp.
Note that W and h are now functions of x such that, W(x) + h(x) = a.

* Since the p-n junction bias at a given x is (Vg — V(x)), the drain end of the
channel has a larger reverse bias than the source end.
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JFET with V¢ = constant,
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* Consider an n-JFET with V( constant (and not in pinch-off mode).
If a positive Vpp is applied, the potential V/(x) inside the channel from S to D
(along the dashed line) increases from 0 V to Vp.
Note that W and h are now functions of x such that, W(x) + h(x) = a.

* Since the p-n junction bias at a given x is (Vg — V(x)), the drain end of the
channel has a larger reverse bias than the source end.
=> the depletion region is wider at the drain.
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JFET: derivation of Ip equation
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JFET: derivation of Ip equation

0V 1

Consider a slice of the device. The current density at any point in the neutral region is assumed to
be in the x direction, and given by,

dn
Jn = qunnE + gDy — =~ quanE = quaNg ——
dx dx
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JFET: derivation of Ip equation
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Consider a slice of the device. The current density at any point in the neutral region is assumed to
be in the x direction, and given by,
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dn
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where we have neglected the diffusion current, since n &~ Ny = ™ =0.
IX
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JFET: derivation of Ip equation

0V 1

Consider a slice of the device. The current density at any point in the neutral region is assumed to
be in the x direction, and given by,

’

dn
Jn = qunnE + qDp— = qunnE = qun,Ng——
dx dx J
n

where we have neglected the diffusion current, since n &~ Ny = ™ =0.

IX
Note that only the neutral part of the n-Si conducts since there are no carriers in the depletion
regions.
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JFET: derivation of Ip equation
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Consider a slice of the device. The current density at any point in the neutral region is assumed to
be in the x direction, and given by,

’

dn
Jn = qunnE + qDp— = qunnE = qun,Ng——
dx dx J
n

where we have neglected the diffusion current, since n &~ Ny = ™ =0.

/x
Note that only the neutral part of the n-Si conducts since there are no carriers in the depletion
regions.
At a given x, the current Ip is obtained by integrating J, over the area of the neutral channel
region (see figure on the right). Since J, is constant over this area,
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JFET: derivation of Ip equation

WArea:)hZ
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Consider a slice of the device. The current density at any point in the neutral region is assumed to
be in the x direction, and given by,

’

dn
Jn = qunnE + qDp— = qunnE = qun,Ng——
dx dx J
n

where we have neglected the diffusion current, since n &~ Ny = ™ =0.

IX
Note that only the neutral part of the n-Si conducts since there are no carriers in the depletion
regions.

At a given x, the current Ip is obtained by integrating J, over the area of the neutral channel
region (see figure on the right). Since J, is constant over this area,

dv dv w
ID(X):/ Jpdx dz = 2hZ x qp,nng :ZqZp,,,Ndaa 17? ,

where we have used h =a — W, i.e.,, h = a(1 — W/a).
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JFET: derivation of Ip equation
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JFET: derivation of Ip equation

oV & i

dv w
ID(X):2qZMnNd3E (17 ?> .

Since Ip(x) is constant from x =0 to x =L, we get,

L Vb 2e /
/ IDCIX = IDL = 2qZ,unNda/ 1-— YY) Vbi - (VG - V) d\/,
0 0 qNga

where we have used, for the depletion width W,

W(x) = %[Vbi—(VG— V).
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JFET: derivation of Ip equation

oV & i

dv w
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Since Ip(x) is constant from x =0 to x =L, we get,

L Vb 2e /
/ IDCIX = IDL = 2qZ,unNda/ 1-— YY) Vbi - (VG - V) d\/,
0 0 qNga

where we have used, for the depletion width W,
2¢

W(x) =/ — [Voi — (V6 — V)].
qNg

N, 22
Evaluating the integral and using Vi, — Vp = d 2da , we get (do this!)
€

2 Vp + Vi — Vg '\ ¥/2 Vhi — Vg \ /2
Ib=God Vb — = (Vo — Vp) | (2T i Z Ve y7n (BT Y6 ,
° 0{ 3( ° P)|:< Wbi — Vp > (Vbi—VP>

where Gy = 2qZp,Nga/L.
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JFET: derivation of Ip equation

dv w
ID(X):2qZMnNd3E (17 ?> .

