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CHAPTER 1

Linear second order ODEs

1.1. Newton’s second law

We shall begin by stating Newton’s fundamental kinematic law relating
the force, mass and acceleration of an object whose position is y(t) at time
t.

Newton’s second law states that the force F applied to an object is

equal to its mass m times its acceleration
d2y

dt2
, i.e.

F = m
d2y

dt2
.

1.1.1. Example. Find the position/height y(t), at time t, of a body
falling freely under gravity (take the convention, that we measure positive
displacements upwards).

1.1.2. Solution. The equation of motion of a body falling freely under
gravity, is, by Newton’s second law,

d2y

dt2
= −g . (1.1)

We can solve equation (1.1) by integrating with respect to t, which yields
an expression for the velocity of the body,

dy

dt
= −gt + v0 ,

5



6 1. LINEAR SECOND ORDER ODES

(equilibrium position) y=0

positive displacement, y(t)

Figure 1.1. Mass m slides freely on the horizontal surface,
and is attached to a spring, which is fixed to a vertical wall
at the other end. We take the convention that positive dis-
placements are measured to the right.

where v0 is the constant of integration which here also happens to be the
initial velocity. Integrating again with respect to t gives

y(t) = −1

2
gt2 + v0t + y0 ,

where y0 is the second constant of integration which also happens to be the
initial height of the body.

Equation (1.1) is an example of a second order differential equation
(because the highest derivative that appears in the equation is second
order):

• the solutions of the equation are a family of functions with
two parameters (in this case v0 and y0);

• choosing values for the two parameters, corresponds to
choosing a particular function of the family.

1.2. Springs and Hooke’s Law

Consider a mass m Kg on the end of a spring, as in Figure 1.1. With
the initial condition that the mass is pulled to one side and then released,
what do you expect to happen?
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Hooke’s law implies that, provided y is not so large as to deform the
spring, then the restoring force is

Fspring = −ky ,

where the constant k > 0 depends on the properties of the spring,
for example its stiffness.

1.2.1. Equation of motion. Combining Hooke’s law and Newton’s sec-
ond law implies

m
d2y

dt2
= −ky

(assuming m 6= 0) ⇔ d2y

dt2
= − k

m
y

(setting ω = +
√

k/m) ⇔ d2y

dt2
= −ω2y . (1.2)

Can we guess a solution of (1.2), i.e. a function that satisfies the relation
(1.2)? We are essentially asking ourselves: what function, when you differ-
entiate it twice, gives you minus ω2 times the original function you started
with?

The general solution to the linear ordinairy differential equation

d2y

dt2
+ ω2y = 0 ,

is
y(t) = C1 sin ωt + C2 cos ωt , (1.3)

where C1 and C2 are arbitrary constants. This is an oscillatory
solution with frequency of oscillation ω. The period of the oscillations
is

T =
2π

ω
.

Recall that we set ω = +
√

k/m and this parameter represents the fre-
quency of oscillations of the mass. How does the general solution change as
you vary m and k? Does this match your physical intuition?

What do these solutions really look like? We can re-express the solu-
tion (1.3) as follows. Consider the C1, C2 plane as shown in Figure 1.2.
Hence

C1 = A cos φ ,

C2 = A sinφ .
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A

1 2

C 2

C 1

(C ,C  )

φ

Figure 1.2. Relation between (C1, C2) and (A, φ).

Substituting these expressions for C1 and C2 into (1.3) we get

y(t) = A cos φ sin ωt + A sinφ cos ωt

= A(cos φ sinωt + sin φ cos ωt)

= A sin(ωt + φ) .

The general solution (1.3) can also be expressed in the form

y(t) = A sin(ωt + φ) , (1.4)

where

A = +
√

C2
1 + C2

2 ≥ 0 is the amplitude of oscillation,

φ = arctan(C2/C1) is the phase angle, with − π < φ ≤ π.

1.2.2. Example (initial value problem). Solve the differential equation
for the spring,

d2y

dt2
= − k

m
y ,

if the mass were displaced by a distance y0 and then released. This is an
example of an initial value problem, where the initial position and the initial
velocity are used to determine the solution.

1.2.3. Solution. We have already seen that the position of the mass at
time t is given by

y(t) = C1 sinωt + C2 cos ωt , (1.5)
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with ω = +
√

k/m, for some constants C1 and C2. The initial position is y0,
i.e. y(0) = y0. Substituting this information into (1.5), we see that

y(0) = C1 sin(ω · 0) + C2 cos(ω · 0)

⇔ y0 = C1 · 0 + C2 · 1
⇔ y0 = C2 .

The initial velocity is zero, i.e. y′(0) = 0. Differentiating (1.5) and substi-
tuting this information into the resulting expression for y′(t) implies

y′(0) = C1ω cos(ω · 0)− C2ω sin(ω · 0)

⇔ 0 = C1ω · 1− C2ω · 0
⇔ 0 = C1 .

Therefore the solution is y(t) = y0 cos ωt. Of course this is an oscillatory
solution with frequency of oscillation ω, and in this case, the amplitude of
oscillation y0.

1.2.4. Damped oscillations. Consider a more realistic spring which has
friction.

In general, the frictional force or drag is proportional to the velocity
of the mass, i.e.

Ffriction = −C
dy

dt
,

where C is a constant known as the drag or friction coefficient. The
frictional force acts in a direction opposite to that of the motion and
so C > 0.

Newton’s Second Law implies (adding the restoring and frictional forces
together)

m
d2y

dt2
= Fspring + Ffriction ,

i.e.

m
d2y

dt2
= −ky − C

dy

dt
.

Hence the damped oscillations of a spring are described by the differential
equation

m
d2y

dt2
+ C

dy

dt
+ ky = 0. (1.6)
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1.2.5. Remark. We infer the general principles: for elastic solids, stress
is proportional to strain (how far you are pulling neighbouring particles
apart), whereas for fluids, stress is proportional to the rate of strain (how
fast you are pulling neighbouring particles apart). Such fluids are said to be
Newtonian fluids, and everyday examples include water and simple oils etc.
There are also many non-Newtonian fluids. Some of these retain some solid-
like elasticity properties. Examples include solutes of long-chain protein
molecules such as saliva.

1.3. General ODEs and their classification

1.3.1. Basic definitions. The basic notions of differential equations and
their solutions can be outlined as follows.

Differential Equation (DE). An equation relating two or more vari-
ables in terms of derivatives or differentials.

Solution of a Differential Equation. Any functional relation, not
involving derivatives or integrals of “unknown” functions, which sat-
isfies the differential equation.

General Solution. A description of all the functional relations that
satisfy the differential equation.

Ordinary Differential Equation (ODE). A differential equation relat-
ing only two variables. A general nth order ODE is often represented
by

F

(

t, y,
dy

dt
, . . . ,

dny

dtn

)

= 0 , (1.7)

where F is some given (known) function.

In equation (1.7), we usually call t the independent variable, and y
is the dependent variable.

1.3.2. Example. Newton’s second law implies that, if y(t) is the posi-
tion, at time t, of a particle of mass m acted upon by a force f , then

d2y

dt2
= f

(

t, y,
dy

dt

)

,

where the given force f may be a function of t, y and the velocity dy
dt

.
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1.3.3. Classification of ODEs. ODEs are classified according to order,
linearity and homogeneity.

Order. The order of a differential equation is the order of the highest
derivative present in the equation.

Linear or nonlinear. A second order ODE is said to be linear if it
can be written in the form

a(t)
d2y

dt2
+ b(t)

dy

dt
+ c(t)y = f(t) , (1.8)

where the coefficients a(t), b(t) & c(t) can, in general, be functions
of t. An equation that is not linear is said to be nonlinear. Note
that linear ODEs are characterised by two properties:

(1) The dependent variable and all its derivatives are of first
degree, i.e. the power of each term involving y is 1.

(2) Each coefficient depends on the independent variable t only.

Homogeneous or non-homogeneous. The linear differential equa-
tion (1.8) is said to be homogeneous if f(t) ≡ 0, otherwise, if f(t) 6= 0,
the differential equation is said to be non-homogeneous. More gen-
erally, an equation is said to be homogeneous if ky(t) is a solution
whenever y(t) is also a solution, for any constant k, i.e. the equation
is invariant under the transformation y(t)→ ky(t).

1.3.4. Example. The differential equation

d2y

dt2
+ 5

(
dy

dt

)3

− 4y = et ,

is second order because the highest derivative is second order, and nonlinear
because the second term on the left-hand side is cubic in y′.

1.3.5. Example (higher order linear ODEs). We can generalize our
characterization of a linear second order ODE to higher order linear ODEs.
We recognize that a linear third order ODE must have the form

a3(t)
d3y

dt3
+ a2(t)

d2y

dt2
+ a1(t)

dy

dt
+ a0(t)y = f(t) ,

for a given set of coefficient functions a3(t), a2(t), a1(t) and a0(t), and a
given inhomogeneity f(t). A linear fourth order ODE must have the form

a4(t)
d4y

dt4
+ a3(t)

d3y

dt3
+ a2(t)

d2y

dt2
+ a1(t)

dy

dt
+ a0(t)y = f(t) ,
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while a general nth order linear ODE must have the form

an(t)
dny

dtn
+ an−1(t)

dn−1y

dtn−1
+ · · ·+ a2(t)

d2y

dt2
+ a1(t)

dy

dt
+ a0(t)y = f(t) .

1.3.6. Example (scalar higher order ODE as a system of first order
ODEs). Any nth order ODE (linear or nonlinear) can always we written as
a system of n first order ODEs. For example, if for the ODE

F

(

t, y,
dy

dt
, . . . ,

dny

dtn

)

= 0 , (1.9)

we identify new variables for the derivative terms of each order, then (1.9)
is equivalent to the system of n first order ODEs in n variables

dy

dt
= y1 ,

dy1

dt
= y2 ,

...

dyn−2

dt
= yn−1 ,

F

(

t, y, y1, y2, . . . , yn−1,
dyn−1

dt

)

= 0 .

1.4. Exercises

1.1. The following differential equations represent oscillating springs.

(1) y′′ + 4y = 0, y(0) = 5, y′(0) = 0,

(2) 4y′′ + y = 0, y(0) = 10, y′(0) = 0,

(3) y′′ + 6y = 0, y(0) = 4, y′(0) = 0,

(4) 6y′′ + y = 0, y(0) = 20, y′(0) = 0.

Which differential equation represents

(a): the spring oscillating most quickly (with the shortest period)?

(b): the spring oscillating with the largest amplitude?

(c): the spring oscillating most slowly (with the longest period)?

(d): the spring oscillating with the largest maximum velocity?
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1.2. (Pendulum.) A mass is suspended from the end of a light rod
of length, l, the other end of which is attached to a fixed pivot so that
the rod can swing freely in a vertical plane. Let θ(t) be the displacement
angle (in radians) at time, t, of the rod to the vertical. Note that the
arclength, y(t), of the mass is given by y = ℓθ. Using Newton’s second law
and the tangential component (to its natural motion) of the weight of the
pendulum, the differential equation governing the motion of the mass is (g
is the acceleration due to gravity)

θ′′ +
g

ℓ
sin θ = 0 .

Explain why, if we assume the pendulum bob only performs small oscillations
about the equilibrium vertical position, i.e. so that |θ(t)| ≪ 1, then the
equation governing the motion of the mass is, to a good approximation,

θ′′ +
g

ℓ
θ = 0 .

Suppose the pendulum bob is pulled to one side and released. Solve this
initial value problem explicitly and explain how you might have predicted
the nature of the solution. How does the solution behave for different values
of ℓ? Does this match your physical intuition?





CHAPTER 2

Homogeneous linear ODEs

2.1. The Principle of Superposition

Principle of Superposition for linear homogeneous differential equa-
tions. Consider the linear, second order, homogeneous, ordinary dif-
ferential equation

a(t)
d2y

dt2
+ b(t)

dy

dt
+ c(t)y = 0 , (2.1)

where a(t), b(t) and c(t) are known functions.

(1) If y1(t) and y2(t) satisfy (2.1), then for any two constants
C1 and C2,

y(t) = C1y1(t) + C2y2(t) (2.2)

is a solution also.

(2) If y1(t) is not a constant multiple of y2(t), then the general
solution of (2.1) takes the form (2.2).

2.2. Linear second order constant coefficient homogeneous ODEs

2.2.1. Exponential solutions. We restrict ourselves here to the case
when the coefficients a, b and c in (2.1) are constants, i.e.

a
d2y

dt2
+ b

dy

dt
+ cy = 0 , (2.3)

Let us try to find a solution to (2.3) of the form

y = eλt . (2.4)

15



16 2. HOMOGENEOUS LINEAR ODES

The reason for choosing the exponential function is that we know that solu-
tions to linear first order constant coefficient ODEs always have this form
for a specific value of λ that depends on the coefficients. So we will try
to look for a solution to a linear second order constant coefficient ODE of
the same form, where at the moment we will not specify what λ is—with
hindsight we will see that this is a good choice.

Substituting (2.4) into (2.3) implies

a
d2y

dt2
+ b

dy

dt
+ cy = aλ2eλt + bλeλt + ceλt

= eλt(aλ2 + bλ + c)

which must = 0 .

Since the exponential function is never zero, i.e. eλt 6= 0, then we see that if
λ satisfies the auxiliary equation:

aλ2 + bλ + c = 0 ,

then (2.4) will be a solution of (2.3). There are three cases we need to
consider.

2.2.2. Case I: b2 − 4ac > 0. There are two real and distinct solutions
to the auxiliary equation,

λ1 =
−b +

√
b2 − 4ac

2a
and λ2 =

−b−
√

b2 − 4ac

2a
,

and so two functions,

eλ1t and eλ2t ,

satisfy the ordinary differential equation (2.3). The Principle of Superposi-
tion implies that the general solution is

y(t) = C1e
λ1t + C2e

λ2t .

2.2.3. Example: b2 − 4ac > 0. Find the general solution to the ODE

y′′ + 4y′ − 5y = 0 .

2.2.4. Solution. Examining the form of this linear second order con-
stant coefficient ODE we see that a = 1, b = 4 and c = −5; and b2 − 4ac =
42− 4(1)(−5) = 36 > 0. We look for a solution of the form y = eλt. Follow-
ing through the general theory we just outlined we know that for solutions
of this form, λ must satisfy the auxiliary equation

λ2 + 4λ− 5 = 0 .
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There are two real distinct solutions (either factorize the quadratic form on
the left-hand side and solve, or use the quadratic equation formula)

λ1 = −5 and λ2 = 1 .

Hence by the Principle of Superposition the general solution to the ODE is

y(t) = C1e
−5t + C2e

t .

2.2.5. Case II: b2−4ac = 0. In this case there is one real repeated root
to the auxiliary equation, namely

λ1 = λ2 = − b

2a
.

Hence we have one solution, which is

y(t) = eλ1t = e−
b

2a
t .

However, we should suspect that there is another independent solution. It’s
not obvious what that might be, but let’s make the educated guess

y = teλ1t

where λ1 is the same as above, i.e. λ1 = − b
2a

. Substituting this guess for
the second solution into our second order differential equation,

⇒ a
d2y

dt2
+ b

dy

dt
+ cy = a (λ2

1te
λ1t + 2λ1e

λ1t)

+ b (eλ1t + λ1te
λt)

+ c teλ1t

= eλ1t
(
t (aλ2

1 + bλ1 + c) + (2aλ1 + b)
)

which in fact = 0 ,

since we note that aλ2
1 + bλ1 + c = 0 and 2aλ1 + b = 0 because λ1 = −b/2a.

Thus te−
b

2a
t is another solution (which is clearly not a constant multiple of

the first solution). The Principle of Superposition implies that the general
solution is

y = (C1 + C2t)e
− b

2a
t .

2.2.6. Example: b2 − 4ac = 0. Find the general solution to the ODE

y′′ + 4y′ + 4y = 0 .
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2.2.7. Solution. In this example a = 1, b = 4 and c = 4; and b2−4ac =
42 − 4(1)(4) = 0. Again we look for a solution of the form y = eλt. For
solutions of this form λ must satisfy the auxiliary equation

λ2 + 4λ + 4 = 0 ,

which has one (repeated) solution

λ1 = λ2 = −2 .

We know from the general theory just above that in this case there is in fact
another solution of the form teλ1t. Hence by the Principle of Superposition
the general solution to the ODE is

y(t) = (C1 + C2t)e
−2t .

