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Definitions

Definition

A graph G = (V ,E ) consists of a set V of vertices (also called nodes)
and a set E of edges.

Definition

If an edge connects to a vertex we say the edge is incident to the vertex
and say the vertex is an endpoint of the edge.

Definition

If an edge has only one endpoint then it is called a loop edge.

Definition

If two or more edges have the same endpoints then they are called
multiple or parallel edges.
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Definitions

Definition

Two vertices that are joined by an edge are called adjacent vertices.

Definition

A pendant vertex is a vertex that is connected to exactly one other vertex
by a single edge.

Definition

A walk in a graph is a sequence of alternating vertices and edges
v1e1v2e2 . . . vnenvn+1 with n ≥ 0. If v1 = vn+1 then the walk is closed.
The length of the walk is the number of edges in the walk. A walk of
length zero is a trivial walk.
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Definitions

Definition

A trail is a walk with no repeated edges. A path is a walk with no
repeated vertices. A circuit is a closed trail and a trivial circuit has a
single vertex and no edges. A trail or circuit is Eulerian if it uses every
edge in the graph.

Definition

A cycle is a nontrivial circuit in which the only repeated vertex is the
first/last one.

Definition

A simple graph is a graph with no loop edges or multiple edges. Edges in
a simple graph may be specified by a set {vi , vj} of the two vertices that
the edge makes adjacent. A graph with more than one edge between a
pair of vertices is called a multigraph while a graph with loop edges is
called a pseudograph.
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Definitions

Definition

A directed graph is a graph in which the edges may only be traversed in
one direction. Edges in a simple directed graph may be specified by an
ordered pair (vi , vj) of the two vertices that the edge connects. We say
that vi is adjacent to vj and vj is adjacent from vi .

Definition

The degree of a vertex is the number of edges incident to the vertex and
is denoted deg(v).

Definition

In a directed graph, the in-degree of a vertex is the number of edges
incident to the vertex and the out-degree of a vertex is the number of
edges incident from the vertex.
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Definitions

Definition

A graph is connected if there is a walk between every pair of distinct
vertices in the graph.

Definition

A graph H is a subgraph of a graph G if all vertices and edges in H are
also in G .

Definition

A connected component of G is a connected subgraph H of G such that
no other connected subgraph of G contains H.

Definition

A graph is called Eulerian if it contains an Eulerian circuit.
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Definitions

Definition

A tree is a connected, simple graph that has no cycles. Vertices of
degree 1 in a tree are called the leaves of the tree.

Definition

Let G be a simple, connected graph. The subgraph T is a spanning tree
of G if T is a tree and every node in G is a node in T .

Definition

A weighted graph is a graph G = (V ,E ) along with a function
w : E → R that associates a numerical weight to each edge. If G is a
weighted graph, then T is a minimal spanning tree of G if it is a
spanning tree and no other spanning tree of G has smaller total weight.
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Definitions

Definition

The complete graph on n nodes, denoted Kn, is the simple graph with
nodes {1, . . . , n} and an edge between every pair of distinct nodes.

Definition

A graph is called bipartite if its set of nodes can be partitioned into two
disjoint sets S1 and S2 so that every edge in the graph has one endpoint in
S1 and one endpoint in S2.

Definition

The complete bipartite graph on n, m nodes, denoted Kn,m, is the simple
bipartite graph with nodes S1 = {a1, . . . , an} and S2 = {b1, . . . , bm} and
with edges connecting each node in S1 to every node in S2.
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Definitions

Definition

Simple graphs G and H are called isomorphic if there is a bijection f from
the nodes of G to the nodes of H such that {v ,w} is an edge in G if and
only if {f (v), f (w)} is an edge of H. The function f is called an
isomorphism.

Definition

A simple, connected graph is called planar if there is a way to draw it on a
plane so that no edges cross. Such a drawing is called an embedding of
the graph in the plane.

Definition

For a planar graph G embedded in the plane, a face of the graph is a
region of the plane created by the drawing. The area of the plane outside
the graph is also a face, called the unbounded face.
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Theorems

Theorem

Let G be a connected graph. Then G is Eulerian if and only if every vertex
in G has even degree.

