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The last chapter dealt with time dependence, and this one is motivated
by space dependence. Later chapters will combine the two.

Fourier analysis touches almost every aspect of partial differential equa-
tions and their numerical solution. Sometimes Fourier ideas enter into the
analysis of a numerical algorithm derived from other principles—especially in
the stability analysis of finite-difference formulas. Sometimes they underlie
the design of the algorithm itself—spectral methods. And sometimes the situ-
ation is a mixture of both, as with iterative and multigrid methods for elliptic
equations. For one reason or another, Fourier analysis will appear in all of the
remaining chapters of this book.

The impact of Fourier analysis is also felt in many fields besides differ-
ential equations and their numerical solution, such as quantum mechanics,
crystallography, signal processing, statistics, and information theory.

There are four varieties of Fourier transform, depending on whether the
spatial domain is unbounded or bounded, continuous or discrete:

Name Space variable Transform variable
Fourier transform unbounded, continuous continuous, unbounded
Fourier series bounded, continuous discrete, unbounded
semidiscrete Fourier transform — unbounded, discrete continuous, bounded
or z-transform
discrete Fourier transform bounded, discrete discrete, bounded
(DFT)

(The second and third varieties are mathematically equivalent.) This chapter
will describe the essentials of these operations, emphasizing the parallels be-
tween them. In discrete methods for partial differential equations, one looks
for a representation that will converge to a solution of the continuous problem
as the mesh is refined. Our definitions are chosen so that the same kind of
convergence holds also for the transforms.

Rigorous Fourier analysis is a highly technical and highly developed area
of mathematics, which depends heavily on the theory of Lebesgue measure and
integration. We shall make use of L? and ¢? spaces, but for the most part this
chapter avoids the technicalities. In particular, a number of statements made
in this chapter hold not at every point of a domain, but “almost everywhere”
— everywhere but on a set of measure zero.
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2.1. The Fourier transform

If u(z) is a (Lebesgue-measurable) function of # € R, the L?-norm of u
is the nonnegative or infinite real number

lu| = [/_o:o|u(x)|2dx]1/2. (2.1.1)

The symbol L? (“L-two”) denotes the set of all functions for which this integral
is finite:
L? = {u: ||Ju]| < oo} (2.1.2)

Similarly, L' and L™ are the sets of functions having finite L'- and L*°-norms,
defined by

laly = [ Ju(a)lds,  Jullo = sup_Ju(@)]. (213)

—oo<r<0o0

Note that since the L? norm is the norm used in most applications, because
of its many desirable properties, we have reserved the symbol ||-|| without a
subscript for it.

The convolution of two functions u,v is the function u*wv defined by

(wro)(x) = (uso)(@) = [

—00

o ¢] o0

u(z—y)v(y)dy = /_oou(y)v(x —y)dy, (2.1.4)
assuming these integrals exist. One way to think of uxv is as a weighted
moving average of values u(z) with weights defined by v(z), or vice versa.

For any u € L?, the Fourier transform of u is the function (&) defined
by

We) = (Fu)(©) = [ e Sulm)ds,  €eR.

The quantity £ is known as the wave number, the spatial analog of frequency.
For many functions u € L?, this integral converges in the usual sense for all
&£ € R, but there are situations where this is not true, and in these cases one
must interpret the integral as a limit in a certain L?-norm sense of integrals
fi\/.r um as M — oco. The reader interested in such details should consult the
various books listed in the references.*

*If w e L', then @(¢) exists for every ¢ and is continuous with respect to . According to the
Riemann-Lebesgue Lemma, it also satisfies |a(£)| — 0 as £ — oco.
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x 3

Figure 2.1.1. Space and wave number domains for the Fourier trans-
form (compare Figures 2.2.1 and 2.4.1).

The following theorem summarizes some of the fundamental properties of
Fourier transforms.

THE FOURIER TRANSFORM

Theorem 2.1.* Ifu € L?, then the Fourier transform

i(§) = (Fu)(©) = | T e€ry(r)d,  €€R (2.1.5)

— 00

belongs to L? also, and u can be recovered from @ by the inverse Fourier
transform

() = (Fla) (@) = — [ éigde,  zer (2.1.6)

T 2m )
The L?-norms of u and @ are related by Parseval’s equality,
||| = V2|l (2.1.7)
Ifue L? and v € L' (or vice versa), then uxv € L?, and wxv satisfies

uxv(€) = w(€)o(E). (2.1.8)

These four equations are of such fundamental importance that they are
worth commenting on individually, although it is assumed the reader has al-
ready been exposed to Fourier analysis.

* As mentioned in the introduction to this chapter, some of these properties—namely equations
(2.1.6) and (2.1.8)—hold merely for “almost every” value of z or £. In fact even if f(z) is a
continuous function in L2, its Fourier transform may fail to converge at certain points z. To ensure
pointwise convergence one needs additional assumptions such as that f is of bounded variation
(defined below before Theorem 2.4) and belongs to L. These assumptions also ensure that at any
point z where f has a jump discontinuity, its Fourier transform converges to the average value

(fl@™)+f(=™))/2.
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First of all, (2.1.5) indicates that %(&) is a measure of the correlation of
u(z) with the function e**. The idea behind Fourier analysis is to interpret
u(z) as a superposition of monochromatic waves €% with various wave num-
bers &, and @(§) represents the complex amplitude (more precisely: amplitude
density with respect to £) of the component of u at wave number &.

