A Computational Introduction to Number Theory
and Algebra
(Version 1)

Victor Shoup

This PDF document contains hyperlinks, and one may navigate through it
by clicking on theorem, definition, lemma, equation, and page numbers, as
well as URLs, and chapter and section titles in the table of contents; most
PDF viewers should also display a list of “bookmarks” that allow direct
access to chapters and sections.

Copyright (©) 2005 by Victor Shoup <victor@shoup.net>

All rights reserved. The right to publish or distribute this work in print form
belongs exclusively to Cambridge University Press; however, this electronic
version is distributed under the terms and conditions of a Creative Commons
license (Attribution-NonCommercial-NoDerivs 2.0):

You are free to copy, distribute, and display this electronic
version under the following conditions:
Attribution. You must give the original author credit.

Noncommercial. You may not use this electronic version for
commercial purposes.

No Derivative Works. You may not alter, transform, or
build upon this electronic version.

For any reuse or distribution, you must make clear to others
the license terms of this work.

Any of these conditions can be waived if you get permission
from the author.

For more information about the license, visit

creativecommons.org/licenses/by-nd-nc/2.0.

mailto:victor@shoup.net
http://creativecommons.org/licenses/by-nd-nc/2.0

Contents

Preface page X
Preliminaries xiv
1 Basic properties of the integers 1
1.1 Divisibility and primality 1
1.2 Ideals and greatest common divisors
1.3 Some consequences of unique factorization 8
2 Congruences 13
2.1 Definitions and basic properties 13
2.2 Solving linear congruences 15
2.3 Residue classes 20
2.4 Euler’s phi function 24
2.5 Fermat’s little theorem 25
2.6 Arithmetic functions and M&bius inversion 28
3 Computing with large integers 33
3.1 Asymptotic notation 33
3.2 Machine models and complexity theory 36
3.3 DBasic integer arithmetic 39
3.4 Computing in Z, 48
3.5 Faster integer arithmetic () 51
3.6 Notes 52
4 Euclid’s algorithm 55
4.1 The basic Euclidean algorithm 55
4.2 The extended Euclidean algorithm 58
4.3 Computing modular inverses and Chinese remaindering 62
4.4 Speeding up algorithms via modular computation 63
4.5 Rational reconstruction and applications 66
4.6 Notes 73

vi

Contents

The distribution of primes

0.1
5.2
5.3
5.4
5.5
5.6

Chebyshev’s theorem on the density of primes
Bertrand’s postulate

Mertens’ theorem

The sieve of Eratosthenes

The prime number theorem ...and beyond
Notes

Finite and discrete probability distributions

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Finite probability distributions: basic definitions
Conditional probability and independence

Random variables

Expectation and variance

Some useful bounds

The birthday paradox

Hash functions

Statistical distance

Measures of randomness and the leftover hash lemma ()

6.10 Discrete probability distributions
6.11 Notes

Probabilistic algorithms

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Basic definitions

Approximation of functions

Flipping a coin until a head appears

Generating a random number from a given interval
Generating a random prime

Generating a random non-increasing sequence
Generating a random factored number

The RSA cryptosystem

Notes

Abelian groups

8.1 Definitions, basic properties, and examples
8.2 Subgroups

8.3 Cosets and quotient groups

8.4 Group homomorphisms and isomorphisms
8.5 Cyclic groups

8.6 The structure of finite abelian groups ()
Rings

9.1 Definitions, basic properties, and examples
9.2 Polynomial rings

74
74
78
81
85
86
94

96

96

99
104
111
117
121
125
130
136
141
147

148
148
155
158
159
162
167
170
174
179

180
180
185
190
194
202
208
211
211
220

10

11

12

13

14

15

Contents

9.3 Ideals and quotient rings
9.4 Ring homomorphisms and isomorphisms

Probabilistic primality testing

10.1 Trial division

10.2 The structure of Z;

10.3 The Miller—-Rabin test

10.4 Generating random primes using the Miller—Rabin test
10.5 Perfect power testing and prime power factoring

10.6 Factoring and computing Euler’s phi function

10.7 Notes

Finding generators and discrete logarithms in Z;
11.1 Finding a generator for Z,

11.2 Computing discrete logarithms Z

11.3 The Diffie-Hellman key establishment protocol
11.4 Notes

Quadratic residues and quadratic reciprocity
12.1 Quadratic residues

12.2 The Legendre symbol

12.3 The Jacobi symbol

12.4 Notes

Computational problems related to quadratic residues
13.1 Computing the Jacobi symbol

13.2 Testing quadratic residuosity

13.3 Computing modular square roots

13.4 The quadratic residuosity assumption

13.5 Notes

Modules and vector spaces

14.1 Definitions, basic properties, and examples
14.2 Submodules and quotient modules

14.3 Module homomorphisms and isomorphisms
14.4 Linear independence and bases

14.5 Vector spaces and dimension

Matrices

15.1 Basic definitions and properties

15.2 Matrices and linear maps

15.3 The inverse of a matrix

15.4 Gaussian elimination

15.5 Applications of Gaussian elimination

vii

231
236

244
244
245
247
252
261
262
266

268
268
270
275
281

283
283
285
287
289

290
290
291
292
297
298

299
299
301
303
306
309

316
316
320
323
324
328

viii

16

17

18

19

20

Contents

15.6 Notes

Subexponential-time discrete logarithms and factoring
16.1 Smooth numbers

16.2 An algorithm for discrete logarithms

16.3 An algorithm for factoring integers

16.4 Practical improvements

16.5 Notes

More rings

17.1 Algebras

17.2 The field of fractions of an integral domain
17.3 Unique factorization of polynomials

17.4 Polynomial congruences

17.5 Polynomial quotient algebras

17.6 General properties of extension fields

17.7 Formal power series and Laurent series
17.8 Unique factorization domains ()

17.9 Notes

Polynomial arithmetic and applications

18.1 Basic arithmetic

18.2 Computing minimal polynomials in F[X]/(f) (I)

18.3 FEuclid’s algorithm

18.4 Computing modular inverses and Chinese remaindering
18.5 Rational function reconstruction and applications

18.6 Faster polynomial arithmetic ()

18.7 Notes

Linearly generated sequences and applications

19.1 Basic definitions and properties

19.2 Computing minimal polynomials: a special case
19.3 Computing minimal polynomials: a more general case
19.4 Solving sparse linear systems

19.5 Computing minimal polynomials in F[X]/(f) (II)
19.6 The algebra of linear transformations ()

19.7 Notes

Finite fields

20.1 Preliminaries

20.2 The existence of finite fields

20.3 The subfield structure and uniqueness of finite fields
20.4 Conjugates, norms and traces

334

336
336
337
344
352
356

359
359
363
366
371
374
376
378
383
397

398
398
401
402
405
410
415
421

423
423
428
429
435
438
440
447

448
448
450
454
456

Contents

21 Algorithms for finite fields
21.1 Testing and constructing irreducible polynomials
21.2 Computing minimal polynomials in F[X]/(f) (III)
21.3 Factoring polynomials: the Cantor—Zassenhaus algorithm
21.4 Factoring polynomials: Berlekamp’s algorithm
21.5 Deterministic factorization algorithms (%)
21.6 Faster square-free decomposition (x)
21.7 Notes

22 Deterministic primality testing
22.1 The basic idea
22.2 The algorithm and its analysis
22.3 Notes

Appendiz: Some useful facts

Bibliography

Index of notation

Index

ix

462
462
465
467
475
483
485
487

489
489
490
500
501
504
510
012

Preface

Number theory and algebra play an increasingly significant role in comput-
ing and communications, as evidenced by the striking applications of these
subjects to such fields as cryptography and coding theory. My goal in writ-
ing this book was to provide an introduction to number theory and algebra,
with an emphasis on algorithms and applications, that would be accessible
to a broad audience. In particular, I wanted to write a book that would be
accessible to typical students in computer science or mathematics who have
a some amount of general mathematical experience, but without presuming
too much specific mathematical knowledge.

Prerequisites. The mathematical prerequisites are minimal: no particular
mathematical concepts beyond what is taught in a typical undergraduate
calculus sequence are assumed.

The computer science prerequisites are also quite minimal: it is assumed
that the reader is proficient in programming, and has had some exposure
to the analysis of algorithms, essentially at the level of an undergraduate
course on algorithms and data structures.

Even though it is mathematically quite self contained, the text does pre-
suppose that the reader is comfortable with mathematical formalism and
has some experience in reading and writing mathematical proofs. Read-
ers may have gained such experience in computer science courses such as
algorithms, automata or complexity theory, or some type of “discrete math-
ematics for computer science students” course. They also may have gained
such experience in undergraduate mathematics courses, such as abstract or
linear algebra—these courses overlap with some of the material presented
here, but even if the reader already has had some exposure to this material,
it nevertheless may be convenient to have all of the relevant material easily
accessible in one place, and moreover, the emphasis and perspective here

Preface xi

will no doubt be different than in a typical mathematics course on these
subjects.

Structure of the text. All of the mathematics required beyond basic cal-
culus is developed “from scratch.” Moreover, the book generally alternates
between “theory” and “applications”: one or two chapters on a particular
set of purely mathematical concepts are followed by one or two chapters on
algorithms and applications—the mathematics provides the theoretical un-
derpinnings for the applications, while the applications both motivate and
illustrate the mathematics. Of course, this dichotomy between theory and
applications is not perfectly maintained: the chapters that focus mainly
on applications include the development of some of the mathematics that
is specific to a particular application, and very occasionally, some of the
chapters that focus mainly on mathematics include a discussion of related
algorithmic ideas as well.

In developing the mathematics needed to discuss certain applications, I
tried to strike a reasonable balance between, on the one hand, presenting
the absolute minimum required to understand and rigorously analyze the
applications, and on the other hand, presenting a full-blown development
of the relevant mathematics. In striking this balance, I wanted to be fairly
economical and concise, while at the same time, I wanted to develop enough
of the theory so as to present a fairly well-rounded account, giving the reader
more of a feeling for the mathematical “big picture.”

The mathematical material covered includes the basics of number theory
(including unique factorization, congruences, the distribution of primes, and
quadratic reciprocity) and abstract algebra (including groups, rings, fields,
and vector spaces). It also includes an introduction to discrete probability
theory—this material is needed to properly treat the topics of probabilistic
algorithms and cryptographic applications. The treatment of all these topics
is more or less standard, except that the text only deals with commutative
structures (i.e., abelian groups and commutative rings with unity)—this is
all that is really needed for the purposes of this text, and the theory of these
structures is much simpler and more transparent than that of more general,
non-commutative structures.

The choice of topics covered in this book was motivated primarily by
their applicability to computing and communications, especially to the spe-
cific areas of cryptography and coding theory. For example, the book may
be useful for reference or self-study by readers who want to learn about
cryptography. The book could also be used as a textbook in a graduate

xii Preface

or upper-division undergraduate course on (computational) number theory
and algebra, perhaps geared towards computer science students.

Since this is an introductory textbook, and not an encyclopedic reference
for specialists, some topics simply could not be covered. One such topic
whose exclusion will undoubtedly be lamented by some is the theory of
lattices, along with algorithms for and applications of lattice basis reduction.
Another such topic is that of fast algorithms for integer and polynomial
arithmetic—although some of the basic ideas of this topic are developed in
the exercises, the main body of the text deals only with classical, quadratic-
time algorithms for integer and polynomial arithmetic. As an introductory
text, some topics just had to go; moreover, there are more advanced texts
that cover these topics perfectly well, and these texts should be readily
accessible to students who have mastered the material in this book.

Note that while continued fractions are not discussed, the closely related
problem of “rational reconstruction” is covered, along with a number of in-
teresting applications (which could also be solved using continued fractions).

Using the text. Here are a few tips on using the text.

e There are a few sections that are marked with a “(x),” indicating
that the material covered in that section is a bit technical, and is not
needed elsewhere.

e There are many examples in the text. These form an integral part of
the text, and should not be skipped.

e There are a number of exercises in the text that serve to reinforce,
as well as to develop important applications and generalizations of,
the material presented in the text. In solving exercises, the reader is
free to use any previously stated results in the text, including those
in previous exercises. However, except where otherwise noted, any
result in a section marked with a “(x),” or in §5.5, need not and
should not be used outside the section in which it appears.

e There is a very brief “Preliminaries” chapter, which fixes a bit of
notation and recalls a few standard facts. This should be skimmed
over by the reader.

e There is an appendix that contains a few useful facts; where such a
fact is used in the text, there is a reference such as “see §An,” which
refers to the item labeled “An” in the appendix.

Feedback. I welcome comments on the book (suggestions for improvement,
error reports, etc.) from readers. Please send your comments to

victor@shoup.net.

mailto:victor@shoup.net

Preface xiii

There is also web site where further material and information relating to
the book (including a list of errata and the latest electronic version of the
book) may be found:

www.shoup.net/ntb.

Acknowledgments. I would like to thank a number of people who vol-
unteered their time and energy in reviewing one or more chapters: Sid-
dhartha Annapureddy, John Black, Carl Bosley, Joshua Brody, Jan Ca-
menisch, Ronald Cramer, Alex Dent, Nelly Fazio, Mark Giesbrecht, Stuart
Haber, Alfred Menezes, Antonio Nicolosi, Roberto Oliveira, and Louis Sal-
vail. Thanks to their efforts, the “bug count” has been significantly reduced,
and the readability of the text much improved. I am also grateful to the
National Science Foundation for their support provided under grant CCR-
0310297. Thanks to David Tranah and his colleagues at Cambridge Univer-
sity Press for their progressive attitudes regarding intellectual property and
open access.

New York, January 2005 Victor Shoup

http://www.shoup.net/ntb

Preliminaries

We establish here a few notational conventions used throughout the text.

Arithmetic with oo

We shall sometimes use the symbols “oc0” and “—oc0” in simple arithmetic
expressions involving real numbers. The interpretation given to such ex-
pressions is the usual, natural one; for example, for all real numbers x, we
have —o0 < z < 00, x4+ 00 = 00, T — 00 = —00, 00 + 00 = 00, and
(—00) + (—o0) = —o0. Some such expressions have no sensible interpreta-
tion (e.g., oo — 00).

Logarithms and exponentials

We denote by log x the natural logarithm of x. The logarithm of x to the
base b is denoted logy x.

We denote by e the usual exponential function, where e &~ 2.71828 is the
base of the natural logarithm. We may also write exp[z] instead of e”.

Sets and relations

We use the symbol () to denote the empty set. For two sets A, B, we use the
notation A C B to mean that A is a subset of B (with A possibly equal to
B), and the notation A C B to mean that A is a proper subset of B (i.e.,
A C B but A # B); further, AU B denotes the union of A and B, AN B
the intersection of A and B, and A \ B the set of all elements of A that are
not in B.

For sets 51,...,S5,, we denote by S7 x --- x .5, the Cartesian product

Xiv

Preliminaries XV

of Si,...,Sp, that is, the set of all n-tuples (ay,...,ay,), where a; € S; for
1=1,...,n.

We use the notation S*" to denote the Cartesian product of n copies of
a set S, and for x € S, we denote by x*" the element of S*" consisting of
n copies of x. (We shall reserve the notation S™ to denote the set of all nth
powers of S, assuming a multiplication operation on S is defined.)

Two sets A and B are disjoint if AN B = (. A collection {C;} of sets is
called pairwise disjoint if C; N C; = 0 for all ¢, j with ¢ # j.

A partition of a set S is a pairwise disjoint collection of non-empty
subsets of S whose union is S. In other words, each element of S appears
in exactly one subset.

A binary relation on a set S is a subset R of S x S. Usually, one writes
a ~ b to mean that (a,b) € R, where ~ is some appropriate symbol, and
rather than refer to the relation as R, one refers to it as ~.

A binary relation ~ on a set S is called an equivalence relation if for
all x,y,z € S, we have

e x ~ z (reflexive property),
e r ~ y implies y ~ z (symmetric property), and
e x ~yand y ~ z implies x ~ z (transitive property).
If ~ is an equivalence relation on S, then for x € S one defines the set

[z] :={y € S: 2z ~ y}. Such a set [z] is an equivalence class. It follows
from the definition of an equivalence relation that for all x,y € S, we have

e z € [z], and
e cither [z] N [y] =0 or [z] = [y].
In particular, the collection of all distinct equivalence classes partitions the

set S. For any = € S, the set [z] is called the the equivalence class
containing z, and z is called a representative of [z].

Functions

For any function f from a set A into a set B, if A’ C A, then f(A') :=
{f(a) € B:a € A’} is the image of A’ under f, and f(A) is simply referred
to as the image of f; if B’ C B, then f~1(B'):={a € A: f(a) € B'} is the
pre-image of B’ under f.

A function f : A — B is called one-to-one or injective if f(a) = f(b)
implies @ = b. The function f is called onto or surjective if f(A) = B.
The function f is called bijective if it is both injective and surjective; in
this case, f is called a bijection. If f is bijective, then we may define the

xvi Preliminaries

inverse function f~! : B — A, where for b € B, f~!(b) is defined to be
the unique a € A such that f(a) = 0.

If f:A— Bandg: B — C are functions, we denote by g o f their
composition, that is, the function that sends a € A to g(f(a)) € C. Function
composition is associative; that is, for functions f : A — B, g : B — C,
and h : C — D, we have (hog)o f = ho(go f). Thus, we can simply
write h o g o f without any ambiguity. More generally, if we have functions
fi i Ay — Ajyq for i = 1,...,n, where n > 2, then we may write their
composition as f, o---o fi without any ambiguity. As a special case of this,
if A; =Aand f; = f for i = 1,...,n, then we may write f, o---o fi as
f™. It is understood that f' = f, and that f° is the identity function on A.
If f is a bijection, then so is f™ for any non-negative integer n, the inverse
function of f” being (f~!)", which one may simply write as f~".

Binary operations

A binary operation x on a set S is a function from S x S to S, where the
value of the function at (a,b) € S x S is denoted a * b.

A binary operation x on S is called associative if for all a,b,c € S, we
have (axb)xc = a* (b*c). In this case, we can simply write a*bx ¢ without
any ambiguity. More generally, for ay,...,a, € S, where n > 2, we can
write a1 x - - - x a, without any ambiguity.

A binary operation * on S is called commutative if for all a,b € 5,
we have a x b = b a. If the binary operation % is both associative and
commutative, then not only is the expression aj x - - - x a,, unambiguous, but
its value remains unchanged even if we re-order the a;.

1

Basic properties of the integers

This chapter discusses some of the basic properties of the integers, including
the notions of divisibility and primality, unique factorization into primes,
greatest common divisors, and least common multiples.

1.1 Divisibility and primality
Consider the integers Z := {...,-2,-1,0,1,2,...}. For a,b € Z, we say
that b divides a, or alternatively, that a is divisible by b, if there exists
¢ € Z such that a = be. If b divides a, then b is called a divisor of a, and
we write b | a. If b does not divide a, then we write b { a.
We first state some simple facts:

Theorem 1.1. For all a,b,c € Z, we have
(i) ala,1l]|a, and a|O0;
(ii) 0| a if and only if a = 0;
(#1i) a | b and a | ¢ implies a | (b+ ¢);
(iv) a| b implies a | —b;
(v) a|b and b | c implies a | c.
Proof. These properties can be easily derived from the definition using ele-
mentary facts about the integers. For example, a | a because we can write
a=a-1; 1| a because we can write a = 1-a; a | 0 because we can write

0 = a-0. We leave it as an easy exercise for the reader to verify the remaining
properties. O

Another simple but useful fact is the following;:

Theorem 1.2. For all a,b € Z, we have a | b and b | a if and only if a = £b.

2 Basic properties of the integers

Proof. Clearly, if a = +b, then a | b and b | a. So let us assume that a | b and
b | a, and prove that a = £b. If either of a or b are zero, then part (ii) of the
previous theorem implies that the other is zero. So assume that neither is
zero. Now, b | a implies a = bc for some ¢ € Z. Likewise, a | b implies b = ad
for some d € Z. From this, we obtain b = ad = bed, and canceling b from
both sides of the equation b = bed, we obtain 1 = c¢d. The only possibility
is that either ¢ = d = —1, in which case a = —b, or ¢ = d = 1, in which case
a=>5. 0O

Any integer n is trivially divisible by £1 and +n. We say that an integer
p is prime if p > 1 and the only divisors of p are the trivial divisors +1
and +p. Conversely, an integer n is called composite if n > 1 and it is
not prime. So an integer n > 1 is composite if and only if n = ab for some
integers a,b with 1 < a <mn and 1 < b < n. The first few primes are

2,3,5,7,11,13,17,

The number 1 is not considered to be either prime or composite. Also, we
do not consider the negative of a prime (e.g., —2) to be prime (although one
can, and some authors do so).

A basic fact is that any non-zero integer can be expressed as a signed
product of primes in an essentially unique way. More precisely:

Theorem 1.3 (Fundamental theorem of arithmetic). Fvery non-zero
integer n can be expressed as

n= g

where the p; are distinct primes and the e; are positive integers. Moreover,
this expression is unique, up to a reordering of the primes.

Note that if n = £1 in the above theorem, then » = 0, and the product
of zero terms is interpreted (as usual) as 1.

To prove this theorem, we may clearly assume that n is positive, since
otherwise, we may multiply n by —1 and reduce to the case where n is
positive.

The proof of the existence part of Theorem 1.3 is easy. This amounts
to showing that every positive integer n can be expressed as a product
(possibly empty) of primes. We may prove this by induction on n. If n =1,
the statement is true, as n is the product of zero primes. Now let n > 1,
and assume that every positive integer smaller than n can be expressed as
a product of primes. If n is a prime, then the statement is true, as n is the

1.1 Divisibility and primality 3

product of one prime; otherwise, n is composite, and so there exist a,b € Z
with 1 < a <n, 1 <b<n,and n = ab; by the induction hypothesis, both a
and b can be expressed as a product of primes, and so the same holds for n.

The uniqueness part of Theorem 1.3 is by no means obvious, and most
of the rest of this section and the next section are devoted to developing a
proof of this. We give a quite leisurely proof, introducing a number of other
very important tools and concepts along the way that will be useful later.
An essential ingredient in this proof is the following:

Theorem 1.4 (Division with remainder property). For a,b € Z with
b > 0, there exist unique q,r € Z such that a =bqg+r and 0 < r < b.

Proof. Consider the set S of non-negative integers of the form a — zb with
z € Z. This set is clearly non-empty, and so contains a minimum. Let r be
the smallest integer in this set, with » = a — ¢b for ¢ € Z. By definition,
we have r > 0. Also, we must have r < b, since otherwise, we would have
0<r—b<randr—b=a—(¢+1)b e S, contradicting the minimality of
T.

That proves the existence of r and ¢q. For uniqueness, suppose that a =
bq+r and a = bg' + ', where 0 < r < b and 0 <7’ < b. Then subtracting
these two equations and rearranging terms, we obtain

' —r=0b(qg—q). (1.1)

Now observe that by assumption, the left-hand side of (1.1) is less than b in
absolute value. However, if ¢ # ¢/, then the right-hand side of (1.1) would
be at least b in absolute value; therefore, we must have ¢ = ¢’. But then by
(1.1), we must have r =+/. O

In the above theorem, it is easy to see that ¢ = [a/b], where for any real
number x, |z] denotes the greatest integer less than or equal to x. We shall
write 7 = @ mod b; that is, a mod b denotes the remainder in dividing a by
b. It is clear that b | a if and only if a mod b = 0.

One can generalize the notation a mod b to all integers a and b, with b # 0:
we define @ mod b := a — bg, where ¢ = |a/b|.

In addition to the “floor” function [-], the “ceiling” function [-] is also
useful: for any real number z, [z] is defined as the smallest integer greater
than or equal to z.

EXERCISE 1.1. Let n be a composite integer. Show that there exists a prime
p dividing n, such that p < |n|'/2.

4 Basic properties of the integers

EXERCISE 1.2. For integer n and real x, show that n < x if and only if
n < |x].

EXERCISE 1.3. For real z and positive integer n, show that ||z]/n| = |z/n].
In particular, for positive integers a,b,c, ||a/b]/c] = |a/(bc)].

EXERCISE 1.4. For real z, show that 2|z | < |2z]| <2|z] + 1.

EXERCISE 1.5. For positive integers m and n, show that the number of
multiples of m among 1,2, ... ,nis [n/m]. More generally, for integer m > 1
and real = > 0, show that the number of multiples of m in the interval [1, z]
is [z/m].

EXERCISE 1.6. For integers a,b with b < 0, show that b < a mod b < 0.

1.2 Ideals and greatest common divisors

To carry on with the proof of Theorem 1.3, we introduce the notion of an
ideal of Z, which is a non-empty set of integers that is closed under addition,
and under multiplication by an arbitrary integer. That is, a non-empty set
I C Z is an ideal if and only if for all a,b € I and all z € Z, we have

a+bel and az e l.

Note that for an ideal I, if a € I, then so is —a, since —a =a - (-1) € I.
It is easy to see that any ideal must contain 0: since an ideal I must contain
some element a, and by the closure properties of ideals, we must have 0 =
a+ (—a) € I. It is clear that {0} and Z are ideals. Moreover, an ideal I is
equal to Z if and only if 1 € I—to see this, note that 1 € I implies that
forall z € Z, z=1-2 € I, and hence I = Z; conversely, if I = Z, then in
particular, 1 € I.

For a € Z, define aZ := {az : z € Z}; that is, aZ is the set of all integer
multiples of a. It is easy to see that aZ is an ideal: for az,az’ € aZ and
2" € Z, we have az + a2’ = a(z + 2') € aZ and (az)z" = a(22") € aZ. The
set aZ is called the ideal generated by a, and any ideal of the form aZ
for some a € Z is called a principal ideal.

We observe that for all a,b € Z, we have a € bZ if and only if b | a.
We also observe that for any ideal I, we have a € [if and only if aZ C I.
Both of these observations are simple consequences of the definitions, as the
reader may verify. Combining these two observations, we see that aZ C bZ
if and only if b | a.

We can generalize the above method of constructing ideals. For

1.2 Ideals and greatest common divisors 5
ai,...,ai € Z, define
amZ+ -+ apl ={arz1 + -+ apzp : 21, ..., 25 € L}

That is, a1Z + - - - + axZ consists of all linear combinations, with integer
coefficients, of ay, ..., ar. We leave it to the reader to verify that a1 Z+- - -+
arZ is an ideal and contains a1, ..., ay; it is called the ideal generated by
ai,...,ar. In fact, this ideal is the “smallest” ideal containing aq, ..., ag, in
the sense that any other ideal that contains ay, ..., a; must already contain
this ideal (verify).

Ezxample 1.1. Let a := 3 and consider the ideal aZ. This consists of all
integer multiples of 3; that is, aZ = {...,-9,—6,-3,0,3,6,9,...}. O

FExample 1.2. Let a1 := 3 and as := 5, and consider the ideal a1Z + asZ.
This ideal contains 2a; — ag = 1. Since it contains 1, it contains all integers;
that is, a1Z + asZ = 7Z. O

Example 1.3. Let a; := 4 and ay := 6, and consider the ideal a1Z + a2Z.
This ideal contains as — a1 = 2, and therefore, it contains all even integers.
It does not contain any odd integers, since the sum of two even integers is
again even. O

The following theorem says that all ideals of Z are principal.

Theorem 1.5. For any ideal I C Z, there exists a unique non-negative
integer d such that I = dZ.

Proof. We first prove the existence part of the theorem. If I = {0}, then
d = 0 does the job, so let us assume that I # {0}. Since I contains non-zero
integers, it must contain positive integers, since if z € I then so is —z. Let
d be the smallest positive integer in I. We want to show that I = dZ.

We first show that I C dZ. To this end, let ¢ be any element in I. It
suffices to show that d | c. Using the division with remainder property, write
¢ =qd+r, where 0 < r < d. Then by the closure properties of ideals, one
sees that r = ¢ — gd is also an element of I, and by the minimality of the
choice of d, we must have r = 0. Thus, d | c.

We next show that dZ C I. This follows immediately from the fact that
d € I and the closure properties of ideals.

That proves the existence part of the theorem. As for uniqueness, note
that if dZ = d'Z, we have d | d and d' | d, from which it follows by
Theorem 1.2 that d' = +d. O

For a,b € Z, we call d € Z a common divisor of a and b if d | a and

6 Basic properties of the integers

d | b; moreover, we call such a d a greatest common divisor of a and b if
d is non-negative and all other common divisors of a and b divide d.

Theorem 1.6. For any a,b € Z, there exists a unique greatest common
divisor d of a and b, and moreover, aZ + bZ = dZ.

Proof. We apply the previous theorem to the ideal I := aZ + bZ. Let d € Z
with I = dZ, as in that theorem. We wish to show that d is a greatest
common divisor of ¢ and b. Note that a,b,d € I and d is non-negative.

Since a € I = dZ, we see that d | a; similarly, d | b. So we see that d is a
common divisor of a and b.

Since d € I = aZ + bZ, there exist s,t € Z such that as + bt = d. Now
suppose a = a’d’ and b = b'd’ for a’,V/,d’ € Z. Then the equation as+bt = d
implies that d’'(a’s + b't) = d, which says that d’ | d. Thus, any common
divisor d’ of a and b divides d.

That proves that d is a greatest common divisor of ¢ and b. As for
uniqueness, note that if d” is a greatest common divisor of a and b, then
d | d and d” | d, and hence d” = +d, and the requirement that d” is
non-negative implies that d’ = d. O

For a,b € Z, we denote by gecd(a, b) the greatest common divisor of a and
b. Note that as we have defined it, gcd(a,0) = |a|. Also note that when at
least one of a or b are non-zero, ged(a, b) is the largest positive integer that
divides both a and b.

An immediate consequence of Theorem 1.6 is that for all a,b € Z, there
exist s,t € Z such that as + bt = ged(a,b), and that when at least one of
a or b are non-zero, gecd(a,b) is the smallest positive integer that can be
expressed as as + bt for some s,t € Z.

We say that a,b € Z are relatively prime if ged(a,b) = 1, which is
the same as saying that the only common divisors of @ and b are +1. It is
immediate from Theorem 1.6 that a and b are relatively prime if and only
if aZ + bZ = Z, which holds if and only if there exist s,t € Z such that
as+ bt =1.

Theorem 1.7. For a,b,c € Z such that ¢ | ab and ged(a,c) = 1, we have
c|b.

Proof. Suppose that ¢ | ab and ged(a,c¢) = 1. Then since ged(a,c) = 1, by
Theorem 1.6 we have as+ct = 1 for some s,t € Z. Multiplying this equation
by b, we obtain

abs + cbt = b. (1.2)

1.2 Ideals and greatest common divisors 7

Since ¢ divides ab by hypothesis, and since c¢ clearly divides cbt, it follows
that ¢ divides the left-hand side of (1.2), and hence that ¢ divides b. O

As a consequence of this theorem, we have:

Theorem 1.8. Let p be prime, and let a,b € Z. Then p | ab implies that
plaorp]b.

Proof. Assume that p | ab. The only divisors of p are +1 and +p. Thus,
ged(p, a) is either 1 or p. If p | a, we are done; otherwise, if p { a, we must
have ged(p,a) = 1, and by the previous theorem, we conclude that p | b. O

An obvious corollary to Theorem 1.8 is that if ay,...,a; are integers,
and if p is a prime that divides the product a; - - - ag, then p | a; for some
1 = 1,...,k. This is easily proved by induction on k. For k = 1, the
statement is trivially true. Now let £ > 1, and assume that statement holds
for k — 1. Then by Theorem 1.8, either p | aj or p | ag---ax_1;if p | a1, we
are done; otherwise, by induction, p divides one of as,...,ar_1.

We are now in a position to prove the uniqueness part of Theorem 1.3,
which we can state as follows: if p1,...,p, and p},...,p) are primes (with
duplicates allowed among the p; and among the p;) such that

PLo P =Py P (1.3)

then (p1,...,pr) is just a reordering of (pi,...,p.). We may prove this by
induction on r. If r = 0, we must have s = 0 and we are done. Now suppose
r > 0, and that the statement holds for » — 1. Since r > 0, we clearly must
have s > 0. Also, as p; is obviously divides the left-hand side of (1.3), it
must also divide the right-hand side of (1.3); that is, p1 | p} - - - pl. It follows
from (the corollary to) Theorem 1.8 that p; | p;- for some j = 1,...,s, and
indeed, since p; and p;» are both prime, we must have p; = p;-. Thus, we may
cancel p; from the left-hand side of (1.3) and p’; from the right-hand side of
(1.3), and the statement now follows from the induction hypothesis. That
proves the uniqueness part of Theorem 1.3.

EXERCISE 1.7. Let I be a non-empty set of integers that is closed under
addition, that is, a + b € I for all a,b € I. Show that the condition

—a €l forallael

holds if and only if
az€el forallael, z € Z.

8 Basic properties of the integers

EXERCISE 1.8. Let a, b, ¢ be positive integers, with ged(a,b) = 1 and ¢ > ab.
Show that there exist non-negative integers s,t such that ¢ = as + bt.

EXERCISE 1.9. Show that for any integers a,b with d := ged(a,b) # 0, we
have ged(a/d,b/d) = 1.

1.3 Some consequences of unique factorization

The following theorem is a consequence of just the existence part of Theo-
rem 1.3:

Theorem 1.9. There are infinitely many primes.

Proof. By way of contradiction, suppose that there were only finitely many
primes; call them pq,...,pr. Then set n := 1 + Hle p;, and consider a
prime p that divides n. There must be at least one such prime p, since
n > 2, and every positive integer can be written as a product of primes.
Clearly, p cannot equal any of the p;, since if it did, then p would divide
n— Hle p; = 1, which is impossible. Therefore, the prime p is not among
P1,...,PE, which contradicts our assumption that these are the only primes.
O

For a prime p, we may define the function v,, mapping non-zero integers
to non-negative integers, as follows: for integer n # 0, if n = p®m, where
p1m, then v,(n) := e. We may then write the factorization of n into primes

as
n = :l: prp(n)7
p

where the product is over all primes p, with all but finitely many of the
terms in the product equal to 1.

It is also convenient to extend the domain of definition of v, to include
0, defining v, (0) := oco. Following standard conventions for arithmetic with
infinity (see Preliminaries), it is easy to see that for all a,b € Z, we have

vp(a-b) = vp(a) + vp(b) for all p. (1.4)
From this, it follows that for all a,b € Z, we have
bla ifandonlyif 1,(b) <vy(a) for all p, (1.5)

and
vp(ged(a, b)) = min(vpy(a), (b)) for all p. (1.6)

For a,b € Z a common multiple of a and b is an integer m such that

1.8 Some consequences of unique factorization 9

a | m and b | m; moreover, such an m is the least common multiple of a
and b if m is non-negative and m divides all common multiples of a and b.
In light of Theorem 1.3, it is clear that the least common multiple exists and
is unique, and we denote the least common multiple of a and b by lem(a, b).
Note that as we have defined it, lem(a,0) = 0, and that when both a and
b are non-zero, lem(a, b) is the smallest positive integer divisible by both a
and b. Also, for all a,b € Z, we have

vp(lem(a, b)) = max(vp(a), vp(b)) for all p, (1.7)

and
ged(a,b) - lem(a, b) = |abl. (1.8)
It is easy to generalize the notions of greatest common divisor and least
common multiple from two integers to many integers. For aq,...,a; € Z,
with & > 1, we call d € Z a common divisor of ai,...,ax if d | a; for
1 = 1,...,k; moreover, we call such a d the greatest common divisor of
ai,...,a if d is non-negative and all other common divisors of a,...,ag
divide d. It is clear that the greatest common divisor of ai,...,a; exists

and is unique, and moreover, we have

vp(ged(ai, ..., ar)) = min(vp(a), ..., vp(ax)) for all p. (1.9)

Analogously, for ay,...,ar € Z, with k > 1, we call m € Z a common
multiple of a1,...,ax if a; | m for i = 1,..., k; moreover, such an m is called
the least common multiple of aq,...,a if m divides all common multiples
of ai,...,ag. It is clear that the least common multiple of a1, ..., ay exists
and is unique, and moreover, we have

vp(lem(aq, ..., a;)) = max(vp(ai),...,vp(ar)) for all p. (1.10)

We say that integers ai,...,ar are pairwise relatively prime if
ged(ai, aj) = 1 for all 4, j with i # j. Note that if a1, ..., a; are pairwise rel-
atively prime, then ged(aq,...,ax) = 1; however, ged(ay,...,ar) = 1 does
not imply that aq,...,a, are pairwise relatively prime.

Consider now the rational numbers Q := {a/b: a,b € Z, b # 0}. Because
of the unique factorization property for Z, given any rational number a/b,
if we set d := ged(a,b), and define the integers @’ := a/d and b/ := b/d, then
we have a/b = d//b and ged(a/,b') = 1. Moreover, if a/b = a’/V, then we
have ab' = a'b, and so b | a’b, and since ged(a’,b') = 1, we see that b | b;
if b = dl, it follows that @ = da’. Thus, we can represent every rational
number as a fraction in lowest terms, that is, a fraction of the form o'/’

10 Basic properties of the integers

where o' and V' are relatively prime; moreover, the values of @’ and b’ are
uniquely determined up to sign, and every other fraction that represents the
same rational number is of the form (da’)/(db’), for some non-zero integer d.

EXERCISE 1.10. Let n be a positive integer. Show that if a, b are relatively
prime integers, each of which divides n, then ab divides n. More generally,
show that if ay,...,a are pairwise relatively prime integers, each of which
divides n, then their product a; - - - a; divides n.

EXERCISE 1.11. For positive integer n, let D(n) denote the set of positive
divisors of n. For relatively prime, positive integers ni,ns, show that the
sets D(n1) X D(n2) and D(n; - ny) are in one-to-one correspondence, via the
map that sends (dy,ds2) € D(n1) x D(ng) to dy - da.

EXERCISE 1.12. Let p be a prime and k£ an integer 0 < k < p. Show that
the binomial coefficient

py_ __ P

A=

which is an integer, of course, is divisible by p.

EXERCISE 1.13. An integer a € Z is called square-free if it is not divisible
by the square of any integer greater than 1. Show that any integer n € Z
can be expressed as n = ab?, where a,b € Z and a is square-free.

EXERCISE 1.14. Show that any non-zero x € Q can be expressed as
x=£pypy

where the p; are distinct primes and the e; are non-zero integers, and that
this expression in unique up to a reordering of the primes.

EXERCISE 1.15. Show that if an integer cannot be expressed as a square of
an integer, then it cannot be expressed as a square of any rational number.

EXERCISE 1.16. Show that for all integers a, b, and all primes p, we have
vp(a +b) > min{v,(a), v, (b)}, and that if v,(a) < vp(b), then vy(a +b) =
vp(a).
EXERCISE 1.17. For a prime p, we may extend the domain of definition of v,
from Z to Q: for non-zero integers a, b, let us define vp(a/b) := vp(a) — v, (b).
(a) Show that this definition of v, (a/b) is unambiguous, in the sense that
it does not depend on the particular choice of a and b.

(b) Show that for all z,y € Q, we have v,(zy) = vp(z) + vp(y).

1.8 Some consequences of unique factorization 11
(c) Show that for all z,y € Q, we have vp(z + y) > min{v,(x), vp(y)},
and that if vp(z) < vp(y), then vy(z +y) = vp(x).

(d) Show that for all non-zero x € Q, we have
xr = i le/p(ét),
p

where the product is over all primes, and all but a finite number of
terms in the product is 1.

EXERCISE 1.18. Let n be a positive integer, and let C,, denote the number of
pairs of integers (a, b) such that 1 < a <n, 1 <b < n and ged(a,b) =1, and
let F,, be the number of distinct rational numbers a/b, where 0 < a < b < n.

(a) Show that F,, = (C,, +1)/2.

(b) Show that Cy, > n?/4. Hint: first show that C,, > n?(1—=3";5,1/d?),
and then show that)., 1/d* < 3/4.

EXERCISE 1.19. This exercise develops a characterization of least common
multiples in terms of ideals.

(a) Arguing directly from the definition of an ideal, show that if I and J
are ideals of Z, then so is I N J.

(b) Let a,b € Z, and consider the ideals I := aZ and J := bZ. By part
(a), we know that I N J is an ideal. By Theorem 1.5, we know that
I NJ = mZ for some uniquely determined non-negative integer m.
Show that m = lem(a, b).

EXERCISE 1.20. For aq,...,a; € Z, with k > 1, show that
ng(ala s 7a’k‘) = ng(ng(ala s ,(Ik-_l), ak)
and
lem(ay,...,ar) =lem(lem(aq, ..., ax—1), ag).

EXERCISE 1.21. Show that for any ai,...,a; € Z, if d := ged(aq, ..., ax),
then dZ = a1 Z + - - - + axZ; in particular, there exist integers sy, ..., si such
that

d=ais1+ -+ apsg.
EXERCISE 1.22. Show that for all integers a, b, we have

ged(a + b,1em(a, b)) = ged(a, b).

12 Basic properties of the integers
EXERCISE 1.23. Show that for integers ¢, a1, ..., ar, we have

ged(cay, ..., car) = |c|ged(ay, ..., ag).

2

Congruences

This chapter introduces the basic properties of congruences modulo n, along
with the related notion of congruence classes modulo n. Other items dis-
cussed include the Chinese remainder theorem, Euler’s phi function, arith-
metic functions and Mobius inversion, and Fermat’s little theorem.

2.1 Definitions and basic properties

For positive integer n, and for a,b € Z, we say that a is congruent to
b modulo n if n | (a — b), and we write a = b (mod n). If n { (a — b),
then we write @ Z b (mod n). The relation a = b (mod n) is called a
congruence relation, or simply, a congruence. The number n appearing
in such congruences is called the modulus of the congruence. This usage of
the “mod” notation as part of a congruence is not to be confused with the
“mod” operation introduced in §1.1.

A simple observation is that a« = b (mod n) if and only if there exists an
integer ¢ such that a = b+ cn. From this, and Theorem 1.4, the following
is immediate:

Theorem 2.1. Let n be a positive integer. For every integer a, there exists
a unique integer b such that a = b (mod n) and 0 < b < n, namely, b :=
a mod n.

If we view the modulus n as fixed, then the following theorem says that
the binary relation “ = - (mod n)” is an equivalence relation on the set Z:

Theorem 2.2. Let n be a positive integer. For all a,b,c € Z, we have:
(i) a =a (mod n);
(ii) a = b (mod n) implies b = a (mod n);

(i4i) a = b (mod n) and b = ¢ (mod n) implies a = ¢ (mod n).

13

14 Congruences

Proof. For (i), observe that n divides 0 = a — a. For (ii), observe that if n
divides a — b, then it also divides —(a — b) = b — a. For (iii), observe that if
n divides a — b and b — ¢, then it also divides (a —b) + (b—¢) =a —c. O

A key property of congruences is that they are “compatible” with integer
addition and multiplication, in the following sense:

Theorem 2.3. For all positive integers n, and all a,a’,b, € Z, if a =
a’ (mod n) and b =1 (mod n), then

a+b=d +V (modn)
and
a-b=ad b (modn).

Proof. Suppose that a = @’ (mod n) and b = V' (mod n). This means that
there exist integers ¢ and d such that ' = a+cn and b’ = b+dn. Therefore,

a+b =a+b+ (c+d)n,
which proves the first congruence of the theorem, and
a't! = (a+cn)(b+ dn) = ab+ (ad + be + cdn)n,
which proves the second congruence. O

Theorems 2.2 and 2.3 allow one to work with congruence relations mod-
ulo n much as one would with ordinary equalities: one can add to, subtract
from, or multiply both sides of a congruence modulo n by the same integer;
also, if x is congruent to y modulo n, one may substitute y for x in any sim-
ple arithmetic expression (more precisely, any polynomial in z with integer
coefficients) appearing in a congruence modulo n.

Example 2.1. Observe that
3-5=1 (mod 7). (2.1)
Using this fact, let us find the set of solutions z to the congruence
324+ 4 =06 (mod 7). (2.2)

Suppose that z is a solution to (2.2). Subtracting 4 from both sides of (2.2),
we see that

3z=2(mod 7). (2.3)
Now, multiplying both sides of (2.3) by 5, and using (2.1), we obtain
z2=1-2=(3-5)-2=2-5=3 (mod 7).

2.2 Solving linear congruences 15

Thus, if z is a solution to (2.2), we must have z = 3 (mod 7); conversely,
one can verify that if z = 3 (mod 7), then (2.2) holds. We conclude that
the integers z that are solutions to (2.2) are precisely those integers that are
congruent to 3 modulo 7, which we can list as follows:

.., —18,—11,-4,3,10,17,24,... O

In the next section, we shall give a systematic treatment of the problem
of solving linear congruences, such as the one appearing in the previous
example.

EXERCISE 2.1. Let x,y,n € Z with n > 0 and x = y (mod n). Also, let
ag,ai, - - -, ar be integers. Show that

ap+ a1z + -+ apz® = ag + a1y + - + apy® (mod n).
EXERCISE 2.2. Let a,b,n,n’ € Z with n > 0 and n’ | n. Show that if
a =b (mod n), then a = b (mod n’).

EXERCISE 2.3. Let a,b,n,n’ € Z with n > 0, n’ > 0, and ged(n,n’) = 1.
Show that if @ = b (mod n) and a = b (mod n'), then a = b (mod nn’).

EXERCISE 2.4. Let a,b,n € Z such that n > 0 and a = b (mod n). Show
that ged(a,n) = ged(b,n).

EXERCISE 2.5. Prove that for any prime p and integer x, if 22 = 1 (mod p)
then x =1 (mod p) or x = —1 (mod p).

EXERCISE 2.6. Let a be a positive integer whose base-10 representation is
a = (ag_1---aiap)io- Let b be the sum of the decimal digits of a; that is, let
b:=ag+ a1+ -+ ax_1. Show that a = b (mod 9). From this, justify the
usual “rules of thumb” for determining divisibility by 9 and 3: a is divisible
by 9 (respectively, 3) if and only if the sum of the decimal digits of a is
divisible by 9 (respectively, 3).

EXERCISE 2.7. Show that there are 14 distinct, possible, yearly (Gregorian)
calendars, and show that all 14 calendars actually occur.

2.2 Solving linear congruences
For a positive integer n, and a € Z, we say that a’ € Z is a multiplicative
inverse of ¢ modulo n if aa’ =1 (mod n).

Theorem 2.4. Leta,n € Z withn > 0. Then a has a multiplicative inverse
modulo n if and only if a and n are relatively prime.

16 Congruences

Proof. This follows immediately from Theorem 1.6: a and n are relatively
prime if and only if there exist s,¢ € Z such that as + nt = 1, if and only if
there exists s € Z such that as =1 (mod n). O

Note that the existence of a multiplicative inverse of @ modulo n depends
only on the value of a modulo n; that is, if b = a (mod n), then a has an
inverse if and only if b does. Indeed, by Theorem 2.3, if b = a (mod n), then
for any integer o/, aa’ = 1 (mod n) if and only if ba’ = 1 (mod n). (This
fact is also implied by Theorem 2.4 together with Exercise 2.4.)

We now prove a simple “cancellation law” for congruences:

Theorem 2.5. Let a,n,z,2' € Z with n > 0. If a is relatively prime to n,
then az = az’ (mod n) if and only if z = 2z’ (mod n). More generally, if
d := ged(a,n), then az = az’ (mod n) if and only if z = 2’ (mod n/d).

Proof. For the first statement, assume that ged(a,n) = 1, and let a’ be
a multiplicative inverse of a modulo n. Then, az = az’ (mod n) implies
d'az = d’az’ (mod n), which implies z = 2z’ (mod n), since a’a = 1 (mod n).
Conversely, if z = 2’ (mod n), then trivially az = az’ (mod n). That proves
the first statement.

For the second statement, let d = ged(a,n). Simply from the definition
of congruences, one sees that in general, az = a2’ (mod n) holds if and only
if (a/d)z = (a/d)z' (mod n/d). Moreover, since a/d and n/d are relatively
prime (see Exercise 1.9), the first statement of the theorem implies that
(a/d)z = (a/d)z’ (mod n/d) holds if and only if z = 2’ (mod n/d). That
proves the second statement. O

Theorem 2.5 implies that multiplicative inverses modulo n are uniquely
determined modulo n; indeed, if a is relatively prime to n, and if ad’ =1 =

aa” (mod n), then we may cancel a from the left- and right-hand sides of
this congruence, obtaining o’ = a” (mod n).

Ezxample 2.2. Observe that
5-2=5-(—4) (mod 6). (2.4)

Theorem 2.5 tells us that since ged(5,6) = 1, we may cancel the common
factor of 5 from both sides of (2.4), obtaining 2 = —4 (mod 6), which one
can also verify directly.

Next observe that

3-5=3:3 (mod 6). (2.5)

We cannot simply cancel the common factor of 3 from both sides of (2.5);

2.2 Solving linear congruences 17

indeed, 5 # 3 (mod 6). However, gcd(3,6) = 3, and as Theorem 2.5 guaran-
tees, we do indeed have 5 = 3 (mod 2). O

Next, we consider the problem of determining the solutions z to congru-
ences of the form az + ¢ = b (mod n), for given integers a, b, c,n. Since
we may both add and subtract ¢ from both sides of a congruence modulo
n, it is clear that z is a solution to the above congruence if and only if
az = b — ¢ (mod n). Therefore, it suffices to consider the problem of deter-
mining the solutions z to congruences of the form az = b (mod n), for given
integers a, b, n.

Theorem 2.6. Let a,b,n € Z withn > 0. If a is relatively prime to n, then
the congruence az = b (mod n) has a solution z; moreover, any integer z' is
a solution if and only if z = 2’ (mod n).

Proof. The integer z := ba’, where @’ is a multiplicative inverse of ¢ modulo
n, is clearly a solution. For any integer 2/, we have az’ = b (mod n) if
and only if az’ = az (mod n), which by Theorem 2.5 holds if and only if
z=2 (modn). O

Suppose that a,b,n € Z with n > 0, a # 0, and ged(a,n) = 1. This
theorem says that there exists a unique integer z satisfying

az=b(modn) and 0<z<n.

Setting s := b/a € Q, we may generalize the “mod” operation, defining
s mod n to be this value z. As the reader may easily verify, this definition
of s mod n does not depend on the particular choice of fraction used to
represent the rational number s. With this notation, we can simply write
a~! mod n to denote the unique multiplicative inverse of ¢ modulo n that
lies in the interval O,...,n — 1.

Theorem 2.6 may be generalized as follows:

Theorem 2.7. Let a,b,n € Z with n > 0, and let d := ged(a,n). Ifd | b,
then the congruence az = b (mod n) has a solution z, and any integer 2’ is
also a solution if and only if z = 2’ (mod n/d). If d1b, then the congruence
az = b (mod n) has no solution z.

Proof. For the first statement, suppose that d | b. In this case, by Theo-
rem 2.5, we have az = b (mod n) if and only if (a/d)z = (b/d) (mod n/d),
and so the statement follows immediately from Theorem 2.6, and the fact
that a/d and n/d are relatively prime.

For the second statement, we show that if az = b (mod n) for some

18 Congruences

integer z, then d must divide b. To this end, assume that az = b (mod n)
for some integer z. Then since d | n, we have az = b (mod d). However,
az =0 (mod d), since d | a, and hence b = 0 (mod d); that is, d | b. O

Ezxzample 2.3. The following table illustrates what the above theorem says
forn=15and a =1,2,3,4,5,6.

z|0|1] 2 3| 4| 5| 6| 7| 8| 9110|1112 13|14
2zmod 15 |0|2| 4| 6 10{12(14| 1| 3| 5| 7| 9|11|13
3zmod 15 (0 |3| 6| 912 O 3| 6| 9|12 0| 3| 6| 9|12
dzmod 15|04 | 8|12 1| 5| 9|13| 2| 61014 3| 7|11
5zmod15|0|5|10| O| 5|10 O 5|10 O 5|10 O| 5|10
6zmod15(0|6[12] 3| 9| O 612 3| 9| 0| 6[12| 3| 9

In the second row, we are looking at the values 2z mod 15, and we see
that this row is just a permutation of the first row. So for every b, there
exists a unique z such that 2z = b (mod 15). We could have inferred this
fact from the theorem, since ged(2,15) = 1.

In the third row, the only numbers hit are the multiples of 3, which
follows from the theorem and the fact that ged(3,15) = 3. Also note that
the pattern in this row repeats every five columns; that is also implied by
the theorem; that is, 3z = 32’ (mod 15) if and only if z = 2’ (mod 5).

In the fourth row, we again see a permutation of the first row, which
follows from the theorem and the fact that ged(4,15) = 1.

In the fifth row, the only numbers hit are the multiples of 5, which follows
from the theorem and the fact that ged(5,15) = 5. Also note that the
pattern in this row repeats every three columns; that is also implied by the
theorem; that is, 52 = 52’ (mod 15) if and only if z = 2’ (mod 3).

In the sixth row, since ged(6,15) = 3, we see a permutation of the third
row. The pattern repeats after five columns, although the pattern is a
permutation of the pattern in the third row. O

Next, we consider systems of linear congruences with respect to moduli
that are relatively prime in pairs. The result we state here is known as the
Chinese remainder theorem, and is extremely useful in a number of contexts.

Theorem 2.8 (Chinese remainder theorem). Letny,...,ng be pairwise
relatively prime, positive integers, and let ai,...,ar be arbitrary integers.
Then there exists an integer z such that

z=a; (modn;) (i=1,...,k).

2.2 Solving linear congruences 19

Moreover, any other integer 2’ is also a solution of these congruences if and
only if z = 2’ (mod n), where n := Hle .
Proof. Let n := Hle n;, as in the statement of the theorem. Let us also
define

n,:=n/n; (i=1,...,k).
From the fact that nq,...,n; are pairwise relatively prime, it is clear that
ged(ng,nf) =1 for i = 1,..., k. Therefore, let

D modn; and w;:=nim; (i=1,...,k).

m; = (n
By construction, one sees that for i = 1,...,k, we have

w; =1 (mod ny)

and
w; =0 (mod nj) for j=1,...,k with j # 4.
That is to say, for 4,5 = 1,..., k, we have w; = ¢;; (mod n;), where
52--::{ N
0 ifi+#j.
Now define

k
Z = Z w;Aay;.
i=1
One then sees that

k k
z = Zwiai = Zéijai =a; (mod nj) for j=1,... k.
i=1 i=1

Therefore, this z solves the given system of congruences.

Moreover, if 2’ = z (mod n), then since n; | n for i = 1,..., k, we see that
Z =2z =a; (mod n;) for i = 1,...,k, and so 2’ also solves the system of
congruences.

Finally, if 2’ solves the system of congruences, then 2z’ = 2z (mod n;)
for i = 1,...,k. That is, n; | (2 — 2) for i = 1,...,k. Since nq,...,ng
are pairwise relatively prime, this implies that n | (2/ — z), or equivalently,
2/ =z (modn). O

Example 2.4. The following table illustrates what the above theorem says
for ny = 3 and ny = 5.

20 Congruences

z|0[1]2(3]|4|5(6|7|8(9]10(11|12|13 |14
zmod3|[0[1[2]0 21011120 1| 2 0] 1] 2
zmodb|[0[1(2]3(4(01(2|3|4| 0| 1| 2| 3| 4

—_

We see that as z ranges from 0 to 14, the pairs (z mod 3, z mod 5) range
over all pairs (a1, az) with a; € {0,1,2} and ag € {0,...,4}, with every pair
being hit exactly once. O

EXERCISE 2.8. Let aj,...,ax,n,b be integers with n > 0, and let d :=
ged(ay, ..., ag,n). Show that the congruence

a121 + -+ apzr = b (mod n)

has a solution zi, ...,z if and only if d | b.

EXERCISE 2.9. Find an integer z such that z = —1 (mod 100), z
1 (mod 33), and z = 2 (mod 7).

EXERCISE 2.10. If you want to show that you are a real nerd, here is an
age-guessing game you might play at a party. First, prepare 2 cards as
follows:

1 4 7 10 --- 94 97

2 5 8 11 --- 95 98
and 4 cards as follows:

1 6 11 16 --- 91 96

2 7 12 17 --- 92 97

3 8 13 18 --- 93 98

4 9 14 19 --- 94 99

At the party, ask a person to tell you if their age is odd or even, and then
ask them to tell you on which of the six cards their age appears. Show how
to use this information (and a little common sense) to determine their age.

2.3 Residue classes

As we already observed in Theorem 2.2, for any fixed positive integer n, the

13

binary relation “- = - (mod n)” is an equivalence relation on the set Z. As
such, this relation partitions the set Z into equivalence classes. We denote
the equivalence class containing the integer a by [a],,, or when n is clear from
context, we may simply write [a|. Historically, these equivalence classes are
called residue classes modulo 7, and we shall adopt this terminology here

as well.

2.8 Residue classes 21
It is easy to see from the definitions that
[al, =a+nZ:={a+nz:zecl}.

Note that a given residue class modulo n has many different “names”; for
example, the residue class [1], is the same as the residue class [1 + n],. For
any integer a in a residue class, we call a a representative of that class.

The following is simply a restatement of Theorem 2.1:

Theorem 2.9. For a positive integer n, there are precisely n distinct residue
classes modulo n, namely, [a], fora=20,...,n—1.

Fix a positive integer n. Let us define Z, as the set of residue classes
modulo n. We can “equip” Z, with binary operations defining addition and
multiplication in a natural way as follows: for a,b € Z, we define

[a]n, + [b]n == [a + b]n,
and we define
[aln - [b]5 == [a - O]n.

Of course, one has to check this definition is unambiguous, in the sense
that the sum or product of two residue classes should not depend on which
particular representatives of the classes are chosen in the above definitions.
More precisely, one must check that if [a], = [d¢'], and [b], = [b],, then
[a op b], = [da' op V], for op € {+,-}. However, this property follows
immediately from Theorem 2.3.

It is also convenient to define a negation operation on Z,, defining

Having defined addition and negation operations on Z,, we naturally define
a subtraction operation on Z, as follows: for a,b € Z,

[aln — [bln == [a]n + (=[b]n) = [@ — b]n.

Ezxample 2.5. Consider the residue classes modulo 6. These are as follows:

0] ={...,—12,-6,0,6,12,...}
M={..,-11,-5,1,7,13,.. .}
2] ={...,-10,-4,2,8,14,.. .}
8] ={..,-9,-3,3,9,15,...}
4] ={...,—8,-2,4,10,16,...}
5] ={...,-7,-1,5,11,17,...}

22 Congruences

Let us write down the addition and multiplication tables for Zg. The addi-
tion table looks like this:

+ [Of [21 3] [4 [5]
o f[o] [1] [2] [3] [4] [5]
() 2 (8] [[5] [0]
(2] | 2] 8] [4 [5] [0] [1]
B8] 1 (381 [4 [5] [0} [1] (2]
[4] | (4 [5] [o] [1] [2] [3]
(5] | (5] [o] [1] 2] [3] [4]

The multiplication table looks like this:

[[o] [[2] [3] [4] [5]
[0] | [0] [0o] [o] [o] [0] [O]
[p o] [2] (8] [[5]
(2] | [0] [2] [4 [o] [2] [4]
(B (o 3 [o] [3] [o] [3]
[4] | (0] [4 [2] [o] [4] [2]
(5] [[o] [5] [4] (3] [2] [1]

|

These operations on Z, yield a very natural algebraic structure whose
salient properties are as follows:

Theorem 2.10. Let n be a positive integer, and consider the set Z, of
residue classes modulo n with addition and multiplication of residue classes
as defined above. For all o, B,y € Zy, we have

(i) o+ B =B+ « (addition is commutative),
(ii) (a«+B)+v=a+ (B+7) (addition is associative),
(111) o+ (0], = « (existence of additive identity),
(iv) a —a = [0], (existence of additive inverses),
(v) a- B =0« (multiplication is commutative),
(vi) (- B)-v=a-(B-v) (multiplication is associative),
(vii) o (B +7y) = a- B+ a-v (multiplication distributes over addition)
(viii) o - [1], = « (existence of multiplicative identity).
Proof. All of these properties follow easily from the corresponding properties

for the integers, together with the definitions of addition, subtraction, and
multiplication of residue classes. For example, for (i), we have

[aln, + [b]n = [a + bl = [b+ aly = [b]n + [a]n,

2.3 Residue classes 23

where the first and third equalities follow from the definition of addition
of residue classes, and the second equality follows from the commutativity
property of integer addition. The reader may verify the other properties
using similar arguments. O

An algebraic structure satisfying the conditions in the above theorem is
known more generally as a “commutative ring with unity,” a notion that we
will discuss in Chapter 9.

Note that while all elements of Z, have an additive inverses, not all el-
ements of Z, have a multiplicative inverse. Indeed, for a € 7Z, the residue
class [a], € Z, has a multiplicative inverse in Z, if and only if a has a
multiplicative inverse modulo n, which by Theorem 2.4, holds if and only
if ged(a,n) = 1. Since multiplicative inverses modulo n are uniquely deter-
mined modulo n (see discussion following Theorem 2.5), it follows that if
«a € Z, has a multiplicative inverse in Z,, then this inverse is unique, and
we may denote it by a1,

One denotes by Z;, the set of all residue classes that have a multiplicative
inverse. It is easy to see that Z; is closed under multiplication; indeed,
if o, € Z¥, then (aB8)™! = a~!371. Also, note that for a € Z¥ and
8,08 € Ly, if a8 = af8’, we may effectively cancel o from both sides of this
equation, obtaining 3 = (3 —this is just a restatement of the first part of
Theorem 2.5 in the language of residue classes.

For a € Z,, and positive integer k, the expression o* denotes the product
a-a---- -« where there are k terms in the product. One may extend
this definition to k& = 0, defining o to be the multiplicative identity [1],.
If a has a multiplicative inverse, then it is easy to see that for any integer
k > 0, o* has a multiplicative inverse as well, namely, (a~1)¥, which we may

naturally write as o,

In general, one has a choice between working with congruences modulo
n, or with the algebraic structure Z,; ultimately, the choice is one of taste
and convenience, and it depends on what one prefers to treat as “first class
objects”: integers and congruence relations, or elements of Z,.

An alternative, and somewhat more concrete, approach to defining Z,, is
to simply define it to consist of the n “symbols” 0,1,...,n — 1, with addition
and multiplication defined as

@+b:=(a+b)modn, @-b:=(a-b)modn,

fora,b=0,...,n—1. Such a definition is equivalent to the one we have given
here, with the symbol @ corresponding to the residue class [a],,. One should
keep this alternative characterization of Z,, in mind; however, we prefer the

24 Congruences

characterization in terms of residue classes, as it is mathematically more
elegant, and is usually more convenient to work with.

EXERCISE 2.11. Show that for any positive integer n, and any integer k,
the residue classes [k + al,, for a = 0,...,n — 1, are distinct and therefore
include all residue classes modulo n.

EXERCISE 2.12. Verify the following statements for Z,,:
(a) There is only one element of Z,, that acts as an additive identity; that
is, if « € Z,, satisfies a + 3 = 3 for all 5 € Z,,, then o = [0],,.
(b) Additive inverses in Z,, are unique; that is, for all « € Z,,, if a + 5 =
[0],, then 8 = —a.
(c) If @« € Z}, and v, € Zy, then there exists a unique € Z,, such that
aff +v=0.
EXERCISE 2.13. Verify the usual “rules of exponent arithmetic” for Z,,. That
is, show that for o € Z,,, and non-negative integers k1, ko, we have

(afyk2 = gFk2 and ofrak? = of1 P2,

Moreover, show that if o € Z;, then these identities hold for all integers
k1, ko.

2.4 Euler’s phi function
Euler’s phi function ¢(n) is defined for positive integer n as the number
of elements of Z}. Equivalently, ¢(n) is equal to the number of integers
between 0 and n — 1 that are relatively prime to n. For example, ¢(1) = 1,
6(2) = 1, 6(3) = 2, and 6(4) = 2.

A fact that is sometimes useful is the following:

Theorem 2.11. For any positive integer n, we have

> o(d) =n,

dn
where the sum is over all positive divisors d of n.

Proof. Consider the list of n rational numbers 0/n,1/n,...,(n —1)/n. For
any divisor d of n and for any integer a with 0 < a < d and ged(a,d) = 1, the
fraction a/d appears in the list exactly once, and moreover, every number in
the sequence, when expressed as a fraction in lowest terms, is of this form.
O

2.5 Fermat’s little theorem 25

Using the Chinese remainder theorem, it is easy to get a nice formula
for ¢(n) in terms for the prime factorization of n, as we establish in the
following sequence of theorems.

Theorem 2.12. For positive integers n, m with ged(n,m) = 1, we have

p(nm) = ¢(n)p(m).
Proof. Consider the map
P Lpm — Ly X L,
[a]nm — ([aln, [a]m).

First, note that the definition of p is unambiguous, since a = a’ (mod nm)
implies a = @’ (mod n) and a = @’ (mod m). Second, according to the Chi-
nese remainder theorem, the map p is one-to-one and onto. Moreover, it is
easy to see that ged(a, nm) = 1if and only if ged(a,n) = 1 and ged(a,m) = 1
(verify). Therefore, the map p carries Z}, . injectively onto Z! x Z*.. In par-
ticular, |Z |Z} x Z7,|. O

*|_
nmi

Theorem 2.13. For a prime p and a positive integer e, we have ¢(p®) =
pHp—1).

