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Preface

This book constitutes notes from a one-semester graduate course called
“Complex Manifolds and Hermitian Differential Geometry” given during
the Spring Term, 1997, at the University of Toronto. Its aim is not to
give a thorough treatment of the algebraic and differential geometry of
holomorphic manifolds, but to introduce material of current interest as
quickly and concretely as possible with a minimum of prerequisites. There
are several excellent references available for the reader who wishes to see
subjects in more depth.

The coverage includes standard introductory analytic material on holo-
morphic manifolds, sheaf cohomology and deformation theory, differential
geometry of vector bundles (Hodge theory, and Chern classes via curva-
ture), and some applications to the topology and projective embeddability
of Kählerian manifolds. The final chapter is a short survey of extremal
Kähler metrics and related topics, emphasizing the geometric and “soft”
analytic aspects. There is a large number of exercises, particularly for a
book at this level. The exercises introduce several specific but colorful ex-
amples scattered through “folklore” and “the literature.” Because there
are recurrent themes and varying viewpoints in the subject, some of the
exercises overlap considerably.

The course attendees were mostly advanced graduate students in math-
ematics, but it is hoped that these notes will reach a wider audience, in-
cluding theoretical physicists. The “ideal” reader would be familiar with
smooth manifolds (charts, forms, flows, Lie groups, vector bundles), differ-
ential geometry (metrics, connections, and curvature), and basic algebraic
topology (simplicial and singular cohomology, the long exact sequence, and
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the fundamental group), but in reality the prerequisites are less strenuous,
though a good reference for each subject should be kept at hand.

Apologies are perhaps in order for the departure from standard termi-
nology, see Table 1. A manifold M is “complex” if TM is a complex vector
bundle, and is “holomorphic” if TM is a holomorphic vector bundle. This
is in accord with the informal usage of “complex/holomorphic category,”
as well as the standard usage for vector bundles. Similar considerations ap-
ply to other types of structure: “complex” describes algebraic data, while
“holomorphic” connotes integrability. In this usage, the real six-sphere S6

is a complex manifold, but it is not known whether or not S6 admits a
holomorphic structure.

Standard Term Replacement

Complex Holomorphic

Almost-complex Complex

TABLE 1. Non-standard terminology.
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1

Holomorphic Functions and Atlases

A function f : D → C of one complex variable is (complex) differentiable
in a domain D if the ordinary Newton quotient

f ′(z) := lim
w→z

f(w)− f(z)

w − z

exists for every point z ∈ D. For present purposes, there are two other useful
characterizations of this condition. The first is to identify the complex line
C with the real plane R2. The function f is complex differentiable if and
only if the associated function f : D → R2 has complex-linear derivative
at every point, in which case f is said to be holomorphic. Concretely, there
is a ring homorphism

a+ bi ∈ C →֒
[

a b
−b a

]
∈ R2×2, (1.1)

so f ′ = Df is complex-linear if and only if u = Re f and v = Im f satisfy
the Cauchy-Riemann equations.

On the other hand, if f is holomorphic in a disk of radius > r centered
at z0, then for all z with |z − z0| < r, the Cauchy integral formula gives

f(z) =
1

2πi

∫

|w−z0|=r

f(w) dw

w − z .

Writing 1/(w − z) as a geometric series in z − z0 and integrating term-
by-term shows that a holomorphic function may be expressed locally as
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a convergent power series. In words, a holomorphic function is complex-
analytic. Intuitively, the averaging process effected by the contour integral
makes the integrand smoother; if f is of class Ck, then the expression on the
right is of class Ck+1. Since f (times a smooth function) is the integrand,
f itself must be smooth. This is the prototypical bootstrap argument, and
perhaps the most elementary example of “elliptic regularity.”

1.1 Functions of Several Complex Variables

For functions of more than one variable, much of this philosophy carries over
by the same reasoning. Let D ⊂ Cn be an open set. A function f : D → C

is holomorphic if the Cauchy-Riemann equations hold onD. More precisely,
write zα = xα + iyα and f = u+ iv with u and v real-valued. Then u and
v may be regarded as functions on a subset of R2n, and f is holomorphic
if f is of class C1 and

∂u

∂xα
=

∂v

∂yα
,

∂u

∂yα
= − ∂v

∂xα
(1.2)

at each point of D. Holomorphicity is related to “separate” holomorphic-
ity (Osgood’s Lemma, Proposition 1.1 below), that is, holomorphicity of
the functions obtained by fixing n − 1 of the variables and varying the
remaining one; the hypotheses allow differentiation under the integral sign
in the Cauchy integral formula. The continuity hypothesis may be dropped
(Hartogs’ Theorem), though the proof becomes more difficult.

Proposition 1.1 Let D ⊂ Cn be a non-empty open set. If f : D → C is
continuous and separately holomorphic, then f is holomorphic.

Let r = (r1, . . . , rn) be a radius, that is, an n-tuple of positive real
numbers, and let z0 = (z1

0 , . . . , z
n
0 ) ∈ Cn. If r and r′ are radii, then r′ < r

is taken to mean r′α < rα for α = 1, . . . , n. The polydisk of radius r centered
at z0 is, by definition,

∆r(z0) = {z ∈ Cn : |zα − zα0 | < rα for α = 1, . . . , n}
= {z ∈ Cn : |z − z0| < r}.

Thus a polydisk is exactly a Cartesian product of ordinary disks. While
polydisks are not generally domains of convergence for power series of sev-
eral variables, they are often the most convenient sets to use for local
purposes.

Let D be a non-empty open set in Cn. A function f : D → C is complex
analytic if, for every z0 ∈ D, there is a complex power series centered at
z0 that converges and is equal to f on some polydisk ∆r(z0). Multi-indices
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simplify notation substantially; if I = (i1, . . . , in) is a multi-index, then set
|I| = i1 + · · ·+ in , zI = (z1)i1 · · · (zn)in , and

fI =
∂f

∂zI
=

∂kf

(∂z1)i1 · · · (∂zn)in .

Analyticity means there is a polydisk ∆r(z0) such that

f(z) =

∞∑

k=0

∑

|I|=k

1

k!
fI(z0)(z − z0)I (1.3)

for all z ∈ ∆r(z0). As in the case of one variable, holomorphicity and
analyticity are equivalent, as is seen by using (an obvious generalization
of) the Cauchy integral formula.

The concepts of holomorphicity and analyticity extend in the obvious
way to functions with values in Cm, which are usually called “holomorphic
maps.” A holomorphic map between open subsets of Cn that possesses a
holomorphic inverse is a biholomorphism. Remarkably, a one-to-one holo-
morphic map between open subsets of Cn is a biholomorphism, see Theo-
rem 5.3; this result has no analogue in the smooth category, even for real
polynomial maps, as is shown by x 7→ x3. The set of biholomorphisms
between open subsets of Cn is a pseudogroup: The composite of two bi-
holomorphisms is a biholomorphism wherever it is defined. It is sometimes
useful to consider anti-holomorphic maps. These are exactly complex con-
jugates of holomorphic maps. The set of anti-holomorphic maps is not a
pseudogroup, since a composite of two anti-holomorphic maps is holomor-
phic.

Holomorphic functions of n > 1 variables satisfy versions of the iden-
tity theorem and maximum principle, see Propositions 1.2 and 1.3 below.
However, there are substantial differences from the situation for functions
of one variable. The zero set of a holomorphic function of n variables is
never discrete (see Proposition 1.4 below). Moreover, the zero set must
be “properly situated” in Cn. For example, let ∆ be a polydisk centered
at the origin in C2. The function z1 vanishes along the z2-axis, which is
real-linearly isomorphic to R2. On the other hand, if f : ∆ → C vanishes
on R2 ∩∆, then f ≡ 0 on ∆, as is verified by inspecting the coefficients in
the series expansion of f . Intuitively, what matters is whether or not the
complex span of the real tangent space to the zero set is all of Cn. The
statement of Proposition 1.2 is certainly not the strongest possible, but is
adequate for present purposes.

Proposition 1.2 Let f : ∆→ C be a holomorphic function on a polydisk,
and suppose f |U ≡ 0 for some non-empty open set U ⊂ ∆. Then f ≡ 0.

Proof The zero set is closed, so it suffices to show the zero set is open.
Let z0 be a point of the closure U , and let (zn) be a sequence in U that
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converges to z0. The power series coefficients of f (see equation (1.3) above)
vanish at zn for all n, and are continuous on ∆. Consequently, they vanish
at z0, so the function f vanishes identically on a neighborhood of z0.

Proposition 1.3 Let ∆ be a polydisk. If f : ∆→ C is holomorphic and if
|f | has a local maximum at p ∈ ∆, then f is constant on ∆.

Proof The restriction of f to every line through p is locally constant by
the one-variable maximum principle, so f is locally constant. Now apply
Proposition 1.2 to the function f − f(p).

A remarkable (and essentially topological) extension result for holomor-
phic functions of n > 1 variables is Hartogs’ Phenomenon. There is no
analogue for holomorphic functions of one variable.

Proposition 1.4 Let ∆ be a polydisk in Cn, n ≥ 2, and let K ⊂ ∆ be a
compactly contained subset. If f : ∆ \K → C is holomorphic, then there
exists a holomorphic function f̃ : ∆→ C which extends f .

Proof (Sketch) It suffices to assume ∆ is centered at the origin. Fix z2,
. . . , zn, then choose r1 so that z1 < r1 whenever z ∈ K (possible by the
compactness assumption.) The integral

f̃(z) =
1

2π
√
−1

∫

|ζ|=r1

f(ζ, z2, . . . , zn)

ζ − z1
dζ

is well-defined, equal to f provided the “slice” misses K (which can happen
by the compactness assumption, because n ≥ 2), and is holomorphic in the
sub-polydisk where |z1| < r1. Enlarging r1 does not change the integral, so
the previous equation defines an extension of f .

Let f : ∆ → C be holomorphic on a polydisk in Cn, n ≥ 2. Proposi-
tion 1.4 implies, in particular, that f cannot have an isolated singularity,
nor can it have an isolated zero since then 1/f would have an isolated sin-
gularity. More generally, the zero set of f cannot cannot be compact, and
cannot be contained in a set of complex codimension greater than one.

1.2 Holomorphic Manifolds

A “holomorphic manifold” is a smooth manifold, locally modelled on the
complex Euclidean space Cn and whose transition functions are holomor-
phic. More precisely, a holomorphic manifold is a pair (M, J) consisting of
a smooth, real manifold of real dimension 2n and a maximal atlas whose
overlap maps lie in the pseudogroup of biholomorphic maps between open
subsets of Cn—briefly, a holomorphic atlas. There are various other ways
of specifying the same data, discussed below.
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Not every 2n-dimensional manifold admits a holomorphic atlas, and a
single smooth manifold may admit many “inequivalent” holomorphic at-
lases. Generally, determination of the set of holomorphic atlases up to
equivalence on a particular smooth manifold is extremely difficult, even
if the manifold is compact. The most famous open question along these
lines concerns (non-)existence of a holomorphic atlas on the six-dimensional
sphere, but there are other open questions of greater interest that are al-
most as easily stated. Further details are deferred until more tools and
terminology are available.

A map between holomorphic manifolds is “holomorphic” if, with re-
spect to arbitrary charts, the induced map is holomorphic. More precisely,
f : M →M ′ is holomorphic at p ∈M if there exists a chart (ϕ,U) near p
and a chart (ψ, V ) near f(p) ∈M ′ such that ψ ◦ f ◦ ϕ−1 is a holomorphic
map between open subsets of complex Euclidean spaces. This condition is
independent of the choice of charts because overlap maps are biholomor-
phic.

The maximum principle (Proposition 1.3) implies that every holomorphic
function on a connected, compact holomorphic manifold is constant; the
absolute value must have a maximum value by compactness, so the function
is locally constant by the maximum principle, hence globally constant since
the manifold is connected. If i : M →֒ CN is a holomorphic map, then each
coordinate function on CN restricts to a global holomorphic function on
the image. In particular, there is no holomorphic analogue of the Whitney
embedding theorem; the only connected, compact holomorphic manifold
that embeds holomorphically in CN is a point.

A holomorphic manifold that embeds as a closed submanifold in a com-
plex Euclidean space is called a Stein manifold. The study of Stein mani-
folds falls most naturally into the realm of several complex variables, though
“affine varieties” are of interest in algebraic geometry as well.

There are three commonly considered equivalence relations, each of which
is strictly weaker than the previous one. Let M − 0 and M be holomorphic
manifolds. Then:

• M0 andM are biholomorphic (or “equivalent,” or “the same”) if there
exists a holomorphic map f : M0 → M with holomorphic inverse.
Assertions regarding uniqueness of holomorphic structure on a fixed
manifold M are always meant up to biholomorphism unless otherwise
specified. As noted above, a single smooth manifold may admit many
non-equivalent holomorphic structures, and a topic of intense current
research is the study of “moduli spaces” of holomorphic structures
on fixed smooth manifolds.

• M0 andM are deformation equivalent if there is a holomorphic family,
parametrized by the unit disk ∆ ⊂ C, that contains both M0 and M ;
precisely, if there exists a holomorphic manifold X and a holomorphic
submersion π : X → ∆, with π−1(0) = M0 and π−1(t) = M for some
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t ∈ ∆.

• M0 and M are diffeomorphic if the underlying smooth manifolds are
diffeomorphic and the induced orientations coincide. It is shown in
Chapter 2 that a holomorphic manifold has a natural orientation.

Biholomorphic manifolds are obviously deformation equivalent; takeX =
M ×∆. It is not difficult to see that deformation equivalent manifolds are
diffeomorphic, but the proof is deferred to the introduction to deformation
theory. Examples below show that neither of these implications is reversible
in general.

Examples

Example 1.5 Euclidean space Cn is a holomorphic manifold. More inter-
esting examples are gotten by dividing by a lattice (i.e. a finitely generated
discrete subgroup) Λ ⊂ Cn. Since Λ acts on Cn by translation and this
action is properly discontinuous and holomorphic, the quotient space Cn/Λ
inherits the structure of a holomorphic manifold from the standard atlas
on Cn. If Λ is generated by an R-basis of Cn, then the quotient is a com-
pact manifold, called a compact complex n-torus. Although all compact n-
tori are diffeomorphic to a real 2n-torus, their complex-analytic properties
(such as the number of non-constant meromorphic functions, or whether
they can be “projectively embedded”) depend on arithmetic properties of
the lattice.

Generally, if a discrete group Γ acts properly discontinuously by biholo-
morphisms on a manifoldM , then the quotientM/Γ inherits a holomorphic
structure from M . Another class of examples is the family of Hopf mani-
folds: Let n > 1, and let α be a complex number with |α| > 1. Consider the
action of Γ ≃ Z on Cn \0 generated by the map z 7→ αz. The quotient is a
compact holomorphic manifold diffeomorphic to S1 × S2n−1. The complex
analytic properties of general Hopf surfaces are investigated in Exercise 2.3.
2

Example 1.6 Open subsets of Cn are of course holomorphic manifolds,
and some of them are important or otherwise remarkable. An algebraic
torus is a manifold biholomorphic to (C×)n (cf. Examples 1.5 and 1.8;
an algebraic torus must not be confused with an “Abelian variety”). An
algebraic torus has the structure of a complex Lie group. Equivariant com-
pactifications form the intensively-studied class of toric manifolds.

The general linear group GL(n,C) ⊂ Cn×n is a complex Lie group under
matrix multiplication. This manifold has various closed complex subgroups,
such as SL(n,C) (matrices of unit determininant) and O(n,C) (complex
orthogonal matrices). Compact groups such as U(n) and SU(n) are not
complex Lie groups, nor are they holomorphic submanifolds of GL(n,C).
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In fact, a compact, connected, complex Lie group is a compact torus. This
is not trivial, though it is easy to see that such a group is Abelian: the
adjoint representation must be trivial, since it may be regarded as a) map
from a compact holomorphic manifold into a complex Euclidean space.

“Small” open sets in Cn, n ≥ 2, exhibit subtle analytic behaviour;
slightly deforming the boundary of a convex domain in Cn gives an un-
countably infinite-dimensional family of mutually non-biholomorphic struc-
tures on the ball, for example. 2

Example 1.7 One of the most important compact n-manifolds is the
complex projective space Pn. Intuitively, a point of Pn is a line through the
origin in Cn+1. More precisely, the (non-discrete) group C× acts on Cn+1\0
by scalar multiplication. If the orbit space is given the quotient topology,
then the holomorphic structure of Cn+1 descends. The equivalence class of a
point Z = (Z0, . . . , Zn) ∈ Cn+1 \0 is denoted [Z] = [Z0 : · · · : Zn], and the
Euclidean coordinates of Z constitute so-called homogeneous coordinates
of [Z]. While Zα is not a well-defined holomorphic function on Pn, the
equation Zα = 0 is unambiguous. Furthermore, every quotient Zα/Zβ is
well-defined, and holomorphic except where Zβ = 0. There is an atlas
consisting of n + 1 charts: For each α = 0, . . . , n, let Uα = {[Z] ∈ Pn :
Zα 6= 0}, and use local coordinates

z0
α =

Z0

Zα
, . . . , ẑαα, . . . , z

n
α =

Zn

Zα
.

On Uαβ := Uα∩Uβ, the overlap map—essentially multiplication by Zβ/Zα—
is a biholomorphism, so Pn admits a holomorphic structure. To see that
Pn is compact, observe that the unit sphere in Cn+1 is mapped onto Pn

by the quotient map.
If V is a finite-dimensional complex vector space, then the projectiviza-

tion of V , denoted P(V ), is formed as above by removing the origin and
dividing by the action of C×. This construction, while less concrete than
the construction of Pn = P(Cn+1), captures functorial properties of V ,
and can be applied fibrewise in vector bundles.

Many concepts from linear algebra (linear subspaces and spans, inter-
sections, and the language of points, lines, and planes) carry over in the
obvious way to projective space; for example, the line xy determined by a
pair of points in Pn is the image of the plane in Cn+1 spanned by the lines
representing x and y. Disjoint linear subspaces of Pn are said to be skew.
For example, there exist pairs of skew lines in P3, while every line in P3

intersects every plane in P3 in at least one point. A pair of skew linear
subspaces of Pn is maximal if the respective inverse images in Cn+1 are of
complementary dimension in the usual sense. The “prototypical” maximal
skew pairs Pk ⊔Pn−k ⊂ Pn+1 are indexed by an integer k = 0, . . . , n, and
are of the form

{[X0 : · · · : Xk], [Y 0 : · · · : Y n−k]} 7−→ [X0 : · · · : Xk : Y 0 : · · · : Y n−k].
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(Linear Maps of Projective Spaces) Every linear automorphism of Cn+1

induces a biholomorphism from Pn to Pn; Proposition 6.13 below asserts,
conversely, that every automorphism of Pn is induced by a linear auto-
morphism of Cn+1. Other linear transformations on Cn+1 descend to in-
teresting holomorphic maps defined on subsets of Pn. Simple but geomet-
rically important examples are furnished by projection maps. Let {P1, P2}
be a maximal skew pair of linear subspaces. There is a holomorphic map
π : Pn \ P1 → P2, called projection away from P1 onto P2, with the fol-
lowing geometric description. For each point x 6∈ P1, the linear span xP1

intersects P2 in a unique point π(x), which is by definition the image of x
under projection. There is an algebraic description, namely that such a
projection is exactly induced by a linear projection (in the usual sense)
on Cn+1; see Exercise 1.1. 2

Example 1.8 (Submanifolds of Projective Space) A closed holomorphic
submanifold of Pn is called a projective manifold. There is an intrinsic nec-
essary and sufficient criterion—given by the Kodaira Embedding Theorem—
for a compact holomorphic manifold to be projective; see Theorem 10.10
below. Hopf manifolds do not satisfy this criterion, while compact tori are
projective if and only if the lattice Λ satisfies (explicit) integrality condi-
tions. A compact, projective torus is an Abelian variety.

A projective algebraic variety is the image in Pn of the common zero set
of a finite set of homogeneous polynomials on Cn+1. Every smooth pro-
jective algebraic variety is a compact holomorphic manifold. Remarkably
(Chow’s Theorem, 6.14 below), the converse is true: Every compact holo-
morphic submanifold of Pn is the zero locus of a finite set of homogeneous
polynomials in the homogeneous coordinates.

Complex hypersurfaces—those cut out by a single equation—are among
the best-understood projective varieties. As will be seen, the set of smooth
projective hypersurfaces in Pn having fixed degree is a “family” in the sense
of deformation theory; the idea is to parametrize the set of hypersurfaces by
the coefficients of defining polynomials. The set of singular hypersurfaces
has complex codimension at least 1, so its complement is connected. Thus,
for example, two (smooth) quintic hypersurfaces in P4 are diffeomorphic.

The simplest non-linear projective manifold is a complex hyperquadric,
cut out by a single irreducible quadratic in z0, . . . , zn. Every non-degenerate
quadratic form is equivalent, after a linear change of coordinates, to the
standard diagonal form

(z0)2 + (z1)2 + · · ·+ (zn)2 = 0,

so up to equivalence there is only one smooth, non-degenerate hyper-
quadric, denoted Qn. The orthogonal group O(n,C) preserves the diagonal
quadratic form, and the induced action on Qn is transitive. These mani-
folds are of considerable interest, both classically and recently. The conic
curve in P2 is abstractly isomorphic to the projective line P1; to see this,
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pick a point on the conic, a line not containing this point, and project from
the point to the line. Every line in P2 intersects the conic exactly twice
(counting multiplicity), so the projection is 1-1 (and holomorphic), hence
a biholomorphism. This is nothing but classical stereographic projection,
a.k.a. the rational parametrization of the conic curve. The conic surface
in P3 is abstractly isomorphic to P1 × P1, as is readily seen from the
representation {Z0Z3 − Z1Z2 = 0}, namely the image of the embedding

([X0 : X1], [Y 0 : Y 1]) 7→ [X0Y 0 : X0Y 1 : X1Y 0 : X1Y 1] ∈ P3.

The hyperbolic paraboloid in R3 is the affine real part of the quadric sur-
face, and its two families of rulings correspond to the factors in the product
P1×P1. explained, smooth hypersurfaces of 2

Example 1.9 A Riemann surface or algebraic curve is a one-dimensional
holomorphic manifold. Apart from the rational curve P1, the simplest
curves are elliptic curves, namely quotients of C by a lattice Λ; of rank
two. The smooth manifold underlying an elliptic curve is the real 2-torus,
but the holomorphic structure depends on Λ; as will be shown now, elliptic
curves correspond exactly to lattices modulo complex scaling.

Suppose E1 and E2 are elliptic curves, and write Ei = C/Λi. Pick bases
{ω1

i , ω
2
i } for Λi. If there is a non-constant holomorphic map f : E1 → E2,

then f lifts to an entire function f̃ that satisfies

f̃(z + ω1
1) = f̃(z) +m1ω

1
2 + n1ω

2
2 ,

f̃(z + ω2
1) = f̃(z) +m2ω

1
2 + n2ω

2
2

for some integers mi and ni. The derivative f̃ ′ : C→ C is therefore doubly-
periodic, hence constant by Liouville’s Theorem. Consequently, f̃ is affine:
There exist complex numbers α 6= 0 and β such that f̃(z) = αz + β. By
translating if necessary, β = 0 without loss of generality. In short, every
holomorphic map between elliptic curves is—up to translation—covered
by a homothety f̃ of C that carries Λ1 to Λ2 (not surjectively in general).
This homothety is an isomorphism of lattices exactly when f is a biholo-
morphism.

The set of lattices modulo scaling has a well-known description as a
quotient space, namely the upper half plane H divided by SL(2,Z). To see
this, fix a lattice Λ0, and let ω1 and ω2 be generators; thus ω2/ω1 = τ is
non-real, and without loss of generality has positive imaginary part. The
lattice Λ obtained by dividing by ω1 is generated by 1 and τ , and every
basis of Λ is of the form

{a+ bτ, c+ dτ},
(
a b
c d

)
∈ SL(2,Z).

The orbit space of H under this action of SL(2,Z) has the structure of
a one-dimensional holomorphic manifold; this is clear except at the two
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points stabilized by non-trivial elements of SL(2,Z)—so-called “orbifold”
points—where the local structure is that of a disk divided by the action of
a finite cyclic group of rotations. However, a branch of z 7→

√
z − i gives a

holomorphic chart for the orbit space near the equivalence class of i, and a
similar cube root uniformizes the quotient at the non-real cube root of 1.
The orbits are in one-to-one correspondance with biholomorphism classes of
elliptic curves, and the orbit space is the “moduli space” of elliptic curves.

To each lattice Λ of rank two is associated a Weierstrass ℘-function,
defined by

℘(z) =
1

z2
+
∑

ω∈Λ×

(
1

(z − ω)2
− 1

ω2

)
. (1.4)

The following facts are not difficult to establish. (See, for example, L.
Ahlfors, Complex Analysis, pp. 272 ff.) Setting Gk =

∑
ω∈Λ× ω−2k, the

℘-function satisfies the first-order differential equation

℘′(z)2 = 4℘(z)3 − 60G2 ℘(z)− 140G3. (1.5)

Consequently, the elliptic curve C/Λ embeds as a cubic curve in P2 via the
mapping

z 6∈ Λ 7−→ [1 : ℘(z) : ℘′(z)], z ∈ Λ 7−→ [0 : 0 : 1].

The discrete group Γ = Z× Z acts on H×C by

γm,n(τ, z) = (τ, z +m+ nτ).

The quotient is a (non-compact) complex surface S equipped with a holo-
morphic projection map π : S → H whose fibres are elliptic curves. Indeed,
the fibre over τ ∈ H is the elliptic curve associated to the lattice generated
by 1 and τ . While distinct fibres are deformation equivalent, they are not
necessarily biholomorphic.

An algebro-geometric version of this picture is easily constructed from
the modular invariant λ : H→ C \ {0, 1}; the surface S is thereby realized
as the zero locus in P2 × H of a cubic polynomial whose coefficients are
analytic functions of λ. 2

Remark 1.10 In the study of real manifolds, a basic tool is existence of
smooth submanifolds passing through an arbitrary point, and having arbi-
trary tangent space. The “rigidity” of the holomorphic category makes this
tool available only to a limited extent for holomorphic manifolds. If ∆ ⊂ C

is the unit disk, M is a complex manifold, and (p, v) ∈ TM is an arbi-
trary one-jet, then there need not exist a holomorphic map f : ∆ → M
with f(0) = p and f ′(0) = v, though it is always possible to arrange that
f ′(0) = εv for ε ≪ 1. It is usually difficult to determine whether or not a
holomorphic manifold M ′ embeds holomorphically in another manifold M .
Even if M ′ is one-dimensional, existence of an embedding depends in a
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global way on the holomorphic structure of M ; the prototypical result is Li-
ouville’s theorem, which asserts that every bounded, entire function (a.k.a.
holomorphic map f : C → ∆) is constant. Existence of compact holo-
morphic curves in M has been an area of active interest since the mid-
1980’s, following the work of Mori in complex geometry and the work of
Gromov and McDuff in symplectic geometry. It is also of interest to deter-
mine whether or not there exist embeddings of C into M ; this is related to
the study of “hyperbolic” complex manifolds and value distribution theory.

Exercises

Exercise 1.1 A projection on Cn+1 is a linear transformation Π with
Π2 = Π. Prove that every such linear transformation induces a holomor-
phic map—projection away from P1 = P(kerΠ) onto P2 = P(im Π)—as
described in Example 1.7. In particular, if Π has rank ℓ + 1 as a linear
transformation, then after a linear change of coordinates projection away
from P(ker Π) has the form

[Z] = [Z0 : · · · : Zn] 7−→ [Z0 : · · · : Zℓ : 0 : · · · : 0],

and the image is Pℓ ⊂ Pn. ⋄
Exercise 1.2 Let p : Cn+1 \0→ Pn be the natural projection. Prove that
there is no holomorphic map s : Pn → Cn+1 \ 0 with p ◦ s = identity. (In
fact, there is no continuous map with this property, but the latter requires
some algebraic topology.) ⋄
Exercise 1.3 Give an example of a non-compact complex manifoldM such
that every holomorphic function on M is constant. ⋄
Exercise 1.4 Let f̃ : ∆ → Cn+1 be a non-constant holomorphic map
of the unit disk into Cn+1 with f̃(0) = 0. Prove that the induced map
f : ∆× → Pn on the punctured unit disk extends to the origin. ⋄
Exercise 1.5 Fix τ ∈ H, and let E = Eτ be the associated elliptic
curve. The curve E has complex multiplication if there is a holomorphic
map f : E → E that is covered by a homothety z 7→ αz with α non-
real. Show that E has complex multiplication if and only if τ satisfies a
quadratic equation with integral coefficients. Find all curves that admit an
automorphism by complex multiplication. ⋄
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2

Complex Structures and Integrability

In order to apply the machinery of differential geometry and bundle theory
to the study of holomorphic manifolds, it is useful to express holomorphic
atlases in bundle-theoretic terms. The first task is to study “pointwise”
objects, that is, to construct complex linear algebra from real linear alge-
bra. These constructions are then applied fibrewise to tensor bundles over
smooth manifolds equipped with some additional structure.

2.1 Complex Linear Algebra

Let V be an m-dimensional real vector space. A complex structure on V is
an operator J : V → V with J2 = −IV . Complex scalar multiplication is
defined in terms of J by (a+ b

√
−1)v = av+ b Jv. The operator −J is also

a complex structure on V , called the conjugate structure, and the space
(V,−J) is often denoted V for brevity. The standard complex vector space
is V = Cn with J induced by multiplication by

√
−1.

Lemma 2.1 If V admits a complex structure, then V is even-dimensional
and has an induced orientation.

Proof Since J is a real isomorphism, taking the determinant of J2 = −I
gives 0 < (detJ)2 = (−1)m, from which it follows m = 2n is even. If
{ei}ni=1 is a complex basis of V (so that {ei, Jei}ni=1 is a real basis), then
the sign of the volume element e1 ∧ Je1 ∧ · · · ∧ en ∧ Jen is independent of
{ei}ni=1. (See also Remark 2.2 and the remarks following Proposition 2.5
below.)
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The complexification of a real vector space V is VC := V ⊗ C, with
C regarded as a real two-dimensional vector space. It is customary to write
v ⊗ 1 = v and v ⊗ i = iv. If V has an complex structure J , then J extends
to VC by J(v ⊗ α) = Jv ⊗ α, and VC decomposes into ±i-eigenspaces:

V 1,0 = {Z ∈ VC : JZ = iZ} = {X − iJX : X ∈ V },
V 0,1 = {Z ∈ VC : JZ = −iZ} = {X + iJX : X ∈ V }.

The complex vector space (V, J) is C-linearly isomorphic to (V 1,0, i) via

X = 2ReZ 7−→ 1

2
(X − iJX) = Z =: X1,0. (2.1)

Similarly, V = (V,−J) is C-linearly isomorphic to (V 0,1,−i). Complex
conjugation induces a real-linear isomorphism of VC that exchanges V 1,0

and V 0,1. The fixed point set is exactly the maximal totally real subspace
V = V ⊗ 1. The complexification of (V, J) may be efined to be V ⊕ V
together with the real structure that exchanges the two factors.

If V is equipped with a complex structure J , then the dual pairing induces
a complex structure on V ∗—also denoted by J—via

〈Jv, λ〉 = 〈v, Jλ〉 (or λ(Jv) = Jλ(v)). (2.2)

The associated eigenspace decomposition of V ∗
C

= V ∗ ⊗C is

V ∗
1,0 = {λ ∈ V ∗

C
: Jλ = iλ} = {ξ + iJξ : ξ ∈ V ∗},

V ∗
0,1 = {λ ∈ V ∗

C : Jλ = −iλ} = {ξ − iJξ : ξ ∈ V ∗}.

By equation (2.2), the space V ∗
1,0 is the annihilator of V 0,1; similarly V ∗

0,1

annihilates V 1,0.
Let {ei}ni=1 be a complex basis of V ∗. The exterior algebra

∧
V ∗
C

(note the
complexification) has a decomposition into tensors of type (p, q), namely
those that contain “p of the ei’s and q of the ēj’s. A little more pre-
cisely, start with

∧p
V ∗

1,0 ⊗
∧q

V ∗
0,1 and skew-symmetrize. The space of

skew-symmetric (p, q)-tensors is denoted
∧p,q

V ∗ (note the lack of com-
plexification). Thus

∧r
V ∗
C

=
⊕

p+q=r

∧p,q
V ∗,

∧q,p
V ∗ =

∧p,q
V ∗.

For dimensional reasons, 0 ≤ r ≤ 2n = m, while 0 ≤ p, q ≤ n.

Remark 2.2 The “standard” complex vector space Cn has coordinates z =
(z1, . . . , zn). There are two useful (real-linear) isomorphisms with R2n; if
zα = xα +

√
−1yα with xα and yα real, then z ∈ Cn is associated with

either

(x, y) = (x1, . . . , xn, y1, . . . , yn) or (x1, y1, . . . , xn, yn) (2.3)
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in R2n. With respect to the first set of real coordinates, a complex-linear
transformation is represented by a 2× 2 block matrix with n×n blocks (see
the remarks following Proposition 2.5 below). With respect to the second
set of real coordinates, a complex-linear transformation is represented by
an n × n block matrix of 2 × 2 blocks. This representation is preferable
when working with metrics and volume forms. In either case, the 2 × 2
blocks have the form (1.1).

2.2 Complex Manifolds

A complex manifold1 is a smooth manifold M equipped with a smooth
endomorphism field J : TM → TM satisfying J2

x = −Ix for all x ∈ M .
The linear algebra introduced above may be applied pointwise to the tan-
gent bundle of M . The complexified tangent bundle is TCM = TM ⊗C,
where C is regarded as a trivial vector bundle. The tensor field J splits the
complexified tangent bundle into bundles of eigenspaces

TCM = T 1,0M ⊕ T 0,1M,

and the complex vector bundles (TM, J) and (T 1,0M, i) are complex-linearly
isomorphic. Complex conjugation induces an involution of TCM that ex-
changes the bundles of eigenspaces. A (local) section Z of T 1,0M is called
a vector field of type (1, 0), though Z is not a vector field on M in the
sense of being tangent to a curve in M . If ordinary tangent vectors are re-
garded as real differential operators, then (1, 0) vectors are complex-valued
differential operators.

The splitting of the set of complex-valued skew-symmetric r-tensors into
skew-symmetric (p, q)-tensors gives rise to spaces of (p, q)-forms. If Ar and
Ap,q denote the space of smooth r-forms and the space of smooth (p, q)-
forms respectively, then

Ar =
⊕

p+q=r

Ap,q.

In local coordinates, Ap,q is generated by the forms dzI1∧dz̄I2 with |I1| = p
and |I2| = q.

Example 2.3 Euclidean space Cn is a complex manifold. Explicitly, let
zα = xα +

√
−1yα be the usual coordinates on Cn, identified with coordi-

nates (x, y) on R2n. The real tangent bundle and its complexification have
the standard frames {

∂

∂xα
,

∂

∂yα

}
,

1Recall that this terminology is not standard; see Table 1.
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{
∂

∂zα
=

1

2

(
∂

∂xα
−
√
−1

∂

∂yα

)
,
∂

∂z̄α
=

1

2

(
∂

∂xα
+
√
−1

∂

∂yα

)}
,

while the real cotangent bundle and its complexification have coframes

{dxα, dyα}, {dzα = dxα +
√
−1dyα, dz̄α = dxα −

√
−1dyα}.

The complex structure J acts only on tangent spaces, not on the coordi-
nates. Thus “Jz” is meaningless, while

J
∂

∂xα
=

∂

∂yα
, J

∂

∂yα
= − ∂

∂xα
. (2.4)

The tensor field J has constant components with respect to the usual co-
ordinate system.

The exterior derivative d : Ar → Ar+1 maps Ap,q to Ap+1,q ⊕ Ap,q+1,
and the corresponding “pieces” are denoted ∂ and ∂̄. On functions,

df =
∂f

∂z
dz +

∂f

∂z̄
dz̄ =: ∂f + ∂̄f.

Observe that f is holomorphic if and only if ∂̄f = 0. More generally, a holo-
morphic p-form is a (p, 0)-form η with ∂̄η = 0. The fact that “holomorphic
functions are ∂̄-constant” has deep ramifications, as will become apparent
in Chapter 4. 2

Example 2.4 Even-dimensional spheres are perhaps the simplest can-
didates for examples of compact complex manifolds. It is not difficult to
show that if S2n admits a complex structure, then TS2n+1 is trivial. Deep
results from algebraic topology imply that n = 0, 1, or 3. (If R2n+2 admits
the structure of a normed division algebra, then TS2n+1 is trivial since the
unit sphere S2n+1 is a Lie group under the algebra product. The classical
theorem of Hurwitz to the effect that n = 0, 1, or 3 lends some circum-
stantial credence to the asserted restrictions on n. This relationship is not
accidental, as explained below.)

Conversely, the spheres S2 and S6 admit complex structures. The 2-
sphere is the complex projective line, so it already has a holomorphic struc-
ture, but there is an alternative description that illuminates the complex
structure on S6. It is currently unknown whether or not S6 admits a holo-
morphic structure.

The “standard” complex structures on S2 and S6 are closely related to
the quaternions and Cayley numbers respectively. Geometrically, the com-
plex structure on S2 rotates each tangent plane is through an angle π/2,
in a fashion consistent with a choice of orientation. The following algebraic
description considerably illuminates the corresponding construction for S6.
Consider the usual embedding S2 ⊂ R3; a point x ∈ S2 may be regarded
as a unit vector in R3, and via the cross product induces a linear transfor-
mation Jx(y) = x× y on R3. If y ⊥ x (i.e. if y ∈ TxS2), then (x× y) ⊥ x as
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well, so this linear transformation is an endomorphism Jx of the tangent
space TxS

2. It is easy to verify that J2
x = −I, so that this field of endomor-

phisms is a complex structure on S2. Regarding R3 as the space of pure
imaginary quaternions, the cross product arises as the imaginary part of
quaternion multiplication.

