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Kurzzusammenfassung

Die vorliegende Arbeit leistet einen Beitrag zur qualitativen Theorie di�erential-
algebraischer Systeme (engl. di�erential-algebraic equations, DAEs), indem neue
Stabilitätskriterien für eine Klasse nichtlinearer, voll-impliziter DAEs mit proper
formuliertem Hauptterm und Traktabilitätsindex 1 und 2 hergeleitet werden.

Das Theorem von Andronov-Witt wird auf asymptotische orbitale Stabilität von
periodischen Lösungen voll-impliziter autonomer DAEs verallgemeinert. Zu diesem
Zweck wird eine Zustandsraumdarstellung von di�erential-algebraischen Systemen
um eine Referenzlösung herausgearbeitet, welche u.a. die autonome Struktur einer
DAE korrekt wiederspiegelt. Sie basiert auf einer Verfeinerung der vollständi-
gen Entkopplung im Rahmen des Traktabilitätsindex und setzt daher nur mod-
erate Di�erenzierbarkeit der Systemgleichungen voraus. Die Transformation auf
diese Zustandsraumdarstellung kommutiert mit Linearisierung entlang gleicher Lö-
sung, folglich können charakteristische Multiplikatoren des Variationssystems der
inhärenten Dynamik einer DAE in Termen des Ausgangssystems formuliert wer-
den.

Ein weiterer Schwerpunkt der Dissertation ist die Verallgemeinerung der direk-
ten Methode von Lyapunov auf di�erential-algebraische Systeme. Es werden neue
De�nitionen von Lyapunov-Funktionen für di�erenzierbare Lösungskomponenten
einer proper formulierten DAE aufgestellt, bei denen die Monotonie entlang von
Lösungen in Termen des Ausgangssystems ausgedrückt wird. Es stellt sich her-
aus, dass ein zylindrischer De�nitionsbereich der inhärenten Dynamik neben der
Existenz einer solchen Lyapunov Funktion entscheidend ist, um die Lösbarkeit auf
unbeschränkten Intervallen zu garantieren. Dabei werden praktische Stabilitäts-
kriterien für beschränkte Lösungen von autonomen DAEs und für allgemeine Lö-
sungen von DAEs mit beschränkten partiellen Ableitungen der Systemgleichungen
bewiesen. Der Zugang erlaubt auch eine Interpretation bekannter Kontraktivitäts-
begri�e für di�erential-algebraische Systeme.

Schlagwörter: nichtlineare di�erential-algebraische Systeme, Traktabilitätsin-
dex, asymptotische Stabilität, orbitale Stabilität, Andronov-Witt Theorem, Lya-
punov Funktion, Kontraktivität, charakteristische Multiplikatoren, Zustandsraum-
darstellung, Dissipativität.



Abstract

This thesis contributes to the qualitative theory of di�erential-algebraic equations
(DAEs) by providing new stability criteria for solutions of a class of nonlinear,
fully implicit DAEs with a properly stated derivative term and tractability index
one and two.

A generalization of the Andronov-Witt Theorem addressing orbital stability is
proved. To this purpose, a state space representation of di�erential-algebraic sys-
tems based on the tractability index is developed which has advantageous proper-
ties, e.g. moderate smoothness requirements, commutativity with linearization and
an autonomous structure in case of autonomous DAEs. It allows a suitable de�ni-
tion of characteristic multipliers referring to the inherent dynamics, but given in
terms of the DAE.

Furthermore, the fundamentals of Lyapunov's direct method with respect to di�e-
rential-algebraic systems are worked out. Novel de�nitions of Lyapunov functions
for di�erentiable solution components of a DAE are stated, where the monotoni-
cally decreasing total time derivative of a Lyapunov function along DAE solutions
is expressed in terms of the original system. The topology of the domain of the
inherent dynamics turns out to be decisive for nonlocal existence of solutions given
a Lyapunov function. As a result, practical stability criteria for bounded solutions
of autonomous DAEs and for general solutions of DAEs with bounded partial
derivatives of the constitutive function arise. Known contractivity de�nitions for
DAEs can be interpreted in the context of this approach.

Key words: nonlinear di�erential-algebraic systems, tractability index, asymp-
totic stability, orbital stability, Andronov-Witt theorem, Lyapunov function, con-
tractivity, characteristic multipliers, state space form, dissipativity.
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Introduction

Differential-algebraic equations (DAEs) emerge from several areas of mathematics,
including important applications like modelling of electronic circuits, constrained me-
chanical systems or solution of continuous optimization problems using Pontryagin’s
maximum principle. A thorough and systematical research on DAEs correlates with
advancing development of computer technology in the last four decades. Considerable
progress has been achieved in this period of time resulting e.g. in different concepts of
an index of a DAE as a measure of its structural complexity. In particular, stability of
solutions of differential-algebraic equations appears on the agenda due to its practical
importance. Although elaborate results are available for ordinary differential equa-
tions, a comprehensive stability analysis of differential-algebraic systems is an issue
of ongoing research. The goal of the present work is to contribute to the qualitative
theory of differential-algebraic systems by providing new asymptotic stability criteria
for a class of nonlinear, fully implicit DAEs with tractability index two. Here, sta-
bility refers to the propagation of perturbations in initial values of exact DAEs on
[t0,∞). We aim at practical stability criteria under acceptable requirements using an
integrative framework.

Differential-algebraic equations are dynamical systems expressed in redundant coordi-
nates. Most commonly, DAEs are regarded as coupled systems of ordinary differential
equations and algebraic constraints or as vector fields on manifolds. Both approaches
are closely related, the latter (geometric) approach being the coordinate-free formu-
lation of the first one. That is, the mentioned vector field can be locally represented
by an ordinary differential equation using a parametrization of the the tangent bun-
dle of the constraint manifold. Thus the concept of a local state space form (SSF)
of a DAE, i.e. the formulation as a differential equation in minimal coordinates is
introduced. Anyway, one has to ascertain intrinsic properties having access only to
an implicit representation (like f (x′ (t) , x (t) , t) = 0) of the desired vector field or
SSF of the DAE. In this regard we prefer the state space form for the stability inves-
tigations because it results in quite usable assumptions on the given DAE. In order
to obtain the state space form, we take up and refine the decoupling approach in
the context of the tractability index. This index is applied because of its algorith-
mic definition and favourable properties. Under certain conditions, we prove that a
differentiable manifold is generated by solutions of differential-algebraic index-2 equa-
tions in a neighbourhood of a reference trajectory. The number of effective degrees
of freedom equals the dimension of this manifold which is less than dimension of the
embedding vector space. Decoupling a differential-algebraic equation means to reduce
the dynamics to a lower dimensional state space, that is to express the dynamics in
minimal coordinates. Thereby, an explicit representation of algebraic constraints acts
as a parametrization of a section of the solution set. The presented construction of
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the local state space form necessitates less smoothness than comparable approaches
using derivative arrays.

A distinguishing mark of the present work is that stability of the state space form is
ensured using criteria in terms of the original DAE only. It is understood that neither
an explicit access to the state space form nor a parametrisation of the tangent bundle
of the constraint manifold are necessary in order to formulate our stability criteria.

First, we present is a generalization of the Andronov-Witt theorem to fully implicit
differential algebraic equations of index k = 1, 2. Our result in Theorem 5.8 covers
self-oscillating systems, i.e. autonomous DAEs with a periodic solution, hence being a
reasonable endorsement of the available stability theory with respect to forced oscilla-
tions, i.e. periodic solutions of periodic DAEs. It allows a nice geometric interpretation
via the state space form. Besides, the idea of orbital stability is barely considered in
the context of the tractability index up to the present. Given sufficient smoothness,
necessary structural conditions are prevalent in a class of DAEs resulting from the
charge oriented modified nodal analysis in circuit simulation. One of them, i.e. con-
stancy a systemic subspace along the reference solution is already known to be essential
for the adequate qualitative behaviour of Runge-Kutta and BDF-discretizations. In
other words, Theorem 5.8 could be of interest in practice.

We set up partial stability criteria using presumably new definitions of a Lyapunov
function for differential-algebraic systems. An important feature of such a Lyapunov
function referring to Dx resp. DP1-components of the solution vector is the dissipation
inequality (6.7) resp. (6.13) expressing the decrease of the Lyapunov function along
integral curves of the DAE implicitly, but given in terms of the original DAE. Our
investigations reveal that nonlocal existence of solutions is the crucial issue in case of
differential-algebraic systems and this part is linked to an appropriate topology of the
domain of the inherent dynamics which has to contain a cylindrical region around the
reference solution. Related stability criteria covering a class of differential-algebraic
systems omitted in previous publications are set up. Among others, practical stabil-
ity criteria addressing the entire solution vector are stated for bounded solutions of
autonomous DAEs with index k = 1, 2 and for general index-1 systems with bounded
derivatives. Our definitions fit well into the established theory, e.g. offering an inter-
pretation of P0-contractivity.

In the process, a manifold enclosing the solution manifold of the DAE is constructed
replacing some constraints by formal differentiation of those equations along suitable
functions. The procedure is proved to decrease the tractability index of the resulting
differential-algebraic system. If we transform the index reduced system to its state
space form, we get an implicit parametrisation of the enclosing manifold which can be
restricted to the constraint manifold of the original system. Strictly speaking, our def-
inition of a Lyapunov function of an index-2 DAE applies to the inherent dynamics of
the index reduced system. Due to a higher dimensional state space form, it is possible
to prove stability of a superset of dynamical components.1 As a matter of principle,
stability of the state space form does not allow to deduce the asymptotic behaviour of

1We call a component of the solution vector of a DAE dynamical, if it is possible to assign an
unrestricted initial value to that component.
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the whole solution vector. It is conceivable that the expansion of the solution mani-
fold in time is much faster than the convergence rate of DAE solutions with perturbed
initial values towards a reference trajectory. Obviously, this cannot happen in case
of autonomous or periodic differential-algebraic systems, in this case stronger stabil-
ity results are achieved. The same applies to DAEs having a parametrisation of the
constraint manifold subject to a uniform Lipschitz condition. Unfortunately, feasible
sufficient conditions guaranteeing this property are very restrictive. Introducing the
notion ofM -component-stability as an adequate modification of partial stability in the
sense of Lyapunov seems to be a legitimate trade-off between the above considerations
and workable assumptions on the DAE.

To sum up, the state space analysis of differential-algebraic systems substantiates
the aspiration that it is possible to adapt intricate results of the qualitative theory
of differential equations to differential-algebraic systems. For example, the present
dissertation enriches the existing arsenal of mathematical tools for DAEs relating to
both direct and indirect method of Lyapunov.

This thesis is structured in two parts. The first one deals with the state space analysis
of differential-algebraic equations adapting the concepts behind the tractability index
to our stability investigations. For that purpose we introduce the tractability index
together with a proper formulation of the derivative term of a DAE in the first chap-
ter. We do not confine ourselves to technical details, but also indicate the origin of the
tractability index of nonlinear DAEs and ponder a geometric interpretation of some
systemic subspaces of the matrix chain. Moreover, the inherent dynamics and funda-
mental matrices of linear DAEs are considered. In the second chapter, we construct
a state space representation of the inherent dynamics for a class of nonlinear index-2
DAEs. Structural conditions on autonomous DAEs which imply the existence of an
autonomous state space form are stated. We prove commutativity of our transforma-
tion to the state space form and linearization as foundation of Lyapunov’s indirect
method for DAEs. The third chapter is dealing with the reduction of the tractabil-
ity index two via differentiation of suitable constraints. From the geometric point of
view, a manifold enclosing the constraint manifold of the given DAE is constructed.
It turns out to be an easy way of verifying local constancy of the tractability index.
This approach is particularly useful for defining Lyapunov functions.

In the second part of this thesis, the state space analysis is applied to obtain asymptotic
stability criteria for solutions of nonlinear DAEs. In Chapter 4, stability concepts for
differential-algebraic systems, particularly orbital stability of autonomous DAEs and
the notion of M -component stability are introduced. We present a definition of char-
acteristic multipliers of periodic solutions in case of autonomous or periodic DAEs
exhibiting a properly stated derivative term in Chapter 5. Our approach is targeted
on the state space representation, but is given strictly in terms of the differential-
algebraic system. Therefore, we are able to make the Andronov-Witt Theorem and a
further stability result accessible to fully implicit index-2 DAEs. Chapter 6 is deal-
ing with Lyapunov’s direct method for differential-algebraic equations, mainly with
suitable Lyapunov functions in terms of the initial system for systems of index one
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and two. We specify the requirements needed to use the existence of such Lyapunov
function as a criterion for (asymptotic) stability. The presented approach seems to
be an interesting alternative in comparison to existing definitions of Lyapunov func-
tions for singular differential equations and DAEs. To begin with, our modification of
the stability in the sense of Lyapunov enables us to do without requiring a bounded
solution set of the differential-algebraic system under consideration. The analytic ap-
proach considered in Chapter 6 proves to be the right framework to interpret known
contractivity definitions for index-2 systems. Apparently, a new formulation of a least
upper bound logarithmic Lipschitz constraint for DAEs directly linked to the notion of
D-component contractivity is also possible. This is pointed out in Chapter 7. More-
over, it is shown that the reduction of the tractability index indicates a generalization
of a regularization approach for Hessenberg-2 DAEs to fully implicit systems with
certain structural assumptions. Chapter 7 also comprises an outline of how to apply
presented methods to properly formulated DAEs with tractability index 3. Some hints
at an algorithmic approach to compute a Lyapunov function for differential-algebraic
systems are presented. Finally, we mention some open problems encountered during
the research.
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Notation

∃ there exists
∀ for all
x ∈M x is an element of the set M
M ⊆ N M is a subset of N
N ∪M union of sets N , M
N ∩M intersection of sets N , M

R set of real numbers

Rn n-times direct product with canonical structure of a
n-dimensional vector space over R

dimV algebraic dimension of a vector space V
kerA the kernel of a matrix A
trA trA =

∑n
i=1Aii the trace of a matrix A ∈ Rn×n

im A the range of a matrix A
rk A the rank of a matrix A
cork A cork A = dim (kerA) the nullity or co-rank of a matrix A
f (M) f (M) := {f (x) |x ∈M} for a mapping f : M1 ⊇M →M2

LM LM := L (M) for a linear mapping L
GLn (R) general linear group, group of invertible matrices in Rn×n

0n×m null matrix in Rn×m

0n 0n := 0n×n, the additive neutral element in GLn (R)

In the identity matrix (In)ij = δij :=

{
1 i = j

0 i 6= j
in Rn×n

An×m symbolizes that A is an n×m-matrix
1n the vector (1, . . . , 1)T ∈ Rn

ei ∈ Rn the i-th column vector in In

M the closure of a set M ⊆ Rm

M0 the open interior of a set M ⊆ Rm

∂M the boundary ∂M := M\M0 of M ⊆ Rm

dist (N,M)
dist (N,M) := inf {‖x− y‖ | x ∈ N, y ∈M} the distance
between two subsets N,M of a normed linear space V

Br (x)
Br(x) := {z ∈ V | ‖z − x‖ ≤ r} open spherical region around
x with radius r in a normed space V

Ck (U,Rn)
linear space of k-times (k ≥ 0) continuously differentiable
functions f : U → Rn where U ⊆ Rm is an open set
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C (U,Rn),
C0 (U,Rn)

C (U,Rn) = C0 (U,Rn) linear space of continuous functions
f : U → Rn where U ⊆ Rm is an open set

Lb (X, Y )
the set of linear and bounded operators X → Y between
normed spaces X, Y

∂
∂v
f (x0)

∂
∂v
f(x0) = lims→0

1
s
[f(x0 + sv)− f(x0)] directional derivative

of f in the direction v at the point x0

fy (y, x, t)
fy (y, x, t) := ∂

∂y
f (y, x, t) the partial derivative of f with

respect to y at (y, x, t)
Df (x0) Jacobian of a differentiable function f at the point x0

x′(t), ẋ (t) x′ (t) = ẋ (t) = ∂x
∂t

for a differentiable function x = x (t)
TxM tangent space to the manifoldM at the point x
TM tangent bundle to the manifoldM

DAE Differential Algebraic Equation

ODE Ordinary Differential Equation (meant to be
explicit/regular/in the canonical form x′ (t) = f (x (t) , t))

IVP Initial Value Problem
BVP Boundary Value Problem
IRODE Inherent Regular Ordinary Differential Equation
IR-DAE Index Reduced Differential-Algebraic Equation
MNA Modified Nodal Analysis

Let I ⊆ R, D (t) ∈ Rn×m and x∗ ∈ C1
D (I,Rm):

integral curve of x∗ {(x∗ (t) , t) ∈ Rm × I | t ∈ I}
extended integral curve of x∗

{(
(Dx∗)

′ (t) , x∗ (t) , t
) ∈ Rn × Rm × I | t ∈ I}

trajectory of x∗ {x∗ (t) ∈ Rm | t ∈ I}
extended trajectory of x∗

{(
(Dx∗)

′ (t) , x∗ (t)
) ∈ Rn × Rm | t ∈ I}



Part I

State space analysis of
differential-algebraic equations





1 Properly formulated DAEs with
tractability index 2

Introduction

Only for you, children of doctrine and learning, have we written this
work. Examine this book, ponder the meaning we have dispersed in
various places and gathered again; what we have concealed in one place
we have disclosed in another, that it may be understood by your wisdom.

(Heinrich Cornelius Agrippa von Nettesheim, De occulta philosophia, 3)

Undoubtedly, differential equations are the most important tool of mathematical mod-
elling. Since the early days of calculus, research on ordinary differential equations
has been leading to qualitative considerations. The French Academy of Sciences for-
mulated the goal to obtain stability criteria for ODEs about the year 1820, which
was a considerable milestone. Consecutively, stability criteria for linear systems with
constant coefficients were developed by famous mathematicians like Hermite (1856),
Routh (1877) and Hurwitz (1895), predominantly by algebraic approaches. Important
contributions to nonlinear systems were made by Henri Poincare. The most common
concept is stability in the sense of Lyapunov in honor of the Russian mathematician
A. M. Lyapunov. His outstanding treatise “The general problem of the stability of
motion” (1892) has a lasting influence on this area of research. In the middle of the
last century, Lyapunov’s direct method generalizing mechanical potentials (by means
of so called Lyapunov functions) was strengthened by the achievements of LaSalle,
Zubov, Yoshizawa, Malkin and many others. Besides, Lyapunov’s indirect method
based upon the linearization principle makes interesting stability criteria possible.

Fundamental research on differential-algebraic systems is far less advanced compared
to explicit ODEs. That is why we are going to clarify the mathematical background
of a class of nonlinear fully implicit systems with tractability index up to two in the
first part of this thesis. In doing so, we do not aim at an all-embracing introduction
neither to differential-algebraic equations nor to stability of ODEs. Instead, we focus
on a self-contained and goal-oriented presentation. We try to clarify and motivate
the analytical approaches to DAEs used in this thesis and to present our stability
results in an understandable way. The publications listed in the necessarily incomplete
bibliography might be helpful in order to delve into the subject and to classify the
presented results. Additional references can be found in the cited papers.

The first chapter contains the necessary fundamentals associated with differential-
algebraic equations and the tractability index. They are used to construct a state
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space representation (SSF) of DAEs with properly stated derivative term nearby a ref-
erence solution. Details on the construction of the SSF and its properties are dealt with
in Chapter 2. These results are essential for the indirect method of Lyapunov applied
to DAEs as presented in Chapter 6. Lyapunov functions for differential-algebraic sys-
tems are based on reduction of the tractability index via differentiation of constraints
presented in Chapter 3.

Definition 1.1. Let G ⊆ Rm × Rm × R be a region and f = f(y, x, t) ∈ C(G,Rm)
continuously partial differentiable with respect to y. If ∂

∂y
f(y, x, t) is not of full rank

on G then the implicit ordinary differential equation

f(x′(t), x(t), t) = 0 (1.1)

is called differential-algebraic equation, abbreviated DAE.

Accordingly, DAEs are implicit ordinary differential equations which cannot be solved
for the derivative using the implicit function theorem on its entire domain. Differential-
algebraic systems are also known as semi-state or semistate systems, singular sys-
tems or descriptor systems, confer [Ria08, § 1.1] and the abundant (historic) refer-
ences therein. The structural complexity of ODEs pales in comparison to differential-
algebraic equations. Hence unique solvability cannot be proved using the same func-
tional analytic means and one has to demand additional structural characteristics. As
a general rule, it is recommendable to investigate systems possessing a certain upper
bound on structural complexity, in other words a fixed index.

Varying rank of the partial derivative fy might impact seriously on considered differen-
tial-algebraic systems. For example, a transition from rk fy = k > 0 to rk fy = 0
implies that derivatives of solution components cease to exist in the equations. Fol-
lowing the lines of [GM86, §1.2.2], we restrict our attention to DAEs satisfying the
constant rank condition rk fy (y, x, t) = const. on the entire domain in order to avoid
singularities. Such DAEs are called normal DAEs in [GM86, p. 30]. In addition, we
use a modified representation of a DAE which has proved to be more suitable both for
theoretical analysis and numerical integration schemes.

1.1 Properly stated derivative term

It is common practice to refer to an idempotent (P 2 = P ) linear mapping P as
projector. P projects onto the subspace V1 if im P = V1 and P projects along V2 if
kerP = V2. Some basic properties of projectors are given in Lemma 8.1.

Definition 1.2. Let G ⊆ Rn×Rm×R be a region containing the connecting segment
for any (y, x, t) , (z, x, t) ∈ G. Let I = {t ∈ R | (y, x, t) ∈ G} and

D ∈ C(I,Rn×m), f = f(y, x, t) ∈ C(G,Rm) with fy ∈ C
(G,Rm×n) .

The implicit system
f
(
(D(t)x(t))′ , x(t), t

)
= 0 (1.2)
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is called a differential-algebraic system with a properly stated derivative term or prop-
erly formulated DAE, if

ker fy(y, x, t)⊕ im D(t) = Rn for all (y, x, t) ∈ G (1.3)

and there is a projector R ∈ C1(I,Rn×n) onto im D(t) along ker fy(y, x, t).

We tacitly assume rk fy < m so the properly formulated system is a differential-
algebraic one according to Definition (1.1). In order to avoid singularities, normal
DAEs only are considered, i.e.

rk D(t) ≡ r and rk fy(y, x, t) ≡ n− r
Lemma 1.3. Condition (1.3) is equivalent to the following one:

ker fy (y, x, t) ∩ im D(t) = {0}
im fy (y, x, t)D(t) = im fy (y, x, t)
ker fy (y, x, t)D(t) = kerD(t)

 for all (y, x, t) ∈ G

Proof. See [MHT03a, Lemma 29].

Essentially, the proper formulation of the derivative term is a suitable restriction on
ker fy (y, x, t). In particular, ker fy(y, x, t) = kerR(t) is independent of y and x because
of (1.3), im D(t) and ker fy (y, x, t) have continuously differentiable basis functions due
to projector R ∈ C1 and a constant dimension. It follows that a properly formulated
DAE is equivalent to

f
(
R(t) (Dx)′ (t), x(t), t

)
= 0

due to the mean value theorem

f (y, x, t)− f (R(t)y, x, t) =

ˆ 1

0

fy (R(t)y + s (I −R (t)) y, x, t) (I −R (t)) yds = 0

We recognize that differentiability of solution components in ker fy = kerD(t) is com-
pletely unnecessary, therefore it is possible to weaken the classical notion of solution
of a differential equation.

Definition 1.4. Consider the DAE (1.2) with properly stated derivative term. A
function

x ∈ C1
D (I0,Rm) := {x ∈ C (I0,Rm) | Dx ∈ C1 (I0,Rn)}

satisfying the DAE on the t-interval I0 ⊆ I is called a solution of the DAE on I0.

C1
D (I0,Rm) is a vector space over R using pointwise addition and scalar multiplication.

In this context, it is natural to equip the space with the modified C1-norm

‖x‖C1
D

:= ‖x‖∞ + ‖(Dx)′‖∞
Then (C1

D, ‖.‖C1
D

) is a Banach space (compare [GM86, theorem 9]). We are going to de-
note such function spaces with restricted differentiability by C1

M = {x ∈ C0 |Mx ∈ C1},
M ∈ C (I,Rs×m).
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Definition 1.5. We call the set

M0(t) := {x ∈ Rm | ∃y ∈ Rn : (y, x, t) ∈ G and f(y, x, t) = 0}
obvious or first-level constraint of the DAE (1.2) in t ∈ I.

For any solution x ∈ C1
D (I0,Rm) of a differential-algebraic equation x(t) ∈ M0(t)

holds because of
(
(Dx)′ (t) , x (t) , t

) ∈ G and f
(
(Dx)′ (t), x (t) , t

)
= 0. In Lemma

1.19, we show that for properly formulated DAEs

∀x ∈M0 (t)∃!y = R (t) y : f (y, x, t) = 0

is valid, i.e. the components R (t) (Dx)′ (t) proceeding in im D (t) are uniquely defined.
Notice that in general R (Dx)′ = (Dx)′ +R′Dx 6= (Dx)′.

Definition 1.6. The solution set or configuration space of a differential-algebraic
system (evaluated at time t ∈ I) is a subset M(t) ⊆ M0 (t) ⊆ Rm possessing the
property that ∀t ∈ I, x0 ∈ M (t) there exists a solution x ∈ C1

D of the DAE fulfilling
x(t) = x0. The elements x0 ∈ M (t) are called consistent initial values of the given
system.

The notion of the configuration space of DAEs seems to be abstract. Later on we prove
thatM0 (t) is the solution set of an index-1 DAE. Thus we denote the configuration
space of an index-k system byMk−1 (t).or

Definition 1.7. Consider a matrix A ∈ Rm×n and projectors R ∈ Rn×n along kerA
and S ∈ Rm×m onto im A. The unique reflexive generalized inverse A− ∈ Rn×m (also
called pseudoinverse) with

A−AA− = A− (generalized inverse)
AA−A = A (reflexive)

is well-defined by

A−A = R, AA− = S

Let us mention that
im A− = im R, kerA− = kerS

is true due to

im A− = im A−AA− ⊆ im A−A = im R, im R = im A−A ⊆ im A−

kerA− = kerA−AA− ⊇ kerAA− = kerS, kerA− ⊆ kerAA− = kerS

In accordance with Lemma 8.1, projector R is fixed by the subspace im A− comple-
mentary to kerA. The same principle is used to specify S via the complementary
space kerA− to im A. Using respective orthogonal complementary spaces, the Moore-
Penrose inverse A+ is obtained. [Zie79] provides a classification of generalized inverses
including construction of the reflexive pseudoinverse emanating from a singular value
decomposition of the given matrix A.
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1.2 Tractability index

Consider the nonlinear DAE (1.2) with properly stated derivative term. Additionally,
assume f to be continuously partially differentiable with respect to x. Following the
lines of [MH04], [Mä03] and [Mä01], the tractability index is defined using a chain of
suitable matrices, projectors and subspaces. Denote

G0(y, x, t) = fy(y, x, t)D(t)
N0(y, x, t) = kerG0(y, x, t)
S0(y, x, t) = {z ∈ Rm | fx(y, x, t)z ∈ im G0(y, x, t)}

By Lemma 1.3 it follows that N0 = kerD(t) so we are going to choose a continuous
projector Q0(t) onto N0(t) and its complementary projector P0 (t) = I − Q0 (t) t-
dependent only. Next, define

G1(y, x, t) = G0(y, x, t) + fx(y, x, t)Q0(t)
N1(y, x, t) = kerG1(y, x, t)
S1(y, x, t) = {z ∈ Rm | fx(y, x, t)P0(t)z ∈ im G1(y, x, t)}
G2(y, x, t) = G1(y, x, t) + fx(y, x, t)P0(t)Q1(y, x, t)

where Q1(y, x, t) is a continuous projector onto N1(y, x, t) satisfying

Q1(y, x, t)Q0(t) ≡ 0

Such a projector Q1 is called admissible.

Definition 1.8. The nonlinear DAE (1.2) with properly stated derivative term is
referred to as

1. a system having tractability index 1 in a point (y, x, t) ∈ G of its domain, if

rk G0 (y, x, t) = r0 > 0, N0(t) ∩ S0(y, x, t) = {0}
We speak about tractability index 1 on G̃ if both properties hold on the entire
open subset G̃ ⊆ G.

2. a DAE possessing tractability index 2 on G̃ if

dimN0(t) ∩ S0(y, x, t) = r1 > 0, N1(y, x, t) ∩ S1(y, x, t) = {0}
is true for all (y, x, t) ∈ G̃.

Remark 1.9. Theorem A.13 in [GM86] implies that even in case of non-regular matrix
pencils the following three conditions are equivalent

N0(t) ∩ S0(y, x, t) = {0}, N0 (t)⊕ S0 (y, x, t) = Rm, G1 (y, x, t) ∈ GLm (R)

in (y, x, t) ∈ G. Similarly, the conditions

N1 (y, x, t) ∩ S1(y, x, t) = {0}, N1 (y, x, t) ∩ S1(y, x, t) = Rm, G2 (y, x, t) ∈ GLm (R)

are equivalent. We are going to make use of these characterizations of the second
condition in Definition 1.8 later on.
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The matrix valued functions Gi are continuous due to definition, same holds for im Gi.
Therefore, we are allowed to define continuous projectors

W0(y, x, t) along im G0 (y, x, t) = im fy(y, x, t)

W1(y, x, t) along im G1 (y, x, t)

in order to describe the systemic important subspaces Si by

S0(y, x, t) = kerW0(y, x, t)fx(y, x, t)

S1(y, x, t) = kerW1(y, x, t)fx(y, x, t)P0(t)

Additionally, we take N0 (t) ∩ S0 (y, x, t) into consideration and denote a continuous
projector onto this subspace by T (y, x, t) and U (y, x, t) := Im − T (y, x, t).

In this thesis, the reflexive generalized inverseD− (t) related to the properly formulated
leading derivative and the tractability index via

D− (t)D (t) = P0 (t) and D (t)D− (t) = R (t)

is used exclusively.

Lemma 1.10. Considering the DAE (1.2), the following properties of the matrix chain
of the tractability index are valid on entire domain:

1. N0(t) ⊆ S1 (y, x, t)

2. cork G1 (y, x, t) = dimN1 (y, x, t) = dimN0(t) ∩ S0 (y, x, t)

3. im Q0(t)Q1 (y, x, t) = N0(t) ∩ S0 (y, x, t)

Proof. Ad 1) Choose an arbitrary (y, x, t) ∈ G. Obviously, for x ∈ N (t)

x = Q0(t)x ∈ kerW1 (y, x, t) fx (y, x, t)P0(t) = S1 (y, x, t)

and consequently N0(t) ⊆ S1 (y, x, t) hold.

Ad 2) Using the representation

G1 = G0 + fxQ0 = G0 +W0fxQ0 + (I −W0)fxQ0 = G0 +W0fxQ0 +G0G
−
0 fxQ0

together with the reflexive pseudoinverse G−0 (y, x, t) which is defined pointwise by

G−0 (y, x, t)G0 (y, x, t) = P0(t), G0 (y, x, t)G−0 (y, x, t) = I −W0 (y, x, t)

we obtain Q0G
−
0 = (I − P0)G

−
0 = 0 and

G1 = (G0 +W0fxQ0)(I +G−0 fxQ0) =: HF

Let us point out that (I +MN)−1 = I −MN if NM = 0. Therefore, F−1 = I −
G−0 fxQ0 due to Q0G

−
0 = 0. Now,

kerH (y, x, t) = kerG0 (y, x, t) ∩ ker (W0fxQ0) (y, x, t)
= N0(t) ∩ S0 (y, x, t)
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because W0 is a projector. Finally,

N1 (y, x, t) = kerH (y, x, t)F (y, x, t) = F−1 (y, x, t) kerH (y, x, t)

= F−1 (y, x, t) (N0(t) ∩ S0 (y, x, t))

In particular, dimN0(t) ∩ S0(y, x, t) = const. is proved to be equivalent to a constant
rank assumption on G1 (y, x, t).

Ad 3) im Q0Q1 ⊆ N0 ∩ S0 is valid due to Q0Q1x ∈ N0 and

W0fxQ0Q1 = W0 (AD + fxQ0)Q1 = W0G1Q1 = 0

that is Q0Q1x ∈ kerW0fx = S0. Conversely, for x ∈ N0 ∩ S0 per Definition x = Q0x
and fxx = ADz for a z ∈ Rm. With u = x− P0z and

G1u = G1Q0x−G1P0z = fxx− ADz = 0

it follows u = Q1u and x = Q0u = Q0Q1u ∈ im Q0Q1.

In case of index-2 systems Rm = S1 ⊕ N1 is valid, therefore Q1 can be chosen as
the unique projector Q1,c onto N1 along S1. This choice is admissible because of
im Q0 = N0 ⊆ S1 = kerQ1,c and Q1,c is called canonical index-2 projector.

Lemma 1.11. The canonical projector Q1,c admits the representation

Q1,c (y, x, t) = Q1 (y, x, t)G−1
2 (y, x, t) fx (y, x, t)P0(t) (1.4)

Thereby, G2 is constructed using an arbitrary projector Q0 and an admissible Q1.

Proof. A projector is defined by Q∗ := Q1G
−1
2 fxP0 due to fxP0Q1 = G2Q1 and

Q1G
−1
2 fxP0Q1G

−1
2 fxP0 = Q1G

−1
2 G2Q1G

−1
2 fxP0 = Q1G

−1
2 fxP0

Further, for x ∈ N1 follows that Q∗x =
(
Q1G

−1
2 fxP0

)
Q1x = Q1x = x and im Q∗ = N1.

Q1G
−1
2 G1 = Q1G

−1
2 G2P1 = 0 implies Q∗x = Q1G

−1
2 W1fxP0x and subsequently S1 ⊆

kerQ∗, due to S1 = kerW1fxP0. By reason of dimension, Q∗ projects along S1 implying
(1.4) to be a representation of the canonical projector.

Lemma 1.12. If Q1 (y, x, t) projects onto a subspace V1 (y, x, t) along V2 (y, x, t) and
N0(t) ⊆ V2 (y, x, t) then DQ1D

− and DP1D
− are projectors as well,

DQ1D
− projects onto DV1 along DV2 × kerA, DP1D

−onto DV2 along DV1 × kerA

Proof. Due to assumptions we made, Q1 (y, x, t)Q0 (t) = 0 is valid and consequently,

(DQ1D
−)(DQ1D

−) = DQ1(I −Q0)Q1D
− = DQ1D

−

(DP1D
−)(DP1D

−) = D(I −Q1)P0(I −Q1)D
− = D(I −Q1)D

− = DP1D
−
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In addition,

DV1 = D(im Q1) = im DQ1 ⊇ im DQ1D
− ⊇ im DQ1D

−D = im D(Q1P0) = im DQ1

DV2 = im DP1 ⊇ im DP1D
− ⊇ im DP1P0 = im D(I −Q1)(I −Q0) = im DP1

imply im DQ1D
− = DV1 and im DP1D

− = DV2. Moreover,

(DP1D
−)(DQ1D

−) = 0 = (DQ1D
−)(DP1D

−),
(I −R)(DP1D

−) = 0 = (I −R)(DQ1D
−),

Q1 being a projector implies V1 ⊕ V2 = Rm and the proper formulation leads to
DV1⊕DV2⊕kerA = Rn thereby proving the assertion on range and kernel of DQ1D

−,
DP1D

−.

There are special types of differential-algebraic systems which occur frequently in
applications:

Definition 1.13. Let I ⊆ R be an interval and Ĝ ⊆ Rm a region. Furthermore,

A ∈ C(Ĝ × I,Rm×n), D ∈ C(I,Rn×m), b ∈ C(Ĝ × I,Rm)

A differential-algebraic equation in the shape of

A(x(t), t)(D(t)x(t))′ + b(x(t), t) = 0 (1.5)

is called linear implicit.

Modelling mechanical systems results in semi-explicit differential-algebraic equations
of a special structure. Following the lines of [AP97, p. 238ff.], we define

Definition 1.14. Let G ⊆ Rn×Rm×R be a region and h ∈ C (G,Rn), g ∈ C(G,Rm−n).
The differential-algebraic system

x′1(t) = h(x1(t), x2(t), t) (1.6)
0 = g(x1(t), t)

is called a Hessenberg system with index 2, if the partial derivatives hx2 , gx1 are con-
tinuous and the matrix gx1 (x1, t)hx2 (x1, x2, t) is invertible on G.

General Assumptions

In this thesis, index of a DAE will mean tractability index, otherwise the type of index
is denoted explicitly. With no modifiers, differential-algebraic equations are assumed
to have a properly formulated derivative term. For convenience we only consider square
systems. Domains of functions are meant to be regions, that is open and connected.
We omit the arguments of a function in some places to keep track of formulae, if
it is possible without confusion. For example, dependency on t could be omitted in
the matrix chain of linear DAEs. Functions of multiple arguments are meant to be
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evaluated along the (extended) integral curve of a reference function x∗, if they are
noted t-dependent only, e.g. f = f (y, x, t) and f (t) = f

(
(Dx∗)

′ (t) , x∗ (t) , t
)
.

Structural conditions in a nutshell

Figure 1.1.2 illustrates the fundamental structural conditions used in this thesis. We
arrange the structural conditions for properly formulated DAEs regarding the impor-
tant classes of Hessenberg-2 DAEs and linear implicit DAEs resulting from the Modi-
fied Nodal Analysis of electrical circuits (MNA-equations, cf. § 5.2.2.1). In detail, we
investigate sufficiently smooth index-2 systems exhibiting

· Fully implicit DAE - tractability index reduction: f
(
(Dx)′ (t) , x (t) , t

)
= 0 with

kerD = const. and im G1 (y, x, t) dependent on P0x, t

· Fully implicit DAEs - T = T (t): f
(
(Dx)′ (t) , x (t) , t

)
= 0 and N0 (t)∩S0 (y, x, t)

independent of y, x in a neighbourhood of the extended integral curve of a ref-
erence solution x∗.

· Fully implicit DAEs - complete decoupling : assume im
(

T
−f−y fxT

)
(y, x, t)

t-dependent only around the extended integral curve of x∗. Additionally, we
require constant subspaces im DP1 and im DQ1 along x∗ in order to obtain an
autonomous state space form for autonomous DAEs.

· Linear implicit DAEs - complete decoupling : A (t) (Dx)′ (t) + b (x (t) , t) = 0 and
N0 (t)∩S0 (y, x, t) independent of y, x in a neighbourhood of a reference solution
x∗. In fact, we have to impose im DP1 and im DQ1 constant along x∗ thus
making the regarded class of DAEs smaller.

Figure 1.1: Set diagram of important structural conditions in use



12 Chapter 1. Properly formulated DAEs with tractability index 2

1.2.1 Excursus: geometric index

Formally, the tractability index is based on linearization and a generalization of the
Kronecker index to time dependent linear DAEs. The first elements of the matrix chain
have a geometric interpretation enabling us to interpret the index one condition in
Definition 1.2. Denote the projection onto the second component by pr2 : Rn×Rm →
Rm, pr2 (y, x) := x. It follows that the obvious constraint of the properly stated DAE
(1.2) isM0(t) = pr2N (t) referring to

N (t) :=
{

(y, x) ∈ Rn+m | (y, x, t) ∈ G, f (y, x, t) = 0
}

Thereby N (t) represents locally a differentiable manifold, assuming rk
(
fy fx

)
be

locally constant. Then, the tangent space at (y0, x0) ∈ N (t) is

T(y0,x0)N (t) = ker
(
fy (y0, x0, t) fx (y0, x0, t)

)
and

pr2T(y0,x0)N (t) = {x ∈ Rm | ∃y ∈ Rn : fy (y0, x0, t) y + fx (y0, x0, t)x = 0}
= S0 (y0, x0, t)

The projectionM0 (t) of N (t) does not necessarily inherit the structure of a manifold.
In general, if M0 (t) is a manifold then S0(y, x, t) ⊆ TxM0(t) is true. Just consider
a z ∈ S0 (y, x, t), there exists an ε > 0 and functions v, w such that ∀s ∈ (−ε, ε) :
(v (s) , w (s)) ∈ N (t), (v (0) , w (0)) = (y, x), (v, w) (s) is differentiable in s = 0 and
z = w′ (0). Obviously, ∀s ∈ (−ε, ε) : w (s) ∈ M0 (t) = pr2N (t) and w (0) = x.
Therefore, z = w′ (0) ∈ TxM0 (t).

Additionally, in case of properly formulated index-1 DAEs, there exists a function y =
y (x) such that f (y, x, t) = 0⇔ f (y (x) , x, t) = 0 due to Lemma 1.19. Accordingly,

dimS0 (y, x, t) = dimN (t) = dimM0 (t) = dimTxM0 (t)

resulting in S0 (y, x, t) = TxM0 (t).

The connection between autonomous linear implicit DAEs

A (x(t))x′(t) + b (x(t)) = 0

and vector fields on manifolds is enlightened in [Rei89]. Hereby, a set N corresponding
to the given DAE is defined likewise. One becomes aware that in case of a classical
solution x ∈ C1 (I,Rm) it holds

1. (x′(t), x(t)) ∈ N , therefore x(t) ∈M0 = pr2N
2. x′(t) is a tangent vector toM0, that is (x′(t), x(t)) ∈ TM0 is an element of the

tangent bundle toM0

if we supposeM0 to be a manifold. Necessarily, a C1-solution of the given system has
the property

∀ ∈ I : (x′(t), x(t)) ∈ N ∩ TM0
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Therefore, the solutions evaluated in t belong to the set M1(t) := pr2 (N ∩ TM0).
If M1(t) is a manifold and M1(t) 6= {0} then we are able to apply the reasoning to
this constraint set. A sequence Mi(t) of constraint manifolds for classical solutions
of the DAE is constructed iteratively using this approach. The maximal index i with
Mi 6=Mi−1 andMi+1 =Mi is called the degree of the given system. A DAE of degree
s possessing the property that N ∩TMs is a continuous manifold and |N ∩TxMs| = 1
can be realized as a vector field on Ms. Such differential-algebraic system is called
regular and Ms is the configuration space of the DAE, compare [Rei89, S.36] resp.
[Rei91] regarding non autonomous DAEs. This approach is picked up and formulated
more precisely in [RR02, Ch. IV], it is leading to a geometric notion of index for DAEs.
Assuming differentiability and certain constant rank conditions, the tractability index
one condition N0 (t)⊕ S0 (y, x, t) = Rm implies

M1 (t) = pr2 (TM0 ∩N ) = pr2N =M0 (t)

that is the geometric index is one. For higher index DAEs (k > 1) the connection
between both index definitions is barely investigated.

The geometric index enables to use qualitative theory of vector fields on manifolds in
order to derive new results for differential-algebraic equations like it is done in [Rei95].
On the other hand, the geometric index is proved to be a geometric interpretation
of the differentiation index in reasonable settings. Sufficiently smooth functions are
required in order to perform the operations. Moreover, we have to provide criteria for
Mi being manifolds. The given geometric interpretation does not support the suitable
development of the standard form (1.1) to properly formulated systems (1.2). These
restrictions on f and the methods of proof presented in this thesis are good reasons to
stick to the state space representation of a DAE instead of its realization as a vector
field on the configuration space.

1.2.2 Excursus: alternative formulation of the matrix chain

The matrix chain of the tractability index can be defined in an alternative fashion. For
example, such matrix chain is constructed in [Mä02b] for every possible index k ∈ N
aiming at linear systems. An extension to linear implicit DAEs takes place in [Mä05]
defining the tractability index k ∈ N in a way that index k of every linearization along
functions x∗ ∈ C1

D, which map to a region containing (y, x, t) ∈ G implies the same
tractability index of the given system. The projector DP0P1D

− = DP1D
− is assumed

to be independent of y and continuously differentiable in order to define tractability
index 2 [Mä05]. In addition, the element G̃2 of the new matrix chain reads

G̃2(z, y, x, t) = G1(y, x, t) + fx(y, x, t)P0Q1(y, x, t)−G1(y, x, t)D
−(t)·

· ((DP1D
−)x (x, t) z + (DP1D

−)t (x, t))D(t)P0(t)Q1(y, x, t)

with1 ((DP1D
−)x (x, t) z)ij :=

∑
k

∂
∂xk

(DP1D
−)ij (x, t) zk. Requiring these properties,

the differential-algebraic system (1.5) is said to be an index-2 DAE, if G1 is singular
1Just consider a function ξ ∈ C1 ((t− ε, t+ ε) ,Rm) with ξ (t) = x and ξ′ (t) = z and com-
pute d

ds (DP1D
−) (ξ (s) , s) evaluated in t via chain rule in order to obtain the expression

(DP1D
−)x (x, t) z + (DP1D

−)t (x, t).
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with a constant rank and G̃2 is nonsingular using an admissible projector Q1. The
presented matrix chain is applied e.g. in [Voi06].

The mentioned definition of index k = 1, 2 based on the alternative matrix chain is
equivalent to Definition (1.8) due to

G̃2 = (G1 + fxP0Q1)
(
I − P1D

− ((DP1D
−)

x
(x, t) z +

(
DP1D

−)
t
(x, t)

)
DP0Q1

)
We notice that

(I − P1D
− ((DP1D

−)x (x, t) z + (DP1D
−)t (x, t))DP0Q1)

−1
=

I + P1D
− ((DP1D

−)x (x, t) z + (DP1D
−)t (x, t))DP0Q1

so I−P1D
− ((DP1D

−)x (x, t) z + (DP1D
−)t (x, t))DP0Q1 ∈ GLm(R) for all (z, y, x, t)

in the respective domain. Therefore G̃2 (z, y, x, t) is nonsingular if and only ifG2 (y, x, t)
defined in Section 1.2 (page 7) has the same property and this is equivalent to

N1 (y, x, t) ∩ S1 (y, x, t) = {0}

The linear subspaces N1 and S1 are identical in both matrix chains implying equiv-
alence of the described approaches to the tractability index. For the purpose of our
stability investigations, the simpler matrix chain turns out to be sophisticated enough
in order to formulate new stability criteria.

1.2.3 Excursus: Hessenberg systems

In order to exemplify the tractability index we construct the matrix chain for general
Hessenberg-2 DAEs. Later we prove that these systems conform to requirements of the
transformation into the state space representation and to those of the index reduction
via differentiation.

Lemma 1.15. If hx1 is continuous then (1.6) possesses the tractability index two.

Proof. Write (1.6) as f (x′1(t), (x1(t), x2(t)) , t) = 0 with f(y, x, t) =

(
y − h(x1, x2, t)

g(x1, t)

)
and x = (x1, x2)

T ∈ Rn × Rm−n. It holds

fy(y, x, t) =

(
In
0

)
, fx(y, x, t) =

( −hx1(x1, x2, t) −hx2(x1, x2, t)
gx1(x1, t) 0

)
, D− =

(
In
0

)

as well as D =
(
In 0

)
, R = In. The first projector Q0 =

(
0

Im−n

)
in the

matrix chain is fixed by N0 = kerG0 = {0} × Rm−n. Obviously, kerQ0 = im G0 and
we can choose W0 = Q0. Furthermore,

S0(x, t) = kerW0fx(x, t) = ker

(
0 0

gx1(x1, t) 0

)
= ker g1(x1, t)× Rm−n
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implies N0 ∩ S0(x, t) = N0 to be constant. Due to G1 = G0 + fxQ0 =

(
In −hx2
0 0

)
and im G1 = im G0 we may choose W1 = W0 leading to

N1(x, t) = kerG1(x, t) =
{

(z1, z2)
T ∈ Rm | z1 = hx2(x1, x2, t)z2

}
S1(x, t) = kerW0fx(x, t)P0 = ker

(
0 0

gx1(x1, t) 0

)
= ker gx1(x1, t)× Rm−n

N1(x, t) ∩ S1(x, t) =
{

(z1, z2)
T ∈ Rm | z1 = hx2(x1, x2, t)z2, gx1(x1, t)z1 = 0

}
The nonsingularity of gx1hx2 implies z2 = 0 so that z1 = 0 and (N1 ∩ S1) (x, t) = {0}.
For this reason both conditions of the tractability index two are fulfilled on G.

There is little freedom in choosing admissible projectors Q1 because of the Hessenberg

structure. Condition Q1Q0 = 0 implies Q1 =

(
A 0
B 0

)
with A2 = A, BA = B due

to idempotence of Q1. From ∀x ∈ N1 : Q1x = x we conclude Ahx2 = hx2 (that is
im hx2 ⊆ im A) and Bhx2 = Im−n. Left multiplication of the last condition by hx2

and right multiplication by B yield Bhx2B = B, hx2Bhx2 = hx2 that is B = h−x2
.

Due to regularity of gx1hx2 it follows n ≥ m− n where hx2 is necessarily injective and
gx1 surjective. In particular In is the only possible projector along kerhx2 such that
h−x2

hx2 = In fixes the reflexive generalized inverse partly. By hx2h
−
x2

= A the unique
pseudoinverse h−x2

= B is fixed completely because h−x2
A = h−x2

means that A projects
onto im hx2 . All in all, an admissible projector Q1 onto N1 has necessarily the form

Q1(x, t) =

(
hx2(x1, x2, t)h

−
x2

(x1, x2, t) 0
h−x2

(x1, x2, t) 0

)
(1.7)

It is easy to prove that (1.7) defines an admissible projector onto N1 (x, t). Due to
kerhx2h

−
x2
⊆ kerh−x2

hx2h
−
x2
⊆ kerh−x2

⊆ kerhx2h
−
x2

we get

kerQ1 = kerhx2h
−
x2
× Rm−n

Using the regularity of gx1hx2 we arrive at im hx2 ∩ ker gx1 = {0} so hx2h
−
x2

can
be chosen as the projector onto im hx2 along ker gx1 exhibiting the representation
hx2 (gx1hx2)

−1 gx1 . This choice of A has the canonical projector Q1 as a consequence
because kerQ1 = kerhx2h

−
x2
× Rm−n = S1 = ker gx1 × Rm−n = S1. Particularly, the

canonical projector of a Hessenberg system has the nice representation

Q1 =

(
hx2 (gx1hx2)

−1 gx1 0

(gx1hx2)
−1 gx1 0

)
and DN1 (x∗(t), t)) = im hx2 (x∗(t), t)), DS1 (x∗(t), t)) = ker gx1 (x∗(t), t)) is valid.

1.3 Linearization of DAEs

Let us take a look at the development of the tractability index in order to motivate this
index concept for nonlinear DAEs. Due to a statement of Roswitha März expressed
in [Mä95] concerning the tractability index:



16 Chapter 1. Properly formulated DAEs with tractability index 2

“Our notion of index-2 tractability is a straightforward generalization of
the corresponding definition for the linear case, which, in turn, represents
a generalization of the Kronecker index.”

We follow the lines of [Mä95] and correspond the index of nonlinear systems to lin-
earization in the sense of functional analysis and the implicit function theorem on
Banach spaces. Consider the unique solvability of initial value problems

(DP1)
(
(Dx∗)

′ (t0), x∗(t0), t0
)

(x(t0)− x0) = 0

of the DAE (1.2) in a neighbourhood of a reference solution x∗. To this end we
formulate the DAE as an operator equation

F (x) = 0

with

F : Bε(x∗) ⊆ C1
D(I,Rm)→ C (I,Rm)× L

F (x)(t) :=
(
f
(
(D(t)x(t))′ , x(t), t

)
, (DP1)

(
(Dx∗)

′ (t0), x∗(t0), t0
)

(x(t0)− x0)
)

and L := im (DP1)
(
(Dx∗)

′ (t0), x∗(t0), t0
)
. It is common practice in applied mathe-

matics to use more restrictive assumptions in order to prove a stronger result. There-
fore, we consider the operator equation

H(x, q) = 0 (1.8)

representing a sufficiently smooth perturbation of F (x) = 0, namely

H : Bε(x∗)× C (I,Rm) −→ C (I,Rm)× L
H(x, q)(t) :=

(
f
(
(D(t)x(t))′ , x(t), t

)− q(t), (DP1)
(
(Dx∗)

′ (t0), x∗(t0), t0
)

(x(t0)− x0)
)

Obviously, (x∗, 0) ∈ Bε(x∗) × C (I,Rm) solves Equation (1.8). Due to the implicit
function theorem (e.g. [ea73, Theorem 1.7]) there exists locally a unique function

w : Bε̂(0) ⊆ C (I,Rm) −→ Bε(x∗) ⊆ C1
D(I,Rm)

satisfying
H (w(q), q) = 0, w(0) = x∗

if H is continuous and the Fréchet differential has a bounded inverse, i.e.

