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Abstract 1 Introduction

Although the ext2 filesystem[4] was not the
first filesystem used by Linux and while other
filesystems have attempted to lay claim to be-
ing the native Linux filesystem (for example,
The ext2 and ext3 filesystems on LifBxare when Frank Xia attempted to rename xiafs to
used by a very large number of users. Thidinuxfs), nevertheless most would consider the
is due to its reputation of dependability, ro-ext2/3 filesystem as most deserving of this dis-
bustness, backwards and forwards compatibiltinction. Why is this? Why have so many sys-
ity, rather than that of being the state of thetem administrations and users put their trust in
art in filesystem technology. Over the last fewthe ext2/3 filesystem?
years, however, there has been a significant
amount of development effort towards makingThere are many possible explanations, includ-
ext3 an outstanding filesystem, while retaininging the fact that the filesystem has a large and
these crucial advantages. In this paper, we disddiverse developer community. However, in
cuss those features that have been accepted @ur opinion, robustness (even in the face of
the mainline Linux 2.6 kernel, including direc- hardware-induced corruption) and backwards
tory indexing, block reservation, and online re-compatibility are among the most important
sizing. We also discuss those features that haueasons why the ext2/3 filesystem has a large
been implemented but are yet to be incorpoand loyal user community. Many filesystems
rated into the mainline kernel: extent maps,have the unfortunate attribute of beirfigag-
delayed allocation, and multiple block alloca-ile. That is, the corruption of a single, unlucky,
tion. We will then examine the performance block can be magnified to cause a loss of far
improvements from Linux 2.4 ext3 filesystem larger amounts of data than might be expected.
to Linux 2.6 ext3 filesystem using industry- A fundamental design principle of the ext2/3
standard benchmarks features. Finally, we willfilesystem is to avoid fragile data structures by
touch upon some potential future work which islimiting the damage that could be caused by the
still under discussion by the ext2/3 developers.loss of a single critical block.
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This has sometimes led to the ext2/3 filesys?2 Features found in Linux 2.6
tem’s reputation of being a little boring, and

perhaps not the fastest or the most scalabl .
: o he past three years have seen many discus-
filesystem on the block, but which is one of the _.

sions of ext2/3 development. Some of the

most dependable. Part of this reputation can lanned features [15] have been implemented
be attributed to the extremely conservative deP P

sign of the ext2 filesystem [4], which had beenanoI integrated mtq the ma'”".”e kern_el dur_mg
these three years, including directory indexing,

extended to add journaling support in 1998, . lock all . i
but which otherwise had very few other mod_rggervatlon based bpc a ocatlgn, oniine re-
§izing, extended attributes, large inode support,

em filesystem featgres. Des_plte s age, ext and extended attributes in large inode. In this
is actually growing in popularity among enter- . - : :
section, we will give an overview of the design

prise users/vendors because of its robustness . .
. ) -_ahd the implementation for each feature.
good recoverability, and expansion characteris-
tics. The fact thae2fsck is able to recover
from very severe data corruption scenarios i2.1 Directory indexing

also very important to ext3’s success.

Historically, ext2/3 directories have used a sim-

ple linked list, much like the BSD Fast Filesys-

However, in the last few years, the ext2/3 de-tem' While .'t might be expepteq. that the

) ) O(n) lookup times would be a significant per-

velopment community has been working hard : ) .

. : . . formance issue, the Linux VFS-level direc-

to demolish the first part of this common wis- tory cache mitigated the O(n) lookup times for
dom. The initial outline of plans to “modern- y g P

o, ) . _many common workloads. However, ext2’s
ize" the ext2/3 filesystem was documented in Ginear directory structure did cause significant
2002 Freenix Paper [15]. Three years later, it is y g

. . erformance problems for certain applications,
time to revisit those plans, see what has bee : )

. . . such as web caches and mail systems using the
accomplished, what still remains to be done

and what further extensions are now under con"—vIaIIOIIr format.

sideration by the ext 2/3 development commu-Tg address this problem, various ext2 develop-
nity. ers, including Daniel Phillips, Theodore Ts’o,
and Stephen Tweedie, discussed using a B-tree
data structure for directories. However, stan-
dard B-trees had numerous characteristics that
This paper is organized into the following sec-\ere at odds with the ext2 design philosophy of
tions. First, we describe about those feasimplicity and robustness. For example, XFS's
tures which have already been implementeg_ree implementation was larger than all of
and which have been integrated into the mainaxt2 or ext3's source files combined. In addi-
line kernel in Section 2. Second, we discussjon, users of other filesystems using B-trees
those features which have been implementedyaq reported significantly increased potential

but which have notyet been integrated in maintor data loss caused by the corruption of a high-
line in Section 3 and Section 4. Next, we ex-|aye| node in the filesystem’s B-tree.

amine the performance improvements on ext3

filesystem during the last few years in Sec-To address these concerns, we designed a rad-
tion 5. Finally, we will discuss some potential ically simplified tree structure that was specifi-
future work in Section 6. cally optimized for filesystem directories[10].
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This is in contrast to the approach used byperformance improvements were often better
many other filesystems, including JFS, Reisby a factor of 50—-100 or more.

erfs, XFS, and HFS, which use a general-

purpose B-tree. Ext2's scheme, which weWhile the HTree algorithm significantly im-
dubbed “HTree,” uses 32-bit hashes for keysproved lookup times, it could cause some per-
where each hash key references a range of efprmance regressions for workloads that used
tries stored in a leaf block. Since internalreaddir()  to perform some operation of all
nodes are only 8 bytes, HTrees have a Ver@f the files in a large directory. This is caused
high fanout factor (over 500 blocks can be ref-by readdir()  returning filenames in a hash-
erenced using a 4K index block), two levels ofsorted order, so that reads from the inode table
index nodes are sufficient to support over 16vould be done in a random order. This perfor-
million 52-character filenames. To further sim-mance regression can be easily fixed by mod-
plify the implementation, HTrees are constantfying applications to sort the directory entries
depth (either one or two levels). The combina-eturned byeaddir() by inode number. Al-
tion of the high fanout factor and the use of aternatively, anLD_PRELOADIbrary can be
hash of the filename, plus a filesystem-specifi¢/sed, which intercepts calls teaddir()

secret to serve as the search key for the HTre@nd returns the directory entries in sorted order.

avoids the need for the implementation to do _ _ . _
balancing operations. One potential solution to mitigate this perfor-

mance issue, which has been suggested by

We maintain forwards compatibility in old ker- Paniel Phillips and Andreas Dilger, but not yet
nels by clearing th&€XT3_INDEX_FL when- implemented, involves the kernel choosing free
ever we modify a directory entry. In order to IN0d€s whose inode numbers meet a property
preserve backwards compatibility, leaf blocksthat groups the inodes by their filename hash.
in HTree are identical to old-style linear di- Paniel and Andreas suggest allocating the in-
rectory blocks, and index blocks are prefixed®d€ from a range of inodes based on the size
with an 8-byte data structure that makes then?! the directory, and then choosing a free in-
appear to non-HTree kernels as deleted direch? from that_range based on the filename hash.
tory entries. An additional advantage of this 11 should in theory reduce the amount of
extremely aggressive attention towards backthrashing that results when accessing the inodes

wards compatibility is that HTree directories 'eférenced in the directory in readdir order. In
are extremely robust. If any of the index noded! IS Not clear that this strategy will result in a
are corrupted, the kernel or the filesystem conSP€edup, however; in fact it could increase the
sistency checker can find all of the directory en-{otal number of inode blocks that might have

tries using the traditional linear directory datal® P€ referenced, and thus make the perfor-
structures. mance ofreaddir() + stat()  workloads

worse. Clearly, some experimentation and fur-

Daniel Phillips created an initial implementa- ther analysis is still needed.

tion for the Linux 2.4 kernel, and Theodore
Ts'o significantly cleaned up the implementa-5 5
tion and merged it into the mainline kernel dur-
ing the Linux 2.5 development cycle, as well
as implementing e2fsck support for the HTreeThe scalability improvements in the block layer
data structures. This feature was extremehand other portions of the kernel during 2.5
well received, since for very large directories,development uncovered a scaling problem for

Improving ext3 scalability
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ext3/JBD under parallel I/0O load. To addresswas to remove the use sleep_on()  (which
this issue, Alex Tomas and Andrew Morton is only safe when called from within code run-
worked to remove a per-filesystem superblockiing under the BKL) and replacing it with the
lock (lock_super() ) from ext3 block allo- newwait_event() facility.
cations [13].

