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1 Vectors

• Vectors in Rn:

u =

 u1
...
un

, v =

 v1
...
vn

, 0 =

 0
...
0

.
• Parallelogram law :

u+ v =

 u1 + v1
...

un + vn

.
• Multiplication by scalar c ∈ R:

cv =

 cv1
...

cvn

.
• Dot (inner) product:

u·v = u1v1 + · · ·+ unvn.

• Length (norm):

|v|=
√
v·v =

√
v21 + · · ·+ v2n.

• Unit vector :
1

|v|
v.

• Distance between (endpoints of) u and v (positioned at 0):

d(u,v) = |u− v|.

• Law of cosines :
|u− v|2= |u|2+|v|2−2|u||v|cos θ.

• Angle θ between u and v:

|u||v|cos θ =
1

2
(|u|2+|v|2−|u− v|2) = 1

2
(|u|2+|v|2−[u− v]·[u− v])

=
1

2
(|u|2+|v|2−[u·u− 2u·v + v·v])

= u·v.
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• Orthogonal vectors u and v:
u·v = 0.

• Pythagoras theorem for orthogonal vectors u and v:

|u+ v|2= |u|2+|v|2.

• Cauchy-Schwarz inequality (|cos θ|≤ 1):

|u·v|≤ |u||v|.

• Triangle inequality :

|u+ v| =
√
(u+ v)·(u+ v) =

√
|u|2+2u·v + |v|2

≤
√
|u|2+2|u·v|+|v|2 ≤

√
|u|2+2|u||v|+|v|2 =

√
(|u|+|v|)2 = |u|+|v|.

• Component of v in direction u:

v· u
|u|

= |v|cos θ.

• Equation of line:
Ax+By = C.

• Parametric equation of line through p and q:

v = (1− t)p+ tq.

• Equation of plane with unit normal (A,B,C) a distance D from origin:

Ax+By + Cz = D.

• Equation of plane with normal (A,B,C) through (x0, y0, z0):

A(x− x0) +B(y − y0) + C(z − z0) = 0.

• Parametric equation of plane spanned by u and w through v0:

v = v0 + tu+ sw.
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2 Linear Equations

• Linear equation:
a1x1 + a2x2 + · · ·+ anxn = b.

• Homogeneous linear equation:

a1x1 + a2x2 + · · ·+ anxn = 0.

• System of linear equations :

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...

am1x1 + am2x2 + · · · + amnxn = bm.

• Systems of linear equations may have 0, 1, or an infinite number of solutions [Anton
& Busby, p. 41].

• Matrix formulation: 
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


︸ ︷︷ ︸
n×m coefficient matrix


x1

x2
...
xn

 =


b1
b2
...
bm

.

• Augmented matrix : 
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm.

.
• Elementary row operations :

• Multiply a row by a nonzero constant.

• Interchange two rows.

• Add a multiple of one row to another.

6



Remark: Elementary row operations do not change the solution!

• Row echelon form (Gaussian elimination):
1 ∗ ∗ · · · ∗
0 0 1 · · · ∗
...

...
. . . · · · ...

0 0 0 · · · 1

.

• Reduced row echelon form (Gauss–Jordan elimination):
1 ∗ 0 · · · 0
0 0 1 · · · 0
...

...
. . . · · · ...

0 0 0 · · · 1

.

• For example:

2x1 + x2 = 5,

7x1 + 4x2 = 17.

• A diagonal matrix is a square matrix whose nonzero values appear only as entries aii
along the diagonal. For example, the following matrix is diagonal:

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

.

• An upper triangular matrix has zero entries everywhere below the diagonal (aij = 0
for i > j).

• A lower triangular matrix has zero entries everywhere above the diagonal (aij = 0
for i < j).

Problem 2.1: Show that the product of two upper triangular matrices of the same
size is an upper triangle matrix.

Problem 2.2: If L is a lower triangular matrix, and U is an upper triangular matrix,
show that LU is a lower triangular matrix and UL is an upper triangular matrix.

7



3 Matrix Algebra

• Element aij appears in row i and column j of the m×n matrix A = [aij]m×n.

• Addition of matrices of the same size:

[aij]m×n + [bij]m×n = [aij + bij]m×n.

• Multiplication of a matrix by a scalar c ∈ R:

c[aij]m×n = [caij]m×n.

• Multiplication of matrices :

[aij]m×n[bjk]n×ℓ =

[
n∑

j=1

aijbjk

]
m×ℓ

.

• Matrix multiplication is linear :

A(αB+ βC) = αAB+ βAC

for all scalars α and β.

• Two matrices A and B are said to commute if AB = BA.

Problem 3.1: Give examples of 2× 2 matrices that commute and ones that don’t.

• Transpose of a matrix:
[aij]

⊺
m×n = [aji]n×m.

• A symmetric matrix A is equal to its transpose.

Problem 3.2: Does a matrix necessarily compute with its transpose? Prove or
provide a counterexample.

Problem 3.3: Let A be an m× n matrix and B be an n× ℓ matrix. Prove that

(AB)⊺ = B⊺A⊺.

.

8



Problem 3.4: Show that the dot product can be expressed as a matrix multiplication:
u·v = u⊺v. Also, since u·v = v·u, we see equivalently that u·v = v⊺u.

• Trace of a square matrix:

Tr [aij]n×n =
n∑

i=1

aii.

Problem 3.5: Let A and B be square matrices of the same size. Prove that

Tr(AB) = Tr(BA).

.

• Identity matrix:
In = [δij]n×n.

• Inverse A−1 of an invertible matrix A:

AA−1 = A−1A = I.

Problem 3.6: If Ax = b is a linear system of n equations, and the coefficient
matrix A is invertible, prove that the system has the unique solution

x = A−1b.

Problem 3.7: Prove that
(AB)−1 = B−1A−1.

• Inverse of a 2× 2 matrix:[
a b
c d

][
d −b
−c a

]
= (ad− bc)

[
1 0
0 1

]
⇒ [

a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
exists if and only if ad− bc ̸= 0.

• Determinant of a 2× 2 matrix:

det

[
a b
c d

]
=

∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.
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• An elementary matrix is obtained on applying a single elementary row operation
to the identity matrix.

• Two matrices are row equivalent if one can be obtained from the other by elementary
row operations.

• An elementary matrix is row equivalent to the identity matrix.

• A subspace is closed under scalar multiplication and addition.

• span{v1,v2, . . . ,vn} is the subspace formed by the set of linear combinations
c1v1 + c2v2 + · · ·+ cnvn generated by all possible scalar multipliers c1, c2, . . . , cn.

• The subspaces in R3 are the origin, lines, planes, and all of R3.

• The solution space of the homogeneous linear system Ax = 0 with n unknowns is
always a subspace of Rn.

• A set of vectors {v1,v2, . . . ,vn} in Rn are linearly independent if the equation

c1v1 + c2v2 + · · ·+ cnvn = 0

has only the trivial solution c1 = c2 = · · · = cn = 0. If this were not the case, we
say that the set is linearly dependent; for n ≥ 2, this means we can express at least
one of the vectors in the set as a linear combination of the others.

• The following are equivalent for an n× n matrix A:

(a) A is invertible;

(b) The reduced row echelon form of A is In;

(c) A can be expressed as a product of elementary matrices;

(d) A is row equivalent to In;

(e) Ax = 0 has only the trivial solution;

(f) Ax = b has exactly one solution for all b ∈ Rn;

(g) The rows of A are linearly independent;

(h) The columns of A are linearly independent;

(i) detA ̸= 0;

(j) 0 is not an eigenvalue of A.

10



• The elementary row operations that reduce an invertible matrix A to the identity
matrix can be applied directly to the identity matrix to yield A−1.

Remark: If BA = I then the system of equations Ax = 0 has the unique solution
x = Ix = BAx = B(Ax) = B0 = 0. Hence A is invertible and B = A−1.

4 Determinants

• Determinant of a 2× 2 matrix: ∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.

• Determinant of a 3× 3 matrix:∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣ e f
h i

∣∣∣∣− b

∣∣∣∣ d f
g i

∣∣∣∣+ c

∣∣∣∣ d e
g h

∣∣∣∣.
• Determinant of a square matrix A = [aij]n×n can be formally defined as:

detA =
∑

permutations
(j1, j2, . . . , jn) of (1, 2, . . . , n)

sgn(j1, j2, . . . , jn) a1j1a2j2 . . . anjn .

• Properties of Determinants:

• Multiplying a single row or column by a scalar c scales the determinant by c.

• Exchanging two rows or columns swaps the sign of the determinant.

• Adding a multiple of one row (column) to another row (column) leaves the
determinant invariant.

• Given an n×n matrix A = [aij], the minor Mij of the element aij is the determinant
of the submatrix obtained by deleting the ith row and jth column from A. The
signed minor (−1)i+jMij is called the cofactor of the element aij.

• Determinants can be evaluated by cofactor expansion (signed minors), either along
some row i or some column j:

det[aij]n×n =
n∑

k=1

aikMik =
n∑

k=1

akjMkj.
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• In general, evaluating a determinant by cofactor expansion is inefficient. However,
cofactor expansion allows us to see easily that the determinant of a triangular
matrix is simply the product of the diagonal elements!

Problem 4.1: Prove that detA⊺ = detA.

Problem 4.2: Let A and B be square matrices of the same size. Prove that

det(AB) = det(A) det(B).

.

Problem 4.3: Prove for an invertible matrix A that det(A−1) =
1

detA
.

• Determinants can be used to solve linear systems of equations like[
a b
c d

][
x
y

]
=

[
u
v

]
.

• Cramer’s rule:

x =

∣∣∣∣u b
v d

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ , y =

∣∣∣∣ a u
c v

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .
• For matrices larger than 3× 3, row reduction is more efficient than Cramer’s rule.

• An upper (or lower) triangular system of equations can be solved directly by back
substitution:

2x1 + x2 = 5,

4x2 = 17.

• The transpose of the matrix of cofactors, adjA = [(−1)i+jMji], is called the adjugate
(formerly sometimes known as the adjoint) of A.

• The inverse A−1 of a matrix A may be expressed compactly in terms of its adjugate
matrix:

A−1 =
1

detA
adjA.

However, this is an inefficient way to compute the inverse of matrices larger than
3 × 3. A better way to compute the inverse of a matrix is to row reduce [A|I] to
[I|A−1].
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• The cross product of two vectors u = (ux, uy, uz) and v = (vx, vy, vz) in R3 can be
expressed as the determinant

u×v =

∣∣∣∣∣∣
i j k
ux uy uz

vx vy vz

∣∣∣∣∣∣ = (uyvz − uzvy)i+ (uzvx − uxvz)j + (uxvy − uyvx)k.

• The magnitude |u×v|= |u||v|sin θ (where θ is the angle between the vectors u and
v) represents the area of the parallelogram formed by u and v.

5 Eigenvalues and Eigenvectors

• A fixed point x of a matrix A satisfies Ax = x.

