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Preface/Acknowledgement

The present set of notes represents, pretty faithfully in fact, the content
of a course Advanced Linear Algebra that I gave during the Summer Term
of 1997. The main objective was to present a proof of the Spectral Theorem
for normal operators on a finite-dimensional complex Hilbert space. Indeed,
I feel that this subject matter is missing from our “basic” undergraduate
or graduate curricula. To my knowledge, the only systematic approach to
this important theorem comes in our Functional Analysis course, where the
student is expected to have a good command of both measure theory and
the general theory of operators on an infinite-dimensional Hilbert space. The
present treatment, given that the ambient spaces are all finite-dimensional,
avoids all of the analytic subtleties that necessarily occur in the infinite-
dimensional case. Furthermore, a student who has mastered the Spectral
Theorem in the present setting should have no difficulty in taking the next
logical step and treat the Spectral Theorem for normal compact operators
on a Hilbert space, where the analytic prerequisites are not nearly as in-
timidating as in the general (non-compact) case. It is in this sense that I
hope that the present treatment will serve as a bridge between algebra and
some of the functional analysis that is central to the research of many of my
distinguished colleagues.

Apart from the Spectral Theorem itself, it is my hope that the students
will have increased their own levels of sophistication in linear algebra in
general. To this end, I have tried to emphasize quotient spaces from very
early on, with the hope and expectation that the students will eventually
embrace their utility and intrinsic beauty. Furthermore, linear algebra is
probably the simplest context in which to study quotients, owing primarily
to the “splitting” property of vector spaces. Since quotient structures occur
naturally in virtually every sub-discipline within mathematics, a student who
starts to appreciate which situations naturally call for the construction or
analysis of a quotient structure is a student who has already started to think
on a higher plane.

Other “high points” in the development include linear transformations
and their matriz representations (this is the bridge between “linear algebra”
and “matrix theory”); dual spaces, minimal polynomials, and the Primary
Decomposition Theorem. I've tried several times to emphasize that the Pri-
mary Decomposition Theorem is really almost a trivial application of the
“Fuclidean trick;” the more advanced students have throughout been en-
couraged to think of this result as being a direct analog of the splitting of a
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finite abelian group into the direct product of Sylow subgroups. Despite the
simplicity of the Primary Decomposition Theorem, it is my hope that the
students see the embryonic stages of the Spectral Theorem — especially the
appearance of the orthogonal idempotents.

We all owe a great debt to Ali Mohammad, who not only took painstak-
ingly clear notes, he invested countless additional hours to convert the writ-
ten notes to a IXTEX file, thus making a record of this Summer’s activities
available to all. Furthermore, I am indebted to my friend and colleague,
Bob Burckel, who invested the better part of his August, 1999, transatlantic
flight to Germany in a critical reading of my notes. As if this weren’t enough,
he gave the chapter on Fourier analysis and quadratic reciprocity a valuable
critical reading. In all of this, not only did he identify and correct some
of my careless mathematical mistakes, he also took great pains to correct a
large portion of my “stream of consciousness” writing style. The present set
of notes is far better as a result of Professor Burckel’s efforts.

David Surowsk:, July 30, 1997
Second revision, July 19, 1999
Third revision, January 9, 2000
Fourth revision, July 31, 2001
Fifth revision, July 24, 2002
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Course Outline for Summer 1997 Course

It is assumed that the present course represents for each student at least
the second exposure to linear algebra. Some of the students will have had
multiple excursions into linear algebra — this is not a bad thing, as it is my
firm conviction that a student cannot have“too much” linear algebra, owing
to its fundamental importance in virtually all branches of mathematics as
well as to a very wide range of “applied disciplines.”

That this course is being run under the title “Applied Matrix Theory,”
is probably a misnomer, as it is my intention to convert it into a customized
course in linear algebra, to be offered every other Summer, with sufficiently
varying subject matter that students will be allowed to retake the course for
credit. The present course (Summer, 1997) has the primary objective of pro-
viding the students with a carefully laid-out proof of the Spectral Theorem
for Normal Operators on a Finite-Dimensional Complex Hilbert Space. 1 can
think of at least two reasons motivating this particular choice at this partic-
ular time. The first, quite simply, is that I cannot locate this very fundamen-
tal result anywhere in our graduate curriculum, unless of course, one counts
the vastly more general “Spectral Theorems” that are routinely discussed
in treatments of functional analysis. However, much of the purely algebraic
flavor can be gleaned in the finite-dimensional case, without the technical an-
alytical and topological subtleties that occur in the infinite-dimensional case.
This leads me to the second reason: many of my colleagues have been qui-
etly (and not-so-quietly) grousing about the graduate students’ lack of back-
ground in the study of a single linear transformation on a finite-dimensional
vector space. The Spectral Theorem, which can be thought of in the more
general context of “Jordan Canonical Forms,” is a particularly beautiful and
complete result, made possible by the introduction into the vector space of
a seemingly incidental' additional structure: a Hermitian inner product.

Since I have never tried to teach this material before in a Summer course,
I don’t know how the time allotment will work out. I’'m confident, however,
that we’ll have enough time to cover the Spectral Theorem. If we have time
left over, I hope to make a brief sally into a discussion of normed and Banach
spaces and maybe give a brief introduction to multilinear constructions.

The brief outline of the course (at least for the material through the
“Spectral Theorem”) is as follows:

43

IThis is only a perception; one of my favorite manifestations of this structure “in
nature” is the mathematical study of quantum mechanics in physics.
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I. Basics

1. Vector Spaces and Subspaces

2. Basis and Dimension

3. Linear Transformations and Matrix Representation
4

. Quotient Spaces, Isomorphism Theorems and the Rank-Nullity
Theorem

5. Dual Spaces

6. Bilinear Forms and Duality
IT. Eigenvalues and Eigenvectors

1. Basic Definitions
2. Characteristic Polynomial and Minimal Polynomial

3. Diagonalizability of Matrix Representation
ITI. Inner Product Spaces

1. Real-Symmetric and Complex-Hermitian Inner Product Spaces
2. Riesz Representation Theorem

3. Self-Adjoint and Normal Operators

4. The Spectral Theorem for Normal Operators

Added, July 1999: The notes themselves indicate that the above ob-
jective was pretty much met. Actually, there was some time left over, which
allowed for the inclusion of material on tensor products in Chapter 4, giv-
ing perhaps a novel proof of the (unrestricted) Cayley-Hamilton Theorem.
Unfortunately, there was not so much time left over to allow also for an ex-
cursion into Banach spaces, as I indicated might be possible above. Perhaps
some other time ...
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Chapter 1

Basics

1.1 Vector Spaces and Subspaces

1.1.1 Basic Definitions

We assume that the reader has already had some exposure to elementary
linear algebra; thus, many of our definitions will be informal or incomplete.

DEFINITION. A field (e.g., Q, R, C, and others) is an algebraic system satis-
fying the usual associative, commutative, and distributive laws with addition
and multiplication, and having multiplicative inverses for each non-zero ele-
ment.

DEFINITION. A wector space over the field F is a set of objects called vectors
that can be added subject to the usual rules (e.g., commutativity, associa-
tivity, existence of additive identity, denoted 0. Please note that we shall not
distinguish typographically between the field scalar O and the vector 0. This
should not cause significant confusion.) In addition, there is the operation of
scalar multiplication which satisfies av € V for all a € F,v € V, such that

a(vy + vg) = avy + avy
(aq + an)v = v + v
0-v=0"

1-v = v (the unital property)

!Note that the “0” on the left hand side is 0 € F; that on the right hand sideis 0 € V.
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We note that 0 - v = 0 because

0 = 040, SO

0ov = (0+0)v
= Ov+0v
0Ov—-0v = 0v+0v—0v
0 = Ov.

1.1.2 Important Examples
The vector spaces F,,, and F". Let F be a field. Denote

F, = {(a1,as,...,0p)|0q, 0, ..., o, € F}

(the set of ordered n-tuples)

(1o )
1 o 1
Fn:{ ? |C21,CY2,...,CYn€IF?
L an J
(the set of 1 x n matrices in FF)

Operations:
(alaa27"'7an)+(517527"'7ﬂn) = (a1+ﬁlaa2+ﬂ27"'7an+ﬁn)
alog, o, ... ) = (o, aag, ..., aay).

With the above operations, [F,, becomes a vector space over F.

Sample Axiom Confirmation: Let o« € F and vy,v, € F,. We shall

prove that:
a(vy + vg) = avy + avs.
Denote
v = (1,9, ..., Q)
and

Vg = (ﬁlaﬂ?a s 7ﬁn)
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Then:

a(vy +v2) = a((ag, g, ... an) + (81, Bay .oy Bn))
= oo+ B0+ By o + )
(a(ag + 1), alag + Ba),. .., alan + B))
= (oo + af, aay + afs, ..., aa, + af,)
(aay, aag, ..., aay) + (@b, abs, ... ab,)
= afag,q,...,qn) +a(fr, B, ..., 0n)

= QUi + avs.

The remaining axioms are similarly verified.
Using essentially the same arguments, F"* can be shown to be a vector
space over [F.

The vector space of matrices M,,, (F)
Let IF be a field. Set

=f Q1 Q2 o Ogp \:
|| Qo1 o2 -+ Qg 1
My (F) = { | oy € ]F?
t Am1 Oyt 0 (87990 j
(the set of m x n matrices over F)
Addition
G1 Q2 o Qp 511 512 v 51n
Q1 Qg2 -+ QO2p 521 522 T 527;
) + ) ) . ) =
Om1 Q2 = Oy ﬁml ﬁmZ e ﬁmn
ap+ B o+ Pz 0 i+ P
o1 + o1 oa+ oo o0 oyt Py
(87751 + ﬁml A2 + ﬁm2 ot (87990 + ﬁmn

However, as you might have already noticed, this notation gets to be a
bit tedious, so we condense it to:

[ij] + [Bi] = [evij + Bij]
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alaij] = (o).

As in the previous example, M,,,(F) is a vector space over F.

NoTATION: Write
M, (F) = My, (TF).

Let S be a set and let V' be a vector space over F. Denote
V5 = {functions f : S — V'}.

We define addition and scalar multiplication by using “point-wise oper-
ations,” as follows. If f,g € V¥, f + g is the function S — V defined
by setting

(f+9)(s) = f(s)+g(s) for all s € S.

Similarly, if « is a scalar and f € V¥ define af : S — V by setting
(af)(s) = al(f(s)) for all s € S.

Let f,g e V. If s € S, we have

(f+9)s) = f(s)

S f+g = g+ f

As for the distributive property, let f,g € V°, a € F. Then, for all
s€eS,

alf+9)(s) =

and so a(f+g) = af+ag. Note that in V', the O-vector is the function

f:5 —V
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where 0(s) = 0 for all s € S. To check this, we must show f + 6 =
f forall fe V5.

Let s € S,
(f+0)(s) =
= f(s)+0
= f(s).

~
—
w
S~—
+
—
w
S~—

DEFINITION. Let V be a vector space over F and let W be a nonempty
subset. If W is closed under addition and scalar multiplication, then W is
called a subspace of V. More precisely, W is a subspace if:

1. wi,we €W = wy +wy € W

2. wi eEWand a € F= aqw; € W.

Note that if W is a subspace, then 0 € W. Indeed, If w € W, then 0 =
0-w € W by closure with respect to scalar multiplication.

1.1.3 Description of Homogeneous “Linear Problems”

Many problems (e.g., solving equations, differential equations) are formulated
in the context of a vector space. Indeed, we call a problem a homogeneous
linear problem if the set of solutions is a subspace of some vector space.

ExAMPLE The O.D.E.
d*y
dx?
It can be thought of as a problem where the background or “context” space
is the vector space C*(R) of infinitely differentiable functions R — R.
Note that by application of Calc. I, one can show that C*(R) is closed
under addition and multiplication, thus is a subspace of R¥.
The solution of y” + y = 0 consists of all functions of the form

{asinz + Bcosz|a, f € R} C C*(R),

+y=0.

which turns out to be a subspace of C*°(R). This motivates the following:

DEFINITION. Let V' be a vector space over F, and let vy, vs, ..., v, be vectors
in V. A linear combination of vy, vq,...,v, is an expression of the form

n
QU1+ QoUz + - Qply = > v €V

=1
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where a1, s, ..., a, € F. More generally, if S C V' (S might be infinite!) a
linear combination of elements of S is an exprssion of the form

Q1S1 + Q2S2 + + + + + Oy S,y

where a1, as,...,q,, € Fand s1,589,...,8, €.
NoOTE: All linear combinations involve only a finite number of terms!! We
don’t consider expressions of the form:

o0
> isi;
i=1
such expressions are meaningful only in the context of analysis.

1.1.4 The Span of a Set

DEFINITION. Let S C V be a subset. We denote (S) = {all linear combi-
nations of elements of S}, and call this the span of the subset S C V. We
set (¢p) = {0}. If S = {v1,ve,...,v,}, then we often write (vi,va,...,v,) in
place of ({vy,vq,...,0,}).

Proposition 1.1.1. If S is a subset of V, then (S) is a subspace of V.

PROOF. If S = ¢, this is clear. Otherwise, note that a typical element of (S)
is of the form Y ais, where s € S ranges over the elements of S (which might
be infinite), and where the coefficients «y € F are non-zero only for finitely
many s € S. Therefore, if v =Y ags, w =3 Ggs, then v+w = > (s + F5)s.
Since a;; + (35 # 0 for only finitely many s € S, it follows that v + w € (S).
Similarly, if a € F, then av = ) aays; again, as aa,; # 0 for only finitely
many s € S, it follows also that av € (S). Therefore (S) is a subspace of
V. [ |

Returning to the linear problem, y”+y = 0. Note that the set of solutions
is
({sinzx, cosz})

Therefore, y” + y = 0 is indeed a linear problem.

Lemma 1.1.2. If V is an F-vector space and S C V', then the span (S)
satisfies

(i) S C(S)



1.1. VECTOR SPACES AND SUBSPACES 7

(i) {(S)) = (5)

PROOF. (i) is obvious. (ii) follows since for any subspace W C V', one has

(WYy=W.
1.1.3 (Exchange Lemma). Let V be a vector space over F and let vy, vs, ..., v, €
V. If
w € ({v, v, ..., 05}y — {vo, ..., 00 })
then,

v1 € w, v, ..., un}) — {we, ..., 00 }).

ProOOF. We picture the situation below:

U1

\

We have w = ajv; + asve + -+ - + a,v, where oy # 0. Therefore, ayvy =

n
w — > a;v; which implies that
j=2

1 n
v = —(w—E @;v;)
(65) j=2
1 1 2 €< >
= —w——E v € {(w, v, ..., Uy).
o Oélj:2 Y7 y U2y y Un

Finally, if v; € (vs,...,v,), then
(Vay ..y Un) = (U1, V9. .., Uy)

(U1, U9,y ..oy Uy) — (U2, ... 0,) = 0.
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However,
w € (V1,09 ...,05) — (Va, ..., 0,) = 0,

a contradiction.

We say that the vector space V is finitely generated if there exists a
finite set of vectors {vy,ve, ..., vx} with

V = (v1,v9,...,0k).

1.2 Basis and Dimension

DEFINITION. Let V be a vector space and let S C V be a subset of
vectors. We say that S is linearly independent if any finite set of vectors
{s1,89,...,8c} C S satisfies

k
Zaisi:(),
i=1
then
ar=ag=...=aqp =0.

Otherwise, we call S linearly dependent.
If S C V is a linearly independent set of vectors in V' such that S also
spans V' (i.e., V= (S)), then we say that S is a basis of V.

Proposition 1.2.1. Suppose that V' = (vy,vs,...,vp) = V. Then {vy,vs, ..., v}
contains a basis of V.

PROOF. We shall argue by induction on m. If {vy,vs,..., vy} is linearly
independent, then we’re done. Otherwise, we may assume that
101 + QU + - - + Uy, = 0

for suitable ay, s, ..., a,, € F. Without loss of generality, we may assume
that a; # 0 and so

1 m
v = ——Zajvj € (Vg ..., Um),
(65) =2
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which clearly implies that V' = (v, v3, ..., v,). By the induction hypothesis,
V has a finite basis contained in {vq, vs,..., v}, and we’re done.
[ |

The following is immediate.

Corollary 1.2.1.1. Any finitely-generated vector space has a basis.

REMARK: The above results are true whether or not V is finitely-generated.
Indeed, if V' = (S), let A C S be a maximal linearly independent subset
(which exists by Zorn’s Lemma). Then A is a basis.

1.2.2 (Invariance of Dimension). Let V be a finitely generated vector
space and let {vy, ..., vn}, {wi,...,w,} be bases of V. Then m = n.

PROOF. Assume that m < n. We may write

V1 = 1wy + awy + - - - + oW,

because {w;, wo, . .., w,} spans V. Without loss of generality, assume a; # 0.
Then,
v € (w1, wa, ..., wy) — (W, ..., wy).

For if v; = fowy + - - - + BLw,, then

LWy + awg + - - -+ Wy, :/BQWQ+"'+ﬁnwn,

and so ]
wy = —a—((ﬁ2 —ag)wy + -+ (B — an)wn).
1
This clearly contradicts the linear independence of {wy, ws,...,w,}. There-
fore, we must have
wy € <’U1,U)2,...,’wn> — (wQ,...,wn>.

Notice that {vy, ws, ..., w,} is a basis for V. Indeed,
Wi, Way .oy Wy € (U1, Wa, ..., Wy)

implies that
(v, wa, ..., wy) D (w1, wa,...,w,) =V.
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Next, if
Brvr + Bowy + -+ -+ Brw, =0

and if #; = 0 then,
52w2+"'+ﬁnwn =0

and so
Po=P03="---=0,=0

as {wy, ws, ..., w,} is linearly independent. If 3, # 0, then vy € (wy, ..., wy,),
also a contradiction.
Since {vy, ws, ..., wy,} is a basis, we can write

v = Bvy + Bowy + -+ - + Bpwy,.

If o =p3="---= (3, =0, then vy, vy are linearly dependent, a contradiction.
Therefore, some 3; # 0. Re-index if necessary so that s # 0. This gives the
following:

Vo € (U1, Wa, ..., Wy) — (U1, W3, ..., Wy);

For if vy € (U1,w3, . ;wn>7
Up = Y1U1 —+ Y3Ws + et YnWn,

S0,
YU+ Bws 4 Ywy, = v = Bivr + fows + - 4 Bpwy,.

Thus, wy € {vy,ws,...,w,), contrary to the linear independence of {vy, ws, ..., w,}.

So, we apply the Ezchange Lemma 1.1.3 and get

we € <U1,'U2,'LU3, s '7wn> - <'U1,'LU3, s '7wn>'

As above, {v1, vy, ws,...,w,} is a basis for V. Continue in this way and
eventually obtain a basis of the form

{vla V2, v vy Umy Wing1y - - -y wn}
But as
{vla V2, ...,y vm}
is a basis, wyy1,...,w, € V = (v1,09,...,0,) contrary to linear indepen-
dence of
{vla V2, v vy Umy Wing1y - - -y wn}

Thus m =n.

ExAaMPLE. We note here that dim F"* = n, since it is clear that
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1] (0] )
SN
{'UIZ 01,0, = U= | }
C Lol Lo )

is a basis of F". (See also Ezercise B.7.)

1.3 Operations on Subspaces

1.3.1 (Basis Extension Theorem). Let V' be a finite dimensional vector
space and let {vy,vs,...,v;} be a linearly independent subset of V. Then,
there exist vectors

Upglye-osUp EV (n=dimV)
such that {vy, v, ..., Uk, Vkt1,...,0n} is a basis of V.
PROOF. Let {wy,wy, ..., w,} be a basis of V. Let S be a maximal subset
S CH{wy,wy, ..., w,}
such that
{v1,v9,...,0,}US

is linearly independent. We re-name the elements of S so that

S = {’Uk+1, Vk42y -+ ’Um}.

Therefore, {v1,...,v,} is linearly independent. If w; & (vi,...,vy,), then
{vi,...,vm} U {w;} is linearly independent, violating the maximality of S.
This implies that

Wiy ey Wy € (U1, e ey Upy)

and so
V= (wy,...,w,) C(v1,...,0m).

It follows that
(V1o yUp) =V

and hence, {vy,...,v,} is a basis. By Invariance of Dimension (1.2.2), m =
n.

DEFINITION. Let Wi, Wy C V' be subspaces. We define subspaces of V' as
follows:
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(i) Intersection of Wy and Wy:

WiNWy,={weVwe W, and w € Wy}.
It should be clear that W; N W, is again a subspace of V.
(ii) Sum of Wy and Wo:
Wy + Wy = {w; + wy|wy € Wy and we € W}
To see that Wy + W5 is a subspace of V', let
wy + we, Wi + wy € Wi + Wh.
Then,

(wy +we) + (W) +wh) = (wy +w)+ (wy + wh)
€ W1—|—W2,

as w; +wj € Wy and we + w), € W, Similarly, we have closure with
respect to scalar mulitiplication.

DEFINITION. Let Wy, Wy C V be subspaces such that W; N W, = {0}. In
this case we write

W1 —+ W2 = W1 D W2
and call Wy & Wy the direct sum of Wy and Ws.

NotTE: If Wi+ W, = W& Ws, then every element of W; + W, can be written
uniquely as wy + we, wy € Wy and wy € W, Indeed, If wy + wy = w] + w)
with

wy, wy € Wi and we, wh € W,

then,

wl—w'lzw;—wg € WlmWQZ{O},

l ! —
wy—w;, = wy—wy=20
/!
wy = wh

Conversely, if every element of W; + W, can be written uniquely as w; +
wa, w1 € Wi, wy € Wy, then it is easy to check that W, + Wy = W, @ Ws.
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More generally, if Wi, Ws, ..., Wy, C V are subspaces then setting
k
W1+Wg+...+Wk:{Zwi:wi e W, i:1,2,...,k}

=1

also gives a subspace of V. Finally, if w; + wy +---+wp =0, w; € W;, i =
1,2,...,k implies that wy = 0, « = 1,2,...,k, then we say that the sum
Wi+ Wy +---4+ Wy is direct and write

Wi+Woto o+ Wy =W Wy ---d Wy

Note that this is equivalent to insisting that each element of Wi +Wy+- - -4+Wj
can be uniquely expressed as wy +wy + -+ wg, w; €W, 1 =1,2,... k.

