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Abstract

The Self-certifying File System (SFS) currently exports Unix filesystems. Conse-
quently, file owners on SF'S servers who want to give other users access to their files
can do so only through the coarse-grained Unix access control mechanisms, which
are based on locally defined user identifiers and group identifiers. Therefore, despite
the fact that SFS was designed to be a global filesystem, it is impossible for a file
owner to grant access permissions to a remote SF'S user who does not maintain a Unix
account on the local machine. Moreover, creating new user identifiers or group identi-
fiers for the purpose of access control requires the involvement of the local machine’s
administrator, a limitation that runs counter to the egalitarian spirit of SF'S.

This thesis describes the design and implementation of an alternative access control
mechanism, which is based on Access Control Lists (ACLs). This mechanism affords
SE'S users much more flexibility in managing who and how can access their files, and
does not require the assistance of the local realm’s system administrator. By allowing
the use of public key hashes as identifiers of remote users, ACLs allow access control
to extend beyond the local machine’s realm to all SFS users, in line with the spirit
of SFS. Furthermore, in the future, our ACL mechanism could easily be extended
to support access control for groups of users, such as “all MIT students”, whose
composition is defined and maintained by a third party on any SF'S server.
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Chapter 1

Introduction

SFS [1, 2, 3, 4] is a secure and decentralized network file system designed to span
the Internet. It provides a common namespace for all files in the world. Users can
access their files from any machine they trust, anywhere in the world. They can
share files across organizational boundaries by merely exchanging file names. Like
the web, anyone can set up an SFS server, any client can access any server, and
any server can link or point to any other server. Unlike the (mostly insecure) web,
though, SFS provides a mechanism based on self-certifying pathnames which allows
clients and servers to communicate securely over an insecure network such as the
Internet. Several cryptographic protocols are used to ensure file system security. One
of the novelties of SFS is that setting up secure communications does not require the
intervention of network administrators, or the involvement of a certification authority,

such as Verisign.

1.1 Relation of SFS to NFS

In order to ease its adoption and ensure portability, SF'S was built on top of the widely
used Network File System (NFS)[24]. An SFS client requires the presence of an NFS
client, to which it “pretends” to be an NF'S server. Likewise, an SF'S server requires

the presence of an NFS server, to which it acts as an NFS client. On the client



side, the SF'S client receives the local NF'S client’s requests and sends them encrypted
over the network to the remote SFS server. There, the SFS server decrypts them
and acting as an NFS client, relays them to the local NFS server. The interaction is
depicted in Figure 1-1. The reply takes the same (secure) path in reverse, and ends

up at the NF'S client that issued the request.

Network

CLIENT SIDE SERVER SIDE

1

Application SFES Client SFS Server

A

User space User space

Kernel space Kernel space i

\

VFS layer }—»‘ NFS Client NFS Server

Figure 1-1: The path taken by a filesystem request originating from an application
on the client. The response takes the same path in reverse.

1.2 Current access control mechanism and its lim-

itations

SES effectively delegates access control to the underlying NFS server. Essentially,
remote SFS users get whatever file permissions they would get if they were to log
into the machine. Moreover, anonymous users who would not be able to log into the
machine at all are (optionally) allowed some restricted level of access to the filesystem

(with “nobody” credentials). Depending on the server’s configuration, anonymous
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users may be restricted to accessing only certain parts of the file system.

1.2.1 Credentials mapping

When a remote user logs into an SFS server, the server generates an authentication
request and sends it to the user. The user’s agent signs the request, and appends a
copy of the user’s public key. The server checks the signature, thereby verifying that
the user indeed has possession of the corresponding private key. If authentication
succeeds, SFS searches a database mapping public keys to local Unix usernames.
If a match is found, SF'S obtains the corresponding Unix credentials from the local

etc/passwd file, and associates them with the remote user.

If any of the above steps fails, the remote user’s agent has to restart the process,
requesting anonymous login. In this case, the remote user receives “nobody” creden-

tials.

1.2.2 NFS Access Control

In order to delegate access control to NFS, the SFS server tags the RPCs it sends
to the local NFS server with the remote user’s (local) Unix credentials that were
obtained at login time. By doing so, it “tricks” the NFS server into thinking that the
remote user is issuing the requests directly. Whether these requests will be honored
or not is decided by the NFS server, based entirely on the remote user’s credentials

on the local machine.

Consequently, just like in Unix, directories and files in SFS are associated with three
sets of permissions, for three different types of users: owner, group and other. For each
of these three types, the access permissions consist of 3 bits (r,w,z) corresponding
to the permission to read/write/execute a file (or list/modify/traverse a directory).
The owner of the filesystem object can change the access permissions with the chown

call.
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1.2.3 Limitations

The fact that only local Unix credentials are used for access control severely restricts
a file owner’s flexibility in determining who and how can access her files. More

specifically:

1. For each file, one can only specify 3 different sets of access permissions, corre-
sponding to the 3 types of user (owner, group and other.) It is impossible to

assign different access permissions to different users or different groups.

2. Even though SFS was designed to be a global file system, it is impossible to
grant access privileges to an SF'S user who does not happen to have an account
in the local administrative realm. This restriction results from the fact that all
such users have to log in as “anonymous” and can therefore only get whatever

permissions correspond to other.