Similarly, multiplication by a pure imaginary Cayley number defines a
“cross product” on R7, and the analogous construction defines a complex
structure on S6. The set of complex structures on S6 is very large, since
small perturbations of a given structure give rise to another (usually non-
equivalent) structure. By contrast, S2 has only one complex structure up
to equivalence. This is shown later, as it requires a bit of machinery. 2

A map f : (M,J) → (M ′, J ′) between complex manifolds is complex or
pseudoholomorphic/ if (f∗)J = J ′(f∗). The following is a straightforward
consequence of the chain rule and the Cauchy-Riemann equations.

Proposition 2.5 Let ∆ ⊂ Cn be a polydisk. A map f : ∆ → Cm is
complex if and only if f is holomorphic.

There are several useful applications, of which two deserve immediate
mention:

• A complex manifold has a natural orientation.

• A holomorphic manifold has a natural complex structure.

To prove the first assertion, suppose m = n and f is complex. Using the
isomorphism z ∈ Cn ←→ (x, y) ∈ R2n, and writing f = u+ iv with u and
v real-valued, the Jacobian f∗ has matrix

[
ux uy
vx vy

]
=

[
A −B
B A

]
∼C

[
A+
√
−1B 0

0 A−
√
−1B

]
,

with A,B ∈ Rn×n. This matrix has positive determinant, proving that a
complex manifold is orientable. The natural orientation is by definition the
orientation compatible with an ordered basis {e1, Je1, . . . , en, Jen}, cf. the
proof of Lemma 2.1.

To prove the second assertion, let M be a holomorphic manifold, and
let (ϕ,U) be a chart near x ∈ M . The standard complex structure of Cn

induces a complex structure on U , and by Proposition 2.5 this complex
structure is well-defined.

Combining these observations, a mapping f : M → M ′ between holo-
morphic manifolds is holomorphic if and only if f is pseudoholomorphic
with respect to the induced complex structures.
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Complex Structures, Orientations, and Conjugate
Atlases

When (M, J) is a holomorphic manifold, J is tacitly taken to be the in-
duced complex structure and the orientation is taken to be that induced
by J . In the absence of such a convention, there are potentially confusing
relationships between complex structures, choices of orientation, and pseu-
doholomorphic maps, which the following remarks are intended to clarify.
The distinction is not merely pedantic; increasingly in symplectic geometry
and geometric field theory it is useful to fix an orientation on M , then seek
compatible complex structures.

Let M be a real 2n-dimensional smooth manifold admitting a qcomplex
structure J : TM → TM . There is an induced orientation as just observed;
this may be realized concretely as a non-vanishing smooth 2n-form on M .
Let M+ denote the corresponding oriented 2n-manifold, and M− denote
the oppositely oriented manifold. There is also a conjugate complex struc-
ture −J : TM → TM , and the pair (M,−J) equipped with the induced
orientation is denoted M .

There are four choices of “orientation and complex structure” on the
smooth manifold M , which will be denoted (see also Remark 2.6 below)

M := (M+, J), −M := (M−, J),
M+ := (M+,−J), M− := (M−,−J).

The pair (M+, J) is “compatible” in the sense that the orientation is in-
duced by the complex structure. Since the orientation induced by −J is
(−1)n times the orientation induced by J , either the third or fourth pair
is compatible—i.e. is equal to M—depending on whether the complex di-
mension n is even or odd.

If (M, J) is a holomorphic manifold, then there is a holomorphic atlas
J on the smooth manifold M whose charts are complex conjugates of the
charts in J. More precisely, if (U,ϕ) is a chart in J, then (U,ϕ) is, by fiat, a
chart in J. Observe that J is a holomorphic atlas because the overlap maps
are holomorphic. Further, it is clear that if J is the complex structure in-
duced by J, then −J is induced by J. Suppressing complex structures, if
M is a holomorphic manifold, then M is a holomorphic manifold having
the same underlying smooth manifold. The identity map is an antiholomor-
phic diffeomorphism from M to M . The manifolds M and M may or may
not be biholomorphic, see Exercises 2.4 and 2.5. An overkill application of
Theorem 2.10 below gives an alternate, less constructive proof that M is a
holomorphic manifold.

Remark 2.6 Let Pn be the smooth, real 2n-manifold underlying the com-
plex projective space Pn, and let J be the usual complex structure. By Ex-
ercise 2.4, the manifolds (Pn, J) and (Pn,−J) are biholomorphic. Thus
when n is odd both orientations on Pn are compatible with a holomorphic
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atlas. When n is even this need not be the case; there is no complex struc-
ture on P 2 inducing the “anti-standard” orientation. Unfortunately, it is
nearly universal in the literature to write P2 for the oriented manifold here
denoted −P2. Forming the oriented connected sum of a four-manifold N
with M = −P2 is the topological analogue of “blowing up” a point of N .
This analytic operation is defined precisely in Exercise 3.5 when N = C2;
other exercises in that section justify the topological claim just made.

In general, nothing can be said about the oriented manifold M−. There
may or may not exist a compatible complex structure, to say nothing of
a compatible holomorphic atlas. Further, there is no general relationship
between the holomorphic manifolds M and M ; they may or may not be bi-
holomorphic, regardless of the respective induced orientations. Exercise 2.5
investigates the case when M is an elliptic curve.

2.3 Integrability Conditions

Every holomorphic manifold comes equipped with an induced complex
structure. Conversely, it is of interest to characterize complex structures
that arise from a holomorphic atlas. It is to be expected that some differ-
ential condition on J is necessary, since J is an algebraic object while a
holomorphic atlas contains analytic information.

On an arbitrary complex manifold, the exterior derivative has four type
components, namely

d : Ap,q −→ Ap−1,q+2 ⊕Ap,q+1 ⊕Ap+1,q ⊕Ap+2,q−1 ⊂ Ap+q+1.

This is easily seen from dA1,0 ⊂ A2,0⊕A1,1⊕A0,2 and induction on the total
degree. Under a suitable first-order differential condition, the “unexpected”
components are equal to zero. To introduce this condition, first define the
Nijenhuis2 (or torsion) tensor NJ of J by

NJ(X,Y ) = 2
(
[JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ]

)
(2.5)

for local vector fields X and Y . The torsion tensor measures involutivity
of the i-eigenspace bundle T 1,0M in the following sense.

Lemma 2.7 Let X and Y be local vector fields, and set

Z = [X − iJX, Y − iJY ].

Then 2(Z + iJZ) = −NJ(X,Y )− iJNJ(X,Y ).

2Pronounced Nı̄ yen haus.
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In words, the torsion tensor is gotten by sending a pair of real vector fields
to the corresponding (1, 0) fields and taking minus the real part of the
(0, 1)-component of their Lie bracket.

Theorem 2.8 The following are equivalent:

(a) T 1,0M is involutive, i.e., for all (1, 0) vector fields Z and W , the
bracket [Z,W ] is of type (1, 0).

(b) T 0,1M is involutive.

(c) dA1,0 ⊂ A2,0 ⊕A1,1 and dA0,1 ⊂ A1,1 ⊕A0,2.

(d) dAp,q ⊂ Ap+1,q ⊕Ap,q+1 for all p, q ≥ 0.

(e) NJ(X,Y ) = 0 for all local vector fields X and Y .

Proof (a) is equivalent to (b) by taking complex conjugates. To show
(a) and (b) are equivalent to (c), recall that for an arbitrary one-form η,

2dη(Z,W ) = Z
(
η(W )

)
−W

(
η(Z)

)
− η
(
[Z,W ]

)
. (2.6)

If (a) and (b) hold, and if η ∈ A1,0, then the right side of (2.6) vanishes for
all Z,W of type (0, 1), proving dη has no component of type (0, 2), i.e. (c)
holds.

Conversely, suppose (c) holds and let η ∈ A0,1. For all Z,W of type (1, 0),
(2.6) implies η([Z,W ]) = 0. Thus [Z,W ] is of type (1, 0) and (a) holds.

(c) implies (d) by induction, while (d) implies (c) trivially. Finally, (a)
and (e) are equivalent by Lemma 2.7.

Consequently, if NJ vanishes identically then there is a decomposition
d = ∂ + ∂̄ as in Example 2.3 above. Considering types and using d2 = 0, it
follows that

∂2 = 0, ∂∂̄ = −∂̄∂, ∂̄2 = 0. (2.7)

Theorem 2.9 Let f : (M,J) → (M ′, J ′) be a mapping of complex mani-
folds. The following are equivalent.

(a) f∗Z is of type (1, 0) for every local vector field Z of type (1, 0).

(b) f∗Z is of type (0, 1) for every local vector field Z of type (0, 1).

(c) Pullback by f preserves types, i.e. f∗ : Ap,q(M ′)→ Ap,q(M).

(d) f is pseudoholomorphic.

Proof Since f∗ commutes with conjugation, (a) and (b) are equivalent.
Elements of Ap,q are locally generated by elements of A1,0 and A0,1, so
(a)/(b) are equivalent to (c). Finally, f∗(X − iJX) = f∗X − if∗JX is of
type (1, 0) if and only if f∗JX = J ′f∗X , i.e. if and only if f is complex.
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Vanishing of the torsion tensor is a necessary condition for a complex
structure J to be induced by a holomorphic atlas; since the components
of J are constant in a holomorphic coordinate system by equation (2.4), the
torsion of the induced complex structure vanishes identically. More inter-
estingly, vanishing of the torsion (together with a mild regularity condition)
is sufficient for a complex structure to be induced by a holomorphic at-
las. When (M,J) is real-analytic, this amounts to the Frobenius theorem.
When (M,J) satisfies less stringent regularity conditions, the theorem is a
difficult result in partial differential equations, and is loosely known as the
Newlander-Nirenberg Theorem. The weakest hypothesis is that (M,J) be
of Hölder class C1,α for some α > 0.

Theorem 2.10 Let (M,J) be a real-analytic complex manifold, and as-
sume NJ vanishes identically. Then there exists a holomorphic atlas on M
whose induced complex structure coincides with J .

Proof (Sketch) The idea is to “complexify” M . Then the Frobenius
theorem may be applied.

Suppose ψ : R2n → R is real-analytic. Then—locally—there is a holo-
morphic extension ψC : ∆ ⊂ C2n → C obtained by expressing ψ as a
convergent power series and regarding the variables as complex numbers.

Complexifying the charts ofM gives the following: For each x ∈M , there
exists a coordinate neighborhood U of x and a holomorphic manifold UC

isomorphic to U × B, B a ball in R2n, whose charts extend the charts of
M . The tangent bundle TUC, when restricted to U , is the complexification
of TU , and in particular contains the involutive (by hypothesis) subbundle
T 1,0U . By the Frobenius theorem, there is an integral manifold through x,
and local holomorphic coordinates on this leaf induce holomorphic coordi-
nates on U .

Example 2.11 The complex structure on S6 induced by Cayley multi-
plication has non-zero torsion tensor. It is not known at present whether
or not S6 admits a holomorphic atlas, though there is circumstantial and
heuristic evidence against, and the answer is generally believed to be neg-
ative. 2

The Newlander-Nirenberg theorem characterizes holomorphic atlases in
terms of real data, namely a complex structure with vanishing torsion. It
is desirable to have a similar description of “holomorphic vector fields”
on a holomorphic manifold. A holomorphic vector field on a holomorphic
manifold is a (1, 0)-vector field Z such that Zf is holomorphic for every
local holomorphic function f . In local coordinates,

Z =
n∑

j=1

ξα
∂

∂zα

with ξα local holomorphic functions.
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A holomorphic vector field is not, in the sense of real manifolds, a vector
field on M . In spite of this it is often convenient to identify holomorphic
vector fields and certain real vector fields; the next two propositions make
this identification precise. The real counterpart of a holomorphic vector
field is an infinitesimal automorphism of a complex structure J , namely, a
vector field X for which the Lie derivative LXJ vanishes.

Proposition 2.12 A vector field X is an infinitesimal automorphism of
J if and only if [X, JY ] = J [X,Y ] for all Y . If X is an infinitesimal
automorphism of J , then JX is an infinitesimal automorphism if and only
if NJ(X,Y ) = 0 for all Y .

Proof By the Leibnitz rule, [X, JY ] = LX(JY ) = (LXJ)(Y ) + J [X,Y ]
for all Y , proving the first assertion. To prove the second assertion, note that
if X is an infinitesimal automorphism of J , then N(X,Y ) = 2

(
[JX, JY ]−

J [JX, Y ]
)
,

Proposition 2.13 Let M be a holomorphic manifold with induced complex
structure J . Then X is an infinitesimal automorphism of J if and only if
Z = X1,0 := (1/2)(X − iJX) is a holomorphic vector field. Furthermore,
the map X 7−→ X1,0 is an isomorphism of complex Lie algebras.

Exercises

Exercise 2.1 Consider the following descriptions of the complex projective
line P1:

• The unit sphere {(u, v, w) ∈ R3 | u2+v2+w2 = 1}, which is identified
with the “Riemann sphere” C ∪∞ by stereographic projection.

• Two copies of the complex line C suitably glued together. More pre-
cisely, let z0 and z1 be complex coordinates in the two copies of C,
and identify z0 with 1/z1. In this picture, the origin in each copy of
C is the point at infinity in the other copy.

• The set of non-zero pairs of complex numbers (Z0, Z1) ∈ C2 \ (0, 0),
with the equivalence relation (Z0, Z1) ∼ (W 0,W 1) if and only if
Z0W 1 = Z1W 0, i.e. the points (Z0, Z1) and (W 0,W 1) lie on the
same complex line through (0, 0). In other words, a point of P1 is a
line through the origin in C2.

Show that these three descriptions are equivalent by using the identification
z0 = Z0/Z1. (A sketch of the real points may be helpful.) Describe the
space of holomorphic vector fields on P1 in terms of each presentation;
determine, in particular, which vector fields correspond to rotations of the
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sphere. Describe the space of holomorphic 1-forms on P1 and the space of
meromorphic 1-forms dual to holomorphic vector fields. ⋄
Exercise 2.2 For a holomorphic manifold N , denote by H0(N,TN) the
space of holomorphic vector fields on N . Let Mi, i = 1, 2 be compact
holomorphic manifolds, M = M1 ×M2 their product. Prove that

H0(M,TM) ≃ H0(M1, TM1)⊕H0(M2, TM2).

Roughly, every vector field on M is uniquely the sum of a vector field on
M1 and a vector field on M2. Give examples to show that if compactness is
dropped then the result may or may not hold. ⋄
Exercise 2.3 Fix a complex number τ and a complex number α with
|α| > 1. The linear transformation

[
z1
z2

]
7−→

[
αz1 + τz2

αz2

]
=

[
α τ
0 α

] [
z1
z2

]

generates a properly discontinuous action of Z on C2\(0, 0) whose quotient
Xα(τ) is a complex surface, called a Hopf surface. Show that the Hopf sur-
face Xα(τ) is diffeomorphic to S1×S3 for every (α, τ). Find necessary and
sufficient conditions under which Xα(τ) and Xα′(τ ′) are biholomorphic.
Calculate the dimension d(α, τ) of the space of holomorphic vector fields
on Xα(τ). Show that d is upper semicontinuous, i.e. {(α, τ) | d(α, τ) ≥ c} is
closed for every c ∈ R. Describe the space of holomorphic 1-forms onXα(τ).
Essentially by construction, two Hopf surfaces are deformation equivalent,
but the dimension of the space of holomorphic vector fields “jumps” as the
parameters α and τ vary. ⋄
Exercise 2.4 Let Pn denote the space of complex lines through the origin
in Cn+1, with the holomorphic atlas J described in Example 1.7, and let
M be the underlying real 2n-dimensional smooth manifold. Prove that
complex conjugation on Cn+1 induces a diffeomorphism f : M →M such
that J ◦ f∗ = −J ; describe the fixed points of f . In other words, if P

n

denotes the holomorphic manifold whose charts are complex conjugates of
the standard charts, then Pn and P

n
are biholomorphic.

The diffeomorphism f preserves orientation if n = 2; in fact, it is known
that there is no holomorphic atlas on the smooth manifold underlying P2

that induces the orientation opposite to the standard orientation. Briefly,
“−P2 is not a holomorphic manifold.” ⋄
Exercise 2.5 Let Eτ be the elliptic curve associated to τ ∈ H, as in Ex-
ercise 1.5. Prove that Eτ is biholomorphic to Eτ if and only if 2Re τ is an
integer. This involves several easy arguments very much in the spirit of Ex-
ample 1.9. Products of suitable elliptic curves give examples of compact tori
for which M and M have the same orientation but are not biholomorphic.
⋄
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Exercise 2.6 Let C1 and C2 be compact, connected Riemann surfaces,
and let f : C1 → C2 be a non-constant holomorphic map. Prove that f
is onto, and that if f is one-to-one, then f is a biholomorphism. Prove
that there is a finite set R ⊂ C2 such that f restricted to f−1(C2 \ R)
is a covering map. Conclude that there is a positive integer d—the degree
of f—such that f is d-to-one except for a finite (possibly empty) subset of
C1.
Suggestion: Let R be the image of the set of critical points of f . ⋄

A branch point of a (non-constant holomorphic) map between Riemann
surfaces is a point p ∈ C1 at which f is not locally one-to-one (i.e. there
does not exist a neighborhood V of p with f |V one-to-one). The prototypical
branch point is the origin for the mapping z 7→ zn; if p is a branch point
of f and if f(p) = q, then there exist charts φ near p and ψ near q such
that ψ ◦ f ◦ φ−1(z) = zn for some integer n > 1 independent of φ and
ψ. The number n− 1 is called the ramification number or branching order
of f at p, and is zero except possibly at finitely many points. Consequently,
the total branching order b (the sum of all branching orders) is well-defined
when C1 is compact.

Exercise 2.7 Let f : C1 → C2 be a holomorphic map of Riemann surfaces.
Prove that branch points of f are exactly critical points, i.e. points where
df = 0. Assume further that C1 and C2 are compact Riemann surfaces of
respective topological genera g1 and g2, and that f has degree d. Prove the
Riemann-Hurwitz formula:

g1 = d(g2 − 1) + 1 +
b

2
. (2.8)

Conclude that g2 ≤ g1. Calculate the total branching order of a rational
function of degree d (by direct counting), regarded as a map P1 → P1, and
verify the Riemann-Hurwitz formula in this case.
Suggestion: TriangulateC2 so that every image of a critical point is a vertex,
then lift to C1 and compute the Euler characteristic. ⋄

Exercise 2.8 Let d be a positive integer, and let f : C3 → C be a the
Fermat polynomial f(Z0, Z1, Z2) = (Z0)d+(Z1)d+(Z2)d of degree d. The
zero locus C ⊂ P2 is a smooth curve. Find the Euler characteristic and
genus of C in terms of d.
Suggestion: Project away from [0 : 0 : 1] 6∈ C to get a branched cover of P1,
then use the Riemann-Hurwitz Formula. ⋄

Exercise 2.9 (A first attempt at meromorphic functions) Let M be a
holomorphic manifold, and x ∈ M . A “meromorphic function” is given in
a neighborhood U of x as the quotient of a pair of holomorphic functions
φ0, φ∞ : U → C with φ∞ not identically zero. Show that a meromorphic
function on a Riemann surface may be regarded as a holomorphic map
to P1; Exercise 1.4 may be helpful. There is no general analogue of this
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assertion if M has dimension at least two; on C2, it is impossible to extend
z1/z2 to the origin even if ∞ is allowed as a value. Meromorphic functions
are defined precisely in Chapter 6. ⋄
Exercise 2.10 The great dodecahedron is the regular (Keplerian) polyhe-
dron, not embedded in R3, whose 1-skeleton is that of a regular icosahedron
and whose twelve regular pentagonal faces intersect five at a vertex. The
edges of a single face are the link of a vertex of the 1-skeleton. Realize the
great dodecahedron as a three-sheeted cover of the sphere (P1) branched
at twelve points, and use the Riemann-Hurwitz formula to compute the
genus. ⋄
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3

Sheaves and Vector Bundles

A holomorphic function on a domain in C determines a collection of power
series, each of which contains, in “pointwise” form, local information about
the function. For this reason, a power series is called a “germ” of an an-
alytic function. The concept of a sheaf is motivated by this picture, and
provides a powerful bookkeeping tool for patching together global data from
local data. This is due principally to existence of cohomology theories with
coefficients in a sheaf and the attendant homological machinery. Many geo-
metric objects (line bundles and infinitesimal deformations of pseudogroup
structures, for example) can be expressed in terms of higher sheaf coho-
mology. Additionally, there are theorems that relate sheaf cohomology to
de Rham or singular cohomology, and theorems that guarantee vanishing
of sheaf cohomology under various geometric hypotheses. These are used
to extract isomorphisms from long exact sequences, thereby expressing so-
lutions to geometric questions in algebraic or topological terms that can be
computed.

3.1 Presheaves and Morphisms

Let X be a paracompact Hausdorff space. A presheaf F of Abelian groups
over X is an association of an Abelian group F(U) to each open set U ⊂ X
and of a “restriction” homomorphism ρ

UV
: F(U) → F(V ) for each pair

V ⊂ U of nested open sets, subject to the compatibility conditions

ρ
UU

= Identity, ρ
VW

ρ
UV

= ρ
UW

if W ⊂ V ⊂ U.
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The notation F follows the French faisceau. An element s ∈ F(U) is a
section of F over U ; elements of F(X) are global sections of F . It is useful to
allow the group F(U) to be empty (as opposed to trivial), as in Example 3.4
below.

Remark 3.1 Associated to a topological space (X,G) is a category G whose
objects are open sets and whose morphisms are inclusions of open sets. A
presheaf of Abelian groups on X is then a contravariant functor from G to
the category of Abelian groups and group homomorphisms. Some find this
point of view illuminating.

It is often useful to consider presheaves of commutative rings or algebras;
these are defined in the obvious way. Further, a presheaf M of modules over
a presheaf R of rings is an association, to each open set U , of an R(U)-
module M(U) in a manner compatible with restriction maps; for obvious
reasons, the coefficient ring should depend on the open set U .

There is nothing in the definition to force the “restriction maps” to be
actual restriction maps. However, with the exception of Example 3.6 below,
“restriction” will be taken literally in the sequel, and restriction maps will
be denoted with more standard notation.

Example 3.2 The simplest presheaves over X are constant presheaves G,
whose sections are locally constant G-valued functions. In other words, if G
is endowed with the discrete topology, then a section of G is a continuous,
G-valued function.

The presheaf C0
X of continuous (complex-valued) functions is defined by

taking C0
X(U) to be the space of complex-valued, continuous (with respect

to the usual topology on C) functions on U . IfM is a smooth manifold, then
ArM denotes the presheaf of smooth r-forms; it is customary to write AM
instead of A0

M . These are all presheaves of rings. A surprisingly interesting
example is the presheaf A×

M of non-vanishing smooth functions, which is
a presheaf of Abelian groups under pointwise multiplication of functions.
2

Example 3.3 Let (M,J) be a complex manifold. The presheaf of smooth
(p, q)-forms on M is denoted A

p,q
M . If M is holomorphic, then the ∂̄ operator

is a morphism of presheaves, ∂̄ : A
p,q
M → A

p,q+1
M , and the kernel—consisting

of ∂̄-closed (p, q)-forms—is denoted Zp,q. The presheaf of local holomorphic
functions is denoted OM , and the presheaf of local holomorphic p-forms is
denoted ΩpM . 2

Example 3.4 Let π : Y → X be a surjective mapping of topological
spaces. The presheaf of continuous sections of π associates to each open
set U ⊂ X the (possibly empty) set Γ(U) of continuous maps s : U → Y
with π ◦ s = Identity. The presheaf restrictions are the ordinary restriction
maps. Generally there is no algebraic structure on Γ(U). 2

A morphism φ of presheaves is a collection of group homomorphisms
φ(U) : F(U) → E(U) that are compatible with the restriction maps. A



3.1 Presheaves and Morphisms 28

morphism is injective if each map φ(U) is injective. The kernel of a presheaf
morphism is defined in the obvious way. Surjectivity and cokernels are more
conveniently phrased with additional terminology, and are discussed later,
see also Exercise 3.1.

Example 3.5 Suppose f : X → Y is a continuous map of topological
spaces and E is a presheaf on X . The pushforward of E by f is the presheaf
on Y defined by f∗E(V ) = E(f−1(V )). If F is a presheaf on Y , the pullback
is the presheaf on X defined by f∗F(U) = F

(
f(U)

)
. 2

Let U = {Uα}α∈I be a family of open sets. Intersections will be denoted
by multiple subscripts; thus Uαβ = Uα∩Uβ , for example. A presheaf overX
is complete if two additional properties are satisfied:

i. For every open set U ⊂ X , if s, t ∈ F(U) and s|
V

= t|
V
∈ F(V ) for all

proper open sets V ⊂ U , then s = t ∈ F(U). In words, sections are
determined by their values locally.

ii. For every open set U ⊂ X , if U = {Uα} is a cover of U by open sets,
and if there exist compatible sections sα ∈ F(Uα), i.e. such that

sα|Uαβ
= sβ |Uαβ

whenever Uα ∩ Uβ is non-empty,

then there is a section s ∈ F(U) with s|
Uα

= sα for all α. In words,

compatible local data may be patched together.

The presheaves described in Examples 3.2–3.4 are complete. Example 3.6
below shows how each of these axioms may fail.

There is a natural way of “completing” an arbitrary presheaf. Associated
to a presheaf F overX is a sheaf of germs of sections, which is a topological
space equipped with a surjective local homeomorphism to X . The inverse
image of a point x ∈ X is called the stalk at x, and is defined to be the
direct limit

Fx = lim
−→
x∈U
F(U). (3.1)

To elaborate on this definition, note that the set of neighborhoods of x
forms a directed system under inclusion of sets, and because restriction
maps satisfy a compatibility (or functoriality) condition, it makes sense to
declare s ∈ F(U) to be equivalent to t ∈ F(V ) if there is a neighborhood
W ⊂ U ∩ V of x with s|W = t|W . The stalk Fx is the set of equivalence
classes—or germs. Any algebraic structure possessed by the spaces F(U)
will be inherited by the stalks.

Let F =
⋃
x∈X Fx be the union of the stalks. A basis for a topology

on F is defined as follows: For each open set U ⊂ X , there is a natural
map F(U) →

⋃
x∈U Fx that maps a section s ∈ F(U) to the set of germs

{sx ∈ Fx : x ∈ U}. The image of such a map is declared to be a basic open
set. The projection map π : F → X sending each stalk Fx to x ∈ X is a
local homeomorphism.
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A sheaf is a complete presheaf. The “completion” process just described1

associates a sheaf to an arbitrary presheaf. The presheaf of continuous sec-
tions of the completion is isomorphic to the original presheaf, so it usually
unnecessary to be scrupulous in distinguishing a presheaf and its comple-
tion.

Example 3.6 There are presheaves that fail to satisfy each of the com-
pleteness axioms. Let X = R with the usual topology, and let C(U) denote
the set of complex-valued functions on U . Define ρ

UV
to be the zero map

if V is a proper subset of U . This defines a presheaf C that fails to satisfy
axiom i. Intuitively, the restriction maps of C lose local information.

If B is the presheaf of bounded holomorphic functions over C, then B
fails to satisfy axiom ii: If Un denotes the disk of radius n centered at 0 ∈ C,
then the function z lies in B(Un) for every n, but these local functions do
not give a globally defined bounded function. Intuitively, this presheaf is
defined by non-local information. The completion of B is OC, whose stalk
at z0 is the ring OC,z0 of locally convergent power series centered at z0.
2

Remark 3.7 Some authors define a sheaf to be a topological space F to-
gether with a surjective local homeomorphism to X satisfying additional
conditions. This is an especially useful point of view in algebraic geome-
try, but for the relatively naive purposes below, the concrete definition is
simpler.

A morphism φ of sheaves of Abelian groups over X is a continuous map
φ : E → F of topological spaces that maps stalks homomorphically to
stalks. A morphism of sheaves of Abelian groups is injective/surjective (by
definition) if and only if φ is injective/surjective on stalks. The quotient of
a sheaf by a subsheaf is similarly defined on stalks. Sheaves of appropriate
algebraic structures may be direct summed, tensored, dualized, and so on.

A sequence S φ−→ F ψ−→ Q is exact at F if the image of φ is equal to the
kernel of ψ.

Example 3.8 For a complex-valued function f , set Exp (f) = e2π
√
−1f . If

M is a smooth manifold, then the sequence

0 −→ Z
i−→ A

Exp−→ A× −→ 0 (3.2)

is exact. If M is a holomorphic manifold, there is a short exact sequence

0 −→ Z
i−→ O Exp−→ O× −→ 0 (3.3)

called the exponential sheaf sequence. These sequences are geometrically
important in view of the cohomological interpretation of line bundles dis-
cussed later. 2

1Sometimes called “sheafification,” from the verb “to sheafify.”
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Let M be a holomorphic manifold. An analytic sheaf on M is a sheaf of
OM -modules. An analytic sheaf F is finitely generated if there is an exact
sequence

⊕kOM → F → 0, and is coherent if, in addition, the kernel of
the first map is finitely generated, that is, there is an exact sequence

⊕ℓOM →
⊕kOM → F → 0.

It is perhaps worth emphasizing that these sequences are essentially local,
in the sense that exactness holds only at the level of stalks. Thus a finitely
generated analytic sheaf has the property that for every x ∈ M , there is
an open neighbourhood U such that

⊕kOM (U)→ F(U)→ 0 is an exact
sequence of Abelian groups.

Example 3.9 Let Y ⊂ X be a closed subspace. If F is a sheaf of Abelian
groups on Y , then there is a sheaf on X obtained by extending by zero; to
each open set U ⊂ X , associate the Abelian group F(U ∩ Y ) when this
intersection is non-empty, and associate the trivial Abelian group otherwise.

An important special case is when Y is a closed complex submanifold
of a holomorphic manifold M . The ideal sheaf IY is the subsheaf of OM
consisting of germs of holomorphic functions that vanish on Y . The quotient
OM/IY is the extension by zero of OY . Both of these sheaves are coherent.
2

A coherent analytic sheaf E is locally free if each x ∈ M has a neigh-
borhood U such that E(U) is a free OM (U)-module. In other words, each
stalk Ex is isomorphic to a direct sum of finitely many copies of OM,x.
Locally free sheaves are closely related to holomorphic vector bundles, see
Example 3.10.

Coherent analytic sheaves are basic tools in algebraic geometry, several
complex variables, and—to an increasing extent—differential geometry. As
a category, coherent sheaves behave better than locally free sheaves. Ker-
nels, images, quotients, and pushforwards of coherent sheaves are coherent,
while analogous assertions about locally free sheaves are generally false
because ranks of morphisms can vary from point to point.

3.2 Vector Bundles

Intuitively, a vector bundle over a smooth manifold M may be regarded
as a family of vector spaces (fibres) parametrized by points of the mani-
fold. The family is required to satisfy a “local triviality” condition which,
among other things, implies that over each component of M the fibres are
all isomorphic. A vector bundle is said to be real or complex, of rank k,
according to the nature of the fibres.

Precisely, a complex vector bundle of rank k over a smooth manifold M
is a smooth submersion p : E →M of smooth manifolds with the following
properties:
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i. For each x ∈M , Ex := p−1(x) ≃ Ck.

ii. For each x ∈ M , there exists a neighborhood U of x and a diffeomor-
phism ϕ : p−1(U)→ U ×Ck, called a vector bundle chart, such that
p ◦ ϕ−1 is projection on the first factor.

iii. If (ϕα, Uα) and (ϕβ , Uβ) are vector bundle charts at x, then the overlap
map ϕβ ◦ ϕ−1

α |Uαβ
: Uαβ ×Ck → Uαβ ×Ck is given by

(x, v) 7→
(
x, gαβ(x)v

)
, gαβ : Uαβ → GL(k,C);

the smooth, matrix-valued function gαβ is called the transition func-
tion from Uα to Uβ . Observe that by definition,

gβα = g−1
αβ , and gαβ gβγ gγα = Ik on Uαβγ . (3.4)

The manifold M is the base space of the vector bundle, and E is the total
space. Though it is not unusual to speak of “the vector bundle E,” this
abuse of language can be substantially imprecise unless the projection map
is dictated by context; logically preferable is “the vector bundle p,” though
this is almost never followed. If p : E →M is a complex vector bundle over
a holomorphic manifold and the transition functions are holomorphic maps
into the complex Lie group GL(k,C), then p : E → M is a holomorphic
vector bundle. In this case, the total space E is a holomorphic manifold,
and the projection p is a holomorphic submersion.

The simplest vector bundles are presented as collections of charts and
transition functions; examples are given in the exercises. Other useful ex-
amples, such as tangent bundles or tautological bundles, can be described
geometrically but transition functions are tedious to write explicitly. For a
generic holomorphic vector bundle, a description may consist of little more
than the topological type of the underlying smooth vector bundle.

Example 3.10 Let p : E → M be a holomorphic vector bundle. The
presheaf of local holomorphic sections gives rise to a locally free analytic
sheaf. Conversely, a locally free analytic sheaf E determines a holomorphic
vector bundle whose presheaf of sections induces the original sheaf. To
accomplish the latter, choose sections {ej}kj=1 in E(U) that generate E(U)
as an OM (U)-module, and use the correspondance

k∑

j=1

ajej

∣∣∣
z
∈ Ez 7−→

(
z, a1(z), . . . , ak(z)

)
∈ U ×Ck. (3.5)

As a first approximation, coherent sheaves may be regarded as families of
vector spaces whose fibre dimension “jumps” from point to point, as in
Example 3.9. 2

Example 3.11 Let M be a holomorphic manifold, and let TM denote
the (real) tangent bundle of the underlying smooth manifold. The bundle
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T 1,0M ⊂ TM ⊗C is a holomorphic vector bundle, called the holomorphic
tangent bundle of M , whose underlying complex vector bundle is complex-
linearly isomorphic to TM endowed with the natural complex structure.

The tensor bundles
⊗p T 1,0M and

∧p T 1,0M are holomorphic, while∧q
T 0,1M is merely smooth. Since the composite of anti-holomorphic maps

is not anti-holomorphic, there is no notion of an “anti-holomorphic” vector
bundle. 2

A morphism of vector bundles over M (or a vector bundle map) is a map
φ : E → F of smooth manifolds that is linear on fibres and is compatible
with the projection maps. The kernel, cokernel, and image of a vector
bundle map are defined in the obvious way. However, these families of vector
spaces are not generally vector bundles; the fibre dimension may vary from
point to point. Two vector bundles E and E′ over M are isomorphic if
there is a vector bundle map from E → E′ that is an isomorphism on
fibres.

It is sometimes useful to consider maps between vector bundles over dif-
ferent base spaces. In this case, it is necessary to have compatible mappings
of the total spaces and the base spaces, of course. The prototypical example
is the “pullback” of a vector bundle under a smooth map. Let p : E →M
be a vector bundle, and let f : M ′ → M be a smooth map. There is a
pullback vector bundle f∗E →M ′, whose total space is defined to be

f∗E = {(x, v) ∈M ′ × E | f(x) = p(v)} ⊂M ′ × E, (3.6)

with projection induced by projection on the first factor. The fibre of f∗E
over x ∈ M ′ is the fibre Ef(x) of E over f(x), and the isomorphism class
of f∗E is determined by the homotopy class of the map f .

Remark 3.12 An important result of algebraic topology—of which only a
very special case is given here—is that for each positive integer k, there
exists a “classifying space” Gk and a “universal bundle” Uk → Gk with
the following property: For every smooth, rank k vector bundle p : E →M
over a finite-dimensional smooth manifold, there is a “classifying map”
ψ : M → Gk such that E = ψ∗ Uk, and the classifying map is unique up to
smooth homotopy. Roughly, rank-k vector bundles over M are in natural
one-one correspondance with homotopy classes of smooth maps M → Gk.
One way of constructing the classifying space is via “infinite-dimensional
Grassmannians” (see Exercise 3.12 and Chapter 9).

For i = 1, 2, let pi : Ei →M be a complex vector bundle of rank ki over
a smooth manifold. Very loosely, a “differential operator” is a linear map
D : A0(E1) → A0(E2) that, when expressed with respect to a chart, is a
differential operator in the usual sense between k1-tuples of functions and
k2-tuples of functions. The order of the local representative is independent
of the choice of vector bundle charts.

For the relatively naive purposes here, a few elementary examples will
suffice as illustration. Let M be a smooth manifold. For each integer r ≥ 0,
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the exterior derivative d : Ar → Ar+1 is a first-order differential operator,
which in local coordinates satisfies d(f dxI) = df ∧ dxI . In this example,

E1 =
∧r T ∗M and E2 =

∧r+1 T ∗M . If M is a holomorphic manifold,
then the operators ∂ and ∂̄ are similarly first-order differential operators.
As with the exterior derivative, differential operators are often specified by
their action on local sections. It is necessary in such an event to check that
local expressions of sections “transform” correctly, i.e. are independent of
chart. This is illustrated by the second example, which is elementary, but
of sufficient importance to deserve special mention.

Proposition 3.13 Let p : E → M be a holomorphic vector bundle. Then
there is a differential operator ∂̄ : Ap,q(E) → Ap,q+1(E) acting on (p, q)-
forms with values in E.

Proof Let U ⊂M be a trivializing neighborhood for E, and let {ej}kj=1

be a local holomorphic frame over U . Every holomorphic frame {ej ′}kj=1

over U is of the form ẽi = gji ej for a non-singular matrix (gji ) of holomorphic
functions on U . Let

s =
k∑

j=1

sjej =
k∑

i,j=1

s̃igji ej =
k∑

i=1

s̃iẽi

be a local smooth section of
∧p,q ⊗E. The expression ∂̄s =

∑k
j=1 ∂̄s

j ⊗ ej ,

which is a local section of
∧p,q+1⊗E, is independent of the choice of frame.

Indeed, gji is holomorphic in U , i.e. ∂̄gji = 0, so

k∑

i=1

∂̄s̃i ⊗ ẽi =

k∑

i,j=1

∂̄s̃i ⊗ gji ej =

k∑

i,j=1

(∂̄s̃i)gji ⊗ ej

=

k∑

i,j=1

∂̄(s̃igji )⊗ ej =

k∑

j=1

∂̄sj ⊗ ej.