Theorem (Handshaking Lemma)

In any graph with n vertices vi and m edges

n∑
i=1

deg(vi ) = 2m

Corollary

A connected non-Eulerian graph has an Eulerian trail if and only if it has
exactly two vertices of odd degree. The trail begins and ends these two
vertices.
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Theorems

Theorem

If T is a tree with n edges, then T has n + 1 vertices.

Theorem

Two graphs that are isomorphic to one another must have

1 The same number of nodes.

2 The same number of edges.

3 The same number of nodes of any given degree.

4 The same number of cycles.

5 The same number of cycles of any given size.
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Theorems

Theorem (Kuratowski’s Theorem)

A graph G is nonplanar if and only if it contains a “copy” of K3,3 or K5 as
a subgraph.

Theorem (Euler’s Formula for Planar Graphs)

For any connected planar graph G embedded in the plane with V vertices,
E edges, and F faces, it must be the case that

V + F = E + 2.
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Graphs vs Plots

Recall that a graph consists of two sets: a set of vertices and a set of
edges.

While we often represent graphs visually, we can distinguish between a
graph and a plot in the following way: A graph stores information and
connections between information while a plot provides a visual
representation of the information stored in a graph.

Given that graphs are important, we now examine how we can represent
graphs using a computer and see how one computer package handles
graphs.
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A Quick Matrix Review

A matrix is a rectangular array of numbers. A matrix with m rows and n
columns said to be an m × n matrix.

Entries in the matrix are addressed by their row and column numbers.
Given a matrix A, the entry aij is in the i th row and j th column of A.
Notice that we always list the row index first.

We say a matrix A is symmetric if aji = aij .

Not Symmetric
0 5 2 1
1 3 0 1
4 6 8 3
0 7 3 1


Symmetric
0 3 7 1
3 8 5 0
7 5 2 4
1 0 4 0


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Adjacency Matrices
Let G be a graph with n vertices. We can use an n× n matrix to store the
graph. Let

gij =

{
1 if vertex i is adjacent to vertex j
0 if vertex i is not adjacent to vertex j

For example, the graph on the left has the adjacency matrix on the right.

1

2

3

4


0 1 0 0
1 0 0 1
0 0 0 1
0 1 1 0


Note: matrix is symmetric

The adjacency matrix for a directed graph will not be symmetric unless the
directed graph itself is symmetric.
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Sparse Graphs and Matrices

Consider K30, the complete graph with 30 vertices. This graph has
C (30, 2) = 435 edges since every vertex is connected to every other vertex.
The adjacency matrix will have 1’s in every non-diagonal position (why not
on the diagonals?). We say the 30× 30 adjacency matrix is dense or full
since most of the entries are non-zero.

Now consider C30, a cycle (or ring) graph with 30 vertices. Each vertex is
connected to two other vertices to form a single ring or cycle. This means
there are only 30 edges. So, while the adjacency matrix will be 30× 30,
only 60 entries in it will be non-zero. In this case we say the graph and the
adjacency matrix are sparse.
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Adjacency Matrix Examples

Adjacency matrix for K8

8× 8 matrix with 64 elements
2 · C (8, 2) = 56 non-zero entries

0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0



Adjacency matrix for C8

8× 8 matrix with 64 elements
8 non-zero entries

0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0


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Edge Lists

Note that in the case of undirected graphs we really only need the
upper-right triangle or the lower-left triangle (about half) of the adjacency
matrix to store the information in the graph.

In the case of directed graphs, we need the full matrix.

In either case, if the graph is sparse, there are more efficient ways to store
the graph. One of these is to maintain an edge list.
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Edge Lists

1 Edge List v1: For each vertex, store a list of vertices that the vertex
is adjacent to.

2 Edge List v2: Store all edges in the graph as a list of ordered pairs.

Adjacency Matrix
0 1 0 0
1 0 0 1
0 0 0 1
0 1 1 0


Edge List v1

{{2}, {1, 4}, {4}, {2, 3}}

Edge List v2

{(1, 2), (2, 1), (2, 4),

(3, 4), (4, 2), (4, 3)}

Which version we choose to use is largely dependent on how we need to
access the information.
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A walk around Gordon’s campus

Is it possible to start in front of the Ken Olsen Science Center (labeled E),
walk along every pathway on Gordon’s main campus exactly once, and end
up back in front of the Science Center?
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A walk around Gordon’s campus

What do you think the answer is?

How could you find out?

Have you ever wondered this before?