Hx(x∗, 0) = Fx(x∗) ∈ Lb
(
C1
D (I,Rm) , C (I,Rm)× L)

Consequently, these assumptions imply that the above IVP aiming at (1.2) is well
posed. Later, we show

Fx(x∗)h =

(
fy
(
(Dx∗)

′ (t), x∗(t), t
)

(Dh)′ (t) + fx
(
(Dx∗)

′ (t), x∗(t), t
)
h(t),

(DP1)
(
(Dx∗)

′ (t), x∗(t), t
)

(h(t0)− h0)

)
Therefore Fx(x∗)h = q corresponds with the IVP (DP1) (t0) (h(t0)− h0) = 0 of the
linearization

fy
(
(Dx∗)

′ (t), x∗(t), t
)

(Dh)′ (t) + fx
(
(Dx∗)

′ (t), x∗(t), t
)
h(t) = q(t) (1.9)
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of the given nonlinear DAE. Equation (1.9) has index two and complies with require-
ments from [Mä04] respectively [BM00], [BM04] per constructionem. Accordingly, the
IVP is uniquely solvable for all q ∈ C1

DQ1G
−1
2

(I,Rm), h0 ∈ Rm and the solution depends
continuously on q and (DP1) (t0)h0. In other words,

Fx(x∗) : C1
D (I,Rm) −→ C1

DQ1G
−1
2

(I,Rm)× im (DP1)
(
(Dx∗)

′ (t0), x∗(t0), t0
)

has a bounded inverse.

The above approach works, if we are able to guarantee

F (Bε (x∗)) ⊆ C1
DQ1G

−1
2

(I,Rm)× im (DP1)
(
(Dx∗)

′ (t0), x∗(t0), t0
)

(1.10)

The smoothness property (1.10) reads

∀x ∈ Bε(x∗) :
(
DQ1G

−1
2

)
(t) f

(
(Dx)′ (t), x(t), t

) ∈ C1 (I,Rm)

so appropriate structural conditions have to be imposed in addition to sufficient
smoothness of f and x∗. For example, if im G1 (y, x, t) is t-dependent only, we get
W1f = (W1f) (P0x, t) and DQ1G

−1
2 G1 = 0 due to G1 = G2P1. Therefore,(

DQ1G
−1
2

)
(t)f

(
(Dx)′ (t), x(t), t

)
=
(
DQ1G

−1
2

)
(t) (W1f) (P0x(t), t)

and the derivative

d

dt

(
DQ1G

−1
2

)
(t) f

(
(Dx)′ (t), x(t), t

)
=

(
DQ1G

−1
2

)′
(t) (W1f) ((P0x) (t) , t)

+
(
DQ1G

−1
2

)
(t)
(
(W1f)x (P0x)′ (t) + (W1f)t

)
exists for all x ∈ C1

D (I,Rm), if
(
DQ1G

−1
2

)
(t),W1f ∈ C1.

Lemma 1.16. Consider the properly stated DAE (1.2) with f continuously differen-
tiable with respect to x. If x∗ ∈ C1

D(I,Rm) satisfies ∀t ∈ I ⊆ I0 :
(
(Dx∗)

′ (t), x∗(t), t
) ∈

G and ‖x∗‖C1
D

is bounded then there exists an ε > 0 so that the operator equation
F(x) = 0 on Bε(x∗) ⊆ C1

D(I,Rm),

F : Bε(x∗)→ C(I,Rm), F(x)(t) := f((D(t)x(t))′, x(t), t)

is Fréchet differentiable at x∗. The corresponding Fréchet differential reads

Fx(x∗)h = fy
(
(Dx∗)

′ (t), x∗(t), t
)

(Dh)′ (t) + fx
(
(Dx∗)

′ (t), x∗(t), t
)
h(t) (1.11)

Proof. The Gâteaux derivative of F at the point x∗ in the direction h ∈ C1
D(I,Rm) is

DF(x∗, h) := lim
s→0

1

s
(F(x∗ + sh)−F(x∗))

= lim
s→0

1

s

(
f
(
(Dx∗)

′ (t) + s (Dh)′ (t), x∗(t) + sh(t), t
)

−f ((Dx∗)′ (t), x∗(t), t)
)

Adding the zero-sum

f
(
(Dx∗)

′ (t) + s (Dh)′ (t), x∗(t), t
)− f ((Dx∗)′ (t) + s (Dh)′ (t), x∗(t), t

)
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allows for rewriting DF (x∗, h) as a sum of two limits

lim
s→0

1

s

[
f
(
(D(t)x∗(t))

′ + s (Dh)′ (t), x∗(t) + sh(t), t
)

−f ((D(t)x∗(t))
′ + s (Dh)′ (t), x∗(t), t

) ]
(1.12)

and

lim
s→0

1

s

[
f
(
(Dx∗)

′ (t) + s (Dh)′ (t), x∗(t), t
)− f ((Dx∗)′ (t), x∗(t), t)] (1.13)

Due to the smoothness assumptions, (1.13) equals

fy
(
(Dx∗)

′ (t) + s (Dh)′ (t), x∗(t), t
)

(Dh)′ (t)

Applying the mean value theorem to (1.12) reveals

1
s

(
f
(
(D(t)x∗(t))

′ + s (Dh)′ (t), x∗(t) + sh(t), t
)

−f ((D(t)x∗(t))
′ + s (Dh)′ (t), x∗(t), t

) )
=

´ 1

0
fx
(
(D (t)x∗ (t))′ + s (Dh)′ (t), x∗ (t) + µsh (t) , t

)
dµ h(t)

Now fx
(
(D(t)x∗(t))

′ + s (Dh)′ (t), x∗(t) + µsh(t), t
)
is a continuous function so inte-

gration and the limit process s→ 0 commute according to [For05, p.frm[o]–14, Theo-
rem 1]. Expression (1.12) can be simplified to

lims→0

´ 1

0
fx
(
(D(t)x∗(t))

′ + s (Dh)′ (t), x∗(t) + µsh(t), t
)
dµ h (t)

= fx
(
(D(t)x∗(t))

′ , x∗(t), t
)
h(t)

This derivative is linear in h. Because of ‖x∗‖C1
D
< C there exists a compact set

K ⊆ G with ∀t∈I
(
(Dx∗)

′ (t), x∗(t), t
) ∈ K including a neighbourhood of the extended

integral curve of x∗. The continuous partial derivatives fy and fx are bounded on K
implying (1.11) to be continuous at h. We have proved the representation (1.11) of
the Gâteaux derivative.

Theorem 2 in [SL68, p. 310] or [Wer, p. 113 ff. and Theorem III 5.4 c)] state that F is
Fréchet differentiable, if the Gâteaux derivative DF(x, h) exists for x ∈ Bε(x∗), ε > 0
sufficiently small and DF(x, h) is continuous at x∗. In this case Fx(x∗)h = DF(x∗, h)
is true. Using the triangle inequality and (1.11)

‖DF(x∗, h)−DF(x, h)‖ ≤
{ ∥∥fy ((Dx∗)′ (t), x∗(t), t)− fy ((Dx)′ (t), x(t), t

)∥∥
∞

∥∥(Dh)′
∥∥
∞

+
∥∥fx ((Dx∗)′ (t), x∗(t), t)− fx ((Dx)′ (t), x(t), t

)∥∥
∞ ‖h‖∞

Continuity of fy, fx implies that
∥∥fy ((Dx∗)′ (t), x∗(t), t)− fy ((Dx)′ (t), x(t), t

)∥∥
∞ and∥∥fx ((Dx∗)′ (t), x∗(t), t)− fx ((Dx)′ (t), x(t), t

)∥∥
∞ are bounded, if ‖x− x∗‖C1

D
is suffi-

ciently small. Consequently, ‖DF(x∗, h)−DF(x, h)‖∞ ≤ C ‖h‖C1
D
holds uniformly in

h for x ∈ Bε̂ (x∗) ⊆ C1
D (I,Rm) so the Gâteaux differential (1.11) is continuous at x∗.

Therefore, DF (x, h) equals the Fréchet differential Fx(x∗).

The above lemma establishes the common definition of the linearization of a differential-
algebraic equation as a linearization of f .
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Definition 1.17. Consider the DAE (1.2) with fx ∈ C0 and x∗ ∈ C1
D(I,Rm) satisfying

∀t ∈ I :
(
(Dx∗)

′ (t), x∗(t), t
) ∈ G. The linear system

fy
(
(Dx∗)

′ (t), x∗(t), t
)

(Dx)′ (t) + fx
(
(Dx∗)

′ (t), x∗(t), t
)
x(t) = 0 (1.14)

is called the linearization of the given DAE (1.2) around x∗.

Remark. The linearization of an ODE around a solution x∗ is also called the corre-
sponding system of variational equations around x∗. This system describes the linear
approximation of the propagation of the difference between an arbitrary solution of the
ODE and x∗, i.e. the propagation of the variation in the initial values. The fundamen-
tal matrixX(t) of the system of variational equations havingX (t0) = I corresponds to
the derivative of the flow with respect to the initial values, i.e. X(t) = ∂

∂x0
x (t; t0, x0).

1.4 Transformation of fully implicit DAEs to a linear
implicit form

A properly stated derivative term allows to transform a general system (1.2) into a
properly formulated linear implicit DAE (1.5) with A = A (t). Hereby, additional
structural assumptions for the complete decoupling arise, but they can be formulated
in terms of the original DAE.

Augment a properly stated DAE

f
(
(Dx)′ (t), x (t) , t

)
= 0⇔ f

(
R(t) (Dx)′ (t), x (t) , t

)
= 0

by introducing the new variable z(t) := R(t) (Dx)′ (t), i.e.(
R(t)
0m×n

)[(
D(t) 0n

)( x(t)
z(t)

)]′
+

( −z(t)
f (z(t), x(t), t)

)
=

(
0
0

)
(1.15)

Denote the augmented system by

Ã(t)
(
D̃x̃
)′

(t) + b̃ (x̃(t), t) = 0

with

x̃ =

(
x
z

)
, Ã(t) =

(
R(t)
0m×n

)
, D̃(t) =

(
D(t) 0n

)
, b̃ (x̃, t) =

( −z
f (z, x, t)

)
Lemma 1.18. Given a properly stated DAE (1.2) with tractability index k = 1, 2, the
augmented system (1.15) inherits the properly stated derivative term and the tractabil-
ity index k as well. Furthermore, in case of index-2 DAEs it holds(

D̃Ñ1

)
(z, x, t) = (DN1) (z, x, t) ,

(
D̃S̃1

)
(z, x, t) = (DS1) (z, x, t)

and Ñ0 (t) ∩ S̃0 (z, x, t) =
(
Ñ0 ∩ S̃0

)
(t) is equivalent to

im
(

T (z, x, t)
− (f−y fxT) (z, x, t)

)
independent of z, x (1.16)
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Proof. We construct a matrix chain for the augmented DAE (1.15) (denoted by tilde)
based on a given matrix chain for (1.2). Obviously, ker Ã(t) = kerR(t) and im D̃(t) =
im D(t) = im R(t), i.e. the derivative term is properly stated. Moreover,

Ñ0(t) = ker D̃(t) = N0(t)× Rn, Q̃0(t) =

(
Q0(t)

In

)
, P̃0(t) =

(
P0(t)

0n

)

and D̃−(t) =

(
D−(t)

0n

)
is fixed by R̃(t) = R(t) and P̃0(t). im Ã(t) = im D(t)× {0}

implies

W̃0(t) =

(
In −R(t)

Im

)
to be a projector along im Ã. It holds

b̃x̃ (x̃, t) =
(
b̃x b̃z

)
=

(
0n×m −In

fx (z, x, t) fy (z, x, t)

)
,

S̃0 (x̃, t) = ker W̃0(t)b̃x̃ (x̃, t) = ker

(
0n×m − (In −R(t))

fx (z, x, t) fy (z, x, t)

)
(ξ, µ)T ∈ S̃0 (z, x, t) are characterized by µ = R(t)µ and fx (z, x, t) ξ+fy (z, x, t)µ = 0.
Using the reflexive generalized inverse f−y (z, x, t) defined pointwise by

f−y (z, x, t) fy (z, x, t) = R(t), fy (z, x, t) f−y (z, x, t) = (I −W0 (z, x, t))

we conclude

S̃0 (x̃, t) =

{(
ξ

−f−y (z, x, t) fx (z, x, t) ξ

)
∈ Rm+n | ξ ∈ S0 (z, x, t)

}
for µ = −f−y (z, x, t) fx (z, x, t) ξ satisfies R(t)µ = µ and

fy (z, x, t)µ = − (I −W0 (z, x, t)) fx (z, x, t) ξ = −fx (z, x, t) ξ

due to ξ ∈ S0 (z, x, t) = kerW0 (z, x, t) fx (z, x, t). µ = R(t)µ is unique because
µ1, µ2 ∈ im D(t) with

fxξ + fyµ1 = 0 = fxξ + fyµ2

imply µ1 − µ2 ∈ ker fy ∩ im D(t) = {0}, that is µ1 = µ2. Consequently,

Ñ0(t) ∩ S̃0 (x̃, t) =

{(
ξ

−f−y (z, x, t) fx (z, x, t) ξ

)
∈ Rm+n | ξ ∈ N0(t) ∩ S0 (z, x, t)

}
Obviously, Ñ0 (t) ∩ S̃0 (z, x, t) =

(
Ñ0 ∩ S̃0

)
(t) is equivalent to(

Im
−f−y (z, x, t) fx (z, x, t)

)
(N0 (t) ∩ S0 (z, x, t)) = im

(
T (z, x, t)

− (f−y fxT) (z, x, t)

)
being independent of z, x and this property is captured by (1.16).
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Now choose

T̃ (x̃, t) =

(
T (z, x, t) 0m×n

−f−y (z, x, t) fx (z, x, t)T (z, x, t) 0n

)
as a projector onto Ñ0(t) ∩ S̃0 (x̃, t), the complementary projector is

Ũ (x̃, t) = In+m − Ũ (x̃, t) =

(
U (z, x, t) 0m×n

f−y (z, x, t) fx (z, x, t)T (z, x, t) In

)
We obtain the representations

G̃1 (x̃, t) =

(
D(t) −In

fx (z, x, t)Q0(t) fy (z, x, t)

)

Ñ1 (x̃, t) = ker G̃1 (x̃, t) =

{(
ξ

D(t)ξ

)
| ξ ∈ N1 (z, x, t)

}
That is why

Q̃1 (x̃, t) =

(
Q1 (z, x, t) 0m×n

D(t)Q1 (z, x, t) 0n

)
is an admissible projector onto Ñ1 (x̃, t) if Q1 (z, x, t) is admissible.

P̃1 (x̃, t) =

(
P1 (z, x, t) 0m×n

−D(t)Q1 (z, x, t) In

)
, D̃(t)Q̃1 (z, x, t) =

(
D(t)Q1 (z, x, t) 0n

)
,

D̃(t)P̃1 (z, x, t) =
(
D(t)P1 (z, x, t) 0n

)
Per definitionem,

S̃1 (x̃, t) =

{(
ξ
µ

)
∈ Rn+m | b̃x̃ (x̃, t) P̃0(t)

(
ξ
µ

)
∈ im G̃1 (x̃, t)

}
=

{(
ξ
µ

)
∈ Rn+m | ∃ξ̃ ∈ Rm, µ̃ ∈ Rn : D(t)ξ̃ = µ̃,

fx (z, x, t)P0(t)ξ = fx (z, x, t)Q0(t)ξ̃ + fy (z, x, t) µ̃

}
= S1 (z, x, t)× Rn

Finally,

Ñ1(x̃, t) ∩ S̃1 (x̃, t) =

{(
ξ

D(t)ξ

)
| ξ ∈ N1 (z, x, t) ∩ S1 (z, x, t)

}

Case 1. Let rk G̃0(t) = rk D(t) = r > 0 be constant. If (1.2) has the tractability
index 1 then N0(t) ∩ S0 (z, x, t) = {0} implies Ñ0(t) ∩ S̃0 (x̃, t) = {0} immediately.
This is equivalent to index 1 of the augmented system (1.15).

Case 2. If (1.2) has index two on the whole domain G then

∀ (z, x, t) ∈ G : dimS0 (y, x, t) ∩N0(t) = const. N1 (z, x, t) ∩ S1 (z, x, t) = {0}



22 Chapter 1. Properly formulated DAEs with tractability index 2

The second condition implies Ñ1 (z, x, t) ∩ S̃1 (z, x, t) = {0}. Due to Lemma 1.10
dimN1 = dimN0 ∩ S0 is valid, so dimN1 is constant. Therefore,

dim Ñ0 (t) ∩ S̃0 (z, x, t) = dim Ñ1 (x̃, t) = dim

(
Im
D(t)

)
(N1 (z, x, t))

has a constant value because the matrix valued function
(

Im
D (t)

)
∈ R(m+n)×m is

injective for any t. We recognize (1.15) to possess the tractability index two.

In the index-2 case we get D̃Q̃1D̃
− = DQ1D

− and D̃P̃1D̃
− = DP1D

−,(
D̃Ñ1

)
(z, x, t) = (DN1) (z, x, t) ,

(
D̃S̃1

)
(z, x, t) = (DS1) (z, x, t)

If we consider µ = f−y fxTξ then

G−1
2 fyµ = G−1

2 fxQ0Tξ = P1Tξ = Tξ

and G−1
2 fy = G−1

2 (fyD)D− = P1D
− so it is worth noting that

im
(

T
f−y fxT

)
(z, x, t) =

(
P1 (z, x, t)D− (t)

In

)(
im
(
f−y fxT

)
(z, x, t)

)
The last element of the matrix chain belonging to the augmented DAE is

G̃2 (x̃, t) =

(
D(t) −In
fx (z, x, t) (Q0(t) + P0(t)Q1 (z, x, t)) fy (z, x, t)

)
Using a block matrix structure, it is possible to formulate equations designating
G̃2G̃

−1
2 = Im+n and G̃G̃2 = Im+n. Computations reveal the representation

G̃−1
2 (x̃, t) =

(
G−1

2 (z, x, t) fy (z, x, t) G−1
2 (z, x, t)

D(t)G−1
2 (z, x, t) fy (z, x, t)− In D(t)G−1

2 (z, x, t)

)
(1.17)

The augmented differential-algebraic system is useful to prove the following valuable
lemma:

Lemma 1.19. Consider the DAE (1.2) with a properly stated derivative term. Then,

∀x ∈M0 (t)∃!y = R (t) y : f (y, x, t) = 0

is true.
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Proof. Consider a fixed t ∈ I and x ∈M0(t). Choose y1, y2 ∈ Rn satisfying

f(y1, x, t) = 0 = f(y2, x, t)

The proper formulation implies fy(y, x, t) = fy(y, x, t)R(t), therefore the mean value
theorem results in

0 = f (y2, x, t)− f (y1, x, t) =

ˆ 1

0

fy (y1 + s(y2 − y1), x, t) dsR(t)(y2 − y1)

In case of linear implicit DAEs (1.5) we obtain

0 =

ˆ 1

0

A (x, t) dsR (t) (y2 − y1) = A (x, t) (y2 − y1)

According to (1.3) R (t) (y2 − y1) = 0 is valid.

The general case can be traced back to this fact using the augmented DAE (1.15).
Denote the first-level constraint of the augmented system f̃ (ỹ, x̃, t) = 0 by M̃0 (t), i.e.

M̃0 (t) =
{

((x, z) , t) ∈ Rm+n+1 | (z, x, t) ∈ G and ∃ỹ ∈ Rn : f (z, x, t) = 0, R (t) ỹ = z
}

Notice that R (t) also realizes the decomposition of the properly stated derivative
term of (1.15). We have already shown that in case of linear-implicit augmented DAE

f̃

((
D̃x̃
)′

(t) , x̃ (t) , t

)
= 0 it follows

∀x̃ ∈ M̃0 (t)∃!ỹ = R (t) ỹ : f̃ (ỹ, x̃, t) = 0

In detail, for all x̃ = (x, z)T such that there exists a ỹ ∈ Rn satisfying R (t) ỹ = z and
f (z, x, t) = 0, the z-components are uniquely determined in im D (t). Consequently,
for x ∈ M0 (t) and z ∈ Rn such that f (z, x, t) = f (R (t) z, x, t) = 0 it holds (x, z) ∈
M̃0 (t) and the associated vector R (t) z is unique.

Per constructionem, the augmentation of fully implicit DAEs to (1.15) commutes with
the linearization along a solution x∗. In other words, the linearized system correspond-
ing to (1.15) is equivalent to the augmented system

R(t) (Dx)′ (t)− z(t) = 0

fy(t)z(t) + fx(t)x(t) = 0

with fy (t) (Dx)′ (t) + fx(t)x(t) = 0 being the linearization of the given DAE, fx (t) =

fx
(
(Dx∗)

′ (t) , x∗ (t) , t
)
. Given a solution x ∈ C1

D of the DAE (1.2),
(

x(·)
R(·) (Dx)′ (·)

)
solves the augmented system (1.15) and every solution of (1.15) is of this type.

Nonlinear derivative term d (x(t), t)′

Generally, differential-algebraic equations exhibiting the structure

f

(
d
dt

(d (x (t) , t)) , x(t), t

)
= 0 (1.18)
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have to be analysed. We follow the lines of [Mä01] and call the leading terms of these
DAEs properly stated, if

∀y, x, t : fy(y, x, t)⊕ im dx(x, t) = Rn

and there exists a projector R ∈ C1(I0,Rn×n) realizing the above decomposition of
Rn. The tractability index two is defined by the matrix chain in Definition 1.8 and
conditions N1 ∩ S1 = {0} plus N0 ∩ S0 = const. The only formal difference is that we
use D = D(x, t) = dx(x, t) instead of D(t). Considering (1.18), we are interested in
continuous solutions having d(x(t), t) ∈ C1, which satisfy the DAE pointwise. Unfor-
tunately, this function class does not constitute a vector space in general. A certain
simplification can be obtained by augmenting the given DAE (1.18),

f
(
(R(t)y(t))′ , x(t), t

)
= 0

y(t)− d(x(t), t) = 0
(1.19)

and the resulting system is of the type (1.2). If x solves (1.18) then (x(t), d(x(t), t))
is a solution of the augmented DAE (1.19). In addition, every solution of (1.19)
can be represented that way. Consequently, the solution sets of (1.18) and of the
corresponding augmented system can be identified. In [Mä01] it is proved that the
proper formulation and the tractability index k = 1, 2 holds simultaneously for both
DAEs. In this spirit (1.18) is equivalent to (1.19) and one can restrict oneself to linear
implicit DAEs with A = A (t) due to Lemma 1.18.

Remark 1.20. Differential-algebraic equations stemming from the charge oriented Mod-
ified Nodal Analysis in circuit simulation are given by

A
d
dt

(d (x (t) , t)) + b(x(t), t) = 0

with A, b like in case of linear implicit DAEs (1.5) and d ∈ C(D0 × I0), dx ∈ C0,
cf. [Mä03], [EST00], [ESFM+03] or [Voi06, § 1]. Such DAEs can be cast into linear
implicit form with a t-dependent matrix pair A(t), D(t) as a derivative term. Due to
higher dimension, it is not advisable to apply numerical methods to the linear-implicit
system with a simple derivative term Â (t)

(
D̂x̂
)′

(t) resulting after two augmenta-
tion steps. If the discretization scheme commutes with (1.19) and (1.15), that is the

augmented system having the simplified derivative term Â (t)
(
D̂x̂
)′

(t) is integrated
by the numerical method, then it is sufficient to prove convergence of the numerical
method applied to linear implicit DAEs in order to obtain convergence for the general
form of differential-algebraic systems.
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1.5 Analysis of linear systems

Linear differential-algebraic systems with t-dependent coefficients

A(t)(D(t)x(t))′ +B(t)x(t) = q(t) (1.20)

are of vital importance. On the one hand, a deeper insight can be achieved using
the linearity, e.g. most of the index concepts were first aiming at linear systems. In
addition, linear DAEs arise from simplified models in many applications. From the
viewpoint of stability criteria, the crucial reason to deal with linear systems is that the
functional analytical linearization of general DAEs (1.2), that is the Fréchet derivative
of the corresponding operator, is of the form (1.20). Accordingly, linear systems form
the basis of qualitative investigations of nonlinear dynamics using the linearization
principle. For example, the theorems of Perron and Andronov-Witt for ODEs work
this way. Anticipating, certain aspects of the local qualitative behaviour of DAE
solutions can be traced back to properties of the system of variational equations around
a reference solution.

On the contrary, linear systems have the disadvantage to exhibit global stability prop-
erties only so they are not adequate in the context of nonlinear phenomena. Lineariza-
tion might turn out to be a too coarse approximation even in simple setups and that
causes the indirect method of Lyapunov to fail. In such cases, nonlinear approaches
have to be used. Lyapunov’s second or direct method is based on the notion of Lya-
punov functions as a criterion for asymptotic stability of nonlinear ODEs. With regard
to Definition 6.2, Lyapunov functions can be interpreted as a suitable abstraction of
the idea behind a potential. The one sided Lipschitz condition (6.24) is a related
dissipation inequality used for characterizing contractivity of ODEs. In this thesis,
both nonlinear stability criteria for solutions of differential-algebraic equations with
index k = 1, 2 and some based upon linearization are developed. The latter require
a thorough investigation of the relevant properties of linear DAEs. Although a large
number of publications dealing with linear DAEs is available, we have to clarify several
aspects in order to proceed. Some technical difficulties are due to our goal to ensure a
constant invariant subspace of the inherent regular ODE. For that purpose, the space
DN1 or DS1 plus a corresponding complementary space is required to be constant.
In contrast to [BM00], [BM04] and [MHT03b] we are forced to decouple without the
canonical projector Q1 so that suitable representations of the inherent dynamics and
that of fundamental matrices of homogeneous DAEs have to be derived.

Remark 1.21. Later on, it is proved that the invariant subspaces of the inherent dy-
namics of an autonomous nonlinear DAE and of its linearization around the same
solution coincide. In principal, the nonlinear decoupling works for time-dependent
state spaces as well, but using our methodology it is not possible to conclude that
the state space representation is autonomous in that case. Unfortunately, we cannot
prove the analogon of the Andronov-Witt Theorem in case of autonomous index-2
DAEs without this crucial property.
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1.5.1 Representation of the inherent dynamics on im DP1

An intermediate step towards extraction of the inherent dynamics of nonlinear index-2
systems via complete decoupling necessitates the decoupling of the linearization of a
DAE. In order to analyze linear differential-algebraic equations (1.20) we are going to
use the matrix chain with an admissible projector Q1(t) onto N1(t) along K(t). The
complementary space K has to satisfy N0(t) ⊆ K(t) in order to ensure (Q1Q0) (t) = 0.

Assumption. The subspaces (DN1) (t) and (DK) (t) are constant.

Additionally we introduce a projector T (t) onto N0(t) ∩ S0(t) and U(t) := I − T (t)
implying the identities Q0T = T , P0U = P0 and

I = P0P1 + (UQ0 +Q1) (P0Q1 + UQ0) + TQ0P1

Notice that UQ0 + P0Q1, TQ0, P0P1 and TQ0P1 are projectors due to

(UQ0 + P0Q1)
2 = UQ0 (I − T )Q0 + P0Q1P0Q1 = UQ0 + P0Q1

(TQ0)
2 = TQ0Q0 = TQ0

(TQ0P1)
2 = TQ0(I −Q1)TQ0P1 = TQ0P1

In the next step, (1.20) is multiplied by G−1
2 (t),

G−1
2 (t)A(t)(D(t)x(t))′ +G−1

2 (t)B(t)x(t) = G−1
2 (t) q(t)

and then splitted into three parts via multiplication by DP1, P0Q1 +UQ0 and TQ0P1,
where the resulting system is still equivalent to (1.20).

1. Multiplication by DP1 results in

DP1D
−(Dx)′ +DP1G

−1
2 BP0P1x = DP1G

−1
2 q

due to
G−1

2 A = G−1
2 AR = G−1

2 (G2P1P0)D
− = P1D

−

and the decomposition I = P0P1 + P0Q1 +Q0 in

B = BP0P1+BP0Q1+BQ0 = BP0P1+G2Q1+G1Q0 = BP0P1+G2Q1+(G2P1)Q0

2. Multiplication by TQ0P1 reveals

−Q0Q1D
−(Dx)′ + TQ0P1G

−1
2 BD−(DP1x) + TQ0x = TQ0P1G

−1
2 q

because the computations above and TQ0P1Q0 = TQ0, im Q0Q1 = im T imply

TQ0P1D
−(Dx)′ = TQ0(D

−D)D−(Dx)′ − TQ0Q1D
−(Dx)′

= −Q0Q1D
−(Dx)′
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3. Multiplication by P0Q1 + UQ0 leads to

(UQ0 + P0Q1)G
−1
2 BD−(DP1x) + (UQ0 + P0Q1)x = (UQ0 + P0Q1)G

−1
2 q

with

UQ0P1D
−(Dx)′ = UQ0D

−(Dx)′ = UQ0(D
−D)D−(Dx)′ = 0

(UQ0 + P0Q1)Q1 = P0Q1 and (UQ0 + P0Q1)Q0 = UQ0.

DP1D
− and DQ1D

− project onto DK along DN1 ⊕ kerA respectively onto DN1

along DK ⊕ kerA due to Lemma 1.12. Taking the representation (8.1) and the
C1-bases of DN1, DK and kerA into consideration (cf. Lemma 2.15), we obtain
DP1D

−, DQ1D
− ∈ C1 (I,Rn×n). Application of the chain rule results in (1.20) being

equivalent to

(DP1x)′ − (DP1D
−)′Dx+DP1G

−1
2 BD−(DP1x) = DP1G

−1
2 q (1.21)

(UQ0 + P0Q1)G
−1
2 BD−(DP1x) + (PQ1 + UQ0)x = (PQ1 + UQ0)G

−1
2 q

−Q0Q1D
−(Dx)′ + TQ0P1G

−1
2 BD−(DP1x) + TQ0x = TQ0P1G

−1
2 q

Using a constant auxiliary projector P̃ ∈ Rn×n onto DK = im DP1D
−,(

DP1D
−)′DP1 =

(
DP1D

−)′ P̃DP1 =
(
DP1D

−P̃
)′
DP1 = P̃ ′DP1 = 0.

A constant projector Q̃ ∈ Rn×n onto im DQ1D
− = DN1 implies(

DP1D
−)′DQ1 =

(
DP1D

−)′ Q̃DQ1 =
(
DP1D

−Q̃
)′
DQ1 = 0

due to im Q̃ ⊆ kerDP1D
−. Altogether with im DP1D

− ⊆ kerQ0Q1D
−

Q0Q1D
−(DP1x)′ = Q0Q1D

−(P̃DP1x)′ = Q0Q1D
−P̃ (DP1x)′ = 0

Therefore, the given linear DAE is equivalent to

(DP1x)′ +DP1G
−1
2 BD−(DP1x) = DP1G

−1
2 q (1.22)

(UQ0 + P0Q1)G
−1
2 BD−(DP1x)

+ (PQ1 + UQ0)x
= (UQ0 + P0Q1)G

−1
2 q (1.23)

TQ0P1G
−1
2 BD−(DP1x) + TQ0x

−Q0Q1D
−(D(P0Q1 + UQ0)x)′

= TQ0P1G
−1
2 q (1.24)

Hereby (1.22) constitutes an explicit differential equation governing the behaviour of
the solution components DP1x. Denote u = DP1x in order to obtain

u′(t) = − (DP1G
−1
2 BD−

)
(t)u(t)− (DP1G

−1
2

)
(t)q(t) (1.25)

This differential equation is called the inherent regular ODE (IRODE) of (1.20) within
the context of the tractability index. Besides, DK = im DP1D

− is an invariant
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subspace of (1.25) because v(t) := (I −DP1D
−) (t)u(t) satisfies the homogeneous

ODE
v′(t) = − (DP1D

−)′ (t)v(t)

which can be proved multiplying (1.25) by I −DP1D
−. Denote

u(t) = (DP1) (t)x(t), w(t) = (TQ0) (t)x(t), y(t) = (UQ0 + P0Q1) (t)x(t),
u′(t) = (DP1x)′ (t), (Dy)′ (t) = (DQ1x)′ (t)

(1.26)

Then,

y = − (UQ0 + P0Q1)G
−1
2 BD−u+ (UQ0 + P0Q1)G

−1
2 q

(Dy)′ = − (DQ1G
−1
2 BD−u

)′
+
(
DQ1G

−1
2 q
)′

=

{ − (DQ1G
−1
2 BD−

)′
u+DQ1G

−1
2 BP0P1G

−1
2 BD−u

−DQ1G
−1
2 BP0P1G

−1
2 q +

(
DQ1G

−1
2 q
)′

w = −TQ0P1G
−1
2 BD−u+ TQ0P1G

−1
2 q +Q0Q1D

− (Dy)′

=


(
TQ0P1G

−1
2 −Q0Q1G

−1
2 BP0P1G

−1
2

)
q +Q0Q1D

− (DQ1G
−1
2 q
)′(

−TQ0P1G
−1
2 BD− −Q0Q1D

− (DQ1G
−1
2 BD−

)′)
u

+Q0Q1G
−1
2 BP0P1G

−1
2 BD−u

The solution vector is

x = D−u+ y + w = Ku+Mq +Q0Q1D
− (DQ1G

−1
2 q
)′

with

K :=
D− − (UQ0 + P0Q1)G

−1
2 BD− − TQ0P1G

−1
2 BD−

−Q0Q1D
− (DQ1G

−1
2 BD−

)′
+Q0Q1G

−1
2 BP0P1G

−1
2 BD−

resulting in the solution representation x (t) = K (t)u (t) for homogeneous linear DAEs.
Let U(t), U(t0) = I be the normalized fundamental matrix of the homogeneous IRODE

u′ = −DP1G
−1
2 BD−u.

Solutions of the IRODE on DK are given by u(t) = U(t) (DP1) (t0)u0. Particularly,

X(t) = K(t)U(t) (DP1) (t0) (1.27)

is a representation of the quadratic fundamental system of the homogeneous DAE
(1.20) with (DP1) (t0) (X(t0)− Im) = 0.

For the sake of stability analysis of τ -periodic solutions of τ -periodic DAEs we are going
to be in need of characteristic multipliers of the state space representation. They are
defined to coincide with the non-zero eigenvalues of U(τ) (DP1D

−) (0).

DK = R−DQ1G
−1
2 BP0D

− = R−DQ1,cD
− = DP1,cD

−

whereby P1,c denotes the canonical projector. Because DP1D
− and DP1,cD

− both
project along kerA ⊕ DN1, DP1 = DP1P0 and DK = im DP1D

− is an invariant
subspace of the IRODE,

(DP1) (τ)X(τ)D−(0) = (DP1D
−) (τ)U(τ) (DP1D

−) (0)
= U(τ) (DP1D

−) (0).
(1.28)
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Remark 1.22. Choosing Q1 = Q1,c in our computations results in DS1 being the
invariant subspace of the IRODE. Then the simplified representation

D(τ)X(τ)D−(0) = U(τ)
(
DP1D

−) (0)

is valid. Mimicking the approach in [MHT03b], this choice of Q1 for the complete
decoupling requires both subspaces DS1 and DN1 to be constant. In this special case
one can fall back to the representation of the fundamental matrix published in [BM00].

1.5.2 Decoupling using a projector P̃1 onto S1

Let P̃1(t) be a projector onto S1(t) along K̃(t) and require the structural conditions

Assumption. The subspaces DS1 and DK̃ are constant.

We aim at a solution representation using the identity

I = P0P̃1 + TQ0 +
(
UQ0 + P0Q̃1

)
.

To this end, we consider the above calculations with Q1 = Q1,c but we do not require
DN1 to be constant. Due to the property (1.4) we achieve a simplification in (1.21),
namely (

DP1D
−) (Dx)′ +DP1G

−1
2 BD−(DP1x) = DP1G

−1
2 q

UQ0G
−1
2 BD−(DP1x) + (PQ1 + UQ0)x = (PQ1 + UQ0)G

−1
2 q

−Q0Q1D
−(Dx)′ + TQ0P1G

−1
2 BD−(DP1x) + TQ0x = TQ0P1G

−1
2 q.

The auxiliary projectors P̂ ∈ Rn×n onto im DP̃1D
− = DS1 and Q̂ ∈ Rn×n onto im DK̃

imply

Q0Q1D
−(Dx)′ = Q0Q1D

−
(
P̂
(
DP̃1x

)′
+
(
DQ̃1x

)′)
= Q0Q1D

−(DQ̃1x)′

due to DS1 ⊆ kerQ0Q1D
−. Moreover,

DP̃1D
− (Dx)′ =

(
DP̃1x

)′
−
(
DP̃1D

−P̂
)′
DP̃1x

+
(
DP̃1D

−
)
Q̂
(
DQ̃1x

)′ =
(
DP̃1x

)′

DQ̃1D
− (Dx)′ =

(
DQ̃1D

−
)
P̂
(
DP̃1x

)′
+
(
DQ̃1x

)′
−
(
DQ̃1D

−Q̂
)′
DQ̃1x.

=
(
DQ̃1x

)′
We notice that N0 ⊆ S1 implies P̃1Q0 = Q0, i.e. Q̃1Q0 = 0. Since DP1D

− and DP̃1D
−

are projecting onto DS1,

DP1D
− = DP1P̃1D

− +DP1Q̃1D
− = DP̃1D

− +
(
DP1D

−) (DQ̃1D
−
)
,
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DP1D
−(Dx)′ =

(
DP̃1x

)′
+
(
DP1D

−) (DQ̃1D
−
)(

DQ̃1x
)′

Taking advantage of (1.4) and of Q1P̃1 = 0,

P0Q1 = P0

(
Q̃1 + P̃1

)
Q1 = P0Q̃1 + P0P̃1Q1

(
P̃1 + Q̃1

)
= P0Q̃1 + P0P̃1Q1G

−1
2 BP0Q̃1

resulting in the following representation of (1.21):

u′ +
(
DP1Q̃1D

−
)

(Dy)′

+DP1G
−1
2 BD−u+DP1G

−1
2 BP0P1Q̃1y

= DP1G
−1
2 q (1.29)

(
I +

(
UQ0 + P0P̃1

)
G−1

2 BP0P1Q̃1

)
y

+UQ0G
−1
2 BD−u

= (PQ1 + UQ0)G
−1
2 q (1.30)

TQ0P1G
−1
2 BD−u−Q0Q1D

−(Dy)′

+TQ0P1G
−1
2 BP0P1Q̃1y + w

= TQ0P1G
−1
2 q (1.31)

whereby

u(t) =
(
DP̃1

)
(t)x(t), w(t) = (TQ0) (t)x(t), y(t) =

(
UQ0 + P0Q̃1

)
(t)x(t),

u′(t) =
(
DP̃1x

)′
(t), (Dy)′ (t) =

(
DQ̃1x

)′
(t)

(1.32)

Now, the property Q̃1

(
UQ0 + P0P̃1

)
= 0 implies(

I +
(
UQ0 + P0P̃1

)
G−1

2 BP0P1Q̃1

)−1

=
(
I −

(
UQ0 + P0P̃1

)
G−1

2 BP0P1Q̃1

)
and (1.30) reveals

Dy =
(
DQ1G

−1
2 −DP̃1G

−1
2 BP0P1Q̃1G

−1
2

)
q

Considering homogeneous DAEs, (1.29)-(1.31) result in

y = −UQ0G
−1
2 BD−u w = −TQ0P1G

−1
2 BD−u

and there exists the solution representation x = D−u+ y + w = K̃u with

K̃ := D− − UQ0G
−1
2 BD− − TQ0P1G

−1
2 BD−

Due to Q̃1y = Q̃1D
− (Dy) = 0 the IRODE reduces to u′ = −DP1G

−1
2 BD−u on the

invariant subspace DS1. Let U(t) be the normalized (U(t0) = I) fundamental matrix
of the inherent regular ODE. Then,

X(t) = K̃(t)U(t)
(
DP̃1

)
(t0) (1.33)

is a quadratic fundamental matrix of the homogeneous DAE (1.20). As a result of the
invariance of DS1,

D(t)X(t)D−(t0) = R(t)U(t)
(
DP̃1D

−
)

(t0) (1.34)

=
(
DP̃1D

−
)

(t)U(t)
(
DP̃1D

−
)

(t0)

= U(t)
(
DP̃1D

−
)

(t0)
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Remark 1.23. It is possible to construct a nonlinear decoupling based on a projector P̃1

onto the invariant subspace DS1 but the term DP1Q̃1D
− (Dy)′ in (1.29) complicates

the analysis seriously. We present such a decoupling procedure in the appendix. As a
result of the technical difficulties, the autonomous structure of the SSF (of autonomous
index-2 DAEs) and commutativity between decoupling and linearization are waived.
The successful analysis based on the structural condition (1.5.1) is per se a weakening
of the requirements in [MHT03b], where both DN1 and DS1 are required constant.

Remark 1.24. The regularity of G̃2 := G1 + BP0Q̃1 can be proved by means of a
suitable factorization. Unfortunately, multiplication of the DAE by G̃−1

2 does not
yield a convenient decoupling because

DP̃1G̃
−1
2 A(Dx)′ =

(
DP̃1x

)′
+DP̃1G̃

−1
2 G1Q̃1D

− (Dx)′

=
(
DP̃1x

)′
+
(
DP̃1G̃

−1
2 G1Q̃1x

)′
−
(
DP̃1G̃

−1
2 G1

)′
Q̃1x

Here again,
(
Q̃1x

)′
appears in the equation together with the derivative of the dy-

namical components
(
DP̃1x

)′
and this fact results in serious problems if nonlinear

DAEs are considered.
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2 The state space form

It’s not what you know, it’s what you can prove.

(Alonzo Harris, Training Day (2001))

The goal of this chapter is to set up a state space form (SSF) of the inherent dynamics
for a class of fully implicit nonlinear index-2 DAEs. Subsequently, two important
properties of the transformation to the state space representation are proved. Given
an autonomous DAE with constant subspaces DN1 and DK along x∗, the SSF inherits
the autonomous structure. In addition, the presented transformation to the state
space form commutes with linearization around the same reference solution x∗, i.e.
the diagram

/. -,
() *+

DAE
f
(
(Dx)′ (t), x(t), t

)
= 0

linearization //

transformation

to the SSF

��

/. -,
() *+

Linearized DAE
fy(t) (Dx)′ (t) + fx(t)x(t) = 0

transformation

to the SSF

��

�

/. -,
() *+
State Space Form of the DAE

ξ′(t) = g (ξ(t), t)
linearization //

/. -,
() *+
SSF of the linearized DAE
z′(t) = gξ (ξ∗(t), t) z(t)

(2.1)

where ξ∗ is the respective transformation of x∗, is commutative. This allows to formu-
late the direct method of Lyapunov for index-2 DAEs referring to the linearized DAE
only.

The state space form is a convenient tool to analyse the stability behaviour of solutions
nearby x∗. Its construction relies on the matrix chain, a suitable parametrization of
systemic subspaces and the implicit function theorem. Generally, one cannot expect
to compute the transformation numerically in reasonable time.

A preliminary note on the decoupling of nonlinear DAEs

The most laborious intermediate step of our transformation is a complete decoupling of
the properly stated differential-algebraic system into an ODE on an invariant subspace
together with some appropriate constraints. It is meant to generalize the solution
representation for linear DAEs in § 1.5 that is to state that the solution vector x (t) is
already determined by its components

u(t) = (DP1)
(
(Dx∗)

′ (t), x∗(t), t
)
x(t)

where u solves an explicit ODE on an invariant subspace. Fortunately, we do not
need to start from the scratch due to the fundamental results on decoupling of non-
linear differential-algebraic systems in the context of the tractability index achieved
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by the DAE research group at the Humboldt university of Berlin. The decoupling of
nonlinear index-1 DAEs (1.1) dates back not later than to [GM86, § 1.2]. Although
it is an elegant way to reveal the obvious constraints in the index-1 case by a single
application of the implicit function theorem, this approach is not adaptable to higher
index systems. An alternative approach to decouple index-1 DAEs (1.1) relying on
a modified Taylor expansion was formulated by Caren Tischendorf in [Tis94, Theo-
rem 2.1]. The basic idea there is to separate the linear part of the system and the
remaining nonlinear term and to add a suitable zero-sum in order to enforce certain
properties of the remainder term. Subsequently the DAE is splitted into an equiv-
alent system applying the linear decoupling method of the linearized DAE to the
entire system. The critical part is to ensure that the implicit function theorem can
be applied to the resulting constraints thus leading to an ODE representation of the
inherent dynamics. This task was mastered in the thesis [Tis96] for linear implicit
index-2 DAEs resulting in structural assumptions on the DAE which allow the as-
tonishingly simple formulation (2.15) using the matrix chain and are shown to be of
great practical interest in the circuit simulation. Another advantage of this approach
is its versatility which is underlined by an outline of the application to index-3 DAEs
in the summary of this thesis. It is not surprising that there are several adaptations
of the method. For example, [San00, § 3.1.2] improves the complete decoupling in
[Tis96, Theorem 3.12] by replacing the canonical projector Q1,c with an admissible
projector Q1 onto N1. Alternatively, a projector onto S1 is taken into consideration
aiming at commutativity between the complete decoupling and the BDF and stiffly
accurate Runge-Kutta methods for DAEs, cf. [San00, § 3.2]. Meanwhile, a strong em-
phasis on a properly stated derivative term of differential-algebraic systems in a series
of publications [BM00, Mä01, Mä02a, Mä05] is leading to new findings with regard to
the benefits of considering such DAEs which arise naturally in some applications, e.g.
the Modified Nodal Analysis (MNA) equations ([Mä03]). An intermediate result of
the thesis [Voi06] is to prove the existence of a solution of properly formulated index-2
DAEs A (t) (D (t)x (t))′+ b (x (t) , t) = 0 assuming the mentioned structural condition
N0 (t)∩S0 (y, x, t) independent of y, x. There, an incomplete decoupling of the DAE is
used which actually follows the modified Taylor expansion approach similar to [Tis96].
The intention of the present chapter is threefold: first, we point out crucial technical
details of the complete decoupling originating from [Tis96, Theorem 3.12] and adjust
them to properly stated derivative term. In doing so we hope that the structural
conditions on index-2 DAEs are going to appear more or less canonical to the reader.
The second goal is to enhance the decoupling approach by passing over to a state
space representation and to reveal important properties of this transformation, more
precisely the commutativity between decoupling and inheritance of the autonomous
structure of the dynamics. In our opinion, the already mentioned publications on
DAEs with a properly stated derivative term together with [MHT03a, MHT03b] tend
to focus mainly on the numerical benefits of the Formulation (1.2). Therefore, we felt
intrigued to investigate the influence a proper formulation or some constant subspaces
might have on the DAE from a qualitative point of view, regarding exact solutions.
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2.1 Decoupling nonlinear DAEs

In order to decouple nonlinear differential-algebraic systems, we represent them adding
up the linearization terms around the reference solution x∗ ∈ C1

D, the nonlinear re-
mainder term plus a suitable zero-sum.

We have already proved the linearization of a given DAE (1.2) around x∗ to be

f ∗y (t) (Dx)′ (t) + f ∗x(t)x(t) = 0

denoting f ∗y (t) := fy
(
(Dx∗)

′ (t), x∗(t), t
)
and f ∗x(t) := fx

(
(Dx∗)

′ (t), x∗(t), t
)
. Taking

the remainder term into consideration leads to the equivalent representation

f ∗y (t) (Dx)′ (t) + f ∗x(t)x(t) + ĥ
(
(Dx)′ (t), x(t), t

)
= 0

of (1.2) whereas

ĥ
(
(Dx)′ (t), x(t), t

)
:= f

(
(Dx)′ (t), x(t), t

)− (f ∗y (t) (Dx)′ (t) + f ∗x(t)x(t)
)

The remainder term does not fulfill ĥ
(
(Dx∗)

′ (t), x∗(t), t
) ≡ 0 so we use a fitting

r(t) :=
(
f ∗y (t) (Dx∗)

′ (t) + f ∗x(t)x∗(t)
)− f ((Dx∗)′ (t), x∗(t), t)

such that

h̃(y, x, t) := ĥ (y, x, t) + r (t) =
f (y, x, t)− f ((Dx∗)′ (t), x∗(t), t)
+f ∗y (t)

(
(Dx∗)

′ (t)− y)+ f ∗x(t) (x∗(t)− x)

satisfies the following properties

h̃
(
(Dx∗)

′ (t), x∗(t), t
) ≡ 0, h̃x

(
(Dx∗)

′ (t), x∗(t), t
) ≡ 0, h̃y

(
(Dx∗)

′ (t), x∗(t), t
) ≡ 0

(2.2)
which turn out to be favourable because they simplify calculations and play a decisive
role in proving commutativity of (2.21). Due to the t-dependent zero-sum r (t) the
original DAE (1.2) is equivalent to the corresponding modified Taylor expansion

f ∗y (t) (Dx)′ (t) + f ∗x(t)x(t) + h̃
(
(Dx)′ (t), x(t), t

)− r(t) = 0 (2.3)

Motivation of a nonlinear decoupling

We split the modified Taylor expansion (2.3) into an equivalent system of three equa-
tions multiplying by the matrix valued functions used to decouple the linearization of
(1.2). Keep in mind the initial agreement to denote

Q1(t) = Q1

(
(Dx∗)

′ (t), x∗(t), t)
)

and so on. We require Q1 (y, x, t) to be an admissible projector on N1 (y, x, t) along
K (y, x, t). Moreover, all projectors in the matrix chain should be at least continuous,
i.e. Q1(t), G2(t) etc. are continuous as well. Using the notation (1.26),

I = P0P1 + TQ0 + (UQ0 + P0Q1)
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and the auxiliary function

h
(
u′, (Dy)′ , u, w, y, t

)
:= h̃

(
u′ + (Dy)′ , (P0P1D

−) (t)u
+ (TQ0) (t)w + (UQ0 + P0Q1) (t)y, t

)
the splitted DAE exhibits the representation

u′(t) +
(
DP1G

−1
2 f ∗xD

−) (t)u(t)
+
(
DP1G

−1
2

)
(t)
(
h
(
u′(t), (Dy)′ (t), u(t), w(t), y(t), t

)− r(t)) = 0

(UQ0 + P0Q1) (t)
(
G−1

2 f ∗xD
−) (t)u(t) + y(t)

+ (UQ0 + P0Q1) (t)G−1
2 (t)

(
h
(
u′(t), (Dy)′ (t), u(t), w(t), y(t), t

)− r(t)) = 0

− (Q0Q1D
−) (t) (Dy)′ (t) + w(t) +

(
TQ0P1G

−1
2 f ∗xD

−) (t)u(t)
+
(
TQ0P1G

−1
2

)
(t)
(
h
(
u′(t), (Dy)′ (t), u(t), w(t), y(t), t

)− r(t)) = 0

(2.4)
Per constructionem, h, hu′ , h(Dy)′ , hu, hw, hy vanish along the extended integral curve
of x∗, where u∗(t) := (DP1) (t)x∗(t) etc.