Proof. The multiples of p among 0,1,...,p° — 1 are
0-p,1-p,...,(p ' =1)-p,
of which there are precisely p°~!. Thus, ¢(p®) = p¢ —p* 1 =p*~L(p—1). O
As an immediate consequence of the above two theorems, we have:

Theorem 2.14. Ifn = p{' ---pr is the factorization of n into primes, then

o(n) =[]p5 (i = 1) =n]J(1 - 1/p).
i=1 i=1
EXERCISE 2.14. Show that ¢(nm) = ged(n, m) - ¢(lem(n, m)).

2.5 Fermat’s little theorem

Let n be a positive integer, and let a € Z with ged(a,n) = 1. Consider the
sequence of powers of « := [a],, € Z*:

26 Congruences

Since each such power is an element of Z; , and since Z), is a finite set, this
sequence of powers must start to repeat at some point; that is, there must
be a positive integer k such that o = o for some i = 0,...,k — 1. Let
us assume that k is chosen to be the smallest such positive integer. We
claim that i = 0, or equivalently, o = [1],,. To see this, suppose by way of
contradiction that of = o, for some i = 1,...,k — 1. Then we can cancel
a from both sides of the equation o = o, obtaining o*~! = o/~!, and this
contradicts the minimality of k.

From the above discussion, we see that the first k powers of «, that is,
1], = % at,.. ., are distinct, and subsequent powers of « simply
repeat this pattern. More generally, we may consider both positive and
negative powers of a—it is easy to see (verify) that for all i, j € Z, we have
o' = oJ if and only if i = j (mod k). In particular, we see that for any
integer i, we have o! = [1],, if and only if k divides 1.

This value k is called the multiplicative order of « or the multiplica-
tive order of a modulo n. It can be characterized as the smallest positive

integer k such that

a* =1 (mod n).

Example 2.6. Let n = 7. For each value a = 1,...,6, we can compute
successive powers of ¢ modulo n to find its multiplicative order modulo n.

il1(2(3|4]5]6
I"'mod7 |1 |11 |1|1]1
2mod7|2(4(1]2]4]1
Fmod7 (326|451
Amod7 [4]2|14]2]1
5mod7 [5[4[6|2[3]1
6’mod7 [6|1|6|1[6]1

So we conclude that modulo 7: 1 has order 1; 6 has order 2; 2 and 4 have
order 3; and 3 and 5 have order 6. O

Theorem 2.15 (Euler’s Theorem). For any positive integer n, and any
integer a relatively prime to n, we have a®™ = 1 (mod n). In particular,
the multiplicative order of a modulo n divides ¢(n).

Proof. Let a := [a],, € Z};. Consider the map f : Z; — Z} that sends § € Z;,
to af. Observe that f is injective, since if a3 = o', we may cancel a from
both sides of this equation, obtaining 3 = /. Since f maps Z injectively
into itself, and since Z; is a finite set, it must be the case that f is surjective

2.5 Fermat’s little theorem 27

as well. Thus, as 3 ranges over the set Z;,, so does a3, and we have

I 5=1I (= a¢<">< 1T ﬁ>. (2.6)

BEZy, BEL, BEZ,

Canceling the common factor [] gezz B € Ly, from the left- and right-hand
side of (2.6), we obtain

a®™ = [1],.

That proves the first statement of the theorem. The second follows from
the observation made above that o' = [1],, if and only if the multiplicative
order of « divides 7. O

As a consequence of this, we obtain:

Theorem 2.16 (Fermat’s little theorem). For any prime p, and any
integer a #Z 0 (mod p), we have a?~' = 1 (mod p). Moreover, for any
integer a, we have aP = a (mod p).

Proof. The first statement follows from Theorem 2.15, and the fact that
¢(p) = p — 1. The second statement is clearly true if a = 0 (mod p),
and if a # 0 (mod p), we simply multiply both sides of the congruence
a?~' =1 (mod p) by a. O

For a positive integer n, we say that a € Z with ged(a,n) = 1 is a
primitive root modulo n if the multiplicative order of ¢ modulo n is
equal to ¢(n). If this is the case, then for a := [a],, the powers o' range
over all elements of Z as i ranges over the interval 0,...,¢(n) — 1. Not all
positive integers have primitive roots—we will see in §10.2 that the only
positive integers n for which there exists a primitive root modulo n are

n=1,24,p°2p°,

where p is an odd prime and e is a positive integer.

EXERCISE 2.15. Find an integer whose multiplicative order modulo 101 is
100.

EXERCISE 2.16. Suppose a € Z; has multiplicative order k. Show that for
any m € Z, the multiplicative order of o™ is k/ ged(m, k).

EXERCISE 2.17. Suppose o € Zj has multiplicative order k, 3 € Z; has
multiplicative order ¢, and ged(k,) = 1. Show that o has multiplicative
order k¢. Hint: use the previous exercise.

28 Congruences
EXERCISE 2.18. Prove that for any prime p, we have
(p—1)!=—1 (mod p).

Hint: using the result of Exercise 2.5, we know that the only elements of Z;
that act as their own multiplicative inverse are [£1],; rearrange the terms
in the product] pez; B so that except for [£1],, the terms are arranged in
pairs, where each pair consists of some [€ Z, and its multiplicative inverse.

2.6 Arithmetic functions and Mobius inversion

A function, such as Euler’s function ¢, from the positive integers into the
reals is sometimes called an arithmetic function (actually, one usually
considers complex-valued functions as well, but we shall not do so here).
An arithmetic function f is called multiplicative if f(1) = 1 and for all
positive integers n,m with ged(n,m) = 1, we have f(nm) = f(n)f(m).
Theorem 2.12 simply says that ¢ is multiplicative.

In this section, we develop some of the theory of arithmetic functions that
is pertinent to number theory; however, the results in this section will play
only a very minor role in the remainder of the text.

We begin with a simple observation, which the reader may easily verify:

if [is a multiplicative function, and if n = p{*---p&r is the
prime factorization of n, then

f(n) = f(p") - flprr)

Next, we define a binary operation on arithmetic functions that has a
number of interesting properties and applications. Let f and g be arith-
metic functions. The Dirichlet product of f and g, denoted f % g, is the
arithmetic function whose value at n is defined by the formula

(fxg)(n) = f(d)g(n/d),
dn

the sum being over all positive divisors d of n. Another, more symmetric,
way to write this is

(fxg)(n)= Y fldi)g
n=dids

the sum being over all pairs (dy,ds) of positive integers with dydy = n. The
Dirichlet product is clearly commutative (i.e., fxg = g f), and is associative

2.6 Arithmetic functions and Mobius inversion 29

as well, which one can see by checking that
(fx(gxm)n) =D fd)g(dz)h(ds) = ((f * g) x h)(n),
n=didad3

the sum being over all triples (d1, d2, ds3) of positive integers with d;deds = n.
We now introduce three special arithmetic functions: I, J, and p. The
function I(n) is defined to be 1 when n = 1 and 0 when n > 1. The function
J(n) is defined to be 1 for all n.
The Mo6bius function p is defined for positive integers n as follows:

(n) = 0 if n is divisible by a square other than 1;
K | (=1)" if n is the product of r > 0 distinct primes.

Thus, if n = p' - - - p&r is the prime factorization of n, then p(n) = 0ife; > 1
for some 4, and otherwise, p(n) = (—1)". Here are some examples:

It is easy to see (verify) that for any arithmetic function f, we have

I«f=f and (J«f)(n Zf

dn

Also, the functions I, J, and p are multiplicative (verify). A useful property
of the Mobius function is the following:

Theorem 2.17. For any multiplicative function f, if n = p§'---pSr is the
prime factorization of n, we have

> p(d)f(d) = (1= f(pr)--- (1= f(pr)). (2.7)
dn
In case r =0 (i.e., n = 1), the product on the right-hand side of (2.7) is
interpreted (as usual) as 1.

Proof. The non-zero terms in the sum on the left-hand side of (2.7) are those
corresponding to divisors d of the form p;, - - - p;,, where p;,, ..., p; are dis-
tinct; the value contributed to the sum by such a term is (—1)*f(p;, - - - pi,) =
(=1)¢f(piy) - -+ f(pi,). These are the same as the terms in the expansion of
the product on the right-hand side of (2.7). O

For example, suppose f(d) = 1/d in the above theorem, and let n =
pi' -+ p&r be the prime factorization of n. Then we obtain:

doud)/d=1—=1/p)--(1=1/pr). (2.8)

dln

30 Congruences

As another example, suppose f = J. Then we obtain

(nxJ)(n) =" p(d) Hl—l),

dln i=1
which is 1 if n = 1, and is zero if n > 1. Thus, we have

pxJ =1 (2.9)

Theorem 2.18 (Mgbius inversion formula). Let f and F' be arithmetic
functions. Then we have F' = J x f if and only if f = p* F.

Proof. If F = J x f, then
prxF=px(Jxf)=(uxJ)xf=Ixf=]f,
and conversely, if f = ux F, then
Jrxf=Jx(u*xF)=(Jxpu)«F=1xF=F. O
The Mobius inversion formula says this:

= Z f(d) for all positive integers n
dn

if and only if

Z w(d)F(n/d) for all positive integers n.
din
As an application of the Mobius inversion formula, we can get a different
proof of Theorem 2.14, based on Theorem 2.11. Let F'(n) :=n and f(n) :=
¢(n). Theorem 2.11 says that F' = Jx f. Applying M&bius inversion to this
yields f = u* F, and using (2.8), we obtain

=Y _uldnfd=n} _u(d)/d

din dln
=n(l—1/p1)--- (1 =1/pr).

Of course, one could turn the above argument around, using Mobius in-
version and (2.8) to derive Theorem 2.11 from Theorem 2.14.

EXERCISE 2.19. In our definition of a multiplicative function f, we made
the requirement that f(1) = 1. Show that if we dropped this requirement,
the only other function that would satisfy the definition would be the zero
function (i.e., the function that is everywhere zero).

2.6 Arithmetic functions and Mobius inversion 31

EXERCISE 2.20. Let f be a polynomial with integer coefficients, and for
positive integer n define w¢(n) to be the number of integers z € {0,...,n—1}
such that f(z) =0 (mod n). Show that wy is multiplicative.

EXERCISE 2.21. Show that if f and g are multiplicative, then so is f x g.

EXERCISE 2.22. Define 7(n) to be the number of positive divisors of n.

(a) Show that 7 is a multiplicative function.
(b) Show that

T(n) = (1 +1)---(er + 1),

where n = p{' -+ p¢ is the prime factorization of n.

(c) Show that
Zu T(n/d) = 1.
din

(d) Show that

> uld)r(d) = (1),

dln
where n = p{' --- pi is the prime factorization of n.
EXERCISE 2.23. Define o(n) :=_,, d.

(a) Show that o is a multiplicative function.
(b) Show that

where n = p{' --- pi is the prime factorization of n.

(¢) Show that
Z u(d)o(n/d) = n.
din

(d) Show that

> uld)o(d) = (=1)pr-pr,

dln

where n = p{* - - pSr is the prime factorization of n.

32 Congruences

EXERCISE 2.24. The Mangoldt function A(n) is defined for all positive
integers n by

A(n) = { logp if n = p*, where p is prime and k is a positive integer;

0 otherwise.
(a) Show that
Z A(d) = logn.

dln
(b) Using part (a), show that

A(n) = — Zu(d) log d.

dn

EXERCISE 2.25. Show that if f is multiplicative, and if n = p{* - - - p¢ is the
prime factorization of n, then

D @)?f(d) = (1L+ f(pr) - (1+ f(or).
dn
EXERCISE 2.26. Show that n is square-free (see Exercise 1.13) if and only if

Zd|n(ﬂ(d))2¢(d) =n.

EXERCISE 2.27. Show that for any arithmetic function f with f(1) # 0,
there is a unique arithmetic function g, called the Dirichlet inverse of f,
such that f*g = I. Also, show that if f(1) = 0, then f has no Dirichlet

inverse.

EXERCISE 2.28. Show that if f is a multiplicative function, then so is its
Dirichlet inverse (as defined in the previous exercise).

3

Computing with large integers

In this chapter, we review standard asymptotic notation, introduce the for-
mal computational model we shall use throughout the rest of the text, and
discuss basic algorithms for computing with large integers.

3.1 Asymptotic notation

We review some standard notation for relating the rate of growth of func-
tions. This notation will be useful in discussing the running times of algo-
rithms, and in a number of other contexts as well.

Suppose that x is a variable taking non-negative integer or real values,
and let g denote a real-valued function in x that is positive for all sufficiently
large z; also, let f denote any real-valued function in . Then

e f = 0(g) means that |f(x)| < cg(x) for some positive constant ¢ and
all sufficiently large x (read, “f is big-O of ¢”),

o [=1Q(g) means that f(x) > cg(z) for some positive constant ¢ and
all sufficiently large x (read, “f is big-Omega of g”),

e f = O(g) means that cg(z) < f(z) < dg(z), for some positive con-
stants ¢ and d and all sufficiently large x (read, “f is big-Theta of
9’

e f = o0(g) means that f/g — 0 as x — oo (read, “f is little-o of ¢”),
and

e f ~ g means that f/g — 1 as x — oo (read, “f is asymptotically
equal to g”).

Example 3.1. Let f(x) := 22 and g() := 222 — 2+ 1. Then f = O(g) and
f=9Q(g). Indeed, f =O(g). O

Example 3.2. Let f(x) := 2% and g(z) := 2> =2z + 1. Then f ~ g. O

33

34 Computing with large integers
Exzample 3.3. Let f(x) := 100022 and g(z) := z3. Then f = o(g). O

Let us call a function in x eventually positive if it takes positive values
for all sufficiently large x. Note that by definition, if we write f = Q(g),
f=0(g), or f ~ g,it must be the case that f (in addition to g) is eventually
positive; however, if we write f = O(g) or f = o(g), then f need not be
eventually positive.

When one writes “f = O(g),” one should interpret “- = O(-)” as a binary
relation between f with g. Analogously for “f = Q(g),” “f = 0(g),” and
“f = olg)”

One may also write “O(g)” in an expression to denote an anonymous
function f such that f = O(g). As an example, one could write > ;i =
n?/2 + O(n). Analogously, Q(g), ©(g), and o(g) may denote anonymous
functions. The expression O(1) denotes a function bounded in absolute
value by a constant, while the expression o(1) denotes a function that tends
to zero in the limit.

As an even further use (abuse?) of the notation, one may use the big-O,
-Omega, and -Theta notation for functions on an arbitrary domain, in which
case the relevant bound should hold throughout the entire domain.

EXERCISE 3.1. Show that
(a) f = olg) implies f = O(g) and g £ O(f);
(b) f=0(g) and g = O(h) implies f = O(h);
(¢c) f=0(g) and g = o(h) implies f = o(h);
(d) f=o(g) and g = O(h) implies f = o(h).

EXERCISE 3.2. Let f and g be eventually positive functions in . Show that
(a) f~gifandonlyif f=(14+0(1))g;
(b) f ~ g implies f = O(g);
(c) f=0(g) if and only if f = O(g) and f = Q(g);
(d) f=Q(g) if and only if g = O(f).
EXERCISE 3.3. Let f and g be eventually positive functions in x, and suppose
f/g tends to a limit L (possibly L = c0) as x — oo. Show that
(a) if L =0, then f = o(g);
(b) if 0 < L < oo, then f = O(g);
(c) if L = oo, then g = o(f).

EXERCISE 3.4. Order the following functions in = so that for each adjacent

3.1 Asymptotic notation 35

pair f, g in the ordering, we have f = O(g), and indicate if f = o(g), f ~ g,
or g = O(f):
23, e®x? 1)z, 2(x+100) + 1/z, =+ z, logyz, loggz, 222, x,

e, 202 — 10z + 4, "HVE 9% 3 12 2%(log 1)1000.

EXERCISE 3.5. Suppose that x takes non-negative integer values, and that
g(z) > 0 for all x > xy for some xy. Show that f = O(g) if and only if
|f(z)] < cg(x) for some positive constant ¢ and all z > x.

EXERCISE 3.6. Give an example of two non-decreasing functions f and g,
both mapping positive integers to positive integers, such that f # O(g) and

g # O(f).
EXERCISE 3.7. Show that

[43 2

(a) the relation “~” is an equivalence relation on the set of eventually
positive functions;

(b) for eventually positive functions fi, fa, g2, g2, if f1 ~ f2 and g1 ~ g2,
then fi x g1 ~ fo x g2, where “x” denotes addition, multiplication, or
division;

(c) for eventually positive functions f1, f2, and any function g that tends
to infinity as * — oo, if fi ~ fo, then f1 0o g ~ fo 0 g, where “0”
denotes function composition.

EXERCISE 3.8. Show that all of the claims in the previous exercise also hold

[13

when the relation “~” is replaced with the relation “ = ©(-).”

EXERCISE 3.9. Let fi, fo be eventually positive functions. Show that if
fi ~ fa, then log(f1) = log(f2) + o(1), and in particular, if log(f1) = (1),
then log(f1) ~ log(f2).

EXERCISE 3.10. Suppose that f and g are functions defined on the integers
k,k+1,..., and that g is eventually positive. For n > k, define F(n) :=
Yo f(@)and G(n) == 3", g(7). Show that if f = O(g) and G is eventually
positive, then F' = O(G).

EXERCISE 3.11. Suppose that f and g are functions defined on the integers
k,k+1,..., both of which are eventually positive. For n > k, define F'(n) :=
Yo f(i) and G(n) := Y1, g(¢). Show that if f ~ g and G(n) — oo as
n — oo, then F' ~ G.

The following two exercises are continuous variants of the previous two
exercises. To avoid unnecessary distractions, we shall only consider functions

36 Computing with large integers

3

that are quite “well behaved.” In particular, we restrict ourselves to piece-

wise continuous functions (see §A3).

EXERCISE 3.12. Suppose that f and g are piece-wise continuous on [a, 00),
and that g is eventually positive. For z > a, define F(z) := [f(t)dt and
G(x) = f; g(t)dt. Show that if f = O(g) and G is eventually positive, then
F =0(G).

EXERCISE 3.13. Suppose that f and g are piece-wise continuous [a, o0), both
of which are eventually positive. For z > a, define F(z) := [f(t)dt and
G(x) := [g(t)dt. Show that if f ~ g and G(z) — oo as @ — oo, then
F~QG.

3.2 Machine models and complexity theory

When presenting an algorithm, we shall always use a high-level, and some-
what informal, notation. However, all of our high-level descriptions can be
routinely translated into the machine-language of an actual computer. So
that our theorems on the running times of algorithms have a precise mathe-
matical meaning, we formally define an “idealized” computer: the random
access machine or RAM.

A RAM consists of an unbounded sequence of memory cells

m[0], m[1],m[2],...

each of which can store an arbitrary integer, together with a program. A
program consists of a finite sequence of instructions Iy, I, ..., where each
instruction is of one of the following types:

arithmetic This type of instruction is of the form o < (§xy, where x rep-
resents one of the operations addition, subtraction, multiplication,
or integer division (i.e., [-/-]). The values 3 and ~ are of the form c,
m[a], or m{m[a]], and « is of the form mla] or m[m[a]], where ¢ is an
integer constant and a is a non-negative integer constant. Execution
of this type of instruction causes the value G to be evaluated and
then stored in «.

branching This type of instruction is of the form IF g & v GOTO 4, where
1 is the index of an instruction, and where < is one of the comparison
operations =, #, <, >, <, >, and (3 and ~ are as above. Execution of
this type of instruction causes the “flow of control” to pass condi-
tionally to instruction I;.

halt The HALT instruction halts the execution of the program.

8.2 Machine models and complexity theory 37

A RAM executes by executing instruction Iy, and continues to execute
instructions, following branching instructions as appropriate, until a HALT
instruction is executed.

We do not specify input or output instructions, and instead assume that
the input and output are to be found in memory at some prescribed location,
in some standardized format.

To determine the running time of a program on a given input, we charge
1 unit of time to each instruction executed.

This model of computation closely resembles a typical modern-day com-
puter, except that we have abstracted away many annoying details. How-
ever, there are two details of real machines that cannot be ignored; namely,
any real machine has a finite number of memory cells, and each cell can
store numbers only in some fixed range.

The first limitation must be dealt with by either purchasing sufficient
memory or designing more space-efficient algorithms.

The second limitation is especially annoying, as we will want to perform
computations with quite large integers—much larger than will fit into any
single memory cell of an actual machine. To deal with this limitation, we
shall represent such large integers as vectors of digits to some fixed base, so
that each digit is bounded so as to fit into a memory cell. This is discussed in
more detail in the next section. Using this strategy, the only other numbers
we actually need to store in memory cells are “small” numbers represent-
ing array indices, addresses, and the like, which hopefully will fit into the
memory cells of actual machines.

Thus, whenever we speak of an algorithm, we shall mean an algorithm that
can be implemented on a RAM, such that all numbers stored in memory cells
are “small” numbers, as discussed above. Admittedly, this is a bit imprecise.
For the reader who demands more precision, we can make a restriction such
as the following: there exist positive constants ¢ and d, such that at any
point in the computation, if & memory cells have been written to (including
inputs), then all numbers stored in memory cells are bounded by k¢ + d in
absolute value.

Even with these caveats and restrictions, the running time as we have de-
fined it for a RAM is still only a rough predictor of performance on an actual
machine. On a real machine, different instructions may take significantly dif-
ferent amounts of time to execute; for example, a division instruction may
take much longer than an addition instruction. Also, on a real machine, the
behavior of the cache may significantly affect the time it takes to load or
store the operands of an instruction. Finally, the precise running time of an

38 Computing with large integers

algorithm given by a high-level description will depend on the quality of the
translation of this algorithm into “machine code.” However, despite all of
these problems, it still turns out that measuring the running time on a RAM
as we propose here is nevertheless a good “first order” predictor of perfor-
mance on real machines in many cases. Also, we shall only state the running
time of an algorithm using a big-O estimate, so that implementation-specific
constant factors are anyway “swept under the rug.”

If we have an algorithm for solving a certain type of problem, we expect
that “larger” instances of the problem will require more time to solve than
“smaller” instances. Theoretical computer scientists sometimes equate the
notion of an “efficient” algorithm with that of a polynomial-time algo-
rithm (although not everyone takes theoretical computer scientists very se-
riously, especially on this point). A polynomial-time algorithm is one whose
running time on inputs of length n is bounded by n¢ 4+ d for some constants
c and d (a “real” theoretical computer scientist will write this as n©()). To
make this notion mathematically precise, one needs to define the length of
an algorithm’s input.

To define the length of an input, one chooses a “reasonable” scheme to
encode all possible inputs as a string of symbols from some finite alphabet,
and then defines the length of an input as the number of symbols in its
encoding.

We will be dealing with algorithms whose inputs consist of arbitrary in-
tegers, or lists of such integers. We describe a possible encoding scheme
using the alphabet consisting of the six symbols ‘0’, ‘1’, >, *,’, *(’, and ‘).
An integer is encoded in binary, with possibly a negative sign. Thus, the
length of an integer z is approximately equal to logsy [x|. We can encode
a list of integers z1,...,x, as “(Z1,...,Zy)”, where T; is the encoding of
x;. We can also encode lists of lists, and so on, in the obvious way. All of
the mathematical objects we shall wish to compute with can be encoded in
this way. For example, to encode an n X n matrix of rational numbers, we
may encode each rational number as a pair of integers (the numerator and
denominator), each row of the matrix as a list of n encodings of rational
numbers, and the matrix as a list of n encodings of rows.

It is clear that other encoding schemes are possible, giving rise to different
definitions of input length. For example, we could encode inputs in some
base other than 2 (but not unary!) or use a different alphabet. Indeed, it
is typical to assume, for simplicity, that inputs are encoded as bit strings.
However, such an alternative encoding scheme would change the definition

3.8 Basic integer arithmetic 39

of input length by at most a constant multiplicative factor, and so would
not affect the notion of a polynomial-time algorithm.

Note that algorithms may use data structures for representing mathe-
matical objects that look quite different from whatever encoding scheme
one might choose. Indeed, our mathematical objects may never actually be
written down using our encoding scheme (either by us or our programs)—
the encoding scheme is a purely conceptual device that allows us to express
the running time of an algorithm as a function of the length of its input.

Also note that in defining the notion of polynomial time on a RAM, it
is essential that we restrict the sizes of numbers that may be stored in the
machine’s memory cells, as we have done above. Without this restriction,
a program could perform arithmetic on huge numbers, being charged just
one unit of time for each arithmetic operation—mnot only is this intuitively
“wrong,” it is possible to come up with programs that solve some problems
using a polynomial number of arithmetic operations on huge numbers, and
these problems cannot otherwise be solved in polynomial time (see §3.6).

3.3 Basic integer arithmetic

We will need algorithms to manipulate integers of arbitrary length. Since
such integers will exceed the word-size of actual machines, and to satisfy the
formal requirements of our random access model of computation, we shall
represent large integers as vectors of digits to some base B, along with a bit
indicating the sign. That is, for a € Z, if we write

k—1
a= :I:ZaiBi =+(ag_1---a1a0)B,
=0

where 0 < a; < Bfori=0,...,k—1, then a will be represented in memory
as a data structure consisting of the vector of base-B digits ag,...,a;_1,
along with a “sign bit” to indicate the sign of a. When a is non-zero, the
high-order digit a;_1 in this representation should be non-zero.

For our purposes, we shall consider B to be a constant, and moreover, a
power of 2. The choice of B as a power of 2 is convenient for a number of
technical reasons.

A note to the reader: If you are not interested in the low-level details
of algorithms for integer arithmetic, or are willing to take them on faith,
you may safely skip ahead to §3.8.5, where the results of this section are
summarized.

We now discuss in detail basic arithmetic algorithms for unsigned (i.e.,

40 Computing with large integers

non-negative) integers—these algorithms work with vectors of base-B dig-
its, and except where explicitly noted, we do not assume the high-order
digits of the input vectors are non-zero, nor do these algorithms ensure that
the high-order digit of the output vector is non-zero. These algorithms can
be very easily adapted to deal with arbitrary signed integers, and to take
proper care that the high-order digit of the vector representing a non-zero
number is non-zero (the reader is asked to fill in these details in some of the
exercises below). All of these algorithms can be implemented directly in a
programming language that provides a “built-in” signed integer type that
can represent all integers of absolute value less than B?, and that provides
the basic arithmetic operations (addition, subtraction, multiplication, inte-
ger division). So, for example, using the C or Java programming language’s
int type on a typical 32-bit computer, we could take B = 2'°. The resulting
software would be reasonably efficient, but certainly not the best possible.

Suppose we have the base-B representations of two unsigned integers a
and b. We present algorithms to compute the base-B representation of a+b,
a—b,a-b, |a/b], and a mod b. To simplify the presentation, for integers
x,y with y # 0, we write divmod(z,y) to denote (|x/y],z mod y).

3.3.1 Addition

Let a = (ag—1---ag)p and b = (by_1 ---by) p be unsigned integers. Assume
that k > ¢ > 1 (if k < £, then we can just swap a and b). The sum ¢ :=a+b
is of the form ¢ = (cycg_1---co)p. Using the standard “paper-and-pencil”
method (adapted from base-10 to base-B, of course), we can compute the
base-B representation of a + b in time O(k), as follows:

carry < 0
fori «—0tof—1do
tmp «— a; + b; + carry, (carry,c;) < divmod(tmp, B)
fori — £ tok—1do
tmp — a; + carry, (carry,c;) < divmod(tmp, B)
cp — carry

Note that in every loop iteration, the value of carry is 0 or 1, and the
value tmp lies between 0 and 2B — 1.

3.3.2 Subtraction

Let a = (ag—1---ao)p and b = (by—1 ---by) p be unsigned integers. Assume
that £ > ¢ > 1. To compute the difference ¢ := a — b, we may use the same

3.8 Basic integer arithmetic 41

algorithm as above, but with the expression “a; + b;” replaced by “a; — b;.”
In every loop iteration, the value of carry is 0 or —1, and the value of tmp
lies between —B and B—1. If a > b, then ¢ = 0 (i.e., there is no carry out of
the last loop iteration); otherwise, ¢, = —1 (and b—a = B* — (c4_1 -+~) B,
which can be computed with another execution of the subtraction routine).

3.3.3 Multiplication

Let a = (ag—1---aog)p and b = (by_1---bp)p be unsigned integers, with
k> 1 and £ > 1. The product ¢ := a - b is of the form (cxi¢_1---co)p, and
may be computed in time O(k¥) as follows:

fori«—0tok+£¢—1doc; <0
fori«—0tok—1do
carry < 0
for j«—0to{¢—1do
tmp « a;b; + ciq; + carry
(carry, citj) < divmod(tmp, B)
Citp < carry

Note that at every step in the above algorithm, the value of carry lies
between 0 and B — 1, and the value of tmp lies between 0 and B? — 1.

3.3.4 Division with remainder

Let a = (ag—1---ap)p and b = (by_1---bo)p be unsigned integers, with
k>1¢>1, and by_1 # 0. We want to compute ¢ and r such that
a=0bg+rand 0 <r <b. Assume that k > ¢; otherwise, a < b, and we can
just set ¢ «— 0 and r < a. The quotient ¢ will have at most m :=k — ¢+ 1
base-B digits. Write ¢ = (¢m-1---q0)B-

At a high level, the strategy we shall use to compute ¢ and r is the
following:

T a

for i < m — 1 down to 0 do
g — |r/B')
r<—r—Bi-qib

One easily verifies by induction that at the beginning of each loop itera-
tion, we have 0 < r < B**1b, and hence each ¢; will be between 0 and B —1,
as required.

Turning the above strategy into a detailed algorithm takes a bit of work.

42 Computing with large integers

In particular, we want an easy way to compute |r/B]|. Now, we could
in theory just try all possible choices for ¢;—this would take time O(BY),
and viewing B as a constant, this is O(¢). However, this is not really very
desirable from either a practical or theoretical point of view, and we can do
much better with just a little effort.

We shall first consider a special case; namely, the case where ¢ = 1. In this
case, the computation of the quotient |r/B%| is facilitated by the following,
which essentially tells us that this quotient is determined by the two high-
order digits of r:

Theorem 3.1. Let x and y be integers such that
0<z=22"+s and 0 <y=1y'2"

for some integers n,s,x’',y’, withn >0 and 0 < s < 2". Then |x/y| =
L= /y/].
Proof. We have

r s x
y - Y y'2n =y
It follows immediately that |x/y| > |2'/y].

We also have

x_x’+s <x’+1< :c’+y’—1 +1
y - y/ y/2n y/ y/ - y/ y/ y/'

Thus, we have z/y < |2'/y']| + 1, and hence, |x/y| < |2'/y']. O

From this theorem, one sees that the following algorithm correctly com-
putes the quotient and remainder in time O(k) (in the case ¢ = 1):

carry < 0
for i «<— k — 1 down to 0 do
tmp «— carry - B + a;
(carry, q;) < divmod(tmp, by)
output the quotient ¢ = (qx—1 - - qo)p and the remainder carry

Note that in every loop iteration, the value of carry lies between 0 and
bo < B—1, and the value of tmp lies between 0 and B-by+(B—1) < B?—1.

That takes care of the special case where £ = 1. Now we turn to the
general case ¢ > 1. In this case, we cannot so easily get the digits ¢; of
the quotient, but we can still fairly easily estimate these digits, using the
following:

3.8 Basic integer arithmetic 43
Theorem 3.2. Let x and y be integers such that
0<z=22"+5s and 0 <y=19'2" +1

for some integers n,s,t,x’,y withn >0, 0 < s < 2", and 0 < t < 2",
Further suppose that 2y' > x/y. Then we have

lz/y] < |2'/y'] < lz/y] +2.

Proof. For the first inequality, note that z/y < x/(y'2"), and so |z/y] <
|z/(y'2")], and by the previous theorem, |z/(y'2")] = |2//y’]. That proves
the first inequality.

For the second inequality, first note that from the definitions, z/y >
2’ /(y'+1), which is equivalent to 2’y —xy’—2 < 0. Now, the inequality 2y’ >
x/y is equivalent to 2yy’ — x > 0, and combining this with the inequality
'y —xy —x <0, we obtain 2yy’ —x > 2’y — xy/ — x, which is equivalent to
z/y > o' [y —2. Tt follows that |x/y| > |2'/y’| —2. That proves the second
inequality. O

Based on this theorem, we first present an algorithm for division with re-
mainder that works assuming that b is appropriately “normalized,” meaning
that by_; > 2¥~! where B = 2¥. This algorithm is shown in Fig. 3.1.

Some remarks are in order:

1. In line 4, we compute g;, which by Theorem 3.2 is greater than or
equal to the true quotient digit, but exceeds this value by at most 2.

2. In line 5, we reduce g; if it is obviously too big.

3. In lines 6-10, we compute
(rige--7i)B < (Tige - 16)B — qib.
In each loop iteration, the value of tmp lies between —(B% — B) and
B — 1, and the value carry lies between —(B — 1) and 0.

4. If the estimate ¢; is too large, this is manifested by a negative value
of r; 1y at line 10. Lines 11-17 detect and correct this condition: the
loop body here executes at most twice; in lines 12-16, we compute

(Tive- - ri)B < (Tige--7i)B + (be—1 -+ bo) B-

Just as in the algorithm in §3.3.1, in every iteration of the loop in lines
13-15, the value of carry is 0 or 1, and the value tmp lies between 0
and 2B — 1.

It is quite easy to see that the running time of the above algorithm is

O (k—€+1)).

44 Computing with large integers

1. fori«<—0tok—1dor; < q;

2. Tk < 0

3. fori«— k—{down to 0 do

4. ¢ < [(TiyeB +riye—1)/be-1]

5. if g > Btheng; «— B —1

6. carry < 0

7. for j«—0to¢—1do

8. tmp < riyj — q;b; + carry

9. (carry,riy;) < divmod(tmp, B)
10. Tiye < Tiye + carry
11. while ;40 < 0 do
12. carry <0
13. for j«—0to ¢ —1do
14. tmp < riyj + b; + carry
15. (carry,riy;) < divmod(tmp, B)
16. Tiye < Tiye + carry
17. G —q; — 1
18. output the quotient ¢ = (qx—r¢---qo0)B

and the remainder r = (ry_1---79)B

Fig. 3.1. Division with Remainder Algorithm

Finally, consider the general case, where b may not be normalized. We
multiply both a and b by an appropriate value 2“’/, with 0 < v < w,
obtaining a’ := a2® and ¥ := 2%, where V' is normalized; alternatively, we
can use a more efficient, special-purpose “left shift” algorithm to achieve
the same effect. We then compute ¢ and 7’ such that a’ = b'q + r’, using
the above division algorithm for the normalized case. Observe that ¢ =
la//V | = |a/b|, and 7' = r2%' where r = a mod b. To recover 7, we simply
divide 7’ by 2% which we can do either using the above “single precision”
division algorithm, or by using a special-purpose “right shift” algorithm. All
of this normalizing and denormalizing takes time O(k + ¢). Thus, the total
running time for division with remainder is still O(¢ - (k — ¢+ 1)).

EXERCISE 3.14. Work out the details of algorithms for arithmetic on signed
integers, using the above algorithms for unsigned integers as subroutines.
You should give algorithms for addition, subtraction, multiplication, and

3.8 Basic integer arithmetic 45

division with remainder of arbitrary signed integers (for division with re-
mainder, your algorithm should compute |a/b| and a mod b). Make sure
your algorithm correctly computes the sign bit of the result, and also strips
leading zero digits from the result.

EXERCISE 3.15. Work out the details of an algorithm that compares two
signed integers a and b, determining which of @ < b, a = b, or a > b holds.

EXERCISE 3.16. Suppose that we run the division with remainder algorithm
in Fig. 3.1 for ¢ > 1 without normalizing b, but instead, we compute the
value ¢; in line 4 as follows:

@i | (riseB* + Tipe—1B + Tipe—2)/(be—1B + bp_3)].

Show that ¢; is either equal to the correct quotient digit, or the correct
quotient digit plus 1. Note that a limitation of this approach is that the
numbers involved in the computation are larger than B2.

EXERCISE 3.17. Work out the details for an algorithm that shifts a given
unsigned integer a to the left by a specified number of bits s (i.e., computes
b := a-2°). The running time of your algorithm should be linear in the
number of digits of the output.

EXERCISE 3.18. Work out the details for an algorithm that shifts a given
unsigned integer a to the right by a specified number of bits s (i.e., computes
b := |a/2°]). The running time of your algorithm should be linear in the
number of digits of the output. Now modify your algorithm so that it
correctly computes |a/2°%]| for signed integers a.

EXERCISE 3.19. This exercise is for C/Java programmers. Evaluate the
C/Java expressions

(-17) % 4; (-17) & 3;

and compare these values with (—17) mod 4. Also evaluate the C/Java
expressions

(=17) / 4; (-17) >> 2;
and compare with |—17/4]. Explain your findings.

EXERCISE 3.20. This exercise is also for C/Java programmers. Suppose
that values of type int are stored using a 32-bit 2’s complement representa-
tion, and that all basic arithmetic operations are computed correctly modulo
232 even if an “overflow” happens to occur. Also assume that double pre-

cision floating point has 53 bits of precision, and that all basic arithmetic

46 Computing with large integers

operations give a result with a relative error of at most 27°3. Also assume
that conversion from type int to double is exact, and that conversion from
double to int truncates the fractional part. Now, suppose we are given int
variables a, b, and n, such that 1 <n < 2%, 0<a<n,and 0 <b < n.
Show that after the following code sequence is executed, the value of r is
equal to (a-b) mod n:
int q;
q = (int) ((((double) a) * ((double) b)) / ((double) n));
r = axb - q*n;
if (r >= n)
r=r - n;
else if (r < 0)
r=r + n;

3.3.5 Summary

We now summarize the results of this section. For an integer a, we define
len(a) to be the number of bits in the binary representation of |a|; more
precisely,

logsy lal| +1 ifa #0,
len(a) :“ Balal] +1 Ha 71

Notice that for a > 0, if £ := len(a), then we have log, a < ¢ <logya+1, or
equivalently, 2671 < a < 2,

Assuming that arbitrarily large integers are represented as described at
the beginning of this section, with a sign bit and a vector of base-B digits,
where B is a constant power of 2, we may state the following theorem.

Theorem 3.3. Let a and b be arbitrary integers.
(i) We can compute a £ b in time O(len(a) + len(b)).
(11) We can compute a - b in time O(len(a)len(d)).

(i1i) If b # 0, we can compute the quotient q := |a/b| and the remainder
r:=amod b in time O(len(b)len(q)).

Note the bound O(len(b) len(q)) in part (iii) of this theorem, which may be
significantly less than the bound O(len(a)len(b)). A good way to remember
this bound is as follows: the time to compute the quotient and remainder is
roughly the same as the time to compute the product bg appearing in the
equality a = bq + 7.

This theorem does not explicitly refer to the base B in the underlying

3.8 Basic integer arithmetic 47

implementation. The choice of B affects the values of the implied big-O
constants; while in theory, this is of no significance, it does have a significant
impact in practice.

From now on, we shall (for the most part) not worry about the imple-
mentation details of long-integer arithmetic, and will just refer directly this
theorem. However, we will occasionally exploit some trivial aspects of our
data structure for representing large integers. For example, it is clear that
in constant time, we can determine the sign of a given integer a, the bit
length of a, and any particular bit of the binary representation of a; more-
over, as discussed in Exercises 3.17 and 3.18, multiplications and divisions
by powers of 2 can be computed in linear time via “left shifts” and “right
shifts.” It is also clear that we can convert between the base-2 representa-
tion of a given integer and our implementation’s internal representation in
linear time (other conversions may take longer—see Exercise 3.25).

A note on notation: “len” and “log.” In expressing the run-
ning times of algorithms, we generally prefer to write, for exam-
ple, O(len(a)len(b)), rather than O((loga)(logb)). There are two
reasons for this. The first is esthetic: the function “len” stresses
the fact that running times should be expressed in terms of the bit
length of the inputs. The second is technical: big-O estimates in-
volving expressions containing several independent parameters, like
O(len(a)len(b)), should be valid for all possible values of the param-
eters, since the notion of “sufficiently large” does not make sense in

this setting; because of this, it is very inconvenient to have functions,
like log, that vanish or are undefined on some inputs.

EXERCISE 3.21. Let n1,...,n; be positive integers. Show that
k k k
Zlen(ni) —k <len <H n2> < Zlen(ni).
i=1 i=1 i=1
EXERCISE 3.22. Show that the product n of integers nq,...,nx, with each

n; > 1, can be computed in time O(len(n)?). Do not assume that k is a
constant.

EXERCISE 3.23. Show that given integers ni,...,nk, with each n; > 1, and
an integer z, where 0 < z < n and n := [[, n;, we can compute the £ integers
z mod n;, for i = 1,...,k, in time O(len(n)?).

EXERCISE 3.24. Consider the problem of computing |n'/2| for a given non-
negative integer n.

(a) Using binary search, give an algorithm for this problem that runs in

48 Computing with large integers

time O(len(n)3). Your algorithm should discover the bits of |n'/?]
one at a time, from high- to low-order bit.

(b) Refine your algorithm from part (a), so that it runs in time
O(len(n)?).

EXERCISE 3.25. Show how to convert (in both directions) between the base-
10 representation and our implementation’s internal representation of an
integer n in time O(len(n)?).

3.4 Computing in Z,

Let n > 1. For a € Z,,, there exists a unique integer a € {0,...,n— 1} such
that a = [a],; we call this integer a the canonical representative of «,
and denote it by rep(«). For computational purposes, we represent elements
of Z,, by their canonical representatives.

Addition and subtraction in Z, can be performed in time O(len(n)):
given «, 8 € Zj, to compute rep(a +), we simply compute the integer
sum rep(«) + rep((3), subtracting n if the result is greater than or equal
to n; similarly, to compute rep(a — [3), we compute the integer difference
rep(a) —rep(f), adding n if the result is negative. Multiplication in Z,, can
be performed in time O(len(n)?): given a, 3 € Z,, we compute rep(a - 3) as
rep(«) rep(3) mod n, using one integer multiplication and one division with
remainder.

A note on notation: “rep,” “mod,” and “[],.” In describ-

ing algorithms, as well as in other contexts, if «, 8 are elements of
Zy, we may write, for example, v < a + § or v «— «af, and it is
understood that elements of Z,, are represented by their canonical
representatives as discussed above, and arithmetic on canonical rep-
resentatives is done modulo n. Thus, we have in mind a “strongly
typed” language for our pseudo-code that makes a clear distinction
between integers in the set {0,...,n — 1} and elements of Z,. If
a € Z, we can convert a to an object a € Z,, by writing o «— [a],,
and if a € {0,...,n — 1}, this type conversion is purely conceptual,
involving no actual computation. Conversely, if « € Z,,, we can con-
vert « to an object a € {0,...,n—1}, by writing a < rep(«); again,
this type conversion is purely conceptual, and involves no actual
computation. It is perhaps also worthwhile to stress the distinction
between a mod n and [a], —the former denotes an element of the
set {0,...,n — 1}, while the latter denotes an element of Z,,.

Another interesting problem is exponentiation in Z,: given a € Z, and
a non-negative integer e, compute a® € Z,. Perhaps the most obvious
way to do this is to iteratively multiply by a a total of e times, requiring

3.4 Computing in Zy, 49

time O(e len(n)?). A much faster algorithm, the repeated-squaring algo-
rithm, computes o using just O(len(e)) multiplications in Z,,, thus taking
time O(len(e) len(n)?).

This method works as follows. Let e = (by_1 - - - by)2 be the binary expan-
sion of e (where by is the low-order bit). For i = 0,...,¢, define ¢; := |e/2¢];
the binary expansion of e; is e; = (by_1---b;)2. Also define 3; := a for
1=20,...,¢,80 By, =1 and By = a®. Then we have

e; = 2e;+1 +b; and @-:ﬂi%rl-ozbi fori=0,...,4—1.

This idea yields the following algorithm:

B 1,
for i «+— £ — 1 down to 0 do
8 — B
if b =1 then 0+ (-«
output

It is clear that when this algorithm terminates, we have 8 = o, and that
the running-time estimate is as claimed above. Indeed, the algorithm uses
¢ squarings in Z,, and at most ¢ additional multiplications in Z,.

The following exercises develop some important efficiency improvements
to the basic repeated-squaring algorithm.

EXERCISE 3.26. The goal of this exercise is to develop a “2'-ary” variant of
the above repeated-squaring algorithm, in which the exponent is effectively
treated as a number in base 2¢, rather than in base 2.

(a) Show how to modify the repeated squaring so as to compute a¢ using
¢+ 0(1) squarings in Z,, and an additional 2¢+/¢/t+O(1) multiplica-
tions in Z,. As above, o € Z,, and len(e) = ¢, while ¢ is a parameter
that we are free to choose. Your algorithm should begin by building
a table of powers [1],a, ..., aQt*l, and after that, it should process
the bits of e from left to right in blocks of length ¢ (i.e., as base-2¢
digits).

(b) Show that by appropriately choosing the parameter ¢, we can bound
the number of additional multiplications in Z,, by O(¢/len(¢)). Thus,
from an asymptotic point of view, the cost of exponentiation is es-
sentially the cost of £ squarings in Z,.

(¢) Improve your algorithm from part (a), so that it only uses £ + O(1)
squarings in Z,, and an additional 2!=! + ¢/t + O(1) multiplications

50 Computing with large integers

in Z,. Hint: build a table that contains only the odd powers of «

among (1], «, ... a2 1,
EXERCISE 3.27. Suppose we are given aq,...,ar € Z,, along with non-
negative integers ey, ..., ex, where len(e;) < £ for i = 1,..., k. Show how to
compute

e e
Bi=ai' ot

using £ 4+ O(1) squarings in Z,, and an additional ¢ + 2* + O(1) multiplica-
tions in Z,. Your algorithm should work in two phases: in the first phase,
the algorithm uses just the values a1, ..., a; to build a table of all possible
products of subsets of ay,...,ax; in the second phase, the algorithm com-
putes (3, using the exponents e1, ..., ex, and the table computed in the first
phase.

EXERCISE 3.28. Suppose that we are to compute af, where o € Z,, for
many ¢-bit exponents e, but with « fixed. Show that for any positive integer
parameter k, we can make a pre-computation (depending on «, ¢, and k)
that uses £ + O(1) squarings in Z, and 2¥ + O(1) multiplications in Z,, so
that after the pre-computation, we can compute a® for any ¢-bit exponent e
using just ¢/k + O(1) squarings and ¢/k + O(1) multiplications in Z,. Hint:
use the algorithm in the previous exercise.

EXERCISE 3.29. Let k£ be a constant, positive integer. Suppose we are given
al, ..., € Ly, along with non-negative integers e, . .., ex, where len(e;) <
{fori=1,...,k. Show how to compute

Y- e
Bi=ai -y

using £+ O(1) squarings in Z,, and an additional O(¢/len(¢)) multiplications
in Z,. Hint: develop a 2!-ary version of the algorithm in Exercise 3.27.

EXERCISE 3.30. Let my,...,m, be integers, each greater than 1, and let
m :=my---m,. Also, for i = 1,...,r, define m; := m/m;. Given o € Z,,
show how to compute all of the quantities

! I
m m.,.
at Lol

using a total of O(len(r)len(m)) multiplications in Z,. Hint: divide and
conquer.

EXERCISE 3.31. The repeated-squaring algorithm we have presented here
processes the bits of the exponent from left to right (i.e., from high order
to low order). Develop an algorithm for exponentiation in Z, with similar
complexity that processes the bits of the exponent from right to left.

3.5 Faster integer arithmetic () 51

3.5 Faster integer arithmetic (x)

The quadratic-time algorithms presented in §3.3 for integer multiplication
and division are by no means the fastest possible. The next exercise develops
a faster multiplication algorithm.

EXERCISE 3.32. Suppose we have two positive, £-bit integers a and b such
that a = a12% + ag and b = ;2% + by, where 0 < ap < 2F and 0 < by < 2F.
Then

ab = a1b122k -+ (aobl + a1b0)2k + apbop.

Show how to compute the product ab in time O(¢), given the products agby,
a1by, and (ag — a1)(bg — b1). From this, design a recursive algorithm that
computes ab in time O(¢1°823). (Note that log, 3 ~ 1.58.)

The algorithm in the previous is also not the best possible. In fact, it is
possible to multiply ¢-bit integers on a RAM in time O(¢), but we do not
explore this any further here (see §3.6).

The following exercises explore the relationship between integer multipli-
cation and related problems. We assume that we have an algorithm that
multiplies two integers of at most ¢ bits in time M (¢). It is convenient (and
reasonable) to assume that M is a well-behaved complexity function.
By this, we mean that M maps positive integers to positive real numbers,
and

e for all positive integers a and b, we have M (a + b) > M(a) + M (b),
and

e for all real ¢ > 1 there exists real d > 1, such that for all positive
integers a and b, if a < ¢b, then M (a) < dM(b).

EXERCISE 3.33. Let a > 0, 8 > 1, v > 0, 0 > 0 be real constants. Show
that

M () := ol len (€)Y len(len(¢))°
is a well-behaved complexity function.
EXERCISE 3.34. Give an algorithm for Exercise 3.22 that runs in time
O(M (len(n))len(k)).
Hint: divide and conquer.

EXERCISE 3.35. We can represent a “floating point” number Z as a pair
(a,e), where a and e are integers—the value of Z is the rational number

52 Computing with large integers

a2¢, and we call len(a) the precision of 2. We say that Z is a k-bit ap-
proximation of a real number z if Z has precision k and Z = (1 + ¢€)z for
some |e| < 275+ Show how to compute— given positive integers b and
k—a k-bit approximation of 1/b in time O(M(k)). Hint: using Newton
iteration, show how to go from a ¢-bit approximation of 1/b to a (2t — 2)-
bit approximation of 1/b, making use of just the high-order O(t) bits of b,
in time O(M(t)). Newton iteration is a general method of iteratively
approximating a root of an equation f(x) = 0 by starting with an initial ap-
proximation xg, and computing subsequent approximations by the formula
Tiv1 = x; — f(x;)/f (x;), where f'(x) is the derivative of f(x). For this
exercise, apply Newton iteration to the function f(z) = z~! —b.

EXERCISE 3.36. Using the result of the previous exercise, given positive
integers a and b of bit length at most ¢, show how to compute |a/b| and
amod b in time O(M(¢)). From this, we see that up to a constant factor,
division with remainder is no harder that multiplication.

EXERCISE 3.37. Using the result of the previous exercise, give an algorithm
for Exercise 3.23 that runs in time O(M (len(n))len(k)). Hint: divide and
conquer.

EXERCISE 3.38. Give an algorithm for Exercise 3.24 that runs in time
O(M (len(n))). Hint: Newton iteration.

EXERCISE 3.39. Give algorithms for Exercise 3.25 that run in time
O(M(¥)len(¥)), where £ := len(n). Hint: divide and conquer.

EXERCISE 3.40. Suppose we have an algorithm that computes the square of
an (-bit integer in time S(¢), where S is a well-behaved complexity function.
Show how to use this algorithm to compute the product of two arbitrary
integers of at most ¢ bits in time O(S(¥)).

3.6 Notes

Shamir [84] shows how to factor an integer in polynomial time on a RAM,
but where the numbers stored in the memory cells may have exponentially
many bits. As there is no known polynomial-time factoring algorithm on
any realistic machine, Shamir’s algorithm demonstrates the importance of
restricting the sizes of numbers stored in the memory cells of our RAMs to
keep our formal model realistic.

The most practical implementations of algorithms for arithmetic on large

3.6 Notes 53

integers are written in low-level “assembly language,” specific to a partic-
ular machine’s architecture (e.g., the GNU Multi-Precision library GMP,
available at www.swox.com/gmp). Besides the general fact that such hand-
crafted code is more efficient than that produced by a compiler, there is
another, more important reason for using such code. A typical 32-bit ma-
chine often comes with instructions that allow one to compute the 64-bit
product of two 32-bit integers, and similarly, instructions to divide a 64-bit
integer by a 32-bit integer (obtaining both the quotient and remainder).
However, high-level programming languages do not (as a rule) provide any
access to these low-level instructions. Indeed, we suggested in §3.3 using a
value for the base B of about half the word-size of the machine, so as to
avoid overflow. However, if one codes in assembly language, one can take B
to be much closer to, or even equal to, the word-size of the machine. Since
our basic algorithms for multiplication and division run in time quadratic
in the number of base-B digits, the effect of doubling the bit-length of B is
to decrease the running time of these algorithms by a factor of four. This
effect, combined with the improvements one might typically expect from us-
ing assembly-language code, can easily lead to a five- to ten-fold decrease in
the running time, compared to an implementation in a high-level language.
This is, of course, a significant improvement for those interested in serious
“number crunching.”

The “classical,” quadratic-time algorithms presented here for integer mul-
tiplication and division are by no means the best possible: there are algo-
rithms that are asymptotically faster. We saw this in the algorithm in
Exercise 3.32, which was originally invented by Karatsuba [52] (although
Karatsuba is one of two authors on this paper, the paper gives exclusive
credit for this particular result to Karatsuba). That algorithm allows us to
multiply two £-bit integers in time O(£°823). The fastest known algorithm
for multiplying two ¢-bit integers on a RAM runs in time O(¢). This algo-
rithm is due to Schonhage, and actually works on a very restricted type of
RAM called a “pointer machine” (see Problem 12, Section 4.3.3 of Knuth
[54]). See Exercise 18.27 later in this text for a much simpler (but heuristic)
O(¢) multiplication algorithm.

Another model of computation is that of Boolean circuits. In this model
of computation, one considers families of Boolean circuits (with, say, the

2

usual “and,” “or,” and “not” gates) that compute a particular function—
for every input length, there is a different circuit in the family that computes
the function on inputs of that length. One natural notion of complexity for

such circuit families is the size of the circuit (i.e., the number of gates and

http://www.swox.com/gmp

54 Computing with large integers

wires in the circuit), which is measured as a function of the input length.
The smallest known Boolean circuit that multiplies two £-bit numbers has
size O(¢len(¢) len(len(¢))). This result is due to Schonhage and Strassen [82].

It is hard to say which model of computation, the RAM or circuits, is
“better.” On the one hand, the RAM very naturally models computers as
we know them today: one stores small numbers, like array indices, coun-
ters, and pointers, in individual words of the machine, and processing such
a number typically takes a single “machine cycle.” On the other hand, the
RAM model, as we formally defined it, invites a certain kind of “cheating,”
as it allows one to stuff O(len(¥))-bit integers into memory cells. For exam-
ple, even with the simple, quadratic-time algorithms for integer arithmetic
discussed in §3.3, we can choose the base B to have len(¢) bits, in which
case these algorithms would run in time O((¢/len(¢))?). However, just to
keep things simple, we have chosen to view B as a constant (from a formal,
asymptotic point of view).

In the remainder of this text, unless otherwise specified, we shall always
use the classical O(£?) bounds for integer multiplication and division, which
have the advantage of being both simple and reasonably reliable predictors of
actual performance for small to moderately sized inputs. For relatively large
numbers, experience shows that the classical algorithms are definitely not
the best—Karatsuba’s multiplication algorithm, and related algorithms for
division, start to perform significantly better than the classical algorithms
on inputs of a thousand bits or so (the exact crossover depends on myriad
implementation details). The even “faster” algorithms discussed above are
typically not interesting unless the numbers involved are truly huge, of bit
length around 105-10%. Thus, the reader should bear in mind that for serious
computations involving very large numbers, the faster algorithms are very
important, even though this text does not discuss them at great length.

For a good survey of asymptotically fast algorithms for integer arithmetic,
see Chapter 9 of Crandall and Pomerance [30], as well as Chapter 4 of Knuth
[54].

4
Euclid’s algorithm

In this chapter, we discuss Euclid’s algorithm for computing greatest com-
mon divisors. It turns out that Euclid’s algorithm has a number of very nice
properties, and has applications far beyond that purpose.

4.1 The basic Euclidean algorithm

We consider the following problem: given two non-negative integers a and
b, compute their greatest common divisor, ged(a,b). We can do this using
the well-known Euclidean algorithm, also called Euclid’s algorithm.

The basic idea of Euclid’s algorithm is the following. Without loss of
generality, we may assume that a > b > 0. If b = 0, then there is nothing to
do, since in this case, ged(a,0) = a. Otherwise, if b > 0, we can compute the
integer quotient ¢ := |a/b| and remainder r := a mod b, where 0 < r < b.
From the equation

a=bqg+r,

it is easy to see that if an integer d divides both b and 7, then it also divides
a; likewise, if an integer d divides a and b, then it also divides r. From
this observation, it follows that ged(a,b) = ged(b, r), and so by performing
a division, we reduce the problem of computing ged(a,b) to the “smaller”
problem of computing ged(b, 7).

The following theorem develops this idea further:

Theorem 4.1. Let a,b be integers, with a > b > 0. Using the division with
remainder property, define the integers ro,r1,...,7¢+1, and qi1,...,qe, where
£>0, as follows:

55

56 Euclid’s algorithm

a =Ty,
b:’l“l,

ro=r1q1 +7r2 (0 <1y <r11),
ric1 =71 + g1 (0 <ripn <1y),

T—o =Te—1q—1+1¢ (0 <71 <71p_1),
re—1 =1eqe (res1 =0).

Note that by definition, £ =0 if b= 0, and ¢ > 0, otherwise.
Then we have ry = ged(a, b). Moreover, if b > 0, then £ <logb/log¢+1,
where ¢ := (1+/5)/2 ~ 1.62.

Proof. For the first statement, one sees that for i = 1,...,¢, we have r;,_1 =
r:q; + 711, from which it follows that the common divisors of r;_1 and r; are
the same as the common divisors of ; and r; 41, and hence ged(ri—1,7r;) =
ged(ri, riv1). From this, it follows that

ged(a, b) = ged(ro,m1) = ged(re, ro41) = ged(re, 0) = 7.

To prove the second statement, assume that b > 0, and hence £ > 0. If
f =1, the statement is obviously true, so assume ¢ > 1. We claim that for
i=0,...,0—1, we have r,_; > ¢'. The statement will then follow by setting
i = ¢ — 1 and taking logarithms.

We now prove the above claim. For ¢ =0 and ¢ = 1, we have

re>1=¢" and re_g >rp+1>2> ¢l
For i = 2,...,¢ — 1, using induction and applying the fact the ¢? = ¢ + 1,
we have
To—i 2 To—(i—1) + To—(i-2) = PP =¢" (14) = ¢,
which proves the claim. O
FEzxample 4.1. Suppose a = 100 and b = 35. Then the numbers appearing
in Theorem 4.1 are easily computed as follows:

{ O 1| 2(3]|4
r; | 100 135130 (5|0
q; 2 116

4.1 The basic Euclidean algorithm 57
So we have ged(a,b) =r3 =5. O

We can easily turn the scheme described in Theorem 4.1 into a simple
algorithm, taking as input integers a, b, such that a > b > 0, and producing
as output d = ged(a, b):

r—a, b
while ' # 0 do
r"” < r mod r’
(r’ 7,,/) — (7,,/’7,,//)
d«r
output d

We now consider the running time of Euclid’s algorithm. Naively, one
could estimate this as follows. Suppose a and b are k-bit numbers. The
algorithm performs O(k) divisions on numbers with at most k-bits. As each
such division takes time O(k?), this leads to a bound on the running time
of O(k?). However, as the following theorem shows, this cubic running time
bound is well off the mark.

Theorem 4.2. Euclid’s algorithm runs in time O(len(a)len(b)).

Proof. We may assume that b > 0. The running time is O(7), where 7 :=
Zle len(r;)len(g;). Since r; < bfor i =1,...,¢, we have

12 l L
7 < len(b) Zlen(qi) < len(b) Z(logg ¢i+1) =len(b)(¢ + logQ(H qi))-
i=1

i=1 i=1
Note that

a=17o2>T1q1 = 12G2q1 = -+ 2 T¢qr - q1 = Q- q1-
We also have ¢ < logb/log ¢ + 1. Combining this with the above, we have
7 < len(b)(logb/log ¢ + 1 + logy a) = O(len(a) len(b)),

which proves the theorem. O

EXERCISE 4.1. This exercise looks at an alternative algorithm for comput-
ing ged(a,b), called the binary gcd algorithm. This algorithm avoids
complex operations, such as division and multiplication; instead, it relies
only on division and multiplication by powers of 2, which assuming a binary
representation of integers (as we are) can be very efficiently implemented
using “right shift” and “left shift” operations. The algorithm takes positive
integers a and b as input, and runs as follows:

58 Euclid’s algorithm

rea, b e—0
while 2 | rand 2 |7/ dor — r/2, " —1'/2, e — e+ 1
repeat
while 2 | r do r « r/2
while 2 | ' do 1" «— 1'/2
if ' < r then (r,r") — (', 7)
re—r—r
until 7/ = 0
d—2°7r

output d

Show that this algorithm correctly computes ged(a,b), and runs in time
O(£?), where ¢ := max(len(a), len(b)).

4.2 The extended Euclidean algorithm

Let a and b be non-negative integers, and let d := ged(a,b). We know by
Theorem 1.6 that there exist integers s and t such that as + bt = d. The
extended Euclidean algorithm allows us to efficiently compute s and ¢.
The following theorem describes the algorithm, and also states a number
of important facts about the relative sizes of the numbers that arise during
the computation—these size estimates will play a crucial role, both in the
analysis of the running time of the algorithm, as well as in applications of
the algorithm that we will discuss later.

Theorem 4.3. Leta, b, ro,71,...,7¢+1 and q1,...,qe be as in Theorem 4.1.
Define integers sg, S1,...,Ser1 and to,t1,...,ter1 as follows:

so:=1, to9:=0,
s1:=0, t;:=1,

and fori=1,...,¢,

Sit1 = Si—1 — SiQi, tiy1 = ti—1 — t;q;-

Then
(i) fori=0,...,0+1, we have s;a + t;b = r;; in particular, sea + tib =
ged(a, b);
(i3) fori=0,...,¢, we have s;ti11 — t;sit1 = (—1);

(iii) fori=0,...,£+ 1, we have ged(s;, t;) = 1;
(iv) fori=0,...,¢, we have titir; <0 and |t;| < |tiz1]; fori=1,...,¢,
we have s;sit+1 < 0 and |s;| < |si+1];
(v) fori=1,.... 0+ 1, we have r;_1|t;| < a and r;—1|s;] <.

4.2 The extended Fuclidean algorithm 59

Proof. (i) is easily proved by induction on i. For ¢ = 0, 1, the statement is
clear. For i = 2,...,¢+ 1, we have

5;0 4 tib = (si—2 — si—1qi—1)a + (ti—2 — ti—1¢;—1)b
= (8i—2a + ti—2b) — (si—1a + t;_1b)g;
=ri—og —1ri—1gi—1 (by induction)
=7
(ii) is also easily proved by induction on i. For i = 0, the statement is
clear. For i =1,...,¢, we have

Sitip1 — tisip1 = si(ti—1 — tiqi) — ti(si—1 — 544;)
= —(sj_1t;i —t;—18;) (after expanding and simplifying)
= —(=1)"!=(=1)" (by induction).

(iii) follows directly from (ii).

For (iv), one can easily prove both statements by induction on i. The
statement involving the ¢; is clearly true for ¢ = 0; for i = 1,..., ¢, we have
tiv1 = ti—1 — t;q;, and since by the induction hypothesis ¢;_; and ¢; have
opposite signs and |t;| > [t;—1], it follows that |t;11]| = [tiz1] + |tila > [ti],
and that the sign of ¢;;1 is the opposite of that of ¢;. The proof of the
statement involving the s; is the same, except that we start the induction
at 1 =1.

For (v), one considers the two equations:

si—1a+ti1b =171,
sia +t;b=r;.

Subtracting ¢;_1 times the second equation from t; times the first, applying
(ii), and using the fact that t; and ¢;_1 have opposite sign, we obtain

a = |tiri—1 — ti—ari| > |tilriz,

from which the inequality involving t; follows. The inequality involving s;
follows similarly, subtracting s;—1 times the second equation from s; times
the first. O

Suppose that a > 0 in the above theorem. Then for ¢ = 1,...,¢ 4 1, the
value 7;_1 is a positive integer, and so part (v) of the theorem implies that
lti] < a/ri-1 < aand |s;] < b/ri_1 <b. Moreover, if a > 1 and b > 0, then
¢ >0 and r,—1 > 2, and hence |ty| < a/2 and |s¢| < b/2.

Ezxample 4.2. We continue with Example 4.1. The numbers s; and ¢; are
easily computed from the g;:

60 Euclid’s algorithm

i 0| 1| 21| 3 4
r; | 100 | 35|30 | 5 0

qi 2 6
S; 1 0 1]-1 7
t; 0 1] -2 3]-20

So we have ged(a,b) =5 = —a+3b. O

We can easily turn the scheme described in Theorem 4.3 into a simple
algorithm, taking as input integers a, b, such that a > b > 0, and producing
as output integers d, s, and ¢, such that d = ged(a, b) and as + bt = d:

r«a, r<b
s—1, 58«0
t—0,t 1
while ' # 0 do
q<— |r/r'], "« rmodr’
(rys,t,r ' ") «— (r', s, ¢/, r" s — s'q,t — t'q)
d«r
output d, s,t

Theorem 4.4. The extended Euclidean algorithm runs in time
O(len(a) len(b)).