This same question has been considered before (although not
specifically about Gordon’s campus). . .

MAT230 (Discrete Math) Graph Theory Fall 2019 22 / 72



A walk around Gordon’s campus

What do you think the answer is?

How could you find out?

Have you ever wondered this before?

This same question has been considered before (although not
specifically about Gordon’s campus). . .

MAT230 (Discrete Math) Graph Theory Fall 2019 22 / 72



A walk around Gordon’s campus

What do you think the answer is?

How could you find out?

Have you ever wondered this before?

This same question has been considered before (although not
specifically about Gordon’s campus). . .

MAT230 (Discrete Math) Graph Theory Fall 2019 22 / 72



A walk around Gordon’s campus

What do you think the answer is?

How could you find out?

Have you ever wondered this before?

This same question has been considered before (although not
specifically about Gordon’s campus). . .

MAT230 (Discrete Math) Graph Theory Fall 2019 22 / 72



The Königsberg bridge problem

The town of Königsberg, Prussia (now a city in Russia called Kaliningrad)
is built on the both banks of the river Preger as well as on an island in the
river. At one time there were seven bridges linking one bank to the other
as well as both banks to the island. The people in the town wondered if
were possible to start at some point in the town, walk about the town
crossing each bridge exactly once, and end up back at the starting point.
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The Königsberg bridge problem

A, B, C, and D label regions of land (A and D are islands).

Bridges are labeled with a, b, c, etc.

Try to find a route, starting anywhere you want, that crosses every
bridge once and end up back where you started.
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Don’t worry

Chances are you were not able to find a solution.

Don’t worry; you’re in good company.

Leonhard Euler, the brilliant Swiss mathematician, was also unable to
find such a route.

Not content with this result, Euler figured out how to show for
certain that no such route existed.
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Königsberg bridge graph

If we focus on the essential parts of this problem, we can construct a
graph.

This abstraction is simpler than the bridge picture and yet contains all
the necessary information.

Each region of land is represented by a vertex.

Each bridge connecting two regions corresponds to an edge.

a

A
e

g

f

D

B

C

c d

b
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Königsberg bridge graph

a

A
e

g

f

D

B

C

c d

b

Consider starting at A then visiting B, D, and C, before returning to
A. This does not use each edge, but does visit each vertex.

We could show this with the walk AaBfDgCcA.
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Königsberg bridge graph

a

A
e

g

f

D

B

C

c d

b

Suppose we now wanted to use every edge in the graph. Starting at A
we can move to B. We can now either return to A or visit D.

Notice, however, that we will eventually return to B along the third
edge connecting to it (since we’re trying to use all edges) but then
there is no fourth edge to exit from B.
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Königsberg bridge graph

a

A
e

g

f

D

B

C

c d

b

To have any hope of traversing each edge attached to a vertex there
must be an even number of edges attached to the vertex; these form
an entry-exit pair.

This is also true for the starting vertex, except one pair of edges is an
exit-entry pair.
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Königsberg bridge graph

a
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c d

b

Notice what we’ve established: if there is a vertex with an odd
number of edges attached to it, we will be prevented from finding a
route that uses all edges once and returns to the starting point.

If every vertex has an even number of edges attached to it, then there
is always an entry-exit pair so we can find a route.
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Review of Definitions

Before continuing, it is helpful to review some definitions:

A walk is a sequence of alternating vertices and edges. A trail is a
walk with no repeated edges and a path is a walk with no repeated
vertices.

A circuit is a closed trail; a trail that starts and stops at the same
vertex.

An Eulerian circuit in a graph is a circuit that contains every edge of
the graph.

An Eulerian trail in a graph is a trail that contains every edge of the
graph.

A graph is called an Eulerian Graph if it has an Eulerian circuit.
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Euler’s Theorem

Theorem (Euler’s Theorem)

Let G be an connected, undirected graph. G has an Eulerian circuit if and
only if every vertex in G has even degree. G has an Eulerian trail if and
only if G has exactly two vertices with odd degree.

Basic Algorithm to find an Eulerian Circuit in G :

1 Let C be an empty circuit in G , assign G0 = G , and set k = 0.

2 Find any circuit Ck in Gk .

3 Merge circuit Ck into circuit C .

4 Construct graph Gk+1 from Gk by removing edges in circuit Ck .

5 If C does not contain all edges in G then increment k and go to
Step 2.
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Finding Eulerian Circuits and Trails

Which of the following graphs have an Eulerian circuit? If you can’t find a
Eulerian circuit, can you find an Eulerian trail?