Proposition 1.3.2 (Complete Splitting or Complementation). Let
W CV be a subspace. Then W has a complement in V', i.e., there exists a
subspace W' CV with V =W @ W".

PROOF. Let {vy,..., v} be a basis of W and extend it to a basis

{V1, .0y Uky Ukg1y e oo, Un}

of V. Set
W' = (vgs1y. .., 0n) C V.

Clearly,
V=W+W.

We need only show W N W' = {0}. To this end, if v € W N W' then
v = aqu; + -+ - + ooy for suitable scalarsag, ..., ap € F.

By the same token,

U = Qgy1Vgs1 + *++ + apu, for suitable scalars ayiq,...,a, € F.
Therefore,
QU + - U = A 1Vga1 + -+ QpUn,
forcing
Q101 + o QU — QU1 — 0 — QU = 0.
Since {v1,...,v,} is linearly independent, it follows that a; = 0,i =1,...,n.

Thus, v =0, i.e., WN W' = {0}.
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1.4 Linear Transformations

DEFINITION. Let V, W be vector spaces over F and let T': V. — W be a
mapping. We say that 1" is a linear transformation if

(i) T(vy +v2) = T(vy) + T(vq), for all vy,ve € V, and
(ii) T(aw) = aT'(v), for all « € F, and for allv € V

Note that conditions (i) and (ii) above are equivalent to the single condi-
tion

T(cv1 + agvy) = anT(v1) + T (ve) for all v, v, € V and aq,ay € F.

More generally, we see that a linear transformation maps linear combina-
tions to linear combinations:

k

T(; O[Z'Ui) = Z CYiT(Ui) .

i=1

DEFINITION. Let T : V — W be a linear transformation. Define the kernel
of T

ker(T) = {veV|T(v)=0}
T7(0) (0e W)

Proposition 1.4.1. Let T : V — W be a linear transformation. Then,
(1) ker(T) is a subspace of V;
(2) If Vi CV is a subspace, then T'(Vy) C W is also a subspace;
(3) If Wy, C W is a subspace, then
T'W)={veV|Tw) eW} CV
is a subspace of V.

PROOF. If vy, vs € ker T and if oy, g € F, then T'(cv; + aovs) = o T(vy) +
asT(v3) = a1 -0+ az -0 = 0 and so vy + apvy € ker T, i.e., kerT is
a subspace of V', proving (1). For (2), let v;,v] € Vi, aj,a) € F. Then
a1T(vy) + T (v]) = T(ayvy + jvy) € T(Vy), since V; C V is a subspace,
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proving (2). Finally, if vy,v] € T-1(Wy), and if oy, o) € F, then T(ayv, +
aiv)) = a T (vy) + o T'(v]) € Wy, since W C W is a subspace.
|

DEFINITION. Let T : V — W be a linear transformation, where V and W
are both finite dimensional. Define the nullity of T to be the dimension of
the kernel:

nullity(7) = dim(ker (7)),
and define the rank of T to be the dimension of the image:
rank(7") = dim(7'(V)).
We say that T is injective if T' is a one-to-one function. We say that T is
surjective if T is onto (i.e., T (V) = W). We say T is an isomorphism if T is
both injective and surjective. In this case, we write

V=w,

or

T:V-—3W.

Lemma 1.4.2. Let T : V — W be a linear transformation.
(i) T is injective if and only if ker(T') = {0}

(i) If T is an isomorphism, then T~' : W — V is defined and is also a
linear transformation (in which case we call T invertible).

PRrOOF. For (i), T is injective and if v € ker(T') then T'(v) = 0 = T(0),
and so v = 0, i.e., ker(T') = {0}. Conversely, assume ker(7") = {0} and that
v1,v9 € V with T'(vy) = T(vy). Then,

T(U1 — Ug) = T(Ul) — T(UQ)

= 0 and so
UV — V2 € ker (T) = {0}
v1—vy = 0 e,

V1T = V9.
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For (ii) we need to show that
Tfl(wl + U)Q) = T*I(wl) + Tﬁl(UIQ)
T~ aw) = T (w),
for all w, wy,wy, € W and o € F. But,

T(T™ ' (w1 +ws)) = wi+ wo;
T(T™ (wr) + T~ (w2));

since T is injective, we infer that T!(w; + wo) = T ' (wy) + T (wy). Simi-
larly,

T(T ' (aw)) = aw
oI (T H(w))
= T(aI™'(w));

again, as T is injective, we get T~ (aw) = oT ' (w).
|

Lemma 1.4.3. If T : V] =Y V5 and V; is finite dimensional, then V5 is finite
dimensional and dimV; = dim V5.

PROOF. Let dimV; = n and let {vy,vs,...,v,} be a basis of Vj. Then
as T is surjective it is clear that {T(vy),T (v2),...,T(v,)} spans V5. Thus,
it suffices to show that {T'(vy),T(ve),...,T(v,)} is linearly independent. If

i a;T(v;) = 0, then since T is linear, we have T'( 3 a;v;) = 0. Since T is
i=1 -

1

(2
n
injective, we infer that - a;v; = 0; since {vy, vs, ..., v,} is linearly indepen-

=1
dent, infer that a; =0, 1 =1,2,...,n.
[

1.4.4 (Rank-Nullity Theorem). Let T : V. — W be a linear transfor-
mation. Then,

rank(7T") = dim(V') — nullity(V).
PrROOF. We may use Proposition 1.3.2 to find a subspace V; C V such that

V =ker (T) ® V.
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We have the “restriction” of T to Vi:
Ty, : Vi — T(V}).

We claim that the above is an isomorphism. If v; € ker (T'|y;) then T'(v;) =0
implies that v; € Vi Nker T' = {0} and so v; = 0. That is, ker (T'|y,) = {0},
forcing T'|y, to be injective.

Let T'(v) € T(V) for some v € V. Then v = z+ vy, for suitable x € ker T,
v, € V4. Then,

Tw) = T(k+v)
= T(k)+T(n)
0+ T('Ul) = T('Ul),
and so T'|y, is surjective, proving that V3 = T'(V'). Next, note that

dimV; = dimV — dim(ker T")

Indeed, if {xy,z9,..., 2.} is a basis of ker T and if {vy,...,v,,} is a basis of
V1, then it is clear from the splitting V' = ker(T') @ V; that

{z1,.. X, 01, U}
is a basis of V. Thus,

dimV = r+m
= dimker T+ dim V}

However, V; 2 T'(V) and so dimV; = rankT. Thus, dim V' = nullity T +
rank 7', and we are done.
[

1.4.5 (Extension by Linearity Theorem). Let V' be a vector space with
basis {vy,...,v,} (so dimV =n). Let W be a vector space and let there be
given vectors wy, ws, . . ., w, € W. There exists a unique linear transformation
which satisfies T'(v;) = w;, i =1,2,...,n.

PROOF. Since {vy,...,v,} forms a basis, every vector v € V' can be written
uniquely as

n
V= Z ;U5 .
=1
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Thus, we have a well-defined mapping 7' : V. — W given by
T(Z O[Z'Ui) = Z o, W;.
i=1 i=1
To show that T is linear, let u,v € V. Then we can write

n n
u:Zaivi, v:Zﬂivi.
i=1 i=1

Thus,

n

u+v=> (o + Bi)v;

=1

SO

n

Tu+v) = T(;(Oéﬂrﬂi)vi)

= Z(Oéi + Bi)w;

i=1

= Zn: ow; + Xn: Biw;
i=1 =1
= T(u)+T(v).

Similarly, T'(av) = T (v). Thus, T is linear.
Next, note that
T(v)) =T v;) =1 w; =w;, 1=1,...,n.

Finally, we prove that 7" is unique. That is, if S : V — W is another
linear transformation satisfying

S(v1) = wy, i=1,2,...,n

then we wish to show that T'(v) = S(v) for all v € V. We write

n
v = Z o,;U;
=1
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and so

T(v) = T(iaivi)
= ilOZZT(UZ):iIOZZwZ

n

= Zl O[Z'S(Ui)
= S(v).

Proposition 1.4.6. Let dimV =dimW. Then V = W.

PROOF. Let {vy,...,v,} be a basis of V and {wy,...,w,} be a basis of W.
By the above result, there exists a linear transformation 7" : V. — W :
T(v;) =w; i =1,...,n. T is certainly surjective as

TV) = T(v1,...,vm))
= (T(v1),...,T(vy))
= (wy,...,wy)
= W.

By the Rank-Nullity Theorem 1.4.4 we have
rank 7" = dim V' — nullity (T),

SO
n = n — nullity (7)),

which implies that
nullity (T) = 0

i.e., ker T'= {0}, and so T is injective by 1.4.2 (i).

|
DEFINITION. Let (vy,vs,...,v,) be a sequence of vectors in the vector space
V. If {v1,v9,...,v,} is a basis of V', we say that (vq,vs,...,v,) is an ordered

basis of V.
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1.5 Matrices and the Representation Picture

Let V be a vector space and let A = (vy,v9,...,v,) be an ordered basis.
Define the map
(')A V—T

as follows: if v € V and v is written (uniquely) as
V= U + QaUg + + -+ + Uy,

set

(U)A = Vg
aq
%)
an
Proposition 1.5.1. The map (-)4: V — F" is a linear isomorphism.

PROOF:
We shall prove that this is a linear transformation, i.e.,

(i) (v+w)a=v4+wy
(i) (av)4 = avy

for all v,w € V, o € F. To this end, let v, w be expressed as linear combina-
tions of the basis vectors

V= U + QaUg + + -+ + Uy,

w = vy + Bovy + -+ - 4 BpUp.

Therefore,
v+w = (aq+ B1)vr + (ag + Bo)va + - - + (a + Bn)Vn,
av = (aaq)vy + (aag)vy + -+ + (aay)vp,
and so
ar + 5 o B
ay + (2 Qg B2
(v+w)g= : = . |+]| . |=vatwa,
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and
[ooa ][]
(676%)) (6%))
(aw) 4 = ] =a| . = auy4.
ooy, ay,

Finally, we show that (-) 4 is an isomorphism:
If v € ker () 4, then
0
0
Vg = . )
0

which implies that v =0-v; +0-vy 4+ -+ 4+ 0- v, = 0. From this it follows
that the nullity of the linear transformation (-)4 is 0; by the Rank-Nullity
Theorem 1.4.4, we get rank(-) 4 = dimV — 0 = n and so (-) 4 is surjective.

|

DEFINITION. Let T : V. — W be a linear transformation from V' to W,
where V and W are both finite dimensional vector spaces over F. Let A =
(v1,v9,...,v,) be an ordered basis for V| and let B = (wy, wy,...,w,) be
an ordered basis for W. We define the matrixz representation of T relative to
the ordered bases A and B by setting (T')ga = Tpa = o] € My, (F), where

T(Uj) = .g:l QWi

ExAMPLE. We can think of the complex number field C as a two-dimensional
vector space over R. Let A = (1,7). Define

T7:C—C

by
T(z) = (2 —3i)z, z € C.
Then, the distributive and associative laws in C imply that T'(z; + z2) =

T(z1) + T(22) and that T'(az) = aT'(z) for all « € R.
We compute T 44

T(1) = (2-3i)1=2-1-3-4
T() = (2-3i)i=2-i+3-1.
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Therefore,
2 3

1.5.2 (The Representation Picture). Let T : V. — W be a linear
transformation of finite dimensional vector spaces. Let A, B be ordered bases
for V. W respectively. Then, the following diagram commutes:

T
e

% W
l(')A l(')B
A=

where each A € M, (F) defines a linear transformation from F" into F™
by

O O

the right-hand side being ordinary matrix product. To say the above diagram
“commutes” is to say that for allv € V, (T'(v))g = A(v.4).

PROOF: Let A = (v1,vs,...,v,), B = (w1, ws,...,w,), and assume that
(05 N e A1) -I
Tius=A=
Am1 - Qmp
where

m
T('U]) = Zaijwi, j = 1, sy, N
=1



1.5. MATRICES AND THE REPRESENTATION PICTURE 23

n
If v= 3 ajv;, we have
i=1

(T(w)s = (T(éam
- (ilajmj))g

= (i %‘(i ijw;i)) s

m n

= (;(; Qi )wi)s

Next we shall consider what effect changing the ordered bases has on the
matrix representation of a linear transformation. Let T : V — W with A, B
being ordered bases for V, W respectively. If A’, B are new ordered bases for
V, W respectively, we wish to determine the relationship between the m x n
matrices

TB.A and TB’A’-

To thisend, let A = (v1,vs,...,0,), A" = (v],v5,...,0), B= (w1, ws,..., wy,),
and B' = (w}, w),...,w! ). We have an n X n matrix:

P = p;j] (= Can)
defined by
U;:Zpijvi, j:1,2,...,n.
i=1
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Similarly, we have an m X m matrix
Q = [qr] (= Cps)

defined by
m
wl:qulw;ﬁ [=1,2,...,m.
k=1

We note that both P and () are invertible matrices. To see that, for example,
P is invertible, we write

n
/ !/
'Ulzzpklvk, l:1,2,...,n,
k=1

and set P’ = [p},;]. We shall show that PP' =1 = P'P.
Watch this:

n
I J—
vi = D Pii
=1
n n

= > Dij Y Prih
=1 k=1
n n
/ !
= (Z pkipij> Uk
k=1 \i=1

!

Since (v}, ...,v]) is an ordered basis, we must have

n ( s
Zpkipz‘j = b _].
i=1 0 k#J.

In other words,
> Dibij = Okj- (Kronecker ¢)
i=1
Note that [d;;] = I, the identity matrix. So, we have shown P'P = I.
Equivalently, in terms of the above notation, we have shown that C' 4 4C 44 =
I,i.e., that Cyu = C'_ZIIA. Similarly, Czg = CE’%

Conversely, assume that A = (vy,vs,...,v,) is an ordered basis of V', and
that P = [p;;] is an invertible matrix. If we define the vectors v{,v5, ..., v},

by the equations
n
'U;. = ZPZ]U“ j == 1,2,...,”,
i=1
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then we claim that A" = (v}, v},...,v]) is an ordered basis of V. Indeed if
P~ = [gg], then

n
Vi = Z5kivk
n

n
= Z Zpkzéhivk

=1

ol
—

ol
—

n

= Z dii Z PriVk
I=1 k=1

= Z quvf,

=1

and so each vector v; is a linear combination of the vectors in A’. From
this it is clear that A’ spans V. To prove that it is a basis, note that by
Proposition 1.2.1, the set {v],v},..., v} must contain a basis of V. Since
dim V' = n we infer that {v], v}, ..., v} must already be a basis.

Proposition 1.5.3 (Change of Basis). Let T : V — W and let A, A', B, B', P
and () be as above. Then,

Tea = CpTpaCan,

i.e.,
Tea = QTpaP.

PrRoOOF. We know that
TB’A’ - [ﬁzy]

where T(U;) = i ﬂing. Thus, if CAA’ = [pij]; TBA = [aij], and CB’B = [qij],
i=1
we must show that

Bij = (iaj)t_ entry of CrpTpaCan

n

m
= Z Z 4il Xk Pkj -

=1 k=1
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Now,

n

T(U;‘) = T(Z PrjVk)

k=1

n

= > oiT (v
k=1
n m

= Zpkyzazsz
k=1

m

n m

= Z Pk;j Z Qg Z Qzlw
kn1 m n

= Z Z Z qzlalkpk] :

i=1 [=1k=1

Conversely, assume that T : V' — V is a given linear transformation,
that A = (vy,...,v,) is an ordered basis and that there exists an invertible
matrix B = [3;;], such that

P~'T4P = B,
where P = [p;]. If we define A" = (v}, v5,...,v;,) via the equations v} =
Z pijvi, j =1,2,...,n, then by the above discussion A’ is an ordered basis

and T_A/ = B.

DEFINITION. Let A, B € M,(F). We say that A, B are similar matrices
(and write A ~ B) if there exists an invertible matrix P such that

B =P 'AP.

As a result of Proposition 1.5.3 and the ensuing paragraph, we see that
two matrices A, B are similar if and only if they represent the same linear
transformation, but possibly relative to different ordered bases.

One of the basic problems of matrix theory is to find, for a given matrix
A, an invertible matrix P such that P~'AP is “simple”.
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For example, if we can find P so that P 'AP is a diagonal matrix, i.e.,

a; 0 - 0
Poiup ay o+ 0
0 0 - a

we say that A is diagonalizable. Likewise, we say that a linear transformation
T :V — V is diagonalizable if and only if V' has an ordered basis A such
that T4 is a diagonal matrix. We will take up this important topic in more
detail later.

From the above, we see that if T : V — V is a linear transformation
and A, A’ are ordered bases of V', then the matrices T4y and T4 are similar.
This says that similar matrices are just representations of the same linear
transformation relative to different ordered bases. Thus, one of the basic
problems concerning the given linear transformation 7 : V. — V is to find
an ordered basis A’ such that T4 is “simple”.

1.6 Quotient Spaces

Let V be a vector space and let W C V' be a subspace. We wish to construct
a new vector space V /W having the property that if V' is finite dimensional,
then

dimV/W =dimV — dim W.

For a vector v € V, set
v+W={v+wweW} CV.

We call this the coset determined by v.

Lemma 1.6.1. Let vi,vo € V. Then vi + W = vy + W if and only if
v — vy €W.

Proor. If v + W = vy + W, then there exist wy,ws € W with vy + wy =
vy + we. But then vy — vy = wy — wy € W. Conversely, if vy —vy =w € W,
then for any w' € W, we have v; + w' = vy + w + w' € vo + W, and so
vy + W C vy + W. Similarly, we have vy + W C v; + W, proving the lemma.

[ |
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We wish to give V/W the structure of a vector space as follows. If v; +
W+ W,o+W € V/W, a € F, we set

(V1 + W)+ (vg + W) = (v1 +vq) + W,

alv+W)=av+W.

We must show that these operations are well-defined, i.e., if v + W = v/ +
I/V,’Ul—i‘W:?Jll—FW,UQ—FW:Ué—FWthen

(v + W)+ (va + W) = (v + W) + (vh + W)

and
a(v+ W) =al +W).

Indeed, we have, by Lemma 1.6.1, that v; — v}, vy — v}, € W, and so (v; +
vy) — (V] +vh) = vy — v] + vy — vy € W, forcing

(v1 +ve) + W = (v] +vh) + W

(again by Lemma 1.6.1), and so (v1 + W)+ (va+ W) = (v] + W) + (v5+ W),
as required. Similarly, one can show that a(v+ W) = a(v' + W).

All the usual (and necessary) properties hold (e.g. associativity and com-
mutativity of addition, the associativity of scalar multiplication, the distribu-
tive laws and the unital property). Therefore V/W is an F-vector space, as
claimed, called the quotient space of V by W.

Rationale: Let T : V — W be a linear transformation and set
K =kerT.
We show that if w € T'(V') C W, then

T 'w) = {veV|T()=uw}
= U+ K
where vg is any fized vector with T'(vy) = w. That is to say, the inverse image

under a linear transformation of any vector is a coset relative to the kernel
of this linear transformation. Indeed, if v € vg + K, then

v=1v9+k (kEK)
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T(v) = T(vo+k)
= T(vo) + T(k)
= T(Uo)+0

Uy + K g Tﬁl(UJ).

Conversely, if v € T-}(w), then T(v) = w and so v — vy € K, which says
that v € vy + K, and so
T Yw) C v+ K.

The result therefore follows.

A basic problem in linear algebra is to solve
T(x)=w

given a linear transformation 7" : V' — W and a vector w € W. If w = 0,
then the solution set is the kernel of T, which we have already seen to be
a subspace of V', in which case we call this a homogeneous linear problem.
If w # 0, we call the problem T'(z) = w an inhomogeneous linear problem.

If vy € V is a particular solution of T'(z) = w, then the complete set of
solutions is vy + K. This description should be familiar to students having
studied non-homogeneous linear ordinary differential equations.

Proposition 1.6.2. Suppose that
T:V—W
is a linear transformation and that V; C ker T If we define
T:V/Vi—W, by TV +v)=T(), veV
then T is a well-defined linear transformation.
PROOF: For the well-definedness, we must show that if
v+ V=0 +1

then B B
T(v+V) =T +1).
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But, v + Vi = ¢’ + V} implies that v — v' = v; € V;. Thus,

T(v)—T) = T(v—"1")

= T(n)
= 0,
1.€.,
T(v) = T,
and so

Tw+V) = T(v
= T
= T(U, + 1),

proving that T is well-defined. Finally, we show that
T: Vi — W
is linear. To this end, we have

T(v+V)+ 0 +V) = T(v+v)+W)

Similarly,

T(a(v+Vy) = T(av+ W)

Whenever V' C W is a subspace, we can define the canonical projection
Ty V — V/W

by setting
mw(v) =v+W, veV.
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Proposition 1.6.3 (Canonical Projection). With the notation as above,
(i) 7w : V — V/W is a linear transformation,
(i) kermy =W, and
(iii) mw is surjective.
ProoF: We have
7TV[/(U1 + ’U2) = (’U1 + UQ) + W
= (n+ W)+ (n+W)
= Ww(’Ul) + 7TV[/(’U2)
Likewise,
mw(av) = (aw)+ W
= alv+W)
= amy(v)

So, mw is a linear transformation, proving (i).
Next, note that the 0-vector in V//W is 0 + W. Thus,

kermy ={veVjp+W =0+ W}

But,
v+W=Wsuvel,

forcing
ker my = W.

This proves (ii).
Finally, if v + W € V/W, the my (v) = v + W, giving (iii).

Corollary 1.6.3.1. If dimV < oo then dim (V/W) = dimV — dimW.
PRrROOF: By the Rank-Nullity Theorem (1.4.4), we have
dim (V/W) = dimmy (V)
= rankmy

= dimV — nullity my
= dimV —dim W.
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Corollary 1.6.3.2. IfV is a vector space and W C V is a subspace then W
is the kernel of some linear transformation.