Proof. We may assume that b > 0. It suffices to analyze the cost of comput-
ing the sequences {s;} and {t;}. Consider first the cost of computing all of
the ¢;, which is O(7), where 7 := Zle len(¢;) len(g;). We have t; = 1 and,
by part (v) of Theorem 4.3, we have |t;| < a for i = 2,...,¢. Arguing as in
the proof of Theorem 4.2, we have
4 ¢
T <len(q;) + len(a) Z len(q;) <len(q1) + len(a)(¢ — 1+ 10g2(H q))
i=2 =2
= O(len(a)len(d)),

where we have used the fact that Hf:z ¢; < b. An analogous argument shows
that one can also compute all of the s; in time O(len(a)len(b)), and in fact,
in time O(len(b)?). O

Another, instructive way to view Theorem 4.3 is as follows. For i =

(r)-C)

1,...,¢, we have

4.2 The extended Fuclidean algorithm 61

Recursively expanding the right-hand side of this equation, we have for

i=0,... .0,
T o ‘ a
<n+1> =M ’

where for ¢ = 1,..., £, the matrix M; is defined as

0 1 0 1
M; = . .
(1 —qz‘) (1 —q1>

If we define My to be the 2 x 2 identity matrix, then it is easy to see that

Mi = < 5 tl >7
Sit1 tig1

fori=0,...,¢. From this observation, part (i) of Theorem 4.3 is immediate,
and part (ii) follows from the fact that M; is the product of ¢ matrices, each
of determinant —1, and the determinant of M; is evidently s;t;11 — t;S;41-

EXERCISE 4.2. One can extend the binary gcd algorithm discussed in Ex-
ercise 4.1 so that in addition to computing d = ged(a, b), it also computes s
and ¢ such that as + bt = d. Here is one way to do this (again, we assume
that a and b are positive integers):

rea, b e—0
while 2 |rand 2 | dor «—r/2, ¥ —1'/2, e —e+1
Ger, b1, s—1,t—0,8 <0, t—1
repeat
while 2 | r do
re—1/2
if2]sand 2|t then s« s/2, t —t/2
else s (s+b)/2, t — (t—a)/2
while 2 | 7’ do
r’—r'/2
if 2] s and 2|t then s’ « §'/2, ' —t'/2
else s — (&' +0)/2, t/ — (t' —a)/2
if ¥ < r then (r,s,t,r', s, t') « (v, s, ¢/, r s,t)
r'e—r' —r s —s —s, t —t —t
until ' = 0
d«— 2¢-r, output d,s,t

Show that this algorithm is correct and runs in time O(¢?), where ¢ :=
max(len(a),len(b)). In particular, you should verify that all of the divisions

62 Euclid’s algorithm

by 2 performed by the algorithm yield integer results. Moreover, show that
the outputs s and ¢ are of length O(¥).

4.3 Computing modular inverses and Chinese remaindering

One application of the extended Euclidean algorithm is to the problem of
computing multiplicative inverses in Z,,, where n > 1.
Given y € {0,...,n — 1}, in time O(len(n)?), we can determine if y is

' mod n, as follows. We run

relatively prime to n, and if so, compute y~
the extended Euclidean algorithm on inputs a := n and b := y, obtaining
integers d, s, and ¢, such that d = ged(n,y) and ns + yt = d. If d # 1, then
y does not have a multiplicative inverse modulo n. Otherwise, if d = 1, then
t is a multiplicative inverse of y modulo n; however, it may not lie in the
range {0,...,n—1}, as required. Based on Theorem 4.3 (and the discussion
immediately following it), we know that |[t| < n/2 < n; therefore, either
te{0,....n—1},ort <0and t+n € {0,...,n— 1}. Thus, y~! mod n is
equal to either ¢ or ¢t + n.

We also observe that the Chinese remainder theorem (Theorem 2.8) can
be made computationally effective:

Theorem 4.5. Given integers ni,...,ng and ay,...,ar, where ny, ..., ng
are pairwise relatively prime, and where n; > 1 and 0 < a; < n; for i =
1,...,k, we can compute the integer z, such that 0 < z < n and z =
a; (mod n;) fori=1,...,k, where n :=[[;n;, in time O(len(n)?).

Proof. Exercise (just use the formulas in the proof of Theorem 2.8, and see
Exercises 3.22 and 3.23). O

EXERCISE 4.3. In this exercise and the next, you are to analyze an “incre-
mental Chinese remaindering algorithm.” Consider the following algorithm,
which takes as input integers z,n, 2’,n/, such that

n’ >1, ged(n,n') =1, 0<z<mn, and 0< 2 <n'

It outputs integers 2", n”, such that

/

/ / " " "
n =nn, 0<z2z'<n’, 2z

=z (mod n), and 2" =2 (modn’).

It runs as follows:
1. Set 2 «— n~t mod n’.
2. Set h — ((2/ — 2)n) mod n'.

4.4 Speeding up algorithms via modular computation 63

3. Set 2" — z + nh.
4. Set n” — nn'.
5. Output 2”,n”.

Show that the output z”,n” of the algorithm satisfies the conditions stated
above, and estimate the running time of the algorithm.

EXERCISE 4.4. Using the algorithm in the previous exercise as a subroutine,
give a simple O(len(n)?) algorithm that takes as input integers ny,...,ny
and ai,...,ar, where ni,...,n; are pairwise relatively prime, and where
n; >1and 0 <a; <n; fori=1,...,k, and outputs integers z and n such
that 0 < z < n, n = [[;n4, and z = a; (mod n;) for i = 1,...,k. The
algorithm should be “incremental,” in that it processes the pairs (n;, a;) one
at a time, using time O(len(n)len(n;)) to process each such pair.

EXERCISE 4.5. Suppose you are given ay,...,a € Z;. Show how to com-
pute al_l, . ,agl by computing one multiplicative inverse modulo n, and
performing less than 3k multiplications modulo n. This result is useful, as
in practice, if n is several hundred bits long, it may take 10-20 times longer
to compute multiplicative inverses modulo n than to multiply modulo n.

4.4 Speeding up algorithms via modular computation

An important practical application of the above “computational” version
(Theorem 4.5) of the Chinese remainder theorem is a general algorithmic
technique that can significantly speed up certain types of computations in-
volving long integers. Instead of trying to describe the technique in some
general form, we simply illustrate the technique by means of a specific ex-
ample: integer matrix multiplication.

Suppose we have two m x m matrices A and B whose entries are large
integers, and we want to compute the product matrix C' := AB. If the
entries of A are (a,s) and the entries of B are (bs), then the entries (c,¢)
of C are given by the usual rule for matrix multiplication:

m

Crt = Z arsbst.

s=1
Suppose further that H is the maximum absolute value of the entries
in A and B, so that the entries in C are bounded in absolute value by
H' := H?m. Then by just applying the above formula, we can compute
the entries of C using m?® multiplications of numbers of length at most
len(H), and m? additions of numbers of length at most len(H’), where

64 Euclid’s algorithm
len(H') < 2len(H) + len(m). This yields a running time of
O(m®len(H)? + m>len(m)). (4.1)

If the entries of A and B are large relative to m, specifically, if
len(m) = O(len(H)?), then the running time is dominated by the
first term above, namely

O(m?len(H)?).

Using the Chinese remainder theorem, we can actually do much better
than this, as follows.

For any integer n > 1, and for all r,t =1,..., m, we have
m
Crt = Zambst (mod n). (4.2)
s=1

Moreover, if we compute integers ¢, such that

m
= Zambst (mod n) (4.3)
s=1
and if we also have
-n/2<c,<n/2 and n>2H', (4.4)
then we must have
Crt = C;p (4.5)

To see why (4.5) follows from (4.3) and (4.4), observe that (4.2) and (4.3)
imply that ¢4 = ¢/, (mod n), which means that n divides (¢4 — ¢}.,). Then
from the bound |¢,t| < H' and from (4.4), we obtain

lere — byl < et + |yl < H +n/2 <nj2+4n/2=n.

So we see that the quantity (¢+ — ¢},) is a multiple of n, while at the
same time this quantity is strictly less than n in absolute value; hence, this
quantity must be zero. That proves (4.5).

So from the above discussion, to compute C, it suffices to compute the
entries of C' modulo n, where we have to make sure that we compute “bal-
anced” remainders in the interval [—n/2,n/2), rather than the more usual
“least non-negative” remainders.

To compute C modulo n, we choose a number of small integers nq, ..., ng,
relatively prime in pairs, and such that the product n := nj---ng is just a
bit larger than 2H’. In practice, one would choose the n; to be small primes,
and a table of such primes could easily be computed in advance, so that all

4.4 Speeding up algorithms via modular computation 65

problems up to a given size could be handled. For example, the product of
all primes of at most 16 bits is a number that has more than 90,000 bits.
Thus, by simply pre-computing and storing such a table of small primes,
we can handle input matrices with quite large entries (up to about 45,000
bits).

Let us assume that we have pre-computed appropriate small primes
ni,...,ng. Further, we shall assume that addition and multiplication mod-
ulo any of the n; can be done in constant time. This is reasonable, both from
a practical and theoretical point of view, since such primes easily “fit” into
a memory cell. Finally, we assume that we do not use more of the numbers
n; than are necessary, so that len(n) = O(len(H')) and k = O(len(H')).

To compute C, we execute the following steps:

1. For each i = 1,...,k, do the following:
(a) compute &7(«? —arsmodn; forr,s=1,...,m,
(b) compute l;g? — bg mod n; for s,t =1,...,m,
(¢) For r,t =1,...,m, compute
AT’ <—Z (@) mod n;.

Qg st

2. For each r,t = 1,...,m, apply the Chinese remainder theorem to

A1) 4(2) 5(k)
Crt' s Crg 7"'707“15 ’

as a balanced remainder modulo n, so that n/2 < ¢+ < n/2.
3. Output (¢p¢: 7t =1,...,m).
Note that in Step 2, if our Chinese remainder algorithm happens to be

implemented to return an integer z with 0 < z < n, we can easily get a
balanced remainder by just subtracting n from z if z > n/2.

obtalmng an integer c¢,¢, which should be computed

The correctness of the above algorithm has already been established. Let
us now analyze its running time. The running time of Steps la and 1b is
easily seen (see Exercise 3.23) to be O(m?len(H’)?). Under our assumption
about the cost of arithmetic modulo small primes, the cost of Step lc is
O(m3k), and since k = O(len(H")) = O(len(H) + len(m)), the cost of this
step is O(m3(len(H) +1len(m))). Finally, by Theorem 4.5, the cost of Step 2
is O(m?len(H’)?). Thus, the total running time of this algorithm is easily
calculated (discarding terms that are dominated by others) as

O(m?*len(H)? + m>len(H) 4+ m>len(m)).

Compared to (4.1), we have essentially replaced the term m?len(H)? by
m?len(H)? + m3len(H). This is a significant improvement: for example,

66 Euclid’s algorithm

if len(H) ~ m, then the running time of the original algorithm is O(m?®),
while the running time of the modular algorithm is O(m?).

EXERCISE 4.6. Apply the ideas above to the problem of computing the
product of two polynomials whose coefficients are large integers. First, de-
termine the running time of the “obvious” algorithm for multiplying two
such polynomials, then design and analyze a “modular” algorithm.

4.5 Rational reconstruction and applications

We next state a theorem whose immediate utility may not be entirely ob-
vious, but we quickly follow up with several very neat applications. The
general problem we consider here, called rational reconstruction, is as
follows. Suppose that there is some rational number ¢ that we would like to
get our hands on, but the only information we have about ¢ is the following;:
e First, suppose that we know that §y may be expressed as r/t for
integers r,t, with |r| < r* and |t| < t*—we do not know r or ¢, but
we do know the bounds r* and t*.
e Second, suppose that we know integers y and n such that n is rela-
tively prime to ¢, and y = rt~! mod n.
It turns out that if n is sufficiently large relative to the bounds r* and t*,
then we can virtually “pluck” g out of the extended Euclidean algorithm
applied to n and y. Moreover, the restriction that n is relatively prime to
t is not really necessary; if we drop this restriction, then our assumption is
that r = ty (mod n), or equivalently, r = sn + ty for some integer s.

Theorem 4.6. Let r*,t*, n,y be integers such that r* > 0, t* > 0, n > 4r*t*,
and 0 < y < n. Suppose we run the extended FEuclidean algorithm with

inputs a :==n and b :=y. Then, adopting the notation of Theorem 4.3, the
following hold:

(i) There exists a unique indexi =1,...,0+1 such that r; < 2r* <r;,_y;
note that t; # 0 for this i.

Letr' :=r;, s == s;, and t' :=t;.
(ii) Furthermore, for any integers r,s,t such that
r=sn+ty, |r|<r*, and 0<|t| <7, (4.6)
we have
r=ra, s=sa, and t="ta,

for some non-zero integer a.

4.5 Rational reconstruction and applications 67

Proof. By hypothesis, 2r* < n = rg. Moreover, since rq,...,7¢, 741 = 0
is a decreasing sequence, and 1 = [t1],|ta],...,|te+1] is a non-decreasing
sequence, the first statement of the theorem is clear.

Now let ¢ be defined as in the first statement of the theorem. Also, let
r,s,t be as in (4.6).

From part (v) of Theorem 4.3 and the inequality 2r* < r;_1, we have

It] < "

< .
Ti—1 2r*

From the equalities r; = s;n 4+ t;y and r = sn + ty, we have the two congru-
ences:

r =ty (mod n),
r; = t;y (mod n).
Subtracting t; times the first from t times the second, we obtain
rt; = rit (mod n).

This says that n divides rt; — r;t. Using the bounds |r| < r* and |t;| <
n/(2r*), we see that |rt;| < n/2, and using the bounds |r;| < 2r*, [¢t| < t7,
and 4r*t* < n, we see that |r;t| < n/2. It follows that

|rti — rit| < |rti| + |rit| <n/2+n/2 =n.
Since n divides rt; — r;t and |rt; — r;t| < n, the only possibility is that
rt; —rit = 0. (4.7)
Now consider the two equations:
r=sn-+1ty
r; = sin + t;y.

Subtracting ¢; times the first from ¢ times the second, and using the identity
(4.7), we obtain n(st; — s;t) = 0, and hence

Sti — Sit =0. (48)

From (4.8), we see that t; | s;t, and since from part (iii) of Theorem 4.3,
we know that ged(s;,t;) = 1, we must have ¢; | t. So t = t;« for some «, and
we must have o # 0 since t # 0. Substituting t;« for ¢ in equations (4.7)
and (4.8) yields r = r;a and s = s;a. That proves the second statement of
the theorem. O

68 Euclid’s algorithm

4.5.1 Application: Chinese remaindering with errors

One interpretation of the Chinese remainder theorem is that if we “encode”
an integer z, with 0 < z < n, as the sequence (aq, ..., ax), where a; = z mod
n; fori =1, ..., k, then we can efficiently recover z from this encoding. Here,
of course, n = nj---ng, and the integers ny,...,n; are pairwise relatively
prime.

But now suppose that Alice encodes z as (ai,...,a), and sends this
encoding to Bob; however, during the transmission of the encoding, some
(but hopefully not too many) of the values aq, ..., ax may be corrupted. The
question is, can Bob still efficiently recover the original z from its corrupted
encoding?

To make the problem more precise, suppose that the original, correct
encoding of z is (a1, ...,ax), and the corrupted encoding is (ai,...,ax). Let
us define G C {1,...,k} to be the set of “good” positions 7 with a; = a;,
and B C {1,...,k} to be the set of “bad” positions i with a; # a;. We shall
assume that |B| < ¢, where ¢ is some specified parameter.

Of course, if Bob hopes to recover z, we need to build some redundancy
into the system; that is, we must require that 0 < z < Z for some Z that is
somewhat smaller than n. Now, if Bob knew the location of bad positions,
and if the product of the integers n; at the good positions exceeds Z, then
Bob could simply discard the errors, and reconstruct z by applying the
Chinese remainder theorem to the values a; and n; at the good positions.
However, in general, Bob will not know a priori the location of the bad
positions, and so this approach will not work.

Despite these apparent difficulties, Theorem 4.6 may be used to solve the
problem quite easily, as follows. Let P be an upper bound on the product
of any /¢ of the integers ny,...,nx (e.g., we could take P to be the product
of the ¢ largest n;). Further, let us assume that n > 4P%Z.

Now, suppose Bob obtains the corrupted encoding (aq,...,ax). Here is
what Bob does to recover z:

1. Apply the Chinese remainder theorem, obtaining an integer ¥y, with
0<y<nandy=a; (modn;) fori=1,... k.
2. Run the extended Euclidean algorithm on a :=n and b := y, and let
r’,t' be the values obtained from Theorem 4.6 applied with r* := ZP
and t* := P.
3. If ¢/ | v, output r'/t'; otherwise, output “error.”
We claim that the above procedure outputs z, under our assumption that

the set B of bad positions is of size at most £. To see this, let ¢ := [[,c 5 1.
By construction, we have 1 < t < P. Also, let r := tz, and note that

4.5 Rational reconstruction and applications 69

0<r<r*and 0<t<t* We claim that

r =ty (mod n). (4.9)
To show that (4.9) holds, it suffices to show that

tz =ty (mod n;) (4.10)
forall t = 1,...,k. To show this, for each index ¢ we consider two cases:

Case 1: 1 € G. In this case, we have a; = a;, and therefore,
tz = ta; = ta; = ty (mod n;).
Case 2: i € B. In this case, we have n; | t, and therefore,
tz =0 =ty (mod n;).

Thus, (4.10) holds for all ¢ = 1,...,k, and so it follows that (4.9) holds.

Therefore, the values 7/, ¢ obtained from Theorem 4.6 satisfy
roor tz

FiT

One easily checks that both the procedures to encode and decode a value
z run in time O(len(n)?). If one wanted a practical implementation, one
might choose ni,...,n; to be, say, 16-bit primes, so that the encoding of a
value z consisted of a sequence of k 16-bit words.

The above scheme is an example of an error correcting code, and is

actually the integer analog of a Reed—Solomon code.

4.5.2 Application: recovering fractions from their decimal
expansions

Suppose Alice knows a rational number z := s/t, where s and t are integers
with 0 < s < t, and tells Bob some of the high-order digits in the decimal
expansion of z. Can Bob determine z7? The answer is yes, provided Bob
knows an upper bound T on ¢, and provided Alice gives Bob enough digits.
Of course, from grade school, Bob probably remembers that the decimal
expansion of z is ultimately periodic, and that given enough digits of z so
as to include the periodic part, he can recover z; however, this technique is
quite useless in practice, as the length of the period can be huge—©O(7T) in
the worst case (see Exercises 4.8-4.10 below). The method we discuss here
requires only O(len(7T)) digits.

To be a bit more general, suppose that Alice gives Bob the high-order k

70 Euclid’s algorithm

digits in the d-ary expansion of z, for some base d > 1. Now, we can express
z in base d as

z = ,zlcl_1 + ZQd_2 + Z3d_3 4+

and the sequence of digits z1, 22, 23, . . . is uniquely determined if we require
that the sequence does not terminate with an infinite run of (d — 1)-digits.
Suppose Alice gives Bob the first k digits z1, ..., z;. Define

y = 2d" Vb bz d 4 oz = [2d.

Let us also define n := d*, so that y = [zn].

Now, if n is much smaller than 72, the number z is not even uniquely
determined by y, since there are Q(7?) distinct rational numbers of the
form s/t, with 0 < s < t < T (see Exercise 1.18). However, if n > 472,
then not only is z uniquely determined by y, but using Theorem 4.6, we can
compute it as follows:

1. Run the extended Euclidean algorithm on inputs a := n and b := y,
and let s, ¢ be as in Theorem 4.6, using r* :=t* :=T.
2. Output ¢, t.
We claim that z = —s'/t’. To prove this, observe that since y = |zn] =
|(ns)/t], if we set r := (ns) mod ¢, then we have

r=sn—ty and 0<r <t <t"

It follows that the integers s’,¢ from Theorem 4.6 satisfy s = s'a and
—t = t'a for some non-zero integer «. Thus, s'/t' = —s/t, which proves the
claim.

We may further observe that since the extended Euclidean algorithm guar-
antees that ged(s',¢') = 1, not only do we obtain z, but we obtain z expressed
as a fraction in lowest terms.

It is clear that the running time of this algorithm is O(len(n)?).

Example 4.3. Alice chooses numbers 0 < s < t < 1000, and tells Bob the
high-order seven digits y in the decimal expansion of z := s/t, from which
Bob should be able to compute z. Suppose s = 511 and ¢ = 710. Then
s/t ~ 0.71971830985915492958, and so y = 7197183 and n = 107. Running
the extended Euclidean algorithm on inputs a :=n and b := y, Bob obtains
the following data:

4.5 Rational reconstruction and applications 71

i i G S l;
0 | 10000000 0
1 7197183 1 1
2 2802817 2 1 -1
3 1591549 1 -2 3
4 1211268 1 3 -4
5 380281 3 -5 7
6 70425 5 18 -25
7 28156 2 -95 132
8 14113 1 208 -289
9 14043 1 -303 421
10 70 200 511 -710
11 43 1 -102503 142421
12 27 1 103014 -143131
13 16 1 -205517 285552
14 11 1 308531 -428683
15 5 2 -514048 714235
16 1 5 1336627 -1857153
17 0 -7197183 10000000

The first r; that meets or falls below the threshold 2r* = 2000 is at
i = 10, and Bob reads off s = 511 and ¢’ = —710, from which he obtains
z=—s/t' =511/710. O

EXERCISE 4.7. Show that given integers s,t, k, with 0 < s < t, and k£ >

0, we can compute the kth digit in the decimal expansion of s/t in time
O(len(k) len(t)?).

For the following exercises, we need a definition: a sequence S :=
(21,22, 23,...) of elements drawn from some arbitrary set is called (k,¥¢)-
periodic for integers k > 0 and ¢ > 1 if z; = z;4 for all ¢ > k. S is called
ultimately periodic if it is (k, ¢)-periodic for some (k,).

EXERCISE 4.8. Show that if a sequence S is ultimately periodic, then it
is (k*, ¢*)-periodic for some uniquely determined pair (k*,¢*) for which the
following holds: for any pair (k,¢) such that S is (k,¥)-periodic, we have
k* < k and ¢* < /.

The value ¢£* in the above exercise is called the period of S, and k* is
called the pre-period of S. If its pre-period is zero, then S is called purely
periodic.

72 Euclid’s algorithm

EXERCISE 4.9. Let z be a real number whose base-d expansion is an ulti-
mately periodic sequence. Show that z is rational.

EXERCISE 4.10. Let z = s/t € Q, where s and t are relatively prime integers
with 0 < s < t, and let d > 1 be an integer.

(a) Show that there exist integers k, k" such that 0 < k < k" and sd* =
sd* (mod t).

(b) Show that for integers k, k" with 0 < k < k/, the base-d expansion of
z is (k, k' — k)-periodic if and only if sd* = sd* (mod t).

(¢) Show that if ged(t,d) = 1, then the base-d expansion of z is purely
periodic with period equal to the multiplicative order of d modulo t.

(d) More generally, show that if k is the smallest non-negative integer
such that d and ¢’ := t/ ged(d”, t) are relatively prime, then the base-
d expansion of z is ultimately periodic with pre-period k and period
equal to the multiplicative order of d modulo ¢'.

A famous conjecture of Artin postulates that for any integer d, not equal
to —1 or to the square of an integer, there are infinitely many primes ¢ such
that d has multiplicative order t — 1 modulo ¢. If Artin’s conjecture is true,
then by part (c) of the previous exercise, for any d > 1 that is not a square,
there are infinitely many primes ¢ such that the base-d expansion of s/t, for
any 0 < s < t, is a purely periodic sequence of period ¢ — 1. In light of these
observations, the “grade school” method of computing a fraction from its
decimal expansion using the period is hopelessly impractical.

4.5.83 Applications to symbolic algebra

Rational reconstruction also has a number of applications in symbolic alge-
bra. We briefly sketch one such application here. Suppose that we want to
find the solution v to the equation

vA = w,

where we are given as input a non-singular square integer matrix A and an
integer vector w. The solution vector v will, in general, have rational en-
tries. We stress that we want to compute the exact solution v, and not some
floating point approximation to it. Now, we could solve for v directly us-
ing Gaussian elimination; however, the intermediate quantities computed by
that algorithm would be rational numbers whose numerators and denomina-
tors might get quite large, leading to a rather lengthy computation (however,

4.6 Notes 73

it is possible to show that the overall running time is still polynomial in the
input length).

Another approach is to compute a solution vector modulo n, where n is
a power of a prime that does not divide the determinant of A. Provided n
is large enough, one can then recover the solution vector v using rational
reconstruction. With this approach, all of the computations can be carried
out using arithmetic on integers not too much larger than n, leading to a
more efficient algorithm. More of the details of this procedure are developed
later, in Exercise 15.13.

4.6 Notes

The Euclidean algorithm as we have presented it here is not the fastest
known algorithm for computing greatest common divisors. The asymptot-
ically fastest known algorithm for computing the greatest common divisor
of two numbers of bit length at most ¢ runs in time O(¢len(¢)) on a RAM,
and the smallest Boolean circuits are of size O(£len(¢)?len(len(¢))). This
algorithm is due to Schénhage [81]. The same complexity results also hold
for the extended Euclidean algorithm, as well as Chinese remaindering and
rational reconstruction.

Experience suggests that such fast algorithms for greatest common divi-
sors are not of much practical value, unless the integers involved are wvery
large—at least several tens of thousands of bits in length. The extra “log”
factor and the rather large multiplicative constants seem to slow things down
too much.

The binary ged algorithm (Exercise 4.1) is due to Stein [95]. The ex-
tended binary ged algorithm (Exercise 4.2) was first described by Knuth
[54], who attributes it to M. Penk. Our formulation of both of these al-
gorithms closely follows that of Menezes, van Oorschot, and Vanstone [62].
Experience suggests that the binary ged algorithm is faster in practice than
Euclid’s algorithm.

Our exposition of Theorem 4.6 is loosely based on Bach [11]. A somewhat
“tighter” result is proved, with significantly more effort, by Wang, Guy, and
Davenport [97]. However, for most practical purposes, the result proved
here is just as good. The application of Euclid’s algorithm to computing a
rational number from the first digits of its decimal expansion was observed
by Blum, Blum, and Shub [17], where they considered the possibility of
using such sequences of digits as a pseudo-random number generator—the
conclusion, of course, is that this is not such a good idea.

5

The distribution of primes

This chapter concerns itself with the question: how many primes are there?
In Chapter 1, we proved that there are infinitely many primes; however, we
are interested in a more quantitative answer to this question; that is, we
want to know how “dense” the prime numbers are.

This chapter has a bit more of an “analytical” flavor than other chapters
in this text. However, we shall not make use of any mathematics beyond
that of elementary calculus.

5.1 Chebyshev’s theorem on the density of primes

The natural way of measuring the density of primes is to count the number
of primes up to a bound x, where z is a real number. For a real number
x > 0, the function 7(z) is defined to be the number of primes up to z.
Thus, n(1) = 0, 7(2) = 1, 7(7.5) = 4, and so on. The function 7 is an
example of a “step function,” that is, a function that changes values only at
a discrete set of points. It might seem more natural to define 7 only on the
integers, but it is the tradition to define it over the real numbers (and there
are some technical benefits in doing so).

Let us first take a look at some values of 7(z). Table 5.1 shows values of
m(x) for x = 103 and i = 1,...,6. The third column of this table shows
the value of z/m(x) (to five decimal places). One can see that the differ-
ences between successive rows of this third column are roughly the same—
about 6.9—which suggests that the function x/7(x) grows logarithmically
in . Indeed, as log(103) ~ 6.9, it would not be unreasonable to guess that
z/7(x) = logz, or equivalently, w(x) ~ z/log .

The following theorem is a first—and important—step towards making
the above guesswork more rigorous:

74

5.1 Chebyshev’s theorem on the density of primes 75

Table 5.1. Some values of w(x)

x m(x) | x/m(x)
103 168 | 5.95238
106 78498 | 12.73918
10° 50847534 | 19.66664

10'2 37607912018 | 26.59015
1010 29844570422669 | 33.50693
108 | 24739954287740860 | 40.42045

Theorem 5.1 (Chebyshev’s theorem). We have
w(x) = O(x/logx).

It is not too difficult to prove this theorem, which we now proceed to do
in several steps. Recalling that 1v,,(n) denotes the power to which a prime p
divides an integer n, we begin with the following observation:

Theorem 5.2. Let n be a positive integer. For any prime p, we have

vp(nl) = _[n/p").

k>1

Proof. This follows immediately from the observation that the numbers
1,2,...,n include exactly |n/p| multiplies of p, |n/p?| multiplies of p?,
and so on (see Exercise 1.5). O

The following theorem gives a lower bound on 7 (z).
Theorem 5.3. m(n) > 3(log2)n/logn for all integers n > 2.

Proof. For positive integer m, consider the binomial coefficient

N <2m> _em)!

m (m!)?

ve () (75

from which it is clear that NV > 2™ and that N is divisible only by primes p

Note that

not exceeding 2m. Applying Theorem 5.2 to the identity N = (2m)!/(m!)?,
we have

vp(N) = ([2m/p"] — 2m/p*]).

k>1

76 The distribution of primes

Each term in this sum is either 0 or 1 (see Exercise 1.4), and for k >
log(2m)/log p, each term is zero. Thus, v,(N) < log(2m)/ log p.
So we have

m(2m) log(2m) = Z Mlogp

p<am 1087
> Z vp(N)logp =log N > mlog2,
p<2m

where the summations are over the primes p up to 2m. Therefore,
m(2m) > 3(log2)(2m)/log(2m).

That proves the theorem for even n. Now consider odd n > 3, so n =
2m—1 for m > 2. Since the function =/ log x is increasing for = > 3 (verify),
and since m(2m — 1) = w(2m) for m > 2, we have

m(2m — 1) = w(2m)

(1og 2)(2m), log(2m)

1
2
+(log2)(2m — 1)/ log(2m — 1).

>
>
That proves the theorem for odd n. O

As a consequence of the above theorem, we have 7(z) = Q(x/logx) for
real £ — oco. Indeed, for real x > 2, setting ¢ := %(log 2), we have

(@) = 7([2]) > c|z)/loglz] > c(z — 1)/ log z = Q(z/ log z).

To obtain a corresponding upper bound for 7(z), we introduce an auxiliary
function, called Chebyshev’s theta function:

19($) = Zlogpv
Pz
where the sum is over all primes p up to x.

Chebyshev’s theta function is an example of a summation over primes,
and in this chapter, we will be considering a number of functions that are
defined in terms of sums or products over primes. To avoid excessive tedium,
we adopt the usual convention used by number theorists: if not explicitly
stated, summations and products over the variable p are always understood
to be over primes. For example, we may write m(x) =3 1.

The next theorem relates m(x) and J(x). Recall the “~” notation from
§3.1: for two functions f and g such that f(z) and g(z) are positive for all
sufficiently large x, we write f ~ g to mean that lim,_,o f(z)/g(z) =1, or

5.1 Chebyshev’s theorem on the density of primes 7

equivalently, for all € > 0 there exists xy such that (1 — e)g(z) < f(z) <
(14 €)g(z) for all x > xg.
Theorem 5.4. We have
9
m(x) ~ ﬁ
log
Proof. On the one hand, we have
) = Zlogp < logxz 1 =m(z)logx.
p<z p<z

So we have

>
m(@) 2 log =

On the other hand, for every x > 1 and § with 0 < 0 < 1, we have

d(z) > Y logp

2d<p<x

>dlogx Z 1

S <p<z
= dloga (m(x) — m(2°))
> dlogx (m(x) — x‘s).
Hence,

9

L (z) '
0 log x

é

m(x) <z

Since by the previous theorem, the term x° is o(w(x)), we have for all suffi-
ciently large z (depending on 6), 2° < (1 — §)n(x), and so

I(x)
@) < d%logz’

Now, for any € > 0, we can choose ¢ sufficiently close to 1 so that 1/§% <
1 + ¢, and for this ¢, and for all sufficiently large =, we have 7(z) < (1 +
€)¥(x)/logx, and the theorem follows. O

Theorem 5.5. ¥(z) < 2xlog?2 for all real numbers x > 1.

Proof. Tt suffices to prove that ¥(n) < 2nlog?2 for integers n > 1, since then
Y(z) =9(|z]) < 2|x]log2 < 2zlog 2.
For positive integer m, consider the binomial coefficient

= () it

78 The distribution of primes

One sees that M is divisible by all primes p with m +1 < p < 2m + 1.
As M occurs twice in the binomial expansion of (1 + 1)2™*! one sees that
M < 22m+L /2 = 22m Tt follows that

92m+1)—9d(m+1) = Z logp < log M < 2mlog2.
m+1<p<2m+1
We now prove the theorem by induction. For n = 1 and n = 2, the

theorem is trivial. Now let n > 2. If n is even, then we have
d(n)=9(n—-1) <2(n—1)log2 < 2nlog?2.
If n =2m + 1 is odd, then we have

d(n)=92m+1)—d(m+1)+Im+1)
< 2mlog2+2(m+1)log2 =2nlog2. O

Another way of stating the above theorem is:
H p < 4%
p<z

Theorem 5.1 follows immediately from Theorems 5.3, 5.4 and 5.5. Note
that we have also proved:

Theorem 5.6. We have

EXERCISE 5.1. If p,, denotes the nth prime, show that p, = ©(nlogn).

EXERCISE 5.2. For integer n > 1, let w(n) denote the number of distinct
primes dividing n. Show that w(n) = O(logn/loglogn).

EXERCISE 5.3. Show that for positive integers a and b,

a-+b ;
> 2m1n(a,b).
()2

5.2 Bertrand’s postulate

Suppose we want to know how many primes there are of a given bit length,
or more generally, how many primes there are between m and 2m for a given
integer m. Neither the statement, nor the proof, of Chebyshev’s theorem
imply that there are any primes between m and 2m, let alone a useful density
estimate of such primes.

Bertrand’s postulate is the assertion that for all positive integers m,

5.2 Bertrand’s postulate 79

there exists a prime between m and 2m. We shall in fact prove a stronger
result, namely, that not only is there one prime, but the number of primes
between m and 2m is Q(m/logm).

Theorem 5.7 (Bertrand’s postulate). For any positive integer m, we

have
m

w(2m) — w(m) > log2m)’

The proof uses Theorem 5.5, along with a more careful re-working of the
proof of Theorem 5.3. The theorem is clearly true for m < 2, so we may
assume that m > 3. As in the proof of the Theorem 5.3, define N := (27;”),

and recall that N is divisible only by primes strictly less than 2m, and that
we have the identity

vp(N) =Y (12m/p*] — 2|m/p")), (5.1)
k>1
where each term in the sum is either 0 or 1. We can characterize the values

vp(IN) a bit more precisely, as follows:

Lemma 5.8. Letm > 3 and N = (27;?) as above. For all primes p, we have

pr(N) < o (5.2)
if p > V/2m, then vp(N) < 1; (5.3)
if 2m/3 < p < m, then vp(N) =0; (5.4)
if m <p < 2m, then v,(N) = 1. (5.5)

Proof. For (5.2), all terms with k£ > log(2m)/log p in (5.1) vanish, and hence
vp(N) < log(2m)/log p, from which it follows that p*»(M) < 2m.

(5.3) follows immediately from (5.2).

For (5.4), if 2m/3 < p < m, then 2m/p < 3, and we must also have
p > 3, since p = 2 implies m < 3. We have p? > p(2m/3) = 2m(p/3) > 2m,
and hence all terms with £ > 1 in (5.1) vanish. The term with & = 1 also
vanishes, since 1 < m/p < 3/2, from which it follows that 2 < 2m/p < 3,
and hence |m/p| =1 and [2m/p| = 2.

For (5.5), if m < p < 2m, it follows that 1 < 2m/p < 2, so [2m/p| = 1.
Also, m/p < 1, so [m/p] = 0. It follows that the term with £ =1 in (5.1)
is 1, and it is clear that 2m/p* < 1 for all k > 1, and so all the other terms
vanish. O

We need one more technical fact, namely, a somewhat better lower bound
on N than that used in the proof of Theorem 5.3:

80 The distribution of primes
Lemma 5.9. Let m > 3 and N = (QnT) as above. We have
N > 4™/(2m). (5.6)

Proof. We prove this for all m > 3 by induction on m. One checks by direct
calculation that it holds for m = 3. For m > 3, by induction we have

<2m> _g2m—1 (2(m 1)> . (2m — 1)4m~1

m m m—1 m(m — 1)
_2m—1 4m _ 4m
“3m—1)2m 2m

We now have the necessary technical ingredients to prove Theorem 5.7.

Define
P = H D,
m<p<2m
and define @), so that
N = QumPp.
By (5.4) and (5.5), we see that
Qm = H pr (V).
p<2m/3

Moreover, by (5.3), vp(IN) > 1 for at most those p < v/2m, so there are at
most v/2m such primes, and by (5.2), the contribution of each such prime
to the above product is at most 2m. Combining this with Theorem 5.5, we
obtain

Qm < (2m)V?™ . 42m/3,

We now apply (5.6), obtaining
Ppo=NQ;' > 4™(2m)"'Q;, > 4™/3(2m) = (0+V2m),
It follows that

w(2m) — w(m) > log P,/ log(2m) > 37;:;;0(5;2) — (1+v2m)

m m(log4 — 1)
- 3log(2m) * 3log(2m) L+ v2m). (57)
Clearly, the term (m(log4 — 1))/(3log(2m)) in (5.7) dominates the term
1 4 v/2m, and so Theorem 5.7 holds for all sufficiently large m. Indeed, a
simple calculation shows that (5.7) implies the theorem for m > 13,000, and
one can verify by brute force (with the aid of a computer) that the theorem
holds for m < 13, 000.

5.8 Mertens’ theorem 81

5.3 Mertens’ theorem

Our next goal is to prove the following theorem, which turns out to have a
number of applications.

Theorem 5.10. We have

Z; = loglogz + O(1).

p<z

The proof of this theorem, while not difficult, is a bit technical, and we
proceed in several steps.

Theorem 5.11. We have

1
Z %8P _ logz 4+ O(1).
p<z

Proof. Let n := |z]. By Theorem 5.2, we have
log(n!) =Y Y "[n/p"|logp =" |n/pllogp+ > > [n/p*|logp.
p<nk>1 p<n k>2p<n

We next show that the last sum is O(n). We have

> logp) In/pFl <n logpd pF

p<n k>2 p<n k>2
log p 1 log p
Sy ey e
el N el V0 e LR
log k
< —
Zk(k—l) o)
k>2

Thus, we have shown that
log(n!) = " |n/p|logp+ O(n).
p<n
Further, since |n/p| = n/p+ O(1), applying Theorem 5.5, we have
logp
log(n!) = Z(n/p) logp + O(Z logp) + O(n) = nz Zg7 +O(n). (5.8)

p<n p<n p<n

We can also estimate log(n!) using a little calculus (see §A2). We have

log(n!) = Zlogk = /1 logtdt + O(logn) = nlogn —n+ O(logn). (5.9)
k=1

82 The distribution of primes

Combining (5.8) and (5.9), and noting that logz — logn = o(1), we obtain

Z logp _ logn + O(1) =logz + O(1),
p<z

which proves the theorem. O

We shall also need the following theorem, which is a very useful tool in
its own right:

Theorem 5.12 (Abel’s identity). Suppose that cy, cxi1, ... is a sequence
of numbers, that

and that f(t) has a continuous derivative f'(t) on the interval [k,z]. Then
> cif(i) = / Ot
k<i<z

Note that since C(t) is a step function, the integrand C(t)f’(t) is piece-
wise continuous on [k, z|, and hence the integral is well defined (see §A3).

Proof. Let n := |z]. We have

n

> cif(i) = Clk)f(k) + [C(k+1) = C(k)] f(k+1) +
=* +[C(n) = C(n—1)]f(n)
=CR)f(k) = fE+ D]+ +Cn=1)[f(n—1) = f(n)]
+C(n)f(n)
=CHRIf k) = fE+ D]+ +Cln=1)[f(n = 1) = f(n)]
+C)[f(n) — f(2)] + C(2) f(2).
Observe that for i = k,...,n — 1, we have C(t) = C(i) for t € [i,i+ 1), and
CHLF () — F(i+ 1) / C)f(t) dt:
likewise,

o) — f@) = - [Cora

from which the theorem directly follows. O

5.3 Mertens’ theorem 83
Proof of Theorem 5.10. For i > 2, set

o (logi)/i if 7 is prime,
R) otherwise.

By Theorem 5.11, we have
lo
C(t) = Z ¢ = Z 08P _ logt+ O(1).
2<i<t vt P

Applying Theorem 5.12 with f(t) = 1/logt, we obtain
1 z t

Z:C(SU)JF/ o) .
p logx = Jy t(logt)?

p<z
rodt voodt
= <1+O(1/logaz)) + </2 gt +O(/2 Hlog1)?)>
=1+ 0(1/logx) + (loglogz —loglog2) + O(1/log2 — 1/log)

=loglogz +O(1). O

Using Theorem 5.10, we can easily show the following:

Theorem 5.13 (Mertens’ theorem). We have
T - 1/p) = 6(1/log).

p<z

Proof. Using parts (i) and (iii) of §A1, for any fixed prime p, we have

1 1
—— < —+log(1—-1/p) <0. (5.10)
p p
Moreover, since
1 1
P D IR
p<z 1>2

summing the inequality (5.10) over all primes p < x yields
1
< Zf +logU(z) <0,
p<z

where C is a positive constant, and U(z) := [[,<,(1 —1/p). From this, and
from Theorem 5.10, we obtain

loglogz + logU(x) = O(1).
This means that
—D <loglogx +logU(z) < D

84 The distribution of primes

for some positive constant D and all sufficiently large x, and exponentiating
this yields
e P < (logz)U(x) < e,

and hence, U(z) = ©(1/log), and the theorem follows. O

EXERCISE 5.4. Let w(n) be the number of distinct prime factors of n, and
define w(x) = >, ., w(n), so that W(z)/z represents the “average” value
of w. First, show that W(z) = >_ . |z/p]. From this, show that W(z) ~
xloglog x.

EXERCISE 5.5. Analogously to the previous exercise, show that » . 7(n) ~
xlog x, where 7(n) is the number of positive divisors of n.

EXERCISE 5.6. Define the sequence of numbers ni,no,..., where nj is
the product of all the primes up to k. Show that as k& — oo, ¢(ng) =
©(ny/loglogny). Hint: you will want to use Mertens’ theorem, and also
Theorem 5.6.

EXERCISE 5.7. The previous exercise showed that ¢(n) could be as small

¢

as (about) n/loglogn for infinitely many n. Show that this is the “worst

case,” in the sense that ¢(n) = Q(n/loglogn) as n — oo.

EXERCISE 5.8. Show that for any positive integer constant k,

/; aofé%k N ao;m)k " 0<<1gi>k+)

EXERCISE 5.9. Use Chebyshev’s theorem and Abel’s identity to show that

Z ! () + O(z/(log z)?).

log p B log x

EXERCISE 5.10. Use Chebyshev’s theorem and Abel’s identity to prove a
stronger version of Theorem 5.4:

Y(z) = m(x)logx + O(x/log z).
EXERCISE 5.11. Show that

IT (1=2/p) =6(1/(logx)?).

2<p<z

EXERCISE 5.12. Show that if w(z) ~ cx/logx for some constant ¢, then we
must have ¢ = 1. Hint: use either Theorem 5.10 or 5.11.

5.4 The sieve of Eratosthenes 85

EXERCISE 5.13. Strengthen Theorem 5.10, showing that > _ 1/p ~
loglog x 4+ A for some constant A. (Note: A ~ 0.261497212847643.)

EXERCISE 5.14. Strengthen Mertens’ theorem, showing that [],..(1 —
1/p) ~ Bi/(logz) for some constant B;. Hint: use the result from the
previous exercise. (Note: By ~ 0.561459483566885.)

EXERCISE 5.15. Strengthen the result of Exercise 5.11, showing that

1 @ -2/p) ~ Bo/(log)’

2<p<zx

for some constant Bs. (Note: By & 0.832429065662.)

5.4 The sieve of Eratosthenes

As an application of Theorem 5.10, consider the sieve of Eratosthenes.
This is an algorithm for generating all the primes up to a given bound k. It
uses an array A[2...k], and runs as follows.

for n <« 2 to k do A[n] « 1
for n < 2 to [Vk] do
if Aln] =1 then
i« 2n; whilei <k do { A[i] —0;i«—i+n }

When the algorithm finishes, we have A[n] = 1 if and only if n is prime,
for n =2,... k. This can easily be proven using the fact (see Exercise 1.1)
that a composite number n between 2 and k& must be divisible by a prime
that is at most vk, and by proving by induction on n that at the beginning
of the nth iteration of the main loop, A[i] = 0 iff ¢ is divisible by a prime
less than n, for i =n,..., k. We leave the details of this to the reader.

We are more interested in the running time of the algorithm. To analyze
the running time, we assume that all arithmetic operations take constant
time; this is reasonable, since all the quantities computed in the algorithm
are bounded by k, and we need to at least be able to index all entries of the
array A, which has size k.

Every time we execute the inner loop of the algorithm, we perform O(k/n)
steps to clear the entries of A indexed by multiples of n. Naively, we could
bound the running time by a constant times

Z k/n,
%

ngvﬁ

86 The distribution of primes

which is O(klen(k)), where we have used a little calculus (see §A2) to derive
that

l gd
Zl/n:/ % 4 0(1) ~ log®.
1 1Y

However, the inner loop is executed only for prime values of n; thus, the
running time is proportional to
> k/p,

p<vk
and so by Theorem 5.10 is O(klen(len(k))).

EXERCISE 5.16. Give a detailed proof of the correctness of the above algo-
rithm.

EXERCISE 5.17. One drawback of the above algorithm is its use of space:
it requires an array of size k. Show how to modify the algorithm, without
substantially increasing its running time, so that one can enumerate all the
primes up to k, using an auxiliary array of size just O(\/E)

EXERCISE 5.18. Design and analyze an algorithm that on input k£ outputs
the table of values 7(n) forn = 1,..., k, where 7(n) is the number of positive
divisors of n. Your algorithm should run in time O(klen(k)).

5.5 The prime number theorem ...and beyond

In this section, we survey a number of theorems and conjectures related to
the distribution of primes. This is a vast area of mathematical research,
with a number of very deep results. We shall be stating a number of theo-
rems from the literature in this section without proof; while our intent is to
keep the text as self contained as possible, and to avoid degenerating into
“mathematical tourism,” it nevertheless is a good idea to occasionally have
a somewhat broader perspective. In the following chapters, we shall not
make any critical use of the theorems in this section.

5.5.1 The prime number theorem

The main theorem in the theory of the density of primes is the following.
Theorem 5.14 (Prime number theorem). We have

m(x) ~ x/logx.

5.5 The prime number theorem ... and beyond 87
Proof. Literature—see §5.6. O

As we saw in Exercise 5.12, if m(x)/(x/logx) tends to a limit as z — oo,
then the limit must be 1, so in fact the hard part of proving the prime
number theorem is to show that m(z)/(z/logx) does indeed tend to some
limit.

One simple consequence of the prime number theorem, together with The-
orem 5.4, is the following:

Theorem 5.15. We have
Hx) ~ x.

EXERCISE 5.19. Using the prime number theorem, show that p, ~ nlogn,
where p,, denotes the nth prime.

EXERCISE 5.20. Using the prime number theorem, show that Bertrand’s
postulate can be strengthened (asymptotically) as follows: for all € > 0,
there exist positive constants ¢ and xg, such that for all z > zg, we have

(14 €)x) — n(z) > Cloga:'

5.5.2 The error term in the prime number theorem

The prime number theorem says that
w(z) — x/log x| < d(x),

where d(x) = o(x/logz). A natural question is: how small is the “error
term” &(x)? It turns out that:

Theorem 5.16. We have
7(x) = z/logz 4+ O(z/(log x)?).

This bound on the error term is not very impressive. The reason is that
x/log x is not really the best “simple” function that approximates m(x). It
turns out that a better approximation to 7(x) is the logarithmic integral,
defined for real = > 2 by

x
li(z) := Iﬂ
5 logt

It is not hard to show (see Exercise 5.8) that
li(z) = z/logz + O(z/(log z)?).

88 The distribution of primes

Table 5.2. Values of n(x), li(z), and z/logx

x m(x) li(z) x/logx
10° 168 176.6 144.8
108 78498 78626.5 72382.4
10° 50847534 50849233.9 48254942.4

1012 37607912018 37607950279.8 36191206825.3
101° 29844570422669 29844571475286.5 28952965460216.8
10'® | 24739954287740860 | 24739954309690414.0 | 24127471216847323.8

Thus, li(x) ~ z/log x ~ 7(x). However, the error term in the approximation
of m(z) by li(x) is much better. This is illustrated numerically in Table 5.2;
for example, at 2 = 10'8, li(z) approximates 7(z) with a relative error just
under 10~°, while -/ log x approximates 7(x) with a relative error of about
0.025.

The sharpest proven result is the following:

Theorem 5.17. Let r(x) := (logz)3/®(loglog z)~/5. Then for some ¢ > 0,
we have

7(z) = li(z) + O(ze~ @),
Proof. Literature—see §5.6. O

Note that the error term ze=“*®) is o(x/(logz)¥) for every fixed k > 0.
Also note that Theorem 5.16 follows directly from the above theorem and
Exercise 5.8.

Although the above estimate on the error term in the approximation of
m(x) by li(x) is pretty good, it is conjectured that the actual error term is
much smaller:

Conjecture 5.18. For all x > 2.01, we have

1/2

|7(z) —li(z)| < */*logx.

Conjecture 5.18 is equivalent to a famous conjecture called the Riemann
hypothesis, which is an assumption about the location of the zeros of a
certain function, called Riemann’s zeta function. We give a very brief,
high-level account of this conjecture, and its connection to the theory of the
distribution of primes.

For real s > 1, the zeta function is defined as

Cs) =S —. (5.11)

5.5 The prime number theorem ... and beyond 89

Note that because s > 1, the infinite series defining ((s) converges. A
simple, but important, connection between the zeta function and the theory
of prime numbers is the following;:

Theorem 5.19 (Euler’s identity). For real s > 1, we have

() =Ja-p*", (5.12)

where the product is over all primes p.

Proof. The rigorous interpretation of the infinite product on the right-hand
side of (5.12) is as a limit of finite products. Thus, if p1, pa, ... is the list of
primes, we are really proving that

C(s) = TlggoH L—p*)7"

=1

Now, from the identity

we have

e1=0 er=0
-)
n=1 n’

where

(n) = 1 if n is divisible only by the primes p1, ..., p:;
Ir ~ | 0 otherwise.

Here, we have made use of the fact (see §A5) that we can multiply term-wise
infinite series with non-negative terms.

Now, for any ¢ > 0, there exists ng such that 37 ° = —n7% < e (because
the series defining ((s) converges). Moreover, there exists an r such that

gr(n) =1 for all n < ng and r > rg. Therefore, for r > ry, we have

gr(—((s ‘ Zn < €.

n=1 n=ngo

90 The distribution of primes
It follows that

lim gr(n)

r—00 ns
n=1

=¢(s),

which proves the theorem. O

While Theorem 5.19 is nice, things become much more interesting if one
extends the domain of definition of the zeta function to the complex plane.
For the reader who is familiar with just a little complex analysis, it is easy
to see that the infinite series defining the zeta function in (5.11) converges
absolutely for complex numbers s whose real part is greater than 1, and that
(5.12) holds as well for such s. However, it is possible to extend the domain
of definition of ¢ even further—in fact, one can extend the definition of ¢ in
a “nice way 7 (in the language of complex analysis, analytically continue)
to the entire complex plane (except the point s = 1, where there is a simple
pole). Exactly how this is done is beyond the scope of this text, but assuming
this extended definition of {, we can now state the Riemann hypothesis:

Conjecture 5.20 (Riemann hypothesis). For any complex number s =
x + yi, where x and y are real numbers with 0 < x < 1 and x # 1/2, we

have ((s) # 0.

A lot is known about the zeros of the zeta function in the “critical strip,”
consisting of those points s whose real part is greater than 0 and less than
1: it is known that there are infinitely many of them, and there are even
good estimates about their density. It turns out that one can apply standard
tools in complex analysis, like contour integration, to the zeta function (and
functions derived from it) to answer various questions about the distribution
of primes. Indeed, such techniques may be used to prove the prime num-
ber theorem. However, if one assumes the Riemann hypothesis, then these
techniques yield much sharper results, such as the bound in Conjecture 5.18.

EXERCISE 5.21. For any arithmetic function a, we can form the Dirichlet
series

Fu(s) := Z aiz).
n=1

For simplicity we assume that s takes only real values, even though such
series are usually studied for complex values of s.

(a) Show that if the Dirichlet series Fy(s) converges absolutely for some
real s, then it converges absolutely for all real s’ > s.

5.5 The prime number theorem ... and beyond 91

(b) From part (a), conclude that for any given arithmetic function a,
there is an interval of absolute convergence of the form (sg,c0),
where we allow sy) = —oo and sy = oo, such that Fj(s) converges
absolutely for s > sg, and does not converge absolutely for s < sg.

(c) Let a and b be arithmetic functions such that Fy(s) has an interval
of absolute convergence (sg,00) and Fy(s) has an interval of absolute
convergence (s(,00), and assume that sp < co and s{, < oco. Let
¢ := a * b be the Dirichlet product of a and b, as defined in §2.6.
Show that for all s € (max(sg,sy),00), the series F.(s) converges
absolutely and, moreover, that Fy,(s)Fp(s) = F.(s).

5.5.3 FEzxplicilt estimates
Sometimes, it is useful to have explicit estimates for m(x), as well as related
functions, like ¥(z) and the nth prime function p,. The following theorem
presents a number of bounds that have been proved without relying on any
unproved conjectures.

Theorem 5.21. We have:
T 3

1 T
(i) Tog e (1 + 2log:c) < m(x) < g e (1 + 210g:c>’ for x > 59;
(7i) n(logn + loglogn — 3/2) < p, < n(logn + loglogn — 1/2),
for n > 20;
(iii) x(1 —1/(2logz)) < ¥(x) < x(1+1/(2logx)), for x> 563;

(iv) loglogw+A—2 5 <Zl/p<loglog$—l—A+
p<w

(log x) 2(log z)?’

for x > 286, where A ~ 0.261497212847643;
B 1 1 B 1
1— < 1--) < 1 ,
(v) logm(2(10gx)2> H < p> 1ogx< + 2(10g1:)2>

p<z
for x > 285, where By ~ 0.561459483566885.

Proof. Literature—see §5.6. O

5.5.4 Primes in arithmetic progressions
The arithmetic progression of odd numbers 1,3,5,... contains infinitely
many primes, and it is natural to ask if other arithmetic progressions do
as well. An arithmetic progression with first term a and common difference
d consists of all integers of the form

md+a, m=0,1,2,....

92 The distribution of primes

If d and @ have a common factor ¢ > 1, then every term in the progression is
divisible by ¢, and so there can be no more than one prime in the progression.
So a necessary condition for the existence of infinitely many primes p with
p = a (mod d) is that ged(d,a) = 1. A famous theorem due to Dirichlet
states that this is a sufficient condition as well.

Theorem 5.22 (Dirichlet’s theorem). For any positive integer d and
any integer a relatively prime to d, there are infinitely many primes p with
p =a (mod d).

Proof. Literature—see §5.6. O

We can also ask about the density of primes in arithmetic progressions.
One might expect that for a fixed value of d, the primes are distributed
in roughly equal measure among the ¢(d) different residue classes [a]; with
ged(a,d) = 1. This is in fact the case. To formulate such assertions, we
define 7(x;d, a) to be the number of primes p up to z with p = a (mod d).

Theorem 5.23. Let d > 0 be a fized integer, and let a € Z be relatively

prime to d. Then
x

m(x;d,a) ~ o) lozs

Proof. Literature—see §5.6. O

The above theorem is only applicable in the case where d is fixed and
x — oo. But what if we want an estimate on the number of primes p up to
z with p = a (mod d), where x is, say, a fixed power of d? Theorem 5.23
does not help us here. The following conjecture does, however:

Conjecture 5.24. For any real x > 2, integer d > 2, and a € Z relatively
prime to d, we have

li(z) 1/2
w(x;d,a) — —=| <z /*(logx + 2logd).
The above conjecture is in fact a consequence of a generalization of the
Riemann hypothesis—see §5.6.

EXERCISE 5.22. Assuming Conjecture 5.24, show that for all a, €, with 0 <
a < 1/2 and 0 < € < 1, there exists an zg, such that for all x > z, for all
d € Z with 2 < d < z%, and for all a € Z relatively prime to d, the number
of primes p < z such that p = a (mod d) is at least (1 —¢€)li(z)/¢(d) and at
most (1 + €)li(z)/o(d).

It is an open problem to prove an unconditional density result analogous

5.5 The prime number theorem ... and beyond 93

to Exercise 5.22 for any positive exponent a. The following, however, is
known:

Theorem 5.25. There exists a constant ¢ such that for all integer d > 2
and a € Z relatively prime to d, the least prime p with p = a (mod d) is at
most cd'/2.

Proof. Literature—see §5.6. O

5.5.5 Sophie Germain primes

A Sophie Germain prime is a prime p such that 2p + 1 is also prime.
Such primes are actually useful in a number of practical applications, and
so we discuss them briefly here.

It is an open problem to prove (or disprove) that there are infinitely
many Sophie Germain primes. However, numerical evidence, and heuristic
arguments, strongly suggest not only that there are infinitely many such
primes, but also a fairly precise estimate on the density of such primes.

Let 7*(x) denote the number of Sophie Germain primes up to x.

Conjecture 5.26. We have
x

@)~ Clog

where C is the constant

—2
o =2 42 < 1 32032,
s @—1)

and the product is over all primes q > 2.

The above conjecture is a special case of a more general conjecture, known
as Hypothesis H. We can formulate a special case of Hypothesis H (which
includes Conjecture 5.26), as follows:

Conjecture 5.27. Let (a1,b1),. .., (ak, bg) be distinct pairs of integers such
that a; > 0, and for all primes p, there exists an integer m such that
k

[[(mai + bi) # 0 (mod p).

i=1
Let P(x) be the number of integers m up to x such that ma; + b; are simul-
taneously prime fori=1,..., k. Then
x

Ple) ~ Diog e

94 The distribution of primes

o) ¢-2)

the product being over all primes p, and w(p) being the number of distinct

where

solutions m modulo p to the congruence

k
H(mai + b;) =0 (mod p).
i=1
The above conjecture also includes (a strong version of) the famous twin
primes conjecture as a special case: the number of primes p up to x such
that p + 2 is also prime is ~ Cz/(logz)?, where C is the same constant as
in Conjecture 5.26.

EXERCISE 5.23. Show that the constant C appearing in Conjecture 5.26
satisfies

2C = By/B?,
where By and By are the constants from Exercises 5.14 and 5.15.

EXERCISE 5.24. Show that the quantity D appearing in Conjecture 5.27 is
well defined, and satisfies 0 < D < oc.

5.6 Notes

The prime number theorem was conjectured by Gauss in 1791. It was proven
independently in 1896 by Hadamard and de la Vallée Poussin. A proof of
the prime number theorem may be found, for example, in the book by Hardy
and Wright [44].

Theorem 5.21, as well as the estimates for the constants A, By, and B»
mentioned in that theorem and Exercises 5.13, 5.14, and 5.15, are from
Rosser and Schoenfeld [79].

Theorem 5.17 is from Walfisz [96].

Theorem 5.19, which made the first connection between the theory of
prime numbers and the zeta function, was discovered in the 18th century
by Euler. The Riemann hypothesis was made by Riemann in 1859, and
to this day, remains one of the most vexing conjectures in mathematics.
Riemann in fact showed that his conjecture about the zeros of the zeta
function is equivalent to the conjecture that for each fixed € > 0, w(z) =
li(z) + O(z'/2%€). This was strengthened by von Koch in 1901, who showed

5.6 Notes 95

that the Riemann hypothesis is true if and only if w(x) = li(z)+O0(z'/? log z).
See Chapter 1 of the book by Crandall and Pomerance [30] for more on
the connection between the Riemann hypothesis and the theory of prime
numbers; in particular, see Exercise 1.36 in that book for an outline of a
proof that Conjecture 5.18 follows from the Riemann hypothesis.

A warning: some authors (and software packages) define the logarithmic
integral using the interval of integration (0,x), rather than (2,z), which
increases its value by a constant ¢ ~ 1.0452.

Theorem 5.22 was proved by Dirichlet in 1837, while Theorem 5.23 was
proved by de la Vallée Poussin in 1896. A result of Oesterlé [69] implies
that Conjecture 5.24 for d > 3 is a consequence of an assumption about the
location of the zeros of certain generalizations of Riemann’s zeta function;
the case d = 2 follows from the bound in Conjecture 5.18 under the ordinary
Riemann hypothesis. Theorem 5.25 is from Heath-Brown [45].

Hypothesis H is from Hardy and Littlewood [43].

For the reader who is interested in learning more on the topics discussed
in this chapter, we recommend the books by Apostol [8] and Hardy and
Wright [44]; indeed, many of the proofs presented in this chapter are minor
variations on proofs from these two books. Our proof of Bertrand’s postu-
late is based on the presentation in Section 9.2 of Redmond [76]. See also
Bach and Shallit [12] (especially Chapter 8), Crandall and Pomerance [30]
(especially Chapter 1) for a more detailed overview of these topics.

The data in Tables 5.1 and 5.2 was obtained using the computer program
Maple.

6
Finite and discrete probability distributions

This chapter introduces concepts from discrete probability theory. We begin
with a discussion of finite probability distributions, and then towards the end
of the chapter we discuss the more general notion of a discrete probability
distribution.

6.1 Finite probability distributions: basic definitions
A finite probability distribution D = (U, P) is a finite, non-empty set
U, together with a function P that maps u € U to Plu] € [0, 1], such that

> Plu]=1. (6.1)
ueU
The set U is called the sample space and the function P is called the
probability function.
Intuitively, the elements of U/ represent the possible outcomes of a random
experiment, where the probability of outcome u € U is P[u].
Up until §6.10, we shall use the phrase “probability distribution” to mean
“finite probability distribution.”

Ezxzample 6.1. If we think of rolling a fair die, then U := {1,2,3,4,5,6},
and Plu] := 1/6 for all u € U gives a probability distribution describing the
possible outcomes of the experiment. O

Example 6.2. More generally, if U is a finite set, and P[u] = 1/|U| for all
u € U, then D is called the uniform distribution on /. O

Example 6.3. A coin flip is an example of a Bernoulli trial, which is
in general an experiment with only two possible outcomes: success, which
occurs with probability p, and failure, which occurs with probability g :=
1—p. O

96

6.1 Finite probability distributions: basic definitions 97
An event is a subset A of U, and the probability of A is defined to be

PlA] ==Y Plu]. (6.2)
ueA

Thus, we extend the domain of definition of P from outcomes u € U to
events A C U.

For an event A C U, let A denote the complement of A in /. We have
P[0] =0, PU] =1, P[A] =1 — P[A].

For any events A, B C U, if A C B, then P[A] < P[B]. Also, for any events
A, B C U, we have

P[AUB] = P[A] + P[B] — Pl AN B] < P[A] + P[B]; (6.3)
in particular, if A and B are disjoint, then
P[AUB] = P[A] + P[B]. (6.4)
More generally, for any events Ay, ..., 4, CU we have
PlAIU---UA,] <P[A]+-- -+ P[A,], (6.5)

and if the A; are pairwise disjoint, then
PlALU---UA,] =PlA]+---+P[A,]. (6.6)

In working with events, one makes frequent use of the usual rules of
Boolean logic. DeMorgan’s law says that for events A and B, we have

AUB=ANB and ANB=AUB.
We also have the distributive law: for events A, BB,C, we have
AN(BUC)=(ANB)U(ANC) and AU (BNC)=(AUB)N(AUC).

In some applications and examples, it is more natural to use the logical
“or” connective “V” in place of “U,” and the logical “and” connective “A”
in place of “N.”

Example 6.4. Continuing with Example 6.1, the probability of an “odd
roll” A={1,3,5}is 1/2. O

Ezxample 6.5. More generally, if D is the uniform distribution on a set U
of cardinality n, and A is a subset of U of cardinality k, then P[A] = k/n.
a

Example 6.6. Alice rolls two dice, and asks Bob to guess a value that
appears on either of the two dice (without looking). Let us model this

98 Finite and discrete probability distributions

situation by considering the uniform distribution on {(z,y) : z,y = 1,...,6},
where x represents the value of the first die, and y the value of the second.

For x = 1,...,6, let A, be the event that the first die is z, and B,
the event that the second die is x, Let C, = A, U B, be the event that x
appears on either of the two dice. No matter what value z Bob chooses, the
probability that this choice is correct is

P[C.] = P[A; U B,| = P[A;] + P[B:] — P[A, N B,]
=1/6+1/6—1/36=11/36. O

If D1 = (U,P1) and Dy = (Us, P2) are probability distributions, we can
form the product distribution D = (U, P), where U := U; X Uy, and
Pl(u1,u2)] := P1[u1]Pafus]. It is easy to verify that the product distribution
is also a probability distribution. Intuitively, the elements (u1, us2) of Uy X Us
denote the possible outcomes of two separate and independent experiments.

More generally, if D; = (U;, P;) for i = 1,...,n, we can define the product
distribution D = (U, P), where U := U} X --- X Uyp, and P[(u1,...,u,)| :=
Plui] ... Pluy].