These combined efforts served to improve
This was done by deferring the filesystem’smyitiple-writer performance on ext3 notice-
accounting of the number of free inodes andab|y; ext3 throughput improved by a factor
blocks, only updating these counts when theysf 10 on SDET benchmark, and the context

are needed bgtatfs() ~ orumount() sys- switches are dropped significantly [2, 13].
tem call. This lazy update strategy was en-

abled by keeping authoritative counters of the
free inodes and blocks at the per-block grou®2.3 Reservation based block allocator
level, and enabled the replacement of the

filesystem-widelock_super() with fine- _ ) _
grained locks. Since a spin lock for everys'”ce disk latency is the key factor that affects

block group would consume too much mem-the filesystem performance, modern f.ilesys-
ory, a hashed spin lock array was used to prol€mMs always attempt to layout files on a filesys-
tect accesses to the block group summary int€M contiguously. This is to reduce disk head
formation. In addition, the need to use thesdNOvement as much as possible. However, if
spin locks was reduced further by using atomiche filesystem allocates blocks on demand, then
bit operations to modify the bitmaps, thus al-when two files located in the same directory are

lowing concurrent allocations within the sameP€ing written simultaneously, the block alloca-
group. tions for the two files may end up getting inter-

leaved. To address this problem, some filesys-
After addressing the scalability problems intems use the technique pfeallocation by an-
the ext3 code proper, the focus moved to theicipating which files will likely need allocate
journal (JBD) routines, which made exten-blocks and allocating them in advance.
sive use of the big kernel lock (BKL). Alex
Tomas and Andrew Morton worked together

layer in order to allow as much concurrency

as possible, by using a fine-grained locking . o
scheme instead of using the BKL and the Ioer_In ext2 fllesyste_m, p_reallocatlon IS perform_ed
filesystem journal lock. This fine-grained lock- ©" the actual disk bitmap. When a new disk

ing scheme uses a new per-bufferhead locidata block is allocated, the filesystem internally
(BH_JournalHead ), a new per-transaction preallocates a few disk data blocks adjacent to

lock (t_handle_lock ) and several new per- the block just allocated. To avoid filling up

journa_l locks _I_state lock i list filesystem space with preallocated blocks too
lock , andj_revoke lock ) t(’) p_roteT:t the Qquickly, each inode is allowed at most seven
list of revoked blocks. The locking hierarchy Preallocated blocks at a time.  Unfortunately,

(to prevent deadlocks) for these new locks idhiS scheme had to be disabled when journal-
documented in thénclude/linux/jbd. ing was added to ext3, since it is incompatible

h header file. with journaling. If the system were to crash be-
fore the unused preallocated blocks could be re-
The final scalability change that was neededlaimed, then during system recovery, the ext3
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journal would replay the block bitmap updatethe reservation window information and other
change. At that point the inode’s block map-block allocation related information, is allo-
ping could end up being inconsistent with thecated and linked to the inode. The block allo-
disk block bitmap. Due to the lack of full cator searches for aregion of blocks that fulfills
forced fsck for ext3 to return the preallocatedthree criteria. First, the region must be near the
blocks to the free list, preallocation was dis-ideal “goal” block, based on ext2/3’s existing
abled when the ext3 filesystem was integratedlock placement algorithms. Secondly, the re-
into the 2.4 Linux kernel. gion must not overlap with any other inode’s
reservation windows. Finally, the region must
Disabling preallocation means that if multiple have at least one free block. As an inode keeps
processes attempted to allocate blocks to tw@rowing, free blocks inside its reservation win-
files in the same directory, the blocks would begow will eventually be exhausted. At that point,
interleaved. This was a known disadvantage of new window will be created for that inode,
ext3, but this short-coming becomes even mor@yeferably right after the old with the guide of
important with extents (see Section 3.1) sincghe “goal” block.
extents are far more efficient when the file on

disk is contiguous. Andrew Morton, Mingming Al of the reservation windows are indexed via
Cao, Theodore Ts'o, and Badari Pulavarty exy per-filesystem red-black tree so the block al-
plored various possible ways to add prealloqocator can quickly determine whether a par-
cation to ext3, including the method that hadtjcular block or region is already reserved by a
been used for preallocation in ext2 filesystemparticular inode. All operations on that tree are
The method that was finally settled upon was grotected by a per-filesystem global spin lock.
reservation-based design.

Initially, the default reservation window size

for an inode is set to eight blocks. If the reser-
2.3.2 Reservation design overview vation allocator detects the inode’s block allo-

cation pattern to be sequential, it dynamically

The core idea of the reservation based allocalncreases the window size for that inode. An
tor is that for every inode that needs blocks, thedpplication that knows the file size ahead of the
allocator reserves a range of blocks for that infile creation can employ an ioctl command to

ode, called a reservation window. Blocks forset the window size to be equal to the antici-
that inode are allocated from that range, instea@ated file size in order to attempt to reserve the
of from the whole filesystem, and no other in-blocks immediately.

ode is allowed to allocate blocks in the reserva-

tion window. This reduces the amount of frag-Mingming Cao implemented this reservation

mentation when multiple files are written in the Pased block allocator, with help from Stephen
same directory simultaneously. The key differ- Tweedie in converting the per-filesystem reser-
ence between reservation and preallocation jgation tree from a sorted link list to a red-black

that the blocks are only reserved in memoryfree. In the Linux kernel versions 2.6.10 and
rather than on disk. Thus, in the case the systef@ter, the default block allocator for ext3 has

crashes while there are reserved blocks, there €en replaced by this reservation based block
no inconsistency in the block group bitmaps. allocator. Some benchmarks, such as tiobench

and dbench, have shown significant improve-
The first time an inode needs a new block,ments on sequential writes and subsequent se-
a block allocation structure, which describesquential reads with this reservation-based block
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allocator, especially when a large number of2.4 Online resizing
processes are allocating blocks concurrently.

The online resizing feature was originally de-
veloped by Andreas Dilger in July of 1999 for
2.3.3 Future work the 2.0.36 kernel. The availability of a Logi-
cal Volume Manager (LVM), motivated the de-
sire for on-line resizing, so that when a logical
Currently, the reservation window only lastsvolume was dynamically resized, the filesys-
until the last process writing to that file closes.tem could take advantage of the new space.
At that time, the reservation window is releasedThis ability to dynamically resize volumes and
and those blocks are available for reservation ofilesystems is very useful in server environ-
allocation by any other inode. This is necessarynents, where taking downtime for unmounting
so that the blocks that were reserved can be re filesystem is not desirable. After missing the
leased for use by other files, and to avoid fragcode freeze for the 2.4 kernel, the ext2online
mentation of the free space in the filesystem. code was finally included into the 2.6.10 ker-
nel and e2fsprogs 1.36 with the assistance of
However, some files, such as log files andStephen Tweedie and Theodore Ts’o.
unix® mailbox files, have alow growthpat-
tern. That is, they grow slowly over time, by
processes appending a small amount of dat&.4.1 The online resizing mechanism
and then closing the file, over and over again.
For these files, in order to avoid fragmentation,-l-he online resizing mechanism, despite its

Itis nece;sary th?t thre] rﬁlse;]vatlgn W'nldowdbeseemingly complex task, is actually rather sim-
preserved even aiter the file has been closed. ple in its implementation. In order to avoid a

o . ~_ large amount of complexity it is only possible
The question is how to determine which filesig increase the size of a filesystem while it is
should be allowed to retain their reservationy,gunted. This addresses the primary require-
window after the last close. One possible Soment that a filesystem that is (nearly) full can
lution is to tag the files or directories with an p5ye space added to it without interrupting the
attribute indicating that they contain files that ,ga of that system. The online resizing code de-
have a slow growth pattern. Another possibil-pends on the underlying block device to handle
ity is to implement heuristics that can allow the 5| aspects of its own resizing prior to the start
filesystem to automatically determines whichy filesystem resizing, and does nothing itself

file seems to have a slow growth pattern, andy manipulate the partition tables of LVM/MD
automatically preserve the reservation window,ock devices.

after the file is closed.

The ext2/3 filesystem is divided into one or
If reservation windows can be preserved in thismore block allocation groups of a fixed size,
fashion, it will be important to also implement with possibly a partial block group at the end
a way for preserved reservation windows to beof the filesystem [4]. The layout of each block
reclaimed when the filesystem is fully reservedgroup (where the inode and block allocation
This prevents an inode that fails to find a newbitmaps and the inode table are stored) is kept
reservation from falling back to no-reservationin the group descriptor table. This table is
mode too soon. stored at the start of at the first block group, and



2005 Linux Symposium e 75

consists of one or more filesystem blocks, deend of the filesystem. This is easily done be-
pending on the size of the filesystem. Backupcause this area is currently unused and un-
copies of the group descriptor table are kept irknown to the filesystem itself. The block
more groups if the filesystem is large enough. bitmap for that group is initialized as empty,
the superblock and group descriptor backups (if
There are three primary phases by which any) are copied from the primary versions, and
filesystem is grown. The first, and simplest, isthe inode bitmap and inode table are initialized.
to expand the last partial block group (if any) Once this has completed successfully the on-
to be a full block group. The second phase idine resizing code briefly locks the superblock
to add a new block group to an existing blockto increase the total and free blocks and inodes
in the group descriptor table. The third phasecounts for the filesystem, add a new group to
is to add a new block to the group descriptorthe end of the group descriptor table, and in-
table and add a new group to that block. Allcrease the total number of groups in the filesys-
filesystem resizes are done incrementally, gotem by one. Once this is completed the backup
ing through one or more of the phases to adduperblock and group descriptors are updated
free space to the end of the filesystem until then case of corruption of the primary copies. If
desired size is reached. there is a problem at this stage, the next e2fsck
will also update the backups.