Since Ip(x) is constant from x =0 to x =L, we get,

L Vb 2e /
/ IDdX = IDL = 2qZ,unNda/ 1-— YY) Vbi - (VG - V) d\/,
0 0 qNga

where we have used, for the depletion width W,
2¢

W(x) =/ — [Voi — (V6 — V)].
qNg

N, 22
Evaluating the integral and using Vi, — Vp = d 2da , we get (do this!)
€

2 Vp + Vi — Vg '\ ¥/2 Vhi — Vg \ /2
Ib=God Vb — = (Vo — Vp) | (2T i Z Ve y7n (BT Y6 ,
° 0{ 3( ° P)|:< Wbi — Vp > (Vbi—VP>

where Gy = 2qZp,Nga/L.

Note that Gy is the channel conductance if there was no depletion, i.e., if h(x) = a throughout the

channel.
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Special case: Vp =0V

) neutral
Yy G I . depleted G I

2 Vp + Wi — V6 \3/2 <Vbi*VG)3/2
Ib = God Vo — = (Vo — Vp) | (20— Ve =r (™ Ve
P 0{ P 3( ’ P) {( Vi — Vp ) Vbi — Vp
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Special case: Vp =0V
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Since W= —— (W, — Vg)/°, and a= —— (Wb — Vp) /", we get
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This simply shows that the channel conductance reduces linearly with W (as seen before the

Q

Vs = Vs =0V condition), and for Vg = Vp (i.e., W = a), the conductance becomes zero.
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JFET: pinch-off near drain
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JFET: pinch-off near drain
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For a given Vg, Ip reaches a maximum at Vp = Vi — Vp (show this by differentiating the above
equation).

2
/D:GO{VD*E(VM*VP)
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pinch-off near drain
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For a given Vg, Ip reaches a maximum at Vp = Vi — Vp (show this by differentiating the above

equation).

At this value of Vp, the bias across the p-n junction at the drain end is Vg — Vp = Vp.

2
/D:GO{VD*E(VM*VP)
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pinch-off near drain
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For a given Vg, Ip reaches a maximum at Vp = Vi — Vp (show this by differentiating the above
equation).

2
/D:GO{VD*E(VM*VP)

At this value of Vp, the bias across the p-n junction at the drain end is Vg — Vp = Vp.
In other words, the drain end of the channel has just reached pinch-off.
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JFET: pinch-off near drain
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For a given Vg, Ip reaches a maximum at Vp = Vi — Vp (show this by differentiating the above

equation).

At this value of Vp, the bias across the p-n junction at the drain end is Vg — Vp = Vp.

In other words, the drain end of the channel has just reached pinch-off.
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pinch-off near drain
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2
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For a given Vg, Ip reaches a maximum at Vp = Vi — Vp (show this by differentiating the above

equation).

At this value of Vp, the bias across the p-n junction at the drain end is Vg — Vp = Vp.

In other words, the drain end of the channel has just reached pinch-off.

°]

S =y
oV pinch-off

What happens if Vp is increased further?
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JFET: saturation

Vb

Vst =V — Vp

Consider a fixed Vi with Vp varying from ~ 0 V to a value beyond condition C.
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JFET: saturation

vt =
Consider a fixed Vi with Vp varying from ~ 0 V to a value beyond condition C.

In this situation, i.e., Vp > V& a short high-field region develops near the drain end, and the
“excess’ voltage, Vp — V' drops across this region.
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JFET: saturation

vt — v

Consider a fixed Vi with Vp varying from ~ 0 V to a value beyond condition C.

In this situation, i.e., Vp > V& a short high-field region develops near the drain end, and the
“excess’ voltage, Vp — V' drops across this region.

Because the high-filed region is confined to a very small distance, the conditions in the device are
almost identical in C and D.
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JFET: saturation

vt — v

Consider a fixed Vi with Vp varying from ~ 0 V to a value beyond condition C.