Example 6.7. We can view the probability distribution in Example 6.6 as
the product of two copies of the uniform distribution on {1,...,6}. O

Ezxample 6.8. Consider the product distribution of n copies of a Bernoulli
trial (see Example 6.3), with associated success probability p and failure
probability ¢ := 1 — p. An element of the sample space is an n-tuple of
success/failure values. Any such tuple that contains, say, k successes and
n — k failures, occurs with probability p¥¢"~*, regardless of the particular
positions of the successes and failures. O

EXERCISE 6.1. This exercise asks you to recast previously established results
in terms of probability theory.

(a) Let k > 2 be an integer, and suppose an integer n is chosen at random
from among all k-bit integers. Show that the probability that n is
prime is O(1/k).

(b) Let m be a positive integer, and suppose that a and b are chosen
at random from the set {1,...,n}. Show that the probability that
ged(a,b) =1 is at least 1/4.

(c) Let n be a positive integer, and suppose that a is chosen at random
from the set {1,...,n}. Show that the probability that gcd(a,n) =1
is Q(1/loglogn).

6.2 Conditional probability and independence 99

EXERCISE 6.2. Suppose A, B,C are events such that ANC = BNC. Show
that |P[.A] — P[B]| < P[C].

EXERCISE 6.3. Generalize equation (6.3) by proving the inclu-

sion/exclusion principle: for events Ay, ..., A,, we have
PlAI U+ UA =Y PIA] =) PlA; N A +
i i<j

S PLANA N A =+ (1) PLA N - N A
1<j<k

=D (=D PlAL NN AL

=1 i1 <<y
EXERCISE 6.4. Show that for events A, ..., A,, we have
PlAL U+ UA] > PIA] =Y PlA; N A,
i i<j

EXERCISE 6.5. Generalize inequality (6.5) and the previous exercise by prov-
ing Bonferroni’s inequalities: for events A, ..., A,, and defining

m

em =P[A1 U UA] =D (1)) PlA;, N0 A,

(=1 i1 < <ig

form=1,...,n, we have e,;, <0 for odd m, and e,, > 0 for even m.

6.2 Conditional probability and independence

Let D = (U, P) be a probability distribution.
For any event B C U with P[B] # 0 and any u € U, let us define

Plu| B]:= { (F))[U]/P[B] i)ftﬁefwlig;e.

Viewing B as fixed, we may view the function P[- | B] as a new probability
function on the sample space U, and this gives rise a new probability distri-
bution D := (P[- | B],U), called the conditional distribution given B.

Intuitively, Dg has the following interpretation: if a random experiment
produces an outcome according to the distribution D, and we learn that the
event B has occurred, then the distribution Dy assigns new probabilities to
all possible outcomes, reflecting the partial knowledge that the event B has
occurred.

100 Finite and discrete probability distributions

As usual, we extend the domain of definition of P[- | B] from outcomes to
events. For any event A C U, we have

PLA|B] = Y Plu|B) = DAOBL

u€A []

The value P[A | B] is called the conditional probability of 4 given B.
Again, the intuition is that this is the probability that the event A occurs,
given the partial knowledge that the event B has occurred.

For events A and B, if P[A N B] = P[A] - P[B], then A and B are called
independent events. If P[B] # 0, a simple calculation shows that .4 and B
are independent if and only if P[A | B] = P[A].

A collection Aj,..., A, of events is called pairwise independent if
PlA;NA;] = P[A;]P[A;] for all i # j, and is called mutually independent
if every subset A;,,...,A;, of the collection satisfies

Example 6.9. In Example 6.6, suppose that Alice tells Bob the sum of
the two dice before Bob makes his guess. For example, suppose Alice tells
Bob the sum is 4. Then what is Bob’s best strategy in this case? Let S, be
the event that the sum is z, for z = 2,...,12, and consider the conditional
probability distribution given S4. This is the uniform distribution on the
three pairs (1,3),(2,2),(3,1). The numbers 1 and 3 both appear in two
pairs, while the number 2 appears in just one pair. Therefore,

PICy | S4] = P[C3 | Su] = 2/3,
while
P[Ca | S84l =1/3
and
PICs | Si] = P[Cs | Sa] = P[Cs | Sa = 0.

Thus, if the sum is 4, Bob’s best strategy is to guess either 1 or 3.
Note that the events A; and By are independent, while the events A; and
Sy are not. O

Example 6.10. Suppose we toss three fair coins. Let A; be the event that
the first coin is “heads,” let A5 be the event that the second coin is “heads,”
and let A3z be the event that the third coin is “heads.” Then the collection
of events {A1, .42, A3} is mutually independent.

Now let Bjy be the event that the first and second coins agree (i.e., both
“heads” or both “tails”), let By be the event that the first and third coins

6.2 Conditional probability and independence 101

agree, and let Bas be the event that the second and third coins agree. Then
the collection of events {Bj2, B13, B2s} is pairwise independent, but not mu-
tually independent. Indeed, the probability that any one of the events occurs
is 1/2, and the probability that any two of the three events occurs is 1/4;
however, the probability that all three occurs is also 1/4, since if any two
events occur, then so does the third. O

Suppose we have a collection By, ..., B, of events that partitions U/, such
that each event B; occurs with non-zero probability. Then it is easy to see
that for any event A,

PIA] =Y PANB]|=> PlA|B]-PBi. (6.7)
i=1 i=1
Furthermore, if P[A] # 0, then for any j = 1,...,n, we have
PIB; | A] = PLANB;] _ PIA|B;|P[B;] (6.8)

P[A] >y PIA| BiP[Bi]

This equality, known as Bayes’ theorem, lets us compute the conditional
probability P[B; | A] in terms of the conditional probabilities P[A | B;].
The equation (6.7) is useful for computing or estimating probabilities by
conditioning on specific events B; (i.e., by considering the conditional prob-
ability distribution given ;) in such a way that the conditional probabilities
P[A | B;] are easy to compute or estimate. Also, if we want to compute a
conditional probability P[A | C], we can do so by partitioning C into events
Bi,...,B,, where each B; occurs with non-zero probability, and use the
following simple fact:
n
PLA|C] =) P[A]|BIP[B]/P[C]. (6.9)
i=1
Example 6.11. This example is based on the TV game show “Let’s make
a deal,” which was popular in the 1970’s. In this game, a contestant chooses
one of three doors. Behind two doors is a “zonk,” that is, something amusing
but of little or no value, such as a goat, and behind one of the doors is a
“grand prize,” such as a car or vacation package. We may assume that
the door behind which the grand prize is placed is chosen at random from
among the three doors, with equal probability. After the contestant chooses
a door, the host of the show, Monty Hall, always reveals a zonk behind one
of the two doors not chosen by the contestant. The contestant is then given
a choice: either stay with his initial choice of door, or switch to the other
unopened door. After the contestant finalizes his decision on which door

102 Finite and discrete probability distributions

to choose, that door is opened and he wins whatever is behind the chosen
door. The question is, which strategy is better for the contestant: to stay
or to switch?

Let us evaluate the two strategies. If the contestant always stays with his
initial selection, then it is clear that his probability of success is exactly 1/3.

Now consider the strategy of always switching. Let B be the event that
the contestant’s initial choice was correct, and let A be the event that the
contestant wins the grand prize. On the one hand, if the contestant’s initial
choice was correct, then switching will certainly lead to failure. That is,
P[A | B] = 0. On the other hand, suppose that the contestant’s initial
choice was incorrect, so that one of the zonks is behind the initially chosen
door. Since Monty reveals the other zonk, switching will lead with certainty
to success. That is, P[A | B] = 1. Furthermore, it is clear that P[B] = 1/3.
So we compute

P[A] = P[A| BIP[B] +P[A | BIP[B] =0 (1/3) + 1-(2/3) = 2/3.

Thus, the “stay” strategy has a success probability of 1/3, while the
“switch” strategy has a success probability of 2/3. So it is better to switch
than to stay.

Of course, real life is a bit more complicated. Monty did not always
reveal a zonk and offer a choice to switch. Indeed, if Monty only revealed
a zonk when the contestant had chosen the correct door, then switching
would certainly be the wrong strategy. However, if Monty’s choice itself was
a random decision made independent of the contestant’s initial choice, then
switching is again the preferred strategy. O

Example 6.12. Suppose that the rate of incidence of disease X in the
overall population is 1%. Also suppose that there is a test for disease X;
however, the test is not perfect: it has a 5% false positive rate (i.e., 5% of
healthy patients test positive for the disease), and a 2% false negative rate
(i.e., 2% of sick patients test negative for the disease). A doctor gives the
test to a patient and it comes out positive. How should the doctor advise
his patient? In particular, what is the probability that the patient actually
has disease X, given a positive test result?

Amazingly, many trained doctors will say the probability is 95%, since the
test has a false positive rate of 5%. However, this conclusion is completely
wrong.

Let A be the event that the test is positive and let B be the event that
the patient has disease X. The relevant quantity that we need to estimate
is P[B | AJ; that is, the probability that the patient has disease X, given a

6.2 Conditional probability and independence 103

positive test result. We use Bayes’ theorem to do this:

PIB | A] = PAIBPIB 0.98 - 0.01 olr
P[A | BIP[B] + P[A | BIP[B] 0.98-0.01 + 0.05-0.99

Thus, the chances that the patient has disease X given a positive test result

is just 17%. The correct intuition here is that it is much more likely to get
a false positive than it is to actually have the disease.

Of course, the real world is a bit more complicated than this example
suggests: the doctor may be giving the patient the test because other risk
factors or symptoms may suggest that the patient is more likely to have the
disease than a random member of the population, in which case the above
analysis does not apply. O

EXERCISE 6.6. Consider again the situation in Example 6.12, but now sup-
pose that the patient is visiting the doctor because he has symptom Y.
Furthermore, it is known that everyone who has disease X exhibits symp-
tom Y, while 10% of the population overall exhibits symptom Y. Assuming
that the accuracy of the test is not affected by the presence of symptom Y,
how should the doctor advise his patient should the test come out positive?

EXERCISE 6.7. Suppose we roll two dice, and let (x,y) denote the outcome
(as in Example 6.6). For each of the following pairs of events A and B,
determine if they are independent or not:

(a) A: z=y; B: y=1.
(b) Arx>y; B:y=1.
(c) A: x> y; B: y?> =Ty — 6.
(d) A: zy =6; B: y = 3.

EXERCISE 6.8. Let C be an event that occurs with non-zero probability,
and let Bq,..., B, be a partition of C, such that each event B; occurs with
non-zero probability. Let A be an event and let p be a real number with
0 < p < 1. Suppose that for each i = 1,...,n, the conditional probability of
A given B; is < p (resp., <,=, >, > p). Show that the conditional probability
of A given C is also < p (resp., <,=,>,> p).

EXERCISE 6.9. Show that if two events A and B are independent, then so are
A and B. More generally, show that if Aj,...,.A, are mutually independent,
then so are Aj, ..., A}, where each A} denotes either A; or A,.

EXERCISE 6.10. This exercise develops an alternative proof, based on prob-
ability theory, of Theorem 2.14. Let n > 1 be an integer and consider an

104 Finite and discrete probability distributions

experiment in which a number a is chosen at random from {0,...,n — 1}.
If n =pi"---pir is the prime factorization of n, let A; be the event that a
is divisible by p;, fori =1,...,r.
(a) Show that
¢(n)/n=P[A N---NA],

where ¢ is Euler’s phi function.

(b) Show that if 41, ...,4, are distinct indices between 1 and r, then
1
PlA,N---NA,] = ——.
[Aiy ie] e
Conclude that the events A; are mutually independent, and P[A;] =
1/p;.

(c) Using part (b) and the result of the previous exercise, show that
T

PlA N nA)=]]0-1/p).

=1

(d) Combine parts (a) and (c) to derive the result of Theorem 2.14 that

P(n) = nH(l —1/p;).

6.3 Random variables
Let D = (U, P) be a probability distribution.

It is sometimes convenient to associate a real number, or other mathe-
matical object, with each outcome u € U. Such an association is called a
random variable; more formally, a random variable X is a function from
U into a set X'. If X' is a subset of the real numbers, then X is called
a real random variable. When we speak of the image of X, we sim-
ply mean its image in the usual function-theoretic sense, that is, the set
XU)={X(u):uecU}.

One may define any number of random variables on a given probability
distribution. If X : &4 — X is a random variable, and f : X —)V is a
function, then f(X) := fo X is also a random variable.

Example 6.13. Suppose we flip n fair coins. Then we may define a ran-
dom variable X that maps each outcome to a bit string of length n, where a
“head” is encoded as a 1-bit, and a “tail” is encoded as a 0-bit. We may de-
fine another random variable Y that is the number of “heads.” The variable
Y is a real random variable. O

6.8 Random variables 105

Ezxample 6.14. If A is an event, we may define a random variable X as
follows: X := 1 if the event A occurs, and X := 0 otherwise. The variable X
is called the indicator variable for A. Conversely, if Y is any 0/1-valued
random variable, we can define the event BB to be the subset of all possible
outcomes that lead to Y = 1, and Y is the indicator variable for the event
B. Thus, we can work with either events or indicator variables, whichever
is more natural and convenient. O

Let X : 4 — X be a random variable. For z € X, we write “X = z”
as shorthand for the event {u € U : X(u) = x}. More generally, for any
predicate ¢, we may write “¢(X)” as shorthand for the event {u € U :
o(X (u)}.

A random variable X defines a probability distribution on its image X,
where the probability associated with x € X is P[X = z]. We call this the
distribution of X. For two random variables X, Y defined on a probability
distribution, Z := (X,Y) is also a random variable whose distribution is
called the joint distribution of X and Y.

If X is a random variable, and A is an event with non-zero probability,
then the conditional distribution of X given A is a probability distri-
bution on the image X of X, where the probability associated with x € X
is P X =z | A].

We say two random variables X, Y are independent if for all x in the
image of X and all y in the image of Y, the events X = z and Y = y are
independent, which is to say,

PIX =2 AY =y|=P[X =z|P[Y =y].

Equivalently, X and Y are independent if and only if their joint distribution
is equal to the product of their individual distributions. Alternatively, X
and Y are independent if and only if for all values x taken by X with non-
zero probability, the conditional distribution of Y given the event X = z is
the same as the distribution of Y.

Let X1,..., X, be a collection of random variables, and let X; be the image
of X;fori=1,...,n. Wesay Xy,...,X, are pairwise independent if for
all i,7 = 1,...,n with i # j, the variables X; and X; are independent. We
say that X1, ..., X,, are mutually independent if for all z; € X1,...,z, €
X,,, we have

PXi=21 A AX, =12, =P[X1 =11]---P[X,, = 1]

More generally, for £ = 2,...,n, we say that Xy,...,X,, are k-wise inde-
pendent if any £ of them are mutually independent.

106 Finite and discrete probability distributions

Example 6.15. We toss three coins, and set X; := 0 if the 7th coin is
“tails,” and X; := 1 otherwise. The variables X1, Xo, X3 are mutually inde-
pendent. Let us set Y19 := X1 @& X, Y13 := X1 @& X3, and Y3 := X9 ® X3,
where “@” denotes “exclusive or,” that is, addition modulo 2. Then the
variables Y79, Y13, Yo3 are pairwise independent, but not mutually indepen-
dent—observe that Yio @ Y13 = Yo3. O

The following is a simple but useful fact:

Theorem 6.1. Let X; : U — X; be random variables, fori=1,...,n, and
suppose that there exist functions f; : X; — [0,1], fori=1,...,n, such that

Zfi(l‘i)zl (izl...n),

T;€X;
and
PXi=z1 A AXp =] = fi(z1) - folzn)
for all x1 € Xy,...,x, € X,. Then for any subset of distinct indices
i1,...,00 €{1,...,n}, we have

PIXi =iy Ao A Xy, = i) = fir (@) -+ fi(w3,)
forall z;;, € X;y,..., 2z, € &,.

Proof. To prove the theorem, it will suffice to show that we can “eliminate”
a single variable, say X,,, meaning that for all x1,...,x,_1, we have

PXi=z1 A ANXpo1 =2p-1] = fi(z1) - foo1(@n—1).

Having established this, we may then proceed to eliminate any number of
variables (the ordering of the variables is clearly irrelevant).
We have

P[Xl =1 AN NXp1 :l‘n_ﬂ
= Z P[Xl :$1/\'-'/\Xn,1:a?n,1/\Xn::En]

TnE€Xn

= Z fi(@1) - fam1(@n—1) fu(2n)
TnE€Xn

= fl(xQ) ce fn—l(xn—l) Z fn('rn)

Tn€Xn

= fi(z1) - fa—1(zn-1). O

6.8 Random variables 107

The following three theorems are immediate consequences of the above
theorem:

Theorem 6.2. Let X; : U — X; be random variables, fori=1,...,n, such

that
1 1

P[XlleA---AXn:xn]:W--'m (for all x; € X1,...,z, € Xy).
n

Then the wvariables X; are mutually independent with each X; uniformly
distributed over X;.

Theorem 6.3. If X1,..., X, are mutually independent random wvariables,
then they are k-wise independent for all k =2,...,n.

Theorem 6.4. If D; = (U;, P;) are probability distributions fori=1,...,n,
then the projection functions m; : Uy X - - - X Up, — U;, where mi(u1, ..., up) =
u;, are mutually independent random wvariables on the product distribution
Dl X e X Dn.

We also have:

Theorem 6.5. If X1,...,X,, are mutually independent random wvariables,
and g1, ..., 9n are functions, then g1(X1),...,gn(Xn) are also mutually in-
dependent random variables.

Proof. The proof is a straightforward, if somewhat tedious, calculation. For
i = 1,...,n, let y; be some value in the image of g;(X;), and let A; :=
67 ({ys}). We have

P[gl(Xl) =y A A gn(Xn) = yn]

:p[(\/ Xi=z)A-a(\/ Xn=$n)}

r1E€EX] Tn€Xn

p[VoV (Xl:rl/\---/\Xn—ﬂUn)]

T1EX] Tn€Xn

= > o > PXy=a1 A A Xy =1

Tr1EX] TnEXp

=Y > PIXi=a1] - P[X, = 2]

"ElGXl Tn€Xp

=(Z p[xlle]>---< 3 P[anan>

xlE-Xl -'EnGXn

108 Finite and discrete probability distributions

:p[\ Xlle]mP[\/ anxn]

‘TIGXI anE-Xn
= P[gl(Xl) = yl] T P[gn(Xn) = yn]' U

Example 6.16. If we toss n dice, and let X; denote the value of the ith die
fori =1,...,n, then the X; are mutually independent random variables. If
we set Y = Xi2 for i = 1,...,n, then the Y; are also mutually independent
random variables. O

Example 6.17. This example again illustrates the notion of pairwise in-
dependence. Let X and Y be independent and uniformly distributed over
Zy, where p is a prime. For a € Z,, let Z, := aX +Y. Then we claim that
each Z, is uniformly distributed over Z,, and that the collection of random
variables {Z, : a € Z,} is pairwise independent.

To prove this claim, let a,b € Z, with a # b, and consider the map
fap : Ly X Ly — Ly X Ly that sends (x,y) to (ax+y,br+y). It is easy to see
that f,p is injective; indeed, if ax +y = a2’ +y' and bz +y = bz’ + ¢/, then
subtracting these two equations, we obtain (a — b)z = (a — b)2/, and since
a — b # [0]p, it follows that x = 2/, which also implies y = . Since f,; is
injective, it must be a bijection from Z, x Z,, onto itself. Thus, since (X,Y)
is uniformly distributed over Z, x Z,, so is (Z,, Zp) = (aX +Y,0X +Y). So
for all z, 2" € Z,, we have

PlZs=2A2Zy =2 =1/p?

and so the claim follows from Theorem 6.2.
Note that the variables Z, are not 3-wise independent, since the value of
any two determines the value of all the rest (verify). O

Example 6.18. We can generalize the previous example as follows. Let
X1,..., X, Y be mutually independent and uniformly distributed over Z,,,
where p is prime, and for a1, ...,a; € Zyp,let Z,, . o, = a1 Xa+ 4+ Xy +Y.
We claim that each Z,, ., is uniformly distributed over Z,, and that the
collection of all such Zg, . ,, is pairwise independent.

To prove this claim, it will suffice (by Theorem 6.2) to prove that for all

ai,...,ag, bi, ..., by, 2,2 € ZLp,
subject to (ay,...,a;) # (b1,...,b), we have
P Zuy.ay = 2N Zpy..opy = 2] = 1/p% (6.10)

6.8 Random variables 109

Since (a1, ...,a¢) # (b1,...,bt), we know that a; # b; for some j =1,...,t.
Let us assume that a; # by (the argument for j > 1 is analogous).
We first show that for all xo,...,2; € Z,, we have

PlZar,ar =2 N2y, b = N Xo=wo N ANXp=m4] = 1/p2. (6.11)

To prove (6.11), consider the conditional probability distribution given
X9 =a2 A -+ AN Xy = 2¢. In this conditional distribution, we have

Zayyvar =01 X1 +Y +c and Zp, b, =01 X7 +Y +d,

where

c:=agxo + -+ axy and d:= boxo + - + bxy,

and X; and Y are independent and uniformly distributed over Z, (this
follows from the mutual independence of X1, ..., X;,Y before conditioning).
By the result of the previous example, (a1 X1 + Y, b1 X7 + Y) is uniformly
distributed over Z, x Z,, and since the function sending (z,y) € Z, x Z, to
(z+c,y+d) € ZyxZ, is a bijection, it follows that (a1 X1+Y +¢, b1 X1+Y +d)
is uniformly distributed over Z, x Z,. That proves (6.11).

(6.10) now follows easily from (6.11), as follows:

P[Zal,...,az =z Zb1,...,bt = Z/]
= Z PlZar,ar =2 N2y, b, = | Xo=mo N AN Xy =14 -

T2,...,Tt P[X2 = 29 A A Xt = $t]
1

=) S PXo=mp A AX =1
x9,...,Tt
1
L2,...,Tt
1
p

Using other algebraic techniques, there are many ways to construct pair-
wise and k-wise independent families of random variables. Such families
play an important role in many areas of computer science.

Ezxample 6.19. Suppose we perform an experiment by executing n
Bernoulli trials (see Example 6.3), where each trial succeeds with the same
probability p, and fails with probability ¢ := 1 — p, independently of the
outcomes of all the other trials. Let X denote the total number of successes.
For k =0,...,n, let us calculate the probability that X = k.

To do this, let us introduce indicator variables Xj,...,X,, where for

110 Finite and discrete probability distributions

1 =1,...,n, we have X; = 1 if the ¢th trial succeeds, and X; = 0, otherwise.
By assumption, the X; are mutually independent. Then we see that X =
X1+ -+ X,,. Now, consider a fixed value £k = 0,...,n. Let Cy denote
the collection of all subsets of {1,...,n} of size k. For I € Cy, let A be
the event that X; = 1 for all i € I and X; = 0 for all ¢ ¢ I. Since the X;
are mutually independent, we see that P[A;] = pF¢"* (as in Example 6.8).
Evidently, the collection of events { A} cc, is a partition of the event that

X = k. Therefore,
PIX =k =) PlA]=) »o'¢" " =Clp"q" .

IeCy, IeCy,

al= (7).

PIX = k] = (Z) o

The distribution of the random variable X is called a binomial distri-
bution. O

Finally, since

we conclude that

EXERCISE 6.11. Let X7, ..., X,, be random variables, and let X; be the image
of X; for i = 1,...,n. Show that Xi,..., X, are mutually independent if
and only if for all i =2,...,n, and all 1 € Xy,...,x; € X, we have

P[XZ =z | Xisi=zia N NX1 = .’L‘l] = P[Xz = .’L‘Z]

EXERCISE 6.12. Let Aq, ..., 4, be events with corresponding indicator vari-
ables X1,...,X,. Show that the events Ay,..., A, are mutually indepen-
dent if and only if the random variables Xy, ..., X,, are mutually indepen-

dent. Note: there is actually something non-trivial to prove here, since
our definitions for independent events and independent random variables
superficially look quite different.

EXERCISE 6.13. Let C be an event that occurs with non-zero probability,
and let By,..., B, be a partition of C, such that each event B; occurs with
non-zero probability. Let X be a random variable whose image is X, and let
D’ be a probability distribution on X. Suppose that for each i = 1,...,n,
the conditional distribution of X given B; is equal to D’. Show that the
conditional distribution of X given C is also equal to D’.

6.4 Ezxpectation and variance 111

EXERCISE 6.14. Let n be a positive integer, and let X be a random variable
whose distribution is uniform over {0,...,n — 1}. For each positive divisor
d of n, let use define the random variable X; := X mod d. Show that for

any positive divisors dy, ..., dy of n, the random variables X, ,..., Xy, are

k
mutually independent if and only if dy, ..., d; are pairwise relatively prime.

EXERCISE 6.15. With notation as in the previous exercise, let n := 30, and
describe the conditional distribution of X5 given that Xg = 1.

EXERCISE 6.16. Let W, X, Y be mutually independent and uniformly dis-
tributed over Z,, where p is prime. For any a € Z,, let Z, := a?W+aX+Y.
Show that each Z, is uniformly distributed over Z,, and that the collection
of all Z, is 3-wise independent.

EXERCISE 6.17. Let Xy, for i =1,...,k and b € {0,1}, be mutually inde-
pendent random variables, each with a uniform distribution on {0,1}. For
bi,...,b, € {0,1}, let us define the random variable

Yo,y = X1py @ D Xppy,

where “@” denotes “exclusive or.” Show that the 2% variables Yy, ..p, are
pairwise independent, each with a uniform distribution over {0, 1}.

6.4 Expectation and variance

Let D = (U, P) be a probability distribution. If X is a real random variable,
then its expected value is

E[X]:=> X(u)-P[ul. (6.12)
ueU
If X is the image of X, we have

EX]=> > aPlul=)> z-PX=a (6.13)

rEX ueX~1({z}) TeX

From (6.13), it is clear that E[X] depends only on the distribution of X
(and not on any other properties of the underlying distribution D). More
generally, by a similar calculation, one sees that if X is any random variable
with image X, and f is a real-valued function on X', then

E[f(X)] =) f(x)P[X =a]. (6.14)
TEX

We make a few trivial observations about expectation, which the reader
may easily verify. First, if X is equal to a constant ¢ (i.e., X (u) = ¢ for all

112 Finite and discrete probability distributions

u € U), then E[X] = E[c] = ¢. Second, if X takes only non-negative values
(i.e., X(u) > 0 all u € U), then E[X] > 0. Similarly, if X takes only positive
values, then E[X] > 0.

A crucial property about expectation is the following:

Theorem 6.6 (Linearity of expectation). For real random variables X
andY , and real number a, we have

E[X + Y] =E[X] + E[Y]
and
ElaX] = aE[X].

Proof. 1t is easiest to prove this using the defining equation (6.12) for ex-
pectation. For u € U, the value of the random variable X + Y at u is by
definition X (u) 4+ Y (u), and so we have

ELX +Y] =) (X (u)+ Y (u)P[ul

ueU

=3 X(uPl]+ > Y (u)Ply]
ueld ueU

= E[X] + E[Y].

For the second part of the theorem, by a similar calculation, we have

ElaX] =) (aX(u))Plu] = a) X(u)P[u] = aE[X]. O

u

More generally, the above theorem implies (using a simple induction ar-
gument) that for any real random variables X, ..., X,,, we have

E[X1+ -+ X, =E[X1] + - + E[X,].

So we see that expectation is linear; however, expectation is not in general
multiplicative, except in the case of independent random variables:

Theorem 6.7. If X and Y are independent real random wvariables, then
E[XY] = E[X]E[Y].

Proof. 1t is easiest to prove this using (6.14). We have
EXY] =) ayP[X =z AY =y
z7y

= ayP[X = z|P[Y =y

6.4 Ezxpectation and variance 113

<Zx:xP[X = x]) (ZyP[Y = y])

IX]-E[Y]. O

More generally, the above theorem implies (using a simple induction ar-
gument) that if Xy,..., X, are mutually independent real random variables,
then

E[X X,] =E[X1] - E[X,].
The following fact is sometimes quite useful:

Theorem 6.8. If X is a random wvariable that takes values in the set
{0,1,...,n}, then

E[X] = ip[x >).

Proof. For i = 1,...,n, define the random variable X; so that X; = 1 if
X >idand X; =0if X <. Note that E[X;] =1-P[X > +0-P[X <i] =
P[X > i]. Moreover, X = X; +---+ X,,, and hence

E[X] = f: E[X,] = f: PIX >i]. O

i=1

The variance of a real random variable X is Var[X] := E[(X — E[X])?].
The variance provides a measure of the spread or dispersion of the distri-
bution of X around its expected value E[X]. Note that since (X — E[X])?
takes only non-negative values, variance is always non-negative.

Theorem 6.9. Let X be a real random variable, and let a and b be real
numbers. Then we have

(i) Var[X] = E[X?] - (E[X])?,
(ii) VarlaX] = a®Var[X], and
(iii) Var[X 4 b] = Var[X].

Proof. Let u := E[X]. For part (i), observe that

Var[X] = E[(X — p)?] = E[X? — 2uX + 1i”]
— E[X?] — 2uE[X] + E[] = E[X?] — 242 4 2
= E[X?] — 4%,

where in the third equality, we used the fact that expectation is linear, and

114 Finite and discrete probability distributions

in the fourth equality, we used the fact that E[c] = ¢ for constant ¢ (in this
case, ¢ = p?).
For part (ii), observe that

Var[aX] = E[a®X?] — (E[aX])? = a®E[X?] — (ap)?
— G2(E[X?] — 1) = a?Var[X],
where we used part (i) in the first and fourth equality, and the linearity of

expectation in the second.
Part (iii) follows by a similar calculation (verify):

Var[X +b] = E[(X +b)%] — (u+ b)?
= (E[X?] + 2bp + b?) — (u® + 2bp + b?)
= E[X?] — 4% = Var[X]. O

A simple consequence of part (i) of Theorem 6.9 is that E[X?] > (E[X])%.
Unlike expectation, the variance of a sum of random variables is not equal
to the sum of the variances, unless the variables are pairwise independent:

Theorem 6.10. If X;,...,X,, is a collection of pairwise independent real
random variables, then

[x] = Sova.
=1 i=1

Proof. We have
el] s)
Z — ZEEX}] —l-QZ(E[);in] — E[XG]E[X;]) —ZE[XZ-]Q

J<i

(by Theorem 6.6 and rearranging terms)
=) EX7 - EX)?
i i
(by pairwise independence and Theorem 6.7)

= Z Var[X;]. O

For any random variable X and event B, with P[B] # 0, we can define
the conditional expectation of X given B, denoted E[X | B], to be the

6.4 Ezxpectation and variance 115

expected value of X in the conditional probability distribution given B. We
have
ELX [B]=) X(u)-Plu|B=> 2PX =x2]8] (6.15)
ueld zeX

where X is the image of X.
If By,...,B, is a collection of events that partitions U, where each B;
occurs with non-zero probability, then it follows from the definitions that

- zn: E[X | Bi]P[Bi]. (6.16)
i=1

Example 6.20. Let X be uniformly distributed over {1,...,n}. Let us
compute E[X] and Var[X]. We have

Z”: B n—|—1) 1 n+1
: n ‘

We also have

Therefore,

Var[X] = E[X?] - (E[X])? = "

Example 6.21. Let X denote the value of a die toss. Let A be the event
that X is even. Then in the conditional probability space given A, we see
that X is uniformly distributed over {2,4,6}, and hence

24446
E[X]A]:%:4.

Similarly, in the conditional probability space given A, we see that X is
uniformly distributed over {1, 3,5}, and hence

— 14345
E[X]A]:%:?).

We can compute the expected value of X using these conditional expecta-

tions; indeed, we have

E[X] = E[X | AIP[A] + E[X | AP[A] :4é+3é= ;

which agrees with the calculation in previous example. O

116 Finite and discrete probability distributions

Ezxample 6.22. Suppose that a random variable X takes the value 1 with
probability p, and 0 with probability ¢ := 1 — p. The distribution of X is
that of a Bernoulli trial, as discussed in Example 6.3. Let us compute E[X]
and Var[X]. We have

EX]=1-p+0-¢g=np.
We also have
EX? =12 p+0%.q=0p.
Therefore,
Var[X] = E[X?] — (E[X])*=p —p’ =pg. D

FExample 6.23. Suppose that Xi,...,X,, are mutually independent ran-
dom variables such that each X; takes the value 1 with probability p and 0
with probability ¢ := 1 — p. Let us set X := X; 4+ --- + X,,. Note that the
distribution of each X, is that of a Bernoulli trial, as in Example 6.3, and
the distribution of X is a binomial distribution, as in Example 6.19. By the
previous example, we have E[X;] = p and Var[X;] = pq for i =1,...,n. Let
us compute E[X] and Var[X]. By Theorem 6.6, we have

n

E[X] =) E[Xi] =np,

i=1
and by Theorem 6.10, and the fact that the X; are mutually independent,
we have

EXERCISE 6.18. A casino offers you the following four dice games. In each
game, you pay 15 dollars to play, and two dice are rolled. In the first game,
the house pays out four times the value of the first die (in dollars). In the
second, the house pays out twice the sum of the two dice. In the third,
the house pays the square of the first. In the fourth, the house pays the
product of the two dice. Which game should you play? That is, which game
maximizes your expected winnings?

EXERCISE 6.19. Suppose X and Y are independent real random variables
such that E[X] = E[Y]. Show that

E[(X — Y)?] = Var[X] + Var[Y].

6.5 Some useful bounds 117

EXERCISE 6.20. Show that the variance of any 0/1-valued random variable
is at most 1/4.

EXERCISE 6.21. A die is tossed repeatedly until it comes up “1,” or until it
is tossed n times (whichever comes first). What is the expected number of
tosses of the die?

EXERCISE 6.22. Suppose that 20 percent of the students who took a certain
test were from school A and the average of their scores on the test was
65. Also, suppose that 30 percent of the students were from school B and
the average of their scores was 85. Finally, suppose that the remaining 50
percent of the students were from school C' and the average of their scores
was 72. If a student is selected at random from the entire group that took
the test, what is the expected value of his score?

EXERCISE 6.23. An urn contains » > 0 red balls and b > 1 black balls.
Consider the following experiment. At each step in the experiment, a single
ball is removed from the urn, randomly chosen from among all balls that
remain in the urn: if a black ball is removed, the experiment halts, and
if a red ball is removed, the experiment continues (without returning the
red ball to the urn). Show that the expected number of steps performed is
(r+b+1)/(b+1).

6.5 Some useful bounds

In this section, we present several theorems that can be used to bound the
probability that a random variable deviates from its expected value by some
specified amount.

Theorem 6.11 (Markov’s inequality). Let X be a random variable that
takes only non-negative real values. Then for any t > 0, we have

PIX > 1] < E[X]/t.
Proof. We have
E[X]=) aP[X=2a] = Y aP[X =z]+) aP[X =a].

Since X takes only non-negative values, all of the terms in the summation
are non-negative. Therefore,

E[X]>) aP[X=2] >) tP[X =a] = tP[X >t]. O

2>t 2>t

118 Finite and discrete probability distributions

Markov’s inequality may be the only game in town when nothing more
about the distribution of X is known besides its expected value. However,
if the variance of X is also known, then one can get a better bound.

Theorem 6.12 (Chebyshev’s inequality). Let X be a real random vari-
able. Then for any t > 0, we have

P[|X — E[X]| > t] < Var[X]/t2.

Proof. Let Y := (X — E[X])?. Then Y is always non-negative, and E[Y] =
Var[X]. Applying Markov’s inequality to Y, we have

P[IX — E[X]| > t] = P[Y > ¢*] < Var[X]/¢*. O

An important special case of Chebyshev’s inequality is the following. Sup-
pose that X1,..., X, are pairwise independent real random variables, each
with the same distribution. Let p be the common value of E[X;] and v the
common value of Var[X;]. Set

— 1
X = E(X1+---+Xn).

The variable X is called the sample mean of X7, ..., X,,. By the linearity of
expectation, we have E[X] = u, and since the X; are pairwise independent,
it follows from Theorem 6.10 (along with part (ii) of Theorem 6.9) that

Var[X]| = v/n. Applying Chebyshev’s inequality, for any € > 0, we have
— v
PI|X — |l > e < —. 6.17
X —pl2d <2 (617
The inequality (6.17) says that for all e > 0, and for all 6 > 0, there exists ng
(depending on € and §, as well as the variance v) such that n > ng implies

P[|X — |l > ¢ <. (6.18)
In words:

As n gets large, the sample mean closely approximates the ex-
pected value p with high probability.

This fact, known as the law of large numbers, justifies the usual intuitive
interpretation given to expectation.

Let us now examine an even more specialized case of the above situation.
Suppose that X1, ..., X, are pairwise independent random variables, each of
which takes the value 1 with probability p, and 0 with probability ¢ := 1 —p.
As before, let X be the sample mean of Xi,...,X,. As we calculated in

6.5 Some useful bounds 119

Example 6.22, the X; have a common expected value p and variance pgq.
Therefore, by (6.17), for any € > 0, we have

PIIX —p| > ¢ < 5. (6.19)

The bound on the right-hand side of (6.19) decreases linearly in n. If one
makes the stronger assumption that the X; are mutually independent (so
that X := Xj + --- + X,, has a binomial distribution), one can obtain a
much better bound that decreases exponentially in n:

Theorem 6.13 (Chernoff bound). Let Xi,..., X, be mutually indepen-
dent random variables, such that each X; is 1 with probability p and O with
probability q := 1 — p. Assume that 0 < p < 1. Also, let X be the sample
mean of X1,...,X,. Then for any ¢ > 0, we have:

(i) PR —p > d < e/
(i) P[X —p < —¢
(iii) P[IX —p| = €]

—ne?/2p.
)

<e
<9. 6777,62/2'
Proof. First, we observe that (ii) follows directly from (i) by replacing X;
by 1 — X; and exchanging the roles of p and ¢. Second, we observe that (iii)
follows directly from (i) and (ii). Thus, it suffices to prove (i).

Let o > 0 be a parameter, whose value will be determined later. Define

an(X—p)

the random variable Z :=e . Since the function x — e*™* is strictly

increasing, we have X —p > € if and only if Z > ¢®¢. By Markov’s inequality,
it follows that

P[X — p > ¢ = P[Z > ¢*™] < E[Z]e~<. (6.20)

So our goal is to bound E[Z] from above.

For i = 1,...,n, define the random variable Z; := ¢*(Xi—P). Note that
Z = [1i, Zi, that the Z; are mutually independent random variables (see
Theorem 6.5), and that

E[Z] = e 07P)p 4 2O0P)g = ped 4 geoP,
It follows that
E(Z] = E[[[21 = [[E1Zi] = (e + qe™)".

We will prove below that

pe? + g~ P < /2, (6.21)

120 Finite and discrete probability distributions
From this, it follows that
E[Z] < e 1/2. (6.22)
Combining (6.22) with (6.20), we obtain
PX —p > ¢] < ean/2-ane, (6.23)

Now we choose the parameter « so as to minimize the quantity a?qn/2—ane.
The optimal value of « is easily seen to be a = €/q, and substituting this
value of « into (6.23) yields (i).

To finish the proof of the theorem, it remains to prove the inequality
(6.21). Let

B = pe*® + qge= .

We want to show that g < eO‘Q‘I/2, or equivalently, that log 3 < a?q/2. We
have

B=e"(p+qe) =e"(1—q(l—e"?)),
and taking logarithms and applying parts (i) and (ii) of §A1, we obtain
log B = ag+log(1—q(1—e™*)) < ag—q(l—e™*) = gq(e *+a—1) < ga®/2.
This establishes (6.21) and completes the proof of the theorem. O

Thus, the Chernoff bound is a quantitatively superior version of the law
of large numbers, although its range of application is clearly more limited.

Example 6.24. Suppose we toss 10,000 coins. The expected number of
heads is 5,000. What is an upper bound on the probability « that we get
6,000 or more heads? Using Markov’s inequality, we get a < 5/6. Using
Chebyshev’s inequality, and in particular, the inequality (6.19), we get

Lo b4 1

~ 104102 400

Finally, using the Chernoff bound, we obtain
—10%1072/2(0.5)

a<e e 10 ~ 107434, O

EXERCISE 6.24. You are given a biased coin. You know that if tossed, it will
come up heads with probability at least 51%, or it will come up tails with
probability at least 51%. Design an experiment that attempts to determine
the direction of the bias (towards heads or towards tails). The experiment
should work by flipping the coin some number ¢ times, and it should correctly
determine the direction of the bias with probability at least 99%. Try to
make ¢ as small as possible.

6.6 The birthday paradoz 121

6.6 The birthday paradox

This section discusses a number of problems related to the following ques-
tion: how many people must be in a room before there is a good chance
that two of them were born on the same day of the year? The answer is
surprisingly few, whence the “paradox.”

To answer this question, we index the people in the room with integers
1,...,k, where k is the number of people in the room. We abstract the
problem a bit, and assume that all years have the same number of days,
say n—setting n = 365 corresponds to the original problem, except that
leap years are not handled correctly, but we shall ignore this detail. For
1=1,...,k, let X; denote the day of the year on which ¢’s birthday falls.
Let us assume that birthdays are uniformly distributed over {0,...,n —1};
this assumption is actually not entirely realistic, as it is well known that
people are somewhat more likely to be born in some months than in others.

So forany i =1,...,kand . =0,...,n — 1, we have P[X; = 2] = 1/n.

Let « be the probability that no two persons share the same birthday, so
that 1 — « is the probability that there is a pair of matching birthdays. We
would like to know how big k& must be relative to n so that « is not too
large, say, at most 1/2.

We can compute « as follows, assuming the X; are mutually independent.

There are a total of n* sequences of integers (1, ..., x), with each z; €
{0,...,n—1}. Among these, there are a total of n(n—1)---(n—k+1) that
contain no repetitions: there are n choices for z1, and for any fixed value of
x1, there are n — 1 choices for x9, and so on. Therefore

a=n(n—-1)--(n—k4+1)/n* = <1—1> (1—2> <1—k_1>. (6.24)

n n n

Using the part (i) of §A1, we obtain

a<e Sl o k(k=1)/2n

So if k(k — 1) > (2log2)n, we have a < 1/2. Thus, when k is at least a
small constant times n'/2, we have a < 1 /2, so the probability that two
people share the same birthday is at least 1/2. For n = 365, k > 23 suffices.
Indeed, one can simply calculate « in this case numerically from equation
(6.24), obtaining « ~ 0.493. Thus, if there are 23 people in the room, there
is about a 50-50 chance that two people have the same birthday.

The above analysis assumed the X; are mutually independent. However,
we can still obtain useful upper bounds for o under much weaker indepen-
dence assumptions.

122 Finite and discrete probability distributions

Fori=1,...,kand j =i+ 1,...,k, let us define the indicator variable

(1 X =X,
Wi '_{ 0 if X; # X

If we assume that the X; are pairwise independent, then

PWi; = 1] = P[X; = X|] ZP i =xAX; = a]
n—1
:ZP[Xi:J:]P[Xj:x]:Zl/n2:1/n.
=0 z=0

We can compute the expectation and variance (see Example 6.22):
1 1 1

n

Now consider the random variable

k k
W=) Wy,
i=1 j=i+1

which represents the number of distinct pairs of people with the same birth-
day. There are k(k — 1)/2 terms in this sum, so by the linearity of expecta-
tion, we have
k(k—1)

2n

Thus, for k(k — 1) > 2n, we “expect” there to be at least one pair of
matching birthdays. However, this does not guarantee that the probability
of a matching pair of birthdays is very high, assuming just pairwise inde-

EW] =

pendence of the X;. For example, suppose that n is prime and the X; are
a subset of the family of pairwise independent random variables defined in
Example 6.17. That is, each X; is of the form a; X + Y, where X and Y
are uniformly and independently distributed modulo n. Then in fact, either
all the X; are distinct, or they are all equal, where the latter event occurs
exactly when X = [0],, and so with probability 1/n— “when it rains, it
pours.”

To get a useful upper bound on the probability «a that there are no match-
ing birthdays, it suffices to assume that the X; are 4-wise independent. In
this case, it is easy to verify that the variables W;; are pairwise indepen-
dent, since any two of the W;; are determined by at most four of the Xj.
Therefore, in this case, the variance of the sum is equal to the sum of the

6.6 The birthday paradoz 123

variances, and so

Var[IW] = "3("52;1)(1 -

Furthermore, by Chebyshev’s inequality,

a=P[W =0] < P[|W — E[W]| > E[W]]
2n
k(k—1)

) < E[W].

< Var[W]/E[W]? < 1/E[W] =

Thus, if k(k — 1) > 4n, then o < 1/2.

In many practical applications, it is more important to bound « from
below, rather than from above; that is, to bound from above the probability
1 — « that there are any collisions. For this, pairwise independence of the
X; suffices, since than we have P[W;; = 1] = 1/n, and by (6.5), we have

k k
l—a<> > P[Wij:uzw,

— = 2n
=1 j=1+1

which is at most 1/2 provided k(k — 1) < n.

EXERCISE 6.25. Let aq,...,a, be real numbers with > ; oy = 1. Show
that

n n
0< Z(ai —1/n)? = Za% —1/n,
i=1 i=1

and in particular,

n
Za? >1/n.
i=1

EXERCISE 6.26. Let X be a set of size n > 1, and let X and X’ be indepen-
dent random variables, taking values in X', and with the same distribution.
Show that
PX=X']=) PX=2a>
TEX

S |-

EXERCISE 6.27. Let X be a set of size n > 1, and let x¢ be an arbitrary,
fixed element of X'. Consider a random experiment in which a function F' is
chosen uniformly from among all n™ functions from X into X. Let us define
random variables X;, for : =0,1,2,..., as follows:

124 Finite and discrete probability distributions

Thus, the value of X; is obtained by applying the function F' a total of ¢
times to the starting value zp. Since X has size n, the sequence {X;} must
repeat at some point; that is, there exists a positive integer k (with k < n)
such that X = X; for some ¢ =0,...,k — 1. Define the random variable K
to be the smallest such value k.

(a) Show that for any ¢ > 0 and any fixed values of z1,...,2; € X such
that xo,z1,...,x; are distinct, the conditional distribution of X1
given that X1 = z1,..., X; = z; is uniform over X.

(b) Show that for any integer & > 1, we have K > k if and only if
Xo,X1,..., X1 take on distinct values.

(¢) From parts (a) and (b), show that for any k = 1,...,n, we have
PIK>k|K>k—1=1—(k—1)/n,

and conclude that
k—1
PIK >k = [[(1—i/n) < e Fh=D/2n,

=1

(d) Show that

Zefk(kfl)/Zn _ O(n1/2)
k=1
and then conclude from part (c) that

E[K] = Y PIK > k] < 3 e ED/20 — 0(n/2),
k=1 k=1

(e) Modify the above argument to show that E[K] = Q(n'/?).

EXERCISE 6.28. The setup for this exercise is identical to that of the previous
exercise, except that now, the function F' is chosen uniformly from among
all n! permutations of X.

(a) Show that if K = k, then X = Xj.

(b) Show that for any ¢ > 0 and any fixed values of x1,...,2; € X such
that xg,x1,...,x; are distinct, the conditional distribution of X1
given that X; = z1,...,X; = x; is uniform over X' \ {z1,...,z;}.

(c) Show that for any k = 2,...,n, we have

1

PK>k|K>k-1=1— ———
[Kzk| K=z] n—k+2

6.7 Hash functions 125

and conclude that for all k =1,...,n, we have
k—2
1 k—1
PIK > k| = 1-— =1- .
K 2 K] H)(n—i> n

(d) From part (c), show that K is uniformly distributed over {1,...,n},
and in particular,
1
E[K] = "; .

6.7 Hash functions

In this section, we apply the tools we have developed thus far to a par-
ticularly important area of computer science: the theory and practice of
hashing.

The scenario is as follows. We have finite, non-empty sets A and Z, with
|A| = k and |Z| = n, and a finite, non-empty set H of hash functions, each
of which map elements of A into Z. More precisely, each element h € H
defines a function that maps a € A to an element z € Z, and we write
z = h(a); the value z is called the hash code of a (under h), and we say
that a hashes to z (under h). Note that two distinct elements of H may
happen to define the same function. We call H a family of hash functions
(from A to Z).

Let H be a random variable whose distribution is uniform on H. For any
a € A, H(a) denotes the random variable whose value is z = h(a) when
H = h. Forany £ = 1,... k, we say that H is an {-wise independent
family of hash functions if each H (a) is uniformly distributed over Z, and the
collection of all H(a) is f-wise independent; in case ¢ = 2, we say that H is
a pairwise independent family of hash functions. Pairwise independence
is equivalent to saying that for all a,a’ € A, with a # o/, and all 2,2’ € Z,

PlH(a) = = A H(d) = #] = 5.
Ezxample 6.25. Examples 6.17 and 6.18 provide explicit constructions for
pairwise independent families of hash functions. In particular, from the
discussion in Example 6.17, if n is prime, and we take A := Z,, Z := Z,,
and ‘H := {hyy : z,y € Zy}, where for hy, € H and a € A we define
hay(a) := ax+y, then H is a pairwise independent family of hash functions
from A to Z.

Similarly, Example 6.18 yields a pairwise independent family of hash func-
tions from A :=Z>! to Z 1= Zy, with H := {hy, 2,y T15- .-, T, Y € Ln},

126 Finite and discrete probability distributions
where for hy, g,, € H and (ai,...,a) € A, we define
hz1,...,xt,y(aly s 7at) =a1xr;+ -+ At + Y.

In practice, the inputs to such a hash function may be long bit strings, which
we chop into small pieces so that each piece can be viewed as an element of
Zp. O

6.7.1 Hash tables

Pairwise independent families of hash functions may be used to implement
a data structure known as a hash table, which in turn may be used to
implement a dictionary.

Assume that H is a family of hash functions from A to Z, where |A| = k
and |Z| = n. A hash function is chosen at random from H; an element
a € A is inserted into the hash table by storing the value of a into a bin
indexed by the hash code of a; likewise, to see if a particular value a € A
is stored in the hash table, one must search in the bin indexed by the hash
code of a.

So as to facilitate fast storage and retrieval, one typically wants the ele-
ments stored in the hash table to be distributed in roughly equal proportions
among all the bins.

Assuming that H is a pairwise independent family of hash functions, one
can easily derive some useful results, such as the following:

e If the hash table holds ¢ values, then for any value a € A, the expected
number of other values that are in the bin indexed by a’s hash code
is at most ¢/n. This result bounds the expected amount of “work”
we have to do to search for a value in its corresponding bin, which
is essentially equal to the size of the bin. In particular, if ¢ = O(n),
then the expected amount of work is constant. See Exercise 6.32
below.

e If the table holds g values, with ¢(¢ — 1) < n, then with probability
at least 1/2, each value lies in a distinct bin. This result is useful if
one wants to find a “perfect” hash function that hashes ¢ fixed values
to distinct bins: if n is sufficiently large, we can just choose hash
functions at random until we find one that works. See Exercise 6.33
below.

o If the table holds n values, then the expected value of the maximum
number of values in any bin is O(n'/?). See Exercise 6.34 below.

Results such as these, and others, can be obtained using a broader notion

6.7 Hash functions 127

of hashing called universal hashing. We call H a universal family of hash

functions if for all a,a’ € A, with a # d/, we have
1
P[H(a) = H(d)] < —.
n
Note that the pairwise independence property implies the universal prop-
erty (see Exercise 6.29 below). There are even weaker notions that are
relevant in practice; for example, in some applications, it is sufficient to
require that P[H(a) = H(a')] < ¢/n for some constant c.

EXERCISE 6.29. Show that any pairwise independent family of hash func-
tions is also a universal family of hash functions.

EXERCISE 6.30. Let A := erl(tﬂ) and Z := Z,, where n is prime. Let
H = {he, 2 : T1,..., 24 € Zyp} be a family of hash functions from A to
Z, where for hy, ., € H, and for (ag,ai,...,a;) € A, we define

hay,... (@001, ... at) = ag + @121 + -+ - + apt.
Show that H is universal, but not pairwise independent.

EXERCISE 6.31. Let k£ be a prime and let n be any positive integer. Let
A:={0,...,k—1} and Z:={0,...,n — 1}. Let

Hi={hey:o=1....k—1, y=0,.. k—1},

be a family of hash functions from A to Z, where for h,, € ‘H and for a € A,
we define

hay(a) :== ((ax 4+ y) mod k) mod n.

Show that H is universal. Hint: first show that for any a,a’ € A with a # o/,
the number of h € H such that h(a) = h(a’) is equal to the number of pairs
of integers (r, s) such that

0<r<k 0<s<k, r#s, and r=s (modn).

In the following three exercises, assume that H is a universal family of
hash functions from A to Z, where |A| = k and |Z| = n, and that H is a
random variable uniformly distributed over H.

EXERCISE 6.32. Let aq,...,a, be distinct elements of A, and let a € A.
Define L to be the number of indices i = 1,..., ¢ such that H(a;) = H(a).
Show that

1+ (¢g—1)/n ifac{al,...,aq};

q/n otherwise.

E[L] < {

128 Finite and discrete probability distributions

EXERCISE 6.33. Let aq,...,a4 be distinct elements of A, and assume that
¢(¢ — 1) < n. Show that the probability that H(a;) = H(a;) for some i, j
with ¢ # j, is at most 1/2.

EXERCISE 6.34. Assume k > n, and let aq,...,a, be distinct elements of
A. For z € Z, define the random variable B, := {a; : H(a;) = z}. Define
the random variable M := max{|B.|: z € Z}. Show that E[M] = O(n'/?).

EXERCISE 6.35. A family H of hash functions from A to Z is called e-
universal if for H uniformly distributed over H, and for all a,a’ € A with
a # da', we have P[H (a) = H(a')] < e. Show that if H is e-universal, then we

must have
1 1

€2 — — .
121 Al

Hint: using Exercise 6.26, first show that if H, A, A’ are mutually inde-
pendent random variables, with H uniformly distributed over H, and A
and A’ uniformly distributed over A, then P[A # A’ A H(A) = H(A')] >
1/12] = 1/ A.

6.7.2 Message authentication

Pairwise independent families of hash functions may be used to implement
a message authentication scheme, which is a mechanism to detect if
a message has been tampered with in transit between two parties. Unlike
an error correcting code (such as the one discussed in §4.5.1), a message
authentication scheme should be effective against arbitrary tampering.

As above, assume that H is a family of hash functions from A to Z, where
|A| = k and |Z] = n. Suppose that Alice and Bob somehow agree upon a
hash function chosen at random from H. At some later time, Alice transmits
a message a € A to Bob over an insecure network. In addition to sending
a, Alice also sends the hash code z of a. Upon receiving a pair (a, z), Bob
checks that the hash code of a is indeed equal to z: if so, he accepts the
message as authentic (i.e., originating from Alice); otherwise, he rejects the
message.

Now suppose that an adversary is trying to trick Bob into accepting an
inauthentic message (i.e., one not originating from Alice). Assuming that
‘H is a pairwise independent family of hash functions, it is not too hard
to see that the adversary can succeed with probability no better than 1/n,
regardless of the strategy or computing power of the adversary. Indeed, on
the one hand, suppose the adversary gives Bob a pair (d/,2’) at some time

6.7 Hash functions 129

before Alice sends her message. In this case, the adversary knows nothing
about the hash function, and so the correct value of the hash code of o’
is completely unpredictable: it is equally likely to be any element of Z.
Therefore, no matter how clever the adversary is in choosing a’ and z’, Bob
will accept (a, 2’) as authentic with probability only 1/n. On the other hand,
suppose the adversary waits until Alice sends her message, intercepting the
message/hash code pair (a,z) sent by Alice, and gives Bob a pair (a’, 2),
where a’ # a, instead of the pair (a, z). Again, since the adversary does not
know anything about the hash function other than the fact that the hash
code of a is equal to z, the correct hash code of a’ is completely unpredictable,
and again, Bob will accept (d/,z") as authentic with probability only 1/n.

One can easily make n large enough so that the probability that an ad-
versary succeeds is so small that for all practical purposes it is impossible
to trick Bob (e.g., n ~ 2109),

More formally, and more generally, one can define an e-forgeable mes-
sage authentication scheme to be a family H of hash functions from A
to Z with the following property: if H is uniformly distributed over H, then

(i) for all a € A and z € Z, we have P[H(a) = z] <€, and
(ii) for all @ € A and all functions f: Z — A and g : Z — Z, we have

PIA £ anH(A) =2 <e,

where Z := H(a), A" := f(Z), and Z' := g(Z).

Intuitively, part (i) of this definition says that it is impossible to guess the
hash code of any message with probability better than e; further, part (ii)
of this definition says that even after seeing the hash code of one message, it
is impossible to guess the hash code of a different message with probability
better than e, regardless the choice of the first message (i.e., the value a) and
regardless of the strategy used to pick the second message and its putative
hash code, given the hash code of the first message (i.e., the functions f and

9)-

EXERCISE 6.36. Suppose that a family H of hash functions from A to Z is
an e-forgeable message authentication scheme. Show that € > 1/|Z].

EXERCISE 6.37. Suppose that H is a family of hash functions from A to Z
and that |A| > 1. Show that if H satisfies part (ii) of the definition of an
e-forgeable message authentication scheme, then it also satisfies part (i) of
the definition.

130 Finite and discrete probability distributions

EXERCISE 6.38. Let H be a family of hash functions from A to Z. For
e > 0, we call H pairwise e-predictable if the following holds: for H
uniformly distributed over H, for all a,a’ € A, and for all z, 2’ € Z, we have
P[H(a) = z] < e and

P[H(a) = 2] >0 and a’ # a implies P[H(d')=2'| H(a) = 2] <e.

(a) Show that if H is pairwise e-predictable, then it is an e-forgeable
message authentication scheme.

(b) Show that if H is pairwise independent, then it is pairwise 1/|Z|-
predictable. Combining this with part (a), we see that if H is pair-
wise independent, then it is a 1/|Z|-forgeable message authentication
scheme (which makes rigorous the intuitive argument given above).

(c) Give an example of a family of hash functions that is an e-forgeable
message authentication scheme for some ¢ < 1, but is not pairwise
e-predictable for any e < 1.

EXERCISE 6.39. Give an example of an e-forgeable message authentication
scheme, where € is very small, but where if Alice authenticates two distinct
messages using the same hash function, an adversary can easily forge the
hash code of any message he likes (after seeing Alice’s two messages and their
hash codes). This shows that, as we have defined a message authentication
scheme, Alice should only authenticate a single message per hash function
(t messages may be authenticated using ¢ hash functions).

EXERCISE 6.40. Let H be an e-universal family of hash functions from A to
Y (see Exercise 6.35), and let H' be a pairwise independent family of hash
functions from) to Z. Define the composed family H’ o H of hash functions
from Ato Z as H'oH = {¢p ., : B’ € H', h € H}, where ¢y p(a) := b/ (h(a))
for ¢p , € H'o'H and for a € A. Show that H'o'H is an (e+1/|Z])-forgeable

message authentication scheme.

6.8 Statistical distance

This section discusses a useful measure “distance” between two random
variables. Although important in many applications, the results of this
section (and the next) will play only a very minor role in the remainder of
the text.

Let X and Y be random variables which both take values on a finite set

6.8 Statistical distance 131

V. We define the statistical distance between X and Y as
AX'Y::1 PIX =] — PlY =]|.
[X;Y] =5 %I [| =PI Il
Theorem 6.14. For random variables X,Y, Z, we have
(i) 0<AX:Y] <1,
(i) A[X;X] =0,
(111) A[X;Y] = AY; X], and
(iv) A[X;Z] < A[X; Y]+ A[Y; Z].

Proof. Exercise. O

Note that A[X;Y] depends only on the individual distributions of X and
Y, and not on the joint distribution of X and Y. As such, one may speak of
the statistical distance between two distributions, rather than between two
random variables.

Example 6.26. Suppose X has the uniform distribution on {1,...,n}, and
Y has the uniform distribution on {1,...,n—k}, where 0 < k < n—1. Let us
compute A[X;Y]. We could apply the definition directly; however, consider
the following graph of the distributions of X and Y:

1/(n =)

2 i

The statistical distance between X and Y is just 1/2 times the area of
regions A and C in the diagram. Moreover, because probability distributions
sum to 1, we must have

area of B + area of A =1 = area of B + area of C,
and hence, the areas of region A and region C are the same. Therefore,
A[X;Y] = area of A =area of C =k/n. O
The following characterization of statistical distance is quite useful:

Theorem 6.15. Let X and Y be random wvariables taking values on a set

132 Finite and discrete probability distributions
V. For any W C V, we have
A[X:;Y] = [PIX € W]~ P[Y € W],

and equality holds if W is either the set of all v € V such that P[X = v] <
P[Y = v|, or the complement of this set.

Proof. Suppose we partition the set V into two sets: the set Vy consisting
of those v € V such that P[X = v] < P[Y = v], and the set V; consisting of
those v € V such that P[X = v] > P[Y = v]. Consider the following rough
graph of the distributions of X and Y, where the elements of V) are placed
to the left of the elements of V;:

~— W Vi —>

Now, as in Example 6.26,
A[X;Y] = area of A = area of C.

Further, consider any subset YW of V. The quantity |P[X € W|—P[Y € W]|
is equal to the absolute value of the difference of the area of the subregion
of A that lies above W and the area of the subregion of C' that lies above
W. This quantity is maximized when W =V, or W = Vy, in which case it
is equal to A[X;Y]. O

We can restate Theorem 6.15 as follows:
A[X; Y] = max{|P[¢(X)] — P[p(Y)]| : ¢ is a predicate on V}.

This implies that when A[X;Y] is very small, then for any predicate ¢, the
events ¢(X) and ¢(Y') occur with almost the same probability. Put another
way, there is no “statistical test” that can effectively distinguish between
the distributions of X and Y. For many applications, this means that the
distribution of X is “for all practical purposes” equivalent to that of Y, and
hence in analyzing the behavior of X, we can instead analyze the behavior
of Y, if that is more convenient.

6.8 Statistical distance 133

Theorem 6.16. Let X,Y be random variables taking values on a setV, and
let f be a function from V into a set W. Then A[f(X); f(Y)] < A[X;Y].

Proof. By Theorem 6.15, for any subset W of W, we have

IP[f(X) e W] =P[f(Y) e W] =
PIX € f V)] = P[Y € f71(WV)]| < AIX; Y.

In particular, again by Theorem 6.15,
A[f(X); f(Y)] = [P[f(X) e W] = P[f(Y) e W]
for some W. O

Example 6.27. Let X be uniformly distributed on the set {0,...,n — 1},
and let Y be uniformly distributed on the set {0,...,m—1}, for m > n. Let
f(y) := y mod n. We want to compute an upper bound on the statistical
distance between X and f(Y). We can do this as follows. Let m = gn — r,
where 0 < r < n, so that ¢ = [m/n]. Also, let Z be uniformly distributed
over {0,...,gqn—1}. Then f(Z) is uniformly distributed over {0,...,n—1},
since every element of {0,...,n — 1} has the same number (namely, ¢) of
pre-images under f which lie in the set {0,...,gn — 1}. Therefore, by the
previous theorem,

ARG FY)] = Alf(2); F(Y)] < AlZ; Y,
and as we saw in Example 6.26,
AlZ)Y])=r/qgn < 1/q < n/m.
Therefore,
AIX; f(Y)] <n/m. O
We close this section with two useful theorems.

Theorem 6.17. Let X and Y be random variables taking values on a set V,
and let W be a random variable taking values on a set W. Further, suppose
that X and W are independent, and that Y and W are independent. Then
the statistical distance between (X, W) and (Y, W) is equal to the statistical
distance between X and Y ; that is,

ALX, WY, W] = A[X,Y].

134 Finite and discrete probability distributions
Proof. From the definition of statistical distance,

2AIX,W; YV, W] = [PIX=0AW =uw|-P[Y =vAW = u|
:Z\P[XZU]P[W:w] —P[Y = v]P[W = w]|

(by independence)
=> PW =w]|P[X =] - P[Y =]

=(Q_PW =uw)(Q_IP[X = o] - P[Y =1]|)
=1-2A[X;Y]. O

Theorem 6.18. Let Uy, ..., Uy, Vi, ..., Vy be mutually independent random
variables. We have

¢
AU, ..., UsVa,... VIl < AU V).
=1

Proof. We introduce random variables Wy, ..., W, defined as follows:

Wy := (Uy,...,Uy),
W;:=01,....,Vi,Uis1,...,Up) fori=1,...,0—1, and
We = (Vi,..., Vo).

By definition,
AlUL, ..., Us Vi, Vi) = A[Wo; Wi,

Moreover, by part (iv) of Theorem 6.14, we have
¢
AWo; We] <D AlWiy; Wi
i=1
Now consider any fixed index i = 1,...,¢. By Theorem 6.17, we have
AWi—1; Wil = A[U;, (Vi Vier, Uigr, -, Ul)s
‘/Z'a (‘/17 LR ‘/;;—17 Ui+17 ey UE)]
= AlU; Vi].
The theorem now follows immediately. O

The technique used in the proof of the previous theorem is sometimes

6.8 Statistical distance 135

called a hybrid argument, as one considers the sequence of “hybrid” vari-
ables Wy, W1, ..., Wy, and shows that the distance between each consecutive
pair of variables is small.

