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These notes are an attempt to summarize some of the key mathe-
matical aspects of differential geometry, as they apply in particular
to the geometry of surfaces in R

3. The focus is not on mathematical
rigor but rather on collecting some bits and pieces of the very pow-
erful machinery of manifolds and “post-Newtonian calculus”. Even
though the ultimate goal of elegance is a complete coordinate free
description, this goal is far from being achieved here—not because
such a description does not exist yet, but because the author is far
to unfamiliar with it. Most of the geometric aspects are taken from
Frankel’s book [9], on which these notes rely heavily. For “classical”
differential geometry of curves and surfaces Kreyszig book [14] has
also been taken as a reference.
The depth of presentation varies quite a bit throughout the notes.
Some aspects are deliberately worked out in great detail, others are
only touched upon quickly, mostly with the intent to indicate into
which direction a particular subject might be followed further.

1



Contents

1. Some fundamentals of the theory of surfaces 4

1.1. Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1. Parameterization of the surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2. First fundamental form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3. Second fundamental form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. Formulas of Weingarten and Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3. Integrability conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4. Bianchi Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Some important parameterizations of surfaces 12

2.1. Monge parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1. Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2. Formal expression in terms of ∇‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3. Small gradient expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Cylindrically symmetric surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1. General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2. Special case 1: Arc length parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3. Special case 2: Height is a function of axial distance . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4. Special case 3: Axial distance is a function of height . . . . . . . . . . . . . . . . . . . . . . . 16

3. Variation of a surface 17

3.1. Definition of the variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2. Variation of the first fundamental form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1. Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2. Inverse metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3. Determinant of the metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4. Area form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3. Variation of the normal vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4. Variation of the volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1. Heuristic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2. Formal approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5. Variation of the extrinsic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.1. Second fundamental form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2. Mean curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4. Some applications to problems involving the first area variation 26

4.1. Minimal surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.1. Defining property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2. Example 1: Soap film between two circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.3. Example 2: Helicoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.4. Example 3: Enneper’s minimal surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2. Laplace’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3. Stability analysis for the isoperimetric problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4. The Plateau-Rayleigh-instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5. Vesicles 36

5.1. Shape equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2. Stability of free cylindrical vesicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2



A. Christoffel symbols 40

A.1. Definition and transformation law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.2. Some identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.3. Local tangent coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B. Mappings 43

B.1. Differentials and and pull-backs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
B.2. Conformal and isometric mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.3. Killing fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B.3.1. Killing equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.3.2. Number of Killing fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.3.3. Killing vectors along geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.3.4. Maximally symmetric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

C. Geodesics, parallel transport and covariant differentiation 49

C.1. Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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C.5. Example: The Poincaré plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C.5.1. Metric and Christoffel symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
C.5.2. Parallel transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
C.5.3. Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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1. Some fundamentals of the theory of surfaces

1.1. Basic definitions

1.1.1. Parameterization of the surface

Let U be an (open) subset of R
2 and define the function

~r :

{
R

2 ⊃ U → R
3

(u1, u2) 7→ ~r(u1, u2)
. (1.1)

We will assume that all components of this function are sufficiently often differentiable. Define further the vectors1

eµ ≡ ~r,µ :=
∂~r

∂uµ
, (1.2a)

and ~n :=
e1 × e2

|e1 × e2|
. (1.2b)

If the eµ are everywhere linearly independent2, the mapping (1.1) defines a smooth surface S embedded in R
3. S

is a differentiable submanifold of R
3. The vectors eµ(~r) belong to T~rS, the tangent space of S at ~r, this is why we

use a different notation for them than the “ordinary” vectors from R
3. Note that while ~n is a unit vector, the eµ

are generally not of unit length.

1.1.2. First fundamental form

The metric or first fundamental form on the surface S is defined as

gij := ei · ej . (1.3)

It is a second rank tensor and it is evidently symmetric. If it is furthermore (everywhere) diagonal, the coordinates
are called locally orthogonal.

The dual tensor is denoted as gij , so that we have

gijg
jk = δk

i =

{
1 if i = k
0 if i 6= k

, (1.4)

where δk
i is called the Kronecker symbol. Hence, the components of the inverse metric are given by

(
g11 g12

g21 g22

)

=
1

g

(
g22 −g21

−g12 g11

)

. (1.5)

By virtue of Eqn. (1.4) the metric tensor can be used to raise and lower indices in tensor equations. Technically,
“indices up or down” means that we are referring to components of tensors which live in the tangent space or the
cotangent space, respectively. It requires the additional structure of a metric in the manifold in order to define an
isomorphism between these two different vector spaces.

The determinant of the first fundamental form is given by

g := det g ≡ |g| ≡ |gij | =
1

2
εikεjlgijgkl , (1.6)

where εik is the two-dimensional antisymmetric Levi-Cività symbol

εik =

∣
∣
∣
∣
∣

δi
1 δi

2

δk
1 δk

2

∣
∣
∣
∣
∣

= δi
1δ

k
2 − δk

1δ
i
2 , εik = εik .

1eµ = ∂~r/∂uµ is the classical notation. The modern notation simply calls ∂/∂uµ (or even shorter: ∂uµ ) the canonical local coordinate
basis belonging to the coordinate system {x}.

2An equivalent requirement is that the differential ~r∗ has rank 2 (see Sec. B.1).
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local tangent plane

P
Figure 1.1.: Illustration of the def-
inition of the normal curvature κn,
Eqn. (1.11), and the geodesic curva-
ture κg, Eqn. (1.15). They are essen-

tially given by the projection of ~̇t onto
the local normal vector and onto the
local tangent plane, respectively.

If ϕ is the angle between e1 and e2, then we have

|e1 × e2|2 = |e1|2|e2|2 sin2 ϕ = g11g22(1 − cos2 ϕ) = g11g22 − (e1 · e2)
2 = g11g22 − g12g21 = g .

Hence, we have
|e1 × e2| =

√
g .

1.1.3. Second fundamental form

Assume that there is some curve C defined on the surface S, which goes through some point P , at which the curve

has the tangent vector ~t and principal normal vector ~p = ~̇t/κ, and at which point the surface has the normal vector
~n—see as an illustration Fig. 1.1. We now have the following two equations:

~p · ~n = cosϑ and ~̇t = κ ~p .

The first defines the angle ϑ between the two unit vectors ~n and ~p, the second defines the curvature of the curve.
Combining them, we obtain

κ cosϑ = ~̇t · ~n . (1.7)

If the curve is parameterized as ui(s), we have

~̇t(s) = ~̈r(s) =
∂2

∂s2
~r(s) =

∂

∂s

(
~r,iu̇

i
)

= ~r,ij u̇
iu̇j + ~r,iü

i = ei,j u̇
iu̇j + eiü

i .

Since ei · ~n = 0, we obtain from this and Eqn. (1.7)

κ cosϑ = ~̇t · ~n =
(
ei,j · ~n

)
u̇iu̇j . (1.8)

The expression in brackets is independent of the curve and a property of the surface alone. It is called the second
fundamental form, and we will term it bij :

bij := ei,j · ~n . (1.9)

Since ei,j = ej,i, the second fundamental form is symmetric in its two indices. If the second fundamental form is
furthermore diagonal, the coordinate lines are called conjugate.3 If first and second fundamental form are diagonal,
the coordinate lines are orthogonal and they form lines of curvature, i. e., they locally coincide with the principal
directions of curvature (see below). Differentiating the obvious relation ei · ~n = 0 with respect to uj shows that
ei,j · ~n+ ei · ~n,j = 0, from which follows that the second fundamental form is also given by

bij := −ei · ~n,j . (1.10)

This expression is usually less convenient, since it involves the derivative of a unit vector, and thus the derivative
of square-root expressions.

Loosely speaking, the curvature κ of a curve at the point P is partially due to the fact that the curve itself is
curved, and partially because the surface is curved. In order to somehow disentangle these two effects, it it useful
to define the two concepts normal curvature and geodesic curvature. We follow Kreyszig [14] in our discussion.

3See Ref. [14, paragraph 60] for a more detailed discussion on what this implies
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The left hand side of Eqn. (1.8) only depends on the direction of the curve at P , i. e. ~t, but not on its curvature.
Hence, it is actually a property of the surface. It is called the normal curvature κn of the surface in the direction
~t. If we perform a reparameterization of the curve, we find u̇i = (dui/dt)(dt/ds) = u′i/s′, and from that we find:

κn := κ cosϑ =
biju

′iu′j

giju′iu′j
=

bijdu
iduj

gijduiduj
. (1.11)

The normal curvature is therefore the ratio between the second and the first fundamental form.
Equation (1.8) shows that the normal curvature is a quadratic form of the u̇i, or loosely speaking a quadratic

form of the tangent vectors on the surface. It is therefore not necessary to describe the curvature properties of a
surface at every point by giving all normal curvatures in all directions. It is enough to know the quadratic form.

It is natural to ask, in which directions the normal curvature is extremal. Rewriting Eqn. (1.11) as

(
bij − κngij

)
vivj = 0 ,

and differentiating this expression with respect to vk (treating κn as a constant, since dκn = 0 is a necessary
condition for κn to be extremal), we find

(
bik − κngik

)
vi = 0 ,

or after raising the index k
(
bki − κnδ

k
i

)
vi = 0 . (1.12)

This is an important result: It shows that the search for extremal curvatures and the corresponding directions leads
to an eigenvalue problem: The directions along which the normal curvature is extremal are given by the eigenvectors
of the matrix bki , and the corresponding eigenvalues are the extremal curvatures. These two eigenvalues are called
principal curvatures, and we will call them κ1 and κ2. This permits us to define the following two important
concepts: Mean curvature H and Gaussian curvature K are defined as sum and product of the principal curvatures

2H := κ1 + κ2 = bii , (1.13a)

K := κ1 κ2 =
∣
∣bki
∣
∣ =

∣
∣bijg

jk
∣
∣ =

∣
∣bij
∣
∣
∣
∣gjk

∣
∣ =

b

g
, (1.13b)

where b is the determinant of the second fundamental form:

b := det b ≡ |b| ≡ |bij | =
1

2
εikεjlbijbkl , (1.14)

Since the definitions of H and K involve the eigenvalues of bji , they are invariant under reparametrizations of the
surface. They are intrinsic surface properties.

While the normal curvature measures how the surface bends in space, the so called geodesic curvature κg is a
measure of how a curve curves on a surface, which is independent of the curvature of the surface itself. While the

normal curvature is obtained by projecting the vector ~̇t of the curve onto the local normal vector of the surface,

the geodesic curvature is obtained by projecting ~̇t onto the local tangent plane, thereby essentially projecting out
any curvature deformations of the surface. Looking at Fig. 1.1, and by a similar argument as the one which lead
to Eqn. (1.7), we find

κg = κ sinϑ . (1.15)

1.2. Formulas of Weingarten and Gauss

A key result in the theory of space curves are the formulas of Frenet, which express the change of the local
coordinate system (tangent vector, normal vector, and binormal vector) upon movements along the curve in terms
of this very coordinate system. The analogue of this in the theory of surfaces are the formulas by Weingarten and
Gauss, which describe the variation of the local coordinate system upon small movements on the surface.

Since ~n · ~n = 1, differentiation with respect to uµ gives ~n,µ · ~n = 0. This implies that the change in normal
vector upon (infinitesimally) moving on the surface is parallel to the surface. It can hence be expressed as a linear
combination of the tangent vectors, i. e., we can write ~n,µ = Aλ

µeλ. A scalar multiplication with eν together with
Eqn. (1.10) shows that Aν

µ = −bνµ, and we thereby obtain the formula of Weingarten:

~n,µ = −bνµeν (Weingarten) . (1.16)

The change of the tangent vectors is generally along all three directions of the local coordinate system, so we
may write eµ,ν = Aσ

µνeσ +Bµν~n. A scalar multiplication with ~n together with Eqn. (1.9) immediately shows that
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Bµν = bµν . A scalar multiplication with eλ shows that Aµνλ = eµ,ν · eλ, where we defined Aµνλ = Aσ
µνgσλ. Note

that this shows that Aµνλ is symmetric in its first two indices, because eµ,ν = ~r,µν = ~r,νµ.
Let us now look at derivatives of the metric:

gµλ,ν = (eµ · eλ),ν = eµ,ν · eλ + eµ · eλ,ν .

Together with the expression for Aµνλ and after cyclic permutation, we obtain the three equivalent equations:

gµλ,ν = Aµνλ +Aλνµ , (1.17a)

gλν,µ = Aλµν +Aνµλ , (1.17b)

gνµ,λ = Aνλµ +Aµλν . (1.17c)

If we now add the first two of these equations and from that subtract the third one, i. e., if we form the combination
(1.17a)+(1.17b)−(1.17c), and additionally exploit the symmetry of Aµνλ in its first two indices, we find

Aµνλ =
1

2

[
gµλ,ν + gλν,µ − gνµ,λ

]
.

This shows that the Aµνλ are simply the Christoffel symbols of the first kind—see Eqn. (A.1). And hence, Aλ
µν are

the Christoffel symbols of the second kind—see Eqn. (A.2). We then arrive at the formula of Gauss:

eµ,ν = Γσ
µνeσ + bµν~n (Gauss) . (1.18)

Finally we remark that using the concept of covariant differentiation, the formulas of Weingarten and Gauss can
be rewritten as

∇k~n = −bikei , (1.19a)

and ∇kei = bik~n , (1.19b)

which is about as close as we will get to an analogue of the formulas of Frenet. We want to mention, though, that
there exists a very elegant theory of the description of manifolds using “(co)moving orthonormal frames”, which
includes the formulas of Frenet for curves and the formulas of Weingarten and Gauss for surfaces as special cases.
The theory goes back to a large extend to work by Cartan, and is described in Ref. [9] and in a little more detail
in Ref. [7].

Problem 1.1 Using the covariant version of the formulas of Weingarten and Gauss, verify the identity

~n =
1

2
∇a
[(
~r · ea

)
~n−

(
~r · ~n

)
ea

]

. (1.20)

This formula shows that the normal vector can be written as a surface divergence. (Jemal Guven, personal com-
munication.)

1.3. Integrability conditions

As stated above, the formulas of Weingarten and Gauss are the surface analogue of the formulas by Frenet for
curves. However, while in the one-dimensional case every prescribed curvature and torsion function gives rise to a
well defined curve (up to translations and rotations), the same is not true in the surface case: Not every prescribed
first and second fundamental form describes a surface! There are integrability conditions to be satisfied, which we
will now derive. In fact, everything follows from the required identity ei,jk = ei,kj . Using the formulas of Gauss
and Weingarten, this can be rewritten as

ei,jk = ei,kj
(
Γl

ijel + bij~n
)

,k
=

(
Γl

ikel + bik~n
)

,j

Γl
ij,kel + Γl

ijel,k + bij,k~n+ bij~n,k = Γl
ik,jel + Γl

ikel,j + bik,j~n+ bik~n,j

Γl
ij,kel + Γl

ij

(
Γm

lkem + blk~n
)

︸ ︷︷ ︸

l↔m

+bij,k~n− bijb
l
kel = Γl

ik,jel + Γl
ik

(
Γm

lj em + blj~n
)

︸ ︷︷ ︸

l↔m

+bik,j~n− bikb
l
jel

Γl
ij,kel + Γm

ij

(
Γl

mkel + bmk~n
)

+ bij,k~n− bijb
l
kel = Γl

ik,jel + Γm
ik

(
Γl

mjel + bmj~n
)

+ bik,j~n− bikb
l
jel

el

(
Γl

ij,k + Γm
ij Γl

mk − bijb
l
k

)
+ ~n

(
Γm

ij bmk + bij,k
)

= el

(
Γl

ik,j + Γm
ikΓl

mj − bikb
l
j

)
+ ~n

(
Γm

ikbmj + bik,j

)
.
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However, since the vectors el and ~n are linearly independent, the prefactors in front of the el and the ~n must be
separately equal! One thereby gets the following two equations:

bij,k − bik,j = Γm
ikbmj − Γm

ij bmk , (1.21)

and bijb
l
k − bikb

l
j = Rl

ikj . (1.22)

The condition (1.21) is sometimes called the equation of Mainardi-Codazzi. Using the concept of covariant differ-
entiation (see Sec. C.3) this equation can also be written as

∇kbij − ∇jbik = 0 or fancy: ∇[
k
b
j
]
i

= 0 or: “∇kbij is totally symmetric” . (1.23)

For Eqn. (1.22) we have introduced the abbreviation

Rl
ikj := Γl

ij,k − Γl
ik,j + Γm

ij Γl
mk − Γm

ikΓl
mj . (1.24)

Note that the left hand side of Eqn. (1.22) is a tensor. Hence, the symbol Rl
ikj defined in Eqn. (1.24) is also a

tensor4—even though the explicit expression doesn’t look like it at all! This tensor is called the (mixed) Riemann
curvature tensor and it plays a fundamental role in Riemannian geometry. From the definition (1.24) we see that
the Riemann tensor is skew-symmetric with respect to the last two indices.

The covariant Riemann tensor is defined as

Rlikj = glsR
s
ikj = Γijl,k − Γikl,j + Γm

ikΓljm − Γm
ij Γlkm , (1.25)

where the second equation follows from using identities like

glsΓ
s
ij,k = gls

( ∂

∂uk
Γs

ij

)

=
∂

∂uk

(

glsΓ
s
ij

)

− Γs
ij

∂gls

∂uk
= Γijl,k − Γs

ij

(

Γlks + Γskl

)

. (1.26)

Using (1.25), Eqn. (1.22) can also be written as

bijbkl − bikbjl = Rlikj . (1.27)

Of course, also the covariant Riemann tensor is skew-symmetric with respect to the last two indices. But Eqn. (1.27)
shows that it is additionally skew-symmetric with respect to the first two indices.5

As a fourth rank tensor, the curvature tensor Rlikj generally has d4 components. However, due to the skew-
symmetry, only those components are nonzero, for which l 6= i and k 6= j. In the case of surfaces, this leaves only
the following four components which are nonzero:

R1212 = R2121
(1.27)
= b22b11 − (b12)

2 (1.14)
= b ,

R2112 = R1221
(1.27)
= (b12)

2 − b22b11
(1.14)
= −b .

(1.28)

As an immediate consequence follows

Gauss’ Theorema Egregium: The Gaussian curvature is an intrinsic

surface property, i. e., it does only depend on the first fundamental form.

The proof is via inspection:

K
(1.13b)

=
b

g

(1.28)
=

R1212

g
,

and the right hand side indeed only depends on the metric and not on the second fundamental form!
The relevance of this theorem becomes evident if one considers it in the context of “isometric mappings”. A

mapping of a portion of a manifold M to a portion of a manifold N is called isometric, if the length of any curve on

4This proof, making reference to bij , only works in two dimensions. However, formula (C.8) shows that Rl
ikj is indeed a tensor in any

dimension.
5This actually holds in any dimension, not just in two, even though in this case we used the Gauss equation to prove it, which only

makes sense in two dimensions. As a brute force proof one may just take the definition and work it out. A more elegant way is to
use local tangent coordinates—see Sec. 1.4.
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N is the same as the length of its pre-image on M . It can be proved [14] that a mapping is isometric if and only if
at corresponding points of the two manifolds the coefficients of the metric, when referred to the same coordinates6,
are identical. As a consequence of the theorema egregium, isometric surfaces have the same Gaussian curvature at
corresponding point. This for instance shows that there cannot be an isometric mapping from the sphere to the
plane, since these two surfaces have different Gaussian curvatures.

We can also obtain the components of the mixed Riemann curvature tensor by calculating

R1
112 = g11R1112 + g12R2112 = −g12b

(1.5)
= g12

b

g
= g12K .

We thereby obtain:
−R2

112 = R2
121 = g11K , R1

112 = −R1
121 = g12K ,

−R2
212 = R2

221 = g21K , R1
212 = −R1

221 = g22K .
(1.29)

The Ricci tensor is defined as the nontrivial contraction of the Riemann tensor. First note that a contraction
with respect to the second index gives the result zero, since the covariant tensor is skew-symmetric with respect to
the first two indices. A contraction with the third index gives a nontrivial result. And since the Riemann tensor is
skew symmetric also with respect to the last two indices, contracting the first and the fourth gives just the negative
of contracting the first and the third. Unfortunately, this gives rise to sign confusions, since apparently there is no
generally accepted convention which indices to take: the third or the fourth? We will define the Ricci tensor as the
contraction with respect to the third index:

Rij := Rl
ilj = Γl

ij,l − Γl
il,j + Γm

ij Γl
ml − Γm

il Γl
mj . (1.30)

As a consequence of the various symmetries of the Riemann tensor, the Ricci tensor is symmetric in its two indices.
In two dimensions we have Rij = R1

i1j +R2
i2j . Using Eqns. (1.29), we immediately see

Rij = K gij (only in two dimensions!) . (1.31)

Therefore, by contracting the Gauss equation (1.22), we obtain the useful result

K gij = Rij = Rl
ilj

(1.22)
= bijb

l
l − bilb

l
j

(1.13a)
= 2H bij − bilb

l
j ,

which, after rearrangement, gives
bilb

l
j = 2H bij −K gij . (1.32)

Contracting the Ricci tensor again, we obtain the Ricci scalar curvature:

R := gijRij . (1.33)

For two dimensions this becomes

R
(1.31)
= gijgij K = gi

iK = 2K (only in two dimensions!) . (1.34)

Hence, contracting Eqn. (1.32) once more, we obtain

bjl b
l
j = gijbilb

l
j

(1.32)
= gij

(
2H bij −K gij

)
= 2H bii −K gi

i = 4H2 − 2K . (1.35)

Using the Ricci scalar, Eqn. (1.28) can be neatly rewritten as

Rijkl =
R

2

(

gikgjl − gjkgil

)

(for d = 2) , (1.36)

reconfirming the observation that in two dimensions the Riemann tensor is uniquely determined by the value of
the Ricci Scalar (i. e., the Gaussian Curvature), which generally depends on position. It is worth pointing out that
for totally symmetric spaces the Riemann tensor is also of this form, see Eqn. (B.22), but additionally in this case
the Ricci scalar is a constant over the whole space.

6If we have coordinates ui on M and a mapping F from M to N , then this introduces a natural set of coordinates on N .
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1.4. Bianchi Identities

All relations in this section are valid in arbitrary dimensions.
Let us study the properties of the Riemann tensor a bit further. For this, it turns out to be advantageous to

choose local tangent coordinates, see Sec. A.3. Recall that in these coordinates all first partial derivatives of the
metric tensor vanish. Hence, from Eqn. (1.25) we find

Rlikj
ltc
= Γijl,k − Γikl,j =

1

2

[

glj,ik + gik,lj − glk,ij − gij,lk

]

. (1.37)

From this equation it is easy to infer the skew-symmetry of the Riemann tensor with respect to the first and second
pair of indices. We can also see that it is symmetric with respect to a swapping of the first and second pair of
indices:

Rlikj = Rkjli (1.38)

Note that we have not written “ltc” over the equality sign. Even though the equation has been derived in a locally
tangential coordinate system, it is proper tensor equations, and hence holds in any coordinate system!