PROOF: ker (my) = W.
|

1.6.4 (Fundamental Homomorphism Theorem). Let T : V. — V' be
a surjective linear transformation. Then

V= V/W

where W = ker T. More precisely, we have a commutative diagram:

1% L v

V/ker T

PROOF: We already have the well-defined linear transformation
T:V/IW —V'

satisfying T(v + W) = T(v). If v/ € V', then because T is surjective, there
exists v € V with T'(v) = v'. Therefore, T(v + W) = T(v) = ¢' and so T is
surjective. Finally, we know

kerT = {v+WeV/W |Tw+W)=0eV'}
= {v+W|T(v)=0€eV'}
= {v+WlvekerT =W}
= {W},
and so
ker T = {W};

Since W is the O-vector in V/W, we see that T is injective.
[ |

Proposition 1.6.5 (Correspondence). Let T :V — V' be a surjective
linear transformation. Then there is a one-to-one correspondence between
the subspaces of V' and the subspaces of V' which contain W = kerT. In
fact, the correspondence is given by

T~ : {subspaces of V'} — {subspaces of V containing W}.
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PROOF. Let V{,V, C V' be subspaces and assume that 771 (V) = T-1(V}).
Then, as T is surjective, we have V{ = T(T-(V/)) = T(T"'(V3)) = V3,
and so T~! is injective. If V; C V is a subspace containing W, then it is
clear that if V/ = T(V}), then T7*(V/) 2 V;. But then V; and T7'(V/)
both contain W and so V;/W and T—!(V/)/W are subspaces of V/W that
both map to V/ C V' under T. As T is an isomorphism, we conclude that
Vi/W =T-YV])/W. Thus if v € T-1(V}), we have that v+ W € V; /W and
so v € V4, forcing Vi = T~ (V}). The result follows.

|

Corollary 1.6.5.1. The subspaces of a quotient space are those of the form
Vo/W , where V} is a subspace of V' which contains W.

PRrROOF: If Vj C V/W is a subspace, then by (1.6.5),
Vo = mwmy (Vo).

If we set L
Vo = 1y (V0),

then Vj is a subspace of V' containing W, and my (Vp) = Vo /W.

1.7 Dual Spaces

Let V, V' be vector spaces. Recall that the set
V'V = {mappings V — V'}
is a vector space relative to point-wise operations. Set

LV, V'Y ={T € V'V : T is linear}.

Proposition 1.7.1. L(V, V") is a subspace of V'V
PROOF: Let 71,7, € L(V, V'), € F,v;,v3 € V. Then

(Ty + 1) (v1 +v2) = Ti(v1 +v2) + Ta(vy + va)
= Ti(v1) +T1(ve) + To(v1) + To(v)
= (T1(v1) + Ta(v1)) + (T1 (v2) + T (v2))
= (T1 + Ty)(v1) + (Th + T3)(ve),



34 CHAPTER 1. BASICS

and,

(Ty + T)(avy) = Ti(avy) + Ta(awv;)
= oT(v1) + aTy(vy)
= a(Ti(v1) + Th(v1))
= o(Th + T3)(n),

so, Ty + T, € L(V,V'). Similarly, if T € L(V,V’), and « € F, then oT €
L(V,V").
|

Proposition 1.7.2. If dimV =n, dimV' = m then dimL(V,V’) = nm.

ProoOF: Let A = (vq,...,v,), A = (v},...,v,) be ordered bases for V, V"’
respectively. Define

LV, V) 24 M (F), T+ T
We shall show that ()44 is
(i) a linear transformation;
(ii) an isomorphism.
For (i), we show first that
(1 + T)aa = (Th)aa+ (To) aa

Let
1 2
(T)ara = [az(j)]a (T2)aa = [az(j)]-

This means that

Ti(vj) =Y aivl, j=1,2,...,n
=1

and
Ty(vj) = iafj)v;, j=12....n
Therefore, B
(Ti + T2)(v;) = Ti(v;) + To(vy)
= i aijl-)v; + i ozg)v;
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This implies that
(Ti+To)aa = [0 +a?]
= o]+ o]
(T1)wa+ (T2)wa

Similarly, if T'€ L(V,V’) and « € F, then
(@T)wa=aTaq

Thus,
(')A’A : L(Vv, V,) — an(F)
is a linear transformation.
Finally, let [o;;] € My, (F). By the Extension by Linearity Theorem

(1.4.5), there exists, for each j = 1,2,...,n, a unique linear transformation
satisfying
m
T(Uj) = Zaijvz'- € VI,
i=1
which says that T4 4 = [a;;]. This shows both that (-) 44 is surjective and
injective, and so

L(V, V") 2 My ().

DEFINITION. Let V' be a vector space over F and set
V* = L(V,F)

(F is a vector space over itself with basis {1}.) V* is called the dual space of
V', and elements of V* are called linear functionals.

REMARKS:

(1) If dimV = n then dimV* = 1-n = n. Thus, V = V*; however,
this isomorphism is not “natural” since any non-trivial isomorphism
V = V* depends on choosing bases in both V" and V*.

(2) We may iterate the dual construction and form V**, the double dual of
V. Note, that in this case there is a “natural” mapping n : V — V**
given as follows. Let v € V, f € V* and set
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One easily checks that n is a linear transformation; note that since its
definition does not depend on the choice of any bases, it is said to be
“natural.”

We may prove that n : V' — V* is injective, as follows. If 0 # v €
V', then we may extend v to a basis {v = vy, v9,...,v,} of V, using
the Basis Extension Theorem (1.3.1). Now apply the Extension by
Linearity Theorem (1.4.5) to infer the existence of a linear functional
f:V — F such that f(v;) = 1,7 =1,2,...,n. Therefore, n(v)(f) =
f(v) =1, so in particular, n(v) # 0. Thus, n: V — V** is injective, as
claimed. Finally, note that n must be an isomorphism since V' and V**
have the same dimension.

DEFINITION. Let V have dimension n with ordered basis A = (v, vq, ..., vy,).
We define elements v} € V* by setting

vi(v;) = d;; € F, j=1,...,n.

By the FEztension by Linearity Theorem (1.4.5), the above recipe uniquely
defines a linear transformation (functional) v} : V — F.

Cram: A" = (vf,...,v}) is an ordered basis of V*. Indeed, if

then

Y awi=0€eV*

=1

(3 o)) =0,

for all v € V. In particular,

0 = (2 o7 (1)

n

= > o] (vy)
=1

= aj -1 = aj.
Since j was arbitrary, we see that oy = s = --- = «, = 0, and so
vy, v5,...,v: are linearly independent. Since dim V* = n, we conclude that

(v}, v3,...,v%) is an ordered basis, called the dual basis of A = (vq,vg, ..., vp).

oy Uy



1.7. DUAL SPACES 37

By the same token, starting with an ordered basis (fi, fa, ..., fn) of V¥,
we have the dual basis (f}, f5,..., fx) of V**. In view of the isomorphism 7 :
V' — V** discussed above, we have vectors v} € V' defined by n(vf) = f7, i
1,2,...,n and so f;(vj) = n(v;)(fi) = f;(fi) = dij, and so (v}, vs,...,v;) is
dual to (fl, fg, Ceey fn)

REMARK: Assume that V is a vector space of countably infinite dimension
with basis {vq,v,...,}. We may define functionals v],v;,... € V* exactly
as above by setting

vi (v;) = di;
(apply the Extension by Linearity Theorem (1.4.5) [which is valid here, also).
However, we can show that:

V* £ (vf,v5,...,)
To this end, define f € V* by
f(v;) =1 1=1,2,...,
Then we cannot express
f= iaiv;‘ :
In fact, if V' is not finite-dimensional, then in the sense of cardinal numbers,

dimV < dim V™.

DEFINITION. Let V' be a vector space and let W C V' be a subspace. Set
Am(W) = {feV*|f(W)=0}tCV"

Then Ann(W) is a subspace of V*, called the annihilator of W.
Note that W; C W, C V implies

Ann(W7) D Ann(W3),

and so Ann(-) is an “inclusion-reversing” map. Similarly, if L C V* is a
subspace, we set

Amn*(L) ={v e V|f(v) =0 forall fe L} CV.
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DEFINITION. Let V' be a vector space (possibly infinite dimensional). If
H C V is a subspace of V such that

dimV/H =1,

we call H a hyperplane of V.

Proposition 1.7.3. Assume that dimV = n < oo and that W is a k-
dimensional subspace of V.. Then, dim Ann(W) = n — k. Likewise, if L C V*
has dimension m, then dim Ann*(L) = n — m.

PROOF: Let (vq,...,vx) be an ordered basis of W and extend it to a basis
(V1 ey Uk, Va1, -, Uy) Of V. Let (vF,...,0%) be the dual basis in V*. If

f=> aw € Ann(W),
i=1

then for all ¢ = 1, ..., k, we have 0 = f(v;) = a;. Therefore, f € (vj,4,...,v}).
Clearly,
<UZ+17 s ,U;;,> g Ann(W)a

and so dim Ann (W) = n — k as claimed. The second statement follows from
the isomorphism V = V**,
|

Corollary 1.7.3.1. If dimV = n < oo then Ann : {subspaces of V} —
{subspaces of V*} is a bijection with inverse Ann".

PROOF: Note that if W C V' is a subspace, then W C Ann*Ann(W) and

apply (1.7.3).
|

ExamMpLE. If 0z# f € V* then ker f = H is a hyperplane of V. Indeed,
V-LF

is surjective and so by the Fundamental Homomorphism Theorem (1.6.4), we
have V/H =2 F. Therefore dim (V/H) = 1, which implies that H is a hyperplane.
Conversely, if H C V' is a hyperplane, then dim (V/H) = 1, forcing V/H = F.
Let T : V/Hi]F. Now, set f =T o7y

1% - V!
N
f
V/H
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Note that ker f = ker 1y = H. More generally, if W C V and if dim (V/W) =
m, we say that W has codimension m in V. Therefore, hyperplanes have
codimension 1.

Proposition 1.7.4. If W C V has codimension m, then there exist hyper-
m

planes H,, H,, ..., H,, such that W = (| H,.
L

)

PROOF. By Proposition 1.7.3, we have that dim Ann(W) = m and so
Ann(W) has a basis {f1, f2, ..., fm}. By (1.7.3.1) we have

W = Ann*(fi, ..., fu) = ﬁ Ann*(f;).
i=1

Setting H; = Ann*(f;) (= ker f;), ¢ = 1,...,m, we see that each H; is a
hyperplane and

Let T : V — V' be a linear transformation. We define a linear transfor-
mation 7% : V* — V* by the following diagram:

Vs
T*(f/) lf’ev *
F

In other words, if f' € V'*, set
T*(f) = f'oT:V —T.

Note that T*(f') € V* since the composition of two linear transformations
is linear. 7™ is linear as

T"(fi+fo) = (fi+fo)eT
= T°(f) +T*(f3):

Also, it is clear that
T*(af') = aT*(f").
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Note that if v € V, f' € V'*,

T*(f) () = F(T () = (f e T)(v),

so T*(f') = f' o T, proving that the diagram commutes.
[ |

Proposition 1.7.5. Let T : V — V' be a linear transformation. Let A =
(01, ... vn), A" = (v],...,v],) be ordered bases for V' and V', respectively,
and let A*, A* be the corresponding dual bases of V*, V'*, respectively.
Then,

The e = (T a)T

where, for any matrix A, AT denotes the transpose of A.

PROOF: Let Ty 4 = [ay], so
T(vj) = v}, j=1,2,...,m.
i1
Let T, ;. = [0ij] € Mpm(F), that is,
, n
(UJ*):ZﬁijU;k, j=1,...,m.
i=1
Then,

8, = (iﬂmv;xw)

Finally, let T": V' — W be a linear transformation of F-vector spaces. We
define the adjoint of T to be the linear transformation 7% : W* — V* by
setting

T"(f)wv) = f(T(), feW veV
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In other words, T*(f) = foT, and so T*(f) is certainly a functional defined
on V. To see that T* is itself linear, we proceed in the obvious fashion: if
ar, a9 €T f1, fo € W* and if v € V), then

T*(anfi +azf2)(v) = (anfi + azfo)(T(v))
= a1 fi(T(v)) + azfo(T'(v))
= aiT"(fi)(v) + T (f2)(v)
= (T (f1) + a2T*(f2))(v).

Therefore T* : W* — V* is a linear transformation. We shall study adjoints
in much more detail in Section 3.2.
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Chapter 2

Eigenvalues and Eigenvectors

2.1 Basic Definitions

DEFINITION. Let T : V — V be a linear transformation of the vector space
V into itself. The vector 0 # v € V is said to be an eigenvector of T if there
exists A € F with T'(v) = Av. The scalar A is called the eigenvalue of T
corresponding to v.

ExAMPLE. Let V' be the set of all infinitely differentiable functions and let

T:i:V—>V
dx

Then, v(z) = e is an eigenvector of T because

d
%v(x) = \v(x).

DEFINITION. Let T : V. — V be a linear transformation on the finite
dimensional space V. Define the determinant of T

det(T) = det(Ty)

where A is an ordered basis of V. Note that this is well-defined, for if A’ is
another ordered basis of V', and if

Caw =P
is the change of basis matrix then

Ty = P YT,P.

43
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By familiar properties of the determinant, we have

det(Ty) = det(P 'TyP)
= det(P") det(T) det(P)
= det(Ty) det(P ') det(P)
= det(Ty) det(P 'P)
= det(Ty).

Recall that a matrix A is invertible if and only if
det A # 0.

Correspondingly, if T : V' — V is a linear transformation on the finite
dimensional vector space V, then T is invertible if and only if

det T # 0.

This implies the following.

Proposition 2.1.1. Let T" : V — V be a linear transformation on the
finite-dimensional vector space V. Then A € F is an eigenvalue of T if and
only if det(T' — A\I) = 0.

PRroOF. If ) is an eigenvalue of T" with eigenvector v € V, then it is clear
that v € ker (T' — AI), and so det(T'— A[) = 0. The converse is entirely
similar.

Calculation of eigenvalues (and eigenvectors) of T : V — V:

(1) Relative to the ordered basis A, set A = T4 and solve the (polynomial)
equation
det(zl — A) =

for z. (If dim V' = n, then det(xI — A) is a polynomial of degree n. This
polynomial is called the characteristic polynomial of T and is denoted

cr(z)).

(2) For each solution x = A € F, solve the equation

(T — M) =0
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for v. In terms of matrices and solutions of homogeneous linear systems,

one solves
(=] 0]
(A - )\I) :2 = )
o 0

a system of n equations and n unknowns. If x1 = ay, 20 = ag, ..., z, =
oy, 1s a nontrivial solution, then

n
v = Zaivi eV
i=1

is an eigenvector of T' corresponding to A.

Theorem 2.1.2. Let T : V — V be a linear transformation of the finite
dimensional vector space V. Then T is diagonalizable if and only if V' has
an ordered basis consisting entirely of eigenvectors.

PROOF. Assume T is diagonalizable. Then (see page 27), there exists an
ordered basis

A = (v1,v9, ..., )
such that
A O 0
Ty = 0 Ao
. S
0 0 X\
This means that
T('Ul) = )\1'U1
T(Ug) = )\21)2
T(vy) = Ay

and so each v; is an eigenvector, which is to say that A consists entirely of
eigenvectors. Conversely, if A consists entirely of eigenvectors,

T(Ul) = )\11)1
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T (vy) = Apuy
for suitable A\i, Ao, ..., A\, € F. Thus,

N O o 0

Ty = 0 Ao ,
) 0
0 0 A\,

and so 7' is diagonalizable.
[ |
In terms of matrices, a matrix A is diagonalizable if and only if there
exists an invertible matrix P such that

P~ 'AP = D,
a diagonal matrix.
If
A O 0
D= 0 X ,
0 0 A,
and if
P11 P12 - DPin
p_ P.zl p.22 : p?n
Pnt Pn2 *** DPnn
then
P11 P12 ' DPin [)‘1 0 - O-I
ap=pp=| " P2 P 0 A
P11 Aepia 0 ApPin

AiPa1 Ag2pae - Appon

)\lpnl )\2pn2 )\npnn
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[ P11 P12
P21 P22
= | A\ . A2 .
Pn1 Pn2
As for the left hand side:
ay; - Qip
ap1 - Ann
[ P11
= { A :
Pn1
Comparing both sides, we have
P11
A : =
DPn1
Pin
A : =
pnn

i.e., the i-th column of P is an eigenvector in " with eigenvalue A;.

EXAMPLE. Let

1

If possible, find invertible P with P~'AP = D is a diagonal matrix.

DPin -|
D2n
An .
Pnn
Puir - Pin
Pn1 " DPnn
Pin ]
A : } )
Pnn
P11
A :
Pn1
Pin
An :
Pnn

o]

SOLUTION:
det(A—zI) = 0, so
—2—-x 1
det { 1 L9 } 0
2+z)*—-1 = 0
242z = +£1
r = —2+£1

= -3, -1

47
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If Ay = —3, then
Ty | _ 11 Ty | 00
if and only if
Tl = —T9
Therefore, corresponding to A\ = —3 we have an eienvector v; = { _i ]
If Ao = —1, then
x| | -1 1 x| |0
(A=) Ty _{ IR I _{o}
if and only if
—I + To = 0
and so
1 = Ta.
Thus, corresponding to Ay = —1 we may take
1
Vg = 1|
Set
-1 1
P= { L } .
We get
1 =3 0
P AP = { 0 1 |-
Occasionally, we need to determine P~!:
11
P=]Tt 1
2 2
2.1.1 The Matrix Exponential
Let A € M,(R). We define
eA _ i lAk
= o
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This is a convergent series. If we introduce a parameter, we have

oA —

(tA)*

K
k‘|)—l

ES
Il
)

<~
Bl

I
K
=

Ak

ES
Il
)

with convergence for every t € R.

-2 1
=7 =)

as in the section above, we compute e**. Note first that the individual powers
of tA are not easy to calculate, and so a direct approach is not feasible.
However, we have already seen that P~'AP = D, where

1] 0= 2]

ExamPLE. If

Therefore,

-3 0
-1 — —
But P AP_D_{ X _1},

so A= PDP!, forcing

tA - tk k
k=0
9 tk: Ik
= Y L(PDPTHE
k=0 """
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Note, however, that
(PDP™Y* = (PDP~')(PDP™")---(PDP™")
= pDFp,
and so,

00 tk B
etA — ZH(PD/CP 1)
k=0
= P} —=D"P!

k=0

-1 1)fe® o0 —
B 11 0 et 5

N[ =0 [ =
—_

APPLICATIONS. Let F = R, the field of real numbers.

Consider the first-order ODE:
X'(t) = AX(t),

where

X(O) =Xy = ) AGMn(R)v X(t) = :
x,(0) T (t)

The general solution is given by

X(t) =

Cn
where ¢y, ..., ¢, are arbitrary parameters. The particular solution is
X(t) = e X,.
As observed above, this can be solved easily if we can find matrix P satisfying

P 'AP = D(= diagonal matrix).
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Next, we consider systems of second-order ODE. First of all, if A > 0, the
ODE
" (t) = =z (t)

has a general solution of the form
(1) = agsin(V M + by),

a purely sinusoidal solution. A particular instance of this type of problem
comes from elementary physics.

LINEAR HARMONIC OSCILLATOR. Consider the linear harmonic oscillator
with equal masses m and spring constants k. It is a simple application of
Hooke’s Law to determine the equation of motion for the evolution of the
system, given that the initial positions of the masses are z;(0) = 2\, x9(0) =

xgo) and the initial velocities are zero.

/1 I\
/1 k k k I\
/| -——=000000---[]---000000---[]---000000——| \
/1 m m I\
/| I\
_____________ | e | e
r = 0 To9 = 0

The relevant equations are

z{(t) = —2kxi(t) +  kxo(t)
zy(t) = kxi(t) — 2kxo(t).

The above system can be written in matrix form as:

o= 7 ][50 ]

: 0 7y
X =g xo=] % |
T2
We continue the above analysis in the following more general context.
Suppose we have the second-order system of ODE

(1) }

a1 A2 To(t)

X"(t) _ { @11 QA12
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NOSI X(O):[féﬁi]-

La
Suppose there exists an invertible matrix P with

-\ 0}

P AP = { A, Ao > 0.

0 =X

Define new variables v, y2 by the equation
T
T2

(1 y1(t) }
=P =P .
{ Y2 } { ya2(t)
Then, the ODE becomes

L8112 213

and so,

WO pap[ 0]
Y

-2 2]l
0 =Xz || %) |’
thereby decoupling the system into two second-order ODEs:

?/1,(75) = -\ (t)

Y (t) = —Aayp(t)
with solutions that are purely sinusoidal.

2.2 Eigenvalues and the Minimal Polynomial

2.2.1 Some recollections about polynomials

Let F be our field and let F[z] be the ring of polynomials with coefficients
in F. We shall state without proof some familiar facts about polynomials,
starting with the following:

2.2.1 (Division Algorithm). Let f(z),g(z) € Flz],g(x) # 0. Then there
exist (unique) polynomials q(x),r(x) € Flz] such that

f(x) = q(x)g(z) + r(z)

where
degr(z) < degg(z).
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2.2.2 (Unique Factorization). If f(x) € F[z] then f(x) can be uniquely
factored as

f(x) = pi(x)" pa(2)” - - - pr ()™

where py(z), ...,p.(z) are distinct irreducible polynomials and ey, e, ..., €,
are positive integers.

|
DEFINITION. Let f(x),g(z) € Flz] and assume that d(z) is a monic poly-
nomial which is a divisor of both f(z) and g(z) (write d(z)|f(x),d(z)|g(x))
such that if do(x) is another common divisor of f(x), g(z) then

do(x)|d()
In this case, call d(x) the greatest common divisor of f(x),g(z), and write
d(z) = GCD(f(x), g(x)).

Similarly, one defines the least common multiple, denoted LCM(f(x), g(x)).

REMARK: If f(x), g(x) have been factored into irreducibles, then
GCD(f(x), g(x))

LOM(f (), g())

are easy to calculate.