EXERCISE 6.41. Let X and Y be independent random variables, each uni-
formly distributed over Z,, where p is prime. Calculate A[X,Y; X, XY].

EXERCISE 6.42. Let n be a large integer that is the product of two distinct
primes of roughly the same bit length. Let X be uniformly distributed over
Zy, and let Y be uniformly distributed over Z). Show that A[X;Y] =
O(n~1?),

EXERCISE 6.43. Let V be a finite set, and consider any function ¢ : V —
{0,1}. Let B be a random variable uniformly distributed over {0,1}, and
for b = 0,1, let X; be a random variable taking values in V, and assume
that X3 and B are independent. Show that

IPlp(XB) = B] — 5| = 3|P[¢(X0) = 1] — P[o(X1) = 1]| < 3A[Xo; X].

EXERCISE 6.44. Let X, Y be random variables on a probability distribution,
and let By, ..., B, be events that partition of the underlying sample space,
where each B; occurs with non-zero probability. For ¢ = 1,...,n, let X;
and Y; denote the random variables X and Y in the conditional probability
distribution given B;; that is, P[X; = v] = P[X = v | B;], and P[Y; = v] =
P[Y = v | B;]. Show that

AIX;Y] <) A[X; YiIP[B).
i=1
EXERCISE 6.45. Let X and Y be random variables that take the same value
unless a certain event F occurs. Show that A[X;Y] < P[F].

EXERCISE 6.46. Let M be a large integer. Consider three random exper-
iments. In the first, we generate a random integer n between 1 and M,
and then a random integer w between 1 and n. In the second, we gen-
erate a random integer n between 2 and M, and then generate a random
integer w between 1 and n. In the third, we generate a random integer
n between 2 and M, and then a random integer w between 2 and n. For
i =1,2,3, let X; denote the outcome (n,w) of the ith experiment. Show
that A[X;Xs] = O(1/M) and A[X9; X3] = O(log M /M), and conclude
that A[X1; X3] = O(log M/M).

136 Finite and discrete probability distributions

EXERCISE 6.47. Show that Theorem 6.17 is not true if we drop the inde-
pendence assumptions.

EXERCISE 6.48. Show that the hypothesis of Theorem 6.18 can be weakened:
all one needs to assume is that Xi,..., X, are mutually independent, and
that Y7, ..., Y, are mutually independent.

EXERCISE 6.49. Let Yi,...,Y; be mutually independent random variables,
where each Y; is uniformly distributed on {0,...,m —1}. Fori=1,...,¢,
define Z; := Z}Zl jYj. Let n be a prime greater than ¢. Let § be any finite
subset of Z*¢. Let A be the event that for some (ay,... ,ag) € S, we have
Z;i = a; (mod n) for i = 1,...,¢. Show that

P[A] < |S|/nt + tn/m.

EXERCISE 6.50. Let X be a set of size n > 1. Let F be a random function
from X into X. Let G be a random permutation of X. Let z1,...,xy be
distinct, fixed elements of X'. Show that

0e—1)

AlF(z1),..., F(x0); G(x1),...,G(xy)] < o

EXERCISE 6.51. Let H be a family hash functions from A to Z such that
(i) each h € H maps A injectively into Z, and (ii) there exists €, with
0 < e < 1, such that A[H(a); H(a')] < € for all a,a’ € A, where H is
uniformly distributed over H. Show that |[H| > (1 —€)|.A|.

6.9 Measures of randomness and the leftover hash lemma (%)

In this section, we discuss different ways to measure “how random” a prob-
ability distribution is, and relations among them. Consider a distribution

“most random” dis-

defined on a finite sample space V. In some sense, the
tribution on V is the uniform distribution, while the least random would be
a “point mass” distribution, that is, a distribution where one point v € V in
the sample space has probability 1, and all other points have probability 0.

We define three measures of randomness. Let X be a random variable

taking values on a set V of size N.

1. We say X is d-uniform on V if the statistical distance between X
and the uniform distribution on V is equal to §; that is,

6= %Z!P[X:U] —1/N]|.

veY

6.9 Measures of randomness and the leftover hash lemma (x) 137
2. The guessing probability v(X) of X is defined to be
Y(X) := max{P[X = v] : v € V}.
3. The collision probability «(X) of X is defined to be
K(X) =) PIX =]’

vey

Observe that if X is uniformly distributed on V, then it is 0-uniform on V),
and v(X) = k(X) = 1/N. Also, if X has a point mass distribution, then it is
(1—-1/N)-uniform on V, and (X) = x(X) = 1. The quantity log,(1/v(X))
is sometimes called the min entropy of X, and the quantity log,(1/x(X)) is
sometimes called the Renyi entropy of X. The collision probability (X))
has the following interpretation: if X and X’ are identically distributed
independent random variables, then x(X) = P[X = X'] (see Exercise 6.26).

We first state some easy inequalities:

Theorem 6.19. Let X be a random variable taking values on a set V of
size N, such that X is d-uniform on V, v := vy(X), and k := k(X). Then
we have:

(i) k> 1/N;

(ii) v <k <y <1/N+6.

Proof. Part (i) is immediate from Exercise 6.26. The other inequalities are
left as easy exercises. O

This theorem implies that the collision and guessing probabilities are min-
imal for the uniform distribution, which perhaps agrees with ones intuition.

While the above theorem implies that v and k are close to 1/N when 4 is
small, the following theorem provides a converse of sorts:

Theorem 6.20. If X is d-uniform on V, k := k(X), and N :=|V|, then
1+ 4462
> .
"=TN
Proof. We may assume that § > 0, since otherwise the theorem is already

true, simply from the fact that x > 1/N.
For v € V, let p, := P[X = v]. We have § = £, |p, — 1/N|, and hence

138 Finite and discrete probability distributions
1=>",¢qu, where ¢, := |p, — 1/N|/(20). So we have

1 .
N < Z ¢> (by Exercise 6.25)

yr Z —1/N)?

= @(Zpg —1/N) (again by Exercise 6.25)
v

1
T 42 (
from which the theorem follows immediately. O

k—1/N),

We are now in a position to state and prove a very useful result which,
intuitively, allows us to convert a “low quality” source of randomness into
a “high quality” source of randomness, making use of a universal family of
hash functions (see §6.7.1).

Theorem 6.21 (Leftover hash lemma). Let H be a universal family of
hash functions from A to Z, where Z is of size n. Let H denote a random
variable with the uniform distribution on H, and let A denote a random
variable taking values in A, and with H, A independent. Let k := k(A).
Then (H, H(A)) is §-uniform on 'H X Z, where

0 < Vnk/2.
Proof. Let Z denote a random variable uniformly distributed on Z, with
H, A, Z mutually independent. Let m := |H| and ¢ := A[H, H(A); H, Z].
Let us compute the collision probability x(H, H(A)). Let H' have the
same distribution as H and A’ have the same distribution as A, with
H,H', A, A mutually independent. Then
k(H,H(A)) =P[H=H' NH(A)=H'(A)]
= P[H = H'|P[H(A) = H(A')]
1

—WXHHmeﬂA>A—APM—A$+

PLH(A) = H(A') | A4 APA £ A'])

< (P = 4]+ PIH(A) = H(A) | A £ A))

6.9 Measures of randomness and the leftover hash lemma (x) 139

< %(ﬂﬂ/n)

1
- 1).
mn(nFH—)

Applying Theorem 6.20 to the random variable (H, H(A)), which takes
values on the set H x Z of size N := mn, we see that 46> < nk, from which
the theorem immediately follows. O

Example 6.28. Suppose A is uniformly distributed over a subset A" of A,
where |A’| > 2190 5o that x(A) < 27160, Suppose that H is a universal
family of hash functions from A to Z, where |Z| < 264, If H is uniformly
distributed over H, independently of A, then the leftover hash lemma says
that (H, H(A)) is d-uniform on ‘H x Z, with

§ < V26427160 /2 = =% O

The leftover hash lemma allows one to convert “low quality” sources of
randomness into “high quality” sources of randomness. Suppose that to
conduct an experiment, we need to sample a random variable Z whose dis-
tribution is uniform on a set Z of size n, or at least §-uniform for a small
value of §. However, we may not have direct access to a source of “real”
randomness whose distribution looks anything like that of the desired uni-
form distribution, but rather, only to a “low quality” source of randomness.
For example, one could model various characteristics of a person’s typing
at the keyboard, or perhaps various characteristics of the internal state of a
computer (both its software and hardware) as a random process. We can-
not say very much about the probability distributions associated with such
processes, but perhaps we can conservatively estimate the collision or guess-
ing probability associated with these distributions. Using the leftover hash
lemma, we can hash the output of this random process, using a suitably
generated random hash function. The hash function acts like a “magnifying
glass”: it “focuses” the randomness inherent in the “low quality” source
distribution onto the set Z, obtaining a “high quality,” nearly uniform, dis-
tribution on Z.

Of course, this approach requires a random hash function, which may
be just as difficult to generate as a random element of Z. The following
theorem shows, however, that we can at least use the same “magnifying
glass” many times over, with the statistical distance from uniform of the
output distribution increasing linearly in the number of applications of the
hash function.

140 Finite and discrete probability distributions

Theorem 6.22. Let H be a universal family of hash functions from A to Z,
where Z is of sizen. Let H denote a random variable with the uniform distri-
bution on 'H, and let Ay,..., Ay denote random variables taking values in A,
with H, Ay, ..., Ay mutually independent. Let k := max{k(Ay),...,k(Ap)}.
Then (H,H(Ay),...,H(Ay)) is &' -uniform on H x Z*, where

§ < Unk/2.

Proof. Let Zy, ..., Z; denote random variables with the uniform distribution
on Z,with H, Ay, ..., Ay, Z1, ..., Zy mutually independent. We shall make a
hybrid argument (as in the proof of Theorem 6.18). Define random variables
Wo, W1, ..., W, as follows:

Wy :=(H,H(Ay),...,H(Ay)),

Wi = (H,Zl,...,ZZ‘,H(Ai+1),...,H(Ag)) for i = 1,...,5— 1, and

Wy:=(H,Z1,...,%Z).

We have
§ = AWo; W]

‘
< Z A[W;_1;W;] (by part (iv) of Theorem 6.14)
i=1

V4

SZA[Hazlv"')ZiflaH(Ai)aAl?Fly'"7A€;
=V H 2y, Zica, Ziy Aiga, o Al
(by Theorem 6.16)

¢
= A[H,H(A;);H,Z;] (by Theorem 6.17)
=1

< tly/nk/2 (by Theorem 6.21). O

Another source of “low quality” randomness arises in certain crypto-
graphic applications, where we have a “secret” random variable A that is
distributed uniformly over a large subset of some set A, but we want to
derive from A a “secret key” whose distribution is close to that of the uni-
form distribution on a specified “key space” Z (typically, Z is the set of all
bit strings of some specified length). The leftover hash lemma, combined
with Theorem 6.22, allows us to do this using a “public” hash function—
generated at random once and for all, published for all to see, and used over
and over to derive secret keys as needed.

6.10 Discrete probability distributions 141

EXERCISE 6.52. Consider again the situation in Theorem 6.21. Suppose
that Z = {0,...,n — 1}, but that we would rather have an almost-uniform
distribution over Z" = {0,...,¢t — 1}, for some ¢t < n. While it may be
possible to work with a different family of hash functions, we do not have
to if n is large enough with respect to ¢, in which case we can just use the
value H(A) mod t. If Z’ is uniformly distributed over Z’, show that

A[H,H(A) mod t; H,Z'] < \/nk/2+ t/n.

EXERCISE 6.53. Suppose X and Y are random variables with images X and
Y, respectively, and suppose that for some €, we have P[X =z | Y =y] < e
for all x € X and y €). Let ‘H be a universal family of hash functions from
X to Z, where Z is of size n. Let H denote a random variable with the
uniform distribution on H, and Z denote a random variable with the uniform
distribution on Z, where the three variables H, Z, and (X,Y’) are mutually
independent. Show that the statistical distance between (Y, H, H(X)) and
(Y,H,Z) is at most \/ne/2.

6.10 Discrete probability distributions

In addition to working with probability distributions over finite sample
spaces, one can also work with distributions over infinite sample spaces.
If the sample space is countable, that is, either finite or countably infinite,
then the distribution is called a discrete probability distribution. We
shall not consider any other types of probability distributions in this text.
The theory developed in §§6.1-6.5 extends fairly easily to the countably
infinite setting, and in this section, we discuss how this is done.

6.10.1 Basic definitions

To say that the sample space U is countably infinite simply means that
there is a bijection f from the set of positive integers onto U/; thus, we can
enumerate the elements of U as uy,ug,us, ..., where u; = f(i).

As in the finite case, the probability function assigns to each u € U a
value P[u] € [0,1]. The basic requirement that the probabilities sum to
one (equation (6.1)) is the requirement that the infinite series Y .2, Plu;]
converges to one. Luckily, the convergence properties of an infinite series
whose terms are all non-negative is invariant under a re-ordering of terms
(see §A4), so it does not matter how we enumerate the elements of U.

Example 6.29. Suppose we flip a fair coin repeatedly until it comes up

142 Finite and discrete probability distributions

“heads,” and let the outcome u of the experiment denote the number of coins
flipped. We can model this experiment as a discrete probability distribution
D = (U,P), where U consists of the set of all positive integers, and where
for u € U, we set P[u] = 27%. We can check that indeed > o7 27" =1, as
required.

One may be tempted to model this experiment by setting up a probabil-
ity distribution on the sample space of all infinite sequences of coin tosses;
however, this sample space is not countably infinite, and so we cannot con-
struct a discrete probability distribution on this space. While it is possible
to extend the notion of a probability distribution to such spaces, this would
take us too far afield. O

Example 6.30. More generally, suppose we repeatedly execute a Bernoulli
trial until it succeeds, where each execution succeeds with probability p > 0
independently of the previous trials, and let the outcome u of the experiment
denote the number of trials executed. Then we associate the probability
P[u] = ¢“~'p with each positive integer u, where q := 1 — p, since we have
u — 1 failures before the one success. One can easily check that these prob-
abilities sum to 1. Such a distribution is called a geometric distribution.
O

Exzample 6.31. The series) .21 /i3 converges to some positive number
c. Therefore, we can define a probability distribution on the set of positive
integers, where we associate with each i > 1 the probability 1/ci3. O

Example 6.32. More generally, if x;,7 = 1,2,..., are non-negative num-
bers, and 0 < ¢ := Y o2, x; < 0o, then we can define a probability distri-
bution on the set of positive integers, assigning the probability z;/c to i.
O

As in the finite case, an event is an arbitrary subset A of 4. The prob-
ability P[A] of A is defined as the sum of the probabilities associated with
the elements of A—in the definition (6.2), the sum is treated as an infinite
series when A is infinite. This series is guaranteed to converge, and its value
does not depend on the particular enumeration of the elements of A.

Ezxample 6.33. Consider the geometric distribution discussed in Exam-
ple 6.30, where p is the success probability of each Bernoulli trial, and
q := 1 — p. For integer i > 1, consider the event A that the number of
trials executed is at least i. Formally, A is the set of all integers greater
than or equal to i. Intuitively, P[A] should be ¢'~!, since we perform at
least ¢ trials if and only if the first ¢ — 1 trials fail. Just to be sure, we can

6.10 Discrete probability distributions 143

compute

PIAI =) Plu=> ¢""'p=d""p) ¢"=d"p: 1iq =¢~". O

(g uU>1 u>0

It is an easy matter to check that all the statements made in §6.1 carry
over verbatim to the case of countably infinite sample spaces. Moreover, it
also makes sense in the countably infinite case to consider events that are a
union or intersection of a countably infinite number of events:

Theorem 6.23. Let A;, As,... be an infinite sequence of events.
(i) If A; C A1 for alli > 1, then P[Ui>1 AZ] = lim; o P[.AZ]
(it) In general, we have P[J;~; Ai] < Zl;l P[A;].

(111) If the A; are pairwise dis}omt, then F;[UZ->1 Ai] =51 PLA.
(iv) If A D Aisx for all i > 1, then PN,y Aj] = lim; .0 PLA].

Proof. For (i), let A := Ui21 A;, and let a1, a9, ... be an enumeration of the

elements of A. For any € > 0, there exists a value kg such that Zfil a; >
P[A] — e. Also, there is some k; such that {ai,...,ax,} C Ayg,. Therefore,
for any k > ki, we have P[A] — e < P[Ag] < P[A].

(ii) and (iii) follow by applying (i) to the sequence { U;-:l Aj}i, and making
use of (6.5) and (6.6), respectively.

(iv) follows by applying (i) to the sequence {A;}, using (the infinite version
of) DeMorgan’s law. O

6.10.2 Conditional probability and independence

All of the definitions and results in §6.2 carry over verbatim to the countably
infinite case. Equation (6.7) as well as Bayes’ theorem (equation 6.8) and
equation (6.9) extend mutatis mutandus to the case of an infinite partition

Bi,Bs,....

6.10.3 Random variables

All of the definitions and results in §6.3 carry over verbatim to the countably
infinite case (except Theorem 6.2, which of course only makes sense in the
finite setting).

144 Finite and discrete probability distributions

6.10.4 Expectation and variance

We define the expected value of a real random variable X exactly as before:

E[X]:=> X(u)-P[ul,
ueU
where, of course, the sum is an infinite series. However, if X may take
negative values, then we require that the series converges absolutely; that is,
we require that), o, | X (u)| - Plu] < oo (see §A4). Otherwise, we say the
expected value of X does not exist. Recall from calculus that a series that
converges absolutely will itself converge, and will converge to the same value
under a re-ordering of terms. Thus, if the expectation exists at all, its value
is independent of the ordering on U. For a non-negative random variable
X, if its expectation does not exist, one may express this as “E[X] = 00.”
All of the results in §6.4 carry over essentially unchanged, except that one
must pay some attention to “convergence issues.”

Equations (6.13) and (6.14) hold, but with the following caveats (verify):

e If X is a real random variable with image X, then its expected value
E[X] exists if and only if the series), #P[X = z] converges abso-
lutely, in which case E[X] is equal to the value of the latter series.

e If X is a random variable with image X and f a real-valued function
on X, then E[f(X)] exists if and only if the series) f(2)P[X =]
converges absolutely, in which case E[f(X)] is equal to the value of
the latter series.

FExample 6.34. Let X be a random variable whose distribution is as in
Example 6.31. Since the series . 1/n? converges and the series Y. 1/n
diverges, the expectation E[X] exists, while E[X?] does not. O

Theorems 6.6 and 6.7 hold under the additional hypothesis that E[X] and
E[Y] exist.

If X1, Xo,...is an infinite sequence of real random variables, then the ran-
dom variable X := >, X; is well defined provided the series > "7, X;(u)
converges for all u € Y. One might hope that E[X] = >"°, E[X;]; however,
this is not in general true, even if the individual expectations E[X;] are non-
negative, and even if the series defining X converges absolutely for all wu;
nevertheless, it is true when the X; are non-negative:

Theorem 6.24. Let X :=) ., X;, where each X; takes non-negative val-
ues only. Then we have

E[X] =) E[X].

i>1

6.10 Discrete probability distributions 145

Proof. We have

DEX] =)0 Xi(wPlu] =) > Xi(u)P[u]

i>1 i>1 ueld uel 121
= P> Xi(u) = E[X],
ueU i>1

where we use the fact that we may reverse the order of summation in an
infinite double summation of non-negative terms (see §A5). O

Using this theorem, one can prove the analog of Theorem 6.8 for countably
infinite sample spaces, using exactly the same argument.

Theorem 6.25. If X is a random variable that takes non-negative integer

values, then
(o)

E[X] =) P[X >4].

A nice picture to keep in mind with regards to Theorem 6.25 is the follow-
ing. Let p; := P[X =] for i =0,1,..., and let us arrange the probabilities
p; in a table as follows:

b1
b2 P2
p3 DP3 D3

Summing the ith row of this table, we get iP[X = i], and so E[X] is equal
to the sum of all the entries in the table. However, we may compute the
same sum column by column, and the sum of the entries in the ith column
is P[X > i].

Ezxample 6.35. Suppose X is a random variable with a geometric distri-
bution, as in Example 6.30, with an associated success probability p and
failure probability ¢ := 1 — p. As we saw in Example 6.33, for all integer
i > 1, we have P[X > i] = ¢""!. We may therefore apply Theorem 6.25 to
easily compute the expected value of X:

e} . 0 . 1 1
EX] =D PIX i =3 ¢ == . O
i=1 =1

Example 6.36. To illustrate that Theorem 6.24 does not hold in general,
consider the geometric distribution on the positive integers, where P[j] = 277
for j > 1. For i > 1, define the random variable X; so that X;(i) = 2,

146 Finite and discrete probability distributions

Xi(i+1) = =21 and X;(j) = 0 for all j ¢ {i,i + 1}. Then E[X;] = 0 for
all i > 1, and so) ;5 E[X;] = 0. Now define X := 3 .o, X;. This is well
defined, and in fact X (1) = 2, while X(j) = 0 for all 7 > 1. Hence E[X] = 1.
O

The variance Var[X] of X exists if and only if E[X] and E[(X — E[X])?]
exist, which holds if and only if E[X] and E[X?] exist.

Theorem 6.9 holds under the additional hypothesis that E[X] and E[X?]
exist. Similarly, Theorem 6.10 holds under the additional hypothesis that
E[X;] and E[X?] exist for each i.

The definition of conditional expectation carries over verbatim, as do
equations (6.15) and (6.16). The analog of (6.16) for infinite partitions
B, Bs, ... does not hold in general, but does hold if X is always non-negative.

6.10.5 Some useful bounds

Both Theorems 6.11 and 6.12 (Markov’s and Chebyshev’s inequalities) hold,
under the additional hypothesis that the relevant expectations and variances
exist.

EXERCISE 6.54. Suppose X is a random variable taking positive integer
values, and that for some real number ¢, with 0 < ¢ < 1, and for all integers
i > 1, we have P[X > i] = ¢"~!. Show that X has a geometric distribution
with associated success probability p :=1 —q.

EXERCISE 6.55. A gambler plays a simple game in a casino: with each play
of the game, the gambler may bet any number m of dollars; a coin is flipped,
and if it comes up “heads,” the casino pays m dollars to the gambler, and
otherwise, the gambler pays m dollars to the casino. The gambler plays
the game repeatedly, using the following strategy: he initially bets a dollar;
each time he plays, if he wins, he pockets his winnings and goes home, and
otherwise, he doubles his bet and plays again.

(a) Show that if the gambler has an infinite amount of money (so he
can keep playing no matter how many times he looses), then his ex-
pected winnings are one dollar. Hint: model the gambler’s winnings
as a random variable on a geometric distribution, and compute its
expected value.

(b) Show that if the gambler has a finite amount of money (so that he

can only afford to loose a certain number of times), then his expected
winnings are zero (regardless of how much money he starts with).

6.11 Notes 147

Hint: in this case, you can model the gambler’s winnings as a random
variable on a finite probability distribution.

6.11 Notes

Our Chernoff bound (Theorem 6.13) is one of a number of different types of
bounds that appear in the literature under the rubric of “Chernoff bound.”

Universal and pairwise independent hash functions, with applications to
hash tables and message authentication codes, were introduced by Carter
and Wegman [25, 99].

The leftover hash lemma (Theorem 6.21) was originally stated and proved
by Impagliazzo, Levin, and Luby [46], who use it to obtain an important
result in the theory of cryptography. Our proof of the leftover hash lemma is
loosely based on one by Impagliazzo and Zuckermann [47], who also present
further applications.

7
Probabilistic algorithms

It is sometimes useful to endow our algorithms with the ability to generate
random numbers. To simplify matters, we only consider algorithms that
generate random bits. Where such random bits actually come from will not
be of great concern to us here. In a practical implementation, one would
use a pseudo-random bit generator, which should produce bits that “for
all practical purposes” are “as good as random.” While there is a well-
developed theory of pseudo-random bit generation (some of which builds on
the ideas in §6.9), we will not delve into this here. Moreover, the pseudo-
random bit generators used in practice are not based on this general theory,
and are much more ad hoc in design. So, although we will present a rigorous
formal theory of probabilistic algorithms, the application of this theory to
practice is ultimately a bit heuristic.

7.1 Basic definitions

Formally speaking, we will add a new type of instruction to our random
access machine (described in §3.2):

random bit This type of instruction is of the form o «+ RANDOM, where
« takes the same form as in arithmetic instructions. Execution of
this type of instruction assigns to « a value sampled from the uniform
distribution on {0, 1}, independently from the execution of all other
random-bit instructions.

In describing algorithms at a high level, we shall write “b < {0,1}” to
denote the assignment of a random bit to the variable b, and “s «p {0, 1}*¢”
to denote the assignment of a random bit string of length ¢ to the variable s.

In describing the behavior of such a probabilistic or randomized algo-
rithm A, for any input z, we view its running time and output as random

148

7.1 Basic definitions 149

variables, denoted T4(z) and A(z), respectively. The expected running
time of A on input z is defined as the expected value E[T4(z)] of the ran-
dom variable T4(x). Note that in defining expected running time, we are
not considering the input to be drawn from some probability distribution.
One could, of course, define such a notion; however, it is not always easy to
come up with a distribution on the input space that reasonably models a
particular real-world situation. We do not pursue this issue any more here.

We say that a probabilistic algorithm A runs in expected polynomial
time if there exist constants c,d such that for all n > 0 and all inputs x
of length n, we have E[T4(z)] < n®+ d. We say that A runs in strict
polynomial time if there exist constants c,d such that for all n and all
inputs z of length n, A always halts on input x within n® + d, regardless of
its random choices.

Defining the distributions of T4(x) and A(x) is a bit tricky. Things are
quite straightforward if A always halts on input x after a finite number
of steps, regardless of the outcomes of its random choices: in this case,
we can naturally view Ty(x) and A(x) as random variables on a uniform
distribution over bit strings of some particular length—such a random bit
string may be used as the source of random bits for the algorithm. However,
if there is no a priori bound on the number of steps, things become more
complicated: think of an algorithm that generates random bits one at a time
until it generates, say, a 1 bit—just as in Example 6.29, we do not attempt
to model this as a probability distribution on the uncountable set of infinite
bit strings, but rather, we directly define an appropriate discrete probability
distribution that models the execution of A on input .

7.1.1 Defining the probability distribution

A warning to the reader: the remainder of this section is a bit technical,
and you might want to skip ahead to §7.2 on first reading, if you are willing
to trust your intuition regarding probabilistic algorithms.

To motivate our definition, which may at first seem a bit strange, consider
again Example 6.29. We could view the sample space in that example to
be the set of all bit strings consisting of zero or more 0 bits, followed by a
single 1 bit, and to each such bit string ¢ of this special form, we assign the
probability 27171, where |o| denotes the length of o. The “random experi-
ment” we have in mind is to generate random bits one at a time until one of
these special “halting” strings is generated. In developing the definition of
the probability distribution for a probabilistic algorithm, we simply consider

150 Probabilistic algorithms

more general sets of “halting” strings, determined by the algorithm and its
input.

To simplify matters, we assume that the machine produces a stream of
random bits, one with every instruction executed, and if the instruction
happens to be a random-bit instruction, then this is the bit it uses. For
any bit string o, we can run A on input z for up to |o| steps, using o for
the stream of random bits, and observe the behavior of the algorithm. The
reader may wish to visualize o as a finite path in an infinite binary tree,
where we start at the root, branching to the left if the next bit in o is a 0
bit, and branching to the right if the next bit in ¢ is a 1 bit. In this context,
we call o an execution path. Some further terminology will be helpful:

e If A halts in at most |o| steps, then we call 0 a complete execution
path;

e if A halts in exactly |o| steps, then we call o an exact execution
path;

e if A does not halt in fewer than |o| steps, then we call o a partial
execution path.

The sample space S of the probability distribution associated with A on
input x consists of all exact execution paths. Clearly, S is prefix free; that
is, no string in S is a proper prefix of another.

Theorem 7.1. If S is a prefiz-free set of bit strings, then) s 2-lol < 1.

Proof. We first claim that the theorem holds for any finite prefix-free set S.
We may assume that S is non-empty, since otherwise, the claim is trivial.
We prove the claim by induction on the sum of the lengths of the elements
of §. The base case is when S contains just the empty string, in which case
the claim is clear. If S contains non-empty strings, let 7 be a string in S of
maximal length, and let 7" be the prefix of length |7| — 1 of 7. Now remove
from S all strings which have 7' as a prefix (there are either one or two
such strings), and add to S the string 7/. It is easy to see (verify) that the
resulting set S’ is also prefix-free, and that

ZQ—IJI < Z 9—lol
ceS ocesS’!
The claim now follows by induction.

For the general case, let 01,09, ... be a particular enumeration of S, and
consider the partial sums 5; = 23:1 2-193l for i = 1,2,.... From the above
claim, each of these partial sums is at most 1, from which it follows that
lim; ., S; <1. 0O

7.1 Basic definitions 151

From the above theorem, if S is the sample space associated with algo-
rithm A on input z, we have

S:=)Y 27l <1,
c€eS

Assume that S = 1. Then we say that A halts with probability 1 on
input z, and we define the distribution D4, associated with A on input
z to be the distribution on S that assigns the probability 27171 to each bit
string 0 € S. We also define T4(z) and A(x) as random variables on the
distribution D 4 , in the natural way: for each o € S, we define T4 (x) to be
lo| and A(x) to be the output produced by A on input z using o to drive
its execution.

All of the above definitions assumed that A halts with probability 1 on
input z, and indeed, we shall only be interested in algorithms that halt with
probability 1 on all inputs. However, to analyze a given algorithm, we still
have to prove that it halts with probability 1 on all inputs before we can use
these definitions and bring to bear all the tools of discrete probability theory.
To this end, it is helpful to study various finite probability distributions
associated with the execution of A on input z. For every integer k > 0, let
us consider the uniform distribution on bit strings of length k, and for each
j =0,...,k, define H§-k) to be the event that such a random k-bit string
causes A on input x to halt within j steps.

A couple of observations are in order. First, if S is the set of all exact
execution paths for A on input z, then we have (verify)

k .
PIHM = S 27k,
c€S
lo|<j
From this it follows that for all non-negative integers j,k,k’ with j <
min{k, k'}, we have

PIH] = PH¥).

Defining Hj, := P[H,(ck)], it also follows that the sequence {H}},>0 is non-
decreasing and bounded above by 1, and that A halts with probability 1 on
input x if and only if

k—oo
A simple necessary condition for halting with probability 1 on a given
input is that for all partial execution paths, there exists some extension that
is a complete execution path. Intuitively, if this does not hold, then with

152 Probabilistic algorithms

some non-zero probability, the algorithm falls into an infinite loop. More
formally, if there exists a partial execution path of length j that cannot be
extended to a complete execution path, then for all £ > j we have

H,<1-27,

This does not, however, guarantee halting with probability 1. A simple
sufficient condition is the following:

There exists a bound ¢ (possibly depending on the input) such
that for every partial execution path o, there exists a complete
execution path that extends o and whose length at most |o|+¢.

To see why this condition implies that A halts with probability 1, observe
that if A runs for k¢ steps without halting, then the probability that it does
not halt within (k+1)¢ steps is at most 1 —27¢. More formally, let us define
H}, :=1— Hj, and note that for all k£ > 0, we have

— —((k+1)¢ —((k+1)¢ —((k+1)¢
Hinye = Pl TG0 PR
< (1-27YPHYT)
= (1 - 2_Z)ﬁk‘fv

and hence (by an induction argument on k), we have
Fkﬁ < (1 - 2_E)k7
from which it follows that
lim Hy = 1.
k—o0
It is usually fairly straightforward to verify this property for a particular
algorithm “by inspection.”

Example 7.1. Consider the following algorithm:

repeat
b—np {0, 1}
until b =1

Since every loop is only a constant number of instructions, and since there
is one chance to terminate with every loop iteration, the algorithm halts with
probability 1. O

Ezxample 7.2. Consider the following algorithm:

7.1 Basic definitions 153

71— 0
repeat

1—1+1

S <R {0,1}Xi
until s = 0%¢

For positive integer n, consider the probability p, of executing at least
n loop iterations (each p,, is defined using an appropriate finite probability
distribution). We have

n—1 n—1
Pn = H(l —279) > H 2 N e ?,
i=1 i=1

where we have made use of the estimate (iii) in §Al. As p, does not tend
to zero as n — 0o, we may conclude that the algorithm does not halt with
probability 1.

Note that every partial execution path can be extended to a complete
execution path, but the length of the extension is not bounded. O

The following three exercises develop tools which simplify the analysis of
probabilistic algorithms.

EXERCISE 7.1. Consider a probabilistic algorithm A that halts with prob-
ability 1 on input z, and consider the probability distribution D4, on the
set S of exact execution paths. Let 7 be a fixed, partial execution path, and
let B C S be the event that consists of all exact execution paths that extend
7. Show that P[B] = 2171,

EXERCISE 7.2. Consider a probabilistic algorithm A that halts with prob-
ability 1 on input x, and consider the probability distribution D 4, on the
set S of exact execution paths. For a bit string ¢ and an integer £ > 0, let
{o} denote the value of o truncated to the first k bits. Suppose that B C S
is an event of the form

B={oceS:o({c}k)}

for some predicate ¢ and some integer k£ > 0. Intuitively, this means that
B is completely determined by the first k£ bits of the execution path. Now
consider the uniform distribution on {0,1}**. Let us define an event B’ in
this distribution as follows. For ¢ € {0,1}*¥, let us run A on input z using
the execution path o for k steps or until A halts (whichever comes first).
If the number of steps executed was ¢ (where t < k), then we put o in B
if and only if ¢({o}+). Show that the probability that the event B occurs

154 Probabilistic algorithms

(with respect to the distribution D, ,) is the same as the probability that
B’ occurs (with respect to the uniform distribution on {0,1}**). Hint: use
Exercise 7.1.

The above exercise is very useful in simplifying the analysis of probabilistic
algorithms. One can typically reduce the analysis of some event of interest
into the analysis of a collection of events, each of which is determined by
the first k bits of the execution path for some fixed k. The probability of an
event that is determined by the first k£ bits of the execution path may then
be calculated by analyzing the behavior of the algorithm on a random k-bit
execution path.

EXERCISE 7.3. Suppose algorithm A calls algorithm B as a subroutine. In
the probability distribution D, ., consider a particular partial execution
path 7 that drives A to a point where A invokes algorithm B with a partic-
ular input y (determined by = and 7). Consider the conditional probability
distribution given that 7 is a prefix of A’s actual execution path. We can
define a random variable X on this conditional distribution whose value is
the subpath traced out by the invocation of subroutine B. Show that the
distribution of X is the same as Dp . Hint: use Exercise 7.1.

The above exercise is also very useful in simplifying the analysis of prob-
abilistic algorithms, in that it allows us to analyze a subroutine in isolation,
and use the results in the analysis of an algorithm that calls that subroutine.

EXERCISE 7.4. Let A be a probabilistic algorithm, and for an input x and
integer k > 0, consider the experiment in which we choose a random exe-
cution path of length k£, and run A on input x for up to k steps using the
selected execution path. If A halts within k steps, we define Ag(z) to be
the output produced by A, and T4, (x) to be the actual number of steps
executed by A; otherwise, we define Ag(z) to be the distinguished value
“1” and T}y, (x) to be k.

(a) Show that if A halts with probability 1 on input z, then for all possible
outputs vy,

PlA(z) = y] = lim P[Ay(z) = y].

k—oo

(b) Show that if A halts with probability 1 on input x, then
E[TA(@)] = lim E[Ty, (x)]

EXERCISE 7.5. One can generalize the notion of a discrete, probabilistic
process, as follows. Let I' be a finite or countably infinite set. Let f be a

7.2 Approzimation of functions 155

function mapping sequences of one or more elements of I" to [0, 1], such that
the following property holds:

for all finite sequences (7v1,...,7%-1), where i > 1,
f(v,---,%-1,7) is non-zero for at most a finite number of
v €T, and

Zf('Ylv--a’Yi—l,’Y) =1

vyer

Now consider any prefix-free set S of finite sequences of elements of I'. For
o= ",---,7) €S, define

n

Plo] := [[FOv,- -0 m)-

i=1
Show that »°_.sP[o] <1, and hence we may define a probability distribu-
tion on S using the probability function P[] if this sum is 1. The intuition
is that we are modeling a process in which we start out in the “empty” con-
figuration; at each step, if we are in configuration (vi,...,7vi—1), we halt if
this is a “halting” configuration, that is, an element of S, and otherwise, we
move to configuration (71, ...,7;—1,7) with probability f(vy1,...,%i-1,7)-

7.2 Approximation of functions

Suppose f is a function mapping bit strings to bit strings. We may have
an algorithm A that approximately computes f in the following sense:
there exists a constant €, with 0 < € < 1/2, such that for all inputs =z,
P[A(z) = f(x)] > 1 — €. The value € is a bound on the error probability,
which is defined as P[A(x) # f(x)].

7.2.1 Reducing the error probability

There is a standard “trick” by which one can make the error probability very
small; namely, run A on input x some number, say ¢, times, and take the
majority output as the answer. Using the Chernoff bound (Theorem 6.13),
the error probability for the iterated version of A is bounded by exp[—(1/2—
€)?t/2], and so the error probability decreases exponentially with the number
of iterations. This bound is derived as follows. For ¢ = 1,...,¢, let X;
be a random variable representing the outcome of the ith iteration of A;
more precisely, X; = 1 if A(z) # f(x) on the ith iteration, and X; = 0
otherwise. Let €, be the probability that A(x) # f(z). The probability that
the majority output is wrong is equal to the probability that the sample

156 Probabilistic algorithms

mean of Xi,...,X; exceeds the mean €, by at least 1/2 — ¢,. Part (i) of
Theorem 6.13 says that this occurs with probability at most

—<1/2—em>2t} . exp[—u/z—e)?t}

eXp[21—) 2

7.2.2 Strict polynomsial time

If we have an algorithm A that runs in expected polynomial time, and which
approximately computes a function f, then we can easily turn it into a new
algorithm A’ that runs in strict polynomial time, and also approximates
f, as follows. Suppose that € < 1/2 is a bound on the error probability,
and T'(n) is a polynomial bound on the expected running time for inputs of
length n. Then A’ simply runs A for at most ¢T'(n) steps, where ¢ is any
constant chosen so that e + 1/t < 1/2—if A does not halt within this time
bound, then A’ simply halts with an arbitrary output. The probability that
A’ errs is at most the probability that A errs plus the probability that A
runs for more than t7T'(n) steps. By Markov’s inequality (Theorem 6.11),
the latter probability is at most 1/¢, and hence A’ approximates f as well,
but with an error probability bounded by € + 1/¢.

7.2.3 Language recognition

An important special case of approximately computing a function is when
the output of the function f is either 0 or 1 (or equivalently, false or true).
In this case, f may be viewed as the characteristic function of the language
L:={x: f(x) =1}. (It is the tradition of computational complexity theory
to call sets of bit strings “languages.”) There are several “flavors” of proba-
bilistic algorithms for approximately computing the characteristic function
f of a language L that are traditionally considered —for the purposes of
these definitions, we may restrict ourselves to algorithms that output either
0or 1:

e We call a probabilistic, expected polynomial-time algorithm an At-
lantic City algorithm for recognizing L if it approximately com-
putes f with error probability bounded by a constant € < 1/2.

e We call a probabilistic, expected polynomial-time algorithm A a
Monte Carlo algorithm for recognizing L if for some constant
6 > 0, we have:

— for any x € L, we have P[A(z) = 1] > §, and
— for any = ¢ L, we have P[A(z) = 1] = 0.

7.2 Approzimation of functions 157

e We call a probabilistic, expected polynomial-time algorithm a Las
Vegas algorithm for recognizing L if it computes f correctly on all
inputs x.

One also says an Atlantic City algorithm has two-sided error, a Monte
Carlo algorithm has one-sided error, and a Las Vegas algorithm has zero-
sided error.

EXERCISE 7.6. Show that any language recognized by a Las Vegas algorithm
is also recognized by a Monte Carlo algorithm, and that any language rec-
ognized by a Monte Carlo algorithm is also recognized by an Atlantic City
algorithm.

EXERCISE 7.7. Show that if L is recognized by an Atlantic City algorithm
that runs in expected polynomial time, then it is recognized by an Atlantic
City algorithm that runs in strict polynomial time, and whose error proba-
bility is at most 27" on inputs of length n.

EXERCISE 7.8. Show that if L is recognized by a Monte Carlo algorithm that
runs in expected polynomial time, then it is recognized by a Monte Carlo
algorithm that runs in strict polynomial time, and whose error probability
is at most 27" on inputs of length n.

EXERCISE 7.9. Show that a language is recognized by a Las Vegas algo-
rithm iff the language and its complement are recognized by Monte Carlo
algorithms.

EXERCISE 7.10. Show that if L is recognized by a Las Vegas algorithm that
runs in strict polynomial time, then L may be recognized in deterministic
polynomial time.

EXERCISE 7.11. Suppose that for a given language L, there exists a prob-
abilistic algorithm A that runs in expected polynomial time, and always
outputs either 0 or 1. Further suppose that for some constants o and ¢,
where

e « is a rational number with 0 < a < 1, and
e c is a positive integer,
and for all sufficiently large n, and all inputs x of length n, we have
e if x ¢ L, then P[A(x) = 1] < a, and
e if x € L, then P[A(z) =1] > a+ 1/n".
(a) Show that there exists an Atlantic City algorithm for L.
(b) Show that if a = 0, then there exists a Monte Carlo algorithm for L.

158 Probabilistic algorithms

7.3 Flipping a coin until a head appears

In this and subsequent sections of this chapter, we discuss a number of
specific probabilistic algorithms.

Let us begin with the following simple algorithm (which was already pre-
sented in Example 7.1) that essentially flips a coin until a head appears:

repeat
b—pr{0,1}
until b =1

Let X be a random variable that represents the number of loop iterations
made by the algorithm. It should be fairly clear that X has a geometric
distribution, where the associated probability of success is 1/2 (see Exam-
ple 6.30). However, let us derive this fact from more basic principles. Define
random variables By, Bo, ..., where B; represents the value of the bit as-
signed to b in the ith loop iteration, if X > 4, and * otherwise. Clearly,
exactly one B; will take the value 1, in which case X takes the value .

Evidently, for each ¢ > 1, if the algorithm actually enters the ith loop
iteration, then B; is uniformly distributed over {0, 1}, and otherwise, B; = *.
That is:

PBi=0|X>i=1/2, P[Bij=1|X>1=1/2,
P[Bi =x| X <i]=1.
From this, we see that
PIX>1]=1, PIX>2]=P[B1=0| X >1]P[X > 1] =1/2,
P[X >3] =P[B2=0| X >2|P[X >2]=(1/2)(1/2) = 1/4,
and by induction on ¢, we see that
PIX>i]=P[Bi1=0| X >i—1P[X >i—1] = (1/2)(1/2"%) = 1/2"" 1,

from which it follows (see Exercise 6.54) that X has a geometric distribution
with associated success probability 1/2.

Now consider the expected value E[X]. By the discussion in Example 6.35,
we have E[X] = 2. If Y denotes the total running time of the algorithm,
then Y < ¢X for some constant ¢, and hence

E[Y] < cE[X] = 2¢,

and we conclude that the expected running time of the algorithm is a con-
stant, the exact value of which depends on the details of the implementation.

7.4 Generating a random number from a given interval 159

[Readers who skipped §7.1.1 may also want to skip this paragraph.]
As was argued in Example 7.1, the above algorithm halts with prob-
ability 1. To make the above argument completely rigorous, we
should formally justify that claim that the conditional distribution
of B;, given that X > i, is uniform over {0,1}. We do not wish to
assume that the values of the B; are located at pre-determined posi-
tions of the execution path; rather, we shall employ a more generally
applicable technique. For any ¢ > 1, we shall condition on a partic-
ular partial execution path 7 that drives the algorithm to the point
where it is just about to sample the bit B;, and show that in this
conditional probability distribution, B; is uniformly distributed over
{0,1}. To do this rigorously in our formal framework, let us define
the event A, to be the event that 7 is a prefix of the execution path.
If |7| = ¢, then the events A,, A, A (B; =0), and A, A (B; = 1) are
determined by the first £+ 1 bits of the execution path. We can then
consider corresponding events in a probabilistic experiment wherein
we observe the behavior of the algorithm on a random (¢4 1)-bit ex-
ecution path (see Exercise 7.2). In the latter experiment, it is clear
that the conditional probability distribution of B;, given that the
first £ bits of the actual execution path o agree with 7, is uniform
over {0, 1}, and thus, the same holds in the original probability dis-
tribution. Since this holds for all relevant 7, it follows (by a discrete
version of Exercise 6.13) that it holds conditioned on X > i.

We have analyzed the above algorithm in excruciating detail. As we
proceed, many of these details will be suppressed, as they can all be handled
by very similar (and completely routine) arguments.

7.4 Generating a random number from a given interval

Suppose we want to generate a number n uniformly at random from the
interval {0,..., M — 1}, for a given integer M > 1.

If M is a power of 2, say M = 2F, then we can do this directly as follows:
generate a random k-bit string s, and convert s to the integer I(s) whose
base-2 representation is s; that is, if s = bg_1bg_o - - - by, where the b; are
bits, then

k—1
I(s) := Z b;2¢.
=0

In the general case, we do not have a direct way to do this, since we can
only directly generate random bits. However, suppose that M is a k-bit
number, so that 281 < M < 2%. Then the following algorithm does the
job:

160 Probabilistic algorithms

Algorithm RN:

repeat
s +p {0,1}*F
n « I(s)
until n < M
output n

Let X denote the number of loop iterations of this algorithm, Y its running
time, and N its output.

In every loop iteration, n is uniformly distributed over {0, ...,2¥—1}, and
the event n < M occurs with probability M /2¥; moreover, conditioning on
the latter event, n is uniformly distributed over {0,..., M — 1}. It follows
that X has a geometric distribution with an associated success probability
p:= M/2F > 1/2, and that N is uniformly distributed over {0,..., M — 1}.
We have E[X] = 1/p < 2 (see Example 6.35) and ¥ < ckX for some
implementation-dependent constant ¢, from which it follows that

E[Y] < ckE[X] < 2ck.

Thus, the expected running time of Algorithm RN is O(k).

Hopefully, the above argument is clear and convincing. However, as in
the previous section, we can derive these results from more basic principles.
Define random variables N1, No, ..., where N; represents the value of n in
the ith loop iteration, if X > i, and x otherwise.

Evidently, for each ¢ > 1, if the algorithm actually enters the ith loop
iteration, then N; is uniformly distributed over {0, ...,2¥—1}, and otherwise,
N; = . That is:

PIN; =37 | X >i=1/2" (j=0,...,2F - 1),
From this fact, we can derive all of the above results.
As for the distribution of X, it follows from a simple induction argument

that P[X >i] = ¢!, where ¢ := 1 —p; indeed, P[X > 1] = 1, and for i > 2,
we have

PIX>i|=P[N; 1 >M|X>i—1P[X>i—1]=q-¢ 2=¢"1

It follows that X has a geometric distribution with associated success prob-
ability p (see Exercise 6.54).

As for the distribution of N, by (a discrete version of) Exercise 6.13, it
suffices to show that for all i > 1, the conditional distribution of N given that

7.4 Generating a random number from a given interval 161
X =i is uniform on {0,..., M —1}. Observe that for any j =0,..., M —1,
we have
_ . PN=jAX=i] PINi=jAX >i]
PIN=j|X=1]= =
IN=j]X=i] P[X =] P[N; < M AX >]
PN, =j| X >iP[X >4 1/2%
 P[Ni< M| X >4P[X >4 M/2k
=1/M.

[Readers who skipped §7.1.1 may also want to skip this paragraph.]
To make the above argument completely rigorous, we should first
show that the algorithm halts with probability 1, and then show
that the conditional distribution of N;, given that X > 4, is indeed
uniform on {0,...,2%¥ — 1}, as claimed above. That the algorithm
halts with probability 1 follows from the fact that in every loop iter-
ation, there is at least one choice of s that will cause the algorithm
to halt. To analyze the conditional distribution on N;, one considers
various conditional distributions, conditioning on particular partial
execution paths 7 that bring the computation just to the beginning
of the ith loop iteration; for any particular such 7, the ith loop iter-
ation will terminate in at most £ := |7|+ ck steps, for some constant
c. Therefore, the conditional distribution of N;, given the partial ex-
ecution path 7, can be analyzed by considering the execution of the
algorithm on a random ¢-bit execution path (see Exercise 7.2). It is
then clear that the conditional distribution of N; given the partial
execution path 7 is uniform over {0, ...,2% — 1}, and since this holds
for all relevant 7, it follows (by a discrete version of Exercise 6.13)
that the conditional distribution of N;, given that the ith loop is
entered, is uniform over {0,...,2% — 1}.

Of course, by adding an appropriate value to the output of Algorithm
RN, we can generate random numbers uniformly in an interval {A,..., B},
for given A and B. In what follows, we shall denote the execution of this
algorithm as

n <R {A,,B}
We also mention the following alternative approach to generating a ran-

dom number from an interval. Given a positive k-bit integer M, and a
parameter ¢t > 0, we do the following:

Algorithm RN’:

S <R {0, 1}X(k+t)
n « I(s) mod M
output n

Compared with Algorithm RN, Algorithm RN’ has the advantage that

162 Probabilistic algorithms

there are no loops—it halts in a bounded number of steps; however, it
has the disadvantage that its output is not uniformly distributed over the
interval {0,...,M — 1}. Nevertheless, the statistical distance between its
output distribution and the uniform distribution on {0,...,M — 1} is at
most 27! (see Example 6.27 in §6.8). Thus, by choosing ¢ suitably large, we
can make the output distribution “as good as uniform” for most practical
purposes.

EXERCISE 7.12. Prove that no probabilistic algorithm that always halts in
a bounded number of steps can have an output distribution that is uniform
on {0,...,M — 1}, unless M is a power of 2.

EXERCISE 7.13. Let A; and As be probabilistic algorithms such that, for
any input z, the random variables A;(x) and As(x) take on one of a finite
number of values, and let §, be the statistical distance between A;(x) and
As(x). Let B be any probabilistic algorithm that always outputs 0 or 1. For
for i = 1,2, let C; be the algorithm that given an input x, first runs A; on
that input, obtaining a value y, then it runs B on input y, obtaining a value
z, which it then outputs. Show that |P[C}(z) = 1] — P[Ca(z) = 1]| < 6.

7.5 Generating a random prime

Suppose we are given an integer M > 2, and want to generate a random
prime between 2 and M. One way to proceed is simply to generate random
numbers until we get a prime. This idea will work, assuming the existence
of an efficient algorithm IsPrime that determines whether or not a given
integer n > 1 is prime.

Now, the most naive method of testing if n is prime is to see if any of the
numbers between 2 and n — 1 divide n. Of course, one can be slightly more
clever, and only perform this divisibility check for prime numbers between 2
and /n (see Exercise 1.1). Nevertheless, such an approach does not give rise
to a polynomial-time algorithm. Indeed, the design and analysis of efficient
primality tests has been an active research area for many years. There is, in
fact, a deterministic, polynomial-time algorithm for testing primality, which
we shall discuss later, in Chapter 22. For the moment, we shall just assume
we have such an algorithm, and use it as a “black box.”

Our algorithm to generate a random prime between 2 and M runs as
follows:

7.5 Generating a random prime 163

Algorithm RP:

repeat

n«—ri{2,...,M}
until IsPrime(n)
output n

We now wish to analyze the running time and output distribution of
Algorithm RP on input M. Let k := len(M).

First, consider a single iteration of the main loop of Algorithm RP, viewed
as a stand-alone probabilistic experiment. For any fixed prime p between
2 and M, the probability that the variable n takes the value p is precisely
1/(M —1). Thus, every prime is equally likely, and the probability that n
is a prime is precisely 7(M)/(M — 1).

Let us also consider the expected running time p of a single loop iteration.
To this end, define W,, to be the running time of algorithm IsPrime on input
n. Also, define

1 M
- M—lZW"'
n=2

That is, W}, is the average value of W, for a random choice of n €
{2,...,M}. Thus, p is equal to W}, plus the expected running time of
Algorithm RN, which is O(k), plus any other small overhead, which is also
O(k). So we have u < Wy, + O(k), and assuming that W}, = Q(k), which
is perfectly reasonable, we have = O(W},).

Next, let us consider the behavior of Algorithm RP as a whole. From the
above discussion, it follows that when this algorithm terminates, its output
will be uniformly distributed over the set of all primes between 2 and M. If
T denotes the number of loop iterations performed by the algorithm, then
E[T] = (M — 1)/m(M), which by Chebyshev’s theorem (Theorem 5.1) is
O(k).

So we have bounded the expected number of loop iterations. We now
want to bound the expected overall running time. For i > 1, let X; denote
the amount of time (possibly zero) spent during the ith loop iteration of the
algorithm, so that X := .., X; is the total running time of Algorithm RP.
Note that -
X; | T i+ E[X; | T < i]P[T < 1]
X;| T
>

164 Probabilistic algorithms

because X; = 0 when T' < i and E[X; | T > i] is by definition equal to u.
Then we have

ELX] = STEX] = 1 S PIT > i] = uE[T] = O(kW}y).
i>1 i>1

7.5.1 Using a probabilistic primality test

In the above analysis, we assumed that IsPrime was a deterministic,
polynomial-time algorithm. While such an algorithm exists, there are in
fact simpler and more efficient algorithms that are probabilistic. We shall
discuss such an algorithm in greater depth later, in Chapter 10. This al-
gorithm (like several other algorithms for primality testing) has one-sided
error in the following sense: if the input n is prime, then the algorithm
always outputs true; otherwise, if n is composite, the output may be true
or false, but the probability that the output is true is at most ¢, where
¢ < 1 is a constant. In the terminology of §7.2, such an algorithm is essen-
tially a Monte Carlo algorithm for the language of composite numbers. If
we want to reduce the error probability for composite inputs to some very
small value €, we can iterate the algorithm ¢ times, with ¢ chosen so that
¢! < e, outputting true if all iterations output true, and outputting false
otherwise. This yields an algorithm for primality testing that makes errors
only on composite inputs, and then only with probability at most e.

Let us analyze the behavior of Algorithm RP under the assumption that
IsPrime is implemented by a probabilistic algorithm (such as described
in the previous paragraph) with an error probability for composite inputs
bounded by e. Let us define W, to be the expected running time of IsPrime
on input n, and as before, we define

M

WJ’V[= le 1 ZWn
n=2

Thus, W}, is the expected running time of algorithm IsPrime, where the
average is taken with respect to randomly chosen n and the random choices
of the algorithm itself.

Consider a single loop iteration of Algorithm RP. For any fixed prime p
between 2 and M, the probability that n takes the value p is 1/(M — 1).
Thus, if the algorithm halts with a prime, every prime is equally likely. Now,
the algorithm will halt if n is prime, or if n is composite and the primality
test makes a mistake; therefore, the the probability that it halts at all is at
least (M) /(M —1). So we see that the expected number of loop iterations

7.5 Generating a random prime 165

should be no more than in the case where we use a deterministic primality
test. Using the same argument as was used before to estimate the expected
total running time of Algorithm RP, we find that this is O(kW},).

As for the probability that Algorithm RP mistakenly outputs a composite,
one might be tempted to say that this probability is at most €, the probability
that IsPrime makes a mistake. However, in drawing such a conclusion, we
would be committing the fallacy of Example 6.12—to correctly analyze the
probability that Algorithm RP mistakenly outputs a composite, one must
take into account the rate of incidence of the “primality disease,” as well as
the error rate of the test for this disease.

Let us be a bit more precise. Again, consider the probability distribution
defined by a single loop iteration, and let A be the event that IsPrime
outputs true, and B the event that n is composite. Let § := P[B] and
a := P[A | B]. First, observe that, by definition, & < e. Now, the probability
6 that the algorithm halts and outputs a composite in this loop iteration is

d =P[ANAB] =ap.

The probability 4’ that the algorithm halts and outputs either a prime or
composite is

8 =P[A] =P[AAB]+PAAB] =P[AAB]+P[B] =aB+ (1 - 0).

Now consider the behavior of Algorithm RP as a whole. With T being
the number of loop iterations as before, we have

1 1
=5 =i p (r1)
and hence
1 M -1
= =5) = wan =W

Let us now consider the probability v that the output of Algorithm RP
is composite. For ¢ > 1, let C; be the event that the algorithm halts and
outputs a composite number in the ith loop iteration. The events C; are
pairwise disjoint, and moreover,

PIC;] = P[C; AT > 4] = P[C; | T > i]P[T > i] = 6P[T > i.

So we have

y=Y _PlC] = 6P[T >i] = 6E[T]

i>1 i>1

o

“agra-p Y

166 Probabilistic algorithms

and hence
Q € M-1
TS m S a-p - o Ok

Another way of analyzing the output distribution of Algorithm RP is to

consider its statistical distance A from the uniform distribution on the set of
primes between 2 and M. As we have already argued, every prime between
2 and M is equally likely to be output, and in particular, any fixed prime p
is output with probability at most 1/7(M). It follows from Theorem 6.15
that A =~.

7.5.2 Generating a random k-bit prime

Instead of generating a random prime between 2 and M, we may instead
want to generate a random k-bit prime, that is, a prime between 2*~! and
2% — 1. Bertrand’s postulate (Theorem 5.7) tells us that there exist such
primes for every k > 2, and that in fact, there are Q(2¥/k) such primes.
Because of this, we can modify Algorithm RP, so that each candidate n
is chosen at random from the interval {2¥=! ... 2F — 1}, and all of the
results of this section carry over essentially without change. In particular,
the expected number of trials until the algorithm halts is O(k), and if a
probabilistic primality test as in §7.5.1 is used, with an error probability of
€, the probability that the output is not prime is O(ke).

EXERCISE 7.14. Design and analyze an efficient probabilistic algorithm that
takes as input an integer M > 2, and outputs a random element of Z},.

EXERCISE 7.15. Suppose Algorithm RP is implemented using an imper-
fect random number generator, so that the statistical distance between the
output distribution of the random number generator and the uniform dis-
tribution on {2,..., M} is equal to d (e.g., Algorithm RN’ in §7.4). Assume
that 26 < w(M)/(M — 1). Also, let A denote the expected number of itera-
tions of the main loop of Algorithm RP, let A denote the statistical distance
between its output distribution and the uniform distribution on the primes
up to M, and let k := len(M).
(a) Assuming the primality test is deterministic, show that A = O(k) and
A = O(0k).
(b) Assuming the primality test is probabilistic, with one-sided error e,
as in §7.5.1, show that A = O(k) and A = O((0 + €)k).

7.6 Generating a random non-increasing sequence 167

EXERCISE 7.16. Analyze Algorithm RP assuming that the primality test
is implemented by an “Atlantic City” algorithm with error probability at
most e.

EXERCISE 7.17. Consider the following probabilistic algorithm that takes as
input a positive integer M:
S0
repeat
n <—pr {1,...,M}
S« SuU{n}
until |S| = M

Show that the expected number of iterations of the main loop is ~ M log M.
The following exercises assume the reader has studied §7.1.1.

EXERCISE 7.18. Consider the following algorithm (which takes no input):
g1
repeat
je—Jj+1
n<pr {0,...,j—1}
until n =0
Show that this algorithm halts with probability 1, but that its expected
running time does not exist. (Compare this algorithm with the one in Ex-
ample 7.2, which does not even halt with probability 1.)

EXERCISE 7.19. Now consider the following modification to the algorithm
in the previous exercise:
J—2
repeat
Je—J+1
n<—pr{0,...,75—1}
untiln =0o0rn=1
Show that this algorithm halts with probability 1, and that its expected
running time exists (and is equal to some implementation-dependent con-
stant).

7.6 Generating a random non-increasing sequence

The following algorithm, Algorithm RS, will be used in the next section as
a fundamental subroutine in a beautiful algorithm (Algorithm RFN) that

168 Probabilistic algorithms

generates random numbers in factored form. Algorithm RS takes as input
an integer M > 2, and runs as follows:

Algorithm RS:

no — M
71— 0
repeat
1—1+1
N; <R {1, PN ,ni_l}
until n; =1
t—1
Output (ng,...,n¢)

We analyze first the output distribution, and then the running time.

7.6.1 Analysis of the output distribution

Let Ny, N, ... be random variables denoting the choices of nj,nao,... (for
completeness, define NV; := 1 if loop 4 is never entered).

A particular output of the algorithm is a non-increasing chain (nq, ..., n),
where ny > ng > -+ > ny_1 > ny = 1. For any such chain, we have

P[N1:nl/\-~-/\Nt:nt]:P[N1:nl]P[Ngan\N1:n1]~--
P[Nt:nt|N1:n1/\~~-/\Nt,1:nt,1]
1 1 1

(7.3)

This completely describes the output distribution, in the sense that we
have determined the probability with which each non-increasing chain ap-
pears as an output. However, there is another way to characterize the output
distribution that is significantly more useful. For j = 2,..., M, define the
random variable E; to be the number of occurrences of j among the Nj.
The FE; determine the N;, and vice versa. Indeed, Ey = ey, ..., Eo = €3
iff the output of the algorithm is the non-increasing chain

(M, ..., M,M—1,...,M—1,...,2,...,2,1).
——
ep times ey —1 times es times
From (7.3), we can therefore directly compute

1My

P[EMZGM/\.../\EQZGQ}:f - (74)
MjZQJBJ

7.6 Generating a random non-increasing sequence 169

Notice that we can write 1/M as a telescoping product:

1 M—-1 M-2 2 1
M~ M T M-1 32 1:[/3)

so we can re-write (7.4) as
M
PlEv=em A NEy=eg] = [[9(1-1/4). (7.5)
=2

Notice that for j =2,..., M,

i —1/4) =

e;j>0

and so by (a discrete version of) Theorem 6.1, the variables £ are mutually
independent, and for all j = 2,..., M and integers e; > 0, we have

PIE; = ¢j] =% (1 —1/j). (7.6)

In summary, we have shown that the variables F; are mutually indepen-
dent, where for j = 2,..., M, the variable E;+1 has a geometric distribution
with an associated success probability of 1 —1/5.

Another, perhaps more intuitive, analysis of the joint distribution of the
E; runs as follows. Conditioning on the event Ey; = enr, ..., Ejy1 = ejy1,
one sees that the value of E; is the number of times the value j appears in
the sequence N;, N;y1,..., where i = ep; + -+ - + ej41 + 1; moreover, in this
conditional probability distribution, it is not too hard to convince oneself
that NV; is uniformly distributed over {1,...,j}. Hence the probability that
E; = e; in this conditional probability distribution is the probability of
getting a run of exactly e; copies of the value j in an experiment in which
we successively choose numbers between 1 and j at random, and this latter
probability is clearly j=% (1 — 1/5).

7.6.2 Analysis of the running time

Let T be the random variable that takes the value ¢ when the output is
(n1,...,m¢). Clearly, it is the value of T' that essentially determines the
running time of the algorithm.

With the random variables F; defined as above, we see that T = 1 +
Zj]\iQ E;. Moreover, for each j, E; + 1 has a geometric distribution with

170 Probabilistic algorithms

associated success probability 1 — 1/j, and hence

1 1
E[E]= —— —1=——.
TV A T
Thus,
M Mfl1 Md
E[T]—1+ZE[E]~]—1+Z,—/ 4 0(1) ~log M.
= j—l‘] 1Y

Intuitively, this is roughly as we would expect, since with probability 1/2,
each successive n; is at most one half as large as its predecessor, and so after
O(len(M)) steps, we expect to reach 1.

To complete the running time analysis, let us consider the total number
of times X that the main loop of Algorithm RN in §7.4 is executed. For
1=1,2,..., let X; denote the number of times that loop is executed in the
1th loop of Algorithm RS, defining this to be zero if the ith loop is never
reached. So X = >, X;. Arguing just as in §7.5, we have

E[X] =) E[X;] <2 P[T >i] =2E[T] ~ 2log M.
i>1 i>1
To finish, if Y denotes the running time of Algorithm RS on input M,
then we have Y < clen(M)(X + 1) for some constant ¢, and hence E[Y] =
O(len(M)?).

EXERCISE 7.20. Show that when Algorithm RS runs on input M, the ex-
pected number of (not necessarily distinct) primes in the output sequence
is ~ loglog M.

EXERCISE 7.21. For j = 2,..., M, let F; := 1 if j appears in the output
of Algorithm RS on input M, and let F; := 0 otherwise. Determine the
joint distribution of the F}. Using this, show that the expected number of
distinct primes appearing in the output sequence is ~ loglog M.

7.7 Generating a random factored number

We now present an efficient algorithm that generates a random factored
number. That is, on input M > 2, the algorithm generates a number r
uniformly distributed over the interval {1,..., M}, but instead of the usual
output format for such a number r, the output consists of the prime factor-
ization of r.

As far as anyone knows, there are no efficient algorithms for factoring large

7.7 Generating a random factored number 171

numbers, despite years of active research in search of such an algorithm.
So our algorithm to generate a random factored number will not work by
generating a random number and then factoring it.

Our algorithm will use Algorithm RS in §7.6 as a subroutine. In addi-
tion, as we did in §7.5, we shall assume the existence of a deterministic,
polynomial-time primality test IsPrime. We denote its running time on
input n by W,,, and set Wy, := max{W,, :n=2,...,M}.

In the analysis of the algorithm, we shall make use of Mertens’ theorem,
which we proved in Chapter 5 (Theorem 5.13).