It is equally straightforward to check the following:

Rlikj +Rljik +Rlkji = 0 . (1.39)

This equation is called the first Bianchi identity. Observe the placements of the indices: The first remains always
at its position, while the three others are cycled. Hence, the same identity also holds for the mixed Riemann tensor:

Rl
ikj +Rl

jik +Rl
kji = 0 . (1.40)

A second identity can be checked just as easily in local tangent coordinates:

Rlikj,m +Rlimk,j +Rlijm,k
ltc
= 0 .

This equation is not valid in every frame, but we can easily get one that is. Since in local tangent coordinates the
Christoffel symbols vanish, a first order covariant derivative is the same as a first order partial derivative.7 We
may hence substitute the partial derivatives by covariant ones:

∇mRlikj + ∇jRlimk + ∇kRlijm = 0 .

Since this again is a proper tensor equation, it holds in any coordinate system. It is called the second Bianchi
identity. Note again the placements of the indices: The first two indices remain unchanged, while the last two cycle
with the derivative. We may thus raise the first index and get the second Bianchi identity for the mixed Riemann
tensor:

∇mR
l
ikj + ∇jR

l
imk + ∇kR

l
ijm = 0 .

If we contract the last expression with respect to k and l, exploit the symmetry properties of the Riemann tensor
and use the definition (1.30) for the Ricci tensor, we get what is called the contracted (second) Bianchi identity :

∇mRij − ∇jRim + ∇kR
k
ijm = 0 .

If we now contract the left hand side again over i and j and use the definition (1.33) for the Ricci scalar curvature,
we obtain:

0 = gij
(

∇mRij − ∇jRim + ∇kR
k
ijm

)

= ∇mR− ∇iRim − ∇kRkm = ∇igimR− 2∇iRim .

If we define the twofold covariant tensor Gij according to

Gij := Rij − 1

2
gijR ,

the doubly contracted second Bianchi identity can be written as

∇iGij = 0 . (1.41)

7Convince yourself that this does not hold for second order derivatives! For instance, it would be incorrect to argue that one obtains
the Riemann tensor in an arbitrary coordinate system by replacing the commas in Eqn. (1.37) by semicolons.
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The tensor Gij is called the Einstein tensor, and the relation (1.41) is therefore referred to as the second Bianchi
identity of either the Ricci tensor or the Einstein tensor.8 The Einstein tensor appears in Einstein’s famous field
equation of general relativity, which reads

Gij =
8πG

c4
Tij ,

where G is the gravitational constant, c the speed of light and Tij the energy-momentum tensor. Just as the
Einstein tensor, the energy momentum tensor is also divergence free (which is related to the conservation of energy
and momentum), and this might have initially suggested to Einstein that this is the way in which space time and
matter couple.

Sidenote: Observe that Einstein’s field equations only determine the Ricci tensor, not the Riemann tensor. In
four dimensions the Riemann tensor has 20 independent components, and only half of them are known if one knows
the Ricci tensor. The other half are given if one also knows the Weyl tensor, which is essentially the Riemann
tensor with all its “traces” removed.

8Observe that as a consequence of Eqn. (1.31) not only the divergence of the Einstein tensor, but actually the Einstein tensor itself
vanishes in two dimensions.
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2. Some important parameterizations of surfaces

In order to actually describe a surface, one has to give a parameterization, which is a concrete version of the
mapping (1.1). In this chapter we study a few frequently encountered parameterizations.

2.1. Monge parameterization

2.1.1. Definition and properties

The Monge parameterization is the most straightforward one: A surface is defined by giving its height h over some
plane (usually) as a function of orthonormal coordinates x and y in the plane:

h :

{
R

2 ⊃ U → R
3

(x, y) 7→ h(x, y)
. (2.1)

An illustration is given in Fig. 2.1.
One disadvantage of the Monge parameterization is that it is unable to describe “overhangs”. However, if

one is predominantly interested in describing surfaces which deviate only weakly from a flat plane, then this
parameterization is very useful, particularly because of the existence of a simple small gradient expansion (see
Sec. 2.1.3).

The position vector ~r and the two tangent vectors ex and ey are given by

~r =





x
y

h(x, y)



 , ex =
∂~r

∂x
=





1
0
hx



 , ey =
∂~r

∂y
=





0
1
hy



 ,

where an index “x” or “y” on h means partial differentiation of h with respect to this index. Hence, the metric
and its determinant are given by

gij =

(
1 + h2

x hxhy

hxhy 1 + h2
y

)

⇒ g =
∣
∣gij

∣
∣ = 1 + h2

x + h2
y . (2.2)

Note that even though the coordinates in the underlying plane are orthogonal, the metric is generally not diagonal,
and hence the coordinate curves on the surface are generally not orthogonal.

The inverse metric is then

gij =
1

1 + h2
x + h2

y

(
1 + h2

y −hxhy

−hxhy 1 + h2
x

)

.

h

x

y

U

S

Figure 2.1.: Illustration of the Monge
parameterization.
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The upward normal vector ~n is found via

ex × ey =





−hx

−hy

1



 ⇒ ~n =
ex × ey√

g
=

1
√

1 + h2
x + h2

y





−hx

−hy

1



 .

From bij = ei,j · ~n we immediately find the second fundamental form

bij =
1

√

1 + h2
x + h2

y

(
hxx hxy

hyx hyy

)

. (2.3)

The mixed second fundamental form is then found to be

bji = bikg
kj =

1

(1 + h2
x + h2

y)3/2

(
hxx(1 + h2

y) − hxyhxhy hxy(1 + h2
x) − hxxhxhy

hxy(1 + h2
y) − hyyhxhy hyy(1 + h2

x) − hxyhxhy

)

. (2.4)

From this follow mean and Gaussian curvature:

H =
1

2
bii

(2.4)
=

hxx(1 + h2
y) + hyy(1 + h2

x) − 2hxyhxhy

2 (1 + h2
x + h2

y)3/2
, (2.5a)

K =
det bij
g

(2.2),(2.3)
=

hxxhyy − (hxy)2

(1 + h2
x + h2

y)2
. (2.5b)

2.1.2. Formal expression in terms of ∇‖

In the underlying plane, which is sometimes referred to as the “base manifold”, there exists the two-dimensional
nabla operator ∇‖, which for instance in terms of the local Cartesian coordinates has the form

∇‖ =







∂

∂x

∂

∂y







(in Cartesian coordinates) . (2.6)

It is possible to rewrite a few of the formulas from the preceding section in terms of this differential operator.
This is convenient, because in this way they are covariant with respect to changes of the coordinate system of the
base manifold, because ∇‖ transforms (essentially...) like a vector. In other words, the expressions remain formally
the same if one changes for instance to polar coordinates in the underlying plane, even though the coordinate
expression (2.6) for the nabla operator is different.

The metric determinant is easily seen to be expressible as

g = 1 +
(
∇‖h

)2
,

and the normal vector is given by

~n =
1

√

1 +
(
∇‖h

)2

(

−∇‖h

1

)

.

The inverse metric can be represented, somewhat formally, as

gij = I
[
1 +

(
∇‖h

)2]− ∇‖h⊗ ∇‖h .

Finally, the mean curvature can be written as

2H = ∇‖ · ∇‖h
√

1 +
(
∇‖h

)2
. (2.7)
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The proof is via direct calculation:

∇‖ · ∇‖h
√

1 +
(
∇‖h

)2
= ∂x

hx√ + ∂y
hy√

= − 1

2
√ 3

(
2hxhxx + 2hyhyx

)
hx +

1
√ hxx − 1

2
√ 3

(
2hxhxy + 2hyhyy

)
hy +

1
√ hyy

= − 1
√ 3

(

h2
xhxx + hxhyhyx − (1 + h2

x + h2
y)hxx + hxhyhxy + h2

yhyy − (1 + h2
x + h2

y)hyy

)

=
1

√ 3

(

(1 + h2
y)hxx + (1 + h2

x)hyy − 2hxhyhxy

)

.

This expression should be 2H, and comparing with Eqn. (2.5a) we see that it indeed is.

2.1.3. Small gradient expansion

Very frequently one is faced with (or restricts oneself to) a situation in which the gradients hx and hy are small.
In this limit mean and Gaussian curvature are approximately given by

H =
1

2
(hxx + hyy) + O

(
(∇‖h)

2
)
, (2.8a)

K = hxxhyy − (hxy)2 + O
(
(∇‖h)

2
)
. (2.8b)

If we use the symbol h to describe the matrix of second derivatives of h (i.e., the “Hessian”)

(h)ij = hij =
∂2h

∂ui∂uj
, (2.9)

we can write the two above approximate equations as

H =
1

2
Tr(h) + O

(
(∇‖h)

2
)
, (2.10a)

K = det(h) + O
(
(∇‖h)

2
)
. (2.10b)

Using the formal expression for the mean curvature from the preceding section, we can write Eqn. (2.8a) also as

H =
1

2
∇2

‖ h+ O
(
(∇‖h)

2
)
. (2.11)

2.2. Cylindrically symmetric surfaces

2.2.1. General case

A very general expression for a cylindrical surface is obtained if one defines a two-dimensional curve and rotates it
around some axis. In order to forbid self intersections of the surface we will forbid that the curve intersects itself.
Then, a parameterization can be given by

~r :







R
2 ⊃ [0; 2π] × [a; b] → R

3

(ϕ, t) 7→ ~r(ϕ, t) =





r(t) cosϕ
r(t) sinϕ
z(t)




. (2.12)

Thus, the surface is specified by two functions, r(t) and z(t), which together define a curve in the (r, z) plane, and
afterwards this curve is rotated about the z-axis. For obvious reasons we will also require r ≥ 0. See Fig. 2.2 for
an illustration.

The tangent vectors are now given by

eϕ =
∂~r

∂ϕ
=





−r sinϕ
r cosϕ

0



 and et =
∂~r

∂t
=





ṙ cosϕ
ṙ sinϕ
ż



 ,
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r

z

Figure 2.2.: Illustration of a parame-
terization of a cylindrically symmetric
surface. A curve in the (r, z) plane is
defined and then rotated about the z-
axis.

where we dropped the t-dependence of the functions r(t) and z(t) for notational simplicity, and where a dot is
meant to indicate a partial derivative with respect to t. From the tangent vectors we find the metric and its
determinant:

gij =

(
r2 0
0 ṙ2 + ż2

)

⇒ g =
∣
∣gij

∣
∣ = r2

(
ṙ2 + ż2

)
. (2.13)

The inverse metric is then simply

gij =
1

r2
(
ṙ2 + ż2

)

(
ṙ2 + ż2 0

0 r2

)

=

(
1/r2 0

0 1/
(
ṙ2 + ż2

)

)

.

The normal vector1 ~n is found via

eϕ × et =





rż cosϕ
rż sinϕ

−rṙ



 ⇒ ~n =
eϕ × et√

g
=

1√
ṙ2 + ż2





ż cosϕ
ż sinϕ

−ṙ



 .

From this follows the second fundamental form

bij =
1√

ṙ2 + ż2

(
−rż 0
0 żr̈ − z̈ṙ

)

, (2.14)

and its mixed version

bji = bikg
kj =

1√
ṙ2 + ż2






− ż

r
0

0
żr̈ − z̈ṙ

ṙ2 + ż2




 . (2.15)

From this follow the two principal curvatures

κ1 = − ż

r
√
ṙ2 + ż2

and κ2 =
żr̈ − z̈ṙ

(
ṙ2 + ż2

)3/2
.

The principal direction belonging to the eigenvalue κ1 is around the axis, i. e., in the direction of eϕ, while the
principal direction belonging to κ2 is orthogonal to that, i. e., in the direction of et. Mean and Gaussian curvature
follow directly as the arithmetic mean and the product of these principal curvatures.

2.2.2. Special case 1: Arc length parameterization

The formulas given above simplify, if we parameterize the curve (r(t), z(t))> which specifies the profile by its arc
length s. If this is not already the case, it can always be achieved by a smooth reparameterization. The key
advantage of this is that the tangent vector on the curve becomes the unit vector, and hence ṙ2 + ż2 = 1, which
evidently simplifies the formulas from Sec. 2.2.1 quite a bit.

1Note that the direction of the normal vector depends on the direction in which the curve is followed, and no natural rule can be
given here. One should always check the particular parameterization one sets up or is confronted with.
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object special case 1, Sec. 2.2.2 special case 2, Sec. 2.2.3 special case 3, Sec. 2.2.4

derivative ′ is with respect to arc length s radial distance r height z

metric gij

„
r2 0
0 1

« „
r2 0
0 1 + z′2

« „
r2 0
0 1 + r′2

«

inverse metric gij

„
1/r2 0

0 1

« „
1/r2 0

0 1/
`
1 + z′2

´

« „
1/r2 0

0 1/
`
1 + r′2

´

«

second fundamental form bij

„
−rz′ 0

0 z′r′′ − z′′r′

«
1√

1 + z′2

„
−rz′ 0

0 −z′′

«
1√

1 + r′2

„
−r 0
0 r′′

«

azimuthal principal curvature − z′

r
≡ − sinψ

r
− z′

r
√

1 + z′2
− 1

r
√

1 + r′2

radial principal curvature z′r′′ − z′′r′ ≡ −ψ′ − z′′

`
1 + z′2)3/2

r′′

`
1 + r′2)3/2

Table 2.1.: Summary of the three special cases of parameterizing a cylindrically symmetric surface.

In this case it is also advantageous to specify the curve itself by a different kind of parameterization, namely, by
giving the angle ψ which it has against the horizontal r-axis as a function of arc length s. One can indeed think
of the parameterization ψ(s) as a Frenet type parameterization. Note that ψ = arctan(z ′/r′), where by the prime
we now mean a differentiation with respect to the arc length. The two principal curvatures are now found to be

κ1 = − sinψ

r
and κ2 = −ψ′ .

See Tab. 2.1 for a collection of other important expressions.
This particular parameterization has for instance been used extensively in the numerical study of the shape of

vesicles [13, 22].

2.2.3. Special case 2: Height is a function of axial distance

The special case of Sec. 2.2.2 did not limit the kind of surfaces which can be described, it only posed a restriction
on the parameterization of the boundary curve. In this and the following section we shall study two cases which
restrict the kinds of surfaces which can be described. One obvious restriction is to look at cases where the height
z of the profile can be written as a function of the radial distance. Formally, this just means that r(t) ≡ t, and
we will use r rather than t as the appropriate variable. This is simply a Monge parameterization in cylindrical
coordinates. Obviously, we now cannot describe overhangs which are such that at a given radial distance there are
two values of z. See Tab. 2.1 for a summary of curvature related expressions.

2.2.4. Special case 3: Axial distance is a function of height

This special case is in some sense the conjugate one to the case of Sec. 2.2.3. Instead of assuming the the height can
be specified as a function of the radial distance, we assume that the radial distance can be specified as a function
of the height. This forbids overhangs which are such that at a given height z there are several corresponding radial
distances. Formally, this parameterization implies that in the general case of Sec. 2.2.1 z(t) ≡ t, and we will use
z as the variable. See Tab. 2.1 for a summary of curvature related expressions. This parameterization has for
instance been used in Ref. [18] in a numerical study of the budding behavior of vesicles.
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3. Variation of a surface

The following section is based on papers by Zhong-can and Helfrich [25] and Lenz and Lipowsky [16]. Calculations
found in both papers are repeated and presented in a slightly different (namely: a bit more covariant) way. The
covariant presentation is partly inspired by an article by Capovilla and Guven [4].

3.1. Definition of the variation

We may vary the position vector of the surface according to

~r → ~r + δ~r (3.1)

and express the variation δ~r in local coordinates:

δ~r = φiei + ψ~n . (3.2)

The three functions φ1, φ2 and ψ generally depend on the position vector on the surface and describe the local
variation,which we assume to be small (“of first order”). Note that ψ is a scalar field on S, while φi are the
components of a vector field φ on (the tangent bundle of) S.

From this, we find the variation of the tangent vectors:

δei =
∂~r + δ~r

∂ui
− ∂~r

∂ui
=

∂δ~r

∂ui
=
[
φkek + ψ~n

]

,i
= φk

,iek + φkek,i + ψ,i~n+ ψ~n,i

(1.16),(1.18)
= φk

,iek + φk
(
Γl

kiel + bki~n
)

+ ψ,i~n− ψbki ek =
(
φk

,i + φlΓk
li − ψbki

)
ek +

(
φkbki + ψ,i

)
~n

(C.6)
=

(
∇iφ

k − ψbki
)
ek +

(
φkbki + ∇iψ

)
~n =: U k

i ek + Vi~n . (3.3)

Observe that since ∇iφk is not symmetric, we need to distinguish in the definition of U , which index is the first
one and which is the second one.

3.2. Variation of the first fundamental form

3.2.1. Metric

We define the variation of the metric according to

δgij = δgij(~r) = gij(~r + δ~r) − gij(~r) .

Inserting the definition of the metric (1.3) and of the variation (3.1), we find

δgij =
∂(~r + δ~r)

∂ui
· ∂(~r + δ~r)

∂uj
− ∂~r

∂ui
· ∂~r
∂uj

=
∂δ~r

∂ui
· ∂~r
∂uj

+
∂~r

∂ui
· ∂δ~r
∂uj

︸ ︷︷ ︸

first order

+
∂δ~r

∂ui
· ∂δ~r
∂uj

︸ ︷︷ ︸

second order

=
(
δei · ej + ei · δej

)
+ δei · δej

=: δ(1)gij + δ(2)gij .

This is exact. The variation of the metric terminates after second order. Using Eqn. (3.3), we now readily find

δ(1)gij = δei · ej + ei · δej

(3.3)
=

[(
∇iφ

k − ψbki
)
ek +

(
φkbki + ψ,i

)
~n
]

· ej +
[(

∇jφ
k − ψbkj

)
ek +

(
φkbkj + ψ,j

)
~n
]

· ei

=
(
∇iφ

k − ψbki
)
gkj +

(
∇jφ

k − ψbkj
)
gki

= ∇iφj + ∇jφi − 2ψbij
(D.5)
= Lφgij − 2ψbij . (3.4)
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The fact that the tangential variation is given by the Lie-derivative appears quite plausible [4].
For the second order we find

δ(2)gij =
[
(∇iφ

k − ψbki )ek + (φsbsi + ψ,i)~n
]
·
[
(∇jφ

l − ψblj)el + (φsbsj + ψ,j)~n
]

= (∇iφ
k − ψbki )(∇jφ

l − ψblj)gkl + (φkbki + ψ,i)(φ
lblj + ψ,j)

=
(
∇iφ

k
)(

∇jφk

)
− ψ

[
(∇iφ

k)bjk + (∇jφ
k)bik

]
+ ψ2bki bjk

+ φkφlbikbjl + φk
[
bikψ,j + bjkψ,i

]
+ ψ,iψ,j . (3.5)

Note that the tangential part of this contains terms which depend on the mean curvature. Hence, the second
tangential variation of the metric tensor cannot be written as a second order Lie derivative, because this would
have to yield a purely intrinsic result. This is related to the fact that at second order a tangential variation is no
longer equivalent to a pure reparametrization (which would indeed be intrinsic).

In Sec. 3.2.3 we will need the trace of the variation of the metric. For the first order we find

Tr
[
δ(1)g

]
= gij δ(1)gij

(1.13a)
= 2∇iφ

i − 4Hψ .

The trace of the second order expression is

Tr
[
δ(2)g

]
= gij δ(2)gij =

(
∇iφ

k
)(

∇iφk

)
+ 2bik

(
φk∇iψ − ψ∇iφ

k
)

+
(
∇iψ

)(
∇iψ

)

(1.35)
+ ψ2

(
4H2 − 2K

) (1.32)
+ φkφl

(
2Hbkl −Kgkl

)
.

3.2.2. Inverse metric

We will later also need the variation of the inverse metric. We will now show, how its variation can be obtained
from the known variation of the “normal” metric. First note that after the variation gij must still be the inverse
of gij . This means

δi
k =

(

gij +
∂gij

∂λ
∆λ+

1

2

∂2gij

∂λ2
(∆λ)2 + O

(
(∆λ)3

))(

gjk +
∂gjk

∂λ
∆λ+

1

2

∂2gjk

∂λ2
(∆λ)2 + O

(
(∆λ)3

))

= δi
k +

(∂gij

∂λ
gjk + gij ∂gjk

∂λ

)

∆λ+
(1

2

∂2gij

∂λ2
gjk +

∂gij

∂λ

∂gjk

∂λ
+ gij 1

2

∂2gjk

∂λ2

)

(∆λ)2 + O
(
(∆λ)3

)
.

Since the powers of ∆λ are linearly independent, their coefficients must equate individually. From this we get the
relation

δ(1)gij = −gikgjl
(
δ(1)gkl

)
, (3.6)

δ(2)gij = −gikgjl
(
δ(2)gkl − gmnδ(1)gkmδ

(1)gnl

)
. (3.7)

While the first variation of the inverse metric differs from the first variation of the “normal” metric only by a minus
sign and the position of the indices, the situation is a bit more complicated for the second variation, which also
includes a product of first variations. Using Eqns. (3.4) and (3.5), we find

δ(2)gij = 3ψ2
(
2Hbij −Kgij

)
− ψ

(
bjk∇iφk + bik∇jφk

)
− 2ψ

(
bjk∇kφi + bik∇kφj

)
− φkφlbikb

j
l

−φk
(
bik∇jψ + bjk∇iψ

)
− ∇iψ∇jψ + ∇iφk∇kφ

j + ∇kφi∇kφ
j + ∇kφi∇jφk (3.8)

Observe finally that while the variation of the metric terminates at second order, the variation of the inverse
metric has contributions to all orders.

3.2.3. Determinant of the metric

First, it is helpful to recall a few general algebraic facts about matrices. Given an n × n matrix A, the adjoint
matrix Ã is defined as the matrix of cofactors Ãij of A. The cofactor Ãij is defined to be (−1)i+j times the
determinant of the (n− 1) × (n− 1) matrix which results from deleting the i-th row and the j-th column from A.
The determinant of A can now be calculated according to the Laplace expansion theorem:

|A| =

n∑

i=1

AijÃ
ij =

1

n

n∑

i,j=1

AijÃ
ij
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which can be written very succinctly as

|A| I = AÃ
>
,

where Ã
>

is the transposed of the matrix Ã. Multiplying from the left by A−1, we find

Ã
>

= |A|A−1 or in components: Ãij = |A| (A−1)ji .

For the derivative of the metric determinant with respect to the metric itself this implies

∂g

∂gij
= g̃ij = g (g−1)ji = g gij . (3.9)

Using the relation g̃ij = εikεjlglk, which is specific for 2×2 matrices, we can further work out the second derivative
of the meric determinant with res[ect to the metric itself:

∂2g

∂gij∂gkl
=

∂

∂gkl
εimεjngnm = εimεjnδk

nδ
l
m = εilεjk .

Obviously, higher order derivatives will vanish. This of course is due to the fact that the determinant of a 2 × 2
matrix is a quadratic function of its components. Using the above results, we can now write the following (exact!)
expansion of the variation of the determinant of the metric:

δg =
∂g

∂gij
δgij +

1

2

∂2g

∂gij∂gkl
δgijδgkl = ggijδgij +

1

2
εilεjkδgijδgkl = ggijδgij + |δg| .