EXAMPLE. Let F = R and assume that

flz) = @+1)'@*—2+1)(z—2)"(z+5),and
g(z) = (2* —2x+1)*(z —2)*(z — 64)%

Then

GCD(f,9) = (2> —x+1)(z —2)*, and
LCM(f,g9) = (2*+1D*2* — 2+ 1)*(z — 2)* (v + 5)(x — 64)°.

DEFINITION. Polynomials fi(x), fo(z) € F|x] are said to be relatively prime
if they share no common nontrivial factors, i.e., if GCD(fi(z), f2(z)) = 1.
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EXAMPLE. Let F =R,

filz) = (2 —2)%x—4)(2* +x+1)?
folz) = (v —3)(2* + 22 +2).

Then fi(x), fo(x) are relatively prime.

More generally, polynomials fi(z), ..., fr(z) are said to be relatively prime
if there is no common factor in the fi(z), ..., fr(z).

EXAMPLE. Suppose we have f(z) € F[z] with factorization

f(x) = pi(2)" pa(z)” - - - pro(w)*

where py(x), ..., pr(z) € Flz] are irreducible, pairwise distinct polynomials.
Form new polynomials

@(x) = pi(@)pa(2)” - pe(@)™,

el e .

() = p1(x)pa(x)® - - pr(z)e.

The hat indicates we are not to include the factor beneath it.

Note that ¢, (z), ..., gx(z) are relatively prime but no proper subset of these
polynomials is relatively prime.

2.2.3 (Euclidean trick). Let fi(x),..., fe(x) be relatively prime. Then
there exist polynomials

s1(x), ..., sp(z) € Fx]

such that
s1(x) f1(z) + s2(x) fa(x) + - - - + sp(x) fu(x) = 1.

EXAMPLE. Let F =R

filz) = 22 +2+1
folz) = 2> — 2+ 1.
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Then,
5= D) + S+ DR = 1

Let T : V — V be a linear transformation. As we have seen, the F-vector
space L(V, V') (the set of linear transformations V' — V') has dimension n?,
if dim V' = n. Therefore, the linear transformations
2

I, =T7°T" ... 1T"

are F-linearly dependent Therefore, there exist ag, ay, ..., a,2 € F (not all 0)
with

1=0

In other words, if we set

0# f(z) = nZaixi € Flx]
i=0

then f(T) = 0.

DEFINITION. Let mq(x) be the monic polynomial of least degree in the set
of polynomials

{0 # g(x) € Flz]|g(T) = 0}.

Call my(z) the minimal polynomial of T

At least two questions ought to be asked now:

(1) How do we compute my(x)? (This question is generally difficult. How-
ever, there is an algorithm for doing this.)

(2) What is the relationship between my(x) and c¢p(x) (the characteristic
polynomial)?

Lemma 2.2.4. Let my(z) be the minimal polynomial of T and let f(zx) €
Flz] with f(T) = 0. Then

mr ()| f(z).
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PROOF. Use the division algorithm (2.2.1) and write
f(z) = q(z)mr(z) +r(z);
we must show that r(z) = 0. But,
0= f(T) = q(T)mo(T) +r(T),

which implies that r(7T') = 0. However, degr(x) < degmg(x). This contra-
dicts the minimality of mq(x) unless r( )=0.
|

DEFINITION. As with the minimal polynomial of T, we can define the min-
imal polynomial of a vector relative to T: if 0 # v € V, set mr,(x) = the
monic polynomial of least degree such that

mr,(T)(v) = 0.
The existance of myg, () is guaranteed since my(T)(v) = 0.

Exactly as with the previous lemma, we have the following.

Lemma 2.2.5. Let 0 # v € V and let f(z) € Flx] with f(T)(v) = 0. Then
mry(z)|f(z). In particular, mr,(z)|mr(z).

[
As we have already seen,

deg mp(z) < n?.

However, we can do much better than this; it turns out that deg my(z) < n,
as we shall show below. First, however, we need some preliminary results.

Lemma 2.2.6. If0 # v € V then degmy,(z) <n=dimV.

PROOF. Note that
v=1vy=T°0), v, =T ), ...,v, = T"(v)

are linearly dependent, so there exist scalars «y, ..., a,, € F not all 0 with

éaiTi(v) =
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If .
f(z) = Zaixz,
i=0

then

f(T)(v) =0,
SO

mry(@)|f(2),
i.e.,

Lemma 2.2.7. Let 0 # v € V and assume that mr,(x) = fi(x)- fo(z) where
both factors are monic. If w = f,(T)(v), then my,,(x) = fo(x).

PRrOOF. Note that
f(T)(w) = foT)f(T)(v)

by definition. This implies that mr,,(z)|f2(2) :

fo(z) = q(@)mr,(2)
But
0 = mru(T)(w)
= mT,w(T)fl(T)Ua

which implies that
My (x)[mrw (@) fi(2),

which of course implies that fo(x)|mz,(x).

Lemma 2.2.8. Let v,v, € V and assume that
mr (x) = fi(z),
mr,(z) = fa(z)

are relatively prime. Then

M ;15 (2) = f1(7) f2(2).
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PROOF. The polynomial f(z) = fi(z)fo(x) satisfies
M) (o +ws) = f(T)(01) + f(T)(v2)
= (1) fu(T)(v1) + f1(T) f2(T)(v2)
= f(T)(0) + £(T)(0)
= 0+0=0.

Thus My, 40, (2)] f1(x) f2(z). Next, assume that g(x) € Flx] satisfies
g(T)(Ul + 7)2) =0.

We wish to show that f(x)|g(z); this will say, in particular, that f(z)|mr, v, ().
Since f(z) = fi(z)f2(x) and since fi(x), fo(x) are relatively prime, it is
enough to show that

fi(@), fa(x)|g ().

By hypothesis,
Therefore,

and

L(T)(g(T)(v) = fT)(=g(T)v2)

Likewise, f1(T), fo(T') both kill g(T")vs.
By the Euclidean Trick (2.2.3), there exist

s1(x), so(z) € Flz],
s1(2) f1(z) + s2(2) fo(x) = 1,
which implies that upon substitution by 7" we have
s1(T) f1(T) + so(T) fo(T) = I,
where [y is the identity transformation on V. Therefore,
g(T)vy = Iy -g(T)u

= (1M AT) + fo(T)s2(T))g(T)va
= 0.

Similarly, g(T)ve = 0. Therefore, as fi(z) = mg,, (z), we get fi(x)|g(z);

likewise fo(z)|g(x).
|
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Proposition 2.2.9. Let T' : V — V be a linear transformation. Then
there exists a non-zero vector v € V with mr,(z) = myp(x).

PROOF. Since 0 # v € V implies that mr,(x)|mr(z), we may choose v € V
so that degmr,(x) is maximal. Now let w € V be an arbitrary non-zero
vector. We claim that

M () My (2)
Factor both polynomials into products of irreducible polynomials.

€2 |

mrw(r) = pi(z)"p2(2)”---pe(2)” € >0
mry(r) = pi(@)pe(x)?--p(a) fi>0

If mrw(x) fmr,(x), then there exists an index ¢ : such that
e; > fi.

Let

wl = pl(T)el . .pZ(T)ez . .pr(T)erw_
Then by Lemma 2.2.7

m ' (ZL‘) = pz(x) :

If o' = p;(T)%iv, then

mry (z) = pi(x) - pi()fi - pp ().
Thus, by Lemma 2.2.8

My () = p1(2)

which has degree greater than degmr,(x), contradicting the maximality of
the degree of the latter, thereby proving our claim. It follows that, for all
w €V, mr,(T)w = 0, that is, mz,(T) = 0 and so my(z)|mr,(x). Clearly,
then, mr(z) = mr,(x), and we are done.

|
Corollary 2.2.9.1. degmy(z) < n = dimV.

PROOF. Choose 0 # v € V with

mr(x) = mp(x).
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By Lemma 2.2.6
deg mT,v(x) S n,

so we're done.

ExXAMPLE. Let

-

Then T? = I, and so mr(z) = z* — 1. Therefore if 0 # v € V, then

10

:a,bER}, T:{O 1}.

my(7)]z? — 1.
(1) If myy(x) =2 — 1, then
(T —I)v =0,

forcing
Tv=1v=uv,

and so v is an eigenvector with eigenvalue 1.
(2) If mp,(x) =2 + 1, then
(T'+ Iv =0,

and so
Ty = —1Iv = —v,

i.e., v is an eigenvector with eigenvalue —1.

(3) Here, if

then, of course,

Note, however that

e[ 2][314[2)

r+ne=|1 4| [3]#]0]-

and that
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It follows, therefore, that
mr.,(z) = 2% — 1.

Watch this : if v; = (T + I)v, then

mT7U1 (l‘) =

That is, vy is an eigenvector with eigenvalue 1.
! 31 |5
Tl 2T s
5 5
([3])=15)

Likewise, if

voy = (T — 1),
then 24
l‘ J—
mry—1(x) = " =r+1

i.e., v_1 is an eigenvector with eigenvalue —1.

EXAMPLE. V = RZ; let

1 -1
Note that
T>+T+1 = {_i H+H _”Jr
{1 0]_{0 0}
01 0 0]’
S0,

my(z)|2? +z + 1.

But as 22 4+ 2 + 1 is irreducible over R, we must have
mr(r) =2? +x + 1.
Likewise, if 0 #£ v € V, then

mT,U(x)|x2 +x+1
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which implies that
mT,v(x) = xZ +T+ 17

for every nonzero vector v € V.
EXAMPLE. Let

f@)=2a2"+a, 12" '+ + a2 + ao.

If we define
0 0 -0 - —ag ]
1 0 v v —q
T=1|0 o Tl —as ,
I e R

(often called the companion matriz of T) then setting

a pretty easy calculation reveals that
mr.(2) = f(2).

Since
dimV = dimR" = n = deg(f(x))

we must have, by Corollary 2.2.9.1

As a result of the above example, we have the following corollary:

Corollary 2.2.9.2. For any monic polynomial f(x) € Flx], there is a linear
transformation T : V. — V with
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[ |

The following is fundamental, both for the proof of the “Restricted Cayley-

Hamilton Theorem” below, as well as for the proof of the “Spectral Theorem”

in the next section. First of all, if T : V' — V is a linear transformation and
if W C V is a subspace, we say that W is T-invariant if T (W) C W.

2.2.10 (Primary Decomposition Theorem, Part I). Let T : V — V,
dimV < oo, mp(x) = p1(x)® - pp(x)®*, where pi(z), ..., pr(r) are distinct
monic irreducible polynomials in F[z]. For each i =1, ..., k, set

Vi = ker p;(T)%.
Then each V; is T-invariant and
V=VieWhed oV

Furthermore, if

is the restriction of T' to V;, then
mryy, () = pi(T), i=1,.. k.
Proovr. That each V; is T-invariant is easy. Next, define polynomials
gi(x) = mrp(x)/pi(x)”
= p(2) - pix)ei - prla)®.

Note that if v € V', then ¢;(T)v € V; because

pi(T)q;(Tyv = mp(T)v
Next, as ¢i(x),...,qr(x) are relatively prime, then by the Euclidean Trick
(2.2.3), we have s1(x), ..., si(z) € Flx] with

51(2)q1(7) + s2(2)q2 () + -+ + sp(z)qr(2) = Iy

Therefore,

and so for all v € V,

v = Iy(v)
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But, ¢;(T)v € V;, and V; is T-invariant, so
si(T)(@:(T)v) €'V,
also. In other words,
V=Vi+Vot- -+ V.

Finally, we show that the above sum is direct. To this end, let w; € V;,7 =
1,2, ..., k satisfy
’U)1+’lU2+"'+'LUk:0.

Now fix i, 1 < i < k and use the Euclidean trick (2.2.3) to obtain polynomials
s(x), t(x) € Flz] with

s(@)pi(e) +t(w)gi(xr) = 1.

Here, we have

w; = vai
= s(T)pi(T) w; + t(T)qi(T)w;
Since t(T")q;(T)w; = 0 for each j # ¢ we conclude also that ¢(T")¢;(T)w; = 0,
since w; = — > w;. Therefore, the above implies that each w; = 0 and so
i#i

the sum is direct, as claimed.
Finally, note that

mayy, (x)|pi(2)”,
and so we may write mry,, (v) = pi()fi, where f; < e;. We set
f(@) =pi(2)t ().
If v € V is arbitrary, we may write
vV=v1t+ v+ U
for suitable v; € V;, 1 =1,..., k. Then
f(Tyw = f(T)or+ -+ f(T)os;
but

Ty = (something)pi(T)v
= (something)(0)
— 0,



2.2. EIGENVALUES AND THE MINIMAL POLYNOMIAL 65

as p;(z)fi = mq,. (z) and v; € V;, i = 1,....k. Thus f(T)v = 0, and so
mr(x)| f(z). Therefore, it follows that no f; can be strictly less than e; from
which it follows that mry,, = p;()* as claimed.

[ |
DEFINITION. A linear transformation P : V' — V is called an idempotent
if and only if P? = P. Note that any idempotent must be a root of the
polynomial z(z — 1) and hence must be diagonalizable (with all eigenvalues
being 0 or 1). A family {P;, P, ..., P;} of idempotents is called orthogonal
if P,P; = 0 whenever i # j.

Now let T : V — V be a linear transformation with minimal polynomial
mr(x) = p1(x)pa(x)® - - - pr(x)®. As usual define the polynimials ¢;(z) =
my(x)/pi(x)¢, i =1,2,..., k and let s;(x), sa(x), ..., sp(x) be determined so
that

s1(z)q1(x) + s2(x)ga(x) + -+ - + sp(x)qr(z) = 1.

Set P; = s;(T)q;(T'); obviously we have
P4 Pyt-t P = Iy
Furthermore, note that if 7 # j, then
PPy = si(T)qi(T)s;(T)q;(T) = 0,

since obviously myr(z)|q;(x)g;(x) whenever i # j. Therefore, it follows that
foreach 1 =1,2,...,k

P = P(P,+Py+---+ B,) = P,

)

and so P, P,,..., P, are orthogonal idempotents. Note that each of these
idempotents clearly commute with 7" as each is a polynomial in T'. In par-
ticular, each subspace P,V is a T-invariant subspace of V', 1 =1,2,... k.

2.2.11 (Primary Decomposition Theorem, Part II). Let T : V — V,
dimV < oo, mp(x) = p1(x)® - pp(x)®*, where pi(z), ..., pr(r) are distinct
monic irreducible polynomials in Fz|. Then there exist orthogonal idempo-
tents P, Py, ..., P, commuting with T' such that

V=PVaePRV® &PV,
furthermore, we have

PV = kerpi(T)ei, = 1,2, .. .,k.
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PrOOF. Since P, + P, + -+ + P, = Iy, we have
V = PV+ PRV +---+ PBV.

If v e PVN Y PV, then v = ZP(U]) where each v; € V, and so v =
Jj#i
P(v) = P, Z P;(v;) = 0. Therefore the above sum is direct. Finally, note

that as PZ = sl(T)ql(T), where the polynomials s;(z),¢;(z), i = 1,2,...,k
are constructed as usual, then p;(T)%P; = 0, and so P,V C ker pi(T)ei, z' =
1,2,...,k. Since

PVe&RV®--- &PV =V = ker pi(T)" @ker po(T)*®- - -dker py(T)%,

we infer that P,V = ker p;(T)%,i=1,2,...,k.
|

Corollary 2.2.11.1 (Spectral Decomposition). Let T : V. — V be a
diagonalizable linear transformation. Then there exist orthogonal idempo-
tents Py, Py, ..., Py, each commuting with T, and scalars \i, \s, ..., \; (the
eigenvalues of T') such that

T - )\1P1+)\2P2++)\kpk

PROOF. We have that my(z) = (x — A\y)(z — Ag) -+ (z — Ag); from (2.2.11)
we have orthogonal idempotents Py, P, ..., P, such that

V=PRPVORV®---& BV,

where P,V =ker (T — N Iy), i =1,2,...,k. That is to say, T acts as scalar
multiplication by \; on PV, 1 =1,2,..., k. The result follows.
[ |

2.2.12 (Restricted Cayley-Hamilton Theorem). Let V be a finite-
dimensional vector space over the algebraically closed field F.! (For exam-
ple, take F = C.) If T : V — V is a linear transformation, then

mr(z)|er(x).

LA field F is called algebraically closed if every polynomial f(z) € F[z] splits completely
into linear factors in F[z]. Actually, the present theorem is valid even when the field in
not algebraically closed. A proof of this more general version will be given in Section 4.3
in Theorem 4.3.3 as an application of tensor products.
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PrRoor. We factor
mr(z) = (. — A (@ — Ag)? -+ (2 — M)

for suitable Ay, ..., Ay, € F. By the Primary Decomposition Theorem (2.2.10),
we can decompose V' as a direct sum:

V=& - ®V Vi=ker(T-X\NI)" i=1,..k.
We have that V; is T-invariant and
mryy, (x) = (x — \)“.

From (2.3.9.1),

IN

dim V;
= deger),, (x).

deg mT|Vi =€

Claim: cry,, (7) = (v — M)fi, where f; = dim V;. If not, then (z — Alery, (x)
for some X # \;, i.e., the restriction of T" to V; has an eigenvalue other than
Ai Thus v; € V;, v; # 0 with T'(v;) = Av;, i.e.,

(T — M)v; = 0.

By the Euclidean Trick (2.2.3) applied to (r — X\;)% and (x — \) we get
polynomials s(z), t(z) with

s(x)(x —N)“ +t(x)(x —A) = 1.
Therefore,

v, = ['Uz'
= S(T)(T — \I)%v; + (T)(T — \)v;
= 0+0=0

a contradiction. This proves the claim. Finally, if we choose ordered bases
A; C V;, then we can obtain an ordered basis of V:

AiuAd, U---UA, = A
Relative to this basis, we have

(T'lvi) s 0 0

TA — 0 (T|V2)A2

0 o 0 (Thi)a,
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and so

cr(z) = det(zl —T)

det(zl — Ty)
xl — (T|V1)A1 0 e 0
— det 0 xl — (T|V2)A2 :
: 0
0 0 xl —(T|w)a,

= det(z] — (T|w)a,) - -det(zI — (T|v;,) 4,)
= o)y, (2) - orpy, (@)

= ($ — )\1)f1 ce ($ — )\k)fk-

Since mp(x) = (x — A\) -+ (x — A\p)%*, ¢, < fi, i = 1,2,..., k, and conse-
quently
m(z)|er(z).

The following is immediate.

Corollary 2.2.12.1. If T is algebraically closed, and T : V — V is a linear
transformation of the F-vector space, then cp(T) = 0, i.e., T satisfies its own
characteristic polynomial.

[ |
Again, the above is valid even without assuming that the field F is alge-
braically closed. We defer the proof of this until Section 4.3.



Chapter 3

The Spectral Theorem

3.1 The Geometry of Hilbert Spaces

Unless specified otherwise, V' is a finite-dimensional vector space over C.

DEFINITION. A Hermitian Inner Product (-,-) : V x V — C is an inner
product satisfying the following conditions: for all v, w,v,vy € V, X € C:

v,w) = (w,v)
(v,v) > 0 with equality if and only if v = 0.
Note that

(Ul + V2, ’U) =

(M, w) = (w, )

= i(w,v)
= A(w,v)
= Ao, w).

69



70 CHAPTER 3. THE SPECTRAL THEOREM

A finite-dimensional complex vector space V' together with a Hermitian inner
product is called a (finite-dimensional) complex Hilbert Space.

Lemma 3.1.1 (Cauchy-Schwarz Inequality). If v,w € V, then
| (v, w)| < ] - fJewl],

where
[0l = (v, v).

PROOF. Define the quadratic function of ¢ € R as follows:
q(t) = [lv —tw|]* > 0.
Then
q(t) = (v—tw,v—tw)
= (v,v) — t(w,v) — t(v,w) + t*(w, w)
= Jloll* = t((w, v) + (v, w)) + ¢*]|w|*

From this we see that the discriminant of ¢(t) satisfies
disc(q(t)) = 4(Re(w,v))* — 4[Jw|*[[v]|* < 0.
Case 1: If (w,v) € R then

0 > disc(q(t))
= 4(v,w)* = 4flw|?|lv]?,
AlwlPlloll* > 4(v, w)?
[Pl > (v,w)?
wl[[[oll > |(v,w)],

proving the result in case (v, w) € R.

Case 2: (v,w) € C—R

Setu:(w—lv)v; then
() = (——-v,)
u,w = (w,v) v, w
1
= (w,v)(v,w)
= (U’w)zleR
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By Case 1, we get

L= ww) < ull - [lwl]
v

1< .
< Nl
But, for any vector z € V, and o € C, ||ax|| = |e|||z||. Therefore,
o]
1< lwl
|(w, v)|

|(w, )| < Jlvflflw]-

Because |(w,v)| = |(v,w)],

(v, w)[ < Jlvl} - fJwl]-

71

The Cauchy-Schwarz inequality can be used to show that the inner prod-
uct defines a complex-valued continuous function V- x V' — C; see Ezercise 3

of Appendixz H.
3.1.2 (Triangle Inequality). If v,w € V, then

[o 4wl < {Jof| + flw]-

PROOF. We have

lv+w|? = (v+wv+w)

(v,v) 4+ (v, w) + (w,v) + (w, w)
= [Jol* + (v, w) + (v, w) + [|Jw]]®
[]1? +2[(v, w)| + [Jw]|?

1] + 2wl lw]] + [Jw]|?

(l[oll + [lwll)?,

VANRVAN

and so
v+ wl| < lo|| + [Jw]].
The above allows us to define a “distance function” on V:
d(v, w) = [lv — w|.

This distance function satisfies the following conditions:
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d(v,w) > 0 with equality if and only if v = w,
d(v,w) = d(w, v), and

d(v,w) < d(v,u) + d(u, w),

for all u,v,w € V. Thus, one can define “basic open sets” U.(v) in V' by
setting

Ue(v) = {w € V]d(v,w) < €}.

These sets form a base for a topology on V' called the metric topology relative

to d.

1.

The following pleasant features emerge:

V x VQKC is continuous, when V' x V' is given the product topology
and C carries the usual metric topology (d(z1, 22) = |21 — 22]).