On input M > 2, the algorithm to generate a random factored number
re{l,...,M} runs as follows:

Algorithm RFN:

repeat
Run Algorithm RS on input M, obtaining (ni,...,n)
(%) Let n;,,...,n;, be the primes among n1,...,n;,
including duplicates
(%x) Set r «— H§:1 i
If r < M then
s—r{l,...,M}
if s <r then output n;,,...,n;, and halt
forever

Notes:

(x) Fori=1,...,t—1, the number n; is tested for primality
algorithm IsPrime.

(%) We assume that the product is computed by a simple
iterative procedure that halts as soon as the partial
product exceeds M. This ensures that the time spent
forming the product is always O(len(M)?), which sim-
plifies the analysis.

Let us now analyze the running time and output distribution of Algorithm
RFN on input M. Let k :=len(M).

To analyze this algorithm, let us first consider a single iteration of the
main loop as a random experiment in isolation. Let n = 1,..., M be a fixed
integer, and let us calculate the probability that the variable r takes the
particular value n in this loop iteration. Let n = HpSM p® be the prime
factorization of n. Then r takes the value n iff F, = e, for all primes p < M,

172 Probabilistic algorithms

which by the analysis in §7.6, happens with probability precisely

[1rora-ym="00

n
p<M

where

vy = T a-1/p).
p<M
Now, the probability that this loop iteration produces n as output is equal
to the probability that r takes the value n and s < n, which is

UM) n _UM)

n M M

Thus, every n is equally likely, and summing over all n = 1,..., M, we
see that the probability that this loop iteration succeeds in producing some
output is U(M).

Now consider the expected running time of this loop iteration. From the
analysis in §7.6, it is easy to see that this is O(kW};). That completes the
analysis of a single loop iteration.

Finally, consider the behavior of Algorithm RFN as a whole. From our
analysis of an individual loop iteration, it is clear that the output distri-
bution of Algorithm RFN is as required, and if H denotes the number of
loop iterations of the algorithm, then E[H] = U(M)~!, which by Mertens’
theorem is O(k). Since the expected running time of each individual loop
iteration is O(kW},), it follows that the expected total running time is
O(K*W3)).

7.7.1 Using a probabilistic primality test (x)
Analogous to the discussion in §7.5.1, we can analyze the behavior of Algo-
rithm RFN under the assumption that IsPrime is a probabilistic algorithm
which may erroneously indicate that a composite number is prime with
probability bounded by e. Here, we assume that W,, denotes the expected
running time of the primality test on input n, and set Wy, := max{W, :
n=2,...,M}.

The situation here is a bit more complicated than in the case of Algorithm
RP, since an erroneous output of the primality test in Algorithm RFN could
lead either to the algorithm halting prematurely (with a wrong output),
or to the algorithm being delayed (because an opportunity to halt may be
missed).

Let us first analyze in detail the behavior of a single iteration of the main

7.7 Generating a random factored number 173

loop of Algorithm RFN. Let A denote the event that the primality test
makes a mistake in this loop iteration, and let § := P[A]. If T is the number
of loop iterations in a given run of Algorithm RS, it is easy to see that

0 <eE[T)=e€el(M),

where
M=l
= Z* 2 + log M.
— j

Now, let n =1,..., M be a fixed integer, and let us calculate the probability
an that the correct prime factorization of n is output in this loop iteration.
Let B, be the event that the primes among the output of Algorithm RS
multiply out to n. Then o, = P[B, A A](n/M). Moreover, because of
the mutual independence of the E;, not only does it follow that P[B,] =
U(M)/n, but it also follows that B,, and A are independent events: to see
this, note that B, is determined by the variables {E; : j prime}, and A is
determined by the variables {F; : j composite} and the random choices of
the primality test. Hence,

_ v
= 7(175).

Thus, every n is equally likely to be output. If C is the event that the
algorithm halts with some output (correct or not) in this loop iteration,
then

PIC] > U(M)(1 —9), (7.7)
and
PCVA =UM)(1—-0)+d=U(M)—-0UM)+6>U(M). (7.8)

The expected running time of a single loop iteration of Algorithm RFN is
also easily seen to be O(kW},). That completes the analysis of a single loop
iteration.

We next analyze the total running time of Algorithm RFN. If H is the
number of loop iterations of Algorithm RFN, it follows from (7.7) that

1
EH < ———
H] < UM)(1—-96)’
and assuming that e/(M) < 1/2, it follows that the expected running time
of Algorithm RFN is O(k*W},).
Finally, we analyze the statistical distance A between the output distri-
bution of Algorithm RFN and the uniform distribution on the numbers 1

174 Probabilistic algorithms

to M, in correct factored form. Let H' denote the first loop iteration ¢ for
which the event C V A occurs, meaning that the algorithm either halts or
the primality test makes a mistake. Then, by (7.8), H' has a geometric
distribution with an associated success probability of at least U(M). Let A;
be the event that the primality makes a mistake for the first time in loop
iteration 4, and let A* is the event that the primality test makes a mistake in
any loop iteration. Observe that P[A; | H > i] = § and P[A; | H < i] =0,
and so
PlA;] = P[A; | H > i|P[H' > i] = 6P[H' > i],

from which it follows that

PIA"] =Y P[A;] = > 6P[H' >i] = 6E[H'] < 6U(M)™".
i>1 i>1
Now, if v is the probability that the output of Algorithm RFN is not in
correct factored form, then

v < P[A*] = sU(M)™ = O(K?e).

We have already argued that each value n between 1 and M, in correct
factored form, is equally likely to be output, and in particular, each such
value occurs with probability at most 1/M. It follows from Theorem 6.15
that A = (verify).

EXERCISE 7.22. To simplify the analysis, we analyzed Algorithm RFN using
the worst-case estimate Wy, on the expected running time of the primality
test. Define

where W, denotes the expected running time of a probabilistic implemen-
tation of IsPrime on input m. Show that the expected running time of
Algorithm RFN is O(kW;,), assuming /(M) < 1/2.

EXERCISE 7.23. Analyze Algorithm RFN assuming that the primality test
is implemented by an “Atlantic City” algorithm with error probability at
most e.

7.8 The RSA cryptosystem

Algorithms for generating large primes, such as Algorithm RP in §7.5, have
numerous applications in cryptography. One of the most well known and

7.8 The RSA cryptosystem 175

important such applications is the RSA cryptosystem, named after its inven-
tors Rivest, Shamir, and Adleman. We give a brief overview of this system
here.

Suppose that Alice wants to send a secret message to Bob over an insecure
network. An adversary may be able to eavesdrop on the network, and so
sending the message “in the clear” is not an option. Using older, more
traditional cryptographic techniques would require that Alice and Bob share
a secret key between them; however, this creates the problem of securely
generating such a shared secret. The RSA cryptosystem is an example
of a “public key” cryptosystem. To use the system, Bob simply places a
“public key” in the equivalent of an electronic telephone book, while keeping
a corresponding “private key” secret. To send a secret message to Bob, Alice
obtains Bob’s public key from the telephone book, and uses this to encrypt
her message. Upon receipt of the encrypted message, Bob uses his secret
key to decrypt it, obtaining the original message.

Here is how the RSA cryptosystem works. To generate a public
key/private key pair, Bob generates two very large random primes p and
q. To be secure, p and q should be quite large—typically, they are chosen
to be around 512 bits in length. We require that p # ¢, but the probability
that two random 512-bit primes are equal is negligible, so this is hardly an
issue. Next, Bob computes n := pq. Bob also selects an integer e > 1 such
that ged(e,¢(n)) = 1. Here, ¢(n) = (p — 1)(¢ — 1). Finally, Bob computes
d := e~ ! mod ¢(n). The public key is the pair (n,e), and the private key is
the pair (n,d). The integer e is called the “encryption exponent” and d is
called the “decryption exponent.”

After Bob publishes his public key (n, e), Alice may send a secret message
to Bob as follows. Suppose that a message is encoded in some canonical
way as a number between 0 and n — 1—we can always interpret a bit string
of length less than len(n) as such a number. Thus, we may assume that
a message is an element « of Z,. To encrypt the message «, Alice simply
computes § := af. The encrypted message is 5. When Bob receives 3, he
computes v := (4%, and interprets v as a message. (Note that if Bob stores
the factorization of n, then he may speed up the decryption process using
the algorithm in Exercise 7.28 below.)

The most basic requirement of any encryption scheme is that decryption
should “undo” encryption. In this case, this means that for all a € Z,, we
should have

()¢ = a. (7.9)

If « € Z}, then this is clearly the case, since we have ed = 1 + ¢(n)k for

176 Probabilistic algorithms

some positive integer k, and hence by Euler’s theorem (Theorem 2.15), we
have

(ae)d _ aed _ al—i—qﬁ(n)kz —a- aqb(n)k: = a.
Even if a ¢ Z7, equation (7.9) still holds. To see this, let o = [a],,, with
ged(a,n) # 1. There are three possible cases. First, if a = 0 (mod n), then
trivially, a® = 0 (mod n). Second, if a = 0 (mod p) but a # 0 (mod q),
then trivially a*® = 0 (mod p), and

at = g1k = . gk = ¢ (mod ¢),

where the last congruence follows from the fact that ¢(n)k is a multiple of
q — 1, which is a multiple of the multiplicative order of a modulo ¢ (again
by Euler’s theorem). Thus, we have shown that a®? = a (mod p) and
a®® = a (mod ¢), from which it follows that a® = a (mod n). The third
case, where a #Z 0 (mod p) and a = 0 (mod q), is treated in the same way as
the second. Thus, we have shown that equation (7.9) holds for all « € Z,.

Of course, the interesting question about the RSA cryptosystem is
whether or not it really is secure. Now, if an adversary, given only the
public key (n,e), were able to factor n, then he could easily compute the
decryption exponent d. It is widely believed that factoring n is computation-
ally infeasible, for sufficiently large n, and so this line of attack is ineffective,
barring a breakthrough in factorization algorithms. However, there may be
other possible lines of attack. For example, it is natural to ask whether one
can compute the decryption exponent without having to go to the trouble
of factoring n. It turns out that the answer to this question is no: if one
could compute the decryption exponent d, then ed — 1 would be a multiple
of ¢(n), and as we shall see later in §10.6, given any multiple of ¢(n), we
can easily factor n.

Thus, computing the encryption exponent is equivalent to factoring n, and
so this line of attack is also ineffective. But there still could be other lines
of attack. For example, even if we assume that factoring large numbers is
infeasible, this is not enough to guarantee that for a given encrypted message
3, the adversary is unable to compute 3% (although nobody actually knows
how to do this without first factoring n).

The reader should be warned that the proper notion of security for an
encryption scheme is quite subtle, and a detailed discussion of this is well
beyond the scope of this text. Indeed, the simple version of RSA presented
here suffers from a number of security problems (because of this, actual im-
plementations of public-key encryption schemes based on RSA are somewhat
more complicated). We mention one such problem here (others are examined

7.8 The RSA cryptosystem 177

in some of the exercises below). Suppose an eavesdropping adversary knows
that Alice will send one of a few, known, candidate messages. For example,
an adversary may know that Alice’s message is either “let’s meet today” or
“let’s meet tomorrow.” In this case, the adversary can encrypt for himself
all of the candidate messages, intercept Alice’s actual encrypted message,
and then by simply comparing encryptions, the adversary can determine
which particular message Alice encrypted. This type of attack works simply
because the encryption algorithm is deterministic, and in fact, any deter-
ministic encryption algorithm will be vulnerable to this type of attack. To
avoid this type of attack, one must use a probabilistic encryption algorithm.
In the case of the RSA cryptosystem, this is often achieved by padding the
message with some random bits before encrypting it.

EXERCISE 7.24. Alice submits a bid to an auction, and so that other bidders
cannot see her bid, she encrypts it under the public key of the auction service.
Suppose that the auction service provides a public key for an RSA encryption
scheme, with a modulus n. Assume that bids are encoded simply as integers
between 0 and n — 1 prior to encryption. Also, assume that Alice submits
a bid that is a “round number,” which in this case means that her bid is a
number that is divisible by 10. Show how an eavesdropper can submit an
encryption of a bid that exceeds Alice’s bid by 10%, without even knowing
what Alice’s bid is. In particular, your attack should work even if the space
of possible bids is very large.

EXERCISE 7.25. To speed up RSA encryption, one may choose a very small
encryption exponent. This exercise develops a “small encryption exponent
attack” on RSA. Suppose Bob, Bill, and Betty have RSA public keys with
moduli n1, ng, and n3, and all three use encryption exponent 3. Assume
that ni,ne,ng are pairwise relatively prime. Suppose that Alice sends an
encryption of the same message to Bob, Bill, and Betty —that is, Alice
encodes her message as an integer a, with 0 < a < min{ny,ne,ns}, and
computes the three encrypted messages 3; := [a®],,, for i = 1,...,3. Show
how to recover Alice’s message from these three encrypted messages.

EXERCISE 7.26. To speed up RSA decryption, one might choose a small de-
cryption exponent, and then derive the encryption exponent from this. This
exercise develops a “small decryption exponent attack” on RSA. Suppose
n = pq, where p and ¢ are distinct primes with len(p) = len(q). Let d and e
be integers such that 1 < d < ¢(n), 1 < e < ¢(n), and de = 1 (mod ¢(n)).

178 Probabilistic algorithms

Further, assume that
4d < n'/*,

Show how to efficiently compute d, given n and e. Hint: since de =
1 (mod ¢(n)), it follows that de = 1+ k¢(n) for an integer k with 0 < k < d;
let r := kn — de, and show that |r| < n®*; next, show how to recover d
(along with r and k) using Theorem 4.6.

EXERCISE 7.27. Suppose there is a probabilistic algorithm A that takes as
input an integer n of the form n = pq, where p and q are distinct primes. The
algorithm also takes as input an integer e > 1, with ged(e, ¢(n)) = 1, and
an element 3 € Z;. It outputs either “failure,” or o € Z; such that a® = .
Furthermore, assume that A runs in strict polynomial time, and that for all
n and e of the above form, and for randomly chosen 3 € Z}, A succeeds in
finding « as above with probability €(n,e). Here, the probability is taken
over the random choice of (3, as well as the random choices made during

the execution of A. Show how to use A to construct another probabilistic

*
ns

in expected polynomial time, and that satisfies the following property:

if €(n,e) > 0.001, then for all § € Z%, A’ finds o € Z with
«af = (with probability at least 0.999.

algorithm A’ that takes as input n and e as above, as well as 8 € Z7, runs

The algorithm A’ in the above exercise is an example of what is called
a random self-reduction, that is, an algorithm that reduces the task of
solving an arbitrary instance of a given problem to that of solving a random
instance of the problem. Intuitively, the fact that a problem is random self-
reducible in this sense means that the problem is no harder in “the worst
case” than in “the average case.”

EXERCISE 7.28. This exercise develops an algorithm for speeding up RSA
decryption. Suppose that we are given two distinct £-bit primes, p and ¢, an
element 8 € Z,,, where n := pq, and an integer d, where 1 < d < ¢(n). Using
the algorithm from Exercise 3.26, we can compute 4% at a cost of essentially
20 squarings in Z,. Show how this can be improved, making use of the
factorization of n, so that the total cost is essentially that of £ squarings
in Z, and ¢ squarings in Zg, leading to a roughly four-fold speed-up in the
running time.

7.9 Notes 179

7.9 Notes

See Luby [59] for an exposition of the theory of pseudo-random bit genera-
tion.

Our approach in §7.1 to defining the probability distribution associated
with the execution of a probabilistic algorithm is a bit unusual (indeed, it is
a bit unusual among papers and textbooks on the subject to even bother to
formally define much of anything). There are alternative approaches. One
approach is to define the output distribution and expected running time of an
algorithm on a given input directly, using the identities in Exercise 7.4, and
avoid the construction of an underlying probability distribution. However,
without such a probability distribution, we would have very few tools at our
disposal to analyze the output distribution and running time of particular
algorithms. Another approach (which we dismissed with little justification
early on in §7.1) is to attempt to define a distribution that models an in-
finite random bit string. One way to do this is to identify an infinite bit
string with the real number in the unit interval [0, 1] obtained by interpret-
ing the bit string as a number written in base 2, and then use continuous
probability theory (which we have not developed here, but which is covered
in a standard undergraduate course on probability theory), applied to the
uniform distribution on [0, 1]. There are a couple of problems with this ap-
proach. First, the above identification of bit strings with numbers is not
quite one-to-one. Second, when one tries to define the notion of expected
running time, numerous technical problems arise; in particular, the usual
definition of an expected value in terms of an integral would require us to
integrate functions that are not Riemann integrable. To properly deal with
all of these issues, one would have to develop a good deal of measure theory
(o-algebras, Lesbegue integration, and so on), at the level normally covered
in a graduate-level course on probability or measure theory.

The algorithm presented here for generating a random factored number is
due to Kalai [50], although the analysis presented here is a bit different, and
our analysis using a probabilistic primality test is new. Kalai’s algorithm is
significantly simpler, though less efficient than, an earlier algorithm due to
Bach [9], which uses an expected number of O(k) primality tests, as opposed
to the O(k?) primality tests used by Kalai’s algorithm.

The RSA cryptosystem was invented by Rivest, Shamir, and Adleman
[78]. There is a vast literature on cryptography. One starting point is
the book by Menezes, van Oorschot, and Vanstone [62]. The attack in
Exercise 7.26 is due to Wiener [104]; this attack was recently strengthened
by Boneh and Durfee [19].

8
Abelian groups

This chapter introduces the notion of an abelian group. This is an abstrac-
tion that models many different algebraic structures, and yet despite the
level of generality, a number of very useful results can be easily obtained.

8.1 Definitions, basic properties, and examples
Definition 8.1. An abelian group is a set G together with a binary oper-
ation = on G such that

(i) for all a,b,c € G, a* (b*xc) = (axb)xc (i.e., x is associative),
(i1) there exists e € G (called the identity element) such that for all
a€ G, axe=a=exa,
(iii) for all a € G there exists ' € G (called the inverse of a) such that
axa =e=ad xa,

(i) for all a,b € G, axb=0bxa (i.e., x is commutative).

While there is a more general notion of a group, which may be defined
simply by dropping property (iv) in Definition 8.1, we shall not need this
notion in this text. The restriction to abelian groups helps to simplify the
discussion significantly. Because we will only be dealing with abelian groups,
we may occasionally simply say “group” instead of “abelian group.”

Before looking at examples, let us state some very basic properties of
abelian groups that follow directly from the definition:

Theorem 8.2. Let G be an abelian group with binary operation *. Then
we have:

(i) G contains only one identity element;

(ii) every element of G has only one inverse.

180

8.1 Definitions, basic properties, and examples 181
Proof. Suppose e, e’ are both identities. Then we have
e=exe =¢,

where we have used part (ii) of Definition 8.1, once with ¢’ as the identity,
and once with e as the identity. That proves part (i) of the theorem.

To prove part (ii) of the theorem, let a € G, and suppose that a has two
inverses, @’ and a”. Then using parts (i)—(iii) of Definition 8.1, we have

a' =a' xe (by part (ii))
=a' x (axa") (by part (iii) with inverse a” of a)
= (a’ xa)xa” (by part (i))
=exa” (by part (iii) with inverse a’ of a)
=d" (by part (ii)). O

These uniqueness properties justify use of the definite article in Defini-
tion 8.1 in conjunction with the terms “identity element” and “inverse.”
Note that we never used part (iv) of the definition in the proof of the above
theorem.

Abelian groups are lurking everywhere, as the following examples illus-
trate.

Example 8.1. The set of integers Z under addition forms an abelian group,
with 0 being the identity, and —a being the inverse of a € Z. O

Example 8.2. For integer n, the set nZ = {nz : z € Z} under addition
forms an abelian group, again, with 0 being the identity, and n(—z) being
the inverse of nz. O

Example 8.3. The set of non-negative integers under addition does not
form an abelian group, since additive inverses do not exist for positive inte-
gers. O

Example 8.4. The set of integers under multiplication does not form an
abelian group, since inverses do not exist for integers other than +1. O

Exzample 8.5. The set of integers {£1} under multiplication forms an
abelian group, with 1 being the identity, and —1 its own inverse. O

Example 8.6. The set of rational numbers Q = {a/b : a,b € Z, b # 0}
under addition forms an abelian group, with 0 being the identity, and (—a)/b
being the inverse of a/b. O

182 Abelian groups

Example 8.7. The set of non-zero rational numbers Q* under multiplica-
tion forms an abelian group, with 1 being the identity, and b/a being the
inverse of a/b. O

Example 8.8. The set Z, under addition forms an abelian group, where
[0],, is the identity, and where [—a], is the inverse of [a],. O

Example 8.9. The set Z of residue classes [a],, with gcd(a,n) = 1 under
multiplication forms an abelian group, where [1],, is the identity, and if b is
a multiplicative inverse of a modulo n, then [b],, is the inverse of [a],. O

Ezxample 8.10. Continuing the previous example, let us set n = 15, and
enumerate the elements of Z5. They are

[1], 2], [4], [7], [8], [11], [13], [14].
An alternative enumeration is
[£1], [£2], [£4], [£7]. O

Example 8.11. As another special case, consider Zf. We can enumerate
the elements of this groups as

[11, 2], 3], 4]

or alternatively as
[£1],[£2]. O

Ezxample 8.12. For any positive integer n, the set of n-bit strings under
the “exclusive or” operation forms an abelian group, where the “all zero”
bit string is the identity, and every bit string is its own inverse. O

Example 8.13. The set of all arithmetic functions f, such that f(1) # 0,
with multiplication defined by the Dirichlet product (see §2.6) forms an
abelian group, where the special arithmetic function I is the identity, and
inverses are provided by the result of Exercise 2.27. O

Example 8.14. The set of all finite bit strings under concatenation does
not form an abelian group. Although concatenation is associative and the
empty string acts as an identity element, inverses do not exist (except for
the empty string), nor is concatenation commutative. O

Example 8.15. The set of 2 x 2 integer matrices with determinant +1,
together with the binary operation of matrix multiplication, is an example of
a non-abelian group; that is, it satisfies properties (i)—(iii) of Definition 8.1,
but not property (iv). O

8.1 Definitions, basic properties, and examples 183

Example 8.16. The set of all permutations on a given set of size n >
3, together with the binary operation of function composition, is another
example of a non-abelian group (for n = 1,2, it is an abelian group). O

Note that in specifying a group, one must specify both the underlying set
G as well as the binary operation; however, in practice, the binary operation
is often implicit from context, and by abuse of notation, one often refers to
G itself as the group. For example, when talking about the abelian groups
Z, and Z,,, it is understood that the group operation is addition, while when
talking about the abelian group Z,, it is understood that the group operation
is multiplication.

Typically, instead of using a special symbol like “x” for the group oper-
ation, one uses the usual addition (“+”) or multiplication (“”) operations.
For any particular, concrete abelian group, the most natural choice of no-
tation is clear (e.g., addition for Z and Z,,, multiplication for Z}); however,
for a “generic” group, the choice is largely a matter of taste. By conven-
tion, whenever we consider a “generic” abelian group, we shall use additive
notation for the group operation, unless otherwise specified.

If an abelian group G is written additively, then the identity element is
denoted by O¢g (or just 0 if G is clear from context), and the inverse of an
element a € G is denoted by —a. For a,b € G, a — b denotes a + (—b). If
n is a positive integer, then n - a denotes a + a + - - - + a, where there are n
terms in the sum—note that 1-a = a. Moreover, 0 - a denotes O¢, and if n
is a negative integer, then n - a denotes (—n)(—a).

If an abelian group G is written multiplicatively, then the identity element
is denoted by 1g (or just 1 if G is clear from context), and the inverse of
an element a € G is denoted by a~! or 1/a. As usual, one may write ab in
place of a - b. For a,b € G, a/b denotes a - b~!. If n is a positive integer,
then a” denotes a-a----- a, where there are n terms in the product—note
that a' = a. Moreover, a® denotes 1¢, and if n is a negative integer, then
a™ denotes (a=1)~".

An abelian group G may be infinite or finite. If the group is finite, we
define its order to be the number of elements in the underlying set G;
otherwise, we say that the group has infinite order.

Example 8.17. The order of the additive group Z,, is n. O

Example 8.18. The order of the multiplicative group Z} is ¢(n), where ¢
is Euler’s phi function, defined in §2.4. O

Example 8.19. The additive group Z has infinite order. O

184 Abelian groups
We now record a few more simple but useful properties of abelian groups.

Theorem 8.3. Let G be an abelian group. Then for all a,b,c € G and
n,m € Z, we have:

(i) ifa+b=a+c, then b= c;
(ii) the equation a + x = b has a unique solution x € G;
(i) —(a+8) = (~a) + (=b);
(i) —(—a) = a;
(v) (—n)a = —(na) = n(—a);
(vi) (n+m)a = na+ ma;
(vii) n(ma) = (nm)a = m(na);
(viii) n(a + b) = na + nb.

Proof. Exercise. O

If Gy,...,Gi are abelian groups, we can form the direct product
G := Gy X -+ X G, which consists of all k-tuples (ai,...,ax) with
a1 € Gi,...,ar € Gi. We can view G in a natural way as an abelian

group if we define the group operation component-wise:
(a1, yag) + (br,eoe b) = (ar + b,y + by).

Of course, the groups Gj, ..., G may be different, and the group operation
applied in the ith component corresponds to the group operation associated
with G;. We leave it to the reader to verify that G is in fact an abelian

group.

EXERCISE 8.1. In this exercise, you are to generalize the Mobius inversion
formula, discussed in §2.6, to arbitrary abelian groups. Let JF be the set
of all functions mapping positive integers to integers. Let G be an abelian
group, and let G be the set of all functions mapping positive integers to
elements of G. For f € F and g € G, we can define the Dirichlet product
f*g € G as follows:
(fxg)(n) =) _ f(d)g(n/d),
dn

the sum being over all positive divisors d of n. Let I, J, u € F be as defined
in §2.6.

(a) Show that for all f,g € F and all h € G, we have (fxg)xh = fx(g*h).

(b) Show that for all f € G, we have I x f = f.

(c) Show that for all f, F' € G, we have F' = J« f if and only if f = puxF.

8.2 Subgroups 185

8.2 Subgroups

We next introduce the notion of a subgroup.

Definition 8.4. Let GG be an abelian group, and let H be a non-empty subset
of G such that

(i) a+ b€ H for all a,b € H, and
(i) —a € H for alla € H.
Then H is called a subgroup of G.

In words: H is a subgroup of G if it is closed under the group operation
and taking inverses.

Multiplicative notation: if the abelian group G in the above definition is
written using multiplicative notation, then H is a subgroup if ab € H and
a~'e H forall a,b € H.

Theorem 8.5. If G is an abelian group, and H is a subgroup of G, then
H contains 0g; moreover, the binary operation of G, when restricted to H,
yields a binary operation that makes H into an abelian group whose identity
15 O¢ .

Proof. First, to see that O € H, just pick any a € H, and using both
properties of the definition of a subgroup, we see that 0g = a + (—a) € H.

Next, note that by property (i) of Definition 8.4, H is closed under ad-
dition, which means that the restriction of the binary operation “+” on G
to H induces a well defined binary operation on H. So now it suffices to
show that H, together with this operation, satisfy the defining properties
of an abelian group. Associativity and commutativity follow directly from
the corresponding properties for G. Since Og acts as the identity on G, it
does so on H as well. Finally, property (ii) of Definition 8.4 guarantees that
every element a € H has an inverse in H, namely, —a. O

Clearly, for an abelian group G, the subsets G and {0¢g} are subgroups.
These are not very interesting subgroups. An easy way to sometimes find
other, more interesting, subgroups within an abelian group is by using the
following two theorems.

Theorem 8.6. Let G be an abelian group, and let m be an integer. Then
mG = {ma : a € G} is a subgroup of G.

Proof. For ma, mb € mG, we have ma+mb = m(a+b) € mG, and —(ma) =
m(—a) € mG. O

186 Abelian groups

Theorem 8.7. Let G be an abelian group, and let m be an integer. Then
G{m} :={a € G:ma=0g} is a subgroup of G.

Proof. If ma = 0 and mb = O¢g, then m(a+b) = ma+mb = 0g +0g = O¢
and m(—a) = —(ma) = —0g = 0g. O

Multiplicative notation: if the abelian group G in the above two theorems
is written using multiplicative notation, then we write the subgroup of the
first theorem as G™ := {a" : a € G}. The subgroup in the second theorem
is denoted in the same way: G{m} :={a € G : a™ = 1¢}.

Example 8.20. For every integer m, the set mZ is the subgroup of the
additive group Z consisting of all integer multiples of m. Two such subgroups
mZ and m'Z are equal if and only if m = £m/. The subgroup Z{m} is equal
to Z if m = 0, and is equal to {0} otherwise. O

Example 8.21. Let n be a positive integer, let m € Z, and consider the
subgroup mZ, of the additive group Z,. Now, [b], € mZ, if and only if
there exists © € Z such that max = b (mod n). By Theorem 2.7, such an
x exists if and only if d | b, where d := ged(m,n). Thus, mZ, consists
precisely of the n/d distinct residue classes

li-d, (i=0,...,n/d—1),

and in particular, mZ, = dZ,,.

Now consider the subgroup Z,{m} of Z,. The residue class [z], is in
Zp{m} if and only if max = 0 (mod n). By Theorem 2.7, this happens if
and only if 2 = 0 (mod n/d), where d = ged(m,n) as above. Thus, Z,{m}
consists precisely of the d residue classes

[i-n/d, (i=0,...,d—1),
and in particular, Z,{m} = Z,{d} = (n/d)Z,. O

Example 8.22. For n = 15, consider again the table in Example 2.3. For
m = 1,2,3,4,5,6, the elements appearing in the mth row of that table
form the subgroup mZ,, of Z,, and also the subgroup Z,{n/d}, where d :=
ged(m,n). O

Because the abelian groups Z and Z,, are of such importance, it is a good
idea to completely characterize all subgroups of these abelian groups. As
the following two theorems show, the subgroups in the above examples are
the only subgroups of these groups.

8.2 Subgroups 187

Theorem 8.8. If G is a subgroup of Z, then there exists a unique non-
negative integer m such that G = mZ. Moreover, for two non-negative
integers my and ma, we have miZ C moZ if and only if ma | my.

Proof. Actually, we have already proven this. One only needs to observe
that a subset G of Z is a subgroup if and only if it is an ideal of Z, as
defined in §1.2 (see Exercise 1.7). The first statement of the theorem then
follows from Theorem 1.5. The second statement follows easily from the
definitions, as was observed in §1.2. O

Theorem 8.9. If G is a subgroup of Z,, then there exists a unique positive
integer d dividing n such that G = dZ,. Also, for positive divisors di,ds of
n, we have diZy, C doZy, if and only if da | dy.

Proof. Let p : Z — Zy, be the map that sends a € Z to [a],, € Z,. Clearly, p
is surjective. Consider the pre-image p~!(G) C Z of G.

We claim that p~!(G) is a subgroup of Z. To see this, observe that for
a,b € Z, if [a], and [b],, belong to G, then so do [a + b],, = [a], + [b]» and
—la]n, = [—a]n, and thus a + b and —a belong to the pre-image.

Since p~!(G) is a subgroup of Z, by the previous theorem, we have
p~Y(G) = dZ for some non-negative integer d. Moreover, it is clear that
n € p~1(G), and hence d | n. That proves the existence part of the theorem.

Next, we claim that for any divisor d of n, we have p~!(dZ,) = dZ. To see
this, note that p~!(dZ,) consists of all integers b such that dz = b (mod n)
has an integer solution x, and by Theorem 2.7, this congruence admits a
solution if and only if d | b. That proves the claim.

Now consider any two positive divisors di,de of n. Since diZ, C doZy,
if and only if p=!(d1Z,) C p~'(d2Z,), the remaining statements of the
theorem follow from the corresponding statements of Theorem 8.8 and the
above claim. O

Of course, not all abelian groups have such a simple subgroup structure.

Example 8.23. Consider the group G = Zs X Zs. For any non-zero « € G,
a + a = 0g. From this, it is easy to see that the set H = {0q,a} is a
subgroup of G. However, for any integer m, mG = G if m is odd, and
mG = {0g} if m is even. Thus, the subgroup H is not of the form mG for
any m. O

Example 8.24. Consider again the group Z;, for n = 15, discussed in
Example 8.10. As discussed there, we have Zj; = {[£1], [£2], [£4], [£7]}.

188 Abelian groups
Therefore, the elements of (Z;)? are
(12 =[], 21 = [4], [4]* = [16] = [1], [7]* = [49] = [4];

thus, (Z35)? has order 2, consisting as it does of the two distinct elements
[1] and [4].

Going further, one sees that (Z35)* = {[1]}. Thus, a* = [1] for all o € Z3.

By direct calculation, one can determine that (ZT5)3 = Z7s; that is, cubing
simply permutes Zjs.

For any integer m, write m = 4q + r, where 0 < r < 4. Then for any
a € Zis, we have o™ = o4 = o¥a” = o". Thus, (Zi;)™ is either Zi,
(Z35)?, or {1},

However, there are certainly other subgroups of Zj;—for example, the
subgroup {[£1]}. O

Example 8.25. Consider again the group Z; from Example 8.11. As dis-
cussed there, Z} = {[+1],[+2]}. Therefore, the elements of (Z%)? are

thus, (Z:)? = {[+1]} and has order 2.

There are in fact no other subgroups of Zf besides Zf, {[£1]}, and {[1]}.
Indeed, if H is a subgroup containing [2], then we must have H = Zf:
2] € H implies [2]2 = [4] = [~1] € H, which implies [-2] € H as well. The
same holds if H is a subgroup containing [—2]. O

FEzxample 8.26. Consider again the group of arithmetic functions f, such
that f(1) # 0, with multiplication defined by the Dirichlet product, dis-
cussed in Example 8.13. By the results of Exercises 2.21 and 2.28, we see
that the subset of all multiplicative arithmetic functions is a subgroup of
this group. O

The following two theorems may be used to simplify verifying that a subset
is a subgroup.

Theorem 8.10. If G is an abelian group, and H is a non-empty subset of
G such that a —b € H for all a,b € H, then H is a subgroup of G.

Proof. Since H is non-empty, let ¢ be an arbitrary element of H. Then
0 = c—c € H. It follows that for all a € H, we have —a = 0g —a € H,
and for all a,b € H, we havea+b=a— (-b) € H. O

Theorem 8.11. If G is an abelian group, and H s a non-empty, finite
subset of G such that a+b € H for all a,b € H, then H is a subgroup of G.

8.2 Subgroups 189

Proof. We only need to show that —a € H for all a € H. Let a € H be
given. If a = Og, then clearly —a = 0g € H, so assume that a # Og, and
consider the set S of all elements of GG of the form ma, form = 1,2,.... Since
H is closed under addition, it follows that S C H. Moreover, since H is
finite, S must be finite, and hence there must exist integers my, mo such that
m1 > meo > 0 and mia = mea; that is, ra = Og, where r := mq1—msg > 0. We
may further assume that r > 1, since otherwise a = O¢, and we are assuming
that a # Og. It follows that a+ (r —1)a = 0g, and so —a = (r—1)a € S. O

We close this section with two theorems that provide useful ways to build
new subgroups out of old subgroups.

Theorem 8.12. If Hy and Hs are subgroups of an abelian group G, then
50 18
Hy + Hy := {hl 4+ hg:hy € Hi,ho € Hg}.

Proof. Consider two elements in H; 4+ Ho, which we can write as hy + ho and
hy + h%, where hq,h} € Hy and hg, hY, € Hy. Then by the closure properties
of subgroups, h1+h| € Hy and ho+h}, € Hy, and hence (h1+ha)+(h}+h}) =
(hl + hll) -+ (hQ + h/2) € Hy + Hs. Similarly, —(h1 + h2) = (—hl) + (—hg) S
H,+ Hy. O

Multiplicative notation: if the abelian group G in the above theorem is
written multiplicatively, then the subgroup defined in the theorem is written
H, - Hy := {hlhg :hy € Hy, hy € Hg}.

Theorem 8.13. If Hy and Hy are subgroups of an abelian group G, then
so 1s Hi N Ho.

Proof. If h € Hy N Hy and h' € Hy N Ho, then since h,h’ € Hy, we have
h+ h' € Hy, and since h, h' € Hy, we have h + I/ € Hy; therefore, h + h' €
Hy N Hy. Similarly, —h € Hy and —h € Hs, and therefore, —h € H; N Ho.
O

EXERCISE 8.2. Show that if H' is a subgroup of an abelian group G, then a
set H C H' is a subgroup of G if and only if H is a subgroup of H’.

EXERCISE 8.3. Let G be an abelian group with subgroups H; and Hs. Show
that any subgroup H of G that contains Hy U Hy contains Hy + Hs, and
Hy C H, if and only if H; + Hy = Ho.

EXERCISE 8.4. Let H; be a subgroup of an abelian group G; and H> a
subgroup of an abelian group G3. Show that H; x Hs is a subgroup of
G1 X GQ.

190 Abelian groups

EXERCISE 8.5. Let G1 and G5 be abelian groups, and let H be a subgroup
of G1 X G4. Define

Hy :={h1 € Gy : (h1,hg) € H for some hy € Ga}.
Show that H; is a subgroup of Gj.

EXERCISE 8.6. Give an example of specific abelian groups G; and G3, along
with a subgroup H of G1 X G, such that H cannot be written as H; x Ho,
where Hj is a subgroup of G; and Hs is a subgroup of G.

8.3 Cosets and quotient groups

We now generalize the notion of a congruence relation.

Let G be an abelian group, and let H be a subgroup of G. For a,b € G,
we write a = b (mod H) if a —b € H. In other words, a = b (mod H) if and
only if a = b+ h for some h € H.

Analogously to Theorem 2.2, if we view the subgroup H as fixed, then
the following theorem says that the binary relation “ = - (mod H)” is an
equivalence relation on the set G:

Theorem 8.14. Let G be an abelian group and H a subgroup of G. For all
a,b,c € G, we have:

(i) a =a (mod H);
(1) a =b (mod H) implies b= a (mod H);
(17i) a =b (mod H) and b = ¢ (mod H) implies a = ¢ (mod H).

Proof. For (i), observe that H contains Og = a — a. For (ii), observe that if
H contains a — b, then it also contains —(a — b) = b — a. For (iii), observe
that if H contains a—b and b—c, then it also contains (a—b)+(b—c) = a—c.
O

¢

Since the binary relation “ = - (mod H)” is an equivalence relation, it
partitions G into equivalence classes. It is easy to see (verify) that for any
a € G, the equivalence class containing a is precisely the set a+H := {a+h :
h € H}, and this set is called the coset of H in G containing a, and an
element of such a coset is called a representative of the coset.

Multiplicative notation: if G is written multiplicatively, then a
b (mod H) means a/b € H, and the coset of H in G containing a is
aH :={ah:h e H}.

Example 8.27. Let G := 7Z and H := nZ for some positive integer n. Then

8.8 Cosets and quotient groups 191

a =b (mod H) if and only if @ = b (mod n). The coset a + H is exactly the
same thing as the residue class [a],,. O

Exzample 8.28. Let G := Z4 and let H be the subgroup 2G = {[0], [2]} of
G. The coset of H containing [1] is {[1],[3]}. These are all the cosets of H
inG. O

Theorem 8.15. Any two cosets of a subgroup H in an abelian group G
have equal cardinality; that is, there is a bijective map from one coset to the
other.

Proof. 1t suffices to exhibit a bijection between H and a + H for any a € G.
The map f, : H — a+ H that sends h € H to a+ h is easily seen to be just
such a bijection. O

An incredibly useful consequence of the above theorem is:

Theorem 8.16 (Lagrange’s theorem). If G is a finite abelian group, and
H is a subgroup of G, then the order of H divides the order of G.

Proof. This is an immediate consequence of the previous theorem, and the
fact that the cosets of H in G partition G. O

Analogous to Theorem 2.3, we have:

Theorem 8.17. Let G be an abelian group and H a subgroup. For
a,a’ bt € G, ifa = d (mod H) and b =V (mod H), then a +b =
a +V (mod H).

Proof. Now, a = a’ (mod H) and b = V' (mod H) means that a’ = a+hy and
b' = b+ hgy for hy, he € H. Therefore, a’ +b" = (a+h1)+ (b+ha) = (a+b)+
(h1 + h2), and since hy + hg € H, this means that a +b =a’ + V' (mod H).
|

Let G be an abelian group and H a subgroup. Theorem 8.17 allows us
to define a binary operation on the collection of cosets of H in G in the
following natural way: for a,b € G, define

(ea+H)+(b+H):=(a+b)+ H.

The fact that this definition is unambiguous follows immediately from The-
orem 8.17. Also, one can easily verify that this operation defines an abelian
group, where H acts as the identity element, and the inverse of a coset a+ H
is (—a) + H. The resulting group is called the quotient group of G mod-
ulo H, and is denoted G/H. The order of the group G/H is sometimes
denoted [G : H| and is called the index of H in G.

192 Abelian groups

Multiplicative notation: if G is written multiplicatively, then the definition
of the group operation of G/H is expressed

(aH) - (bH) := (ab)H.

Theorem 8.18. Let G be a finite abelian group and H a subgroup. Then
|G : H| = |G|/|H|. Moreover, if H' is another subgroup of G with H C H’,
then

[G:H)=|G: HIH :G.
Proof. The fact that [G : H] = |G|/|H]| follows directly from Theorem 8.15.
The fact that [G : H] =[G : H'|[H' : G] follows from a simple calculation:
_ 6l _ IGl/1H] _ G- H]

= = = . O
[H'| - |H'/|H] - [H": H]

G : H']

Example 8.29. For the additive group of integers Z and the subgroup nZ
for n > 0, the quotient group Z/nZ is precisely the same as the additive
group Z, that we have already defined. For n = 0, Z/nZ is essentially just
a “renaming” of Z. O

Ezxzample 8.30. Let G := Zg and H = 3G be the subgroup of G consisting
of the two elements {[0], [3]}. The cosets of H in G are a := H = {[0], [3]},
B = [1]+H = {[1], 4]}, and v := 2] + H = {[2],[5]}. If we write out an
addition table for G, grouping together elements in cosets of H in G, then
we also get an addition table for the quotient group G/H:

+ [0 BIJA] [4]2 [5]
0] | [0} [3] [[4][[5]
31| 8] [0]][4 [1]][] [2]
[[[BB (o]
[4] | 4] (]| [B] [21][0] [3]
21| 2] 5] 8] [0] | [4 [1]
BB 2I[[o] B[] 4]

This table illustrates quite graphically the point of Theorem 8.17: for any
two cosets, if we take any element from the first and add it to any element
of the second, we always end up in the same coset.

We can also write down just the addition table for G/H:

—I—|a 68 v
ala B 7
Bl1B v «
Y|y a B

8.8 Cosets and quotient groups 193

Note that by replacing a with [0]s, 8 with [1]s, and ~ with [2]3, the
addition table for G/H becomes the addition table for Zs. In this sense, we
can view G/H as essentially just a “renaming” of Zg. O

Example 8.31. Let us return to Example 8.24. The group Zj;, as we
saw, is of order 8. The subgroup (Z;)? of Zj; has order 2. Therefore, the
quotient group Z3=/(Z35)? has order 4. Indeed, the cosets are ago = {[1], [4]},
apr = {[-1], [-4]}, a10 = {[2],[-7]}, and a1 = {[7],[-2]}. In the quotient
group, oo is the identity; moreover, we have

2 2 2
Qpp = Qg9 = Q11 = Qoo
and
Qo110 = 11, 1011 = Qp1, o111 = &1Q-

This completely describes the behavior of the group operation of the quotient
group. Note that this group is essentially just a “renaming” of the group
Zo X Zo. O

Ezample 8.32. As we saw in Example 8.25, (Z£)? = {[+1]}. Therefore,
the quotient group Z%/(Z%)? has order 2. The cosets of (Z%)? in Zf are
ap = {[*1]} and a; = {[+2]}. In the group Z%/(Z%)?, ap is the identity,
and «; is its own inverse, and we see that this group is essentially just a
“renaming” of Zy. O

EXERCISE 8.7. Let H be a subgroup of an abelian group G, and let a and
a’ be elements of G, with a = @’ (mod H).

(a) Show that —a = —d’ (mod H).
(b) Show that na = na’ (mod H) for all n € Z.

EXERCISE 8.8. Let G be an abelian group, and let ~ be an equivalence
relation on G. Further, suppose that for all a,a’,b € G, if a ~ d/, then
a+b~a +b Let H:={a€G:a~0g}. Show that H is a subgroup of
G, and that for all a,b € G, we have a ~ b if and only if a = b (mod H).

EXERCISE 8.9. Let H be a subgroup of an abelian group G.

(a) Show that if H' is a subgroup of G containing H, then H'/H is a
subgroup of G/H.

(b) Show that if K is a subgroup of G/H, then the set H' := {a € G :
a+ H € K} is a subgroup of G containing H.

194 Abelian groups

8.4 Group homomorphisms and isomorphisms

Definition 8.19. A group homomorphism is a function p from an
abelian group G to an abelian group G’ such that p(a +b) = p(a) + p(b)
for all a,b € G.

Note that in the equality p(a + b) = p(a) + p(b) in the above definition,
the addition on the left-hand side is taking place in the group G while the
addition on the right-hand side is taking place in the group G'.

Two sets play a critical role in understanding a group homomorphism
p: G — G'. The first set is the image of p, that is, the set p(G) = {p(a) :
a € G}. The second set is the kernel of p, defined as the set of all elements
of G that are mapped to Og by p, that is, the set p~1({0g}) = {a € G :
p(a) = 0¢r}. We introduce the following notation for these sets: img(p)
denotes the image of p, and ker(p) denotes the kernel of p.

Ezxample 8.33. For any abelian group G and any integer m, the map that
sends a € G to ma € G is clearly a group homomorphism from G into
G, since for a,b € G, we have m(a + b) = ma + mb. The image of this
homomorphism is mG and the kernel is G{m}. We call this map the m-
multiplication map on G. If G is written multiplicatively, we call this
the m-power map on G, and its image is G™. O

Example 8.34. Consider the m-multiplication map on Z,. As we saw in
Example 8.21, if d := ged(n, m), the image mZ,, of this map is a subgroup
of Z,, of order n/d, while its kernel Z,{m} is a subgroup of order d. O

Example 8.35. Let G be an abelian group and let a be a fixed element of
G. Let p: Z — G be the map that sends z € Z to za € G. It is easy to see
that this is group homomorphism, since

p(z+72)=(z+2)a=za+7a=p(z)+p). O

Example 8.36. As a special case of the previous example, let n be a positive
integer and let o be an element of Z;. Let p : Z — Z; be the group
homomorphism that sends z € Z to o* € Zy. If the multiplicative order of
« is equal to k, then as discussed in §2.5, the image of p consists of the k
distinct group elements o, al, ..., a* 1. The kernel of p consists of those
integers a such that a® = [1],,. Again by the discussion in §2.5, the kernel
of p is equal to kZ. O

Ezxample 8.37. We may generalize Example 8.35 as follows. Let G be an
abelian group, and let ay,...,a; be fixed elements of G. Let p : Z** — G

8.4 Group homomorphisms and isomorphisms 195

be the map that sends (z1,...,2x) € Z*F to zia; + --- + zrap € G. The
reader may easily verify that p is a group homomorphism. O

Example 8.38. As a special case of the previous example, let p1,...,ps
be distinct primes, and let p : Z*¥ — Q* be the group homomorphism that
sends (z1,...,2x) € Z*F to pi' - p?* € Q*. The image of p is the set of all
non-zero fractions whose numerator and denominator are divisible only by
the primes p1,...,pr. The kernel of p contains only the all-zero tuple 0<%,
O

The following theorem summarizes some of the most important properties
of group homomorphisms.

Theorem 8.20. Let p be a group homomorphism from G to G'.
(i) p(0c) = Ocr.
(i1) p(—a) = —p(a) for all a € G.
(iii) p(na) =np(a) for alln € Z and a € G.
(iv) For any subgroup H of G, p(H) is a subgroup of G'.
(v) ker(p) is a subgroup of G.
(vi) For all a,b € G, p(a) = p(b) if and only if a = b (mod ker(p)).
(vii) p is injective if and only if ker(p) = {0g}.
(viii) For any subgroup H' of G', p~*(H') is a subgroup of G containing
ker(p).
Proof.
(i) We have

Ocr + p(0c) = p(0c) = p(0c + 0c) = p(0c) + p(0c).-
Now cancel p(0¢) from both sides (using part (i) of Theorem 8.3).
(ii) We have

Ocr = p(0g) = pla + (—a)) = p(a) + p(=a),
and hence p(—a) is the inverse of p(a).

(iii) For n = 0, this follows from part (i). For n > 0, this follows from
the definitions by induction on n. For n < 0, this follows from the
positive case and part (v) of Theorem 8.3.

(iv) For any a,b € H, we have a + b € H and —a € H; hence, p(H)
contains p(a + b) = p(a) + p(b) and p(—a) = —p(a).

196 Abelian groups

(v) If p(a) = Ogr and p(b) = Ogr, then p(a+d) = p(a)+p(b) = 0c'+0qr =
Og/, and p(—a) = —p(a) = —0¢’ = O¢.

(vi) p(a) = p(b) iff p(a) — p(b) = 0 iff p(a — b) = O¢r iff a — b € ker(p) iff
a = b (mod ker(p)).

(vii) If p is injective, then in particular, p~*({0¢/}) cannot contain any
other element besides Og. If p is not injective, then there exist two
distinct elements a,b € G with p(a) = p(b), and by part (vi), ker(p)
contains the element a — b, which is non-zero.

(viii) This is very similar to part (v). If p(a) € H' and p(b) € H', then
pla+b) = pla) + p(b) € H', and p(—a) = —p(a) € H'. Moreover,
since H' contains O/, we must have p~'(H’) D p~1({0g}) = ker(p).

Part (vii) of the above theorem is particular useful: to check that a group
homomorphism is injective, it suffices to determine if ker(p) = {Og}. Thus,
the injectivity and surjectivity of a given group homomorphism p : G — G’
may be characterized in terms of its kernel and image:

e p is injective if and only if ker(p) = {0¢};
e p is surjective if and only if img(p) = G'.

The next three theorems establish some further convenient facts about

group homomorphisms.

Theorem 8.21. Ifp: G — G’ and p' : G’ — G" are group homomorphisms,
then so is their composition p' o p : G — G".

Proof. For a,b € G, we have p/'(p(a + b)) = p'(p(a) + p(b)) = p'(p(a)) +
o (p(0)). O

Theorem 8.22. Let p; : G — G;, for i = 1,...,n, be group homo-
morphisms. Then the map p : G — G1 X --- X G, that sends a € G
to (p1(a),...,pn(a)) is a group homomorphism with kernel ker(py) N---N
ker(pp,).

Proof. Exercise. O

Theorem 8.23. Let p; : G; — G, fori = 1,...,n, be group homomor-
phisms. Then the map p : G1 x -+ X Gy, — G that sends (a1,...,a,) to
pi(ai) + -+ pn(ay) is a group homomorphism.

Proof. Exercise. O

Consider a group homomorphism p : G — G’. If p is bijective, then p is

8.4 Group homomorphisms and isomorphisms 197

called a group isomorphism of G with G’. If such a group isomorphism
p exists, we say that G is isomorphic to G’, and write G = G’. Moreover,
if G = G, then p is called a group automorphism on G.

Theorem 8.24. If p is a group isomorphism of G with G', then the inverse

1

function p~* is a group isomorphism of G' with G.

Proof. For a/,b' € G', we have
plp~ (@) + (V) = p(p™ (@) + plp™ (V) = &’ + ¥,
and hence p~(a') + p7 (V) = p~H(d' + V). O
Because of this theorem, if G is isomorphic to G’, we may simply say that
“G and G’ are isomorphic.”
We stress that a group isomorphism of G with G’ is essentially just a
“renaming” of the group elements—all structural properties of the group

are preserved, even though the two groups might look quite different super-
ficially.

Exzample 8.39. As was shown in Example 8.30, the quotient group G/H
discussed in that example is isomorphic to Zs. As was shown in Exam-
ple 8.31, the quotient group Z;/(Zi5)? is isomorphic to Zs x Zs. As was
shown in Example 8.32, the quotient group ZZ/(Z%)? is isomorphic to Zg. O

Example 8.40. If gcd(n,m) = 1, then the m-multiplication map on Z, is
a group automorphism. O

The following four theorems provide important constructions of group
homomorphisms.

Theorem 8.25. If H is a subgroup of an abelian group G, then the map
p: G — G/H given by p(a) = a + H is a surjective group homomorphism
whose kernel is H.

Proof. This really just follows from the definition of the quotient group. To
verify that p is a group homomorphism, note that

pla+b)=(a+b)+H=(a+H)+ (b+ H) = p(a) + p(b).

Surjectivity follows from the fact that every coset is of the form a + H for
some a € G. The fact that ker(p) = H follows from the fact that a + H is
the coset of H in G containing a, and so this is equal to H if and only if
a€ H. O

The homomorphism of the above theorem is called the natural map from
G to G/H.

198 Abelian groups

Theorem 8.26. Let p be a group homomorphism from G into G'. Then
the map p : G/ ker(p) — img(p) that sends the coset a + ker(p) for a € G
to p(a) is unambiguously defined and is a group isomorphism of G/ker(p)
with img(p).

Proof. Let K := ker(p). To see that the definition p is unambiguous, note
that if @ = o’ (mod K), then by part (vi) of Theorem 8.20, p(a) = p(a’). To
see that p is a group homomorphism, note that

plla+K) + b+ K)) = pl(a+b) + K) = pla+b) = p(a) + p(b)
= pla+ K)+ p(b + K).

It is clear that p maps onto img(p), since any element of img(p) is of the form
p(a) for some a € G, and the map p sends a+ K to p(a). Finally, to see that
p is injective, suppose that p(a + K) = Og; then we have p(a) = 0, and
hence a € K; from this, it follows that a+ K is equal to K, which is the zero
element of G/K. Injectivity then follows from part (vii) of Theorem 8.20,
applied to p. O

The following theorem is an easy generalization of the previous one.

Theorem 8.27. Let p be a group homomorphism from G into G'. Then for
any subgroup H contained in ker(p), the map p: G/H — img(p) that sends
the coset a + H for a € G to p(a) is unambiguously defined and is a group
homomorphism from G/H onto img(p) with kernel ker(p)/H.

Proof. Exercise—just mimic the proof of the previous theorem. O

Theorem 8.28. Let G be an abelian group with subgroups Hy, Hy. Then
the map p : Hy X Hy — Hy+ Ho that sends (h1, h2) to hi+ hg is a surjective
group homomorphism. Moreover, if Hi N Hy = {0g}, then p is a group
isomorphism of Hy X Hy with Hy + Hs.

Proof. The fact that p is a group homomorphism is just a special case
of Theorem 8.23, applied to the inclusion maps p; : Hy — Hi + Hy and
p2 : Hy — Hy + Hs. One can also simply verify this by direct calculation:
for hi, k| € Hy and ho, hly € Ha, we have

p(hy + by, ho + hy) = (hy + hY) + (ha + hg)
= (h1 + ho) + (h’l + h'Q)

Moreover, from the definition of H; + Hs, we see that p is in fact surjective.
Now assume that Hy N Ha = {Og}. To see that p is injective, it suffices

8.4 Group homomorphisms and isomorphisms 199

to show that ker(p) is trivial; that is, it suffices to show that for all h; € H;
and he € Hs, h1 + ho = O implies hy = 0 and ho = 0. But hy + hy = 0g
implies hy = —hy € Ha, and hence hy € H; N Hy = {0g}, and so h; = 0g.
Similarly, one shows that ho = O¢g, and that finishes the proof. O

Ezxample 8.41. For n > 1, the natural map p from Z to Z,, sends a € Z to
the residue class [a],. This map is a surjective group homomorphism with
kernel nZ. O

Example 8.42. We may restate the Chinese remainder theorem (Theo-
rem 2.8) in more algebraic terms. Let ny,...,n; be pairwise relatively
prime, positive integers. Consider the map from the group Z to the group
L, X -+ X Ly, that sends x € Z to ([z]n,, ..., [z]n,). It is easy to see that
this map is a group homomorphism (this follows from Example 8.41 and
Theorem 8.22). In our new language, the Chinese remainder theorem says
that this group homomorphism is surjective and that the kernel is nZ, where
n = Hi-“:l n;. Therefore, by Theorem 8.26, the map that sends [z], € Z,
to ([z]pn,, ..., [x]n,) is a group isomorphism of the group Z, with the group
Ly X -+ X L. O

Example 8.43. Let nj,ng be positive integers with n; > 1 and ny | no.
Then the map p : Zy,, — Zy, that sends [a],, to [a],, is a surjective group
homomorphism, and [a],, € ker(p) if and only if n; | a; that is, ker(p) =
n1Zy,. The map p can also be viewed as the map obtained by applying
Theorem 8.27 with the natural map p from Z to Z,, and the subgroup nsZ
of Z, which is contained in ker(p) = n1Z. O

Example 8.44. Let us reconsider Example 8.21. Let n be a positive in-
teger, let m € Z, and consider the subgroup mZ, of the additive group
Zy. Let p1 @ Z — 7Z, be the natural map, and let py : Z,, — Z, be the
m-multiplication map. The composed map p = p2 o p1 from Z to Z, is also
a group homomorphism. The kernel of p consists of those integers a such
that am = 0 (mod n), and so Theorem 2.7 implies that ker(p) = (n/d)Z,
where d := ged(m,n). The image of p is mZ,. Theorem 8.26 therefore
implies that the map p : Z,,/q — mZy, that sends [a], /4 to [ma], is a group
isomorphism. O

EXERCISE 8.10. Verify that the “is isomorphic to” relation on abelian groups
is an equivalence relation; that is, for all abelian groups G1, G, G3, we have:

(a) Gl = Gl;
(b) Gy = G9 implies G = Gy;

200 Abelian groups
(c) G1 = Gy and G2 = G5 implies G = Gj.

EXERCISE 8.11. Let G1,G2 be abelian groups, and let p : G; X G2 — G
be the map that sends (a1,a2) € G1 X Gy to a; € G;. Show that p is a
surjective group homomorphism whose kernel is {O¢, } X Ga.

EXERCISE 8.12. Suppose that G, G1, and G2 are abelian groups, and that
p: G1 x Gy — G is a group isomorphism. Let H; := p(G1 x {0¢g,}) and
Hj := p({0¢, } x G2). Show that

(a) Hy and Hs are subgroups of G,

(b) H, 4+ Hy = G, and

(C) HiNHy = {Og}.
EXERCISE 8.13. Let p be a group homomorphism from G into G’. Show
that for any subgroup H of G, we have p~1(p(H)) = H + ker(p).

EXERCISE 8.14. Let p be a group homomorphism from G into G’. Show
that the subgroups of G containing ker(p) are in one-to-one correspondence
with the subgroups of img(p), where the subgroup H of G containing ker(p)
corresponds to the subgroup p(H) of img(p).

EXERCISE 8.15. Let G be an abelian group with subgroups H C H'.
(a) Show that we have a group isomorphism

G/H
H'/H

G/H' =

(b) Show that if [G : H] is finite (even though G itself may have infinite
order), then [G: H) =[G : H'| - [H' : H].

EXERCISE 8.16. Show that if G = G x G5 for abelian groups G; and Gbo,
and H; is a subgroup of G; and Hj is a subgroup of G, then G/(H; x Hy) =
G1/H1 X GQ/HQ.

EXERCISE 8.17. Let p; and ps be group homomorphisms from G into G.
Show that the map p : G — G’ that sends a € G to p1(a) + p2(a) € G is
also a group homomorphism.

EXERCISE 8.18. Let G and G’ be abelian groups. Consider the set H of all
group homomorphisms p : G — G’. This set is non-empty, since the map
that sends everything in G to O¢v is trivially an element of H. We may define
an addition operation on H as follows: for p1, p2 € H, let p; + p2 be the map
p: G — G’ that sends a € G to p1(a) + p2(a). By the previous exercise, p is

8.4 Group homomorphisms and isomorphisms 201

also in H, and so this addition operation is a well-defined binary operation
on H. Show that H, together with this addition operation, forms an abelian

group.

EXERCISE 8.19. This exercise develops an alternative, “quick and dirty”
proof of the Chinese remainder theorem, based on group theory and a count-
ing argument. Let ni,...,n; be pairwise relatively prime, positive integers,
and let n :=ny ---ng. Consider the map p: Z — Zy, X - X Zy, that sends
z €Zto ([]nys---s [T]ng)-

(a) Using the results of Example 8.41 and Theorem 8.22, show (directly)
that p is a group homomorphism with kernel nZ.

(b) Using Theorem 8.26, conclude that the map p given by that theorem,

which sends [z],, to ([2]n,, ..., [2]n,), is an injective group homomor-
phism from Z,, into Z,,, X -+ X Zp,.
(c) Since |Zy| = n = |Zy, X -+ X Zp,|, conclude that the map p is

surjective, and so is an isomorphism between Z,, and Z,,, X - - X Zy,,.

Although simple, this proof does not give us an explicit formula for comput-
1

ing p~-.
EXERCISE 8.20. Let p be an odd prime; consider the squaring map on Z,.
(a) Using Exercise 2.5, show that the kernel of the squaring map on Z;
consists of the two elements [+1],,.

(b) Using the results of this section, conclude that there are (p — 1)/2
squares in Zj, each of which has precisely two square roots in Zj.

EXERCISE 8.21. Consider the group homomorphism p : Z x Z x Z — Q*
that sends (a, b, c) to 223°12¢. Describe the image and kernel of p.

EXERCISE 8.22. This exercise develops some simple —but extremely use-
ful—connections between group theory and probability theory. Let p: G —
G’ be a group homomorphism, where G and G’ are finite abelian groups.

(a) Show that if g is a random variable with the uniform distribution on
G, then p(g) is a random variable with the uniform distribution on
img(p).

(b) Show that if g is a random variable with the uniform distribution
on G, and ¢ is a fixed element in img(p), then the conditional dis-
tribution of g, given that p(g) = ¢, is the uniform distribution on
P}

(c) Show that if ¢} is a fixed element of G’, g1 is uniformly distributed

202 Abelian groups

over p~1({g}}), gh is a fixed element of G', and g5 is a fixed element of
p~1({gh}), then g1 + go is uniformly distributed over p=({g] + g5}).

(d) Show that if ¢} is a fixed element of G’ g1 is uniformly distributed
over p~1({g}}), g5 is a fixed element of G, g is uniformly distributed
over p~1({gs}), and g1 and gy are independent, then g; + g2 is uni-
formly distributed over p~1({g} + g5})-

8.5 Cyclic groups

Let G be an abelian group. For a € G, define (a) := {za : z € Z}. Tt is
easy to see that (a) is a subgroup of G—indeed, it is the image of the group
homomorphism discussed in Example 8.35. Moreover, (a) is the smallest
subgroup of G containing a; that is, (a) contains a, and any subgroup H
of G that contains @ must also contain (a). The subgroup (a) is called the
subgroup (of GG) generated by a. Also, one defines the order of a to be
the order of the subgroup (a).

More generally, for ay,...,a; € G, we define (ay,...,ax) := {z1a1 + -+
Zag ¢ Z1,...,2K € Z}. One also verifies that (aj,...,ar) is a subgroup
of GG, and indeed, is the smallest subgroup of G that contains aq,...,a.

The subgroup (ay,...,ax) is called the subgroup (of G) generated by
ajy...,0L.

An abelian group G is said to be cyclic if G = (a) for some a € G, in
which case, a is called a generator for G. An abelian group G is said to
be finitely generated if G = (ay,...,a) for some ay,...,a; € G.

Multiplicative notation: if G is written multiplicatively, then (a) := {a* :
z €L}, and (a1,...,a) :={a]* ---a;* : z1,..., 2, € L}; also, for emphasis
and clarity, we use the term multiplicative order of a.

Classification of cyclic groups. We can very easily classify all cyclic
groups. Suppose that G is a cyclic group with generator a. Consider the
map p: Z — G that sends z € Z to za € G. As discussed in Example 8.35,
this map is a group homomorphism, and since a is a generator for G, it must
be surjective.

Case 1: ker(p) = {0}. In this case, p is an isomorphism of Z with G.

Case 2: ker(p) # {0}. In this case, since ker(p) is a subgroup of Z different
from {0}, by Theorem 8.8, it must be of the form nZ for some n > 0.
Hence, by Theorem 8.26, the map p : Z,, — G that sends [z],, to za
is an isomorphism of Z, with G.

So we see that a cyclic group is isomorphic either to the additive group Z

8.5 Cyclic groups 203

or the additive group Z,, for some positive integer n. We have thus classified
all cyclic groups “up to isomorphism.” From this classification, we obtain:

Theorem 8.29. Let G be an abelian group and let a € G.

(i) If there exists a positive integer m such that ma = O¢, then the least
such positive integer n is the order of a; in this case, we have:

— for any integer z, za = Og if and only if n | z, and more
generally, for integers z1,zo, z1a6 = z9a if and only if z1 =
zo (mod n);

— the subgroup (a) consists of the n distinct elements
0-a,1-a,...,(n—1)-a.
(i1) If G has finite order, then |G|-a = 0g and the order of a divides |G|.