So far this expression is exact, but it is very complicated—in particular the last term. However, if we are only
interested in the variation up to quadratic order, the following observation is very helpful: The determinant is in
a sense a “quadratic operator”, because it consists of products which contain two terms. Now, any contribution
to one of its entries which is quadratic in the perturbations φi or ψ, will ultimately yield a term which is at least
of cubic order in the final result. Looking at the expressions for δg which we have derived above, the lowest order

terms which come up in |δg| are quadratic in the perturbations, and they stem from the linear order δg
(1)
ij ! Hence,

we find immediately
δg = gTr

[
δ(1)g

]
+ gTr

[
δ(2)g

]
+
∣
∣δ(1)g

∣
∣ + O

(
3
)
,

where “O(3)” is an abbreviation for all kinds of third order terms, like ψ3 or ψφiφ
i.

We will now evaluate the remaining term which is unknown, namely |δg(1)|:
∣
∣δ(1)g

∣
∣ =

1

2
εijεklδ(1)gikδ

(1)gjl

=
1

2
εijεkl

[

∇iφk + ∇kφi − 2ψbik

][

∇jφl + ∇lφj − 2ψbjl

]

=
1

2
εijεkl

[(

∇iφk + ∇kφi

)(

∇jφl + ∇lφj

)

− 2ψbik

(

∇jφl + ∇lφj

)

− 2ψbjl

(

∇iφk + ∇kφi

)

︸ ︷︷ ︸

i↔j , k↔l

+4ψ2bikbjl

]

=
∣
∣∇iφk + ∇kφi

∣
∣+ 4ψ2|bij | − 2ψεijεkl

[

bik

(

∇jφl + ∇lφj

)]

= g
∣
∣∇iφ

k + ∇kφi

∣
∣

(1.13b)
+ 4gψ2K − 2gψεijεkl

[

bki

(

∇jφ
l + ∇lφj

)]

,

where in the last step we used the identity εijεklaikbjl = g εijεkla
k
i b

l
j twice.

The sum of all the relevant terms will also contain the expression (∇iφ
k)(∇iφk) + |∇iφ

k + ∇kφi|. This combi-
nation, containing in particular the nasty determinant, can be greatly simplified, but I have not found a way to
show this other than by brute force, i. e., writing out the expressions in individual components:

(
∇iφ

k
)(

∇iφk

)
+
∣
∣∇iφ

k + ∇kφi

∣
∣ = ∇1φ

1∇1φ1 + ∇1φ
2∇1φ2 + ∇2φ

1∇2φ1 + ∇2φ
2∇2φ2

+
(
∇1φ

1 + ∇1φ1

)(
∇2φ

2 + ∇2φ2

)
−
(
∇1φ

2 + ∇2φ1

)(
∇2φ

1 + ∇1φ2

)

= ∇1φ
1∇1φ1 + ∇1φ

2∇1φ2 + ∇2φ
1∇2φ1 + ∇2φ

2∇2φ2

+ ∇1φ
1∇2φ

2 + ∇1φ
1∇2φ2 + ∇1φ1∇2φ

2 + ∇1φ1∇2φ2

− ∇1φ
2∇2φ

1 − ∇1φ
2∇1φ2 − ∇2φ1∇2φ

1 − ∇2φ1∇1φ2 .
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It now can be seen that the second and third term in the first line cancels the second and third term in the third
line. Next, we can combine the first term in the first line with the second term in the second time as well as the
fourth term in the first line with the third term in the second line. We then find:

(
∇iφ

k
)(

∇iφk

)
+
∣
∣∇iφ

k + ∇kφi

∣
∣ = ∇1φ

1
(
∇1φ1 + ∇2φ2

)
+ ∇2φ

2
(
∇1φ1 + ∇2φ2

)

+
(
∇1φ

1∇2φ
2 − ∇1φ

2∇2φ
1
)

+
(
∇1φ1∇2φ2 − ∇1φ2∇2φ1

)
.

The two expressions in brackets in the first line are identical and equal to ∇iφi. Hence, the whole first line becomes
equal to (∇kφ

k)(∇iφi) = (∇iφ
i)2. And the two expressions in the second line are the determinants of ∇iφ

k and
∇iφk, which are of course identical. We thereby find the final result

(
∇iφ

k
)(

∇iφk

)
+
∣
∣∇iφ

k + ∇kφi

∣
∣ =

(
∇iφ

i
)2

+ 2
∣
∣∇iφ

k
∣
∣ . (3.10)

Of course, this awkward component-proof leaves open the question whether or not this formula holds in more than
two dimensions.

Collecting all bits and pieces, and also using Eqn. (1.32) for φkφ
lbksb

s
l , we finally end up at

δg

g
= 2∇iφ

i − 4Hψ

+
(
∇iφ

i
)2

+ 2
∣
∣∇iφ

k
∣
∣+ 2 bik

(
φk∇iψ − ψ∇iφ

k +Hφiφ
k
)

+ ψ2
(
4H2 + 2K

)
−K φkφ

k

+
(
∇iψ

)(
∇iψ

)
− 2ψ εijεkl

[

bki

(

∇jφ
l + ∇lφj

)]

+ O(3) .

The first two terms are the variation in linear order, the rest is the quadratic contribution.

3.2.4. Area form

In the surface integrals which we intend to vary, the metric occurs in the form of the square root of its determinant.
If we expand this up to quadratic order, we find

δ
√
g =

(
∂
√
g

∂g

)

δg +
1

2

(
∂2√g
∂g2

)
(
δg
)2

+ O

(

(δg)3
)

=
√
g

[

δg

2g
− 1

2

(
δg

2g

)2

+ O

(

(δg/g)3
)
]

.

The expression δg/g has been worked out in the previous section. Note that up to quadratic order the only terms
which have to be considered in the second term (δg/g)2 are the ones which are first order, i. e.

(
δg

2g

)2

=
(

∇iφ
i − 2Hψ

)2

+ O(3) =
(
∇iφ

i
)2 − 4Hψ∇iφ

i + 4H2ψ2 + O
(
φ3, ψ3

)
.

Thereby we obtain the variation of the square root of the determinant of the metric as

δ
√
g =

√
g

{

∇iφ
i − 2Hψ +

∣
∣∇iφ

k
∣
∣+ bik

(
φk∇iψ − ψ∇iφ

k +Hφiφ
k
)

+K
(

ψ2 − 1

2
φiφ

i
)

+
1

2
(∇iψ

)(
∇iψ

)
+ 2Hψ∇iφ

i − ψ εklεij

[

bik

(

∇lφ
j + ∇jφl

)]

+ O(3)

}

.

Problem 3.1 Verify (for instance by a component proof similar to the one which led to Eqn. (3.10)) that

bik∇iφ
k − bii∇kφk + εklεij

[

bik

(

∇lφ
j + ∇jφl

)]

= 2H∇kφ
k − bik∇iφ

k . (3.11)

Our expression for δ
√
g can be simplified further by making use of Eqn. (3.11). The final result up to quadratic

order is then

δ
√
g =

√
g



∇iφ
i−2Hψ+

˛
˛∇iφ

k
˛
˛+bik

h

∇i

`
ψφk´+Hφiφ

k
i

+K
“

ψ2−1

2
φiφ

i
”

+
1

2

`
∇iψ

´`
∇iψ

´
−2Hψ∇iφ

i+O(3)

ff

. (3.12)

It is quite remarkable that all three terms from the quadratic term in the expansion of
√
g cancel some quadratic

terms in the first order part of the expansion of
√
g. One might thus wonder whether there is a quicker way to see
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this. Note also that Eqn. (3.12) gives a cleaner expression than Eqn. (27) in Ref. [16].1

We also want to point out that if the variation is purely normal, the expression simplifies considerably:

δ⊥
√
g =

√
g
[

− 2Hψ +Kψ2 +
1

2

(
∇iψ

)(
∇iψ

)
+ O(3)

]

. (3.13)

By using Eqn. (A.12), as well as the fact that for planes the Gaussian curvature is half the Ricci scalar curcature
(1.34), we can rewrite the second order normal variation of some area A as

δ
(2)
⊥ A =

1

2

∫

dAψ(R− ∇2)ψ + boundary term . (3.14)

This coincides with Eqn. (64) of Ref. [5], up to a prefactor of 1/2 which is merely due to the different conventions
used for the second order variation.

3.3. Variation of the normal vector

Since the normal vector ~n is proportional to the cross product of the two tangent vectors ei, we need to calculate
the cross product of the new tangent vectors.

Problem 3.2 Show that up to linear order the cross product of the varied tangent vectors satisfies

d~r′1 × d~r′2

du1du2
=

√
g

{

~n
(

1 + ∇iφ
i − 2Hψ

)

− ei

(

φkbik + ∇iψ
)

+ O(2)

}

. (3.15)

If we want to do this calculation up to second order, the more succinct notation for the variation of the tangent
vectors in Eqn. (3.3), using the abbreviations U k

i = ∇iφ
k −ψbki and V i = φkbik + ∇iψ, is useful. With the help

of Eqn. (3.3) we then find

e′
1 × e′

2 =
(
e1 + δe1

)
×
(
e2 + δe2

)

=
(
e1 + U k

1 ek + V1~n
)

×
(
e2 + U k

2 ek + V2~n
)

=
√
g
{

~n
(

1 + U k
k +

∣
∣U k

i

∣
∣

)

− ei

(

V i + εklεmnU
m

k Vlg
ni
)}

.

This expression has to be divided by the square root of the determinant of the varied metric,
√
g′, for which we

can use Eqn. (3.12). We can rewrite this in terms of the abbreviations U k
i and Vi by making use of

εijεkl

[(
∇iφ

k
)
blj
]
+ bik∇iφ

k − 2H∇iφ
i = 0 ,

(which may be checked by an ugly calculation similar to Eqn. (3.11)) as well as

ViV
i =

(
φkbki + ∇iψ

)(
φlbil + ∇iψ

)
= φkφlbkib

i
l + φkbki∇iψ + φlbil∇iψ +

(
∇iψ

)(
∇iψ

)

(1.32)
= 2

[

Hφkφ
lbkl − 1

2
Kφiφ

i + bikφ
k∇iψ +

1

2

(
∇iψ

)(
∇iψ

)]

. (3.16)

Furthermore, the following will also help:

−V iU k
k + εklεmnU

m
k Vlg

ni = −V iU 1
1 − V iU 2

2 + U 1
1 V2g

2i − U 2
1 V2g

1i − U 1
2 V1g

2i + U 2
2 V1g

1i

= U 1
1

(
V2g

2i + V1g
1i − V i − V1g

1i
)

+ U 2
2

(
V1g

1i + V2g
2i − V i − V2g

2i
)

− U 2
1 V2g

1i − U 1
2 V1g

2i

= −
[

V1

(
U 1

1 g1i + U 1
2 g2i

)
+ V2

(
U 2

1 g1i + U 2
2 g2i

)]

= −
(
V1U

i1 + V2U
i2
)

= −VkU
ik = −V kU i

k .

1Incidentally, I also believe that the expression given in Ref. [16] is incorrect. The authors seem to make a mistake with their matrix

Λij , which should be the first order variation of the metric, δg
(1)
ij in the present notation. However, then their Eqn. (19) is incorrect,

presumably because they incorrectly swapped the lowering of an index and a partial derivative. However, it is hard to check if this
is just a typographical error, because the rest of their expressions is presented in a very “non-covariant” way, resulting in lengthy
expressions with a lot of partial derivatives and Christoffel symbols.
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rδ

dr’2

dr’1

dr1

dr2

Figure 3.1.: Illustration for the heuris-
tic calculation of the volume variation.

Using the previous three equations, the variation of the normal vector is found to be

δ~n =
e′

1 × e′
2√

g′
− ~n =

√
g
{

~n
(

1 + U k
k +

∣
∣U k

i

∣
∣

)

− ei

(

V i − V kU i
k + V iU k

k

)}

√
g
{

1 + U k
k +

∣
∣U k

i

∣
∣+ 1

2VkV k + O(3)
} − ~n

?
=

{

~n
(

1 + U k
k +

∣
∣U k

i

∣
∣

)

− ei

(

V i − V kU i
k + V iU k

k

}

·
{

1 − U k
k −

∣
∣U k

i

∣
∣− 1

2
VkV

k +
(
U k

k

)2
+ O(3)

}

− ~n

= −1

2
VkV

k~n− ei

(
V i − V kU i

k

)
+ O(3) , (3.17)

where at ? we used the geometric series expansion 1/(1 + x) = 1 − x + x2 + O(x3). Observe that in linear order
the variation of ~n is purely tangential. This is due to the fact that ~n is a unit vector, so we have ~n2 = 1 and thus
0 = δ1(~n2) = 2(δ1~n) · ~n, i. e., the first order variation must be perpendicular to ~n.

3.4. Variation of the volume

The variation of the surface in R
3 also implies a change in the volume which lies on one either side of the surface.

For instance, if the surface is closed, the interior volume generally changes upon variation of its boundary. In this
section we present two different approaches for calculating this change.

3.4.1. Heuristic approach

The present section gives a very heuristic derivation of the volume change up to quadratic order in the surface
variation. The idea is presented in Ref. [16], and we refer the reader to this work for some details we will leave out.

The infinitesimal area element is spanned by the two vectors d~r1 = e1du
1 and d~r2 = e2du

2. Upon variation
each corner of this parallelogram is moved. In particular, the origin is moved by the vector δ~r = φkek + ψ~n,
see Fig. 3.1. If the variation were constant across the surface, the infinitesimal volume change would simply be
δV = δ~r · (d~r1 × d~r2). It is claimed in Ref. [16] that up to quadratic order the volume variation can be found
by taking the average between this value and the value obtained by using instead the varied area element, i. e.
δ~r · (d~r′1 ×d~r′2). Using the linear order variation worked out in Problem 3.2, Eqn. (3.15), the total volume change,
up to quadratic order in the variation, is given by

δV =
1

2
δ~r ·

∫
(
d~r1 × d~r2 + d~r′1 × d~r′2

)
+ O(3)

=
1

2

∫

du1du2 √
g
(
φkek + ψ~n

)
{

~n
(

2 + ∇iφ
i − 2Hψ

)

− ei

(

φjbij + ∇iψ
)}

+ O(3)

=

∫

dA

{

ψ −Hψ2 +
1

2

(

ψ∇iφ
i − φi∇iψ − φiφjbij

)}

+ O(3) . (3.18)

We again remark that if the variation is purely normal, this expression simplifies quite a bit:

δ⊥V =

∫

dA
(

ψ −Hψ2
)

. (3.19)
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Let us check this formula in a very simple case: Take a sphere of radius R, choose the outward normal, and perform
a purely normal surface variation of magnitude ψ, constant over the entire surface (i. e., increase the radius by ψ).
What is the volume change up to quadratic order?

∆V =
4

3
π
(
R+ ψ

)3 − 4

3
πR3 =

4

3
π
(
R3 + 3R2ψ + 3Rψ2 + ψ3 −R3

)
= 4πR2

(
ψ +

1

R
ψ2 + O(ψ3)

)
.

Since for the sphere with outward pointing normal H = −1/R, we see that this result confirms Eqn. (3.19) up to
quadratic order.

3.4.2. Formal approach

Instead of relying on heuristic arguments such as the ones presented in Sec. 3.4.1, we can also use a formal approach.
Due to Gauss’ Theorem we can write the volume of some object as a surface integral over the local normal vector
dotted into the parameterization:

V =

∫

V

dV =

∫

V

dV
∇ · ~r

3
︸ ︷︷ ︸

=1

Gauss
=

1

3

∫

∂V

dA ~n · ~r . (3.20)

Generalizations of this to higher dimensions are obvious.
Since we thus have V as a simple integral over the surface, we can apply the formal variational scheme we’ve

used so far. Up to first order the volume can not depend on tangential variations, because those only correspond
to a reparametrization.2 We thus find

δV = δ⊥V = δ⊥
1

3

∫

∂V

dA ~n · ~r

=
1

3

∫

∂V

du1 du2
{

(δ⊥
√
g)~n · ~r +

√
g(δ⊥~n) · ~r +

√
g~n · (δ⊥~r)

}

=
1

3

∫

∂V

du1 du2
{

(−2Hψ
√
g)~n · ~r +

√
g(−ei∇iψ) · ~r +

√
g~n · (ψ~n)

}

=
1

3

∫

∂V

dA
{

− 2Hψ~n · ~r − ei · ~r ∇iψ
︸ ︷︷ ︸

int. by parts

+ψ
}

=
1

3

∫

∂V

dA
{

− 2Hψ~n · ~r +
[

(∇iei)
︸ ︷︷ ︸

=bi
i
~n=2H~n

·~r + ei · ∇i~r
︸ ︷︷ ︸

=gi
i
=2

]
ψ + ψ

}

=

∫

∂V

dA ψ (3.21)

In order to obtain the second variation, we can make use of the nice result that it can be obtained as 1
2 times

the first variation of the first variation:

δ(2)f =
1

2
δ(1)
[
δ(1)f

]
=

1

2
δ(1)f (1) . (3.22)

However, when varying Eqn. (3.21) once more, we have to remember that δ~r is our fundamental variation, and not
merely ψ, which is given by ψ = ~n · δ~r. Hence, the integrand ψ contains the normal vector and must be varied as
well. We therefore obtain

δ(2)V =
1

2
δ(1)
[
δ(1)V

]
=

1

2
δ(1)

∫

dA ~n · δ~r

=
1

2

∫ {

dA(1) ~n · δ~r + dA ~n(1) · δ~r
}

=
1

2

∫

dA
{

(∇iφ
i − 2Hψ)ψ + (−bikφk − ∇iψ) ei · δ~r

︸ ︷︷ ︸

φi

}

=

∫

dA
{

−Hψ2 +
1

2

[

ψ∇iφ
i − φi∇iψ − bikφ

iφk
]}

. (3.23)

2In fact, one can easily check that contributions from the tangential variations just cancel.
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This coincides with the second order variation calculated in Sec. 3.4.1. Observe also that by partially integrating
the third term in the integrand, this may alternatively be written as (up to boundary terms, as usual)

δ(2)V =

∫

dA
{

−Hψ2 + ψ∇iφ
i − 1

2
bikφ

iφk
]}

. (3.24)

3.5. Variation of the extrinsic geometry

3.5.1. Second fundamental form

Now we want to find the variation of bij . The covariant version (1.19) of equation of Gauss shows that bij = ~n·∇iej .
Using this, we find

δbij = δ~n ·
(
∇iej) + ~n ·

(
∇i δej

)
+ δ~n ·

(
∇i δej

)
.

Using the covariant version of the equations of Gauss and Weingarten (1.19), the variation of the tangent vector
(3.3), and using the expressions derived above, this can be rewritten as

δbij = bikU
k

j + ∇iVj
︸ ︷︷ ︸

first order

−1

2
bijVkV

k − Vk∇iU
k

j + bki VjVk

︸ ︷︷ ︸

second order

=: δ(1)bij + δ(2)bij . (3.25)

We now have to reintroduce the abbreviations U k
j and Vj . For the first order we then find

δ(1)bij = bik
(
∇jφ

k − ψbkj
)

+ ∇i(φ
kbkj + ∇jψ

)

= ∇i∇jψ − bikb
k
jψ

(1.23)
+ φk∇kbij + bkj∇iφ

k + bik∇jφ
k

= ∇i∇jψ − bikb
k
jψ + Lφbij . (3.26)

Just as in the case of the first fundamental form, the tangential variation in first order is found to be given by the
Lie derivative [4].

3.5.2. Mean curvature

Since 2H = gijbij , we have in first order

δ(1)H =
1

2

[(
δgij

)
bij + gij

(
δbij

)]

=
1

2

[

−
(
∇iφj + ∇jφi − 2ψbij

)
bij + gij

(
∇i∇jψ − bikb

k
jψ + φk∇kbij + bkj∇iφ

k + bik∇jφ
k
)]

= −1

2

(
∇iφj + ∇jφi

)
bij + ψ

(
4H2 − 2K

)
+

1

2

[

∇2ψ −
(
4H2 − 2K

)
ψ + 2φk∇kH + 2bki ∇kφ

i
]

= ψ
(
2H2 −K

)
+

1

2
∇2ψ + φk∇kH . (3.27)

Let us also look at the first variation of
√
gH. It is given by

δ(1)
(√
gH
)

= Hδ(1)
√
g +

√
gδ(1)H

(3.12,3.27)
=

√
g
[

H∇iφ
i −Kψ +

1

2
∇2ψ + φi∇iH

]

. (3.28)

Let M be the integral over the mean curvature over some portion of the manifold. The first variation of M is the
integral of Eqn. (3.28) over this portion. The term proportional to ∇2ψ will only contribute a boundary term, and
the last term will upon partial integration (see Eqn. (A.9)) cancel the first term, again up to a boundary term.
Hence we find

δ(1)M = δ(1)
∫

dA H =

∫

d2u δ(1)
(√
gH
) (3.28,A.9)

= −
∫

dA Kψ + boundary terms . (3.29)

Quite remarkably, the first variation of the integral over the extrinsic curvature depends only on the intrinsic
curvature! (This extends Eqn. (50) in Ref. [5], which is only written for the normal variation—but we see that the
tangential part only contributes boundary terms.)

The second variation of the mean curvature is given by

δ(2)H =
1

2

[(
δ(2)gij

)
bij +

(
δ(1)gij

)(
δ(1)bij

)
+ gij

(
δ(2)bij

)]

. (3.30)
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Let us calculate each of these three terms in turn. For the first term we find, using Eqns. (3.8),

(
δ(2)gij

)
bij = 6Hψ2

(
4H2 − 3K

)
−
(
4H2 −K

)
bki φ

iφk + 2HKφiφ
i − 4Hbki φ

i∇kψ + 2Kφi∇iψ − bij∇iψ∇jψ

+ bij
(
∇iφk∇kφ

j + ∇kφi∇kφ
j + ∇kφi∇jφk

)
− 12Hψbki ∇iφk + 6Kψ∇iφ

i (3.31)

For the second term Eqns. (3.4), (3.6), and (3.26) yield

(
δ(1)gij

)(
δ(1)bij

)
= −

(
∇iφj + ∇jφi

)(
∇i∇jψ

)
+ 2ψbij∇i∇jψ + 12Hψbij∇iφj − 6Kψ∇iφ

i − 4Hψ2
(
4H2 − 3K

)

− 2φk
(
∇kbij

)(
∇iφj

)
+ 2ψbijφk∇kbij − 2

(
∇iφj

)
bkj∇iφ

k − 2
(
∇iφj

)
bik∇jφ

k . (3.32)

The third term is the most complicated one. Using Eqn. (3.25), it is found to be

gij
(
δ(2)bij

)
= −HVkV

k − Vk∇iU k
i + bki V

iVk , (3.33)

but this expression has to be translated back in terms of φk and ψ. The first term in Eqn. (3.33) has been worked
out in Eqn. (3.16). For the second term we find

Vk∇iU k
i =

(
φlblk + ∇kψ

)
∇i
(
∇iφ

k − ψbki
)

=
(
φlblk + ∇kψ

)(
∇2φk

(1.23)
− 2ψ∇kH − bki ∇iψ

)

= blkφ
l∇2φk − 2blkψφ

l∇kH + ∇kψ∇2φk − 2ψ∇kψ∇kH − φl
(
2Hbil −Kgil

)
∇iψ − bki ∇iψ∇kψ ,

and the third term is given by

bki V
iVk = bki

(
φlbil + ∇iψ

)(
φmbmk + ∇kψ

)

(1.32),(1.35)
=

(
4H2 −K

)
bki φ

iφk − 2HKφkφ
k + 4Hbki φ

i∇kψ − 2Kφk∇kψ + bki
(
∇iψ

)(
∇kψ

)
.