. Any linear transformation 7' : V' — V is continuous.

Let B={veV:l|v]| <1}, and let : V — V be a linear transfor-
mation. Then T'(B) is compact. (In the present setting, this is quite
trivial: T is continuous and B is closed and bounded, hence is compact.)

If feV*then f:V — C is continuous.

If W C V is a subspace, then W is closed (false in every infinite di-
mensional Hilbert space).

V' is complete, i.e., if (v,) is a Cauchy sequence in V' (given € > 0, there
exists NV such that for all n,m > N, ||v, — v,|| < €), then there exists
v € V with

lim v, = v.
n—oo

3.1.1 Orthogonal complements

DEerINITION. If W C V is a subspace, we set

W+ ={veV|(wv)=0 forallwe W},

i.e., the set of all vectors in V' orthogonal to each vector in W.
Since (w, -) is linear, we see that W+ is a subspace of V. In fact

W= ker(w,-).

wew
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If w # 0, ker (w, ) is a hyperplane, so the above equation represents W+ as
an intersection of hyperplanes, c¢f. Proposition 1.7.4. If w € V is a fixed
vector, set

DEFINITION. An orthonormal basis is a basis {v, ..., v, } where
(Ui, Uj) = 62]

If W is a subspace of V, we have, by Lemma 3.1.4.3, that V =W @ W+, If
v € V, we can write vas v = w+w', w € W,w' € W+. We set w = projyy (v),
the projection of v onto w.

Lemma 3.1.3. An orthonormal basis exists.

PROOF. Let 0 # v; € V, and set

U1
u:—.
o]
Then
) U1 n
U = (U u = TR
el = () = (o
1
- ||v1||2(vbvl)
IS
el

Next, since u; L is a hyperplane and (u;) Nu; L= {0}, we infer that

V = (u1) ® u; L. By induction, (u;)* has an orthonormal basis {us, ..., U, };
it is then obvious that {u,, ..., u,} is an orthonormal basis of V.

[

The following is a rather more explicit version of the above.

3.1.4 (Gram-Schmidt Process). Let (vy,...,v;) be an ordered linearly
independent set. Then, there exists an ordered set (uy, ..., uy) of orthonormal
vectors such that
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PROOF. Set uy = pibr. Then [lus||* = 1 and (u1) = (v1). Set

Then,
(ug,u1) = (va, u1) — (vg, ur) (w1, us)
[[v2 = (v2, ur)ua |
=0
and so {ug,us} is orthonormal, and (uy, us) = (vq, v9).
Set
U — vz — (U3, Uz)Up — (U3, u1)uy
5 =

|vs — (v3, ug)ug — (v3, ur)u]

(u3, uz) = (us, u1) =0,
and |lug]|> = 1. Continue in this way, obtaining vectors uy, us, ..., u) with

the stated properties.
[ |

Corollary 3.1.4.1. Let W C V be a subspace of the finite-dimensional
complex Hilbert space, and let (uy,us,...,u;) be an ordered orthonormal
basis of W. Then this can be extended to an ordered orthonormal basis
(W1, Uy ooy Upy Upi 1y -« -5 Up) OF V.

Corollary 3.1.4.2 (Fourier Analysis). If (ui,...,u,) is an ordered or-
thonormal basis of V', and if v € V then the coefficients of v relative to
(uy, ..., up) are simply inner products:

Proor. If 1 <75 <n,

n

(0= 3 (s 0)usug) = (o) — 3 (i 0) (s 1)

=1
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Thus,

n
v =3 (uv)u; € uy Nugy N+ Nu,y =V ={0}.
i=1

Corollary 3.1.4.3. If W C V is a subspace, then
V=Wew"

PrROOF. If w € W N W2, then (w,w) =0 = w = 0. Thus W + W+ =

W @ W=, Therefore, we need only show W 4+ W+ = V. Let dim W = k, with

ordered orthonormal basis (wy, ..., wy) (possible by Lemma 3.1.3). For any
k

vector v € V, set v’ = ¥ (w;,v)w; € W. Note that for any j = 1,2,...,k
i=1

we have

(U - Ula wj) = (Uv wj) - (Ula wj)
= (U’ wj) - ;((Uj’ U)wj’ wZ))

= (v,wj) — Z (wi, v)(wj, w;)

= (v,wj) — Z(Z,wj) = 0.

Therefore, v —v' € Wt andsov € v/ + WH C W + W+,

Corollary 3.1.4.4. If W is a subspace of V, then W+ =W.

Proor. If dimW = k the above shows that dimW+ = n — k. Thus,
dim W++ = k. Since W C W+, we are done.
[ |

DEFINITION. If W is a subspace of V', we have, by Corollary 3.1.4.3, that
V=WaeW IfveV, wecan write vas v =w+w', w € W,w' € W

We set w = projy, (v), the projection of v onto w.

As a result of Corollary 3.1.4.1, the following is immediate:
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Corollary 3.1.4.5. If W is a subspace of the finite-dimensional complex
Hilbert space V' and if (uy, us, ..., uy) is an ordered orthonormal basis of W,
then the projection map projy, : V. — W is given by

k

projy (v) = Z;(uz,v)uZ

3.2 Adjoints and Self-Adjoint Operators

Let V be a finite-dimensional complex Hilbert space and let 7" : V. — V
be a linear transformation. (In this context, we shall frequently refer to T’
as a linear operator.) We have already seen in Section 1.7 how to define the
adjoint 7" : V* — V™. In the present context, however, we can actually
define T* : V' — V in a very reasonable way. This makes use of the following
theorem.

3.2.1 (Riesz Representation Theorem). If V is a finite-dimensional
complex inner product space, then the mapping ¢ : V. — V* given by
©(v) = (v,-) is an isomorphism of R-vector spaces.

PROOF. Recall that since V' is a finite-dimensional complex vector space, it
is, afortiori, a real vector space. In fact, if dim ¢V = n then dimgV = 2n. (If
{v1, ..., v, } is a C-basis, then {vq, ..., v,, 001, ..., 10, } is an R-basis) Therefore,
the above map

p:V—V
given by ¢(v) = (v, -) is R-linear.

(p(Ul + ’U2) = (Ul + Vg, )

plav) = (av,)
ap(v)
for all v,vy,v3 € V and a € R . Since
dimgV = 2dimcV

2dim (CV*
= dim RV*,
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it suffices, by the rank-nullity theorem to show that ker o = {0}. If p(v) = 0,
then
(v,): V' —C

is the O-functional. In particular,
(v,v) =0

so v = 0.

SUMMARY: The Riesz Representation Theorem says that any linear func-
tional f : V — C is “represented” as an inner-product

f(v) = (Ufav)

for some unique vector v; € V' (dependent upon f). The map ¢ : v — (v,-)
is not a C-linear transformation since

plaw) = (av,)
= E(v,-)

= ap(v).

As a result, we often say that ¢ : v — (v,-) is an anti-linear isomorphism.
Now, let T : V. — V be a linear transformation. Recall that in Sec-
tion 1.7, page 40, the adjoint of T', T* : V* — V* was defined by setting

T*(f)=foT:V —s C.

That is, T*(f)(v) = f(T(v)), for all v € V. In the present setting, we can
define T* : V. — V as follows: let v € V; we have T*(v,-) = (v,-) o T. If
w €V | then

(U,-)OT(’LU) = (U,'

Thus
T*(v,) = (v, T(:))-

By the Riesz Representation Theorem (3.2.1), there is a vector T*(v) € V

such that
(v, T(-)) = (T"*(v), ).
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Proposition 3.2.2. 7% : V — V so defined is a linear transformation.

PROOF. If v;,v9 € V and if w € V', we have

(T"(v1 + v2),w) =

that is,
T*(Ul + 7)2) = T*(Ul) + T*(Ug).

Next, let v € V, a € F. If w is arbitrary,

(T"(av),w) = (av,

As w is arbitrary,
T*(aw) = aT*(v).
|
Lemma 3.2.3. et T : V. — V, T* : V — V be as above, and let
A = (vy,...,v,) be a basis of V. Define A* = (v{, v, ...,v%) to be a basis dual

to that of A, where v} € V are chosen according to the Riesz Representation
Theorem:

(vF,v5) = 0y

If A =Ty, then A* =T%., where A* is the “Hermitian Adjoint” of A (i.e., if
A= [Cki]‘], then A* = [CY_]Z])

PrROOF. We have, by definition of A:
T(vj) =) oijvi
i=1

Write
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We shall show that for all 2 and j that

We have

)
|

io= (T7°(v)), i)

= (], T(w)

n
= (U;f; Z Oékivk)
k=1

which finishes the proof.
[

REMARK. Note that if (uy, ..., u,) is an orthonormal basis, then u} = u;, i =
1,2,...,n.

3.2.1 Self-adjoint operators

A linear operator T : V. — V is called self-adjoint or Hermitian if T* =T.
In terms of matrices, this says that if A =Ty, then A = A* =T7..

Recall that a linear transformation is diagonalizable if and only if V' has
a basis consisting of eigenvectors for the linear transformation.

Proposition 3.2.4. Let T': V — V be self-adjoint. Then T' is diagonaliz-
able. Furthermore, V' has an orthonormal basis consisting of eigenvectors of
T.

PRroOOF. Since the field C is algebraically closed, there exists an eigenvector

vy € V of T with eigenvalue Ay € C. If we set v; = HZ’IH’ we have that
1

T(vy) = Avy and ||v,]| = 1. Next, we have

V:<U1>@Uf_.

Let w € v (so (vy,w) = 0). We have the following:
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(01, T (w))

Thus, w € vi = T(w) € vi, ie., Vi = vi is a T-invariant subspace of V.
Since Ty, is obviously self-adjoint, induction provides an orthonormal basis

consisting of eigenvectors of T'.
[

If T is self-adjoint, then the eigenvalues of 1" are all real. Indeed, if v is
an eigenvector of 7" with eigenvalue A, then

AMv,v) = (v, \v)
= (U,T(U))
)

7’U)
()\v, v)

Thus, A = \. Also, if i = (uy, ..., u,) is an orthonormal basis (not necessarily
one consisting of eigenvectors) and if

A = o] = Ty,

then since U = U*, A is Hermitian, so a;; = @j; for all ¢, j.
Suppose now that U’ = (u}, ..., ul,) be an orthonormal basis consisting of

eigenvectors of 1"
Tu,=Nu;, i=1,..,n.

Consider the change-of-basis matrix U = [p;;] where
n

:Zﬂijuia j: 1,...,n.
i=1

We have seen that U ' AU = D where
M 0 - 0

D:(_))\Q



3.2. ADJOINTS AND SELF-ADJOINT OPERATORS 81

But

0ij = (uj,u})

= (Zﬂkiukaz,uljul)
k=1 1=1
= > Tk Y i (uk, ur)
=1

k=1

= > Tikaltrj
k=1

which is the (i, j)th entry of U*U. That is,

UU =1,
U =01,
that is to say,
U*AU = D.

DEFINITION. A matrix U satisfying U* = U~! is called a unitary matrix. (In
case F = R a matrix satisfying UT = U~! is called an orthogonal matrix.)

As a result of Proposition 3.2.4, we have

Corollary 3.2.4.1. If A is an n x n Hermitian matrix, then there exists a
unitary matrix U satisfying U* AU = D, a diagonal matrix (with real entries).

3.2.2 Idempotents and orthogonal projections

Let V' be a finite-dimensional complex Hilbert space. Let W C V and define
P = projy : V. — W as on page 73. Then ker P = W+, imP = W,
Plw = Ly and W = W @ W+ jointly insure that P is idempotent and that
ker P 1 im P.

DEFINITION. Let P : V — V be an idempotent transformation on the
Hilbert Space V. We say that P is an orthogonal projection if and only if

ker P 1L im P.
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Lemma 3.2.5. Let P be an orthogonal projection. Then V = ker P & im P.

PROOF. ker P 1 im P implies
ker PNim P = {0};
by the Rank-Nullity Theorem (1.4.4)
dim (ker P & im P) = dim V/

SO
V =ker P@®im P.

Lemma 3.2.6. Let P be an idempotent on V. Then P is self-adjoint if and
only if P is an orthogonal projection.

PROOF. Assume
P = P~

Let v € ker P,w = P(v") € im P. Then

(v,w) = (v, Pv)

= (Pv,
= (0,v)
= 0.

So, ker P | im P. Conversely, assume that P is an orthogonal projection.
Thus ker P | im P and
V =ker P& im P.

Let v, w be arbitrary vectors:
V=11 + Vs

wW = Wi + Wy

where v, w; € ker P, vy, wo € im P. It suffices to show
(P*(v),w) = (P(v), w).

We have
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[ |
Corollary 3.2.6.1. For any subspace W C V| P = projy, is self-adjoint.
Recall that if P, P, : V — V are idempotents with
P P,=P,P =0
we say that Py, P, are orthogonal idempotents.

Lemma 3.2.7. The self-adjoint transformations Py, P, are orthogonal if and
only if their images are orthogonal, that is, if and only if

P(V) L Py(V).
ProoF. For all vi,v9 € V,

(Pi(v1), Pa(va)) = (v1, Pl Py(vy))
= (v1, PLPy(v2)).

From this, the result follows easily.

Let T': V — V be a self-adjoint operator. We have already seen that
T is diagonalizable; let (vq,...,v,) be an ordered basis of V consisting of
eigenvectors, and assume that Ay, ..., A\; are the distinct eigenvalues of T'. We
have that
mr(z) = (z = A1) (2 = Ar)
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as follows: for any i, we have (T'— A\;I)v; = 0 for some j and so
(T = MI)--- (T — \I)(v;) = 0.

Since any v € V is a linear combination of vy, ...v,,, we conclude that
(T'=MI) -+ (T = Md)(v) = 0,

and so mp(z)|(x — Ay) - - (x — Ag). But by Lemma 2.2.5 each (z — \;)|mr(x)
so we are done.

3.2.8 (Spectral Theorem for a Self-Adjoint Operator). Let T : V —
V' be a self-adjoint operator. There exist pairwise orthogonal self-adjoint
idempotents Py, ..., P, and distinct real scalars Ay, ..., \; such that

(i) v =P +Py+ -+ P
(i) T=MP 4+ XoPo+ -+ M\ Py
(iii) im P, = P/(V') = ker (T — \;I) = \;-eigenspace of T;
)

(iv) V=P (V)@ & P(V).

ProOOF. We have already proved all of the above except for the self-adjointness
of the idempotents Py, Py, ..., Py (see (2.2.11) and (2.2.11.1)). However, since
T is self-adjoint, it has real eigenvalues and so the minimal polynomial of T°
has real coefficients. This implies that each of the projections P; is a poly-
nomial in T with real coefficients and hence must also be self-adjoint. The

result follows.
[ |

3.3 The Spectral Theorem for Normal Oper-
ators

DEFINITION. Let T : V. — V, where V is a finite-dimensional complex
Hilbert space. We call T' normal if TT* = T*T.

EXAMPLES:

1. Clearly, any self-adjoint operator is normal.



3.3. THE SPECTRAL THEOREM FOR NORMAL OPERATORS 85

2. We say that the linear operator T'is unitaryif and only if (7'(v), T'(w)) =
(v, w) for all v,w € V. In this case, we see that for all v,w € V,

(v, w) = (T(v), T(w)) = (v, T"T(w)).

Thus,
(v,w—T"T(w)) =0

forallv,w € V,and so T*T = Iy, i.e., T* = T~'. So a unitary operator
is clearly normal.

3. The linear operator 7' : V — V is called skew-Hermitian if T* = —T.
Thus, a skew-Hermitian is normal.

Examples 2 and 3 are related by the exponential:

eskeW—Hermman — unitary

(See Ezercise 6 of Appendiz 1.) Indeed, if T* = =T, then

ooTk

= ()

1 *\ k
2 (T

1 k

2 (=T)

0
=T

(for justifications of some of the steps, see Ezercises 7, 8 of Appendiz1.)

Digression: Just as the unitary operators form a group under multiplica-
tion, the skew-Hermitian operators organize into an interesting alge-
braic structure called a Lie Algebra. Here, set

uy = {skew-Hermitian operators A : V — V'}.
Note that if A, Ay € uy,

(Ai+42)" = AT+ A
- —A1 - A2
= _(Al +A2)7
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and if a € R and A € uy,

(@A) = aA”
- a(-A)
= _(aA)J

so uy is a real vector space. Finally, there is a multiplication called the
Lie bracket:
[AlAg] - AIAI - A2A1

(A1 Ao = (A1Ay — AyA))”
= (A1A)" — (A24))"
= ASAT — ATAS

— A2A1 - A1A2
= —(A1A2 - AQAl).
= —[AlAQ]

However, in general (A;As)* # —(AzA4;). Thus, uy is closed under
bracket, but not under ordinary multiplication.

The Lie bracket is not an associative multiplication:
[A1[A2A3]] # [[A1A2] A5].
Instead, there is the “Jacobi Identity” :
[A1[A2A3]] + [A2[A3A1]] + [A3[A1 Ao]] = 0.

This being the case, we say that wuy is a real Lie algebra.

Lemma 3.3.1.

(a) IfT : V — V is a self-adjoint operator with T'(v) = 0 for some [ > 0,
then T'(v) = 0.

(b) If T :V — V is normal and T'(v) = 0 for some [ > 0, then T'(v) = 0.
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Proor. First assume that 7" is self-adjoint. We have seen by the Spectral
Theorem for Self-Adjoint Operators (3.2.8) that V = 1V} @& --- @& V} where
Vi = ker (T — \;I) and Ay, ..., A, are the distinct eigenvalues of T. Now, let
v € V with T'(v) = 0. We may write

v=v1+ -+ v, v, eV, i=1,..k.
Then

0 = T'(v)
= Tl(U1)+"'+Tl(Uk)
= Mo+ N

This says that each Aly; = 0, but as Ay, ..., \;, are distinct, at most one of the
;s can be zero. Say Ay = 0, and so v, vs,...,v, = 0. Then v = v; € V4, so
T(v) = \jvy = 0-v; =0, proving part (a).

More generally, if T is normal, set S = T*T. Then as T' and T™* commute,

S'(v) = (T"T)'(v)
= ()T () =0.
Note that S is self-adjoint:

= T"T=S.

By (a), S(v) = 0. Therefore,

(T(v),T(v)) = (T"T(v),v)

This says that ||T'(v)|| = 0, and so T'(v) = 0.

Lemma 3.3.2. If T' is normal, then for any v € V,

1T ()| = IIT"(w)]]-
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PROOF.

IT@)* =

[ |
In fact, Lemma 3.3.2 is an if and only if statement; see Ezercise 11 of
Appendix 1.

Corollary 3.3.2.1. If T is normal, then ker T' = ker T™*.
|

Lemma 3.3.3. Let P : V. — V be a normal idempotent operator (P? = P).
Then P is an orthogonal projection, hence is self-adjoint.

PrROOF. We need only show that
ker P 1 im P.

Let vy € ker P,v € Vv, = P(v) € im P. Then by (3.3.2.1) v; € ker P* and
S0

(v1,v9) = (vy, Pw)

= (P*vy,w)
(0, w) = 0.

3.3.4 (Spectral Theorem for a Normal Operator). Let T : V — V be
a normal operator on a finite-dimensional complex Hilbert Space. There exist
pairwise orthogonal self-adjoint idempotents P, ..., P, and distinct scalars
A1, ..., A\ such that

(1) IV:P1+P2+"'+Pk;
(II)T:)\1P1+)\2P2++)\kPk,
(iii) im P = P;(V) = ker (T — A\, I) = \;-eigenspace of T;
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iv) V=P(V)® - & P((V).

PROOF. First we show that T is diagonalizable. If my(x) = (z — \)® (¢ —
X)) -+ (x — A)%, then since T' — A\; Iy is normal for each i = 1,2,... k,
we conclude by Lemma 3.3.1 (b), that ker (" — \;I1)% = ker (T — \I),
which clearly implies that, in fact, mp(z) = (x — A1) (z — A2) -+ - (x — M),
and so T is diagonalizable. Thus, everything above follows, save possi-
bly for the self-adjointness of the idempotents P;, Ps,..., P,. However, as
each of the idempotents P; is a polynomial (with complex coefficients) in T
we infer immediately that each P; is normal, and so, by Corollary 3.3.2.1,
ker P, =ker P, 1 =1,2,..., k. We now shall show that ker P, 1 im F;, 1 =
1,2,...,k. Thus, set P = P; and let v € ker P, w = P(v'), for some v' € V.
Then

(v,w) = (v, P(v))

where we have used the fact that ker P = ker P*. From this, everything
follows.
[ |

Corollary 3.3.4.1. Let T be a normal operator on V. Then, there exists
an ordered orthonormal basis consisting of eignevectors of T

PROOF. Let (uji, s, ..., ujx,) be an orthonormal basis of V;. Note that
T(Uzl) = )\iuil, T(uﬂ) = )\Z"LLZ'Q, ceey T(ulkl) = )\lulkl SiHCQ ‘/z 1 V}', 7 §£ j, we
see that

(Un, Ui, =y Ulks
Ug1, U2, -y Uk,
Uk, Uk2, **°, ukkk)

is an orthonormal basis of V' consisting of eigenvectors of 7.
[

Corollary 3.3.4.2. Let A be a normal matrix (A*A = AA*). Then there
exists a unitary matrix U with

U*AU = D,
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where
MO 0
0 Ay 0
D= ] )
0 0 A

Corollary 3.3.4.3. T is a normal operator if and only if V' has an orthonor-
mal basis consisting of eigenvectors of T'.

PRrROOF. If A is an orthonormal basis consisting of eigenvectors, then

M 0 - 0
Ia——
: : : :TA’
I

and so, since A* = A (c¢f. Remark on page 79)

Ti=Ti = T4 (by (3.2.3))

)\_1 0O --- 0
0 Ay ---
0o --- 0 )\_k

Thus T4 and 17 commute. Hence, so do T and T™.