2.2.8. Case III: b2− 4ac < 0. In this case, there are two complex roots
to the auxiliary equation, namely

λ1 = p + iq , (2.5a)

λ2 = p− iq , (2.5b)

where

p = − b

2a
and q =

+
√

|b2 − 4ac|
2a

.

Hence the Principle of Superposition implies that the general solution takes
the form

y(t) = A1e
λ1t + A2e

λ2t

= A1e
(p+iq)t + A2e

(p−iq)t

= A1e
pt+iqt + A2e

pt−iqt

= A1e
pteiqt + A2e

pte−iqt

= ept
(
A1e

iqt + A2e
−iqt
)

= ept
(
A1

(
cos qt + i sin qt

)
+ A2

(
cos qt− i sin qt)

)

= ept
((

A1 + A2

)
cos qt + i

(
A1 −A2

)
sin qt)

)
, (2.6)

where

(1) we have used Euler’s formula

eiz ≡ cos z + i sin z ,

first with z = qt and then secondly with z = −qt, i.e. we have used
that

eiqt ≡ cos qt + i sin qt (2.7a)

and

e−iqt ≡ cos qt− i sin qt (2.7b)
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since cos(−qt) ≡ cos qt and sin(−qt) ≡ − sin qt;

(2) and A1 and A2 are arbitrary (and in general complex) constants—
at this stage that means we appear to have a total of four constants
because A1 and A2 both have real and imaginary parts. However
we expect the solution y(t) to be real—the coefficients are real and
we will pose real initial data.

The solution y(t) in (2.6) will be real if and only if

A1 + A2 = C1 ,

i(A1 −A2) = C2 ,

where C1 and C2 are real constants—in terms of the initial conditions note
that C1 = y0 and C2 = (v0 − py0)/q where y0 and v0 are the initial position
and “velocity” data, respectively. Hence the general solution in this case
has the form

y(t) = ept(C1 cos qt + C2 sin qt) .

2.2.9. Example: b2 − 4ac < 0. Find the general solution to the ODE

2y′′ + 2y′ + y = 0 .

2.2.10. Solution. In this case a = 2, b = 2 and c = 1; and b2 − 4ac =
22 − 4(2)(1) = −4 < 0. Again we look for a solution of the form y = eλt.
For solutions of this form λ must satisfy the auxiliary equation

2λ2 + 2λ + 1 = 0 .

The quadratic equation formula is the quickest way to find the solutions of
this equation in this case

λ =
−2±

√

22 − 4(2)(1)

2(2)

=
−2±

√
−4

4

=
−2±

√

(−1)(4)

4

=
−2±

√
−1
√

4

4

=
−2± 2i

4

= −1
2

︸︷︷︸

p

± 1
2
︸︷︷︸

q

i .

In other words there are two solutions

λ1 = −1
2 + 1

2 i and λ2 = −1
2 + 1

2 i ,
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Case Roots of General
auxiliary equation solution

b2 − 4ac > 0 λ1,2 = −b±
√

b2−4ac
2a

y = C1e
λ1t + C2e

λ2t

b2 − 4ac = 0 λ1,2 = − b
2a

y =
(
C1 + C2t

)
eλ1t

λ1,2 = p± iq
b2 − 4ac < 0 y = ept

(
C1 cos qt + C2 sin qt

)

p = − b
2a

, q =
+
√

|b2−4ac|
2a

Table 2.1. Solutions to the linear second order, constant
coefficient, homogeneous ODE ay′′ + by′ + cy = 0.

and we can easily identify p = −1
2 as the real part of each solution and q = 1

2
as the absolute value of the imaginary part of each solution.

We know from the general theory just above and the Principle of Super-
position that the general solution to the ODE is

y(t) = e−
1
2 t
(

C1 cos
(

1
2 t
)

+ C2 sin
(

1
2 t
))

.

2.3. Practical example: damped springs

2.3.1. Parameters. For the case of the damped spring note that in
terms of the physical parameters a = m > 0, b = C > 0 and c = k > 0.
Hence

b2 − 4ac = C2 − 4mk .

2.3.2. Overdamping: C2−4mk > 0. Since the physical parameters m,
k and C are all positive, we have that

√

C2 − 4mk < |C| ,
and so λ1 and λ2 are both negative. Thus for large times (t→ +∞) the solu-
tion y(t)→ 0 exponentially fast. For example, the mass might be immersed
in thick oil. Two possible solutions, starting from two different initial con-
ditions, are shown in Figure 2.1(a). Whatever initial conditions you choose,
there is at most one oscillation. At some point, for example past the ver-
tical dotted line on the right, for all practical purposes the spring is in the
equilibrium position.
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(a) Overdamped (m=1, C=3, k=1)

y(0)=1, y′(0)=0
y(0)=−1, y′(0)=4
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(b) Critically damped (m=1, C=2, k=1)

y(0)=1, y′(0)=0
y(0)=−1, y′(0)=4

0 1 2 3 4 5 6 7 8 9 10
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−0.5

0

0.5

1

t

y
(t

)

(c) Underdamped (m=1, C=2, k=32)

y(0)=1, y′(0)=0
exponential
envelope

Figure 2.1. Overdamping, critical damping and under-
damping for a simple mass–spring system. We used the spe-
cific values for m, C and k shown. In (a) and (b) we plotted
the two solutions corresponding to the two distinct sets of
initial conditions shown.

2.3.3. Critical damping: C2−4mk = 0. In appearance (see Figure 2.1(b))
the solutions for the critically damped case look very much like those in Fig-
ure 2.1(a) for the overdamped case.

2.3.4. Underdamping: C2 − 4mk < 0. Since for the spring

p = − b

2a
= − C

2m
< 0 ,
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the mass will oscillate about the equilibrium position with the amplitude of
the oscillations decaying exponentially in time; in fact the solution oscillates
between the exponential envelopes which are the two dashed curves Aept

and −Aept, where A = +
√

C2
1 + C2

2—see Figure 2.1(c). In this case, for
example, the mass might be immersed in light oil or air.

2.4. Exercises

2.1. Find the general solution to the following differential equations:
(a) y′′ + y′ − 6y = 0;
(b) y′′ + 8y′ + 16y = 0;
(c) y′′ + 2y′ + 5y = 0;
(d) y′′ − 3y′ + y = 0.

2.2. For each of the following initial value problems, find the solution,
and describe its behaviour:

(a) 5y′′ − 3y′ − 2y = 0, with y(0) = −1, y′(0) = 1;
(b) y′′ + 6y′ + 9y = 0, with y(0) = 1, y′(0) = 2;
(c) y′′ + 5y′ + 8y = 0, with y(0) = 1, y′(0) = −2.



CHAPTER 3

Non-homogeneous linear ODEs

3.1. Example applications

3.1.1. Forced spring systems. What happens if our spring system (damped
or undamped) is forced externally? For example, consider the following ini-
tial value problem for a forced harmonic oscillator (which models a mass on
the end of a spring which is forced externally)

m
d2y

dt2
+ C

dy

dt
+ ky = f(t) ,

y(0) = 0 ,

y′(0) = 0 .

Here y(t) is the displacement of the mass, m, from equilibrium at time t.
The external forcing f(t) could be oscillatory, say

f(t) = A sin ωt ,

where A and ω are given positive constants. We will see in this chapter
how solutions to such problems can behave quite dramatically when the
frequency of the external force ω matches that of the natural oscillations
ω0 = +

√

k/m of the undamped (C ≡ 0) system—undamped resonance! We
will also discuss the phenomenon of resonance in the presence of damping
(C > 0).

3.1.2. Electrical circuits. Consider a simple loop series circuit which
has a resistor with resistance R, a capacitor of capacitance C, an inductor
of inductance ℓ (all positive constants) and a battery which provides an
impressed voltage V (t). The total charge Q(t) in such a circuit is modelled
by the ODE

ℓ
d2Q

dt2
+ R

dQ

dt
+

1

C
Q = V (t) . (3.1)

23
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‘Feedback-squeals’ in electric circuits at concerts are an example of resonance
effects in such equations.

3.2. Linear operators

3.2.1. Concept. Consider the general non-homogeneous second order
linear ODE

a(t)
d2y

dt2
+ b(t)

dy

dt
+ c(t)y = f(t) . (3.2)

We can abbreviate the ODE (3.2) to

Ly(t) = f(t) , (3.3)

where L is the differential operator

L = a(t)
d2

dt2
+ b(t)

d

dt
+ c(t) . (3.4)

We can re-interpret our general linear second order ODE as follows. When
we operate on a function y(t) by the differential operator L, we generate a
new function of t, i.e.

Ly(t) = a(t)y′′(t) + b(t)y′(t) + c(t)y(t) .

To solve (3.3), we want the most general expression, y as a function of t,
which is such that L operated on y gives f(t).

Definition (Linear operator). An operator L is said to be linear if

L
(
αy1 + βy2

)
= αLy1 + βLy2 , (3.5)

for every y1 and y2, and all constants α and β.

3.2.2. Example. The operator L in (3.4) is linear. To show this is true
we must demonstrate that the left-hand side in (3.5) equals the right-hand
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side. Using the properties for differential operators we already know well,

L
(
αy1 + βy2

)
=

(

a(t)
d2

dt2
+ b(t)

d

dt
+ c(t)

)
(
αy1 + βy2

)

= a(t)
d2

dt2
(
αy1 + βy2

)
+ b(t)

d

dt

(
αy1 + βy2

)
+ c(t)

(
αy1 + βy2

)

= a(t)

(

α
d2y1

dt2
+ β

d2y2

dt2

)

+ b(t)

(

α
dy1

dt
+ β

dy2

dt

)

+ c(t)
(
αy1 + βy2

)

= α

(

a(t)
d2y1

dt2
+ b(t)

dy1

dt
+ c(t)y1

)

+ β

(

a(t)
d2y2

dt2
+ b(t)

dy2

dt
+ c(t)y2

)

= αLy1 + βLy2 .

3.3. Solving non-homogeneous linear ODEs

Consider the non-homogeneous linear second order ODE (3.2), which
written in abbreviated form is

Ly = f . (3.6)

To solve this problem we first consider the solution to the associated homo-
geneous ODE (called the Complementary Function):

LyCF = 0 . (3.7)

Since this ODE (3.7) is linear, second order and homogeneous, we can al-
ways find an expression for the solution—in the constant coefficient case
the solution has one of the forms given in Table 2.1. Now suppose that we
can find a particular solution—often called the particular integral (PI)—of
(3.6), i.e. some function, yPI, that satisfies (3.6):

LyPI = f . (3.8)

Then the complete, general solution of (3.6) is

y = yCF + yPI . (3.9)

This must be the general solution because it contains two arbitrary constants
(in the yCF part) and satisfies the ODE, since, using that L is a linear
operator (i.e. using the property (3.5)),

L(yCF + yPI) = LyCF
︸ ︷︷ ︸

=0

+ LyPI
︸︷︷︸

=f

= f .

Hence to summarize, to solve a non-homogeneous equation like (3.6) proceed
as follows.
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Step 1: Find the complementary function. i.e. find the general solution
to the corresponding homogeneous equation

LyCF = 0 .

Step 2: Find the particular integral. i.e. find any solution of

LyPI = f .

Step 3: Combine. The general solution to (3.6) is

y = yCF + yPI .

3.4. Method of undetermined coefficients

We now need to know how to obtain a particular integral yPI. For
special cases of the inhomogeneity f(t) we use the method of undetermined
coefficients, though there is a more general method called the method of
variation of parameters—see for example Kreyszig [8]. In the method of
undetermined coefficients we make an initial assumption about the form of
the particular integral yPI depending on the form of the inhomogeneity f ,
but with the coefficients left unspecified. We substitute our guess for yPI

into the linear ODE, Ly = f , and attempt to determine the coefficients so
that yPI satisfies the equation.

3.4.1. Example. Find the general solution of the linear ODE

y′′ − 3y′ − 4y = 3e2t .

3.4.2. Solution.
Step 1: Find the complementary function. Looking for a solution of the

form eλt, the auxiliary equation is λ2−3λ−4 = 0 which has two real distinct
roots λ1 = 4 and λ2 = −1, hence from Table 2.1, we have

yCF(t) = C1e
4t + C2e

−t .

Step 2: Find the particular integral. Assume that the particular integral
has the form (using Table 3.1)

yPI(t) = Ae2t ,

where the coefficient A is yet to be determined. Substituting this form for
yPI into the ODE, we get

(4A− 6A− 4A)e2t = 3e2t

⇔ −6Ae2t = 3e2t .

Hence A must be −1
2 and a particular solution is

yPI(t) = −1
2e2t .



3.4. METHOD OF UNDETERMINED COEFFICIENTS 27

Inhomogeneity f(t) Try yPI(t)

eαt Aeαt

sin(αt) A sin(αt) + B cos(αt)

cos(αt) A sin(αt) + B cos(αt)

b0 + b1t + b2t
2 + · · ·+ bntn A0 + A1t + A2t

2 + · · ·+ Antn

eαt sin(βt) Aeαt sin(βt) + Beαt cos(βt)

eαt cos(βt) Aeαt sin(βt) + Beαt cos(βt)

Table 3.1. Method of undetermined coefficients. When the
inhomogeneity f(t) has the form (or is any constant mul-
tiplied by this form) shown in the left-hand column, then
you should try a yPI(t) of the form shown in the right-hand
column. We can also make the obvious extensions for com-
binations of the inhomogeneities f(t) shown.

Step 3: Combine. Hence the general solution to the differential equation
is

y(t) = C1e
4t + C2e

−t

︸ ︷︷ ︸

yCF

−1
2e2t

︸ ︷︷ ︸

yPI

.

3.4.3. Example. Find the general solution of the linear ODE

y′′ − 3y′ − 4y = 2 sin t .

3.4.4. Solution.
Step 1: Find the complementary function. In this case, the complemen-

tary function is clearly the same as in the last example—the corresponding
homogeneous equation is the same—hence

yCF(t) = C1e
4t + C2e

−t .



28 3. NON-HOMOGENEOUS LINEAR ODES

Step 2: Find the particular integral. Assume that yPI has the form (using
Table 3.1)

yPI(t) = A sin t + B cos t ,

where the coefficients A and B are yet to be determined. Substituting this
form for yPI into the ODE implies

(−A sin t−B cos t)− 3(A cos t−B sin t)− 4(A sin t + B cos t) = 2 sin t

⇔ (−A + 3B − 4A) sin t + (−B − 3A− 4B) cos t = 2 sin t .

Equating coefficients of sin t and also cos t, we see that

−5A + 3B = 2 and − 5B − 3A = 0 .

Hence A = − 5
17 and B = 3

17 and so

yPI(t) = − 5
17 sin t + 3

17 cos t .

Step 3: Combine. Thus the general solution is

y(t) = C1e
4t + C2e

−t

︸ ︷︷ ︸

yCF

− 5
17 sin t + 3

17 cos t
︸ ︷︷ ︸

yPI

.

3.5. Initial and boundary value problems

Initial value problems (IVPs): given values for the solution, y(t0) =
y0, and its derivative, y′(t0) = v0, at a given time t = t0, are used to
determine the solution.

Boundary value problems (BVPs): given values for the solution,
y(t0) = y0 and y(t1) = y1, at two distinct times t = t0 and t = t1,
are used to determine the solution.

In either case the two pieces of information given (either the initial or
boundary data) are used to determine the specific values for the arbitrary
constants in the general solution which generate the specific solution satis-
fying that (initial or boundary) data.

3.5.1. Example (initial value problem). Find the solution to the initial
value problem

y′′ − 3y′ − 4y = 2 sin t ,

y(0) = 1 ,

y′(0) = 2 .
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3.5.2. Solution. To solve an initial value problem we start by finding
the complementary function and the particular integral; combining them
together to get the general solution. We know from the last example above
that the general solution is

y(t) = C1e
4t + C2e

−t − 5
17 sin t + 3

17 cos t . (3.10)

Only once we have established the general solution to the full non-homogeneous
problem do we start using the initial conditions to determine the constants
C1 and C2.