Conversely, (2.1.6) expresses the synthesis of u(x) as a superposition of its
components €%, each multiplied by the appropriate factor w(§). The factor
27 is a nuisance that could have been put in various places in our formulas,
but is hard to eliminate entirely.

Equation (2.1.7), Parseval’s equality, is a statement of energy conserva-
tion: the L? energy of any signal u(z) is equal to the sum of the energies of
its component vibrations (except for the factor v/27). By “energy” we mean
the square of the L? norm.

Finally, the convolution equation (2.1.8) is perhaps the most subtle of
the four. The left side, uxwv(§), represents the strength of the wave number £
component that results when u is convolved with v—in other words, the degree
to which » and v beat in and out of phase with each other at wave number &
when multiplied together in reverse order with a varying offset. Such beating
is caused by a quadratic interaction of the wave number component ¢ in u
with the same component of v—hence the right-hand side 4(£)(&).

All of the assertions of Theorem 2.1 can be verified in the following ex-
ample, which the reader should study carefully.

EXAMPLE 2.1.1. B-splines. Suppose u is the function

3 for—1<z<1
u(x) = {2 rTEETE (2.1.9)
0 otherwise
(Figure 2.1.2). Then by (2.1.1) we have ||Ju|| =1/v/2, and (2.1.5) gives
! ) ~igx |! sin&
a(e) = l/ erdy = S| =25 2.1.10
©=1/ 7 = (21.10)
(This function 4(€) is called a sinc function; more on these in §2.3.) From (2.1.1) and the
indispensable identity*
o0 1.2
sin” s
[m = ds =, (2.1.11)

which can be derived by complex contour integration, we calculate ||a|| = v/, which confirms
(2.1.7).
From the definition (2.1.4) it is readily verified that in this example

(1—|z|/2) for —2<x<2,

(uxu)(z) = { (2.1.12)

1
2
0 otherwise

* worth memorizing!
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Figure 2.1.2. The first three B-splines of Example 2.1.1 and their Fourier trans-
forms.

and
%—%3,3 for —1<x <1,
(uxuxu)(z) = £(9—6|z|+2?) for 1<z <3, (2.1.13)
0 otherwise,

and by (2.1.8) and (2.1.10), the corresponding Fourier transforms must be

_— sin? S sin®

wue) = Tt A = T (2119
See Figure 2.1.2. In general, a convolution Uy of p copies of u has the Fourier transform

_ sin¢\?

U(p) (&) = Fluxux---xu}(§) = ¢ . (2.1.15)

Note that whenever U, Or any other function is convolved with the function u of
(2.1.9), it becomes smoother, since the convolution amounts to a local moving average. In
particular, u itself is piecewise continuous, u*u is continuous and has a piecewise continuous
first derivative, u*wu*u has a continuous derivative and a piecewise continuous second
derivative, and so on. In general Uy is a piecewise polynomial of degree p—1 with a
continuous (p—2)nd derivative and a piecewise continuous (p—1)st derivative, and is known
as a B-spline. (See, for example, C. de Boor, A Practical Guide to Splines, Springer, 1978.)

Thus convolution with u makes a function smoother, while the effect on the Fourier
transform is to multiply it by sin¢/¢ and thereby make it decay more rapidly £ — oo. This
relationship is evident in Figure 2.1.2.

For applications to numerical methods for partial differential equations,
there are two properties of the Fourier transform that are most important.
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One is equation (2.1.8): the Fourier transform converts convolution into mul-
tiplication. The second can be derived by integration by parts:

o0 . 0.¢) .
T(6) = / e~y (1)dz = — / (—i€)e~€u(z)de = i€a(€), (2.1.16)
—00 —00

assuming u(x) is smooth and decays at co. That is, the Fourier transform
converts differentiation into multiplication by #£. This result is rigorously
valid for any absolutely continuous function u € L? whose derivative belongs
to L2. Note that differentiation makes a function less smooth, so the fact that
it makes the Fourier transform decay less rapidly fits the pattern mentioned
above for convolution.

—2 0 |2

Figure 2.1.3.

EXAMPLE 2.1.2. The function

1 for —2<z <0,
u(z) =< -1 foro<z<2, (2.1.17)
0 otherwise,

illustrated in Figure 2.1.3, has Fourier transform

0 2
ﬁ(f):%/26_i5xdw—%/0 e~ %%y

1
—4if

2.1.18
isin?¢ ( )

é— )
which is i€ times the Fourier transform (2.1.14) of the triangular hat function (2.1.12). In
keeping with (2.1.16), (2.1.17) is the derivative of (2.1.12).

1 (eig_e—i5)2 _

1 o2 _ =20 1) —
(1—e e +1) 1

The following theorem collects (2.1.16) together with a number of addi-
tional properties of the Fourier transform:
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PROPERTIES OF THE FOURIER TRANSFORM

Theorem 2.2. Let u,v € L? have Fourier transforms @ = Fu, v = Fu.
Then:

(a) Linearity. F{u+uv}(§) =u(§)+8(8); F{eu}(§) = cu(§).

(b) Translation. If o € R, then F{u(z+xy)}(€) = e“T0u(€).

(¢) Modulation. If £, € R, then F{e®0%u(x)}(€) =u(€ —&;).

(d) Dilation. If c € R with ¢#0, then F{u(cz)}(€)=1u(/c)/|c|.
(e) Conjugation. F{u}(€)=u(—¢).

(f) Differentiation. If u, € L*, then F{u,}(&) =ifu(¢).

