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CHAPTER 1

Introduction to Smooth Manifolds

Even things that are true can be proved.
Oscar Wilde, The Picture of Dorian Gray

1. Plain curves

Definition 1.1. A regular arc or regular parametrized curve in the plain R
2 is any continuously

differentiable map f : I → R2, where I = (a, b) ⊂ R is an open interval (bounded or unbounded:
−∞ ≤ a < b ≤ ∞) such that the R2-valued derivative f ′(t) is different from 0 = (0, 0) for all
t ∈ I. That is for every t ∈ I, f(t) = (f1(t), f2(t)) ∈ R2 and either f ′

1(t) 6= 0 or f ′
2(t) 6= 0.

The variable t ∈ I is called the parameter of the arc. One may also consider closed intervals,
in that case their endpoints require special treatment, we’ll see them as “boundary points”.

Remark 1.2. There is a meaningful theory of nondifferentiable merely continuous arcs (includ-
ing exotic examples such as Peano curves covering a whole square in R2) and of more restrictive
injective continuous arcs (called Jordan curves) that is beyond the scope of this course.

The assumption f ′(t) 6= 0 roughly implies that the image of f “looks smooth” and can be
“locally approximated” by a line at each point. A map f with f ′(t) 6= 0 for all t is also called
immersion.

Example 1.3. Without the assumption f ′(t) 6= 0 the image of f may look quite “unpleasant”.
For instance, investigate the images of the following C∞ maps:

f(t) = (t2, t3), f(t) :=





(0, e1/t) t < 0

(0, 0) t = 0

(e−1/t, 0) t > 0.

The first curve is called Neil parabola or semicubical parabola. Both maps are not regular at
t = 0. Such a point is called a critical point or a singularity of the map f .

Definition 1.4. A regular curve is an equivalence class of regular arcs, where two arcs f : I →
R2 and g : J → R2 are said to be equivalent if there exists a bijective continuously differential
map ϕ : I → J with ϕ′(t) > 0 for all t ∈ I (the inverse ϕ−1 is then exists and is automatically
continuously differentiable) such that f = g ◦ϕ, i.e. f(t) = g(ϕ(t)) for all t. Sometimes a finite (or
even countable) union of curves is also called a curve. A regular curve of class Ck for 1 ≤ k ≤ ∞
is an equivalence class of regular arcs of class Ck (i.e. k times continuously differentiable), where
the equivalence is defined via maps ϕ that are also of class Ck. “Smooth” usually stays for C∞.
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6 1. INTRODUCTION TO SMOOTH MANIFOLDS

Recall that a map f = (f1, . . . , fn) from an open set Ω in Rm into Rn is of class Ck (k times
continuously differentiable) if all partial derivatives up to order k of every component fi exist and
are continuous everywhere on Ω.

A map ϕ as above will be called orientation preserving diffeomorphism between I and J ; this
will be defined later in a more general context.

Exercise 1.5. Give an example of a regular curve which is of class C1 but not C2.

The map ϕ(t) := tan t defines a C∞ diffeomorphism between the intervals (−π/2, π/2) and
(−∞,∞). Hence any regular curve can be parametrized by an arc defined over a bounded interval
(why?).

Exercise 1.6. Give a parametrization of the line passing through 0 and a point (a, b) 6= 0
over the interval (0, 1).

Example 1.7. One of the most important curves is the unit circe. Its standard parametrization
is given by f(t) = (cos t, sin t), t ∈ R. Clearly f is not injective.

Exercise∗ 1.8. Show that the circle cannot be parametrized by an injective regular arc.

Definition 1.9. If a regular curve C is parametrized by an arc f , a tangent vector to C at
a point p = f(t0) is any multiple (positive, negative or zero) of the derivative f ′(t0). The tangent
line to C at p is parametrized by t 7→ p+ f ′(t0)t. (Sometimes t 7→ f ′(t0)t is also called the tangent
line).

Exercise 1.10. Show that the tangent line define above is independent of the choice of the
parametrizing arc.

Exercise 1.11. In the above notation show that, if tn ∈ I is any sequence converging to
t0, then f(tn) 6= f(t0) for n sufficiently large and that the line passing through f(t0) and f(tn)
converges to the tangent line to C at p. Here “convergence” of lines can be defined as convergence
of their unital directional vectors.
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2. Surfaces in R3

The main difference between curves and surfaces is that the latter in general cannot be
parametrized by a single regular map defined in an open set in R2. The simplest example is
the unit sphere. Hence one may need different parametrizations for different points.

Definition 1.12. A parametrized (regular) surface element (or surface patch) is a C 1 map
f : U → R3, where U ⊂ R2 is an open set, which is an immersion. The latter condition means
that, for every a ∈ U , the differential daf : R2 → R3 is injective. Recall that

daf(u1, u2) = u1
∂f

∂t1
(a) + u2

∂f

∂t2
(a).

The image of daf is called the tangent plane at f(a).

The condition that the differential daf is injective is equivalent to linear independence of the
partial derivative vectors ∂f

∂t1
(a) and ∂f

∂t2
(a). These span the tangent plane at p = f(a).

Example 1.13. Every open set U ⊂ R
2 and every C1 function f on U gives a surface in R

3

via its graph

{(t1, t2, f(t1, t2)) : (t1, t2) ∈ U}.
In particular, a hemisphere is obtained for f(t1, t2) =

√
1 − t21 − t22 with U the open disc given by

t21 + t22 < 1. One needs at least 2 surface elements to cover the sphere.

Exercise 1.14. Give two parametrized surface elements covering the unit sphere in R3. (Hint:
Use stereographic projection).

Example 1.15. A torus (of revolution) is an important surface that admits a global (but not
injective) parametrization:

f(u, v) =
(
(a + b cos u) cos v, (a+ b cos u) sin v, b sinu

)
, 0 < b < a, (u, v) ∈ R

2. (2.1)

More generally, a surface of revolution is obtained by rotating a regular plane curve C
parametrized by t 7→ (x(t), z(t)) (called the meridian or profile curve) in the (x, z)-plane around
the z-axis in R3, where C is assumed not to intersect the z-axis (i.e. x(t) 6= 0 for all t). It admits
a parametrization of the form

(t, ϕ) 7→
(
x(t) cosϕ, x(t) sinϕ, z(t)

)
. (2.2)

Another important class of surfaces consists of ruled surfaces. A ruled surface is obtained by
moving a line in R3 and admits a parametrization of the form

(t, u) 7→ p(u) + tv(u) ∈ R
3, t ∈ R, u ∈ I, (2.3)

where I is an interval in R, p, v : I → R3 are C1 maps with v nowhere vanishing.

Exercise 1.16. Show that the map (2.2) defines a regular surface element. Find a condition
on p and v in order that (2.3) define a regular surface element.

Exercise 1.17. Show that the hyperboloid given by x2 + y2 − z2 = 1 is a ruled surface and
the hyperboloid given by x2 + y2 − z2 = −1 is not a ruled surface.
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A general surface “in the large” is roughly defined by “patching together” surface elements. A
precise definition (as an immersed 2-dimensional submanifold) will be given later. Here we give a
definition of an “embedded regular surface”.

Definition 1.18. A subset S ⊂ R3 is a embedded regular surface if, for each p ∈ S, there
exist an open neighborhood Vp of p in R3 and a parametrized regular surface element fp : Up ⊂
R2 → Vp ∩ S which is a homeomorphism between Up and Vp ∩ S. The map fp : Up → S is called a
parametrization of S around p.

The most important consequence of the above definition is the fact that the change of param-
eters is a diffeomorphism:

Theorem 1.19. If fp : Up → S and fq : Uq → S are two parametrizations as in Definition 1.18
such that fp(Up) ∩ fq(Uq) = W 6= ∅, then the maps

(f−1
q ◦ fp) : f−1

p (W ) → f−1
q (W ), (f−1

p ◦ fq) : f−1
q (W ) → f−1

p (W ) (2.4)

are continuously differentiable.

The proof is based on the Implicit Function Theorem (or the Inverse Function Theorem),
quoted here without proof:

Theorem 1.20 (Implicit Function Theorem). Consider an implicit equation

F (x, y) = 0 (2.5)

for a function y = f(x), where x = (x1, . . . , xm) ∈ Rm, y = (y1, . . . , yn) ∈ Rn, and F =
(F1, . . . , Fn) is a C1 map from an open neighborhood U × V of a point (a, b) in Rm × Rn into
Rn. Suppose that F (a, b) = 0 and the square matrix

(∂Fi
∂yj

(a, b)
)

1≤i,j≤n
(2.6)

is invertible. Then (2.5) is uniquely solvable near (a, b), i.e. there exists a possibly smaller open
neighborhood U ′ × V ′ ⊂ U × V of (a, b) in Rm × Rn and a C1 map f : U ′ → V ′ such that, for
(x, y) ∈ U ′ × V ′, (2.5) is equivalent to y = f(x). If, moreover, F is of class Ck, k > 1, then f is
also of class Ck.

An immediate consequence is the Inverse Function Theorem (sometimes the Implicit Function
Theorem is deduced from the Inverse Function Theorem).

Corollary 1.21 (Inverse Function Theorem). Let G be a C1 map from an open neighborhood
V of a point b in Rn into Rn with a := G(b). Assume that the differential of G at b is invertible.
Then G is also invertible near b, i.e. there exists an open neighborhood V ′ ⊂ V of b in Rn such that
G(V ′) is open in Rn, G : V ′ → G(V ′) is bijective onto and the inverse G−1 is C1. If, moreover, G
is Ck for k > 1, then also G−1 is Ck.

Proof of Theorem 1.19. Fix b ∈ f−1
q (W ) and set a := f−1

p (fq(b)). By Definition 1.12, the

differential dafp : R2 → R3 is injective. After a possible permutation of coordinates in R3, we may
assume that the differential da(f

1
p , f

2
p ) is invertible, where fp = (f 1

p , f
2
p , f

3
p ). Then, by the Inverse
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Function Theorem, the map (t1, t2) 7→ (f 1
p (t1, t2), f

2
p (t1, t2)) has a C1 local inverse defined in a

neighborhood of (f 1
p (a), f

2
p (a)) that we denote by ϕ. Then f−1

p ◦ fq = ϕ ◦ (f 1
q , f

2
q ) near b proving

the conclusion of the theorem for the second map in (2.4). The proof for the first map is completely
analogous. �

3. Abstract Manifolds

Definition 1.22. A n-manifold (or an n-dimensional differentiable manifold) of class Ck is
a set M together with a family (Uα)α∈A of subsets and injective maps ϕα : Uα → Rn whith open
images ϕα(Uα) ⊂ Rn such that the union ∪α∈AUα covers M and for any α, β ∈ A with Uα∩Uβ 6= ∅,
the sets ϕα(Uα ∩Uβ) and ϕβ(Uα ∩Uβ) are open in Rn and the composition map (called transition
map)

(ϕβ ◦ ϕ−1
α ) : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ) (3.1)

is of class Ck.

A family (Uα, ϕα)α∈A as in Definition 1.22 is called a Ck atlas on M . Thus a Ck manifold is a
set with a Ck atlas. A C∞ manifold is often called smooth manifold and a C0 manifold a topological
manifold.

A comparison between Definition 1.22 and the defintion of an embedded regular surface (Def-
inition 1.18) shows that the essential point (except for the change of dimension from 2 to n) was
to distinguish the fundamental peroperty of the transition maps (3.1) (which is Theorem 1.19 for
surfaces) and incorporate it as an axiom. This is the condition that will allow us to carry over
ideas of differential calculus in Rn to abstract differential manifolds.

The condition on the transition maps (3.1) is only nontrivial in case there are at least two
maps in the atlas. Hence, if the atlas consists of a single map, the manifold is C∞ as in some of
the examples below.

Example 1.23. The most basic example of an n-manifold (of class C∞) is the space Rn itself
with the atlas consisting of the identity map ϕ = id from U = Rn into Rn. More generally, every
open subset U ⊂ Rn is an (C∞) n-manifold with the atlas consisting again of the identity map.

Example 1.24. A regular curve in R2 as defined in Definition 1.4, parametrized by an injective
regular arc f : I → R

2 defines a 1-manifold structure on the image f(I) via the atlas consisting of
the inverse map ϕ := f−1 defined on U := f(I).