Chapter 4

Tensor Products

4.1 Basic Definitions

The present section is a bit more advanced than the first three chapters
and will make somewhat greater demands on the reader. For example, in
Section 4.2 below, we assume at one point that the reader has already had
exposure to the notion of “invariant factors” (or “elementary divisors”) of
a linear transformation, as well as to the “Smith canonical form,” which
explicitly gives invariant factors. However, this discussion is not central to
the flow of the chapter, and can safely be omitted. The principal reason,
however, for introducing the tensor product construction is to obtain a less
restricted version of the Cayley-Hamilton Theorem (2.2.12) of Chapter 2.

DEFINITION. Let V, W be vector spaces over the field F. If U is an F-vector
space, then a bilinear map

B:VxW-—U
is one satisfying
(i) B(v1 + v2,w) = B(vy,w) + B(vq, w)
(ii) B(v,w; + wq) = B(v,wy) + B(v, ws)
(iii) B(awv,w) = B(v,aw) = aB(v,w),

forall v, v, v0 € V, w,wi,wy € W and all « € F. The tensor product V@p W
is the unique (up to isomorphism) vector space such that

(i) There exists a bilinear map

t: VW —VerW

91
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given by
tv,w)=vw

(ii) Any bilinear map
B:VxW —U

factors uniquely through V ®@p W:

Ver W

/ '-""-.___El!T

B

V xW U

The first result is “categorical” in nature, but quite important.

Proposition 4.1.1. If the tensor product of F-vector spaces V, W exists,
then it is unique up to vector space isomorphism.

PROOF. Let V @y W and V ®; W be two tensor products of V' and W with
bilinear maps ¢ : V x W — V@rW and t' : V x W — V @ W. This induces
the diagram

VeorW

/ .mw-"‘--.a!T
! .'\'L.

VxW L VoW

\ _..-'"'.-..
L ’
P T

VeorW

At the same time, we have the diagram

VeorW

/ -._..x____fI!S(which must be the identity Iy gz )

M
Vx W L V @ W

Therefore, in the first diagram above, we must have 7" o T = Iyg.w : V ®p
W — V ®g W. In an entirely similar fashion, we have T o T" = Tygrw -
V ey W — Ve, W. It follows, therefore, that

T:VesW SV QL W.
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[ |

This leaves the question of existence of the tensor product, which we

resolve as follows. Given F-vector spaces V and W, let X be the F-vector

space with basis V' x W. Notice that when the field F is infinite, X" is also

infinite-dimensional. Let ) C X be the subspace of X’ generated by vectors
of the form

(v1 4+ v, w) — (v1,w) — (v2, W),
(v, w1 + we) — (v, w1) — (v, wy),
(aw,w) — (v, aw),

where v, vy, v3 € V, w,wy,wy € W, o € F. Write V@ W = X /Y and write
v w = (v,w)+ )Y €V @p W. Therefore, in V ®p W we have the “bilinear
relations”

(V1 4+v2) QW =1 W+ vy ® W,
VR (w1 4+ wr) = v @ wy + v wa,
av @ W =vQ aw,

where v,v1,v9 € V, w,w,wy € W, a € F. Furthermore, V ®p W is clearly
generated by all “simple tensors” v @ w, v e V,w e W.

Define the map t : V. x W — V ®p W by setting t(v,w) = v Q@ w, v €
V, w € W. Then, by construction, t is a bilinear map. In fact we have the
following result.

Proposition 4.1.2. The F-vector space V @z W, together with the balanced
mapt:V xW — V @ W is the tensor product of V and W.

Proor. Let U be any F-vector space and let B : V. x W — U be a
bilinear map. By the obvious infinite-dimensional version of the FEzten-
sion by Linearity Theorem (1.4.5), there is a unique F-linear transformation
7 : X — U satisfying 7(v,w) = B(v,w). Since B : V. x W — U is bilinear,
we see that 7|y = 0, and so 7 determines a unique F-linear transformation
T:VerW=X/Y — U, such that Tot = B:V x W — U. The result
follows.
[
The following shows that dimension is well-behaved under the formation
of tensor products.
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Proposition 4.1.3. If dimV =n, dimW = m, then
dim (V @ W) = mn.

ProOF. Let A = {vy,...,v,}, B = {wy,...,w,} be bases for V, W respec-
tively. Set

A@B = {v1®@wy,v @wy,...,v1 @ Wy,;

Vo (024 Wi, Vg X Wa, ..., Vg (024 Wn;

Up ® W1, Uy @ Wa, ..oy Uy @ Wi}

We shall show that A ® B is a basis of V ®@p W. Clearly, A ® B spans
VerW,sodimV ®p W < mn. We need only to prove that A® B is linearly
independent. If

A ={v],v5,...,ur}

B* = {wi,wy, ..., w;}
are the corresponding dual bases of V, W, define
Pij - VeorW —F

by the universality property

VoW
Bi; ) ~
VxW F
Bi; * *
(v, w) v; (v) - wj(w)
Thus,
wii(v @ w) = v (v) - w;-‘(w).
If

Zakl(vk X wl) = 0,

k.l
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then

0 = v; O anve @ wy)
kol

= Z i (v @ wy)
k)l

= > apv; (vp) - wj(w)
el

= .

Since 7, j were arbitrary, A®B is a linearly independent set.

4.2 Functoriality

Let T:V — V', S: W — W' be linear transformations.

Proposition 4.2.1. With notation as above, there exists a unique linear
transformation

TRS:VorW —V oW

satisfying
(T®S)(vew)=Tw) e S(w).

Proor. Construct the diagram:

Ver W

/ Tes

VxW V,®]FW,

(v, w) T(v)® S(w)

[ |
Observe that if V; C V, W7 C W are subspaces, then we can form the
subspace
VierpW, CV Qp W.

It T7T:V —V, §: W — W are linear transformations and if
Vi C V is T-invariant (i.e., T(V}) € Vi) and Wy C W is S-invariant, then
VierpW; CV QW is aT ® S-invariant subspace of V ®@p W.
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Basic PROBLEM: Calculate the invariant factors (or elementary divisors)
of T'® S in terms of those of T and S.

Proposition 4.2.2. Let T :V — V, S: W — W and let A, B be ordered
bases of V' and W respectively. Set

A =Ty = oy, B=Sp=1[8].

Then (T ® S) 08 = A® B (Kronecker Product), defined as the matrix

OéllB OélgB .. OélnB
OéQlB OéQQB .. OéQnB
OénlB OéngB . annB

The proof of this is routine, and will be left to the reader.

EXAMPLE.
[ab 0 O 0'|

a 0 ® b 0] | a ab 0 O
1 a 10 _{b 0 ab OJ'
1 b a ab

EXAMPLE. Let dimV =dimW =2.T:V — V.S : W — W and assume
that T has a single invariant factor (fr(z) = (z — a)?), which is therefore
equal to the minimal polynomial mr(x) of T. Thus, there exists an ordered
basis A of V' with

a 0

1 a } ’

Ty =

a 2 x 2 Jordan Block. Assume also that S has a single invariant factor
fs(x) = (x — b)% Then there exists an ordered basis B of W with
b 0
S5 = { v ] |

Thus, (T ® S)ass = T4 ® Sp as above.

QUESTION: What are the invariant factors of T'® S7
Recall that the invariant factors can be calculated by reducing
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to Smith canonical form:

x — ab 0 0 0
—a x—ab 0 0 [ Ax) 0
—b 0 xz—ab O A(x)
-1 —b —a x—ab

We shall assume that b # 0 and so B! exists; thus if “~” denotes Smith
equivalence, then

{ A(z) 0 } [0 =B7H(A(x)) }
B A(x) | B A(x)
|0 —Bl(A(x))Z}
B 0
N i 0 }
0 (A(x))?
1 0 0 0
01 0 0
T lo o0 (z—ab)? 0
| 0 0 —2a(x —ab) (z— ab)?
{ -
e e
{0 0 (x—ab)® 0 if 2a 7
I 00 0 (z — ab)
N { 10 0 0 i
001 0 0 .
{0 0 (z—ab? o | T2=0
L LO O 0 (x — ab)? |

Therefore the invariant factors of T ® S are (z — ab)®, = — ab if 2a # 0,
and are (z — ab)?, (z — ab)? if 2a = 0. The reader should investigate what
happens when b = 0, i.e., when B is not invertible.

4.3 Another Application of Tensor Products

Let V' be an F-vector space and let F C K be an extension of fields. If the
extension degree [K : F] is finite, then

K®rpV
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is an F-vector space of F-dimension equal to
(dimgV)[K : F],

where we have used (4.1.3). But we can also think of K ®p V' as a K-vector
space with K-scalar multiplication determined by

a(B®v) = (aB)®v a,BeKuveV

Proposition 4.3.1. If {v;,vs,...,v,} is an F-basis of V, and if K is an
extension field of F, then {1 @ vy, ...,1 ® v, } is a K-basis of K @ V.

PRrOOF. Clearly, {1® v1,...,1 ® v,,} spans K ®p V. Let
w; - KxV —K

be the mapping determined by

pi(a,v) = a - vi (v)
where {v{, ..., v} } is the basis dual to {vy, ..., v, }. We have, for all a, o, vy, cvg €

K, v,v" € V, that

pilon + az,v) = pi(ar,v) + @i(as, v)

vila,v+0") = @i(a,v) + @i(a,v)
pilaa,v) = aav(v)
= a(av;(v))
= api(a,v).
Also,
pilaa,v) = alav;(v))
= a(av;(v))
= a- v (av)
= pi(a,av).
Therefore, by the universality of ®r we get a unique map

0, KorV — K

satisfying
bi(a®@v) =a-v}(v)
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foralla e K, ve V. If
0= ZCYZ(]_ X UZ'),
i=1
then, by definition of K-scalar multiplication,
0= Z Q; X Vi,
i=1

SO

0=0;000 = 6;> a;®v)
i=1

= Z 9]' (ai (%9 Ui)
i=1

= D aivj(v)
i=1

f— - . * - f— .
= aj-v;(v;) = aj.
Since j was arbitrary,
ap =g =+ =a, =0,

i.e.,
1®v,..,1 Q@ v,

are K-linearly independent.
[ |

Proposition 4.3.2. Let V,W be F-vector spaces and let T : V — W be
an F-linear transformation. If K D [F is an extension field, then 1 ® T :
K®rV — K®p W is a K-linear transformation.

PRroor. Form the diagram

K®rV

/ H“‘"\-.E" 18T
®

"
KxV el K®r W

or(a,v) =a® T(v).
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o7 is F-bilinear, so
1T :KepV — KerW

exists, satisfying
1T (a®v)=a®T(v).

Furthermore, if g € K|
1T(Bla®v)) = 1T)(Bfa®v)
= (Ba)®T(v)
= fla®T(v))
fleT)(a®wv),

i.e., 1 ® T is a K-linear transformation.

K@V — K®r V.

Corollary 4.3.2.1. Let V be an F-vector space and let K O F be an exten-
sion field of F. Let A = (v, v, ...,v,) be an ordered F-basis of V', and set
1®A=(1®uvy,...,1®wv,) (an ordered K-basis of K@y V by (4.3.1)). If
T :V — V is an F-linear transformation, then

Th = (1®7)ig4

as n X n matrices over F.

ProOOF. We simply note that for all indices ¢, if
T(v;) =) ajv;, (aj €F),
7=1

then
1eT)(1®v) = 1T(vw)

n
= 18 ajv;

7=1
= D a1l ®wy).
j=1

The result follows.
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Corollary 4.3.2.2. If 0 # T : V — V is an F-linear transformation, and
K D F is an extension field, then 0 #1 QT KV - KQp V.

Proor. This follows immediately from 4.3.2.1.

The next result relates the characteristic polynomial of a linear transfor-
mation 7T :V -V itothat of 1T K@V - K®p V.

Corollary 4.3.2.3. If 0 # T : V — V is an F-linear transformation, and
K D F is an extension field, then cr(x) = c1g7(x) € Flz].

PrROOF. Indeed, by 4.3.2.1, T and 1 ® T can be represented by the same
matrix.

[ |
4.3.3 (Cayley-Hamilton Theorem). Let T : V. — V be a linear trans-
formation. Then,
mr(z)|er(z)
(equivalently, cr(T) = 0).

PROOF. Assume that 7' : V — V has characteristic polynomial

It suffices to prove that Z a;T" = 0. Let K D T be an algebraic closure

of F.!' By the Restmcted Cayley Hamilton Theorem 2.2.12, we have that
migr(x)|cigr(z). Using (4.3.2.3), we have

0 = Y awuleT)
=0

= 1 ® Z CYZ'Ti,
=0

and so > oy T = 0, where we have used (4.3.2.2).
i=0

!Here, the reader must be willing to accept the fact that any field has an algebraic
closure. Actually, the proof will work using only the weaker fact that any field can be
embedded into an algebraically closed field.
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Chapter 5

Fourier Analysis and Quadratic
Reciprocity

The scope of the present chapter is quite unusual, at least as measured against
“typical” treatments of linear algebra. The goal herein is to prove the cel-
ebrated Quadratic Reciprocity Theorem of Gauss,! The statement of this
seemingly inocuous result is easy enough: if p and ¢ are distinct odd primes
then the congruences

2* = ¢ (mod p)

2* = p (mod q)

are either both solvable or both unsolvable unless p, ¢ = 3 (mod) 4, in which
case exactly one of the congruences is solvable. However innocent sounding
this result may seem, its applications are vast. What is perhaps surprising is
that a proof of this result can be developed with very little number theory:
the bulk of the work will be on the shoulders of linear algebra, although the
reader will need to recall some very basic modern, especially as regards the
ring Z/nZ of integers modulo n.

5.1 Fourier Analysis on Z/nZ

Thoughout this section, G shall denote Z/nZ, the additive group of integers
modulo n. We define L?(G) := {functions f : G — C}, which is a com-
plex vector space relative to pointwise addition and scalar multiplication.
Furthermore, it is a C-algebra relative to the following multiplications:

(i) Pointwise multiplication;

! This theorem was Gauss’ personal favorite, and he dubbed it the aureum theorema or
the “golden theorem.”

103
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(ii) Convolution; this is defined by setting

fxgla)=>" f(b)g(a—b).

beG

It is routine to check that convolution is associative, commutative, and
gives L?(G) the structure of a C-algebra with identity given by the “point
mass function” &y : G — C, dp(a) = 0y, (Kronecker §). (Note that relative
to pointwise multiplication, the identity is the constant function having value
1eC)

A Hermitian inner product is defined on L?(G) in pretty much the usual
way:

(f.9) = 3 fla)g(a) €C, (f,g € L*(G)).

acG

This inner product (-, -) has the properties

e (-,-) is linear in the first coordinate and conjugate linear in the second;

e For all f € L*(C), (f, f) > 0 (hence is real), with equality if and only
if f=0;

We define the norm of f € L*(G) by setting

LI =5 )

Of particular interest are the “exponential functions” (or characters) on
G, as follows. For any residue class [a], € Z/nZ, define e : G — C by
setting
erq([b]) = emabiin c ¢, (] € Q).

We shall usually drop the “residue class notation” [ -] and write the above as
ea(b) — e?wabi/n c (C,

where we understand that a, b are representatives of corresponding elements
in G. With this understanding, then the exponential functions are of the form
€g,€1,...,en_1. Note that ey is the multiplicative identity of L?(G) relative
to pointwise multiplication. Note also that the characters e, : G — C are
actually homomorphisms:

e +y) = eu(r)eq(y), (x,y€q).
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Another set of useful functions are the point mass functions 6, : G — C,
g € G given by
6g(h) = 64 (Kronecker ¢).
Again, it will sometimes be convenient to denote these functions as dg, 01, ..., 0p_1.
As observed above, 4y is the multiplicative identity of L?*(G) relative to con-
volution.

It should be obvious that {4y, ...,d, 1} is an orthonormal basis of L?(G).
The same is (almost) true of {eq,...,e, 1} once we understand the

5.1.1 (Principle of Cyclotomy). Let w € C be an nth root of unity, i.e.,
w™ = 1. Then

ity ifw=1,
> W' = .
=0 iO if w#1.
As a result, we have this:
Lemma 5.1.2. The set of functions {ﬁeg,ﬁel, . ,\/Lﬁen_l} is an orthonor-

mal basis of L?(G).

We now define the Fourier transformation F : L*(G) — L*(G) by setting

(Fh@) = (fe)
= Y f@)e®)

zeG

— Z f(m)e—%raxi/n‘

reG
We shall often find it convenient to use the notation f := F(f), and call

fthe Fourier transform of f.

The following very useful facts are valid for the Fourier transformation:
1. F: L*(G) — L*(G) is a bijective linear transformation.

2. F(fxg) = F(f)F(g9), F(fg) = F(f) * F(g), (Thus F is an algebra
isomorphism L?(G), + L*(G)., where L?(G), is the algebra with con-
volution as multiplication and where L?(G), is the algebra endowed
with pointwise multiplication.
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3. (F2f)(z) =nf(—2x), f e L*(G), red.
4. If we set M = ﬁ}" (the Plancherel transformation of L*(G)), then M
is an isometry of L*(G), i.e.,

(Mf, Mg) = (f,g), forall f,ge L*(G).

5. Fbg =€_q, Fe, =nd,, a € G.

As a result of (3), (4) above, we see that (Mf)(zx) = f(—=z), for all
f € L*(G) and all © € G. Therefore, it follows that M* = 1,24 and so the
eigenvalues of M are among the complex numbers +1, +i. Below, we shall
compute the dimension of the corresponding eigenspaces.

From (5), we see that fora =0,1,...,n—1,
n—1

f(sa - Zciab6b7
b=0

where ¢ = €27/, This says that relative to the ordered basis (Jg, 01, . .., 5,—1),

F is represented by the matrix V,(¢™") = V,,((), where for an indeterminate
T, V,(T) is given by

(1 1 1 .o 1 ]
1 T T? S K
1 T2 T4 L. T2(n71)
Vu(T) =
1 Tn=1 T2(n-1) . . n-1) |

One has the following:

LEMMA.

2

detV},(¢) =v/nn i(8)mn=17,

PROOF. One starts by recalling the Vandermonde matrix

(1 o 22 - - At
1 zy 23 - - xy
-1
1 x5 22 - - 2%
Vn — Vn(xlax%"'axn) - . . . .. . ’
2 n—1
1 oz, z T, |
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which has determinant det V;, = [I;~;(x — ;). From this, it follows that

detV,(¢) = detV,(L,¢,¢%....¢" ) = [ (F=¢)

0<j<k<n—1

Next, note that if z; = p1e?t?, 2, = pye®? € C, where p;, p, are positive real
numbers, then simple geometry tells us that

1 .
Z1 + Z9 = |Zl + ZQ|€2(02+02).

Therefore, we conclude easily that for each 7, k,
CF— ¢ = |F =R BT = kil
From this, it follows that
[I (¢ =¢) = pilde™ Logicrcn-s b9,
0<j<k<n—1

where p = | TTo<;jcr<n 1(¢" — ¢7)]. A routine calculation gives

> (k+j) = (n—1)’n/2.

0<j<k<n—1

Finally, note that by using 5.1.1, one has

n 0 0 0
0 0 O n
(det V,(())? = det Vo(¢)? = det | O 0 0 -1 O
(0n o0 - - 0]

It follows immediately from this that |(detV,(¢))?| = n", from which it
follows that det V() =v/n™ i(5)jn-1)%

From the above, we extract the following corollary:

COROLLARY. The determinants of the Fourier and Plancherel transforms on
L*(G), G = Z/nZ are given by

n

det F =v/n" i_(2)i("71)2, det M = i~(3)j- -2,
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Note that if n is odd, then (n — 1)? is divisible by 4 and so the above
determinants simplify to:

det F =v/n» i_(g), det M = i=(3).

5.2 Multiplicative Characters and Gauss Sums:
The Case n = p (Prime).

Throughout this section, G shall denote the additive group Z/pZ, where p
is an odd prime. It is known in this case that the group G* := G\{0} is a
cyclic group.? We fix a generator 7 of G* and define two types of characters
of G:

Additive Character: This is a function 7 : G — C such that

m(z +y) =n(z)r(y),
for all z,y € G;

Multiplicative Character: This is a function x : G — C such that

x(zy) = x(z)x(y), forall z,y € G*, x(0) = 0.

As for examples, set ( = €>™/? and for each « = 0,1,...,p — 1, set
mo(z) = (**. Then it’s trivial to verify that m,my,...,m,_; are additive
characters of G. Note that if 7 : G — C is any additive character, then
as m(1) must be a p-th root of unity, it follows that 7(1) = ¢* for some
a, 0 < a <p—1. This implies that m = 7, and so we have accounted for all
of the additive characters of G.

Next, set & = €™/P=1) and define xo,X1,---,Xp_2 : G — C by setting
Xa(0) = 0, xa(7%) = £, Again, it’s trivial to verify that x4, a = 0,1,...,p—2

2The proof isn’t too hard. First of all, one shows that if 7 € G* has maximal order in
G*, then for all ¢ € G, the order of o must divide the order of 7 (else the product 7o
has larger order). Therefore, if we let k be the order of 7, then every element of G* is a
root of the polynomial 2% — 1 € Fz], where F = Z /pZ. Of course, this is a contradiction
unless k = p — 1, i.e., 7 is a generator of G*, forcing G* to be cyclic.
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are multiplicative characters and account for all such. We set r := (p—1)/2,
and note that x,(7°) = €™ = (—1). Therefore, where z € G*, we have

( 1 if x is a square in G,
Xr(z) = i

—1 otherwise.

That is, for z # 0

where <£> is the familiar Legendre symbol.
p

DEFINITION. A Gauss Sum is simply an inner product of a multiplicative
character with an additive character. One often writes

Gx,m) = (x,m).
Note that if 71 = m,, 0 < a < p— 1, then a quick computation reveals that
G(Xa 7Ta) = )A((Cl)

One has that, if z #£ 0,

@(1‘) — Z Xa(y)e—%rz’:vy/p
yeGX
— Z Xa(yl‘—l)e—%riy/p
yeGx
= Xalz™") X Xaly)e 2T/
yeGX

= Xol® )Xa(1)
= Xp—l—a(x)ﬁ(l)
Similarly, if z = 0, and if @ # 0, then X,(z) = > Xa(y) =0 = Xa(1)Xp-1-a(0).

yeGx
Therefore, we see that if a # 0, then

—

Xa = E(l)prlfa-

The Principle of Cyclotomy reveals that if & = 1A/p—1, then
(80, X0, - - -, Xp_2) is an orthonormal ordered basis of L?*(G). Since the
above calculation shows that M(x,) = ﬁ@(l)xp,l,a, a # 0, we infer that

B = (8o, axo, ax1, aMx1, ..., aXr_1, aMXr_1, aX;)
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is yet another ordered orthonormal basis of L?(G).* We shall compute the
matrix representation of M relative to B in order to obtain another expres-
sion for det M.

