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Chapter 1

The integral: properties

1.1 Measurable functions

A σ-algebra of measurable functions F is a set of real functions defined on a set
X. It must satisfy the following properties:

1. F is a vector space of functions.

2. F is a lattice of functions.

3. F is closed under pointwise monotone convergence.

4. F contains the constant functions.

To say that F is a vector space of functions is to say that f in F and g ∈ F
imply that f + g is in F , and that a in R and f in F imply that af is in F .

To say that F is a lattice of functions is to say that f in F and g in F imply
that the minimum f ∧ g is in F and that the maximum f ∨ g is in F .

Notice that it follows that if f is in F , then the absolute value given by the
formula |f | = (f ∨ 0)− (f ∧ 0) is in F .

To say that F is closed under pointwise upward convergence is to say that
if each fn is in F and if fn ↑ f , then f is in F . To say that fn ↑ f is to say that
each fn ≤ fn+1 pointwise and that fn converges to f pointwise.

If F is closed under pointwise upward convergence, then it follows easily
that F is closed under downward monotone convergence: If each fn is in F
and if fn ↓ f , then f is in F . One just needs to apply the upward convergence
property to the negatives of the functions.

To say that F is closed under pointwise monotone convergence is to say that
it is closed under pointwise upward convergence and under pointwise downward
convergence.

Let a be a real number and let f be a function. Define the function 1f>a to
have the value 1 at all points where f > a and to have the value 0 at all points
where f ≤ a.
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6 CHAPTER 1. THE INTEGRAL: PROPERTIES

Theorem 1.1 If f is in F and a is real, then 1f>a is in F .

Proof: The function f − f ∧ a is in F . It is strictly greater than zero at
precisely the points where f > a. The sequence of functions gn = n(f − f ∧ a)
satisfies gn ↑ ∞ for points where f > a and gn = 0 at all other points. Hence
the family of functions gn ∧ 1 increases pointwise to 1f>a.

Theorem 1.2 If f is a function, and if for each real number a the function
1f>a is in F , then f is in F .

Proof: First note that for a < b the function 1a<f≤b = 1f>a − 1f>b is also
in F . Next, note that

fn =

∞∑
k=−∞

k

2n
1 k

2n<f≤
k+1
2n

(1.1)

is in F . However fn ↑ f as n→∞.

Theorem 1.3 If f is in F , then so is f2.

Proof: For a ≥ 0 the condition f2 > a is equivalent to the condition |f | >√
a.

Theorem 1.4 If f , g are in F , then so is the pointwise product f · g.

Proof: (f + g)2 − (f − g)2 = 4f · g.
This last theorem shows that F is not only closed under addition, but also

under multiplication. Thus F deserves to be called an algebra. It is called a σ
algebra because of the closure under monotone limits. We shall now see that
there is actually closure under all pointwise limits.

Theorem 1.5 Let fn be in F and fn → f pointwise. Then f is in F .

Proof: Let n < m and let hnm = fn ∧ fn+1 ∧ · · · ∧ fm. Then hnm ↓ hn as
m→∞, where hn is the infimum of the fk for k ≥ n. However hn ↑ f .

The trick in this proof is to write a general limit as an increasing limit
followed by a decreasing limit. We shall see in the following that this is a very
important idea in integration.

If we are given a set of functions, then the σ-algebra of functions generated
by this set is the smallest σ-algebra of functions that contains the original set.
The Borel σ-algebra of functions is the σ-algebra of functions B on Rn generated
by the coordinates x1, . . . , xn. The following theorem shows that measurable
functions are closed under nonlinear operations in a very strong sense.

Theorem 1.6 Let f1, . . . , fn be in a σ-algebra F of measurable functions. Let
φ be a Borel function. Then φ(f1, . . . , fn) is also in F .

Proof: Let B′ be the set of all functions φ such that φ(f1, . . . , fn) is in F .
It is easy to check that B′ is a σ-algebra of functions. Since f1, . . . , fn are each
measurable, it follows that the coordinate functions x1, . . . , xn belong to B′. It
follows from these two facts that B is a subset of B′.
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1.2 Integration

An integral is a function µ defined on the positive elements of a σ-algebra of
measurable functions with values in the interval [0,∞]. It must satisfy the
following properties:

1. µ is additive and respects scalar multiplication by positive scalars.

2. µ satisfies the monotone convergence property.

The first property says that for f ≥ 0 and g ≥ 0 we always have µ(f + g) =
µ(f) + µ(g). Furthermore, for a ≥ 0 and f ≥ 0 we have µ(af) = aµ(f). In this
context the product 0 times ∞ is defined to be 0.

Theorem 1.7 If 0 ≤ f ≤ g, then 0 ≤ µ(f) ≤ µ(g).

Proof: Clearly (g−f)+f = g. So µ(g−f)+µ(f) = µ(g). But µ(g−f) ≥ 0.
The second property says that if each fn ≥ 0 and fn ↑ f as n → ∞, then

µ(fn) → µ(f) as n → ∞. This is usually called the monotone convergence
theorem.

If f is a measurable function, then its positive part (f ∨ 0) ≥ 0 and its
negative part −(f ∧ 0) ≥ 0. So they each have integrals. If at least one of these
integrals is finite, then we may define the integral of f to be

µ(f) = µ(f ∨ 0)− µ(−(f ∧ 0)). (1.2)

However, the expression ∞−∞ is undefined!

Theorem 1.8 If µ(|f |) <∞, then µ(f) is defined, and

|µ(f)| ≤ µ(|f |). (1.3)

It is very common to denote

µ(f) =

∫
f dµ (1.4)

or even

µ(f) =

∫
f(x) dµ(x). (1.5)

This notation is suggestive in the case when there is more than one integral
in play. Say that ν is an integral, and w ≥ 0 is a measurable function. Then
the integral µ(f) = ν(fw) is defined. We would write this as∫

f(x) dµ(x) =

∫
f(x)w(x)dν(x). (1.6)

So the relation between the two integrals would be dµ(x) = w(x)dν(x). This
suggests that w(x) plays the role of a derivative of one integral with respect to
the other.
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1.3 Convergence theorems

Theorem 1.9 (improved monotone convergence) If µ(f1) > −∞ and fn ↑ f ,
then µ(fn)→ µ(f).

Proof: Apply monotone convergence to fn − f1.

Theorem 1.10 (Fatou) If each fn ≥ 0 and if fn → f pointwise as n → ∞,
then µ(f) ≤ limn→∞ infk≥n µ(fk).

Proof: Let hn be the infimum of the fk for k ≥ n. Then hn ≤ fk for
each k ≥ n, and so µ(hn) ≤ µ(fk) for each k ≥ n. In particular, µ(hn) ≤
infk≥n µ(fk). However hn ↑ f . Both sides of this inequality are increasing, and
so by monotone convergence µ(f) ≤ limn→∞ infk≥n µ(fk).

Here is an important special case of Fatou’s lemma. If each fn ≥ 0 and
0 ≤ µ(fn) ≤M and fn → f pointwise as n→∞, then 0 ≤ µ(f) ≤M . In other
words, one can lose mass, but not gain it.

Theorem 1.11 (dominated convergence) Let |fn| ≤ g for each n, where µ(g) <
∞. Then if fn → f as n→∞, then µ(fn)→ µ(f) as n→∞.

Proof: Let un be the supremum of k ≥ n of the fk, and let hn be the
infimum for k ≥ n of the fk. Then −g ≤ hn ≤ fn ≤ un ≤ g. However hn ↑ f
and un ↓ f . It follows from improved monotone convergence that µ(hn)→ µ(f)
and µ(un)→ µ(f). Since µ(hn) ≤ µ(fn) ≤ µ(un), it follows that µ(fn)→ µ(f).

Theorem 1.12 (Tonelli for positive sums) If wk ≥ 0, then

µ(

∞∑
k=1

wk) =

∞∑
k=1

µ(wk) (1.7)

Proof: This theorem says that for positive functions integrals and sums may
be interchanged. This is the monotone convergence theorem in disguise.

Theorem 1.13 (Fubini for absolutely convergent sums) If µ(
∑
k |wk|) < ∞,

then

µ(

∞∑
k=1

wk) =

∞∑
k=1

µ(wk). (1.8)

Proof: This theorem says that absolute convergence implies that integrals
and sums may be interchanged. Since

|
n∑
k=1

wk| ≤
n∑
k=1

|wk| ≤
∞∑
k=1

|wk|, (1.9)

this follows from the dominated convergence theorem.
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1.4 Measure

If E is a subset of X, then 1E is the indicator function of E. Its value is 1
for every point in E and 0 for every point not in E. The set E is said to be
measurable if the function 1E is measurable. The measure of such an E is µ(1E).
This is often denoted µ(E).

Sometimes we denote a subset of X by a condition that defines the subset.
Thus, for instance, the set of all points where f < a is denoted f < a, and its
measure is µ(f < a). This is more economical than writing this explicitly as in
integral µ(1f<a).

Theorem 1.14 If the set where f 6= 0 has measure zero, then µ(|f |) = 0.

Proof: For each n the function |f | ∧ n ≤ n1|f |>0 and so has integral µ(|f | ∧
n) ≤ n · 0 = 0. However |f | ∧ n ↑ |f | as n→∞. So from monotone convergence
µ(|f |) = 0.

The preceding theorem shows that changing a function on a set of measure
zero does not change its integral. Thus, for instance, if we change g to h = g+f ,
then |µ(h)− µ(g)| = |µ(f)| ≤ µ(|f |) = 0.

There is a terminology that is standard in this situation. If a property of
points is true except on a measure zero, then it is said to hold almost everywhere.
Thus the theorem would be stated as saying that if f = 0 almost everywhere,
then its integral is zero. Similarly, if g = h almost everywhere, then g and h
have the same integral.

Theorem 1.15 (Chebyshev inequality) Let f be a measurable function and let
a be a real number in the range of f . Let φ be a function defined on the range
of f such that x1 ≤ x2 implies 0 ≤ φ(x1) ≤ φ(x2). Then

φ(a)µ(f ≥ a) ≤ µ(φ(f)). (1.10)

Proof: This follows from the pointwise inequality

φ(a)1f≥a ≤ φ(a)1φ(f)≥φ(a) ≤ φ(f). (1.11)

The Chebyshev inequality is often used in the case when f ≥ 0 and φ(x) = x
or φ(x) = x2. Another important case is φ(x) = etx with t > 0. Here we will
use it in the simple form aµ(≥ a) ≤ µ(f) for f ≥ 0.

Theorem 1.16 If µ(|f |) = 0, then the set where f 6= 0 has measure zero.

Proof: By the Chebyshev inequality, for each n we have µ(1|f |>1/n ≤ nµ(|f |) =
n · 0 = 0. However as n→∞, the functions 1|f |>1/n ↑ 1|f |>0. So µ(1|f |>0) = 0.

The above theorem also has a statement in terms of an almost everywhere
property. It says that if |f | has integral zero, then f = 0 almost everywhere.

Theorem 1.17 Let fn ↑ be an increasing sequence of positive measurable func-
tions such that for some M <∞ and for all n the integrals µ(fn) ≤M . Let E
be the set on which fn →∞. Then µ(E) = 0.
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Proof: Let f be the limit of the fn; the function f can assume the value
∞. For each real a > 0 the functions fn ∧ a increase to a limit f ∧ a. Since
µ(fn ∧ a) ≤ µ(fn) ≤ M , it follows that µ(f ∧ a) ≤ M . Let Ea be the set on
f ∧ a ≥ a. By Chebyshev’s inequality aµ(Ea) ≤ µ(f ∧ a) ≤ M . Since E is a
subset of Ea, it follows that aµ(E) ≤ M . This can happen for all real a > 0
only when µ(E) = 0.

Again this result has an almost everywhere statement. It says that if an
increasing sequence of positive functions has a finite upper bound on its integral,
then the limit of the functions is finite almost everywhere.

Theorem 1.18 An integral is uniquely determined by the corresponding mea-
sure.

Let f ≥ 0 be a measurable function. Define

fn =

∞∑
k=0

k

2n
1 k

2n<f≤
k+1
2n
. (1.12)

The integral of fn is determined by the measures of the sets where k
2n < f ≤ k+1

2n .
However fn ↑ f , and so the integral of f is determined by the corresponding
measure.

This theorem justifies a certain amount of confusion between the notion of
measure and the notion of integral. In fact, this whole subject is sometimes
called measure theory.

1.5 Fubini’s theorem

If X,Y are sets, their Cartesian product X × Y is the set of all ordered pairs
(x, y) with x in X and y in Y .

If f is a function on X and g is a function on Y , then their tensor product
f ⊗ g is the function on the Cartesian product X × Y given by

(f ⊗ g)(x, y) = f(x)g(y). (1.13)

Sometimes such functions are called decomposable. Another term is separable,
as in the expression “separation of variables.” If F is a σ-algebra of measurable
functions on X and G is a σ-algebra of measurable functions on Y , then F ⊗ G
is the product σ-algebra generated by the functions f ⊗ g with f in F and g in
G.

We say that an integral µ is σ-finite if there is a sequence of functions fn ≥ 0
with µ(fn) <∞ for each n and with fn ↑ 1.

Theorem 1.19 Let F consist of measurable functions on X and G consist of
measurable functions on Y . Then F ⊗ G consists of measurable functions on
X × Y . If µ is a σ-finite integral on F and ν is a σ-finite integral on G, then
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there exists a unique integral µ × ν on F ⊗ G with the property that for every
pair f ≥ 0 in F and g ≥ 0 in G we have

(µ× ν)(f ⊗ g) = µ(f)ν(g). (1.14)

The product of integrals in this theorem may be of the form 0 ·∞ or∞·0. In
that case we use the convention that is standard in integration theory: 0 · ∞ =
∞ · 0 = 0. The integral described in the above theorem is called the product
integral. The corresponding measure is called the product measure. The defining
property may also be written in the more explicit form∫

f(x)g(y) d(µ× ν)(x, y) =

∫
f(x) dµ(x)

∫
g(y) dν(y). (1.15)

The definition of product integral does not immediately give a useful way
to compute the integral of functions that do not compose into a product. For
this we need Tonelli’s theorem and Fubini’s theorem. Here is another definition.
Let ν be a measure defined on functions of y in Y . Let h be a function on
X × Y . Then the partial integral ν(h | X) is the function on X defined for
each x as the ν integral of the function y 7→ h(x, y). It should be thought of
the integral of h(x, y) over y with the x coordinate fixed. Similarly, in µ is a
measure defined on functions of y in Y , then the partial integral µ(h | Y ) is
defined in the analogous way. It is the integral of h(x, y) over x with the y
coordinate fixed. These notations are not standard, but they are suggested by
a somewhat similar notation for conditional expectation in probability theory.

Theorem 1.20 (Tonelli) Let µ and ν be σ-finite integrals defined for measur-
able functions on X and Y respectively. Let h ≥ 0 be a measurable function on
X × Y . Then

(µ× ν)(h) = µ(ν(h | X)) = ν(µ(h | Y )). (1.16)

The identity in Tonelli’s theorem may of course also be written as saying
that∫
h(x, y) d(µ× ν)(x, y) =

∫
[

∫
h(x, y) dν(y)] dµ(x) =

∫
[

∫
h(x, y) dµ(x)] dν(y)

(1.17)
whenever h(x, y) ≥ 0. There is a technicality about the integrals that occur in
Tonelli’s theorem. It is quite possible that even if the function h that one starts
with has values in the interval [0,∞), then a partial integral such as ν(h | X) is
a function with values in the interval [0,∞]. So it is convenient to extend the
notion of measurable function to positive functions that can assume the value
∞. We define the integral for such positive measurable functions in such a way
that the monotone convergent theory is satisfied.

The proof of Tonelli’s theorem may be reduced to the theorem about the
existence of the product integral. (Of course this theorem was not proved above.)
The idea is to show first that it is true for decomposible functions and then
extend to all measurable functions.
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Theorem 1.21 (Fubini) Let µ and ν be σ-finite integrals defined for measurable
functions on X and Y respectively. Let h be a measurable function on X × Y
such that (µ × ν)(|h|) < ∞. Thus (µ × ν)(h) is defined. Then ν(|h| | X) < ∞
µ-almost everywhere, and µ(|h| | Y )) <∞ ν-almost everywhere. Thus ν(h | X)
is defined µ-almost everywhere, and µ(h | Y )) is defined ν-almost everywhere.
Furthermore µ(|ν(h | X)|) < ∞ and ν(|µ(h | Y )|) < ∞. Thus µ(ν(h | X)) and
ν(µ(h | Y )) are defined. Finally,

(µ× ν)(h) = µ(ν(h | X)) = ν(µ(h | Y )). (1.18)

The identity in Fubini’s theorem may of course also be written as saying
that∫
h(x, y) d(µ× ν)(x, y) =

∫
[

∫
h(x, y) dν(y)] dµ(x) =

∫
[

∫
h(x, y) dµ(x)] dν(y)

(1.19)
whenever |h(x, y)| has a finite integral with respect to the product measure.
There is also a technicality about the integrals that occur in Fubini’s theorem. It
is quite possible that the partial integral ν(h | X) is undefined at certain points,
due to an ∞−∞ problem. One could worry about whether it is meaningful to
integrate such a function. However under the hypotheses of Fubini’s theorem,
such a problem would occur only on a set of µ measure zero. So it is convenient
to assume that we have defined the integral for certain functions that are defined
almost everywhere and whose absolute values have finite integrals.