Example 1.25. The simplest example of a 1-manifold for which one needs at least two maps
in an atlas is the unit circle S1 := {(x, y) ∈ R2 : x2 + y2 = 1}. An atlas with four maps can
be given as follows. Let U1, . . . , U4 be subsets of S1 given by x < 0, x > 0, y < 0 and y > 0
respectively. Then a (C∞) atlas is given by the maps ϕα : Uα → R, α = 1, . . . , 4, by ϕ1(x, y) := y,
ϕ2(x, y) := y, ϕ3(x, y) := x and ϕ4(x, y) := x. Indeed, it is easy to see that each ϕα is injective
with open image ϕα(Uα) = (−1, 1) ⊂ R, that the sets in (3.1) are open and the transition maps
are C∞. E.g., (ϕ2 ◦ ϕ−1

4 )(t) =
√

1 − t2 is smooth on ϕ4(U2 ∩ U4) = (0, 1) ∈ R.

Exercise 1.26. Give an atlas on S1 consisting only of 2 different maps ϕα.



10 1. INTRODUCTION TO SMOOTH MANIFOLDS

Example 1.27. An embedded regular surface S in R3 as in defined in Definition 1.18 can be
given a structure of a 2-manifold with the atlas consisting of the inverse maps f−1

p : Vp ∩ S → R2.
The required property for the transition maps follows from Theorem 1.19.

Example 1.28. Let M ⊂ R3 be the torus obtained as the image of the map f : R2 → R3

defined by (2.1). Then M has a natural structure of a smooth 2-manifold given by the atlas
(Uα, ϕα)α∈A, where A := R2, Vα := (α1, 2π + α1) × (α2, 2π + α2) ⊂ R2 for α = (α1, α2) ∈ R2,
Uα := f(Vα) ⊂ M and ϕα := (f |Vα

)−1. Each transition map ϕβ ◦ ϕ−1
α equals the identity.

The following is an “exotic” manifold known as the real line with double point.

Example 1.29. Take M := R ∪ {a}, where a is any point not in R, and define a C∞ atlas
on M as follows. Set U1 := R and U2 := R \ {0} ∪ {a}, then clearly M = U1 ∪ U2. Further define
ϕi : Ui → R, i = 1, 2, by ϕ1(x) = x and ϕ2(x) := x for x 6= a and ϕ2(a) := 0. Then all assumptions
of Definition 1.22 are satisfied (why?).

An easy way to obtain new manifolds is to take products. Let M be an n-manifold with an
atlas (Uα, ϕα)α∈A and M ′ be an n′-manifold with an atlas (U ′

β, ϕ
′
β)β∈B , both of class Ck. Recall

that M ×M ′ is the set of all pairs (x, x′) with x ∈M and x′ ∈M ′. Then the collection of maps

ϕα×ϕ′
β : Uα×Uβ → R

n×R
n′

= R
n+n′

, (ϕα×ϕ′
β)(x, y) := (ϕα(x), ϕ

′
β(y)), (α, β) ∈ C := A×B,

defines a Ck atlas on M ×M ′ making it an (n + n′)-manifold of the same differentiability class
(why?).

Any atlas as in Defintion 1.22 can be always completed to a maximal one by involving maps
more general than ϕα that play the role of coordinates. It is very convenient and important for
applications to have those general charts at our disposal.

Definition 1.30. An injective map ϕ from a subset U ⊂M into Rn with open image ϕ(U) ⊂
Rn is called a (coordinate) chart compatible with the atlas on M or simply a chart on M if, by
adding it to the given atlas one obtains a new (Ck) atlas on M , i.e. if, for every α ∈ A, the images
ϕ(U ∩ Uα) and ϕα(U ∩ Uα) are open in Rn and the maps ϕ ◦ ϕ−1

α and ϕ−1 ◦ ϕα are Ck in their
domains of definition.

In particular, any map ϕα : Uα → Rn in Definition 1.22 is a chart on M . The inverse
ϕ−1 : ϕ(U) → U of a chart is called a (local) parametrizations of M and ϕ(U) ⊂ Rn the parameter
domain.

Lemma 1.31. The set of all charts on M is a maximal atlas, i.e. it is an atlas and it cannot
be extended to a larger family of maps satisfying the requirements of Definition 1.22.

Proof. Since each ϕα is a chart, the union of all charts covers M . In order to show that the
set of all charts is an atlas, consider two charts ϕ : U → R

n and ψ : V → R
n with U ∩ V 6= ∅.

We first show that ϕ(U ∩ V ∩ Uα) is open (in Rn) for every α ∈ A. For this observe that both
ϕα(U ∩Uα) and ϕα(V ∩Uα) are open and hence so is their intersection W := ϕα(U ∩V ∩Uα). Since
the map h := (ϕα ◦ϕ−1) : ϕ(U ∩Uα) → ϕα(U ∩Uα) is continuous, the set ϕ(U ∩V ∩Uα) = h−1(W )
is open. Interchanging the roles of ϕ and ψ we conclude that ψ(U ∩ V ∩ Uα) is also open. Now,
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since M = ∪αUα, ϕ(U ∩ V ) = ∪αϕ(U ∩ V ∩ Uα) is open as a union of open sets and the same
holds for ψ(U ∩ V ) = ∪αψ(U ∩ V ∩ Uα).

In order to show that g := (ψ ◦ϕ−1) : ϕ(U ∩V ) → ψ(U ∩V ) is of class Ck, it is enough to show
that so is the restriction of g to ϕ(U∩V ∩Uα) for every α ∈ A. The latter is Ck as composition of the
Ck maps (ϕα◦ϕ−1) : ϕ(U∩V ∩Uα) → ϕα(U∩V ∩Uα) and (ψ◦ϕ−1

α ) : ϕα(U∩V ∩Uα) → ψ(U∩V ∩Uα).
Thus the family of all charts satifies the requirements of Definition 1.22 and hence forms an atlas.

Maximality follows directly: if there is a larger family of maps as in Definition 1.22, each of
them must be a chart and hence the family is that of all charts. �

Definition 1.32. The set of all charts on M is called a differentiable structure on M .

The same differentiable structure can be obtained through a different atlas. Indeed, it follows
from the proof of Lemma 1.31 that any covering of M by charts is an atlas defining the same
differentiable structure.

Exercise 1.33. Show that the atlas consisting of the map ϕ(x) = x3 defines a differentiable
structure on R which is different from the standard one (defined in Example 1.23). That is,
construct a chart for one atlas which is not a chart for the other atlas.

We shall use the convention that for a chart ϕ : U → Rn on M , we shall write (x1, . . . , xn) for
the standard coordinates of Rn and identify them with corresponding functions on U as follows.
For p ∈ U , xi(p) is the ith coordinate of ϕ(p), i.e. ϕ(p) = (x1(p), . . . , xn(p)) ∈ R

n. We call
(x1(p), . . . , xn(p)) coordinates of p.
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4. Topology of abstract manifolds

Let M be an n-manifold with an atlas (Uα, ϕα)α∈A as defined in previous section. Then M
carries canonical topology called manifold topology defined as follows. A set U ⊂ M is said to be
open if for every α ∈ A, the image ϕα(U ∩ Uα) is open in Rn. Recall that a topological space is a
set X together with a collection of subsets of X called open sets such that (1) the empty set and
the whole set X are open; (2) union of any family of open sets is open; (3) intersection of any two
open sets is open.

Lemma 1.34. With open sets defined above M is a topological space.

Exercise 1.35. Prove the lemma.

Lemma 1.36. If ϕ : U → Rn is any chart on M (see Definition 1.30), then U is open in M
and ϕ is a homeomorphism onto its image ϕ(U) ⊂ Rn. In particular, any ϕα is a homeomorphism
onto its image.

Proof. By Definition 1.30, ϕ : U → ϕ(U) is a bijection. To see that it is continuous we have
to prove that ϕ−1(V ) is open in M for any open set V in Rn. According to the definition of open
sets this means that ϕα(ϕ

−1(V ) ∩ Uα) has to be open for any α. The latter set coincides with
h−1(V ) where the transition map h := (ϕ ◦ ϕ−1

α ) : ϕα(U ∩ Uα) → ϕ(U ∩ Uα) is continuous. Hence
ϕα(ϕ

−1(V ) ∩ Uα) = h−1(V ) is open as desired.
To see that ϕ−1 is continuous we have to prove that (ϕ−1)−1(W ) = ϕ(W ∩U) is open in Rn for

any open set W in M . According to the definition of open sets, ϕα(W ∩ Uα) is open for every α.
Since (U, ϕ) is a chart, ϕα(U ∩Uα) is open and hence so is the intersection ϕα(W ∩U ∩Uα). Since
the transition map h := ϕα◦ϕ−1 is continuous, the preimage h−1(ϕα(W∩U∩Uα)) = ϕ(W∩U∩Uα)
is open. Then also the union ∪αϕ(W ∩ U ∩ Uα) = ϕ(W ∩ U) is open as desired. �

As a consequence, the topology on M depends only on the differentiable structure but not on
the atlas defining this structure (why?).

Exercise 1.37. Check that the topology defined above is the only one for which every map
ϕα is a homeomorphism onto its image ϕα(Uα).

The following observation can be used to obtain new examples of manifolds generalizing Ex-
ample 1.23. Any open subset U in a manifold M is automatically a manifold with induced dif-
ferentiable structure defined as follows. If (Uα, ϕα)α∈A is an atlas on M , the restrictions (Uα ∩
U, ϕα|Uα

)α∈A define an atlas on U .

Exercise 1.38. Check that the latter is indeed an atlas on U .

An important property of the topology of a manifold is that locally (or in the small) it is the
same as that of R

n. This is illustrated by the following statements.

Lemma 1.39. A manifold M is always locally compact and locally connected. That is, every
point p ∈ M has a fundamental system of open neighborhoods in M which are relatively compact
and connected.
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Proof. For any p ∈ M , there exists a map ϕα : Uα → Rn from the atlas with p ∈ Uα. Then
take Vp := ϕ−1

α (B) with B being sufficiently small open ball in Rn with center ϕα(p). The desired
properties of Vp follow from the fact that ϕα is a homeomorphism onto its image. �

A basic question about any topological space: Is it Hausdorff? Recall that a topological space
X is called Hausdorff (or satisfying T2-axiom) if any two distinct points p, q ∈ X have disjoint
open neighborhoods, i.e. open sets Up, Uq ∈ X with p ∈ Up, q ∈ Uq and Up ∩ Uq = ∅. A manifold
does not have to be Hausdorff in general (see e.g. Example 1.29 or Berger-Gostiaux, 2.2.10.4). In
most books (including Berger-Gostiaux) a manifold is always assumed to be Hausdorff. We shall
also make this assumption in the sequel.
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5. Submanifolds

We begin the discussion of submanifolds by introducing submanifolds of Rn which form an
important class of manifolds. This is a direct generalization of Definition 1.18 of an embedded
surface in R3.

Definition 1.40. A subset S ⊂ Rn is an m-dimensional submanifold of Rn of class Ck

(m ≤ n), if, for each p ∈ S, there exist an open neighborhood Vp of p in Rn, an open set Ωp ⊂ Rm

and a homeomorphism fp : Ωp → Vp∩S which is Ck and regular in the sense that for every a ∈ Ωp,
the differential dafp : Rm → Rn is injective. The map fp : Ωp → S is called a (local) parametrization
of S around p.

An m-dimensional submanifold S of Rn of class Ck carries a structure of an m-manifold of class
Ck with the atlas (Up, ϕp)p∈S given by Up := Vp ∩ S, ϕp := f−1

p , where Vp and fp are as the above
definition. A direct generalization of Theorem 1.19 (with the same proof based on the Inverse
Function Theorem) implies that the transition maps (3.1) are of class Ck. Hence the collection
(Up, ϕp)p∈S is indeed a Ck atlas on M .

The following is an important characterization of submanifolds of Rn.