In this situation, i.e., Vp > V& a short high-field region develops near the drain end, and the
“excess’ voltage, Vp — V' drops across this region.

Because the high-filed region is confined to a very small distance, the conditions in the device are
almost identical in C and D.

= The current in case D is almost the same as that for case C.
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JFET: saturation

vt — v

Consider a fixed Vi with Vp varying from ~ 0 V to a value beyond condition C.

In this situation, i.e., Vp > V& a short high-field region develops near the drain end, and the

“excess’ voltage, Vp — V' drops across this region.

Because the high-filed region is confined to a very small distance, the conditions in the device are
almost identical in C and D.

= The current in case D is almost the same as that for case C.

The region Vp > V' is therefore called the “saturation region.”
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JFET: example

An n-channel silicon JFET has the following parameters (at T =300K): a=1.5pum, L=5 um,
Z=50pum, Ng=2 x 10®*cm ™3, V4, =0.8V, 1, =300cm?/V-sec.

(a) What is the pinch-off voltage?

(b) Write a program to generate Ip-V)p characteristics for Vo =0V, —0.5V, -1V, —1.5V,
—2V.

(c) For each of the above Vi values, compute V3", and show it on the /p-Vp plot. The part of
an Ip-Vp corresponding to Vp < V5" is called the “linear” region, and that corresponding
to Vp > VZ" is called the “saturation” region.
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JFET: example

An n-channel silicon JFET has the following parameters (at T =300K): a=1.5pum, L=5 um,
Z=50pum, Ng=2 x 10®*cm ™3, V4, =0.8V, 1, =300cm?/V-sec.
(a) What is the pinch-off voltage?

(b) Write a program to generate Ip-V)p characteristics for Vo =0V, —0.5V, -1V, —1.5V,
—2V.

(c) For each of the above Vi values, compute V3", and show it on the /p-Vp plot. The part of
an Ip-Vp corresponding to Vp < Vf)a‘ is called the “linear” region, and that corresponding
to Vp > VZ" is called the “saturation” region.

Answer:
(a) Vp=—268V.

(b) linear | satyration

200
=0V
150
< 05V
=100
8
Y,
50 15V
—2V
0
0 1 2 3 4 5

Vp (Volts)
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JFET: simplified model for saturation

2
ID:GO{VD_E(VM— V)

Vb + Vi — Vg 3/2_ Vii — V6 \¥/?
Vi — Vp Vbi — Vp '
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JFET: simplified model for saturation

2
ID:GO{VD_E(VM— V)

Vb + Vi — Vg 3/2_ Vii — V6 \¥/?
Vi — Vp Vbi — Vp '

At saturtation, V5'= Vi — Vp, giving

2 WVii — Ve 3/2
,Ea::(;o{vo_ 3 (Vi = Vi) {1— (H) }}
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JFET: simplified model for saturation

Vb + Wi — Ve \ /2 Wi — Ve \*/?
Vi — Vp Wbi — Vp ’
At saturtation, V5'= Vi — Vp, giving

2 WVii — Ve 3/2
IEat:GO{VD— 3 (Vi = Vi) {1— (H) }}

The following approximate model is found to be adequate in circuit design:

2
ID:GO{VD_E(VM— V)

I35 (V) = Ipss (1 — VG /Vp)?, where Ipss = IFY (Ve =0V).
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JFET: simplified model for saturation

Vb + Wi — Ve \ /2 Wi — Ve \*/?
Vi — Vp Wbi — Vp ’
At saturtation, V5'= Vi — Vp, giving

2 WVii — Ve 3/2
IEat:GO{VD— 3 (Vi = Vi) {1— (H) }}

The following approximate model is found to be adequate in circuit design:
IEY(Vg) = Ipss (1 — Vg /Vp)?, where Ipss =I5 (Vg =0 V).

dlp
Ve

2
ID:GO{VD_E(VM— V)

, which is obtained as:
VD:COnStant

In amplifier design, we are interested in g, =
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JFET: simplified model for saturation