(¢) Tnversion. F~ {u} () = —i(—¢).

2

Proof. See Exercise 2.1.2. 1

In particular, taking ¢=—1 in part (d) above gives F{u(—z)} = u(—=¢).
Combining this result with part (e) leads to the following elementary but useful
results. Definitions: wu(x) is even, odd, real, or imaginary if u(z) = u(—z),

u(z) = —u(—2x), u(x) =u(x), or u(xr) =—u(r), respectively; u(z) is hermitian

or skew-hermitian if u(x) = u(—=x) or u(x) = —u(—x), respectively.

SYMMETRIES OF THE FOURIER TRANSFORM

Theorem 2.3. Let u € L? have Fourier transform @ = Fu. Then

(a) u(x) is even (odd) <= (&) is even (odd);

(b) u(z) is real (imaginary) <= 0(€) is hermitian (skew-hermitian);
and therefore

(c) u(z) is real and even <= (&) is real and even;

(d) u(z) is real and odd <= u(&) is imaginary and odd;

(e) u(x)

(f) u(x)

u(z) is imaginary and even <= u(§) is imaginary and even;
u(x) is imaginary and odd <= u(§) is real and odd.

Proof. See Exercise 2.1.3. I
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In the discussion above we have twice observed the following relationships
between the smoothness of a function and the decay of its Fourier transform:

u(z) ()
smooth < decays rapidly as |{] — o0
decays rapidly as |z] 5> 00 <+ smooth

(Of course since the Fourier transform is essentially the same as the inverse
Fourier transform, by Theorem 2.2g, the two rows of this summary are equiv-
alent.) The intuitive explanation is that if a function is smooth, then it can
be accurately represented as a superposition of slowly-varying waves, so one
does not need much energy in the high wave number components. Conversely,
a non-smooth function requires a considerable amplitude of high wave number
components to be represented accurately. These relationships are the bedrock
of analog and digital signal processing, where all kinds of smoothing operations
are effected by multiplying the Fourier transform by a “windowing function”
that decays suitably rapidly.

The following theorem makes these connections between u and @ precise.
This theorem may seem forbidding at first, but it is worth studying carefully.
Each of the four parts of the theorem makes a stronger smoothness assumption
on u than the last, and reaches a correspondingly stronger conclusion about
the rate of decay of @(§) as |{| — co. Parts (¢) and (d) are known as the
Paley-Wiener theorems.

First, a standard definition. A function u defined on R is said to have
bounded variation if there is a constant M such that for any finite m and
any points vy <y <+ <z, YLy |u(z;) —u(r;_q)| < M.
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SMOOTHNESS OF 14, AND DECAY OF U

Theorem 2.4. Let u be a function in L?.
(a) If u has p—1 continuous derivatives in L? for some p >0, and a pth
derivative in L? that has bounded variation, then

a@) =o(E[™h)  as [¢] oo (2.1.19)
(b) If u has infinitely many continuous derivatives in L?, then

&) =0(™)  as || = oo forall M, (2.1.20)

and conversely.

(c) If u can be extended to an analytic function of z=x+iy in the complex
strip |Imz| < a for some a >0, with ||u(x +iy)|| < const uniformly for each

constant —a <y < a, then
ela(e) e 12, (2.1.21)

and conversely.

(d) If u can be extended to an entire function® of z = x +iy with |u(z)| =
O(e?) as |z| = 0o (2 € C) for some a >0, then i has compact support
contained in [—a,a], i.e.

w(&)=0  forall [£|>a, (2.1.22)

and conversely.

Proof. See, for example, §VI.7 of Y. Katznelson, An Introduction to
Harmonic Analysis, Dover, 1976. [Also see Rudin (p. 407), Paley & Wiener,
Reed & Simon v. 2, Hoimander v. 1 (p. 181), entire functions books... | g

A function of the kind described in (d) is said to be band-limited, since
only a finite band of wave numbers are represented in it.

Since the Fourier transform and its inverse are essentially the same, by
Theorem 2.2g, Theorem 2.4 also applies if the roles of u(z) and (&) are inter-
changed.

EXAMPLE 2.1.1, CONTINUED. The square wave u of Example 2.1.1 (Figure 2.1.2)
satisfies condition (a) of Theorem 2.4 with p =0, so its Fourier transform should satisfy

* An entire function is a function that is analytic throughout the complex plane C.
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|a(€)] = O(|¢]71), as is verified by (2.1.10). On the other hand, suppose we interchange
the roles of u and 4 and apply the theorem again. The function u(§) =sin&/¢ is entire,
and since sin(€) = (e’ —e~%)/2i, it satisfies u(¢) = O(elél) as |¢] = oo (with & now taking
complex values). By part (d) of Theorem 2.4, it follows that w(z) must have compact
support contained in [—1,1], as indeed it does.

Repeating the example for u*u, condition (a) now applies with p=1, and the Fourier
transform (2.1.14) is indeed of magnitude O(|¢|~2), as required. Interchanging u and 4,
we note that sin?¢/¢2 is an entire function of magnitude O(e*él) as |¢| = oo, and uxu has
support contained in [—2,2].

EXERCISES

> 2.1.1. Show that the two integrals in the definition (2.1.4) of uv are equivalent.

> 2.1.2. Derive conditions (a)—(g) of Theorem 2.2. (Do not worry about justifying the usual
operations on integrals.)

> 2.1.3. Prove Theorem 2.3.

> 2.1.4.
(a) Which functions v € L2N L' satisfy uxu =07
(b) How about usu=u?