3. Registering a new user in the local administrative realm or creating a new group
of users for the purpose of access control requires the assistance of the realm’s
system administrator, a limitation which conflicts with the egalitarian nature

of SEFS.

4. Tt is impossible to give access rights to variable groups such as “all MIT un-
dergraduates” whose composition is managed and regularly updated by a third
party, which is only trusted to provide the correct composition of the group and

is not given any administrative privileges on the server.

1.3 Access Control Lists

In order to address the limitations mentioned above, we designed and implemented
an access control mechanism that relies on Access Control Lists (ACLs) instead of

Unix credentials. This mechanism has the following properties:
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1. ACLs allow fine-grained access control, giving file owners the flexibility to assign

different access permissions to different users or groups.

2. ACLs allow access control to extend to any SFS user, whether she has an

account in the local administrative realm or not.

3. Maintaining ACLs does not require the involvement of the local realm’s system

administrator.

4. ACLs are compatible with future extensions that will provide support for groups

that are defined and maintained by a third party on any SFS server.

1.3.1 Extending access control to all SF'S users

For authentication purposes, every SFS user is currently required to have a pub-
lic/private key pair. Since with overwhelming probability each user’s public key is
unique, public keys can effectively be used to establish a global user namespace. By
allowing the use of public keys as global user identifiers, the ACL mechanism extends

access control beyond the local NFS realm to all SFS users.

For practicality, only the (much shorter) SHA-1 hash [5] of a public key appears in
the ACL. This optimization does not impair security: even though in theory two
different public keys could produce the same SHA-1 hash, such an event is extremely
unlikely to occur in practice since SHA-1 is considered to be a cryptographically
secure, collision-resistant hash function [6, 7]. Indeed, despite extensive research, no

SHA-1 collisions have been found to date.

1.3.2 ACL example

Each file and each directory in SF'S has an associated ACL similar to the one below:

13



ACLBEGIN

sys:anyuser:rl:

alias:savvides:rldiwa:

alias:dm:rldiwa:

localgroup:sfsdev:rliw:
pk:7aabrh3dsv8sxpddkh4emb4ie7ba7adr:rldiwa:
pk:ibuqjvxvxvwbwgb8qct42n7c36£zs8m8:rliw:

group: [self-certifying-pathname] :iw:

ACLEND

Each ACL line assigns permissions to one of 5 different types of users:

sys: a system group. Currently, only sys:anyuser is defined.

alias: a (human-friendly) username in the local NFS realm

localgroup: a (human-friendly) group name in the local administrative realm
pk: a user’s (hashed) public key

group: a self-certifying pathname pointing to a text file listing a set of public keys
all of which are to be treated as members of a group and given the same access
permissions. This file can reside on any SFS server. This feature has not been

implemented yet.

The permissions that one can set in each ACL line are reminiscent of those used in
AFS[15], and are summarized in Table 1.1. The permissions assigned to the remote
user correspond to the logical OR of the permissions found in each matching ACL

line.

1.4 Contributions of this thesis

The original ACL design that was presented in the thesis proposal had suggested

a pathname-based approach to access control, whereby the target file’s pathname
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Permission | Effect on files Effect on directories
r read contents of file no effect
w write to file no effect
1 no effect cd to a directory, list its files
i no effect insert new files/dirs into directory
d no effect delete files/dirs from the directory
a modify the file’s ACL | modify the directory’s ACL

Table 1.1: Access rights available in ACLs

would be mapped to a set of access permissions. Upon further investigation, this
approach proved to be difficult to implement in practice. The main difficulty arose
from the fact that NFS requests specify the filesystem object they want to operate on
in terms of opaque filehandles. Since SFS is running in user mode, mapping an NFS
filehandle back to a pathname would require issuing a call to get the attributes of
the target object and then, by looking at the i-node field of the attributes, perform-
ing a prohibitively expensive exhaustive search on all i-nodes to find the matching

pathname.

In order to make it possible to efficiently locate the ACL corresponding to an NFS
filehandle, we chose to store the ACLs inside the files themselves, in a 512-byte section
at the beginning of the file. Thus, upon receiving an NFS request from a remote client,
we can obtain the corresponding ACL by reading the first 512 bytes of the file pointed
to by the filehandle contained in the incoming request. A similar, but slightly more
complicated procedure is used for obtaining the ACLs of other filesystem objects,

such as directories.

The presence of the ACLs inside files must of course be hidden from end users. We
used the RPC traversal mechanism that comes with SFS to adjust incoming and
outgoing RPCs so that the embedded ACL and its effects, such as a larger file size,

are not visible to clients.

Since ACLs on the server are hidden from file manipulation utilities on the client, we
also designed and implemented a mechanism for viewing and modifying ACLs from

the client without going through the regular filesystem interface.
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Finally, we added caching of ACLs and user permissions on the server in order to
reduce the overhead incurred by the extra NFS calls that are needed to locate and

read ACLs on the server.

1.5 Thesis overview

Chapter 2 describes related work.

Chapter 3 describes the design of the ACL mechanism.

Chapter 4 describes the implementation of the ACL mechanism.