The second phase of growth will be repeated
until the filesystem has fully grown, or the last
group descriptor block is full. If a partial group
For the first phase of growth, the online resizingis being added at the end of the filesystem the
code starts by briefly locking the superblockblocks are marked as “in use” before the group
and increasing the total number of filesystems added. Both first and second phase of growth
blocks to the end of the last group. All of the can be done on any ext3 filesystem with a sup-
blocks beyond the end of the filesystem are alported kernel and suitable block device.

ready marked as “in use” by the block bitmap

for that group, so they must be cleared. This

is accomplished by the same mechanism th
is used when deleting a fileext3 free
blocks() and can be done without lock-
ing the whole filesystem. The online resizerThe third phase of growth is needed periodi-
simply pretends that it is deleting a file thatcally to grow a filesystem over group descrip-
had allocated all of the blocks at the end oftor block boundaries (at multiples of 16 GB for

2.4.2 Resizing within a group

B 44 Adding a group descriptor block

the filesystem, anéxt3_free_blocks() filesystems with 4 KB blocksize). When the
handles all of the bitmap and free block countlast group descriptor block is full, a new block
updates properly. must be added to the end of the table. How-

ever, because the table is contiguous at the start
of the first group and is normally followed im-
mediately by the block and inode bitmaps and
the inode table, the online resize code needs
a bit of assistance while the filesystem is un-
For the second phase of growth, the onlinemounted (offline) in order to maintain compat-
resizer initializes the next group beyond theibility with older kernels. Either amke2fs

2.4.3 Adding a new group
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time, or for existing filesystems with the assis-the filesystem without the need to allocate con-

tance of theext2prepare  command, a small tiguous blocks for the group descriptor table.

number of blocks at the end of the group de-dnstead the group descriptor block is kept in the

scriptor table are reserved for online growth.first group that it describes, and a backup is kept

The total amount of reserved blocks is a tinyin the second and last group for that block. The

fraction of the total filesystem size, requiring Meta Block Group support was first introduced

only a few tens to hundreds of kilobytes to growin the 2.4.25 kernel (Feb. 2004) so it is reason-

the filesystem 1024-fold. able to think that a majority of existing systems
could mount a filesystem that started using this

For the third phase, it first gets the next re-when it is introduced.

served group descriptor block and initializes a o _

new group and group descriptor beyond the end* More complete description of the online

of the filesystem, as is done in second phase d#"owth is available in [6].

growth. Once this is successful, the superblock

is locked while reallocating the array that in-2 5 Extended attributes

dexes all of the group descriptor blocks to add

another entry for the new block. Finally, the . .

superblock totals are updated, the number 0?5'1 Extended attributes overview

groups is increased by one, and the backup su-

perblock and group descriptors are updated. Many new operating system features (such as
access control lists, mandatory access con-

The online resizing code takes advantage of th&Fols, Posix Capabilities, and hierarchical stor-

journaling features in ext3 to ensure that theréége management) require filesystems to be able

is no risk of filesystem corruption if the resize associate a small amount of custom metadata

is unexpectedly interrupted. The ext3 journalwith files or directories. In order to implement

ensures strict ordering and atomicity of filesys-support for access control lists, Andreas Gru-

tem changes in the event of a crash—either thenbacher added support for extended attributes

entire resize phase is committed or none of ito the ext2 filesystems. [7]

is. Because the journal has no rollback mech- , )
anism (except by crashing) the resize code igxtended attributes as implemented by Andreas

careful to verify all possible failure conditions Gruenbacher are stored in a single EA block.

prior to modifying any part of the filesystem. Since a large number of files will often use the

This ensures that the filesystem remains valigS@me access control list, as inherited from the

: . directory’s default ACL as an optimization, the
though slightly smaller, in the event of an error :
duringg grog\]/vthy EA block may be shared by inodes that have

identical extended attributes.

While the extended attribute implementation
2.45 Future work was originally optimized for use to store ACL’s,

the primary users of extended attributes to date

have been the NSA's SELinux system, Samba

Future development work in this area involvesy for storing extended attributes from Windows
removing the need to do offline filesystem .jients and the Lustre filesystem.

manipulation to reserve blocks before doing
third phase growth. The use of Meta BlockIn order to store larger EAs than a single
Groups [15] allows new groups to be added tdilesystem block, work is underway to store
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large EAs in another EA inode referenced frommajor speedup for Samba 4, motivated it being
the original inode. This allows many arbitrary- integrated into the mainline 2.6.11 kernel very
sized EAs to be attached to a single file, withinquickly.

the limitations of the EA interface and what

can be done inside a single journal transaction.

These EAs could also be accessed as additional

file forks/streams, if such an APl were added to3 Extents, delayed allocation and

the Linux kernel. extent allocation

2.5.2 Largeinode supportand EA-in-inode  Thjs section and the next (Section 4) will dis-
cuss features that are currently under develop-
Alex Tomas and Andreas Dilger implementedment, and (as of this writing) have not been
support for storing the extended attribute in anmerged into the mainline kernel. In most cases
expanded ext2 inode, in preference to using @atches exist, but they are still being polished,
separate filesystem block. In order to do thisand discussion within the ext2/3 development
the filesystem must be created using an inodeommunity is still in progress.
size larger than the default 128 bytes. Inode
sizes must be a power of two and must be néurrently, the ext2/ext3 filesystem, like other
larger than the filesystem block size, so for araditionalunix filesystems, uses a direct, indi-
filesystem with a 4 KB blocksize, inode sizesrect, double indirect, and triple indirect blocks
of 256, 512, 1024, 2048, or 4096 bytes ardo map file offsets to on-disk blocks. This
valid. The 2 byte field starting at offset 128 scheme, sometimes simply called an indirect
(i_extra_size ) of each inode specifies the block mapping scheme, is not efficient for large
starting offset for the portion of the inode thatfiles, especially large file deletion. In order to
can be used for storing EAs. Since the startinggddress this problem, many modern filesystems
offset must be a multiple of 4, and we have not(including XFS and JFS on Linux) use some
extended the fixed portion of the inode beyondorm of extent maps instead of the traditional
i_extra_size , currentlyi_extra_size indirect block mapping scheme.
is 4 for all filesystems with expanded inodes.
Currently, all of the inode past the initial 132 Since most filesystems try to allocate blocks in
bytes can be used for storing EAs. If the user ata contiguous fashion, extent maps are a more
tempts to store more EAs than can fit in the ex£fficient way to represent the mapping between

panded inode, the additional EAs will be storedlogical and physical blocks for large files. An
in an external filesystem block. extentis a single descriptor for a range of con-

tiguous blocks, instead of using, say, hundreds
Using the EA-in-inode, a very large (seven-foldof entries to describe each block individually.
improvement) difference was found in some
Samba 4 benchmarks, taking ext3 from lasOver the years, there have been many discus-
place when compared to XFS, JFS, and Reissions about moving ext3 from the traditional in-
erfs3, to being clearly superior to all of the direct block mapping scheme to an extent map
other filesystems for use in Samba 4. [5] The inbased scheme. Unfortunately, due to the com-
inode EA patch started by Alex Tomas and An-plications involved with making an incompati-
dreas Dilger was re-worked by Andreas Gruenble format change, progress on an actual imple-
bacher. And the fact that this feature was such aention of these ideas had been slow.
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Alex Tomas, with help from Andreas Dilger, Most files need only a few extents to describe
designed and implemented extents for ext3. Héheir logical-to-physical block mapping, which
posted the initial version of his extents patchcan be accommodated within the inode or a
on August, 2003. The initial results on file cre- single extent map block. However, some ex-
ation and file deletion tests inspired a round oftreme cases, such as sparse files with random
discussion in the Linux community to considerallocation patterns, or a very badly fragmented
adding extents to ext3. However, given the confilesystem, are not efficiently represented using
cerns that the format changes were ones that adixtent maps. In addition, allocating blocks in a
of the ext3 developers will have to support onrandom access pattern may require inserting an
a long-term basis, and the fact that it was veryextent map entry in the middle of a potentially
late in the 2.5 development cycle, it was not in-very large data representation.

tegrated into the mainline kernel sources at that ] ] _
time. One solution to this problem is to use a tree

data structure to store the extent map, either a
Later, in April of 2004, Alex Tomas posted B-tree, B+ tree, or some simplified tree struc-
an updated extents patch, as well as additure as was used for the HTree feature. Alex
tional patches that implemented delayed alloTomas’s implementation takes the latter ap-
cation and multiple block allocation to the ext2- proach, using a constant-depth tree structure. In
devel mailing list. These patches were repostethis implementation, the extents are expressed
in February 2005, and this re-ignited interestusing a 12 byte structure, which include a
in adding extents to ext3, especially when it32-bit logical block number, a 48-bit physical
was shown that the combination of these thredlock number, and a 16-bit extent length. With
features resulted in significant throughput im-4 KB blocksize, a filesystem can address up to
provements on some sequential write tests. 1024 petabytes, and a maximum file size of 16

. o terabytes. A single extent can cover up 6 2
In the next three sections, we will discuss howp|ocks or 256 MB2

these three features are designed, followed by a

discussion of the performance evaluation of thelhe extent tree information can be stored in
combination of the three patches. the inode’si_data array, which is 60 bytes
long. An attribute flag in the inodeisflags

word indicates whether the inodé’'slata  ar-
ray should be interpreted using the traditional
indirect block mapping scheme, or as an ex-
This implementation of extents was originally tent data structure. If the entire extent infor-
motivated by the problem of long truncate mation can be stored in thedata field, then
times observed for huge filésAs noted above, it will be treated as a single leaf node of the
besides speeding up truncates, extents help inextent tree; otherwise, it will be treated as the
prove the performance of sequential file writesroot node of inode’s extent tree, and additional
since extents are a significantly smaller amounfilesystem blocks serve as intermediate or leaf
of metadata to be written to describe contigunodes in the extent tree.

ous blocks, thus reducing the filesystem over- o
head. At the beginning of each node, thext3_

. _ _ _ _ ext_header data structure is 12 bytes long,

One option to address the issue is performing asyn-
chronous truncates, however, while this makes the CPU  2Currently, the maximum block group size given a 4
cycles to perform the truncate less visible, excess CPWB blocksize is 128 MB, and this will limit the maxi-
time will still be consumed by the truncate operations. mum size for a single extent.