The proof of Fubini’s theorem from Tonelli’s theorem is not difficult. One
merely applies Tonelli’s theorem to the positive and negative parts of the func-
tion.

Tonelli’s theorem and Fubini’s theorem are often used together to justify an
interchange of order of integration. Say that one can show that∫

[

∫
|h(x, y)| dν(y)] dµ(x) <∞. (1.20)

Then by Tonelli’s theorem∫
|h(x, y)| d(µ× ν)(x, y) <∞. (1.21)

However then it follows from Fubini’s theorem that∫
[

∫
h(x, y) dν(y)] dµ(x) =

∫
[

∫
h(x, y) dµ(x)] dν(y). (1.22)

Finally, a technical note. We have been assuming that the measure spaces are

σ-finite. Why is this necessary? Here is an example. Let µ(f) =
∫ 1

0
f(x) dx be

the usual uniform Lebesgue integral on the interval [0, 1]. Let ν(g) =
∑
y g(y)

be summation indexed by the points in the interval [0, 1]. The measure ν is
not σ-finite, since there are uncountably many points in [0, 1]. Finally, let
h(x, y) = 1 if x = y, and h(x, y) = 0 for x 6= y. Now for each x, the sum
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∑
y h(x, y) = 1. So the integral over x is also 1. On the other hand, for each

y the integral
∫
h(x, y) dx = 0, since the integrand is zero except for a single

point of µ measure zero. So the sum over y is zero. Thus the two orders of
integration give different results. Tonelli’s theorem does not work. Allowing
measure spaces that are not σ-finite is like allowing uncountable sums. The
theory of integration only works well for countable sums.

1.6 Problems

1. Let B be the smallest σ-algebra of real functions on R containing the
function x. This is called the σ-algebra of Borel functions. Show that
every continuous function is a Borel function.

2. Show that every monotone function is a Borel function.

3. Can a Borel function be discontinuous at every point?

The preceding problems show that it is difficult to think of a specific
example of a real function on R that is not a Borel function. However it
may be proved that they exist, and examples are known.

The following problems deal with certain smaller σ-algebras of functions.
Such smaller σ-algebras are very important in probability theory. For
instance, consider the σ-algebra generated by some function f . The idea
is that it represents all functions that can be computed starting from
information about the value of f . Thus if f has somehow been measured
in an experiment, then all the other functions in the σ-algebra are also
measurable in the same experiment.

4. Let B′ be the smallest σ-algebra of functions on R containing the function
x2. Show that B′ is not equal to B. Which algebra of measurable functions
is bigger (that is, which one is a subset of the other)?

5. Consider the σ-algebras of functions generated by cos(x), cos2(x), and
cos4(x). Compare them with the σ-algebras in the previous problem and
with each other. (Thus specify which ones are subsets of other ones.)

6. This problem is to show that one can get convergence theorems when the
family of functions is indexed by real numbers. Prove that if ft → f
pointwise as t→ t0, |ft| ≤ g pointwise, and µ(g) <∞, then µ(ft)→ µ(f)
as t→ t0.

The usual Lebesgue integral λ(f) =
∫∞
−∞ f(x) dx is defined for positive

Borel functions. It then extends to Borel functions that have either a
positive or a negative part with finite integral.

7. Show that if f is a Borel function and
∫∞
−∞ |f(x)| dx < ∞, then F (b) =∫ b

−∞ f(x) dx is continuous.
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8. Must the function F in the preceding problem be differentiable at every
point? Discuss.

9. Show that ∫ ∞
0

sin(ex)

1 + nx2
dx→ 0 (1.23)

as n→∞.

10. Show that ∫ 1

0

n cos(x)

1 + n2x
3
2

dx→ 0 (1.24)

as n→∞.

11. Evaluate

lim
n→∞

∫ ∞
a

n

1 + n2x2
dx (1.25)

as a function of a.

12. Consider the integral ∫ ∞
−∞

1√
1 + nx2

dx. (1.26)

Show that the integrand is monotone decreasing and converges pointwise
as n → ∞, but the integral of the limit is not equal to the limit of the
integrals. How does this relate to the monotone convergence theorem?

13. Let δ(x) be a Borel function with∫ ∞
−∞
|δ(x)| dx <∞ (1.27)

and ∫ ∞
−∞

δ(x) dx = 1 (1.28)

Let

δε(x) = δ(
x

ε
)
1

ε
. (1.29)

Let g be bounded and continuous. Show that∫ ∞
−∞

δε(y)g(y) dy → g(0) (1.30)

as ε → 0. This problem gives a very general class of functions δε(x) such
that integration with δε(x) dx converges to the Dirac delta integral δ given
by δ(g) = g(0).

14. Let f be bounded and continuous. Show for each x the convolution∫ ∞
−∞

δε(x− z)f(z) dz → f(x) (1.31)

as ε→ 0.
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15. Prove countable subadditivity:

µ(

∞⋃
n=1

An) ≤
∫

(

∞∑
n=1

1An) dµ =

∞∑
n=1

µ(An). (1.32)

Show that if the An are disjoint this is an equality (countable additivity).

16. Recall that fn(x) → f(x) as n → ∞ means ∀ε > 0 ∃N ∀n ≥ N |fn(x) −
f(x)| < ε. Show that fn → f almost everywhere is equivalent to

µ({x | ∃ε > 0 ∀N ∃n ≥ N |fn(x)− f(x)| ≥ ε}) = 0. (1.33)

17. Show that fn → f almost everywhere is equivalent to for all ε > 0

µ({x | ∀N ∃n ≥ N |fn(x)− f(x)| ≥ ε}) = 0. (1.34)

18. Suppose that the measure of the space is finite. Show that fn → f almost
everywhere is equivalent to for all ε > 0

lim
N→∞

µ({x | ∃n ≥ N |fn(x)− f(x)| ≥ ε}) = 0. (1.35)

Show that this is not equivalent in the case when the measure of the space
may be infinite.

Note: Convergence almost everywhere occurs in the strong law of large
numbers.

19. Say that fn → f in measure if for all ε > 0

lim
N→∞

µ({x | |fN (x)− f(x)| ≥ ε}) = 0. (1.36)

Show that if the measure of the space is finite, then fn → f almost
everywhere implies fn → f in measure. Note: Convergence in measure
occurs in the weak law of large numbers.
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Chapter 2

Function spaces

2.1 Spaces of continuous functions

This section records notations for spaces of functions. Ordinarily we think of
real or of complex functions. Which one depends on context.

The space C(X) consists of all continuous functions. The space B(X) con-
sists of all bounded functions. It is a Banach space in a natural way. The space
BC(X) consists of all bounded continuous functions. It is a somewhat smaller
Banach space.

Now look at the special case when X is a metric space such that each point
has a compact neighborhood. (More generally, X could be a Hausdorff topolog-
ical space instead of a metric space.) For example X could be an open subset
of Rn. The space Cc(X) consists of all continuous functions, each one of which
has compact support. The space C0(X) is the closure of Cc(X) in BC(X). It
is itself a Banach space. It is the space of continuous functions that vanish at
infinity.

The relation between these spaces is that Cc(X) ⊂ C0(X) ⊂ BC(X). They
are all equal when X compact. When X is locally compact, then C0(X) is the
best behaved.

In the following we shall need the concept of dual space of a Banach space.
The dual space consists of all continuous linear functions from the Banach space
to the scalars. It is itself a Banach space. For certain Banach spaces of functions
the linear functionals in the dual space may be realized by integration with
certain elements of a Banach space of functions or of measures. For example,
C(X) is a Banach space, and its dual space M(X) is a Banach space consisting of
signed Radon measures of finite variation. (A signed measure of finite variation
is the difference of two positive measures that each assigns finite measure to
the space X. Radon measures will be discussed later.) If σ is in M(X), then
it defines the linear functional f 7→

∫
f(x) dσ(x), and all elements of the dual

space arise in this way.

17
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2.2 Lp spaces

Fix a set X and a σ-algebra F of measurable functions. Let 0 < p <∞. Define

‖f‖p = µ(|f |p)
1
p . (2.1)

Define Lp(µ) to be the set of all f in F such that ‖f‖p <∞.

Theorem 2.1 For 0 < p <∞, the space Lp(µ) is a vector space.

Proof: It is obvious that Lp is closed under scalar multiplication. The prob-
lem is to prove that it is closed under addition. However if f , g are each in Lp,
then

|f + g|p ≤ [2(|f | ∨ |g|)]p ≤ 2p(|f |p + |g|p). (2.2)

Thus f + g is also in Lp.
The function xp is increasing for every p > 0, but it is convex only for p ≥ 1.

This is the key to the following fundamental inequality.

Theorem 2.2 (Minkowski’s inequality) If 1 ≤ p <∞, then

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (2.3)

Proof: Let c = ‖f‖p and d = ‖g‖p. Then by the fact that xp is increasing
and convex∣∣∣∣f + g

c+ d

∣∣∣∣p ≤ ( c

c+ d

∣∣∣∣fc
∣∣∣∣+

d

c+ d

∣∣∣g
d

∣∣∣)p ≤ c

c+ d

∣∣∣∣fc
∣∣∣∣p +

d

c+ d

∣∣∣g
d

∣∣∣p . (2.4)

Integrate. This gives

µ

(∣∣∣∣f + g

c+ d

∣∣∣∣p) ≤ 1. (2.5)

Thus ‖f + g‖p ≤ c+ d.
It is a fact that µ(|f |p) = 0 if and only if f = 0 almost everywhere. Thus in

order to get a normed vector space, we need to define the space in such a way
that every two functions g, h that differ by a function f = h − g that is zero
almost everywhere determine the same element of the vector space. With this
convention, we have the property that ‖f‖p = 0 implies f = 0 as an element of
this vector space.

Theorem 2.3 (dominated convergence for Lp) Let fn → f pointwise. Suppose
that there is a g ≥ 0 in Lp such that each |fn| ≤ g. Then fn → f in Lp, that
is, ‖fn − f‖p → 0.

Proof: If each |fn| ≤ g and fn → f pointwise, then |f | ≤ g. Thus |fn− f | ≤
2g and |fn − f |p ≤ 2pgp. Since gp has finite integral, the integral of |fn − f |p
approaches zero, by the usual dominated convergence theorem.
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It would be an error to think that just because gn → g in the Lp sense it
would follow that gn → g almost everywhere. Being close on the average does
not imply being close at a particular point.

Example: For each n = 1, 2, 3, . . ., write n = 2k + j, where k = 0, 1, 2, 3, . . .
and 0 ≤ j < 2k. Consider a sequence of functions defined on the unit interval
[0, 1] with the usual Lebesgue measure. Let gn = 1 on the interval [j/2k, (j +
1)/2k] and gn = 0 elsewhere in the unit interval. Then the L1 norm of gn is
1/2k, so the gn → 0 in the L1 sense. On the other hand, given x in [0, 1], there
are infinitely many n for which gn(x) = 0 and there are infinitely many n for
which gn(x) = 1. So pointwise convergence fails at each point.

Lemma 2.1 If a normed vector space is such that every absolutely convergent
series is convergent, then the space is complete and hence is a Banach space.

Proof: Suppose that gn is a Cauchy sequence. This means that for every
ε > 0 there is an N such that m,n ≥ N implies ‖gm − gn‖ < ε. The idea is
to show that gn has a subsequence that converges very rapidly. Let εk be a
sequence such that

∑∞
k=1 εk <∞. In particular, for each k there is an Nk such

that m,n ≥ Nk implies ‖gm − gn‖ < εk. The desired subsequence is the gNk .
Define a sequence f1 = gN1 and fj = gNj − gNj−1 for j ≥ 2. Then

gNk =

k∑
j=1

fj . (2.6)

Furthermore,
∞∑
j=1

‖fj‖ ≤ ‖f1‖+

∞∑
j=2

εj−1 <∞. (2.7)

Hence there exists a g such that the subsequence gNk converges to g. Since the
sequence gn is Cauchy, it also must converge to the same g.

Theorem 2.4 For 1 ≤ p <∞ the space Lp(µ) is a Banach space.

Proof: Suppose that
∑∞
j=1 fj is absolutely convergent in Lp, that is,

∞∑
j=1

‖fj‖p = B <∞. (2.8)

Then by using Minkowski’s inequality

‖
k∑
j=1

|fj |‖p ≤
k∑
j=1

‖fj‖p ≤ B. (2.9)

By the monotone convergence theorem h =
∑∞
j=1 |fj | is in Lp with Lp norm

bounded by B. In particular, it is convergent almost everywhere. It follows that
the series

∑∞
j=1 fj converges almost everywhere to some limit g. The sequence
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∑k
j=1 fj is dominated by h in Lp and converges pointwise to

∑∞
j=1 fj . Therefore,

by the dominated convergence theorem, it converges to the same limit g in the
Lp norm.

Corollary 2.1 If 1 ≤ p < ∞ and if gn → g in the Lp norm sense, then there
is a subsequence gNk such that gNk converges to g almost everywhere.

Proof: Let gn → g as n→∞ in the Lp sense. Then gn is a Cauchy sequence
in the Lp sense. Let εk be a sequence such that

∑∞
k=1 εk < ∞. Let Nk be a

subsequence such that n ≥ Nk implies ‖gn − gNk‖p < εk. Define a sequence fk
such that

gNk =

k∑
j=1

fj . (2.10)

Then ‖fj‖p = ‖gNj − gNj−1
‖p ≤ εj−1 for j ≥ 2. By the monotone convergence

theorem

h =

∞∑
j=1

|fj | (2.11)

converges in Lp and is finite almost everywhere. It follows that

g =

∞∑
j=1

fj (2.12)

converges in Lp and also converges almost everywhere In particular, gNk → g
as k →∞ almost everywhere.

In order to complete the picture, define

‖f‖∞ = inf{M ≥ 0 | |f | ≤M almost everywhere }. (2.13)

It is not hard to show that there is actually a least such M . The following
theorem is also simple.

Theorem 2.5 The space L∞(µ) is a Banach space.

2.3 Duality of Lp spaces

Lemma 2.2 Let p > 1 and q > 1 with 1/p+ 1/q = 1. If x ≥ 0 and y ≥ 0, then

xy ≤ 1

p
xp +

1

q
yq. (2.14)

Proof: Fix y and consider the function xy − 1
px

p. Since p > 1 it rises to a
maximum and then dips below zero. It has its maximum where the derivative

is equal to zero, that is, where y − xp−1 = 0. At this point x = y
1
p−1 = yq−1.

The maximum value is yq − 1
py

q = 1
q y
q.
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The above result may also be written in the form

a
1
p b

1
q ≤ 1

p
a+

1

q
b, (2.15)

where the weights satisfy 1/p+ 1/q = 1. In this form it is called the inequality
of the geometric and arithmetic mean. The original version of this inequality,
of course, is the simple but useful

√
ab ≤ (a+ b)/2.

Theorem 2.6 (Hölder’s inequality) Suppose that 1 < p < ∞ and that 1/p +
1/q = 1. Then

|µ(fg)| ≤ ‖f‖p‖g‖q. (2.16)

Proof: It is sufficient to prove this when ‖f‖p = 1 and ‖g‖p = 1. However
by the lemma

|f(x)||g(x)| ≤ 1

p
|f(x)|p +

1

q
|g(x)|q. (2.17)

Integrate.
This lemma shows that if g is in Lq(µ), with 1 < q < ∞, then the linear

functional defined by f 7→ µ(fg) is continuous on Lp(µ), where 1 < p <∞ with
1/p + 1/q = 1. This shows that each element of Lq(µ) defines an element of
the dual space of Lp(µ). It may be shown that every element of the dual space
arises in this way. Thus the dual space of Lp(µ) is Lq(µ), for 1 < p <∞.

Notice that we also have a Hölder inequality in the limiting case:

|µ(fg)| ≤ ‖f‖1‖g‖∞. (2.18)

This shows that every element g of L∞(µ) defines an element of the dual space
of L1(µ). It may be shown that if µ is σ-finite, then L∞(µ) is the dual space of
L1(µ).

On the other hand, each element f of L1(µ) defines an element of the dual
space of L∞(µ). However in general this does not give all elements of the dual
space of L∞(µ).

The most important spaces are L1, L2, and L∞. The nicest by far is L2,
since it is a Hilbert space. The space L1 is also common, since it measures the
total amount of something. The space L∞ goes together rather naturally with
L1. Unfortunately, the theory of the spaces L1 and L∞ is more delicate than
the theory of the spaces Lp with 1 < p < ∞. Ultimately this is because the
spaces Lp with 1 < p <∞ have better convexity properties.