Combining these expressions, we find for the third term in Eqn. (3.30)

gij
(
δ(2)bij

)
=

(
2H2 −K

)
bki φ

iφk −HKφkφ
k + 4Hbki φ

i∇kψ −H
(
∇iψ

)(
∇iψ

)
− bikφ

i∇2φk

+2bki ψφ
i∇kH −

(
∇kψ

)
∇2φk + 2ψ

(
∇kψ

)(
∇kH

)
− 3Kφk∇kψ + 2bki

(
∇iψ

)(
∇kψ

)
. (3.34)

If we now insert the results from Eqns. (3.31), (3.32), and (3.34), into Eqn. (3.30), many terms cancel. The final
result is then

δ(2)H = Hψ2
(
4H2 − 3K

)
−H2bki φ

iφk −Hbki φ
i∇kψ −Kφi∇iψ + bijψφ

i∇jH + ψ∇kψ∇kH

+ψbij∇i∇jψ − φk
(
∇kbij

)
∇iφj + ψbijφk∇kbij − 1

2

(
∇iφj + ∇jφi

)
∇i∇jψ

+
1

2
H
(
Kφiφ

i − ∇iψ∇iψ
)

− 1

2
bij
(
∇kφi∇kφ

j + φi∇2φj − ∇iψ∇jψ
)

− 1

2
∇kψ∇2φk .

As usual, this expression simplifies considerably if the variation is purely normal:

δ
(2)
⊥ H = Hψ2

(
4H2 − 3K

)
+ ψ∇kψ∇kH + ψbij∇i∇jψ − 1

2

(
H∇iψ∇iψ − bij∇iψ∇jψ

)
.

This again coincides with Eqn. (69) of Ref. [5], up to a prefactor 1/2 due to different conventions for the second
variation.
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4. Some applications to problems involving the first

area variation

4.1. Minimal surfaces

Roughly speaking, minimal surfaces have the property that locally one cannot deform them without increasing their
area. They can often be visualized as soap films suspended between wire frames (see for instance the beautiful book
by Isenberg [12]). The classical minimal surfaces – plane, catenoid and helicoid – date back into the 18th century.
Many important analytical properties of such surfaces have been uncovered, most importantly their relation with
holomorphic functions discovered by Weierstrass. Still, not many explicit examples of minimal surfaces have
been found until the beginning of the 1980s, where the rapid increase in computer power boosted this field of
mathematics.

In this section we will only touch upon a few very simple problems and a few minimal surfaces without getting
into any mathematical study of their properties.

4.1.1. Defining property

Consider a set of surfaces Si which all have the same closed curve C as their boundary. Which of these surfaces has
the smallest area? We will skip the usual mathematical intricacies related to questions of whether such a minimum
exists, but we will ask the question of how to find or characterize such a minimal surface. The area Ai of any such
surface Si is evidently given by

Ai =

∫

Si

dA =

∫

Ui

du1du2 √
g ,

where Ui is the coordinate patch describing surface Si and
√
g is the metric of that surface. A minimal surface will

be such that its first variation δ(1)A of the area vanishes, so a necessary condition for S to be minimal is

δ(1)A =

∫

Ui

du1du2 δ(1)
√
g

(3.13)
=

∫

Ui

du1du2 √
g
(

− 2Hψ(u1, u2)
)

= 0 ,

where we restricted to normal variations ψ, which is enough if we leave the boundary untouched. Since the variation
ψ is arbitrary (except that we require it to vanish at the boundary), this integral can only vanish if H ≡ 0. We
thus see: A necessary condition for a surface to be minimal is that its mean curvature vanishes at every point.
This is intuitively clear, because if a surface had a region in which H would for instance be positive, this region
would be a little “bump”, and the total area could be reduced by flattening the bump. Of course, this condition is
not sufficient. We only have established a criterion for the surface to be stationary. Neither do we know whether
the solution of the (differential!) equation H = 0 is unique (it needn’t be), nor do we know whether the solution
corresponds to a minimum, a maximum or a saddle point in the “space of surfaces”.

Note that since 2H = κ1 + κ2 and K = κ1κ2, the Gaussian curvature of a minimal surface necessarily satisfies
K ≤ 0 everywhere.

Formula (C.12) in Appendix C.4 shows that the coordinate functions of a minimal surface are harmonic.

Problem 4.1 Show, that the following surface given in Monge parameterization by the function

h :







(
− π

2 ,
π
2

)
×
(

− π
2 ,

π
2

)
→ R

(x, y) 7→ h(x, y) = log
cosx

cos y

(4.1)

is minimal. This surface is called “Scherk’s surface”. An illustration is given in Fig. 4.1. Not restricting the region
of x and y to the central square (−π

2 ,
π
2 ) × (−π

2 ,
π
2 ), we see that this surface is actually doubly periodic.
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Figure 4.1.: Illustration of a central
portion of Scherk’s surface—see Problem
4.1. It is named after Heinrich Ferdi-
nand Scherk, who discovered this mini-
mal surface in 1835 and provided thereby
the third nontrivial example of a minimal
surface (after the catenoid and the heli-
coid, discovered by Jean Baptiste Marie
Meusnier in 1776). Scherk’s surface is
double periodic, and it links a collec-
tion of parallel planes to a collection
of perpendicular parallel planes. One
thus might speculate that a defect sur-
face in a lamellar phase of microemulsions
looks like essentially Scherk’s surface (and
would thus not cost any bending energy!).

4.1.2. Example 1: Soap film between two circles

Consider a soap film suspended between two parallel, coaxial circles of equal radius [1, Example 17.2.2]. The
surface tension of the soap film will attempt to give it a shape which minimizes its area and therefore render the
mean curvature zero.1 Using the parameterization discussed in Sec. 2.2.4 (see also Table. 2.1), the condition for
such a surface to be minimal can be written as

0
!
= κ1 + κ2 = − 1

r
√

1 + r′2
+

r′′

(
1 + r′2)3/2

=
−(1 + r′2) + r r′′

r
(
1 + r′2)3/2

.

This equation is “satisfied” in the pathological2 case r′ ≡ ∞, which just corresponds to a plane. If r′ is different
from infinity, we will require the nominator to vanish. This gives the ordinary second order nonlinear differential
equation

r r′′ −
(
r′
)2

= 1 ,

and one can easily check that this has the general solution

r(z) = c1 cosh
z − c2
c1

. (4.2)

A surface from this two-parameter family of surfaces is called a catenoid. Since the metric in this particular
parameterization is given by r2(1+ r′2), the metric determinant for the catenoid is

√
g = c1 cosh2[(z− c2)/c1]. The

surface area S of the symmetric portion of a catenoid of height d is therefore given by

S =

∫ d/2

−d/2

dz

∫ 2π

o

dϕ c1 cosh2 z

c1
= πc1

(

d+ c1 sinh
d

c1

)

. (4.3)

It turns out that a stable film can only develop if the two rings are not too far apart. Looking at Eqn. (4.2), it
is clear that the boundary value problem to solve is

c1 cosh
d

2c1
= R or:

coshx

x
=

2R

d
with x :=

d

2c1
. (4.4)

1Physically, one may worry that there are also small but nonzero bending moments of the soap film, i. e., that there is a contribution
to the energy due to the curvature. However, if this energy per unit area is given by a Helfrich Hamiltonian, see Eqn. (5.1), and
if the spontaneous curvature of the film is zero, then the surfaces considered here (for which the pressure on both sides is zero)
automatically also satisfy the more complicated differential equation (5.3) which minimizes curvature and tension energy, and which
we will derive in Sec. (5.1).

2A plane is strictly speaking outside the realm of this particular parameterization. Still, it leaves its traces here in the sense that it
comes up as a “physicist’s solution” of the problem.
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Figure 4.2.: Area of a stationary
catenoid suspended between two par-
allel coaxial rings of radius R as a func-
tion of their distance d. Below a max-
imum distance dmax/R ' 1.32549 two
branches exist, the one with the lower
area being the stable solution. The in-
set shows the profiles of a sequence of
stable catenoids at the distances d/R ∈
{0.25, 0.5, 0.75, 1.0, 1.25, 1.32549}, also
indicated by the “•” symbols.

However, the function (coshx)/x has a minimum at some value of x:

0
!
=

∂

∂x

coshx

x
⇒ coshx− x sinhx = 0 ⇒ d

2c1
= xmin ' 1.19968 .

Clearly, Eqn. (4.4) only has a solution if the radius R is larger than the minimum value which the left hand side
assumes. Inserting the value for x at the minimum, this gives the condition

d ≤ dmax ' 1.32549 ×R .

For values of d smaller than this, Eqn. (4.4) has two solutions, see Fig. 4.2. If d/R & 1.05539 the area of the
catenoid is larger than the combined area of two soap films which separately cover the two rings, and the catenoid
becomes metastable. At the critical value dmax the area of the soap film is S ' 7.5378R2, which is about 20%
larger than the area spanned by the two rings individually, which is 2πR2 ' 6.2832R2. Beyond dmax the solution
consisting of two separately covered rings is the only stable one. This was first shown analytically by Goldschmidt
in 1831, and the equilibrium solution consisting of two separate films spanning the two circles individually has
become known as the “Goldschmidt discontinuous solution” [1, 12]

The inset in Fig. 4.2 shows the shapes of soap films suspended between two circles as the two circles are gradually
being pulled apart. This situation is somewhat peculiar because there does not seem to be anything “forbidding”
about the limiting profile: It does not touch in the middle, it does not have infinite slopes or sharp edges. Why
then, physically, does the soap film snap?

4.1.3. Example 2: Helicoid

Take two straight lines which intersect at a right angle. Now move the second line along the first one while
simultaneously rotating it with a constant angular velocity which points along the first line. The second line then
traces3 out a helical surface which is given by the following parameterization:

~r :







R
2 → R

3

(r, z) 7→ ~r(r, z) =





r cos z
r sin z
cz





(4.5)

This surface is called a helicoid, see Fig. 4.3. The constant c determines the pitch of the helix.

3A surface which is generated by a line moving through space is called a “ruled surface”, and the lines are called the “generators” of
the surface. A “developable” surface is a special ruled surface, which has the additional property that it has the same tangent plane
on all points of one and the same generator. It can be proved that a portion of a surface is developable if and only if its Gaussian
curvature is zero everywhere. It can also be proved that a (sufficiently small) portion of a surface can be isometrically mapped to
a plane if and only if it is developable [14].

28



Figure 4.3.: Illustration of two turns
of a helicoid. Note that when “walk-
ing upwards” on one of the “stairs” for
one complete rotation, one has actually
moved up two turns. This is just like
the famous spiral staircase in the Vati-
can museum in Rome.

A helicoid is actually a minimal surface, as we will now verify. The tangent vectors are given by

er =





cos z
sin z

0



 and ez =





−r sin z
r cos z
c



 .

From this we find the metric and its determinant (take u1 = r, u2 = z)

gij =

(
1 0
0 c2 + r2

)

and g = c2 + r2 .

This also shows that the coordinate representation is orthogonal. The normal vector is given by

~n :=
er × ez√

g
=

1√
c2 + r2





c sin z
−c cos z

r



 .

For the second fundamental form we need the second partial derivatives

er,r =





0
0
0



 , ez,z =





−r cos z
−r sin z

0



 , and er,z = ez,r =





− sin z
cos z
0



 .

So the second fundamental bij and its determinant b are given by

bij := ei,j · ~n = − c√
c2 + r2

(
0 1
1 0

)

and b = − c2

c2 + r2
.

The Gaussian curvature K is the ratio between the determinant of first and second fundamental form, and is given
by

K =
b

g
= − c2

(c2 + r2)2
< 0 . (4.6)

Twice the mean curvature, 2H, is the complete contraction of bij with gij and given by

2H = bijg
ij = brrg

rr + bzzg
zz = 0 . (4.7)

This proves that the helicoid is a minimal surface.
In cylindrical coordinates (r, z, ϕ) the helicoid is given by z = cϕ.
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Figure 4.4.: Illustration of the central
portion of Enneper’s minimal surface (r
has been plotted out up to rmax = 2.5).
If one were to look from farther away
(and plotting the surface for larger val-
ues of rmax), the Enneper surface looks
like a plane which winds up three times
before it meets with itself.

4.1.4. Example 3: Enneper’s minimal surface

In 1863 the German mathematician Alfred Enneper discovered that the surface given by the parameterization

~r :







R
+
0 × [0; 2π) → R

3

(r, φ) 7→ ~r(r, φ) =






r cosφ− 1
3r

3 cos(3φ)

−r sinφ− 1
3r

3 sin(3φ)

r2 cos(2φ)






(4.8)

is a minimal surface. It cannot be embedded in R3 because (for r ≥
√

3) it develops self-intersections, which for
z > 0 lie in the y−z-plane and for z < 0 in the x−z-plane. However, it is still a proper immersion. It also contains
two straight lines in the plane z = 0 which intersect orthogonally, namely if the coordinate φ takes the values 1

4π
and 3

4π. See Fig. 4.4 for an illustration.
Let’s check that indeed the mean curvature vanishes everywhere. The tangent vectors are given by

er =






cosφ− r2 cos(3φ)

− sinφ− r2 sin(3φ)

2r cos(2φ)




 and eφ =






−r sinφ+ r3 sin(3φ)

−r cosφ− r3 cos(3φ)

−2r2 sin(2φ)




 .

From this we immediately get the metric (u1 = r, u2 = φ) and the metric determinant

gij = (1 + r2)2
(

1 0
0 r2

)

and g = r2(1 + r2)4 .

This also shows that the coordinate representation is orthogonal. The normal vector is given by

~n :=
er × eφ√

g
=

1

1 + r2






2r cosφ

2r sinφ

r2 − 1




 .

We finally need to know the second partial derivatives:

er,r =






−2r cos(3φ)

−2r sin(3φ)

2 cos(2φ)




 , eφ,φ =






−r cosφ+ 3r3 cos(3φ)

r sinφ+ 3r3 sin(3φ)

−4r2 cos(2φ)




 ,

and er,φ = eφ,r =






− sinφ+ 3r2 sin(3φ)

− cosφ− 3r2 cos(3φ)

−4r sin(2φ)




 .
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From this we now get the second fundamental form bij and its determinant b:

bij := ei,j · ~n =

(

−2 cos(2φ) 2r sin(2φ)

2r sin(2φ) 2r2 cos(2φ)

)

and b = −4r2 .

The Gaussian curvature K is the ratio between the determinant of first and second fundamental form, and is given
by

K =
b

g
= − 4

(1 + r2)4
< 0 . (4.9)

Twice the mean curvature, 2H, is the complete contraction of bij with gij and given by

2H = bijg
ij = brrg

rr + bφφg
φφ = −2 cos(2φ)

(1 + r2)2
+

2r2 cos(2φ)

r2(1 + r2)2
= 0 . (4.10)

This proves that the Enneper surface is a minimal surface.
Tore Nordstrand gives the following implicit representation of Enneper’s surface:

[
y2 − x2

2z
+

2

9
z2 +

2

3

]3

− 6

[
y2 − x2

4z
− 1

4

(

x2 + y2 +
8

9
z2

)

+
2

9

]2

= 0 .

4.2. Laplace’s formula

Take a closed surface S = ∂V (using again an outward pointing normal) with some internal pressure pi inside a
medium with (external) pressure pe. Let there be a surface energy σ per unit area. What can we say about the
shape of this surface? The energy is given by

E =

∫

∂V

dA σ + (pe − pi)

∫

V

dV ,

where dA and dV are the area and volume form. In equilibrium, the first variation of this energy has to vanish.
For a closed surface it is enough to restrict to normal variations, since tangential variations will only effectively
reparameterize the surface. We therefore get from Eqns. (3.13) and (3.19)

0
!
= δ1E =

∫

∂V

dA
{

− 2Hσψ + (pe − pi)ψ
}

.

From this follows the formula of Laplace

pi − pe = −2Hσ . (4.11)

In particular, if we have a spherical bubble with radius R, this reduces to

∆p := pi − pe =
2σ

R
. (4.12)

Thus, the pressure inside a spherical bubble is larger than outside, and this difference is more pronounced the
smaller the bubble is.4

Remark: Whether a closed surface immersed in R
3 with constant mean curvature must be a round sphere is

known as the Hopf conjecture—and it is a quite nontrivial question! See for instance Ref. [6, 17]. The answer is
“yes”, if one has for instance either one of the following additional conditions: (i) the surface has genus 0 (proved
by Hopf) or (ii) if the immersion is actually an embedding (proved by Alexandrov).5 This essentially implies that
under “ordinary physical circumstances” the Laplace law indeed forces bubbles to be spherical.

4A very simple derivation of this result works like this: Take a bubble and “cut” it in two
halfs (see picture on the right). One now has to apply two additional forces in order to keep
the system at equilibrium. First, everywhere along the rim one has to pull downward with
the line tension σ. This gives the total force F↓ = 2πR × σ. Second, the excess interior
pressure ∆p of the bulk interior has to be supported by a piston, which pushes upwards with
the force F↑ = πR2 ×∆p. In equilibrium these forces have to balance, and equating them gives
Eqn. (4.12).

5Some further remarks on terminology seem appropriate [7, 15]: A C∞ mapping F from a subset U of a manifold M to a manifold

31



ϑ

ϑ

r

R

h

Figure 4.5.: Illustration for the calcu-
lation of the capillary rise.

With the formula of Laplace we can for instance explain the phenomenon of capillary rise [21]. If a liquid wets
a substrate, it is well known that it then will rise in a capillary of small inner diameter. Why? Look at Fig. 4.5.
Since the surface of the liquid makes a nonzero contact angle ϑ with the substrate, it can generally not be flat. If
ϑ < π/2, the situation is such as depicted, and the surface is curved downward in the capillary. However, Laplace’s
formula then tells us that the pressure below this curved surface has to be smaller than the pressure below the flat
surface far away from the capillary. This imbalance is remedied by the drop in hydrostatic pressure which follows
the rise of the liquid in the capillary. If we assume that the capillary is thin, the surface will be approximately
spherical and from Fig. 4.5 we see that its curvature radius is then r = R/ cosϑ. If ∆ρ is the density difference
between the liquid and the vapor above it, and g is the gravitational acceleration, we find

∆p =
∆ρ πR2 h g

πR2
⇒ h =

`2c cosϑ

R
≤ `2c

R
with `c :=

√
2σ

g∆ρ
.

The rise of liquid is thus inversely proportional to the inner radius of the capillary. If one does not use a cylindrical
capillary but two planes at a distance 2R, the liquid only rises half as high, since the curved surface is now a
cylinder and the mean curvature thus only half as big. The length `c is called capillary length or capillary constant.
For water at 0◦ C it has the value 3.9mm, and it falls steadily to zero at the critical point.6

4.3. Stability analysis for the isoperimetric problem

A problem very close to the one we’ve discussed in Sec. 4.2 is the isoperimetric problem: Which shape encloses a
given volume with the smallest possible surface? Essentially, we again have to look at the integral

S =

∫

∂V

dA + λ

[ ∫

V

dV − V0

]

,

where S is the surface area and the variable λ now enters as a Lagrange multiplier intended to fix the volume
constraint. Setting the first variation to zero, δ1S = 0, gives the result 2H = λ = const., showing that the surface

N is called an immersion if at every point u ∈ M its differential dF (u) is injective, i. e. if it has rank dim(M). Note that neither
F itself nor the map u 7→ dF (u) are required to be injective. The map F is called a submersion, if at every point its differential is
surjective, i. e. if it has rank dim(N). An immersion is called an embedding, if furthermore the following condition holds: For every
open set P ⊂ M there exists an open set Q ⊂ N such that F (U)∩Q = F (P ). This condition in particular forbids self-intersections.
Indeed, the famous counter-example for a surface of constant mean curvature which is not a sphere, the “Wente torus” [24], has
self-intersections.

6That the capillary length vanishes at the critical point is not obvious. Certainly, the surface tension must vanish when the notion
of a surface ceases to be meaningful, but also the density difference between fluid and gas phase vanishes there. In fact, at the
critical point the surface tension vanishes like σ ∼ (1−T/Tc)µ, where the critical exponent µ has the value 3/2 in mean field theory,
and the actual value µ ≈ 1.26 in three dimensions. Contrary to that, the density difference vanishes as ∆ρ ∼ (1 − T/Tc)β , with

a mean field value β = 1/2 and an actual value of β ≈ 0.32 in three dimensions. From the definition `c :=
p

2σ/g∆ρ we hence

see `c ∼ (1 − T/Tc)(µ−β)/2, where the exponent is 1/2 in mean field theory and about 0.47 in three dimensions. Thus, `c indeed
vanishes at the critical point in a power law behavior. A detailed discussion can be found in Chapter 9 of the book by Rowlinson
and Widom [21].
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essentially has to be a sphere. From this follows H = −1/R and K = 1/R2, with 4
3πR

3 = V0. Using this, as well
as the result for the Lagrange parameter, λ = 2H, the second variation of S is then found to be

δ2S =

∫

∂V

dA
{(

Kψ2 +
1

2
(∇iψ)(∇iψ)

)

− λHψ2
}

(A.12)
=

∫

∂V

dA
{

− ψ2

R2
− 1

2
ψ∇2ψ

}

. (4.13)

We shall not (and need not) enforce the constraint of fixed volume exactly, but will instead contend ourselves with
satisfying it up to quadratic order, which means that we will demand

0
!
= δ2V =

∫

∂V

dA
{

ψ +
1

R
ψ2
}

. (4.14)

The essential question is now: Is there any way that the second variation of the area, under the constraint of
fixed volume, is negative? So, in other words, we are searching for specific variations ψ(ui) which might lower the
surface area even more. This is best done by expanding the general variation ψ in some convenient basis. Since
Eqn. (4.13) shows that we would have to calculate the (covariant) Laplacian of the variation, it is most natural
to expand in eigenfunctions of the Laplacian. On the sphere those are the spherical harmonics. Using the usual
spherical coordinates, we can therefore write the expansion as

ψ(ϑ, ϕ) =

∞∑

l=0

l∑

m=−l

ψlmYlm(ϑ, ϕ) , (4.15)

where ψl,−m = (−1)mψ∗
lm, in order to make the result real.7 For a summary of important properties of the spherical

harmonics Ylm (a few of which we are going to use) see for instance [1].
Let us first turn to the volume constraint (4.14). Inserting (4.15) yields

0 =

∫

∂V

dA
{∑

lm

ψlmYlm +
1

R

∑

lm,l′m′

ψlmψ
∗
l′m′YlmY

∗
l′m′

}

=
√

4π R2 ψ00 +R
∑

lm

∣
∣ψlm

∣
∣
2
.