It follows that ∂̄s is independent of vector bundle charts.

The philosophical content of Proposition 3.13 is that holomorphic func-
tions are constant with respect to ∂̄, so if E →M is a holomorphic vector
bundle, then there is an induced map on forms with values in E. There
is no natural analogue of the exterior derivative d for forms with values
in E because the only “d-constant” functions are genuine constants. It is
clear that ∂̄2 = 0 as a differential operator acting on E-valued forms. This
gives rise to a cohomology theory, studied in Chapters 4 and 8. There is
no analogue for the ∂ operator because “∂-constant” functions are anti-
holomorphic, and the set of anti-holomorphic functions does not form a
pseudogroup.

The theory of differential operators on manifolds is vast and deep. A cor-
nerstone is the “Atiyah-Singer Index Theorem” for elliptic operators, which
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expresses the index (dimension of kernel minus dimension of cokernel) of
certain differential operators in terms of integrals over M of cohomology
classes depending on the operator. In many cases of interest, these classes
may be effectively computed. Hodge Theory is the prototypical application
of the theory of differential operators, see Chapter 8.

Exercises

Exercise 3.1 Consider the condition: “For every open set U ⊂ X , the map
φ(U) : S(U) → F(U) is a surjective homomorphism of Abelian groups.”
Explain carefully how this condition differs from surjectivity for a presheaf
morphism. It may be helpful to consider the map Exp in the exponential
sheaf sequence, which is surjective as a presheaf morphism but does not
generally satisfy the condition above. ⋄

Holomorphic Line Bundles Over P
1

Exercises 3.2–3.7 introduce several holomorphic line bundles over P1. It
will be shown later that holomorphic line bundles over P1 are completely
determined by an integer called their degree.

The holomorphic line bundle of degree k ∈ Z over P1 is constructed ex-
plicitly as follows. Using the standard atlas, take two “trivial” families over
U0 and U1 with coordinates (z0, ζ0) and (z1, ζ1)—zi is the base coordinate
and ζi is the fibre coordinate over Ui—and “glue them together” over the
set C× = P1 \ {0,∞} by the identification

z0 =
1

z1
, ζ0 =

ζ1

(z1)k
. (3.7)

This line bundle is usually denoted OP1(k), or simply O(k) for brevity.
The total space Hk of O(k) is the identification space; thus Hk consists of
the disjoint union U0 ⊔ U1 of two copies of C2 = C × C, with respective
coordinates (z0, ζ0) and (z1, ζ1), which have been glued together along
C× ×C according to (3.7). The transition function from z0 to z1 is

g01(z
0) =

1

(z0)k
;

the other is g10(z
1) = 1/(z1)k. A holomorphic section ofO(k) is represented

by holomorphic functions ζ0 = f0(z
0) and ζ1 = f1(z

1) with

g01(z
0)f0(z

0) = f1(z
1). (3.8)

Every bundle has a trivial section, given by ζi = 0; the graph of this section
is often called the zero section. If there are no other sections, the bundle is
said to have no sections.
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Exercise 3.2 Find all holomorphic sections of O(k). The projection map
p : Hk → P1 is defined by sending (zi, ζi) to zi. Check that this map is well-
defined, that Hk is a holomorphic manifold, and that a holomorphic section
of O(k) is a holomorphic map σ : P1 → Hk that satisfies p ◦ σ = Identity
on P1. In other words, a section is a (holomorphic) choice of point in each
fibre. ⋄

Exercise 3.3 Find the value of k for which O(k) is the bundle of holomor-
phic 1-forms on P1. (Suggestion: Use the identifications ζ0dz0 ↔ (z0, ζ0)
and −ζ1dz1 ↔ (z1, ζ1).) Answer the same question for the tangent bundle
of P1. ⋄

Exercise 3.4 For each point [Z] in P1, let ℓ[Z] be the line in C2 represented
by this point. Show that the family {ℓ[Z] : [Z] ∈ P1} may be regarded as a
holomorphic line bundle in the following manner: Set

L = {([Z], ζ) ∈ P1 ×C2 | ζ ∈ ℓ[Z]},

with projection to the first factor. This holomorphic line bundle is called
the tautological bundle. Find k such that L = O(k). Use the fact that a
holomorphic map s : P1 → C2 must be constant to show that L has no
sections (cf. Exercises 3.2 and 1.2). ⋄

Exercise 3.5 (Blowing up) In the notation of Exercise 3.4, let π : L→ C2

be the projection on the second factor. Show that π maps the zero section
of L to the origin (0, 0), and that π maps the complement of the zero section
biholomorphiocally to C2 \ (0, 0). Thus, the total space of L is obtained
from C2 by removing the origin and gluing in a P1; the geometric effect
is to give each line through (0, 0) a distinct origin. The total space of L is
called the blow-up of C2 at the origin. ⋄

Exercise 3.6 Let [Z0 : Z1 : Z2] be homogeneous coordinates on P2. The
projection map p : [Z0 : Z1 : Z2] 7→ [Z0 : Z1 : 0] is defined everywhere
except at the point [0 : 0 : 1], and the image is the P1 in P2 with equation
Z2 = 0 (see also Exercise 1.1). Let H = P2 \ [0 : 0 : 1]. Show that
p : H → P1 is a holomorphic line bundle, and find the corresponding
value of k. Show that the space of holomorphic sections is the set of linear
functions {a0Z

0 +a1Z
1 | ai ∈ C}. ⋄

Exercise 3.7 Let L be the tautological bundle (Exercise 3.4), and H the
hyperplane bundle (Exercise 3.6). Show that H×—the complement of the
zero section of H—is biholomorphic to C2 \ (0, 0), which is biholomorphic
to L× by Exercise 3.5. Find an analogous statement for the bundles O(k)
and O(−k). Prove that O×(k) is the quotient of H× by the action of a
cyclic group of order k. ⋄

Let U = {Uα}nα=0 be the standard atlas on Pn. The line bundle OPn(k)
is defined by the transition functions gαβ([z]) = (zβ/zα)k.
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Exercise 3.8 Show that the line bundle L = OPn(−1) is the tautological
bundle, that is, the subbundle of L ⊂ Pn×Cn+1 whose fibre at [Z] ∈ Pn is
the line ℓZ ⊂ Cn+1 through 0 and Z. Let Symd

n denote the space of homoge-
neous polynomials of degree d on Cn. Verify that the space of holomorphic
sections of OPn(k) is equal to Symk

n+1 if k ≥ 0 and is trivial otherwise. In
particular, the homogeneneous coordinate functions are sections of the line
bundle H = L∗. ⋄

Projectivization, Tautological Bundles, and Blowing Up

Let p : E → M be a holomorphic vector bundle of rank r > 1 over a
compact complex manifold. The group C× acts by scalar multiplication in
the fibres on the total space of E, and the action is free on the complement
E× of the zero section.

Exercise 3.9 Prove that the quotient space P(E) = E×/C×—called the
projectivization of E—is a compact holomorphic manifold, and that the
projection p : E → M factors through the quotient map. The induced
map π : P(E) → M is a fibre bundle projection whose fibres are projec-
tive spaces. Show that if L is a line bundle over M , then P(E ⊗ L) is
biholomorphic to P(E). ⋄

With notation as in Exercise 3.9, consider the rank r vector bundle
π∗E → P(E). A point of P(E) is represented by a point x ∈ M and a
line ℓx in the fibre Ex. Let τE ⊂ π∗E be the line subbundle whose fibre is
the line ℓx. The bundle τE is called the tautological bundle of E (cf. Exer-
cise 3.8, where M is a point).

Exercise 3.10 Prove that the restriction of τE to a fibre of P(E) is a
tautological bundle over a projective space. Let ̟ : L → M be a line
bundle. Prove that the tautological bundle of E ⊗ L is τE ⊗ ̟∗L. (This
equation involves a minor abuse of notation.) Prove that E× and τ×E are
biholomorphic; in other words, the complement of the zero section in E
is the same as the complement of the zero section of τE . The total space
of τE is said to be obtained from the total space of E by blowing up the
zero section. ⋄
Exercise 3.11 Let O denote the trivial line bundle overM . Prove that the
total space of E embeds in P(E ⊕ O)—the completion of E—as an open,
dense submanifold. Describe the complement of E in P(E⊕O). ⋄

Grassmannian Manifolds

Let 0 < k < n be integers. The set of k-dimensional linear subspaces
of Cn can be made into a compact complex manifold, called the (complex)
Grassmannian Gk(C

n) = Gk,n. Consider first the Stiefel manifold Sk,n of
k-frames in Cn, which may be realized as the open set in Cn×k consisting



3.2 Vector Bundles 37

of matrices of rank k. The group GL(k,C) acts by right multipication,
and an orbit of this action is exactly the set of frames that span a fixed
subspace. The Grassmannian is defined to be the quotient Sk,n/GL(k,C)
with the quotient topology. Observe that G1,n+1 = Pn.

Exercise 3.12 Prove that the Grassmannian Gk,n has the structure of
a compact holomorphic manifold, and that the tangent space at W ⊂ Cn

is Hom(W,Cn/W ). (Intuitively, the subspace W can be perturbed in the
transverse directions, and these are parametrized by Cn/W ; see also equa-
tion (3.9) below. This description is preferable to taking the orthogo-
nal complement with respect to an inner product, as the latter is “non-
holomorphic,” see also Exercise 3.14.) ⋄
Exercise 3.13 Let Uk,n → Gk,n be the universal (k-plane) bundle, that
is, the subbundle of Gk,n ×Cn whose fibre at W ∈ Gk,n is W . If Q is the
quotient bundle in the exact sequence 0 → Uk,n → Gk,n ×Cn → Q → 0,
prove that

TGk,n = Hom(Uk,n, Q). (3.9)

In particular, there is a surjection OPn(1) ⊗ Cn+1 → TPn of holomor-
phic vector bundles. Describe the kernel, and use this description to show
that the holomorphic manifolds P(TPn) and Pn×Pn−1 are diffeomorphic.
(They are not deformation equivalent, much less biholomorphic.) ⋄
Exercise 3.14 Show that the Euclidean inner product on Cn induces a
diffeomorphism Gk,n ≃Gn−k,n that associates a k-plane to its orthogonal
complement, but that this map is not a biholomorphism.

Let V be a complex vector space of dimension n. Prove that Gk(V ) and
Gn−k(V ∗) are biholomorphic. Show that if f : V → V0 is a vector space
isomorphism with inverse φ, then the induced maps

f : Gk(V )→ Gk(V0) and φ : Gn−k(V
∗)→ Gn−k(V

∗
0 )

are compatible with the respective biholomorphisms. ⋄
The construction of the Grassmannian and universal bundle is functorial

(see Exercise 3.12); it therefore makes sense to form bundles of Grass-
mannians from vector bundles, and to take universal bundles over bundles
of Grassmannians. There are useful notions of “blowing up” that can be
defined using these ideas. For example, if f : N → M is a holomorphic
immersion, then the Gauss map of f is the map f̂ : N → Gk(TM) that
sends a point x to f∗TxN ⊂ Tf(x)M , the tangent space of its image. The

Nash blow-up of f is closure of the graph of f̂ . Geometrically, the Nash
blow-up separates points of N that are mapped to the same point of M
but with different tangent spaces.
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4

Cohomology

Sheaves are a natural tool for piecing together global data (e.g. holomor-
phic functions) from local data (e.g. germs). Potential obstructions to the
possibility of patching are measured by Čech cohomology, which is ap-
proximated by the simplicial cohomology of the “nerve” of a locally finite
open cover. Dolbeault cohomology, by contrast, is the complex analogue of
de Rham cohomology on a complex manifold. There is a salient difference
between Dolbeault and de Rham theories, however: Dolbeault cohomology
of a manifold M depends on the holomorphic structure and not merely on
the topology, even (possibly) when M is compact.

The Dolbeault Theorem (Theorem 4.11 below) asserts the isomorphism
of certain Čech and Dolbeault spaces. Coupled with the Hodge Decom-
position on compact “Kähler” manifolds, the Dolbeault isomorphism al-
lows calculation of sheaf cohomology, and forges a powerful link between
complex analysis (sheaves), differential geometry (Dolbeault theory), and
topology (singular theory).

4.1 Čech Cohomology

Let X be a paracompact Hausdorff space. To a locally finite open cover
U = {Uα}α∈I is associated a simplicial complex, the nerve of U , whose
r-simplices are non-empty (r + 1)-fold intersections of sets in U . As usual,
multiple subscripts denote intersections of sets. The typical r-simplex is
denoted Uα0···αr

.
Let F be a sheaf of Abelian groups (written additively) over X . A Čech
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r-cochain with values in F is a collection of sections fα0···αr
∈ F(Uα0···αr

),
one for each ordered (r+1)-tuple of indices. The (r+1)! sections associated
to a fixed r-simplex are assumed to be completely skew-symmetric in their
indices. The group of r-cochains is denoted Cr(U ,F).

The coboundary operator δr : Cr(U ,F)→ Cr+1(U ,F) is defined by

(δrf)α0···αr+1
=

r+1∑

j=0

(−1)jρj fα0···cαj ···αr+1
;

here ρj denotes the presheaf restriction from the r-simplex Uα0···cαj ···αr+1

to the (r + 1)-simplex Uα0···αr+1
. The group of Čech cocycles Zr(U ,F) is

defined to be the kernel of δr, and the group of Čech coboundaries Br(U ,F)
is the image of δr−1. The usual calculation shows that δr δr−1 = 0, so
every coboundary is a cocycle, and the r-dimensional cohomology of U
with coefficients in F is defined to be Hr(U ,F) = Zr(U ,F)/Br(U ,F).

The term “higher” cohomology refers to cohomology in dimension greater
than zero. The zero-dimensional Čech cohomology of an open cover is in-
dependent of the cover, a simple fact of recurring importance.

Proposition 4.1 Let F → X be a sheaf of Abelian groups over a para-
compact Hausdorff space. For every cover U of X by open sets, the zero-
dimensional cohomology H0(U ,F) is naturally isomorphic to the group
H0(X,F) of global sections of F .

Proof The coboundary operator δ0 sends a 0-cochain f = {fα} to the
1-cochain

δ0f = {(δ0f)αβ}, (δ0f)αβ = fα|Uαβ
− fβ |Uαβ

.

Consequently, a 0-cocycle is exactly a compatible collection of local sec-
tions.

A refinement of U is an open cover V = {Vβ}β∈J together with a map
µ : J → I of index sets such that Vβ ⊂ Uµ(β) for all β ∈ J . Every refinement
induces a map µr on r-cochains by “including open sets into U , evaluat-
ing cochains, and restricting.” These maps commute with the respective
coboundary maps, so there is an induced map µ∗

r in cohomology. The hope
is to define the r-dimensional Čech cohomology of X with coefficients in F
as the direct limit over successive refinements, Hr(X,F) = limHr(U ,F).
This is sensible because different refinement maps between V and U induce
the same map in cohomology:

Proposition 4.2 Let τ, µ : J → I be refinements. Then τ∗r = µ∗
r for all

r ≥ 0.

Proof (Sketch) Let σ = Vβ0···βr−1
be an (r − 1)-simplex of V . For each

index j = 0, . . . , r − 1, let σ̃j be the r-simplex

σ̃j = Vµ(β0) ∩ · · · ∩ Vµ(βj) ∩ Vτ(βj) ∩ · · · ∩ Vτ(βr−1),
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and define hr : Cr(U ,F) → Cr−1(V ,F) by “refining, evalutaing cochains
on σ̃j , and taking the alternating sum.” An involved but straightforward
calculation shows that {hr} is a homotopy operator, that is,

hr+1 ◦ δr + δr−1 ◦ hr = τr − µr
as maps on cochains. As usual, this shows the induced maps on cohomology
coincide.

In order to have a computable theory, it is necessary to have criteria for an
open cover under which the map to the direct limit is an isomorphism, or to
have theorems which relate Čech cohomology to other cohomology theories
(e.g. singular or de Rham). Such a criterion can be given immediately, and
useful isomorphism theorems will be developed presently.

A locally finite open cover U is acyclic or Leray for the sheaf F if ev-
ery simplex in the nerve of U has trivial higher cohomology with coef-
ficients in F . The following general result, due to Leray, is proven after
Theorem 4.11 below in the special case F = Ωp, the sheaf of germs of
holomorphic p-forms.

Theorem 4.3 If U is an acyclic cover of X for the sheaf F , then the
map to the direct limit induces an isomorphism from Hr(U ,F) to the Čech
cohomology Hr(X,F).

Let X be a simplicial complex. For every Abelian group G, the Čech
cohomology Hr(X,G) of X with coefficients in the constant sheaf G is
isomorphic to the r-dimensional simplicial cohomology of X . The idea is to
associate a locally finite open cover to the simplicial complex, in an inverse
procedure to forming the nerve of a cover. This is accomplished by taking,
for each simplex σ, the interior of the union of all simplices incident on σ.
The combinatorics of the simplicial complex are the same as that of the
resulting cover.

The topological space underlying an arbitrary smooth manifold admits
the structure of a simplicial complex (“every smooth manifold is trian-
gulable”). Further, the simplicial cohomology of a simplicial complex is
isomorphic to the singular cohomology of the underlying topological space.
The observation of the previous paragraph implies the following.

Proposition 4.4 Let G be an Abelian group, and let G → X be the as-
sociated constant sheaf over a compact smooth manifold. Then the Čech
cohomology Hr(X,G) is isomorphic to the r-dimensional singular coho-
mology of X with coefficients in G.

Let F be a sheaf of Abelian groups on X . A partition of unity of F sub-
ordinate to a locally finite open cover U is a collection of sheaf morphisms
{ηα}α∈I such that

i. ηα is the zero map on a neighborhood of X \Uα (i.e. is supported in Uα),
and
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ii.
∑
α∈I

ηα is the identity map of F .

A sheaf admitting a partition of unity subordinate to every locally finite
open cover of X is fine.

Theorem 4.5 If F is a fine sheaf over X, then Hr(X,F) = 0 for r ≥ 1.

Proof (Sketch) It suffices to prove that Hr(U ,F) = 0 for every locally
finite open cover. Take a subordinate partition of unity {ηβ}. If f is an
r-cochain, then set

(hrf)α0···αr−1
=
∑

β∈I
ηβ(fβα0···αr−1

),

where ηβ(fβα0···αr−1
) has been extended to Uα0···αr−1

by zero off the support
of ηβ . (It is an instructive exercise to write h1f explicitly.) A straightfor-
ward calculation shows that hr+1 ◦ δr + δr−1 ◦ hr is the identity map on
r-cochains. If f is an r-cocycle, r ≥ 1, then g = hrf is an (r − 1)-cochain
with δr−1g = f , so f is a coboundary.

If X is a smooth manifold, the sheaves A and Ar (smooth complex-valued
functions and r-forms, respectively) are fine. Similarly, on a holomorphic
manifold, the sheaves Ap,q are fine. In each case, choose an ordinary smooth
partition of unity and define sheaf maps by pointwise multiplication. By
contrast, the sheaves G, O, and Ωp (constants, holomorphic functions, and
holomorphic p-forms) are not fine.

Let M be a smooth manifold. The sheaf A× of germs of smooth, non-
vanishing, complex-valued functions on M is a sheaf of Abelian groups
under pointwise multiplication. By Proposition 4.6 below, A× does not
generally have vanishing cohomology in dimension one, hence cannot be
fine. Intuitively, an attempt to define a partition of unity by “exponentiat-
ing to the power of an ordinary partition of unity” will be met with failure
of the complex logarithm to be single-valued.

Proposition 4.6 Let M be a smooth manifold. There is a natural one-one
correspondance between equivalence classes of smooth complex line bundles
over a complex manifold M and elements of H1(M,A×).

Proof The idea is extremely simple: Transition functions for a line bun-
dle constitute a one-cocycle with coefficients in A×, see equation (3.4), and
isomorphic bundles differ by a coboundary.

In more detail, let p : L→M be a smooth complex line bundle, and let U
be a locally finite trivializing cover. The transition functions of L take values
in the Abelian group GL(1,C) = C×, so {gαβ} may be interpreted as a
Čech 1-cochain ψL ∈ C1(U ,A×). The compatibility condition gαβ gβγ gγα =
1 in Uαβγ is exactly the cocycle condition for ψL.

Suppose L′ is a line bundle isomorphic to L, and let U be a locally finite
cover of M that simultaneously trivializes L and L′. Over each open set
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Uα ∈ U , an isomorphism φ : L→ L′ is given by multiplication by a smooth,
non-vanishing function φα; the collection {φα} constitutes a zero-cochain φ,
whose coboundary is immediately verified to satisfy ψL′ = ψL + δ0φ.

In summary, these observations prove that for every locally finite cover U
ofM by open sets, there is a natural one-one correspondance between equiv-
alence classes of complex line bundles trivialized over U and elements of
the Čech cohomology group H1(U ,A×). Passing to the direct limit finishes
the proof.

The cohomology space H1(M,A×) comes equipped with a group struc-
ture. The induced group operation on line bundles is the tensor product,
since the tensor product of two numbers (1× 1 matrices) is their ordinary
product. In particular, every complex line bundle L has an inverse L−1

whose transition functions are reciprocals of the transition functions of L.
Completely analogous remarks are true for holomorphic line bundles, which
correspond to elements of H1(M,O×

M ). Algebraic geometers often speak of
invertible sheaves instead of line bundles.

The standard homological tool for a cohomology theory is the long exact
sequence associated to a short exact sequence of cochain complexes. As in
singular or simplicial theory, the connecting homomorphism is defined by
a diagram chase, and exactness is verified by standard arguments.

Proposition 4.7 Let 0 → S → F → Q → 0 be a short exact sequence of
sheaves over X. Then there is a long exact sequence

0→ H0(X,S)→ H0(X,F)→ H0(X,Q) (4.1)

→ H1(X,S)→ H1(X,F)→ H1(X,Q)→ · · ·

in sheaf cohomology.

Example 4.8 (Chern classes of line bundles) Let M be a compact, smooth
manifold, and let 0→ Z→ A→ A× → 0 be the smooth exponential sheaf
sequence. The associated long exact sequence contains the terms

H1(M,A)→ H1(M,A×)
c1→ H2(M,Z)→ H2(M,A).

Because A is a fine sheaf, the first and last terms vanish. Thus the cobound-
ary operator c1 is an isomorphism between the group of smooth complex
line bundles on M and H2(M,Z), which by Proposition 4.4 is the ordi-
nary integral singular cohomology of M . The image of a line bundle L in
H2(M,Z) is called the first Chern class c1(L).

Similar considerations for holomorphic line bundles imply there is an
exact sequence

H1(M,OM )→ H1(M,O×
M )

c1→ H2(M,Z)→ H2(M,OM ).

However, the groupsHi(M,OM ) are not generally trivial, reflecting the fact
that a fixed complex line bundle may admit many inequivalent holomorphic
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structures. This sequence is investigated further in Example 4.13 when M
is a complex curve. 2

4.2 Dolbeault Cohomology

Let M be a holomorphic manifold. The complex structure splits the ex-
terior derivative d into an operator ∂ of type (1, 0) and an operator ∂̄ of
type (0, 1). As noted previously, the latter is of greater importance because
holomorphic functions are “constant with respect to ∂̄”. The cohomology
theory of the chain complex ∂̄ : Ap,q → Ap,q+1 is called the Dolbeault co-
homology of M , and is a complex analogue of the de Rham cohomology of
a smooth manifold. The space Hp,q

∂̄
(M,C) of ∂̄-closed (p, q)-forms modulo

exact forms is a complex vector space.
It is not uncommon to blur the distinction between a vector bundle,

its sheaf of germs of sections, and the space of global sections, especially
when the bundle is not holomorphic. When precision demands,

∧p,q
denotes

the bundle of smooth skew-symmetric (p, q)-tensors, Ap,q is the sheaf of
germs of smooth sections, and Ap,q is the space of smooth global sections.
If π : E → M is a smooth complex vector bundle, then the bundle of
E-valued (p, q)-forms is the tensor product

∧p,q ⊗E of AM -modules. The
sheaf of germs of sections of

∧p,q ⊗E is denoted A
p,q
M (E) and the space

of global sections is denoted Ap,q(M,E) or simply Ap,q(E) if no confusion
is likely. Recall Proposition 3.13, which asserts that if π : E → M is
a holomorphic vector bundle, then there is a ∂̄-operator acting on (p, q)-
forms with values in E. These ∂̄-operators are coboundary operators, and
the resulting cohomology theory is called E-valued Dolbeault cohomology.

The basic property of Dolbeault cohomology—the Dolbeault-Grothendieck
Lemma—is analogous to the Poincaré Lemma for de Rham theory; poly-
disks have no higher cohomology for the sheaf of (p, q)-forms.

Theorem 4.9 Let ∆ ⊆ Cn be a polydisk, and let α be a smooth ∂̄-closed
(p, q) form on ∆, q ≥ 1. Then there is a smooth (p, q − 1)-form β on ∆
with ∂̄β = α.

Proof (Outline) It suffices to assume ∆ is centered at the origin. The
result is first shown using an integral formula for a slightly smaller polydisk.
This is accomplished by an explicit calculation in one variable, together
with a slightly delicate induction on dimension. Next choose an exhaustion
of ∆ by smaller polydisks. The requisite detail is to ensure that the solutions
found on the smaller polydisks patch together. This is not automatic since
the equation ∂̄β = α is nowhere close to having unique solutions, but
conversely is facilitated by the extreme latitude in choosing solutions. The
sketched details follow.
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• Smaller polydisk, q = 1: Let α = f(z) dz̄ on ∆ = ∆r, and let r′ < r.
Motivated by Stokes’ Theorem, set

β(z) =
1

2πi

∫

∆′
r

f(ζ)

ζ − z dζ ∧ dζ̄.

A short calculation—essentially application of Stokes’ Theorem to the dif-
ferential form d

(
f(ζ) log |ζ − z|2dζ̄

)
—proves that ∂̄β = f(z)dz̄, and this

solution is unique up to an added holomorphic function. If D is a domain
in Cn−1, ω is a holomorphic p-form on D, and if α = f(z) dz̄∧ω, then with
β chosen as before, ∂̄(β(z) ∧ ω) = α.
• Smaller polydisk, q > 1: Let Ap,qj be the space of (p, q)-forms on ∆r′

that do not contain dz̄j+1, . . . , dz̄n. Consider the induction hypothesis:

(H)j If α ∈ Ap,qj and ∂̄α = 0, then there is a β ∈ Ap,q−1
j with ∂̄β = α.

(H)1 has just been established. Assume (H)j−1, and let α ∈ Ap,qj be ∂̄-
closed.

Write α = α̃ + dz̄j ∧ γ with γ ∈ Ap,q−1
j−1 , α̃ ∈ Ap,qj−1. Since ∂̄α = 0, the

coefficients of γ and α̃ are holomorphic in zj+1, . . . , zn. By the q = 1 step,
for each pair of multi-indices I and J (with |I| = p, |J | = q − 1, and each
index of J at most j− 1), there is a function γ′IJ with ∂γ′IJ/∂z̄

j = γIJ . Set
η = ∂̄γ′ − dz̄j ∧ γ ∈ Ap,qj−1, so ∂̄(α̃− η) = ∂̄(α+ ∂̄γ′) = 0. By the induction

hypothesis, there is a υ ∈ Ap,q−1
j−1 with ∂̄υ = α̃−η. Thus β = γ′+υ satisfies

∂̄β = α.
• Enlarging the polydisk for q ≥ 2: The above argument shows that

if α is a ∂̄-closed (p, q)-form on ∆, then for each ∆r compactly contained
in ∆, there exists a (p, q − 1)-form β on ∆ with ∂̄β = α on ∆r.

Choose an exhaustion sequence rk ր r, and let ∆k denote the corre-
sponding polydisk. Choose βk with suppβk ⊂ ∆k+1 and ∂̄βk = α on ∆k.
There is a γk with ∂̄γk = α in ∆k+1, so ∂̄(βk−γk) = 0 in ∆k. Again by the
first part, there is a θk of type (p, q − 2) with ∂̄θk = βk − γk on ∆k−1. Set
βk+1 = γk+ ∂̄θk, so that ∂̄βk+1 = α on ∆k+1 and βk = βk+1 on ∆k−1. The
sequence {βk} thereby constructed converges uniformly on compact sets,
to β by declaration.
• Enlarging the polydisk for q = 1: Proceed as above to choose βk and

γk. Use holomorphicity of βk − γk in ∆k to approximate uniformly by a
polynomial θk in ∆k−1, and set βk+1 = γk+θk. The only difference between
this and the previous case is that βk+1−βk does not vanish on ∆k−1, but is
merely uniformly small; this however is sufficient to guarantee convergence
of the sequence {βk}.

Theorem 4.9 holds when r = ∞, i.e. when ∆ = Cn. The theorem also
holds when the polydisk is replaced by a product of disks and punctured
(one-dimensional) disks, as is seen with easy modification of the argument
by using annuli in the q = 1 step, or by using Laurent series to compute
the Čech cohomology.
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Theorem 4.10 Let ∆× denote a punctured disk, and let k and ℓ be non-
negative integers. Then

Hp,q

∂̄

(
(∆)k × (∆×)ℓ

)
= 0

for q ≥ 1.

The analogue of Theorem 4.9 does not hold for punctured polydisks; as a
complex vector space, H0,1

∂̄
(C2 \0) ≃ H1(C2 \0,O) is infinite-dimensional

by Exercise 4.1 below. This example highlights the analytic (as opposed to
topological) nature of Čech and Dolbeault cohomologies, since C2 \ 0 has
the homotopy type of S3, but the one-dimensional cohomology is infinite-
dimensional.

A basic consequence of the Dolbeault-Grothendieck Lemma is the iso-
morphism between Dolbeault and Čech cohomology, usually called the Dol-
beault Theorem.

Theorem 4.11 Let M be a holomorphic manifold. For each pair of non-
negative integers p and q, the Dolbeault cohomology Hp,q

∂̄
(M) is isomorphic

to the Čech cohomology Hq(M,Ωp).

Proof On a holomorphic manifold, the sheaf sequence

0→ Zp,q
∂̄
→֒ Ap,q

∂̄→ Zp,q+1

∂̄
→ 0 (4.2)

is exact; surjectivity of ∂̄ is the only non-obvious assertion, and is exactly
the content of Theorem 4.9. Taking q = 0, the long exact sequence contains,
for r ≥ 1,

Hr−1(M,Ap,0M )→ Hr−1(M,Zp,1
∂̄

)→ Hr(M,Zp,0
∂̄

)→ Hr(M,Ap,0M ). (4.3)

When r > 1, the first and last terms vanish, and the middle spaces are
isomorphic. Continuing inductively,

Hr(M,Zp,0
∂̄

) ≃ Hr−1(M,Zp,1
∂̄

) ≃ · · · ≃ H1(M,Zp,r−1

∂̄
). (4.4)

When r = 1, (4.3) yields the isomorphism

H1(M,Zp,r−1

∂̄
) ≃ H0(M,Zp,r

∂̄
)/∂̄H0(M,Ap,r−1

M ),

which is exactly the Dolbeault cohomology space Hp,r

∂̄
(M). Replacing r

by q and using the fact that ∂̄-closed (p, 0) forms are exactly holomorphic
p-forms completes the proof.

The argument in the proof of the Dolbeault Theorem may be used to
establish a version of the Leray Theorem (Theorem 4.3 above) for the
sheaf of germs of holomorphic p-forms. The idea is to prove a higher Čech
cohomology is isomorphic to a quotient of two other zero-dimensional Čech
cohomology spaces, which are identied with global sections independently
of the cover.
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Proposition 4.12 Let U be a Leray cover for the sheaf Ωp. Then

Hq(U ,Ωp) ≃ Hq(M,Ωp).

Proof By hypothesis, each r-simplex Uα0···αr
has trivial higher coho-

mology, i.e. Zp,q+1

∂̄
(Uα0···αr

) = ∂̄Ap,q(Uα0···αr
). Thus there is a short exact

sequence of chain complexes analogous to (4.2) but with cochains on the
nerve of U . By the same long exact sequence argument that yields (4.4),
and which relies only on fineness of the sheaf A

p,q
M ,

Hq(U ,Ωp) ≃ H0(U ,Zp,q
∂̄

)/∂̄H0(U ,Ap,q−1
M ) ≃ Hp,q

∂̄
(M) ≃ Hq(M,Ωp)

as claimed.

The dimension ofHq(M,F) is denoted hq(M,F); the Hodge numbers of a
compact holomorphic manifold M are the dimensions hp,q of the Dolbeault
spaces Hp,q

∂̄
(M).

Example 4.13 (Holomorphic line bundles on Riemann surfaces) If M is
a compact Riemann surface, then h1,0 = h0(M,Ω1) is called the genus
of M and is usually denoted by g. There is a real-linear isomorphism
H1,0

∂̄
(M) ≃R H0,1

∂̄
(M) induced by complex conjugation on forms. By the

Dolbeault Theorem, H0(M,Ω1) ≃R H1(M,O).
On a compact manifold, holomorphic functions are constant, so the sheaf

morphism Exp : O → O× induces a surjection H0(M,O) → H0(M,O×).
If M is a curve, then there are no non-zero (0, 2)-forms on M , so by the
Dolbeualt Theorem H2(M,O) = 0. The interesting portion of the long
exact sequence associated to the exponential sheaf sequence on a Riemann
surface M is therefore

0→ H1(M,Z)→ H1(M,O)→ H1(M,O×)
c1→ H2(M,Z)→ 0. (4.5)

As seen in Example 4.8, the group of smooth complex line bundles on M
is isomorphic to Z via the Chern class map c1. More precisely, if L → M
is a complex line bundle, then the value c1(L) of the Chern class map is a
2-dimensional cohomology class, whose pairing with the fundamental class
of M is an integer, called the degree of L:

degL = 〈c1(L), [M ]〉 ∈ Z.

Consider the Chern class map on the space H1(M,O×) of holomorphic
line bundles. The kernel of c1 is a subgroup, consisting of degree zero line
bundles. These may be regarded as non-trivial holomorphic structures on
the topologically trivial complex line bundle; while the total space of a
degree zero line bundle is diffeomorphic to M×C, a non-trivial degree zero
bundle has no holomorphic sections other than the zero section. Exactness
of the sequence (4.5) implies that the kernel of c1 is isomorphic to

H1(M,O)/H1(M,Z) =: J0(M), (4.6)
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called the degree zero Jacobian of M . It is not difficult to see that the
Jacobian is a compact complex g-torus: Fix a basis for the one-dimensional
singular homology H1(M,Z); it is customary to choose curves ai and bj ,
1 ≤ i, j ≤ g, whose oriented intersection numbers are given by

ai · aj = bi · bj = 0, ai · bj = δij .

Topologically the “a-curves” are “latitudes” around the handles of M
and the “b-curves” are “longitudes” with suitable orientations. The space
H1(M,O) is real-linearly isomorphic to the space of holomorphic one-forms,
which has complex dimension g, and the space H1(M,Z) may be regarded
as the rank-2g lattice of holomorphic one-forms whose integrals over the
curves ai and bj are integers. Such forms are said to have integral periods.

When M = P1 (g = 0), the Jacobian is trivial; holomorphic line bundles
are classified by their degree. When M is an elliptic curve (g = 1), it turns
out that M and J0(M) are isomorphic, not only as complex curves but also
as Abelian groups, see Example 6.9 below.

There is a holomorphic embedding of a compact Riemann surface of
genus g ≥ 1 into its Jacobian, given by integrating holomorphic 1-forms
over (real) curves. There is also an algebro-geometric interpretation in
terms of “divisors” on M . This mapping generalizes the isomorphism be-
tween an elliptic curve and its degree zero Jacobian. The definition of this
embedding by “period integrals” originated in the late 19th Century, while
the algebro-geometric interpretation arose only in the mid-20th Century.
2

4.3 Elementary Deformation Theory

The first step in studying the set of holomorphic structures on a fixed
smooth manifold is to understand “infinitesimal” deformations of a holo-
morphic atlas. The idea and basic results are due to Kodaira and Kodaira-
Spencer. Kodaira’s idea was to view a holomorphic manifold as a collec-
tion of polydisks glued together with biholomorphisms. Perturbing the glu-
ings should deform the holomorphic structure; however, some perturbations
arise from global biholomorphisms. Čech theory is an appropriate tool to
investigate these matters.

Let (M,J) be a fixed holomorphic manifold, and let U be a locally finite
cover of M that is acyclic for the structure and tangent sheaves OM and
ΞM . If Uα and Uβ are open sets with non-empty intersection, and if ϕα and
ϕβ , are the respective charts to polydisks in Cn, then the transition function

gαβ : ϕα(Uαβ)→ ϕβ(Uαβ) (4.7)

is a biholomorphism that specifies the manner in which Uα and Uβ are to
be glued. A deformation of the holomorphic structure should be regarded
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as a one-parameter family {gαβ(t)} of transition functions, and the time
derivatives ġαβ represent an “infinitesimal deformation” of the holomorphic
structure and constitute a Čech one-cocycle with values in the tangent sheaf
ΞM . The space of infinitesimal deformations of the complex structure of M
is therefore identified with the cohomology space H1(M,ΞM ). In the most
optimistic circumstance, the set of complex structures on M which are
deformation equivalent to (M,J) will be a complex manifold—the moduli
space of complex structures on M , and the tangent space at a complex
structure will be exactly the cohomology H1(M,Ξ).

There are several technical problems which may arise. First the moduli
space may not be smooth. There is a purely cohomological criterion which
guarantees smoothness. It may also occur that some infinitesimal deforma-
tion may not arise from an actual one-parameter family of deformations.
In this event, the infinitesimal deformation is said to be non-integrable.