DC

BA
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Finding Eulerian Circuits and Trails

How about these? Any Eulerian circuits or trails?

E F

G H

I
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Finding Eulerian Circuits and Trails

Consider the floor plan shown here. Is it possible to walk through and
around this building passing through each and every doorway exactly once?
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Finding Eulerian Circuits and Trails

1 Start by creating any circuit.

2 Pick any vertex with unused edges and find a circuit using it. Merge
this new circuit into the previously found circuit.

3 Continue the above steps until an Eulerian circuit or trail is found.
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Finding Eulerian Circuits and Trails

EWWW

C1 C2 C3 C4

CW CE

WE EE

OUT

ME

GH

Both OUT and ME have an odd number of incident edges; we can start at
one and end at the other. Thus, we have found an Eulerian trail.
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A Walk Around Gordon’s Campus

Finally, back to our original question: Is it possible to start in front of the
Ken Olsen Science Center (labeled E), walk along every pathway on
Gordon’s main campus exactly once, and end up back in front of the
Science Center?
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A Walk Around Gordon’s Campus
A somewhat simplified graph of most of the walkways on campus may
help:

MAT230 (Discrete Math) Graph Theory Fall 2019 39 / 72



Hamiltonian Circuits and Trails

There is another interesting question we can ask about graph: Given a
connected graph G , does G have a circuit in which every vertex is visited
exactly once?

Such a circuit, if it exists, is called a Hamiltonian circuit. Hamiltonian
trails are defined similarly.

It turns out that finding a Hamiltonian circuit or trail in a graph is quite
difficult in general, but can be done for many simple graphs.
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Finding Hamiltonian Circuits and Trails

Which of the following graphs have an Hamiltonian circuit? If you can’t
find a Hamiltonian circuit, can you find an Hamiltonian trail?

DC

BA
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Finding Hamiltonian Circuits and Trails

How about these? Any Hamiltonian circuits or trails?

E F

G H

I
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Finding Hamiltonian Circuits and Trails

Although finding a Hamiltonian circuit may be hard, the following theorem
says that for some graphs, knowing that a Hamiltonian circuit exists is
relatively easy to assert.

Theorem

If G is a simple connected graph with n ≥ 3 vertices and if the degree of
each vertex is greater than n/2, then G has a Hamiltonian circuit.
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Finding Hamiltonian Circuits and Trails

Any Hamiltonian circuits or trails in these graphs?
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Weighted Graphs

Definition

A weighted graph, (V ,E ,w), is a graph (V ,E ) together with a weight
function w : E → R. If e ∈ E , then w(e) is the weight of edge e.

For example, the graph at the right
is a weighted graph of K4.

a b

cd

3

5
2 6

4

7

Often weights are associated with a cost or a benefit incurred when
traversing the edge. Many important problems involve finding a trail, path,
or circuit with minimum cost.

MAT230 (Discrete Math) Graph Theory Fall 2019 45 / 72



The Traveling Salesman Problem

A very important problem is known as the Traveling Salesman Problem
(TSP). Consider a salesman who must visit n different cities (or offices
within a city). There is a cost associated with travel between each location
he must visit and he’s interested in completing his rounds as efficiently as
possible based on some measure (least cost, or perhaps shortest time).

The TSP can be stated as: Given a connected, weighted graph G , find a
Hamiltonian circuit in G of minimum total weight.

When the number of vertices in a graph is small, we can find every
possible Hamiltonian circuit and just pick one with smallest weight.
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The Traveling Salesman Problem

For example, consider all possible cycles (a circuit that only visits each
vertex once, except the start/end vertex) in our weighted K4.

a b

cd

3

5
2 6

4

7

cycle weight

a b c d a 3 + 6 + 7 + 2 = 18
a b d c a 3 + 4 + 7 + 5 = 19
a c b d a 5 + 6 + 4 + 2 = 17
a c d b a 5 + 7 + 4 + 3 = 19
a d b c a 2 + 4 + 6 + 5 = 17
a d c b a 2 + 7 + 6 + 3 = 18

There are six cycles – but half of these are reversals of the other half.