> 2.1.5. Integration.
(a) What does part (f) of Theorem 2.2 suggest should be the Fourier transform of the
function U(z) = [*__ u(s)ds?
(b) Obviously U(z) cannot belong to L? unless ffooou(a:)da: =0, so by Theorem 2.1, this is
a necessary condition for U to be in L? also. Explain how the condition ffooo u(z)dz=0

relates to your formula of (a) for U in terms of @.

> 2.1.6.
(a) Calculate the Fourier transform of u(x) = (1+22)~!. (Hint: use a complex contour
integral if you know how. Otherwise, look the result up in a table of integrals.)
(b) How does this example fit into the framework of Theorem 2.4?7 Which parts of the
theorem apply to u?
(c) If the roles of v and @ are interchanged, how does the example now fit Theorem 2.47
Which parts of the theorem apply to u?

> 2.1.7. The autocorrelation function of a function v € LN L' may be defined by
1 oo
o(c) = —2/ u(z)u(z+c)de.
ull* /-

Find an expression for ¢(c) as an inverse Fourier transform of a product of Fourier transforms
involving u. This expression is the basis of some algorithms for computing ¢(c).
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> 2.1.8. Without evaluating any integrals, use Theorem 2.2 and (2.1.10) to determine the
Fourier transform of the following function:

T f Y T T T T

—4 -2 0 2 4

> 2.1.9. The uncertainty principle. Show by using Theorem 2.4 that if u(z) and 4(€) both
have compact support, with u € L2, then u(x) =0.
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2.2. The semidiscrete Fourier transform

The semidiscrete Fourier transform is the reverse of the more familiar Fourier series:
instead of a bounded, continuous spatial domain and an unbounded, discrete transform
domain, it involves the opposite. This is just what is needed for the analysis of numerical
methods for partial differential equations, where we are perpetually concerned with functions
defined on discrete grids. For many analytical purposes it is simplest to think of these grids
as infinite in extent.

Let h >0 be a real number, the space step, and let ... ,x_;,2,,%;,... be defined by
x; = jh. Thus {z;} = hZ, where Z is the set of integers. We are concerned now with spatial
grid functions v = {v;}, which may or may not be approximations to a continuous function
u)

v; ().

As in the last chapter, it will be convenient to write v(z;) sometimes for v;.

«~— ® ®© e e e e © o — } ‘§

h —n/h 0 w/h

Figure 2.2.1. Space and wave number domains for the semidiscrete Fourier
transform.

For functions defined on discrete domains it is standard to replace the upper-case letter
L by a lower-case script letter £. (Both symbols honor Henri Lebesgue, the mathematician
who laid the foundations of modern functional analysis early in the twentieth century.) The
¢2-norm of a grid function v is the nonnegative or infinite real number

ol = |1 3 '”]"QT/Q' (22.1)

j=—o0

Notice the h in front of the summation. One can think of (2.2.1) as a discrete approximation
to the integral (2.1.1) by the trapezoid rule or the rectangle rule for quadrature. (On an
unbounded domain these two are equivalent.) The symbol £ (“little L-two sub h”) denotes
the set of grid functions of finite norm,

li, = {v: [Joll < oo},

and similarly with ¢ and ¢;°. In contrast to the situation with L', L? and L, these
spaces are nested:
0, COClR. (2.2.2)

(See Exercise 2.1.1.)
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The convolution v*w of two functions v,w is the function v*w defined by

(vxw),, =h Z Vppjw; = h Z VW, (2.2.3)

provided that these sums exist. This formula is a trapezoid or rectangle rule approximation
to (2.1.4).

For any v € £}, the semidiscrete Fourier transform of v is the function ¢(¢) defined
by

0(¢) = (Fp)(©)=h Y e %%y, £e[-n/h,7/h],

j=—oc0

a discrete approximation to (2.1.5). A priori, this sum defines a function 9() for all £ € R.
However, notice that for any integer m, the exponential e>™™%i/" = ¢2mimi ig exactly 1 at
all of the grid points z;. More generally, any wave number ¢ is indistinguishable on the
grid from all other wave numbers £+ 2mm/h, where m is any integer—a phenomenon called
aliasing. This means that the function 0(&) is 2w /h-periodic on R. To make sense of the
idea of analyzing v into component oscillations, we shall normally restrict attention to one
period of ¥ by looking only at wave numbers in the range [—7/h,7/h], and it is in this sense
that the Fourier transform of a grid function is defined on a bounded domain. But the
reader should bear in mind that the restriction of £ to any particular interval is a matter
of labeling, not mathematics; in principle e® and e!°°7% are equally valid representations of
the grid function v; =1.

Thus for discretized functions v, the transform ©(§) inhabits a bounded domain. On
the other hand the domain is still continuous. This reflects the fact that arbitrarily fine
gradations of wave number are distinguishable on an unbounded grid.