Theorem 1.41. Let S be a subset of Rn. The following properties are equivalent:

(i) S is an m-dimensional submanifold of Rn of class Ck.
(ii) For every p ∈ S there exists an open neighborhood V ⊂ Rn of p and a Ck diffeomorphism

ϕ between V and an open set in Rn such that S ∩ V = ϕ−1(Rm × {0}), where Rm ⊂ Rn

is the set of vectors whose last n−m coordinates are 0.
(iii) For every p ∈ S there exists an open neighborhood V ⊂ Rn of p and Ck functions

gi : V → R, i = 1, . . . , n − m, such that the gradients ∇gi(x) are linearly independent
and S ∩ V = {x ∈ V : g1(x) = · · · = gn−m(x) = 0}.

(iv) For every p ∈ S there exists an open neighborhood V ⊂ Rn and a submersion g : V →
Rn−m (i.e. the differential dag : Rn → Rn−m is surjective for each a ∈ V ) such that
S ∩ V = g−1(0).

(v) S is locally a graph of a Ck function from R
m to R

n−m, i.e. for every p ∈ S having,
after possible reordering the coordinates, the form p = (p1, . . . , pn) ∈ Rn, there exist
neighborhoods V1 ⊂ Rm of (p1, . . . , pm) and V2 ⊂ Rn−m of (pm+1, . . . , pn) and a Ck map
h : V1 → V2 such that S ∩ (V1 × V2) = {(x, h(x)) : x ∈ V1} (the graph of h).

In (i) we think of a submanifold as locally regularly parametrized, in (ii) as locally diffeomorphic
to an open set in Rm embedded into Rn in the standard way, in (iii) as given by a regular system
of equations, in (iv) as the zero-set of a submersion, and in (v) as locally a graph of a smooth
map.

Proof of Theorem 1.41. Given (i) and a local parametrization fp : Ωp → S, we embedd
Ωp ⊂ Rm into Rn in the standard way and extended fp to a neighborhood of a := f−1

p (p) in Rn

as follows. After a permutation of coordinates, we first assume that da(f
1
p , . . . , f

m
p ) : Rm → Rm is
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invertible. Then set

ψ(u1, . . . , un) := fp(u
1, . . . , um) + (0, . . . , 0, um+1, . . . , un).

Then it is easy to check that daψ : Rn → Rn is invertible and hence, by the Inverse Function
Theorem, ϕ := ψ−1 exists and satisfies (ii) for a possibly smaller neighborhood V of p.

Given (ii), we can take gi := xm+i ◦ϕ−1, i = 1, . . . , n−m, to satisfy (iii). Given (iii), we obtain
(iv) with g being a restriction of (g1, . . . , gn−m) to a suitable neighborhood of x.

Given (iv), observe that the n × (n − m) matrix associated with dpg has the maximal rank
n−m. Therefore, after a permutation of coordinates of Rn, we can apply Theorem 1.20 (Implicit
Function Theorem) whose conclusion implies (v).

Finally, given (v), a local parametrization of S as in Definition 1.40 can be easily obtained by
setting Ωp := V1, fp(x) := (x, h(x)). Hence (v) implies (i). �

An important special case of a submanifold of Rn is a hypersurface which is by definition, an
(n− 1)-dimensional submanifold. According to property (iii) in Theorem 1.41 a subset S ⊂ Rn is
a Ck hypersurface if and only if it can be locally defined as the zero-set of a single function with
nontrivial gradient.

We now extend the notion of submanifolds in Rn by defining submanifolds of abstract manifolds
following the line of the property (ii) in Theorem 1.41 and using general charts as defined in
Definition 1.30.

Definition 1.42. Let M be an n-manifold of class Ck. A subset S ⊂ M is called an m-
dimensional submanifold of M (of the same class Ck) if, for every p ∈ S, there exists a chart
(U, ϕ) on M with p ∈ U and S ∩ U = ϕ−1(Rm).

Remark 1.43. More generally, a Cr submanifold of M can be defined for r ≤ k by viewing
M as a Cr manifold.

It is straightforward to see that, for (U, ϕ) ranging over all charts satisfying the conditions in
Definition 1.42, the pairs (S ∩ U, ϕ|S∩U) form a Ck atlas on S definining on S a structure of a Ck

manifold.

Exercise 1.44. Show that the manifold topology on a submanifold S ⊂ M coincides with
that induced by the manifold topology on M .

Exercise 1.45. Show that being submanifold is a transitive relation: If M1 is a submanifold
of M2 and M2 of M3, then M1 is a submanifold of M3.
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6. Differentiable maps, immersions, submersions and embeddings

Let Ω ⊂ Rn and Ω′ ⊂ Rn′

be open sets. Recall that a map f : Ω → Ω′ is of class Ck if all
partial derivatives of f up to order k exist and are continuous on Ω.

Definition 1.46. Let M be an n-manifold with an atlas (Uα, ϕα)α∈A of class Cr and M ′ be
an n′-manifold with an atlas (U ′

β, ϕ
′
β)β∈B of class Cr′ . A continuous map f : M → M ′ is called

differentiable of class Ck with k ≤ min(r, r′) if, for every x ∈M and every α ∈ A and β ∈ B with
x ∈ Uα and f(x) ∈ U ′

β, the composition ϕ′
β ◦ f ◦ ϕ−1

α is of class Ck in an open neighborhood of
ϕα(x).

Remark 1.47. The continuity of f is assumed with respect to the canonical topologies on M
and M ′ as defined in previous section. The continuity of f guarantees that f(y) ∈ U ′

β for y in a

neighborhood of x and hence the composition ϕ′
β ◦ f ◦ ϕ−1

α is defined in a neighborhood of ϕα(x)

(by Lemma 1.36, both ϕ−1
α and ϕ′

β are continuous on their domains of definition).

Remark 1.48. Given any x ∈ M , there always exist α and β as in Definition 1.46 because
M = ∪α∈AUα and M ′ = ∪β∈BU ′

β.

Remark 1.49. The reason to choose k ≤ min(r, r′) is to guarantee that the property of f to
be Ck does not change when composing with Cr maps on the right and Cr′ maps on the left. This
choice is also illustrated by the following statements.

Example 1.50. If S ⊂ M is a submanifold of a manifold M , the inclusion ı : S → M is
automatically differentiable (why?)

Definition 1.51. A Ck diffeomorphism between two manifolds M and M ′ of the same dimen-
sion is a bijection f : M →M ′ such that both f and f−1 are of class Ck. Two manifolds are said
to be Ck diffeomorphic if there exists a Ck diffeomorphism between them.

Being Ck diffeomorphic is the basic equivalence relation in Differential Topology.
We mention without proof the following fundamental result (see M. Hirsch, Differential Topol-

ogy, Chapter 2, Theorem 2.10 for a proof):

Theorem 1.52. For r ≥ 1, every Cr manifold is Cr diffeomorphic to a C∞ manifold. If for
1 ≤ r < s ≤ ∞, two Cs manifolds are Cr diffeomorphic, they are Cs diffeomorphic.

Definition 1.53. In the notation of Definition 1.46, a C1 map f is said to be an immersion
at a point x ∈M if ϕ′

β ◦ f ◦ ϕ−1
α is an immersion at ϕα(x), i.e. if the differential

dϕα(x)(ϕ
′
β ◦ f ◦ ϕ−1

α ) : R
n → R

n′

(6.1)

is injective. Similarly f is said to be a submersion at x ∈M if the differential in (6.1) is surjective.
Without point specified, f is an immersion or submersion if it so at every point. Finally, f is called
an embedding if it is an injective immersion and is a homeomorphism onto its image f(M).

An important property of being immersion or submersion at a point is that the latter properties
automatically hold in a neighborhood of that point.
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Proposition 1.54. If S ⊂ M is a submanifold, the inclusion ı : S → M is an embedding.
Vice versa, if S and M are two manifolds and ı : S →M is an embedding, then the image ı(S) is
a submanifold of M .

Exercise 1.55. Prove this proposition.

An important relation between immersions and embedding is the following statement which is
a consequence of the Inverse Function Theorem:

Proposition 1.56. If f : M →M ′ is an immersion at x ∈M , there exists an open neighbor-
hood U of x in M such that the restriction f |U is an embedding of U into M ′.

Example 1.57. Both regular arc and regular surface elements are examples of immersions.

Exercise 1.58. Prove that an injective immersion of a compact Hausdorff manifold is an
embedding. Can “compact” be dropped?

Exercise 1.59. Given two Ck manifolds M1 and M2, prove that the canonical projections
πi : M1 ×M2 →Mi, i = 1, 2, are Ck submersions.

Exercise 1.60. For each k = 0, 1, . . ., define ϕk : C → C and ψk : C∗ → C (C∗ := C \ {0}) by
ϕk(z) = ψk(z) := zk. For which k are ϕk and ψk immersions, submersions or embeddings?





CHAPTER 2

Basic results from Differential Topology

A topologist is one who doesn’t know the difference between a doughnut and a
coffee cup.

John Kelley, In N. Rose, Mathematical Maxims and Minims

1. Manifolds with countable bases

From now one a manifold M will be assumed to be Hausdorff and to have a countable basis:

Definition 2.1. A topological space T is said to have countable basis (or base) or to be
separable if there exists a countable family (Ui) of open sets which form a basis, that is, one (and
hence the other) of the following equivalent conditions holds:

(1) For any x ∈M and any neighborhood V of x, there is α with x ∈ Ui ⊂ V ;
(2) Any open set in T is a union of some of the Ui.

Exercise 2.2. Show that (1) and (2) are indeed equivalent.

Example 2.3. Rn has a countable basis. The basis can be taken among open balls with rational
radius and center.

Exercise 2.4. Show that any submanifold of Rn has also countable basis.

On a manifold a basis can be chosen with additional properties:

Lemma 2.5. A manifold M has a countable basis (Ui) whose elements are relatively compact
(i.e. their closures U i in M are compact).

Proof. Given a countable basis (Vα), the subfamily consisting of relatively compact Vα’s is
again a basis satisfying the conclusion. �

The following simple but important statement asserts the existence of countable compact
exhaustions:

Lemma 2.6. A manifold M can be exhausted by countably many compact subsets in the sense
that there exists a sequence (Km) of compact sets in M with Km ⊂ IntKm+1 for every n and
∪mKm = M .

Proof. Given a countable relatively compact basis (Vm)m∈N as in Lemma 2.5, we construct
the sequence (Km) inductively as follows. Set K1 := V 1. Assuming Km is constructed, since it is
compact, it is covered by finitely many Vj’s. We can choose j > m such that

Km ⊂ V1 ∪ · · · ∪ Vj
19
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and set Km+1 := V 1 ∪ · · · ∪ V j. The sequence Km, inductively constructed, satisfies the desired
properties. �

2. Partition of unity

Partition of unity is an important tool for glueing together functions (and other objects) defined
locally.

Definition 2.7. A Ck partition of unity on a Ck manifold M is a family (hi)i∈I of Ck functions
hi : M → R satisfying the following:

(1) 0 ≤ hi ≤ 1 for all i ∈ I;
(2) every point p ∈M has a neighborhood intersecting only finitely many sets

supp hi := x ∈ M : h(x) 6= 0; (2.1)

(3)
∑

i∈I hi ≡ 1 (locally this is always a finite sum in view of (2)).

In practice it is useful to have partitions of unity subordinate to a given covering of M in the
sense that each supp hi is contained in (at least one) single element of the covering:

Definition 2.8. A partition of unity (hi)i∈I is said to be subordinate to an open covering
(Wα) of M if for every i ∈ I there is an α with supp hi ⊂ Wα.

Construction of a partition of unity is based on the existence of the following “cut off functions”:

Lemma 2.9. For every n, there exists a C∞ function h : Rn → R with h ≥ 0 such that h(x) = 1
for ‖x‖ ≤ 1 and h(x) = 0 for ‖x‖ ≥ 2.

Proof. Let

f(r) :=

{
e−1/r2 r > 0

0 r ≤ 0.

Then f : R → R is C∞ and the function

g(r) :=
f(2 − r)

f(2 − r) + f(r − 1)

is C∞ with values in [0, 1] such that g(r) = 1 for r ≤ 1 and g(r) = 0 for r ≥ 2. It remains to set
h(x) := g(‖x‖). �

We can now prove the main existence theorem for a partition of unity.

Theorem 2.10. Let (Wα) be an open covering of a Ck manifold M . Then there exists a Ck

partition of unity subordinate to (Wα).