• The zero vector is a fixed point of any matrix.

• An eigenvector x of a matrix A is a nonzero vector x that satisfies Ax = λx for
a particular value of λ, known as an eigenvalue (characteristic value).

• An eigenvector x is a nontrivial solution to (A−λI)x = Ax−λx = 0. This requires
that (A − λI) be noninvertible; that is, λ must be a root of the characteristic
polynomial det(λI−A): it must satisfy the characteristic equation det(λI−A) = 0.

• If [aij]n×n is a triangular matrix, each of the n diagonal entries aii are eigenvalues
of A:

det(λI− A) = (λ− a11)(λ− a22) . . . (λ− ann).

• If A has eigenvalues λ1, λ2, . . ., λn then det(A−λI) = (λ1−λ)(λ2−λ) . . . (λn−λ).
On setting λ = 0, we see that detA is the product λ1λ2 . . . λn of the eigenvalues
of A.

• Given an n× n matrix A, the terms in det(λI−A) that involve λn and λn−1 must
come from the main diagonal:

(λ− a11)(λ− a22) . . . (λ− ann) = λn − (a11 + a22 + . . .+ ann)λ
n−1 + . . . .

But

det(λI−A) = (λ−λ1)(λ−λ2) . . . (λ−λn) = λn−(λ1+λ2+. . .+λn)λ
n−1+. . .+(−1)nλ1λ2 . . . λn.

Thus, TrA is the sum λ1+λ2+. . .+λn of the eigenvalues of A and the characteristic
polynomial of A always has the form

λn − TrAλn−1 + . . .+ (−1)n detA.
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Problem 5.1: Show that the eigenvalues and corresponding eigenvectors of the
matrix

A =

[
1 2
3 2

]
are −1, with eigenvector [1,−1], and 4, with eigenvector [2, 3]. Note that the trace
(3) equals the sum of the eigenvalues and the determinant (−4) equals the product
of eigenvalues. (Any nonzero multiple of the given eigenvectors are also acceptable
eigenvectors.)

Problem 5.2: Compute Av where A is the matrix in Problem 5.1 and v = [7, 3]⊺,
both directly and by expressing v as a linear combination of the eigenvectors of A:
[7, 3] = 3[1,−1] + 2[2, 3].

Problem 5.3: Show that the trace and determinant of a 5×5 matrix whose characteristic
polynomial is det(λI−A) = λ5+2λ4+3λ3+4λ2+5λ+6 are given by −2 and −6,
respectively.

• The algebraic multiplicity of an eigenvalue λ0 of a matrix A is the number of factors
of (λ− λ0) in the characteristic polynomial det(λI− A).

• The eigenspace of A corresponding to an eigenvalue λ is the linear space spanned
by all eigenvectors of A associated with λ. This is the null space of A− λI.

• The geometric multiplicity of an eigenvalue λ of a matrix A is the dimension of the
eigenspace of A corresponding to λ.

• The sum of the algebraic multiplicities of all eigenvalues of an n×n matrix is equal
to n.

• The geometric multiplicity of an eigenvalue is always less than or equal to its
algebraic multiplicity.

Problem 5.4: Show that the 2× 2 identity matrix[
1 0
0 1

]
has a double eigenvalue of 1 associated with two linearly independent eigenvectors,
say [1, 0]⊺ and [0, 1]⊺. The eigenvalue 1 thus has algebraic multiplicity two and
geometric multiplicity two.
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Problem 5.5: Show that the matrix [
1 1
0 1

]
has a double eigenvalue of 1 but only a single eigenvector [1, 0]⊺. The eigenvalue 1
thus has algebraic multiplicity two, while its geometric multiplicity is only one.

Problem 5.6: Show that the matrix 2 0 0
1 3 0
−3 5 3


has [Anton and Busby, p. 458]:

(a) an eigenvalue 2 with algebraic and geometric multiplicity one;

(b) an eigenvalue 3 with algebraic multiplicity two and geometric multiplicity one.
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6 Linear Transformations

• A mapping T : Rn → Rm is a linear transformation from Rn to Rm if for all vectors
u and v in Rn and all scalars c:

(a) T (u+ v) = T (u) + T (v);

(b) T (cu) = cT (u).

If m = n, we say that T is a linear operator on Rn.

• The action of a linear transformation on a vector can be represented by matrix
multiplication: T (x) = Ax.

• An orthogonal linear operator T preserves lengths: |T (x)|= |x| for all vectors xb.

• A square matrix A with real entries is orthogonal if A⊺A = I; that is, A
−1

= A⊺.
This implies that detA = ±1 and preserves lengths:

|Ax|2= Ax·Ax = (Ax)⊺Ax = x⊺A⊺Ax = x⊺A⊺Ax = x⊺x = x·x = |x|2.

Since the columns of an orthogonal matrix are unit vectors in addition to being
mutually orthogonal, they can also be called orthonormal matrices.

• The matrix that describes rotation about an angle θ is orthogonal:[
cos θ − sin θ
sin θ cos θ

]
.

• The kernel kerT of a linear transformation T is the subspace consisting of all
vectors u that are mapped to 0 by T .

• The null space nullA (also known as the kernel kerA) of a matrix A is the subspace
consisting of all vectors u such that Au = 0.

• Linear transformations map subspaces to subspaces.

• The range ranT of a linear transformation T : Rn → Rm is the image of the
domain Rn under T .

• A linear transformation T is one-to-one if T (u) = T (v) ⇒ u = v.
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Problem 6.1: Show that a linear transformation is one-to-one if and only if kerT = {0}.

• A linear operator T on Rn is one-to-one if and only if it is onto.

• A set {v1,v2, . . . ,vn} of linearly independent vectors is called a basis for the n-
dimensional subspace

span{v1,v2, . . . ,vn} = {c1v1 + c2v2 + · · ·+ cnvn : (c1, c2, . . . , cn) ∈ Rn}.

• If w = a1v1 + a2v2 + . . . + vn is a vector in span{v1,v2, . . . ,vn} with basis B =
{v1,v2, . . . ,vn} we say that [a1, a2, . . . , an]⊺ are the coordinates [w]B of the vectorw
with respect to the basis B.

• If w is a vector in Rn the transition matrix PB′←B that changes coordinates [w]B
with respect to the basis B = {v1,v2, . . . ,vn} for Rn to coordinates [w]B′ =
PB′←B[w]B with respect to the basis B′ = {v′1,v′2, . . . ,v′n} for Rn is

PB′←B = [[v1]B′ [v2]B′ · · · [vn]B′ ].

• An easy way to find the transition matrix PB′←B from a basis B to B′ is to use
elementary row operations to reduce the matrix [B′|B] to [I|PB′←B].

• Note that the matrices PB′←B and PB←B′ are inverses of each other.

• If T : Rn → Rn is a linear operator and if B = {v1,v2, . . . ,vn} and B′ =
{v′1,v′2, . . . ,v′n} are bases for Rn then the matrix representation [T ]B with respect
to the bases B is related to the matrix representation [T ]B′ with respect to the
bases B′ according to

[T ]B′ = PB′←B[T ]BPB←B′ .

7 Dimension

• The number of linearly independent rows (or columns) of a matrix A is known
as its rank and written rankA. That is, the rank of a matrix is the dimension
dim(row(A)) of the span of its rows. Equivalently, the rank of a matrix is the
dimension dim(col(A)) of the span of its columns.

• The dimension of the null space of a matrix A is known as its nullity and written
dim(null(A)) or nullityA.
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• The dimension theorem states that if A is an m× n matrix then

rankA+ nullityA = n.

• If A is an m× n matrix then

dim(row(A)) = rankA dim(null(A)) = n− rankA,

dim(col(A)) = rankA dim(null(A⊺)) = m− rankA.

Problem 7.1: Find dim(row) and dim(null) for both A and A⊺:

A =

 1 2 3 4
5 6 7 8
9 10 11 12

.
• While the row space of a matrix is “invariant to” (unchanged by) elementary row
operations, the column space is not. For example, consider the row-equivalent
matrices

A =

[
0 0
1 0

]
and B =

[
1 0
0 0

]
.

Note that row(A) = span([1, 0]) = row(B). However col(A) = span([0, 1]⊺) but
col(B) = span([1, 0]⊺).

• The following are equivalent for an m× n matrix A:

(a) A has rank k;

(b) A has nullity n− k;

(c) Every row echelon form of A has k nonzero rows and m− k zero rows;

(d) The homogeneous system Ax = 0 has k pivot variables and n− k free variables.

8 Similarity and Diagonalizability

• If A and B are square matrices of the same size and B = P−1AP for some invertible
matrix P, we say that B is similar to A.

Problem 8.1: If B is similar to A, show that A is also similar to B.
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Problem 8.2: Suppose B = P−1AP. Multiplying A by the matrix P−1 on the left
certainly cannot increase its rank (the number of linearly independent rows or
columns), so rankP−1A ≤ rankA. Likewise rankB = rankP−1AP ≤ rankP−1A ≤
rankA. But since we also know that A is similar to B, we see that rankA ≤ rankB.
Hence rankA = rankB.

Problem 8.3: Show that similar matrices also have the same nullity.

• Similar matrices represent the same linear transformation under the change of bases
described by the matrix P.

Problem 8.4: Prove that similar matrices have the following similarity invariants :

(a) rank;

(b) nullity;

(c) characteristic polynomial and eigenvalues, including their algebraic and geometric
multiplicities;

(d) determinant;

(e) trace.

Proof of (c): Suppose B = P−1AP. We first note that

λI− B = λI− P−1AP = P−1λIP− P−1AP = P−1(λI− A)P.

The matrices λI − B and λI − A are thus similar and share the same nullity (and hence
geometric multiplicity) for each eigenvalue λ. Moreover, this implies that the matrices
A and B share the same characteristic polynomial (and hence eigenvalues and algebraic
multiplicities):

det(λI− B) = det(P−1) det(λI− A) det(P) =
1

det(P)
det(λI− A) det(P) = det(λI− A).

• A matrix is said to be diagonalizable if it is similar to a diagonal matrix.
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• An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors. Suppose that P−1AP = D, where

P =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

 and D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

.
Since P is invertible, its columns are nonzero and linearly independent. Moreover,

AP = PD =


λ1p11 λ2p12 · · · λnp1n
λ1p21 λ2p22 · · · λnp2n
...

...
. . .

...
λ1pn1 λ2pn2 · · · λnpnn

.
That is, for j = 1, 2, . . . , n:

A


p1j
p2j
...

pnj

 = λj


p1j
p2j
...

pnj

.
This says, for each j, that the nonzero column vector [p1j, p2j, . . . , pnj]

⊺ is an
eigenvector of A with eigenvalue λj. Moreover, as mentioned above, these n column
vectors are linearly independent. This established one direction of the claim. On
reversing this argument, we see that if A has n linearly independent eigenvectors,
we can use them to form an eigenvector matrix P such that AP = PD.

