Aim of this note is to provide
mathematical tools used in applications, and a certain theoretical background
that would make other parts of mathematical analysis accessible to the student of physical science.
Topics covered includes: Power series and trigonometric series, Fourier
integrals, Pointwise convergence of Fourier series, Summability of Fourier
series, Periodic distributions and Fourier series, Metric, normed and inner
product spaces, Orthogonal expansions and Fourier series, Classical orthogonal
systems and series, Eigenvalue problems related to differential equations,
Fourier transformation of well-behaved functions, Fourier transformation of
tempered distributions, General distributions and Laplace transforms.

Aim of this note is to provide
mathematical tools used in applications, and a certain theoretical background
that would make other parts of mathematical analysis accessible to the student of physical science.
Topics covered includes: Power series and trigonometric series, Fourier
integrals, Pointwise convergence of Fourier series, Summability of Fourier
series, Periodic distributions and Fourier series, Metric, normed and inner
product spaces, Orthogonal expansions and Fourier series, Classical orthogonal
systems and series, Eigenvalue problems related to differential equations,
Fourier transformation of well-behaved functions, Fourier transformation of
tempered distributions, General distributions and Laplace transforms.

This note is an overview of some basic notions is given, especially with
an eye towards somewhat fractal examples, such as infinite products of cyclic
groups, p-adic numbers, and solenoids. Topics covered includes: Fourier series,
Topological groups, Commutative groups, The Fourier transform, Banach algebras,
p-Adic numbers, r-Adic integers and solenoids, Compactifications and
Completeness.

This note
starts by introducing the basic concepts of function spaces and operators, both
from the continuous and discrete viewpoints. It introduces the Fourier and
Window Fourier Transform, the classical tools for function analysis in the
frequency domain.

The aim of this note is to give an introduction to nonlinear Fourier
analysis from a harmonic analyst’s point of view. Topics covered includes: The
nonlinear Fourier transform, The Dirac scattering transform, Matrix-valued
functions on the disk, Proof of triple factorization, The SU(2) scattering
transform, Rational Functions as Fourier Transform Data.

Author(s): Terence Tao, Christoph Thiele and Ya-Ju
Tsai

This book
explains the following topics: Infinite Sequences, Infinite Series and
Improper Integrals, Fourier Series, The One-Dimensional Wave Equation, The
Two-Dimensional Wave Equation, Introduction to the Fourier Transform,
Applications of the Fourier Transform and Bessel’s Equation.

This book
covers the following topics: Fourier Series, Fourier Transform, Convolution,
Distributions and Their Fourier Transforms, Sampling, and Interpolation,
Discrete Fourier Transform, Linear Time-Invariant Systems, n-dimensional Fourier
Transform.

This
book describes the Theory of Infinite Series and Integrals, with special
reference to Fourier's Series and Integrals. The first three chapters deals with
limit and function, and both are founded upon the modern theory of real numbers.
In Chapter IV the Definite Integral is treated from Kiemann's point of view, and
special attention is given to the question of the convergence of infinite
integrals. The theory of series whose terms are functions of a single variable,
and the theory of integrals which contain an arbitrary parameter are discussed
in Chapters, V and VI.

This note covers the following topics: Vector Spaces with Inner Product,
Fourier Series, Fourier Transform, Windowed Fourier Transform, Continuous
wavelets, Discrete wavelets and the multiresolution structure, Continuous
scaling functions with compact support.

This note provides an introduction to harmonic analysis and Fourier analysis
methods, such as Calderon-Zygmund theory, Littlewood-Paley theory, and the
theory of various function spaces, in particular Sobolev spaces. Some selected
applications to ergodic theory, complex analysis, and geometric measure theory
will be given.

This note covers the following topics: A Motivation for Wavelets, Wavelets
and the Wavelet Transform, Comparision of the Fourier and Wavelet Transforms,
Examples.

This book covers the following topics: Historical
Background, Definition of Fourier Series, Convergence of Fourier Series,
Convergence in Norm, Summability of Fourier Series, Generalized Fourier Series
and Discrete Fourier Series.