Proof. Let (Km)m∈N be a compact exhaustion of M as in Lemma 2.6. For each fixed m,
consider the open sets

(IntKm+2 \Km−1) ∩Wα.
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These sets (for fixed m and varying α) cover the compact set Cm := Km+1 \ IntKm. For every
x ∈ Cm, choose a chart (Ux, ϕx) with

x ∈ Ux ⊂ (IntKm+2 \Km−1) ∩Wα

for some α and such that ϕx(x) = 0 and ϕx(Ux) contains the ball B3(0) ⊂ Rn with center 0
and radius 3. These properties are easy to obtain starting from any ϕx and composing it with a
suitable affine transformation of R

n. Since Cm is compact, it is covered by finitely many open sets
of the form ϕ−1

x (B1(0)). By collecting these sets for all m, we obtain a family of charts (Uj, ϕj)
satisfying the following properties:

(1) for every Uj there exists α with Uj ⊂ Wα;
(2) (Uj) is locally finite, i.e. for every x ∈ M , there exists a neighborhood of x that meets

only finitely many Uj’s;
(3) ϕj(Vj) ⊃ B3(0) for all j;
(4) ∪jϕ−1

j (B1(0)) = M .

With h as in Lemma 2.9, we now define functions fj : M → R by

fj(y) =

{
h(ϕj(y)) y ∈ Uj
0 y /∈ Uj.

It follows from property (3) above and the properties of h that fj is a Ck function on M . Further-
more, fj = 1 on ϕ−1

j (B1(0)). Then it remains to set

g :=
∑

i

gi, hi := gi/g

to obtain a partition of unity (hi) as desired. Indeed, (2) implies that the sum is locally finite
and yields a well-defined Ck function. Furthermore, (4) implies that g > 0 everywhere on M and
hence hi is well-defined. Since supp hj ⊂ Uj, (hj) is subordinate to (Wα) in view of (1). �

A partition of unity is used to glue together locally defined functions. For instance, we obtain
the following simple application of Theorem 2.10:

Lemma 2.11. Let M be a Ck manifolds with p, q ∈M , p 6= q. Then there exists a Ck function
f : M → R with 0 ≤ f ≤ 1, {p} = f−1(0), {q} = f−1(1).

Proof. Let (Up, ϕp) and (Uq, ϕq) be disjoint charts at p and q respectively with ϕp(p) = 0,
ϕp(q) = 0 and ‖ϕp(x)‖ < 1, ‖ϕq(y)‖ < 1 for x ∈ Up, y ∈ Uq. Consider the covering of M by Up, Uq
and U0 := M \{p, q}. For each set in this covering we can solve the problem by taking fp := ‖ϕp‖2

on Up, fq := 1 − ‖ϕq‖2 on Uq and f0 := 1/2 on U0 respectively. By Theorem 2.10, there exists a
partition of unity (hi) subordinate to the covering {Up, Uq, U0}. By summing hi’s together we may
assume that i = p, q, 0 and supp hi ⊂ Ui. Then

f := hpfp + hqfq + h0f0

is a Ck function on M satisfying the conclusion of the lemma. �
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3. Regular and critical points and Sard’s theorem

We shall assume all manifolds to be Hausdorff and to have a countable topology basis.
In view of Property (iv) in Theorem 1.41, points where maps are submersive are of particular

interest.

Definition 2.12. Let M and M ′ be Ck manifolds (k ≥ 1) and f : M → M ′ a Ck map. A
point x ∈ M is said to be regular for f if f is a submersion at x, and critical otherwise. A point
y ∈M ′ is a regular value for f is every point x ∈ f−1(y) is regular, and a critical value otherwise
(even if y /∈ f(M)).

In case dimM ′ > dimM it is easy to see that all points of M are critical and all points of
f(M) are critical values.

The following regular value theorem is often used to construct manifolds:

Theorem 2.13. Let f : M → M ′ be a Ck map between two Ck manifolds. If y ∈ M ′ is a
regular value, then f−1(y) is a Ck submanifold of M .

The proof follows from Theorem 1.41.

Exercise 2.14. Give an example of a C∞ map f : R → R with infinitely many critical values.

A profound result known as Sard’s theorem says that the set of critical values cannot be “too
large”. To measure the “largeness” we have to introduce sets of measure zero.

Definition 2.15. An n-cube C ⊂ Rn of edge λ > 0 is any set C obtained from [0, λ]n by
euclidean motion. The measure (volume) of C is µ(C) = λn. A subset S ⊂ Rn is of measure zero
if for every ε > 0, it can be covered by a countable union of n-cubes, the sum of whose measures
is less than ε. A subset S in a manifold is said to be of measure zero if for every chart (U, ϕ) on
M the set ϕ(S ∩ U) ⊂ Rn is of measure zero.

Exercise 2.16. Show that a countable set is of measure zero.

Note that we have not defined the “measure” of a subset of M but only a certain kind of
subsets that are of measure zero. A countable union of sets of measure zero is again a set of
measure zero (why?). On the other hand, it follows from elementary Measure Theory that a cube
is not of measure zero. The latter fact implies the following important property used in many
applications:

Lemma 2.17. The complement of a set of measure zero is dense.

The property to be of measure zero is a rather flexible notion invariant under diffeomorphisms
and even under general C1 maps:

Lemma 2.18. Let U ⊂ Rn be an open set and f : U → Rn a C1 map. If X ⊂ U is of measure
zero, so is f(X).

Proof. The set U can be covered by countably many balls B ⊂ U such that the norm ‖dxf‖
is uniformly bounded on B by a constant C = C(B). Then

|f(x) − f(y)| ≤ C|x− y|
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for all x, y ∈ B. It follows that if C ⊂ B is an n-cube of edge λ, then f(C) is contained in an
n-cube C ′ of edge less than

√
nCλ. Hence µ(C ′) ≤ (

√
nC)nµ(C). The latter bound implies that

f(X ∩ B) is of measure zero. Then f(X) is also of measure zero as a countable union of sets of
measure zero. �

We now state the following important theorem:

Theorem 2.19 (Sard’s Theorem). The set of critical values of a Ck map f : M →M ′ between
Ck manifolds (k ≥ 1) is of measure zero provided

k > max(0, dimM − dimM ′). (3.1)

In particular, the set of critical values of a C∞ map between C∞ manifolds is always of measure
zero.

With Lemma 2.17 we obtain the following important consequence:

Corollary 2.20. Under the assumptions of Theorem 2.19 the set of regular values of f is
dense in M ′.

Example 2.21. A constant map has all points as critical but only one critical value.

In case of a map f : M →M ′ with dimM ′ > dimM the set of critical points is exactly f(M)
and hence Sard’s Theorem asserts that f(M) is of measure zero. This assertion is relatively easy
to prove.

Exercise 2.22. Give a proof of this assertion. Hint. Use Lemma 2.18.

We prove Sard’s theorem here only in the equidimensional case dimM = dimM ′. The proof
for dimM > dimM ′ is more difficult and requires consideration of higher order partial derivatives.

Proof of Sard’s theorem for dimM = dimM ′. Since M and M ′ have countable bases
consisting of charts, the general case is reduced to that where M and M ′ are relatively compact
open sets in Rn and f is C1 map from a neighborhood of K := M ⊂ Rn into Rn. We can further
assume that K is contained in the cube [0, 1]n.

If a point a ∈ M is critical, the image daf(Rn) is a lower-dimensional plane which is of
measure zero in Rn. The idea of the proof is to compare the actual map f with its first order
Taylor expansion f(a) + daf(x− a) by estimating the difference f(x) − f(a) − daf(x− a).

Since the first order partial derivatives of f are continuous on the compact set K, we have
‖daf‖ ≤ C for some C > 0 and all a ∈ K. Fix ε > 0. Since the first order partial derivatives of
f are also uniformly continuous on K, there exists δ > 0 such that ‖daf − dbf‖ ≤ ε whenever
‖a− b‖ ≤ δ for a, b ∈ K. We now estimate the difference mentioned above for ‖x− a‖ ≤ δ:

‖f(x) − f(a) − daf(x− a)‖ =

∥∥∥∥
∫ 1

0

d

dt
f(a+ t(x− a))dt− daf(x− a)

∥∥∥∥

=

∥∥∥∥
∫ 1

0

(da+t(x−a)f − daf)(x− a)dt

∥∥∥∥ ≤ sup
0≤t≤1

‖da+t(x−a)f − daf‖ · ‖x− a‖ ≤ εδ. (3.2)
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Let now Cδ be an n-cube of edge δ/
√
n containing a critical point a. Then the affine map ha(x) :=

f(a) + daf(x− a) sends Cδ into an (n − 1)-cube of edge 2Cδ inside a hyperplane H ⊂ Rn (with
respect to some euclidean coordinates in H), where C > 0 is the bound for ‖df‖ chosen above.
Now (3.2) implies that f(Cδ) is contained in a parallelepiped of measure 2Cεδn which can be
covered by finitely many cubes whose sum of measures does not exceed 4Cεδn.

Without loss of generality, δ = 1/m for some integer m. Then K ⊂ [0, 1]n can be covered by
mn disjoint n-cubes of edge δ. Some of these cubes contain critical points. Above we have seen
that the image of each of those cubes is covered by cubes of total measure not greater than 4Cεδn.
Summing over all cubes we see that the total set of critical values can be covered by cubes whose
total measure does not exceed 4Cε. It remains to observe that ε can be arbitrarily small. �

As an application of Sard’s theorem we show that there is no retraction from the closed unit
ball in Rn onto the unit sphere. Recall that a retraction from a topological space X onto a subspace
Y is any continuous map r : X → Y such that the restriction of r to X is the identity.

Theorem 2.23. There is no retraction from the ball

Bn := {‖x‖ ≤ 1} ⊂ R
n

onto the sphere Sn−1 := {‖x‖ = 1}.
Proof. Suppose there is a retraction r : Bn → Sn−1. We first reduce the general case to the

case when r extends to a C∞ map in a neighborhood of Bn. For this, we find a new retraction
g : Bn → Sn−1 which is C∞ in a neighborhood of Sn−1 by extending r continuously to a closed
ball of radius 1 + ε as constant in radial directions and scaling the ball with coefficient (1 + ε)−1.
Then we approximate g by a C∞ map into Sn−1 which agrees with g on a neighborhood of Sn−1.

Now, by Sard’s theorem, g defined in a neighborhood of Bn, has a regular value y ∈ Sn−1 and
therefore the preimage V := g−1(y) is an one-dimensional closed submanifold in a neighborhood
of Bn. We have y ∈ V and the connected component of y in V (which is homeomorphic either to
a circle or to an interval) intersects the interior of Bn and hence must contain another point of
Sn−1. However the retraction condition implies Sn−1 ∩ V = {y} which is a contradiction. �

Theorem 2.23 implies Brouwer’s fixed-point theorem:

Theorem 2.24 (Brouwer’s fixed-point theorem). Any continuous map f : Bn → Bn has a
fixed point.

Indeed, if there is a continuous map as in Theorem 2.24 without fixed points, then one can
obtain a retraction r as in Theorem 2.23 by letting r(x) to be the intersection of Sn−1 with the
ray passing starting from f(x) and passing through x.
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4. Whitney embedding theorem

Theorem 2.25 (Whitney embedding theorem). Any n-manifold M of class Ck (k ≥ 1) can
be Ck embedded into R2n+1.

We prove Theorem 2.25 in the easy case when M is compact and of class at least C2. The
proof is split into two steps. First we construct an embedding into Rm for some possibly large m.
Then we project the embedded copy of M to a smaller linear subspace of dimension (2n + 1) in
such a way that the projection is still an embedding.

Proposition 2.26. Let M be a compact manifold. Then there exists an integer m and an
embedding of M into Rm.

Proof. We use the proof of Theorem 2.10 on the existence of a partition of unity. There it
was constructed a covering of M by coordinate charts (Ui, ϕi) and smooth functions fi : M → R,
0 ≤ fi ≤ 1, with suppfi ⊂ Ui such that the interiors of the preimages f−1

i (1) ⊂ Ui for all i still
cover M . Since M is compact we may assume that the covering is finite, i.e. i = 1, . . . , l. The the
map

g(x) := (f1(x)ϕ1(x), . . . , fl(x)ϕl(x), f1, . . . , fl) ∈ R
n × · · · × R

n × R × · · · × R = R
nl+l,

where each component fi(x)ϕi(x) is extended by 0 for x /∈ Ui, defines an embedding of M into
Rnl+l. �

In view of Proposition 2.26 we may assume that M is a submanifold of R
m.