Proof. Part (i) follows immediately from the above classification, along with
part (vi) of Theorem 8.20. Part (ii) follows from part (i), along with La-
grange’s theorem (Theorem 8.16), since (a) is a subgroup of G. O

Example 8.45. The additive group Z is a cyclic group generated by 1. The
only other generator is —1. More generally, the subgroup of Z generated by
m € Z is mZ. O

Example 8.46. The additive group Z, is a cyclic group generated by [1],,.
More generally, for m € Z, the subgroup of Z, generated by [m], is equal
to mZy,, which by Example 8.21 has order n/ gcd(m,n). In particular, [m],
generates Z, if and only if m is relatively prime to n, and hence, the number
of generators of Z,, is ¢(n). O

Example 8.47. Consider the additive group G := Z,,, X Zy,, and let o :=
(Uny, Lny) € Zny X Zyp,. For m € Z, we have ma = Og if and only if
ni | m and ng | m. This implies that o generates a subgroup of G of order
lem(n,ng).

Suppose that ged(ng,ng) = 1. From the above discussion, it follows that
G is cyclic of order nine. One could also see this directly using the Chinese
remainder theorem: as we saw in Example 8.42, the Chinese remainder
theorem gives us an isomorphism of G with the cyclic group Zi, ..

Conversely, if d := ged(n1,n2) > 1, then all elements of Z,, x Z,, have
order dividing nins/d, and so Z,, X Z,, cannot be cyclic. O

Example 8.48. For a,n € 7Z with n > 0 and ged(a,n) = 1, the definition
in this section of the multiplicative order of a := [a], € Z} is consistent

204 Abelian groups

with that given in §2.5, and is also the same as the multiplicative order of a
modulo n. Indeed, Euler’s theorem (Theorem 2.15) is just a special case of
part (ii) of Theorem 8.29. Also, « is a generator for Z; if and only if a is a
primitive root modulo n. O

Example 8.49. As we saw in Example 8.24, all elements of Z]; have mul-
tiplicative order dividing 4, and since Z]; has order 8, we conclude that 775
is not cyclic. O

Example 8.50. The group Z is cyclic, with [2] being a generator:
2P =M =[-1], 2°=[-2], [2"=[1] D

FExample 8.51. Based on the calculations in Example 2.6, we may conclude
that Z% is cyclic, with both [3] and [5] being generators. O

The following two theorems completely characterize the subgroup struc-
ture of cyclic groups. Actually, we have already proven the results in these
two theorems, but nevertheless, these results deserve special emphasis.

Theorem 8.30. Let G be a cyclic group of infinite order.

(i) G is isomorphic to Z.

(i) The subgroups of G are in one-to-one correspondence with the non-
negative integers, where each such integer m corresponds to the cyclic
group mG.

(i1i) For any two non-negative integers m,m', mG C m/G if and only if
m’ | m.

Proof. That G = Z was established in our classification of cyclic groups, it
suffices to prove the other statements of the theorem for G = Z. It is clear
that for any integer m, the subgroup mZ is cyclic, as m is a generator. This
fact, together with Theorem 8.8, establish all the other statements. O

Theorem 8.31. Let G be a cyclic group of finite order n.
(i) G is isomorphic to Zy,.

(ii) The subgroups of G are in one-to-one correspondence with the positive
divisors of m, where each such divisor d corresponds to the subgroup
dG; moreover, dG is a cyclic group of order n/d.

(i1i) For each positive divisor d of n, we have dG = G{n/d}; that is, the
kernel of the (n/d)-multiplication map is equal to the image of the
d-multiplication map; in particular, G{n/d} has order n/d.

8.5 Cyclic groups 205

(iv) For any two positive divisors d,d of n, we have dG C d'G if and only

if d' | d.

(v) For any positive divisor d of n, the number of elements of order d in
G is ¢(d).

(vi) For any integer m, we have mG = dG and G{m} = G{d}, where
d := ged(m,n).

Proof. That G = Z,, was established in our classification of cyclic groups,
and so it suffices to prove the other statements of the theorem for G = 7Z,,.
The one-to-one correspondence in part (ii) was established in Theorem 8.9.
The fact that dZ,, is cyclic of order n/d can be seen in a number of ways;
indeed, in Example 8.44 we constructed an isomorphism of Z,, /4 with dZ.

Part (iii) was established in Example 8.21.

Part (iv) was established in Theorem 8.9.

For part (v), the elements of order d in Z, are all contained in Z,{d},
and so the number of such elements is equal to the number of generators of
Zn{d}. The group Z,{d} is cyclic of order d, and so is isomorphic to Zg4,
and as we saw in Example 8.46, this group has ¢(d) generators.

Part (vi) was established in Example 8.21. O

Since cyclic groups are in some sense the simplest kind of abelian group,
it is nice to have some sufficient conditions under which a group must be
cyclic. The following theorems provide such conditions.

Theorem 8.32. If G is an abelian group of prime order, then G is cyclic.

Proof. Let |G| = p. Let a € G with a # Og, and let k be the order of a. As
the order of an element divides the order of the group, we have k | p, and
so k=1 or k= p. Since a # Og, we must have k # 1, and so k = p, which
implies that a generates G. O

Theorem 8.33. If G1 and G2 are finite cyclic groups of relatively prime
order, then G1 x Gg is also cyclic.

Proof. This follows from Example 8.47, together with our classification of
cyclic groups. O

Theorem 8.34. Any subgroup of a cyclic group is cyclic.

Proof. This is just a restatement of part (ii) of Theorem 8.30 and part (ii)
of Theorem 8.31 O

Theorem 8.35. If p: G — G’ is a group homomorphism, and G is cyclic,
then img(QG) is cyclic.

206 Abelian groups

Proof. If G is generated by a, then it is easy to see that the image of p is
generated by p(a). O

The next three theorems are often useful in calculating the order of a
group element.

Theorem 8.36. Let G be an abelian group, let a € G be of finite order n,
and let m be an arbitrary integer. Then the order of ma is n/ged(m,n).

Proof. By our classification of cyclic groups, we know that the subgroup (a)
is isomorphic to Z,, where under this isomorphism, a corresponds to [1],, and
ma corresponds to [m],. The theorem then follows from the observations in
Example 8.46. O

Theorem 8.37. Suppose that a is an element of an abelian group, and for
some prime p and integer e > 1, we have p°a = Og and p*ta # Og. Then
a has order p°.

Proof. If m is the order of a, then since p°a = Og, we have m | p®. So
m = p! for some f =0,...,e. If f < e, then p° 'a = 0g, contradicting the
assumption that p¢~la # 0g. O

Theorem 8.38. Suppose G is an abelian group with a1,as € G such that
ay is of finite order ny, ay is of finite order ny, and ged(ni,ng) = 1. Then
the order of a1 + ao is nine.

Proof. Let m be the order of a; + ag. It is clear that nina(a; + a2) = Og,
and hence m divides nins.

We claim that (a1) N (a2) = {0g}. To see this, suppose a € (a1) N (as).
Then since a € (a1), the order of a must divide n;. Likewise, since a € (az),
the order of @ must divide ny. From the assumption that ged(ni,ng) = 1,
it follows that the order of @ must be 1, meaning that a = Og.

Since m(ay + a2) = Og, it follows that ma; = —masy. This implies that
may belongs to (az), and since ma; trivially belongs to (a1), we see that
may belongs to {a1) N (ag). From the above claim, it follows that ma; = Og,
and hence n; divides m. By a symmetric argument, we see that no divides
m. Again, since ged(ny,ng) = 1, we see that njng divides m. O

For an abelian group G, we say that an integer k kills G if kG = {0¢}.
Consider the set g of integers that kill G. Evidently, g is a subgroup of
Z, and hence of the form mZ for a uniquely determined non-negative integer
m. This integer m is called the exponent of G. If m # 0, then we see that
m is the least positive integer that kills G.

We first state some basic properties.

8.5 Cyclic groups 207

Theorem 8.39. Let G be an abelian group of exponent m.
(i) For any integer k such that kG = {0g}, we have m | k.
(it) If G has finite order, then m divides |G)|.
(i1i) If m # 0, then for any a € G, the order of a is finite, and the order
of a divides m.
(i) If G is cyclic, then the exponent of G is 0 if G is infinite, and is |G|
is G is finite.

Proof. Exercise. O

The next two theorems develop some crucial properties about the struc-
ture of finite abelian groups.

Theorem 8.40. If a finite abelian group G has exponent m, then G contains
an element of order m. In particular, a finite abelian group is cyclic if and
only if its order equals its exponent.

Proof. The second statement follows immediately from the first. For the
first statement, assume that m > 1, and let m = [[;_, p;* be the prime
factorization of m.

First, we claim that for each ¢ = 1,...,r, there exists a; € G such that
(m/pi)a; # 0. Suppose the claim were false: then for some ¢, (m/p;)a = Og
for all a € G; however, this contradicts the minimality property in the
definition of the exponent m. That proves the claim.

Let ay,...,a, be as in the above claim. Then by Theorem 8.37, (m/p;")a;
has order p;* for each i = 1,...,r. Finally, by Theorem 8.38, the group
element

(m/p")ar + -+ (m/p")a,
has order m. O

Theorem 8.41. Let G be a finite abelian group of order n. If p is a prime
dividing n, then G contains an element of order p.

Proof. We can prove this by induction on n.

If n =1, then the theorem is vacuously true.

Now assume n > 1 and that the theorem holds for all groups of order
strictly less than n. Let a be any non-zero element of GG, and let m be the
order of a. Since a is non-zero, we must have m > 1. If p | m, then (m/p)a is
an element of order p, and we are done. So assume that p{m and consider
the quotient group G/H, where H is the subgroup of G generated by a.
Since H has order m, G/H has order n/m, which is strictly less than n,

208 Abelian groups

and since p m, we must have p | (n/m). So we can apply the induction
hypothesis to the group G/H and the prime p, which says that there is an
element b € G such that b+ H € G/H has order p. If ¢ is the order of b,
then ¢b = O¢g, and so ¢b = O¢ (mod H), which implies that the order of
b+ H divides ¢. Thus, p | £, and so (¢//p)b is an element of G of order p. O

As a corollary, we have:

Theorem 8.42. Let G be a finite abelian group. Then the primes dividing
the exponent of G are the same as the primes dividing its order.

Proof. Since the exponent divides the order, any prime dividing the exponent
must divide the order. Conversely, if a prime p divides the order, then since
there is an element of order p in the group, the exponent must be divisible
by p. O

EXERCISE 8.23. Let G be an abelian group of order n, and let m be an
integer. Show that mG = G if and only if ged(m,n) = 1.

EXERCISE 8.24. Let G be an abelian group of order mm/, where
ged(m,m’) = 1. Consider the map p : mG x m/G to G that sends (a,b)
to a + b. Show that p is a group isomorphism.

EXERCISE 8.25. Let G be an abelian group, a € G, and m € Z, such that
m > 0 and ma = Og. Let m = p{'---p be the prime factorization of m.

Fori=1,...,r, let f; be the largest non-negative integer such that f; <e;
and m/p;" - a = 0. Show that the order of a is equal to p?_fl . -p?'_f".

EXERCISE 8.26. Show that for finite abelian groups GG1, G2 whose exponents
are mp and mgy, the exponent of G1 X Gg is lem(mq, ma).

EXERCISE 8.27. Give an example of an abelian group G whose exponent is
zero, but where every element of G has finite order.

EXERCISE 8.28. Show how Theorem 2.11 easily follows from Theorem 8.31.

8.6 The structure of finite abelian groups (x)

We next state a theorem that classifies all finite abelian groups up to iso-
morphism.

Theorem 8.43 (Fundamental theorem of finite abelian groups). 4
finite abelian group (with more than one element) is isomorphic to a direct

8.6 The structure of finite abelian groups (*) 209

product of cyclic groups
prlal X oo X Zpir,

where the p; are primes (not necessarily distinct) and the e; are positive
integers. This direct product of cyclic groups is unique up to the order of
the factors.

An alternative statement of this theorem is the following:

Theorem 8.44. A finite abelian group (with more than one element) is
isomorphic to a direct product of cyclic groups

Lipy X+ X Ly,

where each m; > 1, and where for i = 1,...,t — 1, we have m; | m;i1.
Moreover, the integers my, ..., m; are uniquely determined, and m; is the
exponent of the group.

EXERCISE 8.29. Show that Theorems 8.43 and 8.44 are equivalent; that is,
show that each one implies the other. To do this, give a natural one-to-one
correspondence between sequences of prime powers (as in Theorem 8.43)
and sequences of integers myq,..., m; (as in Theorem 8.44), and also make
use of Example 8.47.

EXERCISE 8.30. Using the fundamental theorem of finite abelian groups
(either form), give short and simple proofs of Theorems 8.40 and 8.41.

We now prove Theorem 8.44, which we break into two lemmas, the first
of which proves the existence part of the theorem, and the second of which
proves the uniqueness part.

Lemma 8.45. A finite abelian group (with more than one element) is iso-
morphic to a direct product of cyclic groups

Loy X -+ X Ly,

where each m; > 1, and where for i = 1,...,t — 1, we have m; | mjt1;
moreover, my s the exponent of the group.

Proof. Let G be a finite abelian group with more than one element, and let
m be the exponent of G. By Theorem 8.40, there exists an element a € G of
order m. Let A = (a). Then A = Z,,. Now, if A = G, the lemma is proved.
So assume that A C G.

We will show that there exists a subgroup B of GG such that G = A+ B
and AN B = {0}. From this, Theorem 8.28 gives us an isomorphism of G

210 Abelian groups

with A x B. Moreover, the exponent of B is clearly a divisor of m, and so
the lemma will follow by induction (on the order of the group).

So it suffices to show the existence of a subgroup B as above. We prove
this by contradiction. Suppose that there is no such subgroup, and among
all subgroups B such that AN B = {0}, assume that B is maximal, meaning
that there is no subgroup B’ of G such that B C B’ and AN B’ = {0}. By
assumption C':= A+ B C G.

Let d be any element of GG that lies outside of C'. Consider the quotient
group G/C, and let r be the order of d + C' in G/C. Note that r > 1 and
r | m. We shall define a group element d’ with slightly nicer properties
than d, as follows. Since rd € C, we have rd = sa + b for some s € Z and
b € B. We claim that r | s. To see this, note that 0 = md = (m/r)rd =
(m/r)sa + (m/r)b, and since AN B = {0}, we have (m/r)sa = 0, which
can only happen if r | s. That proves the claim. This allows us to define
d :=d— (s/r)a. Since d = d’ (mod C), we see that d’ + C also has order r
in G/C, but also that rd’ € B.

We next show that AN(B+(d')) = {0}, which will yield the contradiction
we seek, and thus prove the lemma. Because AN B = {0}, it will suffice
to show that AN (B + (d')) C B. Now, suppose we have a group element
b +ad € A, with ¥ € B and x € Z. Then in particular, zd' € C, and so
r | x, since d + C has order r in G/C. Further, since rd’ € B, we have
xd € B, whence b/ + zd' € B. O

Lemma 8.46. Suppose that G := Zyy, X -+ X Ly, and H :=Zp, X -+ X Lp,
are isomorphic, where the m; and n; are positive integers (possibly 1) such
that m; | mipq fori=1,...,t —1. Then m; =n; fori=1,...,t.

Proof. Clearly, [[,m; = |G| = |H| = [[;n;. We prove the lemma by
induction on the order of the group. If the group order is 1, then clearly
all m; and n; must be 1, and we are done. Otherwise, let p be a prime
dividing the group order. Now, suppose that p divides m,,..., m; but not
mi,...,my_1, and that p divides ng,...,ns but not nq,...,ns_1, wherer <t
and s < t. Evidently, the groups pG and pH are isomorphic. Moreover,

PG = Ly X -+ X L, mer/px met/p,

and

PH Z Ly X oo X Lpyg y X Ly X+ X Ly -

Thus, we see that [pG| = |G|/p'~"! and |pH| = |H|/p'~**!, from which it
follows that r = s, and the lemma then follows by induction. O

Rings

This chapter introduces the notion of a ring, more specifically, a commu-
tative ring with unity. The theory of rings provides a useful conceptual
framework for reasoning about a wide class of interesting algebraic struc-
tures. Intuitively speaking, a ring is an algebraic structure with addition
and multiplication operations that behave like we expect addition and mul-
tiplication should. While there is a lot of terminology associated with rings,
the basic ideas are fairly simple.

9.1 Definitions, basic properties, and examples

Definition 9.1. A commutative ring with unity is a set R together with
addition and multiplication operations on R, such that:

(i) the set R under addition forms an abelian group, and we denote the
additive identity by Or;
(ii) multiplication is associative; that is, for all a,b,c € R, we have
a(be) = (ab)c;
(iii) multiplication distributes over addition; that is, for all a,b,c € R, we
have a(b+ ¢) = ab+ ac and (b+ c)a = ba + ca;
(iv) there exists a multiplicative identity; that is, there exists an element
1gr € R, such that lp-a=a=a-1g for alla € R;
(v) multiplication is commutative; that is, for all a,b € R, we have ab =

ba.

There are other, more general (and less convenient) types of rings—one
can drop properties (iv) and (v), and still have what is called a ring. We
shall not, however, be working with such general rings in this text. There-

2

fore, to simplify terminology, from now on, by a “ring,” we shall always

mean a commutative ring with unity.

211

212 Rings

Let R be a ring. Notice that because of the distributive law, for any
fixed a € R, the map from R to R that sends b € R to ab € R is a group
homomorphism with respect to the underlying additive group of R. We call
this the a-multiplication map.

We first state some simple facts:

Theorem 9.2. Let R be a ring. Then:
(i) the multiplicative identity 1g is unique;
(ii)) Op -a = 0g for all a € R;
(iii) (—a)b = a(—b) = —(ab) for all a,b € R;
(iv) (—a)(—b) = ab for all a,b € R;
(v) (na)b = a(nb) = n(ab) for alln € Z and a,b € R.

Proof. Part (i) may be proved using the same argument as was used to prove
part (i) of Theorem 8.2. Parts (ii), (iii), and (v) follow directly from parts
(i), (ii), and (iii) of Theorem 8.20, using appropriate multiplication maps,
discussed above. Part (iv) follows from parts (iii) and (iv) of Theorem 8.3.
O

Example 9.1. The set Z under the usual rules of multiplication and addi-
tion forms a ring. O

Example 9.2. For n > 1, the set Z,, under the rules of multiplication and
addition defined in §2.3 forms a ring. O

Example 9.3. The set Q of rational numbers under the usual rules of
multiplication and addition forms a ring. O

Example 9.4. The set R of real numbers under the usual rules of multipli-
cation and addition forms a ring. O

Example 9.5. The set C of complex numbers under the usual rules of mul-
tiplication and addition forms a ring. Any a € C can be written (uniquely)
as o = a+bi, with a,b € R, and i = \/—1. If & = a/ +1'i is another complex
number, with a/, b € R, then

atad =(a+d)+ (b+0b)i and ad’ = (aa’ — bb') + (ab + a'b)i.

The fact that C is a ring can be verified by direct calculation; however, we

shall see later that this follows easily from more general considerations.
Recall the complex conjugation operation, which sends a to & := a —

bi. One can verify by direct calculation that complex conjugation is both

additive and multiplicative; that is, a + o’ = a+a' and a- o/ = @ - &'.

9.1 Definitions, basic properties, and examples 213

The norm of o is N(a) := aa = a® +b%. So we see that N(a) is
a non-negative real number, and is zero iff & = 0. Moreover, from the
multiplicativity of complex conjugation, it is easy to see that the norm is
multiplicative as well: N(ad/) = ad’ad’ = ad’ad’ = N(a)N(o/). O

Example 9.6. Consider the set F of all arithmetic functions, that is, func-
tions mapping positive integers to real numbers. We can define addition
and multiplication operations on F in a natural, point-wise fashion: for
f,g € F, let f+ g be the function that sends n to f(n) + g(n), and let
f - g be the function that sends n to f(n)g(n). These operations of addition
and multiplication make F into a ring: the additive identity is the function
that is everywhere 0, and the multiplicative identity is the function that is
everywhere 1.

Another way to make F into a ring is to use the addition operation as
above, together with the Dirichlet product, which we defined in §2.6, for
the multiplication operation. In this case, the multiplicative identity is the
function I that we defined in §2.6, which takes the value 1 at 1 and the value
0 everywhere else. The reader should verify that the distributive law holds.
O

Note that in a ring R, if 1z = Op, then for all a € R, we have a = 1lg-a =
Or - a = Og, and hence the ring R is trivial, in the sense that it consists of
the single element Og, with 0g + 0r = Or and Og - Or = Og. If 1 # Og, we
say that R is non-trivial. We shall rarely be concerned with trivial rings for
their own sake; however, they do sometimes arise in certain constructions.

If Ry,..., Ry are rings, then the set of all k-tuples (a1, ..., ax) with a; € R;
for i = 1,...,k, with addition and multiplication defined component-wise,
forms a ring. The ring is denoted by Ry X - -+ X Ry, and is called the direct
product of Ry, ..., Rg.

The characteristic of a ring R is defined as the exponent of the un-
derlying additive group (see §8.5). Note that for m € Z and a € R, we
have

ma =m(lg-a) = (m-1g)a,
so that if m - 1z = Op, then ma = Op for all @ € R. Thus, if the additive

order of 1g is infinite, the characteristic of R is zero, and otherwise, the
characteristic of R is equal to the additive order of 1g.

Example 9.7. The ring Z has characteristic zero, Z,, has characteristic n,
and Zj, X Z, has characteristic lem(ny,ng). O

For elements a,b in a ring R, we say that b divides a, or alternatively,

214 Rings

that a is divisible by b, if there exists ¢ € R such that a = be. If b divides
a, then b is called a divisor of a, and we write b | a. Note Theorem 1.1
holds for an arbitrary ring.

When there is no possibility for confusion, one may write “0” instead of
“Ogr” and “1” instead of “1g.” Also, one may also write, for example, 2 to
denote 2 - 1r, 3r to denote 3 - 1, and so on; moreover, where the context
is clear, one may use an implicit “type cast,” so that m € Z really means
m-1 R-

For a € R and positive integer n, the expression a™ denotes the product
a-a-----a, where there are n terms in the product. One may extend this
definition to n = 0, defining a® to be the multiplicative identity 1x.

EXERCISE 9.1. Verify the usual “rules of exponent arithmetic” for a ring R.
That is, show that for a € R, and non-negative integers ni, no, we have

(a™)"2 = q™" and a™a"™ = a™"2,

EXERCISE 9.2. Show that the familiar binomial theorem holds in an ar-
bitrary ring R; that is, for a,b € R and positive integer n, we have

(a+b)" = zn: <’Z> a" b,

1=0

EXERCISE 9.3. Show that

E)E)-EEm

i=1 i=1 j=1

where the a; and b; are elements of a ring R.

9.1.1 Units and fields

Let R be a ring. We call u € R a unit if it divides 1g, that is, if uu’ = 15
for some v/ € R. In this case, it is easy to see that «’ is uniquely determined,
and it is called the multiplicative inverse of u, and we denote it by u ™.
Also, for a € R, we may write a/u to denote au™!. It is clear that a unit u
divides every a € R.

We denote the set of units by R*. It is easy to verify that the set R*
is closed under multiplication, from which it follows that R* is an abelian
group, called the multiplicative group of units of R. If u € R*, then of

course u™ € R* for all non-negative integers n, and the multiplicative inverse

9.1 Definitions, basic properties, and examples 215
of u™ is (u=1)"
our notation for abelian groups).

If R is non-trivial and every non-zero element of R has a multiplicative

inverse, then R is called a field.

, which we may also write as «™" (which is consistent with

Example 9.8. The only units in the ring Z are £1. Hence, Z is not a field.
O

Example 9.9. For positive integer n, the units in Z,, are the residue classes
[a], with ged(a,n) = 1. In particular, if n is prime, all non-zero residue
classes are units, and if n is composite, some non-zero residue classes are
not units. Hence, Z, is a field if and only if n is prime. Of course, the
notation Zy introduced in this section for the group of units of the ring 7,
is consistent with the notation introduced in §2.3. O

Ezxample 9.10. Every non-zero element of QQ is a unit. Hence, Q is a field.
O

Example 9.11. Every non-zero element of R is a unit. Hence, R is a field.
O

Example 9.12. For non-zero o = a + bi € C, with a,b € R, we have ¢ :=
N(a) = a® +b* > 0. It follows that the complex number ac™! = (ac™!) +
(—bc~1)i is the multiplicative inverse of a, since a - ac™! = (aa)c™! = 1.
Hence, every non-zero element of C is a unit, and so C is a field. O

Ezxample 9.13. For rings Ry, ..., Ry, it is easy to see that the multiplicative
group of units of the direct product Ry x --- x Ry, is equal to R} x --- x R}.
Indeed, by definition, (a1, ..., ar) has a multiplicative inverse if and only if
each individual a; does. O

Ezxample 9.14. Consider the rings of arithmetic functions defined in Exam-
ple 9.6. If multiplication is defined point-wise, then an arithmetic function f
is a unit if and only if f(n) # 0 for all n. If multiplication is defined in terms
of the Dirichlet product, then by the result of Exercise 2.27, an arithmetic
function f is a unit if and only if f(1) # 0. O

9.1.2 Zero divisors and integral domains

Let R be a ring. An element a € R is called a zero divisor if a # O and
there exists non-zero b € R such that ab = Og.

If R is non-trivial and has no zero divisors, then it is called an integral
domain. Put another way, a non-trivial ring R is an integral domain if

216 Rings

and only if the following holds: for all a,b € R, ab = Or implies a = Og or
b= 0g.

Note that if v is a unit in R, it cannot be a zero divisor (if ub = Og, then
multiplying both sides of this equation by u~! yields b = 0g). In particular,
it follows that any field is an integral domain.

Ezxample 9.15. 7 is an integral domain. O

Ezxample 9.16. For n > 1, Z, is an integral domain if and only if n is
prime. In particular, if n is composite, so n = niny with 1 < n; < n and
1 < ny < n, then [n;], and [n2], are zero divisors: [ni]n[n2]n = [0]n, but
(1] # [0]n and [no], # [0]n. O

Example 9.17. Q, R, and C are fields, and hence are also integral domains.
O

Exzample 9.18. For two non-trivial rings Ri, R, an element (aj,a2) €
Ry X Ry is a zero divisor if and only if a1 is a zero divisor, as is a zero
divisor, or exactly one of a; or ag is zero. In particular, Ry x Rp is not an
integral domain. O

We have the following “cancellation law”:

Theorem 9.3. If R is a ring, and a,b,c € R such that a # Or and a is not
a zero divisor, then ab = ac implies b = c.

Proof. ab = bc implies a(b — ¢) = Or. The fact that a # 0 and a is not a
zero divisor implies that we must have b — ¢ =0pg, and so b=c¢. O

Theorem 9.4. If D is an integral domain, then:
(i) for all a,b,c € D, a # Op and ab = ac implies b = ¢;
(ii) for all a,b € D, a|b and b | a if and only if a = be for some ¢ € D*.
(i1i) for all a,b € D with b # O0p and b | a, there is a unique ¢ € D such
that a = be, which we may denote as a/b.

Proof. The first statement follows immediately from the previous theorem
and the definition of an integral domain.

For the second statement, if a = be for ¢ € D*, then we also have b = ac™;
thus, b | @ and a | b. Conversely, a | b implies b = az for x € D, and b | a
implies a = by for y € D, and hence b = bzxy. If b = O, then the equation
a = by implies a = Og, and so the statement holds for any c; otherwise,
cancel b, we have 1p = zy, and so x and y are units.

For the third statement, if a = bc and a = bc/, then be = bc/, and cancel
b. O

9.1 Definitions, basic properties, and examples 217

Theorem 9.5. The characteristic of an integral domain is either zero or a
prime.

Proof. By way of contradiction, suppose that D is an integral domain with
characteristic m that is neither zero nor prime. Since, by definition, D is
not a trivial ring, we cannot have m = 1, and so m must be composite. Say
m = st, where 1 < s < m and 1 <t < m. Since m is the additive order of
1p, it follows that (s-1p) # Op and (¢ - 1p) # Op; moreover, since D is an
integral domain, it follows that (s-1p)(t-1p) # Op. So we have

Op=m-1p=(st)-1p=(s-1p)(t-1p) # Op,
a contradiction. O
Theorem 9.6. Any finite integral domain is a field.

Proof. Let D be a finite integral domain, and let a be any non-zero element
of D. Consider the a-multiplication map that sends b € D to ab, which
is a group homomorphism on the additive group of D. Since a is not a
zero-divisor, it follows that the kernel of the a-multiplication map is {Op},
hence the map is injective, and by finiteness, it must be surjective as well.
In particular, there must be an element b € D such that ab=1p. O

Theorem 9.7. Any finite field F' must be of cardinality p*, where p is
prime, w is a positive integer, and p is the characteristic of F.

Proof. By Theorem 9.5, the characteristic of F' is either zero or a prime,
and since F' is finite, it must be prime. Let p denote the characteristic. By
definition, p is the exponent of the additive group of F', and by Theorem 8.42,
the primes dividing the exponent are the same as the primes dividing the
order, and hence F' must have cardinality p* for some positive integer w. O

Of course, for every prime p, Zj, is a finite field of cardinality p. As we
shall see later (in Chapter 20), for every prime p and positive integer w,
there exists a field of cardinality p”. Later in this chapter, we shall see some
specific examples of finite fields whose cardinality is not prime (Examples
9.35 and 9.47).

EXERCISE 9.4. Let R be a ring of characteristic m > 0, and let n be any
integer. Show that:

(a) if ged(n,m) = 1, then n - 1g is a unit;
(b) if 1 < ged(n,m) < m, then n - 1 is a zero divisor;
(c) otherwise, n -1 = Og.

218 Rings

EXERCISE 9.5. Let D be an integral domain, m € Z, and a € D. Show that
ma = Op if and only if m is a multiple of the characteristic of D or a = 0p.

EXERCISE 9.6. For n > 1, and for all a,b € Z,, show that if a | b and b | a,
then a = be for some ¢ € Z7. Thus, part (ii) of Theorem 9.4 may hold for
some rings that are not integral domains.

EXERCISE 9.7. This exercise depends on results in §8.6. Using the funda-
mental theorem of finite abelian groups, show that the additive group of a
finite field of characteristic p and cardinality p* is isomorphic to Z;".

9.1.3 Subrings
Definition 9.8. A subset S of a ring R is called a subring if
(i) S is a subgroup of the additive group R,
(ii) S is closed under multiplication, and
(iii) 1z € S.

It is clear that the operations of addition and multiplication on a ring R
make a subring S of R into a ring, where Op is the additive identity of S and
1R is the multiplicative identity of S. One may also call R an extension
ring of S.

Some texts do not require that 1z belongs to a subring S, and instead
require only that S contains a multiplicative identity, which may be different
than that of R. This is perfectly reasonable, but for simplicity, we restrict
ourselves to the case when 1 € S.

Expanding the above definition, we see that a subset S of R is a subring
if and only if 1z € S and for all a,b € S, we have

a+bes, —ael and abeS.

If fact, to verify that S is a subring, it suffices to show that —1p € S and
that S is closed under addition and multiplication; indeed, if —1z € S and S
is closed under multiplication, then S is closed under negation, and further,
g =—(—1g) € S.

Example 9.19. Z is a subring of Q. O
Example 9.20. Q is a subring of R. O

Ezxample 9.21. R is a subring of C.
Note that for a := a+bi € C, with a,b € R, we have & = «a iff a+bi = a—bi
iff b=0. Thatis,a =aiff a € R. O

9.1 Definitions, basic properties, and examples 219

Example 9.22. The set Z[i] of complex numbers of the form a + bi, with
a,b € Z, is a subring of C. It is called the ring of Gaussian integers.
Since C is a field, it contains no zero divisors, and hence Z[i| contains no
zero divisors. Hence, Z][i] is an integral domain.

Let us determine the units of Z[i]. If a € Z[i] is a unit, then there exists
o' € Z[i] such that ao’ = 1. Taking norms, we obtain

1=N(1) = N(ad) = N(a)N(a).

Clearly, the norm of a Gaussian integer is a non-negative integer, and so
N(a)N(a') = 1 implies N(«) = 1. Now, if @« = a + bi, with a,b € Z, then
N(a) = a?+b?, and so N(a) = 1 implies a = 41 or a = +i. Conversely, it
is clear that +1 and +i are indeed units, and so these are the only units in
Zl[i). O

Ezample 9.23. Let m be a positive integer, and let Q™ be the set of
rational numbers of the form a/b, where a and b are integers, and b is
relatively prime to m. Then Q™) is a subring of Q, since for any a,b, ¢, d € Z
with ged(b,m) = 1 and ged(d, m) = 1, we have

a ¢ ad+bc a ¢ _ac

badT e M d T b
and since ged(bd,m) = 1, it follows that the sum and product of any two
element of Q™) is again in Q™). Clearly, QU™ contains —1, and so it follows
that Q™) is a subring of Q. The units of Q™) are precisely those rational
numbers of the form a/b, where ged(a, m) = ged(b,m) = 1. O

Ezample 9.24. If R and S are non-trivial rings, then R’ := R x {0g}
is not a subring of R x S: although it satisfies the first two requirements
of the definition of a subring, it does not satisfy the third. However, R’
does contain an element that acts as a multiplicative identity of R’, namely
(1gr,0g), and hence could be viewed as a subring of R x S under a more
liberal definition. O

Theorem 9.9. Any subring of an integral domain is also an integral do-
main.

Proof. If D’ is a subring of the integral domain D, then any zero divisor in
D’ would itself be a zero divisor in D. O

Note that it is not the case that a subring of a field is always a field: the
subring Z of Q is a counter-example. If F’ is a subring of a field F', and F’
is itself a field, then we say that F’ is a subfield of F', and that F is an
extension field of F’.

220 Rings

Example 9.25. Q is a subfield of R, which in turn is a subfield of C. O

EXERCISE 9.8. Show that the set Q[i] of complex numbers of the form a+bi,
with a,b € Q, is a subfield of C.

EXERCISE 9.9. Show that if S and S’ are subrings of R, then so is SN S’.

EXERCISE 9.10. Let F be the set of all functions f : R — R, and let C be
the subset of F of continuous functions.
(a) Show that with addition and multiplication of functions defined in the
natural, point-wise fashion, F is a ring, but not an integral domain.
(b) Let a,b € F. Show that if a | b and b | a, then there is a ¢ € F* such
that a = be.
(c) Show that C is a subring of F, and show that all functions in C* are
either everywhere positive or everywhere negative.
(d) Define a,b € C by a(t) = b(t) =t for t < 0, a(t) = b(t) = 0 for
0<t<1,and a(t) = —b(t) =t —1 for t > 1. Show that in the ring
C, we have a | b and b | a, yet there is no ¢ € C* such that a = be.
Thus, part (ii) of Theorem 9.4 does not hold in a general ring.

9.2 Polynomial rings

If R is a ring, then we can form the ring of polynomials R[X], consisting
of all polynomials ag + a;X + --- + apX* in the indeterminate, or “formal”
variable, X, with coefficients in R, and with addition and multiplication
being defined in the usual way.

Example 9.26. Let us define a few polynomials over the ring Z:
a:=3+%X% b:=142X—X3 ¢:=5, d:=14X, e: =X, f:=4%>

We have

a+b=4+42%+X>—%3, a-b=3+6X+X2-X>—X°, cd+ef = 5+5X+4x1. O

As illustrated in the previous example, elements of R are also polynomials.
Such polynomials are called constant polynomials; all other polynomials
are called non-constant polynomials. The set R of constant polynomials
clearly forms a subring of R[X]. In particular, O is the additive identity in
R[X] and 1g is the multiplicative identity in R[X].

9.2 Polynomial Tings 221

For completeness, we present a more formal definition of the ring R[X].
The reader should bear in mind that this formalism is rather tedious, and
may be more distracting than it is enlightening. It is technically conve-
nient to view a polynomial as having an infinite sequence of coefficients
ap,ai,as, ..., where each coefficient belongs to R, but where only a finite
number of the coefficients are non-zero. We may write such a polynomial as
an infinite sum > 2 a;X'; however, this notation is best thought of “syntac-
tic sugar”: there is really nothing more to the polynomial than this sequence
of coefficients. With this notation, if

oo [e.9]
a= Z ;X" and b= Z b X",
=0 =0

then
a+b:= Z(ai+bi)xi, (9.1)
=0
and

(e 9]

7
a-b:= Z (Z akbi_k> X’ (9.2)
i=0 k=0

We should first verify that these addition and multiplication operations
actually produce coefficient sequences with only a finite number of non-zero
terms. Suppose that for non-negative integers k and ¢, we have a; = Og for
all i > k and b; = O for all 4 > ¢. Then it is clear that the coefficient of X’
in a + b is zero for all i > max{k, ¢}, and it is also not too hard to see that
the coefficient of X’ in @ - b is zero for all i > k + .

We leave it to the reader to verify that R[X]|, with addition and multipli-
cation defined as above, actually satisfies the definition of a ring—this is
entirely straightforward, but tedious.

For ¢ € R, we may identify ¢ with the polynomial >, c; X!, where cg = ¢
and ¢; = Og for ¢ > 0. Strictly speaking, ¢ and >, c;X' are not the same
mathematical object, but there will certainly be no possible confusion in
treating them as such. Thus, from a narrow, legalistic point of view, R is
not a subring of R[X], but we shall not let such let such annoying details
prevent us from continuing to speak of it as such. As one last matter of
notation, we may naturally write X to denote the polynomial > >, a;Xt,
where a1 = 1g and a; = Op for all i # 1.

With all of these conventions and definitions, we can return to the prac-
tice of writing polynomials as we did in Example 9.26, without any loss of
precision. Note that by definition, if R is the trivial ring, then so is R[X].

222 Rings

9.2.1 Polynomials versus polynomial functions

Of course, a polynomial a = Zf:o a;X" defines a polynomial function on R

that sends o € R to Zf:o a;a', and we denote the value of this function
as a(a). However, it is important to regard polynomials over R as formal
expressions, and not to identify them with their corresponding functions.
In particular, two polynomials are equal if and only if their coefficients are
equal. This distinction is important, since there are rings R over which two
different polynomials define the same function. One can of course define the
ring of polynomial functions on R, but in general, that ring has a different
structure from the ring of polynomials over R.

Exzample 9.27. In the ring Z,, for prime p, by Fermat’s little theorem
(Theorem 2.16), we have o — a = [0], for all @ € Z,. But consider the
polynomial a := XP — X € Z,[X]. We have a(a) = [0], for all & € Zp, and
hence the function defined by a is the zero function, yet a is definitely not
the zero polynomial. O

More generally, if R is a subring of a ring F/, a polynomial ¢ = Zfzo a;X' €
R[X] defines a polynomial function from E to E that sends o € E to
Zf:o a;a' € E, and the value of this function is denoted a(a).

If E = R[X], then evaluating a polynomial a € R[X] at a point a € E
amounts to polynomial composition. For example, if a = X? + X then

a X+1]=E+1)?+X+1) =%x"+3x+2.
A simple, but important, fact is the following:

Theorem 9.10. Let R be a subring of a ring E. For a,b € R[X] and a € E,
if p:=ab € R[X] and s :== a + b € R[X], then we have

p(a) = a(a)b(a) and s(a) = a(a) + b(a).
Also, if ¢ € R[X] is a constant polynomial, then c(a) = ¢ for all a € E.

Proof. Exercise. O

Note that the syntax for polynomial evaluation creates some poten-
tial ambiguities: if @ is a polynomial, one could interpret a(b-+ ¢) as
either a times b + ¢, or a evaluated at b + ¢; usually, the meaning
will be clear from context, but to avoid such ambiguities, if the in-
tended meaning is the former, we shall generally write this as, say,
a-(b+c)or (b+ c)a, and if the intended meaning is the latter, we
shall generally write this as a[b+ ¢].

So as to keep the distinction between ring elements and indetermi-
nates clear, we shall use the symbol “X” only to denote the latter.
Also, for a polynomial a € R[X], we shall in general write this simply

9.2 Polynomial Tings 223

“ 7

as “a,” and not as “a(X).” Of course, the choice of the symbol “X”
is arbitrary; occasionally, we may use other symbols, such as “Y,” as
alternatives.

9.2.2 Basic properties of polynomial rings

Let R be a ring. For non-zero a € R[X], if a = Z?:o a; X! with aj # Og,
then we call k the degree of a, denoted deg(a), we call a; the leading
coefficient of a, denoted lc(a), and we call ay the constant term of a. If
le(a) = 1R, then a is called monic.

Suppose a = Zf:o a; X" and b = Zf:o b;X' are polynomials such that
ar # Or and by # Op, so that deg(a) = k and lc(a) = ag, and deg(b) = ¢
and lc(b) = by. When we multiply these two polynomials, we get

ab = apbg + (a0b1 + albo)X + -4 akngk—i_é.

In particular, deg(ab) < deg(a) + deg(b). If either of ay or by are not zero
divisors, then agby is not zero, and hence deg(ab) = deg(a) + deg(b). How-
ever, if both a; and b, are zero divisors, then we may have arby = Og,
in which case, the product ab may be zero, or perhaps ab # 0r but
deg(ab) < deg(a) + deg(d).
Example 9.28. Over the ring Zg, consider the polynomials a := [1] + [2]X
and b = [1] + [3]X. We have ab = [1] + [5]X + [6]X2 = [1] + [5]X. Thus,
deg(ab) =1 < 2 = deg(a) + deg(b). O

For the zero polynomial, we establish the following conventions: its leading

coefficient and constant term are defined to be Og, and its degree is defined
to be —oo. With these conventions, we may succinctly state that

for all a,b € R[X], we have deg(ab) < deg(a) + deg(b), with
equality guaranteed to hold unless the leading coefficients of
both a and b are zero divisors.

In the case where the ring of coefficients is as integral domain, we can say
significantly more:

Theorem 9.11. Let D be an integral domain. Then:
(i) for all a,b € D[X], we have deg(ab) = deg(a) + deg(b);
(ii) DI[X] is an integral domain;

(iii) (D[X])* = D*.

Proof. Exercise. O

224 Rings

9.2.3 Division with remainder

An extremely important property of polynomials is a division with remainder
property, analogous to that for the integers:

Theorem 9.12 (Division with remainder property). Let R be a ring.
For a,b € R[X] with b # Or and lc(b) € R*, there exist unique q,r € R[X]
such that a = bg + r and deg(r) < deg(b).

Proof. Consider the set S of polynomials of the form a—zb with z € R[X]. Let
r = a — gb be an element of S of minimum degree. We must have deg(r) <
deg(b), since otherwise, we would have 7/ := 7 — (Ic(r) lc(b) ~ 1 xdeg(r)—deg(b)y .
b e S, and deg(r’) < deg(r), contradicting the minimality of deg(r).

That proves the existence of r and ¢. For uniqueness, suppose that a =
bg +r and a = bq’ + 1/, where deg(r) < deg(b) and deg(r’) < deg(b). This
implies ¥’ —r =b- (¢ — ¢). However, if ¢ # ¢/, then

deg(b) > deg(r’ —r) = deg(b- (¢ — ¢)) = deg(b) + deg(q — ¢') > deg(b),
which is impossible. Therefore, we must have ¢ = ¢/, and hence r = 7/. O

If a = bg + r as in the above theorem, we define @ mod b := r. Clearly,
b | a if and only if @ mod b = Or. Moreover, note that if deg(a) < deg(b),
then ¢ = 0 and r = a; otherwise, if deg(a) > deg(b), then ¢ # 0 and
deg(a) = deg(b) + deg(q).

As a consequence of the above theorem, we have:

Theorem 9.13. For a ring R and a € R[X] and o € R, a(a) = Or if and
only if (X — «) divides a.

Proof. If R is the trivial ring, there is nothing to prove, so assume that R is
non-trivial. Let us write a = (X — a)q + r, with ¢, € R[X] and deg(r) < 1,
which means that » € R. Then we have a(a) = (o — a)g(a) + 7 = r. Thus,
a(a) = Op if and only if @ mod (X —a) = Og, which holds if and only if X —«
divides a. O

With R,a,a as in the above theorem, we say that a is a root of a if
a(a) = 0p.

Theorem 9.14. Let D be an integral domain, and let a € DI[X], with
deg(a) =k > 0. Then a has at most k roots.

Proof. We can prove this by induction. If k& = 0, this means that a is a
non-zero element of D, and so it clearly has no roots.
Now suppose that k& > 0. If a has no roots, we are done, so suppose that

9.2 Polynomial Tings 225

a has a root a. Then we can write a = (X —a)q, where deg(q) = k—1. Now,
for any root 3 of a with 8 # «, we have Op = a(8) = (6 — «a)q(8), and using
the fact that D is an integral domain, we must have ¢(3) = Op. Thus, the
only roots of a are o and the roots of q. By induction, ¢ has at most k — 1
roots, and hence a has at most &k roots. O

Theorem 9.14 has many applications, among which is the following beau-
tiful theorem that establishes an important property of the multiplicative
structure of an integral domain:

Theorem 9.15. Let D be an integral domain and G a subgroup of D* of
finite order. Then G is cyclic.

Proof. Let n be the order of G, and suppose G is not cyclic. Then by
Theorem 8.40, we have that the exponent m of G is strictly less than n. It
follows that o = 1p for all & € G. That is, all the elements of G are roots
of the polynomial X™ —1p € D[X]. But since a polynomial of degree m over
D has at most m roots, this contradicts the fact that m < n. O

As a special case of Theorem 9.15, we have:

Theorem 9.16. For any finite field F', the group F* is cyclic. In particular,
if p is prime, then Z,, is cyclic; that is, there is a primitive root modulo p.

EXERCISE 9.11. Let D be an infinite integral domain, and let @ € D[X]. Show
that if a(a) = Op for all @« € D, then a = 0p. Thus, for an infinite integral
domain D, there is a one-to-one correspondence between polynomials over
D and polynomial functions on D.

EXERCISE 9.12. This exercise develops a message authentication scheme
(see §6.7.2) that allows one to hash long messages using a relatively small
set of hash functions. Let F' be a finite field of cardinality ¢ and let ¢ be
a positive integer. Let A := F*! and Z := F. Define a family H of hash
functions from A to Z as follows: let H := {hy g : o, € F'}, where for all
hap € H and all (aq,...,a:) € A, we define

t
hag(al,...,a;) =B+ Zaiai € Z.
=1

Show that H is a t/q-forgeable message authentication scheme. (Compare
this with the second pairwise independent family of hash functions discussed
in Example 6.25, which is much larger, but which is only 1/¢-forgeable; in
practice, using the smaller family of hash functions with a somewhat higher
forging probability may be a good trade-off.)

226 Rings

EXERCISE 9.13. This exercise develops an alternative proof of Theorem 9.15.
Let n be the order of the group. Using Theorem 9.14, show that for all
d | n, there are at most d elements in the group whose multiplicative order
divides d. From this, deduce that for all d | n, the number of elements of
multiplicative order d is either 0 or ¢(d). Now use Theorem 2.11 to deduce
that for all d | n (and in particular, for d = n), the number of elements of
multiplicative order d is equal to ¢(d).

EXERCISE 9.14. Let I be a field of characteristic other than 2, so that the
2F # 0p. Show that the familiar quadratic formula holds for F'. That is,
for a,b,c € F with a # O, the polynomial f := aX? + bX + ¢ € F[X] has
a root if and only if there exists z € F such that 22 = d, where d is the
discriminant of f, defined as d := b®> — 4ac, and in this case the roots of f

are
==

2a

EXERCISE 9.15. Let R be a ring, let a € R[X], with deg(a) =k > 0, and let
a be an element of R.

(a) Show that there exists an integer m, with 0 < m < k, and a polyno-
mial ¢ € R[X], such that

a=(X—a)"qand ¢q(«a)# Og.

(b) Show that the values m and ¢ in part (a) are uniquely determined
(by a and «).
(¢) Show that m > 0 if and only if « is a root of a.

Let mq(a) denote the value m in the previous exercise; for completeness,
one can define my(a) := oo if a is the zero polynomial. If mq(a) > 0, then
a is called a root of a of multiplicity mq(a); if mq(a) = 1, then « is called
a simple root of a, and if mq(a) > 1, then « is called a multiple root of
a.

The following exercise refines Theorem 9.14, taking into account multi-
plicities.

EXERCISE 9.16. Let D be an integral domain, and let a € DI[X], with
deg(a) = k > 0. Show that

Z ma(a) < k.
aeD

EXERCISE 9.17. Let D be an integral domain, let a,b € DI[X], and let o € D.
Show that mg(ab) = mqa(a) + mq(b).

9.2 Polynomial Tings 227

EXERCISE 9.18. Let R be a ring, let a € R[X], with deg(a) = k > 0, let
a € R, and let m := mq(a). Show that if we evaluate a at X + «, we have

k
d X+a]=) bx,

where by,,...,br € R and b, # Og.

9.2.4 Formal derivatives

Let R be any ring, and let a € R[X] be a polynomial. If a = Zf:o a; X', we
define the formal derivative of a as

14
D(a) := Zz’aixi_l.
i=1

We stress that unlike the “analytical” notion of derivative from calculus,
which is defined in terms of limits, this definition is purely “symbolic.”
Nevertheless, some of the usual rules for derivatives still hold:

Theorem 9.17. Let R be a ring. For all a,b € R[X| and ¢ € R, we have
(i) D(a+b) =D(a) + D(b);
(i) D(ca) = cD(a);
(11i) D(ab) = D(a)b+ aD(b).

Proof. Parts (i) and (ii) follow immediately by inspection, but part (iii)
requires some proof. First, note that part (iii) holds trivially if either a or b
are zero, so let us assume that neither are zero.

We first prove part (iii) for monomials, that is, polynomials of the form
cX' for non-zero ¢ € R and i > 0. Suppose a = X’ and b = dX/. If
i = 0, so a = ¢, then the result follows from part (ii) and the fact that
D(c) = 0; when j = 0, the result holds by a symmetric argument. So
assume that i > 0 and j > 0. Now, D(a) = icX*"! and D(b) = jdx'~1,
and D(ab) = D(edX'7) = (i + j)edX™7~1. The result follows from a simple
calculation.

Having proved part (iii) for monomials, we now prove it in general on
induction on the total number of monomials appearing in a and b. If the
total number is 2, then both a and b are monomials, and we are in the base
case; otherwise, one of a¢ and b must consist of at least two monomials, and
for concreteness, say it is b that has this property. So we can write b = by +bs,
where both b; and by have fewer monomials than does b. Applying part (i)

228 Rings
and the induction hypothesis for part (iii), we have

D(ab) = D(aby + abs)

aby) + D(abs)

a)by + aD(b1) + D(a)bz + aD(b2)
a) - (b1 +b2) +a- (D(b1) +D(b2))
a) - (b1 +b2) +a-D(by + b2)

)b+ aD(b). O

—~ N/~ T/~

EXERCISE 9.19. Let R be a ring, let a € R[X], and let & € R be a root of
a. Show that « is a multiple root of a if and only if « is a root of D(a) (see
Exercise 9.15).

EXERCISE 9.20. Let R be a ring, let a € R[X] with deg(a) = k > 0, and let
a € R. Show that if we evaluate a at X 4+ «, writing

k
d X+a]=> bX,
i=0
with by, ...,br € R, then we have
il -b; = (D(a))(a) fori=0,..., k.

EXERCISE 9.21. Let F' be a field such that every non-constant polynomial
a € F[X] has a root a € F. (The field C is an example of such a field, an
important fact which we shall not be proving in this text.) Show that for
every positive integer r that is not a multiple of the characteristic of F', there
exists an element ¢ € F* of multiplicative order r, and that every element
in F* whose order divides r is a power of (.

9.2.5 Multi-variate polynomials

One can naturally generalize the notion of a polynomial in a single variable
to that of a polynomial in several variables. We discuss these ideas briefly
here—they will play only a minor role in the remainder of the text.
Consider the ring R[X] of polynomials over a ring R. If Y is another indeter-
minate, we can form the ring R[X][Y] of polynomials in Y whose coefficients
are themselves polynomials in X over the ring R. One may write R[X,Y]
instead of R[X][Y]. An element of R[X,Y] is called a bivariate polynomial.

9.2 Polynomial Tings 229

Consider a typical element a € R[X, Y], which may be written
4

k
a= Z(CLZ'in>Yj. (93)
=0 \i=0

Rearranging terms, this may also be written as

a = Z ainin, (94)
0<i<k
0<j<t

or as

a= Z(XZ% ainj>xj. (9.5)
iz

k
1=0

If a is written as in (9.4), the terms a;;X'¥? with a;; # Og are called
monomials. The total degree of such a monomial ainin is defined to be
i+ j, and if a is non-zero, then the total degree of a, denoted Deg(a), is
defined to be the maximum total degree of any monomial appearing in (9.4).
We define the total degree of the zero polynomial to be —oo. The reader
may verify that for any a,b € R[X,Y], we have Deg(ab) < Deg(a) + Deg(b),
while equality holds if R is an integral domain.

When a is written as in (9.5), one sees that we can naturally view a as
an element of R[Y|[X], that is, as a polynomial in X whose coefficients are
polynomials in Y. From a strict, syntactic point of view, the rings R[Y][X]
and R[X|[Y] are not the same, but there is no harm done in blurring this
distinction when convenient. We denote by degy(a) the degree of a, viewed
as a polynomial in X, and by degy(a) the degree of a, viewed as a polynomial
in Y. Analogously, one can formally differentiate a with respect to either X
or Y, obtaining the “partial” derivatives Dx(a) and Dy(a).

Example 9.29. Let us illustrate, with a particular example, the three dif-
ferent forms—as in (9.3), (9.4), and (9.5) —of expressing a bivariate poly-
nomial. In the ring Z[X, Y] we have

a=(5X* —3X+4)Y + (2x* + 1)
= 5X%Y 4 2X® — 3XY +4Y + 1
= (5Y 4+ 2)X2 + (=3Y)X + (4Y + 1).
We have Deg(a) = 3, degy(a) = 2, and degy(a) = 1. O

More generally, if Xi,...,X, are indeterminates, we can form the ring

230 Rings

R[Xi,...,X,] of multi-variate polynomials in n variables over R. For-
mally, we can think of this ring as R[X;][Xz] - - - [X»]. Any multi-variate poly-
nomial can be expressed uniquely as the sum of monomials of the form
cX{' - - X& for non-zero ¢ € R and non-negative integers ey, . . ., e,; the total
degree of such a monomial is defined to be), e;, and the total degree of
a multi-variate polynomial a, denoted Deg(a), is defined to be the maxi-
mum degree of its monomials. As above, for a,b € R[X1,...,X,], we have
Deg(ab) < Deg(a) + Deg(b), while equality always holds if R is an integral
domain.

Just as for bivariate polynomials, the order of the indeterminates is not
important, and for any ¢ = 1,...,n, one can naturally view any a €
R[Xy,...,X,] as a polynomial in X; over the ring R[X1,...,Xi—1,Xi+1, .-, Xn],
and define degy (a) to be the degree of a when viewed in this way. Anal-
ogously, one can formally differentiate a with respect to any variable X;,
obtaining the “partial” derivative Dy, (a).

Just as polynomials in a single variable define polynomial functions, so do
polynomials in several variables. If R is a subring of F, a € R[X1,...,Xy],
and a = (ai1,...,ap) € EX™, we define a(a) to be the element of E ob-
tained by evaluating the expression obtained by substituting «; for X; in a.
Theorem 9.10 carries over directly to the multi-variate case.

EXERCISE 9.22. Let R be a ring, and let ay, ..., a, be elements of R. Show
that any polynomial a € R[Xy,...,X,] can be expressed as

a:(Xl_al)q1+"‘+(xn_an)Qn+Ta

where qi,...,¢, € R[X1,...,X,] and » € R. Moreover, show that the
value of r appearing in such an expression is uniquely determined (by a
and aq,...,aqp).

EXERCISE 9.23. This exercise generalizes Theorem 9.14. Let D be an inte-
gral domain, and let a € D[Xy,...,X,], with Deg(a) = k > 0. Let T be a
finite subset of D. Show that the number of elements o € T*" such that
a(a) = 0 is at most k|T|" 1.

EXERCISE 9.24. Let F be a finite field of cardinality ¢, and let ¢ be a positive
integer. Let A := F** and Z := F. Use the result of the previous exercise to
construct a family H of hash functions from A to Z that is an O(len(t)/q)-
forgeable message authentication scheme, where log, [H| = len(t) + O(1).
(See §6.7.2 and also Exercise 9.12.)

9.8 Ideals and quotient rings 231

9.3 Ideals and quotient rings

Definition 9.18. Let R be a ring. An ideal of R is a subgroup I of the
additive group of R that is closed under multiplication by elements of R, that
18, for alla € I and r € R, we have ar € I.

Expanding the above definition, we see that a non-empty subset I of R is
an ideal of R if and only if for all a,b € I and r € R, we have

a+bel, —acl, and arel.

Observe that the condition —a € [is redundant, as it is implied by the
condition ar € I with r = —1g. Note that in the case when R is the ring Z,
this definition of an ideal is consistent with that given in §1.2.

Clearly, {Or} and R are ideals of R. From the fact that an ideal I is
closed under multiplication by elements of R, it is easy to see that I = R if
and only if 1p € 1.

Ezxample 9.30. For m € Z, the set mZ is not only a subgroup of the
additive group 7Z, it is also an ideal of the ring Z. O

Example 9.31. For m € Z, the set mZ, is not only a subgroup of the
additive group Z,, it is also an ideal of the ring Z,,. O

Example 9.32. In the previous two examples, we saw that for some rings,
the notion of an additive subgroup coincides with that of an ideal. Of
course, that is the exception, not the rule. Consider the ring of polynomial
R[X]. Suppose a is a non-zero polynomial in R[X]. The additive subgroup
generated by a consists of polynomials whose degrees are at most that of a.
However, this subgroup is not an ideal, since any ideal containing a must
also contain a - X* for all 4 > 0, and must therefore contain polynomials of
arbitrarily high degree. O

Let aq, ..., ax be elements of a ring R. Then it is easy to see that the set
aitR+ -+ ayR:={air + - +agry:71,...,7; € R}

is an ideal of R, and contains a1, ..., ax. It is called the ideal of R gener-
ated by aq,...,ag. Clearly, any ideal I of R that contains a1, ..., a must
contain a1 R + - -+ + ag R, and in this sense, a1 R + - - - + a; R is the smallest
ideal of R containing a1,...,ar. An alternative notation that is often used
is to write (ay,...,ax) to denote the ideal generated by a1, ..., ar, when the
ring R is clear from context. If an ideal I is of the form aR = {ar : r € R}
for some a € R, then we say that I is a principal ideal.

232 Rings

Note that if I and J are ideals of a ring R, then so are I + J :={z + 1y :
zel,ye J}and INJ (verify).

Since an ideal I of a ring R is a subgroup of the additive group R, we may
adopt the congruence notation in §8.3, writing a = b (mod I) if and only if
a—bel.

Note that if I = dR, then a = b (mod I) if and only if d | (a —b), and as a
matter of notation, one may simply write this congruence as a = b (mod d).

Just considering R as an additive group, then as we saw in §8.3, we can
form the additive group R/I of cosets, where (a+ 1)+ (b+1):= (a+b)+1I.
By also considering the multiplicative structure of R, we can view R/I as a
ring. To do this, we need the following fact:

Theorem 9.19. Let I be an ideal of a ring R, and let a,a’,b,b' € R. If
a=ad (modI) and b ="V (mod I), then ab = a'b’ (mod I).

Proof. If = a+x forx € I and V) = b+ y for y € I, then d't/ =
ab+ay—+bx+xy. Since [is closed under multiplication by elements of R, we
see that ay, bx, xy € I, and since it is closed under addition, ay+bzr+axy € I.
Hence, a't/ —abe I. O

This theorem is perhaps one of the main motivations for the definition of
an ideal. It allows us to define multiplication on R/I as follows: for a,b € R,

(a+1I)-(b+1):=ab+ 1.

The above theorem is required to show that this definition is unambiguous.
Once that is done, it is straightforward to show that all the properties that
make R a ring are inherited by R/I—we leave the details of this to the
reader. In particular, the multiplicative identity of R/I is the coset 1z + I.
The ring R/I is called the quotient ring or residue class ring of R
modulo /.

Elements of R/I may be called residue classes. As a matter of notation,
for a € R, we define [a]; := a + I, and if [= dR, we may write this simply
as [aqg. If I is clear from context, we may also just write [a].

Exzample 9.33. For n > 1, the ring Z,, is precisely the quotient ring Z/nZ.
O

Example 9.34. Let f be a monic polynomial over a ring R with deg(f) =
¢ > 0, and consider the quotient ring F := R[X]/fR[X]. By the division with
remainder property for polynomials (Theorem 9.12), for every a € RI[X],
there exists a unique polynomial b € R[X] such that a = b (mod f) and

9.8 Ideals and quotient rings 233

deg(b) < £. From this, it follows that every element of E can be written
uniquely as [b]¢, where b € R[X] is a polynomial of degree less than /.

The assumption that f is monic may be relaxed a bit: all that really
matters in this example is that the leading coefficient of f is a unit, so that
the division with remainder property applies. Also, note that in this situa-
tion, we will generally prefer the more compact notation R[X]/(f), instead
of R[X]/fR[X]. O

Exzample 9.35. Consider the polynomial f := X? + X + 1 € Z[X] and the
quotient ring F := Zo[X]/(f). Let us name the elements of E as follows:

00 := [O]f, 01 := [1]f, 10 := [X]f, 11:=[X+ 1]f.

With this naming convention, addition of two elements in E corresponds to
just computing the bit-wise exclusive-or of their names. More precisely, the
addition table for F is the following:

+ |00 01 10 11
6000 01 10 11
01101 00 11 10
10 {10 11 00 01
11711 10 01 00

Note that 00 acts as the additive identity for F, and that as an additive
group, F is isomorphic to the additive group Zo X Zo.

As for multiplication in F, one has to compute the product of two poly-
nomials, and then reduce modulo f. For example, to compute 10- 11, using
the identity X2 = X 4+ 1 (mod f), one sees that

X-X+1)=%X4+X=X+1)+X=1 (mod f);

thus, 10 - 11 = 01. The reader may verify the following multiplication table
for E:

|oo o1 10 11
00 [00 00 00 00
0100 01 10 11
1000 10 11 o1
11 |00 11 01 10

Observe that 01 acts as the multiplicative identity for E. Notice that every
non-zero element of E' has a multiplicative inverse, and so F is in fact a field.
By Theorem 9.16, we know that E* must be cyclic (this fact also follows
from Theorem 8.32, and the fact that |E*| = 3.) Indeed, the reader may
verify that both 10 and 11 have multiplicative order 3.

234 Rings

This is the first example we have seen of a finite field whose cardinality is
not prime. O

EXERCISE 9.25. Let I be an ideal of a ring R, and let and y be elements
of R with z =y (mod I). Let f € R[X]. Show that f(z) = f(y) (mod I).

EXERCISE 9.26. Let p be a prime, and consider the ring Q) (see Exam-
ple 9.23). Show that any non-zero ideal of Q) is of the form (p*), for some
uniquely determined integer ¢ > 0.

EXERCISE 9.27. Let R be a ring. Show that if I is a non-empty subset
of R[X] that is closed under addition, multiplication by elements of R, and
multiplication by X, then [is an ideal of R[X].

For the following three exercises, we need some definitions. An ideal I of
aring R is called prime if I C R and if for all a,b € R, ab € I implies a € 1
or b€ I. An ideal I of a ring R is called maximal if] C R and there are
no ideals J of R such that I C J C R.

EXERCISE 9.28. Let R be a ring. Show that:
(a) an ideal I of R is prime if and only if R/I is an integral domain;
(b) an ideal I of R is maximal if and only if R/I is a field;

(c) all maximal ideals of R are also prime ideals.

EXERCISE 9.29. This exercise explores some examples of prime and maximal
ideals.

(a) Show that in the ring Z, the ideal {0} is prime but not maximal, and
that the maximal ideals are precisely those of the form pZ, where p
is prime.

(b) More generally, show that in an integral domain D, the ideal {0} is
prime, and this ideal is maximal if and only if D is a field.

(c) Show that in the ring F[X,Y], where F is a field, the ideal (X,Y) is
maximal, while the ideals (X) and (Y) are prime, but not maximal.

EXERCISE 9.30. It is a fact that all non-trivial rings R contain at least one
maximal ideal. Showing this in general requires some fancy set-theoretic
notions. This exercise develops a proof in the case where R is countable
(i.e., finite or countably infinite).

(a) Show that if R is non-trivial but finite, then it contains a maximal
ideal.

9.8 Ideals and quotient rings 235

(b) Assume that R is countably infinite, and let aj,az,as,... be an
enumeration of the elements of R. Define a sequence of ideals
Iy, I, Io, ..., as follows. Set Iy := {0r}, and for i > 0, define
Tos = I +a;R if I; + ;R C R;
SRR A otherwise.

Finally, set

o
I:= UI
1=0

Show that I is a maximal ideal of R. Hint: first show that I is an
ideal; then show that I C R by assuming that 1p € I and deriving
a contradiction; finally, show that [is maximal by assuming that
for some ¢ = 1,2,..., we have I C I 4+ q;R € R, and deriving a
contradiction.

For the following three exercises, we need the following definition: for
subsets X,Y of a ring R, let X - Y denote the set of all finite sums of the
form

iy + -+ apye (with o € X, yp €Y for k=1,...,¢, for some ¢ > 0).
Note that X - Y contains Og (the “empty” sum, with ¢ = 0).