3.1 Extent maps
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and contains a 16-bit magic number, 2 16-bit3.1.2 Future work
integers containing the number of valid entries
in the node, and the maximum number of €N Alex Tomas's extents implementation is still a

tries that can be stored in the node, a 16-bit 'nte.\'/vork-in-progress. Some of the work that needs
ger containing the depth of the tree, and a 32-bi

) 0 be done is to make the implementation in-
tree generation number. If the depth of the treedependent of byte-order, improving the error

is 0, then root inode contains leaf node infor'handling, and shrinking the depth of the tree

mation, and the 12-byte entries contain the ®Xhen truncated the file. In addition, the extent

tent mformatlon.descrlbed in the PrEVIOUS pPara .o me is less efficient than the traditional indi-
graph. Otherwise, the root node will contain

lock [ h if the file is highl
12-byte intermediate entries, which consist ofrect block mapping scheme if the file is highly

f O ful |
32-bit logical block and a 48-bit physical block | 2omented. It may be useful to develop some

ith 16 bit ) of th tind | fheuristics to determine whether or not a file
E)Vl\gck its unused) of the next index or lea should use extents automatically. It may also

be desirable to allow block-mapped leaf blocks
in an extent-mapped file for cases where there
is not enough contiguous space in the filesys-
tem to allocate the extents efficiently.

The last change would necessarily change the
on-disk format of the extents, but it is not only
the extent format that has been changed. For
example, the extent format does not support
The implementation is divided into two parts: logical block numbers that are greater than 32
Generic extents support that implements ini-bits, and a more efficient, variable-length for-
tialize/lookup/insert/remove functions for the mat would allow more extents to be stored in
extents tree, and VFS support that allowsthe inode before spilling out to an external tree

3.1.1 Code organization

methods and callbacks likeext3 get structure.
block() , ext3_truncate() , ext3_
new_block() to use extents. Since deployment of the extent data struc-

ture is disruptive because it involved an non-

backwards-compatible change to the filesystem
In order to use the generic extents layer, théormat, it is important that the ext3 developers
user of the generic extents layer must declare itgre comfortable that the extent format is flexi-
tree via anext3_extents_tree structure.  ple and powerful enough for present and future

The structure describes where the root of theyeeds, in order to avoid the need for additional
tree is stored, and specifies the helper routinegcompatible format changes.

used to operate on it. This way one can root

atree notonly in_data as described above,

but also in a separate block or in EA (Extended3.2 Delayed allocation
Attributes) storage. The helper routines de-

scribed by strucext3_extents_helpers

can be used to control the block allocation
needed for tree growth, journaling metadata,

using different criteria of extents mergability, Procrastination has its virtues in the ways of an
removing extents etc. operating system. Deferring certain tasks un-

3.2.1 Why delayed allocation is needed
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til an appropriate time often improves the over- e For short lived files that can be buffered

all efficiency of the system by enabling optimal in memory, delayed allocation may avoid
deployment of resources. Filesystem I/O writes  the need for disk updates for metadata cre-
are no exception. ation altogether, which in turn reduces im-

_ _ _ pact on fragmentation [12].
Typically, when a filesystenmwrite() Sys-

tem call returns success, it has only copied the

data to be written into the page cache, mapped

required blocks in the filesystem and marked

the pages as needing write out. The actuaPelayed allocation is also useful for the Ac-
write out of data to disk happens at a latertive Block I/O Scheduling System (ABISS) [1],
point of time, usually when writeback opera-which provides guaranteed read/write bit rates
tions are clustered together by a backgroundor applications that require guaranteed real-
kernel thread in accordance with system politime I/O streams. Without delayed allocation,
cies, or when the user requests file data téhe synchronous code path farite()  has

be synced to disk. Such an approach ensurds read, modify, update, and journal changes to
improved 1/0 ordering and clustering for the the block allocation bitmap, which could dis-
system, resulting in more effective utilization rupt the guaranteed read/write rates that ABISS
of /0 devices with applications spending lessis trying to deliver.

time in thewrite() system call, and using

the cycles thus saved to perform other work. ) o )
y P Since block allocation is deferred until back-

Delayed allocation takes this a step furtherground writeback whenitis too late to return an
by deferring the allocation of new blocks in error to the caller ofvrite() , thewrite()
the filesystem to disk blocks until writeback operation requires a way to ensure that the
time [12]. This helps in three ways: allocation will indeed succeed. This can be
accomplished by carving out, or reserving, a
e Reduces fragmentation in the filesystemclaim on the expected number of blocks on disk
by improving chances of creating contigu- (for example, by subtracting this number from
ous blocks on disk for a file. Although the total number of available blocks, an op-
preallocation techniques can help avoideration that can be performed without having
fragmentation, they do not address frag+0 go through actual allocation of specific disk
mentation caused by multiple threads writ-blocks).
ing to the file at different offsets simul-
taneously, or files which are written in a
non-contiguous order. (For example, the
libfd library, which is used by the GNU
C compiler will create object files that are
written out of order.)

Repeated invocations of ext3_get

block()/ext3_new_block() is not

efficient for mapping consecutive blocks,

especially for an extent based inode, where it is

natural to process a chunk of contiguous blocks

e Reduces CPU cycles spent in repeate@ll together. For this reason, Alex Tomas
get_block() calls, by clustering allo- implemented an extents based multiple block
cation for multiple blocks together. Both allocation and used it as a basis for extents
of the above would be more effective whenbased delayed allocation. We will discuss
combined with a good multi-block alloca- the extents based multiple block allocation in
tor. Section 3.3.
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3.2.2 Extents based delayed allocation im- for high speed sequential writes. In one ex-
plementation periment utilizing direct I/O on a dual Opteron
workstation with fast enough buses, fiber chan-

: . nel, and a large, fast RAID array, the CPU lim-
If the delayed allocation feature is enabled forited the 1/O throughput to 315 MB/s. While

an exts filesystem and a file uses extent rnap%his would not be an issue on most machines

then the address space operations for its inod 2ince the maximum bandwidth of a PCI bus

re initiali f ific routines. .
are | itialized to a set.o exts specilic .Ou“ .eSIS 127 MBJ/s), but for newer or enterprise-class
that implement the write operations a little dif-

. ! .__servers, the amount of data per second that can
ferently. The implementation defers allocation . : . .
. be written continuously to the filesystem is no
of blocks fromprepare_write() and em-

ploys extent walking, together with the multiple g)r:girr\[[”(?fltggttj%itmhz ggnzldgfgjts mé)ggfsbé;ti
block allocation feature (described in the next y

: ) . . allocator.
section), for clustering block allocations maxi-

mally into contiguous blocks. To address this problem, Alex Tomas designed
and implemented a multiple block allocation,

called mballoc, which uses a classic buddy data
- , ! structure on disk to store chunks of free or used
as needing block reservation. Themmit_ 1 5cks for each block group. This buddy data
write() function calculates the required ;g 5 array of metadata, where each entry de-

number of blocks, and reserves them to makg . jnes the status of a cluster dfidlocks, clas-
sure that there are enough free blocks in thQitaq a5 free or in use.

filesystem to satisfy the write. When the

pages get flushed to disk hyritepage() Since block buddy data is not suitable for de-
orwritepages()  , these functions will walk termining a specific block’s status and locating
all the dirty pages in the specified inode, clus-a free block close to the allocation goal, the tra-
ter the logically contiguous ones, and submitditional block bitmap is still required in order

the page or pages to the bio layer. After theto quickly test whether a specific block is avail-
block allocation is complete, the reservationable or not.

is dropped. A single block 1/O request (or
BIO) is submitted for write out of pages pro- In order to find a contiguous extent of blocks
cessed whenever a new allocated extent (or th® allocate, mballoc checks whether the goal
next mapped extent if already allocated) onblock is available in the block bitmap. If it is
the disk is not adjacent to the previous one@vailable, mballoc looks up the buddy data to
or whenwritepages() completes. In this find the free extent length starting from the goal
manner the delayed allocation code is tightlyblock. To find the real free extent length, mbal-
integrated with other features to provide besioc continues by checking whether the physical
performance. block right next to the end block of the pre-
viously found free extent is available or not.
If that block is available in the block bitmap,
3.3 Buddy based extent allocation mballoc could quickly find the length of the
next free extent from buddy data and add it up

_ to the total length of the free extent from the
One of the shortcomings of the current ext3qyoa| plock.

block allocation algorithm, which allocates one
block at a time, is that it is not efficient enough For example, if block M is the goal block and

Instead of allocating the disk block in
prepare_write() , the the page is marked
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is claimed to be available in the bitmap, and3.3.1 Future plans
block M is marked as free in buddy data of or-

der n, then initially the free chunk size from gjnce in ext3 blocks are divided into block
block M is known to be 2 Next, mballoc  grqps, the block allocator first selects a block
checks the bitmap to see if blodk +2"+1  orqyp pefore it searches for free blocks. The
is available or not. If so, mballoc checks thepolicy employed in mballoc is quite simple: to
buddy data again, and finds that the free exteqpy the block group where the goal block is lo-
length from blockM + 2"+ 1 is k. Now, the  cateq first. If allocation from that group fails,
free chunk Ikength from goal block M is known e scan the subsequent groups. However, this
to be 2'+ 2% This process continues until at jjies that on a large filesystem, especially
some point the boundary block is not availablehen free blocks are not evenly distributed,

In this manner, instead of testing dozens, hungpyy cycles could be wasted on scanning lots
dreds, or even thousands of blocks’ availabilityot a1most full block groups before finding a

status in the bitmap to determine the free blocks,ock group with the desired free blocks crite-

chunk size, it can be enough to just test a fewjs  Thys, a smarter mechanism to select the

bits in buddy data and the block bitmap to 'eamright block group to start the search should im-

the real length of the free blocks extent. prove the multiple block allocator’s efficiency.
There are a few proposals:

1. Sort all the block groups by the total num-
If the found free chunk size is greater than the  per of free blocks.

requested size, then the search is considered

successful and mballoc allocates the found free 2. Sort all the groups by the group fragmen-
blocks. Otherwise, depending on the allocation  tation factor.

criteria, mballoc decides whether to accept the
result of the last search in order to preserve the
goal block locality, or continue searching for
the next free chunk in case the length of con-
tiguous blocks is a more important factor than 4. Put extents into buckets based on extent
where it is located. In the later case, mballoc size and/or extent location in order to
scans the bitmap to find out the next available quickly find extents of the correct size and
block, then, starts from there, and determines  goal location.

the related free extent size.