Proposition 2.27. Let M ⊂ Rm be a compact submanifold of dimension n of class at least
C2 such that m ≥ 2n+ 1. Then, after a suitable linear change of coordinates in Rm, the standard
projection from M to the subspace R2n+1 ⊂ Rm is an embedding.

Proof. We may assume that m > 2n + 1. For every unit vector v ∈ Sm−1 ⊂ Rm, denote by
fv the orthogonal projection along v from Rm onto the orthogonal complement of v (isomorphic
to Rm−1). We want to choose v such that fv|M is an embedding.

The injectivity of fv|M means that v is not parallel to any secant of M , i.e.

v 6= x− y

‖x− y‖ , ∀x 6= y ∈M, (4.1)

or, equivalently, v is not in the image of the map c : (M×M)\∆ → Sm−1, (x, y) 7→ (x−y)/‖x−y‖,
where ∆ := {(x, x) : x ∈ M} is the diagonal. Since dim(M ×M) = 2n < m − 1, there is a dense
set of points v not in the image of c (e.g. by the easy case of Sard’s theorem).

The property of fv|M to be an immersion means that v is not tangent to M at any point.
Again, since v is a unit vector, the latter property means that v is not in the in the image of the
map

τ : S → Sm−1, S := {(x, v) ∈M × R
m : v ∈ TxM, ‖v‖ = 1}, (4.2)

where TxM denotes the space of all vectors tangent to M at x. Then S is a (2n− 1)-dimensional
submanifold of M × Rm. Since 2n − 1 < m − 1, it follows from the easy case of Sard that the
complement of the image τ(S) in Sm−1 is dense. Moreover, since S is compact, this complement
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is open. Hence we can choose v in both complements of τ and c guaranteeing that fv|M is an
injective immersion. Since M is compact, fv|M is in fact an embedding as desired. �

Theorem 2.25 in case M is compact and k ≥ 2 follows now from Propositions 2.26 and 2.27.



CHAPTER 3

Tangent spaces and tensor calculus

1. Tangent spaces

We start by defining tangent vectors to submanifolds in Rn.

Definition 3.1. A vector X ∈ Rn is said to be tangent to a submanifold S ⊂ Rn at a point
p ∈ S if there exists ε > 0 and a C1 arc c : (−ε, ε) → S with c(0) = p and c′(0) = X.

Proposition 3.2. The set TpS of all tangent vectors to an m-dimensional submanifold S ⊂ Rn

at a fixed point p ∈ S is a vector subspace of Rn. Given a local parametrization fp : Ωp ⊂ Rm → S
of S, one has TpS = daf(Rm) with a := f−1

p (p).

Proof. Given fp : Ωp → Rn as above, C1 arcs c : (−ε, ε) → S with c(0) = p are in one-
to-one correspondence with C1 maps c̃ : (−ε, ε) → Ωp with c̃(0) = a (as a consequence of the
Inverse Function Theorem). The correspondence is defined by composing with fp: c = fp ◦ c̃. Then
c′(0) = dafp(c̃

′(0)) completes the proof since dafp is a linear map. �

The various characterizations of submanifolds of Rn (Theorem 1.41) lead to equivalent char-
acterizations of tangent spaces:

Theorem 3.3. Let S ⊂ Rn be an m-dimensional Ck submanifold and let gi : V → R, i =
1, . . . , n − m, be local defining functions of S in a neighborhood V of p with linear independent
gradients as in Theorem 1.41 (iii). Then X is tangent to S at p if and only if dpgi(X) = 0 for all
i.

We now give three equivalent definitions of a tangent vector to an abstract Ck manifold M
(1 ≤ k ≤ ∞) at a point p ∈M .

Definition 3.4 (Geometric Definition of tangent vectors as classes of equivalent
curves). A tangent vector at p is an equivalence class of Ck arcs c : (−ε, ε) ⊂ R → M , ε > 0,
with c(0) = p where two arcs

c1 : (−ε1, ε1) →M and c2 : (−ε2, ε2) →M

are called equivalent if (ϕ ◦ c1)′(0) = (ϕ ◦ c2)′(0) for some (and hence for any) chart (U, ϕ) on M
with U 3 p. The tangent space TpM of M at p is the set of all tangent vectors at p.

Briefly: Tangent vectors are tangents to arcs lying on the manifold. “Unfortunately” there is
no privileged representative arc for a given tangent vector.

Example 3.5. If U ⊂ Rn is an open set, a curve c : (−ε, ε) ⊂ R → U with c(0) = p is
equivalent to the affine curve λ 7→ p+ c′(0)λ. Then c 7→ c′(0) defines a one-to-one correspondence

27
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between the equivalence classes of curves and the space Rn. Hence the tangent space TpU can be
identified with Rn.

Given a tangent vectorX ∈ TpM and a Ck function f : U → R defined in an open neighborhood
U of p in M , we can define the directional derivative of f in the direction of X by

DXf = Xf := (f ◦ c)′(0), (1.1)

where c is any curve representing X. It is easy to see that the right-hand side of (1.1) does not
depend on the particular representative c of X. Furthermore, DXf does not change if f is replaced
by its restriction to a smaller neighborhood of p. In other words, DXf = DXg if f and g coincide
in a neighborhood of p. This motivates the following

Definition 3.6. A germ at p of a Ck function on M is an equivalence class of Ck functions
defined in open neighborhoods of p such that two such functions f1 : U1 → R and f2 : U2 → R with
p ∈ U1∩U2 are equivalent if their restrictions f1|U and f2|U coincide for some smaller neighborhood
U of p, U ⊂ U1 ∩ U2.

Denote by Fp(M) the set of all germs of Ck functions at p. Unlike the problem to add or
multiply functions with different domains of definitions, there is no problem to add or multiply
germs of functions. In particular, Fp(M) has a natural structure of an R-algebra. We now have
the following equivalent definition of tangent vectors in the C∞ case.

Definition 3.7 (Algebraic Definition of tangent vectors as derivations). A tangent
vector X on a C∞ manifold M at a point p ∈ M is a derivation on the set Fp(M), i.e a map
X : Fp(M) → R with following properties:

(1) linearity: X(af + bg) = aXf + bXg for a, b ∈ R, f, g ∈ Fp;
(2) Leibnitz rule: X(fg) = (Xf)g + f(Xg) for f, g ∈ Fp.

Briefly: tangent vectors are derivations acting on germs of scalar functions.
In view of formula (1.1), every tangent vector X in the sense of Definition 3.4 defines a

tangent vector X = DX in the sense of Definition 3.7. Vice versa, we show that any derivation as
in Definition 3.7 arises in this way in the C∞ case. The proof is based on the following lemma:

Lemma 3.8. Let Bn ⊂ Rn be the open unit ball and f : Bn → R a C∞ function. Then there
exist C∞ functions f1, . . . , fn : Bn → R such that

f(x) = f(0) + x1f1(x) + · · ·+ xnfn(x). (1.2)

Proof. Since

f(x) − f(0) =

∫ 1

0

d

dt
f(tx1, . . . , txn) dt =

n∑

i=1

xi

∫ 1

0

df

dxi
(tx1, . . . , txn) dt,

it remains to set fi(x) :=
∫ 1

0
df
dxi

(tx1, . . . , txn) dt, i = 1, . . . , n. �

Note that if f is Ck, fi is only Ck−1, hence we may not find functions in the same class unless
k = ∞.
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Given a derivation X in the sense of Definition 3.7 and a local system of coordinates (or chart)
(x1, . . . , xn) on M at p, vanishing at p, we obtain a tangent vector in the sense of Defintion 3.4 as
follows. Denote by ξi ∈ R the value of X on the germ defined by the coordinate function xi. Then
Xf = (f ◦ c)′(0) with c(t) := (ξ1, . . . , ξn)t. Indeed, X vanished on constant functions (as follows
from the Leibnitz rule) and hence, in view of formula (1.2),

Xf =
∑

i

ξifi(0) =
∑

i

ξi
df

dxi
(0) = (f ◦ c)′(0).

A basis of the tangent space to M at p is given in local coordinates (x1, . . . , xn) by

∂

∂x1
(p), . . . ,

∂

∂xn
(p),

where ∂/∂xi is the derivation given by f 7→ ∂f/∂xi. Other notation is also used frequently:
(

∂

∂xi

)

p

or
∂

∂xi

∣∣∣
p

Finally we have the following analytic (also called “physical”) definition:

Definition 3.9 (Analytic Definition of tangent vectors via coordinates and their
transformation rules). A tangent vector ξ at the point p is an association to every coordinate

chart (x1, . . . , xn) at p an n-tuple (ξ1, . . . , ξn) of real numbers is such a way that, if (ξ̃1, . . . , ξ̃n) is
associated with another coordinate system (x̃1, . . . , x̃n), then it satisfies the transformation rule

ξ̃i =
∂x̃i

∂xj
(p)ξj, (1.3)

where there is a summation over j (Einstein’s convention).

Briefly: tangent vectors are represented by elements of Rn for each coordinate chart transform-
ing via differentials of a coordinate change at the reference point.

Given a tangent vector represented by a curve c as in Definition 3.4, it is easy to define an
association in the sense of Definition 3.9 by taking (ξ1, . . . , ξn) to be the derivative of c at t = 0
computed with respect to the given coordinate chart. Vice versa, given (ξ1, . . . , ξn), a representing
curve c can be chosen t 7→ (ξ1, . . . , ξn)t. A direct equivalence with Definition 3.7 is also easy to
obtain by letting ξ1, . . . , ξn to be the values of a given derivation on the (germs of) coordinate
functions x1, . . . , xn respectively. In other words, we have

ξ = ξi
∂

∂xi
(p). (1.4)

Definition 3.10. Let f : M → M ′ be a Ck map. The differential of f or tangent map to f
at a point p ∈ M is the map dpf : TxM → Tf(x)M

′ (very often denoted by dfp or (df)p) that
sends an equivalence class defined by a curve c : (−ε, ε) → M to the equivalence class defined by
(f ◦ c) : (−ε, ε) →M ′.
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If (x1, . . . , xn) and (y1, . . . , ym) are local coordinates on M and M ′ at p and p′ := f(p) respec-
tively, we write f = (f 1, . . . , fm) and have the formula

dpf

(
∂

∂xj
(p)

)
=
∂f i

∂xj
(p)

∂

∂yi
(1.5)
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2. Vector fields and Lie brackets

Definition 3.11. The tangent bundle TM of an n-manifold M is the disjoint union of all
tangent spaces TxM for x ∈ M with the natural structure of a 2n-manifold. A vector field X on
a manifold M is a correspondence that associates to each point p ∈ M a vector X(p) ∈ TpM , i.e.
a mapping X : M → TM . The field is differentiable if this mapping is differentiable.

Denote by C∞(M) the algebra of C∞ functions on M . Then, in view of the algebraic definition
of a tangent space in the previous section, a vector field X can be identified with a derivation of
C∞(M) (or an operator acting there), i.e. a map

f ∈ C∞(M) 7→ Xf ∈ C∞(M)

satisfying both linearity and the Leibnitz rule as in Defintion 3.7.
It makes sense to iterate the above operators. If X and Y are two vector fields, X ◦Y and Y ◦X

are (in general different) operators involving higher order derivatives. However the difference of
them turns out to be a new vector field called their Lie bracket [X, Y ]:

X, Y ]f = X(Y f) − Y (Xf). (2.1)

Lemma 3.12. There exists a unique vector field Z such that, for all f ∈ C∞(M), Zf =
X(Y f) − Y (Xf).

Proof. Write X =
∑

i a
i ∂
∂xi and Y =

∑
j b

j ∂
∂xj , where ai and bi are smooth functions on M .