• Equivalently, an n×n matrix is diagonalizable if and only if the geometric multiplicity
of each eigenvalue is the same as its algebraic multiplicity (so that the sum of the
geometric multiplicities of all eigenvalues is n).

Problem 8.5: Show that the matrix [
λ 1
0 λ

]
has a double eigenvalue of λ but only one eigenvector [1, 0]⊺ (i.e. the eigenvalue λ
has algebraic multiplicity two but geometric multiplicity one) and consequently is
not diagonalizable.
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• Eigenvectors of a matrix A associated with distinct eigenvalues are linearly independent.
If not, then one of them would be expressible as a linear combination of the others.
Let us order the eigenvectors so that vk+1 is the first eigenvector that is expressible
as a linear combination of the others:

(1)vk+1 = c1v1 + c2v2 + · · ·+ ckvk,

where the coefficients ci are not all zero. The condition that vk+1 is the first such
vector guarantees that the vectors on the right-hand side are linearly independent.
If each eigenvector vi corresponds to the eigenvalue λi, then on multiplying by A
on the left, we find that

λk+1vk+1 = Avk+1 = c1Av1+ c2Av2+ · · ·+ ckAvk = c1λ1v1+ c2λ2v2+ · · ·+ ckλkvk.

If we multiply Eq.(1) by λk+1 we obtain:

λk+1vk+1 = c1λk+1v1 + c2λk+1v2 + · · ·+ ckλk+1vk,

The difference of the previous two equations yields

0 = c1(λ1 − λk+1)v1 + (λ2 − λk+1)c2v2 + · · ·+ (λk − λk+1)ckvk,

Since the vectors on the right-hand side are linearly independent, we know that
each of the coefficients ci(λi−λk+1) must vanish. But this is not possible since the
coefficients ci are nonzero and eigenvalues are distinct. The only way to escape this
glaring contradiction is that all of the eigenvectors of A corresponding to distinct
eigenvalues must in fact be independent!

• An n× n matrix A with n distinct eigenvalues is diagonalizable.

• However, the converse is not true (consider the identity matrix). In the words
of Anton & Busby, “the key to diagonalizability rests with the dimensions of the
eigenspaces,” not with the distinctness of the eigenvalues.

Problem 8.6: Show that the matrix

A =

[
1 2
3 2

]
from Problem 5.1 is diagonalizable by evaluating

1

5

[
3 −2
1 1

][
1 2
3 2

][
1 2
−1 3

]
.

What do you notice about the resulting product and its diagonal elements? What
is the significance of each of the above matrices and the factor 1/5 in front? Show
that A may be decomposed as

A =

[
1 2
−1 3

][
−1 0
0 4

]
1

5

[
3 −2
1 1

]
.
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Problem 8.7: Show that the characteristic polynomial of the matrix that describes
rotation in the x–y plane by θ = 90◦:

A =

[
0 −1
1 0

]
is λ2 + 1 = 0. This equation has no real roots, so A is not diagonalizable over the
real numbers. However, it is in fact diagonalizable over a broader number system
known as the complex numbers C: we will see that the characteristic equation
λ2 + 1 = 0 admits two distinct complex eigenvalues, namely −i and i, where i is
an imaginary number that satisfies i2 + 1 = 0.

Remark: An efficient way to compute high powers and fractional (or even negative
powers) of a matrix A is to first diagonalize it; that is, using the eigenvector matrix
P to express A = PDP−1 where D is the diagonal matrix of eigenvalues.

Problem 8.8: To find the 5th power of A note that

A5 =
(
PDP−1

)(
PDP−1

)(
PDP−1

)(
PDP−1

)(
PDP−1

)
= PDP−1PDP−1PDP−1PDP−1PDP−1

= PD5P−1

=

[
1 2
−1 3

][
(−1)5 0
0 45

]
1

5

[
3 −2
1 1

]
=

1

5

[
1 2
−1 3

][
−1 0
0 1024

][
3 −2
1 1

]
=

1

5

[
−1 2048
1 3072

][
3 −2
1 1

]
=

1

5

[
2045 2050
3075 3070

]
=

[
409 410
615 614

]
.

Problem 8.9: Check the result of the previous problem by manually computing the
product A5. Which way is easier for computing high powers of a matrix?
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Remark: We can use the same technique to find the square root A
1
2 of A (i.e. a

matrix B such that B2 = A, we will again need to work in the complex number
system C, where i2 = −1:

A
1
2 = PD

1
2P−1

=
1

5

[
1 2
−1 3

][
i 0
0 2

][
3 −2
1 1

]
=

1

5

[
i 4
−i 6

][
3 −2
1 1

]
=

1

5

[
4 + 3i 4− 2i
6− 3i 6 + 2i

]
.

Then

A
1
2A

1
2 =

(
PD

1
2P−1

)(
PD

1
2P−1

)
= PD

1
2D

1
2P−1 = PDP−1 = A,

as desired.

Problem 8.10: Verify explicitly that

1

25

[
4 + 3i 4− 2i
6− 3i 6 + 2i

][
4 + 3i 4− 2i
6− 3i 6 + 2i

]
=

[
1 2
3 2

]
= A.

9 Complex Numbers

In order to diagonalize a matrix A with linearly independent eigenvectors (such
as a matrix with distinct eigenvalues), we first need to solve for the roots of the
characteristic polynomial det(λI − A) = 0. These roots form the n elements of the
diagonal matrix that A is similar to. However, as we have already seen, a polynomial
of degree n does not necessarily have n real roots.

Recall that z is a root of the polynomial P (x) if P (z) = 0.

Q. Do all polynomials have at least one root z ∈ R?

A. No, consider P (x) = x2 + 1. It has no real roots: P (x) ≥ 1 for all x.

The complex numbers C are introduced precisely to circumvent this problem. If we
replace “z ∈ R” by “z ∈ C”, we can answer the above question affirmatively.

The complex numbers consist of ordered pairs (x, y) together with the usual
component-by-component addition rule (e.g. which one has in a vector space)

(x, y) + (u, v) = (x+ u, y + v),
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but with the unusual multiplication rule

(x, y) · (u, v) = (xu− yv, xv + yu).

Note that this multiplication rule is associative, commutative, and distributive. Since

(x, 0) + (u, 0) = (x+ u, 0) and (x, 0) · (u, 0) = (xu, 0),

we see that (x, 0) and (u, 0) behave just like the real numbers x and u. In fact, we
can map (x, 0) ∈ C to x ∈ R:

(x, 0) ≡ x.

Hence R ⊂ C.

Remark: We see that the complex number z = (0, 1) satisfies the equation z2+1 = 0.
That is, (0, 1) · (0, 1) = (−1, 0).

• Denote (0, 1) by the letter i. Then any complex number (x, y) can be represented
as (x, 0) + (0, 1)(y, 0) = x+ iy.

Remark: Unlike R, the set C = {(x, y) : x ∈ R, y ∈ R} is not ordered ; there is no
notion of positive and negative (greater than or less than) on the complex plane.
For example, if i were positive or zero, then i2 = −1 would have to be positive
or zero. If i were negative, then −i would be positive, which would imply that
(−i)2 = i2 = −1 is positive. It is thus not possible to divide the complex numbers
into three classes of negative, zero, and positive numbers.

Remark: The frequently appearing notation
√
−1 for i is misleading and should be

avoided, because the rule
√
xy =

√
x
√
y (which one might anticipate) does not hold

for negative x and y, as the following contradiction illustrates:

1 =
√
1 =

√
(−1)(−1) =

√
−1

√
−1 = i2 = −1.

Furthermore, by definition
√
x ≥ 0, but one cannot write i ≥ 0 since C is not

ordered.

Remark: We may write (x, 0) = x+ i0 = x since i0 = (0, 1) · (0, 0) = (0, 0) = 0.

• The complex conjugate (x, y) of (x, y) is (x,−y). That is,

x+ iy = x− iy.
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• The complex modulus |z| of z = x+ iy is given by
√
x2 + y2.

Remark: If z ∈ R then |z| =
√
z2 is just the absolute value of z.

We now establish some important properties of the complex conjugate. Let z =
x+ iy and w = u+ iv be elements of C. Then

(i)
zz = (x, y)(x,−y) = (x2 + y2, yx− xy) = (x2 + y2, 0) = x2 + y2 = |z|2 ,

(ii)
z + w = z + w,

(iii)
zw = z w.

Problem 9.1: Prove properties (ii) and (iii).

Remark: Property (i) provides an easy way to compute reciprocals of complex
numbers:

1

z
=

z

zz
=

z

|z|2
.

Remark: Properties (i) and (iii) imply that

|zw|2 = zwzw = zzww = |z|2 |w|2 .

Thus |zw| = |z| |w| for all z, w ∈ C.

• The dot product of vectors u = [u1,u2, . . . ,un] and v = [v1,v2, . . . ,vn] in Cn is
given by

u·v = u⊺v = u1v1 + · · ·+ unvn.

Remark: Note that this definition of the dot product implies that u·v = v·u = v⊺u.

Remark: Note however that u·u can be written either as u⊺u or as u⊺u.

Problem 9.2: Prove for k ∈ C that (ku)·v = k(u·v) but u·(kv) = k(u·v).
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• In view of the definition of the complex modulus, it is sensible to define the length
of a vector v = [v1,v2, . . . ,vn] in Cn to be

|v|=
√
v·v =

√
v⊺v =

√
v1v1 + · · ·+ vnvn =

√
|v1|2+ · · ·+ |vn|2 ≥ 0.

Lemma 1 (Complex Conjugate Roots): Let P be a polynomial with real coefficients.
If z is a root of P , then so is z.

Proof: Suppose P (z) =
∑n

k=0 akz
k = 0, where each of the coefficients ak are real.

Then

P (z) =
n∑

k=0

ak(z)
k =

n∑
k=0

akzk =
n∑

k=0

akzk =
n∑

k=0

akzk = P (z) = 0 = 0.

Thus, complex roots of real polynomials occur in conjugate pairs , z and z.

Remark: Lemma 1 implies that eigenvalues of a matrix A with real coefficients also
occur in conjugate pairs: if λ is an eigenvalue of A, then so if λ. Moreover, if x is
an eigenvector corresponding to λ, then x is an eigenvector corresponding to λ:

Ax = λx ⇒ Ax = λx
⇒ Ax = λx
⇒ Ax = λx.

• A real matrix consists only of real entries.

Problem 9.3: Find the eigenvalues and eigenvectors of the real matrix [Anton &
Busby, p. 528] [

−2 −1
5 2

]
.

• If A is a real symmetric matrix, it must have real eigenvalues. This follows from
the fact that an eigenvalue λ and its eigenvector x ̸= 0 must satisfy

Ax = λx ⇒ x⊺Ax = x⊺λx = λx·x = λ|x|2

⇒ λ =
x⊺Ax

|x|2
=

(A⊺x)⊺x

|x|2
=

(Ax)⊺x

|x|2
=

(λx)⊺x

|x|2
=

λx·x
|x|2

= λ.
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Remark: There is a remarkable similarity between the complex multiplication rule

(x, y) · (u, v) = (xu− yv, xv + yu)

and the trigonometric angle sum formulae. Notice that

(cos θ, sin θ) · (cosϕ, sinϕ) = (cos θ cosϕ− sin θ sinϕ, cos θ sinϕ+ sin θ cosϕ)

= (cos(θ + ϕ), sin(θ + ϕ)).