Chapter 6 gives the conclusion and suggestions for future work.
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Chapter 2

Related work

The related work falls into two categories: mechanisms for user authentication and

mechanisms for filesystem access control. We discuss each in turn.

2.1 User Authentication Mechanisms

Secure user authentication mechanisms rely on a variety of cryptographic protocols
for verifying the identity of a user. While some mechanisms allow any user to authen-
ticate himself to any remote server, others allow user authentication only within the
same administrative realm, or between administrative realms that have previously

been cross-linked by their administrators.

2.1.1 Kerberos

Kerberos [19] is a trusted, third-party authentication service based on symmetric key
cryptography. It allows users to authenticate themselves to servers (or, more generally,
services) on the network and vice versa. It is “trusted” in the sense that the users
and the services must trust Kerberos to provide an accurate judgment concerning the

identity of the remote party.
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A principal (i.e., a user or a service) that requires Kerberos authentication must
first register with a central Kerberos database, and create a secret key known only to
Kerberos and the principal. In the case of users, the secret key is simply an encrypted

password.

User authentication is performed by means of short-lived tickets that are issued by
a centralized Ticket Granting Server (TGS). At the beginning of a session, the user
sends his username and receives a ticket, which is encrypted with the user’s secret
key (which, as mentioned above, is based on his password). By entering his password,
the user can decrypt the ticket and, for the period of its validity (approximately 8
hours), use it to authenticate himself to services, which know and trust the TGS that
issued it. Such tickets can also be used to authenticate a service to a user, or to set

up a secure, encrypted channel between a user and a service.

The centralized approach to user authentication taken by Kerberos makes cross-realm
authentication difficult, but not impossible. Registering two administrative realms’
Ticket Granting Servers with one another makes it possible for users of one admin-
istrative realm to authenticate themselves to services in the other. However, the
registration procedure requires the involvement of administrators and scales poorly.

For example, registering 100 different administrative realms with one another would

100

0 ) = 9,900 cross-realm registrations (two for each pair of administrative

require 2(

realms).

This scalability issue has been partly addressed in the latest version of Kerberos
(Kerberos V5), which supports realm hierarchies [20]. In order to contact a service
in another realm, it may be necessary to contact the remote TGS of one or more
intermediate realms. The names of each of these realms are recorded in the ticket.
While this approach greatly reduces the number of cross-realm registrations that need
to be performed in order to allow cross-realm authentication of users, it does not
eliminate the need for cross-registration, which, of course, remains at the discretion
of each realm’s administrators. Going one step further, some proposals [21, 22, 23]

have suggested various ways of incorporating public key cryptography into Kerberos,
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thereby greatly facilitating cross-realm authentication.

Kerberos and SF'S thus share the ambition of providing an infrastructure for establish-
ing secure and authenticated communication across realms. While several filesystems
have used Kerberos for their user authentication needs (AFS, Kerberized NFS, DFS),
the scalability issues mentioned above make it rather ill-suited for adoption by SFS,
which is designed to have a global image, accessible from anywhere in the world.
Moreover, Kerberos” authentication infrastructure is based on central, trusted servers
that are under the authority of system administrators. These requirements conflict

with the decentralized and egalitarian nature of SFS.

2.1.2 Taos

The Taos Operating System [9, 10] provides an elaborate security model designed to
meet the security and authentication needs of distributed systems. All entities in this
model (users, servers, printers, etc) have a public/private key pair. This allows each
entity to write certificates delegating privileges and roles (such as “John” or “member

of group X”) to other entities.

User authentication is mediated by a novel, logic-based engine for reasoning about
certificates and delegation. The engine supports certificate chains, thereby allowing
administrators and users to define the precise trust relationship governing the au-
thentication process. The chaining of certificates can also be used for cross-realm

authentication.

2.1.3 SDSI

SDSI (Simple Distributed Security Infrastructure) [12, 13] is an egalitarian, decentral-
ized public key naming infrastructure that incorporates a certificate-based approach

to delegating authority and defining relations between its principals (public keys).

SDSI certificates can be chained, thereby giving a user the ability to define com-
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plex relationships that transcend any notion of administrative realm or namespace.
However, dealing with such certificate chains requires complex algorithms for chain
discovery, as well as complex proof systems for chain validation [14]. To date, no
truly distributed chain discovery algorithms have been discovered, and consequently,

no truly distributed implementation of SDSI exists.

In the context of user authentication, SDSI certificates can be used to prove that a
remote user has access to a certain protected resource on the server. The remote user
needs to present a certificate chain proving that the owner of the resource directly or

indirectly grants him the desired level of access on that resource.

2.2 Filesystem Access Control Mechanisms

Access Control Lists (ACLs) are widely used for controlling access to filesystem ob-
jects. However, the capabilities of ACL-based access control vary widely from filesys-

tem to filesystem.

2.2.1 NFS

NFS [24] currently lacks support for Access Control Lists. Some vendors, such as
Solaris and Irix, have created ancillary protocols to NFS to extend the server’s ACL
mechanism across the network. Even though the server still interprets the ACL and
has final control over access to a file system object, the client is able to manipulate

the ACL via these additional protocols.