Exercises

Exercise 4.1 LetM = C2\0. By considering the open cover U0 = C×C×,
U1 = C× × C, which is acyclic for the sheaf O, show that H1(M,O) is
infinite-dimensional. Observe thatHq(M,O) is trivial for q > 1. ⋄

Exercise 4.2 Compute the Čech cohomology Hq(P1,OP1), q ≥ 1, using
the standard atlas (which is a Leray cover for O). Compute Hq(P1,O×

P1).
(Use the fact that Hq(P1,Z) is isomorphic to the singular cohomology
of P1; the standard cover is not acyclic for the constant sheaf Z.) Fi-
nally, show that the first Chern class of OP1(1) is the positive generator of
H2(P1,Z), and conclude that Every holomorphic line bundle over P1 is of
the form O(k) for some integer k. ⋄

A similar result is true for holomorphic line bundles over Pn, but the
bookkeeping makes direct calculation of Hq(Pn,OPn) = H0,q

∂̄
(Pn,C) te-

dious. However, the following result (see also Corollary 8.19 below), which
gives the Dolbeault cohomology of Pn, is plausible and is so useful that it
is convenient to state it now for future use.

Proposition 4.13 The Dolbeault cohomology of complex projective space
is

Hp,q

∂̄
(Pn,C) =

{
C if 0 ≤ p = q ≤ n
0 otherwise

Proof (Idea) The singular cohomology of Pn is one-dimensional in even
dimensions up to 2n and is zero otherwise. But for general reasons, the
singular cohomology Hr(Pn,C) is isomorphic to the direct sum of the
Dolbeault cohomology spaces Hp,q

∂̄
(Pn,C) with p+q = r, and further Hp,q

∂̄

and Hq,p

∂̄
are real-linearly isomorphic. Proposition 4.13 follows at once.
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Exercise 4.2 Let U = {Uα}nα=0 be the standard atlas on Pn. Recall that
the line bundle OPn(k) has transition functions from Uα to Uβ given by
gαβ([Z]) = (zβ/zα)k. Use Proposition 4.13 to prove that every holomorphic
line bundle on Pn is isomorphic to OPn(k) for some integer k. ⋄
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5

Analytic and Algebraic Varieties

Many examples of smooth real manifolds arise as level sets of mappings;
indeed, this is the historical source of interest in manifolds. Similarly, ex-
amples of complex manifolds arise as level sets of holomorphic mappings;
the Inverse and Implicit Function Theorems have direct holomorphic ana-
logues.

Theorem 5.1 Let ∆ ⊂ Cn be a polydisk containing the origin, and let
f : ∆ → Cn be a holomorphic map with Df(0) non-singular. Then there
exists a polydisk ∆′ ⊂ ∆ such that f |∆′ is a biholomorphism onto its image.

Proof By the ordinary Inverse Function Theorem in R2n, there is a
polydisk ∆′ ⊂ ∆ such that f |∆′ has a smooth local inverse g and Df(z)
is non-singular for z ∈ ∆′. Holomorphicity is a simple consequence of the
chain rule. Indeed, let w = f(z) with an obvious use of multi-index notation.
Then z = g(w) = g

(
f(z)

)
on ∆′, and

0 =
∂g

∂w

∂f

∂z̄
+
∂g

∂w̄

∂f̄

∂z̄
.

The first term vanishes since f is holomorphic, while the matrix (∂f̄/∂z̄)
in the second term is non-singular on ∆′. Thus ∂g/∂w̄ = 0, i.e. g is holo-
morphic.

Theorem 5.2 Let ∆ ⊂ Cn be a polydisk containing the origin, and let
f : ∆ → Ck be a holomorphic map with rkCDf(0) = k. Then, after
shrinking ∆ and permuting coordinates if necessary, there exists a polydisk
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∆′ ⊂ Cn−k and a holomorphic map ϕ : ∆′ → Ck such that f(z, w) = 0 for
(z, w) ∈ ∆ if and only if w = ϕ(z).

One striking difference between the smooth and holomorphic categories
is a strengthening of the Inverse Function Theorem which asserts that a
one-one holomorphic map is a biholomorphism. In other words, there is
no analogue of the smooth map x ∈ R 7→ x3, which is one-one but not a
diffeomorphism.

Theorem 5.3 If f : U → V is a one-one holomorphic map between open
subsets of Cn, then f−1 : V → U is holomorphic, i.e. detDf 6= 0.

Proof It suffices to assume f(0) = 0 and to prove f−1 is a biholomor-
phism on a neighborhood of 0. The strategy is to prove, by induction on n,
that:

If f : Cn → Cn is holomorphic, and if Df(0) is singular, then Df(0) = 0.

This is clear when n = 1. Suppose f : U → Cn is a holomorphic map
on a neighborhood of 0 ∈ Cn and Df(0) has rank k < n. By permuting
coordinates if necessary, f followed by projection to Ck is a biholomorphism
of neighborhoods of the origin in Ck. However, restricted to the orthogonal
complement Cn−k, f has singular Jacobian at the origin. By the inductive
hypothesis k = 0, i.e. the Jacobian vanishes everywhere it is singular. In this
case, f maps each component of the zero locus of Df to a point. But the
function detDf cannot have an isolated zero, so if the Jacobian vanishes
at one point, then it vanishes at infinitely many points, so f is not one-one.

A simple consequence of Theorem 5.2 is a criterion for determining
smoothness of the zero locus in Pn of a single homogeneous polynomial f
of degree d. It is useful to introduce, for each coordinate chart Uα on Pn,
the polynomial fα defined by

f(Z0, . . . , Zn) = (Zα)dfα(z0
α, . . . , ẑ

α
α , . . . , z

n
α);

in words, fα is obtained by “setting Zα = 1,” and defines the same zero
set as f in Uα.

Proposition 5.4 If f : Cn+1 → C is a homogeneous polynomial, and if
∇f(Z) 6= 0 when Z 6= 0, then the zero locus of f in Cn+1 \ 0 is a smooth
submanifold and projects to a smooth, compact submanifold Vf ⊂ Pn.

Proof Smoothness of the zero locus in Cn+1 is immediate from The-
orem 5.2. To show the image in Pn is smooth, consider the coordinate
neighborhood U0 = {Z0 6= 0}, with coordinates zα = Zα/Z0, and write
f(Z) = (Z0)df0(z) on U0. By the chain rule,

∇f(Z) =
(
d(Z0)d−1f0(z), (Z

0)d∇f0(z)
)
6= 0.
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But f0(z) = 0 exactly when z ∈ Vf ∩ U0, so ∇f0(z) cannot vanish on
Vf0 = Vf ∩ U0. By Theorem 5.2, the set Vf ∩ U0 is a smooth manifold. A
similar argument proves Vf ∩ Uα is smooth for α = 1, . . . , n. Finally, Vf is
a closed subset of Pn, hence is compact.

The set Vf is called an algebraic hypersurface of degree d. More generally,
if the component functions of f : Cn+1 → Ck are homogeneous polynomials
of degree d = (d1, . . . , dk), and if rkCDf(Z) = k except at Z = 0, then the
zero locus of f projects to a closed submanifold of Pn, called a complete
intersection of (multi-)degree d.

Example 5.5 The Fermat hypersurface of degree d in Pn is the zero locus
of the polynomial f(Z) = (Z0)d + · · ·+ (Zn)d. The Fermat quadric in P3

is equivalent, after a linear change of coordinates, to the quadric surface
Q ⊂ P3 defined by Z0Z3 − Z1Z2 = 0. The Segré mapping

[X0 : X1]× [Y 0 : Y 1] ∈ P1 ×P1 7−→ [X0Y 0 : X0Y 1 : X1Y 0 : X1Y 1] ∈ P3

is a biholomorphism from P1 ×P1 to Q.
The twisted cubic curve C ⊂ P3, defined as the image of the map

[s : t] ∈ P1 7−→ [s3 : s2t : st2 : t3] ∈ P3

is locally a complete intersection, but is not a complete intersection. A
proof of this fact requires examination of commutative-algebraic local data
near the point [0 : 0 : 0 : 1] and is not carried out here. 2

It is often the case in algebraic geometry that families of objects are
parametrized by points of a projective variety. The simplest example is the
set of linear subspaces of dimension k < n in Pn, which is the Grassmannian
of (k + 1)-planes in Cn+1. A property possessed by some members of such
a family is generic if the set of members failing to satisfy the property lies
in a proper, closed subvariety of the family. For example, “a generic n× n
matrix is invertible” since the set of non-invertible matrices lies in the zero
locus of the determinant function.

The set of algebraic hypersurfaces of degree d in Pn is a projective space:
The set of monomials of degree d in n + 1 variables is a vector space of
dimension

(
n+d
d

)
=: N + 1, and two monomials define the same projective

variety if and only if their quotient is a non-zero constant. The set of
degree d hypersurfaces in Pn is therefore PN .

Proposition 5.6 A generic hypersurface of degree d in Pn is smooth.

5.1 The Local Structure of Analytic Hypersurfaces

By definition, an analytic variety is a subset V of a holomorphic manifoldM
that is locally the common zero locus of a finite set of analytic functions.
A hypersurface is locally the zero locus of a single function.
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Locally, an analytic hypersurface is either a manifold, or else is a finite-
sheeted branched cover of a polydisk, branched along an analytic subvariety.
The prototypical behavior is exhibited by the zero locus of a Weierstrass
polynomial, namely a holomorphic function of the form

f(z, w) = wd + ad−1(z)w
d−1 + · · ·+ a1(z)w + a0(z), (5.1)

with z ∈ Cn−1, w ∈ C, and ai : ∆ ⊂ Cn−1 → C holomorphic.

Theorem 5.7 Let f : U ⊂ Cn → C be a holomorphic function on a
neighborhood of the origin, not identically zero, but with f(0) = 0. Then
there exists a polydisk ∆ containing 0, a Weierstrass polynomial g : ∆→ C,
and a holomorphic function h : ∆→ C with h(0) 6= 0 and f = gh on ∆.

Proof After a linear change of coordinates, it may be assumed that
f(0, w) is not the zero function, i.e. that the w-axis is not contained in the
zero locus of f . There is a non-zero constant a with f(0, w) = awd + o(wd)
near w = 0. Choose ε > 0 so that f(0, w) 6= 0 for |w| = ε, and choose a
multi-radius r > 0 such that f(z, w) 6= 0 for |w| = ε and |z| < r. For each z
with |z| < r, there are exactly d zeros of f in the disc {z}×{|w| < ε}. (This
is clear for z = 0, and follows for |z| < r by continuity, since f(z, w) 6= 0
on |w| = ε.) Let these zeros be denoted by b1, . . . , bd. For each fixed z, and
for an arbitrary positive integer k, the Residue Theorem gives

d∑

j=1

bkj =
1

2πi

∫

|w|=ε
wk

1

f(z, w)

∂f

∂w
(z, w) dw.

Thus while the roots bj are not necessarily analytic functions of z, their
power sums are. Let σ1, . . . , σd be the elementary symmetric polynomials
and set

g(z, w) = wd − σ1(z)w
d−1 + · · ·+ (−1)d σd(z).

The function g is holomorphic on the polydisc ∆ where |z| < r and |w| < ε,
and vanishes exactly where f vanishes.

It remains to check that the function h = f/g extends to a holomor-
phic function on ∆. But for each z in the disk |z| < r, the function
h(w) = f(z, w)/g(z, w) has only removable singularities, hence is defined
everywhere. The integral representation

h(z, w) =
1

2πi

∫

|ξ|=r

h(z, ξ)

z − w dξ

proves that h is holomorphic in z.

Once the coordinates (z, w) have been chosen in the proof of Theorem 5.7,
it is clear that the decomposition f = gh is unique. In addition, the proof
establishes a Riemann extension theorem for functions of several variables:
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Proposition 5.8 Let f : ∆→ C be a holomorphic function on a polydisc,
and assume g : ∆ \ {f = 0} → C is a bounded holomorphic function. Then
there is an extension g̃ : ∆→ C of g.

Let On,z0 denote the ring of germs of local holomorphic functions at
z0 ∈ Cn. Understanding the local structure of an analytic variety V ⊂ Cn

is tantamount to understanding the zero locus of a germ f ∈ On, the ring
of germs at the origin. Units in On are exactly germs that do not vanish
at 0, i.e. locally convergent power series with non-zero constant term.

A (non-zero) non-unit in On is sometimes said to be the germ of an
analytic variety at 0 ∈ Cn. An analytic variety V is reduced if the local
defining functions for V vanish to first order, is irreducible if V is not the
union of (non-empty) proper, closed subvarieties, and is locally irreducible
at p ∈ V if there is a neighborhood of p on which V is irreducible. Thus, an
analytic variety V ⊂ Cn is reduced and irreducible at 0 ∈ Cn if and only
if the germ of V at 0 is an irreducible element of On. Corollary 5.12 below
implies that locally, an analytic hypersurface is a finite union of irreducible
hypersurfaces.

Proposition 5.9 The ring On is a unique factorization domain.

Proof (Sketch) The assertion is true when n = 1, and the Weierstrass
Preparation Theorem says every f ∈ On is the product of a unit h and
a Weierstrass polynomial g ∈ On−1[w]. By Gauss’ lemma, the proposition
follows by induction on n.

Proposition 5.10 If f and g are relatively prime in On, then there is a
polydisk ∆ on which f and g define holomorphic functions whose germs are
relatively prime in On,z for all z ∈ ∆.

Proof (Sketch) It suffices to take f and g to be Weierstrass polynomials
in On−1[w]; let γ ∈ On−1 be their resultant, and let ∆ be a polydisk on
which f , g, and γ define holomorphic functions. If the germs of f and g have
a common factor h in On,z for some z ∈ ∆, then h | γ, implying h ∈ On−1.
Since f does not vanish identically along the w-axis, h must be the zero
element in On−1.

The next result, the Weierstrass Division Theorem, gives as a corollary
the divisibility criterion for a germ to vanish on the zero locus of another
germ. This proves the assertion made above: locally an analytic hypersur-
face is a union of irreducible hypersurfaces.

Theorem 5.11 Let g ∈ On−1[w] be a Weierstrass polynomial of degree d
in w. If f ∈ On, then there is an h ∈ On and a polynomial r ∈ On−1[w] of
degree < d in w with f = gh+ r.

Proof (Sketch) Choose ε > 0 so that g(0, w) 6= 0 for |w| = ε, and choose
a multi-radius r > 0 such that g(z, w) 6= 0 for |w| = ε and |z| < r. For each
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z ∈ Cn−1 with |z| < r, define

h(z, w) =
1

2πi

∫

|ξ|=ε

f(z, ξ)

g(z, ξ)

dξ

ξ − w . (5.2)

Then h is holomorphic (cf. proof of Theorem 5.7), and so is r = f − gh.
But

r(z, w) =
1

2πi

∫

|ξ|=ε

f(z, ξ)

g(z, ξ)

g(z, ξ)− g(z, w)

ξ − w dξ

=:
1

2πi

∫

|ξ|=ε

f(z, ξ)

g(z, ξ)
p(z, ξ, w) dξ,

with p(z, ξ, w) a polynomial of degree < d in w.

Corollary 5.12 If f ∈ On is irreducible and if h ∈ On vanishes on Vf ,
then f |h in On.

Proof Assume without loss of generality that f ∈ On−1[w] is a Weier-
strass polynomial of degree d in w. Since f is irreducible, f and ∂f/∂w
are relatively prime in On−1[w]; let γ ∈ On−1 be their resultant. Since γ
is non-vanishing on some polydisk ∆ about the origin by Proposition 5.10,
f(z, ·) has distinct roots for z ∈ Cn−1 ∩∆.

Using Theorem 5.11, write f = gh + r with r ∈ On−1[w] of degree < d
in w. On slices of ∆ where z is fixed, the function h has the same roots
as f by equation (5.2), and in particular has d distinct roots. Since r has
degree < d in w, r ≡ 0.

5.2 Singularities of Algebraic Varieties

LetM be a holomorphic manifold, with atlas {Uα, ϕα}. Recall that a subset
V ⊂M is an analytic subvariety if, for every p ∈M , there is a neighborhood
U of p and a finite collection of holomorphic functions f i on U—called local
defining functions for V in U—such that the common zero locus {f i = 0} ⊂
U is exactly V ∩ U . An analytic subvariety is necessarily a closed subset
of M , and if p 6∈ V , then it is conventional to take U = M \ V , with local
defining function f = 1.

These definitions may be phrased globally in terms of the structure
sheaf OM ; define the ideal sheaf of V to be the subsheaf IV ⊂ OM whose
stalk at p ∈M consists of germs of holomorphic functions that vanish on V .
The structure sheaf of V is defined by the exact sequence

0→ IV → OM |V → OV → 0.

The ideal and structure sheaves of an analytic subvariety are coherent.
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In order to study locally the singularities of a variety V , it suffices to work
near the origin in Cn. Let {f i}ki=1 be local defining functions for V at 0,
chosen so that there is a neighborhood U of 0 on which the differentials df i

are not everywhere linearly dependent. The origin is a smooth point of V if
the map Df(0) : Cn → Ck has rank k. By the Implicit Function Theorem,
this is equivalent to V being a manifold at 0. Otherwise 0 is a singular
point of V ; the set of all singular points is denoted SingV , and the smooth
locus V ∗ ⊂ V is the complement of the singular set. The smooth locus
is a holomorphic manifold and the dimension of V is defined to be the
dimension of V ∗.

Proposition 5.13 Let V be an analytic subvariety of a holomorphic man-
ifold M . Then the set of singular points Sing V is an analytic subvariety
of M .

Proof It suffices to work locally. Suppose 0 ∈ V is a singular point,
and let U ⊂ Cn be a neighborhood of 0 on which {f i}ki=1 is a set of local
defining functions for V . The intersection U ∩ Sing V is cut out by {f i}
together with the set of determinants of k × k minors of Df : U → T ∗Cn.
The latter are local holomorphic functions in U .

Proposition 5.14 An analytic variety V is irreducible if and only if the
smooth locus V ∗ is connected.

Proof (Sketch) If V = W1 ∪W2 is a union of non-empty, proper closed
subvarieties, then W1 ∩W2 ⊂ Sing (W1 ∪ W2), so the sets Wi \ (Sing V )
separate V ∗. Conversely, the closure of a component of V ∗ is a proper,
non-empty, closed subvariety of V .

Locally, a hypersurface V = Vf is cut out by a single holomorphic func-
tion f . The multiplicity of V at p is defined to be the order of vanishing
of f at p:

multp(V ) = max

{
m ∈ N

∣∣∣∣∣
∂If

∂zI
(p) = 0 for all I with |I| < m

}
. (5.3)

If f is expanded as a power series centered at p with homogeneous terms fi
of weight i in z, then m = multp(V ) is the degree of the first non-vanishing
term: f = fm + fm+1 + · · ·. The tangent cone of V at p is the zero locus
of fm in TpC

n, which is alternately characterized as the set of tangent
vectors

TpV =

{
n∑

i=1

X i ∂

∂zi

∣∣∣∣∣ fm(X1, . . . , Xn) = 0

}
.

For example, if V is smooth at p, then TpV is the usual tangent space, while
the tangent cone at the origin of the zero locus of f(x, y) = y2 − x2 − x3 is
the union of the lines y = ±x.
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Affine Varieties and Coordinate Rings

Let R be a commutative ring with unit element. A radical ideal r ⊂ R is
an ideal with the property that if xn ∈ r for some n > 1, then x ∈ r. In
words, r contains the nth roots in R of all its elements.

Let V ⊂ Cn be an algebraic subvariety, that is, an analytic variety whose
local defining functions are polynomials. By Proposition 6.4 below, V is
the common zero set of finitely many polynomials on Cn. The ideal r(V ) =
{f ∈ C[z] : f |V = 0} of polynomials that vanish along V is the radical
of I, the ideal of global sections of the ideal sheaf of V , and the affine
coordinate ring of V is the quotient O(V ) = C[z]/r(V ). Conversely, given
a radical ideal r ⊂ C[z], the associated affine algebraic variety is V (r) =
{z ∈ Cn | f(z) = 0 for all f ∈ r}. There is a one-to-one correspondence
between radical ideals in C[z] and affine algebraic varieties in Cn. Under
this correspondance, prime ideals correspond to irreducible varieties, and
maximal ideals correspond to points.

A projective algebraic variety is a (necessarily closed) subset V ⊂ Pn

whose intersection Vα with the affine coordinate chart Uα is an affine al-
gebraic variety for each j = 0, . . . , n. Equivalently, a projective algebraic
variety is the common zero locus of finitely many homogeneous polynomials
in the homogenerous coordinates on Pn.

In algebraic geometry, one often works with the Zariski topology on an
affine algebraic variety. A Zariski-open set in an algebraic variety V ⊂ Cn

is the complement of an algebraic subvariety of V . Regarding C as an
affine variety, Zariski-open sets are exactly sets with finite complement.
The Zariski topology on a complex variety of positive dimension is never
Hausdorff. One advantage of the Zariski topology is that algebraic objects
(e.g. meromorphic functions) are determined by their restriction to an ar-
bitrary non-empty open set. With respect to their Zariski topologies, P1

and an elliptic curve E are not even locally isomorphic.

Example 5.15 The basic objects of algebraic geometry are “schemes.” Un-
der the correspondance just outlined, affine varieties correspond to radical
ideals r ⊂ C[z], via their coordinate ring O(V ). The points of V correspond
to maximal ideals in O(V ), and all questions about V may be phrased in
terms of O(V ).

It is natural to ask what sort of geometric object can be associated to an
arbitrary commutative ring R with unity. To this end, let specR denote the
set of prime ideals of R. For each ideal I ⊂ R, the associated basic closed
set is defined to be the set of prime ideals containing I; the complements
of basic closed sets form a basis for the Zariski topology on specR. Finally,
the topological space specR is endowed with a sheaf O of rings; the stalk
of O at a point (i.e. prime ideal) p ∈ specR is the localization Rp. The
topological space specR together with the sheaf of rings is called an affine
scheme.

Generally, a topological space X together with a sheaf of rings OX is
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a scheme if every point p ∈ X has an open neighborhood U such that
(U,OX(U)) is isomorphic to some affine scheme specR. Various geometric
constructions (intersection theory, for example) work better in the category
of schemes than in the category of varieties.

Maximal ideals in R correspond to closed points of specR. The “addi-
tional” points corresponding to non-maximal prime ideals p are generic
points, whose closures contain, among other things, the closed points of the
subscheme cut out by p. An illustrative example is furnished byR = C[x, y],
whose spectrum is the affine plane. Points (x0, y0) ∈ C2 are in one-to-one
correspondance with maximal ideals (x−x0, y−y0) ⊂ R. Every irreducible
polynomial, e.g. x2 − y, generates a prime ideal; the closure of the point
p = (x2 − y) contains all the closed points lying on the parabola y = x2.
2

An Introduction to Desingularization

One general goal in algebraic geometry is to find, for a given variety V ,
a variety Ṽ which is isomorphic to V away from a Zariski-closed set, and
which has “nicer” singularities. A prototypical example is the following
desingularization result.

Theorem 5.16 Let V ⊂ Cn be an algebraic variety. Then there exists a
smooth algebraic variety Ṽ ⊂ CN and a proper, surjective, holomorphic
map π : Ṽ → V which—on the complement of a divisor—is a biholomor-
phism onto its image.

This “desingularization” can in fact be accomplished for arbitrary vari-
eties defined over fields of characteristic zero, as shown by H. Hironaka in
the late 1950’s. Bierstone and Milman have recently given an explicit pro-
cedure for desingularization in characteristic zero. A more elementary—but
already non-trivial—result can be obtained from commutative algebra via
the correspondance between varieties and ideals, see Proposition 5.21 be-
low.

Let V ⊂ Cn be an affine (algebraic) variety. To each p ∈ V , let mp

denote the corresponding maximal ideal in the coordinate ring O(V ). The
local ring of V at p is the localization Op(V ) of O(V ) at mp. An element
of the local ring should be regarded as a germ of a regular function at p;
the image of f ∈ O(V ) in O(V )/mp ≃ C is the value of f at p.

Generally, a local ring is a Noetherian, commutative ring with unity
having a unique maximal ideal. The local ring of a variety is indeed a local
ring in this sense. The Krull dimension of a commutative ring R is one
less than the maximum length of a chain of nested prime ideals in R. For
example, the polynomial ring C[z] in n variables has Krull dimension n. A
local ring O with maximal ideal m is regular if dimO = dim(m/m2).

Proposition 5.17 A variety V is non-singular at p if and only if Op(V )
is a regular local ring.
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Example 5.18 Let V be the cusp curve x3 = y2 in C2. The affine coordi-
nate ring of C2 is C[x, y], and the local ring at the origin p is ap = (x, y),
the maximal ideal of C[x, y]. The ideal a2

p is (x2, xy, y2), and the quotient
is ap/a

2
p = C[x, y], so C2 is smooth at the origin, as expected.

By contrast, let mp = (x, y) ⊂ IV be the maximal ideal of the affine
coordinate ring C[x, y]/(x2 − y3). Then

mp/m
2
p = (x, y)/(x2, xy, y2, x2 − y3) = (x, y)/(x2, xy, y2),

which has Krull dimension two, while V has dimension one. Thus the local
ring Op(V ) is not regular, so the cusp curve V is not smooth at the origin.
2

Proposition 5.19 Let ap be the maximal ideal of a regular local ring Op,
let V be a variety containing p, and let mp be the maximal ideal in the
coordinate ring of V at p. Then m/m2 ≃ a/(a2 + IV ).

Proof Let {f i}ki=1 be local defining functions for V at p. Then the rank
of the Jacobian Df(p) is equal to dim(ap/a

2
p)− dim(mp/m

2
p). But

dim(ap/a
2
p)− dim(mp/m

2
p) = dim(a2

p + IV )/a2
p,

so V is non-singular in the analytic sense if and only if the dimension is as
expected.

Normal Varieties

Let X be an affine algebraic variety. The quotient field K(X) of the in-
tegral domain O(X) is the function field of X ; elements of K(X) are
“meromorphic functions” on X . For each p ∈ X , there are inclusions
O(X) ⊂ Op(X) ⊂ K(X).

If A and B are integral domains, then a ring homomorphism φ : A→ B
induces a morphism specB → specA. Conversely, if X and Y are affine va-
rieties, then a regular morphism f : X → Y induces a ring homomorphism
O(Y )→ O(X). If f is surjective, then the induced map on coordinate rings
is injective.

An element x ∈ B is integral over A if there exists a monic polynomial
q ∈ A[ξ] with q(x) = 0. If every x ∈ B which is integral over A actually
lies in A, then A is integrally closed in B.

Lemma 5.20 An integral domain R is integrally closed in its quotient field
Q if and only if the localization Rm is integrally closed in Q for every
maximal ideal m.

If X is irreducible, then K(X)—the quotient field of O(X)—is the quo-
tient field of Op(X) for every p ∈ X . A variety X is normal at p if Op(X)
is integrally closed in K(X), and is normal if normal at p for every p ∈ X .
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By Lemma 5.20, X is normal if and only if O(X) is integrally closed in
K(X).

A birational map f : X → Y is a map which induces an isomorphism
K(Y ) → K(X) of function fields. In other words, a birational map is
an isomorphism off a Zariski-closed set. A finite morphism is a morphism
with finite fibres; more concretely, the preimage of each point is a finite
set. Branched covers are finite, while “quadratic transformations” (blow-
ups) are not. A desingularization of Y is a surjective, birational mapping
f : X → Y with X a smooth variety. A weaker but more elementary
construction gives a birational map f : X → Y with X normal: Let X be
an irreducible affine variety, and let O(X) be the integral closure of O(X)
in K(X). The associated variety, together with the induced map to X , is
the normalization of X .

Proposition 5.21 The variety X̃ of closed points of specO(X) is a nor-

mal variety endowed with a finite, surjective, birational morphism π : X̃ →
X.

Theorem 5.22 A regular local ring is integrally closed in its quotient field.

By definition, X is smooth at p if and only if Op(X) is a regular local
ring, while X is normal at p if and only if Op(X) is an integrally closed
local ring. By Theorem 5.22, if X is smooth at p, then X is normal at p.

Proposition 5.23 If p ∈ X is a normal point, and if f ∈ K(X) is regular
on a deleted neighborhood of p, then f extends to p, i.e. f ∈ Op(X).

Example 5.24 Let X = {x3 = y2} ⊂ C2 be the cusp curve. The function
t = f(x, y) = y/x restricts to a meromorphic function on X \0, but t2−x =
0 ∈ O(X)[t], so t cannot be extended to a regular function on X . Thus the
origin is not a normal point of X .

Intuitively, the normalization described in Proposition 5.21 “adds in”
meromorphic functions which are defined away from a point. More precisely,
the coordinate ring of X̃ is

O(X)[t]/(t2 − x) =
(
C[x, y]/(y2 − x3)

)
[t]/(t2 − x),

and the normalization is accomplished by mapping the (x, t)-plane to the
(x, y)-plane by (x, t) 7−→ (x, xt). Under this mapping, the equation x3 −
y2 = 0 pulls back to x − t2 = 0, whose zero locus is a smooth curve. This
mapping is exactly the blow up at the origin expressed in an affine chart.
2

Proposition 5.25 Let X be a normal variety. Then SingX has codimen-
sion ≥ 2 in X.
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Consequently, if a curve is normal at p, then p is a smooth point. A normal
variety of arbitrary (positive) dimension is locally irreducible.

Let X be a normal variety, K = K(X) the function field, and let L →
K be a finite field extension. The coordinate ring O(X) has an integral

closure O(X) in L, whose spectrum X̃ is equipped with a finite, surjective

morphism to X . Conversely, if f : X̃ → X is a finite, surjective morphism
to a normal variety X , then the field extension [K(X̃),K(X)] is finite, and

the integral closure of O(X) in K(X̃) is the coordinate ring of X̃ .
The degree of f is by definition the degree [L : K] of the field extension.

For every x ∈ X , #{f−1(x)} ≤ deg f , and the maximum is achieved on a
Zariski-open set. The algebraic subvariety

B = {x ∈ X | #{f−1(x)} < deg f}

is called the ramification locus of f . The restriction f : X̃ \ f−1(B) →
X\B is an unbranched covering, and the covering transformations permute
points in the fibres of f .

Proposition 5.26 The group of deck transformations acts transitively on
fibres if and only if f∗π1(X̃) � π1(X), if and only if the extension L→ K
is Galois.

IfB ⊂ Y is normal and of pure codimension one, then to each subgroup of
π1(Y \B) is associated a covering spaceX which inherits the structure of an
algebraic subvariety. The following is due to Enriques, Grauert-Remmert,
and Grothendieck.

Theorem 5.27 With the above notation, there is a unique normal alge-
braic variety Ỹ which “completes” X and which admits a finite map to Y
such that the diagram

X −→ Ỹ
↓ ↓

Y \B →֒ Y

commutes.

The set B̃ ⊂ f−1B ⊂ X̃ on which Df is not of maximal rank is the
branch locus of f . The following remarkable result on the structure of the
branch locus is due to Zariski.

Theorem 5.28 The branch locus of f is of pure codimension one, that is,
every irreducible component of B̃ has codimension one.

A variety X is projectively normal if there is a surjection K(Pn) →
K(X). The following is known as the Stein Factorization Theorem.

Theorem 5.29 Let f : X → Y be a surjective, finite map of normal vari-
eties of the same dimension, and let Ỹ be the normalization of Y in K(X).
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Then the natural map X → Ỹ is a surjective, birational map with connected
fibres, and the natural map Ỹ → Y is a finite, surjective morphism.



This is page 63
Printer: Opaque this

6

Divisors, Meromorphic Functions, and
Line Bundles

Let M ⊂ PN be a holomorphic manifold embedded in a projective space. A
hyperplane section of M is the intersection of M with a hyperplane in PN .
The hyperplane sections of M carry information about the embedding.
Conversely, given an arbitrary holomorphic manifold it is of interest to de-
scribe and classify “hyperplane sections” intrinsically. The relevant objects
are called divisors; divisors, meromorphic functions, and line bundles are
three ways of regarding essentially the same data from geometric, algebraic,
and topological points of view.

6.1 Divisors and Line Bundles

Let M be a holomorphic manifold. A divisor D on M is a locally finite sum
of closed, reduced, irreducible analytic hypersurfaces (the components ofD)
with non-zero integer coefficients. “Closed” means closed as subsets in the
complex topology, “sum with integer coefficients” should be taken in the
spirit of free Abelian groups, with the distinction that the sum here may be
infinite (meaning there may be infinitely many components), and “locally
finite” means that every x ∈M has a neighborhood U that intersects only
finitely many components. A divisor is effective if every component has
positive coefficient. An effective divisor is defined locally by a holomorphic
function φ; the function φ vanishes along a union of irreducible analytic
hypersurfaces, and the integer attached is the order of vanishing.

If M itself is compact, then a divisor is exactly an element of the free
Abelian group on the set of closed, irreducible analytic hypersurfaces. The
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group of divisors is denoted div (M). The support of a divisor D is the
union of the components of D.

Example 6.1 Let M be a compact Riemann surface. A divisor on M is
a finite set of points weighted with integers. In other words, a divisor may
be regarded as a sum D =

∑
x∈M mx · x, where the coefficient mx ∈ Z is

understood to be zero except for at most finitely many x ∈M . The degree
of D is defined to be degD =

∑
mx. 2

Example 6.2 A divisor on Pn is a finite sum of algebraic hypersurfaces
with integer coefficients. (Certainly, every such sum is a divisor; the con-
verse is essentially Theorem 6.14 below.)

If N ⊂M is a closed, holomorphic submanifold and D is a divisor on M ,
then N ∩D (taken in the obvious sense) is a divisor on N . Thus, projective
manifolds “have many divisors.” At the other end of the spectrum, there
exist compact manifolds having no divisors. Generic compact tori provide
examples of this counterintuitive behaviour. 2

Assume D is an effective divisor on M , and let U = {Uα} be a locally
finite open cover for which there exist holomorphic functions φα ∈ O(Uα)
that locally cut out D. If Uαβ is non-empty, then there is a non-vanishing
holomorphic function ψαβ on Uαβ such that

ψαβ =
φβ
φα

∣∣∣
Uαβ

.

The collection {ψαβ} is therefore a 1-cocycle of the nerve of U with co-
efficients in O×

M , so an effective divisor D represents an element [D] ∈
H1(M,O×

M ). As noted in Cha[pter 4, this cohomology group may be inter-
preted as the group of holomorphic line bundles on M ; addition of divisors
corresponds to taking tensor products of line bundles. If −D is effective,
then [−D] may be interpreted as the line bundle [D]∗ = [D]−1 dual to [D].
Finally, every divisor D is uniquely a difference of effective divisors, say
D = D+ −D−, so an arbitrary divisor D represents the line bundle

[D] = [D+]⊗ [D−]∗.

This provides the following partial dictionary between divisors and holo-
morphic line bundles.

Proposition 6.3 The map D 7→ [D] is a group homomorphism from divM
to H1(M,O×

M ).

This homomorphism is neither injective nor surjective in general; distinct
divisors may give equivalent bundles, and not every holomorphic line bundle
arises from a divisor. Happily, it will presently be possible to give a simple
characterization of when these possibilities occur.
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6.2 Meromorphic Functions

A meromorphic function on a Riemann surface is a holomorphic map to P1.
This simple definition does not extend to holomorphic manifolds of dimen-
sion greater than one. A better approach is to regard meromorphic func-
tions as “functions that are locally a quotient of holomorphic functions.”
Making this idea precise is not difficult, and the corresponding notion re-
duces to the expected one for Riemann surfaces. Explicitly, the difference
between Riemann surfaces and higher-dimensional manifolds is that func-
tions of one variable that vanish simultaneously have a common factor,
while in two or more variables this is no longer automatic.

LetMpre be the presheaf on M whose field of sections over an open set
U ⊂ M is the quotient field of the integral domain OM (U), and let M
denote the completion. A meromorphic function on M is a global section
of the sheaf M. A non-zero meromorphic function f is therefore locally
the quotient of holomorphic functions in the following sense: For every
x ∈ M , there exists a neighborhood U of x and a pair of relatively prime
holomorphic functions φ0 and φ∞ (in particular, neither is identically zero)
such that f is represented on U by φ0/φ∞. The field of global sections ofM
is called the function field of M , and is often denoted K(M).

Up to multiplication by a non-vanishing local holomorphic function,
φ0 and φ∞ depend only on f ∈ M. Thus there is a zero divisor (f)0,
locally defined by φ0, and a polar divisor (f)∞, locally cut out by φ∞.
The divisor (f) = (f)0 − (f)∞ is the principal divisor associated to f . The
indeterminacy set of f is the intersection of the zero and polar divisors
of f , and is therefore an analytic variety of codimension two. Away from
the indeterminacy set, f may be regarded as a holomorphic map to P1.

Proposition 6.4 Every analytic hypersurface D ⊂ Cn is the zero locus of
an entire function. Every meromorphic function f on Cn is a quotient of
entire functions.

Proof By Theorem 4.9, Hq(Cn,O) = 0 for q ≥ 1. Moreover, Cn is con-
tractible, so Hq+1(Cn,Z) = 0 for q ≥ 0. The long exact sequence induced
by the exponential sheaf sequence contains

Hq(Cn,O)→ Hq(Cn,O×)→ Hq+1(Cn,Z),

which for q = 1 implies H1(Cn,O×) = 0. In particular the cocycle [D],
represented by a locally finite cover U = {Uα} and local holomorphic func-
tions φα on Uα, is a coboundary. After refining U if necessary, there exist
local non-vanishing holomorphic functions hα such that (omitting restric-
tions to Uαβ)

φα
φβ

= ψαβ =
hβ
hα
.

The local functions {hαφα} agree on overlaps, and therefore define an entire
function.
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The second assertion is now immediate: Choose entire functions cutting
out the zero and polar divisors of f .

Divisors D and D′ on M are linearly equivalent if D − D′ is principle,
that is, if there is a meromorphic function f on M with D − D′ = (f).
On Pn, a quotient of homogeneous polynomials of the same degree (in
the homogeneous coordinates) defines a meromorphic function. Therefore,
two algebraic hypersurfaces of the same degree define linearly equivalent
divisors.

It is sometimes useful to regard a divisor as a global section of the quo-
tient sheaf M×/O×; this highlights the group structure and functorial
properties of divM . The subgroup consisting of principal divisors is often
denoted div0 (M), and the quotient

Pic (M) := div (M)/div0 (M)

(“divisors modulo linear equivalence) is called the Picard group of M . By
Proposition 6.6 below, the Picard group of M can be viewed as the set of
holomorphic line bundles on M that admit a “meromorphic section.”