Regarding (2.4) as an algebraic system in formal variables (Dy)′ , u′, y, w, u, it is
possible to eliminate y and w locally and to solve the first equation in (2.4) for u′
applying the implicit function theorem three times. However, we have to incorporate
that (Dy)′ in the equivalent representation of a DAE is determined by differentiation of
the Dy solution components. If (Dy)′ (t) = v (u(t), t) holds then the reformulated first
equation in (2.4) will represent an ordinary differential equation for the solution com-
ponents u (t) = (DP1) (t)x (t). In the following we have to prove such a representation
of (Dy)′. Differentiating the algebraic relation D (t) y (t) = D (t) ṽ

(
(Dy)′ (t) , u (t) , t

)
we get

(Dy)′ (t) =
∂

∂t

(
D (t) ṽ

(
(Dy)′ (t) , u (t) , t

))
which is equivalent to an algebraic relation Ṽ

(
(Dy)′ (t), u(t), t

)
= 0, if the coefficient

of the second derivative ∂2

(∂t)2
(Dy) (t) vanish. The latter turns out to be the main

structural condition we have to impose on (1.2). Unfortunately, this approach results
in sophisticated assumptions if formulated in terms of the given DAE. Even the for-
mulation of y = ṽ

(
(Dy)′ (t), u(t), t

)
necessitates two implicitly defined functions for u′

and w whose partial derivatives enter the above structural assumption. Nevertheless,
the approach turns out to be practicable for linear implicit DAEs with A(x, t) = A(t)
where h̃ = h̃ (x, t) resp. h = h (u,w, y, t).

2.1.1 Linear implicit DAEs

Consider a linear implicit index-2 DAE

A(t) (Dx)′ (t) + b (x(t), t) = 0 (2.5)
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having a solution x∗. The differential-algebraic system is equivalent to its modified
Taylor expansion (2.3) with

h̃(x, t) = b(x, t)− b(x∗, t) + b∗x (t) (x∗(t)− x)

r(t) = b∗x (t)x∗(t)− b (x∗(t), t)

and b∗x (t) := bx (x∗ (t) , t). In addition, consider a subspace K (x, t) ⊆ Rm having a
basis of continuous functions satisfying N1 (x, t)⊕K (x, t) = Rm and K (x, t) ⊇ N0 (t).
Then we choose the matrix chain of the tractability index such that the admissible
projector Q1 (x, t) maps N1 (x, t) along K (x, t). We need

Assumption 2.1. The subspaces (DN1) (x∗(t), t) and (DK) (x∗(t), t) are constant.

The equivalent representation (2.4) of (2.5) reads

u′(t) +
(
DP1G

−1
2 b∗xD

−) (t)u(t)
+
(
DP1G

−1
2

)
(t) (h (u(t), w(t), y(t), t)− r(t)) = 0 (2.6)

(UQ0 + P0Q1) (t)
(
G−1

2 b∗xD
−) (t)u(t) + y(t)

+ (UQ0 + P0Q1) (t)G−1
2 (t) (h (u(t), w(t), y(t), t)− r(t)) = 0 (2.7)

w(t)− (Q0Q1D
−) (t) (Dy)′ (t) +

(
TQ0P1G

−1
2 b∗xD

−) (t)u(t)
+
(
TQ0P1G

−1
2

)
(t) (h (u(t), w(t), y(t), t)− r(t)) = 0 (2.8)

using the notation (1.26) for the particular solution components and their derivatives
and the subscript-* notation u∗(t) = (DP1) (t)x∗(t) for the reference solution x∗. The
auxiliary function h is

h (u,w, y, t) = h̃
((
P0P1D

−) (t)u+ (TQ0) (t)w + (UQ0 + P0Q1) (t)y, t
)
.

Solving for (UQ0 + P0Q1) (t)x

Equation (2.7) can be written as

M (u(t), w(t), (UQ0 + P0Q1) (t)y(t), t) = 0 (2.9)

by means of the function

M (u,w, y, t) :=

(
(UQ0 + P0Q1)G

−1
2 b∗xD

−) (t)u+ y
+
(
(UQ0 + P0Q1)G

−1
2

)
(t) (h (u,w, y, t)− r (t))

M is continuous and continuously partial differentiable with respect to u,w, y. Set

Z(t) := (UQ0 + P0Q1) (t) , z := Z (t) y

to obtain

∂

∂z
M (u,w, z, t) = My (u,w, Z (t) y, t) = I + (UQ0 + P0Q1) (t)G−1

2 (t)hy (u,w, Z(t)y, t)
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According to (2.7), M (u∗(t), w∗(t), Z(t)y∗(t), t) ≡ 0 holds for y∗ (t) = Z (t) y∗ (t) and
Mz (u∗(t), w∗(t), Z(t)y∗(t), t) ≡ I due to the properties of the remaining term h. Let
t0 ∈ I be arbitrary, but fixed.

0 = M (u,w, (UQ0 + P0Q1) (t)y, t) = M (u,w, z, t)

can be solved for z in a neighbourhood of (u∗(t0), w∗(t0), y∗(t0), t0), i.e there exists a
unique implicitly defined function m = m (u,w, t) on{

(u,w, t) ∈ Rn+m+1 | ‖(u,w, t)− (u∗ (t0) , w∗ (t0) , t0)‖ < c1
}

satisfying

m (u∗(t0), w∗(t0), t0) = y∗(t0)
M (u,w, Z(t)m (u,w, t) , t) = 0
m (u,w, t) = (UQ0 + P0Q1) (t)m (u,w, t)

The last property is due to Z = Z2 for both m (u,w, t) and Z(t)m (u,w, t) sat-
isfy the constraint M(u,w, Z(t)y, t) = 0. Because of the uniqueness, m (u,w, t) =
Z(t)m (u,w, t) is valid.

Solving for the index-1 components (TQ0) (t)x

Preliminary considerations about the third equation in (2.4) corresponding to (2.8)
motivate the structural assumption

Assumption 2.2. Q1(t)mw (u,w, t) ≡ 0 in a neighbourhood of (u∗(t), w∗(t), t).

The above assumption implies Q0Q1m = (Q0Q1m) (u, t) locally around the integral
curve of x∗. Let us assume Q0Q1D

− ∈ C1 then the chain rule ensures

(Q0Q1D
−) (t) ∂

∂t
(Dm (u(t), w(t), t)) =

= ∂
∂t

(Q0Q1m) (u(t), t)− (Q0Q1D
−)
′
(t) (Dm) (u(t), w(t), t)

=
(Q0Q1m)u (u(t), t)u′(t) + ((Q0Q1D

−) (Dm))t (u(t), t)
− (Q0Q1D

−)
′
(t) (Dm) (u(t), w(t), t)

= (Q0Q1) (t)mu (u(t), w(t), t)u′(t) + (Q0Q1D
−) (t) (Dm)t (u(t), w(t), t)

Using (2.6) to replace u′(t) results in

(Q0Q1D
−) (t) ∂

∂t
(D(t)y(t)) =

(Q0Q1D
−) (t) (Dm)t (u(t), w(t), t)

− (Q0Q1) (t)mu (u(t), w(t), t)
(
DP1G

−1
2 b∗xD

−) (t)u(t)

− (Q0Q1) (t)mu (u(t), w(t), t)
(
DP1G

−1
2

)
(t) (h (u(t), w(t), y(t), t)− r(t))

Inserting this expression into (2.8) leads to

K (u(t), (TQ0) (t)w(t), t) = 0 (2.10)
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with

K(u,w, t) :=


− (Q0Q1D

−) (t) (Dm)t (u,w, t) + (Q0Q1m)u (u, t)
(
DP1G

−1
2 b∗xD

−) (t)u
+ (Q0Q1m)u (u, t)

(
DP1G

−1
2

)
(t) (h (u,w,m (u,w, t) , t)− r(t))

+
(
TQ0P1G

−1
2 b∗x

)
(t)D−(t)u+ w

+
(
TQ0P1G

−1
2

)
(t) (h (u,w,m (u,w, t) , t)− r(t))

Remark 2.3. The constraint (2.8) is equivalent to (2.10) under the Assumption 2.2. In
other words, the analytic relation between the formal variable (Dy)′ and its meaning
as the derivative of Dy in the DAE is depicted correctly.

Now the algebraic equation (2.10) has to be solved for ξ := (TQ0) (t)w.

∂

∂ξ
K (u, ξ, t) =

I − (Q0Q1D
−) (t) (Dm)tw (u, ξ, t)

+
(
TQ0P1G

−1
2

)
(t) (hw + hymw) (u, ξ, t)

+ (Q0Q1m)u (u, t)
(
DP1G

−1
2

)
(t) (hw + hymw) (u, ξ, t)

The partial derivatives hw, hy vanish in (x∗(t), t). For the (i, j)-th entry of (Dm)tw
holds:

[(Dm)tw]ij =
∂ [(Dm)t]i

∂wj
=

∂

∂wj
((Dm)i)t = ((Dm)i)twj

= ((Dm)i)wjt =
∂

∂t
[(Dm)w]ij = [(Dm)wt]ij

if the partial derivatives (Dw)tw, (Dw)wt exist and commute. The outcome of this is(
Q0Q1D

−) (t) (Dm)tw (u, ξ, t) =
(
Q0Q1D

−) (t) (Dm)wt (u, ξ, t)

=

(
∂

∂t
(Q0Q1m)w −

(
Q0Q1D

−)′ (t) (Dm)w

)
(u, ξ, t)

= − (Q0Q1D
−)′ (t) (DQ1D

−) (t) (Dm)w (u, ξ, t) = 0

in a neighbourhood of (u∗(t), (TQ0) (t)w∗ (t) , t)1 due to Assumptions 2.2 and 2.1.
Therefore,

∂

∂ξ
K (u∗(t), ξ∗(t), t) ≡ I

The components u∗, ξ∗ solve the equation K (u∗(t), ξ∗(t), t) = 0 as a consequence of x∗
being a solution of the given DAE. According to the implicit theorem function, there
exists a unique resolution of K(u, ξ, t) = 0 for ξ on Bc2 (u∗(t0), t0) exhibiting

k (u∗(t0), t0) = ξ∗(t0)
K (u, (TQ0) (t) k (u, t) , t) = 0
k (u, t) = (TQ0) (t)k (u, t)

The last property is due to TQ0 = (TQ0)
2 and the fact that both k (u∗ (t) , t) and

(TQ0) (t) k (u∗ (t) , t) satisfy (2.10) so k (u, t) = (TQ0) (t) k (u, t) due to uniqueness of
the implicit function k.

1where ξ∗ (t) = (TQ0) (t)x∗ (t) = (TQ0) (t)w∗ (t)
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Remark 2.4. At this point it is crucial to ask for a reference solution x∗ of the DAE
(2.5). Starting with an inconsistent initial value x0 ∈ M0(t0), the representation
(2.3) in (y0, x0, t0) is defined and one can even solve the algebraic constraint (2.9) for
(UQ0 + P0Q1) (x0, t0)x0. The partial differential

∂

∂ξ0
K ((DP1) (x0, t0)x0, ξ0, t0)

ξ0 = (TQ0) (x0, t0)x0 is invertible as well. Since there is no DAE solution passing
through x0, the hidden constraint

K ((DP1) (x0, t0)x0, (TQ0) (x0, t0)x0, t0) = 0

cannot be satisfied. Consequently, the implicit function theorem cannot ensure the
resolution for w = (TQ0) (x0, t0)x.

We have proved the following representations for two solution components of the linear
implicit DAE (2.5) in a neighbourhood of (x∗(t0), t0):

(TQ0) (t)x(t) = k ((DP1) (t)x(t), t) , (2.11)
(UQ0 + P0Q1) (t)x(t) = m ((DP1) (t)x(t), k ((DP1) (t)x(t), t) , t)

Inserting these representations into (2.6) demonstrates that the DP1-components of a
solution x of (2.5) nearby (x∗(t0), t0) satisfy the ordinary differential equation

u′(t) =
− (DP1G

−1
2 b∗xD

−) (t)u(t) +
(
DP1G

−1
2

)
(t)r(t)

− (DP1G
−1
2

)
(t)h (u(t), k (u(t), t) ,m (u(t), k (u(t), t) , t) , t) .

(2.12)

Definition 2.5. The ODE (2.12) is called the inherent regular ODE, abbr. IRODE
of the given DAE (2.5) locally around x∗.

It is convenient to talk about the IRODE although this differential equation is not
unique at all.

Lemma 2.6. The IRODE (2.12) has the invariant subspace DK = im DP1D
− if

Assumption 2.1 is valid.

Proof. Multiplying (2.12) by (I −DP1D
−) results in 0 = (I − (DP1D

−) (t))u′(t).
Moreover,(

I −DP1D
−)′ = − (I −DP1D

−) (DP1D
−)′ − (DP1D

−)′ (I −DP1D
−)

= − (DP1D
−)′ (I −DP1D

−)
because (DQ1D

−) (DP1D
−)
′
= 0 is true due to Assumption 2.1. Define

v(t) :=
(
I −DP1D

−) (t)u(t)
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Then,

v′(t) =
(
I −DP1D

−) (t)u′(t) +
(
I −DP1D

−)′ (t)u(t)

=
(
I −DP1D

−)′ (t)u(t)

= − (DP1D
−) (t)v(t)

If u(t0) ∈ (DK) (t0) ⇐⇒ v(t0) = 0 holds true then solutions v of the above homoge-
neous ODE feature v(t) ≡ 0.

Summarizing the assumptions of the complete decoupling, we obtain

Theorem 2.7. [Complete decoupling of linear implicit DAEs]

Let x∗ ∈ C1
D (I,Rm) be a solution of the properly formulated index-2 DAE

A(t) (Dx)′ (t) + b (x(t), t) = 0

on a compact interval I ⊆ R. Let the smoothness assumptions

· (Q0Q1D
−) (x∗(t), t) continuously differentiable

·
(
(UQ0 + P0Q1)G

−1
2 b∗xP0P1

)
(t) and

·
(
(UQ0 + P0Q1)G

−1
2

)
(t) (b (x, t)− b∗x(t)x) twice continuously differentiable

be satisfied. Assume Q1 (x, t) to be an admissible projector on N1 (x, t) along K (x, t)
with

(DN1) (x∗(t), t) = const., (DK) (x∗(t), t) = const.

Furthermore, let the structural assumption

Q1(t)
(
I + (UQ0 + P0Q1) (t)G−1

2 (t) (bx (x, t)− bx (x∗(t), t)) (UQ0 + P0Q1) (t)
)−1 ·

· (UQ0 + P0Q1) (t)G−1
2 (t) (bx (x, t)− bx (x∗(t), t)) (TQ0) (t)

= 0

(2.13)
be valid in a neighbourhood of the integral curve of x∗. Then, the inherent dynamics
of the DAE locally around the trajectory of x∗ referring to the components u (t) =
(DP1) (x∗ (t) , t) is represented by the inherent regular ODE

u′(t) =
− (DP1G

−1
2 b∗xD

−) (t)u(t) +
(
DP1G

−1
2

)
(t)r(t)

− (DP1G
−1
2

)
(t)h (u(t), k (u(t), t) ,m (u(t), k (u(t), t) , t) , t)

on the invariant subspace DK.

Proof. Let t0 ∈ I be arbitrary, but fixed.

The constancy of DN1 and DK along the integral curve of x∗ corresponds to As-
sumption 2.1. The given smoothness implies the function M in (2.9) to be twice
continuously differentiable. According to the relation

Mz (u∗(t0), w∗(t0), Z(t0)y∗(t0), t0) = Im
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the constraint (2.7) can be solved for z = (UQ0 + P0Q1) (t) y locally around (x∗(t0), t0).
Then, the derivative of the resolution satisfies

mw (u,w, t) = − (M−1
z Mw

)
(u,w,m (u,w, t) , t)

with

Mz (u,w,m (u,w, t) , t) = I + (UQ0 + P0Q1) (t)G−1
2 (t)hy (u,w,m (u,w, t) , t)

Mw (u,w,m (u,w, t) , t) = (UQ0 + P0Q1) (t)G−1
2 (t)hw (u,w,m (u,w, t) , t)

Hence, (2.13) expresses Assumption 2.2 in terms of the given DAE. In this case (2.8)
is known to be equivalent to the constraint (2.10). Application of the implicit function
theorem to (2.10) results in the local resolution function k (u, t) = (TQ0) (t) k (u, t)
due to Kξ (u∗(t), w∗(t), t) ≡ Im. Inserting the algebraic relations k and m in (2.6), we
arrive at the desired representation of the inherent regular ODE. The initial values
are u0 = (DP1x) (t0) ∈ DK so according to Lemma 2.6 ∀t ∈ I : u(t) ∈ DK is valid,
i.e. the inherent dynamics take place in the invariant subspace DK. The expression
“complete decoupling of the DAE” is used interchangeably to these implicitly defined
functions m (u,w, t), k (u, t) and the right hand side of the IRODE.

It follows that an open cover
⋃
i∈J Bεi ((x∗(ti), ti)) of the integral curve C belonging to

x∗ exists such that ∀i ∈ J : ti ∈ I and the complete decoupling of the initial system
2.5 is feasible on Bεi ((x∗(ti), ti)) ⊆ Rm+1. The implicit functions m,k defined there
coincide on

Bεi ((x∗(ti), ti)) ∩ Bεj ((x∗(tj), tj))

due to local uniqueness. From now, m and k are meant to denote the maximal ex-
tension of the local functions to the entire region

⋃
i∈J Bεi ((x∗(ti), ti)). The integral

curve of a continuous function on a compact interval is compact as well, so a finite
subcover C ⊆ ⋃i=1,...,s Bεi ((x∗(ti), ti)) exists. Accordingly, there is an ε > 0 such that
the complete decoupling of the initial system (2.5) is feasible on the closed ε-tube
Tε,C ⊂

⋃
i=1,...,s Bεi ((x∗(ti), ti)) around C.

Per constructionem, a function

x ∈ Bε(x∗) ⊆ C1
D (I,Rm)

solves the DAE (2.5) if and only if the solution components

u (t) = (DP1) (t)x (t) , y (t) = (UQ0 + P0Q1) (t)x (t) , w (t) = (TQ0) (t)x (t)

satisfy the equivalent system (2.6)-(2.8). Due to the above implicit functions, the so-
lution components (TQ0) (t)x (t) and (UQ0 + P0Q1) (t)x (t) of the mentioned system
fulfill Representation (2.11). Inserting this representation into (2.6) proves that DP1x
solves necessarily the inherent regular ODE (2.12). Due to (DP1) (t0)x(t0) ∈ (DK) (t0)
and Lemma 2.6, this solution of the IRODE belongs the constant invariant subspace
DK for all t ∈ I.
In order to construct a solution of the DAE from a solution of the associated IRODE
on DK, consider the function

x (t;u) := D−(t)u+ k (u, t) +m (u, k (u, t) , t) (2.14)
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Due to its continuity, there exists a δ > 0 such that x (t, u) ∈ Bε (x∗ (t0)) ⊆ Rm

for all (t, u) ∈ Bδ (t0, (DP1x∗) (t0)) ⊆ R1+n. From the theory of ordinary differ-
ential equations we also know that there exists a 0 < δ̂ ≤ δ such that solutions
u (t; t0, u0) of initial value problems u (t0; t0, u0) = u0 of the inherent regular ODE
with u0 ∈ Bδ̂ ((DP1x∗) (t0)) exist on Iδ̂ :=

(
t0 − δ̂, t0 + δ̂

)
⊆ I and satisfy u (t; t0, u0) ∈

Bδ ((DP1x∗) (t0)) for all t ∈ Iδ̂. It follows that
1. ∀t ∈ Iδ̂, u0 ∈ Bδ̂ ((DP1x∗) (t0)) ∩DK : x (t;u (t; t0, u0)) ∈ Bε (x∗(t0))

2. x (·;u (·; t0, u0)) ∈ C1
D (Iδ̂,Rm) for

D (t)x (t;u (t; t0, u0)) = R (t)u (t; t0, u0) +D (t)Q1 (t)m (u (t; t0, u0) , t)

due to Assumption 2.2 and R (·)u (·; t0, u0) ∈ C1 (Iδ̂,Rn), Q1mu ∈ C0.

3. x (·;u (·; t0, u0)) solves (2.6)-(2.8) due to the properties of the implicit functions
k and m.

Consequently, x (·;u (·; t0, u0)) is a solution of the given linear implicit DAE on Iδ̂ ⊆ I
proceeding in the closed ε-tube Tε,C ⊂

⋃
i=1,...,s Bεi ((x∗(ti), ti)) around the integral

curve of x∗.

Remark 2.8. Representation (2.14) together with already known continuous depen-
dence of the IRODE solution u (t; t0, u0) on initial values (t0, u0) shows that this prop-
erty also holds for linear implicit index-2 DAEs under consideration.

The structural assumption (2.13), i.e. Q1 (t)mw (u,w, t) ≡ 0 appears quite impractical.
If we use a sufficient precondition implying mw = 0 then less smoothness is required,
e.g. M ∈ C2 turns out to be evitable.

Lemma 2.9. [Alternative structural assumption]

Given a linear implicit DAE (2.5) satisfying

N0 (t) ∩ S0 (x, t) independent of x (2.15)

in a neighbourhood of the integral curve of x∗ and an admissible projector Q1 (x, t)
on N1 (x, t) along K (x, t) with DN1, DK constant along x∗. Then the structural
Assumption 2.13 holds and Q0Q1D

− ∈ C1 is not necessary any longer in Theorem
2.7. If(

(UQ0 + P0Q1)G
−1
2 b∗xP0P1

)
,
(
(UQ0 + P0Q1)G

−1
2

)
(t) (b (x, t)− b∗x(t)x) ∈ C1

then the right hand side of the IRODE (2.12) is continuous. It is continuously differ-
entiable in the case of D ∈ C1 and(

(UQ0 + P0Q1)G
−1
2 b∗xP0P1

)
,
(
(UQ0 + P0Q1)G

−1
2

)
(t) (b (x, t)− b∗x(t)x) ∈ C2.

Proof. Denote

H (x, t) := (UQ0 + P0Q1) (t)G−1
2 (t) (bx (x, t)− bx (x∗(t), t))
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Now Assumption 2.13 reads

Q1(t) (I −H (x, t) (UQ0 + P0Q1) (t))−1H (x, t) (TQ0) (t) = 0

for (x, t) in a neighbourhood of the integral curve of x∗. We are going to show that
(2.15) is a sufficient condition for H(x, t) (TQ0) (t) = 0.

(TQ0) (t) projects on a subspace ofN0 (t)∩S0 (x∗(t), t) where S0 (x, t) = kerW0(t)bx(x, t).
The identity

W0(t)bx(x, t) (TQ0) (t) = 0

is valid because N0 ∩S0 is independent of x nearby the integral curve of x∗. Addition-
ally, G0 = G2P1P0, i.e.

(UQ0 + P0Q1)G
−1
2 G0 = (UQ0 + P0Q1) (I −Q1)P0 = 0

respectively

(UQ0 + P0Q1) (t)G−1
2 (t) = (UQ0 + P0Q1) (t)G−1

2 (t)W0(t)

We obtain

H(x, t) (TQ0) (t) =
(UQ0 + P0Q1) (t)G−1

2 (t)W0(t)·
· (bx (x, t)− bx (x∗(t), t)) (TQ0) (t)

= 0

in a sufficiently small neighbourhood of the integral curve of x∗. In particular, mw = 0
and Q0Q1D

− ∂
∂t

(Dm) (u(t), t) independent of w′ hold without assuming differentiabil-
ity neither of Q0Q1D

− nor of (Dm)tw = (Dm)wt.

In principle the decoupling already works ifM ∈ C1 and the implicit function theorem
ensures m ∈ C1. In this case it is possible that the partial derivative (Dm)tw does
not exist, so a priori the right hand side of the IRODE is continuous only. Requiring
M ∈ C2, D ∈ C1 results in (Dm)tw ∈ C0 and therefore a continuously differentiable
right hand side of the inherent regular ODE.

Above considerations give a simple sufficient condition for the complete decoupling
of linear implicit DAEs (2.5). Moreover, the underlying smoothness properties to
ensure the feasibility of the decoupling procedure are quite low, that is A,D ∈ C0,
b ∈ C1 and continuously differentiable projectors evaluated in the reference solution.
However, we are in need of a differentiable right hand side of the IRODE for qualitative
investigations so (Dm)tw ∈ C0 or, loosely speaking, C2-functions of the DAE have to be
required. We notice that the simplified structural Assumption 2.15 is very important
because it is automatically fulfilled in many systems originating from circuit simulation
and Hessenberg-2 DAEs.

Enhancements of the decoupling approach

The preferential analytical goal of decoupling approaches in the context of the tracta-
bility index was to derive local existence results for linear implicit DAEs. For example,
the existence of a solution is proved via a partial decoupling in [Voi06, Th. 6.7]. That
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is to say, the inherent dynamics are represented by a fully implicit DAE with differen-
tiation index one in order to avoid the problem of inconsistent initial values in Remark
2.4. Local solvability of IVPs in differential-algebraic equations of tractability index
2 with t-dependent perturbations plus the verification of the perturbation index two
are aspired in [MT94] and [Tis96]. In order to do so, the given system is decoupled
completely in a neighbourhood of a reference solution. In the final analysis, all men-
tioned decouplings seem to originate from the same principle with certain adaptations
to the desired field of application. One of our intentions was to clarify the essence
of this method yielding the structural conditions in Assumption 2.13 in a canonical
way. From this point of view, the results from [Tis96, Th. 3.12] are attested to lin-
ear implicit systems exhibiting properly stated derivative term as well. Similarly, we

show that im
(

T
f−y fxT

)
(y, x, t) independent of y, x and constancy of the systemic

subspaces DK, DN1 along the extended integral curve of x∗ allow to decouple fully
implicit DAEs.

Only few applications of mentioned decoupling approaches to the topic of stability are
known to us. At this, the generalization of Perron’s Theorem to index-2 DAEs with
constant coefficients of the linearization and a small nonlinearity in [Mä98, Th. 3.3] is
definitely the most important stability result. Due to its practicability and simplicity,
it is the only criterion which entered recent textbooks on DAEs slightly modified as
Th. 3.5 plus Th. 6.5 (2) [Ria08] for MNA equations and as [RR02, Th. 59.2] for linear
implicit DAEs A (x (t))x′ (t) = G (x (t)) with a geometric index ν ≥ 1. Unfortunately,
the topic of asymptotic stability is not explicitly dealt with in [KM06] and monographs
focused on numerical methods for DAEs like [HLR89, HW01, ESF98, AP97]. Stability
of periodic solutions of (non-autonomous) periodic DAEs can be reduced to above case,
cf. the proof of [LMW03, Th. 4.2]. We have observed that sometimes it is cumbersome
to handle the inherent dynamics represented by the IRODE on an invariant subspace.
Instead, we propose to enhance the method considering a transformation to a state
space with minimal dimension. In other words, the DAE is locally equivalent to an
ODE defined on a region (called the associated state space form) plus a parametrization
of the solution set. This beneficial formulation allows to interpret some quantities like
characteristic multipliers of DAEs in terms of the inherent dynamics quite easily. As
a matter of course we take fully implicit nonlinear differential-algebraic systems into
consideration. One of the objectives of this thesis is to enable stability analysis of
self-oscillating systems, i.e. autonomous DAEs exhibiting periodic solutions. To this
purpose we have to prove suitable properties of the decoupling first. At first glance, the
IRODE (2.12) appears to be non-autonomous, but we are able to prove an autonomous
representation of the IRODE on DK leading to an autonomous state space form on Rl,
l = dimDK. Later on we show that the characteristic multipliers of the variational
system of the SSF coincide with those of the linearization of the given DAE along x∗.
This proposition follows from commutativity between transformation to the SSF and
linearization as outlined in Diagram (2.21). Asymptotic stability of periodic solutions
of periodic DAEs can be traced back to a theorem for ordinary differential equations
so an alternative proof for [LMW03, Theorem 4.2] addressing a class of fully implicit
DAEs is given. It demonstrates that our approach provides more insight into the
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dynamics of the DAE and avoids confusing technical estimates. Actually, the latter
case is easier to handle because the autonomous structure of the SSF is waived.

2.1.2 Fully implicit DAEs

The transition to fully implicit DAEs (1.2) is unproblematic due to the preparatory
work in Lemma 1.18 and Lemma 2.9. The only drawback is that we have to require the
additional structural condition (1.16). As already mentioned, sufficient differentiability
is required in order to obtain a differentiable state space representation of the inherent
dynamics.

Theorem 2.10. [Decoupling of fully implicit DAEs]

Let x∗ ∈ C1
D (I,Rm) be a solution of the properly stated index-2 DAE

f
(
(Dx)′ (t), x(t), t

)
= 0

on a compact interval I and Q1 (y, x, t) be a projector onto N1 (y, x, t) along K (y, x, t)
with

(DN1)
(
(Dx∗)

′ (t), x∗(t), t
)

= const. and (DK)
(
(Dx∗)

′ (t), x∗(t), t
)

= const.
(2.16)

Moreover, let

im
(

T (y, x, t)
− (f−y fxT) (y, x, t)

)
independent of y, x (2.17)

be valid in a neighbourhood of the extended integral curve of x∗. Additionally, let
D ∈ C1 (I,Rn×m) and the functions

(UQ0 + P0Q1) (t)G−1
2 (t) f ∗x(t) (P0P1) (t) ,(

f−y fxTQ0 +D
)

(t)G−1
2 (t) f ∗x (t) (P0P1) (t) ,(

f−y fxTQ0 +D
)

(t)G−1
2 (t)

(
f (y, x, t)− f ∗x (t)x− f ∗y (t) y

)
,

(UQ0 + P0Q1) (t)G−1
2 (t)

(
f (y, x, t)− f ∗x (t)x− f ∗y (t) y

) (2.18)

be twice continuously differentiable. Then, the inherent dynamics of the DAE around
x∗ for u(t) = (DP1) (t)x(t) are determined by the IRODE

u′(t) = − (DP1G
−1
2

)
(t)
(
f ∗x(t)D− (t)u(t)− r(t) + h̃ (s (u(t), t) , t)

)
, (2.19)

s (u, t) :=
(
k̃2 (u, t) + m̃2

(
u, k̃ (u, t) , t

)
, D− (t)u+ k̃1 (u, t) + m̃1

(
u, k̃ (u, t) , t

))
on the constant invariant subspace (DK)

(
(Dx∗)

′ (t), x∗(t), t
)
.

Proof. Augment the DAE introducing y = R (Dx)′ and consider from now on the
related linear implicit system (1.15) with a t-dependent derivative term. According
to Lemma 1.18, the augmented system (1.15) inherits the properly stated deriva-
tive term and the tractability index two from the original DAE. In addition, the
subspaces D̃Ñ1, D̃K̃ coincide with DN1, DK are therefore constant along x̃∗ (t) :=
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(
x∗ (t) , R (t) (Dx∗)

′ (t)
)
. We have also shown that (2.17) is equivalent to Ñ0 ∩ S̃0 be-

ing t-dependent only. It remains to check sufficient differentiability in order to apply
Lemma 2.9 to the augmented DAE (1.15). In doing so we benefit from the explicit
construction of the matrix chain belonging to (1.15) in the proof of Lemma 1.18.

Notice that x̃ = (x, z)T , D̃P̃1 =
(
DP1 0

)
i.e. ũ = u and

D̃P̃1G̃
−1
2 =

(
DP1G

−1
2 fy DP1G

−1
2

)
Moreover,((
ŨQ̃0 + P̃0Q̃1

)
G̃2

)
(t) =

(
(UQ0 + P0Q1)G

−1
2 fy (UQ0 + P0Q1)G

−1
2

f−y fxTQ0G
−1
2 fy +DG−1

2 fy − I f−y fxTQ0G
−1
2 +DG−1

2

)
(t)

and

b̃∗xP̃0P̃1 =

(
0 0
f ∗xP0P1 0

)
, b̃ (x̃, t)− b̃∗x(t)x̃ =

(
0

f (y, x, t)− f ∗xx− f ∗y y
)

are valid with f−y (y, x, t) fixed by

f−y (y, x, t) fy (y, x, t) = R (t) , fy (y, x, t) f−y (y, x, t) = I −W0 (y, x, t)

The differentiability requirements of Theorem 2.10 ensure the smoothness of (1.15)
necessary to apply Lemma 2.9.

Denote the terms of the modified Taylor expansion (2.3) of the augmented DAE (1.15)
by ˜̃h,r̃ and the corresponding terms of the initial system (1.2) as usual by h̃, r. Obvi-
ously,

˜̃h (x̃, t) =

(
0

h̃ (z, x, t)

)
, r̃(t) =

(
0
r(t)

)
.

Furthermore, denote the constraints (2.11) of the augmented index-2 DAE (1.15) by

k̃ =
(
k̃1, k̃1

)T
and m̃ = (m̃1, m̃2)

T . Now, the inherent regular ODE of (1.15) possesses
the representation

ũ′(t) =

(
D̃P̃1G̃

−1
2

)
(t)
(
r̃ (t)−

(
b̃∗xD̃

−
)

(t)ũ(t)
)

−
(
D̃P̃1G̃

−1
2

)
(t)˜̃h

(
D̃− (t) ũ(t) + k̃ (ũ(t), t) + m̃

(
ũ(t), k̃ (ũ(t), t) , t

)
, t
)

Exploiting the mentioned structure of the augmented system2 and setting

s (u, t) :=
(
k̃2 (u, t) + m̃2

(
u, k̃ (u, t) , t

)
, D− (t)u+ k̃1 (u, t) + m̃1

(
u, k̃ (u, t) , t

))
we obtain the target representation of the inherent dynamics of the given DAE (1.2)
for DP1x components, namely

u′(t) = − (DP1G
−1
2

)
(t)
(
f ∗x(t)D− (t)u(t)− r(t) + h̃ (s (u(t), t) , t)

)

2Pay attention to ũ = u and x̃ (t) =
(
x (t) , (Dx)′ (t)

)T
in the definition of s (u, t).
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At the first glance, it is questionable whether the structural condition (1.16) could
be met at all. To this purpose, consider a linear implicit DAE satisfying Assumption
(2.15) with T = T (t) exhibiting the following structure:

A (U (t)x (t)) (Dx)′ (t) + b (U (t)x (t) , t) + C (t)T (t)x (t) = 0 (2.20)

Then, fx (z, x, t)T (t) = C (t)T (t) and (2.17) reduces to

im
(

T (t)
−A− (U (t)x, t)C (t)T (t)

)
independent of U (t)x

The structure (2.20) with A = A (t) is a well-known case of special MNA equa-
tions so a decoupling approach can be found in [Voi06, § 5.1]. In the present thesis
A− (U (t)x, t)C (t)T (t) need not to be independent of U (t)x in order to proceed. For
example, this matrix-valued function is x3-dependent in the self-oscillating autonomous
index-2 DAE (5.9), nevertheless (2.17) is satisfied. Besides, the above decoupling is
applicable to fully implicit index-2 systems of the type (1.2).

Actually, Condition (2.16) can be weakened, especially for autonomous DAEs.

Lemma 2.11. Consider the properly formulated index-2 DAE (1.2) possessing a so-
lution x∗. If im D (t) and ker fy (y, x, t) are constant then

(DN1)
(
(Dx∗)

′ (t) , x∗ (t) , t
)

= const.

ensures the existence of a subspace K (y, x, t) ⊆ Rm complementary to N1 (y, x, t)
satisfying

D (t)K
(
(Dx∗)

′ (t) , x∗ (t) , t
)

= constant

such that the projector Q1 (y, x, t) onto N1 (y, x, t) along K is admissible.

Proof. Choose a constant projector R onto im D (t) along ker fy (y, x, t) and a reflex-
ive generalized inverse D− (t) such that D− (t)D (t) = P0 (t) and D (t)D− (t) = R.
Therefore, im D− (t) = im P0 (t) is complementary to N0 (t). It is already known that
the tractability index 2 implies N1 (y, x, t)⊕S1 (y, x, t) = Rm, so consider the following
subspace

K (y, x, t) := Q0 (t)S1 (y, x, t)⊕D− (t) (DN1)
c (y, x, t)

where (DN1)
c (y, x, t) denotes a constant subspace complementary to (DN1) (y, x, t)

such that (DN1)
c along the extended integral curve of x∗ is a constant complementary

space to (DN1)
(
(Dx∗)

′ (t) , x∗ (t) , t
)
. Then,

N1 (y, x, t) +K (y, x, t) = (P0N1 ⊕Q0N1 + P0K ⊕Q0K) (y, x, t)

= Q0 (t) (N1 ⊕ S1) (y, x, t) +D− (t) (DN1 ⊕ (DN1)
c) (y, x, t)

= im Q0 (t) + im D− (t) = Rm

and N1 (y, x, t) ∩K (y, x, t) = {0} hold, the latter because of

N1 (y, x, t) ∩Q0 (t)K (y, x, t) = Q0 (t)N1 (y, x, t) ∩Q0 (t)K (y, x, t)

= Q0 (t) (N1 ∩ S1) (y, x, t) = {0} ,
N1 (y, x, t) ∩ P0 (t)K (y, x, t) = P0 (t)N1 (y, x, t) ∩ P0 (t)K (y, x, t)

= D−0 (t) (DN1 ∩ (DN1)
c) (y, x, t) = {0} .
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Per constructionem

D (t)K
(
(Dx∗)

′ (t) , x∗ (t) , t
)

= D (t)D− (t) (DN1)
c = R (DN1)

c

is a constant subspace and N0 (t) ⊆ S1 (y, x, t) implies

N0 (t) ⊆ Q0 (t)S1 (y, x, t) ⊆ K (y, x, t)

Notice s2 (u, t) := D− (t)u+ k̃1 (u, t) + m̃1

(
u, k̃ (u, t) , t

)
represents a parametrization

of the solution setM1 (t) where u ∈ (DK) (t). It can be convenient to parametrize the
invariant subspace (DK) (t) in order to obtain a parametrization of the configuration
space of the given index-2 DAE in minimal coordinates, i.e. depending on ξ ∈ Rl,
l = dimDK. This idea leads to a local state space form of the DAE.

2.2 Commutativity between decoupling and
linearization

In the section on functional analytical linearization of differential-algebraic systems the
linearization is recognized to be fundamental in order to analyze nonlinear systems,
e.g. to define the tractability index. A complete decoupling is another possibility
to reveal the the inherent dynamics of a DAE raising the question of compatibility
between the two operations to reduce complexity of nonlinear DAEs. This aspect was
neglected in publications concerning the tractability index so far.

Lemma 2.12. Consider an index-2 DAE (1.2) with a solution x∗ ∈ C1
D(I,Rm) on a

compact interval I. If all preconditions of Theorem 2.10 are satisfied then the following
diagram commutes.

DAE
decoupling //

linearization

��

IRODE

linearization

��

�

LinDAE
decoupling // LinIRODE

(2.21)

i.e. the IRODE of the linearization f ∗y (t) (Dx)′ (t) + f ∗x(t)x(t) = 0 of (1.2) around x∗
coincides with the linearization of the IRODE (2.19) of (1.2) around (DP1) (t)x∗ (t).

Proof. We obtain a complete decoupling of the given DAE in a neighbourhood of the
reference trajectory x∗ using Theorem 2.10. The DP1-components of solutions nearby
x∗ satisfy the IRODE (2.19)

u′(t) = − (DP1G
−1
2

)
(t)
(
f ∗x(t)D− (t)u(t)− r(t) + h̃ (s (u(t), t) , t)

)
,

s (u, t) :=
(
k̃2 (u, t) + m̃2

(
u, k̃ (u, t) , t

)
, D− (t)u+ k̃1 (u, t) + m̃1

(
u, k̃ (u, t) , t

))



50 Chapter 2. The state space form

Using notation from Lemma 1.18 it follows that s (u∗(t), t) =

(
x∗(t)
(Dx∗)

′ (t)

)
= x̃∗(t)

is valid. The system of variational equations belonging to the IRODE (2.19) around
u∗(t) = (DP1) (t)x∗(t) is

z′(t) =
− (DP1G

−1
2 f ∗xD

−) (t)z(t)

− (DP1G
−1
2

)
(t)D(y,x)h̃ (s (u∗(t), t) , t) Dus (u∗(t), t) z(t)

Recognize that D(y,x)h̃ vanishes identically on the integral curve of x∗ due to the cru-
cial properties h̃y

(
(Dx∗)

′ (t), x∗(t), t
)

= 0, h̃x
(
(Dx∗)

′ (t), x∗(t), t
)

= 0 of the modified
Taylor expansion of (1.2). Consequently, this variational system reads

z′(t) = − (DP1G
−1
2 f ∗xD

−) (t)z(t)

The linearization of the DAE (1.2) is f ∗y (t) (Dx)′ (t) + f ∗x(t)x(t) = 0. Applying the
induced matrix chain, i.e. the one used for (1.2) evaluated in the extended integral
curve of x∗, we arrive at an inherent regular ODE

u′(t) = − (DP1G
−1
2 f ∗xD

−) (t)u(t)

representing the inherent dynamics of the linearization. Therewith, commutativity of
diagram (2.21) is proved in case of fully implicit DAEs.

Corollary 2.13. Given a linear implicit DAE A (t) (Dx)′ (t)+b (x (t) , t) = 0 satisfying
preconditions of Lemma 2.9, linearization along x∗ and complete decoupling around x∗
commute.

Proof. Straightforward adaptation of the above argument using Lemma 2.9 and the
complete decoupling in Theorem 2.7.

Remark 2.14. An interesting proposition about the linearization of DAEs is discussed
in [Rei95, Th. 2]. There, autonomous DAEs A (x (t))x′ (t) + b (x (t)) = 0 with geo-
metric index s nearby a stationary point x0 are considered as vector fields v on the
respective constraint manifold Ms. Geometrically, the linearization fy (x0)x

′ (t) +
bx (x0)x (t) = 0 in x0 corresponds to the linearized vector field Dv (x0) on Tx0Ms. In
this spirit, the geometric transformation of a DAE into a vector field on a constraint
manifold commutes with linearization. This fact is used to derive criteria on the spec-
trum of the linearized vector field Dv (x0) by means of the spectrum of the matrix
pencil (fy (0, x0) , fx (0, x0)), i.e. in the original problem setting. From this point of
view, Lemma 2.12 serves a similar purpose. It traces properties of the linearization
of the underlying dynamics back to the corresponding properties of the linearization
of the initial DAE. Even more, we are able to deal with arbitrary periodic solutions
whereas [Rei95] is confined to the stationary ones.

2.3 State space representation of the IRODE

We are interested in solutions of the DAE on the invariant subspace DK because the
dynamics of the DAE refer to (DP1) (t)x (t). It turns out to be analytically convenient
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to introduce an additional linear coordinate transformation in order to represent the
inherent dynamics as an ODE on a region of Rl, l = dimDK. This representation of
the dynamics in minimal coordinates is meant if spoken about the state space form
(SSF).

Lemma 2.15. In case of properly formulated index-2 DAEs (1.2) satisfying the struc-
tural condition (2.16) there exists a continuously differentiable matrix valued function
M ∈ C1 (I,Rn×n) such that ∀t ∈ I : M (t) ∈ GLn (R) and

(
DP1D

−) (t) = M(t)

 Il
0r−l

0n−r

M−1(t) (2.22)

(
DQ1D

−) (t) = M(t)

 0
Ir−l

0n−r

M−1(t)

Proof. These representations of result from suitable bases of systemic subspaces. Be-
cause of the tractability index 2, N1 ⊕ S1 = Rm holds in addition to the properly
stated leading term, i.e. im D ⊕ kerA = Rn implying DS1 ⊕DN1 ⊕ kerA = Rn with
r ≡ rk D(t), cork A(t) ≡ n − r. Furthermore, l ≡ dimDK and dimDN1 ≡ r − l are
valid because of (2.16). Denote

{Ds1, . . . , Dsl} a constant basis of DK
{Dn1, . . . , Dnr−l} a constant basis of DN1

{α1(t), . . . , αn−r(t)} a t-dependent C1−basis of kerA(t)

Create a matrix valued function

M(t) := (Ds1, . . . , Dsl, Dn1, . . . , Dnr−l, α1(t), . . . , αn−r(t))

using these basis vectors of Rn as columns. The projectors DP1D
− and DQ1D

−

possess the following representations

[
DP1D

−]{Dsi,Dni,αi}
{Dsi,Dni,αi}

=

 Il
0r−l

0n−r

 ,
[
DQ1D

−]{Dsi,Dni,αi}
{Dsi,Dni,αi}

=

 0l
Ir−l

0n−r


whereas [L]

{ai}
{bi} denotes the matrix representation of a linear mapping L according to

the bases {ai} of input vectors and {bi} of output vectors. Due to the change of the
base, (

DP1D
−) (t) =

[
DP1D

−]{ei}
{ei}

= [I]
{Dsi,Dni,αi}
{ei}

[
DP1D

−]{Dsi,Dni,αi}
{Dsi,Dni,αi}

[I]
{ei}
{Dsi,Dni,αi}

= M(t)

 Il
0r−l

0n−r

M−1(t)
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because M = [I]
{Dsi,Dni,αi}
{ei} is the matrix representation of the mapping of the basis

{Dsi, Dni, αi} onto the canonical basis {ei} of Rn. We obtain the intended represen-
tations (

DP1D
−) (t) = M(t)

 Il
0r−l

0n−r

M−1(t)

and (
DQ1D

−) (t) = M(t)

 0l
Ir−l

0n−r

M−1(t)

Lemma 2.16. [State space form of fully implicit index-2 DAEs]

If the assumptions of Theorem 2.10 are satisfied then the inherent regular ODE of the
index-2 DAE f

(
(Dx)′ (t), x(t), t

)
= 0 features a local state space representation ξ′1(t) =

g̃ (ξ1(t), t) on an open subset of Rl. Furthermore, Diagram (2.21) is commutative.

Proof. According to Theorem 2.10 there is a representation of the system dynamics as
the IRODE (2.19) on DK referring to u(t) = (DP1D

−) (t)x(t). Precisely,

u′(t) =
(
DP1D

−) (t)g (u(t), t) (2.23)

g (u, t) := − (DP1G
−1
2

)
(t)
(
f ∗x(t)D− (t)u− r(t) + h̃ (s (u, t) , t)

)
s (u, t) :=

(
k̃2 (u, t) + m̃2

(
u, k̃ (u, t) , t

)
, D− (t)u+ k̃1 (u, t) + m̃1

(
u, k̃ (u, t) , t

))
Using the transformation

ξ(t) = (ξ1, ξ2, ξ3)
T (t) := M−1(t)u(t)

together with projector representation (2.22) and DK being an invariant subspace of
the IRODE, we obtain the identity

u (t) = (DP1D
−) (t)u(t) = M(t)

 Il
0r−l

0n−r

M−1(t)u(t)

= M(t)

 Il×l
0(r−l)×l
0(n−r)×l

 ξ1 (t)

DK is assumed to be constant thus u′(t) = (DP1D
−) (t)u′(t) and

M−1(t)u′(t) =

 Il
0

0

M−1(t)

M(t)

 Il
0
0

 ξ1(t)

′

=

 Il
0

0

M−1(t)M ′(t)

 Il
0
0

 ξ1(t) +

 Il
0
0

 ξ′1(t)
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Multiplication by M−1(t) reveals that the IRODE (2.23) is equivalent to ξ′1(t)
0
0

 =

 Il
0

0

M−1 (t)

g
M (t)

 Il
0
0

 ξ1 (t) , t

−M ′ (t)

 Il
0
0

 ξ1 (t)


respectively to this ordinary differential equation for ξ1 ∈ Rl:

ξ′1(t) = g̃ (ξ1(t), t) (2.24)

g̃ (ξ1, t) :=
(
Il 0 0

)
M−1 (t)

g
M (t)

 Il
0
0

 ξ1 (t) , t

−M ′ (t)

 Il
0
0

 ξ1 (t)


Summing up, a state space form of the IRODE is constructed. The system of varia-
tional equations of the SSF (2.24) around

ξ∗1(t) :=
(
Il 0 0

)
M−1 (t)D (t)x∗ (t)

reads

z′(t) =
(
Il 0 0

)
M−1(t)

gu
M(t)

 Il
0
0

 ξ∗1(t), t

M(t)−M ′(t)

 Il
0
0

 z(t)

= − ( Il 0 0
)
M−1 (t)

((
DP1G

−1
2 f ∗xD

−) (t)M (t) +M ′ (t)
) Il

0
0

 z (t)(2.25)

because

M(t)

 Il
0
0

 ξ∗1(t) =
(
DP1D

−) (t)u∗(t) = u∗(t)

and gu (u∗(t), t) = − (DP1G
−1
2 f ∗xD

−) (t) according to Lemma 2.12.

On the other hand we already know the representation

u′(t) = − (DP1G
−1
2 f ∗xD

−) (t)u(t)

of the IRODE of the linearization f ∗y (t) (Dx)′ (t) + f ∗x(t)x(t) = 0 of (1.2) around x∗.
The linear transformation of the IRODE on its invariant subspace DK via

u(t) = M(t)

 Il
0
0

 ξ1(t)

and the equivalent term replacing M−1(t)u′(t) lead to the SSF of the linearization
which exhibits the representation (2.25).

Definition 2.17. The ODE (2.24) on Rl is called a state space form (abbrev. SSF )
of the differential-algebraic index-2 system (1.2) nearby x∗.
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The above representation of the state space form under consideration depends on the
choice of DK. However, uniqueness of a SSF is dispensable with regard to aspired
stability analysis.

Presented transformation of a fully implicit DAE to its state space representation re-
veals that the system dynamics are determined by the ODE (2.24) in a neighbourhood
of the trajectory of ξ∗1 in Rl. The entire solution vector is obtained evaluating the local
parametrization

p (ξ1, t) := s2

(
M (t)

(
Il 0 0

)
ξ1, t

)
of the solution manifold M1(t) nearby x∗(t) with s2 as defined in Theorem 2.10.

All in all, the transformations can be visualized in Figure 2.1 with

plin (ξ1, t) :=
(
Il 0 0

)
M−1 (t) ξ1

Figure 2.1: construction of the state space representation

State space representation of index-1 DAEs

A state space form of index-1 DAEs on Rr can be constructed in a way such that
the compatibility between transformation to the SSF and linearization is valid as well.
Moreover, no structural assumptions except the tractability index one are necessary.
It is possible to decouple by splitting a modified Taylor expansion and applying the
implicit function theorem twice but the decoupling is clearly arranged if the simple
structure of index-1 DAEs is utilized directly, like it is done in [MH04].

Lemma 2.18. [SSF of index-1 systems]

If x∗ ∈ C1
D(I,Rm) solves the properly formulated DAE (1.2) exhibiting tractability

index one then Diagram (2.21) commutes with respect to the index-1 decoupling ap-
proach.
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Proof. The given DAE (1.2) is equivalent to

f
(
D(t)D−(t) (Dx)′ (t), D−(t) (Dx) (t) +Q0(t)x(t), t

)
= 0

Denote
w(t) := D−(t)(Dx)′(t) +Q0(t)x(t), u(t) := D(t)x(t)

then R(t) (Dx)′ (t) = D(t)w(t), Q0(t)x(t) = Q0(t)w(t) and (1.2) can be written as

f
(
D(t)w(t), D−(t)u(t) +Q0(t)w(t), t

)
= 0

Consider the algebraic constraint

F (w, u, t) = f
(
D(t)w,D−(t)u+Q0(t)w, t

)
The differentiability assumptions of the tractability index one ensure f, fx and fy to
be continuous. The condition N0 ∩ S0 = {0} is equivalent to

Fw = fyD + fxQ0 = G1

(
D(t)w,D−(t)u+Q0(t)w, t

)
being invertible on the respective domain. Therefore, F (w, u, t) = 0 is locally solvable
for w i.e. there exists a unique implicitly defined function w = w(u, t) satisfying

F (w (u, t) , u, t) = 0, w ((Dx∗) (t), t) = D−(t)(Dx∗)
′(t) +Q0(t)x∗(t)

Now it becomes clear that D-components of a solution of (1.2) fulfill the ODE

R(t) (Dx)′ (t) = D(t)w ((Dx) (t), t)

Due to (Dx)′ = (R (Dx))′ = R′ (Dx) +R (Dx)′ the components u(t) = D(t)x(t) solve
the associated IRODE

u′(t) = −R′(t)u(t) +D(t)w (u(t), t) (2.26)

Multiplying the IRODE by (I −R (t)) it follows that v (t) := (I −R (t))u (t) satisfies
the ODE v′ (t) = R′ (t) v (t), i.e im D (t) is an invariant subspace of the inherent
regular ODE (2.26). It holds

wu(u, t) = −F−1
w (w(u, t), u, t))Fu (w(u, t), u, t)) =

= −G−1
1

(
D(t)w,D−(t)u+Q0(t)w, t

)
fx
(
D(t)w,D−(t)u+Q0(t)w, t

)
D−(t)

The linearization of (2.26) around u∗(t) = (Dx∗) (t) reads

z′(t) = R′(t)z(t) +D(t)wu (u∗(t), t) z(t)

= R′(t)z(t)−G−1
1 ((Dx∗) (t), x∗(t), t) f

∗
x(t)D−(t)z(t)

because the implicit function ensures(
D(t)w (u∗(t), t) , D

−(t)u∗(t) +Q0(t)w (u∗(t), t) , t
)

=
(
(Dx∗)

′ (t), x∗(t), t
)



56 Chapter 2. The state space form

Decoupling the linearization f ∗y (t)(Dx)′(t) + f ∗x(t)x(t) = 0 of (1.2) around x∗ results
in the linear IRODE

u′(t) = R′(t)u(t)−D (t)G−1
1 (t)f ∗x(t)D−(t)u(t)

Choosing the induced matrix chain for the linearization,

G−1
1 (t) = G−1

1 ((Dx∗) (t), x∗(t), t)

and the IRODE of the linearization of (1.2) around x∗ corresponds to the linearization
of the IRODE around Dx∗.