3. Lazily sort all the block groups by the to-
tal number of free blocks, at significant
change of free blocks in a group only.

Currently the four options are under evaluation
though probably the first one is a little more in-
teresting.
If mballoc fails to find a free extent that sat-
isfies the requested size after rejecting a pre; :
defined number (currently 200) of free chunks,?"4 Evaluating the extents patch set
it stops the search and returns the best (largest)
free chunk found so far. In order to speed up thé he initial evaluation of the three patches (ex-
scanning process, mballoc maintains the totalents, delayed allocation and extent alloca-
number of available blocks and the first avail-tion) shows significant throughput improve-
able block of each block group. ments, especially under sequential tests. The
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tests show that the extents patch significanthext3 filesystem. Section 4.1 describes the ef-
reduces the time for large file creation and refort to reduce the usage of bufferheads struc-
moval, as well as file rewrite. With extents ture in ext3; Section 4.2 describes the effort
and extent allocation, the throughput of Di-to add delayed allocation without requiring the
rect I/O on the aforementioned Opteron-basedise of extents; Section 4.3 discusses the work to
workstation is significantly improved, from 315 add multiple block allocation; Section 4.4 de-
MB/sec to 500MB/sec, and the CPU usage iscribes asynchronous file unlink and truncate;
significantly dropped from 100% to 50%. In Section 4.5 describes a feature to allow more
addition, extensive testing on various benchthan 32000 subdirectories; and Section 4.6 de-
marks, including dbench, tiobench, FFSB [11]scribes a feature to allow multiple threads to
and sqlbench [16], has been done with anatoncurrently create/rename/link/unlink files in
without this set of patches. Some initial analy-a single directory.

sis indicates that the multiple block allocation,
when combined with delayed allocation, is a
key factor resulting in this improvement. More
testing results can be obtained frdmtp:/
www.bullopensource.org/ext4

4.1 Reducing the use of bufferheads in ext3

Bufferheads continue to be heavily used in
Linux 1/O and filesystem subsystem, even
though closer integration of the buffer cache
. . . with the page cache since 2.4 and the new block
4 Improving ext3 without changing I/O subsystem introduced in Linux 2.6 have in

disk format some sense superseded part of the traditional
Linux buffer cache functionality.

Replacing the traditional indirect block map- There are a number of reasons for this. First of
ping scheme with an extent mapping schemeall, the buffer cache is still used as a metadata
has many benefits, as we have discussed in tteache. All filesystem metadata (superblock,
previous section. However, changes to the oninode data, indirect blocks, etc.) are typi-
disk format that are not backwards compati-cally read into buffer cache for quick reference.
ble are often slow to be adopted by users, foBufferheads provide a way to read/write/access
two reasons. First of all, robust e2fsck sup-this data. Second, bufferheads link a page to
port sometimes lags the kernel implementationdisk block and cache the block mapping infor-
Secondly, it is generally not possible to mountmation. In addition, the design of bufferheads
the filesystem with an older kernel once thesupports filesystem block sizes that do not
filesystem has been converted to use these newatch the system page size. Bufferheads pro-
features, preventing rollback in case of prob-vide a convenient way to map multiple blocks
lems. to a single page. Hence, even the generic multi-
page read-write routines sometimes fall back to
Fortunately, there are a number of improve-using bufferheads for fine-graining or handling
ments that can be made to the ext2/3 filesysef complicated corner cases.
tem without making these sorts of incompatible
changes to the on-disk format. Ext3 is no exception to the above. Besides the
above reasons, ext3 also makes use of buffer-
In this section, we will discuss a few of fea- heads to enable it to provide ordering guaran-
tures that are implemented based on the currem¢es in case of a transaction commit. Ext3’s or-
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dered mode guarantees that file data gets writ-  Lookaside Buffet (SLB). We have ob-

ten to the disk before the corresponding meta-  served that when running a large NFS
data gets committed to the journal. In order workload, while the ext3 journaling thread
to provide this guarantee, bufferheads are used kjournald() is referencing all the transac-
as the mechanism to associate the data pages tions, all the journal heads, and all the
belonging to a transaction. When the transac-  bufferheads looking for data to flush/clean
tion is committed to the journal, ext3 uses the it suffers a large number of SLB misses
bufferheads attached to the transaction to make with the associated performance penalty.
sure that all the associated data pages have been The best solution for these performance

written out to the disk. problems appears to be to eliminate the
use of bufferheads as much as possible,

However, bufferheads have the following dis- which reduces the number of memory ref-

advantages: erences required by kjournald().

e All bufferheads are allocated from the To address the above concerns

“buffer_head” slab cache, thus they con-pyjavarty has been working on removing

sume low memory on 32-bit architec- yyfferheads usage from ext3 from major

tures.  Since there is one bufferheadimnact areas, while retaining bufferheads for

(or more, depending on the block size)ncommon usage scenarios. The focus was on
for each filesystem page cache page, thgjimination of bufferhead usage for user data

bufferhead slab can grow really quickly hages while retaining bufferheads primarily
and consumes a lot of low memory spaceto; metadata caching.

Badari

* :/r\]/he? Euﬁerhfeads get atttr?ched toﬁhpag?‘Under the writeback journaling mode, since
re% a _e?j:e eregcen:)n he 2?%\7'”. e;e there are no ordering requirements between
erence Is dropped only whe €510\ hen metadata and data gets flushed to disk,
release the page. Typically, once a page

e Zeliminating the need for bufferheads is rel-
gets flushed to disk it is safe to release its g

: atively straightforward because ext3 can use
b_ufferheads._ But dropping the puffe_rhead,most recent generic VFS helpers for writeback.
right at the time of I/O completion is not

. o This change is already available in the latest
easy, since being in interrupt handler CON- i0ix 2.6 kernels

text restricts the kind of operations feasi-

ble. Hence, bufferheads are left attacheqg, ext3 ordered journaling mode, however,
to the page, and released later as and wheg)nce pufferheads are used as linkage between
VM decides to re-use the page. So, it iSyages and transactions in order to provide flush-
typical to have a large number of buffer-j,q" order guarantees, removal of the use of
heads floating around in the system. bufferheads gets complicated. To address this
e The extra memory references to buffer-ISSUe: Andrew Morton proposed a new ext3
heads can impact the performance Oi;ournallng mode: which Work_s without buffer-
memory caches, the Translation Looka-N€ads and provides semantics that are some-
side Buffer (TLB) and the Segment what_closg to that provided in ord_ered mode[E_)].
The idea is that whenever there is a transaction

3Low memory is memory that can be directly mappedcommit, we go through all the dirty inodes and
into kernel virtual address space, i.e. 896MB, in the case

of IA32. 4The SLB is found on the 64-hit Power PC.
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dirty pages in that filesystem and flush everyblock allocation by calling the filesystem spe-
one of them. This way metadata and user dataific get_block() function. Hence, if the
are flushed at the same time. The complexity ohobh_prepare_write function were to
this proposal is currently under evaluation. omit call get_block() , the physical block
would not be allocated until the page is ac-
) _ tually written out via thewritepage() or
4.2 Delayed allocation without extents writepages() function.