First we use that we know y(0) = 1; this tells us that the solution
function y(t) at the time t = 0 has the value 1. Substituting this information
into (3.10) gives

C1e
4·0 + C2e

−0 − 5
17 sin 0 + 3

17 cos 0 = 1

⇔ C1 + C2 = 14
17 . (3.11)

Secondly we need to use that y′(0) = 2. It is important to interpret this in-
formation correctly. This means that the derivative of the solution function,
evaluated at t = 0 is equal to 2. Hence we first need to differentiate (3.10)
giving

y′(t) = 4C1e
4t − C2e

−t − 5
17 cos t− 3

17 sin t . (3.12)

Now we use that y′(0) = 2; substituting this information into (3.12) gives

4C1e
4·0 − C2e

−0 − 5
17 cos 0− 3

17 sin 0 = 2

⇔ 4C1 − C2 = 39
17 . (3.13)

Equations (3.11) and (3.13) are a pair of linear simultaneous equations for
C1 and C2. Solving this pair of simultaneous equations we see that

C1 = 53
85 and C2 = 1

5 .

Hence the solution to the initial value problem is

y(t) = 53
85e4t + 1

5e−t − 5
17 sin t + 3

17 cos t .

3.5.3. Example (boundary value problem). Find the solution to the
boundary value problem

y′′ − 3y′ − 4y = 2 sin t ,

y(0) = 1 ,

y
(

π
2

)
= 0 .
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3.5.4. Solution. To solve such a boundary value problem we initially
proceed as before to find the complementary function and the particular
integral; combining them together to get the general solution. We already
know from the last example that the general solution in this case is

y(t) = C1e
4t + C2e

−t − 5
17 sin t + 3

17 cos t . (3.14)

As with initial value problems, only once we have established the general so-
lution to the full non-homogeneous problem do we start using the boundary
conditions to determine the constants C1 and C2.

First we use that we know y(0) = 1; and substitute this information
into (3.14) giving

C1e
4·0 + C2e

−0 − 5
17 sin 0 + 3

17 cos 0 = 1

⇔ C1 + C2 = 14
17 . (3.15)

Secondly we use that y
(

π
2

)
= 0; substituting this information into (3.14)

gives

C1e
4·π2 + C2e

−π
2 − 5

17 sin π
2 + 3

17 cos π
2 = 0

⇔ C1e
2π + C2e

−π
2 = 5

17 . (3.16)

We see that (3.15) and (3.16) are a pair of linear simultaneous equations for
C1 and C2. Solving this pair of simultaneous equations we soon see that

C1 =
5− 14e−

π
2

17(e2π − e−
π
2 )

and C2 =
14e2π − 5

17(e2π − e−
π
2 )

.

Hence the solution to the boundary value problem is

y(t) =

(

5− 14e−
π
2

17(e2π − e−
π
2 )

)

e4t +

(

14e2π − 5

17(e2π − e−
π
2 )

)

e−t − 5
17 sin t + 3

17 cos t .

3.6. Degenerate inhomogeneities

3.6.1. Example. Find the general solution of the degenerate linear ODE

y′′ + 4y = 3 cos 2t .

3.6.2. Solution.
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Step 1: Find the complementary function. First we solve the correspond-
ing homogeneous equation

y′′CF + 4yCF = 0 , (3.17)

to find the complementary function. Two solutions to this equation are
sin 2t and cos 2t, and so the complementary function is

yCF(t) = C1 sin 2t + C2 cos 2t ,

where C1 and C2 are arbitrary constants.

Step 2: Find the particular integral. Using Table 3.1, assume that yPI

has the form
yPI(t) = A sin 2t + B cos 2t ,

where the coefficients A & B are yet to be determined. Substituting this
form for yPI into the ODE implies

(−4A sin 2t− 4B cos 2t) + 4(A sin 2t + B cos 2t) = 3 cos 2t

⇔ (4B − 4B) sin 2t + (4A− 4A) cos 2t = 3 cos 2t .

Since the left-hand side is zero, there is no choice of A and B that satisfies
this equation. Hence for some reason we made a poor initial choice for
our particular solution yPI(t). This becomes apparent when we recall the
solutions to the homogeneous equation (3.17) are sin 2t and cos 2t. These
are solutions to the homogeneous equation and cannot possibly be solutions
to the non-homogeneous case we are considering. We must therefore try a
slightly different choice for yPI(t), for example,

yPI(t) = At cos 2t + Bt sin 2t .

Substituting this form for yPI into the ODE and cancelling terms implies

−4A sin 2t + 4B cos 2t = 3 cos 2t

Therefore, equating coefficients of sin 2t and cos 2t, we see that A = 0 and
B = 3

4 and so

yPI(t) = 3
4 t sin 2t .

Step 3: Combine. Hence the general solution is

y(t) = C1 sin 2t + C2 cos 2t
︸ ︷︷ ︸

yCF

+ 3
4 t sin 2t
︸ ︷︷ ︸

yPI

.

Occasionally such a modification, will be insufficient to remove all du-
plications of the solutions of the homogeneous equation, in which case it
is necessary to multiply by t a second time. For a second order equation
though, it will never be necessary to carry the process further than two
modifications.

3.6.3. Example. Find the general solution of the degenerate linear ODE
y′′ − 2y′ − 3y = 3e3t.
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3.6.4. Solution. First we focus on finding the complementary function,
and since in this case the auxiliary equation is λ2 − 2λ − 3 = 0, which has
two real distinct solutions λ1 = −1 and λ2 = 3, we see that

yCF(t) = C1e
−t + C2e

3t .

Now when we try to look for a particular integral, we see that Table 3.1 tells
us that we should try

yPI(t) = Ae3t ,

as our guess. However we see that this form for yPI is already a part of the
complementary function and so cannot be a particular integral. Hence we
try the standard modification is such circumstances and that is to change
our guess for the particular integral to

yPI(t) = Ate3t .

If we substitute this into the non-homogeneous differential equation we get

6Ae3t + 9Ate3t − 2(Ae3t + 3Ate3t)− 3Ate3t = 3e3t

⇔ 6Ae3t − 2Ae3t = 3e3t .

Hence A = 3
4 and so the general solution to the full non-homogeneous dif-

ferential equation is

y(t) = C1e
−t + C2e

3t + 3
4 te3t .

3.6.5. Example. Find the general solution of the degenerate linear ODE
y′′ − 6y′ + 9y = 3e3t.

3.6.6. Solution. First we focus on finding the complementary function.
In this case the auxiliary equation is λ2−6λ+9 = 0, which has the repeated
solution λ1 = λ2 = 3. Hence

yCF(t) = (C1 + C2t)e
3t .

Now forewarned by the last example, we see that we should not try the form
for the particular integral

yPI(t) = Ae3t ,

that Table 3.1 tells us that we should try, but rather we should modify our
guess to

yPI(t) = Ate3t .

However, this is also is already a part of the complementary function and
so cannot be a particular integral. Hence we need to modify this guess also.
We try the standard modification as before, and change our guess for the
particular integral to

yPI(t) = At2e3t .
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If we substitute this into the non-homogeneous differential equation we get

2Ae3t + 12Ate3t + 9At2e3t − 6(2Ate3t + 3At2e3t) + 9At2e3t = 3e3t

⇔ 2Ae3t = 3e3t .

Hence A = 3
2 and so the general solution to the full non-homogeneous dif-

ferential equation is

y(t) = C1e
−t + C2e

3t + 3
2 t2e3t .

3.7. Resonance

3.7.1. Spring with oscillatory external forcing. Consider the following
initial value problem for a forced harmonic oscillator, which for example,
models a mass on the end of a spring which is forced externally,

y′′ + ω2
0 y =

1

m
f(t) ,

y(0) = 0 ,

y′(0) = 0 .

Here y(t) is the displacement of the mass m from equilibrium at time t, and

ω0 = +
√

k/m

is a positive constant representing the natural frequency of oscillation when
no forcing is present. Suppose

f(t) = A sinωt

is the external oscillatory forcing, where A and ω are also positive constants.

Assume for the moment that ω 6= ω0. We proceed by first finding a
solution to the corresponding homogeneous problem,

y′′CF + ω2
0 yCF = 0

⇒ yCF(t) = C1 cos ω0t + C2 sin ω0t , (3.18)

where C1 and C2 are arbitrary constants.
Next we look for a particular integral, using Table 3.1 we should try

yPI(t) = D1 cos ωt + D2 sinωt , (3.19)

where D1 and D2 are the constants to be determined. Substituting this trial
particular integral into the full non-homogeneous solution we get,

−ω2(D1 cos ωt + D2 sin ωt) + ω2
0(D1 cos ωt + D2 sinωt) = 1

m
A sinωt .

Equating coefficients of cosωt and sinωt, we see that

−ω2D1 + ω2
0D1 = 0 and − ω2D2 + ω2

0D2 = 1
m

A .
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Hence, provided ω 6= ω0, then D1 = 0 and D2 = A/m(ω2
0 − ω2), so that

yPI(t) =
A

m(ω2
0 − ω2)

sinωt .

Hence the general solution is

y(t) = C1 cos ω0t + C2 sinω0t
︸ ︷︷ ︸

yCF

+
A

m(ω2
0 − ω2)

sin ωt

︸ ︷︷ ︸

yPI

.

Now using the initial conditions,

y(0) = 0 ⇒ C1 = 0 ,

while,

y′(0) = 0 ⇒ ω0C2 + ω · A

m(ω2
0 − ω2)

= 0 ⇔ C2 = − Aω

ω0m(ω2
0 − ω2)

.

Thus finally the solution to the initial value problem is given by

y(t) =
Aω

m(ω2 − ω2
0)
·
( 1

ω0
sinω0t

︸ ︷︷ ︸

natural oscillation

− 1

ω
sin ωt

︸ ︷︷ ︸

forced oscillation

)

, (3.20)

where the first oscillatory term represents the natural oscillations, and the
second, the forced mode of vibration.

3.7.2. Undamped resonance. What happens when ω → ω0? If we
naively take the limit ω → ω0 in (3.20) we see that the two oscillatory terms
combine to give zero, but also, the denominator in the multiplicative term

Aω
m(ω2−ω2

0
)

also goes to zero. This implies we should be much more careful

about taking this limit. Let’s rewrite this problematic ratio as follows:
1
ω0

sinω0t− 1
ω

sinωt

ω2 − ω2
0

=
1
ω0

sinω0t− 1
ω

sinωt

(ω + ω0)(ω − ω0)

=
−1

(ω + ω0)
·

1
ω

sinωt− 1
ω0

sin ω0t

ω − ω0
︸ ︷︷ ︸

careful limit

. (3.21)

Now the limit issue is isolated to the term on the right–hand side shown.
The idea now is to imagine the function

F (ω) =
1

ω
sinωt

as a function of ω, with time t as a constant parameter and to determine
the limit

lim
ω→ω0

F (ω)− F (ω0)

ω − ω0
,

which in fact, by definition, is nothing other than F ′(ω0)! i.e. it is the
derivative of F (ω) with respect to ω evaluated at ω0.
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Hence since F (ω) = 1
ω

sinωt, we have that

lim
ω→ω0

1
ω

sinωt− 1
ω0

sin ω0t

ω − ω0
= F ′(ω0) = − 1

ω2
0

sin ω0t +
1

ω0
t cos ω0t .

Thus if we take the limit ω → ω0 in (3.21) we see that

lim
ω→ω0

−1

(ω + ω0)
·

1
ω

sinωt− 1
ω0

sinω0t

ω − ω0
=

1

2ω2
0

·
(

1

ω0
sinω0t− t cos ω0t

)

.

Hence the solution to the initial value problem when ω = ω0 is

y(t) =
A

2mω0
·
( 1

ω0
sinω0t

︸ ︷︷ ︸

natural oscillation

− t cos ω0t
︸ ︷︷ ︸

resonant term

)

. (3.22)

The important aspect to notice is that when ω = ω0, the second term
‘t cos ω0t’ grows without bound (the amplitude of these oscillations grows
like t) and this is the signature of undamped resonance.

3.7.3. Damped resonance. Now suppose we introduce damping into
our simple spring system so that the coefficient of friction C > 0. The
equation of motion for the mass on the end of a spring which is forced
externally, now becomes

y′′ +
C

m
y′ + ω2

0 y =
1

m
f(t) .

By analogy with the undamped case, we have set

ω0 = +
√

k/m .

However in the scenario here with damping, this no longer simply represents
the natural frequency of oscillation when no forcing is present. This is
because in the overdamped, critically damped or underdamped cases the
complementary function is always exponentially decaying in time. We call
this part of the solution the transient solution—it will be significant initially,
but it decays to zero exponentially fast—see Section 2.3.

We will still suppose that

f(t) = A sinωt

is the external oscillatory forcing, where A and ω are also positive constants.
The contribution to the solution from the particular integral which arises
from the external forcing, cannot generate unbounded resonant behaviour
for any bounded driving oscillatory force. To see this we look for a particular
solution of the form

yPI(t) = D1 cos ωt + D2 sinωt , (3.23)

where D1 and D2 are the constants to be determined. Substituting this into
the full non-homogeneous solution, equating coefficients of cos ωt and sinωt,
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and then solving the resulting pair of linear simultaneous equations for D1

and D2 we find that the particular integral is

yPI = − CωA/m2

(Cω/m)2 + (ω2
0 − ω2)2

︸ ︷︷ ︸

D1

cos ωt +
(ω2

0 − ω2)A/m

(Cω/m)2 + (ω2
0 − ω2)2

︸ ︷︷ ︸

D2

sinωt .

(3.24)
The general solution is

y(t) = yCF
︸︷︷︸

decaying transient

+ yPI
︸︷︷︸

large time solution

.

Since the complementary function part of the solution is exponentially de-
caying, the long term dynamics of the system is governed by the particular
integral part of the solution and so for large times (t≫ 1)

y(t) ≈ yPI(t) , (3.25)

with yPI given by (3.24). A second consequence of this ‘large time’ assump-
tion is that the initial conditions are no longer relevant.

Let us now examine the amplitude of the solution (3.25) at large times,
or more precisely, the square of the amplitude of the solution

H(ω) ≡ D2
1 + D2

2 =
A2/m2

(Cω/m)2 + (ω2
0 − ω2)2

.

For what value of ω is this amplitude a maximum? This will be given by
the value of ω for which the denominator of H(ω) is a minimum (since the
numerator in H(ω) is independent of ω). Hence consider

d

dω

(
(Cω/m)2 + (ω2

0 − ω2)2
)

= 2C2ω/m2 − 2(ω2
0 − ω2) · 2ω .

The right-hand side is zero when ω = 0 or when

ω = ω∗ ≡
√

ω2
0 − C2/2m2 .

In fact, ω = 0 is a local maximum for the denominator of H(ω) and thus
a local minimum for H(ω) itself. Hence we can discard this case (it corre-
sponds to zero forcing afterall). However ω = ω∗ is a local minimum for
the denominator of H(ω) and hence a local maximum for H(ω) itself. This
means that the amplitude of the oscillations of the solution is largest when
ω = ω∗ and is the resonant frequency!

The frequency ω∗ is also known as the practical resonance frequency—
see Figure 3.7.3. This is covered in detail in many engineering books, for
example Kreyszig [8] p. 113.
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Figure 3.1. The square of the amplitude of the large time
solution for a damped spring vs the frequency of the exter-
nal forcing. The amplitude and hence the solution is always
bounded but has a maximum at the practical resonance fre-
quency ω = ω∗ (where as an example ω∗ = 4 above).

3.8. Equidimensional equations

A linear differential equation of the form

at2
d2y

dt2
+ bt

dy

dt
+ cy = f(t) , (3.26)

with a, b & c all constant, is an example of an equidimensional or
Cauchy–Euler equation of second order.

To solve equations of this form, introduce a new independent variable

z = log t ⇔ t = ez.

Then the chain rule implies

dy

dt
=

dy

dz
· dz

dt
=

dy

dz
· 1

t
, i.e. t

dy

dt
=

dy

dz
. (3.27)

Further,

d2y

dt2
=

d

dt

(
dy

dt

)

=
d

dt

(
dy

dz
· 1

t

)

=
d

dt

(
dy

dz

)

· 1
t
− dy

dz
· 1

t2

=
d

dz

(
dy

dz

)

· dz

dt
· 1

t
− dy

dz
· 1

t2

=

(
d2y

dz2
− dy

dz

)

· 1

t2
,



38 3. NON-HOMOGENEOUS LINEAR ODES

i.e.

t2
d2y

dt2
=

d2y

dz2
− dy

dz
. (3.28)

If we substitute (3.27) and (3.28) into the equidimensional equation (3.26),
we get

a
d2y

dz2
+ (b− a)

dy

dz
+ cy = f(ez) . (3.29)

Now to solve (3.29), we can use the techniques we have learned to solve
constant coefficient linear second order ODEs. Once you have solved (3.29),
remember to substitute back that z = log t.