Since z and ¢ belong to different sets, it is necessary to define an additional vector
space for functions 9. The L?-norm of a function ¢ is the number

o= [/ ocerag (2.2

—m/h

One can think of this as an approximation to (2.1.1) in which the wave number components
with |¢] > m/h have been replaced by zero. The symbol L} denotes the set of (Lebesgue-
measurable) functions on [—7/h,7/h] of finite norm,

L} = {0:||9]| < 00} (2.2.5)

Now we can state a theorem analogous to Theorem 2.1:
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THE SEMIDISCRETE FOURIER TRANSFORM

Theorem 2.5. If v € (3, then the semidiscrete Fourier transform

B(&) = (F)©) =h Y e v, te[-n/hm/h] (2.2.6)

j=—00

belongs to L}, and v can be recovered from ¢ by the inverse semidiscrete Fourier

transform
1 ﬂ'/h

v; = (Fy0)(x) e€Tip(e)de,  jET. (2.2.7)

B % —m/h

The (3-norm of v and the L3 -norm of ¢ are related by Parseval’s equality,
[|o]] = V2= |v]]. (2.2.8)
Ifue i and v €}, (or vice versa), then vxw € (3, and vxw satisfies

vxw(§) = 0(£)w (). (2.2.9)

As in the continuous case, the following properties of the semidiscrete Fourier transform
will be useful. In (¢), and throughout this book wherever convenient, we take advantage of
the fact that 0(€) can be treated as a periodic function defined for all £ € R.
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PROPERTIES OF THE SEMIDISCRETE FOURIER TRANSFORM

Theorem 2.6. Let v,w € {3 have Fourier transforms ¢,%. Then:
(a) Linearity. Fy{v+w}(§) =0(§) +w(§); Fr{cv}(§) = co(E).
(b) Translation. If j, € Z, then Fy{v, ; }(§) = ei&mﬁ(f).
(c) Modulation. If & € R, then Fj,{e’%iv;}(£) =6(¢— &)

(d) Dilation. If m € Z with m #0, then Fp,{v,,;}(§) =0(§/m)/Im|.

(e) Conjugation. F,{v}(§) =0(-=¢).

The symmetry properties of the Fourier transform summarized in Theorem 2.3 apply
to the semidiscrete Fourier transform too; we shall not repeat the list here.

We come now to a fundamental result that describes the relationship of the Fourier
transform of a continuous function u to that of a discretization v of u—or if z and £ are
interchanged, the relationship of Fourier series to Fourier transforms. Recall that because
of the phenomenon of aliasing, all wave numbers £+ 2mj/h, j € Z, are indistinguishable
on the grid hZ. Suppose that u € L? is a sufficiently smooth function defined on R, and
let v € £2 be the discretization obtained by sampling u(z) at the points z;. The aliasing
principle implies that ©(£) must consist of the sum of all of the values @(§+27j/h). This
result is known as the Poisson summation formula or the aliasing formula:

ALJASING FORMULA

Theorem 2.7. Let u € L? be sufficiently smooth [?], with Fourier transform 1, and let
v €l be the restriction of u to the grid hZ. Then

oo

0(¢) = Y a(¢+2nj/h),  E€[-m/h,x/h]. (2.2.10)

j=—00

Proof. Not yet written. See P. Henrici, Applied and Computational Complex Analysis,
v. 3, Wiley, 1986.

In applications, we are very often concerned with functions v obtained by discretization,
and it will be useful to know how much the Fourier transform is affected in the process.
Theorems 2.4 and 2.7 combine to give the following answers to this question:



2.2. THE SEMIDISCRETE FOURIER TRANSFORM TREFETHEN 1994 - 96

EFFECT OF DISCRETIZATION ON THE FOURIER TRANSFORM

Theorem 2.8. Let v be the restriction to the grid hZ of a function u € L2. The following

estimates hold uniformly for all £ € [—m/h,m/h], or a forteriori, for § in any fixed interval
[—A4,A].

(a) If u has p—1 continuous derivatives in L? for some p>1 [?], and a pth derivative in
L? that has bounded variation, then

|0(6) —a(&)| = O(RPT)  as h—0. (2.2.11)

(b) If u has infinitely many continuous derivatives in L?, then

[0(&)—a(€) = O(WM)  ash—0 for all M. (2.2.12)

(c) If u can be extended to an analytic function of z = x+iy in the complex strip |Imz| < a
for some a >0, with ||u(-+iy)|| < const uniformly for each —a < y < a, then for any € >0,

[6(6)—a(€)| = O(e™™@=)/hy  as h—0. (2.2.13)

(d) If u can be extended to an entire function of z = x+iy with u(z) = O(e®?!) as |z| = 0o
(z € C) for some a >0, then

(&) = a(§) provided h < /a. (2.2.14)

In part (c), u(-+iy) denotes a function of z, namely u(z+iy) with x interpreted as a variable
and y as a fixed parameter.

Proof. In each part of the theorem, u(z) is smooth enough for Theorem 2.7 to apply,
which gives the identity

o0

0(&)—a(€) = > al¢+2mj/h) +a(€—2mj/h). (2.2.15)

=1

Note that since £ € [-n/h,7/h], the arguments of @ in this series have magnitudes at least
w/h, 2r/h, 31 /h, ....

For part (a), Theorem 2.4(a) asserts that |a(¢)] < C,|¢|7P~! for some constant C|.
With (2.2.15) this implies

[6(6) = a(©)] < Oy D (m/h) ! = Gy
=1 =

Since p>1 this sum converges to a constant, which implies (2.2.11) as required.

Part (b) follows from part (a).

For part (c), ... [7]

For part (d), note that if h < w/a, then w/h > a. Thus (2.2.15) reduces to 0 for all
§€[—m/h,m/h], as claimed. J

Note that part (d) of Theorem 2.8 asserts that on a grid of size h, the semidiscrete
Fourier transform is exact for band-limited functions containing energy only at wave numbers
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|€] smaller than 7w/h—the Nyquist wave number, corresponding to two grid points per
wavelength. This two-points-per-wavelength restriction is famous among engineers, and has
practical consequences in everything from fighter planes to compact disc players. When we
come to discretize solutions of partial differential equations, two points per wavelength will
be the coarsest resolution we can hope for under normal circumstances.