That is, multiplication of 2 complex numbers on the unit circle x2 + y2 = 1
corresponds to addition of their angles of inclination to the x axis. In particular,
the mapping f(z) = z2 doubles the angle of z = (x, y) and f(z) = zn multiplies
the angle of z by n.

These statements hold even if z lies on a circle of radius r ̸= 1,

(r cos θ, r sin θ)n = rn(cosnθ, sinnθ);

this is known as deMoivre’s Theorem.
The power of complex numbers comes from the following important theorem.

Theorem 1 (Fundamental Theorem of Algebra): Any non-constant polynomial P (z)
with complex coefficients has a root in C.

Lemma 2 (Polynomial Factors): If z0 is a root of a polynomial P (z) then P (z) is
divisible by (z − z0).

Proof: Suppose z0 is a root of a polynomial P (z) =
∑n

k=0 akz
k of degree n.

Consider

P (z) = P (z)− P (z0) =
n∑

k=0

akz
k −

n∑
k=0

akz
k
0 =

n∑
k=0

ak(z
k − zk0 )

=
n∑

k=0

ak(z − z0)(z
k−1 + zk−2z0 + . . .+ zk−10 ) = (z − z0)Q(z),

where Q(z) =
∑n

k=0 ak(z
k−1 + zk−2z0 + . . .+ zk−10 ) is a polynomial of degree n− 1.

Corollary 1.1 (Polynomial Factorization): Every complex polynomial P (z) of degree
n ≥ 0 has exactly n complex roots z1, z2, . . ., zn and can be factorized as P (z) =
A(z − z1)(z − z2) . . . (z − zn), where A ∈ C.

Proof: Apply Theorem 1 and Lemma 2 recursively n times. (It is conventional to
define the degree of the zero polynomial, which has infinitely many roots, to be −∞.)
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10 Projection Theorem

• The component of a vector v in the direction û is given by

v·û = |v|cos θ.

• The orthogonal projection (parallel component) v∥ of v onto a unit vector û is

v∥ = (v·û)û =
v·u
|u|2

u.

• The perpendicular component of v relative to the direction û is

v⊥ = v − (v·û)û.

The decomposition v = v⊥ + v∥ is unique. Notice that v⊥·û = v·û− v·û = 0.

• In fact, for a general n-dimensional subspace W of Rm, every vector v has a unique
decomposition as a sum of a vector v∥ in W and a vector v⊥ in W⊥ (this is the set
of vectors that are perpendicular to each of the vectors in W ). First, find a basis for
W . We can write these basis vectors as the columns of an m×n matrix A with full
column rank (linearly independent columns). Then W⊥ is the null space for A⊺.
The projection v∥ of v = v∥ + v⊥ onto W satisfies v∥ = Ax for some vector x and
hence

0 = A⊺v⊥ = A⊺(v − Ax).

The vector x thus satisfies the normal equation

(2)A⊺Ax = A⊺v,

so that x = (A⊺A)−1A⊺v. We know from Question 4 of Assignment 1 that A⊺A
shares the same null space as A. But the null space of A is {0} since the columns of
A, being basis vectors, are linearly independent. Hence the square matrix A⊺A is
invertible, and there is indeed a unique solution for x. The orthogonal projection v∥
of v onto the subspace W is thus given by the formula

v∥ = A(A⊺A)−1A⊺v.

Remark: This complicated projection formula becomes much easier if we first go to
the trouble to construct an orthonormal basis for W . This is a basis of unit vectors
that are mutual orthogonal to one another, so that A⊺A = I. In this case the
projection of v onto W reduces to multiplication by the symmetric matrix AA⊺:

v∥ = AA⊺v.
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Problem 10.1: Find the orthogonal projection of v = [1, 1, 1] onto the plane W
spanned by the orthonormal vectors [0, 1, 0] and

[
−4

5
, 0, 3

5

]
.

Compute

v∥ = AA⊺v =

 0 −4
5

1 0
0 3

5

[ 0 1 0
−4

5 0 3
5

] 1
1
1

 =

 16
25 0 −12

25
0 1 0
−12
25 0 9

5

 1
1
1

 =

 4
25
1
−3
25

.
As desired, we note that v − v∥ =

[
21
25 , 0,

28
25

]
= 7

25 [3, 0, 4] is parallel to the normal
[
3
5 , 0,

4
5

]
to the plane computed from the cross product of the given orthonormal vectors.

11 Gram-Schmidt Orthonormalization

TheGram-Schmidt process provides a systematic procedure for constructing an orthonormal
basis for an n-dimensional subspace span{a1,a2, . . . ,an} of Rm:

1. Start with the first vector: q1 = a1.

2. Remove the component of the second vector parallel to the first:

q2 = a2 −
a2·q1

|q1|2
q1.

3. Remove the components of the third vector parallel to the first and second:

q3 = a3 −
a3·q1

|q1|2
q1 −

a3·q2

|q2|2
q2.

4. Continue this procedure by successively defining, for k = 4, 5, . . . , n:

(3)qk = ak −
ak·q1

|q1|2
q1 −

ak·q2

|q2|2
q2 − · · · − ak·qk−1

|qk−1|2
qk−1.

5. Finally normalize each of the vectors to obtain the orthogonal basis {q̂1, q̂2, . . . , q̂n}.

Remark: Notice that q2 is orthogonal to q1:

q2·q1 = a2·q1 −
a2·q1

|q1|2
|q1|2= 0.
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Remark: At the kth stage of the orthonormalization, if all of the previously created
vectors were orthogonal to each other, then so is the newly created vector:

qk·qj = ak·qj −
ak·qj

|qj|2
|qj|2= 0, j = 1, 2, . . . k − 1.

Remark: The last two remarks imply that, at each stage of the orthonormalization,
all of the vectors created so far are orthogonal to each other!

Remark: Notice that q1 = a1 is a linear combination of the original a1,a2, . . . ,an.

Remark: At the kth stage of the orthonormalization, if all of the previously created
vectors were a linear combination of the original vectors a1,a2, . . . ,an, then by
Eq. (3), we see that qk is as well.

Remark: The last two remarks imply that, at each stage of the orthonormalization,
all of the vectors created so far are orthogonal to each vector qk can be written as a
linear combination of the original basis vectors a1,a2, . . . ,an. Since these vectors
are given to be linearly independent, we thus know that qk ̸= 0. This is what
allows us to normalize qk in Step 5. It also implies that {q1, q2, . . . , qn} spans the
same space as {a1,a2, . . . ,an}.

Problem 11.1: What would happen if we were to apply the Gram-Schmidt procedure
to a set of vectors that is not linearly independent?

Problem 11.2: Use the Gram-Schmidt process to find an orthonormal basis for the
plane x+ y + z = 0.

In terms of the two parameters (say) y = s and z = t, we see that each point on the
plane can be expressed as

x = −s− t, y = s, z = t.

The parameter values (s, t) = (1, 0) and (s, t) = (0, 1) then yield two linearly independent
vectors on the plane:

a1 = [−1, 1, 0] and a2 = [−1, 0, 1].

The Gram-Schmidt process then yields

q1 = [−1, 1, 0],

q2 = [−1, 0, 1]− [−1, 0, 1]·[−1, 1, 0]

|[−1, 1, 0]|2
[−1, 1, 0]

= [−1, 0, 1]− 1

2
[−1, 1, 0]

=

[
−1

2
,−1

2
, 1

]
.

We note that q2·q1 = 0, as desired. Finally, we normalize the vectors to obtain q̂1 =

[− 1√
2
, 1√

2
, 0] and q̂2 = [− 1√

6
,− 1√

6
, 2√

6
].
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12 QR Factorization

• We may rewrite the kth step (Eq. 3) of the Gram-Schmidt orthonormalization
process more simply in terms of the unit normal vectors q̂j:

(4)qk = ak − (ak·q̂1)q̂1 − (ak·q̂2)q̂2 − · · · − (ak·q̂k−1)q̂k−1.

On taking the dot product with q̂k we find, using the orthogonality of the vectors q̂j,

0 ̸= qk·q̂k = ak·q̂k (5)

so that qk = (qk·q̂k)q̂k = (ak·q̂k)q̂k. Equation 4 may then be rewritten as

ak = q̂1(ak·q̂1) + q̂2(ak·q̂2) + · · ·+ q̂k−1(ak·q̂k−1) + q̂k(ak·q̂k).

On varying k from 1 to n we obtain the following set of n equations:

[a1 a2 . . . an ] = [ q̂1 q̂2 . . . q̂n ]


a1·q̂1 a2·q̂1 · · · an·q̂1

0 a2·q̂2 · · · an·q̂2
...

...
. . .

...
0 0 · · · an·q̂n

.
If we denote the upper triangular n × n matrix on the right-hand-side by R, and
the matrices composed of the column vectors ak and q̂k by the m× n matrices A
and Q, respectively, we can express this result as the so-called QR factorization
of A:

(6)A = QR.

Remark: Every matrix m×n matrix A with full column rank (linearly independent
columns) thus has a QR factorization.

Remark: Equation 5 implies that each of the diagonal elements of R is nonzero. This
guarantees that R is invertible.

Remark: If the columns of Q are orthonormal, then Q⊺Q = I. An efficient way to
find R is to premultiply both sides of Eq. 6 by Q⊺:

Q⊺A = R.

Problem 12.1: Find the QR factorization of [Anton & Busby, p. 418] 1 0 0
1 1 0
1 1 1

.
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13 Least Squares Approximation

Suppose that a set of data (xi, yi) for i = 1, 2, . . . n is measured in an experiment and
that we wish to test how well it fits an affine relationship of the form

y = α + βx.

Here α and β are parameters that we wish to vary to achieve the best fit.
If each data point (xi, yi) happens to fall on the line y = α+βx, then the unknown

parameters α and β can be determined from the matrix equation

(7)


1 x1

1 x2
...

...
1 xn

[αβ
]
=


y1
y2
...
yn

.
If the xis are distinct, then the n×2 coefficient matrix A on the left-hand side, known
as the design matrix , has full column rank (two). Also note in the case of exact
agreement between the experimental data and the theoretical model y = α+βx that
the vector b on the right-hand side is in the column space of A.

• Recall that if b is in the column space of A, the linear system of equations Ax = b
is consistent , that is, it has at least one solution x. Recall that this solution is
unique iff A has full column rank.

• In practical applications, however, there may be measurement errors in the entries
of A and b so that b does not lie exactly in the column space of A.