So let’s compute. Since F(dy) = ey (see page 106) = dy + Xo, it follows

that . ,
p_

M(6) = —by +

(%) \/:50 N/

Similarly, F(xo) = F(ep—dp) = pdo—eo (again, see page 106) = (p—1)do— xo,
and so
vp—1 1
M(axo) = P dop — —aXo-
VP VP
It follows, therefore, that the matrix (M)g of M relative to B begins in the
“northwest” with the 2 x 2 matrix block

axo-

ol
| -5 ]

note that this matrix block has determinant —1. Next, recalling that for all
f € L*G), M*f(z) = f(-z), * € G, and noting that x,(—1) = (=1),
we have that M?x,(z) = xo(—2) = xa(—1)Xa(x) = (—1)"xo(x), from which
it follows that the 2-dimensional subspace of L?(G) spanned by ax,, aMx,
is invariant under M; relative to the pair (ay,, aMy,) we get, for a =
1,2,...,7 =1, 2 x 2 matrix blocks of the form

)

Finally, since we have already shown that My, = ﬁ@(l)X“ we conclude
that the matrix representing M looks like the block diagonal direct sum:

q; ipf_’;}@{‘f o |e-e|) “3”}@[@(1)/@1)

Since det M is the product of the determinants of the above matrices, we
infer that

(=

3Since the Plancherel transformation is an isometry, it follows that 1 = |ax.| =
[M(axa)| = |5 e (Daxpmi—al = |55 (D], which says that [%a(1)] = 5.

(/o o
detm = Y X;E)/\/ﬁ if p=dm+1,
X(WAP i p=dm+ 3.
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Comparing this with the result on page 107, we may equate determinants
and deduce that

( e

o) = VP if p=4m+1,

Xr i—i\/ﬁ if p=4m + 3.

From the above, we can determine the dimensions of the eigenspaces of
the Plancherel transformation:

COROLLARY. The eigenspaces of the Plancherel transformation M : L?(G) —
L*(G) have dimensions follows:

p=4m+1:

dim (1 — eigenspace) = m + 1,

dim ((—1, i) — eigenspaces) = m,
p=4m + 3:

dim ((£1, —i) — eigenspaces) = m + 1,

dim (i — eigenspace) = m.

5.3 The Case n = pg (Distinct Primes)

We wish to try to generalize some of the preceding section to cover the
composite case n = pq, where p and ¢ are distinct odd primes. We begin
with the following rather easy result:

Theorem 5.3.1. (Chinese Remainder Theorem) Let p, ¢ be distinct
primes and let s,t € Z satisfy sp +tq = 1. Then the mapping

L]pqZ — L[pL X L[qL, [x]pg = ([x]p, [x]q)
is an isomorphism of rings, with inverse

(lalp, [b],) = [atq + bsplyg-
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Next, following Chapter 4, define a bilinear mapping
B: L’(Z/pL) x L(L/qL) — L*(Z/pel),

where if f € L?(Z/pZ), g € L*(Z/pZ) then B(f,g) € L*(Z/pqZ) is defined
by setting

B(f,9)([z]pg) = f([lp)g([]y), = € Z.

Proposition 5.3.2. The above bilinear map realizes an isomorphism

L*(Z/pZ) ®c L*(Z/qZ) = L*(Z/pqZ).

PROOF. Note first that if x € Z, then the point mass function dpy,

clearly given by B(0,,01,)- It follows immediately that the induced linear
mapping L*(Z/pZ) ®c L*(Z/qZ) = L*(Z/pqZ) is surjective. By 4.1.3 we
know that dim L*(Z/pZ) ®c L*(Z/qZ) = pq; apply the rank-nullity theorem.

Via 5.3.2 we shall identify L*(Z/pZ) ®c L*(Z/qZ) with L*(Z/pqZ), and
write f®g([x],q) = f([*],)g([z],), where x € Z. In order to simplify notation,
if v € Z and f € L*(Z/nZ) we shall write f(z) in place of f([z],). Note that
if © = atq+bsp, then fRg(x) = fRg(atq+bsp) = f(atq+bsp)g(atq+bsp) =
Fa)g(®).

If x € L*(Z/pZ), € L*(Z/qZ) are multiplicative characters, then the
Fourier transform, x ® v of x ® ¢ is computed below:

— p—1 g—1 . , ,

X ® ¥(atq + bsp) = Z Z (x ® 1) (a'tq + V' sp)e2milata+bsp)(ata+tisp)/pg
=0b'=
-1 ¢—1

— Z Z X —27rz(aa tq+bb' sp)/pq
Ob’

— Z X —27raa ti/p Z ’(,Z} b/ —27bb' si/q

bl

. Q71 7.
_ Z X(a/t71)6727raa’z/p Z 1/)([),871)6727”717 i/q
a’'=0 b'=0
p—1 L., el .
_ Z X(a/q)6727raa i/p Z w(blp)efwrbb i/q
a’'=0 b'=0

—~

= x(@)v(p)x(a)¥(b),



5.3. THE CASE N = PQ (DISTINCT PRIMES) 113

where we have used the fact that s™! = p(mod ¢), ! = ¢, (mod p).

In the same fashion, we infer that

Doy = ¢0)sy) @i

similarly,

X©6% = x(g)x ® 65

5.3.1 The Plancherel Transform on L?(7Z/pqZ)

In this subsection, we shall identify L?(Z/pqZ) with L*(Z/qZ) @c L*(Z/qZ)
and represent the Plancherel transform M : L?(Z/pqZ) — L*(Z/pqZ) as one
of the form

M=T®S: L*(L/pL) ®c L*(Z/qL) — L*(Z[pZ) @c L*(Z/qL),

which, by Ezercise 1 of Appendix J will allow us to compute the determinant
of M. To this end, we set o, := 1A/p — 1, and let (6(() ) apx(() ), apxg L apxz(,p,)Q)
be the orthonormal basis of L*(Z/pZ) given on page 109. We likewise set o, =

INqg—1 and define the orthonormal basis
(6(()']),%)(8(1),%)(5‘]),...,quxéq_)Q) in the obvious manner. Define the linear

transformation D, : L*(Z/pZ) — L*(Z/pZ) by setting

D,(6%) = 6, Dyp(apx?) = xP (q)apx®, a=0,1,...,p—2.

Likewise define the linear transformation D, : L*(Z/qZ) — L*(Z/qZ) b
setting

Dq(5((f)) = 5((;;), Dq(aqng)) = X,(,Q) (p)apxgp), b=0,1,...,9— 2.

Let M,,, M, be, respectively, the Plancherel transforms on L*(Z/pZ) and
L*(Z/qZ), respectively. We have

M(P @ ag i) = {2 () M, (55) @ Mg\, b=0,1,...,q -2,

M(oszff’) ®5Sq)) = Xgp)(q)./\/l (osza )@ M, (50 ), a=0,1,...,p—1,

M (X © agxi”) = XP(0)xs” (p) My (X P) @ My (agxi?),
a=0,1,...,p—1,b=0,1,...,¢— 1.
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The above calculations reveal that
M= M,D,® M,D, : L*(Z/pqZ) — L*(Z/pqZ),

from which we deduce that

det(M) = det(M,D,)?- det(M,D,)”
= det(M,)det(D,)det(M,)det(D,).

From page 108 we have
det(M,) = i ®), det(M,) = i ().

Therefore, our calculation will be complete as soon as we compute the deter-
minants of D, and D,. To this end, note that for all 0 # = € Z/pZ, we have

that x(®) (x)xé’?l,a(x) =1, 1< a < p-—2;similarly, for all 0 # y € Z/pZ, we
(9)

have that Xz(,q)(y)qufb(y) =1,1 < b < g— 2. From these observations, it
follows immediately that

det(D,) = x\P(q), det(Dg) = x\?(p),

where 7, = (p—1)/2, r, = (¢—1)/2. Since Xg)(q) = (%) , Xﬁg)(p) = (%) , We
may write the final result as

det(M) = <23> (g) i~1(2)=» ().

q/ \p

5.4 The Punch Line: Gauss’ Quadratic Reci-
procity

Since pq is odd, we may refer to page 108 and infer that det(M) = i_(p;);
insert into the above equation:

<§> <%> _ (- -(2)

Finally, one shows that

.pg(p—1)(g—1) p—1g—1

i 2 = (_1)77,



which implies our sought-after result:

GAuss’ RECIPROCITY THEOREM. If p and q are distinct odd primes, then

(#)(E) = o
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Appendix A

Exercises

Basic Concepts:

Fields (especially QR and C, the fields of rational, real and complex
numbers, as well as the finite fields F, of ¢ elements), vector spaces, the
vector space V°, where S is an arbitrary set, pointwise operations, linear span
(S) of a set S CV, linear combinations of vectors, finitely generated vector
spaces, the vector spaces F* F,, M, (F), M,,,(F), sum and intersections of
subspaces.

1. Let S be a set, s € S, and let V' be a vector space over the field F.
Prove that the set W = {f € V3| f(s) = 0} is a subspace of V?.
What happens if we replace the scalar 0 above by a non-zero scalar
0#aelF?

2. Prove the modular law for subspaces of a vector space V: If Wy, Wy, W3 C
V' are subspaces of V' with W; O W5, then

W1 N (W3 + WQ) == (W1 N Wg) + Wz.
3. If Sy, Sy are subsets of the vector space V', prove that (S} U Sy) =
(S1) + (S9).

4. Let C'(R) be the vector space of all differentiable real-valued funtions on
the real line R. Let S C C(R) consist entirely of polynomial functions,
and prove that the function f ¢ (S), where f(z) =sinz, z € R.

5. Let
W = {A e M,(F)| Al = —A}.

Show that W is a subspace of M,,(FF) and find a finite set of generators
for W.
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6. Let RP" be the set of all “lines” in the vector space R,;1. (A line in
a vector space V' is a non-zero subspace generated by a single vector.)
Try to find a surjective map p : S — RP", where S™ C R, is the
n-sphere {(ao, ai,...,a,)| Sa?=1}.



Appendix B

Exercises

Basic Concepts:

The Exchange Lemma (1.1.3), linear dependence and linear independence
of a subset S C V, basis of a vector space, Invariance of Dimension (1.2.2),
Basis Fxtension Theorem (1.3.1), existence of complements (1.3.2), direct
sums of subspaces.

1. Let V be a vector space of dimension n over the field F. If S C V is a
subset with more than n elements, then S is linearly dependent.

2. Consider the system of homogeneous equations over the field F:

a11X1 + a19X9 + -+ - + A X, — 0

021X1 + Q22Xo + -+ - + AopX,, =

A1 X1 + ApaXo + o + appX, = 0,

where m < n. Prove that there is a non-trivial solution to this system,
i.e., there exist numbers aq,as,...,qa, € F, not all 0, such that x;, =
«;, 1 =1,2,...,nis a solution to the above system. (Hint: this follows
immediately from Ezercise 1.)

3. Let V be a finitely-generated vector space, and assume that V' = (S).
Prove that there exists a finite subset {s1,$2,...,s,} C S such that
V = (81,82, ,8n)-

4. Let V be a finitely-generated vector space with V' = (S). Prove that if
{v1,v9,...,vx} is a linearly independent subset of V', then there exists a
finite subset {s1,2,...,s,} C S such that {vy,va,..., v, 51, S2,...5,}
is a basis of V.
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Let dimV > 2. Prove that V' has more than one basis.

* Let V' be an n-dimensional vector space over the field F, of ¢ elements.
How many distinct bases does V" have? (If n = 2 the correct answer is

salg —1)(¢* = 1).)
Compute the dimensions of F,,, F*, M,,,(F).

Let V be a vector space and assume that we can write V as a direct
sum of subspaces: V =V, @ V,. If W C V is a subspace, either prove
that W = (W N Vi) @ (W NV3) or give a counter-example.

Let V. =W, + Wy + --- + Wy, where Wy, W,, ..., W, are subspaces
of V. Show that this sum is direct iff for each + = 1,2,....k, W; N
Wi+ Wyt o+ Wiy + Wiga + -+ W) = {0}



Appendix C

Exercises

Basic Concepts:

Linear Transformation, kernel, null-space, nullity, rank, injective lin-
ear transformation, surjective linear transformation, Rank-Nullity Theorem
(1.4.4), invertible linear transformation, inverse of a linear transformation,
isomorphism, Ezxtension-by-Linearity Theorem (1.3.1), ordered basis, matriz
representations, the “Representation Picture” (1.5.2).

1. Let T : Vi — V4 be a linear transformation and let Wy, W C V; be
subspaces of V.
(a) Prove that T'(Wy + W) = T'(W;) + T(W7).
(b) Is it necessarily true that (W, N W]) = T(W,)NT(W])? What’s

the most you can say here?

2. Let T : Vi — V5 be an injective linear transformation. Prove that
dim V; < dim V5.

3. Let T : Vi — V5 be a surjective linear transformation. Prove that
dim V] > dim V5.

4. Let Vi, V5 be finite dimensional vector spaces and let W7 C Vi, W, C V4
be isomorphic subspaces, via a linear transformation S : W; — Ws.

Prove that there exists a linear transformation 7" : V; — V5 such that
T|W1 = S

5. Using matrices, find examples as called for below:

(a) Find a linear transformation 7' : V' — V such that ker 7" # 0 but
that T is not surjective.
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(b) Find a linear transformation 7' : V' — V such that T # Iy, but
T? =T.

(c) Find a linear transformation 7' : V' — V such that T" # 0y, but
T? = Oy.

(d) Find a linear transformation T : V' — V such that T* # 0y, but
Tk = 0y,

(e) Find a linear transformation T : V' — V such that 7% = Iy, but
Th £, if0 < k < 4.

6. Let C be the field of complex numbers, regarded as a vector space of

dimension 2 over R. Let T': C — C be defined by T'(2) = (2 —1i)z, z €
C. Prove that T is an R-linear transformation, and compute 74, where

A= (1,7).
Let V = My(F), and define the matrix A by setting

=l

Now define T': V' — V via T(B) = AB, B € V. Compute T4 relative
to the ordered basis A = (€11, €12, €21, €22) (€;; € My(F) is defined to be
the 2 X 2 matrix with 1 in the i, j-position, and 0 everywhere else). Is
T an isomorphism?



Appendix D

Exercises

Basic Concepts:
Cosets relative to a subspace, quotient spaces, well-defined mapping, Fun-
damental Homomorphism Theorem (1.6.4), Correspondence Theorem (1.6.5).

1. Let T : V — W be a linear transformation. Assume that V' C V, W' C
W are subspaces and assume that T'(V') C W'. Prove that the recipe
T:V/V' - W/W' given by T'(v+ V') =T (v) + W' is a well-defined

linear transformation.

2. Prove the Noether Isomorphism Theorem: If V is an F-vector space
and if U, W C V are subspaces, then (U + W)/W 2 W/(UNW).

3. Let T': V — V be a linear transformation. Define the T-commutator
subspace of V' by setting [T, V] = {T'(v) — v|v € V'}. Show first that, in
fact, [T, V] is a subspace of V, and then show that if W = [T, V], then
T(W) C W and the linear transformation T : V/W — V/W defined
as in Problem 1 above satisfies T'(v + W) = v + W for all v € V.

4. Let W' C W CV (subspaces); prove that (V/W')/(W/W'") =2 V/W.

5. Let VS W 2 Ubea sequence of linear transformations. We say that
the sequence is ezact (at W) if T(V) = ker S.

(a) Show that the linear transformation 7' : V' — W is injective if and
only if the sequence {0} — V 5 W is exact.

(b) Show that the linear transformation T : V' — W is surjective if
and only if the sequence V 5 W — {0} is exact.
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(c) Use the Fundamental Homomorphism Theorem (1.6.4) to show
that if the sequence {0} — V' 5 V 5 V" — {0} is exact (at all
possible places), then V" = V/T(V').
6. Let

1) R AL R VAL R L) A )}

be an exact sequence of finite-dimensional vector spaces. Prove that
dim V; — dim V5 + dim V3 — dim V, = 0. Can you generalize this?

Let T : V — V be a linear transformation and let W be a T-invariant
subspace of V. (This means that T(W) C W.) Assume that A =

(V1. Uk, Vkt1,--.,0pn) is an ordered basis of V', where (vq,...,vg) is
an ordered basis of W. Assume that
A B
T.A - |: O D :| )

where A € My (F), B € Mg, «(F),O € M,,_;x(F) (O is the (n—k) x k
O-matrix), D € M, ¢(F). Relative to the ordered basis B = (vg41 +
W,...,v, + W), compute T, where T : V/W — V/W is defined as in

FEzercise 1.



Appendix E

Exercises

Basic Concepts:

L(V,V') as a subspace of V'V linear functionals, dual space, dual basis,
hyperplanes, Ann W C V* (the annihilator in V* of the subspace W C V),
adjoint of a linear transformation, the double dual V**, the natural injection
V — V** the unnatural isomorphism V 2 V* (dim V' < 00).

1.

Let V be a finite-dimensional vector space, and let v; # v, in V. Prove
that there exists f € V* with f(v1) # f(v2).

. Let V' be a vector space and let f,g € V* such that f(v) = 0 if and

only if g(v) = 0. Prove that f = Ag for some X\ € F.

Let V be a vector space and let H C V be a hyperplane in V. If
v eV, v¢& H is a fixed vector, prove that there exists a unique f € V*
whose kernel contains H and which satisfies f(v) = 1.

Let V be a vector space and let W, H C V be subspaces of V', where
H is a hyperplane. Prove that dim W —1 < dim (W N H) < dim W.
Conclude that the intersection of k& hyperplanes in V' has dimension
>n—k.

In what sense can the solution set of the system of homogeneous equa-
tions

a11X1 + a19X9 + -+ - + A Xy, — 0
A21X] + A29Xo + « - - + a2 X, = 0
Am1Xy + GpaXo + - - + QX = 07
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be thought of as the intersection of hyperplanes in F"?
Describe a natural isomorphism F,, — (IF™)*.

Let V' = C([0,1]), the R-vector space of real-valued continuous func-
tions on the interval [0, 1]. Define the map

1
01V — V" 6(f)lg) = [ fl@)g@)dr.
Show that ¢ is a linear transformation whose kernel is trivial.

As we have seen, any two vector spaces V,W of the same dimension
are isomorphic. However, such an isomorphism generally depends on a
choice of bases in V and W, respectively. Let us say that vector spaces
V and W are naturally (or canonically) isomorphic if there there is an
isomorphism 7" : V' — W that doesn’t depend on any choice of bases.
Prove that the following are natural isomorphisms:

(a) V=2V* (dim V < o0).

(b) (V/W)* =2 Ann(W), where V is a vector space and W is a sub-
space of V.

(c) The codual of a vector space. Let V' be a vector space over the
field F, and set V., = L(F,V). Define the map ¢ : V" — V, by
setting €(v)(a) =a-v € V.

Let V be a finite-dimensional vector space with dual space V*. If
W1, Wy are subspaces of V', show that

(a) Ann(W, N W) = Ann(W;) + Ann(W5).
(b) Ann(W; + Wy) = Ann(Wy) N Ann(WWs).

(Hint: Use the fact that Ann : {subspaces of V'} — {subspaces of V*}
is an inclusion-reversing bijection.)

Let V = M, (F), an n?-dimensional vector space. Define the trace of
A eV by

T(A) = Zaii eF
=1

where A = [a;;]. Note that 7 is a linear transformation and 7 € V*.
Call 7 the trace functional. Prove the following:

(a) 7(AB) = 1(BA) for all A,B €V.
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(b) Assume that f € V* satisfies
F(AB) = f(BA)  forall A,B€ V.

Show that f = ar for some a € F.

Let T': V' — V' be a linear transformation with adjoint 7% : V"* — V*.
Prove

(a) T is surjective if and only if T* is injective;

(b) T is injective if and only if T is surjective.

(This exercise is not entirely trivial. You might wish to restrict your
attention to the case in which both V, V' are finite-dimensional.)






Appendix F

Exercises

Basic Concepts:

Eigenvectors, eigenvalues, characteristic polynomial, characteristic equa-
tion, determinant of a linear transformationT : V — V, diagonalizable linear
transformation, real matriz exponential.

1.

Let T : V — V be a linear transformation, and assume that vy, va, ..., v
are eigenvectors of T, corresponding to eigenvalues A1, Ao, ..., A\x. Prove
that if \; # A, for all 7 # j, then vy, vo, ..., v} are linearly independent.

Prove that 7" : V' — V is a linear transformation such that the char-
acteristic polynomial er(x) splits into distinct linear factors, then T is
diagonalizable.

Give an example of a linear transformation on a real vector space which
has no real eigenvalues.

If we regard C as a 2-dimensional real vector space and if T'(z) =
(20 — 3)z, does T have real eigenvalues? In general, if « € C and
T :C — Cis given by T(z) = az, what can you say about a in order
that T" have real eigenvalues?

Let V be a two-dimensional vector space over the real field R, and let
T :V — V be a linear transformation. Show that if the characteristic

polynomial of 7" has a complex zero a + bz, then there exists an ordered
basis A in V such that

—b
Ty = H a}.

(This takes a little work.)
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. Let V be a finite-dimensional vector space and let T': V' — V be a

linear transformation on V. Show that 1 is an eigenvalue of T if and
only if [T,V] # V, where [T, V] is the T-commutator subspace of V'
(see Erercise 3 of Exercise Batch D).

Using the matrix exponential, find the general solution of the system
of first order ODE

i (t) = dxi(t) — 3xa(t)

Suitably modify your arguments above to find the general solution of

2y (t) = =3x1(t) + 2x4(t)
xh(t) = —8x1(t) + 5xa(t).