Here is a brief summary of the facts about duality. The dual space of a
Banach space is the space of continuous linear scalar functions on the Banach
space. The dual space of a Banach space is a Banach space. Let 1/p+ 1/q = 1,
with 1 ≤ p <∞ and 1 < q ≤ ∞. (Require that µ be σ-finite when p = 1.) Then
the dual of the space Lp(X,µ) is the space Lq(X,µ). The dual of L∞(X,µ) is
not in general equal to L1(X,µ). Typically L1(X,µ) is not the dual space of
anything.

The fact that is often used instead is that the dual of C0(X) is M(X).
However in general the space C0(X) is considerably smaller than L∞(X,µ).



22 CHAPTER 2. FUNCTION SPACES

Correspondingly, the space M(X) (which consists of signed Radon measures
of finite variation) is quite a bit larger than L1(X,µ). That is, for each g in
L1(X,µ) the functional f 7→ µ(fg) is continuous on C0(X) and may be identified
with a signed measure σ(f) = µ(fg). But there are many other elements σ of the
dual space of C0(X) that are not given by functions in this way. For example,
if X = R, µ is Lebesgue measure, and σ(f) = f(0) is point mass at the origin,
then σ is not given by integration with a function.

2.4 Orlicz spaces

It is helpful to place the theory of Lp spaces in a general context. Clearly, the
theory depends heavily on the use of the functions xp for p ≥ 1. This is a convex
function. The generalization is to use a more or less arbitrary convex function.

Let H(x) be a continuous function defined for all x ≥ 0 such that H(0) = 0
and such that H ′(x) > 0 for x > 0. Then H is an increasing function. Suppose
that H(x) increases to infinity as x increases to infinity. Finally, suppose that
H ′′(x) ≥ 0. This implies convexity.

Example: H(x) = xp for p > 1.

Example: H(x) = ex − 1.

Example: H(x) = (x+ 1) log(x+ 1).

Define the size of f by µ(H(|f |)). This is a natural notion, but it does not
have good scaling properties. So we replace f by f/c and see if we can make
the size of this equal to one. The c that accomplishes this will be the norm of
f .

This leads to the official definition of the Orlicz norm

‖f‖H = inf{c > 0 | µ (H (|f/c|)) ≤ 1. (2.19)

It is not difficult to show that if this norm is finite, then we can find a c such
that

µ (H (|f/c|)) = 1. (2.20)

Then the definition takes the simple form

‖f‖H = c, (2.21)

where c is defined by the previous equation.

It is not too difficult to show that this norm defines a Banach space LH(µ).
The key point is that the convexity of H makes the norm satisfy the triangle
inequality.

Theorem 2.7 The Orlicz norm satisfies the triangle inequality

‖f + g‖H ≤ ‖f‖H + ‖g‖H . (2.22)
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Proof: Let c = ‖f‖H and d = ‖g‖H . Then by the fact that H is increasing
and convex

H

(∣∣∣∣f + g

c+ d

∣∣∣∣) ≤ H ( c

c+ d

∣∣∣∣fc
∣∣∣∣+

d

c+ d

∣∣∣g
d

∣∣∣) ≤ c

c+ d
H

(∣∣∣∣fc
∣∣∣∣)+

d

c+ d
H
(∣∣∣g
d

∣∣∣) .
(2.23)

Integrate. This gives

µ

(
H

(∣∣∣∣f + g

c+ d

∣∣∣∣)) ≤ 1. (2.24)

Thus ‖f + g‖H ≤ c+ d.
Notice that this result is a generalization of Minkowski’s inequality. So

we see that the idea behind Lp spaces is convexity. The convexity is best for
1 < p <∞, since then the function xp has second derivative p(p− 1)xp−2 > 0.
(For p = 1 the function x is still convex, but the second derivative is zero, so it
not strictly convex.)

One can also try to create a duality theory for Orlicz spaces. For this it is
convenient to make the additional assumptions that H ′(0) = 0 and H ′′(x) > 0
and H ′(x) increases to infinity.

The dual function to H(x) is a function K(y) called the Legendre transform.
The definition of K(y) is

K(y) = xy −H(x), (2.25)

where x is defined implicitly in terms of y by y = H ′(x).
This definition is somewhat mysterious until one computes that K ′(y) = x.

Then the secret is revealed: The functions H ′ and K ′ are inverse to each other.
Furthermore, the Legendre transform of K(y) is H(x).

Example: Let H(x) = xp/p. Then K(y) = yq/q, where 1/p+ 1/q = 1.
Example: Let H(x) = ex − 1− x. Then K(y) = (y + 1) log(y + 1)− y.

Lemma 2.3 Let H(x) have Legendre transform K(y). Then for all x ≥ 0 and
y ≥ 0

xy ≤ H(x) +K(y). (2.26)

Proof: Fix y and consider the function xy−H(x). Since H ′(x) is increasing
to infinity, the function rises and then dips below zero. It has its maximum
where the derivative is equal to zero, that is, where y − H ′(x) = 0. However
by the definition of Legendre transform, the value of xy −H(x) at this point is
K(y).

Theorem 2.8 (Hölder’s inequality) Suppose that H and K are Legendre trans-
forms of each other. Then

|µ(fg)| ≤ 2‖f‖H‖g‖K . (2.27)

Proof: It is sufficient to prove this when ‖f‖H = 1 and ‖g‖K = 1. However
by the lemma

|f(x)||g(x)| ≤ H(|f(x)|) +K(|g(y)|). (2.28)
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Integrate.
This is just the usual derivation of Hölder’s inequality. However if we take

H(x) = xp/p, K(y) = yq/q, then the H and K norms are not quite the usual Lp

and Lq, but instead multiples of them. This explains the extra factor of 2. In
any case we see that the natural context for Hölder’s inequality is the Legendre
transform for convex functions. For more on this general subject, see Appendix
H (Young-Orlicz spaces) in R. M. Dudley, Uniform Central Limit Theorems,
Cambridge University Press, 1999.

2.5 Problems

1. Define the Fourier transform for f in L1 by defining for each k

f̂(k) =

∫
e−ikxf(x) dnx. (2.29)

The inverse Fourier transform is

f(x) =

∫
eikxf̂(k)

dnk

(2π)n
. (2.30)

Show that if f is in L1, then the Fourier transform is in L∞ and is contin-
uous. Prove an analogous result for the inverse Fourier transform. Hint:
Use the dominated convergence theorem.

2. Define the Fourier transform for f in L2 by

f̂(k) = lim
m→∞

∫
|x|≤m

e−ikxf(x) dnx. (2.31)

The limit is taken in the L2 sense. The inverse Fourier transform is defined
for f̂ in L2 by

f(x) = lim
m→∞

∫
|k|≤m

eikxf̂(k)
dnk

(2π)n
. (2.32)

The Plancherel formula is∫
|f(x)|2 dx =

∫
|f̂(k)|2 dnk

(2π)n
. (2.33)

The Fourier transform and the inverse Fourier transform each send L2 to
L2. They are isomorphisms (unitary transformations) between complex
Hilbert spaces. Give examples of functions in L2 that are not in L1 for
which these transforms exist, and calculate them explicitly.

3. For certain f in L2 one can define the Hilbert space derivative ∂f(x)/∂xj
in L2 by insisting that ikj f̂(k) is in L2 and taking the inverse Fourier trans-
form. Show (in the one dimensional case) that a Hilbert space derivative
can exist even when there are points at which the pointwise derivative
does not exist. Hint: Try a triangle function.
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4. Similarly, one can define the Laplace operator ∆ by requiring that the
Fourier transform of ∆f be−k2f̂(k). Show that if a > 0, then the equation
(a2 −∆)f = g with g in L2 always has a unique solution f in L2.

5. In numerical analysis of PDE one wants to solve the backward difference
scheme

uj+1 = uj + h∆uj+1. (2.34)

Fix u0. Take h = t/j and let j → ∞. Prove that uj converges in the
L2 sense as j → ∞. Hint: Use the Fourier transform and the dominated
convergence theorem.

6. Show that the corresponding convergence with the forward difference scheme

uj+1 = uj + h∆uj (2.35)

has big problems.

7. Fix a > 0. For each m ≥ 0, define the Sobolev space Hm to consist of
all functions f in L2 such that (a2 − ∆)

m
2 f is also in L2. Show that if

m > n/2, then each function f in Hm is bounded and continuous. Hint:

Show that f̂ is in L1.

8. Let g be in L2. Take n < 4. Show that the f in L2 that solves (a2−∆)f = g
is bounded and continuous.

9. Show that the condition n < 4 in the preceding problem is necessary to
get the conclusion. Hint: Look at a function of the radius.

10. Let K be the Legendre transform of H. Show that if H ′′(x) > 0, then
also K ′′(y) > 0. What is the relation between these two functions?



26 CHAPTER 2. FUNCTION SPACES



Chapter 3

Probability

3.1 Random variables and expectation

Probability has its own terminology. There is a set Ω called the sample space.
Each element ω of Ω is called an outcome. There is also a σ-algebra of mea-
surable functions on Ω denoted by F . A function X in F is called a random
variable. Thus it is a number that depends on the outcome of the experiment.
For each outcome ω in Ω there is a corresponding experimental number X(ω).

There is also an integral E that is required to satisfy the additional property

E[c] = c. (3.1)

That is, the integral of every constant random variable is the same constant.
This integral is called the expectation, or sometime the mean.

Theorem 3.1 (Jensen’s inequality) If X is a random variable and φ is a smooth
convex function, then

φ(E[X]) ≤ E[φ(X)]. (3.2)

Proof. If φ is a convex function, then

φ(a) + φ′(a)(x− a) ≤ φ(x). (3.3)

In particular
φ(E[X]) + φ′(E[X])(X − E[X]) ≤ φ(X). (3.4)

This gives a corresponding inequality for expectations.
Note: Jensen’s inequality is true without the hypothesis of smoothness; how-

ever this proof exhibits its absolutely elementary nature.

Corollary 3.1 (inequality of geometric and arithmetic mean) If Y > 0, then

exp(E[log Y ]) ≤ E[Y ]. (3.5)

27
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Corollary 3.2 (inequality of harmonic and arithmetic mean) If Y > 0, then

1

E[ 1
Y ]
≤ E[Y ]. (3.6)

An random variable X with finite Lp norm E[|X|p]
1
p <∞ is said to have a

pth moment.

Corollary 3.3 If 1 ≤ p ≤ p′ < ∞ and if X has finite Lp
′

norm, then X has
finite Lp norm, and

E[|X|p]
1
p ≤ E[|X|p

′
]

1
p′ . (3.7)

The space L2 is of particular importance. In probability it is common to
use the centered random variable X − E[X]. This is the random variable that
measures deviations from the expected value. There is a special terminology in
this case. The variance of X is

Var(X) = E[(X − E[X])2]. (3.8)

Note the important identity

Var(X) = E[X2]− E[X]2. (3.9)

There is a special notation that is in standard use. The mean of X is written

µX = E[X]. (3.10)

The Greek mu reminds us that this is a mean. The variance of X is written

σ2
X = Var(X) = E[(X − µX)2]. (3.11)

The square root of the variance is the standard deviation of X. This is

σX =
√
E[(X − µX)2]. (3.12)

The Greek sigma reminds us that this is a standard deviation. If we center the
random variable and divided by its standard deviation, we get the standardized
random variable

Z =
X − µX
σX

. (3.13)

The covariance of X and Y is

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]. (3.14)

Note the important identity

Cov(X,Y ) = E[XY ]− E[X]E[Y ]. (3.15)

From the Schwarz inequality we have the following important theorem.
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Theorem 3.2

|Cov(X,Y )| ≤
√

Var(X)
√

Var(Y ). (3.16)

Sometimes this is stated in terms of the correlation coefficient

ρ(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
(3.17)

which is the covariance of the standardized random variables. The result is the
following.

Corollary 3.4

|ρ(X,Y )| ≤ 1. (3.18)

Perhaps the most important theorem in probability is the following. It is a
trivial consequence of linearity, but it is the key to the law of large numbers.

Theorem 3.3

Var(X + Y ) = Var(X) + 2 Cov(X,Y ) + Var(Y ). (3.19)

Random variables X and Y are said to be uncorrelated if Cov(X,Y ) = 0.
Note that this is equivalent to the identity E[XY ] = E[X]E[Y ].

Corollary 3.5 If X and Y are uncorrelated, then the variances add:

Var(X + Y ) = Var(X) + Var(Y ). (3.20)

Random variables X,Y are said to be independent if for every pair of func-
tions f , g for which the expectations exist

E[f(X)g(Y )] = E[f(X)]E[g(Y )]. (3.21)

The following result is so important that it must be stated as a theorem.

Theorem 3.4 If X,Y are independent L2 random variables, then they are un-
correlated.

The notion of independence may be extended to several random variables.
Thus, for instance, X,Y, Z are independent if for all suitable f, g, h we have

E[f(X)g(Y )h(Z)] = E[f(X)]E[g(Y )]E[h(Z)]. (3.22)
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3.2 Probability models

Here are some important examples.
Example. Let S = {1, 2, . . .m} be a finite set with m elements. Let

p1, p2, . . . , pm be numbers with pi ≥ 0 and p1 + p2 + · · · + pm = 1. We can
think of S as a set of outcomes corresponding to a single trial of an experiment
with m possible outcomes. Let Y be the random variable defined by Y (i) = i.
Then for each function f the expectation of the random variable f(Y ) is

E[f(Y )] =

m∑
i=1

f(i))pi. (3.23)

This is a sum over m points.
If m = 6 and each pi = 1/6, then this can be a model for a throw of a die.

Thus Y would be the number shown on the upper face of the die. If m = 2
and p1 = 1 − p, p2 = p, then this is a model for a toss of a biased coin with
probability p of heads. Then X = Y − 1 would score 1 for a head and 0 for a
tail.

Example. Let S = {1, 2, . . .m} be a finite set with m elements. Let
p1, p2, . . . , pm be numbers with pi ≥ 0 and p1 + p2 + · · · + pm = 1. We can
think of S as a set of outcomes corresponding to a single trial of an experiment
with m possible outcomes. Let Ω be the set of all finite sequences ω1, . . . , ωN
of elements of S. This is a finite set of mN outcomes. We think of Ω as a set
of outcomes corresponding to N independent trials of an experiment with m
possible outcomes. For each i = 1, . . . , N , let Yi be the random variable on Ω
whose value on ω is ωi. Consider a random variable f(Y1, . . . , YN ) that depends
on Y1, . . . , YN . Then

E[f(Y1, . . . , YN )] =

m∑
i1=1

· · ·
m∑

iN=1

f(i1, . . . , iN )pi1 · · · piN . (3.24)

This is a sum over mN points. When m = 6 and each pi = 1/6 we can think
of N independent throws of a die. Thus Yj would be the number shown on the
upper face on the jth throw. When m = 2 and p1 = 1− p, p2 = p, then this is
a model for N independent tosses of a biased coin. Then Xj = Yj − 1 would be
the indicator of the event that the jth toss results in a head. In any case, the
random variables y1, Y2, . . . , YN are independent.

Consider some k with 1 ≤ k ≤ N . Consider a random variable f(Y1, . . . , Yk)
that depends on Y1, . . . , Yk. Then it is easy to see that

E[f(Y1, . . . , Yk)] =

m∑
i1=1

· · ·
m∑
ik=1

f(i1, . . . , ik)pi1 · · · pik . (3.25)

This is a sum over mk points. If k is considerably less than N , then the use of
this formula can be a considerable economy.
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Example. Let S = {1, 2, . . .m} be a finite set with m elements. Let
p1, p2, . . . , pm be numbers with pi ≥ 0 and p1 + p2 + · · · + pm = 1. We can
think of S as a set of outcomes corresponding to a single trial of an exper-
iment with m possible outcomes. Let Ω be the set of all infinite sequences
ω1, . . . , ωk, . . . of elements of S. This is an uncountably infinite set. We think
of Ω as a set of outcomes corresponding to infinitely many independent trials of
an experiment with m possible outcomes. For each i = 1, 2, 3 . . ., let Yi be the
random variable on S whose value on ω is ωi. Consider some k with 1 ≤ k <∞.
Consider a random variable f(Y1, . . . , Yk) that depends on Y1, . . . , Yk. Then we
want the formula

E[f(Y1, . . . , Yk)] =

m∑
i1=1

· · ·
m∑
ik=1

f(i1, . . . , ik)pi1 · · · pik . (3.26)

This is a sum over mk points. However there are also random variables that
depend on all the Y1, Y2, Y3, . . .. For such random variables the expectation
cannot be calculated by such a simple formula. However it may be shown that
there is a unique expectation defined for arbitrary random variables that has
the property that for random variables that depend on only finitely many trials
the expectation is given by this formula. In this model the random variables
Y1, Y2, . . . , Yk, . . . are independent.

3.3 The sample mean

In statistics the sample mean is used to estimate the population mean.

