Analytic Number Theory Lecture Notes by Andreas Strombergsson

Analytic Number Theory Lecture Notes by Andreas Strombergsson

Analytic Number Theory Lecture Notes by Andreas Strombergsson

This note covers the following topics: Primes in
Arithmetic Progressions, Infinite products, Partial summation and Dirichlet
series, Dirichlet characters, L(1, x) and class numbers, The distribution of the
primes, The prime number theorem, The functional equation, The prime number
theorem for Arithmetic Progressions, Siegel’s Theorem, The Polya-Vinogradov
Inequality, Sums of three primes, The Large Sieve, Bombieri’s Theorem.

This note covers the following topics: Primes in
Arithmetic Progressions, Infinite products, Partial summation and Dirichlet
series, Dirichlet characters, L(1, x) and class numbers, The distribution of the
primes, The prime number theorem, The functional equation, The prime number
theorem for Arithmetic Progressions, Siegel’s Theorem, The Polya-Vinogradov
Inequality, Sums of three primes, The Large Sieve, Bombieri’s Theorem.

This note covers the following topics: Divisibility and
Primes, Congruences, Congruences with a Prime-Power Modulus, Euler's Function
and RSA Cryptosystem, Units Modulo an Integer, Quadratic Residues and Quadratic
Forms, Sum of Powers, Fractions and Pell's Equation, Arithmetic Functions, The
Riemann Zeta Function and Dirichlet L-Function.

This is a
textbook about classical elementary number theory and elliptic curves. The first
part discusses elementary topics such as primes, factorization, continued
fractions, and quadratic forms, in the context of cryptography, computation, and
deep open research problems. The second part is about elliptic curves, their
applications to algorithmic problems, and their connections with problems in
number theory.

This note covers the following topics: Algebraic numbers and algebraic
integers, Ideals, Ramification theory, Ideal class group and units, p-adic
numbers, Valuations, p-adic fields.

This
note explains the following topics:
Algebraic numbers, Finite continued fractions, Infinite continued fractions,
Periodic continued fractions, Lagrange and Pell, Euler’s totient function,
Quadratic residues and non-residues, Sums of squares and Quadratic forms.