Solve the initial-value problem

P [
X(t)_{;) i:}Jx(t), x(())_{ (2)J

Recall that the equation of motion for the simple harmonic oscillator
(drawn below) is given by Hooke’s Law: mx"(t) = —kx(t), where m is
the mass of the body, and & is the spring constant.

/1

/1 k

/| -———000000-—-[]
/1 m

/1
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Now consider the coupled harmonic oscillator, depicted below.

/1 I\
/1 k_1 k_2 k_3 I\
/|-——-000000-—-[]-—-000000---[]---000000————|\
/| m_1 m_2 I\
/1 I\

Show that the equations of motion are

mix(t) = —(ki + k2)z1(t) + koxo(t)
m2x’2’(t) = le‘l(t) - (kQ + kg)l‘Q(t)

Let us now assume, for simplicity’s sake that m; = ms = 1 and that
k1 = k3. The equations of motion, in matrix form, can now be written

— (k1 + ko) ko

x"(t) = Ax(t), A = { s k) |

Using the eigenvectors of A, we can “decouple” the above system, as
follows. Let

P — {pn p12}
P21 P22

be the change-of-basis matrix whose columns are eigenvectors of A,
with corresponding eigenvalues A, A\y. Now introduce new variables
y1(t), y2(t) by the matrix equation

x(t) = Py, y(0) = | "0 |,

Show that relative to the new coordinate system, the second-order sys-
tem becomes uncoupled:

yi() = M(?)
o () = Aata(t).

Solve this and thereby obtain the general solution of the original second-
order system of ODE.
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Finally, note that if initial values are given along eigenvectors of the ma-
trix A, then the resulting motion is purely sinusoidal, and its frequency
is a function of the corresponding eigenvalue. Carry out everything in
detail, obtaining answers in terms of the spring constants k; and k.



Appendix G

Exercises

Basic Concepts:

Polynomials, division algorithm (long division) (2.2.1), greatest common
divisor, least common multiple, relatively prime polynomials, the “Fuclidean
trick” (2.2.3), minimal polynomial, Primary Decomposition Theorem (2.2.10),
Cayley-Hamilton Theorem (2.2.12).

1. Give an example of a linear transformation 7" : V' — V| where V is
2-dimensional over the real field R, and where my(x) is irreducible of
degree 2.

2. Let T : V — V be a linear transformation on the 2-dimensional vector
space V over the field F. If myp(z) = (z — a)?, a € F, what (if any-
thing) can you say about 77 Can you give an example of such a linear
transformation?

3. Let T : V — V be a linear transformation, and let W C V be a T-
invariant subspace. Prove that if T'|y denotes the restriction of T to
the subspace W, then mqy,, (z)|my(z).

4. Let T : V — V be a linear transformation, and assume that V =V; &
Vy, where V1, V; are T-invariant subspaces. Show that if mry,, (x), My, (x)
are relatively prime, then mr(z) = mgy,, (¥)mry,, ().

5. Assume that T : V — V is a linear transformation. Show that T
is diagonalizable if and only if my(z) = (x — A\)(z — A2) -+ - (x — A\g)
for pairwise distinct A\, Xa, ..., N\, € F. (Cf. FEzercise Appendiz F,
FEzercise 1.)

6. Prove that if T': V' — V is a linear transformation, then 7 is invertible
if and only if 0 is not a zero of my(z). (Hint: consider the equation
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T" + ap T '+ -+ ayT +agl = 0. Then ag # 0 and T(T" ! +
an 1 T" 2+ ---a;) = —apl. So what?)

7. Suppose T : V — V is a linear transformation on the vector space
V over the real field R. If 7?2 = T — I, what can you say about the
minimal polynomial of 77 Can T be diagonalizable?

8. Compute my(x) for each matrix below:

_[a B
(a)A—_Oa}.
M) a=| ™ aﬂ.al;ﬁa?
0 —1
(c) A= 1 0].
0 1 0 07
0 01
(d) A= 0 0 O
01
_ 0 0]
a0 1 0 0]
0 o 1 .
() A= 0 0 « .
|
i 0 «
_00 —ao_
1 0
M A= |0 !
0 —0Qp—2
L 1 —0p—1

9. Let T : V' — V be alinear transformation and let my(z) = py () p2(z)® - - - p(x)*
be its minimal polynomial, where the factors p;(z), i = 1,2,...,k are
distinct, monic, irreducible polynomials.

(a) LetV; = ker p;(T)%, i = 1,2,...k. Show that if ¢;(x) = my(z)/p;(z)®
(so pi(z)% and ¢;(x) are relatively prime), and if s(x),t(z) €
Flz] satisfy s(x)p;(z)® + t(z)g;(x) = 1, then for all v; € Vj,
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(b) Let V=Vi®Vo®---®Vj, where V; = ker p;(T)%, i =1,2,...,k
as in the Primary Decomposition Theorem. Prove that if W C V
is a T-invariant subspace, then W = (WNV) @ (WNV)®--- &
(W N V). (Warning: the T-invariance of W is crucial!)
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Exercises

Basic Concepts:

Hermitian inner product, Hilbert Space, norm of a vector, triangle in-
equality (3.1.2), standard inner product on C", C,, orthonormal basis, Gram-
Schmidt process (3.1.4), Grammian of an inner product (relative to an ordered
basis), orthogonal direct sum of subspaces, Cauchy-Schwarz inequality (3.1.1),
Fourier analysis (3.1.4.2). Unless otherwise stated, in the exercises below,
V' denotes a finite-dimensional complex Hilbert space, with inner product

denoted (-, ).

1. Let v1,v, € V. Prove that if v; and v, are orthogonal, then ||v; +vs||* =
|v1||? + ||v2||?. Ts this an if and only if statement?

2. Let {uy,us,...,ux} be an orthonormal set of vectors in V. Prove that
Uy, Us, . . ., U are linearly independent.
3. The norm || - || on the inner product space V' can be used to define a

metric space structure on V', with distance function
dv,w) = v —w||.
Show that the Cauchy-Schwarz inequality guarantees that the mapping
(+,):VxV-=C
is a continuous complex-valued function on V.

4. Let {uy,us,...,ur} be an orthonormal set of vectors in V. Let v € V|
and set x; = (v, u;).

(a) Prove Bessel’s inequality: % | |o]? < [|v||%.
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(b) Prove Parseval’s equation: Y% x;u; = v if and only if S8 |2;]> =
[lv]]*.

Define an inner product on C, by setting

B((a1, a2), (81, 52)) = a1 B2 + a3
Does this inner product give C, a Hilbert space structure?

Let v,w € V. Prove that |(v,w)| = ||v]| - ||w]|| if and only if v and w are
linearly dependent.

Let v1,vy,...,vx € V. Show that v Nwvd N+ NoE = (v1,ve, ..., vk

Let V be a Hilbert space, let A = (vy,vq,...,v,) be an ordered basis,
and let A = [a;;] be the so-called Grammian matriz of A (cy; = (vs, vj)).
Show that if B = (wy, ws, . . ., wy,) is another ordered basis, with change-
of-basis matrix P = [p;;], where v; = YI", p;jw;, then the Grammian
matrix of B is given by P'AP.

Let vy, vg,...,v; € V, and define the matrix A = [o;] by setting o;; =
(vi,vj). Show that vy, vs, ..., v, are linearly independent if and only if
det A # 0. (Hint: To prove =, use Gram-Schmidt to obtain an ordered
orthonormal basis (u1, us, . .. ux) for (vy,ve, ..., v;) and then apply Ex-
ercise 8, above. For <=, if ¥ oyv; = 0, let X = (o, an, ..., 04)" and
observe that AX = 0.)

Let W C V be a subspace of V' and let v € V. Prove that wy € W
satisfies ||[v — wy|| < ||v —w]| for all w € W if and only if v —w, € W.
(Hint: To prove =, let w € W be arbitrary and form the quadratic
q(t) = ||v — wo + tw||?, where ¢ € R. Then ¢(t) > |lv — wyl|? together
with a discriminant argument reveals that Re (v — wp, w) = 0. Since
w € W is arbitrary, this implies that (v — wg, w) = 0 for all w € W.
The converse is much easier: if w € W, use Ezercise 1 to get ||[v—w|* =
|v —wo +wo — w]? = ||Jv —wp||* + ||wo —wl||* > ||v—wol|?.) As a result,
conclude that if v € V', wy = projy,(v), then ||v — wy|| > [|v — w]| for
allwe W.

Show that if W C V and {wy,...,wx} is an orthonormal basis of W,

then
k

projy (v) = Z(wi,v)wi,

i=1
for every v € V.
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Exercises

Basic Concepts:

Riesz Representation Theorem (3.2.1), adjoint of a linear transformation,
self-adjoint, unitary and normal operators, orthogonal projections, Spectral
Theorem (3.2.8), (3.3.4).

Unless otherwise stated, V' shall denote a finite-dimensional complex
Hilbert space, with Hermitian inner product (- ,-).

1.

Let {v1,va,...,v,} be a basis of V', and let wy, ws, ..., w, be a vectors
in V satisfying (w;, vj) = d;;. Prove that {wy,ws,...,w,} is a basis of
V.

. Let fi,..., fr € V* be linearly independent linear functionals and let

v},...,v; € V correspond to fi, ..., fr using the Riesz Representation
Theorem:

fi(v) = (v, v)

for all v € V. Show that v7, ..., v; are linearly independent.

Let T : V. — V be a linear transformation satisfying (T'(v),w) =
(v, T(w)) for all v,w € V. Show that T" must be self-adjoint.

Let T : V — V be a skew-Hermitian operator (7% = —T'). What can
you say about the eigenvalues of T'7

Let T : V — V again be skew-Hermitian. Show that e/ : V — V is a
unitary operator. (Just use formal properties of the exponential.)

For any linear operator T" on the finite-dimensional Hilbert space V,

prove that
00 Tk i © 1 i
() =2 "

k=0
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7. For any linear operator 7" on the finite-dimensional Hilbert space V,
prove that e T = (el) L.
8. Let T': V — V be a normal operator. Show that

(a) T is Hermitian if and only if all the eigenvalues of T are real;

(b) T is unitary if and only if every eigenvalue of 7" has complex norm

1.
(c) T is unitary if and only if 7" is “length-preserving,” i.e., for all v €
V, |IT(v)|| = ||v||. (Hint: Let u,w € V and apply the condition

T (v)|| = ||v|| to v =u+w and to v = u + iw.)

9. Let V be a two-dimensional Hilbert space with ordered orthonormal
basis A = (u1,us). Let T' be a Hermitian operator satisfying

1 9
=[]

(a) Find an ordered orthonormal basis consisting of eigenvectors of T

(b) Find orthogonal self-adjoint projections Py, P, such that I, =
P1—|—P2 aHdT:)\1P1+)\2P2.

10. T : V — V be a linear transformation. Prove that the following condi-
tions are equivalent:

(a) T is normal.

(b) T* = f(T), for some polynomial f(x) € C[z].
(c) ||T( )= [T"(v)|| for all v € V.

(d)

(Hint: For (a)= (b) recall that T = AP, + --- + APy, where the
projections Py, ..., P, are self-adjoint and are polynomials in 7. Thus
T* = \Py + -+ + AP, a polynomial in T. For (c)= (a), form the
self-adjoint operator N = T*T — T'T*; if N has a non-zero eigenvalue
A with corresponding eigenvector v, then using (c), get (T'(v), T(v)) =
(T*(v), T*(v)) from which it follows that 0 = (v, (T*T — TT*)(v)) =
(v, N(v)) = A|Jv||?, a contradiction. Thus T*T—TT* = 0. If we assume
(d), and if v € V' is an eigenvector of T', then by assumption v is an
eigenvector of 7%, also. Therefore, (v, w) = 0 implies that (v,T(w)) =
(T*(v),w) =0, i.e., T (and T*) both leave v* invariant. By induction
on the dimension of the underlying Hilbert space, T'|,. is normal; the
details are easy enough to finish. All remaining implications are pretty
obvious.)

Every T-invariant subspace of V' is also T*-invariant.
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12.

13.

14.
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Show that the set of unitary operators on V' forms a group under mul-
tiplication. If dim V' > 2, show that this group is not abelian.

Let T : V — V be a unitary linear transformation. Show that |det 7’| =
1.

Let V' be two-dimensional and let SUy = {T" : V. — V| T*T =
Iy and det T'= 1}. Show that

SU, = {{ a b}m,bec, |a|2+|b|2:1}.
—b a

* Show that SU, is homeomorphic with the 3-sphere S* = {(z1, 12, 23, 74) €
Ry| 2? + 22 + 22 + 22 = 1}, where SU, carries the subspace topology
inherited from C? = C x C.
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Exercises

Basic Concepts:
tensor product of vector spaces and of linear transformations; Kronecker
product of matrices.

1. Suppose that T : V — V and S : W — W are linear transformations.
Show that if dimV = n and dim W = m, then

(i) det T ® S = (det T')™(det S)™.
(ii) traceT ® S = (trace T')(trace S).
2. Let T:V —Vand S: W — W are linear transformations. Show that
if v € V is an eigenvector of 7" with corresponding eigenvalue A, and

w € W is an eigenvector of S with corresponding eigenvalue o, then
v ® w is an eigenvector of T'® S with eigenvalue \o.

3. Let fi,..., fr € V* be linearly independent linear functionals and let
vy, ...,v; € V correspond to fi,..., fr using the Riesz Representation
Theorem:

fi(v) = (v, v)

for all v € V. Show that v, ..., v; are linearly independent.

4. Let T : V. — V be a linear transformation satisfying (7'(v),w) =
(v, T(w)) for all v,w € V. Show that T" must be self-adjoint.

5. Let T : V. — V be a skew-Hermitian operator (T* = —T'). What can
you say about the eigenvalues of T'7

6. Let T : V — V again be skew-Hermitian. Show that e’ : V — V is a
unitary operator. (Just use formal properties of the exponential.)
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7. For any linear operator 7" on the finite-dimensional Hilbert space V,

prove that
00 Tk:

* =1 *\k
(X =) =2 7T
k=0 k=0
8. For any linear operator 7" on the finite-dimensional Hilbert space V,
prove that e™" = (eT)7".
9. Let T: V — V be a normal operator. Show that

(a) T is Hermitian if and only if all the eigenvalues of T are real;

(b) T is unitary if and only if every eigenvalue of 7" has complex norm

1.

(c) T is unitary if and only if 7" is “length-preserving,” i.e., for all v €
V, [|T(v)|] = ||v||. (Hint: Let u,w € V and apply the condition
T (v)|| = ||v|| to v =u+w and to v = u + iw.)

10. Let V' be a two-dimensional Hilbert space with ordered orthonormal
basis A = (uy, us). Let T be a Hermitian operator satisfying

1 9
-1
(a) Find an ordered orthonormal basis consisting of eigenvectors of T
(b) Find orthogonal self-adjoint projections Py, P, such that Iy, =

P1—|—P2andT:)\1P1—i—)\2P2.

11. T : V — V be a linear transformation. Prove that the following condi-
tions are equivalent:

a) T is normal.

(

(b
(c
(d

T* = f(T), for some polynomial f(x) € C[z].
[T (v)|| = [IT*(v)]| for all v € V.

)
)
)
) Every T-invariant subspace of V' is also T*-invariant.

(Hint: For (a)= (b) recall that T = A\ Py + -+ + AP, where the
projections P, ..., P are self-adjoint and are polynomials in 7". Thus
T* = \MPy + -+ + A\ Py, a polynomial in T. For (¢)= (a), form the
self-adjoint operator N = T*T — TT*; if N has a non-zero eigenvalue
A with corresponding eigenvector v, then using (c), get (T'(v), T'(v)) =
(T*(v), T*(v)) from which it follows that 0 = (v, (T*T — TT*)(v)) =



12.

13.

14.

15.

(v, N(v)) = A|v||? a contradiction. Thus T*T —TT* = 0. If we assume
(d), and if v € V is an eigenvector of T', then by assumption v is an
eigenvector of T, also. Therefore, (v, w) = 0 implies that (v, T (w)) =
(T*(v),w) =0, i.e., T (and T*) both leave v invariant. By induction
on the dimension of the underlying Hilbert space, T'|,. is normal; the
details are easy enough to finish. All remaining implications are pretty
obvious.)

Show that the set of unitary operators on V' forms a group under mul-
tiplication. If dim V' > 2, show that this group is not abelian.

Let T : V — V be a unitary linear transformation. Show that |det 7’| =
1.

Let V' be two-dimensional and let SUy = {T : V — V| T"T =
Iy and det T'= 1}. Show that

~ a b 2 2 _
SU, = {{_b d]|a,be(c, al? + o _1}.

* Show that SU, is homeomorphic with the 3-sphere S* = {(z1, 12, 23, 74) €
Ry| 2? + 22 + 22 + 22 = 1}, where SU, carries the subspace topology
inherited from C? = C x C.
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T-commutator subspace, 123, 130
T-invariant subspace, 63

adjoint of a linear transformation,
40, 77

annihilator, 37

anti-linear isomorphism, 77

basis, 8

orthonormal, 73
Basis Extension Theorem, 11
bbasis, 8
Bessel’s inequality, 137
bilinear map, 91

canonical projection, 30

Cauchy-Schwarz Inequality, 70

Cayley-Hamilton Theorem, 101
restricted, 66

characteristic polynomial, 44

characters, 104

codimension, 39

codual, 126

companion matrix, 62

complement, 13

complementation, 13

complete metric space, 72

complete splitting, 13

convolution, 104

correspondence, 32

coset, 27

decoupling, 52
determinant, 43
diagonalizable, 27
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linear transformation, 27
matrix, 27
direct sum, 12, 13
division algorithm, 52
double dual, 35
dual basis, 36
dual space, 35

eigenvalue, 43
eigenvalues

calculation of, 44
eigenvector, 43
eigenvectors

calculation of, 44
Euclidean trick, 54
exact sequence, 123
Exchange Lemma, 7
exponential functions, 104
Extension by Linearity Theorem,

17

field, 1
finitely generated, 8
Fourier analysis, 74
Fourier transform, 105
Fourier transformation, 105
functoriality
of tensor product, 95
Fundamental Homomorphism The-
orem, 32

Gram-Schmidt process, 73
Grammian matrix, 138
greatest common divisor, 53
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Hermitian adjoint matrix, 78
Hermitian inner product, 69, 104
Hermitian linear operator, 79
Hilbert Space, 70

homogeneous linear problem, 5, 29
Hooke’s Law, 130

idempotent, 65
idempotents

orthogonal, 65, 83
inhomogeneous linear problem, 29
injective, 15
inner product

Hermitian, 69
intersection of subspaces, 12
invariance of dimension, 9
invariant factors, 96
invariant subspace, 63
isomorphism, 15

Noether Isomorphism Theorem,

123

kernel, 14

Kronecker delta, 24

Kronecker product
of matrices, 96

least common multiple, 53

Lie algebra, 85

Lie bracket, 86

line, 118

linear combination, 5

linear functionals, 35

linear harmonic oscillator, 51

linear operator, 76
normal, 84
orthogonal projection, 81
self-adjoint, 79
Hermitian, 79
skew-Hermitian, 85
unitary, 85

linear problem
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homogeneous, 5, 29
inhomogeneous, 29
linear transformation, 14
kernel, 14
minimal polynomial, 55
projection, 73, 75
self-adjoint, 79
adjoint, 40, 77
characteristic polynomial, 44
determinant, 43
diagonalizable, 27
Hermitian, 79
injective, 15
invariant subspace, 63
isomorphism, 15
matrix representation, 21
normal, 84
nullity, 15
orthogonal projection, 81
rank, 15
skew-Hermitian, 85
surjective, 15
unitary, 85
linearly dependent, 8
linearly independent, 8

matrices
similar, 26
matrix
companion, 62
diagonalizable, 27
Grammian, 138
Hermitian adjoint, 78
orthogonal, 81
trace, 126
transpose, 40
unitary, 81
matrix exponential, 48
matrix representation, 21
metric topology, 72
minimal polynomial, 55, 56
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of a linear transformation, 55
minimal polynomial of a vector, 56
modular law, 117

Noether Isomorphism Theorem, 123
normal linear operator
spectral theorem, 88
normal operator, 84
nullity, 15

ordered basis, 19

orthogonal idempotents, 65, 83
orthogonal matrix, 81
orthogonal projection, 81
orthonormal basis, 73

Parseval’s equation, 138
Plancherel transformation, 106
point mass functions, 105
pointwise multiplication, 103
polynomial
unique factorization of, 53
polynomial functions, 117
polynomials
division algorithm, 52
Euclidean trick, 54
greatest common divisor, 53
least common multiple, 53
relatively prime, 53
Primary Decomposition Theorem,
63, 65
Principle of Cyclotomy, 105
projection, 73, 75

Quadratic Reciprocity Theorem, 103
quotient space, 28

rank, 15

Rank-Nullity Theorem, 16
real Lie algebra, 86
relatively prime, 53
Representation Picture, 22

INDEX

Restricted Cayley-Hamilton Theo-
rem, 66
Riesz Representation Theorem, 76

scalar multiplication, 1
self-adjoint linear operator, 79
spectral theorem, 84
similar, 26
skew-Hermitian linear operator, 85
Smith canonical form, 97
span, 6
spectral decomposition, 66
spectral theorem
for normal operator, 88
for self-adjoint operator, 84
subspace, 5
annihilator, 37
codimension, 39
complement, 13
sum, 12
direct, 13
direct, 12
sum of subspaces, 12
surjective, 15

tensor product, 91

trace functional, 126
trace of a matrix, 126
transpose of a matrix, 40
triangle inequality, 71

unique factorization, 53
unitary matrix, 81
unitary operator, 85

vector space, 1
basis, 8
codual, 126
complementation, 13
complete splitting, 13
finitely generated, 8
line, 118
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operations, 2

quotient space, 28

subspace, 5
annihilator, 37
codimension, 39
complement, 13

subspaces
correspondence, 32
direct sum, 12, 13
intersection, 12
modular law, 117
sum, 12
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