Theorem 3.5 Let X1, X2, X3, . . . , Xn be random variables, each with mean µ.
Let

X̄n =
X1 + · · ·+Xn

n
(3.27)

be their sample mean. Then the expectation of X̄n is

E[X̄n] = µ. (3.28)

Proof: The expectation of the sample mean X̄n is

E[X̄n] = E[
1

n

n∑
i=1

Xi] =
1

n
E[

n∑
i=1

Xi] =
1

n

n∑
i=1

E[Xi] =
1

n
nµ = µ. (3.29)

Theorem 3.6 Let X1, X2, X3, . . . , Xn be random variables, each with mean µ
and standard deviation σ. Assume that each pair Xi, Xj of random variables
with i 6= j is uncorrelated. Let

X̄n =
X1 + · · ·+Xn

n
(3.30)

be their sample mean. Then the standard deviation of X̄n is

σX̄n =
σ√
n
. (3.31)
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Proof: The variance of the sample mean X̄n is

Var(X̄n) = Var(
1

n

n∑
i=1

Xi) =
1

n2
Var(

n∑
i=1

Xi) =
1

n2

n∑
i=1

Var(Xi) =
1

n2
nσ2 =

1

n
σ2.

(3.32)
We can think of these two results as a form of the weak law of large numbers.

The law of large numbers is the “law of averages” that says that averaging
uncorrelated random variable gives a result that is approximately constant. In
this case the sample mean has expectation µ and standard deviation σ/

√
n.

Thus if n is large enough, it is a random variable with expectation µ and with
little variability.

The factor 1/
√
n is both the blessing and the curse of statistics. It is a

wonderful fact, since it says that averaging reduces variability. The problem,
of course, is that while 1/

√
n goes to zero as n gets larger, it does so rather

slowly. So one must somehow obtain a quite large sample in order to ensure
rather moderate variability.

The reason the law is called the weak law is that it gives a statement about
a fixed large sample size n. There is another law called the strong law that gives
a corresponding statement about what happens for all sample sizes n that are
sufficiently large. Since in statistics one usually has a sample of a fixed size n
and only looks at the sample mean for this n, it is the more elementary weak
law that is relevant to most statistical situations.

3.4 The sample variance

The sample mean

X̄n =

∑n
i=1Xi

n
(3.33)

is a random variable that may be used to estimate an unknown population mean
µ. In the same way, the sample variance

s2 =

∑n
i=1(Xi − X̄n)2

n− 1
(3.34)

may be used to estimate an unknown population variance σ2.
The n − 1 in the denominator seems strange. However it is due to the

fact that while there are n observations Xi, their deviations from the sample
mean Xi − X̄n sum to zero, so there are only n − 1 quantities that can vary
independently. The following theorem shows how this choice of denominator
makes the calculation of the expectation give a simple answer.

Theorem 3.7 Let X1, X2, X3, . . . Xn be random variables, each with mean µ
and standard deviation σ. Assume that each pair Xi, Xj of random variables
with i 6= j is uncorrelated. Let s2 be the sample variance. Then the expectation
of s2 is

E[s2] = σ2. (3.35)
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Proof: Compute

n∑
i=1

(Xi−µ)2 =

n∑
i=1

(Xi−X̄n+X̄n−µ)2 =

n∑
i=1

(Xi−X̄n)2 +

n∑
i=1

(X̄n−µ)2. (3.36)

Notice that the cross terms sum to zero. Take expectations. This gives

nσ2 = E[

n∑
i=1

(Xi − X̄n)2)] + n
σ2

n
. (3.37)

The result then follows from elementary algebra.
The above proof shows how the fact that the sum of the Xi − X̄n is zero is

responsible for the n − 1 factor. It might seem that E[s2] = σ2 is a conclusive
argument for using the n−1 in the definition of the sample variance s2. On the
other hand, Jensen’s inequality shows that for the sample standard deviation s
it is typical that E[s] < σ. So perhaps it is more a question of elegance than
necessity.

3.5 Events and probability

Probability is a special case of expectation! If A is a subset of Ω such that the
indicator function 1A is measurable, then A is called an event. Thus when the
experiment is conducted, the event A happens or does not happen according to
whether the outcome ω is in A or not. The probability of an event A is given by
the expectation of the indicator indicator random variable:

P [A] = E[1A]. (3.38)

This relation between event and random variables is very useful. The value
1A(ω) = 1 if the outcome ω belongs to A, and the value 1A(ω) = 0 if the
outcome ω does not belong to A. Thus one scores 1 if the outcome belongs to
A, and one scores zero if the outcome does not belong to A.

Events A, B are said to be independent if their indicator functions are in-
dependent random variables. This is equivalent to saying that P [A ∩ B] =
P [A]P [B]. Similarly, events A,B,C are said to be independent if their indica-
tor functions are independent. This is equivalent to saying that P [A ∩ B] =
P [A]P [B], P [B ∩ C] = P [B]P [C], P [A ∩ C] = P [A]P [C], and P [A ∩ B ∩ B] =
P [A]P [B]P [C]. There is a similar definition for more than three events.

In realistic probability problems the set theory language is often replaced by
an equivalent terminology. An event is thought of as a property of outcomes.
The notions of union, intersection, complement are replaced by the logical nota-
tions or, and, not. Thus additivity says that for exclusive events, the probability
that one or the other occurs is the sum of the probabilities. Also, the probability
that an event occurs plus the probability that an event does not occurs is one.
The definition of independent events is that the probability that one event and
the other event occur is the product of the probabilities.
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In probability theory when a property holds almost everywhere the proba-
bilistic terminology is to say that it holds almost surely.

If X is a random variable, and S is a Borel set of real numbers, then the
event X ∈ S that X is in S consists of all the outcomes ω such that X(ω) is in
S. Let 1S be the indicator function defined on the set of real numbers that is 1
for a number in S and 0 for a number not in S. Then the indicator function of
the event that X is in S is the random variable 1S(X).

3.6 The sample proportion

In statistics the sample proportion fn is used to estimate the population pro-
portion p.

Theorem 3.8 Let A1, A2, A3, . . . , An be events, each with probability p. Let
Nn = 1A1 + · · ·+ 1An be the number of events that occur. Let

fn =
Nn
n

(3.39)

be the sample frequency. Then the expectation of fn is

E[fn] = p. (3.40)

Theorem 3.9 Let A1, A2, A3, . . . , An be events, each with probability p. As-
sume that each pair Ai, Aj of events i 6= j are independent. Let Nn = 1A1

+
· · ·+ 1An be the number of events that occur. Let

fn =
Nn
n

(3.41)

be the sample frequency. Then the standard deviation of fn is

σfn =

√
p(1− p)√

n
. (3.42)

Proof: The variance of 1A1 is p− p2 = p(1− p).
In order to use this theorem, the following remark upper bound on the

standard deviation for one observation is fundamental.√
p(1− p) ≤ 1

2
. (3.43)

This means that one can figure out an upper bound on the standard deviation
of the sample frequency without knowing the population probability. Often,
because of the central limit theorem, one wants to think of a reasonable bound
on the probable error to be 2 standard deviations. Thus the memorable form
of this result is

2σfn ≤
1√
n
. (3.44)

This is not quite as important, but for many practical problems there is
also a useful lower bound for the standard deviation of one observation. If
1/10 ≤ p ≤ 9/10, then 3/10 ≤

√
p(1− p).
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3.7 Orthogonal projection

One of the most useful concepts in Hilbert space theory is that of orthogonal
projection.

Theorem 3.10 Let H be a real Hilbert space. Let M be a closed subspace of
H. Let x be a vector in H. Then there exists a unique vector w such that

1. w is in M, and

2. x− w is orthogonal to M.

The condition that x − w is orthogonal to M says that the inner product
〈(x − w), z〉 = 0 for all z in M. This in turn says that 〈w, z〉 = 〈x, z〉 for all z
in M. If we set w = Px, the two conditions may be stated:

1. Px is in M, and

2. For every z in M
〈Px, z〉 = 〈x, z〉. (3.45)

Theorem 3.11 Let H be a real Hilbert space. Let M be a closed subspace of
H. Let x be a vector in H. Then the orthogonal projection w of x on M is the
vector in M closest to x, that is, w is in M and

‖x− w‖2 ≤ ‖x− u‖2 (3.46)

for all u in M.

Proof: Let F be defined on M by

F (u) = ‖x− u‖2. (3.47)

Let c be the infimum of F over the set M. Let un be a sequence of vectors in
M such that F (un)→ c. We have the identity

F (
um + un

2
) +

1

4
‖un − um‖2 =

1

2
F (um) +

1

2
F (un). (3.48)

This is a very strong form of convexity. Since M is convex, this implies that

c+
1

4
‖un − um‖2 ≤

1

2
F (um) +

1

2
F (un). (3.49)

From this it follows that un is a Cauchy sequence. Therefore there exists w in
M such that un → w. Furthermore, F (un)→ F (w), so F (w) = c.

Fix z in M. The function F (w + tz) has its minimum at t = 0. Since

F (w + tz) = F (w)− 2t〈x− w, z〉+ t2‖z‖2, (3.50)

the derivative at t = 0 is −2〈x− w, z〉 = 0.
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3.8 Conditional expectation and probability

We begin with an expectation E defined on the positive elements of a σ-algebra
F of random variables on Ω. As usual, it extends to random variables such that
either the positive or negative part has finite expectation. For the moment we
mainly deal with L1 random variables such that E[|X|] <∞, so that both the
positive and negative part have finite expectation. We shall also deal with the
smaller class of L2 random variables such that E[X2] < ∞, that is, have finite
variance.

Let F1 be a σ-algebra of functions contained in F . We wish to define the
conditional expectation of X given F1. We do this first in the special case
E[X2] <∞, that is, when X is in L2.

In this case there is a particularly simple Hilbert space definition of condi-
tional expectation. If X is in L2, then E[X | F1] is defined to be the orthogonal
projection of X onto the closed subspace F1 ∩L2. This translates to the condi-
tions

1. E[X | F1] is in F1 ∩ L2, and

2. For every Z in F1 ∩ L2

E[E[X | F1]Z] = E[XZ] (3.51)

Another way of thinking of the conditional expectation is in terms of best
approximation. If X is in L2, then the conditional expectation E[X | F1] is the
function in the σ-algebra of functions F1 that best approximates X in the L2

sense.
The intuitive meaning of conditional expectation is the following. Recall that

the expectation E[X] is a mathematical prediction made before the experiment
is conducted about averages involving X. Suppose now that information is
available about the values of the random variables in F1. Then E[X | F1] is
a mathematical prediction that makes use of this new partial knowledge. It is
itself random, since it depends on the values of the random variables in F1.

Sometimes, instead of indicating the σ-algebra of random variables F1, one
just indicates a collection of random variables that generate the σ-algebra. Thus
E[X | Y1, . . . , Yk] is the conditional expectation given the σ-algebra of func-
tions generated by Y1, . . . , Yk. This σ-algebra consists of all random variables
h(Y1, . . . , Yk) where h is a Borel function.

Example: Throw a pair of dice. Let X be the number on the first die; let Y
be the number on the second die. Then E[X + Y ] = 7, but

E[X + Y | X] = X +
7

2
. (3.52)

This is because the fact that X and Y are independent gives

E[(X + Y )h(X)] = E[(X +
7

2
)h(X)] (3.53)
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for every random variable h(X) in the σ-algebra generated by X. This is intu-
itive. If you know the number on the first die, then the only averaging is over
the possible numbers on the second die.

Example: Throw a pair of dice. Let X be the number on the first die; let Y
be the number on the second die. Then

E[X | X + Y ] =
X + Y

2
. (3.54)

This is because it is clear from symmetry that

E[
X + Y

2
h(X + Y )] = E[Xh(X + Y )] (3.55)

for every random variable h(X +Y ) in the σ-algebra generated by X +Y . This
is intuitive. If you know the sum of the numbers on the dice, then you constrain
the possibilities for the numbers on the first die.

Lemma 3.1 If X is in L2 and X ≥ 0, then E[X | F1] ≥ 0.

Proof: Suppose X ≥ 0. Let W = E[X | F1]. Then W is in F1. Let A be
the event that W < 0. Then 1A is in F1. Thus 0 ≤ E[W1A]. This implies that
W ≥ 0.

Lemma 3.2 If X is in L2, then

E[|E[X | F1]|] ≤ E[|X|]. (3.56)

Thus the conditional expectation is continuous as a map from L1 to L1.

Proof: This follows from applying the previous lemma to the positive and
negative parts of X. Thus if X = X+ −X− and |X| = X+ +X− and X+ ≥ 0,
X− ≥ 0, then

E[X | F1] = E[X+ | F1]− E[X− | F1], (3.57)

so
|E[X | F1]| ≤ E[X+ | F1] + E[X− | F1] = E[|X| | F1]. (3.58)

This lemma allows us to extend the definition of conditional expectation
from L1∩L2 to all of L1. It is then easy to prove the following characterization.

Let F1 be a σ-algebra of random variables contained in F . Let X be a
random variable such that E[|X|] < ∞, that is, X is in L1. The conditional
expectation of X given F1 is a random variable denoted by E[X | F1]. It is
characterized by the two requirements

1. E[X | F1] is in F1, and

2. For every bounded random variable Z in F1

E[E[X | F1]Z] = E[XZ]. (3.59)
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There are many other useful properties of conditional expectation. The
following theorem gives one such property.

Theorem 3.12 If X is in L1 and if W is a bounded random variable in F1,
then

E[WX | F1] = WE[X | F1]. (3.60)

Thus random variables in F1 act like constants when one takes conditional ex-
pectations with respect to F1.

Once we have conditional expectation, then we also have conditional prob-
ability. We define P [A | F1] = E[1A | F1]. This is a random variable with
the additional property that 0 ≤ P [A | F1] ≤ 1. It is a revised estimate of
the probability of A when the additional information about the values of the
random variables in F1 is given.

3.9 Problems

1. Consider the experiment of throwing a die n times. The results are
X1, . . . , Xn. Then E[f(Xi)] = 1

6

∑6
k=1 f(k), and the Xi are independent.

Find the mean µ and standard deviation σ of each Xi.

2. Consider the dice experiment. Take n = 25. Find the mean µX̄ of the
sample mean X̄. Find the standard deviation σX̄ of the sample mean X̄.

3. Perform the dice experiment with n = 25 and get an outcome ω. Record
the 25 numbers. Report the sample mean X̄(ω). Report the sample
standard deviation s(ω).

4. Consider the experiment of throwing a die n times. Let Ai be the event
that the ith throw gives a number in the range from 1 to 4. Find the mean
µ and standard deviation σ of the indicator function of each Ai.

5. Consider the same dice experiment. Take n = 50. Find the mean µf of
the sample proportion f . Find the standard deviation σf of the sample
proportion f .

6. Perform the dice experiment with n = 50 and get an outcome ω. Record
the 50 events Ai. Report the sample proportion f(ω).

7. Consider a random sample of size n from a very large population. The
question is to find what proportion p of people in the population have a
certain opinion. The proportion in the sample who have the opinion is f .
How large must n be so that the standard deviation of f is guaranteed to
be no larger than one percent?

8. Let X1 and X2 be the numbers resulting from throwing two dice. Let A
be the event that X1 is odd, let B be the event that X2 is odd, and let C
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be the event that X1 +X2 is odd. Show that A,B are independent, A,C
are independent, and B,C are independent. Show that A,B,C are not
independent.

9. Consider independent random variables X1, . . . , Xn, . . .. For notational
convenience, consider the centered random variables Yi = Xi − µ, so that
E[Yi] = 0. Let σ2 = E[Y 2

i ] and q4 = E[Y 4
i ]. Prove that

E[Ȳ 4
k ] =

1

k4
[kq4 + 3k(k − 1)σ4]. (3.61)

10. In the proceeding problem, show that

E[

∞∑
k=n

Ȳ 4
k ] ≤ 1

2
q4 1

(n− 1)2
+ 3σ4 1

(n− 1)
. (3.62)

In terms of the original Xi this says that there is a constant C such that

E[

∞∑
k=n

(X̄k − µ)4] ≤ C 1

n
. (3.63)

Thus if n is large, then all the sample means X̄k for n ≤ k <∞ are likely
to be close to µ, in some average sense. This is a form of the strong law
of large numbers. Compare with the weak law

E[(X̄n − µ)2] = σ2 1

n
, (3.64)

which only shows that, for each fixed n, the sample mean X̄n is very likely
to be close to µ.

11. In the preceding problem, show that

lim
k→∞

X̄k = µ (3.65)

almost surely. This is the usual elegant statement of the strong law of
large numbers.