Generally these efforts have focused on homogeneous operating environments [17].
Compatibility and interoperability issues were not addressed. Each model defines its
own variants of entry types, identifies users and groups differently, provides different
kinds of permission bits, and describes different procedures for ACL creation, defaults,

and evaluation.

The next version of NF'S will probably not suffer from these limitations: ACL support

20



is one of the requirements for NFSv4 proposed by the Internet Engineering Task Force
(IETF) [18].

2.2.2 AFS

In AFS [15], access to the filesystem is controlled by Access Control Lists (ACLs).
Each directory has its own ACL, which also governs access to all files inside the
directory. Users “own” their home directory and all its subdirectories. A directory’s
owner can specify which users and groups appear in the ACL and what privileges

each of them has. Table 2.1 summarizes the various types of access permissions that

are available in AFS ACLs.

Permission | Description

permission to read contents of files in the directory
permission to lookup (list) contents of the directory
permission to insert files into the directory
permission to delete files from the directory
permission to write files in the directory

enables programs to place advisory locks on a file
permission to administer the ACL of the directory

O ||| ==

Table 2.1: Types of access permissions in AFS ACLs

With the help of the system administrator, each AFS user can define up to 20 private
protection groups. These groups consist of lists of UIDs of users who are members of
the group, and can be treated in the same way as users when assigning permissions
in ACLs. Their use simplifies the administration of work groups. For example, a
professor can create a group consisting of the students in a class. A student can then
grant the entire class access permissions to a directory he owns, without having to

keep up with who is or is not in the class or what their individual UIDs are.

AFS does not support access control for remote users. In other words, a directory’s
ACL can only contain users that are registered in the local realm. However, when
using Kerberos for user authentication, it is possible to grant access permissions to

users in remote administrative realms. Before accessing protected resources in the lo-
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cal realm, remote users must first authenticate themselves to the realm. As described
in Section 2.1.1, such cross-realm authentication requires prior cross-registration of
the realms’ Kerberos services by the administrators. Unlike users, groups defined in

other administrative realms cannot be used in AFS ACLs.

2.2.3 Echo

Echo is a distributed filesystem, which, similarly to SF'S (and unlike AFS and NFS),
provides a global namespace where all clients see the same image, regardless of where
they are in the network. The namespace has a hierarchical structure similar to that
of the Domain Name System (DNS). It is basically a tree of labeled arcs with a
single common root, where filenames are paths through the naming tree. The tree is

navigated with the help of servers running DNS.

All Echo objects (files, directories, volumes, and servers) are protected by Access
Control Lists (ACLs), which specify what operations each principal is allowed to
perform on each object. Similarly to AFS, an ACL in Echo is a set of names and
access rights. The names in ACLs can be either principals (users) or groups. Unlike

AF'S, it is possible to have globally-named principals and groups in ACLs.

In contrast to SF'S, which does not prescribe a particular user authentication mech-
anism, user authentication in Echo is achieved through a built-in certificate system
which is based on Taos’s [9, 10] authentication infrastructure. Different levels of the
namespace can have different levels of trust, and secure cross-links can be used to

bypass untrusted levels.

Even though Echo was designed to be a truly distributed system, it (purposefully)
retained the centralized administration features of time-sharing systems. In this sense
it is very different from SF'S, which strives to avoid unnecessary centralized control
by allowing the administrator to be “out of the loop” if users are allowed to make

decisions for themselves.
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Chapter 3

Design of ACL-based Access

Mechanism

The ACL-based access control mechanism for SFS that we designed and implemented
is intended as a replacement of the current Unix-style NF'S access control mechanism.
It gives file owners more fine-grained control over who can access their files, and does
not suffer from the limitations of the NFS-based mechanism mentioned in Section

1.2.3.

3.1 Description of ACL structure

ACLs start with the string string ACLBEGIN and end with the string ACLEND. Every
other line specifies a set of access permissions for a user or a group.
3.1.1 Supported types of users and permissions

Table 1.1 summarizes the available permissions and their effects on files and directo-

ries.

A file owner can give another SF'S user, or group of users, any subset of the permissions
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that appear in Table 1.1. Each ACL entry ends in a newline, and each line is of the
format
entry_type:entry description:entry permissions:

The various ACL entry types are presented below.

Public key: The entry specifies the user through the SHA-1 hash of her public key.

For example:

pk:7aabrh3dsv8sxpddkh4emb4ie75a7adr:di:

Alias: The SFS user is specified through his username in the local NFS realm (if

available, of course). For example:

alias:savvides:rldiwa:

Localgroup: Describes a locally-defined group. All SF'S users who have Unix creden-
tials in the local NF'S realm and belong to the group will get the corresponding

permissions. For example:

localgroup:sfsdev:rliw:

System group: The only system group that is currently supported is sys:anyuser,
which represents all SF'S users. For example, the following gives all users read

and list access:

sys:anyuser:rl:

Group: A group is an SFS self-certifying pathname, such as
/sfs/ny.lcs.mit.edu:tqqzicz2qsik3kb7s2mfnupcdq84xerz/sfs users
pointing to a plaintext file. Each line of the file contains either an entry of
type pk or, recursively, another group (SFS pathname). Notice that both types
of entry are independent of the local namespace of the server on which they

appear. Example:
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group: [self-certifying-pathname] :rl:

The colon (“”) that appears inside self-certifying pathnames will not be inter-

preted as a component delimiter.