From this we get a quadratic equation for ψ00:

ψ00 = − 1√
4π R

∑

lm

∣
∣ψlm

∣
∣
2

= − 1√
4π R

[

ψ2
00 +

′∑

lm

∣
∣ψlm

∣
∣
2
]

,

where the prime on the second sum indicates that the term with l = 0 is left out. Note also that |ψ00|2 = ψ2
00, since

Y00 = 1/
√

4π is real. Solving the quadratic equation and subsequently expanding for small values of the |ψlm|2, we
find

ψ00 =
√
π R






−1 +

√
√
√
√1 − 1

πR2

′∑

lm

∣
∣ψlm

∣
∣
2






= − 1

2
√
π R

′∑

lm

∣
∣ψlm

∣
∣
2

+ O(3) .

This result shows that the constraint of volume conservation (up to quadratic order) requires the expansion coef-
ficient ψ00 to be a second order function of all the other expansion coefficients.

Let us now insert the expansion (4.15) into the second variation (4.13). Using the fact that the Ylm are eigen-
functions of the Laplacian with eigenvalues −l(l + 1)/R2, we find

δ2S =
1

R2

∫

∂V

dA
{

−
∑

lm,l′m′

ψlmψ
∗
l′m′YlmY

∗
l′m′ +

1

2

∑

lm,l′m′

l(l + 1)ψlmψ
∗
l′m′YlmY

∗
l′m′

}

=
∑

lm

∣
∣ψlm

∣
∣
2
[

− 1 +
l(l + 1)

2

]

= −ψ2
00 +

′∑

lm

∣
∣ψlm

∣
∣
2
[

− 1 +
l(l + 1)

2

]

=
′∑

lm

∣
∣ψlm

∣
∣
2
[

− 1 +
l(l + 1)

2

]

+ O(3) . (4.16)

In the last step we used the fact that ψ00 is already of quadratic order in the other variations. Note that this
essentially comes down to taking out the mode l = 0, which changes volume to first order! And indeed, the
condition on ψ00 was precisely derived from the desire to keep the volume constant.

7Since Yl,−m = (−1)mY ∗
lm, we can then have ψl,−mYl,−m = ψ∗

lmY
∗
lm. Hence, if we have a sum over all m, we can replace m by −m

and thereby change to the complex conjugate expression. This is clever if done in one term of a double sums, because it generates
ψlmψ

∗
l′m′ as well as YlmY

∗
l′m′ , and the latter is a product of two functions which satisfy an orthogonality relation when being

integrated.
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Equation (4.16) says the following: The second variation vanishes for the three modes with l = 1. This is due to
the fact that these modes simply describe a translation of the whole surface, which of course does not change its
area, and which we can therefore forget about. However, all the other modes contribute positively to the second
variation. Hence, the spherical shape is in fact stable, in the sense that there exists no possible variation of the
surface which reduces its area any further.

4.4. The Plateau-Rayleigh-instability

Let us repeat the above calculation in a “slightly” different geometry: Let us not look at spheres but at cylinders.
Of course, we know that a cylinder does not minimize the area for a given volume being enclosed, but if we forget
about the inevitable problems at the two caps, a cylinder is a surface with constant mean curvature! Hence, it makes
the area minimization problem as discussed above stationary. The question now is, whether this stationary state is
an equilibrium state. Since we already know that the cylinder is not the optimal answer, we might indeed expect
an instability, and indeed this is what we will find.

The difference in the cylindrical case, as compared to the case above, is manifest only in a few points: First, the
area element is dA = Rdϕdz. Second, the Gaussian curvature is K = 0. From this we see that the second order
variation δ2S is given by

δ2S =

∫ L

0

∫ 2π

0

R dϕdz
{

− 1

2

ψ2

R2
− 1

2
ψ∇2ψ

}

, (4.17)

where we assumed that the cylinder has a length L. Third, the surface Laplacian, using cylindrical coordinates
(R,φ, z), is ∇2 = R−2∂2/∂ϕ2 + ∂2/∂z2. A set of orthogonal eigenfunctions is therefore given by

Znm(ϕ, z) := eimϕ e2πinz/L n,m ∈ N0 ,

∫ L

0

∫ 2π

0

R dϕdz ZnmZ
∗
n′m′ = 2πRLδnn′δmm′ , (4.18)

and the eigenvalues are

∇2Znm = − 1

R2

[

m2 +
(2πR

L

)2

n2
]

Znm .

We will expand the normal variation in these eigenfunctions according to

ψ(ϕ, z) =
∑

n,m

ψnmZnm(ϕ, z)

with ψ−n,−m = ψ∗
nm. Inserting these expansions into the constraint of volume conservation, and noting that this

time the mean curvature is not −1/R but −1/2R, we find

0
!
= δ2V =

∫ L

0

∫ 2π

0

R dϕdz
{∑

nm

ψnmZnm +
1

2R

∑

nm,n′m′

ψnmψ
∗
n′m′ZnmZ

∗
n′m′

}

= 2πRLψ00 + πL
[

ψ2
00 +

′∑

nm

∣
∣ψnm

∣
∣
2
]

,

where the prime in the sum again indicates that the mode n = m = 0 is left out. And from this we can again
obtain the amplitude ψ00 of this mode which changes volume in first order:

ψ00 = R






−1 +

√
√
√
√1 − 1

R2

′∑

nm

∣
∣ψnm

∣
∣
2






= − 1

2R

′∑

nm

∣
∣ψnm

∣
∣
2

+ O(3) .

Just as in the spherical case, the condition of volume conservation forces the zero mode ψ00 to be of quadratic
order in the other modes. For the second variation δ2S we therefore find

δ2S =
1

2R2

∫

∂V

dA
{

−
∑

nm,n′m′

ψnmψ
∗
n′m′ZnmZ

∗
n′m′ +

∑

nm,n′m′

ψnmψ
∗
n′m′ZnmZn′m′

[

m2 +
(2πR

L

)2

n2
]}

=
πL

R

∑

nm

∣
∣ψnm

∣
∣
2
[

− 1 +m2 +
(2πR

L

)2

n2
]

= −πL

R
ψ2

00 +
πL

R

′∑

nm

∣
∣ψnm

∣
∣
2
[

− 1 +m2 +
(2πR

L

)2

n2
]

=
πL

R

′∑

nm

∣
∣ψnm

∣
∣
2
[

− 1 +m2 +
(2πR

L

)2

n2
]

+ O(3) . (4.19)
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a)

b)

Figure 4.6.: a) Illustration of a criti-
cal wavelength fluctuation λc = 2πR
in the Plateau-Rayleigh problem. b)
Simple approximative argument for
the critical wavelength based on equat-
ing volume and area of a piece of the
cylinder with its resulting sphere (see
Eqn. (4.20)).

Contrary to the case of the second variation of the spherical surface, Eqn. (4.16), the above expression is not always
positive. It can become negative for m = 0 and sufficiently large L. Indeed, the earliest mode which “blows up”
is n = 1, from which we see that the cylindrical surface becomes unstable if it gets longer than its circumference.
Alternatively, we may think of the expression q := 2πn/L as a wave vector, and we then see that a long cylinder
is unstable with respect to undulation modes with a wave vector q < 1/R or wave length λ = 2π/q > 2πR.

This of course has the following physical significance: Think of a “cylinder of water”, as it comes for instance out
of a tap, or – a little more controlled – as one might pull it under zero gravity out of a droplet of water. The water
volume is conserved, and the surface tension tries to minimize the area. The above calculation shows that if the
cylinder becomes too long, it will be unstable against long wavelength fluctuations. Plateau was the first to study
this problem experimentally, and he found our result that a cylinder of fluid subject to surface tension is stable
against fluctuations which break the symmetry, but unstable against symmetry conserving undulations which have
a wave length exceeding the circumference of the cylinder. Rayleigh was the first to give a theoretical explanation
of this phenomenon (see for instance Ref. [20]), which is now referred to as the Plateau-Rayleigh-instability. An
illustration of the critical fluctuation mode is shown in Fig. 4.6.

Observe that the reason for the system to “search” for lower areas is the surface tension of the liquid. However,
it’s precise value is immaterial, since all what is needed is some driving force toward a state of lower area. Hence,
the Plateau-Rayleigh instability happens at arbitrarily small values of the surface tension.

Wave vectors q < 1/R are unstable, but in order to understand which wave vector grows fastest if the instability
sets in, one has to do a dynamical calculation, which is also due to Rayleigh (see again Ref. [20]). For an incom-
pressible non-viscous fluid the calculation is comparatively simple. There exists a potential for the velocity field
of the fluid which satisfies the Laplace equation. One searches for a solution which matches the boundary of the
specific mode one is interested in. Integrating over the volume of the fluid one finds the kinetic energy. Together
with the potential energy calculated above one has the Lagrange function and thus the equation of motion for
every mode. One then sees that for m = 0 and qR < 1 the perturbation is exponentially growing, with a growth
constant c given by [20]

c =
σ

ρR3

qR I1(qR)

I0(qR)

(
1 − (qR)2

)
.

where ρ is the density of the liquid and I0 and I1 are modified Bessel functions. The wave vector which has the
largest c, i. e., the fastest growing mode, is given by qR ' 0.697019.

We finally want to show that there is a simple argument leading to the same physics, but with somewhat wrong
prefactors: Assume we chop a cylinder of water having radius R into smaller cylinders. What does the length L of
these cylinders have to be such that if they collapse into spheres of radius R′, their initial outer surface is equal to
the surface of the sphere? In order to answer that one simply has to solve the two equations which fix volume and
area:

area: 2πRL = 4πR′2

volume: πR2L = 4
3πR

′3






⇒







L = 9
2R

R′ = 3
2R

. (4.20)

One can now convince oneself that for cylinders which are longer than this value, the chopping up will result in
an area reduction of the total surface. The estimate Lcrit = 4.5R is about 40% smaller than the exact answer
Lcrit = 2πR derived above.
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5. Vesicles

Vesicles are objects consisting essentially of a closed membrane. Soap bubbles are a good example. In biology
the membrane is invariably a phospholipid bilayer. Much ought to be said about the interesting physics of such
systems, but here we will restrict to the set of problems which arises when the membrane is described as a two-
dimensional fluid1 elastic. This means, there exists (i) a surface tension and (ii) a bending energy involved with
“out-of-the-plane” motions of the membrane. Following Helfrich [11], the (free) energy per unit area of membrane
is then given by

e = σ + 2 kc

(
H − c0)

2 + k̄cK . (5.1)

The first term is the tension. The second and third term describe energy contributions due to the curvature of the
membrane. The parameter c0 is called the spontaneous curvature, for which we use a slightly different convention
than usual. If c0 is zero, the bending energy is found to be proportional, through the two elastic moduli kc and k̄c,
to the square of the mean curvature and the Gaussian curvature. Those are two convenient quadratic invariants
of the curvature tensor. And since there are no more than two quadratic invariants, the description is complete.
For nonzero spontaneous curvature the first term gets somewhat “renormalized”, in the sense of “what is the
mean curvature at which the bending energy vanishes”? The expansion of the elastic strain is performed about a
pre-curved ground state.

5.1. Shape equation

Given a closed surface ∂V surrounded by an elastic fluid membrane, its elastic energy due to the Helfrich Hamil-
tonian (5.1) is given by

H =

∫

∂V

dA
[

2kc

(
H − c0

)2
+ k̄cK + σ

]

− P

∫

V

dV ,

The variables σ and P are surface tension and (excess interior) pressure. Alternatively, they can be viewed
as Lagrange multipliers which may be used to fix a constraint of constant area or volume, respectively. This
essentially depends on the ensemble one wishes to study. We now want to look at the variation of this energy.
First it is helpful to realize that due to the Gauss-Bonnet theorem [9, 14] variations which leave the boundary and
the topology unchanged will not change the integral over K, since this is a topological invariant. This term does
therefore not contribute to variation of H . Furthermore, for the sake of finding the shape equations, it is sufficient
to restrict to normal variations. The first variation of the term (H − c0)

2 is given by

δ(1)(H − c0)
2 = 2(H − c0)δ

(1)H
(3.27)
= 2(H − c0)

[
(2H2 −K)ψ +

1

2
∇2ψ

]
,

and using our expression for the variation of the square root of the metric determinant (3.13) we then find

δ(1)
(√
g (H − c0)

2
)

=
(
δ(1)

√
g
)
(H − c0)

2 +
√
g
(
δ(1)(H − c0)

2
)

=
√
g
(

− 2Hψ(H − c0)
2 + 2(H − c0)

[
(2H2 −K)ψ +

1

2
∇2ψ

])

=
√
g
(

2(H − c0)
[
ψ
(
H2 −K + c0H

)
+

1

2
∇2ψ

])

. (5.2)

From this, and additionally Eqn. (3.19), we can readily work out the first variation of the Helfrich Hamiltonian:

δ(1)H =

∫

∂V

dA
{

2kc

[
2(H − c0)(H

2 −K + c0H) + ∇2H
]
− 2Hσ − P

}

ψ ,

1By “fluid” we mean that the in-plane shear modulus is zero. The opposite would be “tethered”. Since in tethered membranes local
distances are fixed, the metric is fixed, and hence, by Gauss’ theorema egregium, the Gaussian curvature is fixed. A piece of paper
would be an example of a tethered membrane. In fluid membranes the Gaussian curvature can vary, and it hence makes sense to
add an elastic contribution proportional to it.
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where we partially integrated the term ∇2ψ twice by making use of Eqn. (A.12). Setting this variation to zero
gives the shape equation for vesicles [25]2

P = 2kc

[

∇2H + 2
(
H − c0

)(
H2 −K + c0H

)]

− 2H σ . (5.3)

This nonlinear partial differential equation is extremely complicated to solve, and we will not make any attempt
at it. However, note that for κ = 0 Eqn. (5.3) reduces to the formula of Laplace, Eqn. (4.11). The beauty of
Eqn. (5.3) is that it is entirely coordinate free, since mean and Gaussian curvature are properties of a surface which
can be defined irrespective of coordinates. Much research has been done with essentially the aim to understand
the implication of this equation on the stationary shapes of vesicles. For a review see for instance the paper by
Seifert [23].

5.2. Stability of free cylindrical vesicles

In Sec. 4.4 we studied the surface tension driven instability of a cylinder of liquid. In this section we want to study
the same problem for liquid cylinders additionally coated by a membrane, i. e., a cylindrical vesicle.

It is easy to see that the shape equation (5.3) permits a solution which describes a cylinder of radius R. In this
case, H = − 1

2R = const and K = 0, and the shape equation reduces to

P = − kc

2R3

[

1 −
(
2c0R

)2
]

+
σ

R
. (5.4)

However, for the case of free cylindrical vesicles it is crucial to realize that there is a second variable in the problem
which also has to be equilibrated, namely the length L of the vesicle. Neglecting end-effects, the energy of the
cylindrical vesicle is given by

H =
[

2 kc

(

− 1

2R
− c0

)2

+ σ
]

2πRL− P πR2L .

Requiring ∂E/∂L = 0 implies the additional equilibrium condition

P =
kc

R3

(
1 + 2c0R

)2
+

2σ

R
. (5.5)

Equations (5.4) and (5.5) determine the required value of pressure and surface tension

P = −2kc

R3

(
1 + 2c0R

)
, (5.6a)

σ = − kc

2R2

(
1 + 2c0R

)(
3 + 2c0R

)
. (5.6b)

Both P and σ are uniquely determined by the radius. This is in contrast to the case of a spherical vesicle, where
one of the two variables can be chosen freely.

Even though we’ve found that cylindrical vesicles can solve the shape equation (neglecting problems at the ends,
of course), this does not answer the question whether this solution is stable against small perturbations. In order
to answer this question, we will now perform a linear stability analysis for the cylinder.

We first require the second variation of (H − c0)
2, which in the cylindrical case is given by

δ(2)(H − c0)
2 = 2(H − c0)δ

(2)H +
(
δ(1)H

)2

= (1 + 2c0R)
[ 1

2R4
ψ2 − 1

R
bijψ∇i∇jψ − 1

2R
bij∇iψ∇jψ − 1

4R2
∇iψ∇iψ

]

+
1

4R4
ψ2 +

1

2R2
ψ∇2ψ +

1

4

(
∇2ψ

)2
.

2When comparing Eqn. (5.3) with the expression in the paper by Helfrich and Zhong-can [25, Eqn. (31)], one has to bear in mind
that these authors use a different convention for the spontaneous curvature and for the mean curvature.
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From this we then obtain the second variation of
√
g (H − c0)

2 as

δ(2)
(√
g (H − c0)

2
)

=
(
δ(2)

√
g
)(

(H − c0)
2
)

+
(
δ(1)

√
g
)(
δ(1)(H − c0)

2
)

+
√
g
(
δ(2)(H − c0)

2
)

=
√
g

{
1

8R2
(1 + 2c0R)2∇iψ∇iψ +

1

4R4
ψ2 +

1

2R2
ψ∇2ψ +

1

4

(
∇2ψ

)2

− (1 + 2c0R)
( 1

2R2
ψ∇2ψ +

1

R
bijψ∇i∇jψ +

1

2R
bij∇iψ∇jψ +

1

4R2
∇iψ∇iψ

)}

.

From this we can finally work out the second variation of the energy of the cylindrical vesicle:

δ(2)H =

∫

∂V

dA

{

kc

[
1

4R2
(1 + 2c0R)2∇iψ∇iψ +

1

2R4
ψ2 +

1

R2
ψ∇2ψ +

1

2

(
∇2ψ

)2

−(1 + 2c0R)
( 1

R2
ψ∇2ψ +

2

R
bijψ∇i∇jψ +

1

R
bij∇iψ∇jψ +

1

2R2
∇iψ∇iψ

)]

(5.6b)
+

(

− kc

2R2
(1 + 2c0R)(3 + 2c0R)

)(1

2
∇iψ∇iψ

) (5.6a)
−

(

− 2kc

R3
(1 + 2c0R)

)( 1

2R
ψ2
)}

.

In this expression the four underlined terms are now integrated by parts using Eqn. (A.12). Also, in cylindrical
coordinates the only nonzero element of bij is bϕϕ = −1/R3. Using this, one finally ends up at

δ(2)H =
kc

R4

∫

∂V

dA
[3

2
ψ2 + ψR2∇2ψ +

1

2

(
R2∇2ψ

)2 − (1 + 2c0R)
(
∂ϕψ

)2
+ 2c0Rψ

2
]

.

The rest runs completely analogous to the Plateau-Rayleigh problem from Sec. 4.4. We expand ψ in terms of the
eigenfunctions Znm of the cylindrical Laplacian, Eqn. (4.18), and exploit their orthogonality. We then immediately
find the following mode-expansion of the second variation of the energy [25]:

δ(2)H =
πkcL

R3

∑

nm

∣
∣ψnm

∣
∣
2
{

3 − 4m2 − 2
(2πR

L

)2

n2 +
[

m2 +
(2πR

L

)2

n2
]2

+ 4c0R(1 −m2)

}

. (5.7)

Let us introduce the abbreviation A = 2πR/L. We first study the stability of modes which preserve the cylindrical
symmetry, i. e., the case m = 0. Such a mode becomes unstable if

0 ≥ 3 − 2A2n2 + (A2n2)2 + 4c0R = (A2n2 − 1)2 + 2(1 + 2c0R) .

A necessary condition for this equation to have a real solution is

c0 ≤ − 1

2R
. (5.8)

Looking back at the definition of the Hamiltonian and the sign convention of the curvature, we find that a cylindrical
vesicle can only become unstable against undulations along its axis if the spontaneous curvature favors an inward
bending. If Inequality (5.8) holds, we obtain

A2n2 ≤ 1 +
√

−2(1 + 2c0R) .

If the cylinder is essentially infinitely long, the least stable mode is characterized by 2c0R = −1 and An = 1.
Hence, the wavelength of this undulation is

λcrit =
L

n
= 2πR ,

which happens to be exactly the same wavelength as the one for the Plateau-Rayleigh problem.
For m = 1 the second variation of the energy is

δ(2)H
m=1
=

πkcL

R3

∑

n

∣
∣ψn1

∣
∣
2
A4n4 .
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For n = 0 this corresponds to a small translation of the cylinder perpendicular to its axis, which of course costs no
energy, while for larger n this deformation describes bending modes of the cylinder, and they require energy. In
fact, one can see that for m ≥ 1 no unstable modes exist.

A “pearling” instability of pinned cylindrical vesicles has recently been observed experimentally by Bar-Ziv and
Moses [2]. These authors also give an explanation of the phenomenon similar to the analysis performed above
(the energy of undulations is worked out numerically). A very different theoretical explanation is proposed in
Refs. [10, 19]. It is argued that one needs dynamical considerations in order to understand the phenomenon, statics
would not suffice. I have not yet followed their arguments well enough to comment on this.
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A. Christoffel symbols

A.1. Definition and transformation law

The Christoffel symbols of the first kind are defined by

Γijk =
1

2

[
gkj,i + gik,j − gij,k

]
. (A.1)

Note that Γijk is symmetric in the first two indices. The Christoffel symbols of the second kind are obtained by
formally raising the last index:

Γl
ij = Γijkg

kl . (A.2)

Note that Γl
ij is symmetric in the two lower indices.

In Sec. 1.2 we have seen that these symbols occur in the Gauss equation (1.18), which describes the change of
the local tangent coordinate vectors ei upon movements on the surface. Here we will collect a few properties of
these symbols.

One of the most important things to appreciate is that the Christoffel symbols are no tensors! To see this, let
us derive their transformation behavior (see [14]). From the equation of Gauss we have in local coordinates u1, u2:

ei,j =
∂~r

∂ui∂uj
= Γk

ijek + bij~n . (A.3)

Or, in a different coordinate system ūp, ūq:

ep̄,q̄ =
∂~r

∂ūp∂ūq
= Γr̄

p̄q̄er̄ + bp̄q̄~n . (A.4)

On the other hand, since

ei = ep̄
∂ūp

∂ui
,

we get by differentiation with respect to j

Γk
ijek + bij~n

(A.3)
= ei,j = ep̄q̄

∂ūp

∂ui

∂ūq

∂uj
+ er̄

∂2ūr

∂ui∂uj

(A.4)
=

[

Γr̄
p̄q̄er̄ + bp̄q̄~n

]∂ūp

∂ui

∂ūq

∂uj
+ er̄

∂2ūr

∂ui∂uj
.

Since the vectors ei and ~n are linearly independent, the two terms on the left and the right side of this equation
have to be equal individually. Comparing first the prefactors of ~n, we find

bij = bp̄q̄
∂ūp

∂ui

∂ūq

∂uj
,

proving that the second fundamental form bij is a (twofold covariant) tensor. Comparing the rest, we see

Γk
ijek = Γr̄

p̄q̄er̄
∂ūp

∂ui

∂ūq

∂uj
+ er̄

∂2ūr

∂ui∂uj
.

Inserting the inverse transform

er̄ = ek
∂uk

∂ūr
,

and comparing the prefactors of the two linearly independent vectors ek, we finally arrive at

Γk
ij = Γr̄

p̄q̄

∂ūp

∂ui

∂ūq

∂uj

∂uk

∂ūr
+

∂2ūr

∂ui∂uj

∂uk

∂ūr
. (A.5)

Were it not for the second inhomogeneous term, the Christoffel symbols would transform as tensors. Indeed, if one
restricts to affine linear transformations, the second derivative term vanishes and the Christoffel symbols transform
as tensors with respect to this restricted set of transformations.
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A.2. Some identities

Just as the Christoffel symbols are given by combinations of the derivative of the metric tensor, these derivatives
can be written in terms of the Christoffel symbols:

gij,k = Γikj + Γjki = gljΓ
l
ik + gliΓ

l
jk , (A.6a)

gij
,k = −gljΓi

lk − gliΓj
lk , (A.6b)

where the second equation (A.6b) follows from differentiating the identity gijg
jk = δk

i and inserting the first
equation (A.6a).