EXERCISES

> 22.1.
(a) Prove (2.2.2): ¢} C 03 CU5°.
(b) Give examples to show that these inclusions are proper: (2 € {} and £;° Z 3.
(c) Give examples to show that neither inclusion in (a) holds for functions on continuous
domains: L' ¢ L? and L? ¢ L.

> 2.2.2. Let 6,u:0; — (7 be the discrete differentiation and smoothing operators defined by

1
(0v); = ﬁ(vj-i-l —v;_1), (nv); = 5(v;_1 +vj4q). (2.2.16)

(a) Show that § and p are equivalent to convolutions with appropriate sequences d,m € (2.
(Be careful with factors of h.)

(b) Compute the Fourier transforms d and . How does d compare to the transform of
the exact differentiation operator for functions defined on R (Theorem 2.2f)? Illustrate
this comparison with a sketch of J(f) against &.

(¢) Compute ||d||, ||d||, [|m]], and |||, and verify Parseval’s equality.

(d) Compute the Fourier transforms of the convolution sequences corresponding to the
iterated operators o and pP (p >2). Discuss how these results relate to the rule of
thumb discussed in the last section: the smoother the function, the more rapidly its
Fourier transform decays as |{| = oo. What imperfection in p does this analysis bring
to light?

> 2.2.3.  Continuation of Exercise 2.1.6. Let v be the discretization on the grid hZ of the
function u(z) = (1+22)71.
(a) Determine 9(§). (Hint: calculating it from the definition (2.2.6) is very difficult.)
(b) How fast does 0(&) approach 4(€) as h— 0?7 Give a precise answer based on (a), then
compare your answer with the prediction of Theorem 2.8.
(c) What would the answer to (b) have been if the roles of u and @ had been interchanged—
that is, if v had been the discretization not of u(z) but of its Fourier transform?

> 2.2.4. Integration by the trapezoid rule. A function u € L?N L' can be integrated approxi-
mately by the trapezoid rule:

I:/mu@Mm ~ L=h Y u(z)). (2.2.17)

j==00

This is an infinite sum, but in practice one might delete the tails if u decays sufficiently
rapidly as |z] — co. (This idea leads to excellent quadrature algorithms even for finite
intervals, which are first transformed to the real axis by a change of variables; for a survey
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see M. Mori, “Quadrature formulas obtained by variable transformation and the DE-rule,”
J. Comp. Appl. Math. 12 & 13 (1985), 119-130.)

As h— 0, how good an approximation is I, to the exact integral I? Of course the answer
will depend on the smoothness of u(z).

(a) State how I, is related to the semidiscrete Fourier transform.

(b) Give a bound for |I, —I| based on the theorems of this section.

(c) In particular, what can you say about |I, —I| for the function u(z) = e ?
(d) Show that your bound can be improved in a certain sense by a factor of 2.

B 2.2.5. Draw a plot of sinn as a function of n, where n ranges over the integers (not the
real numbers) from 1 to 5000. (That is, your plot should contain 5000 dots; in Matlab this
can be done in one line.) Explain why the plot looks the way it does to the human eye, and
what this has to do with aliasing. Make your explanation precise and quantitative. (See G.
Strang, Calculus, Wellesley-Cambridge Press, 1991.)
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2.3. Interpolation and sinc functions
[This section is not written yet, but here’s a hint as to what will be in it.]

If 6]. is the Kronecker delta function

1 ifj=0,
5, = { o (2.3.1)
0 ifj#0,
then (2.2.6) gives the semidiscrete Fourier transform
6;(§) =h (for all &).
If we now apply the inverse transform formula (2.2.7), we find after a little algebra
sin(mz; /h)
6, = ——2L = 2.3.2
J mz;/h ( )

at least for j #0. Since z; /h is a nonzero integer for each j # 0, the sines are zero and this
formula matches (2.3.1).

Suppose, however, that we evaluate (2.3.2) not just for z = z; but for all values z € R.
Then we’ve got a sinc function again, one that can be called a grid sinc function:

sin(mx/h) -

S, (z) = 0 (2.3.3)

The plot of S, (z) is the same as the upper-right plot of Figure 2.1.2, except scaled so that
the zeros are on the grid (i.e. at integer multiples of h). Obviously S, (z) is a continuous
interpolant to the discrete delta function J;. Which one? It is the unique band-limited

interpolant, band-limited in the sense that its Fourier transform g\h(f) is zero for £ ¢
[-7/h,m/h]. (Proof: by construction it’s band-limited in that way, and uniqueness can be
proved via an argument by contradiction, making use of Parseval’s equality (2.2.8).)

More generally, suppose we have an arbitrary grid function v, (well, not quite arbitrary;
we’ll need certain integrability assumptions, but let’s forget that for now). Then the band-
limited interpolant to v; is the unique function v(z) defined for z € R with v(z;) = v,

j
and 0(§) =0 for £ ¢ [—n/h,7/h]. It can be derived in two equivalent ways:

Method 1: Fourier transform. Given v;, compute the semidiscrete Fourier transform

9(£). Then invert that transform, and evaluate the resulting formula for all z rather than
just on the grid.
Method 2: linear combination of sinc functions. Write

oo

Uj = E 'Umémij,

m=—00
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and then set
oo

v(z) = Z U, Sp(z—12,,).

m=—00

The equivalence of Methods 1 and 2 is trivial; it follows from the linearity and translation-
invariance of all the processes in question.