Then for all f ,

X(Y f) − Y (Xf) = X(
∑

j

bj
∂f

∂xj
) − Y (

∑

i

ai
∂f

∂xi
) =

∑

ij

(ai
∂bj

∂xi
− bi

∂aj

∂xi
)
∂f

∂xj
,

where we have cancellation for terms involving second order derivatives of f . Then the formula
Z =

∑
ij(a

i ∂bj

∂xi − bi ∂a
j

∂xi ) shows both existence and uniqueness. �

The basic properties of the Lie brackets are bilinearity, anticommutativity and the Jacobi
identity:

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

Definition 3.13. A trajectory or integral curve of a vector field X on a manifold M is a curve
(arc) γ from an open interval (a, b) ⊂ R into M safisfying the equation

dγ

dt
(t0) = X(γ(t0))

for every t0 ∈ (a, b).

It follows from the local theory of Ordinary Differential Equations that a vector field (at least
of class C1) locally has a unique integral curve γp defined over an interval (a, b) containing 0 and
passing through any given point p ∈M at t = 0. The uniqueness means that any two such curves
coincide on the intersection of their intervals of definition. There is a unique choice of the maximal
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possible intervale. Recall that the manifold M is assumed Hausdorff which is important for the
mentioned uniqueness.

It is a further consequence of the local theory of Ordinary Differential Equations that the
integral curve γp also smoothly depends on p, i.e. the map γ(t, p) := γp(t) is a smooth function
in (t, p) ∈ R ×M . The smoothness of γ is the same as that of the vector field. If for each p, the
interval for γp is chosen to be the maximal one, the domain of definition of γ becomes an open
subset of R ×M . The map γ is called the local flow of the vector field X.

Definition 3.14. A vector field on M is called complete if its flow is defined on the whole
R ×M or, equivalently, for every p ∈M , the integral curve γp is defined on R.

Proposition 3.15. If M is compact, every vector field is complete.

If X is a complete vector field, by fixing t ∈ R we obtain a self-diffeomorphism γ(t, ·) : M →M
because its inverse is γ(−t, ·). In general we have

γ(t1, γ(t2, p)) = γ(t1 + t2, p))

justifying the name one-parameter group of diffeomorphisms.
In general, the local flow γ(t, x) of a vector field X can be used to calculate Xf for a smooth

function f (exercise):

Xf(·) =
d

dt
f(γ(t, ·)). (2.2)

Let ϕ(s, y) be the (local) flow of another vector field Y . Iterating (2.2) we obtain

[X, Y ]f(·) = X(Y f)(·) − Y (Xf)(·) =
d2

dt ds

∣∣∣
t=s=0

(
f(γ(t, ϕ(s, ·)))− f(ϕ(s, γ(t, ·)))

)
, (2.3)

from where we see that, if the flows of X and Y commute (i.e. γ(t, ϕ(s, ·)) ≡ ϕ(s, γ(t, ·))), then
[X, Y ] ≡ 0. The converse is also true (here without proof):

Theorem 3.16. Given vector fields X and Y on a manifold M , their flows commute if and
only if [X, Y ] ≡ 0.
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3. Frobenius Theorem

The problem of finding integral curves for single vector fields naturally extends to the more
general problem of finding integral surfaces for systems of vector fields.

Definition 3.17. Given a system of vector fields X1, . . . , Xd, on M , linearly independent at
every point, an integral submanifold S is a submanifold of M such that for every p ∈ S, the tangent
subspace TpS ⊂ TpM is spanned by X1(p), . . . , Xd(p).

In contrast to the integral curves of single vector fields, an integral submanifold may not exist
in general. A necessary condition comes from the following property:

Lemma 3.18. If S ⊂M is a submanifold and two vector fields X and Y on M are tangent to
S, then their Lie bracket is also tangent to S.

Here X is called tangent to S if X(p) ∈ TpS for all p ∈ S.

Proof. By definition, Xf(p) = d
dt
|t=0f(c(t)), where c : (−ε, ε) → M is a curve representing

X(p) ∈ TpM . If p ∈ S and X is tangent to S, the curve c can be chosen in S. Then

(Xf)|S = (X|S)(f |S), (3.1)

i.e. differentiating f along X and restricting to S yields the same result as differentiating the
restriction of f along the restriction of X. Then the Lie bracket (2.1) can be computed separately
for X, Y on M and for their restrictions to S. It follows from (3.1) that both brackets are equal
when restricted to S and hence are tangent to S. �

Hence, if S is an integral submanifold of the system X1, . . . , Xd, and p ∈ S, all Lie brackets
[Xi, Xj](p) must be contained in the span of X1(p), . . . , Xd(p). This condition turns out to be also
sufficient if assumed at every point:

Theorem 3.19 (Frobenius). Let X1, . . . , Xd, be vector fields on a manifold M , linearly inde-
pendent at every point. A necessary and sufficient condition for the existence, for every p ∈ M ,
of an integral submanifold S ⊂ M passing through p is that [Xi, Xj](p) belongs to the span of
X1(p), . . . , Xd(p) for every p ∈M .
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4. Lie groups and Lie algebras

Lie groups are important example of differentiable manifolds.

Definition 3.20. A Lie group is a set G which is both a Ck manifold and a group such that
the maps

G×G→ G, (x, y) 7→ xy, G→ G, x 7→ x−1

are of class Ck.

Exercise 3.21. Show that for every g ∈ G, the left and right translations

Lg, Rg : G→ G, Lg(h) := gh, Rg(h) := hg

are Ck diffeomorphisms.

Remark 3.22. We mention without proof that a Lie group of class C1 has an unique C∞

(even real-analytic) differentiable structure compatible with the group operation in the sense of
Definition 3.20. In particular, we may always assume a Lie group to be C∞.

Examples 3.23. (1) Any finite-dimensional real vector space is a Lie group with respect to
addition. (2) For K = R (real numbers), C (complex numbers) or H (quaternions), set K

∗ :=
K \ {0}. Then K∗ is a Lie group with respect to multiplication.

The most important Lie groups, called classical Lie groups, are GL(n,R), GL(n,C), O(n),
U(n) and their corresponding subgroups SL(n,R), SL(n,C), SO(n), SU(n), defined as follows.
We write Rn×n (resp. Cn×n) for the sets of all n × n matrices with real (resp. complex) entries.
For a matrix A ∈ Cn×n, denote by At the transpose of A and by Ā its conjugate. Then

GL(n,R) := {A ∈ R
n×n : detA 6= 0},

GL(n,C) := {A ∈ C
n×n : detA 6= 0},

O(n) := {A ∈ R
n×n : AAt = id},

U(n) := {A ∈ C
n×n : AĀt = id},

SL(n,R) := {A ∈ R
n×n : detA = 1},

SL(n,C) := {A ∈ C
n×n : detA = 1},

SO(n) := O(n) ∩ SL(n,R),

SU(n) := U(n) ∩ SL(n,C).

The groups GL(n,R) and GL(n,C) are open (and dense) subsets of the matrix spaces Rn×n

and Cn×n respectively. The other groups are submanifolds. To see this it is sufficient to check the
submanifold property near the identity matrix id and use left (or right) multiplications to check
it near other points.

For every Lie group G there exists unique associated finite-dimensional Lie algebra g that as a
vector space can be identified with the tangent space TeG, where e ∈ G is the unit of the group.
In order to define an algebra operation (called the commutator) on g, identify a vector ξ ∈ TeG
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with the unique left-invariant vector field X on G with X(e) = ξ. A vector field X on G is called
left-invariant if

daLg(X(a)) = X(ga).

for all a, g ∈ G, where Lg(x) := gx is the left translation on G. The the usual Lie bracket induces
a Lie algebra structure on the (finite-dimensional) space of all left-invariant vector fields. In the
light of the above identification of g with left-invariant vector fields, this construction yields a Lie
algebra structure on g which is the Lie algebra structure induced by the group operation of G.
(Right-invariant vector fields would yield an isomorphic Lie algebra).

The Lie algebras corresponding to the above classical Lie groups are the classical matrix Lie
algebras gl(n,R), gl(n,C), o(n), u(n) and their corresponding subalgebras sl(n,R), sl(n,C), so(n),
su(n):

gl(n,R) := R
n×n,

gl(n,C) := C
n×n,

o(n) := {a ∈ R
n×n : a+ at = 0},

u(n) := {a ∈ C
n×n : a+ āt = 0},

sl(n,R) := {a ∈ R
n×n : tr a = 0},

sl(n,C) := {a ∈ C
n×n : tr a = 0},

so(n) := o(n) ∩ sl(n,R),

su(n) := u(n) ∩ sl(n,C),

where “tr” stands for the trace of the matrix, i.e. the sum of all diagonal entries.

For every matrix group, its Lie algebra consists of matrices tangent to the group at the identity
matrix and their commutator is given by the formula [a, b] = ab− ba.
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5. Tensors and differential forms

A tensor Θ of type (m,n) on a manifold M is a correspondence that associates to each point
p ∈ M a multilinear map

Θp : TpM × · · · × TpM × T ∗
pM × · · · × T ∗

pM → R,

where the tangent space TpM appears m times and the cotangent space T ∗
pM (the dual of the

tangent) appears n times. For instance, a vector field X can be seen as a collection of linear maps
Xp : TpM → R.

An (exterior) m-form is a tensor ω of type (m, 0) which is skew symmetric in its arguments,
i.e.

ωp(ξσ(1), . . . , ξσ(m)) = (−1)σωp(ξ1, . . . , ξm)

for any tangent vectors ξ1, . . . , ξm ∈ TpM and any permutation σ ∈ Sm. In any local coordinates
(x1, . . . , xm) it can be expressed as

ω = ωi1,...,imdx
i1 ∧ · · · ∧ dxim = ωIdx

I ,

where the summation is taken over all sets of indices 1 ≤ i1 < · · · < im ≤ n and I = (i1, . . . , im),
ωI = ωi1,...,im , dxI = dxi1 ∧ · · · ∧ dxim . Here ωI is a function of the reference point and ω is said to
be smooth (or differentiable) if each ωI is smooth. The latter notion is independent of the choice
of coordinates.

The wedge product of an m-form ω and an m′-form ω′ is an (m+m′)-form which is defined in
coordinates by

(ωIdx
I) ∧ (ω′

I′dx
I′) = ωIω

′
I′dx

I ∧ dxI′ ,
i.e. the coefficients are multiplied as functions and the wedge products of differentials are written
together with a wedge inbetween. A coordinate-free definition can be also given:

(ω ∧ ω′)p(ξ1, . . . , ξm+m′) =
∑

σ∈Sm+m′

(−1)σ

m!m′!
ωp(ξσ(1), . . . , ξσ(m))ω

′
p(ξσ(m+1), . . . , ξσ(m+m′)), p ∈M.

Another important operation with forms is their pullback. Let ω be an m-form on M and
ϕ : N → M be any differentiable map from another manifold N to M . Then the pullback ϕ∗ω is
an m-form on N defined by

(ϕ∗ω)p(ξ1, . . . , ξm) = ωϕ(p)(ϕ∗ξ1, . . . , ϕ∗ξm), p ∈ N,

for ξ1, . . . , ξm ∈ TpN , where ϕ∗ξ = dpϕ(ξ) ∈ Tϕ(p)M is the pushforward of ξ ∈ TpN .
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6. Orientation and integration of differential forms

Definition 3.24. A manifoldM is orientable if it has an atlas (Uα, ϕα) such that, if (x1, . . . , xn)
and (x1′ , . . . , xn

′

) are any coordinate systems defined by charts in this atlas, then the Jacobian

determinant det( ∂x
i

∂xi′
) is positive. An orientation of M is a choice of such an atlas. Any other chart

that can be added to this atlas without changing the above property is called positively oriented
with respect to the given orientation. If a manifold is orientable, it can be oriented in precisely
two different ways.

Remark 3.25. It can be shown that a compact surface (2-dimensional submanifold) in R3 is
always orientable.

The integral of an n-form ω on an orientable n-manifold M can be defined in three steps.
In the first step assume that M = U ⊂ Rn is an open set and the support of ω is compact.