Now we have to go one step further and consider a state space representation of
the IRODE on its invariant subspace im D (t). The properly formulated derivative
term ensures the existence of a C1-basis {α1 (t) , . . . , αn−r (t)} of ker fy (y, x, t) and a
C1-basis {d1 (t) , . . . , dr (t)} of im D (t) with r ≡ rk D (t). Using the matrix-valued
function

V (t) := (d1 (t) , . . . , dr (t) , α1 (t) , . . . , αn−r (t))

we obtain the representation R (t) = V (t)

(
Ir

0n−r

)
V −1 (t) similarly to (2.22).

The invariant subspace im D (t) suggests to set

ξ1 (t) :=
(
Ir 0r×n−r

)
V −1 (t)u (t)

because of

u (t) = R (t)u (t) = V (t)

(
Ir

0n−r

)
V −1 (t)

= V (t)

(
Ir

0n−r×r

)((
Ir 0r×n−r

)
V −1u

)
(t)

The relevant components ξ1 (t) are uniquely determined by the following ODE

ξ′1 (t) =

(
Ir 0r×n−r

)
V −1 (t)D (t)w

(
V (t)

(
Ir
0

)
ξ1 (t) , t

)
− ( Ir 0r×n−r

)
V −1 (t) (R′ (t)V (t) + V ′ (t))

(
Ir

0n−r×r

)
ξ1 (t)

(2.27)

defined on an open set of Rr which is called the state space form of the original index-1
DAE. Linearization of (2.27) around ξ∗1 (t) :=

(
Ir 0r×n−r

)
V −1 (t)D (t)x∗ (t) coin-

cides with the SSF derived likewise from the linearization of (1.2) around x∗.

2.3.1 Autonomous state space form

Solutions of autonomous DAEs are invariant under translations i.e. if x ∈ C1
D solves

f
(
(Dx(t))′ , x (t)

)
= 0 (2.28)
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on the interval I ⊆ R then ∀c ∈ R : x (t+ c) is also a solution of the given system
on I − c. An intuitive conjecture is that autonomous DAEs could be governed by
autonomous inherent dynamics. In fact, this is true for general index-1 systems due
to w = w(u) in Lemma 2.18. Now we are going to prove the conjecture in case of
periodic solutions x∗ of autonomous linear implicit resp. fully implicit DAEs (2.28)
exhibiting the tractability index 2.

Lemma 2.19. Let x∗ be a periodic solution of the autonomous index-2 DAE (2.28)
satisfying the preconditions of Theorem 2.10. Then the IRODE (2.19) is autonomous
on the invariant subspace DK as well.

Proof. We are able to chose constant projectors R and Q0 due to the autonomous
structure of the given DAE. Consequently, the reflexive pseudoinverse D− is constant,
too. Here, ker fy (y, x) = const. and Assumption (2.16) are fulfilled, so it is possible to
choose constant basis functions in Lemma 2.15 resulting in a constant representation
(2.22) of DP1D

−, DQ1D
−, P0P1 and P0Q1. Due to the simplifying assumption (2.15)

we choose a constant projector T onto N0 ∩S0 locally around the extended trajectory
of x∗.

Using these constant projectors we obtain the representation (2.19) of the inherent
regular ODE, i.e.

u′(t) = DP1g (u(t), t) , (2.29)

g (u, t) := −G−1
2 (t)

(
f ∗x(t)D−u− r(t) + h̃ (s (u, t) , t)

)
,

s (u, t) :=
(
k̃2 (u, t) + m̃2

(
u, k̃ (u, t) , t

)
, D− (t)u+ k̃1 (u, t) + m̃1

(
u, k̃ (u, t) , t

))
As a result of the differentiability requirements (2.18) in Theorem 2.10, the right hand
side of the IRODE (2.29) fulfills g, gu ∈ C0. Consider the continuation of the periodic
solution x∗ on entire R, hence g (u, t) is defined for all t ∈ R and is periodic in t.

Let us suppose the existence of u0 ∈ DK and t0, t1 ∈ R with DP1g (u0, t0) 6=
DP1g (u0, t1). The theorem of Picard-Lindelöf ensures the existence of a unique solu-
tion

u ∈ C1 ((t0 − ε, t0 + ε) ,Rm)

of the IVP (DP1) (x(t0)−D−u0) = 0 of the IRODE (2.29). We are able to construct
a unique solution x ∈ C1

D ((t0 − ε, t0 + ε) ,Rm) of the IVP (DP1) (x(t0)−D−u0) = 0
for the original DAE (2.28) like in Theorem 2.10. Thereby the last-mentioned initial
value problem denotes a consistent initial value x(t0) with fixed DP1-components.
The solution components u(t) = DP1x(t) satisfy the IVP u(t0) = u0 of the IRODE
u′(t) = DP1g (u(t), t) on the invariant subspace DK.

Set c := t1 − t0. The invariance of solutions of the given autonomous DAE (2.28)
under translations signifies that

x̃(t) = x (t− c)
is also a solution of (2.28) on (t1 − ε, t1 + ε) having the consistent initial value x̃(t1) =
x(t0) with (DP1) (x̃(t1)−D−u0) = 0. Now x̃(t) belongs to a neighbourhood of the
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extended trajectory of x∗ where the decoupling procedure applies, at least for values
of t nearby t1. Consequently, ũ(t) = DP1x̃(t) = u (t) solves the inherent regular ODE
u′(t) = DP1g (u(t), t) on DK due to Theorem 2.10. Per constructionem,

u(t0) = u0 = ũ(t1) and u′(t0) = ũ′(t1)

is valid. This contradicts to the assumption

ũ′(t1) = DP1g (ũ(t1), t1) = DP1g (u0, t1) 6= DP1g (u0, t0) = u′(t0)

Therefore, DP1gt (u, t) ≡ 0 with u ∈ DK, t ∈ R is proved, i.e. the existence of the
autonomous representation

u′(t) = DP1g (u(t), 0)

of the IRODE of the given DAE (2.28) on DK.

Remark 2.20. Lemma 2.19 fails if the state space DK of the above representation of
the inherent dynamics is not constant. Then,

ũ0 = (DP1) (t1)x̃(t1) = DP1(t1)x(t0) 6= DP1(t0)x(t0) = u0

would be valid in general because ũ0 and u0 belong to different subspaces DK(t1) resp.
DK(t0) of Rn. We emphasize that the autonomous representation of the IRODE is
proved on DK × R only. Outside of this region, the inherent regular ODE (2.29) is
a mere formal construct and it is questionable whether there is any link to the given
DAE. Consequently, we cannot state any property of the IRODE in terms of the given
DAE except on DK × R.
Remark 2.21. Observe that in case of τ -periodic solutions of autonomous or τ -periodic
DAEs, the constraints s (u, t) in (2.29) are also τ -periodic with respect to t. For that
purpose the initial system is transformed into (1.15) thereby the augmented DAE
remains autonomous resp. τ -periodic. Due to τ -periodicity of the projectors in use,
M̃ (u,w, y, t+ τ) = M̃ (u,w, y, t) is valid for M̃ (u,w, y, t). Hence,

M̃ (u,w, m̃ (u,w, t) , t) = 0 = M̃ (u,w, m̃ (u,w, t) , t+ τ)

on the domain of the corresponding resolution function m̃. Due to local uniqueness,
m̃ (u,w, t+ τ) = m̃ (u,w, t). The identity k̃ (u, t+ τ) = k̃ (u, t) is proved analogously.

Summarizing, the decoupling approach in the context of tractability index has the
serious drawback that autonomous structure is destroyed in an artificial way by the
modified Taylor expansion (2.3). A priori, a non-autonomous representation (2.29)
of the IRODE on DK is obtained. This disadvantage can be partly avoided by
Lemma 2.19 i.e. an autonomous representation of the SSF is revealed. The devel-
oped parametrization of the constant configuration set M1 is still t-dependent but
τ -periodic and therefore does not disturb the aspired stability analysis.3

The matrix M in the representation (2.24) of the state space form of the DAE can be
assumed constant resulting in

3This is not perfectly correct. If we had an autonomous parametrization ofM1 in addition to the
autonomous SSF then asymptotic D- or DP1-component stability (defined in § 4.2) of a periodic
solution would imply that the solution is stationary. At the moment, this situation is known to
be true only for the asymptotic stability concept of R. März.
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Theorem 2.22. The autonomous index-2 DAE f
(
(Dx(t))′ , x(t)

)
= 0 exhibits an

autonomous state space form

ξ′1(t) =
(
Il 0 0

)
M−1g

M
 I

0
0

 ξ1(t), 0

 (2.30)

on Rl under the assumptions of Lemma 2.19. Moreover, linearization and the trans-
formation into (2.30) locally around x∗ commute.

Proof. Constant systemic subspaces enable the choice M (t) ≡ M in Lemma 2.15.
Therefore R, DP1 and DQ1 are assumed to be constant. Lemma 2.19 guarantees the
autonomous representation u′ (t) = DP1g (u (t) , 0) of the IRODE f

(
(Dx(t))′ , x(t)

)
=

0. Thus, (2.24) implies (2.30) to be a possible autonomous representation of the SSF
of the given differential-algebraic system. Diagram 2.21 is commutable due to Lemma
2.16.
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3 Index reduction via
differentiation

Up to now, a representation of the inherent dynamics around a reference solution x∗
for fully implicit DAEs f

(
(Dx)′ (t), x(t), t

)
= 0 of tractability index one and two is

proved. The mentioned representation in minimal coordinates is called the state space
form of the DAE. In doing so, the structural assumptions

· N0 (t) ∩ S0 (y, x, t) = (N0 ∩ S0) (t) respectively im
(

T
−f−y fxT

)
(y, x, t) inde-

pendent of y, x in a neighbourhood of the extended integral curve of x∗
· subspaces DN1 and DK constant along x∗

are required. The configuration spaceM1(t) of the given DAE nearby x∗ exhibits the
local parametrization

s

M(t)

 Il
0
0

 ξ, t

 , ξ ∈ Rl

as defined in Lemma 2.16. Consequently,M1 (t) turns out to be a C1-manifold locally
around the trajectory of x∗. In contrast to index-1 DAEs where the constraintsM0 (t)
are purely algebraic, the above parametrization ofM1 (t) features partial differentials
of some equations of f in case of the tractability index 2.

The index reduction via differentiation is another important analytic tool in context of
differential-algebraic systems of higher index k ≥ 2. The index reduction is based on
replacement of constraints by the respective differentiated form whose representation
corresponds to formal differentiation of constraints along C1

D-functions under certain
structural assumptions. For example, given a solution (x1, x2)

T of a Hessenberg DAE
(1.6), the algebraic constraint 0 = g (x1(t), t) is replaced by

0 =
d
dt
g (x1(t), t) = gx1 (x1(t), t)x

′
1(t) = gx1 (x1(t), t) f (x1(t), x2(t), t)

The resulting semi-explicit system

x′1(t) = f (x1(t), x2(t), t)

0 = gx1 (x1(t), t) f (x1(t), x2(t), t)

has the tractability index 1 because the algebraic constraint is uniquely solvable for x2

due to regularity of gx1fx2 . The main problem dealing with fully implicit DAEs is to
identify the right constraints for differentiation. Iterative formal differentiation of the
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entire system f
(
(Dx)′ (t), x(t), t

)
= 0 with respect to t yields a derivative array. The

approach can be modified to eliminate the second order derivatives in every differenti-
ation step resulting in a condensed derivative array, cf. [Rei95]. For the present work
it is important to ensure that the tractability index is decremented by differentiation
of the constraints, otherwise we could not use the index reduction for a possible defi-
nition of a Lyapunov function for differential-algebraic systems with tractability index
2 later on. This objective is achieved by determining the constraints to differentiate
using a suitable projector from the matrix chain under certain structural assumptions.

The index reduction via differentiation has a geometric interpretation in case of au-
tonomous DAEs: algebraic constraints g (x) = 0 define a constraint manifold M.
Formal differentiation of these equations implies Dg (x (t))x′ (t) = 0, i.e. the condi-
tion x′(t) ∈ Tx(t)M. If the occurring derivative is replaced by algebraic relations like
it is done for Hessenberg DAEs then the heuristics behind the differentiation step is
the transition to the tangent bundle of the constraint manifold advancing iteratively
towards the configuration space of a regular DAE in the sense of § 1.2.1. Our interpre-
tation of the index reduction is more pragmatic: the differentiation of constraints is
considered as a means of constructing a manifold enclosing the configuration space, i.e.
M̃0 (t) ⊇M1 (t). For this purpose it is fundamental that M̃0(t) represents the obvious
constraint of an index-1 DAE, the so called index reduced DAE (abbr. IR-DAE) and
thatM1(t) is an invariant set with respect to solutions of the index reduced system.
Per constructionem a parametrization of M̃0(t) therewith ofM1(t) = M̃0(t)∩M1(t)
is obtained with dimM̃0 (t) > dimM1(t) degrees of freedom. That is the reason
why our definition of Lyapunov functions or some already known contractivity defi-
nitions for index-2 DAEs ensure stability of the superset Dx of the dynamic solution
components DP1x.

3.1 Extraction of the constraints for differentiation

Consider fully implicit DAEs (1.2), that is

f
(
(Dx)′ (t) , x (t) , t

)
= 0

with a properly formulated derivative term and tractability index 2. The above DAE
is equivalent to the splitted system{ (

I −W1

(
(Dx)′ (t) , x (t) , t

))
f
(
(Dx)′ (t) , x (t) , t

)
= 0

W1

(
(Dx)′ (t) , x (t) , t

)
f
(
(Dx)′ (t) , x (t) , t

)
= 0

The essential structural condition of this chapter is that the equationsW1 (y, x, t) f (y, x, t)
of the differential-algebraic system are independent of y and of Q0 (t)x.

Assumption 3.1. (W1f) (y, x, t) = (W1f) (P0(t)x, t) is valid on the domain G of the
given DAE.

In addition, assuming D− ∈ C1 (I,Rm×n) and sufficiently smooth functions W1 and f ,
the relation

W1 (P0 (t)x (t) , t) f
(
(Dx)′ (t) , x (t) , t

)
= const.
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for C1
D-functions x can be replaced with

W1 (P0 (t)x(t), t)
d
dt

(W1f) (P0(t)x(t), t) = 0

which is equivalent to the following formulation using formal differentiation of con-
straints:

W1 (P0(t)x(t), t) (W1f)x (P0(t)x(t), t)
(
(D−)

′
(t) (Dx) (t) +D−(t) (Dx)′ (t)

)
+W1 (P0(t)x(t), t) (W1f)t (P0(t)x(t), t) = 0.

(3.1)

All in all, the above approach results in the following differential-algebraic system:(
I −W1

(
(Dx)′ (t), x(t), t

))
f
(
(Dx)′ (t), x(t), t

)
= 0

W1

(
(Dx)′ (t), x(t), t

) d

dt
(W1f) (P0(t)x(t), t) = 0

which abbreviates(
I −W1

(
(Dx)′ (t), x(t), t

))
f
(
(Dx)′ (t), x(t), t

)
+W1

(
(Dx)′ (t), x(t), t

)(
(W1f)t (P0(t)x(t), t)

+ (W1f)x (P0(t)x(t), t)
(

(D−)
′
(t) (Dx) (t) +D−(t) (Dx)′ (t)

))
= 0

(3.2)

due to the chain rule. Obviously, if the initial values x0 satisfy (W1f) (P0 (t)x0, t) = 0
then solutions of (3.2) fulfill the original DAE (1.2). In the following, the properly
stated leading terms and the tractability index one of (3.2) are proved in order to
justify the notion of an index reduced DAE.

We suppress the evident arguments of involved functions for the sake of a better
readability. The indices i, j, k, l represent the coordinates of matrix entries but the
indices x, v etc. denote partial derivatives with respect to the given variable.

Notation. We agreed to denote the partial derivative of a vector-valued function
h (x1, x2) with respect to xi at (ξ1, ξ2)

T by hxi (ξ1, ξ2). This term represents a linear
map whose argument z is usually written omitting the brackets because the evaluation
hxi (ξ1, ξ2) (z) = hxi (ξ1, ξ2) z is a matrix multiplication. Another notation to be used
is hxi (ξ1, ξ2) z = [h (ξ1, ξ2)]xi (z). Dealing with matrix-valued functions M (x), the
derivative with respect to x at x∗ evaluated in (z, v) is denoted as the bilinear form
[M (x∗)]x (z, v).

We are in need of the following auxiliary result:

Lemma 3.2. Consider an open set G̃ ⊆ Rm and a matrix valued function M ∈
C1(G̃,Rk×s) together with b ∈ C1(G̃,Rs). The Jacobian [M (x∗) b (x∗)]x has the follow-
ing representation

[M (x∗) b (x∗)]x z = M (x∗) bx (x∗) z + [M (x∗)]x (z, b (x∗))
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with z ∈ Rm and the bilinear form [M(x∗)]x defined by

[M (x∗)]x (z, v) :=
m∑
j=1

zj

[
∂

∂xj
M (x∗)

]
v (3.3)

Moreover, the i-th component of [M (x∗)]x features the representation

([M (x∗)]x (z, v))i =
s∑
l=1

vl (DMil (x∗) z) =
s∑
l=1

vl
∂

∂z
Mil (x∗) (3.4)

Proof. see Lemma 8.3 in Appendix.

There exists a simple sufficient condition in terms of the matrix chain implying As-
sumption 3.1.

Lemma 3.3. Consider a properly formulated DAE (1.2) exhibiting the tractability
index 2. Let W1f ∈ C1 (G,Rm) and the domain G be convex with respect to x, i.e. the
line segment between (y, x, t) , (y, x̃, t) ∈ G also belongs to G. Then, the structural
assumption

im G1(y, x, t) dependent of (P0(t)x, t) only (3.5)

implies W1f = (W1f)(P0(t)x, t) on entire G.

Proof. Choose a projector W1 = W1(P0(t)x, t) along im G1(y, x, t) due to (3.5). Then,

(W1f)y = W1fyR = W1(fyD)D− = W1G1P0D
− = 0

By definition of the properly formulated DAE, G is convex with respect to y and W1f
is assumed to be sufficiently smooth to apply the mean value theorem (e.g. [For05, p.
70]). It follows that (W1f) (y, x, t) = (W1f) (x, t).

Similarly, due to convexity of the domain of f w.r.t. x and W1f ∈ C1 we are able to
apply the mean value theorem to W1f resulting in

(W1f) (x, t)− (W1f) (P0 (t)x, t) =

ˆ 1

0

(W1f)x (P0(t)x+ sQ0(t)x, t)Q0(t)xds

According to Lemma 3.2,

(W1f)x (y, x, t)Q0(t)x =
W1 (P0 (t)x, t) fx (y, x, t)Q0(t)x
+ [W1 (P0 (t)x, t)]x (Q0 (t)x, f (y, x, t)) .

The right hand side is zero because of (8.2) and W1 = W1(P0(t)x, t). Precisely, z =
Q0 (t) z implies

((W1 (P0 (t)x, t))x (z, v))i =
m∑
l=1

vl
∂

∂z
(W1)il (P0 (t)x, t)

=
m∑
l=1

vl
∂

∂z
(W1)il (P0 (t)x, t)Q0 (t) = 0

for all components i.
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3.2 Properties of the index reduced system

Denote the above differential-algebraic system (3.2) resulting from differentiation of
constraints by

f̃
(
(Dx)′ (t), x(t), t

)
= 0,

f̃ (y, x, t) := (I −W1)f +W1(W1f)xD
−y +W1(W1f)x(D

−)′Dx+W1(W1f)t

Observe that W1 = W1(P0(t)x, t) and (W1f) (P0 (t)x, t) imply (W1f)y = W1fy and

f̃y = [(I −W1)f ]y +W1(W1f)xD
− = fy +W1(W1f)xD

−

W1 is a projector, so we get

ker f̃y = ker fy ∩ kerW1(W1f)xD
− = ker fy

due to the property kerD− (t) = kerR (t) = ker fy (y, x, t) of the reflexive generalized
inverse D−. Consequently, the leading derivative of (3.2) is properly stated and the
projector R (t) realizes the decomposition ker f̃y (y, x, t)⊕ im D (t) = Rn.

Theorem 3.4. [Index reduction via differentiation]

Let the DAE (1.2) be defined on a region G which is convex with respect to x. Assume
W1 ∈ C1 and W1f ∈ C2. Furthermore, let kerD(t) = const., the precondition (3.5)
and

rk fy (y, x, t)D (t) , rk W1 (P0x, t) (W1f)x (P0x, t) locally constant (3.6)

be valid. Then the associated differential-algebraic system (3.2) possesses the tracta-
bility index one in a neighbourhood of each (y, x, t) ∈ G, f (y, x, t) = 0 where the given
DAE (1.2) has index two.

Proof. Lemma 3.3 ensures the Assumption 3.1 so we are able to replace

W1 (P0 (t)x, t) f (y, x, t) = 0

in the original DAE by its differentiated form (3.1) in order to obtain the associated
DAE (3.2). We have already proved that the leading derivative of (3.2) is properly
stated. Mark the elements of the matrix chain of (3.2) by tilde, i.e G̃i and so on. As
the leading terms of both (1.2) and (3.2) are formed with the same matrix D and the
index definition does not depend on the admissible matrix chain, we are able to chose
Q0 = Q̃0.

W1 projects along im G1 ⊇ im fy so im fy∩im W1 = {0} and it is sufficient to demand
constant rank of both addends in f̃yD to obtain the same property for G̃0. Therefore
the rank condition(3.6) has a locally constant rk G̃0 (y, x, t) as a consequence. Note
that rk fyD is already locally constant if the given DAE 1.2 exhibits the index 2 locally
around the point (y, x, t) ∈ G under consideration.

It suffices to prove

∀ (y, x, t) with f (y, x, t) = 0, (N1 ∩ S1) (y, x, t) = {0} : G̃1 (y, x, t) z = 0⇒ z = 0
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because this implies det G̃1 (y, x, t) 6= 0 hence det G̃1 6= 0 locally around (y, x, t).

Per definitionem, G̃1z = f̃yDz + f̃xQ0z with f̃yDz = fyDz +W1(W1f)xz and

f̃xQ0z =
fxQ0z − (W1f)xQ0z + [W1 (W1f)xD

−y]xQ0z
+
[
W1 (W1f)x (D−)

′
Dx
]
x
Q0z + [W1(W1f)t]xQ0z

It holds

1. (W1f)xQ0(t) = 0 due to W1f = (W1f)(P0(t)x, t)

2.
[W1 (P0 (t)x, t) (W1f)x (P0 (t)x, t)D− (t) y]xQ0 (t) z =
= [W1(W1f)x (P0 (t)x, t)]x (Q0 (t) z,D− (t) y) = 0

as a result of (8.3) applied to the i-th component(
[W1(W1f)x]x

(
Q0 (t) z,D− (t) y

))
i

=
∑
l

(
D− (t) y

)
l

∂

∂z
(W1 (W1f)x)il = 0

for (W1f)x (y, x, t) = (W1f) (P0 (t)x, t) and z = Q0 (t) z.

3. [
W1 (W1f)x (D−)

′
Dx
]
x
Q0 (t) z =

[W1(W1f)x]x
(
Q0 (t) z, (D−)

′
(t)D (t)x

)
+W1 (W1f)x (D−)

′
DQ0z = 0

again due to W1(W1f)x being independent of Q0(t)x.

4.

[W1(W1f)t]xQ0z =
[W1 (P0 (t)x, t)]x (Q0 (t) z, (W1f)t (P0 (t)x, t))
+W1(W1f)txQ0z

= W1 (P0 (t)x, t) [(W1f) (P0 (t)x, t)]txQ0 (t) z

Combining these results,

G̃1(y, x, t)z =
fy(y, x, t)D(t)z +W1(P0(t)x, t)(W1f)x(P0(t)x, t)z
+fx(y, x, t)Q0(t)z +W1 (P0 (t)x, t) [(W1f) (P0 (t)x, t)]txQ0 (t) z

=
G1(y, x, t)z +W1(P0(t)x, t)(W1f)x(P0(t)x, t)z
+W1 (P0 (t)x, t) [(W1f) (P0 (t)x, t)]txQ0 (t) z

is obtained. Now G̃1(y, x, t)z = 0 is equivalent to

G1 (y, x, t) z = 0

W1 (P0 (t)x, t)
(

(W1f)x (P0 (t)x, t) z + [(W1f) (P0 (t)x, t)]txQ0 (t) z
)

= 0
(3.7)

because W1 is a projector. The first equation reveals that z ∈ N1(y, x, t), in other
words z = Q1(y, x, t)z is a necessary condition for G̃ (y, x, t) z = 0. The canonical
projector Q1 implies

z = Q1(y, x, t)z = Q1(y, x, t)G
−1
2 (y, x, t)fx(y, x, t)P0(t)z
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Along with Q1G
−1
2 G1 = Q1G

−1
2 G2P1 = 0 we get

z = Q1 (y, x, t)G−1
2 (y, x, t)W1 (y, x, t) fx (y, x, t)P0(t)z

Finally,

W1 (P0 (t)x, t) (W1f)x (P0 (t)x, t)P0 (t) z =

= W1 (P0 (t)x, t)
(

[W1 (P0 (t)x, t)]x (P0 (t) z, f (y, x, t)︸ ︷︷ ︸
=0

) + fx (y, x, t)P0 (t) z
)

and

z = Q1(y, x, t)G
−1
2 (y, x, t)W1(P0(t)x, t)fx(y, x, t)P0(t)z

= Q1(y, x, t)G
−1
2 (y, x, t)W1(P0(t)x, t)fx (y, x, t) z

The second equation of (3.7) results in

W1 (P0 (t)x, t) (W1f)x (P0 (t)x, t) z = −W1 (P0 (t)x, t) [(W1f) (P0 (t)x, t)]txQ0 (t) z

Due to symmetry of second derivatives,

W1 [(W1f) (P0 (t)x, t)]txQ0(t)z = W1 [(W1f) (P0 (t)x, t)]xtQ0(t)z

= W1 ((W1f)xQ0(t))t z −W1(W1f)xQ
′
0(t)z

= −W1(W1f)xQ
′
0(t)z

If N0(t) = im Q0(t) is constant then Q′0(t) = Q0(t)Q
′
0(t) and the above term vanishes.

Then,

G̃1(y, x, t)z = 0⇒ z = −Q1G
−1
2 W1(W1f)txQ0z = Q1G

−1
2 W1 ((W1f)xQ0)tQ

′
0z = 0

The matrix-valued function G̃1 is continuous and therefore nonsingular in a sufficiently
small neighbourhood of (y, x, t).

The above approach decreases the tractability index via differentiation of the con-
straints (W1f) (P0x, t) = 0. In case of Hessenberg-2 systems (1.6), this procedure
requires f ∈ C1, g ∈ C2 and rk g1 locally constant.

Definition 3.5. Under the assumptions of Theorem 3.4, the differential-algebraic
system (3.2) is called the index reduced DAE (IR-DAE) associated to (1.2).

The index reduced system is a powerful tool to analyze index-2 DAEs. An essential
question for the original index-2 DAE is unique solvability of initial value problems
which is linked to a parametrization of the solution setM1(t).
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3.2.1 Description of the solution set M1(t)

We confine ourselves to fully implicit differential-algebraic systems (1.2) with index 2
satisfying the requirements of Theorem 3.4. Solutions x∗ ∈ C1

D of (1.2) comply with
the constraint (W1f)(P0(t)x(t), t) ≡ 0 and its corresponding differentiated form

0 = W1
d
dt

(W1f)(P0(t)x(t), t) = W1(W1f)xD
−(Dx)′+W1(W1f)x(D

−)′Dx+W1(W1f)t

For convenience, choose a constant projector Q0. As a result of the projector W1, the
IR-DAE (3.2) is equivalent to

(I −W1) (P0x (t) , t) (P0x (t) , t) f
(
(Dx)′ (t), x(t), t

)
= 0 (3.8)

(W1 (W1f)x) (P0x (t) , t)
(
D− (t) (Dx)′ (t) + (D−)

′
(t) (Dx) (t)

)
+ (W1 (W1f)t) (P0x (t) , t)

= 0 (3.9)

In particular, solutions of the original DAE solve the IR-DAE so

M1(t) ⊆M0(t) ∩ M̃0(t)

whereasM0(t) and M̃0(t) denote the first-level constraints of the given DAE (1.2) or
its index reduced system f̃((Dx)′(t), x(t), t) = 0, respectively.

Theorem 3.6. Let the index-2 DAE (1.2) comply with requirements of Theorem 3.4
and let (3.6) be valid on entire domain G. Then the configuration space of the original
DAE has the representation

M1(t) = M0(t) ∩ M̃0(t)

=
{x ∈ Rm | ∃y ∈ Rn : f(y, x, t) = 0}∩
{x ∈ Rm | ∃y ∈ Rn : W1 ((W1f)xD

−y + (W1f)t + (W1f)x(D
−)′Dx) = 0}

andM1(t) is covered by solutions of (1.2), e.g.

∀t, x0 ∈M1 (t) ∃! solution x ∈ C1
D (I,Rm) : x (t) = x0

Proof. It remains to proveM1(t) ⊇M0(t) ∩ M̃0(t).

Due to the tractability index one of the IR-DAE, the index-1 decoupling from Lemma
2.18 ensures the unique solvability of initial value problems x(t0) ∈ M̃0(t0) of this
system. Thus, a unique solution of (3.2) passes through each x0 ∈ M̃0(t). In addition,
M0(t) ∩ M̃0(t) is an invariant set of the index reduced system and every solution
of the IR-DAE on M0(t) ∩ M̃0(t) complies with the original DAE (1.2) providing
M0(t) ∩ M̃0(t) ⊆M1(t).

To that purpose let x ∈ C1
D (I,Rm) be a solution of the IR-DAE. Observe that s(t) :=

(W1f) ((P0x) (t), t) satisfies

s′(t) =
d
dt

(W1 (P0x(t), t) s(t))

= = (W1)t (P0x(t), t) s(t) +W1 (P0x(t), t) s′(t)

= (W1)t (P0(t), t) s(t)
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because (3.9) ensures W1((P0x)(t), t)s′(t) = 0. If x(t0) ∈ M̃0(t0) ∩M0(t) then

0 = (W1f)((P0x)(t0), t0) = s(t0)

and the above homogeneous ODE results in s (t) ≡ 0, that is (3.9) is satisfied. More-
over, x solves (3.8) and therefore is a solution of the original DAE yielding x(t) ∈M1(t)
for all t ≥ t0.

The equations representing the configuration space M1(t) of linear implicit DAEs
A(x(t), t)(D(t)x(t))′+ b(x(t), t) = 0 can be formulated quite easily under the assump-
tions of Theorem 3.6. The obvious constraints are

{x ∈ Rm | W0 (P0x, t) b (x, t) = 0}
but they are insufficient to determine the configuration space of higher index DAEs.
Further constraints, the so called hidden constraints occur. They are given by taking
the W1-components of the differentiation of

0 = (W1f) (P0x, t) = (W1b) (P0x, t)

along x ∈ C1
D, i.e.

W1 (P0x, t)
d

dt
(W1b) (P0x, t) = W1 (W1b)x

(
D− (Dx)′ +

(
D−
)′
Dx
)

+W1(W1b)t = 0

Fix the reflexive pseudoinverse A− of A by AA− = W0 and A−A = R in order to
extract

(D(t)x(t))′ = −A−(x(t), t)b(x(t), t)

from the DAE. Hence, the following representation of the configuration space is ob-
tained:

M1(t) =

x ∈ Rm

∣∣∣∣ (W0b) (P0x, t) = 0,
(W0 (W1b)t) (P0x, t) + (W1(W1b)x) (P0x, t) (D−)

′
(t)D (t)x

− (W1(W1b)x) (P0x, t)D
−(t)A− (x, t) b (x, t)

= 0


(3.10)

3.2.2 Locally constant tractability index 2

The tractability index one of a differential-algebraic system is locally constant if
the rank of G0 (y, x, t) exhibits this property. In this case, continuity of G1 and
detG1 (y0, x0, t0) 6= 0 imply regularity of G1 in a neighbourhood of the point under
consideration. The reason is the following representation

detG1 (y, x, t) =
∑
π∈Sn

sign (π) (G1)1,π(1) (y, x, t) · · · (G1)m,π(m) (y, x, t)

(cf. [KM03, p. 114]) of detG1 (y, x, t) as a continuous function. Then, of course,
Definition 1.8 of the tractability index one is met in a certain neighbourhood of
(y0, x0, t0) ∈ G̃. This property is not true for general systems exhibiting the tractabil-
ity index 2, as indicated in [Mä95]. One has to demand further structural assumptions
in order to ensure the index 2 in a neighbourhood of (y0, x0, t0) ∈ G (cf. Lemma 4.1,
ibid.) and the unique solvability of the given system.
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Lemma 3.7. Consider a properly formulated DAE 1.2 featuring

dim (N0 ∩ S0(y, x, t)) locally constant

Additionally, let the preconditions of Theorem 3.4 apply to the system. If the DAE
(1.2) has index two at (y0, x0, t0) ∈ G̃ with f(y0, x0, t0) = 0 then ∃ε > 0 such that this
property is valid in

U = Bε (y0, x0, t0) ∩ {(y, x, t) ∈ G | f (y, x, t) = 0}

Proof. Denote the matrix chain of (1.2) as usual and that of the IR-DAE (3.2) by P̃i,
G̃i. Without loss of generality, use Q̃0 = Q0. The requirements of Theorem 3.4 are sat-
isfied so the IR-DAE (3.2) has the tractability index 1 in (y0, x0, t0), i.e. G̃1(y0, x0, t0)
is invertible. All participating matrix-valued functions are at least continuous, there-
fore G̃1 is invertible on Bε (y0, x0, t0) ∩ G for a sufficiently small ε > 0. Adapt ε in a
way to ensure

∀ (y, x, t) ∈ Bε (y0, x0, t0) ∩ G : dimN0 ∩ S0(y, x, t) ≡ r0

Then, we need to prove

∀(y, x, t) ∈ {(y, x, t) ∈ Bε (y0, x0, t0) ∩ G | f (y, x, t) = 0} : (N1 ∩ S1)(y, x, t) = {0}

Per definitionem, S1(y, x, t) = kerW1(x, t)fx(y, x, t)P0. Due to bilinearity of (W1)x
and f (y, x, t) = 0 we get

W1(W1f)xz = W1(W1f)xP0z = W1fxP0z +W1(W1)x(P0z, f(y, x, t)) = W1fxP0z

Assumption 3.1 results in 0 = (W1fxQ0)t = (W1f)xtQ0, hence

∀z ∈ S1 (y, x, t) : 0 = W1fxP0z = W1(W1f)xz = W1(W1f)xz +W1(W1f)txQ0z

For z ∈ (N1 ∩ S1)(y, x, t) this condition is valid together with z = Q1 (y, x, t) z, which
is proved to be equivalent to G̃1(y, x, t)z = 0 in Theorem 3.4. Now the set

U = {(y, x, t) ∈ G ∩ Bε (y0, x0, t0) | f (y, x, t) = 0}
is chosen in a way to guarantee the regularity of G̃1(y, x, t). That is why G̃1(y, x, t)z =
0 implies z = 0 and consequently

∀ (y, x, t) ∈ U : (N1 ∩ S1) (y, x, t) = {0}
The tractability index 2 at the point (y0, x0, t0) implies r0 = dimN0∩S0(y0, x0, t0) > 0.
Assumption (3.6) causes

dimN0 ∩ S0(y, x, t) ≡ r0 > 0 on Bε (y0, x0, t0) ∩ {(y, x, t) ∈ G | f (y, x, t) = 0}
Combined with (N1 ∩ S1)(y, x, t) = {0}, we obtain the tractability index 2 on entire
Bε (y0, x0, t0) ∩ {(y, x, t) ∈ G | f (y, x, t) = 0}.
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Further appearance of the index reduction in the context of the tractability
index

The index reduction via differentiation of certain constraints is a standard technique
to analyze differential-algebraic systems leading to derivative array approaches and the
primarily tool with regard to systems of Hessenberg type. In context of the tractability
index, a series of publications on consistent initialization of DAEs - for example [ES99],
[ESL01], [ES01], [BTS10] - are using this method. All but the last mentioned consider
DAEs in the standard formulation (1.1).

For linear implicit DAEs (1.5) having a properly stated derivative term, Lemma 3.3 is
already proved in [Mä01] and Representation (3.10) of the configuration space is given
with reservations. R. März declares in [Mä01, p. 17]:

“It can be supposed that there are no further hidden constraints for µ = 2
and thatM1(t) =M0(t) ∩ H1(t), t ∈ I represents the sharp geometrical
location of the solution of the DAE (6.1) that is of index µ = 2.”.

This conjecture possibly refers to the index reduction described for a special type of
properly formulated linear implicit DAEs in [San00, § 3.3].

Enhancement and application of the index reduction in this thesis

In our opinion, Theorem 3.3.6 in [San00] is stated imprecisely because the tractability
index 1 has to be given on an open subset instead of solitary points (y0, x0, t0) in
order to achieve local solvability of the DAE. To this end a constant dimension of
N0 (t)∩S̃0 (y, x, t) is required and this property is not ensured until the rank assumption
(3.6) is given. Moreover, Lemma 3.2 is favourable to proceed with the computations.

The proof of local constancy of the tractability index via the associated index reduced
system is an interesting new quality of the index reduction procedure aiming at fully
implicit DAEs with a properly stated leading derivative. Besides, we noticed that the
index reduction is linked to some known regularization techniques, cf § 7.2.

The most important aspect of index reduction in connection with the present the-
sis is certainly the innovative use of the methodology in the context of dissipation
inequalities, contractivity and Lyapunov functions for index-2 DAEs in Part II.



72 Chapter 3. Index reduction via differentiation



Part II

Stability criteria for
differential-algebraic systems





4 Stability definitions for DAEs

Usually, the term stability of a reference solution x∗ ∈ C1 (I,Rm), I = [ts,∞) of
an ODE characterizes the property that slightly perturbed IVPs of that ODE are
uniquely solvable on I and the effect of the perturbation in the initial values is bounded.
Precisely, the classic definition of stability in the sense of Lyapunov (cf. [LWY07,
pp. 21 ff.]) reads

∀ε > 0, t0 ∈ I∃δ > 0 : ‖x0 − x∗ (t0)‖ < δ ⇒ ∃x (t; t0, x0) solution on [t0,∞) :
∀t ≥ t0 : ‖x (t; t0, x0)− x∗ (t)‖ < ε

At this, x (t; t0, x0) denotes the solution of the initial value problem x (t0; t0, x0) = x0

of the ODE under consideration. If solutions of slightly perturbed IVPs are stable and
converge toward the stable reference solution, i.e.

∃δ0>0∀x0 ∈ Bδ0 (x∗ (t0)) : lim
t→∞
‖x (t; t0, x0)− x∗ (t)‖ = 0

then x∗ is called asymptotically stable in the sense of Lyapunov. Finally, the reference
solution is called unstable in case of not being stable.

We are talking about partial stability or stability with respect to the partial variable y
if x = (y, z)T and

∀ε > 0, t0 ∈ I∃δ > 0 : ‖x0 − x∗ (t0)‖ < δ ⇒ ∃x (t; t0, x0) solution on [t0,∞) :
∀t ≥ t0 : ‖y (t; t0, x0)− y∗ (t)‖ < ε

that is a small deviation in all components of the initial values is required in order to
get an estimation of certain y-coordinates of the solution vector of an ODE. General-
izations of asymptotic stability or instability with respect to the partial variable y are
straightforward.
Remark 4.1. The stability definitions do not depend on t0 ≥ ts because specifications
of initial values at time ts correspond to perturbed initial values at time t0. The
qualitative behaviour does not change because solutions of ODEs are known to depend
continuously on initial values. This continuity with respect to consistent initial values
is true for index-2 DAEs as well, assumed the preconditions of Theorem 2.19 hold.
That is why the simplification ts = t0 is tacitly assumed in the following.

Peculiarities of differential-algebraic systems

For differential-algebraic systems one should distinguish between two notions of sta-
bility. For that purpose, we quote [TA02, p. 3550]:
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“Finally, it is to be cautioned that the issue of stability of the solution
trajectory about an equilibrium point or trajectory on manifold S, which
is indicative of the stability of the underlying physical system, is totally
distinct from the issue of stability of the DAE representation about its
solution manifold. While all higher index DAEs are unstable about S, the
unperturbed solution trajectory starting on S can end up at an equilibrium
point or equilibrium trajectory of the system on S."

This statement is understood in context of certain nonlinear semi-explicit DAEs with
control terms. Applying a suitable coordinate transformation results in an inherent
ODE for such systems. In [TA02, Proposition 4] it is shown that solutions of that
inherent ODE starting arbitrarily close to the solution manifold S of the DAE could
move infinitely away from S in case of differentiation index ν ≥ 2. This result is
one reason to consider stability of DAE solutions relating to consistent perturbations
of initial values only. Another reason is explained in Remark 2.20 - we are not able
to access the qualitative behaviour of the associated IRODE outside of its invariant
subspace DK in terms of the given differential-algebraic system. The last and most
obvious reason is that a differential-algebraic system is simply not solvable starting
with inconsistent perturbations of the given initial values.

4.1 M-component stability

Let x∗ ∈ C1
D ([t0,∞),Rm) be the reference solution of a given differential-algebraic

system (1.2) exhibiting properly stated derivative term and the tractability index k =
1, 2. We are going to define a variation of an established stability definition in the
sense of Lyapunov for these DAEs.

Definition 4.2. Let M ∈ C ([t0,∞) ,Rs×m). The solution x∗ : [t0,∞) → Rm of a
properly formulated DAE (1.2) having the index k = 1, 2 is called

· M-component stable (in the sense of Lyapunov) if

∀ε > 0∃δ > 0∀x0 ∈Mk−1 (t0) , ‖M (t0) (x0 − x∗(t0)) ‖ < δ :
∃x (t; t0, x0) solution on [t0,∞) ∀t ≥ t0 : ‖M(t) (x (t; t0, x0)− x∗(t)) ‖ < ε

· asymptotically M-component stable if x∗ isM -component stable and there exists
a δ0 > 0 such that for all x0 ∈Mk−1 (t0)

‖M (t0) (x0 − x∗(t0)) ‖ < δ0 =⇒ lim
t→∞
‖M(t) (x (t; t0, x0)− x∗ (t))‖ = 0

We use the matrix valued functionM (t) to specify solution components whose stability
has to be analyzed. In doing so we have to ensure that dynamical components1 of the
solution vector are taken into consideration. Solution components P0x,Dx orDP1x are

1Dynamical components are solution components admitting to set initial values without restriction.
In general, there are different feasible choices of such components.
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used predominably in scientific publications applying the tractability index. For exam-
ple, the notion of contractivity of nonlinear index-1 DAEs in [MHT03a] relates to Dx
and the contractivity of linear index-2 DAEs in [MHT03b] to DP1-components, respec-
tively. Moreover there exists a notion of P -contractivity for nonlinear index-2 systems
(cf. [San00]) which implies an exponential estimate for ‖P0 (t) (x (t;x0, t0)− x∗ (t))‖.

Figure 4.1: D-component stability

So what is the nature of M -component stability? Considering M(t) ≡ I and the
condition ‖Πk (x0 − x∗(t0)) ‖ < δ we obtain the Lyapunov stability in compliance with
[GM86, p. 74] resp. [Tis94, p. 147] which represents a generalization of the classic
definition for differential-algebraic equations on their own. Let us formulate their
definition for DAEs having a properly stated derivative term:

Definition 4.3. Let (1.2) be properly formulated and index-k (k = 1, 2) tractable. A
solution x∗ ∈ C1

D ([t0,∞),Rm) is called stable in Lyapunov’s sense if for all ε > 0 there
exists a δ > 0 such that all IVPs2 Πkx (t0) = Πkx0 where ‖Πk (x (t0)− x0)‖ ≤ δ have
a unique C1

D-solution which are defined on [t0,∞) and

‖Πk (x (t0)− x∗ (t0))‖ ≤ δ =⇒ ∀t ≥ t0 : ‖x (t)− x∗(t)‖ < ε

Thereby Πk ∈ Rm×m denotes a projector extracting the dynamical solution compo-
nents of the index-k DAE at time t0. We have already proved that Π1 = P0(t0) and
Π2 = (P0P1) ((Dx∗)

′ (t0) , x∗ (t0) , t0) are an admissible choice under certain structural
assumptions.

There are two main differences between Definition 4.3 of Lyapunov stability and the
one applied in case of ordinary differential equations. As already explained, in the con-
text of an index-k DAE it is a good idea to assume the perturbation x0 of the initial

2Here, x0 ∈ Rm and consistent initial values x (t0) ∈ Mk−1 (t0) with prescribed components
Πkx (t0) = Πkx0 are considered.
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values x∗ (t0) ∈Mk−1 (t0) to be consistent, i.e. x0 ∈Mk−1 (t0). The second difference
is to require only the estimation ‖Πk (x0 − x∗(t0)) ‖ < δ in order to ensure a bounded
propagation of the error, i.e. ∀t ≥ t0 : ‖x∗ (t)− x (t; t0, x0)‖ < ε. This is a consequence
of the DAE being a description of the inherent dynamics in redundant coordinates.
In other words, if there exists a decoupling of the given system then x∗ (t0) and x (t0)
can be expressed as evaluation of at least continuous functions of the dynamical com-
ponents Π1x0 resp Π1x∗ (t0) so ‖Πk (x0 − x∗(t0)) ‖ < δ implies ‖x0 − x∗(t0)‖ < cδ for
a c > 0. From this point of view, the M -component stability is the (classical) DAE-
stability in the sense of E. Griepentrog, R. März and C. Tischendorf with respect to
the M (t)-components of the DAE solution where the condition on the initial values
‖Πk (x0 − x∗(t0)) ‖ < δ is stated in a redundant way3 via ‖M (t0) (x0 − x∗(t0)) ‖ < δ.
In Chapter 6 the reader is going to recognize that this simple concept of a partial
stability definition for DAEs is suitable for several nice stability criteria.

4.2 Orbital stability

The notion of Lyapunov stability is inappropriate for periodic solutions of autonomous
differential equations. Periodic solutions x∗ of autonomous systems exhibiting asymp-
totic stability in the sense of Lyapunov as specified in [Tis94, p. 147] turn out to
be stationary. Because of translation invariance we may choose initial values of
the solution x̃ (t) = x∗ (t+ c) with 0 < c � 1 arbitrarily close to x∗ (t0). Then
limt→∞ ‖x̃ (t)− x∗ (t)‖ = 0 implies x∗(t) to be constant due to its periodicity. This
problem was already noticed in the beginning of the qualitative theory of ODEs, it
can be avoided abolishing the parametrization of the reference solution in t. Instead,
the orbits, i.e. solution trajectories in the phase space are considered together with
their respective distances to the reference trajectory C. Let us formulate this having
the peculiarities of differential-algebraic systems in mind:

Definition 4.4. The solution x∗ ∈ C1
D ([t0,∞),Rm) of a properly formulated DAE

(1.2) with tractability index k = 1, 2 is called

· orbitally stable, if

∀ε > 0∃δ > 0∀x0 ∈Mk−1 (t0) , dist (x0, C) < δ :
∃ solution x (t; t0, x0) of the IVP on [t0,∞)∀t ≥ t0 : dist (x (t; t0, x0) , C) < ε

where C denotes the trajectory of x∗ in Rm and dist (x,C) = infy∈C ‖x− y‖.
· orbitally asymptotically stable, if additionally

∃δ0>0∀x0 ∈Mk−1 (t0) , dist (x0, C) < δ0 : lim
t→∞

dist (x (t; t0, x0) , C) = 0

In [Leo07] the terminology Poincaré-stability or stability in the sense of Poincaré is
used as a synonym for orbital stability.

3this is true if im M (t) encompasses the dynamical components of the DAE solution
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Remark. In publications dealing with explicit ordinary differential equations the sta-
bility notion of Poincaré applies to autonomous systems only. We decided to state the
definition of orbital stability for solutions of (possibly) non-autonomous DAEs.

Following [Far94, Def. 5.1.3] resp. [Dem67, p. 306] we define

Definition 4.5. The solution x∗ ∈ C1
D ([t0,∞),Rm) of a properly formulated index-k

(k = 1, 2) DAE (1.2) is called orbitally asymptotically stable with asymptotic phase
property if x∗ is orbitally asymptotically stable and

∀x0 ∈Mk−1 (t0) , dist (x0, C) < δ ∃α0 ∈ R : lim
t→∞
‖x (t+ α0; t0, x0)− x∗ (t)‖ = 0

Remark 4.6. This restriction on orbital asymptotic stability does not coincide with
asymptotic stability in the sense of Zhukovsky (cf. Definition 4.7) because in general
τ (t) := t+ α0 /∈ Hom (I).

It is astonishing that orbital stability takes only an insignificant part in the theory of
differential-algebraic systems, especially with regard to the Andronov-Witt Theorem
and its generalizations by Demidovich and Leonov. So far, the only criterion for orbital
stability of nonlinear index-2 DAEs known to us is an Andronov-Witt-like theorem for
Hessenberg systems in [Fra98], which does not apply to fully implicit autonomous
index-2 DAEs (2.28).

4.3 Excursus: Stability in the sense of Zhukovsky

Another way to allow asymptotically stable periodic solutions of autonomous differ-
ential equations is to extend the concept of Lyapunov stability by the means of cer-
tain reparametrizations. According to [Leo07], the notion of stability in the sense of
Zhukovsky was published in [Zhu82] prior to Lyapunov’s famous thesis [Lja66]. In
today’s terminology it corresponds to Lyapunov stability after reparametrization of
perturbed solutions. We can also interpret Zhukovsky stability as orbital stability
exhibiting a certain kind of asymptotic phase property.

An adaptation of this concept to differential-algebraic equations is as follows:

Definition 4.7. The solution x∗ : [t0,∞)→ Rm of a properly stated DAE (1.2) with
index k = 1, 2 is called

· stable in the sense of Zhukovsky, if

∀ε > 0∃δ > 0∀x0 ∈Mk−1 (t0) , ‖Πk(x0 − x∗(t0))‖ < δ
∃x (t; t0, x0) solution on [t0,∞), τ ∈ Hom (I)∀t ≥ t0 :
‖x (τ (t) ; t0, x0)− x∗(t)‖ < ε

with

Hom (I) :=

{
τ ∈ C ([t0,∞),R) homeomorphism

∣∣∣∣ τ ([t0,∞)) ⊆ [t0,∞),
τ (t0) = t0

}
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· asymptotically stable in the sense of Zhukovsky if, additionally, for all x0 ∈
Mk−1 (t0) satisfying ‖Πk(x0 − x∗(t0))‖ < δ0 and the associated τ ∈ Hom (I)
it holds

lim
t→∞
‖x (τ (t) ; t0, x0)− x∗ (t)‖ = 0

This stability concept allows interesting criteria ensuring Zhukovsky stability, e.g.
[Leo07, Theorem 5]: a bounded solution x∗ of the autonomous ODE x′ (t) = g (x (t)),
g ∈ C1 (Ω ⊆ Rm,Rm) is asymptotically stable in the sense of Zhukovsky if γ + λ2 < 0
whereas 0 = λ1 ≥ λ2 ≥ . . . λm denotes the characteristic spectrum of the variational
system z′ (t) = gx (x∗ (t)) z (t) and

γ :=
m∑
j=1

λj − lim inf
t→∞

1

t

ˆ t

0

gx (x∗ (s)) ds

the associated coefficient of irregularity. The theorem is proved using a generalization
of the Poincaré map which is called a moving Poincaré section. If x∗ is periodic then
the system is known to be regular, i.e. γ = 0 holds and λ2 < 0 is equivalent to
|µ2| < 1 at which 1 = µ1 ≥ |µ2| ≥ . . . ≥ |µm| are the characteristic multipliers of the
variational equation. In other words, the Andronov-Witt Theorem is a special case of
the mentioned stability criterion.