3.1.2 Example of an ACL

ACLBEGIN

sys:anyuser:rl:

localgroup:sfsdev:rlwi:

pk:7aabrh3dsv8sxpddkh4emb4ie75a7adr:wdia:

alias:savvides:wi:

alias:alice:wid:

alias:steve:lrwdia
group:/sfs/ny.lcs.mit.edu:tqqzicz2qsik3k57s2mfnupcdq84xerz/sfs_users:iw:
ACLEND

The set of permissions each user gets corresponds to the union (logical OR) of the
permissions on each matching line. In the example above, user alice is given (w, 7, d)

directly, and (r,[) as a member of sys:anyuser.

Negative permissions are not allowed. That is, one ACL line one cannot take away
from a user permissions that were granted to him elsewhere in the ACL. The absence
of negative permissions makes both the implementation and the the use of ACLs
more straightforward. It also makes it more difficult for someone to find “loopholes”
in the ACLs and exploit them to gain access against the file owner’s wishes. For
example, one might notice that he is given read access to a file as a member of group
A, but prevented from reading the file as a member of group B. If he manages to
temporarily remove himself from group B, he will get access to the file, something

which is presumably contrary to the file owner’s original intentions.
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3.2 Initializing ACLs

A newly-created file or directory automatically inherits the ACL of the parent direc-
tory. A consequence of this policy is that including file-specific permissions, such as
(w)rite, in a directory’s ACL is meaningful, since these permissions will be inherited

by default by all newly-created files in that directory.

The root of the exported directory must somehow have an ACL associated with it.
Since it was not created by SFS, and thus has no parent directory in SFS, it does
not inherit an ACL at the time of its creation. One thus needs to initialize its ACL
manually (through the regular Unix interface) when initially setting up the SF'S server.
This initialization can be done by simply storing the ACL in a file called .SFSACL

residing inside the root directory. (See Section 4.2.)

3.3 Viewing ACLs

The command viewacl target issued from the client displays the ACL associated
with target where target is the (relative) pathname to a file or directory. In order

W

to view the ACL associated with the current directory, one can set target to

Any user can view the ACL associated with a file/directory provided that he is allowed
to list the contents of the parent directory (in other words, provided he can obtain

the object’s NFS filehandle, which is required in order to place the request).

3.4 Modifying ACLs

In order to change an ACL, the remote user must have administer permission for the
object (file or directory) whose ACL she wants to modify. The command
setacl target acl file

can then be used to set the ACL of target to the contents of the file acl_file.
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A convenient way to modify an ACL is to pipe the output of viewacl to a file, edit
the contents of the file to reflect the desired ACL contents, and then use setacl to

replace the ACL with the contents of the file.

Obtaining the SHA-1 hash of a user’s public key

The command sfskey gethash pk_string can be used to obtain the SHA-1 hash of
a user’s public key when the public key is known. Note that users’ public keys are

typically stored in /var/sfs/authdb.
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Chapter 4

Implementation

The ACL-based access control mechanism fully replaces the standard NFS-based
mechanism. The SFS read/write server is now responsible for deciding whether a
request should go through, or whether an “access denied” error should be returned
instead. As far as the NFS server is concerned, all the files that are served by SFS
are owned by a single Unix user, sfs-owner, who has all access permissions. When

installing SF'S, sfs-owner must be created as a new user on the machine.

4.1 User login policy

In order to support public-key based access control, the login policy had to be modified
so that the SF'S server does not reject users who do not have an account on the local

machine.

When a remote user authenticates himself to the SEFS server, SFS assigns him an

authentication number which maps to the following set of credentials:
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string pkhash<>;
string username<>;
string homedir<>;
string shell<>;
unsigned uid;

unsigned gid;

unsigned groups<>;

The credentials include the SHA-1 hash of the user’s public key, as well as the user’s
local Unix credentials, if available. The Unix credentials are stored in order to allow

the use of human-friendly local usernames and group ids in ACLs.

4.2 ACL storage

4.2.1 Files

SF'S stores the ACLs of files inside the files, in a fixed 512-byte section at the beginning
of the file. This way, SF'S can obtain a file’s ACL by simply issuing a read request
for the first 512 bytes of the file specified by the filehandle which is contained in the

request sent by the remote user.

Of course, the fact that every file now contains a fixed-size ACL must be hidden from
the client, so as not to disrupt regular file operations. The RPC traversal mechanism
that comes with SF'S is immensely helpful in achieving this in a straightforward way.
By adjusting the offset of incoming read and write requests and the size field in the
attributes returned by the local NFS server, no difference is visible to the NF'S client

on the other side.
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4.2.2 Directories

The approach above will not work for directories, since a directory can only contain
pointers to other filesystem objects. Instead, the ACL corresponding to a direc-
tory dir is stored in a file inside the directory called dir/.SFSACL. When a request
involving a directory arrives at the SFS read/write server, the server can read the di-
rectory’s ACL by first issuing a 1ookup request to the NFS server to get the filehandle

corresponding to .SFSACL, and then by proceeding as in the case of files.