The starting point is arbitrary – a given cycle will have the same cost
regardless of starting point.
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The Traveling Salesman Problem

Question: How many different Hamiltonian circuits does Kn have?

Answer: Every vertex in Kn is connected to every other vertex.

There are P(n, n) = n! ways to pick a starting vertex and choose a
path that returns to the starting vertex.

We must divide this by n since our count includes n identical cycles
that differ only in starting point.

We must divide by 2 since the forward and reverse of a cycle should
be considered the same.

Thus, there are
n!

2n
=

(n − 1)!

2
different Hamiltonian circuits in Kn.

This is rather bad news. . .
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The Traveling Salesman Problem

Suppose a computer can generate and check the cost of 106 Hamiltonian
circuits in a graph every second. (For the sake of simplicity we assume
that this time is independent of the number of vertices in the graph).

When n = 10, this computer can solve the TSP in under a second.

When n = 12, however, it takes this computer 20 seconds to solve the
TSP.

When n = 15 it will take over 12 hours. . .

and when n = 20 it would take over 1900 years.

Granted, this is a brute-force approach to solving the TSP. The best
known optimal algorithm has an operation count on the order of n22n

(i.e., O(n22n)), which means that when the number of vertices in the
graph increases by one, it will take more than twice as long to find an
optimal Hamiltonian circuit.
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The Traveling Salesman Problem

This situation is bleak, but it is much better if we are willing to accept a
nearly optimal solution to the TSP.

It is not unreasonable to assume that we are solving the TSP on a
complete graph since edges do not necessarily indicate routes between
locations but costs associated with traveling from one location to another.

Two simple algorithms we’ll consider for the TSP on a complete graph are
both greedy algorithms; they are multistep algorithms that make optimal
choices at each step with the assumption that this will lead to a near
optimal overall result.

In practice, these often work well but can produce far from optimal circuits
in certain cases.
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The Traveling Salesman Problem

Let G be a weighted graph based on Kn.

Vertex Greedy Algorithm
(VGA)

1 Identify starting vertex as v1
and create set V = {v1}.

2 For i = 2 to n:
I Let vi be an unvisited

vertex v for which the
edge from vi−1 to v has
minimum weight.

I V = V ∪ {vi}.
3 Set vn+1 = v1.

Edge Greedy Algorithm (EGA)

1 Sort edges by weight.

2 Identify edge of minimum weight as
e1 and create set
V = {v : e1 is incident to v}.
Initialize i = 2.

3 While |V | < n:
I Let ei be an edge of minimum

weight that does not create a
cycle of length less than n or
create a vertex of degree 3 in V .

I V = V ∪ {v : ei incident to v}.
I i = i + 1.
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The Traveling Salesman Problem

The following graph shows the cost of flying between Seattle (S), Phoenix
(P), New Orleans (NO), New York (NY), and Boston (B).

S B

NY

NOP

409

389

429
119

379

319

309

239

229

109
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The Traveling Salesman Problem

Example

Find near-optimal Hamiltonian cycles using the VGA and the EGA.

VGA
V Cost

B $0
B, NY $109
B, NY, NO $338
B, NY, NO, P $647
B, NY, NO, P, S $766
B, NY, NO, P, S, B $1,175

EGA
ei Cost

(B,NY) $109
(S,P) $228
(NY,NO) $457
(NO,P) $766
(B,S) $1,175

In this case both algorithms find the same cycle; this isn’t always true.
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The Traveling Salesman Problem

The graph in our last example is K5, so there are 4!
2 = 12 Hamiltonian

cycles. Checking all of them reveals that the optimal cycle is Boston,
NY, Seattle, Phoenix, New Orleans, Boston with a cost of $1,165.

The ratio of the cost we found to the true optimal cost is

1175

1165
≈ 1.0086

This means that the near-optimal cycle found incurs an extra cost of
only 0.86%. In this case we’d probably consider the cycle we found to
be acceptable.
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Planar Graphs

Definition

A simple connected graph is planar if it can be drawn in the plane without
any edge crossings. Such a drawing is called an embedding of the graph
in the plane.

The graph K4, shown on the left, is planar because it can be drawn in the
plane without any edge crossings.

a b

cd

a b

cd
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Bipartite Graphs

Recall that:

Definition

A graph is called bipartite if its set of nodes can be partitioned into two
disjoint sets S1 and S2 so that every edge in the graph has one endpoint in
S1 and one endpoint in S2.