In principle, this result can be formulated for index-2 DAEs f
(
(Dx (t))′ , x (t)

)
= 0

targeting at the local state space form on a compact set containing the bounded
reference solution x∗. Some background on Lyapunov exponents for linear DAEs with
tractability index one is already available, e.g. in [CN04], [CN03]. An approach
to numerical approximation of Lyapunov spectra of DAEs is presented in [MLV09].
In addition to considerably higher computational costs of characteristic exponents of
non-periodic solutions, we lack access to a practical representation of the coefficient of
irregularity belonging to the linearization of the state space form

γ =
m∑
j=1

λj − lim inf
t→∞

1

t

ˆ t

0

DP1 (s)G−1
2 (s) f ∗x

(
(Dx∗ (s))′ , x∗ (s)

)
D−ds

Therefore, we restrict ourselves to the case of periodic solutions mainly because under
this assumption the involved quantities can be stated in terms of the given DAE.

4.4 Nonlocal existence of DAE solutions

Usually, any kind of stability property implies that solutions of the differential-algebraic
system under consideration do exist in the entire future, that is on I = [t0,∞), at least
for consistent initial values nearby the reference solution. The quest for global solvabil-
ity of DAEs turns out to be the crucial issue in analyzing D-component stability using
generalized Lyapunov functions developed in § 6. Only few publications dealing with
solvability of nonlinear DAEs on unbounded intervals are known to us. Predominantly,
they rely on a dissipation inequality, e.g. the existence of a Lyapunov function, a con-
tractivity requirement etc. or the emphasis is on structural conditions resulting in a
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bounded and globally Lipschitz-continuous right-hand side of the ODE representation
of the inherent dynamics.

The first type is represented by [GM86, Th. 46] where asymptotic stability and even to-
tal stability with respect to small t-dependent perturbations of index-1 tractable DAEs
(1.1) are proved under rigid conditions including contractivity of the DAE, bounded
partial derivatives fy, fx and bounded rotation speed of a basis of ker fy (y, x, t). An-
other way to ensure dissipativity of the inherent dynamics is to use Perron’s Theo-
rem for DAEs (cf. [Tis94, Theorems 3.3 and 4.2], [Mä98, Th. 3.3]) thus requiring
negative real parts of the eigenvalues of the matrix pencil {fy (0, x∗) , fx (0, x∗)} of
f (x′ (t) , x (t)) = 0 evaluated in the stationary solution x∗. Unfortunately, this ap-
proach is known to be limited to fixed points of autonomous DAEs only. In general, an
appropriate definition of a Lyapunov function is necessary for non-constant solutions
or non-autonomous fully implicit systems. Among recent publications on differential-
algebraic systems, [CC07] presents a criterion for the existence of solutions of linear
implicit index-1 systems A (t)x′ (t)+b (x (t) , t) = 0 on I = [t0,∞). In essence, bx (x, t)
is required to be bounded and bt (x, t) globally Lipschitz-continuous on the entire do-
main where the structural conditions

rk (A (t0) |bx (x0, t0)) = r = max {rk A (t) | t ∈ I} ,
det (λA (t) + bx (x, t)) = a (x, t)λr + . . .

with ‖a (x, t)‖ ≥ c are valid. Furthermore [CC07, Th. 30] and [CC06] are dealing with
a generalization of the Hopf Bifurcation Theorem thus providing existence of periodic
solutions for parametrized linear implicit index-1 DAEs Ax′ (t)+b (x (t) , ν) = 0 nearby
a fixed point x∗ such that b (x∗, ν) ≡ 0.

This thesis provides stability criteria and therefore nonlocal existence for bounded
solutions of a class of autonomous DAEs with index one and two and certain non-
autonomous DAEs with bounded terms containing partial derivatives of f .
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5 Asymptotic stability of periodic
solutions

This chapter is primarily dealing with asymptotic stability of non-constant periodic
solutions of autonomous index-2 DAEs. The task is much more involved compared
with proving stability properties of stationary solutions of autonomous systems mainly
because of two reasons. First, stability definitions in the sense of Lyapunov and of
Poincaré (i.e. orbital stability) are not equivalent like in the case of fixed points. In
addition, a single local parametrization of the solution manifoldM1 nearby the fixed
point is obviously sufficient for analysing its stability behaviour. In contrast, periodic
solutions generally necessitate more than one local parametrization ofM1 to construct
an appropriate state space representation.

An overview

The early stability criteria for stationary solutions of autonomous differential-algebraic
equations, e.g. [Tis94, Theorems 3.3 and 4.2], [Mä98, Th. 3.3] and [Rei95, Theorem 3]
generalized Perron’s theorem or the Local Stable and Unstable Manifold Theorem
to DAEs. Among recent publications [Fra98] and [FF01] are distinguished because
they deal with orbital stability of periodic solutions of autonomous Hessenberg-3
DAEs. Their main focus is on collocation methods for checking stability proper-
ties of differential-algebraic systems resulting from multibody dynamics, theoretically
substantiated by a generalization of the Andronov-Witt Theorem ([FF01, Th. 3]) and
the Hopf Bifurcation Theorem (Theorem 2.17, ibid.) for Hessenberg-3 systems. In the
process, a transformation to a state space representation is used which is restricted to
DAEs of Hessenberg structure. From the analytical point of view, the position con-
straints are readily available from the algebraic equations of the DAE, the velocity and
acceleration constraints result from differentiation of those first-level constraints and
inserting other obvious relations. This simple representation of the hidden constraints
as zero-set of sufficiently smooth functions with constant rank is used excessively
throughout the last-mentioned publications simplifying a construction of a suitable
parametrization of the solution manifold nearby the reference trajectory. Then the
Poincaré map of the index reduced DAE is restricted to the solution set of the given
Hessenberg-DAE using this parametrization so the proof of the Andronov-Witt The-
orem can be adapted to the state space form. In contrast, fully implicit systems do
not possess such a simple representation of the constraints which is (theoretically)
known a priori so the above approach is not applicable. Another interesting approach
is the successful generalization of Floquet theory to τ -periodic DAEs in [LMW98]
and [LMW03]. In doing so, a sufficient condition for Lyapunov stability of periodic
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solutions of linear implicit τ -periodic Index-2 DAEs is deduced, see [LMW03, Theo-
rem 4.2]. Last-mentioned publications suggest the possibilities of the tractability index
applied to fully implicit DAEs. However, the performed technical details could be re-
garded as hardly understandable in an intuitive way. This might cause an imprecise
reception of the method in the recent literature, for instance the following statement
in [LR06]:

“Note that in case of periodic solutions of DAEs, two different approaches
are presented in [Franke&Führer,2001] and [Lamour et al.,1998, 2003] to
define monodromy operators and Floquet multipliers for DAEs.”

In the present thesis, this point of view is revised. We prove that characteristic mul-
tipliers of the DAE defined by means of the tractability index have a geometric inter-
pretation as conventional characteristic multipliers of the associated state space form.
By this the mathematical background of the definitions in [LMW03] is clarified the
main idea is shown to be identical with [Fra98].

We formulate and prove a criterion for orbital asymptotic stability of periodic solutions
for self-oscillating (i.e. autonomous) fully implicit index-2 DAEs. The wording of this
theorem almost coincides to the known Andronov-Witt theorem for ODEs except the
structural assumptions for index-2 systems. As far as we know, our result is the
first one considering orbital stability in the context of the tractability index. The
method in use also provides an alternative proof for the stability results [LMW98,
Theorem 5.1] and reveals a new view on [LMW03, Theorem 4.2]. Thereby, we do
not reduce the system to the case of an asymptotically stable fixed point. Instead,
we provide a τ -periodic state space form via suitable transformations and trace the
stability properties of the SSF back to [Far94, Theorem 4.2.1]. In doing so, we avoid
many technical details like explicit estimations using decoupling terms and devote
resources into a more thorough investigation of the structure of index-2 DAEs. As a
matter of fact, fully implicit autonomous and τ -periodic DAEs up to index two are
supported by our approach.

In order to achieve new stability results, we had to cope with significantly higher com-
plexity of the fundamentals of DAE analysis in Part I. With regard to stability analysis
of autonomous DAEs, we strive for an autonomous state space representation assum-

ing a constant im
(

T
−f−y fxT

)
(y, x) in a neighbourhood of the extended integral

curve of x∗ and DN1 to be constant along x∗. These assumptions could be considered
as questionable in the context of Hessenberg systems but we have to impose them due
to higher structural complexity of general fully implicit DAEs.

Summing up, the constancy of DN1 together with the structural assumption (2.17)
and some differentiability requirements on f ensure that the configuration spaceM1

of an autonomous index-2 DAE is parametrizable in a neighbourhood of the entire
solution trajectory of x∗ using a single map. Per constructionem, linearization and
transformation to the state space form commute so characteristic multipliers of the
inherent dynamics can be formulated in terms of the given DAE. This aspect was
neglected in previous publications.
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We suppose that the stability criteria in this chapter could be checked automatically
and quite efficiently using numerical methods. We refer to [Fra98, Ch. 3] for a de-
tailed background on adaptation of dedicated collocation methods (and some other
details mainly based on [Sey94]) to DAEs and to [Fra98, Ch. 4], [FF01] considering
implementation aspects in context of DAEs stemming from multibody dynamics.

5.1 Characteristic multipliers of DAEs

Consider linear DAEs with τ -periodic coefficients and properly stated derivative term

A(t)(D(t)x(t))′ +B(t)x(t) = 0 (5.1)

where

A ∈ C(R,Rm×n), B ∈ C(R,Rm×m), D ∈ C(R,Rn×m)

A(t+ τ) = A(t), B(t+ τ) = B(t), D(t+ τ) = D(t)

We are going to define characteristic multipliers of a solution in terms of (5.1) which
coincide with conventional multipliers of the associated state space form.

Denote an admissible projector on N1 (t) along K (t) by Q1(t).

Lemma 5.1. Given the properly formulated index-2 DAE (5.1), the matrix valued
functions DP1D

−, R ∈ C1 (R,Rn×n) and P0, D
− ∈ C0 can be chosen τ -periodic if

there exist continuous and τ -periodic C1-bases of DN1 and DK.

Proof. Denote r ≡ rk D (t) and l ≡ dim (DK) (t). A continuous basis of N0 (t) is
required in case of a properly formulated DAE, in addition D (t+ τ) = D (t) holds
for (5.1). According to Lemma 8.2 there exist a continuous and τ -periodic basis
{p1(t), . . . , pm−r(t)} of N0(t). An eligible extension to a basis {pi, p̃j} of Rm results in
the regular matrix valued C0-function

Ṽ (t) := (p̃1(t), . . . , p̃r(t), p1(t), . . . , pm−r(t))

which is τ -periodic. Besides,

P̃0(t) := Ṽ (t)

(
Ir

0m−r

)
Ṽ −1(t)

defines a continuous and τ -periodic projector on N0(t).

These properties carry over to G1 = AD + BQ̃0. Due to continuity of all functions
involved, there exists a continuous and τ -periodic basis of N1(t) = kerG1(t) and
therefore a τ -periodic basis of (DN1) (t). Same holds for an adequate complementary
space (DK) (t). Then again we assumed the existence of a C1−basis of (DN1) (t)
which ensures the existence of a τ -periodic C1-basis of (DN1) (t) via Lemma 8.2.
Furthermore, same argumentation applies to (DK) (t) and kerA (t). Denote by
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{D(t)s1(t), . . . , D(t)sl(t)} a τ -periodic C1-basis of (DS1) (t)
{D(t)n1(t), . . . , D(t)nr−l(t)} a τ -periodic C1-basis of (DN1) (t)
{α1(t), . . . , αn−r(t)} a τ -periodic C1-basis of kerA(t)

Analogously to Lemma 2.15 we obtain the representations

(
DP1D

−) (t) = M(t)

(
Il

0n−l

)
M−1(t), R(t) = M(t)

(
Ir

0n−r

)
M−1(t)

using
M(t) := (Ds1, . . . , Dsl, Dn1, . . . , Dnr−l, α1(t), . . . , αn−r(t))

As a consequence, the C1-projectors DP1D
− and R are τ -periodic.

Obviously, P0 (t) si (t) = D− (t)D (t) si (t) and P0 (t)nj (t) are linearly independent
continuous functions which can be extended to bases of S1 (t) and K (t), respectively.
We use them and the basis functions {pi (t)} of N0 (t) to define

V (t) := (P0 (t) s1(t), . . . , P0 (t) sl(t), P0 (t)n1(t), . . . , P0 (t)nr−l(t), p1(t), . . . , pm−r(t))

Per constructionem,

P0(t) := V (t)

(
Ir

0m−r

)
V −1(t)

is a continuous τ -periodic projector along N0 and

D(t)V (t) = (D(t)s1(t), . . . , D(t)sl(t), D(t)n1(t), . . . , D(t)nr−l(t), 01, . . . , 0m−r)

= M(t)

(
Ir 0r×m−r
0n−r×r 0n−r×m−r

)
Therefore, D (t) allows the representation

D(t) = M(t)

(
Ir 0r×m−r
0n−r×r 0n−r×m−r

)
V −1(t)

The continuous τ -periodic function

D−(t) = V (t)

(
Ir 0r×m−r
0n−r×r 0n−r×m−r

)T
M−1(t) (5.2)

defines the reflexive pseudoinverse of D with respect to R and P0,

DD− = M

(
Ir

0n−r

)
M−1 = R, D−D = V

(
Ir

0m−r

)
V −1(t) = P0

Under the assumptions of Lemma 5.1 there is a unique solution X ∈ C1
D (R,Rm×m) to

the matrix valued IVP

A(t) (DX)′ (t) +B(t)X(t) = 0, (DP1) (0) (X(0)− Im) = 0
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We have already proved the representation (1.27) of this fundamental system of the
linear DAE reading as follows:

X(t) = K(t)U(t) (DP1) (t0)

K (t) :=
D− (t)− ((UQ0 + P0Q1)G

−1
2 BD−

)
(t)− (TQ0P1G

−1
2 BD−

)
(t)

− (Q0Q1D
−) (t)

(
DQ1G

−1
2 BD−

)′
(t) +

(
Q0Q1G

−1
2 BP0P1G

−1
2 BD−

)
(t)

Here, U denotes the fundamental system of the IRODE u′ = −DP1G
−1
2 BD−u with

U(t0) = I. Taking the periodicity of (DP1) (t)X (t)D− (0) into consideration,

(DP1) (0)X (τ)D− (0) =
(
DP1XD

−) (τ)

=
(
DP1D

−) (τ)U(τ) (DP1) (0)D−(τ)

=
(
DP1D

−) (0)U(τ)
(
DP1D

−) (0)

It is evident that the eigenvalues of

(DP1) (0)X (τ)D− (0)

correspond to the eigenvalues of the fundamental system U (τ) of the IRODE restricted
to the invariant subspace DK.

Definition 5.2. (DP1) (0)X(τ)D−(0) ∈ Rn×n is called the monodromy matrix of the
linear τ -periodic index-2 DAE (5.1). The non-zero eigenvalues of the monodromy
matrix are called characteristic multipliers related to (5.1).

The transition to a representation of the inherent dynamics in minimal coordinates
alleviates the proof of stability criteria. We state

Lemma 5.3. Let DN1 and DK be constant. Then, characteristic multipliers of the
linear index-2 DAE (5.1) coincide with conventional characteristic multipliers of the
associated state space form.

Proof. The representation (2.24) of the state space form related to a linear DAE reads

ξ′1(t) = − ( Il 0 0
)
M−1(t)

((
DP1G

−1
2 BD−

)
(t)M(t) +M ′(t)

) Il
0
0

 ξ1(t) (5.3)

where
(
Il 0 0

)
=
(
Il×l 0l×r−l 0n−r×l

)
. This ODE is τ -periodic due to τ -

periodicity of all functions involved in this representation as a consequence of the
preconditions or Lemma 5.1.

Consider a fundamental system U (t) of the IRODE

u′(t) = − (DP1G
−1
2 BD−

)
(t)u(t)

with U (0) = In. Then,

U(t)
(
DP1D

−) (0) =
(
DP1D

−) (t)U (t)
(
DP1D

−) (0)
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represents a fundamental system of the IRODE on the respective invariant subspace
DK. Therefore, a transformation via

u (t) = M (t)

 Il
0
0

 ξ1 (t) , ξ1 (t) =
(
Il 0 0

)
M−1 (t)u (t)

appears convenient to obtain a fundamental system of the SSF. To this purpose con-
sider

Ξ(t) :=
(
Il 0 0

)
M−1(t)U(t)M(0)

 Il
0
0

 (5.4)

Per constructionem, Ξ(0) = Il and

Ξ′(t) =
(
Il 0 0

) ((
M−1

)′
(t)U(t) +M−1(t)U ′(t)

)
M(0)

 Il
0
0


=

(
Il 0 0

) ((
M−1

)′
(t)−M−1(t)

(
DP1G

−1
2 BD−

)
(t)
)
U(t)M(0)

 Il
0
0


is valid. As a consequence of

U (t)M (0)

 Il
0
0

 = U (t) (DP1D
−) (0)M (0)

 Il
0
0


= (DP1D

−) (t)U (t) (DP1D
−) (0)M (0)

 Il
0
0


= M (t)

 Il
0
0

Ξ (t)

and (M−1)
′
M = −M−1M ′ we recognize that Ξ (t) is a fundamental system of the

state space form (5.3).

We have already proved that the monodromy matrix (DP1) (0)X(T )D−(0) of (5.1)
possesses the representation

(DP1) (0)X (τ)D− (0) = (DP1D
−) (0)U(τ) (DP1D

−) (0)

= M (0)

 Il
0
0

( Il 0 0
)
M−1(0)U(τ)M (0)

 Il
0
0

( Il 0 0
)
M−1(0)

Obviously, this matrix is conjugate to the embedding

L =

 Ξ (τ)
0

0


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of the monodromy matrix of the SSF (5.3) in Rn×n. Rl × {0} ⊂ Rn is an invariant
subspace belonging to L so all eigenvalues of Ξ (τ) also relate to L and there are
no further non-zero eigenvalues of L. It is generally known that the eigenvalues are
invariant under conjugation. Therefore the eigenvalues of the monodromy matrix of
the DAE coincide with the eigenvalues of the monodromy matrix Ξ (τ) of the state
space representation of the DAE.

Characteristic multipliers belonging to periodic solutions of nonlinear
τ-periodic DAEs

Consider nonlinear τ -periodic differential-algebraic equations with a properly stated
derivative of the form

f
(
(Dx)′ (t), x(t), t

)
= 0 (5.5)

with D (t) = D (t+ τ), f (y, x, t) = f (y, x, t+ τ) which exhibit a τ -periodic solution
x∗ ∈ C1

D (R,Rm). The linearization of (5.5) around x∗ reads

f ∗y (t) (Dx)′ (t) + f ∗x (t)x (t) = 0

with τ -periodic coefficients. Put z∗ (t) :=
(
Il 0 0

)
M−1 (t)D (t)x∗ (t).

Lemma 5.4. [Characteristic multipliers in case of nonlinear index-2 DAEs]

If the DAE (5.5) possesses the tractability index 2 and the structural assumptions in
Lemma 2.16 are satisfied then characteristic multipliers of the linearization of (5.5)
around x∗ coincide with characteristic multipliers of the system of variational equations
of the associated state space form around z∗.

Proof. Without loss of generality, choose a matrix chain of the tractability index con-
sisting of τ -periodic elements. According to Lemma 2.16 the system of variational
equations of the SSF belonging to (5.5) around z∗ corresponds to the SSF of the
linearization f ∗y (t) (Dx)′ (t) + f ∗x (t)x (t) = 0 of (5.5) around x∗ restricted to DK.
Again, (5.4) defines the standardized (Ξ (0) = Il) fundamental system of the lineariza-
tion of the state space form associated to the given DAE (5.5). As a result, the char-
acteristic multipliers of the linearization of the DAE around x∗, e.g. the eigenvalues
of Ξ (τ), coincide with characteristic multipliers of the linearization of the respective
SSF around z∗.

Corollary 5.5. Given the requirements of Theorem 2.22, characteristic multipliers of
the linearization of an autonomous index-2 DAE (2.28) around a τ -periodic solution
x∗ are in fact the ones belonging to the linearization of the autonomous state space
form around z∗.

Proof. It is suitable to choose constant projectors of the matrix chain belonging to the
autonomous properly stated DAE (2.28) like it is done in Theorem 2.22. Referring
to Theorem 2.22 once again, the associated state space form exhibits the autonomous
representation (2.30) and the transformation to the SSF commutes with linearization.
The proposition can be proved in analogon to Lemma 5.4 because characteristic multi-
pliers of the linearization of (2.28) around x∗ and the ones belonging to the linearization
of the associated SSF around z∗ correspond to the eigenvalues of Ξ (τ).
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Remark 5.6. Under the assumptions of Corollary 5.5 there is at least one characteristic
multiplier λ = 1 of the linearization around the τ -periodic reference solution x∗. Just
consider the solution ξ∗ (t) =

(
Il 0 0

)
M−1Dx∗ (t) of the state space form (2.30)

of the initial system. Applying the chain rule,

ξ′∗ (t) =
d

dt
g̃ (ξ∗ (t)) = g̃x (ξ∗ (t)) ξ′∗ (t)

i.e. z∗ := ξ′∗ is a τ -periodic solution of the linearization of the SSF. Besides, the
representation z∗ (t) = Ξ (t) z∗ (0) is true when using the standardized fundamental
system (5.4). Well, τ -periodicity of the solution is equivalent to

z∗ (0) = z∗ (τ) = Ξ (τ) z∗ (0)

Therefore λ = 1 is an eigenvalue of the monodromy matrix of the system of variational
equations associated to the state space form.

5.2 The Theorem of Andronov-Witt for DAEs

In the previous chapters we stated important auxiliary results aiming at a criterion
for orbital stability of periodic solutions of autonomous DAEs, namely

· the autonomous representation (2.30) of the state space form of autonomous
systems

· the commutativity between linearization and transformation to the SSF

· characteristic multipliers of the DAE which are by definition those of the varia-
tional system of the associated SSF

Mentioned intermediate steps allow to check orbital stability of periodic solutions
resting upon linearization and the state space form. In this case asymptotic orbital
stability of DP1-components imply stability of the entire solution vector. One essential
statement of this thesis is a generalization of the well-known Andronov-Witt Theorem
to differential-algebraic systems of index k = 1, 2.

5.2.1 Index-1 systems

Differential-algebraic systems having the tractability index one are easy to handle
using the complete decoupling in Lemma 2.18. Above all, no structural assumptions
except of the tractability index one are needed in order to decouple the system.

Theorem 5.7. [Theorem of Andronov-Witt for index-1 DAEs]

Let x∗ ∈ C1
D (R,Rm) be a τ -periodic solution of the autonomous index-1 DAE

f
(
(Dx(t))′ , x (t)

)
= 0
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with a properly stated derivative term. If characteristic multipliers {µi}i=1,...,r=rk D of
the linearization

fy
(
(Dx∗ (t))′ , x∗ (t)

)
(Dx)′ (t) + fx

(
(Dx∗ (t))′ , x∗ (t)

)
x (t) = 0

around x∗ satisfy
1 = µ1 > |µ2| ≥ . . . ≥ |µr|

then x∗ is orbitally asymptotically stable exhibiting the asymptotic phase property.

Proof. We may choose constant bases {αi} of ker fy (y, x) and {di} of im D to get a
constant representation

R = V

(
Ir

0n−r

)
V −1.

The tractability index one of an autonomous differential-algebraic system (2.28) im-
plies f ∈ C1 (G,Rm). The implicit function theorem guarantees that the resolution
function w = w (u) of the equation autonomous F (w, u) = 0 in Lemma 2.18 is con-
tinuously differentiable. Accordingly, the state space form (2.27) simplifies to the
autonomous ODE

ξ′1 (t) =
(
Ir 0r×n−r

)
V −1Dw

(
V

(
Ir
0

)
ξ1 (t)

)
having a continuously differentiable right-hand side.

For index-1 tractable systems the matrix G1 is nonsingular implying Q1 ≡ 0, P1 ≡ Im
and G2 = G1. Hence the monodromy matrix of the linearization of (2.28) around x∗
is DX (τ)D−, where X (t) solves the matrix-valued index-1 IVP

f ∗y (t) (Dx (t))′ + f ∗x (t)x (t) = 0, D (X (0)− Im) = 0.

If U (t) solves the linear IRODE u′ (t) = −DG−1
1 (t) f ∗x (t)D−u (t) satisfying U (0) = In

then

Ξ (t) :=
(
Ir 0r×n−r

)
V −1U (t)V

(
Ir

0n−r×r

)
solves the linearization of the SSF (2.27) around

ξ∗1 (t) :=
(
Ir 0r×n−r

)
V −1Dx∗ (t)

with Ξ (0) = Ir so Ξ (τ) is the monodromy matrix of the linearization of the state
space form. Obviously,

DX (τ)D− = RU (τ)R

= V

(
Ir

0n−r×r

)
Ξ (τ)

(
Ir 0r×n−r

)
V −1

= V

(
Ξ (τ)

0n−r

)
V −1
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so characteristic multipliers of the DAE coincide with those of the linearization of the
SSF. Now all requirements of the Andronov-Witt Theorem ([Far94, Theorem 5.1.2]
resp. [Dem67, p. 305]) are fulfilled so the solution components

ξ1 (t) :=
(
Ir 0r×n−r

)
V −1Dx (t)

are asymptotically orbitally stable exhibiting an asymptotic phase in a neighbourhood

of the trajectory of ξ∗1 . There, the function ∂
∂ξ1
w

(
V

(
Ir

0n−r×r

)
ξ1

)
is bounded and

the solutions of (2.28) possess the representation

x (t) = P0x (t) +Q0x (t) = D−V

(
Ir

0n−r×r

)
ξ1 (t) +Q0w

(
V

(
Ir

0n−r×r

)
ξ1 (t)

)
It follows that for all t ≥ t0

‖x (t)− x∗ (t)‖ ≤
(∥∥∥∥D−V ( Ir

0n−r×r

)∥∥∥∥+

∥∥∥∥Q0wu (·)V
(

Ir
0n−r×r

)∥∥∥∥
∞

)
‖ξ1 (t)− ξ∗1 (t)‖

Denote the trajectory of x∗ by C and the one belonging to ξ∗1 by C∗ and apply the
τ -periodicity of the reference solution to obtain

dist (x (t) , C) = mint∈[0,τ ] ‖x (t)− x∗ (t)‖
≤ mint∈[0,τ ]

(∥∥∥∥D−V ( Ir
0n−r×r

)∥∥∥∥+

∥∥∥∥Q0wu (·)V
(

Ir
0n−r×r

)∥∥∥∥
∞

)
‖ξ1 (t)− ξ∗1 (t)‖

=

(∥∥∥∥D−V ( Ir
0n−r×r

)∥∥∥∥+

∥∥∥∥Q0wu (·)V
(

Ir
0n−r×r

)∥∥∥∥
∞

)
dist (ξ1 (t) , C∗)

As we can see, mentioned stability properties of ξ∗1 carry over to the solutions of the
original DAE.

It is not surprising that the above formulation of the Andronov-Witt Theorem for
index-1 tractable DAEs requires less differentiability of f than a mere adjustment
of Theorem 5.8 because there is no need of differentiation in order to obtain hidden
constraints.

5.2.2 Andronov-Witt Theorem for index-2 systems

The proof of the index-1 case suggests how to proceed with differential-algebraic sys-
tems of a more intricate structure. Indeed, linear implicit DAEs A (Dx (t))′+b (x (t)) =
0 with tractability index two exhibiting a constant subspace N0 ∩ S0 (x) in a neigh-
bourhood of the closed solution trajectory x∗ in addition to DN1 (x∗ (t)) = const.
and fully implicit index-2 DAEs f

(
(Dx (t))′ , x (t)

)
= 0 featuring a constant image of(

T
f−y fxT

)
(y, x) plus DN1

(
(Dx∗ (t))′ , x∗ (t)

)
= const. can be analysed in almost the

same manner. Fortunately, we have already performed the somewhat lengthy detailed
investigations of these systems in Part I.
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Theorem 5.8. [Theorem of Andronov-Witt for fully implicit index-2 DAEs]

Let x∗ ∈ C1
D (R,Rm) be a τ -periodic solution of the autonomous properly formulated

index-2 DAE
f
(
(Dx(t))′ , x (t)

)
= 0

Assume DN1 to be constant along x∗ and im
(

T
f−y fxT

)
(y, x) = const. in a neigh-

bourhood of the extended trajectory of x∗ plus the differentiability properties1

(UQ0 + P0Q1)G
−1
2 (t)f ∗x(t) (P0P1) ,

((
f−y fx

)
(t)TQ0 +D

)
G−1

2 (t)f ∗x(t) (P0P1) ∈ C2((
f−y fx

)
(t)TQ0 +D

)
G−1

2 (t)
(
f (y, x)− f ∗x(t)x− f ∗y (t)y

) ∈ C2

(UQ0 + P0Q1)G
−1
2 (t)

(
f (y, x)− f ∗x(t)x− f ∗y (t)y

) ∈ C2

where Q1 (y, x) denotes an admissible projector on N1 (y, x) along K (y, x) with

(DK)
(
(Dx∗ (t))′ , x∗ (t)

)
= const.

If the characteristic multipliers {µi}i=1,...,l=dimDK((Dx∗)
′(t),x∗(t)) of the linearization of

f
(
(Dx)′ (t) , x (t)

)
= 0 around x∗ satisfy

1 = µ1 > |µ2| ≥ . . . ≥ |µl|
then x∗ is orbitally asymptotically stable exhibiting the asymptotic phase property.

Proof. According to Lemma 2.11 there exists a complementary subspace K (y, x) to
N1 (y, x) such that DK is constant along the extended trajectory of x∗ such that
Q1 onto N1 along K is admissible. The requirements of Theorem 2.22 are satisfied,
consequently there exists an autonomous SSF belonging to f

(
(Dx(t))′ , x (t)

)
= 0.

Given differentiability assumptions on f imply g̃ ∈ C1 in Representation (2.30) of the
state space form.

According to Corollary 5.5 the characteristic multipliers µi ∈ C of the linearization
around x∗ correspond to those of the variational system of the SSF (2.30) around
z∗ (t) =

(
Il 0 0

)
M−1Dx∗ (t). Thereby µ1 = 1 is always one characteristic multi-

plier of the autonomous DAE around the τ -periodic solution x∗ as shown in Remark
5.6.

We consider the periodic solution z∗ of the autonomous state space representation
(2.30) of the given DAE. Obviously, the requirements of the formulation [Far94, The-
orem 5.1.2] of the Andronov-Witt theorem by M. Farkas are satisfied. For this reason
z∗ exhibits orbital asymptotic stability having the asymptotic phase property.

Solutions ξ of the SSF are mapped to solutions of the IRODE of the initial system on
the invariant subspace DK = (DK)

(
(Dx∗)

′ (t), x∗(t)
)
by the bijection

u (t) = M

 Il
0
0

 ξ (t) , ξ (t) =
(
Il 0 0

)
M−1u (t)

1functions of several variables denoted t-dependent only are evaluated in
(
(Dx∗)

′ (t), x∗(t)
)
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Denote the trajectory of x∗ by C and observe that DP1C is the trajectory of u∗ =
DP1x∗. Due to stability properties of z∗, for all ε > 0 there exists a δ > 0 such that
every solution u of the IVP u (0) = u0 ∈ DK of the IRODE with dist (u0, DP1C) < δ
satisfies

· u is defined on [0,∞)

· ∀t ≥ 0 : dist (u (t) , DP1C) < ε

· ∃α0 ∈ R : limt→∞ ‖u (t+ α0)− u∗ (t)‖ = 0

Now choose 0 < ε� 1 such that the complete decoupling of the DAE (2.28) analyzed
in Theorem 2.10 is feasible in the entire region

Nε :=

{(
y
x

)
∈ Rn+m

∣∣∣ ∃t ∈ R :

∥∥∥∥( y
x

)
−
(

(Dx∗)
′ (t)

x∗ (t)

)∥∥∥∥ < ε

}
The mentioned theorem states that the components u (t; 0, u0) := DP1x (t; 0, x0) of a
solution x (t; 0, x0) ∈ Nε, x0 ∈ M1 of the given DAE satisfy the associated inherent
regular ODE on DK = (DK)

(
(Dx∗ (t))′ , x∗ (t)

)
. Besides, every solution u of the

IRODE on DK near u∗ corresponds to one solution x of f
(
(Dx(t))′ , x (t)

)
= 0 via

x (t) = s2 (u (t) , t)

s2 (u, t) := D−u+ k̃1 (u, t) + m̃1

(
u, k̃ (u, t) , t

) (5.6)

Choose a smaller 0 < ε̂ < ε such that solutions of IVPs u (t; 0, DP1x0) of the IRODE
on DK with x0 ∈ Mk−1 and dist (DP1x0, DP1C) < δ exist on [0,∞) and feature
dist (u (t; 0, x0) , DP1C) < ε̂. Due to the important Remark 2.21, the functions m̃ and
k̃ in the solution representation (5.6) are τ -periodic and so is s2 (u, t). Accordingly,
∂
∂u
s2 (u, t) is bounded on the compact set S := {u ∈ Rn | dist (u,DP1C) ≤ ε̂} × [0, τ ]

and we obtain the estimate

∀t ≥ 0, x0 ∈M1, dist (DP1x0, DP1C) < δ :
‖x (t; 0, x0)− x∗ (t)‖ ≤ ∥∥ ∂

∂u
s2

∥∥
∞,S ‖DP1x (t; 0, x0)− u∗ (t)‖

where x (t; 0, x0) defined by (5.6) is known to solve the original DAE. Hence,

dist (x (t; 0, x0) , C) ≤
∥∥∥∥ ∂∂us2

∥∥∥∥
∞,S

dist (DP1x (t; 0, x0) , DP1C)

for all t ≥ 0 and x0 ∈ M1 with dist (DP1x0, DP1C) < δ. In other words, the
orbital asymptotic stability of u∗ with asymptotic phase guarantees the same stability
properties of x∗.

In case of linear implicit DAEs (1.5) with A = A (t), the structural condition on

im
(

T
f−y fxT

)
and the differentiability preconditions can be mitigated.

Theorem 5.9. [Andronov-Witt Theorem for linear implicit index-2 systems]
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Let x∗ ∈ C1
D (R,Rm) be a τ -periodic solution of the DAE

A (Dx (t))′ + b (x (t)) = 0

with a properly stated derivative term and tractability index 2. Assume constancy of
DN1 along x∗ and of N0 ∩ S0 (x) in a neighbourhood of the trajectory of x∗. Let

(UQ0 + P0Q1)G
−1
2 (t)bx (x∗ (t)) (P0P1) , (UQ0 + P0Q1)G

−1
2 (t) (b (x)− bx (x∗ (t))x)

be twice continuously differentiable, where Q1 (x) denotes an admissible projector on
N1 (x) along K (x) with (DK) (x∗ (t)) = const. If the characteristic multipliers

{µi}i=1,...,l , l = dimDN1 (x∗ (t))

of the linearization A (Dx (t))′ + bx (x∗ (t))x (t) = 0 satisfy

1 = µ1 > |µ2| ≥ . . . ≥ |µl|

then x∗ is orbitally asymptotically stable exhibiting the asymptotic phase property.

Proof. Simple adaptation of the argument in Theorem 5.8 where Theorem 2.22 is tai-
lored to linear implicit DAEs using the structural conditions for a complete decoupling
of these systems in Lemma 2.9.

5.2.2.1 Application to MNA equations

Theorem 5.9 can be applied to certain autonomous systems stemming from the charge-
oriented Modified Nodal Analysis (MNA) of electric circuits containing nonlinear resis-
tances, capacitances, inductances together with voltage and current sources. Consider
an electrical circuit such that it is modelled with autonomous equations for each circuit
element. According to [EST00], the charge-oriented MNA provides the autonomous
differential-algebraic system

ACq
′ (t) + ARr

(
ATRe (t)

)
+ ALjL (t)

+AV jV (t) + Aii
(
Ãe (t) , q′ (t) , jL (t) , jV (t)

)
= 0

φ′ (t)− ATLe (t) = 0

ATV e (t)− v
(
Ãe (t) , q′ (t) , jL (t) , jV (t)

)
= 0

q (t)− qC
(
ATCe (t)

)
= 0

φ (t) = φL (jL (t)) = 0

where e (t) consists of the node potentials (except the reference node), j∗ (t) com-
bines the currents of some elements, q denotes the charge of capacitances and φ
the flux of inductances. A∗ denotes the element-related incidence matrices, Ã =
(AC , AL, AR, AV , AI) is the reduced incidence matrix of the circuit and the index marks
the element (L - inductances, V - voltage sources, C - capacitances, R - resistances and



96 Chapter 5. Asymptotic stability of periodic solutions

I - current sources). The functions i and v describe the controlled current resp. voltage
sources of the circuit, r the resistances, φL the inductances and qC the capacitances.

In the following, we would like to assume v and i being independent of q′. Then the
MNA equations form a linear implicit DAE of the form

Ax′ (t) + b (x (t)) = 0

Using a constant projector P0 along kerA, this system is equivalent to

A (P0x (t))′ + b (x (t)) = 0

which has a properly stated derivative term. Obviously, a matrix chain of the tracta-
bility index for the non-properly formulated version coincides with the matrix chain
of the last mentioned DAE.

We rely on Theorem 4.1 from [EST00] and assume that all requirements of this theorem
are fulfilled. As mentioned in the publication, the remark to [EST00, Lemma 6.2] is
also applicable in case of the charged-oriented MNA ensuring constancy of the systemic
subspace N0∩S0 (x) if all controlled current sources satisfy the conditions (2a) or (2b)
of ibid., Theorem 4.1. From a representation of the canonical projector onto N1 (x)
along S1 (x), C. Tischendorf and D. Estevez-Schwarz observe that N1 (x) is constant
if no controlled current sources that fulfill only the conditions (2b) or (2c) in [EST00,
Th. 4.1] appear. For circuits satisfying all mentioned structural assumptions, Theorem
5.9 is applicable so the orbital asymptotic stability of a periodic reference solution
x∗ ∈ C1

D (R,Rm) can be checked numerically considering characteristic multipliers of
the linearization A (P0z (t))′ + bx (x∗ (t)) z (t) = 0.

5.2.2.2 Self-oscillating systems: examples

One way to obtain an oscillator is to apply periodic forcing terms to a dynamical
system. A simple example is an RLC-circuit connected to an AC voltage source.
Assuming linear elements only, the inherent dynamics are given by a linear ODE
x′ = Ax + f (t) in R2. The related homogeneous equation representing a damped
LC-oscillating circuit has no periodic solutions apart from the trivial one so the forced
RLC-circuit has a unique periodic solution for every frequency of f due to [Far94, The-
orem 2.3.1]. The stability behaviour of such systems modelled by periodic differential-
algebraic equations can already be analyzed by means of [LMW03, Theorem 4.2].

On the other hand, there are some well-known real systems modelled by autonomous
ODEs exhibiting a self-oscillating behaviour. For example, the equations

x′1 = x1 (a− bx2)
x′2 = x2 (−c+ dx1)

were suggested by V. Volterra and A.J. Lotka for modelling the interaction between
one predator and one pray species. The non-negative orbits of the Lotka-Volterra
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model are closed curves around an equilibrium point. A generalization given by Gause,
Smaragdova and Freedman (cf. [Far94, p. 118] reads

x′1 = x1f (x1)− x2x1g (x1)
x′2 = x2 (−c+ dx1g (x1))

with adequate functions f, g. In certain configurations, this system has an asymptotic
orbitally stable periodic solution.

Further notable examples include the Brusselator equations ([HW08, pp. 115ff.]) stem-
ming from chemical reaction dynamics. The original ODE is in R6, but it can be
simplified to

x′1 = A+ x2
1x2 − (B + 1)x1

x′2 = Bx1 − x2
1x2

supposed some qualities are maintained constant and the reaction rates are equal to
one.

Modelling a wheelset running on a track is discussed in [Fra98, pp. 16ff.]. It leads to an
index three DAE in Hessenberg form in R5. Asymptotic orbital stability of periodic
motions of such Hessenberg-systems can be analyzed following the approach in [Fra98],
[FF01].

The simulation of quite simple electrical circuits is able to provide nonlinear phenom-
ena of astonishing complexity. Picking out two prominent examples out of abundant
configurations, the Van der Pol’s equation ẍ+m (x2 − 1) ẋ+ x = 0 or equivalently

x′1 = x2

x′2 = −x1 −m (x2
1 − 1)x2

forms the inherent dynamics of an electrical circuit with a triode and with inductive
feedback (for details, see [Far94, pp. 97 ff.]). Certain self-oscillating circuits containing
vacuum tubes and RLC-oscillators are presented in [AWC65], [AWC69]. Another well-
known example of chaotic behaviour exhibiting periodic solutions is Chua’s circuit. A
simplified model with linear elements only except a piecewise-linear resistor has the
state space form

x′ = c1 (y − x− f (x))
y′ = x− y + z
z′ = −c2y

A chaotic behaviour of this system is reported as early as in [Mat84]. A survey of
development in context of Chua’s circuit up to the end of the last decade is given in
[Mir97]. In principle, it is possible to formulate the MNA-equations of those circuits
directly as an index-2 DAE instead of constructing the inherent regular ODE like
it is done in the cited monographs. The resulting nonlinear DAEs do not exhibit
the Hessenberg structure so the stability result [Fra98, Th. 2.7] is not applicable any
longer. In such cases, our version of the Andronov-Witt Theorem (Theorem 5.8 resp.
Theorem 5.9) might be helpful.

However, the mentioned examples are quite intricate because an analytical represen-
tation of the periodic reference solution x∗ of the self-oscillating IRODE is usually
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not available and it is also possible that x∗ lacks required differentiability properties.
Accordingly, we are going to construct a simple, self-oscillating inherent dynamics hav-
ing a known asymptotically orbitally stable periodic solution in order to illustrate our
version of the Andronov-Witt stability criterion for index-2 DAEs.

Construction of the example

An autonomous self-oscillating index-2 DAE has to be formulated at least in R4.
Obviously, the state space of an autonomous ODE has to be at least two-dimensional
in order to permit non-trivial periodic solutions (otherwise f in x′ = f (x) is not a
function). In addition, a third variable representing the algebraic constraints of the
DAE and a fourth variable representing the index-1 constraints is necessary.

Actually, both Lotka-Volterra model and Van der Pol’s equation can be considered as
perturbations of the harmonic oscillator

x′1 = x2

x′2 = −x1

We want to enforce solutions starting from outside of the unit circle to spiral inwards
and solutions starting inside the unit circle to spiral outwards, i.e the orbit C of the
reference solution x̂ (t) = (sin (t) , cos (t)) to be an omega limit set of all trajectories
nearby. Obviously, d = d (x1, x2) = 1 − (x2

1 + x2
2) is a directed distance between

(x1, x2) and C. The desirable solution behaviour originates from adding a correction
term xi (1− (x2

1 + x2
2)) to the vector field resulting in the ODE

x′1 = x2 + x1 (1− (x2
1 + x2

2))
x′2 = −x1 + x2 (1− (x2

1 + x2
2))

(5.7)

Consider a point (x0
1, x

0
2) outside the unit circle (solid black curve) in Figure 5.1.

The dotted circle represents the corresponding solution of the harmonic oscillator
and the blue vector is its tangent vector at (x0

1, x
0
2), consisting of the components

in xi-directions. In order to enforce spiralling inwards, we decrease the speed of the
movement (e.g. partial derivative) in direction of x2 and increase it in x1-direction.
The correction terms are indicated by the red vectors. The black vector is the resulting
tangent vector at (x0

1, x
0
2), it belongs to the solution curve of (5.7). This figure clarifies

the geometric idea for x1 ≤ 0, x2 ≥ 0 and 1 − (x2
1 + x2

2) < 0 but the same result is
also valid in the other three quadrants. The correction terms depend on the directed
distance d to C. Consequently, the resulting equations (5.7) coincide with the harmonic
oscillator along x̂ guaranteeing that x̂ is a periodic solution of the perturbed system.

Applying the classical theorem of Andronov-Witt, we show that our construction of
the self-oscillating ODE works. The linearization of (5.7) along x∗ reads(

x1

x2

)′
(t) =

( −2 sin2 (t) 1− 2 sin (t) cos (t)
−1− 2 sin (t) cos (t) −2 cos2 (t)

)(
x1

x2

)
(t) (5.8)

Although the periodic solution x̄ = x′∗ = (− sin,− cos)T is known, the d’Alembert
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Figure 5.1: construction of a self-oscillating ODE

reduction principle is not applicable due to the zeros of sin and cos. Instead of con-
structing a fundamental system X (t) with X (0) = I2, we use the identity

detX (t) = detX (0) exp

(ˆ t

0

trA (s) ds

)

for the Wronskian detX (t). Due to X (2π) x̄ (0) = x̄ (0), λ1 = 1 is an eigenvalue of
the monodromy matrix X (2π) of (5.8). For 2 × 2 matrices, the determinant is the
product of the eigenvalues, that is

exp (−4π) = detX (2π) = λ1λ2 = λ2

is the second characteristic multiplier and |λ2| < 1. Hence, the Andronov-Witt the-
orem (e.g. [Far94, Th. 5.1.2]) implies that x∗ is an asymptotically orbitally stable
solution of (5.7) having the asymptotic phase property.

In the next step, we add some constraints in order get a differential-algebraic system
with tractability index two. An algebraic constraint is given by x3 = x2

1 + x2
2 + 1 and

another one leading to an index-2 system is x4 = (x2
3)
′

= 2x3x
′
3. Finally, a certain

coupling is obtained by multiplying the second equation of (5.7) with x3 and using the
algebraic relation for x3 resulting in the non-Hessenberg DAE

x′1 − x2 − x1 + x3
1 + x1x

2
2 = 0

x3x
′
2 + x3

1 + x1x2 + x1 − x3x2 + x2
1x2x3 + x3

2x3 = 0
2x3x

′
3 − x4 = 0

x2
1 + x2

2 + 1− x3 = 0

(5.9)
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We analyze (5.9) by means of the matrix chain of the tractability index. It holds

fy =


1 0 0
0 x3 0
0 0 2x3

0 0 0

 , D =

 1 0 0 0
0 1 0 0
0 0 1 0

 , Q0 =


0

0
0

1



fx =


−1 + 3x2

1 + x2
2 −1 + 2x1x2 0 0

3x2
1 + x2

2 + 1 + 2x1x2x3 2x1x2 − x3 + x2
1x3 + 3x2

2x3 x′2 − x2 + x2
1x2 + x3

2 0
0 0 2x′3 −1

2x1 2x2 −1 0



G1 =


1

x3

2x3 −1
0

 , Q1 =


0

0
1

2x3 0

 , P0Q1 =


0

0
1

0


We compute N0 ∩ S0 = kerD ∩ kerW0fx = N0 and therefore T = Q0. Furthermore,

G2 =


1 0 0 0
0 x3 x′2 − x2 + x2

1x2 + x3
2 0

0 0 2x3 + 2x′3 −1
0 0 −1 0

 , DP1 =

 1
1

0 0


and detG2 = −x3. Therefore, (5.9) has index 2 on R4\ {x3 = 0}. According to
construction, x∗ (t) = (sin (t) , cos (t) , 2, 0)T is a periodic solution of the given DAE
and im DP1

(
(Dx∗)

′ (t) , x∗ (t)
)
is constant. Moreover,

f−y (x3) =

 1
x−1

3

(2x3)
−1 0

 ,

(
T

f−y fxT

)
(x3) =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

0 0 0 − (2x3)
−1


is a x3-dependent function, but its image is constant, i.e the structural condition (2.17)
is valid. The linearization of (5.9) along x∗ reads

x′1 + 2 sin2 x1 + (2 sin cos−1)x2 = 0
2x′2 +

(
2 sin2 +2 + 4 sin cos

)
x1 + (4 cos2 +2 sin cos)x2 − sinx3 = 0

4x′3 − x4 = 0
2 sinx1 + 2 cosx2 − x3 = 0

(5.10)

Inserting the constraints

x3 = 2 sin (t)x1 + 2 cos (t)x2, x4 = 4x′3
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into the first two equations results in the following representation of the inherent
dynamics(

x1

x2

)′
(t) =

( −2 sin2 (t) 1− 2 sin (t) cos (t)
−1− 2 sin (t) cos (t) −2 cos2 (t)

)(
x1

x2

)
(t)

which coincides with the linearization (5.8) of the state space form (5.7) of the DAE
(5.9). This fact approves the commutativity between linearization and the transfor-
mation into the SSF stated in Theorem 2.22.

The monodromy matrix of (5.10) is DP1X (2π)D− whereby X (t) denotes the funda-
mental matrix of (5.10) satisfying the initial values DP1X (0) = DP1. Obviously,

DP1X (2π)D− =

 X11 (2π) X12 (2π) X13 (2π)
X21 (2π) X22 (2π) X23 (2π)

0 0 0


is singular so λ3 = 0 is an eigenvalue and if (ai, bi)

T are eigenvectors of

L :=

(
X11 (2π) X12 (2π)
X21 (2π) X22 (2π)

)
to the eigenvalues λi (i = 1, 2) then (ai, bi, 0)T are eigenvectors of the monodromy
matrix corresponding to the same eigenvalues λi. The initial condition DP1X (0) =
DP1 implies that L equals the monodromy matrix of (5.8) having the eigenvalues
λ1 = 1 and λ2 = exp (−4π). Therefore, the characteristic multipliers of the linear
DAE (5.10) are

λ1 = 1 > λ2 = exp (−4π) > λ3 = 0

Now the asymptotic orbital stability of x∗ (t) = (sin (t) , cos (t) , 2, 0)T with an asymp-
totic phase is confirmed by Theorem 5.8.

5.3 A stability result for periodic index-2 DAEs

We are able to state an asymptotic stability criterion for τ -periodic reference solutions
of a τ -periodic DAE following the lines of Theorem 5.8.

Theorem 5.10. [Asymptotic Lyapunov stability of periodic solutions of periodic DAEs]

Let x∗ ∈ C1
D (R,Rm) be a τ -periodic solution of the τ -periodic index-2 DAE

f
(
(Dx)′ (t) , x (t) , t

)
= 0

and Q1 (y, x, t) be an admissible projector on N1 (y, x, t) along K (y, x, t) exhibiting

(DN1)
(
(Dx∗)

′ (t), x∗(t), t
)

= const. and (DK)
(
(Dx∗)

′ (t), x∗(t), t
)

= const.

Let us suppose that

im
(

T
f−y fxT

)
(y, x, t) is dependent only on t
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in a neighbourhood of the extended integral curve of x∗. Furthermore, let D ∈ C1 and

(UQ0 + P0Q1) (t)G−1
2 (t)f ∗x(t) (P0P1) (t),(

f−y fxTQ0 +D
)

(t)G−1
2 (t)f ∗x(t) (P0P1) (t),(

f−y fxTQ0 +D
)

(t)G−1
2 (t)

(
f (y, x, t)− f ∗x(t)x− f ∗y (t)y

)
,

(UQ0 + P0Q1) (t)G−1
2 (t)

(
f (y, x, t)− f ∗x(t)x− f ∗y (t)y

)
be twice continuously differentiable.