The consideration of band-limited interpolation is a good way to get insight into the
Aliasing Formula presented as Theorem 2.7. (In fact, maybe that should go in this section.)
The following schema summarizes everything. Study it!

u(z) EL (&)
| DISCRETIZE 1t pLAIING
v; F.T 0(€)
BAND-LIMITED ZERO HIGH
} INTERPOLATION } WAVE NOS.
v(x) BT (&)

The Gibbs phenomenon is a particular phenomenon of band-limited interpolation
that has received much attention. After an initial discovery by Wilbraham in 1848, it was
made famous by Michelson in 1898 in a letter to Nature, and then by an analysis by Gibbs
in Nature the next year. Gibbs showed that if the step function

{-H z <0,
u(r) =
-1 >0

is sampled on a grid and then interpolated in the band-limited manner, then the resulting
function v(x) exhibits a ringing effect: it overshoots the limits 1 by about 9%, achieving
a maximum amplitude

1 .
/ SITY) 1y~ 1.089490. (2.3.4)
-1 Ty

The ringing is scale-invariant; it does not go away as h — 0. In the final text I will illustrate
the Gibbs phenomenon and include a quick derivation of (2.3.4).



2.4. THE DISCRETE FOURIER TRANSFORM TREFETHEN 1994 - 101

2.4. The discrete Fourier transform

Note: although the results of the last two sections will be used throughout the remain-
der of the book, the material of the present section will not be needed until Chapters 8 and
9.

For the discrete Fourier transform, both x and £ inhabit discrete, bounded domains—
or if your prefer, they are periodic functions defined on discrete, unbounded domains. Thus
there is a pleasing symmetry here, as with the Fourier transform, that was missing in the
semidiscrete case.

T_y=-T 2o =0 Ty =T f_ﬁ:_% § =0 fﬁ:%
2 2 2 2
b—o o o o o o ¢ b—o o o b o o o &
h ! 1 ;

Figure 2.4.1. Space and wave number domains for the discrete Fourier trans-
form.

For the fundamental spatial domain we shall take [—m, ), as illustrated in Figure 2.4.1.
Let NV be a positive even integer, set

2
- N

and define z; = jh for any j. The grid points in the fundamental domain are

h (N even), (2.4.1)

T_Njp = —Theeny Lo = o0,..., Ty = m—h.
An invaluable identity to keep in mind is this:

N =«
—=—. 24.2
2 h ( )
Let £% denote the set of functions on {a:J} that are N-periodic with respect to j, i.e,
2m-periodic with respect to x, with the norm

N/2—1

loll = [1 3 o]

j=—N/2

1/2
. (2.4.3)

(Since the sum is finite, the norm is finite, so every function of the required type is guaranteed
to belong to ¢3,—and to ¢ and £.) The discrete Fourier transform (DFT) of a
function v € £% is defined by

N/2-1

9 = (Fyv)©) =h 3 e, gel.

j=—N/2
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Since the spatial domain is periodic, the set of wave numbers ¢ is discrete, and in fact £
ranges precisely over the set of integers Z. Thus it is natural to use £ as a subscript,

N/2—1
'135 = (‘7:N’U)£ = h Z eiigjh'l)j, é.EZ,
j=—N/2

and since h=27/N, 0, is N-periodic as a function of {. We shall take [-N/2,N/2] as the
fundamental domain of wave numbers, and let L% denote the set of N-periodic functions
on the grid Z, with norm

loll = [ 3 1ol (2.4.4)

This is nonstandard notation, for an upper case L is normally reserved for a family of
functions defined on a continuum. We use it here to highlight the relationship of the discrete
Fourier transform with the semidiscrete Fourier transform.

The convolution of two functions in £ is defined by

N/2-1 N/2-1
(vxw),, =h Z VWi = h Z VW - (2.4.5)
j=—N/2 j=—N/2

Again, since the sum is finite, there is no question of convergence.
Here is a summary of the discrete Fourier transform:
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THE DISCRETE FOURIER TRANSFORM

Theorem 2.9. If v € (3, then the discrete Fourier transform

N/2-1
. N N
by = (Fyv)e = h Z e My, 3 <£< 0} -1 (2.4.6)
j=—N/2

belongs to L%;, and v can be recovered from © by the inverse discrete Fourier trans-

form
N/2—1

1 o
b= (Ft) = g X e 247
§=7N/2

The (% -norm of v and the L%-norm of 0 are related by Parseval’s equality,

Il = vz ol (2.48)
If v,w € (%, then vxw satisfies
(5%), = Dt (2.4.9)

As with the other Fourier transforms we have considered, the following properties of
the discrete Fourier transform will be useful. Once again we take advantage of the fact that
9(€) can be treated as a periodic function defined for all £ € Z.

PROPERTIES OF THE DISCRETE FOURIER TRANSFORM

Theorem 2.10. Let v,w € (3, have discrete Fourier transforms 9,1w. Then:
(a) Linearity. Fy{v+w}(§) =0(§) +w(§); Fa{cv}(&)=ci(E).
(b) Translation. If j, € Z, then Fy{v;, ; }(§) = €0 b (£).

(¢c) Modulation. If & € Z, then Fy{e®o%iv;}(£) =5(£ —&).

(e) Conjugation. Fn{0 }() =0(=£).