From the expression of the derivative of the metric determinant in Eqn. (3.9) we also find

∂g

∂uk

(3.9)
= ggijgij,k

(A.6a)
= ggij

(
Γikj + Γjki

)
= g

(
Γi

ik + Γj
jk

)
= 2gΓi

ik .

From this we obtain

Γi
ik =

1

2g

∂g

∂uk
=

1√
g

∂
√
g

∂uk
=

∂

∂uk
log

√
g . (A.7)

The above formula can be extended in the following way:

(Xk√
g),k√
g

=
Xk

,k

√
g +Xk√

g
,k√

g

(A.7)
= Xk

,k +XkΓi
ik = Xk

,k +XiΓk
ki

(C.6)
= ∇kX

k , (A.8)

where in the last step we used the concept of covariant differentiation, to be introduced in Sec. C.3.
This equation can be turned into a useful integration formula (in the following we’ll assume that the manifold

has no boundary !):

∫

M

dA X∇iY
i =

∫

M

dnx
√
gX∇iY

i (A.8)
=

∫

M

dnx X
(√
gY i

)

,i

part. int.
= −

∫

M

dnx X,i
√
gY i = −

∫

M

dA Y i∇iX .

(A.9)
If in particular we choose X as the unit tensor, we see that the surface integral of ∇iY

i over a manifold without
boundary vanishes: ∫

M

dA ∇iY
i = 0 (for ∂M = 0) .

We can further extend the expression (A.8) to a twofold contravariant tensor, but then the expression becomes
more messy:

(Xij√g),i√
g

= Xij
,i +XijΓk

ki =
(
Xij

,i +XkjΓi
ki +XikΓj

ki

)
−XikΓj

ki

(C.7)
= ∇iX

ij −XikΓj
ik . (A.10)

We can again use this to derive an integration formula over manifolds (and we again will assume for simplicity
that the (n-dimensional) manifold M we are integrating over has no boundary, i. e., ∂M = 0.):

∫

M

dA
[

Xij∇iYj

]

=

∫

M

dnx
√
g
[

Xij
(
Yj,i − Γk

jiYk

)] part. int.
= −

∫

M

dnx
√
g
[ (Xij√g),i√

g
Yj +XijΓk

jiYk

]

(A.10)
= −

∫

M

dnx
√
g
[

Yj∇iX
ij −XikΓj

ikYj +XijΓk
ijYk

]

= −
∫

M

dA
[

Yj∇iX
ij
]

. (A.11)

In particular, if we set Yi = ∇iψ and Xij = gijψ, with ψ being some (scalar) function on M , we find

∫

M

dA
(
∇iψ

)(
∇iψ

)
= −

∫

M

dA
(
ψ∇2ψ

)
(for ∂M = 0) , (A.12)

where ∇2 = ∇i∇i = gij∇i∇j is the covariant Laplace operator on the manifold.

A.3. Local tangent coordinates

Let uk
0 be the coordinates of some point P0 in the manifold. Define a new set of coordinates u∗k via the relation

uk = uk
0 + u∗k − 1

2

(
Γk

ij

)

0
u∗iu∗j , (A.13)
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where the Christoffel symbol is evaluated in the old coordinates, at point P0. Noting that at P0 we have uk
0 = 0,

we find by differentiation that at P0 we have

(
∂uk

∂u∗p

)

0

= δk
p , (A.14a)

and

(
∂2uk

∂u∗p∂u∗q

)

0

= −(Γk
pq

)

0
. (A.14b)

Eqn. (A.14a) confirms that (A.13) is indeed an allowable coordinate transformation. Inserting both equations into
the expression of the Christoffel symbol in the new coordinates (simply invert Eqn. (A.5)), we find:

Γ∗r
pq = Γk

ij

∂ui

∂u∗p

∂uj

∂u∗q

∂u∗r

∂uk
+

∂2uk

∂u∗p∂u∗q

∂u∗r

∂uk
= Γk

ij δ
i
pδ

j
qδ

r
k − Γk

pq δ
r
k = Γr

pq − Γr
pq = 0 .

Hence, in the new coordinate system the Christoffel symbols vanish at the point P0! We will refer to such coordinates
as local tangent coordinates, and to the system as a locally tangential coordinate system at P0. This terminology
stems from the fact that we essentially use coordinates in which the deviations from the manifold become second
order, i. e., we use coordinates which at P0 coincide with the coordinates of the tangential plane to the manifold.

An equivalent way to express the vanishing of the Christoffel symbols is to say that one can always introduce
coordinates in which the first partial derivative of the metric vanishes. From Eqn. (A.6) we see that if one makes
the Christoffel symbols vanish, the first derivatives of the metric vanish too. Conversely, if the first derivatives of
the metric vanish, Eqn. (A.1) shows that then the Christoffel symbols will also vanish. Note, however, that it is
generally impossible to make the Christoffel symbols vanish everywhere, because otherwise every manifold could
be equipped with a set of coordinates in which it looks flat. In fact, we have Riemann’s theorem: A Riemannian
manifold can be equipped with a local Euclidean metric if and only if the Riemann tensor vanishes. For a proof, see
[9, Chapter 9.7].

Local tangent coordinates are sometimes very useful in deriving particular results. As long as one makes sure
that the final equations obtained that way are still tensor equations, they will continue to hold in any coordinate
system!

Sidenote: In general relativity a locally tangential coordinate system is more conventionally referred to as a local
inertial frame, or a free falling reference system. In such a frame all first order effects of gravity vanish. However,
quadratic effects (like tidal forces!) remain. It is generally impossible to transform into a coordinate system in
which all effects due to gravity vanish. (In fact, a change of coordinates is a Lorentz transformation, which has 10
parameters. However, the Riemann tensor, describing the curvature of space time, has 20 independent parameters!)
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B. Mappings

B.1. Differentials and and pull-backs

For the following see for instance Ref. [9].
Let F : Mn → V m be a smooth map from an n-dimensional manifold Mn to an m-dimensional manifold V m,

and let ~y = F~x. The differential dF ≡ F∗ of the mapping F at ~x is the linear map which sends vectors in T~xM
n

to vectors in T~yV
m:

F∗ :

{
T~xM

n → T~yV
m

v 7→ w = F∗(v)
. (B.1)

The mapping itself is defined such that it takes tangent vectors of curves to the corresponding tangent vectors of
the image curves: Take a smooth curve ~x(t) such that ~x(0) = ~x0 and ~̇x(0) := (d~x/dt)(0) = v, for example, the
straight line ~x(t) = ~x0 + tv. The image of this curve ~y(t) = F (~x(t)) has a tangent vector w at ~y0 = F (~x0) given
by the chain rule:

wα = ẏα =
n∑

i=1

(
∂yα

∂xi

)

(~x0) ẋ
i(0) =

n∑

i=1

(
∂yα

∂xi

)

(~x0) v
i .

The above calculation shows that in terms of the bases {∂/∂x} and {∂/∂y} in the two tangent spaces, the
differential is simply given by the Jacobian matrix

(F∗)
µ
ν =

∂Fµ

∂xν
(~x) =

∂yµ

∂xν
(~x) w = F∗v ⇔ wµ =

∂Fµ

∂xν
vν =

∂yµ

∂xν
vν . (B.2)

If in particular the mapping F is a change of coordinates, then (B.2) expresses the fact that, in physicist’s language,
“the vector v transforms contravariantly during a change of coordinates”.

Having defined the differential, which maps vectors, we now introduce a similar operation which acts on covectors:
Define the pull-back via

F ∗(β)(v) := β(F∗(v)) , (B.3)

where β ∈ T ∗
~y V

m and v ∈ T~xM
n. Hence, the covector β defined in T ∗

~y V
m is “pulled back” to a covector at T ∗

~xM
n.

For completeness, we also define the pull-back of a function by

(F ∗f)(~x) = (f ◦ F )(x) = f(~y(~x)) . (B.4)

Hence, we have

v(F ∗f) = v{f [y(x)]} = vi ∂

∂xi
{f [y(x)]} = vi

(
∂f

∂yj

)(
∂yj

∂xi

)

=

[

vi

(
∂yj

∂xi

)
∂

∂yj

]

f
(B.2)
= (F∗v)(f) = df(F∗v) ,

(B.5)
where the last equality is simply the definition1 of the differential of a function.

We now want to express the definition (B.3) in local coordinates. Let xi and yj be local coordinates near ~x and
~y, respectively. The bases for T~xM

n and T~xV
m are {∂/∂xi} and {∂/∂yj}. We then have

F ∗β =
∑

i

F ∗(β)
( ∂

∂xi

)

dxi (B.3)
=
∑

i

β
(

F∗
∂

∂xi

)

dxi =
∑

i

β

(
∑

j

(∂yj

∂xi

) ∂

∂yj

)

dxi =
∑

i,j

(∂yj

∂xi

)

β
( ∂

∂yj

)

︸ ︷︷ ︸

βj

dxi .

We therefore have in local coordinates

[F ∗β]i =
∑

j

βj

(∂yj

∂xi

)

.

1The definition df(v) = v(f) is unusual, but coordinate free. Using a local coordinate system {∂xi} we find df(vi∂xi ) = vi∂f/∂xi.
If in particular we use a coordinate function, we find dxi(∂xj ) = ∂xi/∂xj = δi

j , showing that the {dxi} is the dual basis to

{∂xi}. Hence, any 1-form α ∈ T ∗
~xM

n can be written as α = αidx
i = α(∂xi )dxi. In particular, for the 1-form df we find thereby

df = df(∂xi )dxi = (∂f/∂xi)dxi, i. e., the standard coordinate expression of the differential of a function f .
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Hence, in local coordinates the pull-back is also given by the Jacobi-matrix, but it acts on the rows of βj from the
right.

Again, if the mapping is a change of coordinates, the physicist’s language is that “the vector β transforms
covariantly during a change of coordinates”.

At this point the following warning from Ref. [9, page 54] is appropriate:

Let F : Mn → V m and let v be a vector field on M . It may very well be that there are two distinct
points ~x and ~x′ that get mapped by F to the same point ~y = F (~x) = F (~x′). Usually we have
F∗(v(~x)) 6= F∗(v(~x′)), since the field v need have no relation to the map F . In other words, F∗(v) does
not yield a well defined vector field on V m (does one pick F∗(v(~x)) or F∗(v(~x′))?). F∗ does not take
vector fields into vector fields. (There is an exception if n = m and F is 1:1.) On the other hand, if
β is a covector field on V m, then F ∗β is always a well defined covector field on Mn; F ∗(β(~y)) yields a
definite covector at each point ~x such that F (~x) = ~y. [...]

A simple application of pull-backs occurs in the theory of integration. Assume we have a smooth mapping
F : Mn → V m and a p-form αp defined on W . Assume further that we have an oriented p-subset σ, and that we
want to integrate αp over the image F (σ) of this subset. Then we have

∫

F (σ)

αp =

∫

σ

F ∗αp .

So, using F ∗ we just pull the p-form back to the manifold M on which σ is defined.

B.2. Conformal and isometric mappings

A mapping from a portion of a manifold M to a portion of a manifold N is called conformal, if it is angle preserving,
i. e., the angle between any pair of tangent vectors on N is equal to the angle of their pre-images. A necessary and
sufficient condition for a mapping to be conformal is that if on M and N the same coordinates are introduced, the
metric on N is proportional to the metric on M with a prefactor that may depend on the position:

g
(N)
ij = η(u) g

(M)
ij . (B.6)

For a proof see [14]. The factor η is called the conformal factor. If η ≡ 1, the mapping is called an isometry, since
it does not only leave angles, but even lengths invariant. A metric which is related to the Euclidean metric by a
conformal mapping is called conformally flat.

Note that Eqn. (B.6) can also be written as

∂ūm

∂uk

∂ūn

∂ul
gmn

(
ū(u)

)
= η(u)gkl(u) , (B.7)

where the Jacobi matrices accomplish the conformal transformation.

B.3. Killing fields

A great deal of this Section is based on the beautiful online script of Norbert Dragon on relativity theory [8].

B.3.1. Killing equation

Consider a continuous 1-parameter family Φt of conformal transformations such that φ0 = id. The derivative of
this transformation with respect to the coordinates evaluated at t = 0 is given by

∂
(
Φ(u)

)i

∂uj

∣
∣
∣
∣
t=0

=
∂ūi

∂uj

∣
∣
∣
∣
t=0

=
∂ui

∂uj

∣
∣
∣
∣
t=0

= δi
j . (B.8)

Moreover, the derivative of this expression with respect to the transformation parameter, also evaluated at t = 0,
is given by

∂

∂t

∂
(
Φ(u)

)i

∂uj

∣
∣
∣
∣
t=0

=
∂

∂uj

∂
(
Φ(u)

)i

∂t

∣
∣
∣
∣
t=0

=
∂

∂uj
Xi = Xi

,j , (B.9)

where the vector field X i is the generating field of the flow Φt.
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Now look at the Eqn. (B.7) and rewrite the conformal factor as

ηt(u) =: eλt(u) .

The (logarithm of the) conformal factor, λt, of course depends on the parameter t, but for t = 0 it has the value
0, since the transformation becomes the identity there.

Let us now differentiate Eqn. (B.7) with respect to the parameter t of the family Φt of conformal transformations
and evaluate at t = 0:

0 =
∂

∂t

∣
∣
∣
∣
t=0

[
∂
(
Φt(u)

)m

∂uk

∂
(
Φt(u)

)n

∂ul
gmn

(
Φt(u)

)
− eλt(u)gkl(u)

]

(B.8),(B.9)
= Xm

,k δ
n
l gmn(u) + δm

k X
n
,lgmn(u) + δm

k δ
n
l gmn,i(u)X

i − ∂λt(u)

∂t

∣
∣
∣
∣
t=0

gkl(u)

= Xm
,k gml(u) +Xn

,lgkn(u) + gkl,i(u)X
i + εgkl(u) ,

where we used the abbreviation ε = −∂λt/∂t
∣
∣
t=0

. We see that the first three terms are just the Lie derivative (see

Appendix D) of the metric with respect to the vector field X i which generates the conformal transformation. We
thereby obtain the conformal Killing equation

(
LX + ε

)
gij = 0 . (B.10)

Vector fields X which are solutions of this differential equation are called konformal Killing fields of the metric
gij . In more than 2 dimensions the conformal Killing equation usually has no nonvanishing solution.

In the special case where the vector X i field does not just generate a conformal transformation but actually an
isometry, the conformal factor is constant and therefore ε ≡ 0. We then obtain the (usual) Killing equation

LX gij = 0 . (B.11)

Vector fields X satisfying this differential equations are called Killing fields of the metric gij . The Killing
equation restricts both the vector field X, namely, to be an infinitesimal isometry of the metric, and the metric,
namely to have such a symmetry in the first place. Note that it basically states that the metric remains unchanged
when dragged along the flow of a continuous isometry.

Note that due to Eqn. (D.5) the Killing equation (B.11) can also be written as

∇iXj + ∇jXi = 0 . (B.12)

The length of a Killing vector X is constant along the flow which it generates. Since Xk∇k is the directional
derivative along the flow, we easily see

Xk∇k

(
gijXiXj

)
= Xk

(
∇kg

ij
)

︸ ︷︷ ︸

=0

XiXj +Xkgij
(
∇kXi

)
Xj

︸ ︷︷ ︸

k↔j

+XkgijXi

(
∇kXj

)

︸ ︷︷ ︸

k↔i

= XiXj
(
∇jXi + ∇iXj

)
= 0.

The covariant derivative of the metric vanishes due to Ricci’s lemma (C.9), and the symmetrized covariant derivative
of Xi vanishes because X is a Killing vector.

B.3.2. Number of Killing fields

Recall from Eqn. (C.8) that the commutator of covariant derivatives is proportional to the Riemann tensor. If in
particular we calculate the commutator of the derivatives of a Killing field, we find

−Rl
kijXl = ∇i∇jXk − ∇j∇iXk = ∇i∇jXk

(B.12)
+ ∇j∇kXi . (B.13)
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We now use the first Bianchi identity (1.40), according to which the sum over the cyclic permutation of the three
lower indices of the Riemann tensor vanishes. Applying this to the above equation, we find

0 = −
(
Rl

kij +Rl
ijk +Rl

jki

)
Xl

(B.13)
= ∇i∇jXk + ∇j∇kXi + ∇j∇kXi + ∇k∇iXj + ∇k∇iXj + ∇i∇jXk

= 2
(
∇i∇jXk + ∇j∇kXi + ∇k∇iXj

)
= 2

(
−Rl

kijXl + ∇k∇iXj

)
,

from which we get the equation
∇k∇iXj = Rl

kijXl . (B.14)

This equation determines the second derivatives of Xj ; and via further differentiation one gets all higher derivatives.
Hence, in the Taylor series of a Killing field around some point P only the coefficients Xi

∣
∣
P

and the antisymmetric

derivatives2 ∇iXj − ∇jXi are free. For a d-dimenaional manifold this leaves d+ 1
2d(d− 1) coefficients. Hence, on

such a manifold there are at most 1
2d(d + 1) independent Killing fields! For instance, in the Euclidean plane this

gives three Killing fields, namely
ex

ey

xey − yex

, (B.15)

i. e., the generators of translation (two) and rotation (one), which are the (continuous!) isometries of the plane. In
three dimensions we have at most six Killing fields, and in Euclidean space those are the generators for translation
(three) and rotation (three more).

B.3.3. Killing vectors along geodesics

Let T be the tangent vector to a geodesic (see Appendix C) and let X be a Killing field. Then we have the
following remarkable result: The scalar product of the two is constant along the geodesic, or in equations

D

Ds
T iXi = 0 , (B.16)

where D/Ds = T k∇k is the (covariant) derivative along the geodesic. The proof is by a direct calculation:

D

Ds
T iXi =

DT i

Ds
Xi + T i DXi

Ds
= T j(∇jT

i)Xi + T iT j∇jXi = Xi

(
∇TT

)i
+

1

2
T iT j

(
∇iXj + ∇jXi

)
. (B.17)

In the last step we used (i) Eqn. (C.5), which introduced the concept of the covariant differentiation of a vector
along some other vector, as well as (ii) the fact that T iT j is symmetric and we can thus replace ∇iXj by its
symmetrized version. However, ∇TT is zero, because the tangent vector of a geodesic is parallel transported along
the geodesic,3 and the term ∇iXj + ∇jXi = LXgij vanishes because X is a Killing vector.

Let us consider a simple example: In the Euclidean plane the three vector fields (B.15) are the Killing fields, and
geodesics are just straight lines. It is clear that the projection of the (unit) tangent vector of any straight line on
either ex or ey is constant. It is not readily clear (but equally simple) that the same applies for the third Killing
field xey − yex. If the straight line passes to through the origin, then the scalar product of the unit tangent of
the geodesic with the third Killing field is of course zero, since being the generator of a rotation, the Killig field is
everywhere tangential to circles with the origin as a center. If the straight line does not pass through the center,
we can parameterize it as

(
c1
c2

)

+ t

(
v1
v2

)

,

and the scalar product of the tangent vector with the third local Killing field is therefore

(
v1
v2

)

·
[(

−c2
c1

)

+ t

(
−v2
v1

)]

= c1v2 − c2v1 = const. (B.18)

Fig. B.1 gives a graphical illustration of this fact.

2The symmetric derivatives are zero by the Killing equation!

3A little bit more explicit, we can see this as follows: T j(∇jT
i) = T j(T i

,j + Γi
kjT

k)
(C.6)
=

duj

ds

∂T i

∂uj
+ Γi

kjT
kT j = Ṫ i

(C.1)
− Ṫ i = 0.
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Figure B.1.: Graphical illustration of
Eqn. (B.18). The oblique arrows in
the Figure are representatives of the
Killing vector field which generates a
(clockwise) rotation in the plane about
the origin. It is seen that if these gener-
ators are located on a line (which does
not necessarily pass through the ori-
gin), their projection onto this line is
constant. (Note that in this picture
the Killing vectors belong to the field
yex −xey, which is the negative of the
third field in Eqn. (B.15).)

Equation (B.16) can in fact be read as a Noether identity: Geodesics are the solutions of a variational problem
using the Lagrangian gijT

iT j . The Noether theorem states that every continuous symmetry of the Lagrangian
gives rise to a conservation law, and in this case the symmetry is the isometry of the metric, which implies a
conservation law for the projection of the Killing vector onto the tangent vector of the geodesic.

B.3.4. Maximally symmetric spaces

We have seen that on a d-dimensional manifold there are at most 1
2d(d + 1) independent Killing fields. However,

generally a manifold has less, and it actually needn’t have any. Therefore, manifolds which have the maximum
number of possible Killing fields are very special. Since a large number of independent Killing fields means that
a large number of independent isometries exists, a manifold with the maximum possible number of independent
Killing fields is called maximally symmetric.

If we apply the commutator [∇i,∇j ] on ∇kXl, we obtain with the help of Eqn. (C.8) and the fact that the
commutator of a derivation is again a derivation (i. e., we may apply the product rule!)

[∇i,∇j ]∇kXl = −Rr
kij∇rXl −Rr

lij∇kXr .

On the other hand, if Xl is a Killing field, the left hand side by virtue of Eqn. (B.14) is given by

[∇i,∇j ]∇kXl = ∇i

(
Rr

jklXr

)
− ∇j

(
Rr

iklXr

)
=
(
∇iR

r
jkl

)
Xr +Rr

jkl∇iXr −
(
∇jR

r
ikl

)
Xr −Rr

ikl∇jXr .

Hence, Xi and its first derivatives satisfy the following linear homogeneous system of equations:
[

∇iR
r
jkl − ∇jR

r
ikl

]

Xr +
[

Rs
jklδ

r
i −Rs

iklδ
r
j +Rr

kijδ
s
l

∗
− Rr

lijδ
s
k

]

∇rXs = 0 , (B.19)

where at ∗ we used the fact that ∇rXs = −∇sXr because X is a Killing field. Since we are only interested in the
antisymmetric part of ∇rXs (the symmetric one vanishes), the above system of equations is of the form A~x = 0,
where ~x is a vector consisting of the d components Xr and the 1

2d(d − 1) antisymmetric components of ∇rXs,
or, in other words, we have a linear homogeneous system of equations in 1

2d(d + 1) dimensions. The solution of
this system of equations gives the expansion coefficients for the Taylor series of the Killing fields, see Sec. B.3.2.
We now see that if this system of equations restricts its solution to a lowerdimensional subspace, we cannot have
the maximum number of independent Killing fields. In fact, we will only have the full number 1

2d(d + 1), if the
Kernel of the above system of equations has this dimension. However, since the dimension of the system itself is
1
2d(d + 1), this implies that its rank has to be zero. Therefore, the manifold can only be maximally symmetric if
the two expressions in square brackets in Eqn. (B.19) vanish identically.