• The least squares approximation to an inconsistent system of equations Ax = b is
the solution to

Ax = b∥

where b∥ denotes the projection of b onto the column space of A. From Eq. (2) we
see that the solution vector x satisfies the normal equation

A⊺Ax = A⊺b.

Remark: For the normal equation Eq. (7), we see that

A⊺A =

[
1 · · · 1
x1 · · · xn

]
1 x1

1 x2
...

...
1 xn

 =

[
n

∑
xi∑

xi

∑
x2
i

]
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and

A⊺b =

[
1 · · · 1
x1 · · · xn

]
y1
y2
...
yn

 =

[ ∑
yi∑
xiyi

]
,

where the sums are computed from i = 1 to n. Thus the solution to the least-
squares fit of Eq. (7) is given by[

α
β

]
=

[
n

∑
xi∑

xi

∑
x2
i

]−1[ ∑
yi∑
xiyi

]
.

Problem 13.1: Show that the least squares line of best fit to the measured data
(0, 1), (1, 3), (2, 4), and (3, 4) is y = 1.5 + x.

• The difference b⊥ = b− b∥ is called the least squares error vector .

• The least squares method is sometimes called linear regression and the line y =
α + βx can either be called the least squares line of best fit or the regression line.

• For each data pair (xi, yi), the difference yi − (α + βxi) is called the residual .

Remark: Since the least-squares solution x = [α, β] minimizes the least squares error
vector

b⊥ = b− Ax = [y1 − (α + βx1), . . . , yn − (α + βxn)],

the method effectively minimizes the sum
n∑

i=1

[yi − (α+ βxi)]
2 of the squares of the

residuals.

• A numerically robust way to solve the normal equation A⊺Ax = A⊺b is to factor
A = QR:

R⊺Q⊺QRx = R⊺Q⊺b.

which, since R is invertible, simplifies to

x = R−1Q⊺b.

Problem 13.2: Show that for the same measured data as before, (0, 1), (1, 3), (2, 4),
and (3, 4), that

R =

[
2 3
0

√
5

]
and from this that the least squares solution again is y = 1.5 + x.
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Remark: The least squares method can be extended to fit a polynomial

y = a0 + a1x+ · · ·+ amx
m

as close as possible to n given data points (xi, yi):
1 x1 x2

1 · · · xm
1

1 x2 x2
2 · · · xm

2
...

...
...

. . .
...

1 xn x2
n · · · xm

n



a0
a1
...
am

 =


y1
y2
...
yn

.
Here, the design matrix takes the form of a Vandermonde matrix, which has special
properties. For example, in the case where m = n − 1, its determinant is given

by
n∏

i,j=1
i>j

(xi − xj). If the n xi values are distinct, this determinant is nonzero. The

system of equations is consistent and has a unique solution, known as the Lagrange
interpolating polynomial . This polynomial passes exactly through the given data
points. However, if m < n− 1, it will usually not be possible to find a polynomial
that passes through the given data points and we must find the least squares
solution by solving the normal equation for this problem [cf. Example 7 on p. 403
of Anton & Busby].

14 Orthogonal (Unitary) Diagonalizability

• A matrix is said to be Hermitian if A⊺ = A.

• For real matrices, being Hermitian is equivalent to being symmetric.

• On defining the Hermitian transpose A† = A⊺, we see that a Hermitian matrix A
obeys A† = A.

• For real matrices, the Hermitian transpose is equivalent to the usual transpose.

• A complex matrix P is orthogonal (or orthonormal) if P†P = I. (Most books use
the term unitary here but in view of how the dot product of two complex vectors
is defined, there is really no need to introduce new terminology.)

• For real matrices, an orthogonal matrix A obeys A⊺A = I.
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• If A and B are square matrices of the same size and B = P†AP for some orthogonal
matrix P, we say that B is orthogonally similar to A.

Problem 14.1: Show that two orthogonally similar matrices A and B are similar.

• Orthogonally similar matrices represent the same linear transformation under the
orthogonal change of bases described by the matrix P.

• A matrix is said to be orthogonally diagonalizable if it is orthogonally similar to a
diagonal matrix.

Remark: An n × n matrix A is orthogonally diagonalizable if and only if it has an
orthonormal set of n eigenvectors. But which matrices have this property? The
following definition will help us answer this important question.

• A matrix A that commutes with its Hermitian transpose, so that A†A = AA†, is
said to be normal .

Problem 14.2: Show that every diagonal matrix is normal.

Problem 14.3: Show that every Hermitian matrix is normal.

• An orthogonally diagonalizable matrix must be normal. Suppose

D = P†AP

for some diagonal matrix D and orthogonal matrix P. Then

A = PDP†,

and
A† = (PDP†)† = PD†P†.

Then AA† = PDP†PD†P† = PDD†P† and A†A = PD†P†PDP† = PD†DP†. But
D†D = DD† since D is diagonal. Therefore A†A = AA†.

• If A is a normal matrix and is orthogonally similar to U, then U is also normal:

U†U =
(
P†AP

)†
P†AP = P†A†PP†AP = P†A†AP = P†AA†P = P†APP†A†P = UU†.
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• if A is an orthogonally diagonalizable matrix with real eigenvalues, it must be
Hermitian: if A = PDP†, then

A† = (PDP†)† = PD†P† = PDP† = A.

Moreover, if the entries in A are also real, then A must be symmetric.

Q. Are all normal matrices orthogonally diagonalizable?

A. Yes. The following important matrix factorization guarantees this.

• An n× n matrix A has a Schur factorization

A = PUP†,

where P is an orthogonal matrix and U is an upper triangle matrix. This can be
easily seen from the fact that the characteristic polynomial always has at least one
complex root, so that A has at least one eigenvalue λ1 corresponding to some unit
eigenvector x1. Now use the Gram-Schmidt process to construct some orthonormal
basis {x1, b2, . . . , bn} for Rn. Note here that the first basis vector is x1 itself. In
this coordinate system, the eigenvector x1 has the components [1, 0, . . . , 0]⊺, so that

A


1
0
...
0

 =


λ1

0
...
0

.
This requires that A have the form

λ1 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
. . . · · · ...

...
...

...
. . .

...
0 ∗ ∗ · · · ∗

.
We can repeat this argument for the n− 1× n− 1 submatrix obtained by deleting
the first row and column from A. This submatrix must have an eigenvalue λ2

corresponding to some eigenvector x2. Now construct an orthogonal basis {x2, b3, . . . , bn}
for Rn−1. In this new coordinate system x2 = [λ2, 0, . . . , 0]

⊺ and the first column
of the submatrix appears as 

λ2

0
...
0

.
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This means that in the coordinate system {x1,x2, b3, . . . , bn}, A has the form
λ1 ∗ ∗ · · · ∗
0 λ2 ∗ · · · ∗
...

...
. . . · · · ...

...
...

...
. . .

...
0 0 ∗ · · · ∗

.

Continuing in this manner we thus construct an orthogonal basis {x1,x2,x3, . . . ,xn}
in which A appears as an upper triangle matrix U whose diagonal values are just the
n (not necessarily distinct) eigenvalues of A. Therefore, A is orthogonally similar
to an upper triangle matrix, as claimed.

Remark: Given a normal matrix A with Schur factorization A = PUP†, we have
seen that U is also normal.

Problem 14.4: Show that every normal n×n upper triangular matrix U is a diagonal
matrix. Hint: letting Uij for i ≤ j be the nonzero elements ofU, we can write out for

each i = 1, . . . , n the diagonal elements
∑i

k=1 U
†
ikUki =

∑i
k=1 UkiUki of U

†U = UU†:

i∑
k=1

|Uki|2 =
n∑

k=i

|Uik|2 .

• Thus A is orthogonally diagonalizable if and only if it is normal.

• If A is a Hermitian matrix, it must have real eigenvalues. This follows from the
fact that an eigenvalue λ and its eigenvector x ̸= 0 must satisfy

Ax = λx ⇒ x†Ax = x†λx = λx·x = λ|x|2

⇒ λ =
x†Ax

|x|2
=

(A†x)†x

|x|2
=

(Ax)†x

|x|2
=

(λx)†x

|x|2
=

λx·x
|x|2

= λ.

Problem 14.5: Show that the Hermitian matrix[
0 i
−i 0

]
is similar to a diagonal matrix with real eigenvalues and find the eigenvalues.
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Problem 14.6: Show that the anti-Hermitian matrix[
0 i
i 0

]
is similar to a diagonal matrix with complex eigenvalues and find the eigenvalues.

• If A is an n× n normal matrix, then |Ax|2 = x†A†Ax = x†AA†x =
∣∣A†x∣∣2 for all

vectors x ∈ Rn.

Problem 14.7: If A is a normal matrix, show that A− λI is also normal.

• If A is a normal matrix and Ax = λx, then 0 = |(A− λI)x|= |(A† − λI)x|, so that
A†x = λx.

• If A is a normal matrix, the eigenvectors associated with distinct eigenvalues are
orthogonal: if Ax = λx and Ay = µy, then

0 = (x†Ay)⊺−x†Ay = y⊺A†x−x†Ay = y⊺λx−x†µy = λx†y−µx†y = (λ−µ)x·y,
so that x·y = 0 whenever λ ̸= µ.

• An n× n normal matrix A can therefore be orthogonally diagonalized by applying
the Gram-Schmidt process to each of its distinct eigenspaces to obtain a set of n
mutually orthogonal eigenvectors that form the columns of an orthonormal matrix P
such that AP = PD, where the diagonal matrix D contains the eigenvalues of A.

Problem 14.8: Find a matrix P that orthogonally diagonalizes 4 2 2
2 4 2
2 2 4

.
Remark: If a normal matrix has eigenvalues λ1, λ2, . . . , λn corresponding to the
orthonormal matrix [x1 x2 · · · xn ] then A has the spectral decomposition

A = [x1 x2 · · · xn ]


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn



x†1
x†2
...
x†n



= [λ1x1 λ2x2 · · · λnxn ]


x†1
x†2
...
x†n


= λ1x1x

†
1 + λ2x2x

†
2 + · · ·+ λnxnx

†
n.
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• As we have seen earlier, powers of an orthogonally diagonalizable matrix A = PDP†

are easy to compute once P and U are known.

• The Caley-Hamilton Theorem makes a remarkable connection between the powers
of an n×n matrix A and its characteristic equation λn+cn−1λ

n−1+ . . . c1λ+c0 = 0.
Specifically, the matrix A satisfies its characteristic equation in the sense that

(8)An + cn−1A
n−1 + . . .+ c1A+ c0I = 0.

Problem 14.9: The characteristic polynomial of

A =

[
1 2
3 2

]
is λ2−3λ−4 = 0. Verify that the Caley-Hamilton theorem A2−3A−4I = 0 holds
by showing that A2 = 3A+4I. Then use the Caley-Hamilton theorem to show that

A3 = A2A = (3A+ 4I)A = 3A2 + 4A = 3(3A+ 4I) + 4A = 13A+ 12I =

[
25 26
39 38

]
.