3.8.1. Remark. That such equations are called equidimensional refers
to the fact that they are characterized by the property that the linear oper-
ator on the left-hand side

L ≡ at2
d2

dt2
+ bt

d

dt
+ c

is invariant under the transformation t→ k.

3.8.2. Example (Black–Scholes). In 1973 Black & Scholes derived the
partial differential equation

∂V

∂t
+ 1

2σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 ,

where r and σ are constants representing the risk–free interest and volatility
of the underlying traded index, respectively. Here S is the price (which
varies stochastically) of the underlying traded index and V is the value of a
financial option on that index. Myron Scholes won the Nobel Prize in 1997
for his work involving this partial differential equation!

Notice that it is an equidimensional equation with respect to S, and is
solved using the same change of variables we performed above. (This equa-
tion is also known—in different guises—as the Fokker-Planck or backward
Kolmogorov equation.)

3.9. Exercises

3.1. Find the general solution to the non-homogeneous differential equa-
tions:

(a) y′′ + 4y = sin 3t;
(b) 4y′′ + 7y′ − 2y = 1 + 2t2;
(c) y′′ + y′ + y = 3 + 5e2t;
(d) y′′ + 8y′ + 16y = 50 sin 2t + 8 cos 4t;
(e) y′′ + 2y′ − 8y = t2e3t.

3.2. For each of the following initial value problems, find the solution:
(a) y′′ − 5y′ + 6y = cos 3t, with y(0) = 0, y′(0) = 5;
(b) y′′ + 4y′ + 4y = e−2t, with y(0) = −3, y′(0) = 2.
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3.3. Find the general solution to the non-homogeneous differential equa-
tion

y′′ + 4y = e−t + sin 2t .

How does the solution behave?

3.4. Consider the simple loop series electrical circuit mentioned in the
introduction to this chapter. Describe how the charge Q(t) behaves for all
t > 0, when L = 1 Henrys, R = 2 Ohms, C = 1/5 Farads, Q(0) = Q0,
Q′(0) = 0, and the impressed voltage is

(a) V (t) = e−t sin 3t,
(b) V (t) = e−t cos 2t.

3.5. Find the general solution of the following equidimensional ODEs:
(a) t2y′′ − 2ty′ + 2y = (ln(t))2 − ln(t2);
(b) t3y′′′ + 2ty′ − 2y = t2 ln(t) + 3t.

3.6. (Resonance and damping.) How does damping effect the phenom-
enon of resonance? For example, suppose that for our frictionally damped
spring system, we apply an external sinusoidal force (we might think here of
a wine glass, with such a force induced by a pressure wave such as sound),
i.e. suppose the equation of motion for the mass on the end of the spring
system is, my′′ + Cy′ + ky = f(t). Take the mass m = 1 Kg, stiffness
k = 2 Kg/s2, coefficient of friction C = 2 Kg/s and the external forcing
as f(t) = e−t sin(t) Newtons. Assuming that the mass starts at rest at the
origin, describe the subsequent behaviour of the mass for all t > 0.
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Summary: solving linear constant coefficient second order IVPs

In general, to solve the linear second order non-homogeneous constant
coefficient ordinary differential initial value problem,

a
d2y

dt2
+ b

dy

dt
+ cy = f(t) , (3.30a)

y(0) = α , (3.30b)

y′(0) = β , (3.30c)

where a, b and c are given intrinsic constants, and α and β are given initial
data, proceed as follows.

Step 1: Find the complementary function. i.e. find the general solu-
tion to the associated homogeneous ODE

LyCF = 0 . (3.31)

To achieve this, try to find a solution to (3.31) of the form yCF = eλt.
This generates the auxiliary equation aλ2+bλ+c = 0. Then pick the
solution given in Table 2.1 depending on whether b2−4ac is positive,
zero or negative. This solution always has the form (where C1 and
C2 are arbitrary constants)

yCF(t) = C1y1(t) + C2y2(t) .

Step 2: Find the particular integral. i.e. find any solution yPI of the
full non-homogeneous equation (3.30)

LyPI = f ,

using the method of undetermined coefficients (see Table 3.1).

Step 3: Combine. The general solution of (3.30) is

y(t) = yCF + yPI (3.32)

⇒ y(t) = C1y1(t) + C2y2(t) + yPI(t) . (3.33)

Step 4: Use the initial conditions to determine the arbitrary con-
stants. Using the first initial condition, and then differentiating the
general solution (3.33) and substituting in the second initial condi-
tion we get, respectively,

C1y1(0) + C2y2(0) + yPI(0) = α , (3.34a)

C1y
′
1(0) + C2y

′
2(0) + y′PI(0) = β . (3.34b)

Now solve the simultaneous equations (3.34) for C1 and C2 and sub-
stitute these values into (3.33).



CHAPTER 4

Laplace transforms

4.1. Introduction

4.1.1. Example. Consider a damped spring system which consists of a
mass which slides on a horizontal surface, and is attached to a spring, which
is fixed to a vertical wall at the other end (see Figure 1.1 in Chapter 1).
Suppose that the mass, initially at rest in the equilibrium position, is given
a sharp hammer blow at time t0 > 0, so that the equation of motion and
initial conditions for the mass are

y′′ + 3y′ + 2y = δ(t− t0) ,

y(0) = 0 ,

y′(0) = 0 .

Here the external forcing function is f(t) = δ(t − t0). The Dirac delta
function, δ(t − t0), is supposed to represent the action of a force acting
instantaneously at the time t0 and imparting a unit impulse (momentum)
to the mass. The method of Laplace transforms is ideally suited to dealing
with such situations and can be used to determine the solution to such initial
value problems very conveniently.

4.1.2. Definition (Laplace transform). Formally:

Suppose the function f(t) is defined for all t ≥ 0. The Laplace
transform of f(t) is defined, as a function of the variable s by the
integral,

f(s) = L{f(t)} ≡
∫ ∞

0
e−stf(t) dt .

f(s) is defined for those values of s for which the right-hand integral
is finite.

41
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4.1.3. Example. For any s > 0, L{1} =

∫ ∞

0
e−st dt =

[

−e−st

s

]∞

0

=
1

s
.

4.1.4. Example. For any s > a,

L{eat} =

∫ ∞

0
e−steat dt =

∫ ∞

0
e−(s−a)t dt =

1

s− a
.

4.1.5. Example. For any s > 0,

L{sin at} =

∫ ∞

0
e−st sin at dt =

a

s2 + a2
.

4.1.6. Example. For any s > 0,

L{cos at} =

∫ ∞

0
e−st cos at dt =

s

s2 + a2
.

4.1.7. Example (Derivative theorem). Formally, using the definition
of the Laplace transform and then integrating by parts

L{f ′(t)} =

∫ ∞

0
e−stf ′(t) dt

=
[
e−stf(t)

]∞
0

+ s

∫ ∞

0
e−stf(t) dt

= − f(0) + sf(s) .

4.1.8. Example (Derivative theorem application). We know that the
Laplace transform of f(t) = sin at is

f(s) =
a

s2 + a2
.

Hence to find the Laplace transform of g(t) = cos at, we note that

g(t) =
1

a
f ′(t) ⇒ g(s) =

1

a
· sa

s2 + a2
− 1

a
sin 0 =

s

s2 + a2
.

4.1.9. Example (Shift theorem). Using the Shift Theorem,

L{eat sin bt} =
b

(s− a)2 + b2
.

i.e. the function is shifted in the transform space when it is multiplied by
eat in the non–transform space.
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4.2. Properties of Laplace transforms

4.2.1. Basic properties. The essential properties can be summarized
as follows.

Suppose f(t) and g(t) are any two functions with Laplace transforms
f(s) and g(s), respectively, and that a and b are any two constants.

• L is a linear integral operator.

L{af(t) + bg(t)} = af(s) + bg(s) .

• Derivative theorem.

L{f ′(t)} = sf(s)− f(0) ,

L{f ′′(t)} = s2f(s)− sf(0)− f ′(0) ,

L{f (n)(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0) .

• Shift theorem.

L{e−atf(t)} = f(s + a) .

• Second shift theorem. If

f(t) =

{

g(t− a), t ≥ a,

0, t < a,

then
L{f(t)} = e−sag(s) .

• Convolution theorem. If we define the convolution product
of two functions to be

f(t) ∗ g(t) ≡
∫ +∞

−∞
f(τ)g(t− τ) dτ ≡

∫ +∞

−∞
f(t− τ)g(τ) dτ ,

then
L{f(t) ∗ g(t)} = f(s) · g(s) .

4.2.2. Example (Second shift theorem). Consider

f(t) =

{

g(t− a), t ≥ a,

0, t < a,
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with a > 0 constant. i.e. f(t) is the function g shifted to the right along the
real axis by a distance a. Setting u = t− a we see that

f(s) =

∫ ∞

0
e−stg(t− a)dt

=

∫ ∞

0
e−sae−sug(u)du

= e−sa

∫ ∞

0
e−sug(u)du

= e−sag(s) .

4.3. Solving linear constant coefficients ODEs via Laplace transforms

4.3.1. Example. Find the solution to the following initial value prob-
lem:

y′′ + 5y′ + 6y = 1 ,

y(0) = 0 ,

y′(0) = 0 .

4.3.2. Example. Find the solution to the following initial value prob-
lem:

y′′ + 4y′ + 8y = 1 ,

y(0) = 0 ,

y′(0) = 0 .

4.3.3. Solution. Take the Laplace transform of both sides of the ODE,
we have that

L{y′′(t) + 4y′(t) + 8y(t)} = L{1}
⇔ L{y′′(t)}+ 4L{y′(t)}+ 8L{y(t)} = L{1}

⇔ s2y(s)− sy(0)− y′(0) + 4
(
sy(s)− y(0)

)
+ 8y(s) =

1

s

⇔ (s2 + 4s + 8)y(s)− (s + 4)y(0)− y′(0) =
1

s

⇔ (s2 + 4s + 8)y(s) =
1

s
,

where in the last step we have used that y(0) = y′(0) = 0 for this problem.
Now look at this last equation—notice that by taking the Laplace transform
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of the differential equation for y(t), we have converted it to an algebraic
equation for y(s). This linear algebraic equation can be easily solved:

y(s) =
1

s(s2 + 4s + 8)
.

Hence we now know what the Laplace transform of the solution of the dif-
ferential equation (plus initial conditions) looks like. The question now is,
knowing y(s), can we figure out what y(t) is?

We use partial fractions to split up y(s) as follows, i.e. we seek to write
y(s) in the form

1

s(s2 + 4s + 8)
=

A

s
+

Bs + C

(s2 + 4s + 8)
, (4.1)

(the idea is to try to split up y(s) into simpler parts we can handle).
The question is, can we find constants A, B and C such that this last

expression is true for all s 6= 0? Multiply both sides of the equation by the
denominator on the left-hand side; this gives

1 = A(s2 + 4s + 8) + (Bs + C)s

⇔ 1 = (A + B)s2 + (4A + C)s + 8A .

We want this to hold for all s 6= 0. Hence equating powers of s we see that

s0 : ⇒ 1 = 8A ⇒ A = 1/8 ,

s1 : ⇒ 0 = 4A + C ⇒ C = −1/2 ,

s2 : ⇒ 0 = A + B ⇒ B = −1/8 .

Hence

y(s) =
1

8
· 1
s
− 1

8
· s + 4

(s2 + 4s + 8)
.

Completing the square for the denominator in the second term we see that

y(s) =
1

8
· 1
s
− 1

8
· s + 4
(
(s + 2)2 + 4

)

⇔ y(s) =
1

8
· 1
s
− 1

8
· s + 2

(s + 2)2 + 4
− 1

8
· 2

(s + 2)2 + 4

⇔ y(t) =
1

8
− 1

8
e−2t cos 2t− 1

8
e−2t sin 2t ,

using the table of Laplace transforms in the last step.

4.3.4. Example. Solve the following initial value problem using the
method of Laplace transforms

y′′ + 4y′ + 4y = 6e−2t ,

y(0) = −2 ,

y′(0) = 8 .



46 4. LAPLACE TRANSFORMS

4.3.5. Solution. Taking the Laplace transform of both sides of the
ODE, we get

L{y′′(t) + 4y′(t) + 4y(t)} = L{6e−2t}
⇔ L{y′′(t)}+ 4L{y′(t)}+ 4L{y(t)} = L{6e−2t}

⇔ s2y(s)− sy(0)− y′(0) + 4
(
sy(s)− y(0)

)
+ 4y(s) =

6

s + 2

⇔ (s2 + 4s + 4)y(s)− (s + 4)y(0)− y′(0) =
6

s + 2

⇔ (s2 + 4s + 4)y(s) =
6

s + 2
− 2s

⇔ (s + 2)2y(s) =
6

s + 2
− 2s .

We now solve this equation for y(s), and after simplifying our expression for
y(s), use the table of Laplace transforms to find the original solution y(t):

y(s) =
6

(s + 2)3
− 2s

(s + 2)2

⇔ y(s) =
6

(s + 2)3
− 2(s + 2− 2)

(s + 2)2

⇔ y(s) =
6

(s + 2)3
− 2

s + 2
+

4

(s + 2)2

⇔ y(s) = 6L{e−2t 1
2 t2} − 2L{e−2t}+ 4L{e−2tt}

⇔ y(t) = 6e−2t 1
2 t2 − 2e−2t + 4e−2tt

⇔ y(t) = (3t2 + 4t− 2)e−2t .

4.4. Impulses and Dirac’s delta function

4.4.1. Impulse. Laplace transforms are particularly useful when we wish
to solve a differential equation which models a mechanical or electrical sys-
tem and which involves an impulsive force or current. For example, if a
mechanical system is given a blow by a hammer. In mechanics, the impulse
I(t) of a force f(t) which acts over a given time interval, say t0 ≤ t ≤ t1, is
defined to be

I(t) =

∫ t1

t0

f(t) dt.

It represents the total momentum imparted to the system over the time
interval t0 ≤ t ≤ t1 by f(t). For an electrical circuit the analogous quantity
is obtained by replacing f(t) by the electromotive force (applied voltage)
V (t).
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4.4.2. Dirac’s delta function. Let’s suppose we apply a force

fǫ(t) =

{

1/ǫ, if t0 ≤ t ≤ t0 + ǫ ,

0, otherwise ,

i.e. we apply a constant force 1/ǫ over the time interval t0 ≤ t ≤ t0 + ǫ,
where ǫ ≪ 1 is a small parameter and t0 > 0. Then the total impulse, for
all t ≥ 0, corresponding to this force is

Iǫ(t) =

∫ ∞

0
fǫ(t) dt =

∫ t0+ǫ

t0

1
ǫ

dt = 1 .

Note that Iǫ(t) represents the area under the graph of fǫ(t), and this last
result shows that this area is independent of ǫ. Hence if we take the limit
as ǫ→ 0, then

fǫ(t)→ δ(t− t0) ,

where δ(t− t0) is called the Dirac delta function. It has the property that

∫ ∞

0
δ(t− t0) dt = 1 ,

and that it is zero everywhere except at t = t0, where it is undefined. In fact
it is not really a function at all, but is an example of a generalized function
or (singular) distribution. Of interest to us here is that it represents an
impulse, of magnitude 1, acting over an infinitesimally short time interval,
exactly as a hammer hitting a mass and imparting some momentum to it
(via an impulse).

4.4.3. The Laplace transform of the Dirac delta function. This is par-
ticularly simple and means that the method of Laplace transforms is suited
to problems involving delta function impulses/forces. First, let’s consider
the Laplace transform of fǫ(t):

L{fǫ(t)} =

∫ ∞

0
fǫ(t) e−st dt =

∫ t0+ǫ

t0

1
ǫ
e−st dt = e−st0 · 1− e−ǫs

ǫs
.

Now taking the limit ǫ→ 0 in this last expression, we get

L{δ(t− t0)} = e−st0 .

Hence the Dirac delta function is much more easily handled in the Laplace
transform space, where it is represented by an ordinary exponential function,
as opposed to its generalized function guise in the non-transform space. Note
also that if we take the limit t0 → 0 we get that L{δ(t)} = 1.
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4.4.4. Example. Consider the damped spring system shown in Fig-
ure 1.1. Suppose that the mass, initially at rest in the equilibrium position,
is given a sharp hammer blow at time t0 > 0, so that the equation of motion
and initial conditions for the mass are

y′′ + 3y′ + 2y = δ(t− t0) ,

y(0) = 0 ,

y′(0) = 0 .