1
(g) Inversion. Fy'{v}(&)= ﬂﬁ(_f)'

An enormously important fact about discrete Fourier transforms is that they can be
computed rapidly by the recursive algorithm known as the fast Fourier transform (FFT).*
A direct implementation of (2.4.6) or (2.4.7) requires ©(N?) arithmetic operations, but the

* The fast Fourier transform was discovered by Gauss in 1805 at the age of 28, but although he wrote
a paper on the subject, he did not publish it, and the idea was more or less lost until its celebrated
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FFT is based upon a recursion that reduces this figure to @(Nlog N). We shall not describe
the details of the FFT here, but refer the reader to various books in numerical analysis, signal
processing, or other fields. However, to illustrate how simple an implementation of this idea
may be, Figure 2.4.2 reproduces the original Fortran program that appeared in a 1965 paper
by Cooley, Lewis, and Welch.{ Assuming that N is a power of 2, it computes 27 F 5 ! in
our notation: the vector A(1:N) represents 9,...,05_; on input and 27vy,...,270,y_; on
output.

subroutine fft(a,m)
complex a(l),u,w,t

n = 2%*m do 201 =1,m
nv2 = n/2 le = 2x¥x1
nml = n-1 lel = le/2
j=1 u=1.
do 7 1i=1,nml ang = 3.14159265358979/1el
if (i.ge.j) goto 5 w = cmplx(cos(ang),sin(ang))
t = a(j) do 20 j = 1,lel
a(j) = a(i) do 10 i = j,n,le
a(i) = ¢t ip = i+lel
5 k = nv2 t = a(ip)*u
6 if (k.ge.j) goto 7 a(ip) = a(i)-t
j =ik 10 a(i) = a(i)+t
k = k/2 20 u = wkw
goto 6 return
7§ = j+k end

Figure 2.4.2. Complex inverse FFT program of Cooley, Lewis, and Welch
(1965).

As mentioned above, this program computes the inverse Fourier transform according
to our definitions, times 2w. The same program can be used for the forward transform by
making use of the following identity:

rediscovery by Cooley and Tukey in 1965. (See M. T. Heideman, et al., “Gauss and the history
of the fast Fourier transform,” IEEE ASSP Magazine, October 1984.) Since then, fast Fourier
transforms have changed prevailing computational practices in many areas.

tBefore publication, permission to print this program will be secured.
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b = Fy{0}(—€) = 2nhF {5} (8). (2.4.10)
These equalities follow from parts (e) and (g) of Theorem 2.10, respectively.
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2.5. Vectors and multiple space dimensions

Fourier analysis generalizes with surprising ease to situations where the independent
variable x and/or the dependent variable u are vectors. We shall only sketch the essentials,
which are based on the following two ideas:

e If x is a d-vector, then the dual variable £ is a d-vector too, and the Fourier integral is
a multiple integral involving the inner product z-¢;

e If u is an N-vector, then its Fourier transform @ is an IN-vector too, and is defined
componentwise.

As these statements suggest, our notation will be as follows:

d = number of space dimensions: z = (z,,...,7,)%,

N = number of dependent variables: u = (uy,...,ux)%.

Both £ and @ become vectors of the same dimensions,
62(617"'>£d)T) ﬁ:(ﬁl,...,ﬁN)T,

and £x becomes the dot product £-z =&z +---+§,z,. The formulas for the Fourier
transform and its inverse read

a(€) = (Fu)(e) = / e~ y() do

s oo (2.5.1)
= / / e~y (x)de, - duy
for ¢ € R?, and
u(e) = (F 1)) = (2m)¢ [ i)
- - (2.5.2)
= (27T)*d/ / elg'mﬂ(é‘)dé‘l —-dE,

for z € R%. In other words, u and @ are related componentwise:

a(€) = (@M (©),...,a™M )" (2.5.3)

If the vector L2-norm is defined by

full = [uPde = [ [ o) P, -, (2.5.4)
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where the symbol ||-|| in the integrand denotes the 2-norm on vectors of length N, then
Parseval’s equality for vector Fourier transforms takes the form

lall = 2m)" ull. (2.5.5)

The set of vector functions with bounded vector 2-norms can be written simply as (L?)".
Before speaking of convolutions, we have to go a step further and allow u(z) and @(§)

to be M x N matrices rather than just N-vectors. The definitions above extend to this
further case unchanged, if the symbol ||-|| in the integrand of (2.5.4) now represents the

2-norm (largest singular value) of a matrix. If u(z) is an M x P matrix and v(z) isa Px N
matrix, then the convolution u*v is defined by

(uxv)(z) = / u(@ —y)o(y) dy

- / w(y)o(e—y) dy (2.5.6)

:/_:../_O;u(x_y)v(y)dyl---dyd,

and it satisfies

aw(E) = ()i ©). (2.5.7)
Since matrices do not commute in general, it is no longer possible to exchange u and v as

in (2.1.4).

This generalization of Fourier transforms and convolutions to matrix functions is far
from idle, for we shall need it for the Fourier analysis of multistep finite difference approxi-
mations such as the leap frog formula.

Similar generalizations of our scalar results hold for semidiscrete and discrete Fourier
transforms.

EXERCISES

> 2.5.1. What is the Fourier transform of the vector function

() (sinm sin2m)T
u(x) =
x ' 2z ’

defined for z € R?

> 2.5.2. What is the Fourier transform of the scalar function
u(a’;) = e_%(x?+‘t§)’

defined for = = (z,,z,)" € R*?
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