Remark: The Caley-Hamilton Theorem can also be used to compute negative powers
(such as the inverse) of a matrix. For example, we can rewrite 8 as

A

(
− 1

c0
An−1 − cn−1

c0
An−2 − . . .− c1

c0
A

)
= I.

• We can also easily compute other functions of diagonalizable matrices. Give an
analytic function f with a Taylor series

f(x) = f(0) + f ′(0)x+ f ′′(0)
x2

2!
+ f ′′′(0)

x3

3!
+ . . . ,

and a diagonalizable matrix A = PDP
−1

, where D is diagonal and P is invertible,
one defines

(9)f(A) = f(0)I+ f ′(0)A+ f ′′(0)
A2

2!
+ f ′′′(0)

A3

3!
+ . . . .

On recalling that An = PDnP
−1

and A0 = I, one can rewrite this relation as

(10)

f(A) = f(0)PD0P
−1

+ f ′(0)PDP
−1

+ f ′′(0)
PD2P

−1

3!
+ f ′′′(0)

PD3P
−1

3!
+ . . .

= P

[
f(0)D0 + f ′(0)D+ f ′′(0)

D2

3!
+ f ′′′(0)

D3

3!
+ . . .

]
P

−1

= Pf(D)P
−1

.

Here f(D) is simply the diagonal matrix with elements f(Dii).
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Problem 14.10: Compute eA for the diagonalizable matrix

A =

[
1 2
3 2

]
.

15 Systems of Differential Equations

• Consider the first-order linear differential equation

y′ = ay,

where y = y(t), a is a constant, and y′ denotes the derivative of y with respect to t.
For any constant c the function

y = ceat

is a solution to the differential equation. If we specify an initial condition

y(0) = y0,

then the appropriate value of c is y0.

• Now consider a system of first-order linear differential equations:

y′1 = a11y1 + a12y2 + · · · + a1nyn,

y′2 = a21y1 + a22y2 + · · · + a2nyn,

...
...

...

y′n = an1y1 + an2y2 + · · · + annyn,

which in matrix notation appears as
y′1
y′2
...
y′n

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann



y1
y2
...
yn

,
or equivalently as

y′ = Ay.

Problem 15.1: Solve the system [Anton & Busby p. 543]: y′1
y′2
y′3

 =

 3 0 0
0 −2 0
0 0 −5

 y1
y2
y3


for the initial conditions y1(0) = 1, y2(0) = 4, y3(0) = −2.
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Remark: A linear combination of solutions to an ordinary differential equation is
also a solution.

• If A is an n×n matrix, then y′ = Ay has a set of n linearly independent solutions.
All other solutions can be expressed as linear combinations of such a fundamental
set of solutions .

• If x is an eigenvector of A corresponding to the eigenvalue λ, then y = ϵλtx is a
solution of y′ = Ay:

y′ =
d

dt
eλtx = eλtλx = eλtAx = Aeλtx = Ay.

• If x1, x2, . . ., xk, are linearly independent eigenvectors of A corresponding to the
(not necessarily distinct) eigenvalues λ1, λ2, . . ., λk, then

y = eλ1tx1, y = eλ2tx2, . . . , y = eλktxk

are linearly independent solutions of y′ = Ay: if

0 = c1e
λ1tx1 + c2e

λ2tx2 + . . .+ cke
λktxk

then at t = 0 we find
0 = c1x1 + c2x2 + . . .+ ckxk;

the linear independence of the k eigenvectors then implies that

c1 = c2 = . . . = ck = 0.

• If x1, x2, . . ., xn, are linearly independent eigenvectors of an n × n matrix A
corresponding to the (not necessarily distinct) eigenvalues λ1, λ2, . . ., λn, then
every solution to y′ = Ay can be expressed in the form

y = c1e
λ1tx1 + c2e

λ2tx2 + · · ·+ cne
λntxn,

which is known as the general solution to y′ = Ay.

• On introducing the matrix of eigenvectors P = [x1 x2 · · · xn ], we may write
the general solution as

y = c1e
λ1tx1 + c2e

λ2tx2 + · · ·+ cne
λntxn = P


eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt



c1
c2
...
cn

.
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• Moreover, if y = y0 at t = 0 we find that

y0 = P


c1
c2
...
cn

.
If the n eigenvectors x1, x2, . . ., xn are linearly independent, then

c1
c2
...
cn

 = P−1y0.

The solution to y′ = Ay for the initial condition y0 may thus be expressed as

y = P


eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt

P−1y0 = eAty0,

on making use of Eq. (10) with f(x) = ex and A replaced by At.

Problem 15.2: Find the solution to y′ = Ay corresponding to the initial condition
y0 = [1,−1], where

A =

[
1 2
3 2

]
.

Remark: The solution y = eAty0 to the system of ordinary differential equations

y′ = Ay y(0) = y0

actually holds even when the matrix A isn’t diagonalizable (that is, when A doesn’t
have a set of n linearly independent eigenvectors). In this case we cannot use
Eq. (10) to find eAt. Instead we must find eAt from the infinite series in Eq. (9):

eAt = I+ At+
A2t2

2!
+

A3t3

3!
+ . . . .

Problem 15.3: Show for the matrix

A =

[
0 1
0 1

]
that the series for eAt simplifies to I+ At.
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16 Quadratic Forms

• Linear combinations of x1, x2, . . ., xn such as

a1x1 + a2x2 + . . .+ anxn =
n∑

i=1

aixi,

where a1, a2, . . ., an are fixed but arbitrary constants, are called linear forms on Rn.

• Expressions of the form
n∑

i,j=1

aijxixj,

where the aij are fixed but arbitrary constants, are called quadratic forms on Rn.

• Without loss of generality, we restrict the constants aij to be the components of a
symmetric matrix A and define x = [x1,x2 . . .xn], so that

x⊺Ax =
∑
i,j

xiaijxj

=
∑
i<j

aijxixj +
∑
i=j

aijxixj +
∑
i>j

aijxixj

=
∑
i=j

aijxixj +
∑
i<j

aijxixj +
∑
i<j

ajixjxi

=
∑
i=j

aiix
2
i + 2

∑
i<j

aijxixj.

Remark: Note that x⊺Ax = x·Ax = Ax·x.

• (Principle Axes Theorem) Consider the change of variable x = Py, where P
orthogonally diagonalizes A. Then in terms of the eigenvalues λ1, λ2, . . ., λn of A:

x⊺Ax = (Py)⊺APy = y⊺(P⊺AP)y = λ1y
2
1 + λ2y

2
2 + . . .+ λny

2
n.

• (Constrained Extremum Theorem) For a symmetric n×n matrix A, the minimum
(maximum) value of

{x⊺Ax : |x|2 = 1}
is given by the smallest (largest) eigenvalue of A and occurs at the corresponding
unit eigenvector. To see this, let x = Py, where P orthogonally diagonalizes A,
and list the eigenvalues in ascending order: λ1 ≤ λ2 ≤ . . . ≤ λn. Then

λ1 = λ1(y
2
1+y22+ . . .+y2n) ≤ λ1y

2
1 + λ2y

2
2 + . . .+ λny

2
n︸ ︷︷ ︸

x⊺
Ax

≤ λn(y
2
1+y22+ . . .+y2n) = λn.
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Problem 16.1: Find the minimum and maximum values of the quadratic form

z = 5x2 + 4xy + 5y2

subject to the constraint x2 + y2 = 1 [Anton & Busby p. 498].

Definition: A symmetric matrix A is said to be

• positive definite if x⊺Ax > 0 for x ̸= 0;

• negative definite if x⊺Ax < 0 for x ̸= 0;

• indefinite if x⊺Ax exhibits positive and negative values for various x ̸= 0.

Remark: If A is a symmetric matrix then x⊺Ax

• is positive definite if and only if all eigenvalues of A are positive;

• is negative definite if and only if all eigenvalues of A are negative;

• is indefinite if and only if A has at least one positive eigenvalue and at least
one negative eigenvalue.

• The kth principal submatrix of an n × n matrix A is the submatrix composed of
the first k rows and columns of A.

• (Sylvester’s Criterion) If A is a symmetric matrix then A is positive definite if and
only if the determinant of every principal submatrix of A is positive.

Remark: Sylvester’s criterion is easily verified for a 2× 2 symmetric matrix

A =

[
a b
b d

]
;

if a > 0 and ad > b2 then d > 0, so both the trace a + d and determinant are
positive, ensuring in turn that both eigenvalues of A are positive.

Remark: If A is a symmetric matrix then the following are equivalent:

(a) A is positive definite;

(b) there is a symmetric positive definite matrix B such that A = B2;

(c) there is an invertible matrix C such that A = C⊺C.
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Remark: If A is a symmetric 2 × 2 matrix then the equation x⊺Ax = 1 can be
expressed in the orthogonal coordinate system y = P⊺x as λ1y

2
1 + λ2y

2
2 = 1. Thus

x⊺Ax represents

• an ellipse if A is positive definite;

• no graph if A is negative definite;

• a hyperbola if A is indefinite.

• A critical point of a function f is a point in the domain of f where either f is not
differentiable or its derivative is 0.

• The Hessian H(x0, y0) of a twice-differentiable function f is the matrix of second
partial derivatives [

fxx(x0, y0) fxy(x0, y0)
fyx(x0, y0) fyy(x0, y0)

]
.

Remark: If f has continuous second-order partial derivatives at a point (x0, y0) then
fxy(x0, y0) = fyx(x0, y0), so that the Hessian is a symmetric matrix.

Remark (Second Derivative Test): If f has continuous second-order partial derivatives
near a critical point (x0, y0) of f then

• f has a relative minimum at (x0, y0) if H is positive definite.

• f has a relative maximum at (x0, y0) if H is negative definite.

• f has a saddle point at (x0, y0) if H is indefinite.

• anything can happen at (x0, y0) if detH(x0, y0) = 0.

Problem 16.2: Determine the relative minima, maxima, and saddle points of the
function [Anton & Busby p. 498]

f(x, y) =
1

3
x3 + xy2 − 8xy + 3.
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17 Vector Spaces:

• A vector space V over R (C) is a set containing an element 0 that is closed under a
vector addition and scalar multiplication operation such that for all vectors u, v,
w in V and scalars c, d in R (C) the following axioms hold:

(A1) (u+ v) +w = u+ (v +w) (associative);

(A2) u+ v = v + u (commutative);

(A3) u+ 0 = 0+ u = u (additive identity);

(A4) there exists an element (−u) ∈ V such that u + (−u) = (−u) + u = 0
(additive inverse);

(A5) 1u = u (multiplicative identity);

(A6) c(du) = (cd)u (scalar multiplication);

(A7) (c+ d)u = cu+ du (distributive);

(A8) c(u+ v) = cu+ cv (distributive).

Problem 17.1: Show that axiom (A2) in fact follows from the other seven axioms.

Remark: In addition to Rn, other vector spaces can also be constructed:

• Since it satisfies axioms A1–A8, the set of m× n matrices is in fact a vector space.