If the characteristic multipliers {µi}i=1,...,l=dimDK((Dx∗)
′(t),x∗(t),t) of the linearization

f ∗y (t) (Dx)′ (t) + f ∗x (t)x (t) = 0 satisfy

1 = µ1 > |µ2| ≥ . . . ≥ |µl|
then x∗ is asymptotically stable in the sense of Lyapunov.

Proof. Choose an 0 < ε such that the complete decoupling of the nonlinear DAE in
Lemma 2.16 is feasible in an ε-tube Nε (t) around the extended integral curve of the
reference solution x∗. We pass over to the state space representation according to
Lemma 2.16. Corollary 5.4 implies that µi are the characteristic multipliers of the
linearization of the τ -periodic SSF (2.24) around z∗ (t) =

(
Il 0 0

)
M−1Dx∗ (t).

Now, the τ -periodic solution z∗ of the state space representation fulfills the require-
ments of Theorem 4.2.1 in [Far94]. Thus z∗ is uniformly asymptotically stable in the
sense of Lyapunov, in particular for all 0 < ε̂ < ε there exists a δ > 0 such that
solutions z (t; t0, z0) of the SSF (2.24) with z0 ∈ Bδ (z∗ (t0)) are subject to

∀t ≥ t0 : ‖z (t; t0, z0)− z∗ (t)‖ < ε̂

Periodicity of the linear transformation

M

 Il
0
0

 z (t) =
(
DP1D

−) (t)D (t)x (t) = (DP1) (t)x (t) = u (t)

of solutions z (t; t0, z0) of the SSF to those of the inherent regular ODE on DK results
in asymptotic DP1-component stability of the DAE solution x∗.

Moreover s2 (u, t+ τ) = s2 (u, t) is valid in the solution representation

x (t) = s2 (u (t) , t)

s2 (u, t) := D− (t)u+ k̃1 (u, t) + m̃1

(
u, k̃ (u, t) , t

)
as stated in Remark 2.21. Therefore, ∂

∂u
s2 (u, t) is bounded on

S :=

{(
u
t

)
∈ Rn+1

∣∣∣ ∃t0 ∈ R :

∥∥∥∥( u
t

)
−
(

(DP1) (t0)x∗ (t0)
t0

)∥∥∥∥ ≤ ε̂

}
so for all x0 ∈M1 (t0) such that (DP1) (t0) (x0 − x∗ (t0)) we obtain

‖x (t; 0, x0)− x∗ (t)‖ ≤
∥∥∥∥ ∂∂us2

∥∥∥∥
∞,S
‖DP1x (t; 0, x0)− u∗ (t)‖
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Therefore asymptotic Lyapunov stability of u∗ (t) = (DP1) (t)x (t) implies asymptotic
stability in the sense of Lyapunov according to Definition 4.3 with

Π1 = (P0P1)
(
(Dx∗)

′ (t0) , x∗ (t0) , t0
)

The respective stability criterion [Far94, Th. 4.2.1] for ODEs is entrenched in Lya-
punov’s indirect method. It is a well-known result of Floquet theory that the lin-
earization z′ (t) = fx (x∗ (t) , t) z (t) of a τ -periodic ODE x′ (t) = f (x (t) , t) along a
τ -periodic reference solution can be transformed into a system with constant coeffi-
cients, y′ (t) = Ay (t) such that the eigenvalues µi ∈ C of A satisfy Re µi = ln |λi|

T

with the characteristic multipliers λi ∈ C of the linearization by means of a τ -periodic
Lyapunov transformation, cf. [Wal00, § 18], [Far94, § 2.2]. Applying this transfor-
mation to the nonlinear ODE reduces asymptotic stability of the periodic solution x∗
to stability of the trivial solution of a system y′ (t) = Ay (t) + r (y (t) , t) = 0 with a
uniformly bounded nonlinearity r. Finally, the stability issue is resolved using Perron’s
theorem, e.g. [Far94, Th. 1.4.9]. This is exactly the way how a similar result - namely
Theorem 4.2 in [LMW03] - is proved.

Theorem 5.10 presents an an alternative method to prove asymptotic stability of τ -
periodic solutions for nonlinear fully implicit index-2 DAEs (5.5) exhibiting a properly
stated derivative term. In comparison to the mentioned theorem, our structural as-
sumptions differ and constancy of DN1 and DK along x∗ is required extra. We reckon
that this assumption might be superfluous in case of periodic DAEs because of not
being necessary for complete decoupling or preservation of stability under the transfer
from an inherent regular ODE on its invariant subspace DK to a state space represen-
tation. Yet we decided to keep this precondition in order to avoid additional technical
considerations which are not important for autonomous systems.
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6 Lyapunov’s direct method
regarding DAEs

Guarding the heritage does not mean confining oneself to the heritage.

(russian proverb)

Stability properties of ordinary differential equations are often proved using the direct
method of Lyapunov. To this regard, it is stated in [ERA07]:

“Lyapunov function techniques have received constantly high interest in
applied mathematics [...]. The main reasons for this interest are simplicity,
intuitive appeal, and universality of these techniques. Today, there is no
doubt that Lyapunov functions techniques are the main tools to be used
when one is faced with a stability or stabilization problem.”

The goal of this chapter is to state an appropriate definition of a Lyapunov function
for fully implicit nonlinear index-2 systems in terms of the given DAE. We recapitulate
the classic notion of the Lyapunov function and the main stability criterion based on
it. Then we point out that properly stated DAEs can be uniquely solved with respect
to R (t) (Dx)′ (t) and this resolution has a useful implicit representation allowing to
access the right hand side of the inherent regular ODE of index-1 systems implicitly.
This representation is used to motivate the definition of a Lyapunov function for index-
1 tractable systems (1.2). Finally, sufficient conditions are presented which facilitate
Lyapunov’s direct method for DAEs having tractability index two. Strictly speaking,
we are going to use the reduction of the tractability index presented in Chapter 3 in
order to deduce an implicit representation of the right hand side of the IRODE of the
index reduced DAE on the exact solution setM1 (t). Analogously to the ODE case, the
existence of a Lyapunov function on a cylindrical domain ensures nonlocal existence
and stability of solutions with a slight modification that DAEs exhibit D-component
stability in general. A brief survey on alternative approaches to the direct method
of Lyapunov for DAEs is presented in Section 6.5. For the sake of completeness, we
added a section which helps to interpret known contractivity definitions for DAEs in
the context of index reduction via differentiation.

The concept of Lyapunov functions for ODEs

First, we briefly introduce the well-known idea of Lyapunov functions for ODEs. A
survey of classical stability theory can be found in the recent monograph [LWY07]
and in the classical ones, especially [Hah67], [Yos66] and [Dem67] and, of course,
Lyapunov’s masterpiece [Lja66]. To some extent less rigorous alternatives are [LL67]
and [Wil73].
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The question of stability of a general solution x∗ of the ODE x′(t) = f (x(t), t), f ∈
C
(
Ω× R≥t0 ,Rm

)
satisfying a local Lipschitz condition or having a continuous fx can

be reduced to stability of the fixed point z∗ = 0 of the system

z′(t) = f̃ (z (t) , t) := f (z(t) + x∗(t), t)− f (x∗(t), t)

for z(t) = x(t) − x∗(t). Furthermore we consider z̃ (t) = z (t+ t0) and the equivalent
ODE z̃′ (t) = f̃ (z̃ (t) , t+ t0) to obtain t0 = 0. On this account we are going to
consider Lyapunov functions for fixed points x∗ ≡ 0 of x′(t) = f (x(t), t) with f ∈
C
(
Ω× R≥0,Rm

)
, Ω ⊆ Rm a neighbourhood of the origin without loss of generality.

Definition 6.1. A function H ∈ C(Ω,R≥0
)
is called positive definite if H(0) = 0 and

H(x) > 0 for all x 6= 0.

As shown in [LWY07, Th. 1.3.3], a positive definite function H is restrained by strictly
increasing functions φ, η : R≥0 → R≥0, i.e.

φ (‖x‖) ≤ H(x) ≤ η (‖x‖) and φi (0) = 0 = ηi (0)

Definition 6.2. A function V ∈ C1(Ω×R≥0,R) is called a Lyapunov function of the
stationary solution x∗ ≡ 0 of x′(t) = f (x(t), t) if

1. ∀t ≥ 0 : V (0, t) = 0

2. ∀x ∈ Ω, t ≥ 0 : V (x, t) ≥ H1(x) for a positive definite H1 ∈ C(Ω,R≥0)

3. It holds V̇ (x, t) ≤ 0 on Ω× R≥0 for V̇ (x, t) := Vt(x, t) + 〈f (x, t) , Vx (x, t)〉

The first condition ensures that x∗ ≡ 0 is always a global minimum of the time-
dependent Lyapunov function V . The second inequality means that there is a lower
bound for values of V which is independent of t and strictly increasing with ‖x‖,
i.e. V (x, t) ≥ φ (‖x‖). If additionally lim‖x‖→∞ φ (‖x‖) = ∞ holds then V is weakly
coercive with respect to x according to the definition in [Zei90, p. 472], viz. V (x, t)→
∞ if ‖x‖ → ∞ independent of t. A Lyapunov function exhibiting this property is
usually called radially unbounded in the literature on stability of ODEs. The latter
restriction is required in order to prove global uniform stability of the origin, e.g [Yos66,
Th. 42.5]. The third condition enforces V to be monotonically decreasing along the
integral curves of x′(t) = f (x(t), t) because the chain rule implies d

dt
V (x(t), t) =

V̇ (x(t), t) ≤ 0.

In case of autonomous ODEs there is a nice geometric view on this dissipativity in-
equality. It is known that the gradient ∇V (x) = (Vx (x))T is orthogonal to the level
set {z ∈ Ω | V (z) = v0} pointing in direction of the fastest growth of V . Condition

〈∇V (x), f(x)〉 = V̇ (x) ≤ 0

corresponds to an obtuse angle between f(x) and ∇V (x), see Figure 6.1. In [LL67,
p. 37] is shown that the Taylor expansion of V (x) contains terms of degree ≥ 2, e.g.
the graph of V is similar to a paraboloid in a neighbourhood of the origin. Due to
V̇ (x) ≤ 0 a solution x(t) stays on its level set of V or is “reflected” to a level set with a
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Figure 6.1: Geometric interpretation of V̇ (x) ≤ 0

smaller value of V . If V (x, t) is wedged between positive definite functions Hi, i = 1, 2
and V̇ is negative definite then this descent towards the local minimum V (0, t) = 0
implies that solutions x (t; t0, x0) are bounded and limt→∞ ‖x(t; t0, x0)‖ = 0, at least
for x0 ∈ Bε (0) ⊆ Ω. The following classic stability criterion points out this property
of the above definition:

Theorem 6.3. [Dem67, S. 237ff.]

Let x∗ ≡ 0 be a stationary solution of the ODE x′(t) = f (x(t), t) and let the local
Lipschitz condition with respect to x be satisfied.

1. The existence of a Lyapunov function implies Lyapunov stability of x∗.

2. If the Lyapunov function under consideration satisfies

· V (x, t) ≤ H2(x) for a positive definite H2 ∈ C
(
Ω,R≥0

)
· V̇ is negative definite, i.e. ∀x ∈ Ω, t ≥ 0 : V̇ (x, t) ≤ −H̃(x) with a positive
definite H̃ ∈ C (Ω,R≥0

)
then x∗ is asymptotically stable in the sense of Lyapunov.

In various cases the existence of a Lyapunov function is even a necessary condition in
case of a stable solution. Such statements are called converse theorems, for example
[LWY07, Ch. 4], [Yos66, Ch. 5]. Furthermore Lyapunov functions allow estimates
of the domain of attraction in case of asymptotic stability and they enable to prove
criteria for Lagrange stability, confer the mentioned monographs.

Several research groups in applied mathematics are engaged setting up Lyapunov func-
tions for relevant problems. For the most part, this process rests upon intuition, ex-
perience and explicit knowledge of the physical background of the respective problem.
Nevertheless, the presented second method of Lyapunov has the pivotal theoretical ad-
vantage that no a priori knowledge about solutions of the ODE is necessary for stability
investigations. This approach is also called the direct method of Lyapunov because it
applies directly to the differential equation in question. In contrast, Lyapunov’s first
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or indirect method uses the linearization of a system to determine the local stability of
the original system.

6.1 First key note: cylindricity of the domain

The investigation of Lyapunov stability of a reference trajectory x∗ of

x′ (t) = f (x (t) , t) (6.1)

usually takes for granted that f is defined at least on an ε-tube around the integral
curve of x∗. Indeed, the common assumption in the context of the direct method of
Lyapunov is a cylindrical domain of the ODE under consideration.
According to [Wal00, § 6], there are three types of behaviour of maximal solutions
x ∈ C1 (I,Rm), I = [t0, te) of an ODE (6.1) with f ∈ C0 (G,Rm), G ⊆ Rm × R open
and f satisfying the Lipschitz condition locally:

1. te =∞, i.e. x exists for all t ≥ t0

2. te <∞ and lim supt→te ‖x (t)‖ =∞, in other words the solution “explodes” on a
finite interval

3. te < ∞ and lim inft→te dist (x (t) , ∂G) = 0 that is x comes infinitesimally close
to the boundary ∂G of the domain of f

A Lyapunov function V (x, t) delimits the ODE solutions x (t; t0, x0) with ‖x0 − x∗ (t0)‖ <
δ to

Sδ =

{
x ∈ Rm

∣∣∣ ∃t : V (x, t) ≤ max
x0∈Bδ(x∗(t0))

V (x0, t0)

}
The existence of a positive definite lower bound H1 = H1 (x) such that H1 (x) ≤
V (x, t) ensures that the ”Lyapunov sack ” Sδ is bounded because

Sδ ⊆ H−1
1

([
0, max

x0∈Bδ(x∗(t0))
V (x0, t0)

])
.

Choosing a smaller δ > 0 means “to tighten the Lyapunov sack”, i.e to reduce the
diameter supx,y∈Sδ ‖x− y‖ of Sδ. Now if (6.1) has a cylindrical domain G = G1×[t0,∞),
G1 ⊆ Rm open set, then it is possible to choose δ such that Sδ ⊆ G1 has a non-vanishing
distance to the boundary ∂G1. Consequently, the solutions are bounded and do not
approach ∂G so there is only the first case remaining, that is they exist for all t ≥ t0.
The inconspicuous property of a cylindrical domain G = G1 × [t0,∞) around the
reference solution x∗ ≡ 0 in Def. 6.2 is certainly a reasonable requirement. In general,
if G is not cylindrical, i.e. there is no δ > 0 such that

Bδ (0) ⊆ {x ∈ Rm | ∀t ≥ 0 : (x, t) ∈ G}
then dist (∂ (pr1G) ,Sδ) = 0 is imaginable for every δ > 0. In this case, solutions of
(6.1) are still bounded due to the Lyapunov sack, but may fail to exist on the infinite
interval [t0,∞). Since the domain of an explicit ordinary differential equation is readily
available, the cylindricity assumption is a mild restriction, if any. For differential-
algebraic systems, the access to the domain of the inherent regular ODE in terms of
the given DAE in order to ensure cylindricity turns out to be challenging.
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6.2 Second key note: implicit resolution for R (Dx)′

Another key note behind the direct method of Lyapunov is the dissipativity equation
V̇ (x, t) ≤ 0 representing the total time derivative of a Lyapunov candidate func-
tion V = V (x, t). It is important that this monotonicity property (i.e. the value of
a Lyapunov function evaluated along the integral curve of a solution is monotoni-
cally decreasing) can be represented without knowing the solutions of (6.1). Dissi-
pativity equations for DAEs are difficult to state because of the missing solvability
of f (x′ (t) , x (t) , t) = 0 with respect to the derivative x′ (t). This problem was no-
ticed at an early stage of research on differential-algebraic systems, e.g. attempting to
formulate the direct method of Lyapunov for linear implicit DAEs

P (t)x′ (t) = f (x (t) , t)

in a customary way in [Baj87]. Fortunately, the remedy is already presented in the
same publication ([Baj87, p. 2173]):

“The above-mentioned deficiency can be removed if an LFC1 is constructed
to be not an explicit function of x, but rather the explicit function of an
auxiliary variable that depends on x in a special way.”

In detail, for the above DAE it is proposed to use y1 (t) := P (t)x (t) implying
y′1 (t) = P ′ (t)x (t)+P (t) f (x (t) , t) and a Lyapunov function candidate V = V (y1, t).
Assuming differentiability of the functions involved, the total time derivative of V along
a solution x of the mentioned DAE is given by

d
dt
V (y1 (t) , t) = Vt (y1 (t) , t) +

〈
V T
y1

(y1 (t) , t) , P ′ (t)x (t) + P (t) f (x (t) , t)
〉

The present thesis: Lyapunov functions aiming at the inherent dynamics

The above approach was not the starting point for the methods of this thesis because
there is no obvious or canonical way to extract the derivative components from a fully
implicit system like nonlinear DAEs of the type (1.2) like it is done for simple linear
implicit systems. In fact, our main idea was to address the inherent regular ODE of
a DAE, that is to define a Lyapunov function for the IRODE strictly in terms of the
original system. Starting from a complete (tractability) decoupling of index-1 DAEs,
it appeared canonical to rely on D-components and therefore to define and use D-
component stability. The reduction of the tractability index turned out to be fitting
well into the approach so the index-2 results were stated.

We had to investigate appropriate features of the properly stated leading deriva-
tive term and index-1, 2 tractable DAEs. A distinguishing mark of a properly for-
mulated derivative term is certainly the possibility to solve fully implicit DAEs for
R (t) (Dx)′ (t) thus suggesting to formulate the Lyapunov function depending on y =
D (t)x. Of course, the simplicity of the Ansatz owes heavily to the restriction on
ker fy (y, x, t) in Definition 1.2.

1Lyapunov Function Candidate, explanatory note
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Consider properly stated DAEs f
(
(Dx)′ (t) , x (t) , t

)
= 0. Assuming unique solvability

of the DAE, the configuration space M (t) is covered by solutions so that a unique
solution is passing through each x0 ∈ M (t0). Let x (t; t0, x0) denote the solution of
the IVP x (t0; t0, x0) = x0 ∈M (t0) of the differential-algebraic system on its maximal
interval of existence I(t0,x0). Obviously,

f

(
R (t)

d

dt
(D (t)x (t; t0, x0)) , x (t; t0, x0) , t

)
= 0

i.e. x (t; t0, x0) ∈M0 (t) andM (t) ⊆M0 (t).

The properly stated derivative term results in

∀ξ ∈M0 (t)∃!µ = R (t)µ : f (µ, ξ, t) = 0

according to Lemma 1.19. In the particular case x0 ∈M (t0) it holds

y = R (t0)
d

dt
(D (t)x (t; t0, x0))∣∣

t=t0

for y = R (t0) y satisfying f (y, x0, t0) = 0. For this reason, the following lemma is
proved:

Lemma 6.4. [Universal implicit resolution with respect to R (Dx)′]

If the differential-algebraic system (1.2) is properly formulated and features unique
solutions of the initial value problems then

∀t0 ∈ I, x0 ∈M (t0) , y = R (t0) y :
f (y, x0, t0) = 0 =⇒ y = R (t0)

d
dt

(D (t)x (t; t0, x0))∣∣
t=t0

(6.2)

This abstract proposition is applicable because the unique solvability can be ensured
for DAEs of index k = 1, 2 by the means of accessible sufficient conditions. Lemma 6.4
contributes to a better understanding of the theoretical background of dissipativity in-
equalities in [MHT03a], [MHT03b] and [San00]. Moreover, the definition of Lyapunov
functions for DAEs is motivated.

6.3 Lyapunov functions for index-1 DAEs

We wish to generalize Lyapunov functions to fully implicit index-2 DAEs because of
the benefits such functions exhibit in case of ODEs. The successive sections lead to
an appropriate definition. Our starting point are properly stated index-1 DAEs (1.2),
that is

f
(
(Dx)′ (t), x(t), t

)
= 0

They admit a quite simple representation of the inherent dynamics using Lemma 2.18.

First of all notice that in case of index k = 1, 2 DAEs, stability of a reference solution
x∗ with initial value x∗(t0) ∈Mk−1(t0) can be reduced to stability of the origin.
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Transformation to the origin and t0 = 0

Let x∗ : [t0,∞)→ Rm be a solution of the fully implicit DAE f
(
(Dx)′ (t), x(t), t

)
= 0.

The investigation of its Lyapunov stability requires to know the behaviour of the
difference z (t) = x(t) − x∗(t) of further solutions x of the DAE with initial value x0

and ‖Πk(x∗(t0)− x0)‖ sufficiently small. Chaining the transformation to x∗ ≡ 0 and
t0 = 0 presented for ODEs motivates the transition to the DAE

f̃

((
D̃z
)′

(t), z(t), t

)
= 0 (6.3)

with D̃ (t) := D (t+ t0), f̃ (y, x, t) := f
(
y + (Dx∗)

′ (t+ t0), x+ x∗(t+ t0), t+ t0
)
on

the domain

G̃ :=
{

(y, x, t) ∈ Rn × Rm × R≥0 | (
y + (Dx∗)

′ (t+ t0), x+ x∗(t+ t0), t+ t0
) ∈ G}

f is defined on a region G containing an open and connected neighbourhood of the
extended integral curve belonging to x∗. This corresponds to a region around the
extended integral curve of z∗ ≡ 0 in G̃.
For any solution x ∈ C1

D ([t0, α),Rm), α ∈ R ∪ {∞} of the given DAE

z ∈ C1
D̃

([0, α− t0),Rm) , z(t) := x(t+ t0)− x∗(t+ t0)

solves the transformed system (6.3). Hence, (asymptotic) stability in the sense of
Definition 4.2 or M -component stability of the stationary solution z∗ ∈ C1

D̃

(
R≥0,Rm

)
of (6.3) implies the same stability property of the associated reference solution x∗ ∈
C1
D

(
R≥t0 ,Rm

)
of the given DAE.

Lemma 6.5. Consider the properly stated DAE (1.2) having a solution x∗ and the
tractability index k = 1, 2 in a region around the extended integral curve of x∗. Then
the transformed DAE (6.3) exhibits the same index in a region around the extended
integral curve of z∗ ≡ 0.

Proof. The partial derivatives of f̃ are

f̃y (y, x, t) = fy
(
y + (Dx∗)

′ (t+ t0), x+ x∗(t+ t0), t+ t0
)

f̃x (y, x, t) = fx
(
y + (Dx∗)

′ (t+ t0), x+ x∗(t+ t0), t+ t0
)

Denote the elements of the matrix chain of (1.2) by Ni, Si, Gi for i ∈ {0, 1, 2}. Evaluat-
ing these elements evaluated in

(
y + (Dx∗)

′ (t+ t0), x+ x∗(t+ t0), t+ t0
)
corresponds

to a matrix chain of the transformed system (6.3) evaluated in (y, x, t).

6.3.1 An implicit representation of the index-1 IRODE

Consider the algebraic equation f (y, x, t) = 0, f ∈ C0 (G, t) belonging to the properly
stated DAE (1.2) with tractability index one. According to Lemma 2.18 the solution
components u (t) := D (t)x (t) solve the ODE

u′(t) = fIRODE (u(t), t) := R′(t)u(t) +D(t)w (u(t), t) (6.4)
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on the invariant subspace im D(t). Here w = w (u, t) is implicitly defined by the
algebraic constraint

F (w (u, t) , u, t) = 0, F (w, u, t) := f
(
D(t)w,D−(t)u+Q0(t)w, t

)
Conversely, every solution u of the IRODE with an initial value u0 ∈ im D(t0) corre-
sponds to the solution

x (t) := D− (t)u (t) +Q0 (t)w (u (t) , t)

of the given DAE. This proves the unique solvability of the index-1 DAE supposed
consistent initial values x0 ∈M0 (t0) with preset (Dx)(t0) = u0, in other words locally
around any point (y, x, t) ∈ G with x ∈M0(t) and y = R(t)y such that f (y, x, t) = 0.
The inherent regular ODE (6.4) restricted to im D (t) determines the dynamics of the
DAE.

Now it is self-evident to demand a Lyapunov function of the IRODE on im D (t) as a
stability criterion for (1.2). In doing so we try to avoid the terms stemming from the
complete decoupling in the explicit representation (6.4). The definition of a Lyapunov
function for index-1 systems should be formulated in terms of the initial DAE instead.

It is obvious that every solution x ∈ C1
D (I,Rm) of the DAE satisfies the first level

constraint, e.g.
∀t ∈ I : x (t) ∈M0(t)

Besides, Lemma 1.19 ensures that for every x ∈ M0(t) there exists a unique y =
R(t)y ∈ im D(t) with f(y, x, t) = 0. Additionally, for all t ∈ I, x ∈M0(t) and y ∈ Rn

with f (y, x, t) = 0,

u := D (t)x, w := D− (t) y +Q0 (t)x

fulfill the algebraic equation F (u,w, t) = 0 which has a locally unique solution w =
w (u, t).

These considerations imply that in case of a solution x of the DAE,

y (t) := R (t) (Dx)′ (t)

is equivalent to D(t)w ((Dx) (t) , t). Taking the second addend in (6.4) into consider-
ation results in the following representation of the right hand side of the IRODE:

∀t ∈ I, x ∈M0 (t) : fIRODE (D(t)x, t) = R′(t)D(t)x+ z (6.5)

with the unique z = R(t)z solving f(z, x, t) = 0.

6.3.2 Lyapunov function aiming at D-component stability

In general, the tractability index one of a fully implicit DAE could be valid only on a
domain like in Figure 6.2 which gets infinitesimal close to the extended integral curve
of x∗ ≡ 0 for t→∞.
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Figure 6.2: problematic index-1 domain of a DAE

This setup seems to be inappropriate for Lyapunov stability for we have to prove the
existence of solutions with consistent initial values x0 ∈ M0 (0) and D (0)x0 ∈ Bδ (0)
for all t ≥ 0. Even if these solutions proceed in an ε-neighbourhood of the integral
curve belonging to x∗ for t ∈ I = [0,∞), they do not converge towards the stationary
solution in general. As a consequence, they could leave the subset of G where the index-
1 condition holds thus becoming inaccessible by the means of the complete decoupling
in § 6.3.1.

It is sufficient to require the feasibility of the index-1 decoupling on a cylindrical region
around x∗ in order to apply the algebraic relation (6.5) for an appropriate definition of
a Lyapunov function of the solution u∗ := Dx∗0 of the IRODE u′(t) = fIRODE (u(t), t)
restricted to the invariant subspace im D(t) ⊆ Rn. Let us agree to use the

Notation 6.6. In the following,

Uε :=
{

Bε

(
(Dx∗)

′ (t)
)× Bε (x∗ (t))× {t} | t ≥ 0

} ⊆ Rn × Rm × R≥0

denotes the ε-tube around the extended integral curve of x∗,

U1 := {Bε ((Dx∗) (t))× {t} | t ≥ 0} ⊆ Rn × R≥0

and
(DM0) (t) := {D (t)x ∈ Rn | x ∈M0 (t)} = D (t)M0 (t)

Furthermore, the gradient ∇V (u, t) refers to spatial arguments only, i.e. ∇V (u, t) :=
[Vu (u, t)]T .

Definition 6.7. [Lyapunov function for D-component stability]

V ∈ C1 (U1,R) is called a Lyapunov function for the reference solution x∗ of the
properly formulated index-k, k = 1, 2 DAE (1.2) if

1. ∀t ≥ 0 : V ((Dx∗) (t) , t) = 0

2. There exists a positive definite function H1 ∈ C0 (Bε (0) ⊆ Rn,R) exhibiting

∀t ≥ 0, u ∈ (DMk−1) (t) ∩ Bε ((Dx∗) (t)) : H1 (u− (Dx∗) (t)) ≤ V (u, t) (6.6)
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3. For all t ≥ 0, x ∈Mk−1(t), ‖D (t) (x− x∗ (t))‖ < ε, z = R(t)z with f(z, x, t) = 0:

V̇ (D (t)x, t) := 〈R′ (t)D (t)x+ z,∇V (D (t)x, t)〉+ Vt (D (t)x, t) ≤ 0 (6.7)

Notice that for index-1 DAEs, the simplification

(DM0) (t) ∩ Bε ((Dx∗) (t)) = im D (t) ∩ Bε ((Dx∗) (t))

is possible for sufficiently small ε > 0.

It turns out to be easier to work with a Lyapunov function without fallback to the
state space representation of the inherent dynamics on Rr. Instead, we aim directly at
the inherent regular ODE on the invariant subspace im D (t). The main reason is that
dissipativity inequality (6.7) admits a nice expression in terms of the given DAE. The
second reason to reject the state space form are additional restrictions on the bases
of im D (t) and ker fy (y, x, t) due to their appearance as the matrix-valued function
V (t) in (2.27) and in the corresponding representation of the solution vector.

Remark. The definition of V ∈ C1 (U1,R) is due to convenience because the constitu-
tive properties are required only on

{im D(t)× {t} | t ≥ 0} ∩ U1

If the given DAE is numerically qualified, that is im D(t) = const. then R′D = 0 and
fIRODE(Dx, t) = z are valid in (6.5) and Representation (6.7) simplifies to

V̇ (D (t)x, t) := 〈z,∇V (D (t)x, t)〉+ Vt (D (t)x, t) ≤ 0

Assumption 6.8. Assume that the following properties hold for the DAE (1.2) and
sufficiently small ε > 0 :

1. Uε ⊆ G and the DAE (1.2) possesses the tractability index 1 on Uε.
2. The domain of the maximal continuation of the resolution function w = w (u, t)

implicitly defined by

F (w, u, t) = f
(
D (t)w,D− (t)u+Q0 (t)w, t

)
contains the cylindrical region U1.

Theorem 6.9. [Principal Lyapunov theorem for index-1 DAEs]

Consider the stationary solution x∗ ≡ 0 of a properly formulated DAE (1.2) satisfying
Assumption 6.8.

1. If a Lyapunov function V (u, t) according to Definition 6.7 exists then x∗ is D-
component stable.

2. If the Lyapunov function V (u, t) under consideration satisfies

· ∀t ≥ 0, u ∈ im D (t) ∩ Bε (0) : V (u, t) ≤ H2 (u) for a positive definite
H2 ∈ C0

(
Bε (0) ⊆ Rn,R≥0

)
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Figure 6.3: A suitable index-1 domain meeting the above assumption

· V̇ is negative definite, i.e. there exists a positive definite function H3 ∈
C0
(
Bε (0) ⊆ Rn,R≥0

)
with

∀t ≥ 0, u ∈ im D (t) ∩ Bε (0) : V̇ (u, t) ≤ −H3(u)

then x∗ is asymptotically D-component stable.

Proof. On D-component stability:

The basic idea of the proof is to construct a “Lyapunov sack” (cf. § 6.1) containing
solutions of the inherent regular ODE. The domain of tractability index one allows a
complete decoupling of the given DAE locally around each point of

Uε ∩ {(y, x, t) ∈ G | f (y, x, t) = 0}
Local uniqueness of the implicitly defined functions w = w (u, t) enables us to switch
over to the maximal continuation. In the process, the second part of Assumption
6.8 ensures that the above set contains a cylindrical region where a global decoupling
based on the maximal continuation w (u, t) on U1 is available.

According to [LWY07, Th. 1.3.3] positive definite Hi, i = 1, 2, 3 are characterized
by the existence of two strictly increasing functions φi, ηi : R≥0 → R≥0 having the
property

φi (‖u‖) ≤ Hi(u) ≤ ηi (‖u‖) and φi (0) = 0 = ηi (0)

Let 0 < γ < ε. Continuity of V at x∗ = 0 means that

∃δ > 0∀ ‖u0‖ < δ : V (u0, 0) < φ1 (γ)

Consider an arbitrary solution u (t; 0, u0) of the IVP u (0; 0, u0) = u0 ∈ im D (0)∩Bδ (0)
of the IRODE (6.4). Now

tγ := inf {t ≥ 0 | ‖u (t; 0, u0)‖ = γ, ∀0 ≤ s ≤ t : ‖u (s; 0, u0)‖ < γ}
denotes the first time when the trajectory of u (t; 0, u0) hits the boundary of Bγ (0) ⊆ Rn.
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Suppose that tγ < ∞. Per constuctionem, the integral curve of u (·; 0, u0) restricted
to [0, tγ] is located in the domain of the resolution w = w (u, t) so we are able to use
the solution representation

x0 := D− (0)u0 +Q0 (0)w (u0, 0)

x (t; 0, x0) := D−(t)u (t; 0, u0) +Q0(t)w (u (t; 0, u0) , t) (6.8)

of properly stated index-1 DAEs according to Lemma 2.18 and § 6.3.1. Obviously,

D (t)x (t; 0, x0) = R (t)u (t; 0, u0) = u (t; 0, u0)

because of the invariant subspace im D (t) and u0 ∈ im D (0). The chain rule and
Representation (6.5) imply

d

dt
V (D (t)x (t; 0, x0) , t) =

Vx (D (t)x (t; 0, x0) , t)
d
dt

(D (t)x (t; 0, x0))
+Vt (D (t)x (t; 0, x0) , t)

=
Vx (D (t)x (t; 0, x0) , t) fIRODE (D (t)x (t; 0, x0) , t)
+Vt (D (t)x (t; 0, x0) , t)

= V̇ (D (t)x (t; 0, x0) , t)

The dissipation inequality (6.7) ensures monotonicity of V along solutions of the
IRODE, i.e.

∀0 ≤ t ≤ tγ :
d

dt
V (u(t; 0, x0), t) ≤ 0

In combination with (6.6) the estimate

∀0 ≤ t ≤ tγ : φ1 (‖u (t; 0, u0)‖) ≤ V (u (t; 0, u0) , t) ≤ V (u0, 0) < φ1 (γ) (6.9)

holds. Strict monotonicity of φ1 results in ‖u (t; 0, u0)‖ < γ on the entire interval [0, tγ]
and this contradicts the definition of tγ.

Above argumentation reveals that integral curves of solutions u (t; 0, u0) of the IVP
u (0; 0, u0) = u0 ∈ im D (0) ∩ Bδ (0) of the IRODE (6.4) cannot leave Bγ (0) × R≥0.
The second requirement in Assumption 6.8 ensures Bγ (0) × R≥0 ⊆ U1, hence the
second and third case in § 6.1 are excluded so these solutions u (·; 0, u0) of the inherent
regular ODE exist on entire R≥0. In addition, u (t; 0, u0) ∈ im D (t) holds due to the
corresponding invariant subspace im D (t). Again, we use (6.8) to construct the unique
solutions x (·; 0, x0) ∈ C1

D ([0,∞),Rm) of the given DAE which fulfill the estimate

∀x0 ∈M0 (0) : D (0)x0 ∈ Bδ (0) =⇒ ‖D (·)x (·; 0, x0)‖∞ ≤ γ < ε

implying D-component stability of x∗.

On asymptotic D-component stability:

We have already proved that ∀0 < γ ≤ ε∃δ > 0 such that solutions x (t; 0, x0) of the
IVPs x0 ∈M0 (0), D (0)x0 ∈ Bδ (0) ⊆ Rn of the DAE (1.2) exist on R≥0 and satisfy

∀t ≥ 0 : D (t)x (t; 0, x0) ∈ Bγ (0)
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It remains to show that

∃δ̃ > 0∀x0 ∈M0 (0) , D (0)x0 ∈ Bδ̃ (0) : lim
t→∞

D (t)x (t; 0, x0) = 0

Again, consider u0 := (Dx∗) (0) and u (t; 0, u0) := D (t)x (t; 0, x0). In this case V̇ is
dominated by −H3 so we get the estimate

d

dt
V (u(t; 0, u0), t) ≤ −φ3 (‖u (t; 0, u0)‖) < −φ3 (0) = 0

for the general solution u (t; 0, u0) of the IRODE with u0 ∈ im D (0) ∩ Bδ (0) \ {0}.
Local uniqueness of solutions of the IRODE implies u0 6= 0⇒ ∀t ≥ 0 : u (t; 0, u0) 6= 0.
Therefore 0 ≤ V (u (t; 0, u0) , t) is strictly decreasing and there exists the limit

lim
t→∞

V (u (t; 0, u0) , t) = l (u0) ≥ 0

Suppose that ∃u0 ∈ im D (0) ∩ Bδ (0) \ {0} : l = l (u0) > 0. Then,

l ≤ V (u (t; 0, u0) , t) ≤ H2 (u (t; 0, u0)) ≤ η2 (‖u (t; 0, u0)‖)

resulting in
‖u (t; 0, u0)‖ ≥ η−1

2 (l) > 0

In other words, the solution of the inherent regular ODE u (·; 0, u0) belongs to the set{
u ∈ Rn | η−1

2 (l) ≤ ‖u‖ ≤ γ
}
where

c := inf
η−1
2 (l)≤‖u‖≤γ

H3 (u) > 0

The fundamental theorem of calculus combined with the monotonicity of the integral
and d

dt
V (u(t; 0, u0), t) ≤ −H3 (u (t; 0, u0)) imply

V (u(t; 0, u0), t) = V (u0, 0) +

ˆ t

0

d

dt
V (u(s; 0, u0), s) ds

≤ V (u0, 0)− ct

For t � 0 : V (u (t; 0, u0) , t) < 0 arises in contradiction to V (u, t) ≥ H1 (u) ≥ 0.
Thus,

∀u0 ∈ im D (0) ∩ Bδ (0) : lim
t→∞

V (u (t; 0, u0) , t) = 0

The lower bound on the Lyapunov function implies

0 ≤ φ1 (‖u (t; 0, u0)‖) ≤ H1 (u (t; 0, u0)) ≤ V (u (t; 0, u0) , t)

The continuous function φ1 (‖u ( · ; 0, u0)‖) is restrained by u∗ ≡ 0 and V (u (·; 0, u0) , ·) ∈
C0 so limt→∞ φ1 (‖u (t; 0, u0)‖) = 0. Due to strict monotonicity of φ1 and φ1 (0) = 0
we deduce limt→∞ u (t; 0, u0) = 0, i.e. asymptotic D-component stability of x∗.
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Notice that (6.7) in Def. 6.7 is a local structural condition due to ‖D (t) (x− x∗ (t))‖ <
ε . The mere existence of a global Lyapunov function for numerically qualified DAEs
(where im D (t) is constant) implies that D-components of DAE solutions starting
sufficiently close to x∗ are bounded on their interval of existence — irrespective of the
tractability index! This is based solely on the second key note, namely, the implicit
resolution for R (t) (Dx)′ (t) and an adequate definition of the Lyapunov function for
differential-algebraic systems.

Corollary 6.10. Consider the stationary solution x∗ ≡ 0 of the properly formulated
DAE (1.2) with im D (t) = const. Given a global Lyapunov function V ∈ C1 (Rn,R),
in particular

· ∃H1 ∈ C0 (Rn,R) positive definite with

∀t ≥ 0, u ∈ im D : H1 (u− (Dx∗) (t)) ≤ V (u, t)

· For all t ≥ 0, x ∈M(t), z = R(t)z with f(z, x, t) = 0:

V̇ (D (t)x, t) := 〈z,∇V (D (t)x, t)〉+ Vt (D (t)x, t) ≤ 0

it holds

∀ε > 0∃δ > 0∀x0 ∈M (0) , ‖D (0)x0‖ < δ∃x (t; 0, x0)∀t ∈ I0,x0 : ‖D (t)x (t; 0, x0)‖ < ε

Here, x (·; 0, x0) ∈ C1
D (I0,x0 ,Rm) denotes a solution of the DAE on its maximal right

interval I0,x0 ⊆ R≥0 of existence andM (t) the configuration space of the DAE.

In addition, if V (u, t) has a positive definite upper bound H2 ∈ C0
(
Rn,R≥0

)
and V̇

is negative definite then

∀x0 ∈M (0) such that I0,x0 = R≥0 : lim
t→∞

V (D (t)x (t; 0, x0) , t) = 0.

Proof. Per definitionem, for all x0 ∈M (0) there exists at least one solution x (t; 0, x0)
of the DAE passing through x (0; 0, x0) = x0. Due to im D (t) = const. we may choose
a constant projector P̂ ∈ Rn×n onto this subspace so for all x (·) ∈ C1

D it follows

(Dx)′ (t) = (RDx)′ (t)

= R′ (t) P̂ (Dx) (t)︸ ︷︷ ︸
=(R(t)P̂)

′
(Dx)(t)=P̂ ′(Dx)(t)=0

+R (t) (Dx)′ (t)

= R (t) (Dx)′ (t)

Applying the chain rule we get

d

dt
V (D (t)x (t; 0, x0) , t) =

Vx (D (t)x (t; 0, x0) , t)
d
dt

(D (t)x (t; 0, x0))
+Vt (D (t)x (t; 0, x0) , t)

=
Vx (D (t)x (t; 0, x0) , t)R (t) d

dt
(D (t)x (t; 0, x0))

+Vt (D (t)x (t; 0, x0) , t)
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Now x (t; 0, x0) ∈ M (t) ⊆ M0 (t) so there exists a unique z = R (t) z such that
f (z, x (t; 0, x0) , t) = 0. On the other hand,

f

(
R (t)

d

dt
(D (t)x (t; 0, x0)) , x (t; 0, x0) , t

)
= 0

so we conclude z = R (t) d
dt

(D (t)x (t; 0, x0)). Consequently,

∀t ∈ I0,x0 :
d

dt
V (D (t)x (t; 0, x0) , t) = V̇ (D (t)x (t; 0, x0) , t) ≤ 0

due to the global version of (6.7). In combination with above version of (6.6) the
estimate

φ1 (‖D (t)x (t; 0, x0)‖) ≤ V (D (t)x (t; 0, x0) , t) ≤ V (D (0)x0, 0) < φ1 (γ)

is obtained where φ1 (‖u‖) ≤ H1 (u). Strict monotonicity of φ1 results in

‖D (t)x (t; 0, x0)‖ < γ

on the entire interval of existence.

The convergence of D (·)x (·; 0, x0) towards x∗ can be proved by a straightforward
adaptation of the respective part of the proof of Theorem 6.9.

Assumption 6.8 is essential in order to provide stability in the conventional sense,
that is to attest nonlocal existence of solutions. To this purpose the access to the
inherent dynamics via tractability index one on Uε involving Assumption 6.8 (1.) and
the representation of the inherent dynamics as an IRODE on a cylindrical domain
U1 ⊆ Rn × [0,∞) ensured by Assumption 6.8 (2.) are reasonable.

Stability estimates for the entire solution vector

Notice that no estimate of algebraic solution components is given in Theorem 6.9,
i.e. x∗ is D-component stable but, in general, the Lyapunov stability of the entire
vector is not given. D-component stability is certainly a weak stability property - that
is just why it can be valid even in cases where no Lyapunov stability is present at
all. For example, the configuration space M (t) might vary with t and even expand
for t → ∞ but the solution can nevertheless be D-component stable as indicated in
Figure 6.4.

If Q0 (t)wu (u, t) is bounded on its domain, the (asymptotic) D-component stability
implies the same property for Q0 (t)x components and therefore stability in the sense
of Definition 4.3. This is due to the mean value theorem

‖Q0 (t)w (u (t; 0, u0) , t)−Q0 (t)w (u∗ (t) , t)‖
≤
∥∥∥´ 1

0
Q0 (t)wu (u∗ (t)− s (u (t; 0, u0)− u∗ (t))) ds

∥∥∥ ‖u (t; 0, u0)− u∗ (t)‖ (6.10)

Observe that

Q0 (t)wu (u, t) = −Q0 (t)G−1
1 (η (u, t)) fx (η (u, t))D− (t)

η (u, t) :=
(
D (t)w (u, t) , D− (t)u+Q0 (t)w (u, t) , t

)
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Figure 6.4: Configuration spaceM(t) ⊆ Rm with certain components expanding and
some components contracting for t0 < t1 < t2 → ∞ in a way that the
stationary solution x∗ ≡ 0 is instable in the sense of Lyapunov but D-
component stable.

As in [MHT03a, p. 183], we recognize that the geometry of systemic subspaces N0 and
S0 enters the stability estimates for the Q0-components via the canonical projector
Q0,c due to Representation (1.4) together with the reflexive pseudoinverse D− , i.e.

Q0 (t)wu (u, t) = Q0,c (η (u, t))D− (t)

On Assumption 6.8

The urgent question is how to ensure the second condition of Assumption 6.8, i.e. a
global decoupling of the index-1 DAE? We would like to avoid formulations like “let
M0 (t) be bounded/a closed manifold/..” and to consider only a neighbourhood of a
reference solution x∗ inM0 (t). Due to index one, the extended integral curve can be
covered by

Bεi

(
(Dx∗)

′ (ti) , x∗ (ti) , ti
) ⊆ Rn+m+1, ti ≥ 0, i ∈ J

where the complete decoupling is locally available. The problem is that infi∈J εi =
0 is possible leading to a domain of the maximal continuation of w which cannot
contain a cylindrical region. Heuristically, the extended integral curve of x∗ cannot be
compact but the extended trajectory is, if x∗ is bounded with respect to the C1

D-norm.
This suggests to consider Lyapunov functions for bounded solutions of autonomous
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DAEs. According to Lemma 2.18, the associated inherent regular ODE is autonomous
therefore it sounds reasonable to require an autonomous Lyapunov function.

Theorem 6.11. [Stability for bounded solutions of autonomous index-1 DAEs]

A C1
D-bounded reference solution x∗ ∈ C1

D ([0,∞),Rm) of the autonomous DAE (2.28)
with a properly formulated derivative term is stable in the sense of Lyapunov if index
one is valid in an ε-tube around the extended trajectory of x∗ and given a Lyapunov
function V (u) according to Def. 6.7. Moreover, if V (u) exhibits

· A positive definite H2 ∈ C0
(
Bε (0) ⊆ Rn,R≥0

)
such that

∀t ≥ 0, u ∈ im D ∩ Bε ((Dx∗) (t)) : V (u) ≤ H2 (u− (Dx∗) (t))

· V̇ is negative definite, i.e. there exists a positive definite H3 ∈ C0
(
Bε (0) ⊆ Rn,R≥0

)
with

∀t ≥ 0, u ∈ DM0 ∩ Bε ((Dx∗) (t)) : V̇ (u) ≤ −H3 (u− (Dx∗) (t))

then x∗ is asymptotically stable according to Def. 4.3.

Proof. As already mentioned, there are no t-components in domain G ⊆ Rn × Rm,
the index-1 domain Uε or the cylindrical domain U1 ⊆ Rn of the IRODE in case
of autonomous differential-algebraic systems. Due to ‖x∗‖C1

D
< ∞ and the Bolzano-

Weierstraß Theorem, the extended trajectory C of x∗ is a compact subset in G ⊆ Rn+m.
Hence there exists a finite subcover of

Bεi

(
(Dx∗)

′ (ti) , x∗ (ti)
) ⊆ G, i ∈ J with C ⊆

N⋃
i=1

Bεi

(
(Dx∗)

′ (ti) , x∗ (ti)
)

such that local decoupling is possible on the respective open sets. Taking a sufficiently
small ε > 0 we obtain a global decoupling in the entire ε-tube around C.

Following precisely the computations in Theorem 6.9, the Lyapunov function V turns
out to be a Lyapunov function of the inherent regular ODE of the DAE (2.28) restricted
to im D∩U1 ⊆ Rn. The construction of the Lyapunov sack for Dx∗ together with the
existence of a global decoupling in an ε-tube around C imply that solutions u (t; 0, u0) of
the IRODE on im D (t) with initial values u0 sufficiently close to Dx∗ (0) are bounded,
and therefore exist for all t ≥ 0. Another consequence is that trajectories of these
solutions do not leave U1 where the complete index-1 decoupling w = w (u) is feasible.
Using the known solution representation

∀x0 ∈M0, Dx ∈ Bδ (Dx∗ (0)) : x (t; 0, x0) := D−u (t; 0, Dx0) +Q0w (u (t; 0, Dx0))

for consistent IVP x (0; 0, x0) = x0 of the given DAE sufficiently close to x∗ (0), we
obtain the (asymptotic) D-component stability property of the reference solution x∗.

Notice that

∀ (y, x) ∈ Ūε : Q0wu (Dx) = −Q0G
−1
1 (y, x) fx (y, x)D−
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is a continuous function on a compact set, i.e. the norm of Q0wu (u) is bounded on
Ū1 by c > 0. Using the stability estimate for the entire vector resulting from solution
representation (6.8),

‖x (t; 0, x0)− x∗ (t)‖ ≤ (∥∥D−∥∥+ c
) ‖u (t; 0, Dx0)−Dx∗ (t)‖

Due to D = DP0 and sub-multiplicative induced matrix norms we are able to control
the deviation of ‖x (t; 0, x0)− x∗ (t)‖ by delimiting ‖P0 (x0 − x∗ (0))‖ thus (asymp-
totic) D-component stability implies (asymptotic) stability of x∗ in the sense of Defi-
nition 4.3.

Another approach to nonlocal existence of DAE solutions nearby the stationary ref-
erence solution x∗ ≡ 0 of a non-autonomous DAE (1.2) requires the boundedness of
the entire solution vector and the first requirement of Assumption (6.8) in addition to
the existence of a Lyapunov function. Then, solutions x (t; 0, x0) of the differential-
algebraic system simply cannot seize to exist on a finite interval [0, te), te < ∞ if the
consistent initial values x0 are chosen close enough to x∗ (0).

Theorem 6.12. [Lyapunov stability for index-1 DAEs with bounded derivatives]

Consider the stationary solution x∗ ≡ 0 of a properly formulated DAE (1.2) satisfying
the first part of Assumption (6.8) plus boundedness of

R′ (t)D (t) , D− (t) , D (t)G−1
1 (y, x, t) fx (y, x, t)D− (t)

and Q0 (t)G−1
1 (y, x, t) fx (y, x, t)D− (t)

(6.11)

on Uε. Then, x∗ is Lyapunov stable according to Def. 4.3 if there exists a Lyapunov
function V (u, t) according to Definition 6.7. If the Lyapunov function V (u, t) under
consideration satisfies

· ∀t ≥ 0, u ∈ im D (t) ∩ Bε (0) : V (u, t) ≤ H2 (u) for a positive definite H2 ∈
C0
(
Bε (0) ⊆ Rn,R≥0

)
· V̇ is negative definite, i.e.

∀t ≥ 0, u ∈ im D (t) ∩ Bε (0) : V̇ (u, t) ≤ −H3(u)

for a positive definite H3 ∈ C0
(
Bε (0) ⊆ Rn,R≥0

)
then x∗ is asymptotically stable in the sense of Lyapunov.

Proof. We have already shown that the Lyapunov function V (u, t) provides a bound
‖D (t) (x (t; 0, x0)− x∗ (t))‖ < γ if the consistent initial values x0 belong to M0 (0)
such that D (0)x0 ∈ ∩Bδ ((Dx∗) (0)) for a sufficiently small δ dependent on γ > 0.
Using the solution representation (6.8) and the boundedness of D−, Q0G

−1
1 fxD

− in
(6.10), we get

‖x (t; 0, x0)− x∗ (t)‖ ≤
(∥∥D−∥∥∞,R≥0 +

∥∥Q0G
−1
1 fxD

−∥∥
∞,Uε

)
‖u (t; 0, u0)− u∗ (t)‖
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Furthermore, the right hand side of the IRODE satisfies the Lipschitz condition with
respect to u due to the boundedness of

∂

∂u
fIRODE (u, t) = D (t)wu (u, t) = R′ (t)D (t)−D (t)G−1

1 (y, x, t) fx (y, x, t)D−1 (t)

Hence d
dt
D (t) (x (t; 0, x0)− x∗ (t)) is bounded, i.e. the extended integral curve of x (·; 0, x0)

proceeds in Uε ⊆ G if δ > 0 is suited to a

0 < γ < ε
(∥∥D−∥∥∞,R≥0 +

∥∥Q0G
−1
1 fxD

−∥∥
∞,Uε

)−1 (
‖R′D‖∞,R≥0 +

∥∥DG−1
1 fxD

−∥∥
∞,Uε

)−1

Let us assume that there exists an initial value x0 ∈ M0 (0) ∩ Bδ (x∗ (0)) such that
x (t; 0, x0) exists on the maximal right interval [0, te) with te <∞. Boundedness plus
continuity of the extended trajectory of x (t; 0, x0)− x∗ (t) imply that

lim
t→te

(
d

dt
(D (t)x (t; 0, x0)− (Dx∗) (t)) , x (t; 0, x0)− x∗ (t) , t

)
= (ν, ξ, te)

exists and satisfies ‖ν‖ , ‖ξ‖ < ε where ε > 0 refers to the index-1 region Uε in the first
part of Assumption (6.8). Therefore,

lim
t→te

x (t; 0, x0) = ξ + x∗ (te) , lim
t→te

d

dt
(D (t)x (t; 0, x0)) = ν + (Dx∗)

′ (te)

Due to continuity of f , x and (Dx)′ together with

∀0 ≤ t < te : f
(
(D (t)x (t; 0, x0))

′ , x (t; 0, x0) , t
)

= 0

it follows that
lim
t→te

f

(
d

dt
(D (t)x (t; 0, x0)) , x (t; 0, x0) , t

)
= 0

Accordingly, the complete index-1 decoupling is available locally around

(ν + (Dx∗) (te) , ξ + x∗ (te) , te) ∈ Uε
thus x (t; 0, x0) exists at least on [0, te] which contradicts the assumption.