12. Consider independent identically distributed random variablesX1, . . . , Xn, . . .
with finite variance. We know from the weak law of large numbers that

E[(X̄n − µ)2] = σ2 1

n
, (3.66)

Use this to prove that

P [|X̄n − µ| ≥ t] ≤
σ2

nt2
. (3.67)

Thus for large n the probability that the sample mean X̄n deviates from
the population mean µ by t or more is small. This is another form of the
weak law of large numbers.
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13. Consider independent random variables X1, . . . , Xn, . . . with finite fourth
moments. We have seen that

E[

∞∑
j=n

(X̄j − µ)4] ≤ C

n
. (3.68)

Show that

P [ max
n≤j<∞

|X̄j − µ| ≥ t] ≤
C

nt4
. (3.69)

Thus for large n the probability that there exists some j with n ≤ j <∞
such that the sample mean X̄j deviates from the population mean µ by t
or more is small. This is another form of the strong law of large numbers.

14. Let X be a random variable. Let Bj be an indexed family of disjoint
measurable sets whose union is Ω. Consider the σ-algebra of measurable
functions generated by the indicator functions 1Bj . Find the conditional
expectation of X with respect to this algebra.

15. Find P [A | 1B ].

16. Find P [A | 1B , 1C ].

17. Suppose that X,Y have a joint density ρ(x, y), so that

E[f(X,Y )] =

∫ ∫
f(x, y)ρ(x, y) dx dy. (3.70)

Show that

E[f(X,Y ) | Y ] =

∫
f(x, Y )ρ(x, Y ) dx∫

ρ(x, Y ) dx
. (3.71)



Chapter 4

Random walk and
martingales

4.1 Symmetric simple random walk

Let X0 = x and
Xn+1 = Xn + ξn+1. (4.1)

The ξi are independent, identically distributed random variables such that
P [ξi = ±1] = 1/2. The probabilities for this random walk also depend on
x, and we shall denote them by Px. We can think of this as a fair gambling
game, where at each stage one either wins or loses a fixed amount.

Let Ty be the first time n ≥ 1 when Xn = y. Let ρxy = Px[Ty <∞] be the
probability that the walk starting at x ever gets to y at some future time.

First we show that ρ12 = 1. This says that in the fair game one is almost
sure to eventually get ahead by one unit. This follows from the following three
equations.

The first equation says that in the first step the walk either goes from 1 to
2 directly, or it goes from 1 to 0 and then must go from 0 to 2. Thus

ρ12 =
1

2
+

1

2
ρ02. (4.2)

The second equation says that to go from 0 to 2, the walk has to go from
0 to 1 and then from 1 to 2. Furthermore, these two events are independent.
Thus

ρ02 = ρ01ρ12. (4.3)

The third equation says that ρ01 = ρ12. This is obvious.
Thus ρ = ρ12 satisfies

ρ =
1

2
ρ2 +

1

2
. (4.4)

This is a quadratic equation that can also be written as ρ2 − 2ρ + 1 = 0, or
(ρ− 1)2 = 0. Its only solution is ρ = 1.

41
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How long does it take, on the average, to get ahead by this amount? Let
mxy = Ex[Ty], the expected time that the random walk takes to get to y,
starting at x. We have just seen that if x = 1, then T2 < ∞ with probability
one. Let us do the same kind of computation for m12 = E1[T2].

The first equation says that in the first step the walk either goes from 1 to
2 directly, or it goes from 1 to 0 and then must go from 0 to 2. Thus

m12 =
1

2
(1 +m02) +

1

2
1. (4.5)

The second equation says that to go from 0 to 2, the walk has to go from 0
to 1 and then from 1 to 2. Thus

m02 = m01 +m12. (4.6)

The third equation says that m01 = m12. This is obvious.
Thus m = m12 satisfies

m =
1

2
(1 + 2m) +

1

2
. (4.7)

This is a linear equation that can also be written as m = 1+m. Its only solution
is m =∞. Thus we have seen that m01 =∞.

At first this seems strange, but it is quite natural. In the fair game there is
a small probability of a bad losing streak. It takes a long time to recover from
the losing streak and eventually get ahead. Infinitely long, on the average.

The calculation above uses a rather subtle property of random walk. Namely,
it was assumed that after the walk accomplishes the task of going from 0 to 1,
then it has an equally difficult task of going from 1 to 2. Now this is delicate,
because the walk going from 1 to 2 starts out at a random time, not at a fixed
time. Namely, if we start the walk at 0 and set T = T1 as the first time the
walk gets to 1, then from that time on the walk is XT , XT+1, XT+2, . . . with
XT = 1 by definition. The point is that this has the same distribution as the
walk X0, X1, X2, . . . with X0 = 1. This fact is called the strong Markov property.

The strong Markov property has the following statement. Start the walk
out at x and let T = Ty. Let B be a set of random walk paths. We must prove
that

Px[(XT , XT+1, XT+2, . . .) ∈ B | T <∞] = Py[(X0, X1, X2, . . .) ∈ B]. (4.8)

This says that the walk does not care when and how it got to y for the first
time; from that point on it moves just as if it were started there at time zero.

The proof is the following. We write

Px[(XT , XT+1, XT+2, . . .) ∈ B, T <∞] =

∞∑
n=1

Px[(XT , XT+1, XT+2, . . .) ∈ B, T = n].

(4.9)
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However

Px[(XT , XT+1, XT+2, . . .) ∈ B, T = n] = Px[(Xn, Xn+1, Xn+2 . . .) ∈ B, T = n].
(4.10)

Now the event T = n depends only on the walk X1, X2, . . . , Xn, which depends
only on the ξ1, ξ2, . . . , ξn. On the other hand, the walk Xn, Xn+1, Xn+2, . . . with
Xn = y depends only on the ξn+1, ξn+1, . . .. Thus the events are independent,
and we have

Px[(XT , XT+1, XT+2, . . .) ∈ B, T = n] = Px[(Xn, Xn+1, Xn+2 . . .) ∈ B]P [T = n],
(4.11)

where Xn = y. Finally, this is

Px[(XT , XT+1, XT+2, . . .) ∈ B, T = n] = Py[(X0, X1, X2 . . .) ∈ B]P [T = n].
(4.12)

The proof is finished by summing over n.
The picture of symmetric simple random walk that emerges is the following.

Starting from any point, the probability of eventually getting to any other point
is one. However the expected time to accomplish this is infinite. Thus an
imbalance in one direction is always compensated, but this random process is
incredibly inefficient and can take a huge amount of time to do it.

4.2 Simple random walk

Let X0 = x and
Xn+1 = Xn + ξn+1. (4.13)

The ξi are independent, identically distributed random variables such that
P [ξi = 1] = p, P [ξi = −1] = q, and P [ξ = 0] = r. Here p + q + r = 1, so
the walk can change position by only one step at a time. The probabilities for
this random walk depend on x, and we shall denote them by Px. We can think
of this as a gambling game, where at each stage one either wins or loses a fixed
amount.

Let Ty be the first time n ≥ 1 when Xn = y. Let ρxy = Px[Ty <∞] be the
probability that the walk starting at x ever gets to y at some future time.

First we calculate ρ12. The calculation again uses three equations.
The first equation says that in the first step the walk either goes from 1 to 2

directly, or it stays at 1 and then must go to 2, or it goes from 1 to 0 and then
must go from 0 to 2. Thus

ρ12 = qρ02 + rρ12 + p. (4.14)

The second equation says that to go from 0 to 2, the walk has to go from
0 to 1 and then from 1 to 2. Furthermore, these two events are independent.
Thus

ρ02 = ρ01ρ12. (4.15)

The third equation says that ρ01 = ρ12. This is obvious.
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Thus ρ = ρ12 satisfies
ρ = qρ2 + rρ+ p. (4.16)

This is a quadratic equation that can also be written as qρ2 + (r− 1)ρ+ p = 0,
or (ρ− 1)(qρ− p) = 0. If q > 0 its solutions are ρ = 1 and ρ = p/q.

If q ≤ p, then it is clear that the probability ρ01 = 1, except in the case
p = q = 0. The game is even or favorable, so one is eventually ahead.

If p < q, then it would seem plausible that the probability is ρ01 = p/q.
The game is unfavorable, and there is some chance that there is an initial losing
streak from which one nevers recovers. There are a number of ways of seeing
that this is the correct root. If the root were one, then the process starting at
any number x ≤ 0 would be sure to eventually reach 1. However according to
the strong law of large numbers the walk Xn/n→ p−q < 0 as n→∞. Thus the
walk eventually becomes negative and stays negative. This is a contradiction.

How long does it take, on the average, to get ahead by this amount? Let
mxy = Ex[Ty], the expected time that the random walk takes to get to y,
starting at x. We have just seen that if x = 1 and p ≥ q (not both zero),
then T2 <∞ with probability one. Let us do the same kind of computation for
m12 = E1[T2].

The first equation says that in the first step the walk either goes from 1 to
2 directly, or it remains at 1 and then goes to 2, or it goes from 1 to 0 and then
must go from 0 to 2. Thus

m12 = q(1 +m02) + r(1 +m12) + p1. (4.17)

The second equation says that to go from 0 to 2, the walk has to go from 0
to 1 and then from 1 to 2. Thus

m02 = m01 +m12. (4.18)

Here we are implicitly using the strong Markov property.
The third equation says that m01 = m12. This is obvious.
Thus m = m12 satisfies

m = q(1 + 2m) + r(1 +m) + p. (4.19)

This is a linear equation that can also be written as m = 1 + (1 + q − p)m. Its
solutions are m =∞ and m = 1/(p− q).

If p ≤ q, then it is clear that the expectation m12 = ∞. The game is even
or unfavorable, so it can take a very long while to get ahead, if ever.

If q < p, then it would seem plausible that the expected number of steps to
get ahead by one is m12 = 1/(p− q). The game is favorable, so one should have
win relatively soon, on the average. There are a number of ways of seeing that
this is the correct solution. One way would be to use the identity

E1[T2] =

∞∑
k=0

kP1[T2 = k] =

∞∑
k=1

P1[T2 ≥ k]. (4.20)

Then one can check that if q < p, then the probabilities P1[T2 ≥ k] go rapidly
to zero, so the series converges. This rules out an infinite expectation.
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4.3 Gambler’s ruin: fair game

Let X0 = x and
Xn+1 = Xn + ξn+1. (4.21)

The ξi are independent, identically distributed random variables such that
P [ξi = 1] = p, P [ξi = −1] = q, and P [ξi = 0] = r. Here p + q + r = 1, so
the walk can change position by only one step at a time. The probabilities for
this random walk depend on x, and we shall denote them by Px.

We can think of this as a gambling game, where at each stage one either wins
or loses a fixed amount. However now we want to consider the more realistic
case when one wants to win a certain amount, but there is a cap on the possible
loss. Thus take a < x < b. The initial capital is x. We want to play until the
time Tb when the earnings achieve the desired level b or until the time Ta when
we are broke. Let T be the minimum of these two times. Thus T is the time
the game stops.

There are a number of ways to solve the problem. One of the most elegant
is the martingale method. A martingale is a fair game.

We first want to see when the game is fair. In this case the conditional
expectation of the winnings at the next stage are the present fortune. This
conditional expectation is

E[Xn+1 | Xn] = E[Xn + ξn+1 | Xn] = Xn + p− q. (4.22)

So this just says that p = q.
It follows from the equation E[Xn+1 | Xn] = Xn] that

E[Xn+1] = E[Xn]. (4.23)

Therefore, starting at x we have

Ex[Xn] = x. (4.24)

The expected fortune stays constant.
Let T ∧ n be the minimum of T and n. Then XT∧n is the game stopped at

T . It is easy to show that this too is a fair game. Either one has not yet won or
lost, and the calculation of the conditional expectation is as before, or one has
won or lost, and future gains and losses are zero. Therefore

Ex[XT∧n] = x. (4.25)

Now the possible values of the stopped game are bounded: a ≤ XT∧n ≤ b
for all n. Furthermore, since T < ∞ with probability one, the limit as n → ∞
of XT∧n is XT . It follows from the dominated convergence theorem (described
below) that

Ex[XT ] = x. (4.26)

Thus the game remains fair even in the limit of infinite time.
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From this we see that

aPx[XT = a] + bPx[XT = b] = x. (4.27)

It is easy then to calculate, for instance, that the probability of winning is

Px[XT = b] =
x− a
b− a

. (4.28)

4.4 Gambler’s ruin: unfair game

If the original game is not fair, then we want to modify it to make it fair. The
new game will be that game whose accumulated winnings at stage n is f(Xn).
The conditional expectation of the winnings in the new game at the next stage
are the present fortune of this game. Thus

E[f(Xn+1) | Xn] = f(Xn). (4.29)

This says that qf(Xn − 1) + rf(Xn) + pf(Xn + 1) = f(Xn). One solution
of this is to take f to be a constant function. However this will not give a
very interesting game. Another solution is obtained by trying an exponential
f(z) = az. this gives q/a+ r + pa = 1. If we take a = q/p this gives a solution.
Thus in the following we take

f(Xn) =

(
q

p

)Xn
(4.30)

as the fair game. If p < q, so the original game is unfair, then in the new
martingale game rewards being ahead greatly and penalized being behind only
a little.

It follows from this equation that

E[f(Xn+1)] = E[f(Xn)]. (4.31)

Therefore, starting at x we have

Ex[f(Xn)] = f(x). (4.32)

The expected fortune in the new martingale game stays constant.
Notice that to play this game, one has to arrange that the gain or loss at

stage n+ 1 is

f(Xn+1)− f(Xn) =

((
q

p

)ξn+1

− 1

)
f(Xn). (4.33)

If, for instance, p < q, then the possible gain of (q − p)/p f(Xn) is greater than
the possible loss of (q − p)/q f(Xn); the multiplicative factor of q/p makes this
a fair game.
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Let T ∧ n be the minimum of T and n. Then XT∧n is the game stopped at
T . It is easy to show that this too is a fair game. Therefore the same calculation
shows that

Ex[f(XT∧n)] = f(x). (4.34)

Now if p < q and f(x) = (q/p)x, we have that a ≤ x ≤ b implies f(a) ≤
f(x) ≤ f(b). It follows that f(a) ≤ f(XT∧n) ≤ f(b) is bounded for all n with
bounds that do not depend on n. This justifies the passage to the limit as
n→∞. This gives the result

Ex[f(XT )] = f(x). (4.35)

The game is fair in the limit.
From this we see that(

q

p

)a
Px[XT = a] +

(
q

p

)b
Px[XT = b] =

(
q

p

)x
. (4.36)

It is easy then to calculate, for instance, that the probability of winning is

Px[XT = b] =
(q/p)x − (q/p)a

(q/p)b − (q/p)a
. (4.37)

If we take p < q, so that we have a losing game, then we can recover our
previous result for the probability of eventually getting from x to b in the random
walk by taking a = −∞. Then we get (q/p)x−b = (p/q)b−x.

4.5 Martingales

The general definition of a martingale is the following. We have a sequence
of random variables ξ1, ξ2, ξ3, . . .. The random variable Zn is a function of
ξ1, . . . , ξn, so that

Zn = hn(ξ1, . . . , ξn). (4.38)

The martingale condition is that

E[Zn+1 | ξ1, . . . , ξn] = Zn. (4.39)

Thus a martingale is a fair game. The expected value at the next stage, given
the present and past, is the present fortune.

It follows by a straightforward calculation that

E[Zn+1] = E[Zn]. (4.40)

In particular E[Zn] = E[Z0].
The fundamental theorem about martingales says that if one applies a gam-

bling scheme to a martingale, then the new process is again a martingale. That
is, no gambling scheme can convert a fair game to a game where one has an
unfair advantage.
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Theorem 4.1 Let ξ1, ξ2, ξ3, . . . be a sequence of random variables. Let X0, X1, X2, . . .
be a martingale defined in terms of these random variables, so that Xn is a func-
tion of ξ1, . . . , ξn. Let Wn be a gambling scheme, that is, a function of ξ1, . . . , ξn.
Let Z0, Z1, Z2, . . . be a new process such that Zn+1 − Zn = Wn(Xn+1 − Xn).
Thus the gain in the new process is given by the gain in the original process
modified by the gambling scheme. Then Z0, Z1, Z2, . . . is also a martingale.

Proof: The condition that Xn is a martingale is that the expected gain
E[Xn+1 −Xn | ξ1, . . . , ξn] = 0. Let

Wn = gn(ξ1, . . . , ξn) (4.41)

be the gambling scheme. Then

E[Zn+1 − Zn | ξ1, . . . , ξn] = E[Wn(Xn+1 −Xn) | ξ1, . . . , ξn]. (4.42)

On the other hand, since Wn is a function of ξ1, . . . , ξn, this is equal to

WnE[Xn+1 −Xn | ξ1, . . . , ξn] = 0. (4.43)

Example: Say that Xn = ξ1 + ξ2 + · · · ξn is symmetric simple random walk.
Let the gambling scheme Wn = 2n. That is, at each stage one doubles the
amount of the bet. The resulting martingale is Zn = ξ1+2ξ2+4ξ3+· · ·+2n−1ξn.
This game gets wilder and wilder, but it is always fair. Can one use this double
the bet game to make money? See below.