As we have discussed in Section 3.2 de_Badari Pulavarty implemented a relatively

layed allocation is a powerful technique thatSMall patch as a proof-of-concept, which
can result in significant performance gainsdémonstrates that this approach works well.
and Alex Tomas’s implementation shows some! "€ work is still in progress, with a few lim-

very interesting and promising results. How-itations to address. The first limitation is
ever, Alex’s implementation only provide de- that in the current proof-of-concept patch, data

layed allocation when the ext3 filesystemcould be dropped if the filesystem was full,

is using extents, which requires an incom-Without thewrite() system call returning -
patible change to the on-disk format. In ENOSPC In order to address this problem, the

addition, like past implementation of de- NObh_prepare_write — function must note
layed allocation by other filesystems, such aghat the page currently does not have a phys-

XFS, Alex's changes implement the delayedical block assigned, and request the filesys-
allocation in filesystem-specific versions of€Mm reserve a block for the page. So while
prepare_write() . commit_write() ’ the filesystem will not have assigned a spe-

writepage() and writepages() in.  cific physical block as a result ohobh_

stead of using the filesystem independent rouPrepare_write() , it must guarantee that
tines provided by the Linux kernel. whenwritepage()  calls the block allocator,
the allocation must succeed.
This motivated Suparna Bhattacharya, Badari
Pulavarty and Mingming Cao to implement de-The other major limitation is, at present, it
layed allocation and multiple block allocation only worked when bufferheads are not needed.
support to improve the performance of the ext3However, thenobh code path as currently
to the extent possible without requiring any on-present into the 2.6.11 kernel tree only sup-
disk format changes. ports filesystems when the ext3 is journaling in
writeback mode and not in ordered journaling
Interestingly, the work to remove the usemode, and when the blocksize is the same as the
of bufferheads in ext3 implemented mostVM pagesize. Extending theobh code paths
of the necessary changes required for deto support sub-pagesize blocksizes is likely not
layed allocation, when bufferheads are not revery difficult, and is probably the appropriate
quired. Thenobh_commit_write() func-  way of addressing the first part of this short-
tion, delegates the task of writing data tocoming.
thewritepage() andwritepages() , by
simply marking the page as dirty. Since 5The same shortcoming exists today if a sparse file
the writepage() function already has to is memory-mapped, and the filesystem is full when

. . ._writepage() tries to write a newly allocated page to
handle the case of writing a page which Sthe filesystem. This can potentially happen after user

mapped to a sparse memory-mapped fileSrocess which wrote to the file viamap() has exited,
the writepage() function already handles where there is no program left to receive an error report.
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However, supporting delayed allocation for e Find a way to get ext3 journal commit to
ext3 ordered journaling using this approach is  effectively reuse a part the fsync/O_SYNC

going to be much more challenging. While implementation that waits for writeback to
metadata journaling alone is sufficient in write- complete on the pages for relevant inodes,
back mode, ordered mode needs to track I/O  using a radix-tree walk. Since the journal
submissions for purposes of waiting for com- layer is designed to be unaware of filesys-

pletion of data writeback to disk as well, so tems [14], this could perhaps be accom-
that it can ensure that metadata updates hit the plished by associating a (filesystem spe-
disk only after the corresponding data blocks cific) callback with journal commit, as re-
are on disk. This avoids potential exposures  cently suggested by Andrew Morton[9].
and inconsistencies without requiring full data

journaling[14]. It remains to be seen which approach works out

H i th desi ‘ , " to be the best, as development progresses. It
owever, in the current design of generic Multi-jo 051 that since ordered mode is the default

page erte_back rogtlnes, block 1/C Su_bm's'journaling mode, any delayed allocation imple-
sions are issued directly by the generic rou-

. . mentation must be able to support it.
tines and are transparent to the filesystem spe-
cific code. In earlier situations where buffer- N _ _
heads were used for I/O, filesystem specific-3 Efficiently allocating multiple blocks

wrappers around generic code could track 1/0
through the bufferheads associated with a paggs \ith the Alex Tomas's delayed allocation

and link them with the transaction. With Fhe patch, Alex’s multiple block allocator patch re-
recent changes, where I/O requests are built djog on an incompatible on-disk format change
rectly as multi-page bio requests with no link ¢ the ext3 filesystem to support extent maps.
from the page to the bio, this no longer applies,, gqgition, the extent-based mballoc patch also
. required a format change in order to store data
A couple of solution approaches are under cong, e by ddy allocator which it utilized. Since
sideration, as of the writing of this paper: oprofile measurements of Alex’s patch indi-
cated the multiple block allocator seemed to
. . be responsible for reducing CPU usage, and
e Introducing yet another filesystem spe-gince it seemed to improve throughput in some
cific callback to be invoked by the generic \yorkjoads, we decided to investigate whether it
multi-page write routines to actually issue a5 possible to obtain most of the benefits of a
the_ I/O_. ext3 could then track the numbefmu|tip|e block allocator using the current ext3
of in-flight I/O requests associated with fjjesystem format. This seemed to be a reason-
the transaction, and wait for this to fall 0 gpje approach since many of the advantages of
zero at journal commit time. Implement- gpporting Alex’s mballoc patch seemed to de-
ing this option is complicated because thejye from collapsing a large number of calls to
multi-page write logic occasionally falls oyt3 get_block() into much fewer calls
back to the older bufferheads based logig eﬁs_g_et_blocks() , thus avoiding ex-
in some scenarios. Perhaps ext3 orderegess calls into the journaling layer to record

mode writeback would need to provide changes to the block allocation bitmap.
both the callback and the page buffer-

head tracking logic if this approach is em-In order to implement a multiple-block allo-
ployed. cator based on the existing block allocation
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bitmap, Mingming Cao first changeekt3_ dirtied and thus require journaling. Secondly, it
new_block() to accept a new argument would be difficult to place any newly allocated
specifying how many contiguous blocks theindirect blocks so they are appropriately inter-
function should attempt to allocate, on a besteaved with the data blocks.

efforts basis. The function now allocates the _

first block in the existing way, and then contin- Currently, only the Direct /O code path

ues allocating up to the requested number of addSes  the get_blocks() interfaces; the
jacent physical blocks at the same time if theyMPage_writepages() function  calls
are available. mpage_writepage() which in turn calls
get block() . Since only a few work-
The modifiedext3_new_block() function loads (mainly databases) use Direct I/O,
was then used to implement ext3get_ Suparna Bhattacharya has written a patch
blocks()  method, the standardized filesys-to change mpage_writepages() use
tem interface to translate a file offset and aget blocks() instead. This change

length to a set of on-disk blocks. It does thisshould be generically helpful for any
by starting at the first file offset and translat-filesystems which implement an efficient
ing it into a logical block number, and then tak- get_blocks() function.

ing that logical block number and mapping it to

a physical block number. If the logical block Draft patches have already been posted to
has already been mapped, then it will continughe ext2-devel mailing list. As of this writ-
mapping the next logical block until the requi- ing, we are trying to integrate Mingming's
site number of physical blocks have been reext3_get_blocks() patch, Suparna Bhat-

turned, or an unallocated block is found. tacharya'smpage_writepage() ~ patch and
Badari Pulavarty’'s generic delayed allocation

If some blocks need to be allocated, firstpatch (discussed in Section 4.2) in order to

ext3_get_blocks() will look ahead to evaluate these three patches together using
see how many adjacent blocks are needed, angbnchmarks.

then passes this allocation requestetd3
new_blocks() , searches for the requested _ _
free blocks. marks them as used. and re4-4 Asynchronous file unlink/truncate

turns them taext3_get_blocks() . Next,

ext3_get_blocks() will update the in- wjth block-mapped files and ext3, truncation

ode’s direct blocks, or a single indirect block of a large file can take a considerable amount
to point at the allocated blocks. of time (on the order of tens to hundreds of sec-
Currently, this ext3_get_blocks() im. onds if there is a lot of other filesystem activ-

plementation does not allocate blocks across
indirect block boundary. There are two rea-

sons for this. First, the]BD journaling re-

guests the filesystem to reserve the maximum e There are limits to the size of a sin-

ai{ty concurrently). There are several reasons for
his:

of blocks that will require journaling, when a gle journal transaction (1/4 of the jour-
new transaction handle is requestedexs3 nal size). When truncating a large frag-
journal_start() . If we were to allow mented file, it may require modifying so
a multiple block allocation request to span an many block bitmaps and group descriptors
indirect block boundary, it would be difficult that it forces a journal transaction to close

to predict how many metadata blocks may get  out, stalling the unlink operation.
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e Because of this per-transaction limit, trun-crash. A persistent singly-linked list of in-
cate needs to zero the [dt]indirect blocksode numbers is linked from the superblock and,
starting from the end of the file, in case itif this list is not empty at filesystem mount
needs to start a new transaction in the midtime, the ext3 code will first walk the list and
dle of the truncate (ext3 guarantees that alelete/truncate all of the files on it before the
partially-completed truncate will be con- mount is completed.

sistent/completed after a crash).
The delete thread was written for 2.4 kernels,

e The read/write of the file’s [dt]indirect pt is currently only in use for Lustre. The
blocks from the end of the file to the be- patch has not yet been ported to 2.6, but the
ginning can take a lot of time, as it does gmount of effort needed to do so is expected
this in single-block chunks and the blocksg pe relatively small, as the ext3 code has
are not contiguous. changed relatively little in this area.

In order to reduce the latency associated withror extent-mapped files, the need to have asyn-
large file truncates and unlinks on the Lu&e chronous unlink/truncate is much less, because
filesystem (which is commonly used by sci-the number of metadata blocks is greatly re-
entific computing applications handling very duced for a given file size (unless the file is very
large files), the ability for ext3 to perform asyn- fragmented). An alternative to the delete thread
chronous unlink/truncate was implemented by(for both files using extent maps as well as in-
Andreas Dilger in early 2003. direct blocks) would be to walk the inode and

. pre-compute the number of bitmaps and group
T.he delete thread. is a kerr]el thread that Selgescriptors that would be modified by the oper-
vices a queue of inode unlink or truncate-t0-5¢on, and try to start a single transaction of that
zero requests that are intercepted from norgj e |f this transaction can be started, then all
mal ext3_delete_inode() ~ andext3_  qf the indirect, double indirect, and triple in-
truncate()  calls. If the inode to be un- yirect plocks (also referenced as [d,f] indirect
linked/truncated is small enough, or if there ISplocks) no longer have to be zeroed out, and
any error in trying to defer the operation, it is ;o only have to update the block bitmaps and
handled immediately; otherwise, it_ is put into iy group summaries, reducing the amount of
the delete thread queue. In the unlink case, thfg considerably for files using indirect blocks.
inode is just put into the queue and the deletey 5o the walking of the file metadata blocks
thread is woke up, before returning to the caller.5n e done in forward order and asynchronous

For the truncate-to-zero case, a free inode is a5 4ahead can be started for indirect blocks to
located and the blocks are moved over to th(?nake more efficient use of the disk. As an

new inode before waking the thread and returnz yqeq benefit, we would regain the ability to

ing to the caller. When the delete thread is wokg,nelete files in ext3 because we no longer have
up, itdoes a normal truncate of all the blocks ony, S aro out all of the metadata blocks.

each inode in the list, and then frees the inode.