Having ensured the existence of DAE solutions on [0,∞), the asymptoticD-component
stability can be proved as in Theorem 6.9. Obviously, the boundedness requirements
provide that stability properties of D-components carry over to the entire solution
vector, cf. the argument of Theorem 6.11.

A similar rigid structural condition entered the setup of Theorem 46 in [GM86] where
global solvability is achieved for contractive DAEs f (x′ (t) , x (t) , t) = 0 with bounded
G−1

1 , fx and fy. The boundedness of partial derivatives is also an important issue in
requirements of [CC07, Th. 1]. Unfortunately, such a restriction becomes unacceptable
for the analysis of index-2 DAEs because (6.11) has to be imposed on the index reduced
system which prohibits a formulation in terms of the given DAE and implies at least
boundedness of the second derivatives of f .
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Example 6.13. Consider the simple linear index-1 DAE(
1
0

)((
1 0

)( x1

x2

))′
(t) +

(
1 0

− exp (2t) 1

)(
x1

x2

)
(t) =

(
0
0

)
defined on R× R2 × R≥0. Assumption 6.8 is obviously fulfilled. The solution set is

M0 (t) =

{
c

(
exp (−t)
exp (t)

)
| c ∈ R

}
and D (t)x = x1. Here, V (x1) := x2

1 is a Lyapunov function being positive definite
and V̇ (x1) = −x2

1 negative definite. Now the asymptotic D-component stability of x∗
is guaranteed by Theorem 6.9, i.e. x1 is asymptotically stable. In this example fx (t)
is unbounded in t and the entire solution vector x1 (0) (exp (−t) , exp (t))T is instable
in the sense of Lyapunov.

Example 6.14. Consider the following, non-Hessenberg index-1 DAE(
1

2x1 (t)

)((
1 0

)( x1

x2

))′
(t) +

(
x1 (t) + x2 (t)
−x2 (t)

)
=

(
0
0

)
This differential-algebraic systems contains the nonlinearity 2x1 (t)x′1 (t) = d

dt
x2

1 (t). It

is easy to compute G1 (y, x1, x2) =

(
1 1

2x1 1

)
which is a nonsingular matrix for all

x1 6= −0.5. Therefore, the DAE is a properly stated system with tractability index
one on G = R× {(x1, x2) ∈ R2 | |x1| , |x2| < 0.5}. The system exhibits the stationary
solution x∗ = (0, 0) and the inherent regular ODE x′1 = − x1

1+2x1
. Condition (6.7) for a

Lyapunov function V = V (x1) reads

− x1

1 + 2x1

Vx1 (x1) ≤ 0

On G, 1 + 2x1 > 0 is true and the dissipation inequality of V is equivalent to
−x1Vx1 (x1) ≤ 0. Again, V (x1) = 1

2
x2

1 is a Lyapunov function of the IRODE with
V̇ negative definite guaranteeing asymptotic stability of solution component x1. Due
to the autonomous structure of the given DAE, x2 depends on x1 only and the partial
derivatives are bounded on G implying asymptotic stability of x∗. Considering the
IRODE, separation of the variables results in

exp (x1)x1 = exp (t+ c) , c ∈ R

This equation can be solved with respect to x1 due to the implicit function theorem,
but it is difficult to obtain an explicit representation.

6.4 Lyapunov functions for index-2 systems

Having formulated Lyapunov functions for index-1 DAEs, the question arises how
to define such functions appropriately to serve as a stability criterion in the more
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complex case of the tractability index two. Again, the challenging part is the interplay
of certain dissipativity inequalities and access to the inherent dynamics of the DAE,
thereby demanding both aspects to be expressed preferably in terms of the original
differential-algebraic system. To cope with Lyapunov’s direct method for index-2
DAEs the preliminary work on complete decoupling in Chapter 2 and on reduction of
the tractability index via differentiation of constraints in Chapter 3 is deployed.

6.4.1 Lyapunov function aiming at DP1-component stability

Like in the index-1 case, an appropriate definition of a Lyapunov function has to refer
to the inherent dynamics of the differential-algebraic system near a reference solution
x∗. In context of the complete decoupling of nonlinear index-2 systems we proved that
the solution components

u (t) = (DP1) (t)x (t) := (DP1)
(
(Dx∗)

′ (t) , x∗ (t) , t
)
x (t)

are determined by the inherent regular ODE

u′ (t) = fIRODE (u (t) , t) := g (u (t) , t)

and remaining parts of the solution vector x (·) ∈ C1
D (I,Rm) by the constraints

x (u, t) := s (u, t) in (2.23), supposed the preconditions of Theorem 2.10 hold. De-
note P1(t) = P1

(
(Dx∗)

′ (t), x∗(t), t
)
and so on.

The relation f(z0, x0, t0) = 0 for x0 ∈ M1(t0) ⊂ M0 (t0) determines a unique z0 =
R (t0)x0. Under the assumption im D(t) = const. it follows

z0 = R (t0) (Dx)′ (t0) = (Dx)′ (t0) = (DP1x)′ (t0) + (DQ1x)′ (t0)

In particular we obtain this implicit representation of the IRODE of the given index-2
DAE nearby x∗:

fIRODE ((DP1) (t)x(t), t) =
(
DP1D

−) (t)z (6.12)

with the unique z = R (t) z fulfilling f (z, x, t) = 0. Let us formalize the assumptions
using Notation 6.6:

Definition 6.15. [Lyapunov function for DP1-component stability]

V ∈ C1 (U1,R) is called a Lyapunov function belonging to the reference solution x∗ of
the properly stated index-2 DAE (1.2) if

1. ∀t ≥ 0 : V (x∗ (t) , t) = 0

2. ∃H1 ∈ C0 (Bε (0) ⊆ Rn,R) positive definite with

∀t ≥ 0, u ∈ im (DP1) (t) ∩ Bε ((DP1x∗) (t)) : H1 (u− (Dx∗) (t)) ≤ V (u, t)

3. ∀t ≥ 0, x ∈M1(t), (DP1) (t)x ∈ Bε ((DP1x∗) (t)) , z = R(t)z satisfying f(z, x, t) =
0 it holds

V̇ ((DP1) (t)x, t) :=
〈(DP1D

−) (t) z,∇V ((DP1) (t)x, t)〉
+Vt ((DP1) (t)x, t)

≤ 0 (6.13)
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Heuristically, it is clear that the presented definition expresses the conditions on a
Lyapunov function of the IRODE restricted to DK. Now we have to prove that
Definition 6.15 ensures DP1-component stability of the stationary solution. To this
end, we necessitate

Assumption 6.16. Consider the DAE (1.2) having the stationary solution x∗ ≡ 0.
Let Q1 (y, x, t) be an admissible projector on N1 (y, x, t) along K (y, x, t). We require

1. The DAE (1.2) possesses the tractability index 2 on Uε ⊆ G for sufficiently small
ε > 0

2. Additionally,

∀ (y, x, t) ∈ Uε : im
(

T
−f−y fxT

)
(y, x, t) = im

(
T

f−y fxT

)
(0, 0, t)

3. im D (t), D (t)N1 (0, 0, t) and D (t)K (0, 0, t) are constant

4. The DAE (1.2) satisfies the differentiability requirements in Theorem 2.10

5. Domains of the maximal continuations of implicitly defined functions m̃ and k̃ of
the complete index-2 decoupling (2.19) contain a cylindrical region around the
integral curve of (u∗, w∗, t) resp. (u∗, t).

Analogously to the index-1 case, the cylindricity of domains in Assumption 6.16 5.) is
very important but also quite hard to ascertain.

Theorem 6.17. [Lyapunov function as a criterion for DP1-component stability]

The stationary solution x∗ ≡ 0 of the DAE (1.2) satisfying Assumption 6.16 is DP1-
component stable if there is a Lyapunov function V (u, t) in the sense of Definition
6.15. Furthermore, x∗ is asymptotically DP1-component stable if V (u, t) fulfills

· ∀t ≥ 0, u ∈ DK : V (u, t) ≤ H2 (u) for H2 ∈ C0
(
Bε (0) ⊆ Rn,R≥0

)
positive

definite

· V̇ is negative definite, i.e.

∀t ≥ 0, u ∈ (DP1M1) (t) ∩ U1 : V̇ (u, t) ≤ −H3(u)

for a positive definite H3 ∈ C0
(
Bε (0) ⊆ Rn,R≥0

)
Proof. Assumption 6.16 1.)—4.) enclose the requirements of the local complete decou-
pling approach in Theorem 2.10 on the entire Uε ⊆ G. Consider the maximal extension
of the implicitly defined functions s (u, t) and g (u, t) in Representation (2.19) of the
inherent regular ODE. At the same time Assumption 6.16 5.) expresses that domains
of these functions contain the ε̂-tube around the respective components of the station-
ary solution x∗ for a sufficiently small ε̂ > 0. In other words, the IRODE is defined at
least on the ε̂-tube around the integral curve of DP1x∗. W.l.o.g. assume ε = ε̂.

From here on every step of Theorem 6.9 is repeated with some minor changes because
we focus on solution components u0 = (DP1) (0)x0, u (t; 0, u0) = (DP1) (t)x (t; 0, x0)
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and consider the associated inherent regular ODE. Precisely, the solution representa-
tion

x (t; 0, x0) = s (u (t; 0, (DP1) (0)x0) , t)

and the IRODE (2.19) replace the index-1 counterparts. As stated in (6.12),

d
dt
V ((DP1) (t)x (t; 0, x0) , t) =

=

{
Vx ((DP1) (t)x (t; 0, x0) , t) fIRODE ((DP1) (t)x (t; 0, x0) , t)
+Vt ((DP1) (t)x (t; 0, x0) , t)

= V̇ ((DP1) (t)x (t; 0, x0) , t) .

Therefore trajectories of solutions u (t; 0, u0) of the inherent regular ODE (2.19) with
initial values u (0; 0, u0) = u0 ∈ DK ∩ Bδ (0) stay in the compact set Bγ (0). Conse-
quently, they exist on R≥0. It holds u (t; 0, u0) ∈ im (DP1) (t) = DK because DK is
an invariant subspace of the IRODE and the integral curves proceed in the domain
of the solution representation so we construct C1

D ([0,∞),Rm)-solutions of the DAE
fulfilling

∀x0 ∈M1 (0) : (DP1) (0)x0 ∈ Bδ (0) ⊆ Rn ⇒ ‖(DP1) (·)x (·; 0, x0)‖∞ ≤ γ < ε

i.e. x∗ is DP1-stable.

Asymptotic DP1-stability is proved using the same approach as in Theorem 6.9.

In general, Definition 6.15 is not stated in terms of the given DAE according to § 6.4.3
by reason of the projector (DP1) (t) = (DP1) (0, 0, t). Using the canonical projector,

im (DP1,c) (y, x, t) = D (t)S1 (y, x, t) = D (t) pr2
(
T(y,x)N1 (t)

)
where

N1 (t) :=
{

(z, x) ∈ Rm × Rm | f̃ (z, x, t) := f (D (t) z, P0 (t)x+Q0 (t) z, t) = 0
}

T(y,x)N1 (t) = ker D(y,x)f̃ (D− (t) y +Q0 (t)x, P0 (t)x, t) .

6.4.2 A criterion for D-component stability

Another possibility to define an appropriate Lyapunov function is to make use of the
index-reduced system associated to f

(
(Dx)′ (t), x(t), t

)
= 0 with a properly formulated

derivative term. The reduction of the tractability index via differentiation requires
N0(t) to be constant and im G1(y, x, t) dependent on (P0x, t) only, cf. Theorem 3.4.
Using a projector W1(P0x, t) along im G1(y, x, t), the following representation of the
index-reduced DAE is obtained:

0 = f̃
(
(Dx)′ (t), x(t), t

)
,

f̃ (y, x, t) :=
(I −W1 (P0x, t)) f (y, x, t) +W1 (P0x, t) (W1f)x (P0x, t)D

−(t)y
+W1 (P0x, t) (W1f)x (P0x, t) (D−)′(t)D(t)x+W1 (P0x, t) (W1f)t (P0x, t)
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Due to Theorem 3.6, M1(t) = M̃0(t) ∩M0 (t) is an invariant set of the IR-DAE, in
which M̃0(t) denotes the first-level constraint of the IR-DAE. Inequality (6.7) for a
Lyapunov function of the index reduced system restricted toM1(t) reads

V̇ (D(t)x, t) ≤ 0 for all t ≥ 0, x ∈M1(t), z = R(t)z with f̃ (z, x, t) = 0

Under the assumptions of Theorem 3.4, solutions x (t; t0, x0) of the given DAE (1.2)
with consistent initial values x0 ∈ M1(0) correspond to the unique solutions of the
associated index-reduced DAE f̃

(
(Dx)′ (t), x(t), t

)
= 0 restricted toM1(t). Thus,

f

(
d

dt
(D (t)x (t; t0, x0))∣∣

t=t0

, x0, t0

)
= 0 = f̃

(
d

dt
(D (t)x (t; t0, x0))∣∣

t=t0

, x0, t0

)
(6.14)

For x0 ∈ M1(0) ⊆ M1 (0) ∩ M̃0 (0), the terms z = R(0)z and z̃ = R(0)z̃ are unique
in f(z, x0, 0) = 0 respectively f̃(z̃, x0, 0) = 0. Taking (6.14) into consideration, this
means

z = R(0)
d

dt
(D (t)x (t; t0, x0))|t=t0

= z̃

In particular, the monotonicity condition (6.7) on V (u, t) along solutions of the index
reduced DAE restricted toM1 (t) can be written in the following implicit form:

〈R′(t)D(t)x+ z, Vx (D (t)x, t)〉+ Vt (D (t)x, t) ≤ 0

for all t ≥ 0, x ∈ M1(t), z = R(t)z with f (z, x, t) = 0. In other words, Definition 6.7
turns out to be adequate. Here, the Lyapunov function applies to the D-components
of solutions of the associated index-reduced DAE onM1 (t) which are known to coin-
cide with solutions of the given DAE. Again, structural conditions using Notation 6.6
are required to perform the index reduction via differentiation plus Assumption (6.8)
addressing the IR-DAE.

Assumption 6.18. Consider the reference solution x∗ ∈ C1
D

(
R≥0,Rm

)
of a properly

formulated DAE (1.2). For a sufficiently small ε > 0 require

1. Tractability index 2 on Uε ⊆ G
2. kerD(t) = const. and ∀ (y, x, t) ∈ Uε : im G1 (y, x, t) dependent on (P0x, t)

3. rk fy (y, x, t)D(t) +W1 (P0x, t) (W1f)x (P0x, t) = const. on Uε
4. D−,W1 continuously differentiable and W1f ∈ C2

We are going to state an analogon to Theorem 6.9 for index-2 systems.

Theorem 6.19. [Principal D-stability criterion for index-2 systems]

The stationary solution x∗ ≡ 0 of the properly formulated DAE f
(
(Dx)′ (t), x(t), t

)
= 0

satisfying Assumption 6.18 and Assumption 6.8 2.) for its index-reduced system is D-
component stable, if there exists a Lyapunov function V (u, t) according to Def. 6.7.
Additionally, if V (u, t) exhibits a positive definite upper bound H2 ∈ C

(
Bε(0),R≥0

)
and V̇ is negative definite then x∗ is asymptotically D-component stable.
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Proof. Assumption (6.18) comprises the requirements of Theorem 3.4 on entire Uε
resulting in the existence of the index-reduced DAE (3.2) associated to (1.2). The
IR-DAE features the tractability index one in a neighbourhood of any point in Uε ∩
{(y, x, t) ∈ G | f (y, x, t) = 0}. Assumption 6.8 2.) guarantees that there is an ε > 0
such that index one is valid on entire Uε ⊆ G and the domain of the maximal continu-
ation of the resolution w = w (u, t) belonging to the index-reduced DAE contains the
cylindrical region U1.

By means of Theorem 6.9, we are able to attest the property

∀0 < γ < ε∃δ > 0∀u0 ∈ (DM1) (0) ∩ Bδ (0) , t ≥ 0 : ‖u (t; 0, u0)‖ < γ

for the general solution u (t; 0, u0) of the initial value problem u (0; 0, u0) = u0 of
the IRODE of the associated index-reduced DAE. V matches relevant properties of a
Lyapunov function of the stationary solution x∗ of the IR-DAE restricted toM1(t) ⊆
M̃0(t). Trajectories of solutions of the inherent regular ODE belonging to the index-
reduced DAE with initial values satisfying u0 ∈ (DM1) (0) ∩ Bε (0) proceed in the
compact set Bγ (0) and therefore exist for all t ≥ 0. It is possible to apply the solution
representation (6.8) of the index-1 IR-DAE due to the second part of Assumption
6.8 aiming at the IR-DAE. Hence, the existence of solutions of the IR-DAE with
initial value problems x0 ∈ M1 (0), ‖D (0)x0‖ < δ is proved. Keep in mind that
M1 (t) ⊆ M̃0 (t) is an invariant subset of the index-reduced system and that solutions
of the IR-DAE onM1 (t) are exactly the solutions x (t; 0, x0) of the original DAE. As
a by-product we get the estimate ∀t ≥ 0 : ‖D (t)x (t; 0, x0)‖ ≤ γ, i.e D-component
stability of x∗.

Once again, repeat the argument of Theorem 6.11 in order to provide asymptotic D-
component stability of x∗ in case of V (u, t) having a positive definite upper bound
and a negative definite V̇ (u, t).

The proved stability criterion obviously holds if V̇ (u, t) is required for all t ≥ 0, x ∈
M0 (t) ∩ Bε (0) with ‖D (t)x‖ ≤ ε. Then, only first-level constraints are involved
in the definition of the Lyapunov function. Generally, the coupling of differential
equations and constraints usually results in involved dissipation inequalities which has
to be simplified using relations valid for elements of the configuration space M1 (t)
only. So we cannot expect that neglecting properties of the configuration set M1 (t)
always works, cf. Example 6.21.

Assumption (6.8) for the IR-DAE is too abstract and, again, it disturbs the formulation
in terms of the original DAE. As discussed in Section 6.3, this is problem can be avoided
considering bounded solutions of autonomous DAEs.

Theorem 6.20. [Stability for bounded solutions of autonomous index-2 DAEs]

The C1
D-bounded solution x∗ ∈ C1

D

(
R≥0,Rm

)
of the properly formulated autonomous

DAE (2.28) satisfying Assumption 6.18 is stable2, if there exists a Lyapunov function
V (u) according to Def. 6.7. Additionally, if V (u) exhibits a positive definite upper

2Here, a slightly modified notion of Lyapunov stability is aspired. Precisely, the projector Π2 =
P0P1

(
(Dx∗)

′ (0) , x∗ (0)
)
in Definition 4.3 is replaced by the rectangular matrix Π2 = D .
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bound H2 ∈ C
(
Bε(0),R≥0

)
and V̇ (u) is negative definite for all t ≥, u ∈ DM1 ∩

Bε ((Dx∗) (t)) then x∗ is asymptotically stable.

Proof. Assumption 6.18 enables to use Theorem 3.4. As a consequence, the tractability
index one of the autonomous IR-DAE (3.2), i.e.

(I −W1 (P0x)) f
(
(Dx (t))′ , x (t)

)
+W1 (P0x) (W1f)x (P0x)D− (Dx (t))′ = 0

is valid locally around any point of the extended trajectory Ĉ of x∗ because of

f
(
(Dx∗ (t))′ , x∗ (t)

)
= 0 and

(
(Dx∗ (t))′ , x∗ (t)

) ∈ Uε
where the index of the original DAE is 2. Remember that Ĉ is compact in accordance
with ‖x∗‖C1

D
<∞ and the Bolzano-Weierstraß Theorem so there is an 0 < ε̂ < ε such

that the index-reduced DAE has the tractability index one on the entire

Uε̂ =
{

Bε̂

(
(Dx∗)

′ (t)
)× Bε̂ (x∗ (t)) ⊆ G ⊆ Rn × Rm | t ∈ R≥0

}
It is straightforward to apply the argument of Theorem 6.11 to the index-reduced
system with a slight adaptation that only solutions with consistent initial values on
the invariant setM1 of the IR-DAE have to be considered. This restriction is necessary
because the dissipativity inequality (6.7) does not apply in case of IR-DAE solutions
with general initial values x0 ∈ M̃0.

Consequently, for all γ > 0 there exists a δ > 0 such that IVPs x0 ∈ M1, Dx0 ∈
Bδ (x∗ (0)) of the autonomous DAE (2.28) are uniquely solvable on R≥0 and

‖x (t; 0, x0)− x∗ (t)‖ < γ

If V̇ (u) is negative definite and V (u) has a positive definite upper bound then

lim
t→∞
‖x (t; 0, x0)− x∗ (t)‖ = 0

results from asymptotic D-component stability of x∗.

Example 6.21. Consider the following autonomous differential-algebraic system

2x1x
′
1 + (1 + 2x2)x

′
2 − x1 − x4 = 0

x′1 + x2 = 0
x′3 − x4 = 0

x3 − x2
1 − x2

2 = 0

(6.15)

which is non-Hessenberg and (weakly) coupled. First, we construct the matrix chain
of the tractability index:

D =

 1 0 0 0
0 1 0 0
0 0 1 0

 , Q0 =


0

0
0

1


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fy =


2x1 1 + 2x2 0
1 0 0
0 0 1
0 0 0

 , fx =


2x′1 − 1 2x′2 0 −1

0 1 0 0
0 0 0 −1
−2x1 −2x2 1 0


It holds dimN0 ∩ S0 = rk G1 ≡ 3 with

G1 =


2x1 1 + 2x2 0 −1
1 0 0 0
0 0 1 −1
0 0 0 0

 , N1 = span


0
1

1 + 2x2

1 + 2x2


Choosing Q1 in an admissible way (Q1Q0 = 0), we obtain

Q1 =


0 0 0 0
0 1 0 0
0 1 + 2x2 0 0
0 1 + 2x2 0 0

 , G2 =


2x1 1 + 2x2 + 2x′2 0 −1
1 1 0 0
0 0 1 −1
0 1 0 0


Laplace extension results in

detG2 (x1, x2, x
′
2) ≡ −1

Therefore the tractability index 2 of (6.15) is ensured in entire Uε. Moreover,

im G1 (x1, x2) = span




2x1

1
0
0

 ,


1 + 2x2

0
0
0

 ,


0
0
1
0




W1 = Q0 projects along im G1 (x1, x2) and

rk fyD +W1fx = rk


2x1 1 + 2x2 0 0
1 0 0 0
0 0 1 0
−2x1 −2x2 1 0

 ≡ 3.

As a result, Assumption 6.18 is valid. In order to apply Theorem 6.20 we have to
check the dissipation inequality (6.7) for a Lyapunov candidate function V (x1, x2, x3).
Solving f (z, x) = 0 for z, we get

z1 = −x2, z2 =
x1 + x4 + 2x1x2

1 + 2x2

, z3 = x4

due to 1 + 2x2 6= 0 on Uε, ε < 0.5. Therefore, (6.7) reads as follows:

−x2 (1 + 2x2)Vx1 + (x1 + x4 + 2x1x2)Vx2 + x4 (1 + 2x2)Vx3 ≤ 0

This inequality can be simplified using the property ∀ (x1, . . . , x4) ∈ M1 : x4 = 0. It
follows

−x2 (1 + 2x2)Vx1 + (x1 + 2x1x2)Vx2 ≤ 0
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and Vx3 does not influence the inequality so we assume V = V (x1, x2). Now

V (x1, x2) :=
1

2

(
x2

1 + x2
2

)
turns out to be a Lyapunov function for the stationary solution x∗ of the DAE (6.15)
exhibiting V̇ (x1, x2) ≡ 0 and Theorem 6.20 ensures stability of x∗. This is already the
best we can achieve because the general solution of the DAE (6.15) is(

c1 cos (t)− c2 sin (t) , c1 sin (t) + c2 cos (t) , c21 + c22, 0
)T

so the stationary solution does not exhibit asymptotic stability. Besides, Laplace
expansion reveals that the eigenvalues of the matrix pencil {fy (0, 0)D, fx (0, 0)} of
the linearization in x∗ are λ1,2 = ±i thus Re (λi) = 0 so Perron’s Theorem for index-2
DAEs (e.g. [Mä98, Th. 3.3]) is not applicable.

The above calculations exemplify that our decoupling procedure is not unique. For
example, the dynamics are expressed by means of

DP1 (x∗ (t) , t)x =
(
x1, 0, x3 − (1 + 2 (x∗)1 (t))x2

)T
instead of (x1, x2)

T .

Our investigations in Part I reveal that the coupling between differential equations
and constraints is an important aspect in DAE theory. To this purpose, consider the
influence of the coupling in (6.15). Regarding the third and fourth equations, (6.15)
turns out to be equivalent to the decoupled Hessenberg-2 DAE

x′1 (t) = −x2 (t)
x′2 (t) = x1 (t)
x′3 (t) = x4 (t)

0 = x2
1 (t) + x2

2 (t)− x3 (t)

(6.16)

Obviously, (6.16) satisfies Assumption 6.18. A Lyapunov function V = V (x1, x2, x3)
for the stationary solution x∗ ≡ 0 is given, if condition (6.7) is valid, that is

∀


x1

x2

x3

x4

 ∈M1 : −x2Vx1 (x1, x2, x3) + x1Vx2 (x1, x2, x3) + x4Vx3 (x1, x2, x3) ≤ 0

This condition is simplified to −x2Vx1 (x1, x2) + x1Vx2 (x1, x2) ≤ 0 by the ansatz V =
V (x1, x2). If Vx1 (x1, x2) = x1 and Vx2 (x1, x2) = x2, e.g. V (x1, x2) = 1

2
(x2

1 + x2
2),

we obtain a Lyapunov function according to Def. 6.7. Again, Theorem 6.20 implies
stability of the stationary solution. We do not have to exploit the structure ofM1 (t)
because the DAE is in a decoupled form.
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6.4.3 Excursus: formulation in terms of the initial system

The expression “in terms of the given DAE” occurring in the thesis refers to the formu-
lation of stability criteria for the state space form of the DAE avoiding explicit access
to the tangent bundle of the configuration space. It is meant that no parametrization
or projection onto the tangent space of a subspace of the first level constraintM0 (t) is
applied and that the state space representation is not accessed directly. Furthermore,
we would like to exclude direct access to the state space form or to quantities defined
by the implicit function theorem.

In the context of Lyapunov functions, we allow the configuration space M1 (t) as
the geometric location of solutions of the given DAE at time t to be involved in the
definition. Remember that the configuration space of an ODE nearby the stationary
solution x∗ is simply a neighbourhood Ω ⊆ Rm of the origin. In case of differential-
algebraic equations we have to incorporate the constraints together with the focus on
D (t)x ∈ Rn solution components. This is reflected in Definition 6.7. Conditions (6.6)
and (6.7) are originally aiming at the Representation (6.5) of the inherent dynamics
via Lemma 1.19. Notice that only a local section of M1 (t) around the reference
solution is involved there. For higher-index DAEs (k ≥ 2) the hidden constraints have
to be respected by using the configuration space Mk−1 (t). One could try to replace
Mk−1 (t) in Def. 6.7 byM0 (t) ⊃ Mk−1 (t). If feasible, explicit knowledge ofM1 (t)
is avoided but the boundedness and dissipativity inequality become more restrictive.

6.5 Further approaches to Lyapunov functions for
DAEs

The theory of Lyapunov functions for differential-algebraic systems is in a steady
process of development. One important issue is an appropriate substitution of the
resolution of f (x′ (t) , x (t) , t) = 0 for the derivative x′ (t) in the classic definition of
a Lyapunov function because such a resolution is a priori not available for DAEs.
Equivalently, the inherent dynamics together with the hidden constraints of the DAE
have to be incorporated in some way in order to get practical stability criteria. In
this thesis the appropriate definition of a Lyapunov function as stability criterion for
index k = 1, 2 DAEs is obtained by means of Lemma 6.4, the complete decoupling and
reduction of the tractability index via differentiation. After deriving these results we
came across the preprint [TL10] published at the end of January 2010. This preprint
is dealing with an alternative approach to define Lyapunov functions for differential-
algebraic systems. The emphasis in [TL10] is on switched DAEs but we outline the
relevant considerations addressing non-switched systems.

The approach of D. Liberzon and S. Trenn

Autonomous linear-implicit systems

E (x (t))x′ (t) = f (x (t))
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with sufficiently smooth functions E, f are considered. Due to the standard formula-
tion of the DAE the classical solvability concept, that is x ∈ C1 is used. With regard
to switched DAEs the authors demand even piecewise C∞-solutions. The goal is to
ensure asymptotic stability of the stationary solution x∗ ≡ 0 by a suitable Lyapunov
function. To this purpose the configuration spaceM of the DAE is supposed to be a
closed manifold, optionally with a boundary. In particular a finite maximal interval
of existence of solutions is excluded. Additionally, the unique solvability of the DAE
is required. According to [TL10, Def. 2.6], a Lyapunov function is a continuously
differentiable function V : M→ R≥0 featuring

· V is positive definite and the preimage of [0, V (x)] under V is bounded for all
x ∈M
· there exists a continuous function F : Rm × Rm → R≥0 with

∀x ∈M, z ∈ TxM : ∇V (x) z = F (x,E (x) z)

· ∀x ∈M : V̇ (x) := F (x, f (x)) < 0

Under the mentioned requirements it is proved that the existence of such a Lyapunov
function implies stability of x∗. Thereto, we quote [TL10, p. 3]:

“[...] we [...] generalize Lyapunov’s Direct Method to the DAE case in
Theorem 2.7. This result is based on a presumably new definition of a
Lyapunov function for the DAE (2) as formulated in Definition 2.6.”

There are some reasons why the described approach to define Lyapunov functions in
case of DAEs is not suitable for the focus of this thesis. First of all, to prove the
existence of solutions on the interval [t0,∞) is a challenging task for ODEs and even
more for differential-algebraic systems. Here, this property is simply assumed by the
restrictive postulation of a closed solution manifold of the DAE. Besides, the feature
of the entire configuration space to be a C1-manifold is superfluous because stability
considerations focus on a segment of M in vicinity of the reference solution. This
is reflected by the Lyapunov function according to Definitions 6.7 and 6.15, but not
in [TL10]. If we had required compactness of every solution of (1.2) a priori, then
we would be done with Corollary 6.10, providing (asymptotic) D-component stability
in the general case of non-autonomous fully implicit DAEs! Instead, Assumption 6.8
and 6.16 subsume structural conditions on the given DAE which are probably easier
to check. In essence, we demand the tractability index k = 1, 2 on a cylindrical
region around x∗ and the assumptions necessary for the reduction of the tractability
index 2 via differentiation of constraints. They already ensure unique solvability of
the DAE. Notice that we are interested in C1

D-solutions resulting in lower smoothness
assumptions on the system. Finally, we get along without the explicit usage of the
tangent space TxM which should be avoided in formulation of Lyapunov functions in
the original problem setting.

The approach of F. Allgöwer and C. Ebenbauer

An alternative to the above procedure is introduced in [AE07]. There, fully implicit
controlled DAEs

f (x′ (t) , x (t) , u (t)) = 0
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with a certain admissible control u and the stationary solution x∗ ≡ 0 are considered.
The main tool is the derivative array

Fµ (ξ, ω) :=


f (x′, x, u)
d
dt
f (x′, x, u)

...
dµ

dtµ
f (x′, x, u)

 (6.17)

for the algebraic variables x ∈ Rm, u ∈ Rn

ξ :=
(
x, x′, . . . , x(µ+1)

)T
, ω :=

(
u, u′, . . . , u(µ+1)

)T
(6.18)

For the sake of the derivative array (6.17) f , x and u are supposed to be sufficiently
smooth. Then, the expression dk

dtk
f (x′ (t) , x (t) , u (t)) is evaluated using the chain rule

thereby introducing formal variables x(k), u(k) for the k-th derivative of the respec-
tive function. A positive definite and radially unbounded (i.e. lim‖x‖→∞ V (x) = ∞)
function V ∈ C1 (Rm,R) is called a Lyapunov function for the stationary solution of
f (x′ (t) , x (t) , u (t)) = 0 if µ ∈ N and ρ : R(µ+2)(m+n) → R ∪ {∞} exist with

∇V (x)x′ ≤ ‖Fµ (ξ, ω)‖2 ρ (ξ, ω) (6.19)

on
{((

x, x′, . . . , x(µ+1)
)T
,
(
u, u′, . . . , u(µ+1)

)T) ∈ R(µ+2)(m+n) |x ∈ Bε (0) ⊂ Rm
}
. A suf-

ficiently smooth solution (x, u)T of the given DAE also satisfies the extended system
Fµ (ξ (t) , ω (t)) = 0 if the derivatives of x, u are used in the definition of (ξ, ω)T (t). For
this reason Condition (6.19) evaluated along the extended solution vector (ξ (t) , ω (t))T

is equivalent to ∇V (x)x′ ≤ 0, i.e. V is decreasing along solutions of the DAE. Thus
stability of x∗ in the sense of Lyapunov is obtained for all admissible controls u.

This method is clearly arranged and it works without assuming an index of the DAE
a priori. On the other hand, it is known that the entire information of the differential-
algebraic system with differentiation index µ is already contained in Fµ (ξ, ω) = 0.
From this point of view the tangent bundle of the configuration space is nevertheless
required which is roughly the same as in the Liberzon/Trenn-approach. Certainly,
Inequality (6.19) enables numerical computations due to the derivative array. Accord-
ing to [AE07], it is convenient to verify Inequality (6.19) for polynomial f , V and ρ
although the practicability is seriously affected by the high dimension of the resulting
system.

The approach of V. Bajic

Vladimir Bajic’s method to construct a Lyapunov candidate function V (y) depending
on an auxiliary variable y = y (x) in a way that the inequality V̇ (y) ≤ 0 mimics the
total time derivative of a conventional Lyapunov function along solutions of an ODE
is outlined in § 6.2.

We present a feasible choice y = D (t)x resp. y = (DP1) (t)x of the auxiliary trans-
formation for fully implicit DAEs with a properly formulated derivative term. At the
same time the connection between the transformation and the inner structure of the
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DAE is clarified: our Definition 6.7 has the reasonable interpretation to refer to the in-
herent regular ODE of an index-1 system or to the IRODE of the index reduced DAE,
respectively. This feature also suggests how to prove nonlocal existence of solutions.

The main body of literature on DAEs in the bibliography pays almost no attention
to V. Bajic’s considerations on stability of DAEs, although they originate from the
late 1980s—we found some of them as a cross reference in the (engineering) context
of [KD99]. Certainly, the reasoning is fragmentary and driven by practice rather than
mathematical theory, e.g. the important questions of existence and uniqueness of solu-
tions of DAEs are simply skipped in [Baj86, Baj87, Baj90, MB89]. Of course, without
using a sound index concept for characterizing and bounding structural complexity of
differential-algebraic systems, there is no way to succeed with these issues. Neverthe-
less these publications help to classify the results of the present thesis. We believe
that [Baj86, Baj87] could have had an influence on the development of Lyapunov-like
stability criteria in the DAE community with a predominantly mathematical inclina-
tion.

The approach of Pham Van Viet

In the recent past some efforts to define Lyapunov functions for nonlinear DAEs with
the tractability index k = 1, 2 are made by Vietnamese mathematicians. For the
purpose of comparison, we briefly present the results from [VT04] and [Vie05]. Linear-
implicit DAEs of the form

A (t)x′ (t) +B (t)x (t) = f (x (t) , t) (6.20)

withA ∈ C1 ([t0,∞),Rm×m) bounded, B ∈ C ([t0,∞),Rm×m), f ∈ C0 ([t0,∞)× Rm,Rm)
with ft ∈ C0 and fx ∈ C1 are considered. The tractability index 2 is required together
with the structural conditions

im A (t)P0 (t)P1 (t) ≡ const.
Q1 (t)G−1

2 (t) f (x (t) , t) ≡ 0

Q0 (t)G−1
2 (t) f (x (t) , t) ≡ Q0 (t) D̃ (t)P0 (t)P1 (t)x (t)

(6.21)

for all solutions x (t) of (6.20). At this, the existence of a suitable function D̃ ∈
C0 ([t0,∞),Rm×m) is demanded. Denote the matrix chain of the tractability index for
the DAE A (t)x′ (t) + B (t)x (t) = 0 by Pi (t), Gi (t) and the corresponding elements
for (6.20) by Pi (x, t) etc. These matrix chains and the tractability index k = 1, 2 are
similar to [GM86] and thus a prequel to the tractability index for properly formulated
DAEs used in this thesis. Now, (Ax)′ = A′x+Ax′ reveals that the DAE (6.20) on its
geometric solution space is equivalent to the ODE

y′ (t) = (A′ (t)−B (t))T (t) y (t) + f (T (t) y, t) (6.22)

on im AP0P1 having the initial value y (t0) = A (t0)P0 (t0)P1 (t0)x0,

T (t) :=
(
I − (Q0Q1)

′ −QP1G
−1
2 B +Q0D̃

)
(t)G−1

2 (t)

In publication [VT04] as well as in [Vie05, Assumption (B)] dealing with index-1
DAEs it is merely assumed that the ordinary differential equations involved do possess
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unique solutions of the respective initial value problems on [t0,∞). In order to define
a Lyapunov function for index-2 DAEs (6.20), the monotonicity condition

V̇ (y, t) := lim sup
s→0+

1

s
(V (y + s (A′ −B) (t)T (t) y + f (T (t) y, t))− V (y, t)) ≤ 0

(6.23)
on a suitable domain is required. Consequently, V (x (t) , t) is decreasing along solu-
tions of the inherent regular ODE (6.22). According to [VT04, Th. 2.1] the existence
of such a Lyapunov function ensures stability in the sense of Lyapunov of x∗ ≡ 0. Sev-
eral classic results considering Lyapunov functions for ODEs (the majority stemming
from [Yos66]) are carried over to the representation (6.22) of the inherent dynamics
and hence to the given DAE.
From our the point of view the above approach exhibits several drawbacks. The exis-
tence of a classic Lyapunov function is sufficient to ensure solvability of the ODE under
consideration on entire [t0,∞), at least in case of initial values nearby the reference
solution. Therefore it appears reasonable to demand this property from an appro-
priate generalization of the Lyapunov concept to DAEs. In [Vie05] and [VT04], no
importance is attached to this fundamental feature of Lyapunov functions, the nontriv-
ial question of existence of solutions of index-2 DAEs on unbounded intervals remains
open. Moreover it is not obvious how to check Assumption (6.21) efficiently. It is cum-
bersome that (6.23) is not formulated in terms of the given DAE and that the analysis
does not include fully implicit systems, possibly with ‖fy‖∞ =∞ so practicability as
well as mathematical elegance of the above approach could be questioned.

Summing up, there exist several different mathematical approaches to adapt the direct
method of Lyapunov to differential-algebraic equations. The connection to differenti-
ation index marked in [AE07], the usage of tangential space of the solution manifold
in [TL10] and the implicit representation of the inherent dynamics in Lemma 6.4 po-
tentially hint at a common geometric origin of the discussed concepts of Lyapunov
functions for DAEs. In our honest opinion, the overall understanding of differential-
algebraic systems (e.g. all-embracing knowledge of connections between the index con-
cepts) is not advanced enough to claim the “right” definition of a Lyapunov function
for DAEs at the moment. After balancing pros and cons of the presented approaches
and new insights provided in § 6.6 and § 7.3, it seems to be of theoretical and practical
interest to take the definitions of Lyapunov functions - as stated in this thesis - into
consideration.

6.6 Understanding contractivity definitions for DAEs

Dissipativity inequalities represent a natural generalization of Lyapunov functions.
They provide evidence for global stability of solutions on a certain region. Considering
ODEs x′ (t) = f (x (t) , t) with f ∈ C (G ⊆ Rm × I ⊆ R,Rm) it is decisive to replace
the Lipschitz condition ‖f (x, t)− f (x̃, t)‖ ≤ Lf ‖x− x̃‖ by the so called one-sided
Lipschitz condition (cf. [DV84, § 1.2])

∀t ∈ I, x, x̃ ∈ Ut : 〈f (x, t)− f (x̃, t) , x− x̃〉 ≤ β (t) ‖x− x̃‖2 (6.24)
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with a piecewise continuous function β : I → R and Ut ⊆ {x ∈ Rm | (x, t) ∈ G}. Here
〈·, ·〉 denotes a scalar product and ‖·‖ the induced vector norm.

Remark 6.22. The one-sided Lipschitz condition

∀x, x̃ ∈ U : 〈f (x)− f (x̃) , x− x̃〉 ≤ 0

is called a monotonicity condition on the right hand side of an autonomous ODE
x′ (t) = f (x (t)) in [SH96, p. 178]. For one dimensional systems the scalar product
corresponds to multiplication of the arguments times a constant, thus the one-sided
Lipschitz condition reads f (x) ≤ f (x̃) for x ≥ x̃, i.e. f is monotonically decreasing.

An ODE is called (strictly) contractive if the one-sided Lipschitz condition (6.24) with
β (t) ≤ 0 (β (t) < 0) is valid. The notation results from the (strict) contractivity of the
flow associated to the differential equation on {Ut × {t} | t ∈ I} ⊆ G. In other words,

∀t, t0 ∈ I, t ≥ t0 and x0, x1 ∈ Ut0 : ‖x (t; t0, x0)− x (t; t0, x1)‖ ≤ exp (β (t)) ‖x0 − x1‖
(6.25)

holds.

Contractivity for index-1 DAEs

One of the most essential theoretic results in [MHT03a] is the generalization of the
notion of contractivity to properly formulated differential-algebraic systems (1.2). A
fully implicit index-1 DAE is called contractive if the associated inherent regular ODE
is contractive on im D (t). To this end the one-sided Lipschitz condition is formulated
for the IRODE in [MHT03a, § 3.1], that is

〈D (t) (w (u (t) , t)− w (ũ (t) , t)) , D (t) (u (t)− ũ (t))〉
+ 〈R′ (t) (u (t)− ũ (t)) , D (t) (u (t)− ũ (t))〉 ≤ −β ‖D (t) (u (t)− ũ (t))‖2

where x (t) denotes the solutions of the DAE, u (t) := D (t)x (t) and w (u, t) the
implicitly defined resolution function in the complete decoupling as per § 6.5. The
laconic statement

“The following definition takes up this idea, but in terms of the original
DAE.”

introduces the important contractivity definition

∃β ≥ 0∀t ≥ t0, x, x̃ ∈M0 (t) , z, z̃ ∈ im D (t) with f (z, x, t) = 0 = f (z̃, x̃, t) :

〈z − z̃ +R′ (t)D (t) (x− x̃) , D (t) (x− x̃)〉 ≤ −β ‖D (t) (x− x̃)‖2
(6.26)

for index-1 systems in [MHT03a, p. 183]. It is shown (Proposition 7, ibidem) that
the DAE is contractive in the above sense if and only if the associated IRODE is
contractive on im D (t). Formulation (6.26) appears canonical if the implicit resolution
of the DAE for R (Dx)′ stemming from Lemma 6.4 is applied. According to [Tis09],
the dependency on expressions in terms of the complete decoupling is the reason why
the subsequent publication [MHT03b] restricts to contractivity of linear index-2 DAEs
only. Then, by virtue of the superposition principle, it is sufficient to investigate the
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trivial solution of the homogeneous linear DAE, i.e. x̃ = 0 is used. The contractivity
definition for linear index-2 DAEs from [MHT03b, Def. 24] reads

∃β ≥ 0∀t ≥ 0, x ∈M1 (t) , z = R (t) z with A (t) z +B (t)x = 0 :

〈z +R′ (t)D (t)x,D (t)x〉 ≤ −β ‖D (t)x‖2 (6.27)

Given (6.27), Theorem 26 in [MHT03b] proves the contractivity of the inherent regular
ODE given, i.e an estimate of the type (6.25) for the DP1-components of the solution
vector. An estimate for the entire vector is achieved using the solution representation
for linear differential-algebraic systems, yet including the factor ‖P1,c (t)‖(DS1)(t) which
reflects the geometry of the time-varying systemic subspaces.

This result can be improved formulating the one-sided Lipschitz condition directly for
nonlinear index-2 DAEs such that the stronger estimate

‖D (t)x (t; t0, x0)−D (t)x (t; t0, x1)‖ ≤ exp (−β (t− t0)) ‖D (t0) (x0 − x1)‖
affecting the differentiable solution components Dx instead of DP1x is achieved.

Contractivity notion for index-2 DAEs

The P0-contractivity of the DAE f (x′ (t) , x (t) , t) = 0 on a manifold Γ (t) ⊆M0 (t) is
defined in [San00, §2.2.2] by the means of

∃β ≥ 0∀t ≥ 0, (z, x, t) , (z̃, x̃, t) ∈ Rm × Γ (t)× I,
f (z, x, t) = 0 = f (z̃, x̃, t) , Q0z = Q0z̃ = 0 :

〈z − z̃, P0 (x− x̃)〉 ≤ −β ‖P0 (x− x̃)‖2
(6.28)

Here, Q0 is a constant projector onto ker fy (y, x, t) and 〈·, ·〉 is a suitable scalar product
on Rm together with the induced norm ‖·‖. The definition is acknowledged to be based
on a former definition of contractivity given by R. März. Assuming this definition, the
estimate

‖P0x (t, t0, x0)− P0x (t; t0, x1)‖ ≤ exp (−β (t− t0)) ‖P0 (x0 − x1)‖
for solutions x (t; t0, xi) ∈ Γ (t) of the original DAE can be proved easily. The tech-
niques presented in the current chapter of this thesis make a simple explanation pos-
sible: Condition (6.28) for P0-contractivity states the contractivity of the IRODE of
the associated index-reduced system on Γ (t) ∩M1 (t).

We are going to specify this result modifying the notion of P0-contractivity a little.

Definition 6.23. A fully implicit nonlinear DAE (1.2) with index k = 1, 2 and a
properly formulated derivative term is called D-component contractive if there is a
scalar product 〈·, ·〉 on Rn and a piecewise continuous function β : I → R≤0 such that

∀t ∈ I, xi ∈Mk−1 (t) , zi = R (t) zi with f (zi, xi, t) = 0 :
〈z1 − z2, D (t) (x1 − x2)〉
+ 〈R′(t)D(t) (x1 − x2) , D (t) (x1 − x2)〉 ≤ β (t) ‖D (t) (x1 − x2)‖2 (6.29)

is satisfied.
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The above definition coincides with [MHT03a, Def. 6] in case of index-1 DAEs .

Theorem 6.24. [Interpretation of D-component contractivity]

If the nonlinear DAE 1.2 exhibits tractability index k = 1, 2 on its entire domain and
the system is D-contractive according to Definition 6.23 then solutions x (t; t0, xi) of
initial value problems x1, x2 ∈Mk−1 (t0) of the DAE (1.2) on their respective maximal
intervals of existence It0,xi satisfy the following estimate

∀t ∈ It0,x1 ∩ It0,x2 , t ≥ t0 :

‖D (t)x (t, t0, x1)−D (t)x (t; t0, x2)‖ ≤ exp
(´ t

t0
β (s) ds

)
‖D (t) (x1 − x2)‖ (6.30)

In addition,

1. D-component contractivity of an index-1 system implies the one-sided Lipschitz
condition of the associated inherent regular ODE on its invariant subspace im D (t).

2. If the requirements of Theorem 3.4 are fulfilled then D-component contractivity
of an index-2 DAE implies the same property of the associated index-reduced
DAE restricted to M1 (t). In other words, the one-sided Lipschitz condition of
the IRODE of the IR-DAE restricted to (DM1) (t) holds.

Proof. Estimate (6.30) for D-components of the solution vector is obtained by minor
adjustments of the proof of [San00, Th. 2.2.15]. Choose x1, x2 ∈Mk−1 (t0) and set

α (t) := 1
2
‖D (t) (x (t; t0, x1)− x (t; t0, x2))‖2 ,

yi (t) := d
dt

(D (t)x (t; t0, xi))

on the common maximal interval of existence It0,x1 ∩ It0,x2 . The scalar product is a
symmetric bilinear form so

α′ (t) =< y1 (t)− y2 (t) , D (t) (x (t; t0, x1)− x (t; t0, x2)) >

Due to D = RD we obtain yi (t) = R′ (t)D (t)x (t; t0, xi) +R (t) yi (t) and

α′ (t) =
〈R′ (t)D (t) (x (t; t0, x1)− x (t; t0, x2)) , D (t) (x (t; t0, x1)− x (t; t0, x2))〉
+ 〈R (t) (y1 (t)− y2 (t)) , D (t) (x (t; t0, x1)− x (t; t0, x2))〉

Inequality (6.29) implies
α′ (t) ≤ 2β (t)α (t)

because of f (R (t) yi (t) , x (t; t0, xi) , t) = 0. Applying Grönwall’s Lemma (cf. [Wal00,
p. 330]) results in

α (t) ≤ α (t0) exp

(
2

ˆ t

t0

β (s) ds

)
which is equivalent to Estimate (6.30). Obviously, this is the reason why (6.29) is
called D-component contractivity.

The second proposition is the important one, it helps to interpret the dissipativity
inequality (6.29) for index-k DAEs or to state this inequality without knowing it in
advance.
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With regard to index-1 DAEs, it is known that the complete decoupling of the system
is available locally around any point (y, x, t) ∈ G featuring f (y, x, t) = 0 and the
tractability index one, at least if rk fy (y, x, t)D (t) is assumed to be locally constant.
As we have shown in § 6.3.1, the implicit representation (6.5) of the right hand side
of the IRODE is valid. Consequently we identify (6.29) as an implicit representation
of the one-sided Lipschitz condition (6.24) for the IRODE restricted to its invariant
subspace im D (t).

For index-2 systems, Theorem 3.4 ensures the existence and tractability index 1 of the
index reduced DAE (3.2) belonging to the given differential-algebraic system. Inequal-
ity (6.29) addressing the IR-DAE f̃

(
(Dx)′ (t) , x (t) , t

)
= 0 and its first level constraint

M̃0 (t) reads (i = 1, 2):

∀t ∈ I, xi ∈ M̃0 (t) , zi = R (t) zi with f̃ (zi, xi, t) = 0 :
〈z1 − z2, D (t) (x1 − x2)〉
+ 〈R′(t)D(t) (x1 − x2) , D (t) (x1 − x2)〉 ≤ β (t) ‖D (t) (x1 − x2)‖2

Now the argument in § 6.4.2 readily applies. Hence

∀xi ∈M1 (t) ⊆ M̃0 (t)∃!yi = R (t) yi : f (yi, xi, t) = 0 and f̃ (yi, xi, t) = 0

Lemma 1.19 implies yi = zi for the zi in the above inequality. It follows that (6.29)
constitutes a formulation of the D-component contractivity condition for the index-
reduced system restricted toM1 (t) in terms of the original DAE.
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7 Outlook
Ars longa, vita brevis

(Hippocrates)

Investigating stability properties of nonlinear differential-algebraic systems, we came
across many interesting publications, gathered and tried out several approaches. Un-
derstandably enough, only the most successful paths were selected to form the main
body of the present thesis. We would like to comprise some more promising ideas in
this outlook, which have not found their way into stand-alone theorems so far, partly
because (our academic) life is short, but art is long. Of course, nearly every ques-
tion we answered motivates new topics to work on so this chapter also includes open
questions, thus corresponding to Georg Cantor’s conception - in re mathematica ars
proponendi questionem pluris facienda est quam solvendi.