Taking the second bracket and summing with δi
r then gives

(d− 1)Rs
jkl = Rljδ

s
k −Rkjδ

s
l

lower s: (d− 1)Rsjkl = Rljgks −Rkjgls (B.20)

Since the covariant Riemann tensor is antisymmetric in the first pair and the second pair of indices, we can swap
both of them simulataneously. If we afterwards contract with gjl, we find:

(d− 1)Rjslkg
jl =

(
Rljgks −Rkjgls

)
gjl

(d− 1)Rsk = Rgks −Rks .
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Since the Ricci tensor is symmetric, this equation finally implies

Rks =
1

d
R gks . (B.21)

This shows that in maximally symmetric spaces the Ricci-tensor is proportional to the metric.4 However, more
than that holds: We will now show that the Ricci scalar has to be a constant. For this we make use of the fact that
also the first square bracket in Eqn. (B.19) has to vanish. Let us first insert Eqns. (B.20) and (B.21) into it:

∇iR
r
jkl − ∇jR

r
ikl =

1

d− 1

[

∇i

(
Rljgkr −Rkjglr

)
− ∇j

(
Rligkr −Rkiglr

)]

=
1

d− 1

[

gkr∇iRlj − glr∇iRkj − gkr∇jRli + glr∇jRki

]

=
1

d(d− 1)

[

gkrglj∇iR− glrgkj∇iR− gkrgli∇jR+ glrgki∇jR
]

.

This expression has to vanish, and in fact it does so if R is constant. However, we will also show that it only
vanishes if R is constant. To see this, contract this equation with gki and glj and set it to zero:

0 =
1

d(d− 1)
gkiglj

[

gkrglj∇iR− glrgkj∇iR− gkrgli∇jR+ glrgki∇jR
]

=
1

d(d− 1)

[

δi
rδ

j
j∇iR− δj

rδ
i
j∇iR− δi

rδ
j
i ∇jR+ δj

rδ
i
i∇jR

]

=
2

d
∇rR ,

And from this we see that R has to be constant if the expression is to vanish.5 In maximally symmetric spaces the
Riemann tensor is therefore given by

Rijkl =
R

d(d− 1)

(

gikgjl − gjkgil

)

, R = const. (B.22)

Such spaces are completely classified by two numbers: The scalar curvature R and the signature of the metric.

4The prefactor then of course must be R/d, for otherwise the contraction of the Ricci tensor would not yield the Ricci scalar.
5One might be a little bit worried that we divided by d−1 at some point in the calculation, which is not permitted at d = 1. However,

the theory becomes almost trivial for d = 1, and the Riemann tensor is just a number anyway.
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C. Geodesics, parallel transport and covariant

differentiation

C.1. Geodesics

There are various ways in which a straight line in usual Euclidean geometry can be characterized. For instance,
it has zero curvature everywhere, all its tangent vectors are parallel, or it is the solution of the simple first order
linear differential equation ~̇v(t) = ~v0. Neither of these characterizations can be immediately transferred to the case
of curves within a Riemannian manifold—but the following definition is generalizable: A straight line between two
points is the curve which minimizes the distance between these points. Since in a Riemannian metric we have the
notion of “length”, we can use this to define what a “straight line” in a curved space is. Such “straight lines” are
called “geodesics”.

The square of the “infinitesimal length element” in a Riemannian manifold is:

ds2 =
(
~r(ui + dui) − ~r(ui)

)2
=
( ∂~r

∂ui
dui
)2

=
∂~r

∂ui
· ∂~r
∂uj

duiduj = gij duiduj .

Given a curve C with parametrization ui(t), the length ` of this curve between the two points P1 = ~r(u(t1)) and
P2 = ~r(u(t2)) is then seen to be

`[u,C] =

∫ t2

t1

dt

√

gij
dui

dt

duj

dt
=:

∫ t2

t1

dt
√

gij u̇iu̇j .

This length now has to be minimized variationally. However, instead of using the “Lagrangian” L :=
√

gij u̇iu̇j , it
is equivalent, but much easier, to minimize the functional corresponding to its square, L2. We thereby obtain:

0
!
= δ

∫ t2

t1

dt gij u̇
iu̇j =

∫ t2

t1

dt
{

gij,kδu
ku̇iu̇j + gijδu̇

iu̇j + gij u̇
iδu̇j

}

.

Partially integrating the last two terms, and noting that the integrated out parts vanish because we assume that
there will be no variation at the end points, we obtain

0 =

∫ t2

t1

dt
{

gij,kδu
ku̇iu̇j −

(
gij,ku̇

ku̇j + gij ü
j
)
δui

︸ ︷︷ ︸

i↔k

−
(
gij,ku̇

ku̇i + gij ü
i
)
δuj

︸ ︷︷ ︸

j↔k

}

=

∫ t2

t1

dt
{(
gij,k − gkj,i − gik,j

)
u̇iu̇j − 2gikü

i
}

δuk = −2

∫ t2

t1

dt
{

Γijku̇
iu̇j + gikü

i
}

δuk .

Since the variation δuk is arbitrary, the expression in curly brackets has to vanish. Raising the index k, we then
obtain the geodesic equation

ük + Γk
ij u̇

iu̇j = 0 . (C.1)

Remarks:

• The fundamental theorem of differential equations assures that the geodesic equation (C.1) has a unique
solution for given initial conditions uk(0) and (duk/dt)(0). Thus, there is a unique geodesic at every point of
the manifold in every direction. However, since the geodesic equation is nonlinear, this solution may not exist
for all parameter values t. If all geodesics go on indefinitely (i. e., if they are isometric to the real line), the
Riemannian space (or its defining metric) is called complete. For instance, any metric on a compact manifold
is complete.
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• If uk(t) are the coordinates of a geodesic, and s 7→ t(s) is a reparameterization of the curve, the new curve
ũk(s) = uk(t(s)) is generally not a geodesic, unless the transformation is of the form t = a+ bs. This is easily
seen by inserting the reparameterization into the geodesic equation.

• A different characterization of a geodesic is the following: A curve on a surface is geodesic if and only if the
normal vector to the curve is everywhere parallel to the local normal vector of the surface. This goes back
to Johann Bernoulli (1697!).

• Yet another way to characterize a geodesic is the following: Geodesics are curves along which the geodesic
curvature κg vanishes (see Eqn. (1.15)). This is of course where the geodesic curvature has its name from.
Recall that the geodesic curvature measures the projection of the curvature of a curve onto the local tangent
plane, i. e., the part which is in some sense independent of the curvature of the surface. Hence, requiring
κg = 0 means, loosely speaking, geodesics have no curvature other than the inevitable curvature which is due
to the bending of the surface itself.

• The original condition we started out with was global, the final condition we ended up with is a differential
equation, i. e., it is local. This has the consequence that a solution of the geodesic equation may not satisfy
our initial global aim of finding the curve yielding the smallest distance. Without further investigation, all
we can be sure of is that the length is stationary. However, over sufficiently small distances every solution of
Eqn. (C.1) is indeed length-minimizing.

• As a continuation: Whether or not a geodesic between two points P1 and P2 is minimizing is related to
the existence of certain Jacobi-fields between these points. A Jacobi field along a geodesic is a vector field
Y which is invariant under the local flow generated by the tangent vector T to the geodesic, i. e., the Lie
derivative LTY vanishes along the geodesic. Assume that we have found a nontrivial Jacobi field which
vanishes at P1 and also at some point P ′ on the geodesic between P1 and P2. Then P ′ is called conjugate to
P1. This is important because of the following Theorem: A geodesic containing a point which is conjugate to
its initial point is not minimizing. This may be stated even more precisely in the following way: A conjugate
point P ′ is said to have (Morse) index λ, if there exist exactly λ linearly independent Jacobi fields which
vanish both at P1 and P ′. Now let P (1), P (2), . . . , P (n) be all points on a geodesic from P1 to P2 which
are conjugate to P1, and let λ(i) be the Morse index of P (i). Then there exist exactly

∑

i λ
(i) independent

variations which strictly reduce the length of the geodesic. This is known as the “Morse index theorem”.

• If we can joint two points on a manifold by a curve, we can also join them by a geodesic, since one can shorten
the curve up to a point where additional modifications do no longer reduce the length.

• Two closed curves on a surface which can be smoothly transformed into each other are called homotopic.
Since homotopy is an equivalence relation, it divides the set of all closed curves on surfaces into classes, called
homotopy classes. For instance, on a torus there are infinitely many homotopy classes, which can be labeled
by how many times the curve cycles around each of the two “circles” before closing upon itself. In each
nontrivial homotopy class of a closed manifold Mn there exists at least one closed geodesic. Closed geodesics
are for instance interesting from the point of view of mechanics, since they correspond to periodic motion in
phase space.

• If the manifold is not Riemannian but pseudo-Riemannian, things are a little bit more complicated. For
instance, geodesics may be maximizing rather than minimizing (think for instance of general relativity, where
the proper time is maximized along the path of a free falling particle), and there may also be null geodesics,
for which the tangent vector at each point has length zero, and which therefore cannot be parameterized by
their arc length.

A deeper discussion of these topics can be found in the book of Frankel [9].

C.2. Parallel displacement of Levi-Cività

Contrary to Euclidean space, it does not make sense on a general manifold to ask whether two vectors at different
points are parallel, since these vectors live in different tangent spaces. Therefore, in order to re-introduce the
concept of parallelism on a general manifold, we have to do some more work. Ultimately we will find that we
cannot globally reestablish the concept, but locally we can.

There are many very abstract ways of doing this, but here we will restrict to the special case of a Riemannian
manifold, i. e., when we have a metric. Since then we also have a scalar product, we can speak out the following
definition:
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A vector X is parallel transported along a curve C, if the scalar product of X with the tangent vector T of the
curve at that point is the same everywhere on the curve.

Let the curve be parameterized by ui(t). Then, in local coordinates, this condition requires

0
!
=

d

dt

(
u̇iXi

)
=

d

dt

(
gij u̇

iXj
)

everywhere on ui(t) . (C.2)

Now, parallel transporting a vector in this way along some arbitrary curve does not yield much useful information
about the concept of parallelism. However, if the curve is a geodesic, we might expect to gain something: Since a
geodesic is “as straight as one can get” on a curved manifold, transport along a geodesic might help to transfer this
straightness into a “conservation of parallelity”. These are of course very fluffy words. Note, however, that this
definition reduces to the common notion of parallelity in Euclidean space and that, if nothing else, it is a viable
attempt to extend it to curved space.

If ui(t) is a geodesic, it has to satisfy the geodesic equation (C.1), and we may use this information to reformulate
the condition (C.2):

0 =
d

dt

(
u̇kXk

)
= ükXk + u̇kẊk

(C.1)
= −Γk

ij u̇
iu̇jXk + u̇iẊi =

(
Ẋi − Γk

ij u̇
jXk

)
u̇i . (C.3a)

Or, a little bit longer for contravariant components:

0 =
d

dt

(
gij u̇

jXi
)

= gij,ku̇
ku̇jXi + gij ü

jXi + gij u̇
jẊi

(A.6a),(C.1)
=

(
Γikj + Γjki

)
u̇ku̇jXi − gijΓ

j
klu̇

ku̇lXi + gij u̇
jẊi

= Γikj u̇
ku̇jXi + gij u̇

jẊi =
(
Ẋi + Γi

jku̇
kXj

)
u̇i . (C.3b)

Hence, parallel transport is achieved if we set the expressions in parentheses in Eqns. (C.3a) and (C.3b) to zero:

Ẋi + Γi
jku̇

kXj = 0 , (C.4a)

Ẋi − Γj
iku̇

kXj = 0 . (C.4b)

A vector whose components are transported according to these differential equations is said to be subject to the
parallel displacement of Levi-Cività.

Remarks:

• Looking back at the geodesic equation, we see that it can also be read in the following way: The tangent
vector to a geodesic is parallel displaced along the geodesic.

• Furthermore, since this parallel transport by construction preserves scalar products, it will preserve the length
of transported vectors. Hence, a geodesic being the solution of (C.1) will be automatically parameterized by
arc length if the initial tangent vector had unit length. This also explains why a nonlinear reparameterization
destroys the geodesic property: If the tangent vector was initially constant – as it must be for a valid solution
of the geodesic equation – it would not remain constant along the way.

• From the definition of parallel transport, it is not immediately obvious that the expression on the left hand
side of Eqns. (C.4) is indeed a tensor—but it is.

• Parallel transport depends on the path! This is the most important difference between parallel transport in an
Euclidean space and in a general Riemannian manifold. It implies that the concept of parallelism cannot be
globally extended, since whether or not a vector at Q is parallel to a vector at P does not simply depend on
P and Q alone. An equivalent way of saying this is that a vector X at a point P , parallel transported around
a closed curve, will generally not be parallel to a copy of itself left at P for reference purposes. This can
be nicely “visualized” in the simple case of the surface of a sphere, where the geodesic are great circles—see
Fig. C.1.
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Figure C.1.: Illustration that a paral-
lel transport around a closed loop gen-
erally will change the direction of the
vector from what it originally was. A
vector initially placed at the “north
pole” is parallel displaced along its
initial direction up to the equator.
From there it is again parallel dis-
placed along the equator for a certain
while. Finally it is again moved back
to the north pole, where it is found
that the vector does no longer point
in the same direction in which it orig-
inally pointed.

C.3. Covariant differentiation

The partial derivative of a tensor with respect to a coordinate is itself not a tensor. In order to obtain a tensor,
one has to use the absolute or covariant derivative, which we will now define.

Look at the two equations (C.4) which define parallel transport. They can be rewritten as

(
Xi

,k + Γi
jkX

j
)
u̇k =:

(
∇kX

i
)
T k ≡

(
∇TX

)i
= 0 , (C.5a)

(
Xi,k − Γj

ikXj

)
u̇k =:

(
∇kXi

)
T k ≡

(
∇TX

)

i
= 0 . (C.5b)

These expressions clearly make sense without explicit reference to the geodesic. They are called the covariant
derivative of the vector X with respect to the vector T , and the left hand side defines their components. With this
terminology the concept of parallel transport can be restated as: A vector is parallel transported along a geodesic
C, if its covariant derivative with respect to the local tangent vector vanishes everywhere on C.

Let us collect these definitions again. First, for the sake of completeness, we define the covariant derivative of a
scalar to be identical to the partial derivative:

∇kφ ≡ φ;k := φ,k .

The covariant derivative of a contravariant vector is given by

∇ka
i ≡ ai

;k := ai
,k + ajΓi

jk . (C.6)

The covariant derivative of a covariant vector is given by

∇kai ≡ ai;k := ai,k − ajΓ
j
ik .

This extends in the natural way to an arbitrary tensor:

∇νT
α1α2...αn

β1β2...βm
= Tα1α2...αn

β1β2...βm,ν

+ T γα2...αn

β1β2...βm
Γα1

γν + Tα1γ...αn

β1β2...βm
Γα2

γν + · · · + Tα1α2,...γ
β1β2...βm

Γαn

γν

− Tα1α2...αn

γβ2...βm
Γγ

β1ν − Tα1α2...αn

β1γ...βm
Γγ

β2ν − · · · − Tα1α2...αn

β1β2...γ Γγ
βmν . (C.7)

It is important to realize that ∇i and ∇j generally do not commute. We rather have

(
∇i∇j − ∇j∇i

)
Tk = −Rl

kijTl and
(
∇i∇j − ∇j∇i

)
T k = Rk

lijT
l . (C.8)
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The Lemma of Ricci states that the covariant derivative of the metric and the metric determinant are zero:

∇kgij = 0 , ∇kg
ij = 0 , ∇kg = 0 . (C.9)

The proof of the first two equations is via straightforward calculation. The proof of the third equation follows from
the fact that the metric determinant is just a sum over products over coefficients gij . Ricci’s lemma implies that
raising and lowering indices commutes with the process of covariant differentiation, because the metric tensor acts
like a constant with respect to ∇k. This is computationally extremely advantageous. This fact also implies that
it makes sense to talk about an absolute contravariant differentiation ∇i = gij∇j , because the index can always
be raised or lowered without interfering with the process of differentiation. Note that this commutation property
does not hold for the usual partial derivative.

C.4. Laplace Operator

The Laplace operator is defined as the trace of the covariant derivative:

∇2 = gij∇i∇j = ∇i∇i , (C.10)

Even though ∇i and ∇j generally do not commute, the above definition is independent of the order of i and j,
because gij is symmetric.

From Eqn. (A.8) we can immediately get a nice formula for the Laplacian of a scalar function in terms of the
metric and the metric determinant. Setting Aj = ∇jφ = gijφ,j , we obtain

∇2φ =
1√
g

∂

∂ui

(√
ggij ∂φ

∂uj

)

. (C.11)

The following observation is worth pointing out: While Eqn. (C.10) is very general, entirely covariant, and almost
coordinate free, the same does not hold for Eqn. (C.11). Most importantly, this expression only describes the effect
of the Laplacian on a scalar field! It would be wrong to use the same coordinate expression for a vector or tensor
field. The reason is easy to understand: Eqn. (C.11) relies on Eqn. (A.8), whose simple form breaks down if one
has tensors which are of higher than first rank. Note for instance that its extension to tensors of second degree,
Eqn. (A.10), has additional Christoffel symbols flying around.

We will now give a nice application of the Laplacian to the problem of surfaces, which is an almost direct
consequence of the Gauss equation. If we look at the functions (~r)i which describe the surface, we find by applying
the Laplacian to them

∇2~r = gij∇i∇j~r = gij∇iej
(1.19b)

= gijbij~n
(1.13a)

= 2H~n . (C.12)

Problem C.1 Verify Eqn. (C.12) for the special case of the surface of a sphere in spherical polar coordinates.

Surfaces which have zero mean curvature everywhere are called minimal surfaces, see Sec. 4.1. Eqn. (C.12)
then shows that for such surfaces the coordinate functions ~r are harmonic, i. e., they satisfy the Laplace equation
∇2~r = 0.

C.5. Example: The Poincaré plane

The Poincaré plane is an example of a space with constant negative sectional1 curvature. Such spaces are called
hyperbolic and the concomitant geometry is also called hyperbolic. The reader can find a short introduction into
these concepts in Ref. [3].

1The sectional curvature is a higherdimensional generalization of the Gaussian curvature and measures the rate of geodesic deviation.
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C.5.1. Metric and Christoffel symbols

The Poincaré plane is defined to be the twodimensional Riemannian manifold R × R
+ (i. e., all pairs (x, y) with

x, y ∈ R and y > 0) endowed with the following metric:

gij =
1

y2
I =

(
1/y2 0

0 1/y2

)

.

Note that within the classification introduced in Sec. B.2 this metric is conformally flat.
The only partial derivatives of the metric which are nonzero are gxx,y = gyy,y = −2/y3. From this we get the

following nonzero Christoffel symbols of the first kind:

Γxxy = y−3 and Γxyx = Γyxx = Γyyy = −y−3 ,

and of the second kind
Γy

xx = y−1 and Γx
xy = Γx

yx = Γy
yy = −y−1 . (C.13)

C.5.2. Parallel transport

Let us now look at two examples of parallel transport. For this we first have to define a curve along which we
transport the vector. We will look at the two sets of coordinate curves x = const and y = const and then solve the
equation for parallel transport, Eqn. (C.4).

Take the set of curves

ui(t) =

(
x0

y0 + t

)

⇒ u̇i(t) =

(
0
1

)

. (C.14)

The equation of parallel transport for a vector (with covariant components) X j are

Ẋj = −Γj
iku̇

iXk = −Γj
ykX

k ,

from which we get by using Eqns. (C.13)

Ẋx = −Γx
ykX

k =
1

y
Xx ,

Ẋy = −Γy
ykX

k =
1

y
Xx .

These two equations decouple, and therefore are easily integrated to give

Xi(t) = et/yXi(0) . (C.15)

Thus, vectors are not rotated while being moved upwards, but their length gets changed along this particular curve.
Let us now look at the set of horizontal curves

ui(t) =

(
x0 + t
y0

)

⇒ u̇i(t) =

(
1
0

)

. (C.16)

In this case, using Eqn. (C.4) we find

Ẋx = −1

y
Xy and Ẋy =

1

y
Xx ,

which can be succinctly written as

~̇X =
1

y

(
0 1

−1 0

)

~X ,

where by ~X we mean the tupel with components X i and not the true tangent vector X iei. This differential
equation can again be integrated (almost) immediately:

~X(t) = exp

{
1

y

(
0 1

−1 0

)

t

}

~X(0) =

(
cos t

y sin t
y

− sin t
y cos t

y

)

~X(0) . (C.17)

Hence, a vector being moved to the right is rotated clockwise with an angular frequence being inversely proportional
to the coordinate y—see Fig. C.2
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y

x

Figure C.2.: The Poincaré plane. The
sequence of arrows indicates how a
tangent vector is rotated upon par-
allel transport along the curve given
by Eqn. (C.16). Vertical lines are
geodesics, as are all semicircles which
intersect the horizontal axis at a right
angle.

C.5.3. Geodesics

The equations for the geodesics in the Poincaré plane are

üx =
2

y
u̇xu̇y and üy =

1

y

[
(u̇y)2 − (u̇x)2

]
.

The geodesics follow from solving these equations, but this is somewhat hard. It is much easier to make use of
some of the concepts we have learned so far. We follow [9, problem 20.1(4)].

First note that (dx2 + dy2)/y2 ≥ dy2/y2, hence the vertical lines dx = 0 are minimizing geodesics. All the other
geodesics can be found by the following clever calculation: Since the metric is independent of x, ∂x is a Killing
field (since it gives rise to an isometry). Hence, if T is the unit tangent vector to a geodesic, its scalar product
with ∂x remains constant. If α is the angle between T and ∂x, we have

const. = k := T · ∂x = |T | |∂x| cosα =
1

y
cosα . (C.18)

In the last step we used that |T | = 1 and |∂x| =
√
gxx = 1/y.

Next we make use of the fact that the Poincaré metric is conformally flat. This means that the angle α which we
just calculated is in fact identical to the angle in the Euclidean coordinate patch (i. e., the angle which we would
find in a Figure like Fig. C.2). However, in the Euclidean metric we have dy/ds = sinα! Since we furthermore
have

dα

ds
=

dα

dy

dy

ds
= − k

√

1 − (ky)2
sinα = − k

sinα
sinα = −k = const. ,

we see that the geodesics are lines of constant Euclidean curvature −k. Hence, the geodesics are (downward curved)
arcs of a circle. If the geodesic is not a vertical line, α is not equal to π/2, and from Eqn. (C.18) we then see that
k 6= 0. Hence, the geodesic is not straight (in the Euclidean metric). At the highest point y0 the angle is α = 0 and
thus, again using Eqn. (C.18), k = 1/y0. Also, the expression 1

y cosα can only remain constant in the limit y → 0

if the cosinus goes to zero, i. e., if α → ±π/2. From this follows the final result: The geodesics of the Poincaré
metric are Euclidean circles (or vertical lines) that meet the x axis orthogonally.

The above calculation illustrates quite vividly that the knowledge of a Killing field can be extremely advantageous,
for instance in the process of finding geodesics. The whole idea is useful because (just like in this case) it is often
easier to “see” a symmetry of the metric rather than seeing a solution of the (nonlinear!) geodesic differential
equation.