4.2.3 Other types of object

NF3LNK: One cannot store an ACL inside a link. However, there is no need to
store an ACL since the policy regarding links is to allow any user to read the
contents of a link (provided that he is allowed to obtain the filehandle of the
link.)

NF3FIFO: Implemented on the server as a file. At the time of creation, objects
of type NF3FIFO are tagged with a different group-id, so that the attributes
returned to the client can later be adjusted to identify the object as NF3FIFO
instead of NF3REG (file).

NF3SOCK: Same approach as for NF3FIFO.
NF3BLK: The creation of such objects is not supported.

NF3CHR: The creation of such objects is not supported.

4.3 Access Control Algorithm

The read /write server determines whether an incoming NFS request should go through
based on the target object’s ACL and the credentials of the remote user who issued

the request. These credentials are obtained at login time, as described in Section 4.1.
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If the remote user has adequate permissions for the requested operation, the read /write
server forwards the request to the local NF'S server, tagging the RPC with the cre-
dentials of sfs-owner. This guarantees that the operation will succeed unless there’s
an NFS error unrelated to access permissions. If instead the read/write server decides

to reject the call, an NFS3ERR_ACCES error is returned.

4.3.1 Getting the target object’s ACL

The read/write server needs to determine the filehandle where the target object’s
ACL resides, and then issue a read request to the NFS server to get its contents.
How exactly this is done depends on the type of NFS call. For read and write
calls, for example, the NFS request includes the filehandle of the file to be read (resp.
written), and hence we already know the filehandle of the ACL. For calls involving
directories (such as readdir), where we know the file handle of the directory, we must
first issue a lookup request to determine the filehandle of .SFSACL in that directory.
For calls where the target is of unknown type (e.g. setattr), we first issue a getattr
call, and then determine from the attributes whether we should treat the object as a

file or as a directory.

The above calls, including the final read call to get the contents of the ACL can all

be done in parallel with other operations.

4.3.2 Determining the user’s permissions

When we start reading the ACL, the user starts with no permissions. For each
remaining line, we check whether it contains any permissions that the user does not
already have. If so, we check whether the user appears on the line either directly or
indirectly (as member of a group). In case of a match, the permissions that appear
on the line are added to the permissions that the user has already accumulated. At
the end, the user’s permissions will correspond to the logical OR of the permissions

on all matching lines.
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4.3.3 Determining if the permissions suffice

In order for the read/write server to accept the remote NFS request, the user should
have the necessary permissions for that type of call. The policy on which this is based

is described in Table 4.1

NFS Call Permissions required
NFSPROC3_NULL always allowed
NFSPROC3_GETATTR always allowed
NFSPROC3_SETATTR see note below
NFSPROC3_LOOKUP list
NFSPROC3_ACCESS always allowed
NFSPROC3_READLINK always allowed
NFSPROC3_READ read
NEFSPROC3_WRITE write
NFSPROC3_CREATE insert
NFSPROC3_MKDIR insert
NFSPROC3_SYMLINK insert
NFSPROC3_MKNOD insert
NFSPROC3_REMOVE delete or administer
NFSPROC3_RMDIR delete or administer
NFSPROC3_RENAME delete or administer [from], insert [to]
NFSPROC3_LINK insert
NFSPROC3_READDIR list
NFSPROC3_READDIRPLUS | list
NFSPROC3_FSSTAT always allowed
NFSPROC3_FSINFO always allowed
NFSPROC3_PATHCONF always allowed
NFSPROC3_.COMMIT always allowed

Table 4.1: Required access permissions per NFS call

Clarifications:

e For NFSPROC3_SETATTR read/write permission suffices to set atime/mtime to
server time, but administer permission is required to set to client time or to

change the e(x)ecutable bit for an inode.
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e For NFSPROC3_RENAME it suffices to have delete permission in the object’s current

directory, and insert permission in the target directory.

e Administer permission also implies delete permission. This is useful in some

scenarios, such as for maintaining /tmp or bit-bucket directories.

4.4 Caching ACLs and user permissions

Since most NF'S calls depend on the user having permission to carry them, reading
the ACL every time requires at least one extra call to the local NFS server for every
incoming call from the client. This more than doubles the load of the NFS server
and can impact performance. The server caches ACLs, thereby reducing this extra

overhead.

The permissions for each user-ACL combination are also cached, with the key being a
composite hash of the user’s public key and the contents of the ACL. Even though this
extra level of caching does not lead to any significant performance increase now, the
advantage of caching permissions will become apparent when groups are supported,
since in that case determining whether a user is a member of a remotely-maintained
group will need time which is at least equal to the latency between the SFS server

and the remote server hosting the group definition.

It is reasonable to expect that in a typical scenario, the number of different ACLs
corresponding to a file owner’s files will be much smaller than the number of files.
This means that the permissions cache can be efficient since the number of ACL-user

combinations will be relatively small.

4.5 Maintaining compatibility with NFS

The SFS server adjusts both incoming requests and outgoing replies in order to hide

the existence of the ACLs and, where applicable, approximate NFS access seman-
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tics. The RPC traversal mechanism that comes with SFS is immensely helpful in

performing these adjustments in a simple, straightforward, and robust way.