Use the Laplace transform to determine the solution to this initial value
problem and sketch the behaviour of the solution for all t ≥ 0.

4.4.5. Solution. Taking the Laplace transform of both sides of the
ODE, we get

L{y′′(t) + 3y′(t) + 2y(t)} = L{δ(t− t0)}
⇔ L{y′′(t)}+ 3L{y′(t)}+ 2L{y(t)} = L{δ(t− t0)}
⇔ s2y(s)− sy(0)− y′(0) + 3

(
sy(s)− y(0)

)
+ 2y(s) = e−t0s

⇔ (s2 + 3s + 2)y(s)− (s + 3)y(0)− y′(0) = e−t0s

⇔ (s2 + 3s + 2)y(s) = e−t0s

⇔ (s + 1)(s + 2)y(s) = e−t0s .

We now solve this equation for y(s),

y(s) =
e−t0s

(s + 1)(s + 2)
.

We now try to simplify our expression for y(s) as far as possible. Using
partial fractions, can we write

1

(s + 1)(s + 2)
≡ A

(s + 1)
+

B

(s + 2)

⇔ 1 ≡ A(s + 2) + B(s + 1) ,

for some constants A and B? Using the ‘cover-up method’ if we set

s = −2 : ⇒ B = −1 ,

s = −1 : ⇒ A = 1 .

Hence

y(s) = e−t0s

(
1

(s + 1)
− 1

(s + 2)

)

⇔ y(s) = e−t0s · L{e−t − e−2t} .

Using the table of Laplace transforms to find the original solution,

y(t) =

{

e−(t−t0) − e−2(t−t0) , if t > t0 ,

0 , if t < t0 .
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Figure 4.1. The mass sits in the equilibrium position y =
0 until it is hit by the hammer at t = t0 (as an example
we took t0 = 1 above). Note that the values for the mass,
coefficient of friction and spring stiffness mean that we are
in the overdamped case.

How do we interpret this solution? Recall that the mass starts in the equi-
librium position y = 0 with zero velocity and no force acts on it until the
time t = t0. Hence we expect the mass to sit in its equilibrium position
until it is given a hammer blow at t = t0 which imparts a unit impluse of
momentum to it. Since its mass is m = 1, the hammer blow is equivalent to
giving the mass one unit of velocity at t = t0 and the mass starts off from
y = 0 with that velocity. The solution thereafter is equivalent to the mass
starting from the origin with a velocity of 1 (and no subsequent force)—see
Figure 4.1.

4.4.6. The big picture. We will see in Chapter 7 that we can re-express
any scalar higher order linear constant coefficient ODE (linear or nonlinear)
as a system of first order ODEs of the form

y′ = Ay + f(t) .

Here y is the unknown vector n× 1 solution, A is a constant n× n matrix
and f is a vector n × 1 external force (we will know how to interpret this
equation more readily once we have completed the material in Chapter 5).
The initial data can be expressed as

y(0) = y0 .
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A nice way to visualize the process of solving linear constant coefficient ODE
initial value problems via Laplace transform is as follows.

y′= Ay + f(t)
y′(0)= y0

Laplace transform−−−−−−−−−−−→ sy(s)− y0 = Ay(s) + f(s)

Solve



y



ySolve

y(t) ←−−−−−−−−−−−−−−−−
inverse Laplace transform

y(s) = (sI −A)−1
(
y0 + f(s)

)

Hence instead of solving the corresponding system of first order ODEs with
initial conditions directly (the arrow down the left-hand side), we solve the
system indirectly, by first taking the Laplace transform of the ODEs and
initial conditions—the arrow across the top. We must then solve the result-
ing linear algebraic problem for the Laplace transform of the solution y(s).
This corresponds to the arrow down the right-hand side. Then finally, to
find the actual solution to the original initial value problem y(t), we must
take the inverse Laplace transform—the arrow along the bottom.

4.5. Exercises

For all the exercises below use the table of Laplace transforms!

4.1. Find the Laplace transforms of the following functions:

(a) sin(2t) cos(2t); (b) cosh2(2t); (c) cos(at) sinh(at); (d) t2e−3t.

Hint, you will find the following identities useful:

sin 2ϕ ≡ 2 sin ϕ cos ϕ ; sinhϕ ≡ 1

2

(
eϕ − e−ϕ

)
; cosh ϕ ≡ 1

2

(
eϕ + e−ϕ

)
.

4.2. Find the inverse Laplace transforms of the following functions (you
may wish to re-familiarize yourself with partial fractions first):

(a)
s

(s + 3)(s + 5)
; (b)

1

s(s2 + k2)
; (c)

1

(s + 3)2
.

Use Laplace transforms to solve the following initial value problems:

4.3. y′′ + y = t, y(0) = 0, y′(0) = 2.

4.4. y′′ + 2y′ + y = 3te−t, y(0) = 4, y′(0) = 2.

4.5. y′′ + 16y = 32t, y(0) = 3, y′(0) = −2.

4.6. y′′ − 3y′ + 2y = 4, y(0) = 1, y′(0) = 0.
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4.7. y′′ + 4y′ + 4y = 6e−2t, y(0) = −2, y′(0) = 8.

4.8. Consider the damped spring system of Chapters 2&3. In particular
let’s suppose that the mass, initially at rest in the equilibrium position, is
given a sharp hammer blow at time t = 4π, so that the equation of motion
for the mass is,

y′′ + 4y′ + 5y = δ(t− 4π) , with y(0) = 0 , y′(0) = 3 .

Use the Laplace transform to determine the solution to this initial value
problem and sketch the behaviour of the solution for all t ≥ 0.
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Table of Laplace transforms

f(t)

∫ ∞

0
e−stf(t)dt

1
1

s

tn
n!

sn+1

eat 1

s− a

sin at
a

s2 + a2

cos at
s

s2 + a2

af(t) + bg(t) af(s) + bg(s)

f ′(t) sf(s)− f(0)

f ′′(t) s2f(s)− sf(0)− f ′(0)

e−atf(t) f(s + a)

f(t) =

{

g(t− a), t ≥ a,

0, t < a,
e−sag(s)

δ(t− a) e−sa

f(t) ∗ g(t) f(s) · g(s)

Table 4.1. Table of Laplace transforms.



CHAPTER 5

Linear algebraic equations

5.1. Physical and engineering applications

When modelling many physical and engineering problems, we are often
left with a system of algebraic equations for unknown quantities x1, x2, x3,
. . . , xn, say. These unknown quantities may represent components of modes
of oscillation in structures for example, or more generally1:

Structures: stresses and moments in complicated structures;

Hydraulic networks: hydraulic head at junctions and the rate of flow
(discharge) for connecting pipes;

General networks: abstract network problems, global communication
systems;

Optimization: Linear programming problems, simplex algorithm, dis-
tribution networks, production totals for factories or companies,
flight and ticket availability in airline scheduling;

Finite difference schemes: nodal values in the numerical implemen-
tation of a finite difference scheme for solving differential equation
boundary value problems;

Finite element method: elemental values in the numerical implemen-
tation of a finite element method for solving boundary value prob-
lems (useful in arbitrary geometrical configurations);

Surveying: error adjustments via least squares method;

Curve fitting: determining the coefficients of the best polynomial ap-
proximation;

Circuits: electrical currents in circuits;

Nonlinear cable analysis: bridges, structures.

1see www.nr.com and www.ulib.org

53
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In any of these contexts, the system of algebraic equations that we must
solve will in many cases be linear or at least can be well approximated by
a linear system of equations. Linear algebraic equations are characterized
by the property that no variable is raised to a power other than one or is
multiplied by any other variable. The question is: is there a systematic
procedure for solving such systems?

5.2. Systems of linear algebraic equations

5.2.1. One equation with one unknown. For example, suppose we are
asked to solve

2x = 6 .

Clearly the solution is
x = 3 .

In general if a and b are any two given real numbers, we might be asked to
find the values of x for which

ax = b (5.1)

is satisfied. There are three cases—we will return to this problem (5.1) time
and again.

For the equation (5.1) if

• a 6= 0 then we can divide (5.1) by a. Thus x = b/a and
this is the unique solution, i.e. the only value of x for which
(5.1) is satisfied.

• a = 0 and b 6= 0, then there is no solution. There do not
exist any real values of x such that 0 · x = b (6= 0).

• a = 0 and b = 0, then any value of x will satisfy 0 · x = 0.
Hence there are infinitely many solutions.

5.2.2. A system of two equations with two unknowns. A simple ex-
ample is the system of two equations for the unknowns x1 and x2:

3x1 + 4x2 = 2 , (5.2)

x1 + 2x2 = 0 . (5.3)

There are many ways to solve this simple system of equations—we describe
one that is easily generalised to much larger systems of linear equations.

Step 1. The first step is to eliminate x1 from (5.3) by replacing (5.3) by
3·(5.3)−(5.2):

3x1 + 4x2 = 2 (5.4)

2x2 = −2 . (5.5)
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Step 2. Equation (5.5) is easy to solve (divide both sides by 2), and gives

x2 = −1 .

Step 3. Substitution of this result back into (5.4) then gives

3x1 − 4 = 2

⇔ 3x1 = 6

⇔ x1 = 2 .

The solution to equations (5.2) and (5.3) is therefore x1 = 2 and x2 = −1.
The process in this last step is known as back–substitution.

Note that having found the solution, we can always check it is correct
by substituting our solution values into the equations, and showing that the
equations are satisfied by these values.

3 · (2) + 4 · (−1) = 2

(2) + 2 · (−1) = 0.

Remark (algebraic interpretation). What we have just done in the steps
above is exactly equivalent to the following: first solve (5.2) for 3x1, i.e.
3x1 = 2 − 4x2. Now multiply (5.3) by 3 so that it becomes 3x1 + 6x2 = 0.
Now substitute the expression for 3x1 in the first equation into the second
(thus eliminating x1) to get (2− 4x2) + 6x2 = 0 ⇒ 2x2 = −2, etc. . . .

Remark (geometric interpretation). The pair of simultaneous equations
(5.2) & (5.3) also represent a pair of straight lines in the (x1, x2)-plane,
rearranging: x2 = −3

4x1 + 2
3 , x2 = −1

2x1. In posing the problem of finding
the solution of this pair of simultaneous equations, we are asked to find the
values of x1 and x2 such that both these constraints (each of these equations
represents a constraint on the set of values of x1 and x2 in the plane) are
satisfied simultaneously. This happens at the intersection of the two lines.

In general, consider the system of two linear equations:

a11x1 + a12x2 = b1 (5.6)

a21x1 + a22x2 = b2. (5.7)

Solving these equations gives us

(5.6) ⇒ a11x1 + a12x2 = b1 , (5.8)

a11 · (5.7)− a21 · (5.6) ⇒ (a11a22 − a12a21)
︸ ︷︷ ︸

D

x2 = a11b2 − a21b1
︸ ︷︷ ︸

B

. (5.9)
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For the system (5.6), (5.7) if

• D 6= 0, then we may solve (5.9) to get x2, and then by
substituting this value back into (5.8) we determine x1, i.e.
there is a unique solution given by

x2 =
B

D
=

a11b2 − a21b1

a11a22 − a12a21
and x1 =

a22b1 − a12b2

a11a22 − a12a21
.

• D = 0 and B 6= 0 then there is no solution;

• D = 0 and B = 0, then any value of x2 will satisfy (5.9)
and there is an infinite number of solutions.

5.2.3. Remark (determinant). The quantity D = a11a22 − a12a21 is
clearly important, and is called the determinant of the system (5.6), (5.7).
It is denoted by

det

(
a11 a12

a21 a22

)

or

∣
∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣
. (5.10)

5.2.4. A system of three equations with three unknowns. A similar
procedure can also be used to solve a system of three linear equations for
three unknowns x1, x2, x3. For example, suppose we wish to solve

2x1 + 3x2 − x3 = 5, (5.11)

4x1 + 4x2 − 3x3 = 3, (5.12)

2x1 − 3x2 + x3 = −1. (5.13)

Step 1. First we eliminate x1 from equations (5.12) and (5.13) by sub-
tracting multiples of (5.11). We replace (5.12) by (5.12)−2·(5.11) and (5.13)
by (5.13)−(5.11), to leave the system

2x1 + 3x2 − x3 = 5, (5.14)

−2x2 − x3 = −7, (5.15)

−6x2 + 2x3 = −6. (5.16)

Step 2. Next we eliminate x2 from (5.16). We do this by subtracting
an appropriate multiple of (5.15). (If we subtract a multiple of (5.14) from
(5.16) instead, then in the process of eliminating x2 from (5.16) we re-
introduce x1!). We therefore replace (5.16) by (5.16)−3·(5.15) to leave

2x1 + 3x2 − x3 = 5, (5.17)

−2x2 − x3 = −7, (5.18)

5x3 = 15. (5.19)
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Step 3. Now that we have triangularized the system, we can use back
substitution to find the solution: first solve (5.19) to give

x3 =
15

5
= 3 .

Then substitute this result back into (5.18) to give

−2x2 − 3 = −7

⇔ 2x2 = 4

⇔ x2 = 2 .

Finally we substitute the values of x2 and x3 back into (5.17) to give

2x1 + 6− 3 = 5

⇔ 2x1 = 2

⇔ x1 = 1 .

So the solution to the system (5.11), (5.12), (5.13), is x1 = 1, x2 = 2 and
x3 = 3.

Remark (algebraic interpretation). Effectively, what we did in the steps
above was to solve (5.11) for 2x1, multiply the result by 2, and substitute
the resulting expression for 4x1 into (5.12), thus eliminating x1 from that
equation, and then also we have substituted our expression for 2x1 from the
first equation into (5.13) to eliminate x1 from that equation also, etc. . . .

Remark (geometric interpretation). An equation of the form ax + by +
cz = d, where a, b, c and d are given constants, actually represents an infinite
plane in three dimensional space. Thus (5.11), (5.12) and (5.13) represent
three planes and we are asked to find the values of (x1, x2, x3) such that
each of the three equations is satisfied simultaneously—i.e. the point(s) of
intersection of the three planes. If no two of the three planes are parallel
(beware of the ‘toblerone’ case) then since two planes intersect in a line,
and the third plane must cut that line at a single/unique point, we therefore
have a unique solution in this case (where all three planes meet) which we
deduce algebraically as above is x1 = 1, x2 = 2 and x3 = 3.

5.3. Gaussian elimination

5.3.1. The idea. When modelling many physical and engineering prob-
lems we often need to simultaneously solve a large number of linear equa-
tions involving a large number of unknowns—there may be thousands of
equations. We therefore need a systematic way of writing down (coding)
and solving (processing) large systems of linear equations—preferably on a
computer.

The method we used in the last section is known as Gaussian elim-
ination, and can be applied to any size of system of equations. Just as
importantly though, you may have noticed that to solve the system of lin-
ear equations by this method, we were simply performing operations on the
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coefficients in the equations, and the end result was an equivalent (trian-
gularized) system of equations that was extremely easy to solve by back-
substitution. With this in mind, a convenient way to write and analyze
such systems is to use matrices as follows.

5.3.2. Example. To solve the system

2x + 3y − z = 5,

4x + 4y − 3z = 3,

2x− 3y + z = −1,

we begin by writing down the augmented matrix of coefficients and right-
hand sides:

H ≡





2 3 −1
4 4 −3
2 −3 1
︸ ︷︷ ︸

coeffs on LHS

5
3
−1
︸︷︷︸

RHS



 .

Then following the Gaussian elimination procedure, we try to make the
terms below the leading diagonal zero. Note that we do not need to write
down the equations for x, y & z at this stage, we can simply deal with the
numerical coefficients in the augmented matrix H. The advantage of this
approach using matrices, as we shall see, is that it is very easy to automate
the solution process and implement the Gaussian elimination algorithm on
a computer.