• The set of n× n symmetric matrices is a vector space.

• The set Pn of polynomials a0 + a1x + . . . + anx
n of degree less than or equal to n

(where a0, a1, . . . , an are real numbers) is a vector space.

• The set P∞ of all polynomials is an infinite-dimensional vector space.

• The set F (R) of functions defined on R form an infinite-dimensional vector space
if we define vector addition by

(f + g)(x) = f(x) + g(x) for all x ∈ R.

and scalar multiplication by

(cf)(x) = cf(x) for all x ∈ R.
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• The set C(R) of continuous functions on R is a vector space.

• The set of differentiable functions on R is a vector space.

• The set C1(R) of functions with continuous first derivatives on R is a vector space.

• The set Cm(R) of functions with continuous mth derivatives on R is a vector space.

• The set C∞(R) of functions with continuous derivatives of all orders on R is a vector
space.

Definition: A nonempty subset of a vector space V that is itself a vector space under
the same vector addition and scalar multiplication operations is called a subspace
of V .

• A nonempty subset of a vector space V is a subspace of V iff it is closed under
vector addition and scalar multiplication.

Remark: The concept of linear independence can be carried over to infinite-dimensional
vector spaces.

• If the Wronskian

W (x) =

∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)
...

...
. . .

...
f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣
of functions f1(x), f2(x), . . ., fn(x) in Cn−1(x) is nonzero for some x ∈ R, then
these n functions are linearly independent on R. This follows on observing that if
there were constants c1, c2, . . ., cn such that the function

g(x) = c1f1(x) + c2f2(x) + . . .+ cnfn(x)

is zero for all x ∈ R, so that g(k)(x) = 0 for k = 0, 1, 2, . . . n− 1 for all x ∈ R, then
the linear system

f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)
...

...
. . .

...
f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)



c1
c2
...
cn

 =


0
0
...
0


would have a nontrivial solution for all x ∈ R.
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Problem 17.2: Show that the functions f1(x) = 1, f2(x) = ex, and f3(x) = e2x are
linearly independent on R.

18 Inner Product Spaces

• An inner product on a vector space V over R (C) is a function that maps each pair
of vectors u and v in V to a unique real (complex) number ⟨u,v⟩ such that, for
all vectors u, v, and w in V and scalars c in R (C):

(I1) ⟨u,v⟩ = ⟨v,u⟩ (conjugate symmetry);

(I2) ⟨u+ v,w⟩ = ⟨u,w⟩+ ⟨v,w⟩ (additivity);

(I3) ⟨cu,v⟩ = c ⟨u,v⟩ (homogeneity);

(I4) ⟨v,v⟩ ≥ 0 and ⟨v,v⟩ = 0 iff v = 0 (positivity).

• The usual Euclidean dot product ⟨u,v⟩ = u·v = u⊺v provides an inner product
on Cn.

Problem 18.1: If w1, w2, . . ., wn are positive numbers, show that

⟨u,v⟩ = w1u1v1 + · · ·+ wnunvn

provides an inner product on the vector space Rn.

• Every inner product on Rn can be uniquely expressed as ⟨u,v⟩ = u⊺Av for some
positive definite symmetric matrix A, so that ⟨v,v⟩ = v⊺Av > 0 for ̸= 0.

• In a vector space V with inner product ⟨u,v⟩, the norm |v| of a vector v is
given by

√
⟨v,v⟩, the distance d(u,v) is given by |u− v|=

√
⟨u− v,u− v⟩, and

the angle θ between two vectors u and v satisfies cos θ = ⟨u,v⟩. Two vectors
u and v are orthogonal if ⟨u,v⟩ = 0. Analogues of the Pythagoras theorem,
Cauchy-Schwarz inequality, and triangle inequality follow directly from (I1)–(I4).

Problem 18.2: Show that

⟨f, g⟩ =
∫ b

a

f(x)g(x) dx

defines an inner product on the vector space C[a, b] of continuous functions on [a, b],
with norm

|f |=

√∫ b

a

f 2(x) dx.
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• The Fourier theorem states than an orthonormal basis for the infinite-dimensional
vector space of differentiable periodic functions on [−π, π] with inner product
⟨f, g⟩ =

∫ π

−π f(x)g(x) dx is given by {un}∞n=0 = { c0√
2
, c1, s1, c2, s2, . . .}, where

cn(x) =
1√
π
cosnx

and

sn(x) =
1√
π
sinnx.

The orthonormality of this basis follows from the trigonometric addition formulae

sin(nx±mx) = sinnx cosmx± cosnx sinmx

and
cos(nx±mx) = cosnx cosmx∓ sinnx sinmx,

from which we see that

(11)sin(nx+mx)− sin(nx−mx) = 2 cosnx sinmx,

(12)cos(nx+mx) + cos(nx−mx) = 2 cosnx cosmx

(13)cos(nx−mx)− cos(nx+mx) = 2 sinnx sinmx

Integration of Eq. (11) from −π to π for distinct non-negative integers n and m
yields

2

∫ π

−π
cosnx sinmxdx =

[
−cos(nx+mx)

n+m
+

cos(nx−mx)

n−m

]π
−π

= 0,

since the cosine function is periodic with period 2π. When n = m > 0 we find

2

∫ π

−π
cosnx sinnx dx =

[
−cos(2nx)

2n

]π
−π

= 0,

Likewise, for distinct non-negative integers n and m, Eq. (12) leads to

2

∫ π

−π
cosnx cosmxdx =

[
sin(nx+mx)

n+m
+

sin(nx−mx)

n−m

]π
−π

= 0,

but when n = m > 0 we find, since cos(nx− nx) = 1,

2

∫ π

−π
cos2 nx dx =

[
sin(2nx)

2n
+ x

]π
−π

= 2π.

Note when n = m = 0 that
∫ π

−π cos
2 nx dx = 2π.
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Similarly, Eq. (13) yields for distinct non-negative integers n and m,

2

∫ π

−π
sinnx sinmxdx = 0,

but

2

∫ π

−π
sin2 nx dx =

[
x− sin(2nx)

2n

]π
−π

= 2π.

• A differentiable periodic function f on [−π, π] may thus be represented exactly by
its infinite Fourier series :

f(x)

=
∞∑
n=0

⟨f, un⟩un

=

〈
f,

c0√
2

〉
c0√
2
+
∞∑
n=1

[⟨f, cn⟩ cn + ⟨f, sn⟩ sn]

=
a0
2

+
∞∑
n=1

[an cosnx+ bn sinnx],

in terms of the Fourier coefficients

an =
1√
π
⟨f, cn⟩ =

1

π

∫ π

−π
f(x) cosnx dx (n = 0, 1, 2, . . .),

and

bn =
1√
π
⟨f, sn⟩ =

1

π

∫ π

−π
f(x) sinnx dx (n = 1, 2, . . .).

Problem 18.3: By using integration by parts, show that the Fourier series for f(x) =
x on [−π, π] is

2
∞∑
n=1

(−1)n+1 sinnx

n
.

For x ∈ (−π, π) this series is guaranteed to converge to x. For example, at x = π/2,
we find

4
∞∑

m=0

(−1)2m+2 sin
(
(2m+ 1)

π

2

)
2m+ 1

= 4
∞∑

m=0

(−1)m

2m+ 1
= π.
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Problem 18.4: By using integration by parts, show that the Fourier series for f(x) =
|x| on [−π, π] is

π

2
− 4

π

∞∑
m=1

cos(2m− 1)x

(2m− 1)2
.

This series can be shown to converge to |x| for all x ∈ [−π, π]. For example, at
x = 0, we find

∞∑
m=1

1

(2m− 1)2
=

π2

8
.

Remark: Many other concepts for Euclidean vector spaces can be generalized to
function spaces.

• The functions cosnx and sinnx in a Fourier series can be thought of as the
eigenfunctions of the differential operator d2/dx2:

d2

dx2
y = −n2y.

19 General linear transformations

• A linear transformation T : V → W from one vector space to another is a mapping
that for all vectors u,v in V and all scalars satisfies c

(a) T (cu) = cT (u);

(b) T (u+ v) = T (u) + T (v);

Problem 19.1: Show that every linear transformation T satisfies

(a) T (0) = 0;

(b) T (u− v) = T (u)− T (v);

Problem 19.2: Show that the transformation that maps each n × n matrix to its
trace is a linear transformation.

Problem 19.3: Show that the transformation that maps each n × n matrix to its
determinant is not a linear transformation.

51



• The kernel of a linear transformation T : V → W is the set of all vectors in V that
are mapped by T to the zero vector.

• The range of a linear transformation T is the set of all vectors in W that are the
image under T of at least one vector in V .

Problem 19.4: Given an inner product space V containing a fixed nonzero vector u,
let T (x) = ⟨x,u⟩ for x ∈ V . Show that the kernel of T is the set of vectors that
are orthogonal to u and that the range of T is R.

Problem 19.5: Show that the derivative operator, which maps continuously differentiable
functions f(x) to continuous functions f ′(x), is a linear transformation from C1(R)
to C(R).

Problem 19.6: Show that the antiderivative operator, which maps continuous func-
tions f(x) to continuously differentiable functions

∫ x

0
f(t) dt, is a linear transformation

from C(R) to C1(R).

Problem 19.7: Show that the kernel of the derivative operator on C1(R) is the set
of constant functions on R and that its range is C(R).

Problem 19.8: Let T be a linear transformation T . Show that T is one-to-one if
and only if kerT = {0}.

Definition: A linear transformation T : V → W is called an isomorphism if it is
one-to-one and onto. If such a transformation exists from V to W we say that V
and W are isomorphic.

• Every real n-dimensional vector space V is isomorphic to Rn: given a basis {u1,u2, . . . ,un},
we may uniquely express v = c1u1 + c2u2 + . . . + cnun; the linear mapping
T (v) = (c1, c2, . . . , cn) from V to Rn is then easily shown to be one-to-one and
onto. This means V differs from Rn only in the notation used to represent vectors.

• For example, the set Pn of polynomials of degree n is isomorphic to Rn+1.
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• Let T : Rn → Rn be a linear operator and B = {v1,v2, . . . ,vn} be a basis for Rn.
The matrix

A = [[T (v1)]B [T (v2)]B · · · [T (vn)]B]

is called the matrix for T with respect to B, with

[T (x)]B = A[x]B

for all x ∈ Rn. In the case where B is the standard Cartesian basis for Rn, the
matrixA is called the standard matrix for the linear transformation T . Furthermore,
if B′ = {v′1,v′2, . . . ,v′n} is any basis for Rn, then

[T (x)]B′ = PB′←B[T (x)]BPB←B′ .

20 Singular Value Decomposition

• Given an m× n matrix A, consider the square Hermitian n× n matrix A†A. Each
eigenvalue λ associated with an eigenvector v of A†A must be real and non-negative
since

0 ≤ |Av|2= Av·Av = (Av)†Av = v†A†Av = v†λv = λv·v = λ|v|2.