4.5.1 Adjusting incoming requests

Before (authorized) incoming requests are forwarded from the read/write server to

the NF'S server, the following changes are made:

read offset: It is increased by 512 bytes to account for the presence of the ACL
file size: It is similarly increased by 512 bytes (occurs in setattr requests only).
setattr requests: The various fields are affected according to the following rules:

e Setting uid, gid is prohibited in all cases.

Setting modebits is prohibited, except for the e(x)ecutable bit in files,

provided that the user has administer permission.
e Setting the size of a file is allowed only if the user has write permission.

e Setting the atime/mtime fields to server time requires read/write permis-

sion.

e Setting the atime/mtime fields to client time requires administer permis-
sion.
4.5.2 Adjusting outgoing requests

The following changes are made before sending back replies from the NFS server:

file size: It is decreased by 512 bytes, to hide the existence of the ACL

access permissions: when the remote NFS server issues an access call, the re-
turned access bits must approximate the permissions described in the ACL.

How the SF'S permissions are translated into NFS permissions is described in
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Table 4.2. After the conversion, only the bits that the client requested for are

sent back. Doing otherwise would violate the NFS protocol.

NFS permission SFS (files) | SFS (directories)
ACCESS3_READ read list
ACCESS3_-MODIFY write insert or delete
ACCESS3_EXTEND | write insert
ACCESS3_EXECUTE | read never set
ACCESS3_.LOOKUP | never set list
ACCESS3_DELETE never set delete

Table 4.2: Approximating NFS permissions for files and directories based on SFS
permissions

mode bits: The mode bits that a user on the client sees by doing 1s -1 do not
determine the actual permissions that he has. However, it is helpful to set these
bits to something that approximates those permissions. One reason for this is
that some applications issue warnings based on those permissions. For example,
Emacs will complain that “the file is write-protected” unless the user has the
w-bit on in the file’s mode. Since being “owner”, “group” or “other” no longer
makes sense on the client side, the mode bits for these three types of user are

set to the same value. See Table 4.3.

Modebit | SF'S (files) SFS (directories)
r read list
W write insert or delete
X same as in inode | list

Table 4.3: Approximating mode bits for files and directories based on SF'S permissions

It should be noted that since access permissions and mode bits are only advisory in na-
ture, when there is not an exact correspondence between the SF'S and NFS/Unix per-
missions, the more liberal approach is taken (e.g. the NF'S permission ACCESS_MODIFY
is set to true if the user has permission to either insert or delete and not necessarily
both). Doing otherwise might cause the client to refuse to issue requests that it thinks

it doesn’t have permissions for, even though this may not be the case. This decision
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does not affect security in any way: whether the request will go through at the server

will be decided independently, based on the SF'S permissions.

4.6 Viewing and modifying ACLs from the client

The only changes that need to be made on the client side relate to the ability of
remote users to view and modify ACLs on the server. Since the ACL mechanism is
transparent to clients, a “backdoor” had to be used to access the (hidden) ACLs on

the server.

In order to achieve this, we extended the NFS protocol to support two new calls,
NFSPROC3_GETACL and NFSPROC3_SETACL, in addition to the standard NF'S calls that
are listed in Table 4.1. The access policy governing these two new calls is described

in Table 4.4.

NFS Call Permissions required
NFSPROC3_GETACL | always allowed
NFSPROC3_SETACL | administer

Table 4.4: Required access permissions for the new NFS calls

On the client side, two command-line programs, viewacl and setacl are responsible
for generating the appropriate calls to view/set the ACLs on the SFS server. Just
like regular NF'S calls, these calls are tagged by the SF'S client software with an agent

ID which is derived from the process’s user ID and group list.

On the server side, the calls are received by the read/write server which, as usual,
looks at the credentials of the remote user who issued the request and the ACL of
the target object, and checks whether the user’s permissions suffice for the requested
operation (see Table 4.4). If so, the server carries out the requested operation by
issuing read/write NFS calls to the local NFS server that read or modify the first 512
bytes of the target files. The outcome of the operation is then relayed back to the

client.
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The client-side programs (viewacl, setacl) communicate with the read/write server
on the SFS server through an RPC program called SFSCTL_PR0OG. The interaction is

depicted in Figure 4-1.

CLIENT SIDE SERVER SIDE
) ( ] ACL
native
User shell C filesystem
viewacl / setacl NFS server ‘
¢ | i
SFS client L g i L g
i Q 1 SFSServer | £
b g i 3
1 \ % :—ﬂz 8
A

Network

Figure 4-1: The path taken by a user request to view or set the ACL of a file on a
remote server. The response takes the same path in reverse.
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Chapter 5

Performance

The ACL mechanism introduces a penalty in the overall performance of the SFS
server. This penalty is mainly due to the extra NFS requests that the read/write
server needs to issue in order to locate and read (or write) the ACLs associated with

the incoming requests from the client.

We used the Sprite LFS small file benchmark [26] to measure the performance penalty
associated with our ACL mechanism. The methodology and the results we obtained

are presented below.