Step 1: Clear the first column below the diagonal. Replace Row2 by
Row2 − 2·Row1:





2© 3 −1 5
0 −2 −1 −7
2 −3 1 −1





And now replace Row3 by Row3 − Row1:





2© 3 −1 5
0 −2 −1 −7
0 −6 2 −6





Step 2: Clear the second column below the diagonal. Replace Row3 by
Row3 − 3·Row2:





2 3 −1 5
0 -2© −1 −7
0 0 5 15




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Step 3: Use back-substitution to find the solution. Now we rewrite the
rows of the augmented matrix as equations for x, y & z and proceed to solve
the system of equations by back-substitution (a process which can also be
coded and automated) giving us the solution we had before:

Row 3⇒ 5z = 15 ⇒ z = 3;

Row 2⇒ − 2y − z = −7 ⇒ y = 2;

Row 1⇒ 2x− 3y + z = 5 ⇒ x = 1.

5.3.3. Pivots. Note that in the first two steps we focused on the pivot
position—the encircled numbers—which we use to eliminate all the terms
below that position. The coefficient in the pivot position is called the pivotal
element or pivot. The pivotal element must always be non-zero—if it is ever
zero, then the pivotal row/equation is interchanged with an equation below
it to produce a non-zero pivot—see the next example. This is always pos-
sible for systems with a unique solution. When implementing the Gaussian
elimination algorithm on a computer, to minimize rounding errors, a prac-
tice called partial pivoting is used, whereby we interchange (if necessary) the
pivot row with any row below it, to ensure that the pivot has the maximum
possible magnitude—we will discuss partial pivoting in much more detail
shortly—also see Meyer [10].

5.3.4. Example (of simple pivoting). The following system of equa-
tions models the currents in the electrical circuit.

I1 − I2 + I3 = 0 ,

−I1 + I2 − I3 = 0 ,

10I2 + 25I3 = 90 ,

20I1 + 10I2 = 80 .

To solve this system we construct the augmented matrix

H ≡







1 −1 1 0
−1 1 −1 0
0 10 25 90
20 10 0 80







.

To begin, the pivot row is the first row (notice also that the first two rows
are in fact the same equation).

Row2→ Row2 + Row1;

Row4→ Row4− 20 · Row1;







1 −1 1 0
0 0 0 0
0 10 25 90
0 30 −20 80









60 5. LINEAR ALGEBRAIC EQUATIONS

Now move Row 2 to the end so that we have a non-zero element in the new
pivot position.

H ≡







1 −1 1 0
0 10 25 90
0 30 −20 80
0 0 0 0







Note that the last equation is redundant as it contains no new information.

Row3→ Row3− 3 · Row2;







1 −1 1 0
0 10 25 90
0 0 −95 −190
0 0 0 0







We can now use back-substitution to find the solution:

I3 =
−190

−95
= 2 ;

I2 =
1

10
(90− 25I3) = 4 ;

I1 = I2 − I3 = 2 .

Hence the solution is I1 = 2, I2 = 4 and I3 = 2.

5.3.5. Elementary row operations. The operations we carried out above
are examples of elementary row operations (EROs).

There are three types of elementary row operations permitted in
Gaussian elimination:

• interchange any two rows—this is equivalent to swapping the
order of any two equations.

• multiply any row by any non-zero constant—this is equiva-
lent to multiplying any given equation by the constant.

• add the multiple of one row to another—this is equivalent
to adding the multiple of one equation to another.

It is important to distinguish EROs from the broader range of operations
that may be applied to determinants. For example, operations to columns
are not allowed when solving a system of equations by EROs (for example
swapping columns—any except the last column—in the augmented matrix
corresponds to relabelling the variables).
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In general, we may have a system of m equations in n unknowns

S







a11x1 + a12x2 + · · ·+ a1nxn = b1 ,

a21x1 + a22x2 + · · ·+ a2nxn = b2 ,

...

am1x1 + am2x2 + · · ·+ amnxn = bm .

(5.20)

Performing EROs we would get

S ′







a′11x1 + a′12x2 + · · ·+ a′1nxn = b′1 ,

a′21x1 + a′22x2 + · · ·+ a′2nxn = b′2 ,

...

a′m1x1 + a′m2x2 + · · ·+ a′mnxn = b′m .

(5.21)

The solution scheme of Gaussian elimination described above, ex-
ploits the fact that if H ′ (corresponding to system S ′) is derived
from the augmented matrix H (corresponding to system S) by a
sequence of EROs, then the problems S and S ′ are equivalent.

S code−−−−→ H


y



yEROs

S ′ ←−−−−
decode

H ′

5.3.6. Example. Consider the set of equations

2w + 4x + y + 2z = 5 ,

4w + 14x− y + 6z = 11 ,

w − x + 5y − z = 9 ,

−4w + 2x− 6y + z = −2 .

5.3.7. Solution. We begin by writing down the augmented matrix:

H ≡







2 4 1 2 5
4 14 −1 6 11
1 −1 5 −1 9
−4 2 −6 1 −2







The solution to our original system can be obtained by carrying out ele-
mentary row operations on the augmented matrix H (here and below, by
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R2→ R2− 2R1 we mean replace Row 2 by Row 2 minus twice Row 1, and
so forth).

R2→ R2− 2R1;

R3→ R3− 1
2R1;

R4→ R4 + 2R1;







2 4 1 2 5
0 6 −3 2 1
0 −3 9

2 −2 13
2

0 10 −4 5 8







R3→ R3 + 1
2R2;

R4→ R4− 10
6 R2;







2 4 1 2 5
0 6 −3 2 1
0 0 3 −1 7
0 0 1 5

3
19
3







R4→ R4− 1
3R3;







2 4 1 2 5
0 6 −3 2 1
0 0 3 −1 7
0 0 0 2 4







Now use back-substitution to obtain the solution (starting from the bottom):

Row 4⇒ 2z = 4 ⇒ z = 2;

Row 3⇒ 3y − 2z = 7 ⇒ y = 3;

Row 2⇒ 6x− 3y + 2z = 1 ⇒ x = 1;

Row 1⇒ 2w + 4x + y + 2z = 5 ⇒ w = −3 .

5.3.8. Example. Consider the system

3x + 2y + z = 3 ,

2x + y + z = 0 ,

6x + 2y + 4z = 6 .

5.3.9. Solution. We begin by writing down the augmented matrix:

H ≡





3 2 1 3
2 1 1 0
6 2 4 6





R2→ R2− 2
3R1;

R3→ R3− 2R1 :





3 2 1 3
0 −1

3
1
3 −2

0 −2 2 0





R3→ R3− 6R2 :





3 2 1 3
0 −1

3
1
3 −2

0 0 0 12




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i.e.

3x + 2y + z = 3 ,

−1
3y + 1

3z = 2 ,

0 · z = 12 .

This system has no solution (there is no solution to the last equation).

5.4. Solution of general rectangular systems

Suppose we are required to solve the system of m linear equations in n
unknowns

a11x1 + a12x2 + · · ·+ a1nxn = b1 ,

a21x1 + a22x2 + · · ·+ a2nxn = b2 ,

...

am1x1 + am2x2 + · · ·+ amnxn = bm .

The nature of the solution is easily determined if we use elementary
row operations (EROs) to reduce the augmented matrix H = [A b′]
to row-echelon form—see Figure 5.1.
There are three cases (referring to Figure 5.1 directly):

• a unique solution if r = n and b′r+1, . . . , b
′
m are all zero; and

the solution can be obtained by back-substitution;

• an infinite number of solutions if r < n and b′r+1, . . . , b
′
m are

all zero;

• no solution if r < m and one of b′r+1, . . . , b
′
m is non-zero.

The system of equations is said to be consistent if there is at least one
solution (either a unique solution or an infinite number of solutions)
and not consistent if there is no solution.

5.5. Matrix Equations

5.5.1. Example. The system of equations

2x1 + 3x2 − x3 = 5 , (5.22a)

4x1 + 4x2 − 3x3 = 3 , (5.22b)

2x1 − 3x2 + x3 = −1 , (5.22c)
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1
b2

br+1

bm

m

n

r

rb

,

,

,

,

,

b*

*

*

*

*

*

*

Figure 5.1. [A b] reduced to row-echelon form (r ≤
min{m, n}); the *’s represent non-zero elements—the other
elements above the diagonal line may or may not be zero.

we solved previously may be written more compactly by introducing

A =





2 3 −1
4 4 −3
2 −3 1



 = the matrix of coefficients,

with

x =





x1

x2

x3



 = the vector of unknowns

and

b =





5
3
−1



 = the vector of right-hand sides.

Then we simply write the system of equations (5.22) as

Ax = b . (5.23)

5.5.2. General linear systems. For large systems of equations the no-
tation (5.23) is very compact.
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More generally, if we have a system of m equations in n unknowns

a11x1 + a12x2 + · · ·+ a1nxn = b1 ,

a21x1 + a22x2 + · · ·+ a2nxn = b2 ,

...

am1x1 + am2x2 + · · ·+ amnxn = bm ,







(5.24)

these may be written in matrix form as

Ax = b , (5.25)

where

A =








a11 a12 · · · a1n

a21 a22 · · · a2n

...
am1 am2 · · · amn








, x =








x1

x2
...

xn








and b =








b1

b2
...

bm








.

Here A is an m × n matrix (m = number of rows, n = number of
columns), x is an n × 1 matrix (also known as a column vector), b is an
m× 1 matrix (again, a column vector). Note that aij = element of A at the
intersection of the i-th row and the j-th column. The dimensions or size,
‘m× n’, of the matrix A, is also known as the order of A.

5.5.3. Multiplication of matrices. Multiplication of one matrix by an-
other is a more involved operation than you might expect. To motivate
matrix multiplication, recall that we rewrote the system (5.24) in the form

Ax = b ,

i.e.





a11 a12 · · · a1n

...
...

am1 am2 · · · amn











x1
...

xn




 =






b1
...

bm




 .

We therefore want the product Ax to mean

Ax =








a11x1 + · · ·+ a1nxn

a21x1 + · · ·+ a2nxn

...
am1x1 + · · ·+ amnxn








. (5.26)
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To make sense of matrix multiplication we need: number of columns of A =
number of rows of x. Thus

A x = b

(m× n) (n
︸ ︷︷ ︸

equal

×1)

︸ ︷︷ ︸

m×1 matrix

(m× 1)

Matrix multiplication of an m×n matrix A by an n× 1 matrix x is defined
by (5.26).

5.6. Linear independence

5.6.1. Definition (linear combination). Given any set of m vectors v1,
v2,. . . , vm (with the same number of components in each), a linear combi-
nation of these vectors is an expression of the form

c1v1 + c2v2 + · · ·+ cmvm

where c1, c2,. . . ,cm are any scalars.

5.6.2. Definition (linear independence). Now consider the equation

c1v1 + c2v2 + · · ·+ cmvm = 0. (5.27)

Linear independence. The vectors v1, v2, . . . , vm are said to be
linearly independent if the only values for c1, c2, . . . , cm for which
(5.27) holds are when c1, c2, . . . , cm are all zero, i.e.

c1v1 + c2v2 + · · ·+ cmvm = 0 ⇒ c1 = c2 = · · · = cm = 0 .

Linear dependence. If (5.27) holds for some set of c1, c2, . . . , cm

which are not all zero, then the vectors v1, v2,. . . , vm are said to
be linearly dependent, i.e. we can express at least one of them as a
linear combination of the others. For instance, if (5.27) holds with,
say c1 6= 0, we can solve (5.27) for v1:

v1 = k2v2 + · · ·+ kmvm where ki = − ci

c1
.
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5.6.3. Example. The three vectors

v1 =





1
0
0



 , v2 =





0
1
0



 , and v3 =





0
0
1





are linearly independent because

c1v1 + c2v2 + c3v3 ≡





c1

c2

c3



 equals the zero vector 0 ≡





0
0
0





only when c1 = c2 = c3 = 0.

5.6.4. Example. Suppose

v4 =





0
1
1



 .

The three vectors v1, v2 and v4 are also linearly independent because

c1v1 + c2v2 + c4v4 ≡





c1

c2 + c4

c4





will equal the zero vector only when c1 = c2 = c4 = 0.

5.6.5. Example. Suppose

v5 =





1
2
0



 .

The three vectors v1, v2 and v5 are linearly dependent because

v1 + 2v2 − v5 = 0 , (5.28)

i.e. there exists three constants (at least one of which is non-zero), namely
c1 = 1, c2 = 2 and c5 = −1 such that (5.28) holds. Equivalently we see
that any one of the three vectors v1, v2 and v5 can be expressed as a linear
combination of the other two, for example

v5 = v1 + 2v2 .
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5.6.6. Example. The three vectors

v1 =







3
0
2
2







, v2 =







−6
42
24
54







, and v3 =







21
−21
0
−15







are linearly dependent because

6v1 −
1

2
v2 − v3 = 0 .

However note that v1 and v2 are linearly independent because

c1v1 + c2v2 = 0,

implies c2 = 0 (from the second components) and then c1 = 0 (from any of
the other components).

Although it is easy to verify that v1, v2 and v3 are linearly dependent
given an appropriate linear combination, it is not so easy to determine if a
given set if vectors is either linearly dependent or independent when starting
from scratch. Next we show a method to help us in this direction.

5.7. Rank of a matrix

5.7.1. Definition (rank). The maximum number of linearly indepen-
dent row vectors of a matrix A = [aij ] is called the rank of A and is denoted
by ‘rank[A]’.

5.7.2. Example. The matrix

A =





3 0 2 2
−6 42 24 54
21 −21 0 −15





has rank 2, since from the previous example above, the first two row vec-
tors are linearly independent, whereas the three row vectors are linearly
dependent.

Note further that, rank[A] = 0 ⇔ A = O. This follows directly from
the definition of rank. Another surprising result is that row-rank equals
column-rank, i.e. the rank of a matrix A equals the maximum number of
linearly independent column vectors of A, or equivalently, the matrix A and
its transpose AT , have the same rank2. However, the most important result
of this section concerns row-equivalent matrices—these are matrices that
can be obtained from each other by finitely many EROs.

2See the end of appendix D for the definition of the transpose of a matrix.
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Invariance of rank under EROs. Row-equivalent matrices have the
same rank, i.e. EROs do not alter the rank of a matrix A.

Test for linear dependence/independence. A given set of p vectors,
v1, v2, . . . , vp (with n components each), are linearly independent
if the matrix with row vectors v1, v2, . . . , vp have rank p; they are
linearly dependent if that rank is less than p.

Hence to determine the rank of a matrix A, we can reduce A to echelon
form using Gaussian elimination (this leaves the rank unchanged) and from
the echelon form we can recognize the rank directly. Further, the second
result above implies that, to test if a given set of vectors is linearly depen-
dent/independent, we combine them to form rows (or columns) of a matrix
and reduce that matrix to echelon form using Gaussian elimination. If the
rank of the resulting matrix is equal to the number of given vectors then
they’re linearly independent, otherwise, they’re linearly dependent.

5.7.3. Example.

A =





3 0 2 2
−6 42 24 54
21 −21 0 −15





R2→ R2 + 2R1;

R3→ R3− 7R1 :





3 0 2 2
0 42 28 58
0 −21 −14 −29





R3→ R3 +
1

2
R2 :





3 0 2 2
0 42 28 58
0 0 0 0





where the matrix is now in echelon form. Hence rank[A] = 2.

5.8. Fundamental theorem for linear systems

The nature of the solution to a general system of linear equations can, as
an alternative to the possibilities outlined in Section 5.4, be characterized
using the notion of rank as follows—the fact that EROs do not alter the
rank of a matrix establishes the equivalence of both statements.
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Fundamental theorem for linear systems. A linear system of m equa-
tions

a11x1 + a12x2 + · · ·+ a1nxn = b1 ,

a21x1 + a22x2 + · · ·+ a2nxn = b2 ,

...

am1x1 + am2x2 + · · ·+ amnxn = bm ,

in n unknowns x1, x2, . . . , xn has solutions if and only if the coeffi-
cient matrix A and the augmented matrix H = [A b] have the same
rank, i.e. if and only if

rank[H] = rank[A] .

• If this rank, r, equals n, then the system has a unique solu-
tion.

• If r < n, the system has infinitely many solutions (all of
which are obtained be determining r suitable unknowns in
terms of the remaining n− r unknowns, to which arbitrary
values can be assigned).

If solutions exist, they can be obtained by Gaussian elimination.

5.9. Gauss-Jordan method

Another method for solving linear systems of algebraic equations is the
Gauss-Jordan method. It is a continuation of the Gaussian elimination pro-
cess. For example, consider the linear system

3x− y + 2z = 3 ,

2x + y + z = −2 ,

x− 3y = 5 .

Start by constructing the augmented matrix:

H =





3 −1 2 3
2 1 1 −2
1 −3 0 5



 .