One important gambling scheme is to quit gambling once some goal is
achieved. Consider a martingale X0, X1, X2, . . .. Let T be a time with the
property that the event T ≤ n is defined by ξ1, . . . , ξn. Such a time is called
a stopping time. Let the gambling scheme Wn be 1 if n < T and 0 if T ≤ n.
Then the stopped martingale is given by taking Z0 = X0 and Zn+1 − Zn =
Wn(Xn+1 − Xn). Thus if T ≤ n, Zn+1 − Zn = 0, while if n < T then
Zn+1 − Zn = Xn+1 −Xn. As a consequence, if T ≤ n, then Zn = XT , while if
n < T , then Zn = Xn. This may be summarized by saying that Zn = XT∧n,
where T ∧n is the minimum of T and n. In words: the process no longer changes
after time T .

Corollary 4.1 Let T be a stopping time. Then if Xn is a martingale, then so
is the stopped martingale Zn = Xn∧T .

It might be, for instance, that T is the first time that the martingale Xn

belongs to some set. Such a time is a stopping time. Then the process XT∧n is
also a martingale.

Example: A gambler wants to use the double the bet martingale Zn =
ξ1 + 2ξ2 + 4ξ3 + · · · + 2n−1ξn to get rich. The strategy is to stop when ahead.
The process ZT∧n is also a martingale. This process will eventually win one
unit. However, unfortunately for the gambler, at any particular non-random
time n the stopped process is a fair game. ZT∧n is either 1 with probability
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1− 1/2n or 1− 2n with probability 1/2n. It looks like an easy win, most of the
time. But a loss is a disaster.

If Zn is a martingale, then the processes ZT∧n where one stops at the stop-
ping time T is also a martingale. However what if T <∞ with probability one,
there is no limit on the time of play, and one plays until the stopping time?
Does the game remain fair in the limit of infinite time?

Theorem 4.2 If T <∞ and if there is a random variable Y ≥ 0 with E[Y ] <
∞ such that for all n we have |ZT∧n| ≤ Y , then E[ZT∧n]→ E[ZT ] as n→∞.

This theorem, of course, is just a corollary of the dominated convergence
theorem. In the most important special case the dominating function Y is just
a constant. This says that for a bounded martingale we can always pass to
the limit. In general the result can be false, as we shall see in the following
examples.

Example. Let Xn be symmetric simple random walk starting at zero. Then
Xn is a martingale. Let T be the first n with Xn = b > 0. The process
XT∧n that stops when b is reached is a martingale. The stopped process is
a martingale. However the infinite time limit is not fair! In fact XT = b by
definition. A fair game is converted into a favorable game. However this is only
possible because the game is unbounded below.

Example. Let Xn be simple random walk starting at zero, not symmetric.
Then (q/p)Xn is a martingale. Let b > 0 and T be the first n ≥ 1 with
Xn = b. Then (q/p)XT∧n is a martingale. If p < q, an unfavorable game,
then this martingale is bounded. Thus we can pass to the limit. This gives
(q/p)x = (q/p)bP [Tb < ∞]. On the other hand, if q < p, then the martingale
is badly unbounded. It is not legitimate to pass to the limit. And in fact
(q/p)x 6= (q/p)bP [Tb <∞] = (q/p)b.

Example: Consider again the double the bet gambling game where one quits
when ahead by one unit. Here ZT∧n = 1 with probability 1−1/2m and ZT∧n =
1− 2n with probability 1/2n. Eventually the gambler will win, so the ZT = 1.
This limiting game is no longer a martingale, it is favorable to the gambler.
However one can win only by having unlimited credit. This is unrealistic in this
kind of game, since the losses along the way can be so huge.

4.6 Problems

1. For the simple random walk starting at zero, find the mean and standard
deviation of Xn.

2. For the simple random walk starting at 1, compute ρ11, the probability of
a return to the starting point.

3. For the simple random walk starting at 1, compute m11, the expected
time to return to the starting point.
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4. A gambler plays roulette with the same stake on each play. This is simple
random walk with p = 9/19 and q = 10/19. The player has deep pockets,
but must win one unit. What is the probability that he does this in the
first three plays? What is the probability that he ever does this?

5. A gambler plays roulette with the same stake on each play. This is simple
random walk with p = 9/19 and q = 10/19. The player strongly desires to
win one unit. But he will be thrown out of the game if he is ever behind
by 1000 units. What is the the probability that he wins one unit? What
is his expected gain?

6. For the simple random walk with p+ q+ r = 1 and p 6= q show that Xn−
(p− q)n is a martingale. This is the game in which an angel compensates
the player for the average losses. Then let a < x < b and let T be the
first time the walk starting at x gets to a or b. Show that the stopped
martingale XT∧n − (p− q)T ∧ n is a martingale. Finally, use Ex[T ] <∞
to show that Ex[XT ] = (p− q)Ex[T ] + x. Compute Ex[T ] explicitly.

7. For the symmetric simple random walk with p + q + r = 1 and p = q
show that X2

n − (1 − r)n is a martingale. The average growth of X2
n is

compensated to make a fair game. Then let a < x < b and let T be the first
time the symmetric walk starting at x gets to a or b. Show that the stopped
martingale X2

T∧n−(1−r)T ∧n is a martingale. Finally, use Ex[T ] <∞ to
show that for the symmetric walk Ex[X2

T ] = (1− r)Ex[T ] + x2. Compute
Ex[T ] explicitly.



Chapter 5

The integral: construction

5.1 The Daniell construction

A vector lattice L is a set of real functions defined on a set X. It must satisfy
the following properties:

1. L is a vector space of functions.

2. L is a lattice of functions.

It is not required that the vector lattice contain the constant functions. It
is also not required that the vector lattice be closed under pointwise limits.

Example: Consider the interval X = (0, 1] of real numbers. Consider func-
tions that have the property that for some k = 1, 2, 3, . . . the function has the
form

f(x) =

2k−1∑
j=0

cj1(j/2k,(j+1)/2k](x). (5.1)

These are step functions based on binary intervals. They form a vector lattice
L. In this example it does contain the constant functions.

An elementary integral is a real function µ defined on a vector lattice L. It
must satisfy the following properties:

1. µ is linear.

2. µ sends positive functions to positive real numbers.

3. µ is continuous under pointwise monotone convergence.

Notice that the values of µ on the elements of L are always finite. The
condition of pointwise monotone convergence may be taken to say that if hn is
in L and if hn ↓ 0 pointwise, then µ(hn)→ 0. This immediately implies certain
other forms of monotone convergence. For instance, if each fn is in L and if f
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is in L and if fn ↑ f pointwise, then µ(fn) → µ(f). The second form follows
from the first form by taking hn = f − fn.

Example: Continue the above example. Define the integral of such a function
by

µ(f) =

2k−1∑
j=0

cj
1

2k
. (5.2)

This is the corresponding Riemann sum. It satisfies the monotone convergence,
but this is not completely obvious. Thus it is an elementary integral.

Theorem 5.1 Let L be a vector lattice and let µ be an elementary integral.
Then µ has an extension to a larger vector lattice L̄1 (called the vector lattice
of summable functions) on which µ continues to satisfy all the properties of an
elementary integral. Furthermore, µ satisfies a form of the monotone conver-
gence theorem on L̄1: If the fn are summable functions with µ(fn) ≤ M < ∞
and if fn ↑ f , then f is summable with µ(fn)→ µ(f).

This theorem is called the Daniell construction of the integral. It may be
found in such texts as L. H. Loomis, An Introduction to Abstract Harmonic
Analysis, van Nostrand, New York, 1953 and H. L. Royden, Real Analysis,
third edition, Macmillan, New York, 1988.

Here is a sketch of a proof, following the treatment in Loomis. It is very
abbreviated, but it may help exhibit the overall plan. Then one can look at
Loomis or another reference for details.

Begin with a vector lattice L and an elementary integral µ. Let L ↑ be
the set of all pointwise limits of increasing sequences of elements of L. These
functions are allowed to take on the value +∞. Similarly, let L ↓ be the set of
all pointwise limits of decreasing sequences of L. These functions are allowed to
take on the value −∞. Note that the functions in L ↓ are the negatives of the
functions in L ↑.

For h in L ↑, take hn ↑ h with hn in L and define µ(h) = limn µ(hn). The
limit of the integral exists because this is a monotone sequence of numbers.
Similarly, if g in L ↓, take gn ↓ g with gn in L and define µ(g) = limn µ(gn). It
may be shown that these definitions are independent of the particular sequences
of functions in L that are chosen.

It is not hard to show that upward monotone convergence is true for functions
in L ↑. Similarly, downward monotone convergence is true for functions in L ↓.

Here is the argument for upward monotone convergence. Say that the hn are
in L ↑ and hn → h as n → ∞. For each n, let gnm be a sequence of functions
in L such that gnm ↑ hn as m→∞. Let un = g1n ∨ g2n ∨ · · · ∨ gnn. Then un is
in L and we have the squeeze inequality

gin ≤ un ≤ hn (5.3)

for 1 ≤ i ≤ n. As n → ∞ the gin ↑ hi and the hn ↑ h. Furthermore, as i → ∞
the hi ↑ h. By the squeeze inequality un ↑ h. From the squeeze inequality we
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get
µ(gin) ≤ µ(un) ≤ µ(hn) (5.4)

for 1 ≤ i ≤ n. By definition of the integral on L ↑ we can take n → ∞ and
get µ(hi) ≤ µ(h) ≤ limn µ(hn). Then we can take i → ∞ and get limi µ(hi) ≤
µ(h) ≤ limn µ(hn). This shows that the integrals converge to the correct value.

A function f is said to be in L̄1 (or to be summable) if for every ε > 0 there
is a function g in L ↓ and a function h in L ↑ such that g ≤ f ≤ h, µ(g) and
µ(f) are finite, and µ(h)−µ(g) < ε. Then it is not hard to show that there is a
number µ(f) that is the supremum of all the µ(g) for g in L ↓ with g ≤ f and
that is also the infimum of all the µ(h) for h in L ↑ with f ≤ h.

It is not hard to show that the set L̄1 of summable functions is a vector
lattice and that µ is a positive linear functional on it. The crucial point is that
there is also a monotone convergence theorem. This theorem says that if the fn
are summable functions with µ(fn) ≤M <∞ and if fn ↑ f , then f is summable
with µ(fn)→ µ(f).

Here is the proof. We may suppose that f0 = 0. Since the summable
functions L̄1 are a vector space, each fn−fn−1 for n ≥ 1 is summable. Consider
ε > 0. Choose hn in L ↑ for n ≥ 1 such that fn − fn−1 ≤ hn and such that

µ(hn) ≤ µ(fn − fn−1) + ε/2n. (5.5)

Let sn =
∑n
i=1 hi in L ↑. Then fn ≤ sn and

µ(sn) ≤ µ(fn) + ε ≤M + ε. (5.6)

Also sn ↑ s in L ↑ and f ≤ s. and so by monotone convergence for L ↑

µ(s) ≤ lim
n
µ(fn) + ε ≤M + ε. (5.7)

Now pick m so large that fm ≤ f satisfies µ(s) < µ(fm)+ 3
2ε. Then pick r in L ↓

with r ≤ fm so that µ(fm) ≤ µ(r) + 1
2ε. Then r ≤ f ≤ s with µ(s)− µ(r) < 2ε.

Since ε is arbitrary, this proves that f is summable. Since fn ≤ f , it is clear
that limn µ(fn) ≤ µ(f). On the other hand, the argument has shown that for
each ε > 0 we can find s in L ↑ with f ≤ s and µ(f) ≤ µ(s) ≤ limn µ(fn) + ε.
Since ε is arbitrary, we conclude that µ(f) ≤ limn µ(fn).

Remarks on the proof:

1. The construction of the integral is a two stage process. One first extends
the integral from L to the increasing limits in L ↑ and to the decreasing
limits in L ↓. Then to define the integral on L̄1 one approximates from
above by functions in L ↑ or from below by functions in L ↓.

2. The proof of the monotone convergence theorem for the functions in L ↑
and for the functions in L ↓ is routine. However the proof of the monotone
convergence theorem for the functions in L̄1 is much deeper. In particular,
it uses in a critical way the fact that the sequence of functions is indexed
by a countable set of n. Thus the errors in the approximations can be
estimated by ε/2n, and these sum to the finite value ε.
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Example: Continue the example. The extended integral is the Lebesgue
integral defined on the space L̄1 of summable Lebesgue measurable functions
on the interval (0, 1]. Let us show that the integral of the indicator function of a
countable set Q is 0. This will involve a two-stage process. Let qj , j = 1, 2, 3, . . .
be an enumeration of the points in Q. Fix ε > 0. For each j, find a binary
interval Bj of length less than ε/2j such that qj is in the interval. The indicator
function 1Bj of each such interval is in L. Let h =

∑
j 1Bj . Then h is in L ↑ and

µ(h) ≤ ε. Furthermore, 0 ≤ 1Q ≤ h. This is the first stage of the approximation.
Now consider a sequence of ε > 0 values that approach zero, and construct in
the same way a sequence of hε such that 0 ≤ 1Q ≤ hε and µ(hε) ≤ ε. This is the
second stage of the approximation. This shows that the integral of 1Q is zero.

Notice that this could not have been done in one stage. There is no way to
cover Q by finitely many binary intervals of small total length. It was necessary
first find infinitely many binary intervals that cover Q and have small total
length, and only then let this length approach zero.

In the following corollary we consider a vector lattice L. Let L ↑ consist
of pointwise limits of increasing limits from L, and let L ↓ consist of pointwise
limits of decreasing sequences from L. Similarly, let L ↑↓ consist of pointwise
limits of decreasing sequences from L ↑, and let L ↓↑ consist of pointwise limits
of increasing sequences from L ↓.

Corollary 5.1 Let L be a vector lattice and let µ be an elementary integral.
Consider its extension µ to L̄1. Then for every f in L̄1 there is a g in L ↓↑ and
an h in L ↑↓ with g ≤ f ≤ h and µ(f − g) = 0 and µ(h− g) = 0.

This corollary says that if we identify functions in L̄1 when the integral of
the absolute value of the difference is zero, then all the functions that we ever
will need may be taken, for instance, from L ↑↓. Of course this class is not closed
under pointwise limits. So the natural domain of definition of the integral is
perhaps that in the following theorem.

Theorem 5.2 Let L be a vector lattice and let µ be an elementary integral. Let
L̄1 be the summable functions. Let F0 be the smallest class of functions that
contains L and is closed under pointwise monotone limits. Then F0 is a vector
lattice. Let L1 be the intersection of L̄1 with F0. If f is in F0 and 0 ≤ f ≤ g and
g is in L1, then f is also in L1, and 0 ≤ µ(f) ≤ µ(g). If f is in F0 and 0 ≤ f
and f is not summable, then define µ(f) =∞. Then the monotone convergence
theorem holds: If each fn is in F0 and if 0 ≤ fn ↑ f , then µ(fn)→ µ(f).

The proof of this theorem is not terribly difficult, but the technicalities of the
proof are not so important for a first introduction. See Loomis for this proof.

Note: In the context of the above theorem we can define the integral more
generally. If f in F0 has positive part f+ = f∨0 and negative part f− = −(f∧0),
we can write f = f+ − f−. Then µ(f) = µ(f+)− µ(f−) is defined except when
there is an∞−∞ problem. It is easy to see that if f is in F0, then f is summable
if and only if µ(f) is defined and |µ(f)| ≤ µ(f+) + µ(f−) = µ(|f |) <∞.
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Note: All the functions in L ↑ and all the functions in L ↓ are in F0. So are
the functions in L ↑↓ and the functions in L ↓↑.

Note: There can be summable functions in L̄1 that are not in F0 and hence
not in L1. However there are already so many functions in F0 that we need not
consider any others. From now on we shall only consider the integral defined
for functions in F0.

Example: Continue the example. The integral on L1 is the Lebesgue integral
defined for Borel measurable functions on the interval (0, 1]. There are so many
Borel measurable functions that this integral is sufficient for almost all practical
purposes.

We say that an elementary integral is σ-finite if there is a sequence of func-
tions fn ≥ 0 in L for each n and with fn ↑ 1. Note that this is a condition on
the vector lattice. However, since µ(f) is finite for each f in L, it says that 1 is
a pointwise monotone limit of positive functions with finite elementary integral.

Example: Continue the above example. The elementary integral is not only
σ-finite, it is finite. This means that 1 is already in L. For the example µ(1) = 1.

Theorem 5.3 Let L be a vector lattice and let µ be a σ-finite elementary in-
tegral. Let F be the smallest σ-algebra of measurable functions containing L.
Then µ extends to a σ-finite integral defined on F (except where there is an
∞−∞ problem). Furthermore, the extension is unique.

Sketch of proof: Consider the space F0 constructed in the previous theorem.
The only problem is that F0 might not contain the constant functions. However
if the vector lattice is σ-finite, then F0 = F .