5.1 Methodology

We measured file system performance between two machines running FreeBSD 4.5
and connected by 100 Mbit/sec switched Ethernet. The server machine had a dual
Athlon 1 GHz processor, 1 Gb of memory, and an 11 Gb Seagate SCSI hard drive.
The client machine had an Athlon 1.3 GHz processor, 768 Mb of memory, and an
IBM 10 Gb SCSI hard drive.

We used the Sprite LF'S small file benchmark, which creates, reads, and deletes 1,000
1024-byte files. We set the cache size to a large enough value (2,000) in order to
make sure that cached ACLs will not have been flushed out of the cache by the time
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they are needed again. By ensuring that the cache does not overflow during the test,
we can better understand how the performance penalty relates to the extra NFS calls
that are needed for access control (the cache leads to a predictable reduction in NFS

calls).

Using the same test, we measured the performance of the original SFS, our ACL SF'S,
and our ACL SFS with the cache turned off.

5.2 Results

Table 5.1 shows the results of running the benchmark on the three versions of the SEF'S
software. The results correspond to the average of multiple rounds. The percentages

reported are relative to the performance of the original (unmodified) SFS server.

Original SFS | ACL SFS w/ cache | ACL SFS w/o cache
Operation | (files/sec) (files/sec) (files/sec)
create 59 40 (68%) 41 (70%)
read 206 120 (58%) 87 (42%)
delete 95 87 (92%) 72 (76%)

Table 5.1: LFS small file benchmark, with 1,000 files created, read, and deleted. The
percentages are relative to the performance of the original SF'S. The cache refers to
both the ACL cache and the user permissions cache.

In the create phase, the performance penalty is mainly due to the extra NFS requests
that are needed in order to write the ACL of each newly created file. As expected,

the performance is about the same with or without the ACL cache.

On the other hand, the ACL cache greatly improves performance in the delete phase,
since it allows the read/write server to avoid most of the extra NFS calls to locate

and read the corresponding ACL.

In the read phase, the ACL cache does not seem to improve performance as much as
one would have expected. This discrepancy can be explained by taking into account

the access pattern imposed by the benchmark: initially, the ACL cache does not
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contain any entries, and the files are subsequently read only once. Given this pattern
of access, one could only expect a moderate increase in performance when using the

cache. To be more precise:

In the read phase, each read request is preceded by a lookup and an access request.
In ACL SFS, each lookup request generates an extra NFS call to obtain the current
directory’s ACL. Similarly, each access request generates two extra NFS calls in
order to find out whether the file object pointed to is a file or a directory, and then
read its ACL. If ACLs are cached, in the subsequent read call the SFS read/write
server can avoid issuing the extra read request to get the target file’s ACL. Likewise,
the read/write server can avoid the read request to get the current directory’s ACL

in future lookup calls.

Table 5.2 below presents the effective cost (as # of disk operations) of reading a file
during the read phase of the benchmark. The predicted relative performance agrees

with the measurements shown in Table 5.1 to within 2%.

Original SFS ACL SFS w/ cache | ACL SFS w/o cache
NF'S request (disk operations) | (disk operations) (disk operations)
lookup 1 1 2
access 1 3 3
read 1 1 2
Total 3 5 7
Predicted performance | 100 % 60 % 43 %

Table 5.2: Effective cost (as # of disk operations) of reading a file during the read
phase of the Sprite LF'S small file benchmark.
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Chapter 6

Concluding remarks

This thesis has demonstrated that the existing SFS infrastructure can be used to
create a powerful, yet easy-to-use access control mechanism, which is well suited
to a global, decentralized and egalitarian filesystem like SF'S. We showed that by
embedding ACLs inside the filenames, it becomes possible for a user-space program
such as SF'S to perform access control. Moreover, by having users’ public keys double
as user identifiers, we created a global user namespace that allows access control to

extend to all SF'S users without requiring the assistance of system administrators.

Below, we present some implementation-related limitations of our current ACL mech-

anisms, as well as suggestions for future work.

6.1 Limitations of ACLs

6.1.1 ACL length restriction

Because ACLs for files are stored in a fixed section of 512 bytes at the beginning of
the file, the length of an ACL cannot exceed 512 bytes. In the future, this limitation
can be eliminated by allowing indirect references to local files where the ACL can be

continued, in a way vaguely reminiscent of i-node storage.
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6.1.2 Unsupported types of NFS objects

Only files and directories can have ACLs associated with them. NFS objects of type
NF3FIFO and NF3SOCK are implemented in terms of files, while the creation of
objects of type NF3BLK and NF3CHR is not allowed. Links (NF3LNK) do not have
ACLs associated with them, and all users are allowed to read the path that they point

to.

6.1.3 Support for groups

The current version does not allow a user to give a self-certifying pathname pointing
to a group, that is, a text file containing a list of public key hashes and (recursively)

other groups.

6.2 Suggestions for future work

Adding support for groups is probably the most important improvement that needs
to be made to the current version of ACL support. The present version lacks such
support because ACL searching is done synchronously and so performance could be
adversely affected by the latency of communication with other servers or the non-
availability of a remote server. There is also the potential of deadlock (e.g. Alice can
read Bob’s group definitions if and only if Bob can read Alice’s definitions). In the
future, the task of testing membership in remote servers could be done asynchronously

by a dedicated, asynchronous agent.
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