6.3 Sections of Line Bundles

Let p : L → M be a holomorphic line bundle. A holomorphic section
of L is a holomorphic map σ : M → L with p σ = identity. When a line
bundle is presented as a 1-cocycle {ψαβ}, a section is realized concretely
as a collection of holomorphic functions {φα} satisfying φαψαβ = φβ . For
this reason, holomorphic sections are sometimes called twisted functions. If
L = [D] comes from a divisor, then OM (D) = O(L) is used to denote the
sheaf of germs of sections of L. The following is immediate:

Lemma 6.5 If L = [D] is induced by an effective divisor, then each col-
lection {φα} of local defining functions for D gives a holomorphic section
of L.

A meromorphic section of a line bundle is defined to be a collection of
local meromorphic functions {fα} satisfying the compatibility condition
fαψαβ = fβ. In other words, a meromorphic section of L is a global section
of the sheaf O(L)⊗M. From Lemma 6.5, it is easy to derive a satisfactory
supplement to Proposition 6.3.

Proposition 6.6 A line bundle L ∈ H1(M,O×
M ) is of the form [D] if and

only if L admits a meromorphic section. Two line bundles L = [D] and
L′ = [D′] are holomorphically equivalent if and only if D−D′ is principal.

Proof Since every divisor is a difference of effective divisors, Lemma 6.5
implies that local defining functions for a divisor D may be viewed as a
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meromorphic section of [D]. Conversely, if L admits a meromorphic section,
then the divisor D of this section induces L.

To see the second part, observe that L ≃ L′ if and only if L−1 ⊗ L′

is holomorphically trivial, and a meromorphic section of the trivial line
bundle is an ordinary meromorphic function.

Example 6.7 Proposition 4.13 gives the cohomology of Pn. Together with
the Dolbeault Theorem, this implies that

H1(Pn,O) = H2(Pn,O) = 0.

From the long exact cohomology sequence of the exponential sheaf sequence
on Pn, the first Chern class map c1 : H1(Pn,O×) → H2(Pn,Z) is an
isomorphism (cf. Example 4.13). Consequently, ifH denotes the hyperplane
class in H2n−2(P

n,Z), then every line bundle on Pn comes from a divisor
D = dH for some integer d, called the degree of the bundle. 2

Example 6.8 On a generic compact torus, only the trivial bundle comes
from a divisor—the empty divisor—since there are no other divisors. The
meromorphic sections are exactly constant functions. 2

Example 6.9 Let E be an elliptic curve, and fix 0 ∈ E. For each x ∈ E, the
divisor (0)− (x) has degree zero, but is principal if and only if x = 0. This
may be seen with a bit of elementary complex analysis. If f : E → P1 were
a meromorphic function with principal divisor (0)−(x), then f would have a
simple pole at x and no other poles. The meromorphic 1-form f(z) dz would
therefore have non-zero total residue, which is impossible. Consequently,
each point x ∈ E induces a topologically trivial holomorphic line bundle,
that is holomorphically non-trivial (i.e., has no meromorphic section) unless
x = 0. By Example 4.13, these are exactly the degree zero holomorphic line
bundles on E.

A choice of 0 ∈ E defines a group law with neutral element 0 (coming
from a realization of E as a quotient C/Λ). The lattice determines a ℘-
function, and there is a holomorphic embedding φ : E →֒ P2 defined in
Example 1.9 whose image is a smooth cubic curve. The following illustrates
the beautiful interplay between complex analysis, projective geometry, and
algebraic geometry.

Proposition 6.10 A divisor
∑
ki(xi) on E is principal if and only if∑

kixi = 0 as elements of E. A divisor (x1) + (x2) + (x3) is the polar
divisor of a meromorphic function on E if and only if the images of the
points xi under φ are collinear in P2.

Proof (Sketch) Let f : E = C/Λ → P1 be a meromorphic function;
the doubly-periodic meromorphic function on C that induces f will also be
denoted f . Consider the meromorphic 1-form

η = ζ
f ′(ζ)

f(ζ)
dζ
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on C. By the residue theorem, the sum of the residues of η on E is zero.
To calculate the sum of the residues, choose a fundamental parallelogram
R ⊂ C with edges ω1 and ω2 so that all the zeros and poles of f lie in
the interior of R, and integrate over the boundary. The residue of η at a
zero z of f of order k is kz, while the residue at a pole p of order k is −kp.
Furthermore, cancellation over opposite edges of ∂R implies that

∫

∂R

η ∈ Λ

(i.e., is an integral linear combination of ω1 and ω2). In summary, if the
principle divisor of f is

∑
ki(xi), then the total residue of η is

∑
kixi = 0.

The converse follows from addition theorems for the ℘-function, see Ahlfors,
Complex Analysis, p. 277. Intuitively, the condition that a divisor sum to
zero (as an element of E) is an integrability condition for finding f .

The second part is an easy consequence of the principle that every mero-
morphic function on a smooth algebraic hypersurface extends to a mero-
morphic function on Pn; this will be proven in Chapter 10. If (x1)+ (x2)+
(x3) is the polar divisor of a meromorphic function f : E → P1, then f
extends to a quotient of linear forms on P2, so the poles (and zeros) of f
are collinear in P2.

A restatement of the first assertion in Proposition 6.10 is worth mention-
ing. As in equation (4.6) above, let J0(E) denote the group of degree-zero
line bundles on E. The map E → J0(E) that sends x ∈ E to the line bun-
dle associated to the divisor (0)− (x) is an isomorphism of Abelian groups.
2

6.4 Chow’s Theorem

The theory of holomorphic manifolds is analogous in many ways to complex
algebraic geometry. The rough principle, known as the GAGA Principle
from Serre’s Géométrie algébrique et géométrie analytique, is that compact
analytic objects in projective space and morphisms between them are in
fact algebraic. Chow’s Theorem (Theorem 6.14 below) is the prototypical
example of the GAGA Principle. As will become apparent, the underlying
reason for GAGA is the simplicity of the analytic cohomology of Pn.

Let M be a compact holomorphic manifold of (complex) dimension n.
Because M is oriented, there is a fundamental class [M ] ∈ H2n(M,Z) and
a Poincaré duality isomorphism

Hk(M,Z) ≃ H2n−k(M,Z).

The induced ring structure on homology is the intersection pairing, which
is described in detail below for Pn. If V is a k-cycle Poincaré dual to
η ∈ H2n−k(M,Z), then



6.4 Chow’s Theorem 69

i. For all α ∈ Hk(M,Z),
∫
V
α =

∫
M
η ∧ α = (η ∪ α)[M ];

ii. For all (2n− k)-cycles W , V ·W =
∫
W η.

Example 6.11 (Intersection theory in projective space.) Let M = Pn.
The cohomology ring is a truncated polynomial ring in one variable. More
precisely, let Ω ∈ H2(Pn,Z) denote the cohomology class Poincaré dual to
a hyperplane class H ∈ H2n−2(P

n,Z). Then

H∗(Pn,Z) ≃ Z[Ω]/〈Ωn+1〉 ≃
n⊕

k=0

ZΩk.

Since Pn is oriented, H2n(P
n,Z) is naturally isomorphic to Z, and this

isomorphism is compatible with Poincaré duality and the description of
the cohomology ring just given.

Let V ⊂ Pn be an algebraic hypersurface of degree d. A line in Pn

intersects V in at most d points, and if intersections are counted with
multiplicities, then every line intersects V exactly d times. From Property i.
above it follows that V is Poincaré dual to dΩ. By intersecting further with
hyperplanes, it is easy to see that every positive cohomology class—namely,
every dΩn−k with d > 0 and 0 ≤ k ≤ n—is Poincaré dual to a homology
class represented by an analytic cycle. More generally, if V is a complete
intersection of multi-degree (d1, . . . , dn−k), then the homology class [V ]
is Poincaré dual to ηV = (

∏
i di)Ω

n−k. The coefficient is the number of
points of intersection when V is intersected with a generic linear subspace
of complementary dimension.

For arbitrary homology classes of complementary dimension, the inter-
section product [V ] · [W ] may be interpreted as an oriented intersection
number, giving geometric significance to condition ii. Indeed, every non-
zero homology class in Pn is Poincaré dual to dΩn−k for some d ∈ Z, and
may therefore be represented by ±V for a smooth complete intersection
of complex dimension k. Two generic smooth, complete intersection vari-
eties of complementary dimension intersect transversally (in finitely many
points). 2

In an arbitrary holomorphic manifold, not every homology class is repre-
sentable by a smooth submanifold (even up to sign). However, it is always
possible to represent a homology class by a cycle whose support is an em-
bedded manifold except for a singular set of smaller dimension. Further,
for each pair of homology classes of complementary dimension, represen-
tative cycles may be chosen that intersect transversally in finitely many
manifold points. Let V and W be such representative cycles, and let p
be a point of (transverse) intersection of their supports. If these cycles
are oriented, then each tangent space TpV , TpW has an induced orienta-
tion, determined by ordered bases {v1, . . . , vk} and {w1, . . . , wn−k}. The
intersection number Ip(V,W ) of V and W at p is defined to be ±1, de-
pending on whether the orientation on TpM determined by the ordered
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basis {v1, . . . , vk, w1, . . . , wn−k} agrees with the orientation of TpM or not.
The oriented intersection number of the homology classes [V ] and [W ] is
defined to be

I(V,W ) = [V ] · [W ] =
∑

p∈V ∩W
Ip(V,W ).

If [V ] and [W ] are represented by transversely intersecting analytic cycles
(i.e. embedded subvarieties of M), then [V ] · [W ] ≥ 0. This follows imme-
diately from the observation that the usual orientation on Cn agrees with
the orientation induced from a pair of complex subspaces of complementary
dimension.

Example 6.12 Fix an integer k and let Hk = OP1(k). The Hirzebruch
surface Fk is the P1-bundle P(Hk ⊕ O) obtained by adding an infinity
section to the total space of Hk. The two-dimensional homology of Fk is
generated by a fibre class [F ] and the class [S0] of the zero section. The
intersection pairing is given by

[F ] · [F ] = 0, [F ] · [S0] = [S0] · [F ] = 1, [S0] · [S0] = k.

The homology class of the infinity section S∞ is equal to [S0 − kF ], as is
readily checked by solving [S∞] = [aF + bS0] for a and b. In particular,
[S∞] · [S∞] = −k. 2

Using intersection theory in projective space, it is easy to prove two basic
but useful GAGA-type results.

Proposition 6.13 Let f : Pn → Pn be a biholomorphism. Then there is
a linear transformation f̃ : Cn+1 → Cn+1 that induces f . Briefly, every
automorphism of Pn is linear.

Proof Let H ⊂ Pn be a hyperplane, and let f be a biholomorphism
of Pn. It suffices to show that f(H) is itself a hyperplane in Pn. Certainly,
f(H) is an analytic subvariety homologous to a hyperplane. Let p1 and
p2 be points in f(H), and let ℓ ≃ P1 be the line joining them. Then
{p1, p2} ⊂ ℓ ∩H , so if there were only finitely many points of intersection
then [ℓ]·[H ] ≥ 2. But [ℓ]·[H ] = 1 for homological reasons, so ℓ∩H is infinite,
hence must be all of ℓ since ℓ and H are analytic varieties. It follows that
ℓ = p1p2 ⊂ f(H) for every pair of points p1, p2 ∈ f(H), so that f(H) is
actually a hyperplane. It is now a matter of linear algebra to verify that f
must be covered by a linear isomorphism of Cn+1.

A surprisingly easy generalization of Proposition 6.13 is the prototypical
GAGA theorem, usually known as Chow’s Theorem.

Theorem 6.14 Let V ⊂ Pn be an analytic subvariety. Then V is an al-
gebraic subvariety.
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Proof The long exact sequence associated to the exponential sheaf se-
quence on Pn gives an isomorphism

H1(Pn,O×) ≃ H2(Pn,Z) ≃ Z;

in words, holomorphic line bundles on Pn are classified by their first Chern
class. Let V ⊂ Pn be an analytic hypersurface, and consider the holo-
morphic line bundle L = O(V ). There is a positive integer d such that
L = OPn(d). The space of sections of OPn(d) is exactly the space of homo-
geneous, degree d polynomials in the homogeneous coordinates. It follows
that V is the zero locus of a single homogeneous polynomial, i.e. is an al-
gebraic hypersurface. (This gives an alternate proof that the image of a
hyperplane under an automorphism is a hyperplane.)

Now let V be an arbitrary analytic variety of dimension k in Pn. The
strategy is to show that for every p 6∈ V , there is a homogeneous polyno-
mial F that vanishes along V , but with F (p) 6= 0. It then follows that the
common zero locus of the set of polynomials vanishing along V—which is
a priori larger than V—is equal to V , so that V is an algebraic variety.

Pick a hyperplane H not containing p, and project away from p. The im-
age of V is an analytic subvariety in H . Proceed inductively until the image
is a hypersurface in a linear space Pk+1, which after linear change of co-
ordinates may be taken to be the set of points of the form [z0 : · · · : zk+1].
By the hypersurface case proven above, there is a homogeneous polyno-
mial f of degree d in the variables z0, . . . , zk+1 whose zero locus is the
image of V in Pk+1. The sequence of projections may actually be accom-
plished in a single step, by projecting away from a generic linear space
of dimension n − k − 2 not containing p. The polynomial F defined by
F (z0, . . . , zn) = f(z0, . . . , zk+1) is the desired polynomial. Geometrically,
the zero locus of F is the cone on V with vertex Pn−k−2.

Exercises

Let i : V →֒ M be a smooth complex submanifold of a complex manifold.
There is an exact sequence

0→ TV → i∗TM → νV/M → 0 (6.1)

of vector bundles over V , whose quotient term is called the normal bundle
of V in M . The dual of the normal bundle is the conormal bundle.

Exercise 6.1 Let V ⊂ M be a smooth, irreducible hypersurface. Prove
that the conormal bundle of V inM is isomorphic to the line bundle i∗[−V ];
in words, this is the restriction to V of the line bundle on M induced by
the divisor −V . This fact is sometimes called the first adjunction formula.
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Suggestion: Let {fα} be local defining functions for V ; show that after
restricting to V , the one-forms {dfα} constitute a global non-vanishing
section of a certain line bundle. ⋄
Exercise 6.2 Find the normal bundle of Pk ⊂ Pn, and prove that the
exact sequence

0→ TPk → i∗TPn → νPk/Pn → 0

splits holomorphically. In fact, the total space of νPk/Pn embeds as a
Zariski-open subset of Pn; identify this set and its complement geomet-
rically. ⋄

If p : E → M is a holomorphic vector bundle of rank k, then the deter-
minant bundle detE is defined to be the top exterior power

∧k
E. Thus

detE is the holomorphic line bundle whose transition functions are deter-
minants of the transition functions of E. Let M be a holomorphic manifold,
and let E = T 1,0M be the holomorphic tangent bundle of M . The anti-
canonical bundle of M is −KM = detE, and the canonical bundle of M is
KM = detE∗. Thus the canonical bundle ofM is the bundle of holomorphic
n-forms.

Exercise 6.3 Prove that −KPn = OPn(n+1). ⋄
Exercise 6.4 Let 0 → S → E → Q → 0 be an exact sequence of holo-
morphic vector bundles over M . Prove that detE ≃ detS ⊗ detQ as holo-
morphic line bundles. (Note that the splitting E = S ⊕Q is generally not
holomorphic.) ⋄
Exercise 6.5 Let V ⊂ M be a smooth hypersurface. Prove the second
adjunction formula:

KV = i∗(KM ⊗ [V ]). (6.2)

Suggestion: Use Exercises 6.1 and 6.4. ⋄
When V ⊂M is a smooth hypersurface, the induced map KM → KV on

global sections is called the Poincaré residue map, and is extremely useful
for describing holomorphic forms on hypersurfaces in Pn. Take M = Pn,
n > 1, and let V = {f = 0} be a smooth, irreducible hypersurface of
degree d. By the second adjunction formula, KV = i∗OPn(d − n − 1). A
(local) section η of the bundle Ωn

Pn ⊗ [V ] is a (local) meromorphic n-form
on Pn that has a single pole along V and is elsewhere holomorphic. (A
global holomorphic section of Ωn

Pn ⊗ [V ] exists if and only if d = deg f ≥
n+ 1.) The Poincaré residue of η is the unique holomorphic form η0 on V
such that

η =
df

f
∧ η0.

The kernel of the Poincaré residue map is the sheaf of germs of holomorphic
n-forms; in other words, there is an exact sheaf sequence

0→ ΩnPn → ΩnPn ⊗ [V ]→ Ωn−1
V → 0,



6.4 Chow’s Theorem 73

whose long exact cohomology sequence includes the terms

H0(Pn,Ωn
Pn ⊗ [V ])→ H0(V,Ωn−1

V )→ H1(Pn,Ωn
Pn);

the last term is trivial by Proposition 4.13. Thus, every holomorphic (n−1)-
form on V is the Poincaré residue of a global meromorphic form on Pn.

Exercise 6.6 (Algebraic K3 Surfaces) Let V be a smooth quartic hyper-
surface in P3. Show that the canonical bundle of V is trivial, and find a
non-vanishing holomorphic two-form on V . (By Theorem 10.5 below, the
first homology of V is trivial. In fact, V is simply-connected. A simply-
connected complex surface with trivial canonical bundle is called a K3 sur-
face, after Klein, Kummer, and Kodaira.)

LetM = P1×P1×P1, and let V ⊂M be a smooth hypersurface of degree
(2, 2, 2); this means V is the zero locus of an irreducible sextic polynomial
that is quadratic in the homogeneous coordinates on each P1 factor. Prove
that the canonical bundle of V is trivial, and find eight automorphisms of
V . ⋄
Exercise 6.7 Let C ⊂ P2 be a smooth curve of degree d. Calculate the
dimension of the space of holomorphic one-forms on C using the Poincaré
residue map, thereby giving an alternate proof of the degree formula (Ex-
ercise 2.8) for smooth plane curves. ⋄
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7

Metrics, Connections, and Curvature

In differential geometry, a (Riemannian) metric is a symmetric, positive-
definite two-tensor g on a manifold M , namely, a smooth choice of inner
product in the tangent spaces of M . The metric is used to define lengths
of tangent vectors, and angles between pairs of vectors. The length of a
path γ of class C1 is defined to be the integral of ‖γ̇‖, and the distance be-
tween two points is the infimum of the lengths of paths joining the points.
A connection is an additional piece of data that specifies parallel transport
along a piecewise C1 path, and thereby allows (“covariant”) differentiation
of tensor fields in a coordinate-independent manner. A Riemannian metric
determines a Levi-Civita connection, for which parallel transport preserves
orthonormality of frames and satisfies a symmetry condition. However, un-
like partial derivatives, covariant derivatives in different directions do not
generally commute. The failure of commutativity is measured by the “cur-
vature tensor” of the connection.

A metric on a holomorphic manifold is usually required to satisfy addi-
tional restrictions, in order that the geometry of the metric reflect the holo-
morphic structure of the manifold. An “Hermitian” metric is algebraically
compatible with the complex structure J ; such a metric distinguishes two
connections: The Levi-Civita connection, and the Chern connection, which
is compatible with J . An Hermitian metric is “Kähler” if a further analytic
condition holds. This condition has many interesting interpretations, one
of which is that the Levi-Civita and Chern connections coincide.
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7.1 Hermitian and Kähler Metrics

Let (V, J) be a complex vector space. An inner product g on V is Hermitian
if the endomorphism J is g-orthogonal, that is, if g(X,Y ) = g(JX, JY )
for all X and Y ∈ V . Every inner product may be averaged to yield an
Hermitian inner product; if g is an arbitrary inner product, then

g̃(X,Y ) =
1

2

(
g(X,Y ) + g(JX, JY )

)
(7.1)

defines an Hermitian inner product.
An Hermitian inner product has a C-bilinear extension gC on VC, and it

is immediate to verify that the eigenspaces V 1,0 and V 0,1 are isotropic with
respect to gC. However, the complex-valued inner product h on V defined
by

h(X,Y ) = gC(X1,0, Y 0,1) =
1

2

(
g(X,Y ) + ig(X, JY )

)
(7.2)

is easily verified to be C-linear in the first variable, C-antilinear in the
second, and to be conjugate symmetric. Thus, h is an Hermitian form
on V in the usual sense. The imaginary part of h is denoted ω/2, and is
skew-symmetric.

Lemma 7.1 If two of the tensors g, J , and ω are known, then the third is
determined uniquely.

Proof If J is known, then passing from g to ω is trivial: If X , Y ∈ V ,
then

ω(X,Y ) = g(X, JY ), (7.3)

and since g is J-Hermitian, g(X,Y ) = ω(JX, Y ).
Suppose that g is an inner product on V and that ω is a skew-symmetric

two-tensor which in addition is non-degenerate. The latter means ωn 6= 0,
or equivalently that for every X ∈ V , there is a Y ∈ V with ω(X,Y ) 6= 0.
There is a unique linear transformation S : V → V such that for all X and
Y ∈ V , g(X,SY ) = ω(X,Y ). This mapping is invertible because ω is non-
degenerate, and is skew-symmetric with respect to g because ω is skew-
symmetric. The transformation −S2 is (symmetric and) positive-definite
with respect to g, hence has a square root T that commutes with S. Thus
J := ST−1 is a complex structure on V .

When (V, J) is a complex vector space, the relation (7.3) generally gives
a correspondance between real, symmetric, J-invariant 2-tensors and real,
skew-symmetric (1, 1)-tensors (in the sense of complex bigrading).

This algebraic construction may be made pointwise on a complex mani-
fold; the resulting structure is called an (almost-)Hermitian structure. How-
ever, the interaction between g and J is richer if at least one of the tensor
fields is required to satisfy an integrability condition.
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If g is integrable in the sense that the two-form ω is closed, then the pair
(M,ω) is a symplectic manifold. Symplectic manifolds were originally stud-
ied by virtue of their appearance in Hamiltonian mechanics; the cotangent
bundle of a configuration space—the so-called phase space of the physical
system—carries a natural symplectic form, and the time evolution of the
system is elegantly described in terms of geometry of the symplectic struc-
ture. Symplectic geometry experienced a renaissance in the mid-1980’s that
shows no signs of abating. Four-dimensional topology, algebraic geometry,
quantum field theory, and string theory are just a few of the branches of
mathematics and physics that have benefitted from the “new” symplectic
geometry.

If J is integrable in the sense of having vanishing Nijenhuis tensor, then
M has a holomorphic atlas for which J is the induced complex structure
on TM . A triple (M,J, g) is an Hermitian manifold if the Riemannian met-
ric g is Hermitian as an inner product in each tangent space. The two-form ω
is the fundamental form of g, and has the following useful interpretation.

Lemma 7.2 Let (M,J, g) be an Hermitian manifold of complex dimen-
sion n. Then the volume form dvolg of g is (ωn/n!).

Proof With respect to a unitary coframe {ei}ni=1, the fundamental form
is ω = e1 ∧ ē1 + · · · + en ∧ ēn; taking the top exterior power proves the
lemma.

An Hermitian metric is Kähler if the fundamental two-form ω is closed.
In this case, ω is called the Kähler form of g, and the de Rham class
Ω = [ω] ∈ H2

d(M,R) is called the Kähler (or fundamental) class of g.
When a complex structure is fixed, it is convenient to identify g and ω, and
to speak of “a Kähler metric ω” or of “a metric g in Ω.” A holomorphic
manifold that admits a Kähler metric is Kählerian or of Kähler type.

A two-form η is positive if η(JX,X) > 0 for every non-zero tangent
vector X , cf. equation (7.3) above. A de Rham cohomology class containing
a positive representative is a positive class. The fundamental two-form ω
of an Hermitian metric is positive, and a positive (1, 1)-class on a compact
holomorphic manifold is often called a Kähler class.

Every holomorphic manifold admits an Hermitian structure; indeed, an
arbitrary Riemannian metric may be averaged as in (7.1). By contrast,
there are topological obstructions to existence of a Kähler metric on a
compact manifold. The most elementary of these is a simple consequence
of Lemma 7.2. Since the volume of M with respect to g may be computed
as ∫

M

ωn

n!
=

1

n!
〈Ωn, [M ]〉 = 〈eΩ, [M ]〉,

the de Rham class Ωn is non-zero, so a fortiori Ω is not zero, nor are its
k-fold exterior powers for k ≤ n. There are additional, much more subtle,
necessary conditions for a compact holomorphic manifold to be Kählerian.
Some of these will appear later as consequences of the Hodge Theorem.
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Example 7.3 Every Hermitian metric on a Riemann surface is Kähler,
simply because dω is a 3-form, hence vanishes identically. The Hopf man-
ifolds, which are diffeomorphic to S1 × S2n−1, n > 1, are not Kählerian.
Nor is the sphere S6, leaving aside the question of whether or not S6 has
a holomorphic atlas. 2

Example 7.4 The flat metric on Cn is Kähler. The Kähler form

ω =
√
−1(dz1 ∧ dz̄1 + · · ·+ dzn ∧ dz̄n)

is, indeed, exact. Since the flat metric is invariant under translation, every
compact complex torus admits a Kähler metric. 2

Example 7.5 Complex projective space Pn admits a U(n+ 1)-invariant
Kähler metric, the Fubini-Study metric. Let Z be standard coordinates on
Cn+1, put ρ = ‖Z‖2, and set

2πω̃ =
√
−1∂∂̄ log ρ =

√
−1

[
∂∂̄ρ

ρ
− ∂ρ ∧ ∂̄ρ

ρ2

]
(7.4)

=
√
−1

[‖Z‖2∑ dZj ∧ dZ̄j − (
∑
Z̄j dZj) ∧ (

∑
Zj dZ̄j)

‖Z‖4
]
.

The form ω̃ is U(n+1)-invariant (“a function of ‖Z‖2 alone”), and is invari-
ant under scalar multiplication by non-zero complex numbers (numerator
and denominator are homogeneous of weight four). There is consequently
a well-defined push-forward 2π ω on Pn. To see that ω is positive-definite,
evaluate at [1 : 0 : · · · : 0] where definiteness is obvious, then use invari-
ance under the unitary group U(n + 1). The de Rham class of ω gener-
ates the integral cohomology of Pn. To see this, consider the embedding
i : [Z0 : Z1] ∈ P1 7−→ [Z0 : Z1 : 0 : · · · : 0] ∈ Pn. In the chart U0 with
coordinate z = Z1/Z0,

i∗ω =

√
−1

2π

dz ∧ dz̄
(1 + zz̄)2

, so

∫

P1

ω = 1

by integrating in polar coordinates. 2

A large—and extremely important—class of Kähler manifolds comes
from the following observation.

Proposition 7.6 Let (M,J, g) be a Kähler manifold, and let N be a com-
plex submanifold. Then the restriction of g to N is Kähler.

Proof By hypothesis, the restriction of J to N preserves the tangent
bundle of N and is equal to the complex structure of N . The fundamental
two-form of g|N is therefore, by equation (7.3), equal to ω|N , which is
closed.
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Example 7.7 Every smooth algebraic variety admits a Kähler metric. In
fact, the restriction of the Fubini-Study form to a subvariety V ⊂ Pn is an
integral form, that is, represents a class in H2(V,Z).

A compact Kähler manifold whose Kähler class is rational is called a
Hodge manifold. The Kodaira Embedding Theorem (Theorem 10.10 and
Corollary 10.11 below) asserts that every Hodge manifold can be embedded
in some projective space. Among compact complex tori, Hodge manifolds
form a set of measure zero; such a torus admits a Hodge metric if and only
if its lattice satisfies certain rationality conditions. These conditions are
automatic in dimension one, but are non-trivial in dimension greater than
one.

A similar assertion is true for smooth complex surfaces diffeomorphic to
the Fermat quartic in P3, the so-called K3 surfaces (after Klein, Kummer,
and Kodaira). A generic K3 surface is not projective algebraic, but there is
a 19-dimensional family of quartic surfaces in P3. See also Example 10.8.
2

There are a number of useful alternate characterizations of when a metric
is Kähler, some of which are given in Proposition 8.11 below. As a general
point of philosophy, Kähler manifolds exhibit a large degree of interplay
between their real structures (differential-geometric, smooth topological)
and complex-analytic structure (Dolbeault cohomology).

7.2 Connections in Vector Bundles

Let E → M be a complex vector bundle of rank k over a holomorphic
manifold. A connection in E is a C-linear map D : A0(E) → A1(E)
satisfying the Leibniz rule D(fs) = df s + f Ds for all smooth functions
f and all smooth sections s. Every connection admits unique extensions
D : Ar(E)→ Ar+1(E) satisfying

D(ψs) = dψ s+ (−1)rψDs for ψ ∈ Ar. (7.5)

A connection in E gives a means of transporting frames along paths in
M , thereby comparing or “connecting” fibres of E. If γ : [0, 1] → M is a
smooth path, and if e0 is a frame at γ(0), then there is a unique section et
of γ∗E, the parallel transport of e0 along γ, satisfying

Dγ̇(t)et = 0 for all t ∈ [0, 1].

Indeed, this condition is a linear first-order system of ordinary differential
equations on [0, 1], which therefore has a unique solution for every choice
of initial conditions.

Locally, a connection is specified by a connection matrix. Precisely, to
a local frame e of E is associated a k × k matrix θ = θ(e) of one-forms
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satisfying De = θe; this equation is interpreted as meaningDei =
∑

j θ
j
i ej .

If e′ = ae is another local frame, with a a local GL(k,C)-valued function,
and if De′ = θ′e′, then the connection matrices are related by

θ′a = aθ + da, or θ′ = aθa−1 + (da)a−1. (7.6)

The space of connections in E is an affine space, and every choice of
connection D furnishes an isomorphism with the vector space A1(EndE);
indeed, if D1 and D2 are connections in E, then their difference D1 −D2

is linear over A0 by (7.6) or by the Leibniz rule, hence is given by wedging
with the endomorphism-valued one-form θ1 − θ2 ∈ A1(EndE).

The curvature operator R = D2 : A0(E) → A2(E) measures the extent
to which parallel transport around a closed loop is not the identity. Re-
markably, R is an algebraic operator in the sense that R(fs) = f R(s) for
all smooth f ; the value of Rs at x ∈M depends only on the value of s at x.
With respect to a local frame, there is a k × k matrix Θ = Θ(e) of two-
forms—the curvature matrix of D—such that R(e) = Θe. The following
facts are easily checked.

• Under a change of frame e′ = ae, the curvature matrix transforms
by a similarity: Θ′ = aΘa−1. In other words, the curvature operator
is determined by an EndE-valued two-form Θ ∈ A2(EndE). If E
is a line bundle, then Θ is an ordinary two-form on M since in this
case EndE is canonically trivial, the identity endomorphism being a
natural choice of section.

• With respect to an arbitrary frame, the Cartan Structure equation

Θ = dθ − θ ∧ θ (7.7)

holds, the wedge product being taken as a matrix product with the
entries wedged.

• Taking the exterior derivative of Θ and using (7.7) gives the differ-
ential Bianchi identity DR = 0, or

dΘ + Θ ∧ θ − θ ∧Θ = 0. (7.8)

In words, the curvature tensor is parallel.

If E is a holomorphic vector bundle, then a connection D in E is com-
patible with the holomorphic structure if D0,1 = ∂̄E . The curvature of a
compatible connection has no (0, 2)-component. Conversely, in a complex
vector bundle over a holomorphic manifold, a connection D whose (0, 1)
part satisfies (D0,1)2 = 0 determines a holomorphic structure; a local sec-
tion s of E is declared to be holomorphic if D0,1s = 0. This point of view
is useful for constructing the moduli space of holomorphic structures on a
fixed complex vector bundle.
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An Hermitian structure in a complex vector bundle E is a smooth field
of Hermitian inner products in the fibres of E; alternately, an Hermitian
structure is a positive-definite section h ∈ A0(E∗ ⊗E∗

). With respect to a
local frame, an Hermitian structure is given by an Hermitian matrix-valued
functionH , with Hij = H(ei, ej), that transforms according toH ′ = aHāt.
An Hermitian structure in TM is exactly an Hermitian metric on M .

A connection is compatible with an Hermitian structure h if

d
(
h(s1, s2)

)
= h(Ds1, s2) + h(s1, Ds2)

for all smooth, local sections s1, s2. Geometrically, this means that under
parallel transport a unitary frame remains unitary. In terms of a local
frame, the connection and curvature matrices satisfy

dH = θH +Hθ̄, ΘH +HΘ
t
= 0,

i.e. the matrix ΘH is skew-Hermitian. In particular, with respect to a local
unitary frame of E, the curvature matrix Θ is skew-Hermitian.

Proposition 7.8 Let (E, h) → M be an Hermitian holomorphic vector
bundle. Then there is a unique connection D in E that is compatible with
the metric and holomorphic structure.

Proof With respect to a local holomorphic frame e, the connection
form θ is of type (1, 0). Comparing types in the equation

dθ = ∂θ + ∂̄θ = θH +Hθ̄

gives θ = (∂H)H−1. The curvature matrix is

Θ = ∂̄θ = −(∂∂̄H)H−1 + (∂H)H−1 ∧ (∂̄H)H−1.

It is straightforward to check that the locally defined matrix θ of one-forms
defines a connection matrix (i.e. transforms correctly) which is compatible
with h, and is clearly the only such connection matrix of type (1, 0).

The connection whose existence is asserted in Proposition 7.8 is called
the Chern connection or the canonical connection of (E, h). The connection
form is formally ∂ logH , the formality being that H is matrix-valued. If E
is a line bundle, then this equation is literally true. The curvature form is
related to the Chern form γ1(E, h) by

2πγ1(E, h) = −
√
−1∂∂̄ logH =

√
−1Θ.

The Chern form represents the first Chern class of the line bundle E.

Example 7.9 The total space of the tautological bundle OPn(−1) is a
subbundle of Pn × Cn+1, and has an induced Hermitian structure given
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by the usual Hermitian structure on Cn+1. The curvature form is exactly
minus the Fubini-Study form, see Example 7.5 and Exercise 7.1. 2

A connectionD in E induces connections in bundles associated to E. The
conjugate bundle, whose transition functions are complex conjugates of the
transition functions of E, has induced connection Ds̄ = Ds for s ∈ A0(E).
The dual bundle acquires a connection via the Leibniz rule. If the dual
pairing is denoted by 〈 , 〉 : A0(E) × A0(E∗) → A0, then for a section
η ∈ A0(E), Dη is defined by requiring

d〈s, η〉 = 〈Ds, η〉+ 〈s,Dη〉 for every section s ∈ A0(E).

If DE and DF are connections in vector bundles E and F over M , then
DE⊕DF is a connection in E⊕F . An adapted frame is a collection of local
sections {ei}k+ℓi=1 with {ei}ki=1 a frame for E and {ei}ℓi=k+1 a frame for F .
With respect to an adapted frame, the connection and curvature forms of
DE⊕F split as

θE⊕F =

[
θE 0
0 θF

]
, ΘE⊕F =

[
ΘE 0
0 ΘF

]
. (7.9)

The tensor product E⊗F has an induced connection DE⊗IF +IE⊗DF .
The exterior products

∧p
(E) acquire connections as subbundles of E⊗p.

An important special case is the top exterior power detE =
∧k

E; the
connection and curvature forms with respect to the frame e1 ∧ · · · ∧ ek are

tr θ, tr Θ. (7.10)

Let S ⊂ E be a holomorphic subbundle of an Hermitian vector bundle
E →M , and let Q = E/S be the quotient. There is a short exact sequence

0→ S → E → Q→ 0

of vector bundles. Such a sequence does not usually split holomorphically.
Of course, the orthogonal complement S⊥ ⊂ E is isomorphic to Q as a
smooth complex vector bundle, and via this isomorphism the bundle Q ac-
quires an Hermitian structure and a canonical connection. In Riemannian
geometry, the Levi-Civita connection of a submanifold is the tangential
component of the Levi-Civita connection of the ambient space. The holo-
morphic analogue of this result is as follows.

Theorem 7.10 Let (E, h) be an Hermitian holomorphic vector bundle, S
a subbundle with the restricted metric, and Q = E/S the quotient with the
induced metric. There is a one-form A with values in Hom(S, S⊥) such
that the connection matrix and curvature operator of E are

θE =

[
θS A
−A∗ θQ

]
RE =

[
RS −A∗ ∧A −D1,0A∗

D0,1A RQ −A ∧A∗

]
. (7.11)
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Proof (Sketch) There are several assertions to check, but all are straight-
forward. First, apply DE to a local section s of S and decompose into S
and S⊥ components to deduce that the S component of DE|S is DS and
the S⊥ component is A0-linear in s, i.e. is a one-form A with values in
Hom(S, S⊥). This one-form is called the second fundamental form of S in
E, and measures extrinsic geometry of S via its embedding.

A similar argument shows that DE|S⊥ has S somponent −A∗ (minus the
adjoint) and S⊥ component DQ. The expression of the curvature operator
in (7.11) is the vector bundle version of the Gauss-Codazzi equations.

Corollary 7.11 Let 0 → S → E → Q → 0 be a short exact sequence of
Hermitian holomorphic vector bundles over M . Then the sequence splits
holomorphically if and only if the second fundamental form of S in E van-
ishes identically.

Let (E, h) → (M, g) be an Hermitian holomorphic vector bundle over a
Kähler manifold. The curvature Θ is a two-form with values in End(E). In
a local coordinate system z, with local frame ej and dual coframe ei, the
curvature is

Θ =

k∑

i,j=1

Θj
ie
i ⊗ ej =

k∑

i,j=1




n∑

α,β̄=1

Rj
iαβ̄

dzα ∧ dz̄β

 ei ⊗ ej .

Letting (gβ̄α) be the inverse matrix of (gαβ̄), the mean curvature of h is
the endomorphism

tr Θ =

k∑

i,j=1




n∑

α,β̄=1

gβ̄αRj
iαβ̄


 ei ⊗ ej .

The bundle (E, h) is Einstein-Hermitian if the mean curvature is a constant
multiple of the identity endomorphism.