Problem 20.1: Show that null(A†A) = null(A) and conclude from the dimension theorem
that rank(A†A) = rank(A).

• Since A†A is Hermitian, it can be orthogonally diagonalized as A†A = VDV†,
where the diagonal matrix D contains the n (non-negative) eigenvalues σ2

j of A†A
listed in decreasing order (taking σj ≥ 0) and the column vectors of the matrix
V = [v1 v2 . . . vn ] are a set of orthonormal eigenvectors for A†A. Now if A has
rank k, so does D since it is similar to A†A, which we have just seen has the same
rank as A. In other words σ1 ≥ σ2 ≥ · · · ≥ σk > 0 but σk+1 = σk+2 = · · · = σn = 0.
Since

Avi·Avj = (Avi)
†Avj = v†iA

†Avj = v†iσ
2
jvj = σ2

jvi·vj,

we see that the vectors

uj =
Avj

|Avj|
=

Avj

σj

, j = 1, 2, . . . , k

are also orthonormal, so that the matrix

[u1 u2 . . . uk ]
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is orthogonal. We also see that Avj = 0 for k < j ≤ n. We can then extend this set
of vectors to an orthonormal basis for Rm, which we write as the column vectors
of an m×m matrix

U = [u1 u2 . . . uk . . . um ].

The product U and the m× n matrix

Σ =



σ1 0 · · · 0 0 · · · · · · 0
0 σ2 · · · 0 0 · · · · · · 0
...

...
. . .

...
... · · · · · · ...

0 0 · · · σk 0 · · · · · · 0
0 0 · · · · · · 0 · · · · · · 0
...

...
...

...
...

. . . · · · ...
0 0 · · · 0 0 · · · · · · 0


,

is the m× n matrix

UΣ = [σ1u1 σ2u2 · · · σkuk 0 · · · 0 ]
= [ Av1 Av2 · · · Avk Avk+1 · · · Avn ]
= AV.

Since the n× n matrix V is an orthogonal matrix, we then obtain a singular value
decomposition of the m× n matrix A:

A = UΣV†.

The positive values σj for j = 1, 2, . . . k are known as the singular values of A.

Remark: By allowing the orthogonal matrices U and V to be different, the concept
of orthogonal diagonalization can thus be replaced by a more general concept that
applies even to nonnormal matrices.

Remark: The singular value decomposition plays an important role in numerical
linear algebra, image compression, and statistics.

Problem 20.2: Show that the singular values of a positive-definite Hermitian matrix
are the same as its eigenvalues.

Problem 20.3: Find a singular value decomposition of [Anton & Busby p. 505]

A =

[√
3 2
0

√
3

]
.
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Problem 20.4: Find a singular value decomposition of [Anton & Busby p. 509]

A =

 1 1
0 1
1 0

.
We find

A⊺A =

[
1 0 1
1 1 0

] 1 1
0 1
1 0

 =

[
2 1
1 2

]
,

which has characteristic polynomial (2−λ)2−1 = λ2−4λ+3 = (λ−3)(λ−1). The matrix
A⊺A has eigenvalues 3 and 1; their respective eigenvectors[

1√
2
1√
2

]
and

[
1√
2

− 1√
2

]
form the columns of V.

The singular values of A are σ1 =
√
3 and σ2 = 1 and

u1 =
1√
3

 1 1
0 1
1 0

[ 1√
2
1√
2

]
=


√
2√
3
1√
6
1√
6

,

u2 =

 1 1
0 1
1 0

[ 1√
2

− 1√
2

]
=

 0
− 1√

2
1√
2

.
We now look for a third vector which is perpendicular to scaled versions of u1 and u2,
namely

√
6u1 = [2, 1, 1] and

√
2u2 = [0,−1, 1]. That is, we want to find a vector in the null

space of the matrix [
2 1 1
0 −1 1

]
,

or equivalently, after row reduction, [
1 0 1
0 1 −1

]
.

We then see that [−1, 1, 1] lies in the null space of this matrix. On normalizing this vector,
we find

u3 =

− 1√
3

1√
3
1√
3

.
A singular value decomposition of A is thus given by 1 1

0 1
1 0

 =


√
2√
3

0 − 1√
3

1√
6

− 1√
2

1√
3

1√
6

1√
2

1√
3


√

3 0
0 1
0 0

[ 1√
2

1√
2

1√
2

− 1√
2

]
.
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Remark: An alternative way of computing a singular value decomposition of the
nonsquare matrix in Problem 20.4 is to take the transpose of a singular value
decomposition for

A⊺ =

[
1 0 1
1 1 0

]
.

• The first k columns of the matrix U form an orthonormal basis for col(A), whereas
the remaining m− k columns form an orthonormal basis for col(A)⊥ = null(A⊺).

• The first k columns of the matrix V form an orthonormal basis for row(A), whereas
the remaining n− k columns form an orthonormal basis for row(A)⊥ = null(A).

• If A is a nonzero matrix, the singular value decomposition may be expressed more
efficiently as A = U1Σ1V

†
1, in terms of the m× k matrix

U1 = [u1 u2 . . . uk ],

the diagonal k × k matrix

Σ1 =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σk

,
and the n× k matrix

V1 = [v1 v2 . . . vk ].

This reduced singular value decomposition avoids the superfluous multiplications
by zero in the product UΣV†.

Problem 20.5: Show that the matrix Σ1 is always invertible.

Problem 20.6: Find a reduced singular value decomposition for the matrix

A =

 1 1
0 1
1 0


considered previously in Problem 20.4.

• The singular value decomposition can equivalently be expressed as the singular
value expansion

A = σ1u1v
†
1 + σ2u2v

†
2 + · · ·+ σkukv

†
k.

In contrast to the spectral decomposition, which applies only to Hermitian matrices,
the singular value expansion applies to all matrices.
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• If A is an n× n matrix of rank k, then A has the polar decomposition

A = UΣV† = UΣU†UV† = PQ,

where P = UΣU† is a positive semidefinite matrix of rank k and Q = UV† is an
n× n orthogonal matrix.

21 The Pseudoinverse

• If A is an n × n matrix of rank n, then we know it is invertible. In this case,
the singular value decomposition and the reduced singular value decomposition
coincide:

A = U1Σ1V
†
1,

where the diagonal matrixΣ1 contains the n positive singular values ofA. Moreover,
the orthogonal matrices U1 and V1 are square, so they are invertible. This yields
an interesting expression for the inverse of A:

A−1 = V1Σ
−1
1 U†1,

where Σ−11 contains the reciprocals of the n positive singular values of A along its
diagonal.

Definition: For a general nonzero m× n matrix A of rank k, the n×m matrix

A+ = V1Σ
−1
1 U†1

is known as the pseudoinverse of A. It is also convenient to define 0+ = 0, so that
the pseudoinverse exists for all matrices. In the case where A is invertible, then
A−1 = A+.

Remark: Equivalently, if we define Σ+ to be the m×n matrix obtained by replacing
all nonzero entries of Σ with their reciprocals, we can define the pseudoinverse
directly in terms of the unreduced singular value decompostion:

A+ = VΣ+U†.

Problem 21.1: Show that the pseudoinverse of the matrix in Problem 20.4 is [cf.
Anton & Busby p. 520]:  1

3
−1

3
2
3

1
3

2
3

−1
3

.
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Problem 21.2: Prove that the pseuodinverse A+ of an m× n matrix A satisfies the
following properties:

(a) AA+A = A;

(b) A+AA+ = A+;

(c) A†AA+ = A†;

(d) A+A and AA+ are Hermitian;

(e) (A+)† = (A†)+.

Remark: If A has full column rank, then A†A is invertible and property (c) in
Problem 21.2 provides an alternative way of computing the pseudoinverse:

A+ =
(
A†A

)−1
A†.

• An important application of the pseudoinverse of a matrix A is in solving the
least-squares problem

A†Ax = A†b

since the solution x of minimum norm can be conveniently expressed in terms of
the pseudoinverse:

x = A+b.
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dimension theorem, 18
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domain, 16
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eigenvector matrix, 20
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Elementary row operations, 7
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first-order linear differential equation, 40
fixed point, 13
Fourier coefficients, 50
Fourier series, 50
Fourier theorem, 49
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fundamental set of solutions, 41
Fundamental Theorem of Algebra, 27
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Gaussian elimination, 7
general solution, 41
Gram-Schmidt process, 29
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Hermitian transpose, 34
Hessian, 45
homogeneity, 48
Homogeneous linear equation, 6
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Identity, 9
imaginary number, 22
indefinite, 44
initial condition, 40
inner, 4
inner product, 48
Inverse, 9
invertible, 9
isomorphic, 52
isomorphism, 52

kernel, 16, 52

Lagrange interpolating polynomial, 34
Law of cosines, 4
least squares, 32
least squares error vector, 33
least squares line of best fit, 33
Length, 4
length, 26
linear, 8
Linear equation, 6
linear forms, 43
linear independence, 47
linear operator, 16
linear regression, 33
linear transformation, 16, 51
linearly independent, 10
lower triangular matrix, 7

Matrix, 6
matrix, 8
matrix for T with respect to B, 53
matrix representation, 17
minor, 12
Multiplication by scalar, 4
Multiplication of a matrix by a scalar, 8
Multiplication of matrices, 8
multiplicative identity, 46

negative definite, 44
norm, 4, 48
normal, 35
normal equation, 28

null space, 16
nullity, 17

one-to-one, 16, 17
onto, 17
ordered, 24
orthogonal, 16, 34, 48
orthogonal change of bases, 35
orthogonal projection, 28
Orthogonal vectors, 5
orthogonally diagonalizable, 35
orthogonally similar, 35
orthonormal, 16, 34
orthonormal basis, 28

parallel component, 28
Parallelogram law, 4
Parametric equation of line, 5
Parametric equation of plane, 6
perpendicular component, 28
polar decomposition, 57
Polynomial Factorization, 27
positive definite, 44
positivity, 48
pseudoinverse, 57
Pythagoras theorem, 5

quadratic forms, 43

range, 16, 52
rank, 17
real, 26
reciprocals, 25
Reduced row echelon form, 7
reduced singular value decomposition, 56
regression line, 33
relative maximum, 45
relative minimum, 45
residual, 33
root, 23
rotation, 16
Row echelon form, 7
row equivalent, 10
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saddle point, 45
scalar multiplication, 46
Schur factorization, 36
similar, 18
similarity invariants, 19
singular value decomposition, 54
singular value expansion, 56
singular values, 54
spectral decomposition, 38
standard matrix, 53
subspace, 10, 47
symmetric matrix, 8
System of linear equations, 6

Trace, 9
transition matrix, 17
Transpose, 8
Triangle inequality, 5
triangular system, 13

Unit vector, 4
unitary, 34
upper triangular matrix, 7

Vandermonde, 34
vector space, 46
Vectors, 4

Wronskian, 47
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