R2→ 3R2− 2R1;

R3→ 3R3−R1;





3 −1 2 3
0 5 −1 −12
0 −8 −2 12





R3→ 5R3 + 8R2;





3 −1 2 3
0 5 −1 −12
0 0 −18 −36



 .
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At this point, with Gaussian elimination, we would back-substitute by first
solving the 3rd equation etc. In the Gauss-Jordan method we continue
applying EROs to reduce the left-hand submatrix to the 3×3 identity matrix:

R1→ R1 + 1
9R3;

R2→ 2R2− 1
9R3;





3 −1 0 −1
0 10 0 −20
0 0 −18 −36





R1→ R1 + 1
10R2;





3 0 0 −3
0 10 0 −20
0 0 −18 −36





R1→ 1
3R1;

R2→ 1
10R2;

R3→ − 1
18R3;





1 0 0 −1
0 1 0 −2
0 0 1 2





The solution to this system is therefore x = −1, y = −2 and z = 2.

Which method should we use? Gaussian elimination or the Gauss-
Jordan method? The answer lies in the efficiency of the respective methods
when solving large systems. Gauss-Jordan requires about 50% more effort
than Gaussian elimination and this difference becomes significant when n is
large—see Meyer [10].

Thus Gauss-Jordan is not recommended for solving linear systems of
equations that arise in practical situations, though it does have theoretical
advantages—for example for finding the inverse of a matrix.

5.10. Matrix Inversion via EROs

Row reduction methods can be used to find the inverse of a matrix—in
particular via the Gauss-Jordan approach. For example, to calculate the
inverse of

A =





1 1 3
2 1 1
1 3 5



 ,

consider the augmented matrix




1 1 3
2 1 1
1 3 5
︸ ︷︷ ︸

matrix A

1 0 0
0 1 0
0 0 1
︸ ︷︷ ︸

identity



 .

The plan is to perform row operations on this augmented matrix in such a
way as to reduce it to the form





1 0 0
0 1 0
0 0 1
︸ ︷︷ ︸

identity

b11 b12 b13

b21 b22 b23

b31 b32 b33
︸ ︷︷ ︸

matrix B



 .
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The 3× 3 matrix B is then guaranteed to be A−1, the inverse of A.

R2→ R2 − 2R1;

R3→ R3 −R1;







1 1 3
... 1 0 0

0 −1 −5
... −2 1 0

0 2 2
... −1 0 1







This pair of row operations clears the elements in column 1, rows 2 and 3.

R3 → R3 + 2R2;







1 1 3
... 1 0 0

0 −1 −5
... −2 1 0

0 0 −8
... −5 2 1







This clears column 2, row 3. Now we try to “clear” the top half:

R2 → R2 − 5
8R3;

R1 → R1 + 3
8R3;







1 1 0
... −7

8
3
4

3
8

0 −1 0
... 9

8 −1
4 −5

8

0 0 −8
... −5 2 1







R1 → R1 + R2;







1 0 0
... 1

4
1
2 −1

4

0 −1 0
... 9

8 −1
4 −5

8

0 0 −8
... −5 2 1







R2 → −R2;

R3 → −1
8R3;







1 0 0
... 1

4
1
2 −1

4

0 1 0
... −9

8
1
4

5
8

0 0 1
... 5

8 −1
4 −1

8







⇒ A−1 =





1
4

1
2 −1

4
−9

8
1
4

5
8

5
8 −1

4 −1
8



 .

Now check that AA−1 = I.

In practice we very rarely need to invert matrices. However if we do need
to do so on a computer, then when inverting a matrix, say A, it’s roughly
equivalent, in terms of raw numerical computations, to use the Gauss-Jordan
procedure described above as opposed to using Gaussian elimination to per-
form EROs on augmented matrix [A : I] so that the left-hand matrix be-
comes upper diagonal, and then to use back-substitution on each of the
three underlying problems to find each of the three columns of A−1, see
Meyer [10].
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5.11. Exercises

Reduce the augmented matrix to row echelon form using elementary
row transformations—i.e. implement the method of Gaussian elimination.
Hence determine which systems are consistent (in which case either state
the unique solution if there is one, or classify the set of infinite solutions) or
not consistent (there is no solution).

5.1.

x− y + 2z = −2 ,

3x− 2y + 4z = −5 ,

2y − 3z = 2 .

5.2.

x− 2y + 2z = −3 ,

2x + y − 3z = 8 ,

−x + 3y + 2z = −5 .

5.3.

3x + y + z = 8 ,

−x + y − 2z = −5 ,

x + y + z = 6 ,

−2x + 2y − 3z = −7 .

5.4.

3x− y + 2z = 3 ,

2x + 2y + z = 2 ,

x− 3y + z = 4 .

5.5.

3x− 7y + 35z = 18 ,

5x + 4y − 20z = −17 .

5.6.

−3w + x− 2y + 13z = −3 ,

2w − 3x + y − 8z = 2 ,

w + 4x + 3y − 9z = 1 .
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5.7. Solve the following systems of equations using Gaussian elimination.
For what values of α are these systems consistent?

(a)

x− 2y + 2z = −3 ,

2x + y − 3z = 8 ,

9x− 3y − 3z = α .

(b)

2x + 3y = 7 ,

x− y = 1 ,

αx + 2y = 8 .

5.8. Using that the rank of a matrix is invariant to EROs, find the rank
of the following matrices.

(a)

(
−4 1 3
2 2 0

)

, (b)







2 2 1
1 −1 3
0 0 1
4 0 7







,

(c)







7 −2 1 −2
0 2 6 3
7 2 13 4
7 0 7 1







, (d)





0 2 3 4
2 3 5 4
4 8 13 12



 ,

(e)





1 2 −1
4 3 1
2 0 −3



 , (f)





−1 3 −2 4
−1 4 −3 5
−1 5 −4 6



 .

5.9. Calculate the inverse of A =





2 1 −4
0 −2 3
0 0 −1



. Check AA−1 = I.



CHAPTER 6

Linear algebraic eigenvalue problems

6.1. Eigenvalues and eigenvectors

In this chapter we study eigenvalue problems. These arise in many sit-
uations, for example: calculating the natural frequencies of oscillation of a
vibrating system; finding principal axes of stress and strain; calculating os-
cillations of an electrical circuit; image processing; data mining (web search
engines); etc.

Differential equations: solving arbitrary order linear differential equa-
tions analytically;

Vibration analysis: calculating the natural frequencies of oscillation
of a vibrating system—bridges, cantilevers;

Principal axes of stress and strain: mechanics;

Dynamic stability: linear stability analysis;

Column buckling: lateral deflections—modes of buckling;

Electrical circuit: oscillations, resonance;

Principle component analysis: extracting the salient features of a mass
of data;

Markov Chains: transition matrices;

Data mining: web search engines—analysis of fixed point problems;

Image processing: fixed point problems again;

Quantum mechanics: quantized energy levels.

In fact when we solved the linear second order equations in Chapters 2–3,
we were actually solving an eigenvalue problem.

75
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Eigenvalue problems. Given an n × n matrix A, the problem is to
find values of λ for which the equation

Ax = λx , (6.1)

has a nontrivial (nonzero) vector n× 1 solution x.
Such values of λ are called eigenvalues, and the corresponding vectors
x, are the eigenvectors of the matrix A.

Equation (6.1) may be written as follows (here I is the identity matrix)

Ax = λx

⇔ Ax = λIx

⇔ Ax− λIx = 0

⇔ (A− λI)x = 0 . (6.2)

As λ is varied, the entries of the matrix A−λI vary. If det(A−λI) 6= 0 the
matrix A− λI can be inverted, and the only solution of (6.2) is

x = (A− λI)−10 = 0 .

Eigenvalue problems. A alternative useful way to re-write the eigen-
value equation (6.1) is in the form

(A− λI)x = 0 . (6.3)

Characteristic equation. Nonzero solutions to (6.3) x will exist pro-
vided λ is such that

det(A− λI) = 0 . (6.4)

This is called the characteristic equation.

Characteristic polynomial. If A is an n× n matrix then det(A− λI)
is an n-th degree polynomial in λ, i.e. it has the form

det(A− λI) = λn + an−1λ
n−1 + · · ·+ a1λ + a0 . (6.5)

Characteristic roots. The characteristic equation is equivalent to

λn + an−1λ
n−1 + · · ·+ a1λ + a0 = 0 , (6.6)

and the solutions of this equation λ1, . . . , λn are eigenvalues.

By the Fundamental Theorem of Algebra there are n roots of a polyno-
mial of degree n (including repetitions); hence there are n solutions to the
characteristic equation (including repetitions).
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Note also that if x is an eigenvector of A with eigenvalue λ, and c 6= 0
is a scalar then cx is also an eigenvector of A with eigenvalue λ, since

A(cx) = cAx = cλx = λ(cx) .

This is simply due to the fact that (6.1) is a homogeneous algebraic system
of equations.

6.1.1. Example. Find the eigenvalues and corresponding eigenvectors
of the matrix

A =

(
3 −2
4 −3

)

.

6.1.2. Solution. First we solve the characteristic equation.

det(A− λI) = 0

⇔ det

(
3− λ −2

4 −3− λ

)

= 0

⇔ λ = ±1 .

For each eigenvalue we must find the corresponding eigenvector. Write

x =

(
x
y

)

.

Case λ = 1:

Ax = λx ⇔
(

3 −2
4 −3

)(
x
y

)

= 1

(
x
y

)

,

⇔
3x− 2y = x ⇒ x = y

4x− 3y = y ⇒ x = y .

So any vector of the form α

(
1
1

)

is an eigenvector for any α 6= 0.

Case λ = −1:

Ax = λx ⇔
(

3 −2
4 −3

)(
x
y

)

= −1

(
x
y

)

,

⇔
3x− 2y = −x ⇒ 2x = y

4x− 3y = −y ⇒ 2x = y .

Hence any vector of the form β

(
1
2

)

is an eigenvector for any β 6= 0.

6.1.3. Example. Find the eigenvalues and eigenvectors of the matrix

A =





2 −2 2
1 1 1
1 3 −1



 .
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6.1.4. Solution. We first find the eigenvalues λ from the characteristic
equation,

det





2− λ −2 2
1 1− λ 1
1 3 −1− λ



 = 0

⇔ −(λ + 2)(λ− 2)2 = 0 ,

which has the solutions 2 (twice) and −2. For each eigenvalue we must
calculate the corresponding eigenvectors.

Case λ = −2:

(A− λI)x = 0 ⇔





2− (−2) −2 2
1 1− (−2) 1
1 3 −1− (−2)









x
y
z



 =





0
0
0





⇔





4 −2 2
1 3 1
1 3 1









x
y
z



 =





0
0
0



 .

We can solve this system of linear equations by Gaussian elimination. Hence,
consider the augmented matrix

H ≡





4 −2 2 0
1 3 1 0
1 3 1 0





R2→ 4R2−R1;

R3→ 4R3−R1;





4 −2 2 0
0 14 2 0
0 14 2 0





R3→ R3−R2;





4 −2 2 0
0 14 2 0
0 0 0 0



 . (6.7)

Note that the last equation is redundant. This is because the linear eigen-
value problem is a homogeneous problem (or you could use the fact that row
rank equals column rank so the fact that the last column of the augmented
matrix is filled with zeros also tells you that at least one row is redundant).
More intuitively and precisely, for our example we know that unless λ is
equal to an eigenvalue the solution is x = 0. This makes sense because all
the right-hand sides in the three equations are zero meaning that they all
represent planes that intersect at the origin. And the origin would be the
only unique point of intersection between the three planes, and the unique
solution unless the three planes exactly line up to intersect in a line in which
case there are an infinite number of solutions. The values of λ for which such
a ‘lining up’ occurs, are precisely the eigenvalues!
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Back to solving our eigenvalue problem. We are left with the system of
equations represented in the augmented matrix (6.7), i.e.

4x− 2y + 2z = 0 ,

14y + 2z = 0 .

By back substitution we thus know that

y = −1
7z and x = −4

7z .

So the eigenvector corresponding to λ = −2 is

z





−4/7
−1/7

1





for any z 6= 0.

Case λ = 2:

(A− λI)x = 0 ⇔





2− (2) −2 2
1 1− (2) 1
1 3 −1− (2)









x
y
z



 =





0
0
0





⇔





0 −2 2
1 −1 1
1 3 −3









x
y
z



 =





0
0
0



 .

We can solve this system by Gaussian elimination. Hence, consider the
augmented matrix

H ≡





0 −2 2 0
1 −1 1 0
1 3 −3 0





R1↔ R2;





1 −1 1 0
0 −2 2 0
1 3 −3 0





R3→ R3−R1;





1 −1 1 0
0 −2 2 0
0 4 −4 0





R3→ R3 + 2R2;





1 −1 1 0
0 −2 2 0
0 0 0 0





The system of equations represented in this augmented matrix is

x− y + z = 0 ,

−2y + 2z = 0 .

By back substitution we thus know that

y = z and x = 0 .
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So the eigenvector corresponding to λ = 2 is

z





0
1
1





for any z 6= 0.
What about the (potentially) third eigenvector? There is not necessarily

a third one—see the discussion on multiplicity after the next example.

6.1.5. Example. Find the eigenvalues and eigenvectors of the matrix

A =





−2 2 −3
2 1 −6
−1 −2 0





6.1.6. Solution. We first find the eigenvalues λ from the characteristic
equation

det





−2− λ 2 −3
2 1− λ −6
−1 −2 −λ



 = 0

⇔ (λ− 5)(λ + 3)2 = 0 ,

which has the solutions λ = −3 (twice) and λ = 5. For each eigenvalue we
must calculate the corresponding eigenvectors.

Case λ = 5:

(A− λI)x = 0 ⇔





−2− (5) 2 −3
2 1− (5) −6
−1 −2 0− (5)









x
y
z



 = 0





0
0
0





⇔





−7 2 −3
2 −4 −6
−1 −2 −5









x
y
z



 = 0





0
0
0



 .

We can solve this system by Gaussian elimination. Hence consider the aug-
mented matrix

H ≡





−7 2 −3 0
2 −4 −6 0
−1 −2 −5 0





R2→ 7R2 + 2R1;

R3→ 7R3−R1;





−7 2 −3 0
0 −24 −48 0
0 −16 −32 0





R3→ 3R3− 2R2;





−7 2 −3 0
0 −24 −48 0
0 0 0 0




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The system of equations represented in this augmented matrix is

−7x + 2y − 3z = 0 ,

−24y − 48z = 0 .

By back substitution we thus know that

y = −2z and x = −z .

So the eigenvector corresponding to λ = 5 is

α





−1
−2
1





for any value z = α (6= 0).

Case λ = −3:

(A− λI)x = 0 ⇔





−2− (−3) 2 −3
2 1− (−3) −6
−1 −2 0− (−3)









x
y
z



 =





0
0
0





⇔





1 2 −3
2 4 −6
−1 −2 3









x
y
z



 =





0
0
0



 .

We can now solve this system of linear equations by Gaussian elimination.
Hence consider the augmented matrix

H ≡





1 2 −3 0
2 4 −6 0
−1 −2 3 0





R2→ R2− 2R1;

R3→ R3 + R1;





1 2 −3 0
0 0 0 0
0 0 0 0





There is only one equation represented by this augmented matrix, namely

x + 2y − 3z = 0 . (6.8)

What is happening here is that for this repeated value of λ = −3, all three
planes come together as the single plane represented by this single equation.
Any point on this plane represents a nonzero solution to the eigenvalue
problem, i.e. there is a two dimensional space of solutions. (An equivalent
interpretation is to note that A− λI has rank 1 when λ = −3. This implies
that the basis of solutions corresponding to λ = −3 consists of two linearly
independent vectors.)

By inspection we notice that for any values β 6= 0 and γ 6= 0,

β





3
0
1



 and γ





−2
1
0




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are both in fact eigenvectors corresponding to λ = −3. i.e. these two linearly
independent eigenvectors correspond to this (repeated) eigenvalue and span
the space of solutions represented by (6.8).

Algebraic and geometric multiplicity. The degree of a root (eigen-
value) of the characteristic polynomial of a matrix—the number of
times the root is repeated—is called the algebraic multiplicity of the
eigenvalue.
The number of linearly independent eigenvectors corresponding to
an eigenvalue is called the geometric multiplicity of the eigenvalue.
It can be shown that for any eigenvalue

geometric multiplicity ≤ algebraic multiplicity .