5.2 Product integral and Lebesgue integral

In this section and the next section we shall see that the expectation for infinitely
many tosses of a fair coin is essentially the same as the Lebesgue integral for
functions on the unit interval. In the first case the elementary integral can be
defined for functions that depend on the results of finitely many tosses. In the
second case the elementary integral can be defined for binary step functions. In
either case, the extension to an integral on a σ-algebra of measurable functions
is accomplished by verifying the hypotheses of the last theorem of the previous
section.

The path we shall take is to define the integral for coin tossing in this section,
and then transfer it to the Lebesgue integral on the unit interval in the following
section.

In the following it will be convenient to denote the set of natural numbers
by N = {0, 1, 2, 3, . . .}. The set of strictly positive natural numbers is then
N+ = {1, 2, 3, 4 . . .}.

Let Ω = {0, 1}N+ be the set of all infinite sequences of zeros and ones. We
shall be interested in functions f defined on Ω. For each k = 1, 2, 3, . . . consider
the σ-algebra Fk of functions on Ω that depend only on the first k elements of
the sequence, that is, such that f(ω) = g(ω1, . . . , ωk) for some function g on Rk.
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This σ-algebra will be finite dimensional with dimension 2k. Say that for each
k = 1, 2, 3, . . . we have an integral µk defined for the functions in this σ-algebra
Fk. We shall say that these integrals are consistent if whenever j ≤ k and f is
in Fj ⊂ Fk, then µj(f) = µk(f).

If we have such a consistent family of integrals, then we can define a positive
linear functional µ on the space L that is the union of all the Fk for k =
1, 2, 3, . . .. Thus L consists of all functions f for which there exists some k
(depending on the function) such that f depends only on the first k elements of
the sequence. The functional is defined by µ(f) = µk(f) whenever f is in Fk.
It is well-defined on account of the consistency.

Example: If the function f is in Fk, let

µk(f) =

1∑
ω(1)=0

· · ·
1∑

ω(k)=0

f(ω)
1

2k
. (5.8)

Then this defines a consistent family. This example describes the expectation
for independent of tosses of a fair coin.

Theorem 5.4 Let Ω = {0, 1}N+ be the set of all infinite sequences of zeros and
ones. Say that for each k there is an integral µk on the space Fk of functions
f on Ω that depend only on the first k elements of the sequence. Say that
these integrals have the consistency property. Let L be the union of the Fk for
k = 1, 2, 3, . . .. Thus the µk for k = 1, 2, 3, . . . define a positive linear functional
µ on L given by µ(f) = µk(f) for f in Fk. Let F be the σ-algebra of functions
generated by L. Then µ extends to an integral on F .

Proof: The space L is a vector lattice that contains the constant functions,
and µ is a positive linear functional on L. The only remaining thing to prove
is that µ satisfies the monotone convergence theorem on L. Then the general
extension theorem applies.

Let fn be in L and fn ↓ 0. We must show that µ(fn) → 0. If there were
a fixed k such that each fn depended only on the first k coordinates, then this
would be trivial. However this need not be the case.

The idea is to prove the converse. Say there were an ε > 0 such that
µ(fn) ≥ ε. Then we must prove that there is an infinite sequence ω̄ such that
fn(ω̄) does not converge to zero.

Suppose that fn ≤M for all n. Let α > 0 and β > 0 be such that α+Mβ < ε.
Consider the event An that fn ≥ α. The probability of this event satisfies
µ(An) = µ(fn ≥ α) ≥ β. Otherwise, we would have

µ(fn) ≤ µ(fn1Acn) + µ(fn1An) ≤ α+Mβ < ε. (5.9)

This would be a contradiction.
This argument shows that the events An are a decreasing sequence of events

with µ(An) ≥ β > 0. The next step is to use this to show that the intersection
of the An is not empty. This says that there is a sequence ω̄ that belongs to
each An.
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Let ω̄(1), . . . , ω̄(k) be a sequence of k zeros and ones. Let µ[An, ω(1) =
ω̄(1), . . . , ω(k) = ω̄(k)] be the probability of An together with this initial se-
quence. We claim that one can choose the sequence such that for each n this
probability is bounded below by

µ[An, ω(1) = ω̄(1), . . . , ω(k) = ω̄(k)] ≥ β 1

2k
. (5.10)

The proof is by induction. The statement is true for k = 0. Suppose the
statement is true for k − 1. Note that

µ[An, ω(1) = ω̄(1), . . . , ω(k − 1) = ω̄(k − 1)] =

µ[An, ω(1) = ω̄(1), . . . , ω(k − 1) = ω̄(k − 1), ω(k) = 1]

+ µ[An, ω(1) = ω̄(1), . . . , ω(k − 1) = ω̄(k − 1), ω(k) = 0]. (5.11)

Suppose that there exists an n such that the first probability on the right with
ω(k) = 1 is less than β/2k. Suppose also that there exists an n such that
the second probability on the right with ω(k) = 0 is less than β/2k. Then,
since the events are decreasing, there exists an n such that both probabilities
are simultaneously less than β/2k. But then the probability on the left would
be less than β/2k−1 for this n. This is a contradiction. Thus one of the two
suppositions must be false. This says that one can choose ω̄(k) equal to 1 or to
0 in such a way that the desired inequality holds. This completes the inductive
proof of the claim.

It follows that the sequence ω̄ is in each An. The reason is that for each n
there is a k such that An depends only on the first k elements of the sequence ω.
Since the probability of An together with the first k elements of the sequence ω̄
specified is strictly positive, there must exist at least one sequence ω that agrees
with ω̄ in the first k places that belongs to An. It follows that every sequence
ω that agrees with ω̄ in the first k places is in An. In particular, ω̄ is in An.

The last argument proves that there is a sequence ω̄ that belongs to each
An. In other words, there is a sequence ω̄ with fn(ω̄) ≥ α > 0. This completes
the proof of the theorem.

Remark: One could consider the space Ω0 of all infinite sequences of zeros
and ones, such that each sequence in the space is eventually all zeros or even-
tually all ones. This is a countable set. It is easy to construct an elementary
integral for functions on Ω0 that describes coin tossing for finite sequences of
arbitrary length. However it would not satisfy the monotone convergence the-
orem. It is instructive to consider why the proof of the above theorem does
not work for Ω0. The theorem is saying something deep about the way one can
model infinite processes. In particular, it is essential that Ω is uncountable.

Theorem 5.5 Let Ω = {0, 1}N+ be the set of all infinite sequences of zeros
and ones. Fix p with 0 ≤ p ≤ 1. If the function f on Ω is in the space Fk of
functions that depend only on the first k values of the sequence, let

µk(f) =

1∑
ω(1)=0

· · ·
1∑

ω(k)=0

f(ω)pω(1)(1− p)1−ω(1) · · · pω(k)(1− p)1−ω(k). (5.12)
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This defines a consistent family µk, k = 1, 2, 3, . . ., of integrals. Let F be the
σ-algebra of functions generated by the Fk for k = 1, 2, 3, . . .. Then there is an
integral µ associated with the σ-algebra F such that µ agrees with µk on each
Fk.

This theorem describes the expectation for a sequence of independent coin
tosses where the probability of heads on each toss is p and the probability of
tails on each toss is 1− p. The special case p = 1/2 describes a fair coin.

5.3 Image integrals

Let F be a σ-algebra of measurable functions on X. Let G be a σ-algebra of
measurable functions on Y . A function φ : X → Y is called a measurable map
if for every g in G the composite function g(φ) is in F .

Given an integral µ defined on F , and given a measurable map φ : X → Y ,
there is an integral φ[µ] defined on G. It is given by

φ[µ](g) = µ(g(φ)). (5.13)

It is called the image of the integral µ under φ.
This construction is important in probability theory. If X is a random

variable, that is, a measurable function from Ω to R, then it may be regarded
as a measurable map. The image of the expectation under X is an integral νX
on the Borel σ-algebra called the distribution of X. We have the identity.

E[h(X)] =

∫ ∞
−∞

h(x) dνX(x). (5.14)

Theorem 5.6 Let 0 ≤ p ≤ 1. Define the product expectation for coin tossing
on infinite sequences ω from N+ to {0, 1} as in the theorem. Here p is the
probability of heads on each single toss. Let

φ(ω) =

∞∑
k=1

ω(k)
1

2k
. (5.15)

Then the image expectation φ[µ] is an expectation defined on Borel functions on
the unit interval [0, 1].

When p = 1/2 (the product expectation for tossing of a fair coin) this
expectation is called the Lebesgue integral. However note that there are many
other integrals, for the other values of p. We have the following amazing fact.
For each p there is an integral defined for functions on the unit interval. If p 6= p′

are two different parameters, then these is a measurable set that has measure 1
for the p measure and measure 0 for the p′ measurable. The set can be defined
as the set of coin tosses for which the sample means converge to the number p.
This result shows that these integrals each live in a different world.
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We denote the Lebesgue integral for functions on the unit interval by

λ(f) =

∫ 1

0

f(u) du. (5.16)

It is then easy to define the Lebesgue integral for functions defined on the real
line R as the image of an integral for functions defined on the unit interval [0, 1].
For instance, the integral could be defined for f ≥ 0 by∫ ∞

−∞
f(x) dx =

∫ 1

0

f(ln(
u

1− u
))

1

u(1− u)
du. (5.17)

This says that the integral given by dx is the image of the integral given by
1/(u(1 − u)) du under the transformation x = ln(u/(1 − u)). Notice that this
transformation has inverse u = 1/(1 + e−x). It is a transformation that is often
used in statistics to relate a problem on the unit interval (0, 1) to a problem on
the line.

Once we have the Lebesgue integral defined for Borel functions on the line,
we can construct a huge family of other integrals, also defined on Borel functions
on the line. These are called Lebesgue-Stieltjes integrals.

Theorem 5.7 Let F be an increasing right continuous function on R. Then
there exists a measure µ defined on the Borel σ-algebra B such that

µ((a, b]) = F (b)− F (a). (5.18)

Proof: Let m = inf F and let M = supF . For m < y < M let

G(y) = sup{x | F (x) < y}. (5.19)

We can compare the least upper bound G(y) with an arbitrary upper bound c.
Thus G(y) ≤ c is equivalent to the condition that for all x, F (x) < y implies
x ≤ c. This in turn is equivalent to the condition that for all x, c < x implies
y ≤ F (x). Since F is increasing and right continuous, it follows that this in
turn is equivalent to the condition that y ≤ F (c).

It follows that a < G(y) ≤ b is equivalent to F (a) < y ≤ F (b). Thus G is a
kind of inverse to F .

Let λ be Lebesgue measure on the interval (m,M). Let µ = G[λ] be the
image of this Lebesgue measure under G. Then

µ((a, b]) = λ((F (a), F (b)]) = F (b)− F (a), (5.20)

so µ is the desired measure.

5.4 Problems

1. Consider the space Ω = {0, 1}N+ with the measure µ that describes fair
coin tossing. Let N3 be the random variable that describes the number
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of heads in the first three tosses. Draw the graph of the corresponding
function on the unit interval. Find the area under the graph, and check
that this indeed gives the expectation of the random variable.

2. Imagine a space Ω = {1, 2, . . . ,m}N+ of all infinite sequences with values
in a finite set. Again let Fk be the space of real functions on Ω that depend
only on the first k elements of the sequence. Show that a consistent family
of integrals µk on Fk extends to an integral µ associated with the σ-algebra
of functions generated by all the Fk.

3. Consider the interval [0, 1] of real numbers. Consider functions of the form

f(x) =

2k−1∑
j=0

cj1(j/2k,(j+1)/2k](x) (5.21)

for some k. This is a step function. Define the integral of such a function
by

λ(f) =

2k−1∑
j=0

cj
1

2k
. (5.22)

This is the corresponding Riemann sum. Show directly that this integral
satisfies the monotone convergence theorem and thus may be extended to
an integral

λ(f) =

∫ 1

0

f(u) du (5.23)

defined for Borel functions on the unit interval. Hint: This is a transcrip-
tion of the theorem on the construction of the coin tossing expectation
for p = 1/2. Carry out the proof in the new framework. The problem is
to construct a real number given by a binary expansion. There is a new
difficulty: It is desirable that this expansion not have all zeros from some
point on. Perhaps one should make it easier to choose ones. Choose a
one every time at least 1/3 of the previous probability bound is associated
with the right hand interval. Does this help?

4. Let

µ(g) =

∫ ∞
−∞

g(t)w(t) dt (5.24)

be a integral defined by a density w(t) with respect to Lebesgue measure
dt. Let φ(t) be a suitable smooth function that is increasing or decreasing
on certain intervals, perhaps constant on other intervals. Show that the
image integral

φ[µ](f) =

∫ ∞
−∞

f(s)h(s) ds+
∑
s∗

f(s∗)c(s∗) (5.25)
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is given by a density h(s) and perhaps also some point masses c(s∗)δs∗ .
Here

h(s) =
∑
φ(t)=s

w(t)
1

|φ′(t)|
(5.26)

and

c(s∗) =

∫
φ(t)=s∗

w(t) dt. (5.27)

5. What is the increasing right continuous function that defines the integral

µ(g) =

∫ ∞
−∞

g(x)
1

π

1

1 + x2
dx (5.28)

involving the Cauchy density?

6. What is the increasing function right continuous function that defines the
δa integral given by δa(g) = g(a)?
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Chapter 6

Radon integrals

6.1 Radon measures

In the following we shall use the expression Radon integral to denote a particular
kind of Lebesgue integral with special topological properties. This is more
commonly called a Radon measure, even though it is defined on functions and
not on sets. In view of the close connection between integrals and measures,
it does not make much difference which terminology we use, and we shall most
often use the expression Radon measure.

In the following X will be a locally compact Hausdorff space, but one can
keep in mind the example X = Rn. The space Cc(X) is the space of all real
continuous functions on X, such that each function in the space has compact
support.

In this section we treat Radon measures. We shall only deal with positive
Radon measures, though there is a generalization to signed Radon measures.
So for our purposes, a Radon measure will be a positive linear function from
Cc(X) to R.

In order to emphasize the duality between the space of measures and the
space of continuous functions, we sometimes write the value of the Radon mea-
sure µ on the continuous function f as

µ(f) = 〈µ, f〉. (6.1)

Theorem 6.1 (Dini’s theorem) Let fn ≥ 0 be a sequence of positive functions
in Cc(X) such that fn ↓ 0 pointwise. Then fn → 0 uniformly.

Proof: The first function f1 has compact support K. All the other functions
also have support in K. Suppose that fn does not converge to zero uniformly.
Then there is an ε > 0 such that for every N there exists an n ≥ N and an x
such that fn(x) ≥ ε. Since the fn are monotone decreasing, this implies that
there is an ε > 0 such that for every N there exists an x with fN (x) ≥ ε. Fix
this ε > 0. Let An be the set of all x such that fn(x) ≥ ε. Each An is a closed

63
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subset of K. Furthermore, the An are a decreasing family of sets. Finally, each
An is non-empty. It follows from compactness that there is a point x in the
intersection of the An. We conclude that for this x and for all n the inequality
fn(x) ≥ ε is satisfied. So fn does not converge to zero pointwise.

Theorem 6.2 A Radon measure on L = Cc(X) satisfies the monotone conver-
gence theorem and therefore is an elementary integral.

Proof: Consider a compact set K. Take a function g such that g is in
Cc(X) and g = 1 on K. Now consider an arbitrary function with support in
K. Let M be the supremum of |f |. Then −Mg ≤ f ≤ Mg. It follows that
−Mµ(g) ≤ µ(f) ≤ Mµ(g). In other words, |µ(f)| ≤ µ(g)M . This shows that
for functions f with support in K uniform convergence implies convergence of
the integrals. The result then follows from Dini’s theorem.

The importance of this theorem is that it gives us an easy way of constructing
an integral. Take an arbitrary positive linear functional on the space of continu-
ous functions with compact support. Then it uniquely defines an integral on the
space of all measurable functions generated by the continuous functions with
compact support. The reason this works is that the linear functional automat-
ically satisfies the monotone convergence theorem, by the argument involving
Dini’s theorem. So it defines an elementary integral. By the general extension
theorem of the last chapter, this elementary integral extends automatically to
the smallest σ-algebra of functions that contains the continuous functions with
compact support, and it continues to satisfy the monotone convergence theorem.

Example: Here is how to construct Radon measures defined for functions on
the line. Let F be a right-continuous function that increases from m to M . Let
G be the function that tries to be an inverse to F , as defined in the previous
chapter. Thus

G(y) = sup{x | F (x) < y}. (6.2)

Define

〈µ, f〉 =

∫ M

m

f(G(y)) dy.

Then µ is a Radon measure. This Lebesgue-Stieltjes integral is often written in
the form

〈µ, f〉 =

∫ ∞
−∞

f(x) dF (x).

The following examples will show why this is natural.
Example. Let w(x) ≥ 0 be a locally integrable function on the line. Then

〈µ, f〉 =

∫ ∞
−∞

f(x)w(x) dx.

is a Radon measure. This is a special case of the first example. In fact, if F
is the indefinite integral of w, then F is a continuous function. By making the
change of variable y = F (x) we recover the formula in the first example.
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Example: Here is another special case of the first example. Let δa be the
measure defined by

〈δa, f〉 = f(a).