Writing ω = f(x)dx1 ∧ · · · ∧ dxn, we set∫

U

ω =

∫

U

f(x) dx1 · · ·dxn,

where the right-hand side is the usual multiple integral in Rn.
In the second step assume that ω has compact support in an open set U ⊂ M where a chart

ϕ : U → Ω ⊂ Rn is defined and positively oriented. Then we set∫

M

ω =

∫

U

ω =

∫

Ω

(ϕ−1)∗ω,

where the right-hand side is an integral on an open set in R
n and is hence defined in the first

step. An important part of the justification of this definition involves checking that the integral is
in fact independent of the choice of the coordinate system which is based on the transformation
formula ∫

ψ(U)

f(x) dx1 · · ·dxn =

∫

U

f(x(u)) det

(
∂xi

∂uj

)
du1 · · ·dun

which holds for any orientation preserving diffeomorphism ψ : U → ψ(U) between open sets in
Rn.

Finally, in the third step, consider a covering of M by positively oriented coordinate charts
(Uα, ϕα) and choose a partition of unity (fi)i∈I subordinate to the covering (Uα) (see Section 2 of
Chapter 2). Then, for any i, the product ωi = fiω is a new n-form on M with compact support
in some Uα and hence its integral over M is defined. We can now set∫

M

ω =
∑

i

∫

M

ωi

assuming the sum is defined, i.e. it is either finite or an absolutely convergent series. The absolute
convergence is important because there is no distinguished order for the values of i ∈ I.
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7. The exterior derivative and Stokes Theorem

The exterior derivative of anm-form onM is an (m+1)-form onM defined in local cooordinates
by

dω = d(ωIdx
I) = (dωI) ∧ dxI ,

where dωI is the differential of the function ωI (seen as a 1-form).
A more geometric definition can be obtained from the formula

dω(ξ1, . . . , ξm+1) = lim
h→0

1

hm+1

∫

∂P (hξ1,...,hξm+1)

ω,

where ∂P (hξ1, . . . , hξm+1) is the oriented boundary of the parallelorgram spanned by the vec-
tors hξ1, . . . , hξm+1 (with respect to some local coordinates). The parallelogram is obtained (an
oriented) via the parametrization

(t1, . . . , tm+1) ∈ [0, 1]m+1 7→ t1hξ1 + · · ·+ tm+1hξm+1 ∈ P (hξ1, . . . , hξm+1).

Stokes theorem relates the integral of ω over the boundary of a manifold to the integral of
dω over the manifold itself. The standard setting here is that of a manifold with boundary. The
definition of a manifold M with boundary ∂M is obtained from the definition of a manifold by
allowing charts ϕα : Uα → Rn to be homeomorphisms onto open sets in the closed half-space

Hn = {(x1, . . . , xn) ∈ R
n : xn ≥ 0}.

The boundary ∂M consists precisely of the points of Uα (for some α) that correspond (under ϕα)
to boundary points of Hn.

The following is easy to see (an exercise):

Lemma 3.26. Given an atlas (Uα, ϕα) as above, the collection (Vα, ϕα|Vα
), where Vα :=

ϕ−1
α ({xn = 0}), defines an (n− 1)-manifold structure on the boundary ∂M . If (Uα, ϕα) defines an

orientation on M , the corresponding atlas (Vα, ϕα|Vα
) also defines an orientation on ∂M that is

said to be induced by the orientation of M .

Theorem 3.27 (Stokes theorem). Let M be an n-manifold with boundary ∂M and ω be a
differentiable (n− 1)-form with compact support on M . Then∫

∂M

ω =

∫

M

dω.



CHAPTER 4

Riemannian geometry

1. Riemannian metric on a manifold

Definition 4.1. A (smooth) Riemannian metric on a manifold M is an association to every
p ∈ M a symmetric positive definite bilinear form gp : TpM × TpM → R (hence an inner product)
such that in every local coordinates (x1, . . . , xn), gp is given by

gp(a
i ∂

∂xi
, bj

∂

∂xj
) = gij(p)a

ibj (1.1)

with smooth coefficients gij(p). The pair (M, g) is called Riemannian manifold.

Formula (1.1) is often rewritten as g = gijdx
i ⊗ dxj. (Note that g is not a 2-form because it is

symmetric in contrast to skew-symmetric 2-forms.)

Example 4.2. The standard metric on R
n is defined by setting gij = δij, i.e.

g(ai
∂

∂xi
, bj

∂

∂xj
) =

∑

i

aibi (1.2)

which is the standard inner product (or scalar product) on Rn. More generally, if M is a submani-
fold in Rn, a metric g on M can be obtained by restricting the standard metric (1.2) to TpM×TpM
for every p ∈M . This induced metric is classically called the first fundamental form of M .

Given a metric g on M , the norm (length) of a tangent vector ξ ∈ TpM is given by ‖ξ‖ :=√
gp(ξ, ξ) and the angle between two tangen vectors ξ, η ∈ TpM is given by

α = cos−1

(
g(ξ, η)

‖ξ‖ · ‖η‖

)
.

Furthermore, the length of a smooth arc c : [a, b] → M is given by the integral
∫ b

a
‖c′(t)‖ dt,

where the norm of the tangent vector c′(t) ∈ Tc(t)M is calculated as explained above. In fact, it
follows from the transformation rule that the length of the arc c coincides with the length of any

reparametrized arc c̃ = c ◦ ϕ with ϕ : [ã, b̃] → [a, b] being a diffeomorphism. Hence one can talk
about the length of a curve (which is an equivalence class of arcs).

Using length of curves one can define the distance d(p, q) between two points p, q ∈ M to be
the infimum of lengths of curves connecting p and q. Without proof we quote here:

Proposition 4.3. The distance d associated to a Riemannian metric g satisfies metric space
axioms. The obtained metric induces the same topology as the manifold topology.

39
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Given a metric on an oriented manifold, one can also compute volumes (measures) of subsets
using the volume form which is defined in oriented local coordinates by

ω :=
√

det(gij) dx
1 ∧ · · · ∧ dxn. (1.3)

It is a direct consequence of the transformation rule of gij and of the wedge product that the
above form ω is well-defined and independent of the choice of oriented local coordinates.

The following general statement is a consequence of the existence of partitions of unity:

Proposition 4.4. On every manifold M there exists a Riemannian metric g.
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2. The Levi-Civita connection

A connection on a manifold is an additional structure permitting to differentiate vector fields
in directions of tangent vectors.

Definition 4.5. An (linear) connection ∇ on a manifold M associates to every vector field
X on M and every tangent vector ξ ∈ TpM another tangent vector ∇ξX ∈ TpM , called the
covariant derivative of X in the direction of ξ, such that ∇ξX is bilinear in ξ and X and satisfies
the following Leibnitz rule:

∇ξ(fX) = df(ξ)X + f∇ξX. (2.1)

Choosing local coordinates (x1, . . . , xn) on M and writing ξ = ξi ∂
∂xi and X = Xj ∂

∂xj we obtain,
using the the linearity and (2.1):

∇ξX = ξi
∂Xj

∂xi
∂

∂xj
+ ξiXj∇ ∂

∂xi

∂

∂xj
= ξi

∂Xj

∂xi
∂

∂xj
+ Γkijξ

iXj ∂

∂xk
, (2.2)

where Γkij(p) are coefficients of the vector ∇ ∂

∂xi

∂
∂xj :

∇ ∂

∂xi

∂

∂xj
= Γkij(p)

∂

∂xk
. (2.3)

The connection ∇ is said to be smooth if its coefficients Γkij, called Christoffel symbols are smooth
functions with respect to any choice of local coordinates. Given any connection ∇ and any choice
of local coordinates, the functions Γkij(p) are uniquely determined by (2.3). Vice versa, given any

collection of functions Γkij(p), a connection in the given coordinate chart can be defined by (2.2)
and is uniquely determined by that formula.

An important geometric interpretation of a connection is that of a parallel transport of tangent
vectors along curves. Given a differentiable (or piecewise differentiable) curve c : [a, b] → M , a
vector field X on M is called parallel along c if ∇c′(t)X = 0 for all t. It follows from the theory of
ordinary differential equations that, given a curve c and a vector X0 ∈ Tc(t0), there exists a parallel
vector field X near c(t0) with X(c(t0)) = X0, which is unique along c.

Definition 4.6. Given a connection ∇, its torsion torsion is given by

T (X, Y ) := ∇XY −∇YX − [X, Y ]

for any vector fields X and Y . A connection is called symmetric or torsion free if T (X, Y ) ≡ 0 for
all X and Y .

A computation in local coordinates (x1, . . . , xn) gives

T

(
X i ∂

∂xi
, Y j ∂

∂xj

)
= X iY j(Γkij − Γkji)

∂

∂xk
, (2.4)

showing that the value T (X, Y )(p) ∈ TpM depends only on the values of X(p), Y (p) ∈ TpM and
hence defines, for every p, a bilinear skew-symmetric map TpM × TpM → TpM . It follows that ∇
is symmetric if and only if Γkij = Γkji explaining the name.

For connections on a Riemannian manifold, there is a natural compatibility condition.
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Definition 4.7. A connection ∇ on a Riemannian manifold (M, g) is called metric if

Dξg(X, Y ) = g(∇ξX, Y ) + g(X,∇ξY ) (2.5)

for any tangent vector ξ and vector fields X and Y , where on the left-hand side Dξ denotes the
directional derivative of a smooth function.

A connection is metric if and only if for any parallel vector fields X, Y along any curve, g(X, Y )
is constant along that curve.

In local coordinates, choosing X = ∂/∂xi, Y = ∂/∂xj , ξ = ∂/∂xk, we can rewrite (2.5) as

Dkgij = gjlΓ
l
ki + gilΓ

l
kj. (2.6)

Theorem 4.8 (Levi-Civita). On a Riemannian manifold there exists an unique connection
that is both symmetric and metric, called the Levi-Civita connection.

Proof. Assuming ∇ is a Levi-Civita connection and permuting indices in (2.6) we have

Dkgij = gjlΓ
l
ki + gilΓ

l
kj (2.7)

Digjk = gklΓ
l
ij + gjlΓ

l
ik (2.8)

Djgki = gilΓ
l
jk + gklΓ

l
ji. (2.9)

Adding the first two identities, subtracting the third and using the symmetry Γlij = Γlji we obtain:

2gjlΓ
l
ki = Dkgij +Digjk −Djgki. (2.10)

Denoting by (gij) the inverse matrix of (gij) and solving (2.10) for Christoffel symbols, we
obtain the classical formula

Γmki =
gmj

2
(Dkgij +Digjk −Djgki) (2.11)

showing the uniqueness. To show the existence, use (2.11) to define Γmki and hence ∇. Then ∇
is obviously symmetric and (2.5) can be directly verified. �

In the important case when M is a submanifold of Rn with its standard metric, the Levi-Civita
connection ∇ on M can be obtained from the following general statement.

Proposition 4.9. Let (M̃, g̃) be a Riemannian manifold and M a submanifold of M̃ with

induced metric. Denote by ∇̃ and ∇ the Levi-Civita connection of M̃ and M respectively. Then,
for ξ ∈ TpM and X tangent to M ,

∇ξX = πp(∇̃ξX), (2.12)

where πp : TpM̃ → TpM is the orthogonal projection.

Proof. One verifies directly that the connection given by the right-hand side of (2.12) satisfies
all the assumptions of the Levi-Civita connection. The statements follows then by the uniqueness
of the Levi-Civita connection. �
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Denote now by π⊥
p : TpM̃ → T⊥

p M the complementary orthogonal projection onto the orthog-

onal complement T⊥
p M of TpM in TpM̃ .

Definition 4.10. The second fundamental form of the submanifold M ⊂ M̃ at p ∈M is given
by

IIp(X, Y ) = π⊥
p (∇̃XY (p)), (2.13)

where X and Y are vector fields on M̃ tangent to M .

Lemma 4.11. The second fundamental form IIp(X, Y ) depends only on the values X(p), Y (p)
and defines a symmetric bilinear map IIp : TpM × TpM → T⊥

p M .

Proof. Since ∇̃ is torsion-free, one has

T̃ (X, Y ) = ∇̃XY − ∇̃YX − [X, Y ] = 0.