7.1 Perspectives for index-3 tractable
differential-algebraic systems

Modelling of mechanical systems by second-order ODEs with constraints often results
in differential-algebraic systems of the type

x′1 (t) = f (x1 (t) , x2 (t) , x3 (t) , t)
x′2 (t) = g (x1 (t) , x2 (t) , t)
0 = h (x2 (t) , t)

with a regular matrix hx2gx1fx3 , cf. [AP97, § 9.1.1]. These DAEs are called index-3
systems in Hessenberg form. Hessenberg-3 systems can be analysed without applying
the concepts of the tractability index because differentiating the first level constraints
0 = h (x2 (t) , t) twice reveals the hidden constraints leading to a quite simple con-
struction of a state space form of the original DAE. Dealing with nonlinear DAEs in a
general unstructured (i.e. fully implicit) form usually requires subtle methods of anal-
ysis. The efforts we have undergone are justified because circuit simulation provides a
class of nonlinear MNA equations with tractability index lower or equal to 2 for many
relevant configurations (cf. [EST00]) which are not in Hessenberg form. However, the
structural condition N0 (t) ∩ S0 (x, t) independent of x is known to be valid and some
information on N1 and S1 is available so our tools for fully implicit index-2 systems
assert themselves in this case.

The stability results in the context of Lyapunov’s second or direct method for index-2
DAEs presented in this thesis are based either on reduction of the tractability index
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via differentiation of constraints or on a complete decoupling of the system. The
first or indirect method of Lyapunov for DAEs is vitally dependent on commutativity
between linearization and transformation of a DAE into the associated state space
form. As a matter of principle, mentioned techniques can be applied to differential-
algebraic systems with tractability index 3 as well. However, more involved structural
assumptions are required in order to succeed with the calculations which is a less
critical issue for index-2 DAEs. At the moment, there is a lack of clarity concerning
an area of application for orbital stability of periodic solutions of autonomous index-3
DAEs which are not in Hessenberg form. That is why an elaborate construction of the
state space representation for general index-3 DAEs is waived and solely an outline of
the procedure is presented. Same holds for the gradual reduction of the tractability
index from 3 to 1.

First of all, we have to define the tractability index tree. To this end, continue the
matrix chain of the tractability index as follows:

N2(y, x, t) = kerG2(y, x, t)
S2(y, x, t) = {z ∈ Rm

∣∣ fx(y, x, t)P0(t)P1 (y, x, t) z ∈ im G2(y, x, t)}
G3(y, x, t) = G2(y, x, t) + fx(y, x, t)P0(t)P1 (y, x, t)Q2(y, x, t)

We require admissible projectors Q1 and Q2 in the process, i.e.

Q2 (y, x, t)Q1 (y, x, t) ≡ 0, Q2 (y, x, t)Q0 (t) ≡ 0, Q1(y, x, t)Q0(t) ≡ 0.

Definition 7.1. The properly stated differential-algebraic equation (1.2) possesses the
tractability index 3 on a subset U of its domain G if

∀ (y, x, t) ∈ U , i = 0, 1, 2 : rk Gi (y, x, t) ≡ ri < m and G3 (y, x, t) ∈ GLm (R)

Resembling the index-2 case, nonsingularity of G3 (y, x, t) is equivalent to

N2 (y, x, t) ∩ S2 (y, x, t) = {0}
Using a projector W2 along im G2 it holds S2 = kerW2fxP0P1.
Remark 7.2. The above definition of tractability index 3 adapts the corresponding
definition in [Mä05] to the simplified matrix chain. These minor adjustments are also
used in order to decouple linear index-3 DAEs in [Sch01].

7.1.1 Index reduction

Consider fully implicit properly formulated DAEs (1.2) and suppose im G2 (y, x, t) to
depend on (P0 (t)x, t) only. Applying a projector W2 (P0 (t)x, t) along im G2 (y, x, t)
similarly to Lemma 3.3, we obtain the property

(W2f) (y, x, t) = (W2f) (P0 (t)x, t)

This is why the constraint (W2f) (P0 (t)x, t) = 0 can be replaced by

W2 (P0 (t)x, t)
d

dt
(W2f) (P0 (t)x, t) = 0
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Using the chain rule we arrive at the system f̃
(
(Dx)′ (t) , x (t) , t

)
= 0,

f̃ (y, x, t) :=
(I −W2) (P0 (t)x, t) f (y, x, t) +W2 (P0 (t)x, t) (W2f)t (P0 (t)x, t)

+W2 (P0 (t)x, t) (W2f)x (P0 (t)x, t)
(
D− (t) y + (D−)

′
(t)D (t)x

)
(7.1)

It follows

f̃y (y, x, t) = fy (y, x, t) +W2 (P0 (t)x, t) (W2f)x (P0 (t)x, t)D− (t)

and ker f̃y = ker fy i.e. the differential-algebraic system (7.1) has a properly formulated
derivative term.

We restrict ourselves to (y, x, t) in the domain of f exhibiting f (y, x, t) = 0 and
consider the matrix chain G̃i, Q̃i of (7.1). It follows

G̃1 (y, x, t) = G̃0 (y, x, t) + fx (y, x, t)Q0 (t)
= G1 (y, x, t) +W2 (P0 (t)x, t) fx (y, x, t)P0 (t)

because the terms depending on (P0 (t)x, t) vanish if the partial derivative with respect
to x is multiplied by Q0 (t) and

(W2f)x (P0 (t)x, t) z = W2 (P0 (t)x, t) fx (y, x, t) z + [W2 (P0 (t)x, t)]x

(
z, f (y, x, t)︸ ︷︷ ︸

=0

)
︸ ︷︷ ︸

=0

It follows that Ñ1 = N1 ∩ kerW2 (W1fxP0). Notice that a projector Q̃1 on Ñ1 fulfills
Q1Q̃1 = Q̃1, therefore

G̃2z =
G1z +G2Q̃1z + [W2]x

(
P0Q̃1z,W2 ((W2f)xD

−y + (W2f)t)
)

+W2 (W2f)x P0z +W2 [W2f ]xx

(
P0Q̃1z,D

−y
)

+W2 (W2f)tx P0Q̃1z

In case of Hessenberg-3 systems P0P1 is constant andW2,W2f dependent on (P0P1x, t).
Consequently Q̃1 = Q1 and condition G̃2 (y, x, t) z = 0 is equivalent to

G2 (y, x, t) z = 0, W2 (P0x, t) fx (y, x, t)P0P1z = 0

i.e. z ∈ (N2 ∩ S2) (y, x, t) = {0}. As a result, the method reduces the tractability
index from 3 to 2 so it is adequate to call (7.1) a representation of the index-reduced
DAE.

We do not go into details with regard to suitable structural assumptions for the index
reduction of general index-3 DAEs. If we succeed to set up clearly arranged criteria for
the index reduction, then a Lyapunov function aiming at the IR-DAE onM2 (t) can
be defined in terms of the original DAE. To this end, simply put k = 3 in Definition
6.7. Essentially, the existence of a Lyapunov function for the inherent dynamics of
such systems obtained after two steps of index reduction—and restricted to the con-
figuration spaceM2 (t)—is demanded. Again, the following requirements are sufficient
to guarantee nonlocal existence:
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1. Criteria ensuring feasibility of the index reduction and the tractability index 3
on Uε (Notation 6.6)

2. A cylindrical domain of the inherent dynamics.

Motivated by Theorem 6.20, it is reasonable to expect that the second requirement is
already fulfilled for C1

D-bounded solutions of autonomous fully implicit index-3 DAEs.
Remark 7.3. Definition 6.23 of D-contractivity also supports k = 3. Obviously, the
exponential estimate (6.30) is valid for fully implicit index-3 DAEs and we conjecture
that the notion of D-contractivity for such DAEs also has an interpretation as D-
contractivity of the index-reduced DAE exhibiting index 2, i.e. contractivity of the
inherent dynamics of the DAE obtained after two index reduction steps.

7.1.2 State space form of index-3 DAEs

From a complete decoupling of properly formulated linear index-3 DAEs (e.g. [Sch01])
it is known that DP1P2-components of the solution are determined by an inherent
regular ODE. Hence we suppose that the dynamical solution components of index-3
DAEs (1.2) can be identified by (DP1P2)

(
(Dx∗)

′ (t) , x∗ (t) , t
)
, at least in a neighbour-

hood of the extended integral curve of the reference solution x∗. Following the lines
of § 2.1, we consider the modified Taylor expansion (2.3)

f ∗y (t) (Dx)′ (t) + f ∗x(t)x(t) + h̃
(
(Dx)′ (t), x(t), t

)− r(t) = 0

At this point an adequate generalization of the index-2 identities

I = P0P1 + (P0Q1 + UQ0) + TQ0

I = P0P1 + (UQ0 +Q1) (P0Q1 + UQ0) + TQ0P1

has to be found in order to transform the above Taylor expansion of the index-3 DAE
into an equivalent system of four equations. It is difficult to choose an appropriate
splitting I = P0P1P2+. . . such that the resulting structural conditions for the complete
decoupling are as simple and reasonable as

N0 (t) ∩ S0 (y, x, t) = (N0 ∩ S0) (t)

Anyway, the first equation of the splitted DAE resulting from multiplication of (2.3)
by DP1P2G

−1
3 has the form (cf. [Sch01, p. 12])

u′ (t)− (DP1P2D
−)
′
(t)u (t) +

(
DP1P2G

−1
3 BD−

)
(t)u (t)

+
(
DP1P2G

−1
3

)
(t) (h (u′ (t) , v′ (t) , w′ (t) , u (t) , v (t) , w (t) , z (t) , t)− r(t)) = 0

Here, u (t) := (DP1P2) (t)x (t) and v, w, z denote the remaining solution components
such that x (t) = D− (t)u (t) + v (t) + w (t) + z (t). The terms u′, v′ and w′ stand for
the differentiable components, i.e. (Dx)′ (t) = u′ (t) + v′ (t) + w′ (t) and the auxiliary
function reads h (u′, v′, w′, u, v, w, z, t) = h̃

(
(Dx)′ , x, t

)
. W.l.o.g. we consider the ex-

tended DAE (1.15) belonging to the original system and suppose A = A (t). Hence
the inherent dynamics for u (t) are implicitly given by

u′ (t)− (DP1P2D
−)
′
(t)u (t) +

(
DP1P2G

−1
3 BD−

)
(t)u (t)

+
(
DP1P2G

−1
3

)
(t) (h (u (t) , v (t) , w (t) , z (t) , t)− r(t)) = 0
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Solving the remaining three equations of the splitted DAE for v, w, z such that v =
v (u, t), w = w (u, t) etc. results in the inherent regular ODE

u′ (t)− (DP1P2D
−)
′
(t)u (t) +

(
DP1P2G

−1
3 BD−

)
(t)u (t)

+
(
DP1P2G

−1
3

)
(t) (h (u (t) , v (u (t) , t) , w (u (t) , t) , z (u (t) , t) , t)− r(t)) = 0 (7.2)

of the index-3 DAE
A (t) (Dx)′ (t) + b (x (t) , t) = 0

on its invariant subspace im (DP1P2) (t). Represent the projector DP1P2D
− with re-

spect to bases of systemic subspaces like in it is done in Lemma 2.15. Then, im DP1P2

is parametrized and the IRODE (7.2) is transformed into a state space form. Per con-
structionem, the function h in the modified Taylor expansion vanishes together with
its partial derivatives hu, hv, hw, hz evaluated along the extended integral curve of x∗.
In other words, the complete decoupling and linearization along x∗ commute. This
property carries over to the state space form.

With regard to Theorem 2.22, it is reasonable to conjecture that the state space
representation of autonomous DAEs exhibiting

im (DP1P2) (t) = const.

turns out to be autonomous. Furthermore, we think that characteristic multipliers of
linear index-3 DAEs are likely to coincide with the characteristic multipliers of the
state space form like in the index-2 case. Summarizing, if above considerations are
valid, then the linearization principle will apply and the Andronov-Witt Theorem will
be proved for fully implicit index-3 DAEs as demonstrated for index-1,2 systems.

7.2 Regularization of fully implicit systems

Another interesting property of the presented index reduction approach is to suggest
a regularization of fully implicit DAEs which obey Assumption 3.1. In this case, the
equivalent representation

(I −W1 (P0x, t)) f
(
(Dx)′ (t) , x (t) , t

)
= 0

(W1f) (P0x, t) = 0
(7.3)

of the differential-algebraic system (1.2) is valid. Apparently, this structure looks
similar to a Hessenberg-2 DAE (1.6)! There are reasons to interpret fully implicit
DAEs (1.2) with im G1 (y, x, t) dependent on (P0x, t) as generalized Hessenberg-2 sys-
tems, that is the most important structural properties of a Hessenberg system are
abstracted from its semi-explicit form. For example, it is possible to adapt some
known regularization techniques for Hessenberg systems to (7.3). Let ε ∈ R\ {0}.

1. A special case of the regularization approach by Michael Knorrenschild ([Kno88,
Ch. 2]) for Hessenberg-DAEs (1.6) reads

x′1 (t) = h (x1 (t) , x2 (t) , t)
0 = g (x1 (t) + εx′1 (t) , t)
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Naturally, we suggest the approach

(I −W1 (P0x, t)) f
(
(Dx)′ (t) , x (t) , t

)
= 0

(W1f)
(
P0x+ εD− (t) (Dx)′ (t) , t

)
= 0

(7.4)

for generalized Hessenberg-2 DAEs.
2. The second approach is called März parametrization in [Han92], its formulation

for nonlinear DAEs (1.1) is as follows:

f
(
x′ (t) , x (t) + εP0 (P0x)′ (t) , t

)
= 0

where P0 (t) denotes a projector on ker fy (y, x, t). Actually,

P0 (P0x)′ = P0

(
D−Dx

)′
= D− (Dx)′ + P0

(
D−
)′
Dx (7.5)

but we would like to formulate the März parametrization for DAEs with a prop-
erly stated derivative term like this:

f
(
(Dx)′ (t) , x (t) + εD− (t) (Dx)′ (t) , t

)
= 0 (7.6)

The aim of the game

There are two key aspects behind any regularization approach - first, the regularized
DAE should be easier to handle, which usually means a lower index. Secondly, it is
necessary to show that solutions of the regularization are connected to those of the
original DAE in a suitable manner, for example to state some asymptotic expansion
in terms of parameter ε. Thorough results are known mainly for Hessenberg systems,
cf. [HE95, HHS92] and the references therein. The estimate

‖xε (t)− x (t)‖ ≤ C1 exp

(
−σt
ε

)
+ C2ε

is achieved in [Han95] regarding solutions x (t) of the linear implicit DAE

A (x (t))x′ (t) = g (x (t))

with kerA (t) = const. and solutions xε (t) belonging to the März regularization. It
is based on a result of the differential geometric singular perturbation theory and
requires geometric index 2 of the DAE under consideration. Unfortunately, there are
some difficulties to attest the geometric index 1 of the regularized DAE and this fact
has let us be intrigued by the possibility to access fully implicit systems using (7.4)
and (7.6).

Consider the constitutive function of the März regularization,

f̃ (y, x, t) := f
(
y, x+ εD− (t) y, t

)
Then,

f̃y (y, x, t) = fy (y, x+ εD− (t) y, t) + εfx (y, x+ εD− (t) y, t)D− (t)

f̃x (y, x, t)Q0 (t) = fx (y, x+ εD− (t) y, t)Q0 (t)

G̃1 (y, x, t) = G1 (y, x+ εD− (t) y, t) + ε fx
(
y, x+ εD− (t) y, t

)
P0 (t)︸ ︷︷ ︸

=W1fxP0+(I−W1)fxP0
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Obviously, März parametrization of index-2 tractable DAEs leads to systems of index
one if

N1 ∩ (I −W1) fxP0 = {0} and rk G0 + εfxP0 = const.

In case of Hessenberg-2 systems, ker fx (x, t)P0 ⊆ kerW1fx (x, t)P0 = S1 (x, t) is valid.
Hence,

ker G̃1 (y, x, t) = (N1 ∩ S1)
(
y, x+ εD− (t) y, t

)
= {0}

We have to ensure a constant rk G̃0 (x, t) in order to obtain the tractability index 1 of
the regularized DAE (7.6). Using Notation (1.6), the latter condition is equivalent to
a constant rank rk In − hx1 .

Remark. Taking the addend P0 (D−)
′
Dx in (7.5) into consideration does not influence

the computations leading to the tractability index one of the regularized DAE.

The constitutive function of the Knorrenschild approach reads

f̂ (y, x, t) := f (y, x, t) + (W1f)
(
P0 (t)x+ εD− (t) (Dx)′ (t)

)− (W1f) (P0 (t)x, t)

We get

f̂y (y, x, t) = fy (y, x+ εD− (t) y, t) + ε (W1f)x (y, x+ εD− (t) y, t)D− (t)

f̂x (y, x, t)Q0 (t) = fx (y, x+ εD− (t) y, t)Q0 (t)

because W1f does not depend on Q0 (t)x. Accordingly,

Ĝ1 (y, x, t) = G1

(
y, x+ εD− (t) y, t

)
+ ε (W1f)x

(
y, x+ εD− (t) y, t

)
P0 (t)

In contrast to the setup of Theorem 3.4, the general case (W1f)x P0 6= W1fxP0 has to
be respected because

(W1f)x (y, x+ εD− (t) y, t)P0 (t) z =
[W1 (P0 (t)x+ εD− (t) y, t)]x (z, f (y, x+ εD− (t) y, t))
+W1 (P0 (t)x+ εD− (t) y, t) fx (y, x+ εD− (t) y, t)P0 (t) z

and f (y, x+ εD− (t) y, t) 6= 0, even if f (y, x, t) = 0. Let us assume that im G1 (y, x, t)
is t-dependent only and rk W1 (t) fx (y, x, t) = const. Then,

ker Ĝ1 (y, x, t) = (N1 ∩ S1)
(
y, x+ εD− (t) y, t

)
= {0}

and rk Ĝ0 (y, x, t) = rk G0 + εW1fx is constant, in other words (7.4) exhibits index 1.

Lemma 7.4. The regularization approach (7.4) applied to a properly formulated index-
2 DAE (1.2) where im G1 (y, x, t) has a basis {βi (t)}i=1,...,r=rk G1

and W1fx has a
constant rank results in tractability index one of the regularized system (7.4).

A physical interpretation of the regularization process for some DAEs resulting from
circuit simulation is also possible, cf. [Kno88] and the references therein.
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7.3 A link to logarithmic norms for DAEs

The concept of a logarithmic norm introduced by S.M. Lozinskij and G. Dahlquist is
a useful tool in the perturbation analysis of ordinary differential equations. According
to [DV84, pp. 17-35], the logarithmic norm

µ [A] := lim
h→+0

‖In + hA‖ − 1

h

of a matrix A ∈ Rn×n is the smallest possible one-sided Lipschitz constant of the linear
ODE x′ = Ax, if an inner product norm is used. A logarithmic norm enables stability
estimates for arbitrary norms, thereby the one-sided Lipschitz condition (6.24) for
nonlinear ODEs x′ (t) = f (x (t) , t) is replaced by

∀t ∈ I, x ∈ Ut : µ [fx (x, t)] ≤ β (t) (7.7)

The generalization of classical properties (as in [Str75, DV84]) of logarithmic norms for
matrix pencils with an emphasis on asymptotic stability estimates for linear DAEs is
obtained in [Cel98, GCH99]. In the context of tractability index, [Win00] provides an
appropriate definition of a logarithmic matrix norm referring to the IRODE of a linear
DAE, the resulting estimates being closely related to those of [GCH99] for index-
1 systems. Moreover, nonlinear DAEs with tractability index 1 are treated using
a generalization of (7.7), i.e. the logarithmic norm of the t-dependent linearization
with respect to the subspace im P0. The aim of [HS01] is to develop a conceptual
functional-analytical framework for analysing asymptotic stability of DAEs such that
linearizations and logarithmic norm notions applicable only to bounded operators are
avoided [HS01, p. 825]. Their main tool is a least upper bound logarithmic Lipschitz
constant of an operator f : X → X defined by

M+ [f ] := sup
u,v∈X,u6=v

(u− v, f (u)− f (v))+

‖u− v‖2 (7.8)

with respect to the semi-inner product

(u, v)+ := ‖u‖ lim
h→+0

‖u+ hv‖ − ‖u‖
h

and (X, ‖·‖) being a Banach space. Hereafter, a monotonicity inequality for the prop-
agation of perturbations in the differential solution components P0x (where P0 is a
projector and Q0 = I − P0) of linear-implicit index-1 DAEs

P0x
′ (t) = f (x (t))

are proved if the Q0-restricted logarithmic Lipschitz constant

M+
Q0

[Q0f ] := sup
u,δv∈X,Q0δv 6=0,
u+Q0δv∈Dom(f)

(Q0δv,Q0f (u+Q0δv)−Q0f (u))+

‖Q0δv‖2

is negative, cf. [HS01, Th. 3.5].
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We have proved that a fully implicit index-2 system satisfying assumptions of Theorem
3.4 exhibits the following representation of its inherent dynamics on (DM1) (t):

u′ (t) = fdyn (u (t) , t)
fdyn (u, t) = z +R′ (t)u

with u = D (t)x, x ∈ M1 (t) and z = R (t) z such that f (z, x, t) = 0. Actually, fdyn

denotes the right hand side of the IRODE of the corresponding index reduced system
on (DM1) (t). The least upper bound logarithmic Lipschitz constant for fdyn at a
time t ∈ I admits the representation

M+ [fdyn (·, t)] = sup
u,v∈(DM1)(t),u6=v

(u− v, fdyn (u, t)− fdyn (v, t))+

‖u− v‖2

= sup
xi∈M1(t), x1 6=x2

zi=R(t)zi: f(zi,xi,t)=0

(D (t) (x1 − x2) , z1 − z2 +R′ (t)D (t) (x1 − x2))+

‖D (t) (x1 − x2)‖2

Now the dissipativity resp. monotonicity condition on the DAE reads

∀t ≥ 0 : M+ [fdyn (·, t)] ≤ β (t) ≤ 0 (7.9)

If an inner product norm is considered, then (7.9) is equivalent to D-component con-
tractivity condition (6.29) for the DAE. According to Theorem 6.24, we get the asymp-
totic estimate (6.30), i.e. a non-expansive flow of the differential-algebraic system with
respect to D-components of the solution vector. Notice that Criterion (7.9) neither
builds on linearization nor requires the Lipschitz condition for fdyn.

7.4 On practical computation of a Lyapunov
function

In theory, there is no difference between theory
and practice. But, in practice, there is.

(Jan L. A. van de Snepscheut)

Although Chapter 6 deals with Lyapunov functions for differential-algebraic systems of
index 1 and 2 from a purely analytical point of view, we cannot deny the importance of
a numerical method to obtain an approximation of a Lyapunov function, e.g. in order
to check stability or even to estimate the domain of attraction of an asymptotically
stable solution. To this end, the results from [Mar02]1 seem very promising to us. A
continuous, piecewise linear Lyapunov function for the zero solution of an autonomous
ODE x′ (t) = f (x (t)) is constructed using convex optimization techniques, precisely
Linear Programming. This approach contains involved details, but the simplified main
idea is the following: a suitable grid (i.e. a simplicial partition of the domain) is
constructed and adequate constraints for the linear program are stated such that a

1the contemporary name of the author is Sigurður Freyr Hafstein
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piecewise linear, continuous Lyapunov candidate function is uniquely defined on this
grid and satisfies the Lyapunov monotonicity condition in every grid point. Certainly,
a piecewise linear Lyapunov function is not differentiable any longer, but this is not a
problem because such a function fulfills a local Lipschitz condition.

On differentiability of a Lyapunov function

Actually, there is no need to require differentiability of the Lyapunov function, we can
perfectly do with a continuous function V (u, t) satisfying a local Lipschitz condition
with respect to u. The property of V (x (t) , t) being non-increasing along solutions
of the ODE x′ (t) = f (x (t) , t) is ensured by its non-increasing total time derivative
which can be expressed by the dissipativity/monotonicity inequality

V̇ (x, t) = Vt (x, t) + Vx (x, t) f (x, t) ≤ 0

without actually solving the system. Another well-known approach is to require non-
increasing right-hand upper Dini derivative D+ of V (x (t) , t). The upper right hand
Dini derivative of a function g : I ⊆ R→ Rm at t ∈ I is defined by

D+g (t) := lim sup
h→+0

g (t+ h)− g (t)

h

According to [Yos66, § 1] and [Hah67, p. 196],

D+V (x (t) , t) = lim sup
h→+0

V (x (t) + hf (x (t) , t) , t+ h)− V (x (t) , t)

h

along a solution x of x′ (t) = f (x (t) , t) if V (u, t) ≥ 0 is continuous and fulfills a local
Lipschitz condition with respect to u. This is easily seen using continuity of involved
functions, Taylor expansion of x (t+ h) = x (t) + x′ (t+ ξh), ξh ∈ (t, t+ h) and

V (x+ y)− V (x) = ‖V (x+ y)‖ − ‖V (x)‖ ≤ ‖V (x+ y)− V (x)‖ ≤ L ‖y‖
as well as V (x) − V (x+ y) ≤ L ‖y‖. Consequently, the following definition of a
non-differentiable Lyapunov function for DAEs arises:

Definition 7.5. [Non-differentiable Lyapunov function for D-component stability]

V = V (u, t) ∈ C0 (U1,R) satisfying a local Lipschitz condition with respect to u is
called a (non-differentiable) Lyapunov function for the reference solution x∗ of the
properly formulated DAE (1.2) with tractability index k = 1, 2 and im D (t) = const.
if

1. ∀t ≥ 0 : V ((Dx∗) (t) , t) = 0

2. There exists a positive definite function H1 ∈ C0 (Bε (0) ⊆ Rn,R) exhibiting

∀t ≥ 0, u ∈ (DMk−1) (t) ∩ Bε ((Dx∗) (t)) : H1 (u− (Dx∗) (t)) ≤ V (u, t)

3. For all t ≥ 0, x ∈Mk−1(t), ‖D (t) (x− x∗ (t))‖ < ε, z = R(t)z with f(z, x, t) = 0:

V̇ (D (t)x, t) := lim sup
h→+0

V (D (t)x+ hz, t+ h)− V (D (t)x, t)

h
≤ 0 (7.10)
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Evaluation of the implicit monotonicity condition

The problem with Definition 7.5 is how to access the implicit monotonicity condition
resp. dissipation inequality (7.10) in numerical computations? In case of autonomous
index-1 DAEs (2.28), we are able to obtain the quantities necessary for Hafstein’s
algorithm such that it applies to the inherent regular ODE on im D:

1. Consider a suitable grid on the invariant subspace im D

2. Compute the consistent initialization for every grid point ui ∈ im D

(yi, xi) ∈ Rn × Rm with yi = Ryi, f (yi, xi) = 0

of the DAE by the means of the tractability index-1 projection onto the constraint
manifoldM0. Precisely,

a) The zero solution (y0, x0) = (0, 0) is known in advance (starting point)
b) The initial guess to a consistent initialization (yi, xi) corresponding to a

ui is (yj, D
−ui +Q0xj) where (yj, xj) denotes the consistent initialization

belonging to an adjacent grid point uj. Compute a Lagrange multiplier
λ ∈ Rm by solving

Fi (λ) := f
(
yj +Dλ,

(
D−ui +Q0xj

)
+Q0λ

)
= 0

with Newton’s method which is feasible because
∂

∂λ
Fi = fyD + fxQ0 = G1

is nonsingular and (yi, xi) is located nearby (yj, xj). Due to continuous
dependence of index-1 solutions on initial values, last property applies if
the grid is sufficiently fine. Then,

(yi, xi) :=
(
Ryj +Dλ,

(
D−ui +Q0xj

)
+Q0λ

)
is a consistent initialization of the DAE with Dxi = ui and yi = Ryi.

Figure 7.1: Order of processing the consistent initializations

In case of tractability index 2, a consistent initialization is more expensive, but never-
theless possible for DAEs allowing the index reduction, cf. [ES00, ESL01].
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7.5 Open questions

Concerning the previous sections, we have to point out that practical sufficient condi-
tions ensuring the decoupling procedure or the reduction of the tractability index 3 to
2 are still to be investigated. We believe that a reasonable way to generate applicable
results is to identify a class of nonlinear, fully implicit index-3 DAEs where asymptotic
stability results are of vital importance, stick to and exploit the structural properties
of such system class.

Furthermore, it is an open question, how solutions of the regularized DAE relate to
solutions of the original system, in the best case on unbounded common intervals of
existence.

We have shown that cylindricity of the domain of the inherent dynamics is a key prop-
erty in Lyapunov’s direct method for DAEs. It is an issue of both theoretical and
practical reason to derive further structural assumptions in order to obtain a cylindri-
cal domain of the IRODE of the IR-DAE thus making Lyapunov’s direct method in
Chapter 6 applicable to C1

D-unbounded solutions of differential-algebraic systems.

The interconnection between the functional-analytic concepts of least upper bound log-
arithmic Lipschitz constants applied to differential-algebraic systems à la [HS01] and
dissipativity inequalities (monotonicity of a Lyapunov function via (6.7) resp. (6.13),
D-component contractivity (6.29)) stated in § 7.3 certainly deserves further refine-
ments. We plan to investigate this issue in a forthcoming paper.

Last but not least, the numerical treatment of the new qualitative resp. theoretical
aspects presented in this thesis is also desirable. As indicated in the course of Chap-
ter 5, certain background on numerical methods for the computation of characteristic
multipliers and related questions like solving boundary value problems for DAEs is
available. In our personal opinion, situation becomes less comfortable when it comes
to Lyapunov functions. We hope that considerations in Section 7.4 might be helpful
to obtain a piecewise linear approximation to a Lyapunov function for a zero-solution
of an autonomous DAE. For smaller index-1 problems the computational costs are
conjectured to be reasonable. The practical realization of the approach and further
development aiming at tractability index two DAEs need to be performed. One addi-
tional interesting issue in geometric numerical integration is preservation of a Lyapunov
function by numerical methods. Intuitively, there is some similarity to the concepts
around B-stability and contractivity of numerical methods applied to contractive dif-
ferential equations, the latter questions already studied for DAEs with index 1,2 in
[MHT03a, MHT03b, San00]. As far as we know, some results are available for ODEs
(e.g. [GQ05, MQR98, MQR99]) but the DAE case is still unrevealed.
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8.1 Auxiliary results

Lemma 8.1. [Basic properties of projectors]

Let V,W ⊆ Rn be linear subspaces.

1. If Q is a projector on V along W then its complementary projector P = I − Q
projects along V on W

2. It holds kerP ⊕ im P = Rn for a projector P onto a subspace of Rn

3. If Q1, Q2 both project on V then Q1Q2 = Q2

4. If P1, P2 are projectors along W then P1P2 = P1

5. Assuming V ⊕W = Rn, there exists a unique projector P realizing this decom-
position of Rn, i.e. projecting on V along W .

6. A projector P is self-adjoint iff it is an orthogonal projector, i.e. P projects on
V along V ⊥.

1)-4) follow immediately from the definition of complementary projectors and the
idempotence P 2 = P of a projector.

On 5) It is assumed that V ⊕ W = Rn so consider bases {v1, . . . , vs} of V and
{w1, . . . , wn−s} ofW . Then, {v1, . . . , vs, w1, . . . , wj} are linearly independent and form
the columns of a nonsingular matrix

M := (v1, . . . , vs, w1, . . . , wn−s)

Then, the following basis representation

[P ]
{vi,wj}
{vi,wj} =

(
Is 0
0 0n−s

)
constitutes a projector on V along W . At this, [T ]

{ai}
{bi} denotes the matrix represen-

tation of a linear mapping T with respect to the basis {ai} of input vectors and the
basis {bi} of output vectors. The change of bases results in

[P ]
{ei}
{ei} = M [P ]

{vi,wj}
{vi,wj}M

−1 = M

(
Is 0
0 0n−s

)
M−1 (8.1)
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because M = [I]
{vi,wj}
{ei} is the transformation matrix of the basis {vi, wj} into the

canonical basis {ei} of Rn. For two projectors P1, P2 onto V along W ,

P1x = P1 (v + w) = P1v = v = P2v = P2x

that is
P1 = P2

holds, whereas x = v + w is the unique decomposition with v ∈ V , w ∈ W due to
V ⊕W = Rn.

On 6) With P being a projector, P ∗ is also idempotent with im P ∗ = (kerP )⊥,
kerP ∗ = (im P )⊥. The property P = P ∗ implies im P = (kerP )⊥ and kerP =
(im P )⊥ thus fixing the orthogonal projector. Conversely, the orthogonal projector
satisfies P = P ∗.

Lemma 8.2. Let V (t) ⊆ Rn be a parameter dependent linear subspace. If V (t) is T -
periodic and has a basis consisting of continuously differentiable functions then there
exists a T -periodic C1-basis of V (t).

Proof. The proof follows the lines of [LMW03, § 3]. Consider the basis {c1(t), . . . , cr(t)}
of V (t) consisting of C1-functions and build a matrix valued function

C(t) := (c1(t), . . . cr(t))

of these column vectors. According to Theorem 6 from [GM86, p. 195] the expression

P(t) :=C (t)
(
CT (t)C (t)

)−1
CT (t)

defines an orthogonal C1−projector on V (t).

We have assumed V (t+ T ) = V (t) so for all y ∈ V (t+ T ) = V (t):

P(t)y = y = P(t+ T )y,

in addition to P(t)y = 0 = P(t + T )y for y ∈ (V (t+ T ))⊥ = (V (t))⊥. It follows
P(t+ T ) = P(t).

Now it is to prove that solutions {αi}i=1,...,r of the initial value problems

α′i(t) = P ′(t)αi(t), αi(0) = ci(0)

constitute a T−periodic C1−Basis of V (t).

Obviously, the above C1−solutions αi possess the representation

αi(t) = exp

(ˆ t

0

P ′(s)ds
)
ci(0)

The T−periodicity of αi results from the fundamental theorem of calculus and T−periodi-
city of P(t) via

αi(t+ T ) = exp

(ˆ t+T

0

P ′(s)ds
)
ci(0) = exp (P(t+ T )− P(0)) ci(0)

= exp (P(t)− P(0)) ci(0) = αi(t)
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αi are linearly independent because same holds for the initial values ci(0). With
Q = I − P we obtain

(Qαi)′ (t) = Q′(t)αi(t) +Q(t)α′i(t)

= Q′(t) (I − P(t))αi(t)

= Q′(t) (Qαi) (t)

Due to Q(0)αi(0) = 0 of this linear ODE we obtain Qαi ≡ 0 resp. Pαi = αi, i.e.
{a1(t), . . . , ar(t)} constitute a T -periodic C1-basis of V (t).

Lemma 8.3. Consider an open set G̃ ⊆ Rm and a matrix valued function M ∈
C1(G̃,Rk×s) together with b ∈ C1(G̃,Rs). The Jacobian [M (x∗) b (x∗)]x has the follow-
ing representation

[M (x∗) b (x∗)]x z = M (x∗) bx (x∗) z + [M (x∗)]x (z, b (x∗))

with z ∈ Rm and the bilinear form [M(x∗)]x defined by

[M (x∗)]x (z, v) :=
m∑
j=1

zj

[
∂

∂xj
M (x∗)

]
v (8.2)

Moreover, the i-th component of [M (x∗)]x features the representation

([M (x∗)]x (z, v))i =
s∑
l=1

vl (DMil (x∗) z) =
s∑
l=1

vl
∂

∂z
Mil (x∗) (8.3)

Proof. We validate the above representations for the i-th component, i = 1, . . . , k.

For the j-th unit vector ej ∈ Rm it holds (ej)i = δij. The product rule for real functions
implies

([Mb]xej)i = ([Mb]x)ij =
∂

∂xj
(Mb)i =

s∑
l=1

∂

∂xj
(Milbl) =

s∑
l=1

bl
∂

∂xj
Mil +

s∑
l=1

Mil
∂

∂xj
(bl)

=

([
∂

∂xj
M (x)

]
b (x)

)
i

+
s∑
l=1

Mil (x)
(
bx (x)

)
lj

=

([
∂

∂xj
M (x)

]
b (x)

)
i

+
(
M (x) bx

)
ij

=

([
∂

∂xj
M (x)

]
b (x)

)
i

+
(
M (x) bx (x) ej

)
i

Use the linear combination z =
∑m

j=1 zjej in order to obtain Representation (8.2) for
[M(x)]x (z, b(x)).
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Considering the i-th component of [M(x)]x(z, b) and (8.2),

([M(x)]x(z, v))i =

(
m∑
j=1

zj

[
∂

∂xj
M(x)

]
v

)
i

=
m∑
j=1

zj

([
∂

∂xj
M(x)

]
v

)
i

=
m∑
j=1

s∑
k=1

zj

[
∂

∂xj
M(x)

]
ik

vk

Now ∂
∂xj
M(x) is defined componentwise so

[
∂
∂xj
M(x)

]
ik

= ∂
∂xj

[M(x)]ik hence

([M(x)]x (z, b))i =
m∑
j=1

s∑
k=1

zj
∂

∂xj
[M(x)]ik bk

=
s∑

k=1

bk

(
m∑
j=1

∂

∂xj
[M(x)]ik zj

)
=

s∑
k=1

bk [DMikz]

DMikz is the directional derivative ∂
∂z
Mil(x) for continuously differentiable Mik (x).

This proves the lemma.

Lemma 8.4. (Characterization of autonomous ODEs)

Let D ⊆ Rm be a region and f ∈ C1 (D,R). The explicit ordinary differential equation

x′(t) = f (x(t), t) (8.4)

is autonomous if and only if all solutions x are invariant under translation, i.e. ∀c ∈
R : x̃(t) = x (t+ c) also solves (8.4).

Proof. Solutions of an autonomous ODE are obviously invariant under translations.

Require that all solutions of (8.4) are translation-invariant. Let us assume ft 6= 0, i.e.
there exists a x0 ∈ D and t0, t1 ∈ R with f (x0, t0) 6= f (x0, t1). Here, D is an open set
and f continuously differentiable. According to the theorem of Picard-Lindelöf, there
exists a unique solution x ∈ C1 (I,D) of the IVP x (t0) = x0 of (8.4) on the interval
I := (t0 − ε, t0 + ε) for a sufficiently small ε > 0.

Define c := t1 − t0 and the function x̃(t) := x (t− c) in C1 (I + c,D). By virtue of
translation invariance of solutions associated to (8.4) and the choice of the t-domain,
x̃ is a solution of the ODE (8.4) satisfying the initial values

x̃ (t1) = x (t1 − c) = x (t0) = x0

Per constructionem x̃′(t1) = x′(t0) is valid which contradicts the assumptions because

x̃′(t1) = f (x̃(t1), t1) = f (x0, t1) 6= f (x0, t0) = x′(t0)
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8.2 Decoupling of nonlinear DAEs using a projector
P̃1 on S1

§ 2.1 covers in detail the nonlinear decoupling using a projector Q1 on N1 along
K ⊇ N0. Supplementary, we decouple DAEs applying a projector P̃ on S1 leading
to an inherent regular ODE on the associated invariant subspace DS1. Due to its
structural complexity, the mentioned representation seems to be hardly suitable for
further investigations.

Consider linear-implicit DAEs (2.5) withA = A(t) possessing a solution x∗ ∈ C1
D (I,Rm).

Again, we exploit the equivalent representation (2.3) of the form

A(t) (Dx)′ (t) + b∗x(t)x(t) + h̃ (x(t), t)− r(t) = 0

Assume that the subspaces (DS1) (x∗ (t) , t) and (DK) (x∗ (t) , t) are constant. Follow-
ing the lines of § 1.5.2, the steps of the linear decoupling of

A (t) (Dx)′ (t) + b∗x (t)x (t) = 0

are applied to the entire DAE. Thereby we use the canonical index-2 projector P1(x, t) =
P1,can(x, t) on S1 (x, t) alongN1 (x, t) and a projector P̃1 (x, t) on S1 (x, t) alongN1 (x, t)
resulting in the equivalent system

u′(t) +
(
DP1Q̃1D

−
)

(t)(Dy)′(t)

+
(
DP1G

−1
2

)
(t) (h (u(t), y(t), w(t), t)− r(t))

+
(
DP1G

−1
2 b∗xD

−) (t)u(t) +
(
DP1G

−1
2 b∗xP0P1Q̃1

)
(t)y(t)

= 0 (8.5)

(
I +

(
UQ0 + P0P̃1

)
G−1

2 b∗xP0P1Q̃1

)
(t)y(t)

+
(
(PQ1 + UQ0)G

−1
2

)
(t) (h (u(t), y(t), w(t), t)− r(t))

+
(
UQ0G

−1
2 b∗xD

−) (t)u(t)

= 0 (8.6)

(
TQ0P1G

−1
2 b∗xD

−) (t)u(t) + w(t)
+
(
TQ0P1G

−1
2

)
(t) (h (u(t), y(t), w(t), t)− r(t))

− (Q0Q1D
−) (t)(Dy)′(t) +

(
TQ0P1G

−1
2 b∗xP0P1Q̃1

)
(t)y(t)

= 0 (8.7)

Here, P1 (t) := P1 (x∗ (t) , t) etc. and u, y, w defined according to (1.32).

Equation (8.6) constitutes

M̃
(
u(t), w(t), Z̃(t)y(t), t

)
= 0

with Z̃(t) =
(
UQ0 + P0Q̃1

)
(t) and

M̃ (u,w, y, t) =

(
I +

(
UQ0 + P0P̃1

)
G−1

2 b∗xP0P1Q̃1

)
(t)y +

(
UQ0G

−1
2 b∗xD

−) (t)u

+
(
(PQ1 + UQ0)G

−1
2

)
(t) (h (u, y, w, t)− r(t))
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The partial derivatives of this function are

M̃y (u,w, y, t) =

(
I +

(
UQ0 + P0P̃1

)
G−1

2 b∗xP0P1Q̃1

)
(t)

+
(
(PQ1 + UQ0)G

−1
2

)
(t)hy (u, y, w, t)

M̃u (u,w, y, t) =
(
UQ0G

−1
2 b∗xD

−) (t) +
(
(PQ1 + UQ0)G

−1
2

)
(t)hu (u, y, w, t)

M̃w (u,w, y, t) =
(
(PQ1 + UQ0)G

−1
2

)
(t)hw (u, y, w, t)

Take
hy (u∗(t), w∗(t), y∗(t), t) = h̃x (x∗(t), t)

(
UQ0 + P0Q̃1

)
(t) ≡ 0

and Q̃1(t)Z̃(t) = Q̃1(t) into consideration resulting in

M̃z (u∗(t), w∗(t), Z(t)y∗(t), t) =
(
I +

(
UQ0 + P0P̃1

)
G−1

2 b∗xP0P1Q̃1

)
(t)

with z = Z̃ (t) y. This matrix is regular for all t ∈ I so there exists a unique implicitly
defined function m̃ = m̃ (u,w, t) exhibiting

m̃ (u∗(t0), w∗(t0), t0) = y∗(t0)

M̃
(
u,w, Z̃(t)m̃ (u,w, t) , t

)
= 0

m̃ (u,w, t) =
(
UQ0 + P0Q̃1

)
(t)m̃ (u,w, t)

m̃w(u,w, t) = −
(
M̃−1

y M̃w

)
(u,w, m̃ (u,w, t) , t)

m̃u(u,w, t) = −
(
M̃−1

y M̃u

)
(u,w, m̃ (u,w, t) , t)

A complete decoupling of the DAE can be obtained under the assumption

Q1(t)m̃w (u,w, t) = 0⇔ Q1(t)m̃ = Q1(t)m̃ (u, t) (8.8)

Then,
d

dt
(D(t)m̃ (u(t), t)) = (Dm̃)u (u(t), t)u′(t) + (Dm̃)t (u(t), t)

Inserting this into (8.5) provides the constraint(
I +

(
DP1Q̃1m̃

)
u

(u(t), t)
)
u′(t) +

(
DP1Q̃1D

−
)

(t) (Dm̃)t (u(t), t)

+
(
DP1G

−1
2 b∗xP0P1Q̃1

)
(t)m̃ (u(t), t) +

(
DP1G

−1
2 f ∗xD

−) (t)u(t)

+
(
DP1G

−1
2

)
(t) (h (u(t), m̃ (u(t), w(t), t) , w(t), t)− r(t))

= 0

Again, this equation can be solved for u′ locally around the integral curve of x∗ because
h̃x (x∗(t), t) = 0 implies

D(t)m̃u (u∗(t), w∗(t), t) = −
(
D(t) +DP̃1G

−1
2 b∗xP0P1Q̃1

)
(t)
(
UQ0G

−1
2 b∗xD

−) (t) = 0

According to a perturbation lemma, I +
(
DP1Q̃1D

−Dm̃u

)
(u, t) is regular in a neigh-

bourhood of the integral curve of x∗ where
∥∥∥(DP1Q̃1D

−Dm̃u

)
(u, t)

∥∥∥ < 1. Therefore,

u′(t) = v (u(t), w(t), t) (8.9)
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with

v (u,w, t) = −
(
I +

(
DP1Q̃1m̃u

)
(u, t)

)−1

·

·
{ (

DP1Q̃1D
−
)

(t) (Dm̃)t (u, t) +
(
DP1G

−1
2 b∗xP0P1Q̃1

)
(t)m̃ (u, t)

+
(
DP1G

−1
2 b∗xD

−) (t)u+
(
DP1G

−1
2

)
(t) (h (u, m̃ (u,w, t) , w, t)− r(t))

Summing up, (8.7) can be written as

K̃ (u, (TQ0) (t)w, t) = 0

with

K̃ (u,w, t) =


(
TQ0P1G

−1
2 b∗xD

−) (t)u+
(
TQ0P1G

−1
2 b∗xP0P1Q̃1

)
(t)m̃ (u, t) + w(t)

+
(
TQ0P1G

−1
2

)
(t) (h (u(t), m̃ (u,w, t) , w(t), t)− r(t))

− (Q0Q1D
−) (t) (Dm̃)t (u, t)− (Q0Q1D

−) (t) (Dm̃)u (u, t) v (u,w, t)

With ξ = (TQ0) (t)w it holds

K̃ξ (u, (TQ0) (t)w, t) =(
TQ0P1G

−1
2

)
(t) (hw + hym̃w)

(
u, m̃ (u, (TQ0) (t)w, t) ,
(TQ0) (t)w, t

)
(TQ0) (t)

+I − (Q0Q1D
−) (t) (Dm̃)u (u, t) vw (u, (TQ0) (t)w, t) (TQ0) (t)

and

vw (u, (TQ0) (t)w, t) =
−
(
I +

(
DP1Q̃1m̃u

)
(u, t)

)−1

·
· (DP1G

−1
2 (hym̃w + hw)TQ0

)
(u, (TQ0) (t)w, t)

The partial derivatives hy, hw vanish in (u∗(t), y∗(t), w∗(t), t) so

K̃ξ (u∗(t), (TQ0) (t)w∗(t), t) ≡ Im

Consequently a local resolution function k̃ = k̃ (u, t) satisfying

k̃ (u∗(t0), t0) = w∗(t0)

K̃
(
u, (TQ0) (t)k̃ (u, t) , t

)
= 0

k̃ (u, t) = (TQ0) (t)k̃ (u, t)

exists. Inserting this function in (8.9) we obtain the explicit differential equation
u′(t) = v

(
u(t), k̃ (u(t), t) , t

)
, more precisely

u′(t) = −
(
I +

(
DP1Q̃1m̃u

)
(u(t), t)

)−1

·

·


(
DP1Q̃1D

−
)

(t) (Dm̃)t (u(t), t) +
(
DP1G

−1
2 b∗xP0P1Q̃1

)
(t)m̃ (u(t), t)

+
(
DP1G

−1
2

)
(t)
(
h
(
u, m̃

(
u, k̃ (u(t), t) , t

)
, k̃ (u(t), t) , t

)
− r(t)

)
+
(
DP1G

−1
2 b∗xD

−) (t)u(t)

(8.10)

This ODE is called the inherent regular ODE of the original system (2.5) with respect
to the decoupling with P̃1 on S1.
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Lemma 8.5. DS1 is an invariant subspace of the IRODE (8.10)

Proof. Notice that for (u, t) sufficiently close to (u∗(t), t) the estimate∥∥∥(DP1Q̃1m̃u

)
(u(t), t)

∥∥∥ < 1

holds. For this reason the inverse of I+DP1Q̃1m̃u can be represented by the Neumann
series, (

I +DP1Q̃1m̃u

)−1

=
∑
n∈N

(−1)n
(
DP1Q̃1m̃u

)n
It follows that

(
I −DP̃1D

−
)(

I +
(
DP1Q̃1m̃u

))−1

DP1 =

(
I −DP̃1D

−
)
·

·
(
I +DP1

(
Q̃1m̃u + . . .

))
DP1

= 0

because
(
I −DP̃1D

−
)
projects along DS1 = im DP1. Therefore,(

I −DP̃1D
−
)

(t)u′(t) = 0

Using a constant projector P̂ on DS1,(
DP̃1D

−
)′
DP̃1D

− =
(
DP̃1D

−P̂
)′
DP̃1D

− = 0

so v(t) :=
(
I −DP̃1D

−
)

(t)u(t) solves the homogeneous ODE

v′(t) =
(
I −DP̃1D

−
)′

(t)u(t) +
(
I −DP̃1D

−
)

(t)u′(t)

= −
(
DP̃1D

−
)′

(t)v(t)

Consequently, u(t0) ∈ DS1 ⇔ v(t0) = 0⇒ v(t) ≡ 0⇔ u(t) ∈ DS1.

The structural condition (8.8) reads

0 = (Q1m̃w) (u,w, t) = −Q1

(
M̃−1

y M̃w

)
(u,w, m̃ (u,w, t) , t)

with M̃w (u,w, y, t) =
(
(PQ1 + UQ0)G

−1
2

)
(t)h̃x (D−u+ y + w, t) (TQ0) (t). Similarly

to the proof of Lemma 2.9 the simplified assumption (2.15) implies M̃w ≡ 0 and the
feasibility of the decoupling of linear implicit DAEs having DS1 = const. without the
need for Q0Q1D

− ∈ C1. Summarizing the assumptions,

Theorem 8.6. Consider the index-2 DAE

A(t) (Dx)′ (t) + b (x(t), t) = 0
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together with a solution x∗ ∈ C1
D (I,Rm) on a compact interval I. Assume that(

(UQ0 + P0Q1,can)G−1
2,canb

∗
xP0P1,can

)
(t),(

(UQ0 + P0Q1,can)G−1
2,can

)
(t) (b (x, t)− b∗x(t)x) ∈ C2

is independent of x in a neighbourhood of the integral curve of x∗ and

(DS1) (x∗(t), t) = const.

is valid. Let P̃1 (t) be a projector on N1 (x∗(t), t) along K (t) such that DK is con-
stant. Then the inherent dynamics of the DAE for the DP̃1-components nearby x∗ is
determined by the IRODE (8.10) on its invariant subspace DS1.

Proof. The smoothness assumptions imply M̃ to be twice continuously differentiable
with respect to u,w, y. This property carries over to m̃ due to the implicit function
theorem. Because of N0(t)∩ S0 (x, t) = (N0 ∩ S0) (t) there exists an implicitly defined
function k̃ like above which is continuously differentiable w.r.t. u,w. Consequently,
DP̃1-components of a solution x ∈ Bε (x∗) ∈ C1

D (I,Rm) of the original DAE satisfy
necessarily the inherent regular ODE (8.10) on DS1. Vice versa, every solution of the
IRODE (8.10) on the invariant subspace DS1 induces a solution x = D−u+ w + y of
the original DAE.
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