Problem C.2 Show explicitly that the following vector fields are Killing fields of the Poincaré metric:

(a) ∂x (b) x∂x + y∂y .

C.5.4. Finding all Killing fields of the Poincaré metric

If we write the covariant components Ki of a Killing field as

Ki =

(
a(x, y)
b(x, y)

)

,
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the Killing equation LKg = 0 yields the following three differential equations:

ax − b/y = 0 , (C.19a)

by + b/y = 0 , (C.19b)

bx + ay + 2a/y = 0 . (C.19c)

The second equation (C.19b) is readily seen to have the general solution

b(x, y) = c′(x)/y , (C.20)

where c′(x) is the derivative of some as yet unspecified function of x. Inserting this into Eqn. (C.19a), we can
integrate with respect to x and get

a(x, y) = c(x)/y2 + d(y) , (C.21)

where d(y) is an as yet unspecified function of y. If we insert these two equations into Eqn. (C.19c), we obtain

c′′(x) + y d′(y) + 2d(y) = 0 .

This partial differential equation is separable, therefore c′′(x) has to be equal to a constant, say 2A, and this can
be readily integrated:

c′′(x) = 2A ⇒ c(x) = Ax2 +Bx+ C ,

where B and C are two further integration constants. The “other part” of the separable differential equation then
reads

y d′(y) + 2d(y) = −2A .

An obvious particular solution of this equation is d(y) = −A, and the homogeneous solution is solved by d(y) =
D/y2, where D is yet another integration constant.

Now that we solved for c(x) and d(y), we get a(x, y) and b(x, y) from Eqns. (C.20) and (C.21):

a(x, y) =
Ax2 +Bx+ C

y2
+
D

y2
−A , (C.22a)

b(x, y) =
Ax+B

y
. (C.22b)

We can see that the two integration constants C and D in Eqn. (C.22a) really serve the same purpose and we can
just dispense with one of them, say D, by setting D = 0 without loss of generality.

The contravariant components of the Killing fields are just given by the covariant ones times y2, so we finally
have the following expression for a general Killing field within the Poincaré metric:

Ki = A

(
x2 − y2

2xy

)

+ B

(
x
y

)

+ C

(
1
0

)

. (C.23)

This says that every Killing field on the Poincaré metric can be written as a linear combination of the three
evidently independent Killing fields

1Ki =

(
x2 − y2

2xy

)

, 2Ki =

(
x
y

)

, and 3Ki =

(
1
0

)

. (C.24)

In Sec. (B.3.2) we have seen that a two dimensional manifold can have at most 3 independent Killing fields, and
this manifold indeed has this maximum number. In Sec. B.3.4 we have seen that such manifolds are very special
and are called maximally symmetric. They come as close as one can get to the Euclidean notion of a homogeneous
and isotropic space.

The three Killing fields give rise to continuous isometries of the Poincaré plane. Let us finally find the flow lines
corresponding to these fields/isometries. The simplest flow pattern is that of 3K, which obviously just corresponds
to horizontal lines and which indeed is an evident isometry of the Poincaré plane, since the metric does not even
depend on x. Indeed, in Sec. C.5.3 we made use of the fact that we could guess this Killing field in order to work
out the geodesics. The flow belonging to 2K is equally simple, since it just describes lines diverging radially from
the origin at x = 0, y = 0. The only flow which requires a bit more work is the one corresponding to 1K. if x(t)
and y(t) is a parameterization of a flow line, then we have to solve the differential equation

d

dt

(
x(t)
y(t)

)

=

(
x2(t) − y2(t)

2x(t)y(t)

)

.
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x
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x

y
K1 K3K2

Figure C.3.: Illustration of the flow lines belonging to the three Killing fields of the Poincareé metric (see
Eqn. (C.24)).

x

y

Figure C.4.: Graphical illustration of
the fact that the flow belonging to the
Killing field 1K of the Poincaré met-
ric (bold lines) is everywhere orthogo-
nal to the set of geodesics (thin lines)
which pass through the point (at in-
finity) through which also all lines of
the flow pass. Recall that since the
Poincaré metric is conformally flat, the
angles in this picture are identical to
the “real” angles in hyperbolic space.

This equation can be solved by the following nice trick: If we introduce the complex variable z(t) := x(t) + iy(t),
the differential equation can be simply written as ż(t) = z2(t), which can be directly solved by separating the
variables, leading to

z(t) =
( 1

z0
− t
)−1

,

with the integration constant z0 = a0 + ib0 = a(0) + ib(0). All one now needs to do is to separate this up again
into its real and imaginary part. The final answer then is

(
x(t)
y(t)

)

=
1

(1 − a0t)2 + (b0t)2

(
a0 − (a2

0 + b20)t
b0

)

.

If we specialize to flow lines which start with at a0 = 0 (since all the other flow patterns can be obtained by
shifting), we find

(
x(t)
y(t)

)

=
b0

1 + (b0t)2

(
−b0t

1

)

.

It is a straightforward exercise to check that these flow lines describe circles of radius b0/2 which touch the x-axis
at x = 0. An illustration of all three flow patterns can be found in Fig. C.3.

The flow-lines of the three Killing fields can also be characterized with respect to their relation to the geodesics
in the Poincaré plane. The flow of 3K is obviously everywhere orthogonal to the set of all vertical geodesics. The
flow of 2K is everywhere orthogonal to the set of geodesics encircling the point from which the flow emanates.
And finally, the flow of 1K is everywhere orthogonal to the set of geodesics which pass through the point at which
the flow touches the x-axis, as is illustrated in Fig. C.4.

C.5.5. Curvature

The Ricci tensor and the Ricci scalar curvature for the Poincaré plane can be worked out with the help of Formula
1.30 and the Cristoffel symbols (C.13) from above:

Rxx = Γi
xx,i − Γi

xi,x + Γi
xxΓj

ij − Γj
xiΓ

u
jx = −y−2

Ryy = Γi
yy,i − Γi

yi,y + Γi
yyΓj

ij − Γj
yiΓ

i
jy = −y−2

Rxy = Ryx = 0







⇒ Rij = −gij and R = −2 . (C.25)
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This illustrates our proof from Sec. B.3.4, namely that for maximally symmetric spaces the Ricci tensor has to be
proportional to the metric with a constant prefactor. In this case the prefactor is negative and the corresponding
geometry is called “hyperbolic”. Unlike in the case of a maximally symmetric two-dimensional space with positive
curvature (namely, the surface of a sphere), the case with negative curvature cannot be isometrically embedded in
Euclidean R

3, as proved by Hilbert in 1901. However, it can be isometrically embedded in Euclidean R
6, and a

specific embedding has been given by Blanusa (for which I don’t have the reference, though).
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D. Lie Derivative

The concept of a Lie derivative is introduced in order to quantify how tensors change along some given “direction”
in the manifold, specified by a vector field X.

Contrary to the covariant derivative, it will be seen that the Lie derivative does not change the order of the
tensor it differentiates.

D.1. Lie derivative of a function, i. e., a scalar

We simply define the Lie derivative of a function f defined on a manifold Mn along a vector field X likewise defined
on Mn as the action of X on f :

LXf := Xf .

In local coordinates this becomes
LXf = Xif,i = Xi∇if ,

which is indeed just the directional derivative of f “along” X.

D.2. Lie Derivative of a vector field

For the following see for instance Ref. [9], page 125ff.
Let X and Y be two vector fields on a manifold Mn, and let Φt be the local flow1 generated by X. Then Φt~r

shifts the point ~r for a “time” t along the flow. One may now look at two different tangent vectors at the point
Φt~r:

Y Φt~r : The value of the vector field Y at the new point

(Φt)∗Y ~r : The value of Y at the old point, pushed forward to the new point via the differential (Φt)∗

We can use the difference between the two to define the Lie derivative of Y with respect to X:

[LXY ]~r = lim
t→0

Y Φt~r − (Φt)∗Y ~r

t
= lim

t→0
(Φt)∗

(Φ−t)∗Y Φt~r − Y ~r

t
= lim

t→0

(Φ−t)∗Y Φt~r − Y ~r

t
.

The last inequality follows because (Φ0)∗ is the identity. Note that we can also write this as

[LXY ]~r =
{ d

dt
(Φ−t)∗Y Φt~r

}

t=0

In Ref. [9] it is proved that this can be expressed in a coordinate free way as

LXY = [X,Y ] ,

where [X,Y ] is the Lie bracket between the two vector fields X and Y . In local coordinates, this can be expressed
as

[LXY ]µ = [X,Y ]µ = XνY µ
,ν − Y νXµ

,ν . (D.1)

D.3. Lie Derivative for a 1-form

The Lie derivative of a scalar can also be written as

LXf =
d

dt
f(Φt~r)

∣
∣
∣
t=0

(B.4)
=

d

dt

[
(Φt)

∗f
]
∣
∣
∣
t=0

,

1Roughly speaking, this means that Φt is the solution of the differential equation (d/dt)(Φt~x) = X~x, which states that the tangent
vector to the flow at ~x always coincides with the vector X~x at that point.
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where Φt is the flow of X introduced in the last section and (Φt)
∗ is its pull-back. Since the pull-back can also act

on forms, we will use this to define the Lie derivative of a p-form βp as

LXβ
p :=

d

dt

[
(Φt)

∗βp
]
∣
∣
∣
t=0

.

We can make this even a bit more explicit. Take vectors Y (1), . . .Y (p) located at x. Then

[ d

dt
(Φt)

∗βp
]

(Y (1), . . .Y (p)) =
d

dt

[
(Φt)

∗βp(Y (1), . . .Y )
]

=
d

dt
βp
(
(Φt)∗Y

(1), . . . , (Φt)∗Y
(p)
)
.

In particular, one may extend the vectors Y (i) to be invariant fields under the flowm, such that they satisfy

(Φt)∗Y
(i)
~x = Y

(i)
Φt~x

. Then we can write

LXβ
p(Y (1), . . .Y (p)) =

d

dt

[
βp

Φt~x
(Y (1), . . .Y (p))

]
∣
∣
∣
t=0

.

In words: LXβ
p measures the derivative (as one moves along the orbit of X) of the value of βp evaluated on a

p-tuple of vector fields Y that are invariant under the flow generated by X [9, page 132].
The Lie derivative commutes with exterior differentiation:

d ◦ LX = LX ◦ d .

For a proof, see [9, page 133-134]. As a special application, we find the Lie derivative of a coordinate differential

LX(dxi) = d(LXx
i) = d(Xxi) = d

(

Xj ∂

∂xj
xi

︸ ︷︷ ︸

δij

)

= dXi .

The Lie derivative is a special case of a derivation. If α and β are two forms, the Lie derivative hence satisfies
the following differentiation rule:

LX(α⊗ β) = (LXα) ⊗ β + α⊗ (LXβ)

Applying this to the special case of a 1-form α = αidx
i, we find2

LXα = LX(αidx
i) = (LXαi)dx

i + αiLXdxi = (Xαi)dx
i + αidX

i

︸ ︷︷ ︸

i→j

= Xj ∂αi

∂xj
dxi + αj

∂Xj

∂xi
dxi =

[

Xj ∂αi

∂xj
+ αj

∂Xj

∂xi

]

dxi

We thereby see that in local coordinates the formula for the Lie-derivative of a 1-form is given by

[LXα]i = Xjαi,j + αjX
j
,i . (D.2)

D.4. Lie derivative of a general tensor field

Let T be an n-fold contravariant and m-fold covariant tensor, with components in local coordinates T α1α2...αn

β1β2...βm
.

Extending formulas (D.1) and (D.2), we find the general formula in local coordinates

(LXT)α1α2...αn

β1β2...βm
= Tα1α2...αn

β1β2...βm,γX
γ

−T γα2...αn

β1β2...βm
Xα1

,γ − Tα1γ...αn

β1β2...βm
Xα2

,γ − · · · − Tα1α2...γ
β1β2...βm

Xαn

,γ

+Tα1α2...αn

γβ2...βm
Xγ

,β1
+ Tα1α2...αn

β1γ...βm
Xγ

,β2
+ · · · + Tα1α2...αn

β1β2...γ Xγ
,βm

. (D.3)

This should be compared to the general formula for the covariant derivative, (C.7).
It can be checked in an essentially straightforward way, that in the above formula of the Lie-derivative the partial

differentiations can be replaced by covariant ones. If this is done, the first term will create a whole lot of additional
Christoffel-symbol-terms, but each one of them is canceled by the terms which each of the other covariant derivatives
of Xγ spawn. This observation also readily shows that the Lie derivative does indeed produce a tensor!

2Note that if f is a 0-form and α is a p-form, one usually abbreviates f ⊗ α → fα.
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D.5. Special case: Lie derivative of the metric

Applying Eqn. (D.3) to the metric gµν , we find

LXgµν = gµν,λX
λ + gλνX

λ
,µ + gµλX

λ
,ν . (D.4)

From Ricci’s Lemma ∇λgµν = 0 as well as the general formula (C.7) for the covariant derivative we find

gµν,λ = gκνΓκ
µλ + gµκΓκ

νλ .

Inserting this into Eqn. (D.4), we find

LXgµν =
(

gκνΓκ
µλ + gµκΓκ

νλ

)

Xλ + gλνX
λ
,µ + gµλX

λ
,ν

=
(

gλνΓλ
µκ + gµλΓλ

νκ

)

Xκ + gλνX
λ
,µ + gµλX

λ
,ν

= gλν

(

Xλ
,µ +XκΓλ

µκ

)

+ gµλ

(

Xλ
,ν +XκΓλ

νκ

)

= gλν∇µX
λ + gµλ∇νX

λ

= ∇µXν + ∇νXµ . (D.5)

Remember that Ricci’s lemma stated that the covariant derivative of the metric is zero.
We want to point out that this calculation can be significantly abbreviated by making use of the fact that the

partial derivatives in the formula (D.3) can be replaced by covariant ones:

LXgµν =
(
∇γgµν

)
Xγ + gγν∇µX

γ + gµγ∇νX
γ = ∇µXν + ∇νXµ .

The Lie derivative of the metric plays a key role in the theory of Killing fields (see Sec. B.3), which are generators
of continuous isometries. A vector field is a Killing field, if the Lie derivative of the metric with respect to this field
vanishes, i. e., if the metric remains unchanged when dragged along the flow generated by the field.
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E. Solutions to problems

Problem 1.1

Note first that ea = ~r,a = ~r;a = ∇a~r. The identity can now be checked by a straightforward calculation:

1

2
∇a
h`
~r · ea

´
~n−

`
~r · ~n

´
ea

i

=

1

2

h`
~r;a · ea

´
~n+

`
~r · e

;a
a

´
~n+

`
~r · ea

´
~n;a −

`
~r;a · ~n

´
ea −

`
~r · ~n;a´

ea −
`
~r · ~n

´
e

;a
a

i

=

1

2

h`
e

a · ea
| {z }

=δa
a=2

´
~n+ baa

`
~r · ~n

´
~n− bab`~r · ea

´
eb −

`
e

a · ~n
| {z }

=0

´
ea + bab`~r · eb

´
ea − baa

`
~r · ~n

´
~n
i

=

~n ...as we intended to show.

Problem 3.1

Using ugly component notation, we can calculate

bik∇iφ
k − bii∇kφk + εklεij

h

bik

“

∇lφ
j + ∇jφl

”i

=

=
h

b11∇1φ
1 + b22∇2φ

2 + b21∇2φ
1 + b12∇1φ

2
i

−
h

b11∇1φ1 + b22∇2φ2 + b11∇2φ2 + b22∇1φ1

i

+ b11(∇2φ
2 + ∇2φ2) + b22(∇1φ

1 + ∇1φ1) − b21(∇2φ
1 + ∇1φ2) − b12(∇1φ

2 + ∇2φ1)

= (b11 + b22)(∇1φ
1 + ∇2φ

2) −
h

b11∇1φ1 + b22∇2φ2 + b21∇1φ2 + b12∇2φ1

i

= bii∇kφ
k − bki ∇iφk = 2H∇kφ

k − bik∇iφ
k .

Note that the ultimate effect of the determinant-like expression is to change the sign of the two other terms!

Problem 3.2

Using Eqn. (3.3) for the variation of the tangent vector, we can work out their product up to linear order:

d~r′1 × d~r′2

du1du2
=

ˆ
e1 + (∇1φ

i − ψbi1)ei + (φib1i + ψ,1)~n
˜
×
ˆ
e2 + (∇2φ

j − ψbj2)ej + (φjb2j + ψ,2)~n
˜

= e1 × e2

+ e1 × ej(∇1φ
j − ψbj1) + ei × e2(∇1φ

i − ψbi1)

+ e1 × ~n(φjb2j + ψ,2) + ~n× e2(φ
ib1i + ψ,1) + O(2)

= ~n
√
g
`
1 + ∇iφ

i − 2Hψ
´

+ e1 × ~n(φjb2j + ψ,2) + ~n× e2(φ
ib1i + ψ,1) + O(2) . (E.1)

We now rewrite the vector products as follows:

e1 × ~n =
e1 × (e1 × e2)√

g
=

(e1 · e2)e1 − (e1 · e1)e2√
g

=
g12e1 − g11e2√

g

(1.5)
= −√

gg2i
ei ,

~n× e2 =
(e1 × e2) × e2√

g
=

(e1 · e2)e2 − (e2 · e2)e1√
g

=
g12e2 − g22e1√

g

(1.5)
= −√

gg1i
ei .

Inserting this into Eqn. (E.1) we obtain Eqn. (3.15).

Problem 4.1

Eqn. (4.1) defines the function h(x, y). All we need to do is to verify that the mean curvature, which in Monge parame-
terization is given by Eqn. (2.5a), vanishes vor all x and y. Let’s first calculate the partial derivatives of first and second
order:

hx = − tanx , hy = tan y , hxx = − cos−2 x , hyy = cos−2 y , hxy = hyx = 0 .

From this we find that the nominator of the expression for H in Eqn. (2.5a) is given by

hxx(1 + h2
y) + hyy(1 + h2

x) − 2hxyhxhy = −1 + tan2 y

cos2 x
+

1 + tan2 x

cos2 y
=

− cos2 y (1 + tan2 y) + cos2 x (1 + tan2 x)

cos2 x cos2 y
= 0 .
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Problem C.1

The surface of a sphere of radius R in spherical coordinates u1 = ϑ and u2 = ϕ is parameterized by

~r =

0

@

R sinϑ cosϕ
R sinϑ sinϕ
R cosϑ

1

A , eϑ =
∂~r

∂ϑ
=

0

@

R cosϑ cosϕ
R cosϑ sinϕ

−R sinϑ

1

A , eϕ =
∂~r

∂ϕ
=

0

@

−R sinϑ sinϕ
R sinϑ cosϕ

0

1

A .

From this we also get the metric and its inverse

gij = ei · ej =

„
R2 0
0 R2 sin2 ϑ

«

, gij =
1

R4 sin2 ϑ

„
R2 sin2 ϑ 0

0 R2

«

=

„
1/R2 0

0 1/(R2 sin2 ϑ)

«

. (E.2)

The outward normal vector ~n is found via

eϑ × eϕ = R2 sinϑ

0

@

sinϑ cosϕ
sinϑ sinϕ

cosϑ

1

A ⇒ ~n =
eϑ × eϕ

|eϑ × eϕ| =

0

@

sinϑ cosϕ
sinϑ sinϕ

cosϑ

1

A =
~r

|~r| .

From Eqn. (C.11) and Eqn. (E.2) we get the covariant Laplacian, which is of course just the angular part of the Laplacian
in spherical curvilinear coordinates:

∇2 =
1

R2 sinϑ

∂

∂ϑ

“

sinϑ
∂

∂ϑ

”

+
1

R2 sin2 ϑ

∂2

∂ϕ2
.

Applying this operator on the three components of ~r we find:

∇2(R sinϑ cosϕ) =
1

R sinϑ
∂ϑ

ˆ
sinϑ ∂ϑ(sinϑ cosϕ)

˜
+

1

R sin2 ϑ
∂2

ϕ sinϑ cosϕ

=
cosϕ

R sinϑ
(cos2 ϑ− sin2 ϑ) − cosϕ

R sinϑ
= − 2

R
sinϑ cosϕ ,

∇2(R sinϑ sinϕ) =
1

R sinϑ
∂ϑ

ˆ
sinϑ ∂ϑ(sinϑ sinϕ)

˜
+

1

R sin2 ϑ
∂2

ϕ sinϑ sinϕ

=
sinϕ

R sinϑ
(cos2 ϑ− sin2 ϑ) − sinϕ

R sinϑ
= − 2

R
sinϑ sinϕ ,

∇2(R cosϑ) =
1

R sinϑ
∂ϑ

ˆ
sinϑ ∂ϑ cosϑ

˜
= − 1

R sinϑ
∂ϑ sin2 ϑ = − 2

R
cosϑ .

We thus obtain

∇2 ~r = − 2

R

0

@

sinϑ cosϕ
sinϑ sinϕ

cosϑ

1

A = − 2

R
~n = 2H~n .

Indeed, the two principal curvatures of a sphere are both 1/R, so twice the mean curvature is 2H = 2/R, and the minus
sign is due to the fact that the normal vector points outward and the sphere bends away from it.

Problem C.2

(a) In components we have ∂x = Ki∂i, and thus Kx = 1 and Ky = 0. The covariant components are given by Ki = gijK
j ,

so we have Kx = 1/y2 and Ky = 0. In order to see that we have a Killing field, we have to verify Eqn. (B.11), which means
(by virtue of Eqn. (D.5)) we have to show that all components of the symmetric tensor ∇iKj + ∇jKi vanish. Using the
values of the Christoffel symbols from Eqn. (C.13), we find

`
L∂xg)xx = 2

`
Kx,x − Γi

xxKi) = 0 − 2
1

y
Ky = 0 ,

`
L∂xg)yy = 2

`
Ky,y − Γi

yyKi) = 0 − 2
“

− 1

y

”

Ky = 0 ,

`
L∂xg)xy =

`
Kx,y − Γi

xyKi

´
+
`
Ky,x − Γi

yxKi

´
= − 2

y3
−
“

− 1

y

” 1

y2
+ 0 −

“

− 1

y

” 1

y2
= 0 ,

and this proves that ∂x is indeed a Killing field.
(b) In this case the components of the vector field are Kx = x and Ky = y. We now find

`
Lx∂x+y∂y g)xx = 2

`
Kx,x − Γi

xxKi) = 2
“ 1

y2
− 1

y

1

y

”

= 0 ,

`
Lx∂x+y∂y g)yy = 2

`
Ky,y − Γi

yyKi) = 2
“

− 1

y2
−
“

− 1

y

” 1

y

”

= 0 ,

`
Lx∂x+y∂y g)xy =

`
Kx,y − Γi

xyKi

´
+
`
Ky,x − Γi

yxKi

´
= −2x

y3
−
“

− 1

y

”x

y
+ 0 −

“

− 1

y

” x

y2
= 0 ,

showing that x∂x + y∂y is also a Killing field. Note that it describes a “stretching” of the plane away from the “origin” at
x = 0, y = 0. It may be surprising that this is actually an isometry, i. e., leaves hyperbolic lengths unchanged.
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