6.2. Diagonalization

6.2.1. Similarity transformations. An n × n matrix Ã is said to be
similar to and n× n matrix A if

Ã = X−1AX

for some (non-singular) n × n matrix X. This transformation, which gives

Ã from A, is called a similarity transformation.

6.2.2. Diagonalization. If an n × n matrix A has a set of n linearly
independent eigenvectors, x1, x2, . . . , xn, then if we set

X = [x1 x2 . . . xn]

(i.e. the matrix whose columns are the eigenvectors of A), we have

X−1AX = Λ,

where Λ is the n× n diagonal matrix

Λ =








λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

... · · · · · · ...
0 0 · · · 0 λn








,

i.e. the matrix whose diagonal entries are the eigenvalues of the matrix A
and whose all other entries are zero.
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6.2.3. Symmetric Matrices. A real square matrix A is said to be sym-
metric if transposition leaves it unchanged, i.e. AT = A. If A is a real-
symmetric n× n matrix, then

• its eigenvalues, λ1, . . . , λn, are all real;

• the corresponding eigenvectors x1, x2, . . . , xn are linearly inde-
pendent.

Hence in particular, all real-symmetric matrices are diagonalizable.

6.2.4. Example. Find the matrix X that diagonalizes the matrix

A =





2 2 0
2 5 0
0 0 3





via a similarity transformation.

6.2.5. Solution. The eigenvalues of A are 1, 3 and 6. The corresponding
eigenvectors are

x1 =





−2
1
0



 , x2 =





0
0
1



 , x3 =





1
2
0



 .

Hence

X =





−2 0 1
1 0 2
0 1 0





Now we can check, since

X−1 =





−2
5

1
5 0

0 0 1
1
5

2
5 0



 ,

then

X−1AX =





−2
5

1
5 0

0 0 1
1
5

2
5 0









2 2 0
2 5 0
0 0 3









−2 0 1
1 0 2
0 1 0



 =





1 0 0
0 3 0
0 0 6



 .

6.3. Exercises

Find the eigenvalues and corresponding eigenvectors of the following
matrices. Also find the matrix X that diagonalizes the given matrix via a
similarity transformation. Verify your calculated eigenvalues.

6.1. (
1 2
3 0

)

.
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6.2. (
4 2
−1 1

)

.

6.3. 



1 0 0
1 2 0
2 −2 3



 .

6.4. 



26 −2 2
2 21 4
4 2 28



 .

6.5. 



15 −4 −3
−10 12 −6
−20 4 −2



 .

6.6. 



5 −3 13
0 4 0
−7 9 −15



 .

6.7. 



1 0 4
0 2 0
3 1 −3



 .



CHAPTER 7

Systems of differential equations

7.1. Linear second order systems

We consider here how to solve linear second order homogeneous systems
of equations. We will see later in this chapter that such systems can always
be reduced to a system of linear first order equations of double the size.
However, as we will see presently, in some practical cases it is convenient
to solve such systems directly. Hence in this section we are interested in
finding the general solution to a system of equations of the form

d2y

dt2
= A y , (7.1)

where A is an n×n constant matrix and the unknown n× 1 solution vector
y consists of the components y1, y2, . . . , yn.

To solve such a system of equations we use the tried and trusted method
of looking for solutions of the form

y(t) = c eλt

where now c is a constant n×1 vector with components c1, c2, . . . , cn. Sub-
stituting this form of the solution into the differential equation system (7.1),
we get

d2

dt2
(
c eλt

)
= A c eλt

⇔ λ2c eλt = A c eλt

⇔ λ2c = A c

⇔ (A− λ2I) c = 0 . (7.2)

Thus solving the system of differential equations (7.1) reduces to solving the
eigenvalue problem (7.2)—though note that it contains λ2 rather than λ.
This is a standard eigenvalue problem however, which we can solve using

85
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the techniques we learned in Chapter 6. In this section we will suppose there
are n independent eigenvectors c1, c2,. . . ,cn corresponding to the eigenvalues
λ2

1, λ2
2,. . . ,λ

2
n.

In typical applications A is real and symmetric and hence has real eigen-
values, however further, it is typically negative definite in our examples be-
low and hence has negative eigenvalues. To avoid getting too technical here
we will explore the method of solution and practical interpretations of the
solution through the following two illustrative examples.

7.1.1. Example (coupled pendula). Two identical simple pendula os-
cillate in the plane as shown in Figure 7.1. Both pendula consist of light
rods of length ℓ = 10 and are suspended from the same ceiling a distance
L = 15 apart, with equal masses m = 1 attached to their ends. The an-
gles the pendula make to the downward vertical are θ1 and θ2, and they
are coupled through the spring shown which has stiffness coefficient k = 1.
The spring has unstretched length L = 15. You may also assume that the
acceleration due to gravity g = 10.

(a) Assuming that the oscillations of the spring remain small in ampli-
tude, so that |θ1| ≪ 1 and |θ2| ≪ 1, by applying Newton’s second
law and and Hooke’s law, show that the coupled pendula system
gives rise to the system of differential equations

d2y

dt2
= A y , (7.3)

where

A =

(
−2 1
1 −2

)

and y =

(
θ1

θ2

)

.

Here A is known as the stiffness matrix and y is the vector of
unknown angles for each of the pendula shown in Figure 7.1.

(b) By looking for a solution of the form

y(t) = c eλt

for a constant vector c, show that solving the system of differential
equations (7.3) reduces to solving the eigenvalue problem

(A− λ2I) c = 0 . (7.4)

(c) Solve the eigenvalue problem (7.4) in part (b) above, stating clearly
the eigenvalues and associated eigenvectors.

(d) Hence enumerate the possible modes of oscillation of the masses
corresponding to each eigenvalue-eigenvector pair.

(e) Finally, write down the general solution of the system of equa-
tions (7.3).
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L=15

m=1 m=1

1010
2

1θ θ

k=1

Figure 7.1. Simple coupled pendula system.

7.1.2. Example (mass–spring system).

(a) Show that 0, −4 and −16 are the eigenvalues of the matrix

A =





−4 4 0
6 −12 6
0 4 −4



 . (7.5)

For each eigenvalue, find the corresponding eigenvector.
(b) Three railway cars of mass m1 = m3 = 750Kg, m2 = 500Kg move

along a track and are connected by two buffer springs as shown
in Figure 7.2. The springs have stiffness constants k1 = k2 =
3000Kg/m. Applying Newton’s second law and Hooke’s law, this
mass-spring system gives rise to the differential equation system

d2y

dt2
= A y , (7.6)

where A is the matrix given in (7.5) above, and

y =





y1

y2

y3





is the vector of unknown position displacements (from equilibrium)
for each of the masses shown in Figure 7.2. By looking for a solution
of the form

y(t) = c eλt

for a constant vector c, show that solving the system of differential
equations (7.6) reduces to solving the eigenvalue problem

(A− λ2I) c = 0 . (7.7)

(c) We know from part (a) above that the solutions to this eigenvalue
problem are λ2

1 = 0, λ2
2 = −4 and λ2

3 = −16. Writing λ = iω so
that λ2 = −ω2, deduce the fundamental frequencies of oscillation
ω1, ω2 and ω3 of the mechanical system in Figure 7.2.
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(d) For each fundamental frequency of oscillation ω1, ω2 and ω3 cor-
responding to λ1, λ2 and λ3, the eigenvectors you deduced in part
(a) above represent the possible modes of oscillation. Use those
eigenvectors to enumerate the possible modes of oscillation of the
masses corresponding to each eigenvalue–eigenvector pair.

(e) Finally, write down the general solution of the system of equa-
tions (7.6).

m m m

kk

2

21

1 3

Figure 7.2. Simple mass-spring three-particle system.

7.2. Linear second order scalar ODEs

Consider the linear second order constant coefficient homogeneous ODE:

ay′′ + by′ + cy = 0 .

If we set v = y′, we can re-write this linear second order ODE as the following
coupled system of linear first order ODEs (assuming a 6= 0),

y′ = v ,

v′ = −(c/a)y − (b/a)v ,

in the form

y′ = Ay ,

where

y =

(
y
v

)

and A =

(
0 1
−c/a −b/a

)

.

To solve this system of linear constant coefficient first order ODEs, we look
for a solution of the form

y = c eλt

where

c =

(
c1

c2

)

= constant vector.

Substituting this ansatz1 for the solution into the differential equation for y

above, we soon see that indeed, this exponential form is a solution, provided

1Ansatz is German for “approach”.
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we can find a λ for which there exists a non-trivial solution to (after dividing
through by the exponential factor eλt)

Ac = λc ,

⇔ (A− λI)c = 0 . (7.8)

To find non-trivial solutions c to this eigenvalue problem, we first solve
the characteristic equation

det(A− λI) = 0

⇔ det

(
−λ 1
−c/a −b/a− λ

)

= 0

⇔ aλ2 + bλ + c = 0 .

There are two solutions (eigenvalues) λ1 and λ2. The corresponding eigen-
vectors satisfy (from (7.8))

(
−λ 1
−c/a −b/a− λ

)(
c1

c2

)

=

(
0
0

)

,

or equivalently the system of equations

−λc1 + c2 = 0 ,

−(c/a)c1 − (b/a + λ) c2 = 0 .

The first equation gives

c2 = λc1 ,

and we expect the second equation to give the same (which it does):

c2 = − c/a

λ + b/a
c1 = − cλ

aλ2 + bλ
c1 = λc1 .

So for λ = λ1 the corresponding eigenvector is (for arbitrary values of α 6= 0)

c1 = α

(
1
λ1

)

.

For λ = λ2 the corresponding eigenvector is (for arbitrary values of β 6= 0)

c2 = β

(
1
λ2

)

,

Hence using the Principle of Superposition, we see that the final solution
to our original second order ODE can be expressed in the form

y = c1e
λ1t + c2e

λ2t ≡ α

(
1
λ1

)

eλ1t + β

(
1
λ2

)

eλ2t .

How does this solution compare with that given in Table 2.1?



90 7. SYSTEMS OF DIFFERENTIAL EQUATIONS

7.3. Higher order linear ODEs

Recall from Chapter 1 that we can re-express any scalar nth order ODE
(linear or nonlinear) as a system of n first order ODEs. In particular, any nth

order linear ODE of the form (we will restrict ourselves to the homogeneous
case for the moment)

an(t)
dny

dtn
+ an−1(t)

dn−1y

dtn−1
+ · · ·+ a2(t)

d2y

dt2
+ a1(t)

dy

dt
+ a0(t)y = 0 , (7.9)

after we identify new variables

y1 =
dy

dt
, y2 =

dy1

dt
, . . . , yn−1 =

dyn−2

dt
,

is equivalent to the linear system of n first order ODEs (also set y0 ≡ y)

dy0

dt
= y1 ,

dy1

dt
= y2 ,

...

dyn−2

dt
= yn−1 ,

an(t)
dyn−1

dt
= −an−1(t)yn−1 − · · · − a2(t)y2 − a1(t)y1 − a0(t)y0 .

We can express this system of n first order linear ODEs much more succinctly
in matrix form as

y′ = A(t)y , (7.10)

where y is the vector of unknowns y0, . . . , yn−1 and

A(t) =










0 1 0 · · · 0 0
0 0 1 · · · 0 0
... · · · ...
0 0 0 0 0 1
− a0

an
− a1

an
− a2

an
· · · −an−2

an
−an−1

an










.

7.4. Solution to linear constant coefficient ODE systems

7.4.1. Solution in exponential form. We shall also restrict ourselves to
the case when the coefficient matrix A is constant. In the last section we saw
how the coefficient matrix could look when we re–write a scalar nth order
ODE as a system of n first order ODEs (if we assumed in that case that
the coefficients a0, . . . , an were all constant, then the coefficient matrix A
would also constant). Here we are interested in the case when A could be a
constant matrix of any form (even with complex entries). Hence in general,
our system of linear constant coefficient ODEs has the form

y′ = A y . (7.11)
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If we are given the initial condition y(0) = y0, then the solution to (7.11) is

y = exp(At)y0 , (7.12)

where we define the exponential function of a matrix, say B, as the sum of
the matrix power series

exp(B) = I + B +
1

2!
B2 +

1

3!
B3 + · · · . (7.13)

We can quite quickly check that ‘exp(At)y0’ is indeed the solution to the
initial value problem associated with (7.11), note that

d

dt
(exp(At)y0) =

d

dt

(
I + At +

1

2!
A2t2 +

1

3!
A3t3 + · · ·

)
y0

=
(
A + A2t +

1

2!
A3t2 + · · ·

)
y0

= A
(
I + At +

1

2!
A2t2 + · · ·

)
y0

= A exp(At)y0 .

7.4.2. Solution via diagonalization. Suppose that the n × n constant
coefficient matrix A has eigenvalues λ1,. . . , λn and n linearly independent
eigenvectors. Set X to be the matrix whose n columns are the eigenvectors
of A. For the initial value problem associated with (7.11), consider the linear
transformation

y(t) = Xu(t) .

Differentiating this formula, we see that

y′(t) = Xu′(t) ,

noting X is constant because A is. Substituting these last two formulae
into (7.11) we see that we get (here Λ denotes the diagonal matrix with the
eigenvalues of A down the diagonal)

Xu′ = AXu

⇔ u′ = X−1AX
︸ ︷︷ ︸

≡Λ

u

⇔ u′ = Λu

⇔ u′
i = λiui for each i = 1, . . . , n

⇔ ui(t) = eλitui(0)

⇔ u(t) = exp(Λt)u(0)

⇔ Xy(t) = exp(Λt)Xy0

⇔ y(t) = X−1 exp(Λt)Xy0 .

Hence the solution to (7.11) can also be expressed in the form

y = X−1 exp(Λt)Xy0 .
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Note that, using the uniqueness of solutions to linear ODEs, we have also
established that

exp(At) ≡ X−1 exp(Λt)X .

7.5. Solution to general linear ODE systems

When the coefficient matrix is not constant, then the solution to the
initial value problem

y′ = A(t)y , y(0) = y0 , (7.14)

is given by the Neumann series

y(t) =

(

I +

∫ t

0
A(τ) dτ +

∫ t

0
A(τ1)

∫ τ1

0
A(τ2) dτ2 dτ1 + . . .

)

y0 .

Check that it is indeed correct by differentiating the series term by term
and showing that it satisfies the linear ODE system (7.14). This Neumann

series converges provided
∫ t

0 ‖A(τ)‖dτ <∞.

7.6. Exercises

7.1. Two particles of equal mass m = 1 move in one dimension at the
junction of three springs. The springs each have unstretched length a = 1
and have spring stiffness constants, k, 3k and k (with k ≡ 1) respectively—
see Figure 7.3. Applying Newton’s second law and Hooke’s law, this mass-
spring system gives rise to the differential equation system

d2y

dt2
= A y , (7.15)

where A is the stiffness matrix given by

A =

(
−4 3
3 −4

)

, (7.16)

and

y =

(
x1

x2

)

is the vector of unknown position displacements for each of the masses shown
in Figure 7.3.

Find the eigenvalues and associated eigenvectors of the stiffness ma-
trix A. Hence enumerate the possible modes of vibration of the masses
corresponding to each eigenvalue-eigenvector pair. Finally, write down the
general solution of the system of equations (7.15).

7.2. Consider the simple model for a tri-atomic shown in Figure 7.4.
The molecule consists of three atoms of the same mass m, constrained so
that only longitudinal motion is possible. Molecular bonds are modelled by
the springs shown, each with stiffness k = 1.
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k

m

k

m

3k

  3a

Figure 7.3. Simple mass-spring two-particle system.

Applying Newton’s second law and Hooke’s law, this mass-spring system
gives rise to the differential equation system

d2y

dt2
= A y , (7.17)

where A is the stiffness matrix given by

A =





−1 1 0
1 −2 1
0 1 −1



 ,

and

y =





x1

x2

x3





is the vector of unknown position displacements for each of the three masses
shown in Figure 7.4.

Find the eigenvalues and associated eigenvectors of the stiffness matrix,
A, and enumerate the possible modes of vibration of the masses correspond-
ing to each eigenvalue-eigenvector pair. Hence write down the general solu-
tion of the system of equations (7.17).

m
m m

k k

x
1 x

2
x
3

−F F−F1 31
 F

3

Figure 7.4. Simple model for a tri-atomic molecule.
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