EXERCISE 9.31. Let R be a ring, and S a subset of R. Show that S - R is
an ideal of R, and is the smallest ideal of R containing S.

EXERCISE 9.32. Let I and J be two ideals of a ring R. Show that:
(a) I-Jis an ideal;
(b) if I and J are principal ideals, with I = aR and J = bR, then
I-J =abR, and so is also a principal ideal;
() I-JCINJ,;
(d) ifI+J=R,then I-J=1nNJ.
EXERCISE 9.33. Let S be a subring of a ring R. Let I be an ideal of R, and
J an ideal of S. Show that:
(a) INS isan ideal of S, and that (I NS)- R is an ideal of R contained
in I;

(b) (J-R)NS is an ideal of S containing J.

236 Rings

9.4 Ring homomorphisms and isomorphisms

Definition 9.20. A function p from a ring R to a ring R’ is called a ring
homomorphism if it is a group homomorphism with respect to the under-
lying additive groups of R and R', and if in addition,

(i) p(ab) = p(a)p(b) for all a,b € R, and

(it) p(1r) = 1r.

Expanding the definition, we see that the requirements that p must satisfy
in order to be a ring homomorphism are that for all a,b € R, we have
pla+b) = p(a) + p(b) and p(ab) = p(a)p(b), and that p(1g) = 1r. Note
that some texts do not require that p(1g) = 1g.

Since a ring homomorphism p from R to R’ is also an additive group
homomorphism, we may also adopt the notation and terminology for image
and kernel, and note that all the results of Theorem 8.20 apply as well here.
In particular, p(Or) = Ors, p(a) = p(b) if and only if a = b (mod ker(p)),
and p is injective if and only if ker(p) = {Or}. However, we may strengthen
Theorem 8.20 as follows:

Theorem 9.21. Let p: R — R’ be a ring homomorphism.
(i) For any subring S of R, p(S) is a subring of R'.
(i) For any ideal I of R, p(I) is an ideal of img(p).

(iii) ker(p) is an ideal of R.
(iv) For any ideal I' of R', p~1(I') is an ideal of R.

Proof. Exercise. O

Theorems 8.21 and 8.22 have natural ring analogs—one only has to show
that the corresponding group homomorphisms are also ring homomorphisms:

Theorem 9.22. If p: R — R and p' : R' — R" are ring homomorphisms,
then so is their composition p'op: R — R".

Proof. Exercise. O

Theorem 9.23. Let p; : R — Ry, fori=1,...,n, be ring homomorphisms.
Then the map p: R — Ry X -+ X Ry, that sends a € R to (p1(a),...,pn(a))
s a ring homomorphism.

Proof. Exercise. O

If a ring homomorphism p : R — R’ is a bijection, then it is called a ring
isomorphism of R with R’. If such a ring isomorphism p exists, we say

9.4 Ring homomorphisms and isomorphisms 237

that R is isomorphic to R’, and write R = R’. Moreover, if R = R’, then
p is called a ring automorphism on R.
Analogous to Theorem 8.24, we have:

Theorem 9.24. If p is a ring isomorphism of R with R', then the inverse

function p~' is a ring isomorphism of R' with R.

Proof. Exercise. O

Because of this theorem, if R is isomorphic to R, we may simply say that
“R and R’ are isomorphic.”

We stress that a ring isomorphism p of R with R’ is essentially just a
“renaming” of elements; in particular, p maps units to units and zero divisors
to zero divisors (verify); moreover, the restriction of the map p to R* yields
a group isomorphism of R* with (R')* (verify).

An injective ring homomorphism p : R — FE is called an embedding
of R in E. In this case, img(p) is a subring of F and R = img(p). If
the embedding is a natural one that is clear from context, we may simply
identify elements of R with their images in F under the embedding, and as
a slight abuse of terminology, we shall say that R as a subring of E.

We have already seen an example of this, namely, when we formally de-
fined the ring of polynomials R[X] over R, we defined the map p: R — R[]
that sends ¢ € R to the polynomial whose constant term is ¢, and all other
coeflicients zero. This map p is clearly an embedding, and it was via this
embedding that we identified elements of R with elements of R[X], and so
viewed R as a subring of R[X].

This practice of identifying elements of a ring with their images in another
ring under a natural embedding is very common. We shall see more examples
of this later (in particular, Example 9.43 below).

Theorems 8.25, 8.26, and 8.27 also have natural ring analogs—again, one
only has to show that the corresponding group homomorphisms are also ring
homomorphisms:

Theorem 9.25. If I is an ideal of a ring R, then the natural map p: R —
R/I given by p(a) = a+ I is a surjective ring homomorphism whose kernel
1s 1.

Proof. Exercise. O

Theorem 9.26. Let p be a ring homomorphism from R into R'. Then the
map p = R/ ker(p) — img(p) that sends the coset a + ker(p) for a € R to
p(a) is unambiguously defined and is a ring isomorphism of R/ker(p) with

img(p).

238 Rings
Proof. Exercise. O

Theorem 9.27. Let p be a ring homomorphism from R into R'. Then
for any ideal I contained in ker(p), the map p : R/I — img(p) that sends
the coset a + I for a € R to p(a) is unambiguously defined and is a ring
homomorphism from R/I onto img(p) with kernel ker(p)/I.

Proof. Exercise. O

Ezxample 9.36. For n > 1, the natural map p from Z to Z, sends a € Z
to the residue class [a],. In Example 8.41, we noted that this is a surjective
group homomorphism on the underlying additive groups, with kernel nZ;
however, this map is also a ring homomorphism. O

Example 9.37. As we saw in Example 8.42, if nq,...,n; are pairwise
relatively prime, positive integers, then the map from Z to Zj, X - - XZy,, that
sends = € Z to ([z]n,,. .., [x]n,) IS & surjective group homomorphism on the
underlying additive groups, with kernel nZ, where n = Hle n;. However,
this map is also a ring homomorphism (this follows from Example 9.36 and
Theorem 9.23). Therefore, by Theorem 9.26, the map that sends [z], €
Ly, to ([x]p,, ..., [x]n,) is & ring isomorphism of the ring Z,, with the ring
Ly X+ X Ly,,. It follows that the restriction of this map to Z;, yields a
group isomorphism of the multiplicative groups Z;, and Z;, X - -+ X Zy, (see
Example 9.13). O

Example 9.38. As we saw in Example 8.43, if nq,no are positive integers
with n; > 1 and n; | ng, then the map p : Z,, — Z,, that sends [al,, to
[a]n, is a surjective group homomorphism on the underlying additive groups
with kernel n;Z,,. This map is also a ring homomorphism. The map p
can also be viewed as the map obtained by applying Theorem 9.27 with the
natural map p from Z to Z,, and the ideal noZ of Z, which is contained in
ker(p) = n1Z. O

Ezxample 9.39. Let R be a subring of a ring F, and fix o € E. The
polynomial evaluation map p : R[X] — E that sendsa € R[X] toa(a) € E
is a ring homomorphism from R[X] into E (see Theorem 9.10). The image
of p consists of all polynomial expressions in « with coefficients in R, and is
denoted R[a]. Note that R[a] is a subring of E containing R U {a}, and is
the smallest such subring of F. O

Ezxample 9.40. We can generalize the previous example to multi-variate
polynomials. If R is a subring of a ring £ and ay,...,a, € E, then the
map p : R[X1,...,X,] — E that sends a € R[Xy,...,X,] to a(ai,...,ap) is

9.4 Ring homomorphisms and isomorphisms 239

a ring homomorphism. Its image consists of all polynomial expressions in
ai, ..., o, with coefficients in R, and is denoted R]ay,...,ay,|. Moreover,
this image is a subring of E containing RU{a1,...,a,}, and is the smallest
such subring of £. O

Example 9.41. For any ring R, consider the map p : Z — R that sends
m € Z to m -1 in R. This is clearly a ring homomorphism (verify). If
ker(p) = {0}, then img(p) = Z, and so the ring Z is embedded in R, and
R has characteristic zero. If ker(p) = nZ for n > 0, then img(p) = Z,, and
so the ring Z, is embedded in R, and R has characteristic n. Note that we
have n =1 if and only if R is trivial.

Note that img(p) is the smallest subring of R; indeed, since any subring
of R must contain 1 and be closed under addition and subtraction, it must

contain img(p). O

Example 9.42. Let R be a ring of prime characteristic p. For any a,b € R,
we have (see Exercise 9.2)

p
DY p—kik
b = P=RpY,
@rop=%" < k)
k=0
However, by Exercise 1.12, all of the binomial coefficients are multiples of
p, except for Kk = 0 and k¥ = p, and hence in the ring R, all of these terms
vanish, leaving us with

(a +b)P =aP 4+ V.

This result is often jokingly referred to as the “freshman’s dream,” for some-
what obvious reasons.
Of course, as always, we have

(ab)? = aP? and 1%, = 1g,

and so it follows that the map p : R — R that sends a € R to af is a
ring homomorphism. It also immediately follows that for any integer e > 1,
the e-fold composition p¢ : R — R that sends a € R to a”° is also a ring
homomorphism. O

FEzxample 9.43. As in Example 9.34, let f be a monic polynomial over a
ring R with deg(f) = ¢, but now assume that ¢ > 0. Consider the natural
map p from R[X] to the quotient ring E := R[X]/(f) that sends a € R[X] to
la] 7. If we restrict p to the subring R of R[X], we obtain an embedding of R
into E. Since this is a very natural embedding, one usually simply identifies

240 Rings

elements of R with their images in £ under p, and regards R as a subring
of E. Taking this point of view, we see that ifa =), a;X*, then

lalp = D aX'y = ai[X]5) = a(n),

(2 (]
where 7) := [X]; € E. Therefore, the map p may be viewed as the polynomial
evaluation map, as in Example 9.39, that sends a € R[X] to a(n) € E. Note
that we have E = R[n|; moreover, every element of E can be expressed
uniquely as b(n) for some b € R[X] of degree less than ¢, and more generally,
for arbitrary a,b € R[X|, we have a(n) = b(n) if and only if a = b (mod f).
O

Exzample 9.44. As a special case of Example 9.43, let f := X2 + 1 € R[X],
and consider the quotient ring R[X]/(f). If we set i := [X]; € R[X]/(f), then
every element of R[X]/(f) can be expressed uniquely as a+bi, where a,b € R.
Moreover, we have i2 = —1, and more generally, for a,b,d’, b’ € R, we have

(a+bi)+ (d +Vi)=(a+ad)+ (b+b)i
and
(a+bi)- (a' + Vi) = (aa’ — bb') + (ab' + a'b)i.

Thus, the rules for arithmetic in R[X]/(f) are precisely the familiar rules of
complex arithmetic, and so C and R[X]/(f) are essentially the same, as rings.
Indeed, the “algebraically correct” way of defining the complex numbers C
is simply to define them to be the quotient ring R[X]/(f) in the first place.
This will be our point of view from now on. O

Example 9.45. Consider the polynomial evaluation map p : R[X] — C =
R[X]/(X? + 1) that sends g € R[X] to g(—i). For any g € R[X], we may write
g = (X2 +1)qg+ a + bX, where ¢ € R]X] and a,b € R. Since (—i)?2 +1 =
i +1 =0, we have g(—i) = ((—9)? + 1)g(—i) + a — bi = a — bi. Clearly,
then, p is surjective and the kernel of p is the ideal of R[X] generated by the
polynomial X? + 1. By Theorem 9.26, we therefore get a ring automorphism
p on C that sends a 4+ bi € C to a — bi. In fact, p it is none other than the
complex conjugation map. Indeed, this is the “algebraically correct” way of
defining complex conjugation in the first place. O

Example 9.46. We defined the ring Z[i] of Gaussian integers in Exam-
ple 9.22 as a subring of C. Let us verify that the notation Z[i] introduced in
Example 9.22 is consistent with that introduced in Example 9.39. Consider
the polynomial evaluation map p : Z[X] — C that sends g € Z[X] to g(i) € C.

9.4 Ring homomorphisms and isomorphisms 241

For any g € Z[X], we may write g = (X2 + 1)q + a + bX, where ¢ € Z[X] and
a,b € Z. Since i2 +1 = 0, we have g(i) = (i + 1)q(i) + a + bi = a + bi.
Clearly, then, the image of p is the set {a + bi : a,b € Z}, and the kernel of
p is the ideal of Z[X] generated by the polynomial X2 + 1. This shows that
Z[i] in Example 9.22 is the same as Z[i] in Example 9.39, and moreover,
Theorem 9.26 implies that Z[i] is isomorphic to Z[X]/(X? + 1).

Thus, we can directly construct the Gaussian integers as the quotient ring
Z[X]/(X2 + 1). Likewise the field Q[i] (see Exercise 9.8) can be constructed
directly as Q[X]/(X? + 1). Such direct constructions are appealing in that
they are purely “elementary,” as they do not appeal to anything so “sophis-
ticated” as the real numbers. O

Example 9.47. Let p be a prime, and consider the quotient ring F :=
Zp[X]/ (X2 4+ 1). If we set i := [X]zoo; € E, then E = Z,[i] = {a+bi:a,b €
Zp}. In particular, E is a ring of cardinality p?. Moreover, the rules for
addition and multiplication in F look exactly the same as they do in C: for
a,b,d' b € Z,, we have

(a+bi)+ (d +Vi)=(a+d)+ (b+V)i
and
(a+bi)- (a' + Vi) = (aa’ — bb') + (ab' + a'b)i.
Note that F may or may not be a field.

On the one hand, suppose that ¢? = —1 for some ¢ € Z, (for example,
p=2,p=25p=13). Then (c+i)(c—1i)=c*+1=0, and so E is not an
integral domain.

On the other hand, suppose there is no ¢ € Z, such that 2 = —1 (for
example, p =3, p = 7). Then for any a,b € Z,, not both zero, we must have
a®? + b? # 0; indeed, suppose that a? + b*> = 0, and that, say, b # 0; then
we would have (a/b)? = —1, contradicting the assumption that —1 has no
square root in Zj,. Since Z, is a field, it follows that the same formula for
multiplicative inverses in C applies in E, namely,

a—bi
bi) l= —.
(a+ bi) o
This construction provides us with more examples of finite fields whose
cardinality is not prime. O

Example 9.48. If p : R — R’ is a ring homomorphism, then we can extend
p in a natural way to a ring homomorphism from R[X]| to R'[X], by defining
p(>"; aiX?) := ", p(a;)X'. We leave it to the reader to verify that this indeed
is a ring homomorphism. O

242 Rings

EXERCISE 9.34. Verify that the “is isomorphic to” relation on rings is an
equivalence relation; that is, for all rings Ry, Ro, R3, we have:

(a) R1 = Rl;
(b) R1 = R2 implies RQ = Rl;
(¢) R; = Ry and Ry = R3 implies R; = Rj3.

EXERCISE 9.35. Let R, Rs be rings, and let p : Ry X Re — R; be the map
that sends (a1,a2) € R1 X Ry to a1 € Ry. Show that p is a surjective ring
homomorphism whose kernel is {Og, } x Rs.

EXERCISE 9.36. Let p be a ring homomorphism from R into R’. Show that
the ideals of R containing ker(p) are in one-to-one correspondence with the
ideals of img(p), where the ideal I of R containing ker(p) corresponds to the
ideal p(I) of img(p).

EXERCISE 9.37. Let p : R — S be a ring homomorphism. Show that
p(R*) C S*, and that the restriction of p to R* yields a group homomorphism
p* : R* — S* whose kernel is (1 + ker(p)) N R*.

EXERCISE 9.38. Show that if F is a field, then the only ideals of F are {Op}
and F. From this, conclude the following: if p : FF — R is a ring homomor-
phism from F' into a non-trivial ring R, then p must be an embedding.

EXERCISE 9.39. Let n be a positive integer.
(a) Show that the rings Z[X]/(n) and Z,[X] are isomorphic.

(b) Assuming that n = pq, where p and ¢ are distinct primes, show that
the rings Z,[X] and Zy[X] x Z,[X] are isomorphic.

EXERCISE 9.40. Let n be a positive integer, let f € Z[X] be a monic poly-
nomial, and let f be the image of f in Z,[X] (i.e., f is obtained by applying
the natural map from Z to Z, coefficient-wise to f). Show that the rings

Z[X]/(n, f) and Z,[X]/(f) are isomorphic.

EXERCISE 9.41. Let R be a ring, and let aq, ..., a, be elements of R. Show
that the rings R and R[Xi,...,X,]/(X1 — a1,...,X, — ay) are isomorphic.

EXERCISE 9.42. Let p : R — R’ be a ring homomorphism, and suppose
that we extend p, as in Example 9.48, to a ring homomorphism from R[X]
to R'[X]. Show that for any a € R[X], we have D(p(a)) = p(D(a)), where
D(-) denotes the formal derivative.

EXERCISE 9.43. This exercise and the next generalize the Chinese remainder
theorem to arbitrary rings. Suppose I and J are two ideals of a ring R such

9.4 Ring homomorphisms and isomorphisms 243

that I + J = R. Show that the map p: R — R/I x R/J that sends a € R
to ([a]z, [a]s) is a surjective ring homomorphism with kernel I - J. Conclude
that R/(I - J) is isomorphic to R/I x R/J.

EXERCISE 9.44. Generalize the previous exercise, showing that R/(Iy - - - Ix)
is isomorphic to R/Ij X --- X R/Iy, where R is a ring, and I,..., I} are
ideals of R, provided I; + I; = R for all 4, j such that 7 # j.

EXERCISE 9.45. Let F' be a field and let d be an element of F' that is not a
perfect square (i.e., there does not exist e € F such that e? = d). Let E :=
F[X]/(X2 — d), and let 1 := [X]y2_g, so that E = F[n] = {a+bn:a,be F}.
(a) Show that the quotient ring F is a field, and write down the formula
for the inverse of a + by € F.
(b) Show that the map that sends a + by € E to a — by is a ring auto-
morphism on F.

EXERCISE 9.46. Let Q"™ be the subring of Q defined in Example 9.23. Let
us define the map p : Q™ — Z,, as follows. For a/b € Q with b relatively
prime to m, p(a/b) = [a]m([b]m)~!. Show that p is unambiguously defined,
and is a surjective ring homomorphism. Also, describe the kernel of p.

EXERCISE 9.47. Let p: R — R’ be a map from a ring R to a ring R’ that
satisfies all the requirements of a ring homomorphism, except that we do
not require that p(1g) = 1p.
(a) Give a concrete example of such a map p, such that p(1g) # 1r and
p(1r) # Or'.
(b) Show that img(p) is a ring in which p(1r) plays the role of the mul-
tiplicative identity.
(c¢) Show that if R is an integral domain, and p(1g) # Ogr, then p(1g) =
1g/, and hence p satisfies our definition of a ring homomorphism.
(d) Show that if p is surjective, then p(1g) = 1g/, and hence p satisfies
our definition of a ring homomorphism.

10
Probabilistic primality testing

In this chapter, we discuss some simple and efficient probabilistic tests for
primality.

10.1 Trial division

Suppose we are given an integer n > 1, and we want to determine whether n
is prime or composite. The simplest algorithm to describe and to program
is trial division. We simply divide n by 2, 3, and so on, testing if any of
these numbers evenly divide n. Of course, we don’t need to go any further
than y/n, since if n has any non-trivial factors, it must have one that is no
greater than \/n (see Exercise 1.1). Not only does this algorithm determine
whether n is prime or composite, it also produces a non-trivial factor of n
in case n is composite.

Of course, the drawback of this algorithm is that it is terribly inefficient:
it requires ©(y/n) arithmetic operations, which is exponential in the binary
length of n. Thus, for practical purposes, this algorithm is limited to quite
small n. Suppose, for example, that n has 100 decimal digits, and that a
computer can perform 1 billion divisions per second (this is much faster than
any computer existing today). Then it would take on the order of 1033 years
to perform /n divisions.

In this chapter, we discuss a much faster primality test that allows 100
decimal digit numbers to be tested for primality in less than a second. Unlike
the above test, however, this test does not find a factor of n when n is
composite. Moreover, the algorithm is probabilistic, and may in fact make
a mistake. However, the probability that it makes a mistake can be made
so small as to be irrelevant for all practical purposes. Indeed, we can easily
make the probability of error as small as 2719 —should one really care
about an event that happens with such a miniscule probability?

244

10.2 The structure of Z, 245

10.2 The structure of Z,

Before going any further, we have to have a firm understanding of the group
Z}, for integer n > 1. As we know, Z} consists of those elements [a],, € Z,,
such that a is an integer relatively prime to n. Suppose n = pi' - - p¢” is the
factorization of n into primes. By the Chinese remainder theorem, we have
the ring isomorphism

anZpiq XKoo XZpir
which induces a group isomorphism
* AU 7% *
Zn, :ZP? NERRIS Zpir'

Thus, to determine the structure of the group Z;, for general n, it suffices
to determine the structure for n = p¢, where p is prime. By Theorem 2.13,
we already know the order of the group Z,., namely, ¢(p®) = p°l(p—1).

The main result of this section is the following;:

Theorem 10.1. If p is an odd prime, then for any positive integer e, the
group Zy,. is cyclic. The group Zs. is cyclic for e =1 or 2, but not for e > 3.
For e > 3, Z5. is isomorphic to the additive group Zo X Zge—2.

In the case where e = 1, this theorem is a special case of Theorem 9.16,
which we proved in §9.2.3. Note that for e > 1, the ring Z,c is not a field,
and so Theorem 9.16 cannot be used directly. To deal with the case e > 1,
we need a few simple facts.

Theorem 10.2. Let p be a prime. For integer e > 1, if a = b (mod p°),
then a? = bP (mod p°t1).

Proof. We have a = b+ cp® for some ¢ € Z. Thus, a? = bP + pbP~Lcp® + dp?®
for an integer d. It follows that a? = b? (mod p**!). O

Theorem 10.3. Let p be a prime. Let e > 1 be an integer and assume
p® > 2. Ifa =1+ p° (mod p°tl), then a? = 1 + p°*! (mod p**?).

Proof. By Theorem 10.2, a? = (1 4 p®)? (mod p*™2). Expanding (1 + p®)?,
we have

p—1
(1+pe)p:1+p‘pe+z<z)pek+pep.
k=2

By Exercise 1.12, all of the terms in the sum on k are divisible by p!'*2¢, and

14+ 2e > e+ 2 forall e > 1. For the term p?, the assumption that p® > 2
means that either p > 3 or e > 2, which implies ep > e + 2. O

246 Probabilistic primality testing

Now consider Theorem 10.1 in the case where p is odd. As we already
know that Zj is cyclic, assume e > 1. Let € Z be chosen so that [z],
generates Z,. Suppose the multiplicative order of [z],e € Zj. is m. Then
as ™ = 1 (mod p°) implies 2™ = 1 (mod p), it must be the case that
p — 1 divides m, and so [J:m/ (p_l)]pe has multiplicative order exactly p — 1.
By Theorem 8.38, if we find an integer y such that [y],e has multiplicative
order p¢~1, then [z™/ (p_l)y]pe has multiplicative order (p — 1)p®~!, and we
are done. We claim that y := 1 4 p does the job. Any integer between 0
and p® — 1 can be expressed as an e-digit number in base p; for example,
y=(0---011),. If we compute successive pth powers of y modulo p®, then
by Theorem 10.3 we have

ymodp® = (0 --- 011),

y?P modp¢ = (x .- %101)p,
yp2 modp® = (¥ -+ %x1001),,
y* “modp¢ = (10 --- 01),,
y* "modpt = (0 - 01)p.

Wy ”

Here, “x” indicates an arbitrary digit. From this table of values, it is clear

e—1

(see Theorem 8.37) that [y],c has multiplicative order p That proves

Theorem 10.1 for odd p.

We now prove Theorem 10.1 in the case p = 2. For e = 1 and e = 2, the
theorem is easily verified. Suppose e > 3. Consider the subgroup G C Z5.
generated by [5]2e. Expressing integers between 0 and 2¢—1 as e-digit binary
numbers, and applying Theorem 10.3, we have

5mod2¢ = (0 --- 0101)s,
52mod2¢ = (* .-+ x1001)s,
52 " mod2¢ = (10 --- 01)y,
5 mod2¢ = (0 - 01)s.

So it is clear (see Theorem 8.37) that [5]oc has multiplicative order 2¢72.
We claim that [—1]se ¢ G. If it were, then since it has multiplicative order
2, and since any cyclic group of even order has precisely one element of
order 2 (see Theorem 8.31), it must be equal to [52° Joe; however, it is clear
from the above calculation that 52°° % —1 (mod 2°¢). Let H C Z3. be the
subgroup generated by [—1]ge. Then from the above, G N H = {[1]2¢}, and
hence by Theorem 8.28, G x H is isomorphic to the subgroup G - H of Z5..

10.3 The Miller—Rabin test 247

But since the orders of G x H and Z5. are equal, we must have G- H = Z5..
That proves the theorem.

EXERCISE 10.1. Show that if n is a positive integer, the group Z; is cyclic
if and only if

n=1,2,4,p% or 2p°,
where p is an odd prime and e is a positive integer.

EXERCISE 10.2. Let n = pq, where p and ¢ are distinct primes such that
p=2p +1and ¢ =2¢ + 1, where p’ and ¢’ are themselves prime. Show
that the subgroup (Z%)? of squares is a cyclic group of order p'q’.

EXERCISE 10.3. Let n = pq, where p and ¢ are distinct primes such that
pf(g—1)and gt (p—1).
(a) Show that the map that sends [a], € Zj, to [a"],2 € (Z),)" is a group
isomorphism.
(b) Consider the element a := [1 + n],2 € Z*,; show that for any non-
negative integer k, o = [1 + kn],2, and conclude that o has multi-
plicative order n.

(c) Show that the map from Z, x Zj;, to Z, that sends ([k]n, [a],) to
[(1+4 kn)a"],2 is a group isomorphism.

10.3 The Miller—Rabin test

We describe in this section a fast (polynomial time) test for primality, known
as the Miller—-Rabin test. The algorithm, however, is probabilistic, and
may (with small probability) make a mistake.

We assume for the remainder of this section that the number n we are
testing for primality is an odd integer greater than 1.

Several probabilistic primality tests, including the Miller—Rabin test, have
the following general structure. Define Z to be the set of non-zero elements
of Zy; thus, |Z| =n—1, and if n is prime, Z} = Z*. Suppose also that we
define a set L, C Z;} such that:

e there is an efficient algorithm that on input n and a € Z;, determines
if « € Ly;

e if n is prime, then L, = Z};

e if n is composite, |Ly| < ¢(n — 1) for some constant ¢ < 1.

248 Probabilistic primality testing

To test n for primality, we set an “error parameter” ¢, and choose random
elements ay,...,a¢ € ZF. If a; € Ly, for all i = 1,...,¢, then we output
true; otherwise, we output false.

It is easy to see that if n is prime, this algorithm always outputs true, and
if n is composite this algorithm outputs true with probability at most ct. If
¢ =1/2 and t is chosen large enough, say ¢t = 100, then the probability that
the output is wrong is so small that for all practical purposes, it is “just as
good as zero.”

We now make a first attempt at defining a suitable set L,,. Let us define
Ly ={acZ!: Qv = 1}.

Note that L, C Z7, since if a® ! = 1, then a has a multiplicative inverse,
namely, o 2. Using a repeated-squaring algorithm, we can test if a € L,

in time O(len(n)3).

Theorem 10.4. If n is prime, then L, = Z;,. If n is composite and L,, C
7Y, then |Ly| < (n—1)/2.

Proof. Note that L, is the kernel of the (n —1)-power map on Z, and hence
is a subgroup of Z; .

If n is prime, then we know that Z; is a group of order n — 1. Since the
order of a group element divides the order of the group, we have a” ! =1
for all a € Zy,. That is, L,, = Z;,.

Suppose that n is composite and L,, C Z;,. Since the order of a subgroup
divides the order of the group, we have |Z}| = m|L,| for some integer m > 1.

From this, we conclude that

1, 1 n—1
Lol = 125 < 512 < "o O

Unfortunately, there are odd composite numbers n such that L, = Z;.
Such numbers are called Carmichael numbers. The smallest Carmichael
number is

561 =3-11-17.
Carmichael numbers are extremely rare, but it is known that there are in-

finitely many of them, so we can not ignore them. The following theorem
puts some constraints on Carmichael numbers.

Theorem 10.5. A Carmichael number n is of the form n = py -- - p,, where
the p; are distinct primes, r > 3, and (p; — 1) | (n = 1) fori=1,...,r.

10.3 The Miller—Rabin test 249

Proof. Let n = p{' -+ - p& be a Carmichael number. By the Chinese remain-
der theorem, we have an isomorphism of Z; with the group

* *
Zpil X oo X Lyer

and we know that each group Z;% is cyclic of order pfi_l(pi —1). Thus,
the power n — 1 kills the group Z’;z if and only if it kills all the groups Z;%,
which happens if and only if p&~!(p; — 1) | (n — 1). Now, on the one hand,

(2
n =0 (mod p;). On the other hand, if e; > 1, we would have n = 1 (mod p;),
which is clearly impossible. Thus, we must have e; = 1.

It remains to show that r > 3. Suppose r = 2, so that n = p1p2. We have

n—1=pip2—1=(p1 —1)p2+ (p2 — 1).

Since (p1 — 1) | (n — 1), we must have (p; — 1) | (p2 —1). By a symmetric
argument, (p2 — 1) | (p1 — 1). Hence, p1 = po, a contradiction. O

To obtain a good primality test, we need to define a different set L/ , which
we do as follows. Let n — 1 = 2"m, where m is odd (and h > 1 since n is
assumed odd), and define

L :={aeZ: o™ =1 and
forj=0,...,h—1, am? ™ =1 implies ™% = +1}.

The Miller—Rabin test uses this set L, in place of the set L, defined
above. It is clear from the definition that L], C L,,.
Testing whether a given « € Z;} belongs to L], can be done using the
following procedure:
fe—a™
if # =1 then return true
for j«—0toh—1do

if 6 = —1 then return true
if 8 = +1 then return false
8=

return false

It is clear that using a repeated-squaring algorithm, this procedure runs
in time O(len(n)®). We leave it to the reader to verify that this procedure
correctly determines membership in L/,.

Theorem 10.6. If n is prime, then L), = Z). 1If n is composite, then
|1Ly,| < (n—1)/4.

250 Probabilistic primality testing

The rest of this section is devoted to a proof of this theorem. Let n —1 =
m2", where m is odd.

Case 1: n is prime. Let € Z}. Since Z; is a group of order n — 1,
and the order of a group element divides the order of the group, we know
that a™2" = a"~! = 1. Now consider any index j = 0,...,h — 1 such that
am?t = 1, and consider the value § := a™? | Then since p% = am?t = 1,
the only possible choices for 3 are £1-—this is because Z is cyclic of even
order and so there are exactly two elements of Z; whose multiplicative order
divides 2, namely +1. So we have shown that o € L/,.

Case 2: n = p°, where p is prime and e > 1. Certainly, L], is contained
in the kernel K of the (n — 1)-power map on Z}. By Theorem 8.31, |K| =
ged(g(n),n — 1). Since n = p®, we have ¢(n) = p°~!(p — 1), and so

pt—1 <M= 1
pel4.o 41— 4
Case 3: n=pi'---p¢ is the prime factorization of n, and r > 1. For
1=1,...,r, let R; denote the ring Zp'_ii, and let

0:Ry X xR, —Zp

IL,| < |K|=ged(p* ' (p—1),p°—1)=p—1=

be the ring isomorphism provided by the Chinese remainder theorem.
Also, let ¢(pf') = m;2M, with m; odd, for i = 1,...,7, and let £ :=
min{h, hy,...,h,}. Note that £ > 1, and that each R} is a cyclic group
of order m;2hi.

We first claim that for any o € L/, we have am™ = 1. To prove this,
first note that if £ = h, then by definition, am?’ = 1, so suppose that ¢ < h.
By way of contradiction, suppose that am?’ # 1, and let j be the largest

index in the range ¢,...,h — 1 such that U By the definition

of L, we must have a™? = —1. Since ¢ < h, we must have ¢ = h; for
some particular index i = 1,...,r. Writing a = 6(a,...,q;), we have
oz§”2] = —1. This implies that the multiplicative order of o " is equal to

27+1 (see Theorem 8.37). However, since j > ¢ = h;, this contradicts the
fact that the order of a group element (in this case, ") must divide the
order of the group (in this case, R}).

From the claim in the previous paragraph, and the definition of L], it
follows that o € L/, implies a2 ' = 41. We now consider an experiment in
which « is chosen at random from Z7 (that is, with a uniform distribution),
and show that P[a™2" = 41] < 1/4, from which the theorem will follow.

Write a = (o, ..., ay). As « is uniformly distributed over Z, each «; is
uniformly distributed over R}, and the collection of all the «; is a mutually
independent collection of random variables.

10.3 The Miller—Rabin test 251

Fori=1,...,rand j =0,..., h, let G;(j) denote the image of the (m27)-
power map on R;. By Theorem 8.31, we have

mith

Gl = ged(m;2hi ,m27)°

Because ¢ < h and ¢ < h;, a simple calculation shows that
|G;(h)| divides |G;(¢)] and 2|G;(¢)] = |Gi(£ — 1)|.

In particular, |G;(¢ — 1)| is even and is no smaller than 2|G;(h)|. The fact
that |G;(¢ — 1)| is even implies that —1 € G;(¢ —1).
The event a™2 ™" = 41 occurs if and only if either

(E1) agnzz_l =1fori=1,...,r, or
(E2) 0417”2271 =—1fori=1,...,r.
Since the events F; and FE, are disjoint, and since the values almzkl are

mutually independent, with each value a?ﬂ(g_l uniformly distributed over

G;(¢ — 1) (see part (a) of Exercise 8.22), and since G;(¢ — 1) contains +1,
we have

- . 1
Plam ™ = 1] = P[E] + P[Ey] =2 — —,
| =iz PiE) =2 [T gy
and since |G;(¢ — 1)| > 2|G;(h)|, we have

1
|Gi(h)|*

Plam" = 1] <27+] (10.1)
i=1

If r > 3, then (10.1) directly implies that P[a™2 " = +1] < 1/4, and we
are done. So suppose that r = 2. In this case, Theorem 10.5 implies that
n is not a Carmichael number, which implies that for some ¢ =1,...,r, we

must have G;(h) # {1}, and so |G;(h)| > 2, and (10.1) again implies that
Plam2™" = +1] < 1/4.

That completes the proof of Theorem 10.6.

EXERCISE 10.4. Show that an integer m > 1 is prime if and only if there
exists an element in Z; of multiplicative order n — 1.

EXERCISE 10.5. Let p be a prime. Show that n := 2p + 1 is a prime if and
only if 2"~! = 1 (mod n).

252 Probabilistic primality testing

EXERCISE 10.6. Here is another primality test that takes as input an odd
integer n > 1, and a positive integer parameter t. The algorithm chooses
ai,...,ap € Z} at random, and computes

i::a(-n_l)/2 1=1,...,t).
/B 1) 9y

If (61, ..., Bt) is of the form (+1,+1,...,41), but is not equal to (1,1, ..., 1),
the algorithm outputs true; otherwise, the algorithm outputs false. Show
that if n is prime, then the algorithm outputs false with probability at most
27t and if n is composite, the algorithm outputs true with probability at
most 27,

In the terminology of §7.2, the algorithm in the above exercise is an exam-
ple of an “Atlantic City” algorithm for the language of prime numbers (or
equivalently, the language of composite numbers), while the Miller-Rabin
test is an example of a “Monte Carlo” algorithm for the language of com-
posite numbers.

10.4 Generating random primes using the Miller—Rabin test

The Miller—Rabin test is the most practical algorithm known for testing
primality, and because of this, it is widely used in many applications, espe-
cially cryptographic applications where one needs to generate large, random
primes (as we saw in §7.8). In this section, we discuss how one uses the
Miller-Rabin test in several practically relevant scenarios where one must
generate large primes.

10.4.1 Generating a random prime between 2 and M

Suppose one is given an integer M > 2, and wants to generate a random
prime between 2 and M. We can do this by simply picking numbers at
random until one of them passes a primality test. We discussed this problem
in some detail in §7.5, where we assumed that we had a primality test
IsPrime. The reader should review §7.5, and §7.5.1 in particular. In this
section, we discuss aspects of this problem that are specific to the situation
where the Miller—Rabin test is used to implement IsPrime.

To be more precise, let us define the following algorithm MR(n,t), which
takes as input integers n and t, with n > 1 and ¢t > 1, and runs as follows:

10.4 Generating random primes using the Miller—Rabin test 253

Algorithm MR(n,t):

if n = 2 then return true
if n is even then return false

repeat t times
a—pr{l,...,n—1}
if « € L], return false

return true

So we shall implement IsPrime(-) as MR(-,t), where ¢ is an auxiliary
parameter. By Theorem 10.6, if n is prime, the output of MR(n,t) is always
true, while if n is composite, the output is true with probability at most 47
Thus, this implementation of IsPrime satisfies the assumptions in §7.5.1,
with € = 47,

Let (M, t) be the probability that the output of Algorithm RP in §7.5—
using this implementation of IsPrime—is composite. Then as we discussed
in §7.5.1,

M -1

v(M,t) <4)

where k = len(M). Furthermore, if the output of Algorithm RP is prime,
then every prime is equally likely; that is, conditioning on the event that
the output is prime, the conditional output distribution is uniform over all

= 0(47k), (10.2)

primes.

Let us now consider the expected running time of Algorithm RP. As was
shown in §7.5.1, this is O(kW},), where W}, is the expected running time
of IsPrime where the average is taken with respect to the random choice of
input n € {2,..., M} and the random choices of the primality test itself.
Clearly, we have W}, = O(tk3), since MR(n,t) executes at most ¢ iterations
of the Miller-Rabin test, and each such test takes time O(k3). This leads to
an expected total running time bound of O(tk*). However, this estimate for
Wy, is overly pessimistic. Intuitively, this is because when n is composite, we
expect to perform very few Miller—Rabin tests—only when n is prime do we
actually perform all ¢ of them. To make a rigorous argument, consider the
experiment in which n is chosen at random from {2,..., M}, and MR(n,t)
is executed. Let Y be the number of times the basic Miller—Rabin test is
actually executed. Conditioned on any fixed, odd, prime value of n, the
value of Y is always t. Conditioned on any fixed, odd, composite value of
n, the distribution of Y is geometric with an associated success probability
of at least 3/4; thus, the conditional expectation of Y is at most 4/3 in this

254 Probabilistic primality testing
case. Thus, we have

E[Y] = E[Y | n prime]P[n prime] + E[Y" | n composite]P[n composite]
<tm(M)/(M —1) +4/3.

Thus, E[Y] < 4/3 4+ O(t/k), from which it follows that W}, = O(k3 + tk?),
and hence the expected total running time of Algorithm RP is actually
O(k* + tk3).

Note that the above estimate (10.2) for (M, t) is actually quite pes-
simistic. This is because the error probability 47t is a worst-case estimate;
in fact, for “most” composite integers n, the probability that MR(n,t) out-
puts true is much smaller than this. In fact, v(M, 1) is very small for large
M. For example, the following is known:

Theorem 10.7. We have
(M, 1) < exp[—(1 + o(1))log(M) log(log(log(}M)))/ log(log(M))].
Proof. Literature—see §10.7. O

The bound in the above theorem goes to zero quite quickly —faster than
(log M)~¢ for any positive constant c. While the above theorem is asymp-
totically very good, in practice, one needs explicit bounds. For example, the
following lower bounds for — log,(v(2¥,1)) are known:

k || 200 | 300 | 400 | 500 | 600
31 19| 37| 55| T4

Given an upper bound on (M, 1), we can bound ~(M,t) for ¢t > 2 using
the following inequality:

(M, 1) —t+1
M) < ——727"-4) 10.3
sy < 21 (10.3)
To prove (10.3), it is not hard to see that on input M, the output distribution
of Algorithm RP is the same as that of the following algorithm:

repeat
repeat
n«—ri{2,...,M}
until MR(n,1)
ng<—mn
until MR(ny,t — 1)
output n1

10.4 Generating random primes using the Miller—Rabin test 255

Consider for a moment a single execution of the outer loop of the above
algorithm. Let 8 be the probability that n; is composite, and let « be the
conditional probability that MR(ni,t — 1) outputs true, given that n is
composite. Evidently, 3 = v(M, 1) and o < 47*1,

Now, using ezxactly the same reasoning as was used to derive equation

(7.2) in §7.5.1, we find that

af o of _4T(M L)
WBr(=F) ~1=8° 1-4(M,1)’

7(M7t) =

which proves (10.3).

Given that ~«(M,1) is so small, for large M, Algorithm RP actually
exhibits the following behavior in practice: it generates a random value
n € {2,...,M}; if n is odd and composite, then the very first iteration of
the Miller—-Rabin test will detect this with overwhelming probability, and no
more iterations of the test are performed on this n; otherwise, if n is prime,
the algorithm will perform ¢ — 1 more iterations of the Miller—Rabin test,
“just to make sure.”

EXERCISE 10.7. Consider the problem of generating a random Sophie Ger-
main prime between 2 and M (see §5.5.5). One algorithm to do this is as
follows:

repeat
n«—ri{2,...,M}
if MR(n,t) then
if MR(2n + 1,t) then
output n and halt
forever

Assuming Conjecture 5.26, show that this algorithm runs in expected time
O(Kk® +tk*), and outputs a number that is not a Sophie Germain prime with
probability O(47%k?). As usual, k := len(M).

EXERCISE 10.8. Improve the algorithm in the previous exercise, so that un-
der the same assumptions, it runs in expected time O(k° +tk3), and outputs
a number that is not a Sophie Germain prime with probability O(4~k?),
or even better, show that this probability is at most y(M, t)7*(M)/m(M) =
O(y(M,t)k), where 7* (M) is defined as in §5.5.5.

EXERCISE 10.9. Suppose in Algorithm RFN in §7.7 we implement algorithm
IsPrime(-) as MR(-,t), where t is a parameter satisfying 4~ ¢(2 + log M) <

256 Probabilistic primality testing

1/2, if M is the input to RFN. Show that the expected running time of
Algorithm RFN in this case is O(k® + tk*len(k)). Hint: use Exercise 7.20.

10.4.2 Trial division up to a small bound

In generating a random prime, most candidates n will in fact be composite,
and so it makes sense to cast these out as quickly as possible. Significant
efficiency gains can be achieved by testing if a given candidate n is divisible
by any small primes up to a given bound s, before we subject n to a Miller—
Rabin test. This strategy makes sense, since for a small, “single precision”
prime p, we can test if p | n essentially in time O(len(n)), while a single
iteration of the Miller-Rabin test takes time O(len(n)?) steps.

To be more precise, let us define the following algorithm MRS (n,t, s),
which takes as input integers n, ¢, and s, withn > 1,¢> 1, and s > 1:

Algorithm MRS (n,t,s):

for each prime p < s do
if p | n then
if p = n then return true else return false

repeat ¢t times
a—r{l,...,n—1}
if « ¢ L], return false

return true

In an implementation of the above algorithm, one would most likely use
the sieve of Eratosthenes (see §5.4) to generate the small primes.

Note that MRS (n,t,2) is equivalent to MR(n,t). Also, it is clear that the
probability that MRS(n,t,s) makes a mistake is no more than the prob-
ability that MR(n,t) makes a mistake. Therefore, using MRS in place of
MR will not increase the probability that the output of Algorithm RP is a
composite—indeed, it is likely that this probability decreases significantly.

Let us now analyze the impact on the running time. To do this, we need
to estimate the probability 7(M, s) that a randomly chosen number between
2 and M is not divisible by any primes up to s. If M is sufficiently large
with respect to s, the following heuristic argument can be made rigorous,
as we will discuss below. The probability that a random number is divisible
by a prime p is about 1/p, so the probability that it is not divisible by p is
about 1 — 1/p. Assuming that these events are essentially independent for

10.4 Generating random primes using the Miller—Rabin test 257

different values of p (this is the heuristic part), we estimate

7(M,s) ~ [[(1=1/p) ~ Bi/logs,
p<s
where B; ~ 0.56146 is the constant from Exercise 5.14 (see also Theo-
rem 5.21).

Of course, performing the trial division takes some time, so let us also
estimate the expected number k(M,s) of trial divisions performed. If
P1,P2,- .-, pr are the primes up to s, then for ¢ = 1,...,r, the probabil-
ity that we perform at least i trial divisions is precisely 7(M,p; — 1). From
this, it follows (see Theorem 6.8) that

k(M,s) = ZT(M,p— 1) ~ ZBl/logp.

p<s p<s

Using Exercise 5.9 and the Prime number theorem, we obtain

K(M,s) ~ Z By/logp ~ Bym(s)/logs ~ Bys/(logs)?.
p<s

If £ = len(M), for a random n € {2,..., M}, the expected amount of
time spent within MRS (n,t,s) performing the Miller—Rabin test is now
easily seen to be O(k3/len(s) +tk?). Further, assuming that each individual
trial division step takes time O(len(n)), the expected running time of trial
division up to s is O(ks/len(s)?). This estimate does not take into account
the time to generate the small primes using the sieve of Eratosthenes. These
values might be pre-computed, in which case this time is zero, but even if we
compute them on the fly, this takes time O(slen(len(s))), which is dominated
by O(ks/ len(s)?)) for any reasonable value of s (in particular, for s < k().

So provided s = o(k?len(k)), the running time of MRS will be dominated
by the Miller-Rabin test, which is what we want, of course—if we spend
as much time on trial division as the time it would take to perform a single
Miller—Rabin test, we might as well just perform the Miller—-Rabin test. In
practice, one should use a very conservative bound for s, probably no more
than k2, since getting s arbitrarily close to optimal does not really provide
that much benefit, while if we choose s too large, it can actually do significant
harm.

From the above estimates, we can conclude that with £ < s < k2, the
expected running time W}, of MRS(n,t,s), with respect to a randomly
chosen n between 2 and M, is

Wi, = O(K3/len(k) + tk?). (10.4)

258 Probabilistic primality testing

From this, it follows that the expected running time of Algorithm RP on
input M is O(k*/len(k) + tk3). Thus, we effectively reduce the running
time by a factor proportional to len(k), which is a very real and noticeable
improvement in practice.
The reader may have noticed that in our analysis of MRS, we as-
sumed that computing n mod p for a “small” prime p takes time
O(len(n)). However, if we strictly followed the rules established in
Theorem 3.3, we should charge time O(len(n)len(p)) for this divi-

sion step. To answer this charge that we have somehow “cheated,”
we offer the following remarks.

First, in practice the primes p are so small that they surely will
fit into a single digit in the underlying representation of integers as
vectors of digits, and so estimating the cost as O(len(n)) rather than
O(len(n)len(p)) seems more realistic.

Second, even if one uses the bound O(len(n)len(p)), one can carry
out a similar analysis, obtaining the same result (namely, a speedup
by a factor proportional to len(k)) except that one should choose s
from a slightly smaller range (namely, s = o(k?)).

As we already mentioned, the above analysis is heuristic, but the results
are correct. We shall now discuss how this analysis can be made rigorous;
however, we should remark that any such rigorous analysis is mainly of the-
oretical interest only—in any practical implementation, the optimal choice
of the parameter s is best determined by experiment, with the analysis being
used only as a rough guide. Now, to make the analysis rigorous, we need
prove that the estimate 7(M,s) ~ [, (1 — 1/p) is sufficiently accurate.
Proving such estimates takes us into the realm of “sieve theory.” The larger
M is with respect to s, the easier it is to prove such estimates. We shall
prove only the simplest and most naive such estimate, but it is still good
enough for our purposes, if we do not care too much about hidden big-O
constants.

Before stating any results, let us restate the problem slightly. For real
y > 0, let us call a positive integer “y-rough” if it is not divisible by any
prime p up to y. For real x > 0, let us define R(z,y) to be the number
of y-rough integers up to x. Thus, since 7(M, s) is the probability that a
random integer between 2 and M is s-rough, and 1 is by definition s-rough,
we have 7(M,s) = (R(M,s) —1)/(M —1).

Theorem 10.8. For any real x > 0 and y > 0, we have

Rla.y) - o [T~ /)| < 270,

p<y

Proof. To simplify the notation, we shall use the Mébius function p (see

10.4 Generating random primes using the Miller—Rabin test 259

§2.6). Also, for a real number u, let us write v = |u| + {u}, where 0 <
{u} < 1. Let P be the product of the primes up to the bound y.

Now, there are |x| positive integers up to x, and of these, for each prime
p dividing P, precisely |z/p] are divisible by p, for each pair p,p’ of distinct
primes dividing P, precisely |z/pp’| are divisible by pp’, and so on. By
inclusion/exclusion (see Exercise 6.3), we have

R(z,y) =Y p(d)|x/d) = p(d)(z/d) = p(d){z/d}.
dP dP d|P
Moreover,
> uld)(@/d) =2 pd)/d=z][(1-1/p),
d|P d|P <y
and

> pd{z/di <> 1=2"W)

d|P d|P

That proves the theorem. O

This theorem only says something non-trivial when ¥ is quite small. Nev-
ertheless, using Chebyshev’s theorem on the density of primes, along with
Mertens’ theorem, it is not hard to see that this theorem implies that
T(M,s) = O(1/log s) when s = O(log M loglog M), which implies the esti-
mate (10.4) above. We leave the details as an exercise for the reader.

EXERCISE 10.10. Prove the claim made above that 7(M,s) = O(1/log s)
when s = O(log M loglog M). More precisely, show that there exist con-
stants ¢, d, and sg, such that for all M and d satisfying sg < s <
clog M loglog M, we have 7(M,s) < d/logs. From this, derive the esti-
mate (10.4) above.

EXERCISE 10.11. Let f be a polynomial with integer coefficients. For real
x > 0 and y > 0, define R¢(x,y) to be the number of integers m up to =
such that f(m) is y-rough. For positive integer M, define wy(M) to be the
number of integers m € {0, ..., M — 1} such that f(m) =0 (mod M). Show
that

yte0) — o [L0 s/ < [0+ s

EXERCISE 10.12. Consider again the problem of generating a random Sophie
Germain prime, as discussed in Exercises 10.7 and 10.8. A useful idea is to

260 Probabilistic primality testing

first test if either n or 2n + 1 are divisible by any small primes up to some
bound s, before performing any more expensive tests. Using this idea, design
and analyze an algorithm that improves the running time of the algorithm
in Exercise 10.8 to O(k®/len(k)? + tk3)—under the same assumptions, and
achieving the same error probability bound as in that exercise. Hint: first
show that the previous exercise implies that the number of positive integers
m up to x such that both m and 2m + 1 are y-rough is at most

1
. — (
g | | (1—2/p)+3™W,

2<p<y

EXERCISE 10.13. Design an algorithm that takes as input a prime ¢ and
a bound M, and outputs a random prime p between 2 and M such that
p = 1 (mod q). Clearly, we need to assume that M is sufficiently large
with respect to ¢q. Analyze your algorithm assuming Conjecture 5.24 (and
using the result of Exercise 5.22). State how large M must be with respect
to ¢, and under these assumptions, show that your algorithm runs in time
O(k*/len(k)+tk3), and that its output is incorrect with probability O(4~'k).
As usual, k :=len(M).

10.4.3 Generating a random k-bit prime

In some applications, we want to generate a random prime of fixed size—
a random 1024-bit prime, for example. More generally, let us consider the
following problem: given integer k > 2, generate a random k-bit prime, that
is, a prime in the interval 281, 2%).

Bertrand’s postulate (Theorem 5.7) implies that there exists a constant
¢ > 0 such that 7(2%) — 7(2F1) > 281 /K for all k > 2.

Now let us modify Algorithm RP so that it takes as input integer k > 2,
and repeatedly generates a random n in the interval {2F=1 ... 2% —1} until
IsPrime(n) returns true. Let us call this variant Algorithm RP’. Further,
let us implement IsPrime(-) as MR(-,t), for some auxiliary parameter ¢, and
define v/(k, t) to be the probability that the output of Algorithm RP’— with
this implementation of IsPrime—is composite.

Then using exactly the same reasoning as above,

9k—1
m(2%) — w(21)

As before, if the output of Algorithm RP’ is prime, then every k-bit prime

Y (k,t) <47t =04~ "k).

is equally likely, and the expected running time is O(k* + tk®). By doing
some trial division as above, this can be reduced to O(k*/len(k) + tk3).

10.5 Perfect power testing and prime power factoring 261

The function +/(k,t) has been studied a good deal; for example, the fol-
lowing is known:

Theorem 10.9. For all k > 2, we have
v (k1) < K242VE,
Proof. Literature—see §10.7. O

Upper bounds for v/ (k, t) for specific values of k and ¢ have been computed.
The following table lists some known lower bounds for —logy (' (k,t)) for
various values of k and ¢:

t\k || 200 | 300 | 400 | 500 | 600
1 11 19| 37| 56| 75

2 25| 33| 46| 63| 82
3 34| 44| 55| 70| 88
4 41| 53| 63| 78] 95
5 471 60| 72| 85| 102
Using exactly the same reasoning as the derivation of (10.3), one sees that
"(k,1)
/ k 1) < Y () —t—l—l.
’7(’)_1_7/(]671)

10.5 Perfect power testing and prime power factoring

Consider the following problem: we are given a integer n > 1, and want to
determine if n is a perfect power, which means that n = d° for integers d
and e, both greater than 1. Certainly, if such d and e exist, then it must be
the case that 2¢ < n, so we can try all possible candidate values of e, running
from 2 to |logyn|. For each such candidate value of e, we can test if n = d°
for some d as follows. Suppose n is a k-bit number, that is, 2F~1 < n < 2.
Then 2k=1/e < pl/e < 9K/ So any integer eth root of n must lie in the
set {u,...,v — 1}, where u := 2l(k=D/el and v := 2/F/¢l Using u and v as
starting values, we can perform a binary search:

262 Probabilistic primality testing

repeat
w— |(u+v)/2)
z — w°
if z =n then
declare than n = w® is an a perfect eth power, and stop
else if z < n then
u—w-+1
else
v —w
until © > v
declare that n is not a perfect eth power

If n = d° for some integer d, then the following invariant holds (verify):
at the beginning of each loop iteration, we have u < d < v. Thus, if n is
a perfect eth power, this will be discovered. That proves the correctness of
the algorithm.

As to its running time, note that with each loop iteration, the length v —u
of the search interval decreases by a factor of at least 2 (verify). Therefore,
after t iterations the interval will be of length at most 28/¢+1/2 so after
at most k/e + 2 iterations, the interval will be of length less than 1, and
hence of length zero, and the algorithm will halt. So the number of loop
iterations is O(k/e). The power w® computed in each iteration is no more
than 2(k/et1)e — gk+e < 92k and hence can be computed in time O(k?) (see
Exercise 3.22). Hence the overall cost of testing if n is an eth power using
this algorithm is O(k3/e).

Trying all candidate values of e from 1 to |log, n] yields an overall running
time for perfect power testing of O(}", k3/e), which is O(k®len(k)). To find
the largest possible value of e for which n is an eth power, we should examine
the candidates from highest to lowest.

Using the above algorithm for perfect power testing and an efficient pri-
mality test, we can determine if an integer n is a prime power p¢, and if so,
compute p and e: we find the largest positive integer e (possibly 1) such
that n = d° for integer d, and test if d is a prime using an efficient primality
test.

10.6 Factoring and computing Euler’s phi function

In this section, we use some of the ideas developed to analyze the Miller—
Rabin test to prove that the problem of factoring n and the problem of
computing ¢(n) are equivalent. By equivalent, we mean that given an effi-

10.6 Factoring and computing Fuler’s phi function 263

cient algorithm to solve one problem, we can efficiently solve the other, and
vice Versa.
Clearly, one direction is easy: if we can factor n into primes, so

n=p'-p, (10.5)
then we can simply compute ¢(n) using the formula

¢(n) =p;' " (pr — 1) pH(pr — 1).

For the other direction, first consider the special case where n = pgq, for
distinct primes p and ¢. Suppose we are given n and ¢(n), so that we have
two equations in the unknowns p and g¢:

n=pq and ¢(n)=(p—1)(¢g—1).

Substituting n/p for ¢ in the second equation, and simplifying, we obtain

P°+(¢(n) —n—1)p+n,
which can be solved using the quadratic formula.

For the general case, it is just as easy to prove a stronger result: given
any non-zero multiple of the exponent of Z;,, we can efficiently factor n. In
particular, this will show that we can efficiently factor Carmichael numbers.

Before stating the algorithm in its full generality, we can convey the main
idea by considering the special case where n = pq, where p and ¢ are distinct
primes, with p = ¢ = 3 (mod 4). Suppose we are given such an n, along
with f # 0 that is a common multiple of p — 1 and ¢ — 1. The algorithm
works as follows: let f = 2"m, where m is odd; choose a random, non-zero
element « of Zy; test if either ged(rep(«),n) or ged(rep(a™) + 1,n) splits n
(recall that rep(«) denotes the canonical representative of).

The assumption that p = 3 (mod 4) means that (p—1)/2 is an odd integer,
and since f is a multiple of p — 1, it follows that ged(m,p—1) = (p — 1)/2,
and hence the image of Z, under the m-power map is the subgroup of Z;, of
order 2, which is {+1}. Likewise, the image of Z; under the m-power map
is {£1}. Let 0 : Z), x Zqy — Zy, be the ring isomorphism from the Chinese
remainder theorem. Now, if o in the above algorithm does not lie in Z;,
then certainly ged(rep(ar),n) splits n. Otherwise, condition on the event
that € Zj,. In this conditional probability distribution, « is uniformly
distributed over Z}, and § := o™ is uniformly distributed over (%1, +£1).

ns
Let us consider each of these four possibilities:

e 3=0(1,1) implies 5+ 1 = 0(2,2), and so ged(rep(B) + 1,n) = 1;
e 3=0(—1,—1) implies B+ 1 = 6(0,0), and so ged(rep(B) + 1,n) = n;

264 Probabilistic primality testing

e =060(—1,1) implies 5+ 1 = 6(0,2), and so ged(rep(3) + 1,n) = p;

e 3=0(1,—1) implies 5+ 1 = 0(2,0), and so ged(rep(B) + 1,n) = q.
Thus, if 5 =60(—1,1) or 8 = 6(1,—1), which happens with probability 1/2,
then ged(rep(5) + 1,n) splits n. Therefore, the overall probability that we
split n is at least 1/2.

We now present the algorithm in its full generality. We first introduce
some notation; namely, let A(n) denote the exponent of Z}. If the prime
factorization of n is as in (10.5), then by the Chinese remainder theorem,
we have

A(n) =lem(A(p7'), ..., A(py"))-
Moreover, for any prime power p®, by Theorem 10.1, we have

-1 :
e [pip—-1) ifp#20re<2,
A(p)—{26_2 if p=2ande>3.

In particular, if m | n, then A(m) | A(n).

Now, returning to our factorization problem, we are given n and a non-
zero multiple f of A\(n), and want to factor n. We may as well assume that
n is odd; otherwise, we can pull out all the factors of 2, obtaining n’ such
that n = 2°n/, where n’ is odd and f is a multiple of A\(n'), thus, reducing
to the odd case.

So now, assume n is odd and f is a multiple of A(n). Assume that f is
of the form f = 2"m, where m is odd. Our factoring algorithm, which we
describe recursively, runs as follows.

if n is a prime power p€ then
output e copies of p and return
generate a random, non-zero element « of Z,
dy — ged(rep(a),n)
if dy # 1, then recursively factor d; and n/d; (using the same f),
and return
a—a™
for j«—0toh—1do
dy «— ged(rep(a) + 1,n)
if dy ¢ {1,n}, then recursively factor dy and n/dy
(using the same f), and return
o — o
recursively factor n (using the same f)

It is clear that when the algorithm terminates, its output consists of the

10.6 Factoring and computing Fuler’s phi function 265

list of all primes (including duplicates) dividing n, assuming the primality
test does not make a mistake.

To analyze the running time of the algorithm, assume that the prime
factorization of n is as in (10.5). By the Chinese remainder theorem, we
have a ring isomorphism

O:Zpelzl X oo X Lper — L.

Let A(pj') = m;2", where m; is odd, for i = 1,...,r, and let ¢ :=
max{hy,...,h,}. Note that since A(n) | f, we have £ < h.

Consider one execution of the body of the recursive algorithm. If n is
a prime power, this will be detected immediately, and the algorithm will
return. Here, even if we are using probabilistic primality test, such as the
Miller-Rabin test, that always says that a prime is a prime, the algorithm
will certainly halt. So assume that n is not a prime power, which means
that » > 2. If the chosen value of « is not in Z, then d; will be a non-
trivial divisor of n. Otherwise, conditioning on the event that a € Z, the
distribution of « is uniform over Z;. Consider the value 3 := am2

We claim that with probability at least 1/2, ged(rep(5) + 1,n) is a non-
trivial divisor of n. To prove this claim, let us write

B=0(b,....0)
where 3; € Z;:i fori =1,...,7. Note that for those i with h; < £, the m2¢~1-
power map kills the group Z;fi, while for those ¢ with h; = ¢, the image of
Z;(_gi under the m2/~!-power map is {#1}. Without loss of generality, assume

that the indices i such that h; = ¢ are numbered 1,...,r’, where 1 </ <.
The values 3; for i = 1,...,7" are uniformly and independently distributed
over {£1}, while for all i > ¢/, 5; = 1. Thus, the value of ged(rep(3) + 1,n)
is the product of all prime powers p;’, with §; = —1, which will be non-
trivial unless either (1) all the j3; are 1, or (2) 7/ = r and all the 3; are —1.
Consider two cases. First, if v’ < r, then only event (1) is possible, and this
occurs with probability 27 <1 /2. Second, if 7/ = r, then each of events
(1) and (2) occurs with probability 27", and so the probability that either
occurs is 2771 < 1/2. That proves the claim.

From the claim, it follows that with probability at least 1/2, we will obtain
a non-trivial divisor dy of n when j = ¢ — 1 (if not before).

So we have shown that with probability at least 1/2, one execution of the
body will succeed in splitting n into non-trivial factors. After at most log, n
such successes, we will have completely factored n. Therefore, the expected
number of recursive invocations of the algorithm is O(len(n)).

266 Probabilistic primality testing

EXERCISE 10.14. Suppose you are given an integer n of the form n = pq,
where p and q are distinct, ¢-bit primes, with p = 2p' + 1 and ¢ = 2¢' + 1,
where p’ and ¢’ are themselves prime. Suppose that you are also given an
integer m such that ged(m, p'q’) # 1. Show how to efficiently factor n.

EXERCISE 10.15. Suppose there is a probabilistic algorithm A that takes
as input an integer n of the form n = pq, where p and ¢ are distinct, ¢-bit
primes, with p = 2p’ + 1 and ¢ = 2¢' + 1, where p’ and ¢ are prime. The
algorithm also takes as input a, 3 € (Z%)2. It outputs either “failure,” or
integers x,y, not both zero, such that o*3Y = 1. Furthermore, assume that
A runs in strict polynomial time, and that for all n of the above form, and
for randomly chosen «, 3 € (Z*)?, A succeeds in finding z,y as above with
probability e(n). Here, the probability is taken over the random choice of «
and [, as well as the random choices made during the execution of A. Show
how to use A to construct another probabilistic algorithm A’ that takes as
input n as above, runs in expected polynomial time, and that satisfies the
following property:

if e(n) > 0.001, then A’ factors n with probability at least
0.999.

10.7 Notes

The Miller-Rabin test is due to Miller [63] and Rabin [75]. The paper by
Miller defined the set L/, but did not give a probabilistic analysis. Rather,
Miller showed that under a generalization of the Riemann hypothesis, for
composite n, the least positive integer a such that [a], € Z, \ L], is at
most O((logn)?), thus giving rise to a deterministic primality test whose
correctness depends on the above unproved hypothesis. The later paper by
Rabin re-interprets Miller’s result in the context of probabilistic algorithms.

Bach [10] gives an explicit version of Miller’s result, showing that under
the same assumptions, the least positive integer a such that [a], € Z,, \ L,
is at most 2(logn)?; more generally, Bach shows the following holds under
a generalization of the Riemann hypothesis:

For any positive integer n, and any proper subgroup G C Z7,
the least positive integer a such that [a], € Z,, \ G is at most
2(log n)?, and the least positive integer b such that [b],, € Z*\G
is at most 3(logn)?.

The first efficient probabilistic primality test was invented by Solovay and
Strassen [94] (their paper was actually submitted for publication in 1974).

10.7 Notes 267

Later, in Chapter 22, we shall discuss a recently discovered, deterministic,
polynomial-time (though not very practical) primality test, whose analysis
does not rely on any unproved hypothesis.

Carmichael numbers are named after R. D. Carmichael, who was the
first to discuss them, in work published in the early 20th century. Al-
ford, Granville, and Pomerance [7] proved that there are infinitely many
Carmichael numbers.

Exercise 10.6 is based on Lehmann [55].

Theorem 10.7, as well as the table of values just below it, are from Kim
and Pomerance [53]. In fact, these bounds hold for the weaker test based
on L.

Our analysis in §10.4.2 is loosely based on a similar analysis in §4.1 of
Maurer [61]. Theorem 10.8 and its generalization in Exercise 10.11 are
certainly not the best results possible in this area. The general goal of
“sieve theory” is to prove useful upper and lower bounds for quantities like
R¢(x,y) that hold when y is as large as