When E = TM , the trace of the curvature may be regarded (after low-
ering an index) as a symmetric 2-tensor, called the Ricci tensor of g. A
Riemannian metric is Einstein if the Ricci tensor is a multiple of the met-
ric tensor. An Einstein-Kähler metric may be regarded as a (very special)
Einstein-Hermitian metric on TM ; explicitly, in searching for an Einstein-
Hermitian metric, a Kähler metric g on M is fixed, and a metric (E, h)
is sought. Even if E = TM , h and g are generally different. The exis-
tence problem for Einstein-Kähler metrics is substantially more difficult
than the corresponding question for Einstein-Hermitian metrics. Finally,
an Einstein-Hermitian metric should not be confused with an Hermitian
metric g on M that happens to be Einstein in addition.
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Exercises

Hermitian Structures on Line Bundles over P
1

Recall that the total space Hk of the line bundle O(k) → P1 is obtained
from two copies of C ×C, with coordinates (z0, ζ0) and (z1, ζ1), by iden-
tifying

z0 =
1

z1
, ζ0 =

ζ1

(z1)k
.

Thus Hk is a family of lines parametrized by points of P1, the family
is trivial in each coordinate system separately, and the fibres in the z1

coordinates rotate k times with respect to the z0 coordinate system.
An Hermitian structure is a smooth assignment of an Hermitian inner

product to each fibre of O(k). In the present context, an Hermitian struc-
ture is specified by giving two positive, real-valued functions h0(z

0, z̄0) and
h1(z

1, z̄1), such that

(∗) h0(z
0, z̄0) = (z1z̄1)k h1(z

1, z̄1)

on the set C× = P1\{0,∞}where z0 and z1 are non-zero. By condition (∗),
the function hi(z

i, z̄i)ζi ζ̄i is well-defined; it is called the norm (squared)
function of the Hermitian line bundle and is denoted ‖ ‖2 : Hk → [0,∞).

Exercise 7.1 Show that the functions hi(z
i, z̄i) = (1 + ziz̄i)−k, i = 0, 1,

define an Hermitian structure onO(k). Recall that the total space ofO(−1)
is a submanifold of P1×C2; let (w0, w1) be coordinates on C2. Show that
the Hermitian structure hi(z

i, z̄i) = (1 + ziz̄i) has norm function equal to
w0w̄0 +w1w̄1. In other words, the Hermitian structure on the tautological
bundle is induced from the usual Hermitian structure on P1×C2. ⋄
Exercise 7.2 Let σ be a local holomorphic section of Hk that does not
vanish on U ⊂ P1. Show that the two-form −

√
−1∂∂̄ log ‖σ‖2 is invariant

under holomorphic gauge transformations. In particular, the curvature form
γ1(h) = −

√
−1∂∂̄ log hi(z

i, z̄i) is a globally defined two-form on P1. Prove
the Gauss-Bonnet Theorem: With the previous notation,

∫

P1

γ1(h) = 2πk.

As an elementary sub-exercise, verify the previous equation for the “stan-
dard” Hermitian structure given above. ⋄
Exercise 7.3 Write stereographic projection in local coordinates, find
the Hermitian structure on TP1 gotten by restricting the Euclidean metric
du2 + dv2 + dw2 on R3, and use the Gauss-Bonnet Theorem to show (yet
again) that TP1 = O(2). ⋄
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Flat Vector Bundles and Monodromy Representations

Exercise 7.4 Let p : (E, h)→ (M, g) be a holomorphic Hermitian vector
bundle of rank k over an Hermitian manifold. Prove that there is an exact
sequence (generally non-split)

0→ p∗E → TE → p∗TM → 0 (7.12)

of holomorphic vector bundles over E. In particular, a non-zero section of E
(as a vector bundle over M) gives rise to a non-zero vector field on E (as
a holomorphic manifold). ⋄
Exercise 7.5 Let θ = h−1∂h ∈ A1(TE) be the Chern connection form of
the Hermitian structure h. Prove that there is a unique Hermitian metric
on the total space of E (regarded as a manifold) such that

i. The Hermitian structure of E is induced by the inclusion p∗E ⊂ TE.

ii. The kernel of θ, which is smoothly isomorphic to p∗TM by (∗), is or-
thogonal to p∗E and acquires the Hermitian structure p∗g on p∗TM .

Intuitively, this Hermitian metric on the total space of E is h in the vertical
directions and g in the horizontal directions. ⋄
Exercise 7.6 With the notation of Exercise 7.4, let H ⊂ TE denote the
kernel of θ, i.e. H is the bundle of horizontal vectors in TE; as smooth
vector bundles, TE = p∗E ⊕ H. Show that the curvature Θ = dθ − θ ∧ θ
vanishes identically if and only if H is involutive, if and only if the se-
quence (7.12) splits holomorphically. Intuitively, curvature of a connection
may be regarded as an obstruction to involutivity of the horizontal distri-
bution. ⋄
Exercise 7.7 (Monodromy representations) Let p : (E, h) → M be an
Hermitian holomorphic vector bundle over a connected holomorphic man-
ifold, and assume the Chern connection of E has vanishing curvature. Let
γ : [0, 1] → M be a loop based at x ∈ M , and let ρ(γ) ∈ AutEx denote
parallel transport around γ. Prove that ρ(γ) depends only on the homotopy
class of γ in π1(M). It may be helpful to consider the leaves of the distribu-
tion H; the lift of γ lies in a fixed leaf. Fixing a frame at x identifies AutEx
and GL(k,C), and the map ρ : π1(M)→ GL(k,C) defined by lifting loops
based at x is a group homomorphism, called the monodromy representation
of π1(M). (In particular, each leaf is the total space of a principal bundle
over M with structure group π1(M).)

Let M̃ denote the universal cover of M . Prove that E = M̃ ×ρ Ck. In
summary, flat vector bundles of rank k over M correspond (more or less
naturally) to conjugacy classes of representations ρ : π1(M) → GL(k,C),
or to reductions of the structure group of E from GL(k,C) to π1(M).
⋄
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Exercise 7.8 Prove that if M is simply-connected, then a flat vector bun-
dle is holomorphically trivial. (This is essentially trivial from Exercise 7.7.)
Prove that every topologically trivial line bundle over Pn (or P1, though
the general case is not much more difficult) admits a flat Hermitian struc-
ture. Let x and y be distinct points in an elliptic curve C/Λ. Prove that
the line bundle associated to the divisor (x) − (y) is topologically trivial
but does not admit a flat Hermitian structure. ⋄
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Hodge Theory and Applications

Suppose π : E →M is a holomorphic vector bundle over a compact mani-
fold. There is a Dolbeault cohomology theory of ∂̄-closed (p, q)-forms with
values in E, and an isomorphism of complex vector spaces

Hp,q

∂̄
(M,E) ≃ Hq

(
M,Ωp(E)

)
.

Because these cohomology spaces are invariants of the holomorphic struc-
ture (as opposed to being topological invariants), it is not obvious whether
or not they are finite-dimensional, see Exercise 4.1.

Suppose that E and M are endowed with metric structures. More pre-
cisely, assume (E, h) is an Hermitian holomorphic vector bundle (i.e. h is a
metric in the fibres of E) and that (M, g) is an Hermitian manifold (i.e. g is
a fibre metric in TM). It is then possible to introduce a norm on the space
of (p, q)-forms with values in E. The Hodge Theorem (Theorem 8.3 below)
asserts that each Dolbeault cohomology class contains a unique represen-
tative of smallest norm, and that the set of such representatives is indeed
finite-dimensional when M is compact. In the event that (M, g) is a Kähler
manifold and E = O (the trivial line bundle), the interplay between real
and complex potential theory gives extra information about the de Rham
cohomology of M versus the Dolbeault cohomology, see Theorem 8.17.

8.1 The Hodge Theorem

Let π : (E, h) → (M, g) be an Hermitian holomorphic vector bundle of
rank k over a (connected) compact Hermitian manifold of dimension n. The
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metric g naturally induces an Hermitian structure in each of the bundles
T ∗

1,0(M)⊗p⊗T ∗
0,1(M)⊗q of (p, q)-tensors, and in the subbundle

∧p,q
(M) of

(p, q)-forms. Together with the Hermitian structure of E, these Hermitian
structures determine an Hermitian structure 〈 , 〉 in the bundle of E-valued
(p, q)-forms.

It is instructive to write these Hermitian structures in terms of local
frames. Let {ϑα, Jϑα} be a local orthonormal coframe for g, i.e. the one-
forms ϑα are real-valued, and

g =
n∑

α=1

(
ϑα ⊗ ϑα + Jϑα ⊗ Jϑα

)
.

Setting θα = ϑα+i Jϑα ∈ T ∗
1,0M , the sesquilinear extension of the metric g

is g +
√
−1ω =

∑
α θ

α ⊗ θ̄α, and ‖θα‖2 = 2. If I and J are multi-indices of
length p and q, then the (p, q)-forms θI ∧ θ̄J have (squared) length 2p+q,
and the set of such forms is an orthogonal frame for

∧p,q
(M). Concretely,

if {ei}ki=1 is a local frame for E, and

ϕ =

∑

|I|=p,|J|=q

1≤ i ≤ k

(
ϕiIJ̄θ

I ∧ θ̄J
)
⊗ ei, ψ =

∑

|I|=p,|J|=q

1 ≤ j ≤ k

(
ψj
IJ̄
θI ∧ θ̄J

)
⊗ ej ,

then the pointwise inner product 〈ϕ, ψ〉 ∈ A0(M) is equal to

〈ϕ, ψ〉 = 2p+q
∑

|I|=p,|J|=q

1≤ i, j ≤ k

ϕiIJ̄ ψ


IJ̄
h(ei, ej),

and the global inner product is defined to be

(ϕ, ψ) =

∫

M

〈ϕ, ψ〉dvolg =

∫

M

〈ϕ, ψ〉 ω
n

n!
. (8.1)

The global inner product is an Hermitian inner product on Ap,q(E), the
space of smooth (p, q)-forms with values in E, but of course Ap,q(E) is not
complete. It will presently be convenient to introduce a family of Sobolev
completions of Ap,q(E) which will include the L2-completion as a special
case.

Let ∂̄∗ : Ap,q(E) → Ap,q−1(E) be the formal adjoint of ∂̄ with respect
to the global inner product; thus (∂̄∗ψ, ϕ) = (ψ, ∂̄ϕ) for all ϕ ∈ Ap,q−1(E),
ψ ∈ Ap,q(E). The desired “smallest norm” representative of a Dolbeault
class is formally expressed very simply.

Proposition 8.1 Let ψ be a ∂̄-closed (p, q)-form. Then ψ has smallest
L2-norm among all forms ψ + ∂̄η if and only if ∂̄∗ψ = 0.

Proof Suppose ‖ψ‖2 is minimal. Then for every η ∈ Ap,q−1(E),

0 =
d

dt

∣∣∣
t=0
‖ψ + t∂̄η‖2 = 2Re (ψ, ∂̄η)
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0 =
d

dt

∣∣∣
t=0
‖ψ + it∂̄η‖2 = 2Im (ψ, ∂̄η).

Thus (∂̄∗ψ, η) = (ψ, ∂̄η) = 0 for all η ∈ Ap,q−1(E), so ∂̄∗ψ = 0.
Conversely, if ∂̄∗ψ = 0, then for every η ∈ Ap,q−1(E),

‖ψ + ∂̄η‖2 = ‖ψ‖2 + ‖∂̄η‖2 + 2Re (ψ, ∂̄η)

= ‖ψ‖2 + ‖∂̄η‖2 + 2Re (∂̄∗ψ, η) = ‖ψ‖2 + ‖∂̄η‖2 ≥ ‖ψ‖2

with equality if and only if ∂̄η = 0.

Formally, Proposition 8.1 says the Dolbeault space Hp,q

∂̄
(M,E) is iso-

morphic to the solution space of ∂̄∗ψ = 0 where ψ ranges over the space of
∂̄-closed (p, q)-forms, or in other words that

Hp,q

∂̄
(M,E) ≃ (ker ∂̄) ∩ (ker ∂̄∗) ∩Ap,q(E).

There is a convenient reformulation of the latter in terms of a single second-
order diffential operator, the ∂̄-Laplacian 2

p,q

∂̄
= 2∂̄ := ∂̄∂̄∗ + ∂̄∗∂̄.

Lemma 8.2 As subspaces of Ap,q(E), ker2∂̄ = (ker ∂̄) ∩ (ker ∂̄∗).

Proof This is immediate from (2∂̄ψ, ψ) = ‖∂̄ψ‖2 + ‖∂̄∗ψ‖2.
The kernel of 2

p,q

∂̄
is the space of (∂̄-)harmonic (p, q)-forms, and is de-

noted Hp,q(M,E). The following result, which justifies the formal argu-
ments made above, is the Hodge Theorem.

Theorem 8.3 Let π : (E, h) → (M, g) be an Hermitian holomorphic vec-
tor bundle over a compact Hermitian manifold. Then the space of harmonic
(p, q)-forms is finite-dimensional and is isomorphic to the Dolbeault space
Hp,q

∂̄
(M,E). Let Hp,q : Ap,q(E) → Hp,q(M,E) denote orthogonal projec-

tion. The Laplacian 2
p,q

∂̄
is invertible on the orthogonal complement of the

space of harmonic forms, that is, there exists a unique operator Gp,q of
degree −2 such that

Hp,q +Gp,q2
p,q

∂̄
= I (8.2)

on Ap,q(M,E), Hp,qGp,q = 0, [Gp,q, ∂̄] = 0, and [Gp,q, ∂̄∗] = 0.

The quasi-inverse G of 2∂̄ is called Green’s operator. Equation (8.2)
is sometimes expressed by saying that every (p, q)-form ψ has a unique
decomposition

ψ = Hψ + ∂̄(∂̄∗Gψ) + ∂̄∗(∂̄Gψ) (8.3)

as the sum of a harmonic form, an exact form, and a co-exact form, or that
the equation 2∂̄ψ = η has a solution if and only if η is orthogonal to the
space of harmonic (p, q)-forms, and in this case ψ = Gη.
Proof The technical preliminaries for the proof of the Hodge Theorem
are construction of a formal adjoint ∂̄∗ and of appropriate completions of
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Ap,q(E), so that techniques of Hilbert space analysis may be brought to
bear. Once the groundwork is laid, a weak solution is constructed (func-
tional analysis), and is shown to be of class C∞ (regularity theory). These
steps are sketched below, mostly without proof.

The Hodge star operator ∗ : Ap,q(E) → An−p,n−q(E∗) is defined by the
requirement that

〈ϕ, ψ〉dvolg = ϕ ∧ ∗ψ for all ϕ, ψ ∈ Ap,q(E). (8.4)

In order to write the star operator in terms of a frame, let I0, J0 ⊂
{1, . . . , n} be multi-indices complementary to I and J , and let εIJ =
sign(I I0)sign(J J0), where “sign” denotes the sign of a permutation of
{1, . . . , n}. If {e∗i } denotes the dual coframe of {ei}, then

∗ϕ = ∗




∑

|I|=p,|J|=q

1≤ i ≤ k

(
ϕiIJ̄θ

I ∧ θ̄J
)
⊗ ei




= 2p+q−n
∑

|I|=p,|J|=q

1 ≤ i ≤ k

(
εIJϕıIJ̄θ

I0 ∧ θ̄J0
)
⊗ e∗i .

It is easy to verify that ∗∗ = (−1)p+q acting on Ap,q(E). It is sometimes
desirable to introduce a complex-linear star operator, defined as above but
without taking complex conjugates of the components of ϕ; in this event,
the star operator as defined above is denoted ∗̄.

Proposition 8.4 The formal adjoint of ∂̄ is ∂̄∗ = − ∗∂̄∗.

Proof Let ϕ ∈ Ap,q(E) and ψ ∈ Ap,q−1(E). By the definitions of the
global inner product (8.1) and the Hodge star operator (8.4),

(∂̄ψ, ϕ) =

∫

M

∂̄ψ ∧ ∗ϕ = (−1)p+q
∫

M

ψ ∧ ∂̄(∗ϕ) +

∫

M

∂̄(ψ ∧ ∗ϕ).

Because ψ ∧ ∗ϕ is of type (n, n − 1), ∂̄(ψ ∧ ∗ϕ) = d(ψ ∧ ∗ϕ), so the last
term vanishes by Stokes’ Theorem. The remaining integral is

−
∫

M

ψ ∧ ∗(∗∂̄∗ ϕ) = (ψ,− ∗∂̄∗ ϕ),

proving that ∂̄∗ = − ∗∂̄∗ as claimed.

Cover M by coordinate charts that are also trivializing neighborhoods
for E. Each chart is modelled on U×Ck, with U ⊂ Cn ≃ R2n an open set,
and M is covered by finitely many charts. (It is here that compactness of
M is used in an essential way.) To define suitable norms on Ap,q(E), first
define norms on smooth, compactly supported sections of R2n ×Ck, then
use a partition of unity to express an element of Ap,q(E) as a finite sum of
smooth, compactly supported sections in coordinate charts.
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It is sufficient to consider smooth, compactly supported functions f :
R2n → C; the norm of a vector-valued function may then be computed
with respect to a fixed norm on Ck. Recall that the Fourier transform of
f is defined to be

f̂(y) =
1

(2π)2n

∫

R2n

f(x)e−ix·y dx.

For each real number s, define the Sobolev s-norm of f to be

‖f‖2s =

∫

R2n

|f̂(y)|2
(
1 + |y|2

)s
dy, (8.5)

and define the Sobolev space Hs(R
2n) = Hs to be the completion in the

s-norm of the space of smooth, compactly supported functions on R2n.
Let Hp,q

s (M,E) = Hs(M,
∧p,q ⊗E) denote the completion of Ap,q(E) with

respect to the Sobolev s-norm as described above. While the norm depends
on the choice of trivializing cover and subordinate partition of unity, it is
easy to see that the space Hs(M,

∧p,q ⊗E) and its topology do not depend
on these choices; as above, this is a consequence of compactness of M .
There is an obvious nesting, namely if r < s then Hr ⊃ Hs. Set

H∞ =
⋂

s∈R

Hs, H−∞ =
⋃

s∈R

Hs.

Intuitively, the rate at which f̂(y) decays as |y| → ∞ is related (“propor-

tionally”) to the smoothness of f . As s→∞, the term (1+|y|2)s forces f̂ to
decay rapidly as |y| → ∞. More precisely, a measurable function has finite
Sobolev s-norm if and only if the derivatives of order up to and including s
are in L2(R2n); in particular, Cs ⊂ Hs:

Proposition 8.5 For s ≥ 0, the Sobolev s-norm is equivalent to the norm

(∑

|I|≤s

∫

R2n

|DIf(x)|2 dx
)1/2

,

and H−s is the topological dual of Hs.

The norm appearing in Proposition 8.5 comes from an inner product, so
the Sobolev space Hs is a Hilbert space. The is following (partial) reverse
inclusion is called the Sobolev Lemma.

Theorem 8.6 Hs+n+1(R
2n) ⊂ Cs(R2n). Globally,

Hs+n+1(M,

p,q∧
⊗E) ⊂ Cs(M,

p,q∧
⊗E).
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N.B. In Rm, the “n” in Theorem 8.6 becomes [m/2]. The dimension n
enters via finiteness of the integral

∫

R2n

(
1 + |y|2

)s
dy.

As a consequence of Theorem 8.6, H∞(M,E) = A0(E). The next result,
called the Rellich Lemma, is important for technical reasons; it is used
below to extract a compact, self-adjoint operator on a fixed Hilbert space.
The Hodge Theorem is then essentially the Spectral Theorem.

Theorem 8.7 If s > r, then the inclusion Hs ⊂ Hr of Hilbert spaces is a
compact embedding. Globally, the inclusion

Hs(M,
∧p,q ⊗ E) ⊂ Hr(M,

∧p,q ⊗ E)

is compact.

The Sobolev norms described above may be given more globally in terms
of connections. Specifically, there are natural connections on E and TM
(the respective Chern connections), and the Sobolev norms may be com-
puted from covariant derivatives of tensor fields rather than by using a
partition of unity. As above, Sobolev norms defined in this way are equiv-
alent to Sobolev norms defined using a partition of unity because M is
compact.

Define the Dirichlet inner product on Ap,q(E) by

D(ϕ, ψ) = (ϕ, ψ + 2∂̄ψ); D(ϕ,ϕ) = ‖ϕ‖2 + ‖∂̄ϕ‖2 + ‖∂̄∗ϕ‖2.

By expressing 2∂̄ in local coordinates as the Euclidean Laplacian plus
terms of lower degree (using a so-called Weitzenböck formula), it is possible
to deduce an a priori estimate for the Dirichlet norm, called Garding’s
Inequality.

Theorem 8.8 For each (p, q), there exists a C > 0, depending only on
(M, g) and (E, h), such that

‖ϕ‖21 ≤ C D(ϕ,ϕ) for all ϕ ∈ Ap,q(E).

From Garding’s Inequality, it follows that the operator I+2∂̄ on Ap,q(E)
has a bounded weak inverse

T : Hp,q
0 (M,E)→ Hp,q

1 (M,E).

By the Rellich Lemma, the induced operator on Hp,q
0 (M,E) (T followed by

inclusion) is compact, and is clearly self-adjoint. By the Spectral Theorm,
there is a decomposition of Hp,q

0 (M,E) into finite-dimensional eigenspaces
of T . Thus I + 2∂̄ is weakly invertible, hence 2∂̄ is weakly invertible on
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(ker2∂̄)
⊥. Explicitly, given a form η ∈ Hp,q

0 (M,E), there is a form ψ ∈
Hp,q

0 (M,E) such that for all ϕ ∈ Ap,q(E),

(ψ,2∂̄ϕ) = (η, ϕ).

It remains to show that eigenforms of 2∂̄ , which are eigenforms of I+2∂̄ ,
are smooth. This follows from the following regularity result; intuitively, the
inverse of the Laplacian “adds” two derivatives.

Theorem 8.9 Suppose ψ ∈ Hp,q
0 (M,E) is a weak solution of 2∂̄ψ = η for

some η ∈ Hp,q
s (M,E). Then ψ ∈ Hp,q

s+2(M,E) .

Smoothness of eigenforms ψ of 2∂̄ follows immediately by a “bootstrap”
argument, for if 2∂̄ψ = λψ for some λ ∈ R, then by Theorem 8.9, ψ is
in Hp,q

2 (M,E). Again by Theorem 8.9 ψ is in Hp,q
4 (M,E). Inductively, ψ ∈

Hp,q
∞ (M,E) = Ap,q(E). This completes the proof of the Hodge Theorem.

As above, let π : (E, h) → (M, g) be an Hermitian holomorphic vector
bundle over a compact Hermitian manifold. If ψ 6= 0 is a harmonic (p, q)-
form with values in E, then ∗ψ is a harmonic (n−p, n−q)-form with values
in E∗, and the global inner product of these forms is ‖ψ‖2 > 0. Since these
forms are natural representatives of their Dolbeault cohomology classes, the
following duality, the Kodaira-Serre Duality Theorem, follows immediately.

Theorem 8.10 With the above notation, the pairing

Hq
(
M,Ωp(E)

)
⊗Hn−q(M,Ωn−p(E∗)

)
→ Hn(M,Ωn) ≃ C

is non-degenerate.

The top exterior power of the holomorphic cotangent bundle of M is
called the canonical bundle KM ; the sheaf of germs of sections is Ωn, the
sheaf of germs of holomorphic n-forms. The Kodaira-Serre Duality Theorem
for p = 0 becomes

Hq(M,E)
dual≃ Hn−q(M,KM ⊗ E∗).

8.2 The Hodge Decomposition Theorem

On a compact Kähler manifold (M,J, g), there is compatibility between the
Dolbeault decomposition and Hodge theory for the de Rham complex. Con-
sequently, the cohomology of a compact Kähler manifold satisfies several
non-trivial restrictions, see Theorem 8.17 and its corollaries.

Let (M,J, g) be an Hermitian manifold. Recall that there is a two-form ω
defined by ω(X,Y ) = g(X, JY ) for tangent vectors X and Y . Since (M, g)
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is in particular a Riemannian manifold, there is a unique Levi-Civita con-
nection ∇ that is symmetric (or torsion-free) and compatible with g; re-
spectively, these conditions mean that for all vector fields X , Y , and Z on
M ,

[X,Y ] = ∇XY −∇YX,
(8.6)

Z
(
g(X,Y )

)
= g(∇ZX,Y ) + g(X,∇ZY ).

The former is sometimes expressed by saying that the torsion tensor T (X,Y )
vanishes, while the latter is expressed succinctly as ∇g = 0. On the other
hand, TM is a holomorphic, Hermitian vector bundle, so there is a unique
Chern connection D which is compatible with the metric and also complex,
namely for which D0,1 = ∂̄, or (equivalently) for which DJ = 0. On a
general Hermitian manifold these connections are unrelated. The Kähler
condition is equivalent to equality of these connections.

At each point p of a Riemannian manifold, there exist geodesic normal
coordinates, in which the metric satisfies gij(p) = δij and the connection
satisfies∇∂/∂xi |p = ∂/∂xi. On an Hermitian manifold, it is generally impos-
sible to find local holomorphic coordinates with this property. The Kähler
condition is equivalent to existence of a local holomorphic coordinate sys-
tem in which the metric approximates the Euclidean metric to second order.
Each of these properties has an expression in terms of components of tensor
fields, Christoffel symbols, and their derivatives, but for present purposes
the following conditions suffice.

Proposition 8.11 Let (M,J, g) be an Hermitian manifold. The following
are equivalent.

i. The metric is Kähler, i.e. dω = 0.

ii. The Levi-Civita connection is complex.

iii. The Chern connection is torsion-free.

iv. For each p ∈ M , there exist local holomorphic coordinates centered at
p such that gij = δij +O(|z|2).

v. For each p ∈ M , there is a neighborhood U of p and a smooth, real-
valued function f : U → R, such that ω =

√
−1∂∂̄f on U .

The function f appearing in property v. is called a Kähler potential (func-
tion). Each of the properties above is essentially local, so there is no need to
assume M is compact. By contrast, the most striking global results about
Kähler manifolds depend on existence of adjoints to various operators, and
therefore require compactness.
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Proof Each of ii. and iii. is equivalent to equality of the Levi-Civita and
Chern connections, so these conditions are equivalent. Closedness of ω may
be expressed in terms of derivatives of components of g as either of the
conditions

∂gi̄
∂zk

=
∂gk̄
∂zi

∂gi̄
∂z̄k

=
∂gik̄
∂z̄j

. (8.7)

The connection form θ = g−1∂g of the Chern connection, and the torsion
tensor T , are expressed in a coordinate coframe as

θij =
n∑

k=1

gik̄∂gjk̄, T = θ ∧ dz =
n∑

i,j,k,ℓ=1

(
gik̄

∂gjk̄
∂zℓ

dzℓ ∧ dzj
)

∂

∂zi
,

from which equivalence of i. and iii. follows.
Condition iv. implies dω = 0 at p for each p ∈M . Conversely, if dω = 0,

that is, if (8.7) holds locally, then it is straightforward to check that the
change of coordinates

wk = zk − 1

2

n∑

i,j=1

∂gjk̄
∂zi

wiwj

kills the linear terms in the Taylor expansion of gi̄ about p.
Condition v. implies condition i. immediately. Conversely, assume dω = 0

in a simply-connected coordinate neighborhood U . By the Poincaré lemma,
there is a real one-form η with dη = ω on U . The (1, 0) and (0, 1)-
components of η are conjugate since η is real, and since ω is of type (1, 1),
∂η1,0 = 0, ∂̄η0,1 = 0, and ω = ∂̄η1,0+∂η0,1. By the Dolbeault-Grothendieck
lemma, there exists a function ϕ on U with ∂ϕ = η1,0 and ∂̄ϕ̄ = η0,1. The
function f = 2Imϕ = i(ϕ− ϕ̄) is the desired potential function.

On a compact Kählerian manifold, non-trivial holomorphic forms are
d-closed and non-exact (Proposition 8.13), and holomorphic forms are har-
monic with respect to an arbitrary Kähler metric (Proposition 8.14). Each
of these is a consequence of a simple type-decomposition argument.

Lemma 8.12 Let (M,J, g) be a compact Kähler manifold. If η ∈ Zp,0
∂̄

is
an exact holomorphic p-form, then η = 0.

Proof For every (p, 0)-form η,

∫

M

η ∧ η̄ ∧ ωn−p = (η, ∗η) = ‖η‖2. If

η = dψ is d-exact, then

‖η‖2 =

∫

M

dψ ∧ η̄ ∧ ωn−p =

∫

M

d
(
ψ ∧ η̄ ∧ ωn−p

)
= 0

by Stokes’ Theorem (both η̄ and ω are d-closed), so η = 0.
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Proposition 8.13 Let (M,J, g) be a compact Kähler manifold. Then there
is an injection H0(M,ΩpM ) →֒ Hp

d (M,C), that is, holomorphic forms are
closed and non-exact.

Proof Let η 6= 0 be a holomorphic p-form. Then dη = ∂η is an exact,
holomorphic (p+ 1)-form, hence zero by Lemma 8.12.

Proposition 8.14 Let (M,J, g) be a compact Kähler manifold, and let η
be a holomorphic p-form. Then η is harmonic.

Proof If η is a holomorphic p-form, then ∂̄η = 0, while ∗η is of type
(n− p, n), so for type reasons ∂̄∗η = − ∗∂̄∗η = 0.

Let (M,J, g) be a compact Kähler manifold with Kähler form ω. Define
the operator dc =

√
−1(∂̄ − ∂). Then d and dc are real operators, as is

ddc = 2
√
−1∂∂̄. (8.8)

Let d∗ = − ∗ d∗ and (dc)∗ denote the formal adjoints, and let Πp,q :
A∗(M)→ Ap,q(M) denote the projection operator, so that

⊕

p+q=r

Πp,q = I : Ar(M)→ Ar(M).

Define L : Ap,q(M) → Ap+1,q+1(M) by L(η) = ω ∧ η, and let Λ = L∗ be
the adjoint with respect to the global inner product. On (1, 1)-forms, Λ is
the trace with respect to ω. The formula [L, d] = 0 is easily proven; if η is
an r-form, then

[L, d] η = L(dη)− d(Lη) = ω ∧ dη − d(ω ∧ η) = 0

since dω = 0. Taking adjoints, [Λ, d∗] = 0. The following commutator
formulas are messy to establish, even in flat Euclidean space. However,
once verified there, they may be deduced to hold on an arbitrary compact
Kähler manifold by virtue of Proposition 8.11 iv.

Proposition 8.15 On a compact Kähler manifold, [L, d∗] = dc, [Λ, d] =
−(dc)∗, and

[L,Λ] =
⊕

p,q

(p+ q − n)Πp,q.

The type decomposition of the second formula in Proposition 8.15 is

[Λ, ∂̄] = −
√
−1∂̄∗, [Λ, ∂] = −

√
−1∂∗. (8.9)

Define the de Rham Laplacian 2d to be the second-order operator dd∗+d∗d.
On a Riemannian manifold, there is a Hodge theorem analogous to the ∂̄-
Hodge theorem, to the effect that every de Rham class contains a unique
harmonic representative. Proposition 8.15 has the following important con-
sequence, which gives the compatibility between the de Rham and Dol-
beault harmonic forms.
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Theorem 8.16 On a compact Kähler manifold, [L,2d] = 0, [Λ,2d] = 0,
and

2d = 2∂̄ + 2∂ , 2∂̄ = 2∂ . (8.10)

In particular, 2d maps Ap,q(M) to itself.

In words, Theorem 8.16 says that on a compact Kähler manifold, ∂̄-
harmonic forms are d-harmonic, and that 2d preserves bidegree. It therefore
makes sense to define the de Rham (p, q)-harmonic space to be the kernel
of 2d acting on Ap,q(M), and this is nothing but the space of ∂̄-harmonic
(p, q)-forms. The importance is that while Dolbeault cohomology—and the
space of Dolbeault harmonic forms—is defined in terms of the complex-
analytic structure of M , the de Rham spaces depend only on the smooth
structure of M . But each of these spaces is isomorphic, via the correspond-
ing Hodge theory, to a space of harmonic forms, and by Theorem 8.16 these
harmonic spaces coincide. This result is known as the Hodge Decomposition
Theorem for compact Kähler manifolds:

Theorem 8.17 Let (M,J, g) be a compact Kähler manifold. Then there
are isomorphisms

Hr
d(M,C) ≃

⊕

p+q=r

Hp,q

∂̄
(M), Hp,q

∂̄
(M) ≃C Hq,p

∂̄
(M).

In particular, hp,q = hq,p = hn−p,n−q.

Corollary 8.18 Let M be a compact Kählerian manifold. Then the odd
Betti numbers b2k+1 of M are even.

Proof By the de Rham theorem, b2k+1 = dimCH
2k+1(M,C), which is

equal to

∑

p+q=2k+1

hp,q = 2

k∑

p=0

hp,2k+1−p

since hp,q = hq,p by the Hodge Decomposition Theorem.

Corollary 8.19 Hq(Pn,Ωp) = Hp,q

∂̄
(Pn) = C if 0 ≤ p = q ≤ n, and is 0

otherwise.

Proof The de Rham cohomology (with complex coefficients) is C in
even dimensions ≤ 2n and is zero otherwise. By the Hodge Decomposition
Theorem, 1 = b2p =

∑2p
i=0 h

i,2p−i. Thus hp,p = 1 for 0 ≤ p ≤ n, and all
other Hodge numbers vanish.

A very pretty consequence of the Hodge Decomposition Theorem is the
so-called Hard Lefschetz Theorem. The modern proof, due to Chern, is an
extremely elegant application of representation theory for sl(2,C). Let M
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be a compact Kähler manifold of complex dimension n, and introduce the
weighted projection operator

h : A∗(M)→ A∗(M), h =

2n∑

r=0

(n− r)Πr .

By Theorem 8.16, each of the operators L, Λ, and h commutes with 2d =
22∂̄ , so that each operator acts on the space H∗

d(M,C) of de Rham har-
monic forms. Chern made the following observation.

Proposition 8.20 [Λ,L] = h, [h,L] = −2L, and [h,Λ] = 2Λ.

In words, the association

X =

[
0 1
0 0

]
↔ Λ Y =

[
0 1
0 0

]
↔ L H =

[
1 0
0 −1

]
↔ h

defines a representation of the Lie algebra sl(2,C) on the finite-dimensional
complex vector space H∗

d(M,C). The irreducible submodules give the Lef-
schetz decomposition of the cohomology of M . A primitive element in an
sl(2,C)-module is an eigenvector v of H such that Xv = 0.

Proposition 8.21 If V is a finite-dimensional sl(2,C)-module, then prim-
itive elements exist. If V is an irreducible (N + 1)-dimensional representa-
tion space for sl(2,C) and if v ∈ V is primitive, then V is generated as a
vector space by the elements {v, Y v, Y 2v, . . .}. The eigenvalues of H are the
integers −N , −N + 2, . . . , N , the λ-eigenspaces Vλ are one-dimensional,
and V is the direct sum of the eigenspaces of H. The operators H, X, and
Y act by

H(Vλ) = Vλ, X(Vλ) = Vλ+2, Y (Vλ) = Vλ−2,

with the convention that Vλ = 0 if λ is not an eigenvalue of H.

Irreducible (N + 1)-dimensional representations of sl(2,C) exist and are
unique up to equivalence. In fact, the Nth symmetric power of the stan-
dard representation of sl(2,C) on C2 is an irreducible representation of
dimension (N + 1). Generally, the space of primitive elements PV of an
sl(2,C)-module V is kerX , and V is a direct sum

V = PV ⊕ Y PV ⊕ Y 2 PV ⊕ · · ·

Let (M,J, g) be a compact Kähler manifold, and define the primitive
cohomology to be

Pn−k(M) = ker(Lk+1) = (kerΛ) ∩Hn−k
d = ω-traceless (n− k)-forms.

Applying Proposition 8.21 gives the Hard Lefschetz Theorem:
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Theorem 8.22 If (M,J, g) is a compact Kähler manifold of complex di-
mension n, then for 0 ≤ k ≤ n, the map Lk : Hn−k

d → Hn+k
d is an

isomorphism, and

Hr
d(M) =

⊕

k∈Z

Lk P r−2k(M).

If M ⊂ PN (equipped with the restriction of the Fubini-Study metric),
then the map L corresponds via Poincaré duality to intersecting with a hy-
perplane class, and Lk corresponds to intersecting with a linear subspace of
dimension N − k. Primitive classes in M correspond to cycles that do not
intersect a hyperplane, and which therefore lie in an affine coordinate chart.
Such cycles cannot be represented by embedded complex submanifolds, of
course. If M ⊂ P2 is a smooth plane curve, then every real one-dimensional
cycle is primitive, and holomorphic one-forms represent primitive cohomol-
ogy classes.
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9

Chern Classes

A vector bundle of rank k is a locally trivial family of k-dimensional vector
spaces parametrized by points of a manifoldM . Characteristic classes quan-
tify global non-triviality of the family. The prototypical result expresses the
first Chern class of a line bundle, defined to be the image of L under the
connecting homomorphism c1 : H1(M,O×) → H2(M,Z), in terms of cur-
vature, and as the Poincaré dual of the divisor of a meromorphic section.

Proposition 9.1 Let (L, h)→M be an Hermitian holomorphic line bun-
dle over a compact manifold. Then c1(L) is represented by the closed (1, 1)-
form

1

2π
γ1(L, h) = −

√
−1

2π
∂∂̄ log h. (9.1)

If s is a global meromorphic section of L, so that L = [(s)], then c1(L) is
Poincaré dual to (s) = (s)0 − (s)∞.

In equation (9.1), h may be interpreted as the norm of a local holomor-
phic section; it is easy to see the form γ1(L, h) does not depend on the
choice of local section. More is in fact true: Every smooth form ρ repre-
senting 2πc1(L) is the curvature form of an Hermitian structure conformal
to h. The proof of this fact is an easy application of the Hodge theorem.