Vb + Wi — Ve \ /2 Wi — Ve \*/?
Vi — Vp Wbi — Vp ’
At saturtation, V5'= Vi — Vp, giving

2 WVii — Ve 3/2
IEat:GO{VD— 3 (Vi = Vi) {1— (H) }}

The following approximate model is found to be adequate in circuit design:
IEY(Vg) = Ipss (1 — Vg /Vp)?, where Ipss =I5 (Vg =0 V).

dlp
Ve

2
ID:GO{VD_E(VM— V)

, which is obtained as:
VD:COnStant

In amplifier design, we are interested in g, =

&gm=28mo (1 — Vi /Vp),
where gmno = —2Ipss/Vp = gm(Ve =0 V).
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JFET: source/drain resistances

GT pt
.__W\,_:L,,,?i‘ ,,,,,, noSto_ : AA——o g S’ D’ b
s | : D Rs Rp
P ! G
ol 1

(Not drawn to scale. Typically, L > 2a.)

Cross—sectional view
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JFET: source/drain resistances

(Not drawn to scale. Typically, L > 2a.)

Cross—sectional view

In real JFETsS, there is a separation between the source/drain contacts and the active channel.
The n-type semiconductor regions between the active channel and the source/drain contacts can

be modelled by resistances Rs and Rp.
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JEET: small-signal model

'pD

v, = Cos 9a
GmUg
Rg

Vss
Amplifier example

* A small-signal model of a JFET is required in analysis of an amplifier.
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JEET: small-signal model

'pD

D +6 1

9d
GmVg

Vss
Amplifier example

* A small-signal model of a JFET is required in analysis of an amplifier.

* The DC gate current, which is the reverse current of a p-n junction, is generally insignificant
and is therefore ignored.
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JEET: small-signal model

'pD

D +G

9d
GmVg

Vss
Amplifier example

* A small-signal model of a JFET is required in analysis of an amplifier.

* The DC gate current, which is the reverse current of a p-n junction, is generally insignificant
and is therefore ignored.
dlp

* = —— with Vp =constant.
8m Ve D
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JEET: small-signal model

'pD

D + G
Cya
R W v
G Gty Re
s _

Vss

Amplifier example

* A small-signal model of a JFET is required in analysis of an amplifier.

* The DC gate current, which is the reverse current of a p-n junction, is generally insignificant
and is therefore ignored.

ol

* gm = =D \ith Vp = constant.
oV
ol

* gy = ‘( D with V = constant.
()VD
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JEET: small-signal model

'pD

D +6 1
Cya
= W TG v v
¢ Gy Re
s _

Vss
Amplifier example

* A small-signal model of a JFET is required in analysis of an amplifier.

* The DC gate current, which is the reverse current of a p-n junction, is generally insignificant
and is therefore ignored.

ol

* gm = =D \ith Vp = constant.
oV
ol

* gy = ‘( D with V = constant.
()VD

* gm and gy can be obtained by differentiating Ip(Vg, Vp). Note that, in our simple model,
short-channel effects have not been included; we would therefore obtain gg =00 in
saturation. However, a real device would show a small increase in Ip with an increase in Vp
in saturation, giving rise to a non-zero gy.
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JEET: small-signal model

'pD

D +6 1
Cya
|::> Vg = Cas Ga Vi Va
¢ Gy Re
s _

Vss
Amplifier example

* A small-signal model of a JFET is required in analysis of an amplifier.

* The DC gate current, which is the reverse current of a p-n junction, is generally insignificant
and is therefore ignored.

ol

* gm = =D \ith Vp = constant.
oV
ol

* gy = ‘( D with V = constant.
()VD

* gm and gy can be obtained by differentiating Ip(Vg, Vp). Note that, in our simple model,
short-channel effects have not been included; we would therefore obtain gg =00 in
saturation. However, a real device would show a small increase in Ip with an increase in Vp
in saturation, giving rise to a non-zero gy.

* The capacitances Cg and Cgq are depletion capacitances of the p-n junction.
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