Then this is a Radon measure, the Dirac measure at the point a. This falls in
the same framework. Let F (x) = 0 for x < a and F (x) = 1 if a ≤ x. Then
G(y) = a for 0 ≤ a < 1.

Example: Here is a somewhat more general situation that still falls in the
framework of the first example. Let F be a function that is constant except
for jumps of magnitude mj at points aj . Then G(y) = aj for F (aj) ≤ y <
F (aj) +mj . Therefore,

〈µ, f〉 =
∑
j

mjf(aj),

so µ =
∑
jmjδaj .

6.2 Lower semicontinuous functions

Let us look more closely at the extension process in the case of a Radon mea-
sure. We begin with the positive linear functional on the space L = Cc(X) of
continuous functions with compact support. The construction of the integral
associated with the Radon measure proceeds in the standard two stage process.
The first stage is to consider the integral on the spaces L ↑ and L ↓. The sec-
ond stage is to use this extended integral to define the integral of an arbitrary
summable function.

A function f from X to (−∞,+∞] is said to be lower semicontinuous (LSC)
if for each real a the set {x | f(x) > a} is an open set. A function f from X to
[−∞,+∞) is said to be upper semicontinuous (USC) if for each real a the set
{x | f(x) < a} is an open set. Clearly a continuous real function is both LSC
and USC.

Theorem 6.3 If each fn is LSC and if fn ↑ f , then f is LSC. If each fn is
USC and if fn ↓ f , then f is USC.

It follows from this theorem that space L ↑ consists of functions that are LSC.
Similarly, the space L ↓ consists of functions that are USC. These functions can
already be very complicated. The first stage of the construction of the integral
is to use the monotone convergence theorem to define the integral on the spaces
L ↑ and L ↓.

In order to define the integral for a measurable functions, we approximate
such a function from above by a function in L ↑ and from below by a function
in L ↓. This is the second stage of the construction. The details were presented
in the last chapter.

The following is a useful result that we state without proof.

Theorem 6.4 If µ is a Radon measure and if 1 ≤ p <∞, then Cc(X) is dense
in Lp(X,µ).
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Notice carefully that the corresponding result for p =∞ is false. The uniform
closure of Cc(X) is C0(X), which in general is much smaller than L∞(X,µ). A
bounded function does not have to be continuous, nor does it have to vanish at
infinity.

6.3 Weak* convergence

As before, we consider only positive Radon measures, though there is a general-
ization to signed Radon measures. We consider finite Radon measures, that is,
Radon measures for which 〈µ, 1〉 < ∞. Such a measure extends by continuity
to C0(X), the space of real continuous functions that vanish at infinity. In the
case when 〈µ, 1〉 = 1 we are in the realm of probability.

In this section we describe weak* convergence for Radon measures. In prob-
ability this is often called vague convergence. A sequence µn of finite Radon
measures is said to weak* converge to a Radon measure µ if for each f in C0(X)
the numbers 〈µn, f〉 → 〈µ, f〉.

The importance of weak* convergence is that it gives a sense in which two
probability measures with very different qualitative properties can be close. For
instance, consider the measure

µn =
1

n

n∑
k=1

δ k
n
.

This is a Riemann sum measure. Also, consider the measure

〈λ, f〉 =

∫ 1

0

f(x) dx.

This is Lebesgue measure on the unit interval. Then µn → λ in the weak* sense,
even though each µn is discrete and λ is continuous.

A weak* convergent sequence can lose mass. For instance, a sequence of
probability measures µn can converge in the weak* sense to zero. A simple
example is the sequence δn. The following theory shows that a weak* convergent
sequence cannot gain mass.

Theorem 6.5 If µn → µ in the weak* sense, then 〈µ, f〉 ≤ limn infk≥n〈µk, f〉
for all f ≥ 0 in BC(X).

Proof: It is sufficient to show this for f in BC with 0 ≤ f ≤ 1. Choose
ε > 0. Let 0 ≤ g ≤ 1 be in C0 so that 〈µ, (1− g)〉 < ε. Notice that gf is in C0.
Furthermore, (1− g)f ≤ (1− g) and gf ≤ f . It follows that

〈µ, f〉 ≤ 〈µ, gf〉+ 〈µ, (1− g)〉 ≤ 〈µ, gf〉+ ε ≤ 〈µk, gf〉+ 2ε ≤ 〈µk, f〉+ 2ε (6.3)

for k sufficiently large.
The following theorem shows that if a weak* convergent sequence does not

lose mass, then the convergence extends to all bounded continuous functions.
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Theorem 6.6 If µn → µ in the weak* sense, and if 〈µn, 1〉 → 〈µ, 1〉, then
〈µn, f〉 → 〈µ, f〉 for all f in BC(X).

Proof: It is sufficient to prove the result for f in BC with 0 ≤ f ≤ 1. The
preceding result gives an inequality in one direction, so it is sufficient to prove
the inequality in the other direction. Choose ε > 0. Let 0 ≤ g ≤ 1 be in C0 so
that 〈µ, (1− g)〉 < ε. Notice that gf is in C0. Furthermore, (1− g)f ≤ (1− g)
and gf ≤ f . For this direction we note that the extra assumption implies that
〈µn, (1− g)〉 → 〈µ, (1− g)〉. We obtain

〈µn, f〉 ≤ 〈µn, gf〉+〈µn, (1−g)〉 ≤ 〈µ, gf〉+〈µ, (1−g)〉+2ε ≤ 〈µ, gf〉+3ε ≤ 〈µ, f〉+3ε
(6.4)

for n sufficiently large.
It is not true in general that the convergence works for discontinuous func-

tions. Take the function f(x) = 1 for x ≤ 0 and f(x) = 0 for x > 0. Then the
measures δ 1

n
→ δ0 in the weak* sense. However 〈δ 1

n
, f〉 = 0 for each n, while

〈δ0, f〉 = 1.
We now want to argue that the convergence takes place also for certain

discontinuous functions. A quick way to such a result is through the following
concept. For present purposes, we say that a bounded measurable function g
has µ-negligible discontinuities if for every ε > 0 there are bounded continuous
functions f and h with f ≤ g ≤ h and such that µ(f) and µ(h) differ by less
than ε.

Example: If λ is Lebesgue measure on the line, then every piecewise contin-
uous function with jump discontinuities has λ-negligible discontinuities.

Example: If δ0 is the Dirac mass at zero, then the indicator function of the
interval (−∞, 0] does not have δ0-negligible discontinuities.

Theorem 6.7 If µn → µ in the weak* sense, and if 〈µn, 1〉 → 〈µ, 1〉, then
〈µn, g〉 → 〈µ, f〉 for all bounded measurable g with µ-negligible discontinuities.

Proof: Take ε > 0. Take f and h in BC such that f ≤ g ≤ h and µ(f)
and µ(h) differ by at most ε. Then µn(f) ≤ µn(g) ≤ µn(h) for each n. It
follows that µ(f) ≤ limn infk≥n µn(g) ≤ limn supk≥n µn(g) ≤ µ(h). But also
µ(f) ≤ µ(g) ≤ µ(h). This says that limn infk≥n µn(g) and limn supk≥n µn(g)
are each within ε of µ(g). Since ε > 0 is arbitrary, this proves that limn µn(g)
is µ(g).

6.4 The central limit theorem

Let X be a random variable with mean µ. Then the centered X is the random
variable X − µ. It measures the deviation of X from its expected value. Let
X be non-constant with standard deviation σ > 0. The standardized X is the
random variable

Z =
X − µ
σ

. (6.5)
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It measures the deviation of X from its expected value in units of the standard
deviation.

A normal (or Gaussian) random variable X with mean µ and variance σ2 is
a random variable whose distribution has density

ρX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 . (6.6)

The centered version of X will have density

ρX−µ(x) =
1√
2πσ

e−
x2

2σ2 . (6.7)

The standardized version Z of X will have density

ρZ(z) =
1√
2π
e−

z2

2 . (6.8)

We shall most often work with the centered or standardized versions. The tables
of the distributions of normal random variables are for the standardized version.

Why is the normal distribution so important? The explanation traces back
to the following remarkable property of the normal distribution.

Theorem 6.8 Let X and Y be independent centered normal random variables
with variances σ2. Let a2 + b2 = 1. Then aX+ bY is a centered normal random
variable with variance σ2.

Proof: The joint density of X and Y is

ρ(x, y) =
1

2πσ2
e−

x2

2σ2 e−
y2

2σ2 . (6.9)

We can use properties of exponentials to write this as

ρ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 . (6.10)

Let Z = aX + bY and W = −bX + aY . We can write the joint density of X
and Y as

ρ(x, y) =
1

2πσ2
e−

(ax+by)2+(−bx+ay)2

2σ2 . (6.11)

Now we can factor this again as

ρ(x, y) =
1

2πσ2
e−

(ax+by)2

2σ2 e−
(−bx+ay)2

2σ2 . (6.12)

Let Z = aX + bY and W = −bX + aY . The transformation z = ax + by,
w = −bx + ay is a rotation. Therefore it preserves areas: dz dw = dx dy. It
follows that Z and W have joint density

ρ(z, w) =
1

2πσ2
e−

x2+y2

2σ2 . (6.13)
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Corollary 6.1 Let X1, . . . , Xn be independent random variables with centered
normal distributions with variance σ2. Then the sum X1 +X2 + · · ·+Xn is also
normal, with variance nσ2.

Proof: We can prove this by showing that it is true when n = 1 and by
showing that for all n, if it is true for n, it is also true for n+ 1.

The fact that it is true for n = 1 is obvious. Suppose that it is true for
n. Then the sum X1 + · · · + Xn is normal with variance nσ2. It follows that
(X1 + · · · + Xn)/

√
n is normal with variance σ2. The next term Xn+1 is also

normal with variance σ2. Take a =
√
n/
√
n+ 1 and b = 1/

√
n+ 1. Then by

the theorem (X1 + · · · + Xn + Xn+1)/
√
n+ 1 is normal with variance σ2. It

follows that X1 + · · ·+Xn+1 is normal with variance (n+ 1)σ2.
The next theorem is the famous central limit theorem. It is a spectacular

result. It says that the deviations of sums of independent random variables with
finite standard deviation have a distribution that is universal. No matter what
distribution we start with, when we have such a sum with a large number of
terms, the distribution is normal.

Theorem 6.9 Let X1, . . . , Xn be independent and identically distributed ran-
dom variables, each with mean µ and standard deviation σ < ∞. Let X̄n be
their sample mean. Then the distribution of the standardized variable

Zn =
X1 + · · ·+Xn − nµ√

nσ
=
X̄n − µ
σ/
√
n

(6.14)

converges in the weak* sense to the standard normal distribution.

Recall that weak* convergence for a sequence of probability measures con-
verging to a probability measure says that for each bounded continuous function
f the expectation E[f(Zn)] converges to E[f(Z)] as n→∞. In the central limit
theorem the Z is a standard normal random variable, so

E[f(Z)] =

∫ ∞
−∞

f(z)
1√
2π
e−

z2

2 dz. (6.15)

It is well to keep in mind that since the limiting normal distribution has a
density, the convergence also extends to bounded continuous functions with
jump discontinuities. In particular, the probabilities associated with intervals
converge.

Proof: By centering, the proof is reduced to the following result. Let
X1, X2, X3, . . . be independent identically distributed random variables with
mean zero and variance σ2. Let Z be a normal random variable with mean zero
and variance σ2. Let f be a bounded continuous function. Then

E[f(
X1 + · · ·+Xn√

n
)]→ E[f(Z)] (6.16)

as n→∞.
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We shall prove the theorem for the case when f is a smooth bounded function
with bounded derivatives. The case of bounded continuous functions follows by
an approximation argument.

The idea is to compare the sequence X1, . . . , Xn with a corresponding se-
quence Z1, . . . , Zn of normal random variables. The strategy is to do the com-
parison in n stages. First compare Z1, Z2, Z2 . . . , Zn to X1, Z2, Z3 . . . , Zn. Then
compare X1, Z2, Z3 . . . , Zn to X1, X2, Z3, . . . , Zn, and so on. Each time only one
variable is changed from normal to another form. The effect of this change is
very small, so the total effect is small. On the other hand, for the sequence
Z1, . . . , Zn we already have the central limit theorem, by explicit computation.

To make this explicit, write

E[f(
X1 + · · ·+Xn√

n
)]−E[f(

Z1 + · · ·+ Zn√
n

)] =

n∑
i=1

(E[f(Wi+
Xi√
n

)]−E[f(Wi+
Zi√
n

)]).

(6.17)
Here

Wi =
X1 + · · ·+Xi−1 + Zi+1 + · · ·+ Zn√

n
. (6.18)

Next write

f(Wi +
Xi√
n

) = f(Wi) + f ′(Wi)
Xi√
n

+
1

2
f ′′(Wi)

X2
i

n
+Ri. (6.19)

Here R1 is a remainder. In the same way, write

f(Wi +
Zi√
n

) = f(Wi) + f ′(Wi)
Zi√
n

+
1

2
f ′′(Wi)

Z2
i

n
+ Si. (6.20)

Again Si is a remainder.
Now calculate the expectations. The expectations of the zeroth order terms

are the same.
Use independence to calculate

E[f ′(Wi)
Xi√
n

] = E[f ′(Wi)]E[
Xi√
n

] = 0. (6.21)

and similarly for the other case. The expectations of the first order terms are
zero.

Use independence to calculate

E[f ′(Wi)
X2
i

n
] = E[f ′(Wi)]E[

X2
i

n
] = E[f ′′(Wi)]

σ2

n
(6.22)

and similarly for the other case. The expectations of the second order terms are
the same.

This is the heart of the argument: up to second order everything cancels
exactly. This shows that the sum of interest is a sum of remainder terms.

E[f(
X1 + · · ·+Xn√

n
)]− E[f(

Z1 + · · ·+ Zn√
n

)] =

n∑
i=1

(E[Ri]− E[Si]). (6.23)
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The only remaining task is to show that these remainder terms are small. This
is a somewhat technical task. Here is an outline of how it goes.

Write

Ri =
1

2
(f ′′(Wi + α

Xi√
n

)− f ′′(Wi))
X2
i

n
. (6.24)

In the same way, write

Si =
1

2
(f ′′(Wi + β

Zi√
n

)− f ′′(Wi))
Z2
i

n
. (6.25)

Look at the first remainder E[Ri]. Break up the sample space into two parts.
The first part is where |Xi| ≤ ε

√
n. The second part is where |Xi| > ε

√
n.

Assume that the absolute value of the third derivative of f is bounded by a
constant C. Then the size of the first part of the first remainder is bounded by

E[|Ri|; |Xi| ≤ ε
√
n] ≤ 1

2
Cε

σ2

n
. (6.26)

Assume that the absolute value of the second derivative of f is bounded by a
constant M . The size of the second part of the first remainder is bounded by

E[|Ri|; |Xi| > ε
√
n] ≤M 1

n
E[X2

i ;Xi > ε
√
n]. (6.27)

Let ε depend on n, so we can write it as a sequence εn. Then the first
remainder is bounded by

E[|Ri|] ≤
1

2
Cεn

σ2

n
+M

1

n
E[X2

i ;Xi > εn
√
n]. (6.28)

Thus the absolute value of the first sum is bounded by

n∑
i=1

E[|Ri|] ≤
1

2
Cεnσ

2 +ME[X2
i ;Xi > εn

√
n]. (6.29)

Take εn → 0 with εn
√
n → ∞. Then the first sum goes to zero as n → ∞.

The same idea works for the other sum. This completes the proof.

Corollary 6.2 Let E1, . . . , En be independent events, each with probability p.
Let Nn be the number of events that happen, and let fn = Nn/n be the rela-
tively frequency of the events that happen. Then distribution of the standardized
variable

Zn =
Nn − np√
n
√
p(1− p)

=
fn − p√

p(1− p)/
√
n

(6.30)

converges in the weak* sense to the standard normal distribution.

The preceding corollary is the first form of the central limit theorem that
was discovered. It illustrates the utility of the notion of weak* convergence.
Each Zn has a discrete distribution, but the limiting Z is normal and hence has
a continuous distribution.
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6.5 Problems

1. Show that f : X → (−∞,+∞] is lower semicontinuous (LSC) if and only
if xn → x implies limn infk≥n f(xk) ≥ f(x).

2. Show that if fn ↑ f pointwise and each fn is LSC, then f is LSC.

3. Show that if f : X → (−∞,+∞] is LSC, and X is compact, then there is
a point in X at which f has a minimum value.

4. Show by example that if f : X → (−∞,+∞] is LSC, and X is compact,
then there need not be a point in X at which X has a maximum value.

5. Give an example of a function f : [0, 1] → (−∞,+∞] that is LSC but is
discontinuous at every point.