Chern classes may be introduced in several ways, from points of view
ranging from functorial to differential-geometric to obstruction-theoretic.
Because Chern classes are topological objects, there is no reason to work
in the holomorphic category. The present treatment is to specify axioms
for Chern classes, then to define certain closed forms using curvature forms
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of a connection in E, verifying that these forms satisfy the axioms. After
this a few other definitions are given whose equivalence is asserted without
proof.
Axioms for Chern Classes Let π : E →M be a smooth complex vector
bundle over a smooth CW complex. For most purposes, M may be taken
to be a smooth compact manifold, though occasionally it will be necessary
to consider infinite-dimensional Grassmannian manifolds.

i. There is an element c(E) = 1 + c1(E) + c2(E) + · · · ∈ H∗(M,R), called
the total Chern class of E, with cj(E) ∈ H2j(M,R).

ii. (Naturality) For every smooth map f : N →M , c(f∗E) = f∗(c(E)
)
∈

H∗(N,R).

iii. (Whitney Sum Formula) If Li, 1 ≤ i ≤ k are line bundles, then
c(
⊕

i Li) =
∏
i c(Li).

iv. (Normalization) If L→ P1 is the tautological bundle, and if ω denotes
the positive generator of H2(P1,Z), then c(L) = 1− ω.

These axioms characterize Chern classes. It may be helpful to remark that
if E → M is a vector bundle, then there exists a space N and a map
f : N →M such that f∗E → N splits into a sum of line bundles, and such
that the map f∗ : H∗(M,R) → H∗(N,R) is injective. This is the basis
of the so-called Splitting Principle, to the effect that a universal relation
among Chern classes (such as the Whitney Sum Formula) which holds for
line bundles holds for arbitrary vector bundles. Construction of a “splitting
space” N is an inductive variant on the construction of the tautological
bundle τE ⊂ π∗E → P(E).

Example 9.2 Let ω ∈ H2(Pn,Z) denote the positive generator. There is
an exact sequence of vector bundles 0→ C→ OPn(1)⊗Cn+1 → TPn → 0
over Pn. From the Splitting Principle and the Whitney Sum Formula,

c(TPn) = c
(
OPn(1)⊗Cn+1

)
= (1 + ω)n+1 ∈ H∗(Pn,Z).

For example, c(TP1) = 1+2ω and c(TP2) = 1+3ω+3ω2. 2

9.1 Chern Forms of a Connection

Curvature is an infinitesimal measure of the failure of E to be “geometri-
cally trivial.” Certain invariant functions of the curvature forms of a con-
nection give closed 2j-forms on M that quantify the “twisting” of E. If
E is trivialized over an open set U , then it is possible to choose a con-
nection whose curvature vanishes identically in U . If this neighborhood is
“enlarged as much as possible,” then the global non-triviality of E will be
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concentrated along M \ U . Geometrically, the curvature is concentrating
along certain cycles in M .

Let gl(k,C) = Ck×k denote the Lie algebra of the general linear group.
A symmetric polynomial f ∈ Sj(gl(k,C)) is invariant (or ad-invariant) if
f(a−1X1a, . . . , a

−1Xja) = f(X1, . . . , Xj) for all a ∈ GL(k,C) and Xi ∈
gl(k,C) Infinitesimally this means

f([Y,X1], X2, . . . , Xj) + · · ·+ f(X1, . . . , Xj−1, [Y,Xj]) = 0

for all Xi, Y ∈ gl(k,C).
The elementary symmetric functions fj ∈ Sj(gl(k,C)) are defined by

det

(
I − 1

2πi
X

)
=

k∑

j=0

fj(X) = 1− 1

2πi
trX + · · ·+

(−1

2πi

)k
detX.

Their importance is indicated by the following well-known result from al-
gebra.

Proposition 9.3 The elementary symmetric functions {fj} generate the
algebra of invariant symmetric polynomials on gl(k,C).

Let D : A0(E)→ A1(E) be a connection, for example, the Chern connec-
tion of an Hermitian structure, and let D2 ∈ A2(EndE) be the curvature
operator. With respect to a local frame for E, there exists a curvature
matrix Ω of two-forms, and under a change of frame Ω transforms by a
similarity. Consequently it makes sense to define γj(E,D), the jth Chern
form of E with respect to the connection D, by

det

(
I − 1

2πi
Ω

)
=

k∑

j=0

γj(E,D). (9.2)

In other words, γj(E,D) = fj(Ω, . . . ,Ω).

Theorem 9.4 The forms γj(E,D) are closed, real 2j-forms. The de Rham
class represented by γj(E,D) does not depend on the connection D, and the
classes cj(E) = [γj(E,D)] satisfy Axioms i.–iv.

Proof By the Bianchi Identity, DΩ = 0. It follows that the Chern forms
are closed, since

d γj(E,D) = Dγj(E,D) = fj(DΩ,Ω, . . . ,Ω) + · · ·+ fj(Ω, . . . ,Ω, DΩ) = 0.

To see that the cohomology class is independent of D, choose connections
D0 and D1, and let Dt = (1 − t)D0 + tD1 be the path of connections
interpolating them. With respect to a local frame, there is a matrix-valued
one-form α = θ1 − θ0 that transforms by a similarity under a change of
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frame. The connection form of Dt is θt = θ0 + tα, the curvature form is
Ωt = dθt − θt ∧ θt, and

d

dt
Ωt = dα− α ∧ θt − θt ∧ α = Dtα.

Since fj is ad-invariant, and α and Ω transform by a similarity under change
of frame, the expression fj(α,Ωt, . . . ,Ωt) is a globally defined (2j−1)-form
on M . Set

φ = j

∫ 1

0

fj(α,Ωt, . . . ,Ωt) dt ∈ A2j−1(M).

A short calculation gives jd[fj(α,Ωt, . . . ,Ωt)] = (d/dt)fj(Ωt, . . . ,Ωt). It
follows that

dφ = j

∫ 1

0

d
(
fj(α,Ωt, . . . ,Ωt)

)
dt

=

∫ 1

0

d

dt
fj(Ωt, . . . ,Ωt) dt = γj(E,D1)− γj(E,D0),

proving that the de Rham class of γj(E,D) is independent of D. It remains
to verify Axioms i.–iv. This is straightforward, since connections and cur-
vature are natural with respect pullbacks by smooth maps, and since the
connection in a sum of line bundles splits into a diagonal matrix of one-
forms.

Corollary 9.5 Let E → M be a holomorphic vector bundle, and let E∗

be the dual bundle. The Chern classes of E∗ are related to those of E by
cj(E

∗) = (−1)jcj(E).

Proof If E is endowed with an Hermitian structure h, then there is a
conjugate-linear vector bundle isomorphism given by the map v ∈ E 7−→
h(·, v) ∈ E∗. Thus E∗ is isomorphic as a smooth complex vector bundle to
the dual bundle E, so cj(E

∗) = cj(E). If D is a connection in E, then D
is a connection in E; since the curvature matrix Ω is pure imaginary, the
curvature matrix of D differs by a sign from the curvature matrix of D. By
equation (9.2) the Chern forms satisfy γj(E,D) = (−1)jγj(E,D).

9.2 Alternate Definitions

Let p : E →M be a vector bundle of rank k over a compact manifold. The
tautological bundle τE is defined as follows. Let E× denote the complement
of the zero section, and let C× act by scalar multiplication in the fibres of
E×. The quotient space is denoted P(E) and is called the projectivization
of E. There is an induced map p : P(E) → M whose fibres are (k − 1)-
dimensional projective spaces. Consider the bundle p∗E → P(E). For x ∈
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M , each point of P(Ex) represents a line through the origin in the fibre
p∗Ex, and the tautological bundle is defined to be the line subbundle of p∗E
whose fibre at a point of P(E) is the line represented by that point. It is
not difficult to verify that the total spaces of E× and τ×E are biholomorphic;
indeed, the restriction of p : p∗E → E to τ×E is a biholomorphism. Along
the zero section, p collapses the fibres of P(E). The total space of τE is said
to be obtained from the total space of E by blowing up the zero section.

Let E∗ denote the dual bundle, and let ζ = −c1(τE∗) ∈ H2(P(E∗),R);
since τE∗ is a line bundle, the first Chern class has been defined. By the
Leray-Hirsch Theorem from topology, the cohomology ring H∗(P(E),R)
is generated, as a p∗H∗(M,R)-module, by ζ subject to a single relation

k∑

j=0

(−1)jcjζ
k−j = ζk − c1ζk−1 + · · ·+ (−1)kck = 0 (9.3)

for some cj ∈ H2j(M,R).

Theorem 9.6 The classes cj in (9.3) are the Chern classes of E.

Another functorial definition arises via classifying spaces. Let Gk(C
n) =

Gk,n denote the Grassmannian manifold of k-dimensional linear subspaces
of Cn. There are standard inclusions Cn →֒ Cn × 0 ⊂ Cn+1, which induce
holomorphic embeddings Gk,n ⊂ Gk,n+1. The union over n, with the direct
limit topology (in which a set is closed if and only if its intersection with
each Gk,n is closed), is called the infinite Grassmann manifold Gk.

For each n ∈ N, there is a universal or tautological rank k vector bundle
Uk,n ⊂ Gk,n ×Cn, whose fibre at x ∈ Gk,n is the k-dimensional subspace
of Cn represented by the point x. There are bundle maps Uk,n ⊂ Uk,n+1

compatible with the embeddings of base spaces, and the direct limit is the
universal bundle Uk → Gk.

Consider the standard flag 0 = C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cn. Every k-
plane W ⊂ Cn gives rise to a non-decreasing sequence dim(W ∩Ci) whose
consecutive terms differ by at most one. Let 1 ≤ m1 < m2 < · · · < mk ≤ n
denote “the dimensions in which jumps occur,” that is

dim(W ∩ Cmi) = i, dim(W ∩ Cmi−1) = i− 1.

Proposition 9.7 Each sequence 1 ≤ m1 < m2 < · · · < mk ≤ n gives rise
to an open cell of (complex) dimension

∑
i(mi − i) consisting of k-planes

in Cn having the prescribed incidence on the standard flag. The closure of
such a cell is a subvariety of Gk,n, called a Schubert cycle. The number
of Schubert cycles of dimension r is equal to the number of partitions of r
into at most k integers, each of which is at most n− k.

In the infinite Grassmannian Gk, there is a Schubert cycle of (complex)
dimension j corresponding to each partition of j into at most k integers.
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Theorem 9.8 If j ≤ k, then the jth Chern class of the universal bundle
is the cohomology class which takes the value 1 on the Schubert cycle cor-
responding to the partition (1, . . . , 1) and vanishes on all other Schubert
cycles.

The Chern classes of the universal bundle generate the integral cohomol-
ogy ring H∗(Gk), and there are no relations among them. In particular,
H∗(Gk,Z) has no torsion and no non-zero elements of odd dimension.

The importance of the universal bundle Uk → Gk is that the Grassman-
nian is the classifying space for the unitary group U(k). More concretely,
there is a one-to-one correspondance between equivalence classes of com-
plex rank k vector bundles over a CW complex M and homotopy classes of
maps φ : M → Gk. The correspondance associates the bundle E = φ∗Uk
to a “classifying map” φ. The Chern classes of E may now be defined as
the pullbacks of the universal Chern classes under φ.

There is a simple intuitive principle that describes the Poincaré duals
of the Chern classes of E: The (k − j + 1)st Chern class is Poincaré dual
to the cycle on which j generic smooth sections of E are linearly depen-
dent. In particular, the top Chern class ck(E) is the Euler class, which
is Poincaré dual to the zero set of a generic section. This principle has a
precise obstruction-theoretic statement. To describe this, it is convenient
to associate to E the bundle of j-frames Vj(E), whose fibre over x ∈M is
the Stiefel manifold of j-frames in Ex.

Theorem 9.9 Let E → M be a complex vector bundle of rank k over a
CW complex. Then there is a section of Vj(E) over the (2k − 2j + 1)-
skeleton of M , and ck−j+1(E) is the primary obstruction to extending over
the (2k − 2j + 2)-skeleton.

Example 9.10 The top Chern class is the Euler class; applying this fact
to the tangent bundle of a complex manifold gives the generalized Gauss-
Bonnet Theorem

χ(M) =

∫

M

cn(M) =

(
i

2π

)n ∫

M

det Ω. (9.4)

One way to see this geometrically is to embed M →֒ Gn,N for N sufficiently
large by a classifying map for TM . The top Chern class cn(M) is Poincaré
dual to the Schubert cycle consisting of all n-planes in CN that lie in the
hyperplane CN−1. Let v = eN be the Nth standard basis vector, and define
a smooth vector field on M by orthogonal projection to TxM ⊂ CN . This
vector field vanishes exactly when TxM ⊂ CN−1, so the Euler number
of M is equal to the intersection of M and the Poincaré dual of cn(M).
2

Example 9.11 By investigating the homotopy groups of the unitary
groups, Bott showed that if E → S2n is a complex vector bundle over
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the 2n-sphere, then (n− 1)! divides χ(S2n, E). Applying this result to the
tangent bundle E = TS2n, for which χ = 2, implies that if the sphere S2n

admits a complex structure, then n ≤ 3. 2

The Chern character is a ring homomorphism from the K-theory of M to
the rational cohomologyH∗(M,Q). It is defined for vector bundles in terms
of a formal factorization of the total Chern class. Let x be an indeterminate,
and write

∑
j cj(E)xj =

∏
j(1 + ξjx). The Chern character of E is defined

to be
∑
j exp ξj . In terms of a curvature matrix,

ch(E) = tr exp

(−1

2πi
Ω

)
.

Theorem 9.12 If E and F are vector bundles over M , then

ch(E ⊕ F ) = ch(E) + ch(F ), ch(E ⊗ F ) = ch(E) ch(F ).

If the total Chern class of E = TM is factored as above, then the Todd
class of M is defined by

td(M) =

k∏

j=0

ξj
1− exp ξj

∈ H∗(M,Q).

In terms of the Chern classes of E and M , the Chern character and Todd
class are given by

ch(E) = k + c1(E) +
1

2

(
c1(E)2 − 2c2(E)

)
+ · · ·

(9.5)

td(M) = 1 +
1

2
c1(M) +

1

12

(
c1(M)2 + c2(M)

)
+ · · ·

Let E →M be a holomorphic vector bundle over a compact manifold. The
Euler characteristic of M with respect to E is

χ(M,E) =

n∑

i=0

(−1)i hi(M,E).

The holomorphic Euler characteristic of M is defined to be χ(M,OM ).
The Riemann-Roch-Hirzebruch Theorem expresses the Euler characteristic
χ(M,E) as the integral over M of a universal polynomial in the curvature
forms of connections on E and TM :

Theorem 9.13 The Euler characteristic is given by

χ(M,E) =

∫

M

ch(E) td(M).
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Example 9.14 Let M be a curve of genus g, and let ω be the positive
generator of H2(M,Z). Recall that if E → M is a holomorphic vector
bundle of rank k, then the degree of E is

d = degE =

∫

M

c1(E).

Using equation (9.5), the Todd class of M and Chern character of E are
given by

td(M) = 1 + (1− g)ω ch(E) = k + dω.

By Theorem 9.13, χ(M,E) = d + k(1 − g). If E is a line bundle, then
h0(M,E)−h1(M,E) = χ(M,E) = d+1−g. Consequently, if the degree of
E is at least g, then E has a non-trivial holomorphic section. 2

Example 9.15 Let M = P2, and let ω ∈ H2(M,Z) be the positive
generator. By Example 9.2, the total Chern class of TP2 is 1 + 3ω + 3ω2,
so the Todd class is td(P2) = 1 + (3/2)ω+ 3ω2 by equation (9.5). For each
integer k, consider the rank-two vector bundles

T (k) := TP2 ⊗OP2(k), T ∗(k) := T ∗P2 ⊗OP2(k).

By Theorem 9.12, the Chern character of T (k) is

chT (k) =
(
chTP2

)(
chOP2(k)

)

=
(
2 + 3ω + (3/2)ω2

)(
1 + kω + (1/2)ω2

)

= 2 + (2k + 3)ω +
(
k2 + 3k + (3/2)

)
ω2.

A similar calculation shows chT ∗(k) = 2+(2k−3)ω+
(
k2−3k+(3/2)

)
ω2.

Theorem 9.13 applied to T ∗(k) gives χ(T ∗(k)) = k2 − 1 = (k + 1)(k − 1).
When k = 0, this is easily verified, since T ∗P2 = Ω1 is the bundle of holo-
morphic one-forms on P2. The Dolbeault isomorphism gives hi(T ∗P2) =
h1,i(P2), so by direct calculation

χ(T ∗P2) = h1,0(P2)− h1,1(P2) + h1,2(P2) = 0− 1 + 0 = −1

as expected. If k > 0, then h0(T ∗(−k)) = 0; indeed, if the bundle T ∗(−k)
had a non-trivial holomorphic section, then tensoring with a section of
OP2(k) would give a non-trivial section of T ∗P2, that is, a non-trivial
holomorphic one-form on P2.

Applying Theorem 9.13 to T (k) gives χ(T (k)) = k2+6k+8 = (k+3)2−1.
For k = 0,

h0(TP2)− h1(TP2) + h2(TP2) = χ(TP2) = 8.

Since h0(TP2) is the dimension of the space of holomorphic vector fields on
P2, and the automorphism group of P2 is the eight-dimensional Lie group
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PGL(3,C), h0(TP2) = 8. The canonical bundle KP2 =
∧2 T ∗P2 is isomor-

phic to OP2(−3), so Kodaira-Serre duality gives h2(TP2) = h0(T ∗(−3))
which is zero as noted above. Consequently, h1(TP2) = 0. The vector
space H1(TM) is the space of infinitesimal deformations of the holomor-
phic structure of M . The previous calculation shows that P2 has no non-
trivial infinitesimal deformations, that is, the holomorphic structure of P2

is infinitesimally rigid. Much more is known:

Theorem 9.16 Let M be a complex surface having the homotopy type
of P2. Then M is biholomorphic to P2.

In more detail, a complex structure J on the underlying four-manifold P2

may be regarded as a section of the quotient GL(4,R)/GL(2,C) of the real
frame bundle of TP2 by the bundle of complex frames. The theorem asserts
that if J is an integrable complex structure homotopic to the standard
complex structure J0, then J is biholomorphic to J0.

Surprisingly, it is not known whether or not there exists a holomorphic
structure of “general type” on the underlying real four-manifold P2. 2
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Vanishing Theorems and Applications

Line bundles are of fundamental importance in the study of holomorphic
manifolds for two principal reasons. First, their sections play the role of
global holomorphic functions, which are lacking on compact manifolds. Sec-
ond, line bundles have a cohomological interpretation, which helps make
their classification amenable to homological methods. The latter is of course
mostly of importance because of the former; results about vanishing of co-
homology can be used to extract information about global sections of line
bundles. Interesting geometric theorems may in turn be expressible in terms
of sections of line bundles.

10.1 Ampleness and Positivity

Let p : L → M be a holomorphic line bundle over a (connected) compact
manifold of (complex) dimension n. Assume further that for each point
x ∈ M there is a holomorphic section of L that is non-zero at x; in this
event, L is said to be generated by global sections. Associated functorially
to L is a holomorphic map from M to a projective space, defined as follows.
Let V = H0(M,L) be the space of global sections of L. The map iL : M →
P(V ∗) sends each point x ∈M to the set of sections of L that vanish at x.
Because L is generated by global sections, the set of sections vanishing
at x ∈ M is a hyperplane in V ; indeed, with respect to a trivialization
of L, evaluation at x is a linear functional V → C. A hyperplane in V
determines a linear functional on V up to a multiplied constant, which is
exactly a point of the projective space P(V ∗). The map iL : M → P(V ∗) is
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holomorphic, but is not generally an embedding. Holomorphicity is easily
seen (equation (10.1) below) by choosing a basis {si}Ni=0 of sections of L,
which defines an isomorphism V ≃ CN+1. With respect to a trivialization,
the map iL is given by sending x ∈M to “evaluation of [s0 : · · · : sN ] at x,”
which is an element of P(CN+1∗). For simplicity, it is customary to write

x ∈M 7−→ iL(x) = [s0(x) : · · · : sN (x)] ∈ P(CN+1), (10.1)

from which holomorphicity of iL is clear.
A line bundle p : L → M is very ample if the map iL is an embedding,

i.e. is one-to-one and has differential of rank n everywhere. In this event,
an unravelling of definitions shows that L itself is the pullback of the hy-
perplane bundle [H ] = OPN (1) by the map iL. If some tensor power Lk is
very ample, then L is ample. A divisor D is (very) ample if the associated
line bundle [D] is (very) ample.

There is a precise differential-geometric analogue of ampleness, called
positivity. A (1, 1)-form η is positive if η(Z, Z̄) > 0 for every (1, 0) tangent
vector Z. A positive (1, 1)-form is exactly a fundamental form of a Kähler
metric. A (1, 1)-class Ω ∈ H1,1

∂̄
(M,R) is positive if there is a positive (1, 1)-

form representing Ω; a positive (1, 1)-class is also called a Kähler class, since
such classes are exactly those represented by Kähler forms. A holomorphic
line bundle p : L → M over a complex manifold is positive if there is
an Hermitian structure in L whose first Chern form γ1(L, h) is positive.
Equivalently, p : L → M is positive if c1(L) is a Kähler class. Finally, a
divisor is positive if the Poincaré dual (1, 1)-class is positive. By an obvious
sign change, it makes sense to speak of negative (1, 1)-forms and classes,
line bundles, and divisors.

A very ample line bundle—and hence an ample line bundle—is positive;
indeed, the hyperplane bundle [H ] = OPn(1) is positive, so if L is very
ample, then L = i∗L[H ] is positive. The converse assertion is the Kodaira
Embedding Theorem, see Theorem 10.10 below.

Remark 10.1 There is another “positivity” condition a divisor may pos-
sess: A divisor D is numerically effective (or “nef”) if the intersection
product D · C is non-negative for every smooth curve C ⊂ M . A posi-
tive divisor is nef, as is easily seen by Poincaré duality. A nef divisor is
not generally positive (i.e. ample), however. There is a numerical condi-
tion, called the Nakai-Moishezon Criterion, under which a divisor is ample.
Specifically, if Dk ·V > 0 for every smooth, k-dimensional subvariety of M
(k = 1, . . . , n arbitrary), then D is ample. It is not difficult to show this
condition is necessary.

Let p : L → M be a holomorphic line bundle, and let f : M → M be
a biholomorphism (or an “automorphism”). If the action of f lifts to a

bundle map f̃ : L→ L, then there is an induced projective automorphism
covering f . It can be shown that if p : L → M is very ample, then every
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automorphism of M lifts to L. Since iL : M → PN is an embedding,
every automorphism of M is induced by an automorphism of the ambient
projective space.

10.2 The Kodaira-Nakano Vanishing Theorem

Let π : L → M be an Hermitian holomorphic line bundle over a compact
Kähler manifold with Kähler form ω, let D denote the Chern connection of
(L, h), and let D = D1,0 + ∂̄L be the type decomposition. There is a map

L : Ap,q(L)→ Ap+1,q+1(L), η 7−→ ω ∧ η

whose adjoint with respect to the global inner product is denoted Λ. In
analogy with equation (8.9) above, there is a commutator relation

[Λ, ∂̄L] = −
√
−1(D1,0)∗. (10.2)

The main technical result of this section, the Kodaira-Nakano Vanishing
Theorem, follows from a short calculation using this equation. The result
for p = 0 is due to Kodaira, while Akizuki and Nakano proved the ver-
sion stated here. (The content of Remark 10.3 below is called Nakano’s
Inequality.)

Theorem 10.2 Let π : L → M be a positive line bundle over a compact
complex manifold. Then

Hq
(
M,Ωp(L)

)
= 0 for p+ q > n = dimCM .

Proof Choose an Hermitian structure h in L so that the Chern form
γ1(L, h) =

√
−1Ω is a Kähler form. Then

D2η = Rη = Ω ∧ η = −
√
−1ω ∧ η = −

√
−1Lη;

in words, the curvature operator R has a dual interpretation as the second
covariant derivative D2 and as the algebraic operator −

√
−1L. Compar-

ing these interpretations and using the various commutation identities will
prove the theorem.

Let η ∈ Hp,q(L) be a harmonic (p, q)-form with values in L. It suffices
to show that if p + q > n, then η = 0. By Proposition 8.15, [L,Λ] =
n− (p+ q) acting on (p, q)-forms with values in L. The curvature operator
is of type (1, 1), so D2 = ∂̄LD

1,0 +D1,0∂̄L = −
√
−1L. In particular, since

η is harmonic, ∂̄∗Lη = 0 and D2η = ∂̄LD
1,0η, so

LΛ η =
√
−1
(
∂̄LD

1,0 +D1,0∂̄L
)
Λ η, L η =

√
−1 ∂̄LD

1,0 η. (10.3)
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Simple algebra and integration by parts gives

(n− p− q) ‖η‖2 = ([Λ,L] η, η) = (ΛL η, η)− (LΛ η, η)

=
√
−1(Λ ∂̄LD

1,0 η, η)−
√
−1(D1,0∂̄L Λ η, η) by (10.3)

= ‖D1,0η‖2 + ‖(D1,0)∗η‖2

since Λ∂̄L = ∂̄LΛ −
√
−1(D1,0)∗ by equation (10.2). This is non-negative,

so η = 0 provided p+ q > n, as claimed.

Remark 10.3 Examination of the terms involved shows that, as operators
on forms,

[Λ,L] = −
√
−1
[
∂̄L, [Λ, D

1,0]
]
+D1,0(D1,0)∗ + (D1,0)∗D1,0

= −
√
−1
[
∂̄L, [Λ, D

1,0]
]
+ 2D1,0 .

The bracket term does not contribute to ([Λ,L] η, η) since ∂̄Lη = 0 and
∂̄∗Lη = 0.

Corollary 10.4 If 1 ≤ q ≤ n− 1 and k ∈ Z, then Hq
(
Pn,OPn(k)

)
= 0.

10.3 Cohomology of Projective Manifolds

An extremely important and useful consequence of Theorem 10.2 is the
Lefschetz Hyperplane Theorem, which roughly asserts that the “interest-
ing” cohomology of a projective manifold is in the middle dimension. The
proof is a typical application of a vanishing theorem: A geometric problem
is phrased in terms of exact sequences of sheaves, then isomorphisms are
extracted from the long exact cohomology sequence by cohomology vanish-
ing.

Theorem 10.5 Let M ⊂ PN be a smooth algebraic subvariety of com-
plex dimension n + 1, V ⊂ M a smooth hypersurface, e.g. a hyperplane
section of M . Then the inclusion map i : V → M induces an isomor-
phism i∗ : Hp,q

∂̄
(M,C) → Hp,q

∂̄
(V,C) for p + q ≤ n − 1, and an injection

i∗ : Hp,q

∂̄
(M,C)→ Hp,q

∂̄
(V,C) for p+ q = n.

In particular, the map i∗ : Hk(M,Q) → Hk(V,Q) is an isomorphism
for k ≤ n − 1 and is injective for k = n. Note that the real dimension of
V is 2n. Even the special case M = Pn+1 gives interesting information,
cf. Corollary 10.6 below.
Proof By the Dolbeault theorem, it suffices to show that the map
Hq(M,ΩpM ) → Hq(V,ΩpV ) induced by restriction is an isomorphism for
p+ q ≤ n− 1 and is injective for p+ q = n.
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Consider the following three sheaves on M :

ΩpM = germs of holomorphic p-forms on M

ΩpM
∣∣
V

= restriction of ΩpM to V , extended by zero

ΩpV = germs of holomorphic p-forms on V , extended by zero

Intuitively, the sheaf ΩpM
∣∣
V

contains information in directions not tangent
to V , even though the only non-zero stalks are over points of V . There
are sheaf morphisms r : ΩpM → ΩpM

∣∣
V

and i : ΩpM
∣∣
V
→ ΩpV . Let s ∈

H0(M, [V ]) be given by local defining functions for V . The kernel of r
is the sheaf of germs of p-forms vanishing along V , which is the sheaf
ΩpM (−V ) = ΩpM ⊗ [−V ], so there is an exact sequence

0 −→ ΩpM (−V )
∧ s−→ ΩpM

r−→ ΩpM
∣∣
V
−→ 0 (10.4)

The restriction map i fits into the short exact sequence

0 −→ Ωp−1
V (−V )

∧ ds−→ ΩpM
∣∣
V

i−→ ΩpV −→ 0. (10.5)

The 1-form ds defines a global section of the bundle ν∗V/M ⊗ [V ], show-
ing explicitly that the map i “loses exactly the non-tangential information
about germs of p-forms along V .”

By Kodaira-Serre duality and the Kodaira-Nakano vanishing theorem,

Hq (M,ΩpM (−V )) = 0 and Hq
(
V,Ωp−1

V (−V )
)

= 0 for p+ q < n.

Applying this vanishing to the long exact sequences associated to the sheaf
sequences in equations (10.4) and (10.5) gives maps

Hq(M,ΩpM )
r−→ Hq(M,ΩpM

∣∣
V

)
i−→ Hq(V,ΩpV )

which are isomorphisms if p+ q ≤ n− 1 and are injective for p+ q = n.

Corollary 10.6 Let V n ⊂ PN be a complete intersection of complex di-
mension n. Then the Dolbeault cohomology of V matches that of PN except
possibly in the middle dimension. Precisely, hp,p(V ) = 1 for 0 ≤ p ≤ n,
2p 6= n, and all other Hodge numbers hp,q(V ) with p + q 6= n vanish. In
particular, a complete intersection of positive dimension is connected, and
is simply-connected if of dimension at least two.

Proof By induction on the codimension of V , Theorem 10.5 immediately
implies hp,p(V ) = 1 for 0 ≤ 2p ≤ n−1, and all other Hodge numbers hp,q(V )
with p+q ≤ n−1 vanish. Kodaira-Serre duality gives the information about
Hodge numbers hp,q with p+ q > n.

The next result gives topological information from which it is possible
to calculate Hodge numbers of some interesting varieties.
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Proposition 10.7 If V = Vd,n is a smooth hypersurface of degree d in
Pn+1, then the topological Euler characteristic is equal to

χ(Vd,n) = d

n∑

j=0

(
n+ 2

j + 2

)
(−d)j =

1

d

(
(1− d)n+2 − 1 + (n+ 2)d

)
. (10.6)

Proof The set of degree d polynomials defining a smooth hypersurface
is the complement of proper algebraic subvarieties and hence is connected.
Two such polynomials therefore have diffeomorphic zero loci, so χ(Vd,n)
depends only on d and n. Let H ⊂ Pn+1 be a hyperplane such that H ∩ V
is smooth. Projection of V to H is a d-sheeted branched cover, whose
branch locus is a smooth, degree d variety of dimension n− 1. Triangulate
the branch locus H ∩ V , and extend to a triangulation of H ≃ Pn. Pulling
back gives a triangulation of V , and calculating the Euler characteristic
from this triangulation gives χ(V ) = dχ(H)− (d− 1)χ(H ∩ V ), or

χ(Vd,n) = d(n+ 1)− (d− 1)χ(Vd,n−1).

Since χ(Vd,0) = d, equation (10.6) follows by induction on n.

Example 10.8 (K3 surfaces) Let V be a smooth quartic hypersurface in
P3. By the second adjunction formula, the canonical bundle of V is trivial,
and by the Lefschetz hyperplane theorem, h1,0(V ) = 0. A complex surface
satisfying these properties is called a K3 surface.

By Proposition 10.7, the Euler characteristic of V is 24. From Theo-
rem 10.5, and Poincaré duality, b0(V ) = b4(V ) = 1 and b1(V ) = b3(V ) = 0,
so b2(V ) = 22. Most of the Hodge numbers may be found immediately from
Corollary 10.6: h0,0(V ) = h2,2(V ) = 1, and hp,q(V ) = 0 if p + q = 1 or 3.
To calculate the remaining Hodge numbers, note that since the canonical
bundle of V is trivial, h2,0(V ) = h0,2(V ) = 1, leaving h1,1(V ) = 20. The
significance of h1,1 is seen by the Dolbeault theorem and Kodaira-Serre du-
ality. Since the bundle of holomorphic 1-forms is dual to the holomorphic
tangent bundle, and the canonical bundle is trivial,

H1(V,Ω1
V ) ≃ H1(M,TM).

The space H1(M,TM) is the space of infinitesimal deformations of the
complex structure, so this calculation shows there is a 20-dimensional fam-
ily of complex surfaces deformation equivalent to a smooth quartic in P3.
An easy count shows that only a 19-dimensional family can be accounted
for by quartic hypersurfaces themselves, and indeed a “generic” deforma-
tion of a quartic hypersurface is not algebraic.

A great deal about K3 surfaces is known. Among other things, ev-
ery K3 surface is Kählerian, every smooth K3 surface is diffeomorphic
to the Fermat quartic in P3, and there is a branched covering from the
“Teichmüller space”—which is diffeomorphic to a 20-dimensional ball—to
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the moduli space of K3 surfaces. K3 surfaces enjoy a number of striking
differential-geometric properties, some of which are discussed in more de-
tail later, though one can be mentioned here: A smooth K3 surface admits
three integrable almost-complex structures and an Hermitian metric which
is Kähler with respect to all three. These almost-complex structures sat-
isfy the same algebraic relations that the unit quaternions do, so there is
actually an S2 of integrable almost-complex structures.

K3 surfaces are of interest to algebraic geometers because of their role in
the classification of complex surfaces, to four-manifold topologists because
of their curious intersection form, to number theorists because of their
relationship to elliptic curves and higher-dimensional Abelian varieties, and
to theoretical physicists working on supersymmetric field theories because
of their differential-geometric properties. 2

Example 10.9 (Calabi-Yau 3-folds) Consider a smooth quintic hypersur-
face V ⊂ P4. Again, the canonical bundle is trivial, and by Proposition 10.7
χ(V ) = −200. By Corollary 10.6, hp,p(V ) = 1 for 0 ≤ p ≤ 3, all other
Hodge numbers hp,q(V ) with p+ q 6= 3 vanish, and h0,3(V ) = h3,0(V ) = 1
because the canonical bundle is trivial. Thus h1,2(V ) = h2,1(V ) = 101, and
by Kodaira-Serre duality this may be interpreted as the dimension of the
space of infinitesimal deformations of the complex structure. The space of
quintic polynomials in five variables has dimension

(
9
5

)
= 126, while the

automorphism group of P4 is 24-dimensional. Dividing out by non-zero
scalars accounts for the last parameter: 101 = 126 − 24 − 1. Thus every
small deformation of a smooth quintic hypersurface is a smooth quintic
hypersurface.

These manifolds are examples of what are usually called Calabi-Yau
three-folds, for reasons that are explained later. Generally, a Calabi-Yau
three-fold is a three-dimensional Kählerian manifold with no holomorphic
one-forms (h0,1 = 0) and with trivial canonical bundle (h0,3 = 0). Calabi-
Yau three-folds are three-dimensional analogues of K3 surfaces, but are
much less well understood. Even Calabi-Yau three-folds which arise as com-
plete intersections in weighted projective spaces are not classified (up to
deformation type), though it is known that the number of deformation
types is less than 8,000. 2

10.4 The Kodaira Embedding Theorem

As mentioned earlier, every positive divisor is ample. This is the con-
tent of the Kodaira Embedding Theorem. An alternate statement (Corol-
lary 10.11) gives an intrinsic criterion for a compact Kählerian manifold to
be projective algebraic.

Theorem 10.10 Let p : L→ M be a positive line bundle over a compact
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complex manifold. Then there exists a positive integer k0 such that if k ≥
k0, then Lk →M is very ample.

Proof (Brief sketch) Proving the Kodaira Embedding Theorem amounts
to establishing the following conditions for k ≫ 1, i.e. that there is a k0

such that if k ≥ k0, then

• The bundle Lk is generated by global sections, i.e. for every x ∈ M
there is a section s ∈ H0(M,Lk) with s(x) 6= 0;

• Sections of Lk separate points, that is, if x and y are distinct points
of M , then there is a section s with s(x) = 0 and s(y) 6= 0;

• Sections of Lk separate tangent vectors, in the sense that if Z and
W are vectors tangent to M at x, then there is a section s such that
ds(x)Z = 0 and ds(x)W 6= 0.

Each of these conditions has an interpretation in terms of morphisms of
ideal sheaves and sheaves of germs of sections of Lk. Various morphisms are
shown to be surjective by using the Kodaira-Nakano Vanishing Theorem.

Corollary 10.11 Let (M,J, g) be a compact Kähler manifold whose Kähler
form is rational, that is, lies is H1,1

∂̄
(M,C) ∩H2(M,Q). Then there is an

integer N > 0 and an embedding i : M → PN such that the pullback of the
Fubini-Study form on PN is an integral multiple of the Kähler form of g.

Proof The long exact sequence associated to the exponential sheaf se-
quence on M contains the terms

H1(M,O×
M )

c1−→ H2(M,Z) −→ H2(M,OM ).

Because the Kähler form ω0 of g is rational, there is a positive integer m
such that the (1, 1)-form ω = mω0 is integral. For type reasons, the image
of ω in H2(M,OM ) is zero. By exactness, there is a holomorphic line bundle
p : L → M with c1(L) = ω > 0. By Theorem 10.10, L is ample, so there
is an integer k > 0 such that Lk is very ample and the restriction of the
Fubini-Study metric to the image of M is kω = kmω0.

Example 10.12 A metric g whose Kähler form is rational is called a
Hodge metric, and a manifold admitting a Hodge metric is called a Hodge
manifold. Not every Kählerian manifold is a Hodge manifold; an example
is provided by the two-dimensional compact complex torus whose lattice
in C2 is generated by

[
1
0

]
,

[
0
1

]
,

[√
−2√
−3

]
,

[√
−5√
−7

]
.

In fact, this torus admits no non-constant meromorphic functions. 2
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Theorem 10.10 has a number of geometrically interesting consequences.
Some of these are listed below; the proofs are for the most part immediately
apparent.

Corollary 10.13 Let M1 and M2 be projective algebraic manifolds. Then
M1 ×M2 is projective algebraic.

Corollary 10.14 Let M be a compact Kählerian manifold with b2(M) = 1.
Then M is projective algebraic. In particular, if M is a compact complex
curve or a compact, irreducible Hermitian symmetric space, then M is pro-
jective.