In order to handle these deferred delete/truncatg ¢
requests in a crash-safe manner, the inodes
to be unlinked/truncated are added into the
ext3 orphan list. This is an already exist-The use of a 16-bit value for an inode’s link
ing mechanism by which ext3 handles file un-count {_nlink ) limits the number of hard
link/truncates that might be interrupted by alinks on an inode to 65535. For directories, it

Increased nlinks support
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starts with a link count of 2 (one for “.” and one semaphore to provide exclusive access to the
for “..”) and each subdirectory has a hard linkdirectory; the second patch is in ext3 to imple-
to its parent, so the number of subdirectories isnent proper locking based on the filename.
similarly limited.

In the VFS, the directory inode semaphore ac-
The ext3 implementation further reduced thistyally protects two separate things. It protects
limit to 32000 to avoid signed-int problems. the filesystem from concurrent modification of
Before indexed directories were implementedg single directory and it also protects the dcache
the praCtica| ||m|t fOI’ fi|eS/SUbdiI’eCt0I‘ieS was from races in Creating the same dentry muitipie
about 10000 in a single directory. times for concurrent lookups. The pdirops VFS
S.patch adds the ability to lock individual dentries

subdirectory limit by not counting the subdi- (based on the dentry hash value) within a direc-

rectory links after the counter overflowed (attory to prever_1t concurrent dcache cr_eation. Al
65000 links actually); instead, a link count of °f (€ dP'aceS in the VFdS t;;)‘t ‘livoc;’_'d takesem ;
one is stored in the inode. The ext3 code al_onla klrg_ctory mstead caiek_ 'r(i: an ¢
ready ignores the link count when determininglun E.C — Irci) . dtg ﬁtefr.lmlne what type o
if a directory is full or empty, and a link count ocking Is desired by the filesystem.

of one is otherwise not possible for a directory., . . 12 e locking is done on a per-directory-

Using a link count of one is also required be-'G&f-blOCk basis. This is well suited to the
cause userspace tools like “find” optimize theirdirectory-indexing scheme, which has a tree
directory walking by only checking a number With leaf blocks and index blocks that very
of subdirectories equal to the link count minusrarely change. In the rare case that adding an

two. Having a directory link count of one dis- entry to the leaf block requires that an index
ables that heuristic. block needs locking the code restarts at the top

of the tree and keeps the lock(s) on the index
block(s) that need to be modified. At about
100,000 entries, there are 2-level index blocks

_ o ) that further reduce the chance of lock collisions
The Lustre filesystem (which is built on top of 5 index blocks. By not locking index blocks

the ext3 filesystem) has to meet very high goal?nitially, the common case where no change

for concurrent file creation in a single directory naeds to be made to the index block is im-
(5000 creates/second for 10 million files) forproved.

some of its implementations. In order to meet
this goal, and to allow this rate to scale withThe use of the pdirops VFS patch was also
the number of CPUs in a server, the implemenshown to improve the performance of the tmpfs

tation of parallel directory operations (pdirops)filesystem, which needs no other locking than
was done by Alex Tomas in mid 2003. This the dentry locks.

patch allows multiple threads to concurrently
create, unlink, and rename files within a single
directory.

A patch was implemented to overcome thi

4.6 Parallel directory operations

_ . 5 Performance comparison
There are two components in the pdirops

patches: one in the VFS to lock individual en-
tries in a directory (based on filesystem pref-In this section, we will discuss some perfor-
erence), instead of using the directory inodemance comparisons between the ext3 filesys-
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tem found on the 2.4 kernel and the 2.6 ker- ‘ iobench_sequential write

nel. The goal is to evaluate the progress ext3 s
has made over the last few years. Of course,
many improvements other than the ext3 spe-
cific features, for example, VM changes, block

I/O layer re-write, have been added to the Linux
2.6 kernel, which could affect the performance
results overall. However, we believe it is still I
worthwhile to make the comparison, for the 5

purpose of illustrating the improvements made threads
to ext3 on some workload(s) now, compared
with a few years ago.

throughput(MB/sec)

Figure 1: tiobench sequential write throughput
We selected linux 2.4.29 kernel as the baseresults comparison

line, and compared it with the Linux 2.6.10

kernel. Linux 2.6.10 contains all the features ‘ ‘ e

discussed in Section 2, except the EA-in-inode s} 2610 wisacic emd —az |
feature, which is not relevant for the bench-

marks we had chosen. We also performed the
same benchmarks using a Linux 2.6.10 ker-
nel patched with Alex Tomas’ extents patch

set, which implements extents, delayed allo-
cation, and extents-based multiple block allo-

cation. We plan to run the same benchmarks
against a Linux 2.6.10 kernel with some of the

patches described in Section 4 in the future.

throughput(MB/sec)

In this study we chose two benchmarks. ondigure 2: tiobe_nch sequential read throughput
is tiobench, a benchmark testing filesysten]€SUlts comparison

sequential and random /O performance with

multiple running threads. Another benchmarkare shown as2.6.10 writeback_emd "

we used is filemark, a modified postmark[8]in the graphs.

benchmark which simulates 1/0O activity on a

mail server with multiple threads mode. File-

mark was used by Ray Bryant when he con5.1 Tiobench comparison

ducted filesystem performance study on Linux

2.4.17 kernel three years ago [3].
Although there have been a huge number of

All the tests were done on the same 8-CPlthanges between the Linux 2.4.29 kernel to the
700 MHZ Pentium Il system with 1 GB RAM. Linux 2.6.10 kernel could affect overall perfor-
All the tests were run with ext3’'s writeback mance (both in and outside of the ext3 filesys-
journaling mode enabled. When running testdgem), we expect that two ext3 features, remov-
with the extents patch set, the filesystem wasng BKL from ext3 (as described in Section 2.2)
mouted with the appropriate mount options toand reservation based block allocation (as de-
enable the extents, multiple block allocation,scribed in Section 2.3) are likely to signifi-
and delayed allocation features. These test rursantly impact the throughput of the tiobench
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benchmark. In this sequential write test, mul- . | Flemark
tiple threads are sequentially writing/allocating
blocks in the same directory. Allowing allo-
cations concurrently in this case most likely
will reduces the CPU usage and improves the
throughput. Also, with reservation block al-
location, files created by multiple threads in
this test could be more contiguous on disk, and
likely reduce the latency while writing and se- ]
guential reading after that. threads

transactions per second

Figure 1 and Figure 2 show the sequential write

and sequential read test results of the tiobenchigure 3: Filemark benchmark transaction rate
benchmark, on the three selected kernels, witomparison

threads ranging from 1 to 64. The total files

size used in this test is 4GB and the blocksizg, <o -tion phase includes file read and ap-

is 16348 byt(_e. The test was d_on_e on a_sm_gl%end operations, and some file creation and re-
18G SCSI disk. The graphs indicate signifi- .\ a1 onerations. The configuration we used

cant throughput improvement from the 2.4.29, 0 ...« 1act is the so called “medium system”

kgrnel to the Llnux.2.6.10 kernel on this par- mentioned in Bryant’s Linux filesystem perfor-
ticular workload. Figure 2 shows the sequen-

. o = mance study [3]. Here we run filemark with 4
tial read throughput has been significantly 'M-“target directories, each on a different disk, 2000
proved from Linux 2.4.29 to Linux 2.6.10 on ’ ’

I subdirectories per target directory, and 100,000
ext3 as well. total files. The file sizes ranged from 4KB

When we applied the extents patch set, we safp 16KB and the I/O size was 4KB. Figure 3
an additional 7-10% throughput improvement_s'hOWS the average transactions per se_cond_dur-
on tiobench sequential write test. We suspecind the transaction phase, when running File-
the improvements comes from the combinatiofn@rk with 1, 8, 64, and 128 threads on the three

of delayed allocation and multiple block alloca- KEMels.

tion patches. As we noted earlier, having both_ _

features could help lay out files more contigu-ThiS benchmark uses a varying number of
ously on disk, as well as reduce the times tqthreads. We therefore expgcted the §calablllty
update the metadata, which is quite expensivénProvements to the exts filesystem in the 2.6
and happens quite frequently with the current€nél should improve Linux 2.6's performance
ext3 single block allocation mode. Future test{0 this benchmark. In addition, during the
ing are needed to find out which feature amondransactlon phase, some files are deleted soon

the three patches (extents, delayed allocatiofter the benchmark creates or appends data to
and extent allocation) is the key contributor ofthose files. The delayed allocation could avoid
this improvement. the need for disk updates for metadata changes

atall. So we expected Alex’s delayed allocation

_ _ to improve the throughput on this benchmark as

5.2 Filemark comparison well.
A Filemark execution includes three phasesThe results are shown in Figure 3. At 128

creation, transaction, and delete phase. Th#reads, we see that the 2.4.29 kernel had sig-
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nificant scalability problems, which were ad- devices. This limit affects both ext3’s internal
dressed in the 2.6.10 kernel. At up to 64metadata blocks, and the use of buffered block
threads, there is approximately a 10% to 15%evices when running e2fsprogs on a device to
improvement in the transaction rate betweercreate the filesystem in the first place. So this
Linux 2.4.29 and Linux 2.6.10. With the ex- imposes yet another 16TB limit on the filesys-
tents patch set applied to Linux 2.6.10, thetem size, but only on 32-bit architectures.
transaction rate is increased another 10% at 64
threads. In the future, we plan to do futher workHowever, the demand for larger filesystems is
to determine how much of the additional 10%already here. Large NFS servers are in the
improvement can be ascribed to the differentens of terabytes, and distributed filesystems
components of the extents patch set. are also this large. Lustre uses ext3 as the back-
end storage for filesystems in the hundreds of
More performance results, both of the benChterabytes range by combining dozens to hun-
mark tests described above, and additionglreds of individual block devices and smaller
benchmark tests expected to be done besxt3 filesystems in the VFS layer, and having
fore the 2005 OLS conference can bejarger ext3 filesystems would avoid the need to
found at http://ext2.sourceforge. artificially fragment the storage to fit within the
net/ols05-testing : block and filesystem size limits.