For X and Y tangent to M , their Lie bracket [X, Y ] is also tangent to M . Hence, projecting on
T⊥
p M , we obtain the symmetry IIp(X, Y ) = IIp(Y,X). The fact that, for a fixed Y , the value of

IIp(X, Y ) depends only on X(p) follows directly from the definition (2.13). Now the symmetry
implies that the roles of X and Y can be exchanged, completing the proof of the lemma. �

Examples 4.12. If M is a surface in R3 (with the standard metric), II(X, Y ) is the classical

second fundamental form of M obtained by differentiating the coefficients of Y along X (∇̃XT )
and projecting to the normal direction. If M is a curve in R2, its second fundamental form is
classically called the curvature of the curve. More generally, if M is a curve in a 2-dimensional
Riemannian manifold, its second fundamental form (more precisely, its value on the oriented unit
tangent vector) is called the geodesic curvature of M .
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3. Geodesics and the exponential map

A geodesic is a curve whose tangent vector is parallel with respect to the Levi-Civita connection:

Definition 4.13. A parametrized curve c : (a, b) ⊂ R →M in a Riemannian manifold M is a
geodesic if

∇c′c
′ = 0, (3.1)

i.e. the vector field c′ (its local extension) is parallel along c.

The main fact about geodesics is given by the following statement.

Proposition 4.14. For every p ∈ M and ξ ∈ TpM there exists a unique geodesic cξ : I →M
with 0 ∈ I, c(0) = p, c′(0) = ξ and I ⊂ R maximal.

Proof. In local coordinates (x1, . . . , xn) the curve c(t) is given by its coordinate functions
(x1(t), . . . , xn(t)). Then, using (2.2), the equation (3.1) can be rewritten as

(
d

dt

dxk

dt
+ Γkij

dxi

dt

dxj

dt

)
∂

∂xk
= 0 (3.2)

which is a system of second order ODEs. The statement now follows from the general existence
and uniqueness result for solutions of ODE systems. �

Examples 4.15. In Rn with the standard metric we have Γkij = 0 and hence the geodesics are
the straight lines parametrized by t 7→ at+b with a, b ∈ R

n. On the sphere S the geodesics are the
great circles parametrized by the arc length and by any scalar multiple of the arc length. Indeed,
the derivative c′(t) for such a curve c in this case is orthogonal to TS and hence the covariant
derivative is 0 in view of (2.12).

We mention without proof the fundamental local distance minimizing property of geodesics.

Theorem 4.16. For any p ∈ M there exists a neighborhood U of p in M such that for any
x, y ∈ U , there exists unique geodesic connecting x and y whose length is equal to the distance
d(x, y) (defined in Section 1) and thus not greater than the length of any other curve connecting
x and y.

Given p and ξ as in Proposition 4.14, denote by cp,ξ(t) the corresponding unique geodesic
defined for t ∈ I. Obviously cp,0(t) = p for all t and hence cp,0(1) is defined. Furthermore, it
follows from the general facts about smooth dependence of solutions of ODE systems on the
initial data, that cp,ξ(1) is defined for ξ ∈ TpM in a neighborhood U of 0 in TpM and smoothly
depends on ξ ∈ U .

Definition 4.17. The exponential map at p ∈M is given by

expp(ξ) := cp,ξ(1), U ⊂ TpM →M. (3.3)

Lemma 4.18. The map expp is a local diffeomorphism at 0 with d0 expp = id.



3. GEODESICS AND THE EXPONENTIAL MAP 45

Proof. It follows directly from the definition of geodesics that with c(t) being geodesic, any
curve c(λt) is also a geodesic for any λ ∈ R. Hence we obtain the homogeneity cp,λξ(t) = cp,ξ(λt)
and hence

d0 expp(v) =
d

dt

∣∣∣
t=0

expp(tv) =
d

dt

∣∣∣
t=0
cp,tv(1) =

d

dt

∣∣∣
t=0
cp,v(t) = v

as required (the last equality follows from the construction of cp,v(t). The fact that expp is a local
diffeomorphism at 0 follows from the inverse mapping theorem. �

Using Lemma 4.18 one can defined local coordinates near p by taking as a chart the local
inverse of expp. These are the important normal coordinates at p in which every straight line
through the origin is a geodesic.
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4. Curvature and the Gauss equation

The curvature or the (Riemannian) curvature tensor of a Riemannian manifold M associates
to vector fields X, Y , Z the new vector field given by

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, (4.1)

where ∇ is the Levi-Civita connection. More generally, given any connection ∇, it curvature tensor
is given by (4.1). The name “tensor” reflects the fact that the value R(X, Y )Z at a point p depends
only on the values of X(p), Y (p) and Z(p). Indeed, a calculation in local coordinates shows that

R

(
X i ∂

∂xi
, Y j ∂

∂xj

)(
Zk ∂

∂xk

)
= Rs

ijkX
iY jZk ∂

∂xs
(4.2)

with

Rs
ijk =

∂Γsjk
∂xi

− ∂Γsik
∂xj

+ ΓsilΓ
l
jk − ΓsjlΓ

l
ik. (4.3)

The curvature tensor R(X, Y )Z satisfies the Bianchi identity (similar to the Jacobi identity
for Lie brackets):

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0. (4.4)

Indeed, since the value of (R(X, Y )Z) at p depends only on X(p), Y (p) and Z(p), we may choose
X, Y, Z to have constant coefficients in some local coordinates and hence all Lie brackets to be
zero. Then the symmetry of ∇ implies ∇XY = ∇YX, ∇YZ = ∇ZY and ∇ZX = ∇XZ. Then
(4.4) is obtained directly from (4.1) using these relations.

It is convenient to associate with R(X, Y )Z the closely related 4-multilinear scalar form

R(X, Y, Z, V ) := g(R(X, Y )Z, V ). (4.5)

Since g is positive definite, R(X, Y, Z, V ), in turn, uniquely determines R(X, Y )Z.

Lemma 4.19. The form R(X, Y, Z, V ) has the following symmetry properties:

R(X, Y, Z, V ) = −R(Y,X, Z, V ) (4.6)

R(X, Y, Z, V ) = −R(X, Y, V, Z) (4.7)

R(X, Y, Z, V ) = R(Z, V,X, Y ). (4.8)

In particular,

R(X,X,Z, V ) = R(X, Y, Z, Z) = 0. (4.9)

The proofs are standard and can be found in most books. (In case M is a submanifold in Rn

these properties follow immediately from the Gauss equation (4.10) below).
The following important relation known as Gauss equation generalizes the famous Theorema

Egregium of Gauss.
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Theorem 4.20 (The Gauss equation). Let M be a submanifold of a Riemannian manifold

(M̃, g̃) with the induced metric. Denote by R and R̃ the corresponding curvature tensors and by II

the second fundamental form of M in M̃ . Then, for X, Y, Z, V tangent to M , one has the relation

R(X, Y, Z, V ) − R̃(X, Y, Z, V ) = g̃
(
II(Y, Z), II(X, V )

)
− g̃

(
II(X,Z), II(Y, V )

)
. (4.10)

In particular, if M̃ = Rn with the standard metric, R̃ = 0 and hence R is given by the right-hand
side of (4.10).

Proof. By defintion (4.1) we have

R̃(X, Y, Z, V ) = g̃
(
∇̃X∇̃YZ, V

)
− g̃

(
∇̃Y ∇̃XZ, V

)
− g̃

(
∇̃[X,Y ]Z, V

)
. (4.11)

Using the formula (2.12) and the definition (2.13) of the second fundamental form we write

∇̃X∇̃YZ = ∇̃X∇YZ + ∇̃XII(Y, Z). (4.12)

Since ∇YZ is also tangent to M , we can again apply (2.12) and (2.13) to the first term:

∇̃X∇̃YZ = ∇X∇YZ + II(X,∇YZ) + ∇̃XII(Y, Z). (4.13)

Since II(X,∇YZ) is normal to TM , we have

g̃
(
II(X,∇YZ), V

)
= 0. (4.14)

For the same reason g̃(II(Y, Z), V ) = 0 and using the fact that ∇̃ is metric (2.5), we obtain

0 = DX g̃
(
II(Y, Z), V

)
= g̃

(
∇̃XII(Y, Z), V

)
+ g̃

(
II(Y, Z), ∇̃XV

)
(4.15)

and hence, using again that II(Y, Z) is normal to TM and II(X, V ) is the orthogonal projection of

∇̃XV to the normal space,

g̃
(
∇̃XII(Y, Z), V

)
= −g̃

(
II(Y, Z), ∇̃XV

)
= −g̃

(
II(Y, Z), II(X, V )

)
. (4.16)

We can now compute the scalar product of (4.13) with V using (4.14) and (4.16):

g̃
(
∇̃X∇̃YZ, V

)
= g̃

(
∇X∇YZ, V

)
− g̃

(
II(Y, Z), II(X, V )

)
. (4.17)

Exchanging X and Y we obtain

g̃
(
∇̃Y ∇̃XZ, V

)
= g̃

(
∇Y∇XZ, V

)
− g̃

(
II(X,Z), II(Y, V )

)
. (4.18)

Finally, since [X, Y ] and V are tangent to M and ∇[X,Y ]Z is the tangential component of ∇̃[X,Y ]Z,
we have

g̃
(
∇̃[X,Y ]Z, V

)
= g̃

(
∇[X,Y ]Z, V

)
. (4.19)

The required formula (4.10) follows directly from (4.17) – (4.19). �
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Example 4.21. In case M is a surface in R3, the second fundamental form is scalar valued
and can be diagonalized in an orthonormal basis (E1, E2) of vector fields, i.e.

g(Ei, Ej) = δij, II(Ei, Ej) = λiδij. (4.20)

The eigenvalues λ1, λ2 are classically called the principal curvatures of M . The Gauss equation
(2.12) now yields

R(E1, E2, E1, E2) = λ1λ2. (4.21)

The right-hand side is the classical Gaussian curvature of M which, in view of (4.21) depends only
on the intrinsic metric of M but not on the isometric embedding of M into R3. The latter fact is
known as Theorema Egregium of Gauss. The formula (4.21) completely determines the tensor R
via the symmetry relations in Lemma 4.19:

R(E1, E2, E1, E2) = R(E2, E1, E2, E1) = −R(E2, E1, E1, E2) = −R(E1, E2, E2, E1) = λ1λ2

(4.22)
and all other values of R(Ei, Ej, Ek, El) are zero.

Example 4.21 shows that the curvature tensor of the surface is essentially given by the number
λ1λ2 in (4.21). For manifolds of higher dimension, one obtains a number called the sectional
curvature for every 2-dimensional subspace of the tangent space.

Definition 4.22. The sectional curvature of a Riemannian manifold (M, g) in the direction
of the plain defined by two linearly independent vectors ξ, η ∈ TpM is defined by

K(ξ, η) :=
R(ξ, η, ξ, η)

g(ξ, ξ)g(η, η)− g(ξ, η)2
(4.23)

The quantity in the denominator of (4.23) is the squared area of the parallelogram spanned
by ξ and η. The sectional curvature can be seen as the “normalized” value of R(ξ, η, ξ, η). The
main fact about the ratio in (4.23) is that it depends only on the plain spanned in TpM by ξ
and η but not on the actual choice of ξ and η. This can be seen by observing that any basis
change in a two-plain can be obtained as composition of the elementary changes (ξ, η) 7→ (η, ξ),
(ξ, η) 7→ (λξ, η) and (ξ, η) 7→ (ξ+λη, η) and verifying that the ratio K(ξ, η) does not change under
these transformations. In particular, (ξ, η) can be chosen to be an orthonormal basis in which case
we have K(ξ, η) = R(ξ, η, ξ, η).

Other important quantities obtained from R are Ricci tensor and the scalar curvature, both
obtained using traces or contractions.

The Ricci tensor at a point p ∈M is given by the trace (contraction)

Ric(X, Y )(p) :=
∑

i

R(X,Ei, Y, Ei)(p) (4.24)

with the summation is taken over an orthonormal basis (E1, . . . , En) of TpM . The right-hand side
is equal to the trace of the operator Z 7→ R(X,Z)Y . The Ricci curvature is given by the ratio

Ric(X) :=
Ric(X,X)

g(X,X)
(4.25)
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and clearly depends only on the direction of X. It follows from Lemma 4.19 that Ric(X, Y ) is
symmetric in X and Y .

The scalar curvature is a (scalar) function on M obtained by taking the trace one more time:

S(p) :=
∑

i

Ric(Ei, Ei)(p). (4.26)