Corollary 10.15 If π : M̃ →M is a finite unbranched covering of compact
complex manifolds, then M is projective if and only if M̃ is.

The next two results are immediate consequences of the proof of Theo-
rem 10.10, but are not immediate from the sketch given above.

Corollary 10.16 If M is projective algebraic, and if π : M̃ → M is a
blow-up of M at one point, then M̃ is projective algebraic.

Corollary 10.17 Let L → M be an ample line bundle. For every line
bundle L′ →M , there is an integer k0 such that if k ≥ k0, then Lk ⊗ L′ is
very ample.

10.5 The Hodge Conjecture

There is a generalization of the Kodaira-Nakano vanishing theorem which
is reminiscent of Corollary 10.17, and which has a useful GAGA-type con-
sequence, see Corollary 10.19 below. While Theorem 10.18 is immediate
from Corollary 10.17, a complete proof of the former is provided.

Theorem 10.18 Let p : L→ M be a positive line bundle over a compact
complex manifold, and let L′ →M be an arbitrary line bundle. Then there
exists a k0 ∈ N such that

Hq(M,Lk ⊗ L′) = 0 for k ≥ k0, q > 0.

Proof By hypothesis, there is an Hermitian structure in L whose first
Chern form ω0 is positive. Endow L′⊗K−1

M with an Hermitian structure h,
and consider the first Chern form γ = γ1(L

′ ⊗K−1
M , h). For each x ∈ M ,

there is an integer kx such that the (1, 1)-form kxω0 + γ > 0 on some
neighborhood of x. By compactness of M , there is a covering of M by
finitely many such neighborhoods; take k0 to be the maximum of the kx’s.
If k ≥ k0, then kω0 + γ > 0 everywhere on M , that is, Lk ⊗ L′ ⊗ K−1

M

is a positive line bundle. Interpreting KM as the bundle associated to the
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sheaf ΩnM and using Theorem 10.10 with p = n shows that if q > 0, then
Hq(M,Lk ⊗ L′) = Hq

(
M,ΩnM (Lk ⊗ L′ ⊗K−1

M )
)

= 0.

Corollary 10.19 Let M ⊂ PN be a smooth submanifold. Then every holo-
morphic line bundle L → M is of the form [D] for some divisor. Equiva-
lently, L has a meromorphic section.

Proof The strategy is to let D0 be a smooth hyperplane section of M ;
if s is a global holomorphic section of L(kD0), and if t is a global section
of [kD0], then t−1 is a meromorphic section of [kD0]

∗ = [−kD0], so s⊗ t−1

is a global meromorphic section of L.
The result is vacuous if M is a point. Assume the assertion is true for

manifolds of dimension n − 1. Choose a smooth hyperplane section D0 =
M ∩H , and choose k so that H1

(
M,L(kD0)

)
= 0 (by Theorem 10.18) and

so that L(kD0)|V has a holomorphic section (induction hypothesis).
Let s ∈ H0(M, [D0]) be a global section vanishing along D0; tensoring

with s and restriction from M to V fit into a short exact sheaf sequence

0 −→ OM
(
L((k − 1)D0)

) ⊗s−→ OM
(
L(kD0)

) r−→ OV
(
L(kD0)|V

)
−→ 0.

The long exact sequence contains the terms

H0
(
M,L(kD0)

)
→ H0

(
V, L(kD0)|V

)
→ 0,

from which it follows that L(kD0) has a non-trivial holomorphic section.

Remark 10.20 Corollary 10.19 follows from the Kodaira embedding the-
orem as well. Let D0 = M ∩H be a smooth hyperplane section of M . The
line bundle [D0] is positive, hence ample by Theorem 10.10, and by Corol-
lary 10.17 there is an integer k such that L(kD0) is very ample. Let s be a
global holomorphic section of L(kD0), and let t be a global section of [kD0].
Then t−1 is a meromorphic section of [kD0]

∗ = [−kD0], so s ⊗ t−1 is a
global meromorphic section of L.

Let (M,J, g) be a compact Kähler manifold. By Hodge theory, the de Rham
cohomology (or singular cohomology) has a filtration

Hr(M,R) =

⊕

p≤q

([
Hp,q

∂̄
(M,C)⊕Hq,p

∂̄
(M,C)

]
∩Hr(M,R)

)

=:

⊕

p≤q

p+q=r

Hp,q(M,R).

A natural question is to determine which cycles are Poincaré dual to classes
in Hp,q(M,R). A homology class is analytic if there is a representative
which is a rational linear combination of fundamental classes of analytic
subvarieties of M . The Poincaré dual of an analytic class is of type (p, p).
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Hodge Conjecture IfM ⊂ PN is smooth, then every class inHp,p(M,Q)
is Poincaré dual to an analytic class.

The only case in which the Hodge Conjecture is known completely is for
p = 1, by the Lefschetz Theorem on (1, 1)-classes:

Theorem 10.21 Let M ⊂ PN be a smooth projective variety. Then every
(1, 1)-class η in H1,1(M,R) ∩H2(M,Z) is Poincaré dual to a divisor.

Proof (Brief sketch) The map i∗ : H2(M,Z) → H2(M,O) induced by
inclusion i : Z →֒ OM factors as

H2(M,Z) −→ H2
d(M,C)

Π0,2

−→ H0,2

∂̄
(M,C).

Consequently, if η is an integral (1, 1)-class, then i∗η = 0, which implies η
is in the image of the Chern class map c1 : H1(M,O×) → H2(M,Z). By
Corollary 10.17, η is Poincaré dual to a divisor.

Exercises

Exercise 10.1 Prove that if E → M is a vector bundle over a compact
manifold, then c1(detE) = c1(E) ∈ H2(M,Z). ⋄
Exercise 10.2 Let V ⊂ Pn be a complete intersection of multi-degree
(d1, . . . , dk). Calculate the first Chern class of TV . ⋄
Exercise 10.3 Let (M,J, g) be a compact Kähler manifold, and let ψ be
a d-exact real (p, p)-form. Prove that there exists a real (p− 1, p− 1)-form
η with

√
−1∂∂̄η = ψ.

Suggestion: First write ψ = d(ϕ+ ϕ̄), then consider the type decomposition
upon expanding this out. Use the Hodge Theorem to write ϕ as the sum
of a harmonic form and a ∂̄-exact form ∂φ, then express η in terms of φ.
⋄
Exercise 10.4 Let p : L → M be a holomorphic line bundle over a
compact Kähler manifold, and let ρ ∈ 2πc1(L) be a smooth (1, 1)-form.
Prove there is an Hermitian structure in L whose first Chern form is ρ.
Suggestion: Let ρ0 = γ1(L, h0) be a curvature form; write ρ−ρ0 =

√
−1∂∂̄φ,

then search for a smooth function u : M → R such that the curvature of
e2uh0 is ρ. ⋄
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11

Curvature and Holomorphic Vector
Fields

Let (M,J, g) be an Hermitian manifold, and let D be the Levi-Civita con-
nection of the Riemannian metric g. The curvature tensor R maps local
real vector fields X , Y , and Z to the local vector field

R(X,Y )Z = DXDY Z −DYDXZ −D[X,Y ]Z.

It is often convenient to use the four-tensor R′ defined by

R′(X,Y,W,Z) = g

(
R(X,Y )Z,W

)
. (11.1)

The following properties of R′ are well-known facts from differential geom-
etry.

Proposition 11.1 The tensor R′ is skew-symmetric in X and Y , and in
W and Z, and is symmetric under exchange of (X,Y ) and (W,Z). Further,
R′ satisfies the “first Bianchi identity”

SY,W,ZR
′(X, · , · , · ) = 0. (cyclic sum)

If in addition g is Kähler with respect to J , then R′(JX, JY,W,Z) =
R′(X,Y,W,Z).

The skew-symmetry properties of R′ encapsulate the fact that the cur-
vature operator D2 : A0(M)→ A2(EndTM) is a two-form with values in
EndTM , and that this endomorphism is skew-symmetric. Alternately, R′

may be regarded as a symmetric endomorphism of the bundle of two-forms
on M .
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The sectional curvature of a real two-plane P ⊂ TxM is the value
R′(e1, e2, e1, e2) of the curvature tensor on an orthonormal basis of P .
Geometrically, the sectional curvature is the Gaussian curvature at x of
the surface in M obtained by exponentiating P . The sectional curvature
function K is defined on the Grassmannian bundle of real two-planes in
TM . If P is a complex line, i.e. a J-invariant real two-plane, then the sec-
tional curvature is equal to R′(e, Je, e, Je). The restriction of the sectional
curvature function to the bundle of complex lines is called the holomorphic
sectional curvature Khol.

If the sectional curvature function K : G2(TM) → R is constant, then
the curvature tensor has an explicit algebraic expression in terms of the
metric g; in particular, for each c ∈ R, there is a local model space with
constant sectional curvature c. A similar fact is true when g is a Kähler
metric with constant holomorphic sectional curvature. If g is (geodesically)
complete—meaning every geodesic extends to have domain R—and simply-
connected, then spaces of constant curvature are classified.

Theorem 11.2 Let (M,J, g) be a complete, simply-connected Kähler man-
ifold of dimension n and constant holomorphic sectional curvature c. If
c > 0, then g is isometric to a multiple of the Fubini-Study metric on Pn;
if c = 0, then g is isometric to the flat metric on Cn; if c < 0, then g is
isometric to a multiple of the “Bergmann metric,” whose Kähler form is
given by ω =

√
−1∂∂̄ log(1− ‖z‖2) on the unit ball in Cn.

At each point x of a standard model space, the holomorphic sectional
curvature achieves the maximum of the (absolute value of) the sectional
curvature, and the sectional curvatures are “1/4-pinched” in the sense that

(1/4)|Khol(x)| ≤ |K(x)| ≤ |Khol(x)|.
In fact, there is a simple formula for the sectional curvature of a two-plane
P in terms of the angle between P and JP . The integral Fubini-Study
metric on Pn has holomorphic sectional curvature 4π.

11.1 Ricci Curvature

The Ricci tensor of g is the symmetric, real two-tensor r whose value on
vector fields X and Y is defined to be the trace of the endomorphism
V 7→ R(V,X)Y ; symbolically,

r(X,Y ) = tr
(
V 7−→ R(V,X)Y

)
.

The Ricci tensor may be expressed more concretely in terms of the tensor
R′ and a unitary frame {ei}ni=1 for TxM as

r(X,Y ) =

n∑

i=1

R′(ei, X, ei, Y ).
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Because r is symmetric, it is determined by the real, J-invariant quadratic
form Q(X) = r(X,X); in fact, the Ricci curvature is determined by re-
stricting further to the unit tangent bundle, that is, to the sphere bundle
of unit vectors in TM .

As a real, symmetric, J-invariant two-tensor, r is associated to a real
(1, 1)-form ρ, called the Ricci form of g, and defined by

ρ(X,Y ) = r(X, JY ). (11.2)

The profound differences between Riemannian and Kählerian geometry are
in large part due to existence of the Ricci form, and to the following prop-
erties it enjoys.

Proposition 11.3 The Ricci form is closed, and represents 2πc1(M). If

the curvature R is viewed as a symmetric endomorphism of
∧1,1

TM , then
ρ = R(ω). The Ricci form is

√
−1 times the curvature of the canonical

bundle of M with the Hermitian structure induced by g; concretely, if the
Kähler form of g is given in local coordinates by ω =

√
−1
∑
gαβ̄dz

α∧dz̄β,
then the Ricci form is equal to

ρ = −
√
−1∂∂̄ log det(gαβ̄). (11.3)

The geometric significance of Proposition 11.3 is that on a compact
Kählerian manifold the Ricci form has a cohomological interpretation, that
the Ricci form varies within a fixed de Rham class as the Kähler metric
varies arbitrarily, and that the Ricci form depends only on the complex
structure J and the volume form of the metric. The following useful fact
may be proven in a fashion very similar to the proof of part v. of Proposi-
tion 8.11.

Proposition 11.4 Let Ω be a Kähler class, and let ω0 be a smooth repre-
sentative. For every representative ω, there is a smooth, real-valued func-
tion, unique up to added constants, such that ω = ω0 +

√
−1∂∂̄f .

Intuitively, smooth forms in a fixed Kähler class are parametrized by smooth
functions, and the set of Kähler forms in a fixed Kähler class is (identified
with) a convex open set in an infinite-dimensional vector space. The im-
portance is that various geometric existence questions—such as existence
of an Einstein metric, which reduces to an overdetermined nonlinear sys-
tem of PDE’s in the Riemannian situation—reduce to a single PDE in the
Kählerian situation.

11.2 Holomorphic Vector Fields

It is assumed throughout this section that (M,J, g) is a fixed compact (con-
nected) Kähler manifold. Every holomorphic vector field Z ∈ H0(M,T 1,0M)
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corresponds to an infinitesimal automorphism of J , that is, to a real vector
field X = ReZ such that LXJ = 0.

Theorem 11.5 The group Aut(M) of automorphisms of M is a complex
Lie group whose Lie algebra H is exactly the space of holomorphic vector
fields on M .

Since the space of holomorphic vector fields on a compact manifold is
finite-dimensional, the automorphism group of a compact complex manifold
is finite-dimensional. A “generic” compact manifold has no automorphisms
at all, and under various hypotheses strong restrictions can be put on the
number of automorphisms. The following theorem for Riemann surfaces is
due to Hurwitz.

Theorem 11.6 Let M be a compact curve of genus g ≥ 2. Then |Aut(M)| ≤
84(g − 1).

In words, a compact Riemann surface of genus at least two has only finitely
many automorphisms, and the number of automorphisms is bounded by the
genus. A generic Riemann surface of genus at least two has no automor-
phisms, and while the bound in Theorem 11.6 is sharp for infinitely many
genera g ≥ 3, it also fails to be sharp for infinitely many genera. Indeed,
a result of Accola asserts that for infinitely many genera g ≥ 3, the order
of the automorphism group of a compact Riemann surface of genus g is
bounded above by 8(g + 1).

Example 11.7 LetM ⊂ P2 be the (singular) curve with equation x2z4(x−
z) − y7 = 0. Then M has genus three and 168 automorphisms. There
is a smooth planar model of this curve, called the Klein quartic curve.
The automorphism group of the Klein quartic curve is the simple group of
order 168. 2

To study the space of holomorphic vector fields, it is convenient to dualize
to the space of (0, 1)-forms and use Hodge theory. If X is a vector field,
then the dual one-form X♭ is defined by X♭(Y ) = g(X,Y ). If X is a real
vector field, then X♭ is a real one-form, while if X is of type (1, 0) (e.g. if X
is holomorphic) then X♭ is of type (0, 1). The inverse map from one-forms
to vector fields is denoted ♯, and these maps are read “flat” and “sharp”
respectively. The terminology comes from tensor calculus, since flat lowers
indices and sharp raises them. Specifically, if gαβ̄ are the components of g

in a local holomorphic coordinate system, and if gβ̄α is the inverse matrix,
then

X♭ =
( n∑

α=1

Xα ∂

∂zα

)♭
=

n∑

α,β=1

gαβ̄X
αdz̄β , η♯ =

( n∑

α=1

ηβ̄ dz̄
β
)♯

=
n∑

α,β=1

gβ̄αηβ̄
∂

∂zα
.
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If φ : M → C is a smooth function, then the (complex) gradient of φ with
respect to g is the smooth (1, 0) vector field

gradgφ = (∂̄φ)♯ =: ∂̄♯φ.

The Lichnerowicz ideal is defined to be H1 = {Z ∈ H : η(Z) = 0 for all η ∈ Z1,0

∂̄
},

namely, the space of holomorphic vector fields which annihilate the space
of holomorphic one-forms under the natural pairing. Of course, the pairing
of a holomorphic one-form with a holomorphic vector field is a global holo-
morphic function, hence is constant. The ideal H1 ⊂ H actually contains
the derived subalgebra [H,H]. This is trivial from the equation

2dη(Z,W ) = Z η(W )−W η(Z)− η([Z,W ]),

since all terms except the last are automatically zero for all holomorphic
one-forms η and all holomorphic vector fields Z and W .

Theorem 11.8 Let Z be a holomorphic vector field, and let ζ = Z♭ be the
associated one-form. Then

• The Hodge decomposition of ζ is ζ = Hζ + ∂̄φ, with φ unique up to
an added constant.

• ζ = ∂̄φ if and only if Z ∈ H1, i.e. η(Z) = 0 for every holomorphic
one-form η.

• X = ReZ is Killing if and only if Reφ is constant.

Proof Because g is Kähler, there exist local holomorphic normal coordi-
nates; in such a coordinate system, it is obvious that Z is holomorphic at
x ∈M if and only if ∂̄ζ = 0 at x. The Hodge decomposition of ζ is

ζ = Hζ + ∂̄(∂̄∗Gζ) + ∂̄∗(G∂̄ζ);

The last term vanishes because Z is holomorphic. Set φ = ∂̄∗Gζ; the
complex-valued function φ is unique up to an added harmonic function,
i.e. an added constant since M is compact.

To prove the second assertion, let η be a holomorphic one-form. By
Proposition 8.14, η is harmonic, and since η(Z) = 〈η, ζ〉 (pointwise inner
product) is constant, the global inner product (η, ζ) is equal to η(Z) times
the volume of M . Thus, if Hζ = 0, then (η, ζ) = 0. Conversely, suppose
η(Z) = 0 for every holomorphic one-form η. The (1, 0)-form Hζ is har-
monic, hence holomorphic for type reasons. But by hypothesis, ‖Hζ‖2 =
(η, ζ) = 0.

The last assertion is a consequence of the Weitzenböck formula for the
Laplace operator acting on one-forms and is not given here.

The term Hζ is dual to a nowhere-vanishing, autoparallel holomorphic
vector field, called the autoparallel part of Z, and the term ∂̄φ is dual to
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the gradient part of Z. The (Abelian) Lie algebra of autoparallel vector
fields is denoted a. If h0,1(M,C) = 0, e.g. if M is simply-connected, then
Hζ = 0 and every holomorphic vector field is a gradient field. The (finite-
dimensional) space of smooth, complex-valued functions φ with gradgφ
holomorphic is called the space of g-holomorphy potentials. While the space
of holomorphy potentials depends on the choice of metric, the dimension
does not.

Corollary 11.9 If Z is a holomorphic vector field which vanishes some-
where, then Z is a gradient field. If X = ReZ is Killing, and if ξ is the
real one-form dual to X, then the following are equivalent:

i. The zero set of Z (or of X) is non-empty.

ii. ζ = ∂̄φ with φ pure imaginary.

iii. ξ = J du for some real-valued function u.

A smooth function φ is a holomorphy potential if and only if ∂̄ ∂̄♯φ = 0.
It is convenient to introduce the fourth-order scalar Lichnerowicz operator
L = (∂̄ ∂̄♯)∗(∂̄ ∂̄♯), whose kernel is the space of g-holomorphy potentials.
The Weitzenböck formula for L is found by standard differential-geometric
techniques, namely integration by parts and application of Ricci identities:

Proposition 11.10 Let ∇ denote the Levi-Civita connection of g, r the
Ricci tensor, and s = tr r the scalar curvature function. Then for every
smooth function φ,

2Lφ = 2dφ+ 〈r,∇∇φ〉+ ∂s(gradgφ). (11.4)

In particular, the Lichnerowicz operator is a real operator if and only if
the scalar curvature function s is constant, a fact which will be of great
importance later.
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12

Extremal Kähler Metrics

Without further mention, all manifolds are assumed to be connected. An
“extremal” Kähler metric (in the sense of Calabi) is a critical point for
the L2-norm of the scalar curvature among metrics in a fixed Kähler class.
Precisely, let (M,Ω) be a compact, real-polarized Kählerian manifold of
complex dimension n. On the space Ω+ of Kähler forms representing Ω
consider the Calabi energy functional

EΩ(ω) =

∫

M

σ2
ω

ωn

n!
. (12.1)

While the integral on the right is defined independently of the Kähler class,
the Calabi energy functional depends upon the Kähler class Ω because
its domain is Ω+. A critical metric for the Calabi energy is an extremal
Kähler metric. Theorem 12.14 below asserts that critical metrics are in
fact minima, so the name is justified.

For brevity, a choice of Kähler class is sometimes called a real polariza-
tion, and a real polarized manifold is a pair (M,Ω) consisting of a compact,
connected holomorphic manifold together with a Kähler class. This gen-
eralizes the terminology of algebraic geometry, where a “polarization” is
a Hodge (rational Kähler) class, but note that a real polarization does
not correspond to a line bundle in the way an ordinary polarization does.
On a real-polarized manifold, the volume and total scalar curvature are
determined; the integrals

VΩ =

∫

M

ωn

n!
, SΩ =

∫

M

σω
ωn

n!
=

∫

M

ρω ∧
ωn−1

(n− 1)!
(12.2)
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do not depend on the choice of ω ∈ Ω+, by Stokes’ theorem and Chern-Weil
theory respectively. A metric of constant scalar curvature (on a compact
manifold) is extremal by the Schwarz inequality:

EΩ(ω) ≥ S2
Ω

VΩ
, (12.3)

with equality if and only if ω has constant scalar curvature. However, there
exist examples (due to Calabi) of extremal metrics of non-constant scalar
curvature, suggestiong that (12.3) can be sharpened. Theorem 12.14 gives
such a sharpening, for which the inequality is saturated exactly for extremal
metrics.

A Riemannian metric g is Einstein if the Ricci tensor is proportional
to the metric tensor, that is, if there is a real constant λ—the Einstein
constant—such that r = λg. An Einstein metric has constant scalar curva-
ture. If g is Kähler with respect to a complex structure J , then the triple
(M,J, g) is an Einstein-Kähler metric.1 The following simple result shows
the stringency of the Einstein-Kähler condition.

Proposition 12.1 Let (M,J, g) be a compact Einstein-Kähler manifold
with Einstein constant λ.

• If λ < 0, then the canonical bundle KM is ample.

• If λ = 0, then the canonical bundle is trivial.

• If λ > 0, then the anticanonical bundle is ample.

Proof The Ricci form ρ is
√
−1 times the curvature form of the canonical

bundle KM ; In other words, with respect to a local coordinate system,

ρω = −
√
−1∂∂̄ log det(gαβ̄), where ω =

√
−1gαβ̄ dz

α ∧ dz̄β . (12.4)

Consequently the Ricci form of an arbitrary Kähler metric represents the
de Rham class 2πc1(M,J). But a Kähler metric is Einstein if and only if
the Ricci form is proportional to the Kähler form:

ρ = λω, (12.5)

and ω is a positive (1, 1)-form. Thus if (M,J) admits an Einstein-Kähler
metric, then the first Chern class is either positive, negative, or zero. Be-
cause the first Chern class is integral, the first and third assertions follow
from the Kodaira embedding theorem. If (M,J) admits a Ricci-flat Kähler
metric (that is, λ = 0), then by (12.4), the volume density det(gαβ̄) is con-
stant in each holomorphic coordinate system, which means the local holo-
morphic section dz1 ∧ · · · ∧ dzn of KM has constant norm, which can be

1Or a Kähler-Einstein metric, if the metric structure is being emphasized.
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normalized to 1 by linear change of variables. Covering M by coordinate
neighborhoods shows that the canonical bundle admits a non-vanishing
holomorphic section, hence is trivial.

In particular, a general Kählerian manifold does not admit an Einstein-
Kähler metric; it is necessary that the first Chern class either be the zero
class, or else be a positive or a negative class. Furthermore, the sign of the
Einstein constant is determined by the complex structure; a single holo-
morphic manifold cannot admit two Einstein-Kähler metrics unless their
curvatures are both zero, both positive, or both negative. A manifold (M,J)
with −KM ample is called a Fano manifold, while a simply-connected man-
ifold with KM trivial is often called a Calabi-Yau manifold. A manifold
not satisfying the conclusion of Proposition 12.1 has indefinite first Chern
class.

Remark 12.2 If the holomorphic structure is not fixed, then a single smooth
manifold can admit a pair of Einstein-Kähler metrics of opposite sign. To
emphasize, these metrics are Kähler with respect to different holomorphic
structures, hence do not live on the same holomorphic manifold. There
are known examples in complex dimension four; it is not currently known
if this sort of example arises among complex surfaces. However, it is known
(Catanese-Lebrun, and Kotschick) that there exist complex surfaces M+ and
M− whose underlying smooth four-manifolds are homeomorphic but not
diffeomorphic, and such that M± admits an Einstein-Kähler metric of the
corresponding sign! Suitable products of these give the complex four-fold
examples mentioned previously.

Some examples may illustrate the restrictiveness of Proposition 12.1.

Example 12.3 A complete intersection in PN always has definite first
Chern class, and many of them are known to admit an Einstein-Kähler
metric. The same is true for the blow-up of P2 at three non-collinear points.
By contrast, the blow-up of P2 at three collinear points, the blow-up of P2

at nine arbitrary points, and (if n ≥ 3) the blow-up of Pn at two points all
have indefinite first Chern class. Blowing up an indefinite manifold always
gives an indefinite manifold. 2

Under scaling of the metric, the Ricci tensor and form do not change.
Thus a Kählerian manifold (M,J) admits an Einstein-Kähler metric if and
only if it admits such a metric with ρ = εω, ε = −1, 0, or 1. This restriction
is assumed from now on.

The converses of the first two conditions in Proposition 12.1 are true
(Theorems 12.4 and 12.5 below), while the converse of the third is known
to be false. There are additional necessary conditions in order that a Fano
manifold admit an Einstein-Kähler metric, and additional hypotheses un-
der which these conditions are sufficient for existence. It has recently been
conjectured by Tian that a certain “stability” condition on (M,J) is suf-
ficient to guarantee existence. Einstein-Kähler metrics, Kähler metrics of
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constant scalar curvature, and extremal Kähler metrics are closely related,
and not merely by the trivial inclusions among them indicated above. The
details are discussed below.

12.1 The Calabi Conjectures

The so-called First Calabi Conjecture (see Theorem 12.4) is concerned with
specification of the Ricci curvature of a compact Kählerian manifold, while
the Second Calabi Conjecture (see Theorem 12.5) is the converse of the first
assertion in Proposition 12.1. The First Calabi Conjecture was established
by Yau in 1977, while the second was proven independently by Yau and
Aubin; the uniqueness assertion was known to Calabi in 1954.

Theorem 12.4 Let (M,J) be a compact Kählerian manifold, let ω0 be a
positive (1, 1)-form on (M,J), and let ρ ∈ 2πc1(M) be an arbitrary smooth
form. Then there is a unique Kähler metric g on (M,J) with [ω] = [ω0]
and having Ricci form ρ.

In words, given a representative of 2πc1(M), each Kähler class on (M,J)
contains a unique representative with the specified Ricci form. In particular,
if c1(M) = 0, then every Kähler class contains a unique Einstein-Kähler
metric with ρ = 0.

Theorem 12.5 Let (M,J) be a compact complex manifold with ample
canonical bundle. Then there is a unique Einstein-Kähler metric g with
ρ = −ω.

Example 12.6 By the adjunction formula, if Mn ⊂ PN is a complete
intersection of multidegree d = d1 + · · ·+ dN−n, and if N + 1 = d, then M
admits a Ricci-flat Kähler metric in each Kähler class, while if N + 1 < d,
then M admits a unique (up to scaling) negative Einstein-Kähler metric.
In particular, each smooth quartic surface in P3 and each smooth quintic
three-fold in P4 admits a Ricci-flat Kähler metric; for this reason, quintic
three-folds are called Calabi-Yau manifolds. The space of Kähler classes on
a quartic surface is known to be three-dimensional by the Hirzebruch Sig-
nature Theorem, so there is a three-dimensional family of Ricci-flat Kähler
metrics on each smooth quartic. As shown in Example 10.8, the space of
Kähler classes on a quintic threefold in P4 is one-dimensional, so each quin-
tic in P4 has—up to scaling—a unique Ricci-flat Kähler metric. 2

Very little is known regarding existence if 2 < d < N + 1. However,
contrary to the natural guess, the restriction of the Fubini-Study metric
to M is never Einstein if 2 < d. In fact, only the “obvious” complete
intersections inherit an Einstein metric from the Fubini-Study metric; this
is a result of Kobayashi and Ochiai:
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Theorem 12.7 Let Mn ⊂ PN be a smooth projective variety, and assume
the restriction of the Fubini-Study metric to M is Einstein. Then M is
contained in a linear subspace Pn+1 and is either a linear subspace or a
quadric hypersurface in Pn+1.

The proofs of Theorems 12.4 and 12.5 are entirely hard analysis. How-
ever, it is easy to reduce each theorem to a question of existence for a
complex Monge-Ampère equation. Recall that if ω0 is given, then every
Kähler form cohomologous to ω0 is given by ωϕ = ω0 +

√
−1∂∂̄ϕ for a

smooth, real-valued function ϕ unique up to added constants. Let ρ0 be
the Ricci form of ω0, and let ρ be the prospective Ricci form of the unknown
metric. By Proposition 11.3,

ρ− ρ0 = −
√
−1∂∂̄ log

(
ωnϕ
ωn0

)
;

this makes sense since the quotient of (non-vanishing) (n, n)-forms is a glob-
ally defined smooth, real-valued function. Yau showed that (with respect
to suitable Hölder topologies) the map

ϕ 7−→ log

(
ωnϕ
ωn0

)

is a diffeomorphism from the set of C2+α functions with ω0 +
√
−1∂∂̄ϕ > 0

to the space of Cα functions on M . This involved proving the map is open—
a straightforward application of the Inverse Function Theorem for Banach
spaces—together with an argument that the map is proper, which involved
difficult estimates. As remarked above, that fact that this map is injective
was proven by Calabi in 1954.

To express Theorem 12.5 in terms of a Monge-Ampère equation, fix ω0 ∈
−2πc1(M) (which by hypothesis is a Kähler class), and define the smooth,
real-valued function f0 by

ρ0 + ω0 =
√
−1∂∂̄f0.

The function f0 is called the Ricci potential of ω0. With notation as above,
it is easy to show that ωϕ is Einstein-Kähler with Einstein constant λ if
and only if

log

(
ωnϕ
ωn0

)
+ λϕ = f0.

Aubin’s proof of Theorem 12.5 used the so-called continuity method; Aubin
introduced a family of equations

(∗)t log

(
ωnϕ
ωn0

)
+ tλϕ = f0.

By Theorem 12.4, equation (∗)0 has a solution. By the Inverse Function
Theorem, if (∗)t0 has a solution, then there is an ε > 0 such that (∗)t has a
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solution for t < t0 +ε. It remains to show that the set of t ∈ [0, 1] for which
(∗)t has a solution is closed. It is only at this point that the assumption
λ = −1 must be introduced. Proving closedness involves a priori estimates
on ϕ and is the analogue of properness in Yau’s proof. More explicitly, the
idea is to show that if (∗)t has a solution ϕt for t < t0, then in a suitable
Hölder norm, the functions ϕt remain bounded as tր t0. The same general
technique is used to prove existence of positive Einstein-Kähler metrics,
though the details are quite different for geometric reasons. The problem
is to connect geometric hypotheses about the complex manifold (M,J) to
analytic properties, namely, existence of a priori estimates for (∗)t with
λ = 1.

At present, there are no explicit examples of non-positive Einstein-Kähler
metrics on (compact) simply-connected manifolds. However, even existence
of Kähler metrics with specified Ricci curvature gives useful information.
A nice application is the following result of Kobayashi.

Proposition 12.8 Let (M,J) be a Fano manifold. Then M is simply-
connected.

Proof (Sketch) By Theorem 12.4, there is a Kähler metric g with positive
Ricci curvature. (Kobayashi’s original article contained this as a hypothesis,
though added the present weaker hypothesis modulo the First Calabi Con-
jecture.) There is a vanishing theorem, due to Bochner and analogous to
the Kodaira-Nakano Theorem, that a Kähler manifold with positive Ricci
tensor admits no non-trivial holomorphic p-forms if p > 0. (The proof is a
simple application of the Weitzenböck formula for the Laplacian acting on
(p, 0)-forms.) Consequently, the holomorphic Euler characteristic

χ(M,OM ) =
n∑

p=0

(−1)ph0(M,ΩpM ) =
n∑

p=0

(−1)php,0(M)

is equal to 1.
Let π : M̃ → M be the universal covering space. By Myers’ Theorem

(which holds for Riemannian manifolds with positive Ricci tensor), M̃ is
compact, so π is a finite-sheeted cover with d sheets. The pullback of g
is a Kähler metric with positive Ricci curvature, so χ(M̃,OfM

) = 1. By
the Riemann-Roch-Hirzebruch Theorem (Theorem 9.13 above), the Euler
characteristic χ(M,OM ) is equal to the integral over M of the Todd class
of M (since the Chern character of O is equal to 1), which is a universal
polynomial in the curvature of ω. The same formula holds locally for the
Todd class of M̃ , so 1 = χ(M̃,OfM

) = d, the number of sheets of the cover

π.

Another useful result, due to Yau, characterizes metrics of constant nega-
tive holomorphic sectional curvature among compact Einstein-Kähler met-
rics. The idea of the proof is to calculate Chern forms with respect to an
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Einstein-Kähler metric, then use the fact that there is a unique simply-
connected model space with constant negative holomorphic sectional cur-
vature.

Proposition 12.9 Let (Mn, J) be a compact Kählerian manifold with c1(M) <
0. Then

(−1)n
(
2(n+ 1)c2(M) ∪ c1(M)n−2 − nc1(M)n

)
[M ] ≥ 0, (12.6)

with equality if and only if M is holomorphically covered by the unit ball in
Cn.

12.2 Positive Einstein-Kähler Metrics

In contrast to the existence problem for non-positive Einstein-Kähler met-
rics, the basic restriction (i.e. that M be Fano) is not sufficient to guarantee
existence of a positive Einstein metric. The first non-trivial obstruction was
found by Matsushima in 1954.

Theorem 12.10 Let (M,J, g) be a compact Einstein-Kähler manifold with
positive curvature. Then the Lie algebra H is the complexification of the
compact Lie algebra k of Killing vector fields.

A Lie group whose Lie algebra is the complexification of a compact sub-
algebra (i.e. the Lie algebra of a compact subgroup) is said to be reduc-
tive. Not every Fano manifold has reductive Lie algebra of holomorphic
vector fields; such manifolds cannot admit an Einstein-Kähler metric. If
M is obtained from Pn by blowing up a linear subspace of dimension ℓ,
0 ≤ ℓ ≤ n− 2, then M is Fano but admits no Einstein-Kähler metric.

Theorem 12.10 was generalized by Lichnerowicz in 1957 to Kähler metrics
with constant scalar curvature.

Theorem 12.11 Let (M,J, g) be a Kähler manifold with constant posi-
tive scalar curvature. Then the Lie algebra H of holomorphic vector fields
decomposes as the sum

H = a⊕ k⊕
√
−1k

of the space of autoparallel vector fields, Killing fields, and J(Killing fields).

Proof By equation (11.4), which expresses the Lichnerowicz operator in
terms of the Laplace operator, Ricci tensor, and scalar curvature, the scalar
curvature s is constant if and only if L = (∂̄∂̄♯)∗(∂̄∂̄♯) is a real operator.
If φ is a holomorphy potential, then Reφ and Imφ are also holomorphy
potentials since L is real. By Theorem 11.8, if φ ∈ kerL is pure imaginary,
then gradgφ is a Killing field. The theorem follows immediately.
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Thus, the blow-up of Pn along a linear subspace admits no Kähler metric
of constant scalar curvature, regardless of Kähler class.

A second obstruction to existence of positive Einstein-Kähler metrics was
discovered in 1983 by Futaki, who generalized an integral invariant found
in 1974 by Kazdan and Warner (who had been attempting to determine
which smooth functions on S2 are Gaussian curvature functions of some
Riemannian metric). The Futaki invariant was generalized in various ways
between 1984–5 by Calabi, Futaki, and Bando.

Let (M,J) be a compact Kählerian manifold, and let H be the space of
holomorphic vector fields on M . For each Kähler form ω, let fω denote the
normalized Ricci potential, that is, the unique smooth, real-valued function
with

ρω −Hρω =
√
−1∂∂̄fω,

∫

M

fω
ωn

n!
= 0.

Let Ω = [ω] denote the Kähler class of g, and consider the linear functional

FΩ : X ∈ H 7−→
√
−1

∫

M

(Xfω)
ωn

n!
. (12.7)

The following summarizes the properties of the so-called Futaki character.

Theorem 12.12 The functional FΩ defined by equation (12.7) is a Lie
algebra character, and depends only on the de Rham class Ω = [ω]. In
particular, if there is a Kähler metric of constant scalar curvature whose
Kähler form represents Ω, then the character FΩ vanishes identically.

Example 12.13 Let Mn be obtained by blowing up Pn along skew linear
subspaces of complementary dimension (neither of which is a hyperplane).
Then M is Fano, and the set of Kähler classes for which FΩ vanishes
identically is a real-algebraic hypersurface in the Kähler cone H1,1

+ (M,R).
The Futaki invariant Fc1(M) vanishes identically if and only if n = 2k + 1
and the subspaces blown up are both of dimension k; in fact, M admits an
Einstein-Kähler metric exactly under this condition. In particular, there
exist Fano manifolds satisfying Matsushima’s obstruction but having no
Einstein-Kähler metric.

It is not at present known whether or not there exists a compact manifold
M with non-reductive automorphism group but having vanishing Futaki
character for every Kähler class, nor whether or not there exists a compact
manifold having reductive automorphism group but non-vanishing Futaki
character for every Kähler class. 2

Theorem 12.14 Let (M,Ω) be a real-polarized manifold, and let XΩ be the
extremal Kähler vector field associated to a fixed maximal compact group of
automorphisms. Then the number FΩ(XΩ) does not depend on the choice
of maximally compact subgroup, and

EΩ(ω) ≥ S2
Ω

VΩ
+ FΩ(XΩ) for all ω ∈ Ω+, (12.8)
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with equality if and only if ω is critical for the Calabi energy of Ω.

In particular, every critical metric is a minimizer (so all have the same
energy), and the “critical energy” depends smoothly on the Kähler class.