Extremely large filesystems introduce a num-
6 Future Work ber of scalability issues. One such concern is

the overhead of allocating space in very large

volumes, as described in Section 3.3. Another
This section will discuss some features that arguch concern is the time required to back up
still on the drawing board. and perform filesystem consistency checks on
very large filesystems. However, the primier is-
sue with filesystems larger thad?Xilesystem
blocks is that the traditional indirect block map-
ping scheme only supports 32-bit block num-
For a long time the Linux block layer limited bers. The additional fact that filling such a large
the size of a single filesystem to 2 TB3% filesystem would take many millions of indi-
512-byte sectors), and in some cases the SC$%ct blocks (over 1% of the whole filesystem,
drivers further limited this to 1TB because of at least 160 GB of just indirect blocks) makes
signed/unsigned integer bugs. In the 2.6 kerthe use of the indirect block mapping scheme
nels there is now the ability to have larger blockin such large filesystems undesirable.
devices and with the growing capacity and de-
creasing cost of disks the desire to have largeAssuming a 4 KB blocksize, a 32-bit block
ext3 filesystems is increasing. Recent vendonumber limits the maximum size of the filesys-
kernel releases have supported ext3 filesystentem to 16 TB. However, because the superblock
up to 8 TB and which can theoretically be asformat currently stores the number of block
large as 16 TB before it hits the’2filesys- groups as a 16-bit integer, and because (again
tem block limit (for 4 KB blocks and the 4 KB on a 4 KB blocksize filesystem) the maximum
PAGE_SIZE limit on i386 systems). There is number of blocks in a block group is 32,768
also a page cache limit of2pages in an ad- (the number of bits in a single 4k block, for
dress space, which are used for buffered blockhe block allocation bitmap), a combination of

6.1 64 bit block devices
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these constraints limits the maximum size oflt may also make sense to restrict inodes to the

the filesystem to 8 TB. first 8 TB of disk, and in conjunction with the
extensible inode table discussed in Section 6.2

One of the plans for growing beyond the 8/16use space within that region to allocate all in-

TB boundary was to use larger filesystemodes. This leaves the > 8 TB space free for ef-

blocks (8 KB up to 64 KB), which increases ficient extent allocations.

the filesystem limits such as group size, filesys-

tem size, maximum file size, and makes block )

allocation more efficient for a given amount of 82 Extensible Inode Table

space. Unfortunately, the kernel currently lim-

its the size of a page/buffer to virtual MeMOry’s pyging an dynamically extensible inode table
page size, which is 4 KB for 1386 processors.ig qomething that has been discussed exten-
A few years ago, it was thought that the advent ey 1y ext2/3 developers, and the issues that

of 64-bit processors like the Alpha, PPC64, andy, 5ye adding this feature difficult have been dis-
IA64 would break this limit and when they be- . ,«cad before in [15]. Quickly summarized,

came commodity parts everyone would be ablgy,q problem is a number of conflicting require-
to take advantage of them. The unfortunatemems:

news is that the commodity 64-bit processor ar-
chitecture, x86_64, also has a 4 KB page size
in order to maintain compatibility with its i386 e We must maintain enough backup meta-

ancestors. Therefore, unless this particular lim-
itation in the Linux VM can be lifted, most
Linux users will not be able to take advantage
of a larger filesystem block size for some time.

These factors point to a possible paradigm shift
for block allocations beyond the 8 TB bound-
ary. One possibility is to use only larger ex-
tent based allocations beyond the 8 TB bound-
ary. The current extent layout described in Sec-
tion 3.1 already has support for physical block
numbers up to % blocks, though witronly 232
blocks (16 TB) for a single file. If, at some
time in the future larger VM page sizes be-
come common, or the kernel is changed to al-
low buffers larger than the the VM page size,

data about the dynamic inodes to allow us
to preserve ext3’s robustness in the pres-
ence of lost disk blocks as far as possible.

We must not renumber existing inodes,
since this would require searching and up-
dating all directory entries in the filesys-
tem.

Given the inode number the block alloca-
tion algorithms must be able to determine
the block group where the inode is located.

The number of block groups may change
since ext3 filesystems may be resized.

then this will allow filesystem growth up t2  Most obvious solutions will violate one or more

bytes and files up to” bytes (assuming 64 KB of the above requirements. There is a clever
blocksize). The design of the extent structuresolution that can solve the problem, however,
also allows for additional extent formats like aby using the space counting backwards from
full 64-bit physical and logical block numbers 231 — 1, or “negative” inode. Since the num-
if that is necessary for 4 KBAGE_SIZEsys- ber of block groups is limited by %/(8 x
tems, though they would have to be 64-bit inblocksize, and since the maximum number of
order for the VM to address files and storagenodes per block group is also the same as the
devices this large. maximum number of blocks per block group
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is (8« blocksize, and if inode numbers and that implement the proposed 64-bit block num-
block numbers are both 32-bit integers, therber extension. Finally, the filesystem becomes
the number of inodes per block group in themore fragile, since if the reserved inode that
“negative” inode space is simp(B+blocksizé  describes the location of the “negative” inode
- normal-inodes-per-blockgroupThe location space is corrupted, the location of all of the ex-
of the inode blocks in the negative inode spacaended inodes could be lost.

are stored in a reserved inode.

So will extensible inode tables ultimately be

This particular scheme is not perfect, howeverimplemented? Ultimately, this will depend on
since it is not extensible to support 64 bit blockWhether an ext2/3 developer believes that it is

numbers unless inode numbers are also exVorth implementing—whether someone con-
tended to 64 bits. Unfortunately, this is not gosiders extensible inode an “itch that they wish
easy, since on 32-bit platforms, the Linux ker-to scratch.” The authors believe that the ben-
nel’s internal inode number is 32 bits. Worse€fits Of this feature only slightly outweigh the
yet, theino_t type in thestat structure is COStS, but perhaps not by enough to be worth
also 32 bits. Still, for filesystems that are utiliz- IMPlementing this feature. Still, this view is not
ing the traditional 32 bit block numbers, this is Unanimously held, and only time will tell.

still doable.

Is it worth it to make the inode table extensi-7 Conclusion
ble? Well, there are a number of reasons why

an extensible inode table is interesting. Histori- : ,
cally, administrators and theke2fs program As we have seen in this paper, there has been

have always over-allocated the number of in2 tremendous amount of work that has gone

odes. since the number of inodes can not be in Mt the ext2/3 filesystem, and this work is con-
: jnuing. What was once essentially a simpli-

creased after the filesystem has been formatted, i
y led BSD FFS descendant has turned into an

and if all of the inodes have been exhausted, terofi dv fil tem that K
no additional files can be created even if there o' Prise-Teady Tilesystem that can keep up

is plenty of free space in the filesystem. AsWIth the latest in storage technologies.

inodes get larger in order to accommodate thgyhat has been the key to the ext2/3 filesystem’s
EA-in-inode feature, the overhead of over- ,ccess? One reason is the forethought of the
allocating inodes becomes significant. Thereypjtia| ext2 developers to add compatibility fea-

number of inodes and adding more inodes lategytensible in a variety of ways, without sacri-

smaller number of initial inodes also makes the
the initial mke2fs takes less time, as well as Another reason can be found by looking at the
speeding up the2fsck time. company affiliations of various current and past
ext2 developers: Cluster File Systems, Digeo,
On the other hand, there are a number of disiBM, OSDL, Red Hat, SUSE, VMWare, and
advantages of an extensible inode table. Firspthers. Different companies have different pri-
the “negative” inode space introduces quite aorities, and have supported the growth of ext2/3
bit of complexity to the inode allocation and capabilities in different ways. Thus, this di-
read/write functions. Second, as mentionedrerse and varied set of developers has allowed
earlier, it is not easily extensible to filesystemsthe ext2/3 filesystem to flourish.
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The authors have no doubt that the ext2/3 [3] BRYANT,
filesystem will continue to mature and come

to be suitable for a greater and greater number

of workloads. As the old Frank Sinatra song

stated, “The best is yet to come.”

Patch Availability

[4]

The patches discussed in this paper can bel5]

found at http://ext2.sourceforge.
net/ols05-patches
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