Definition

The complete bipartite graph on n, m nodes, denoted Kn,m, is the simple
bipartite graph with nodes S1 = {a1, . . . , an} and S2 = {b1, . . . , bm} and
with edges connecting each node in S1 to every node in S2.
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Is K3,3 Planar?

Is K3,3 planar?

a b c

d e f

Suppose we start with a subgraph of
K3,3, which is planar. The following
subgraph will partition the plane into
three regions, R1, R2, and R3.

a f

d c

e

R1

R2

R3
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Is K3,3 Planar?

a f

d c

e

R1

R2

R3

If node b is put in R1 it can be connected to d and e with no edge
crossings but there is no way to connect it to f without a crossing.

Similarly, if b is placed in R2 we must cross an existing edge to get to
d .

Finally, if b is placed in R3, we must cross an edge to get to e.

Similar investigations with other subgraphs will show that there is no way
to draw K3,3 without edge crossings, thus K3,3 is nonplanar.
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Euler’s Formula
Euler showed that all planer representations of a graph partition the plane
into the same number of regions.

Theorem (Euler’s Formula)

If G = (V ,E ) is a connected planar graph with r regions, v vertices, and e
edges, then v + r − e = 2.

Proof.

Our proof is by induction. Starting with subgraph of G consisting a single
vertex, we’ll add edges and vertices (keeping the subgraphs connected)
until we construct G . The basis step is

R1

Here r = 1, v = 1, e = 0 so r + v = e − 2 becomes 1 + 1 = 0 + 2, which
is true.
(Continued next slide)
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Euler’s Formula

Proof.

(Continued) For the inductive step, assume that we have a subgraph of G
with e = k edges and that r + v = e + 2 holds. We now draw the the
k + 1st edge. There are two cases:

1 Both vertices the new edge is incident to are already on the graph.
Since the subgraph is connected, this will create a new region. Thus
both r and e increase by one so r + v = e + 2 is still true.

2 A new pendant vertex is introduced with the new edge. This does not
increase r but does increase both e and v by one, so r + v = e + 2
continues to hold.

Since we can continue with these steps until we have constructed G , we
conclude that r + v = e + 2 holds for any connected planar graph.
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Degrees of Regions

Definition

The degree of a region of a planar graph is the number of edge traversals
required to trace the region’s boundary.

R1 R2

deg(R1) = 5

deg(R2) = 7.

Question: What is the relationship between the number of edges in a
graph and the sum of the degrees of the regions formed by the graph?

Answer: Each edge will be traversed twice, so

2e =
r∑

k=1

deg(Rk).
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A Simple Test for Nonplanarity

Question: Suppose G is a connected planar graph with at least three
vertices. What is the minimum value of deg(R) for any region created by
G?

Answer: deg(Rk) ≥ 3 for k = 1, . . . , r .

In this case

2e =
r∑

k=1

deg(Rk) ≥ 3r = 3(e − v + 2)

so

2e ≥ 3e − 3v + 6

−e ≥ −3v + 6

e ≤ 3v − 6.
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A Simple Test for Nonplanarity

This last result gives a useful test for nonplanarity.

Theorem

Given a a connected planar graph G with v ≥ 3 vertices and e edges,
e ≤ 3v − 6.

Thus, if e > 3v − 6 for a connected graph G with v ≥ 3, we know that G
is nonplanar.
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Is K5 Planar?

Is K5 planar?

Clearly v = 5 so 3v − 6 = 15− 6 = 9.

We recall e = C (5, 2) = 10 so e > 3v − 6 and we can conclude that
K5 is nonplanar.
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Kuratowski’s Theorem

Definition

An elementary subdivision in a graph G replaces any edge {u, v} with a
new vertex w and two new edges {u,w} and {w , v}.

Definition

Two graphs are homeomorphic if they can be obtained from the same
graph via elementary subdivisions.

Theorem (Kuratowski’s Theorem)

A graph is nonplanar if and only if it contains a subgraph homeomorphic
to K3,3 or K5.
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Coloring Graphs

Consider the “map” on the right.

What is the fewest number of colors
are needed to color this map so that
no to adjacent regions have the same
color? 6 5

4
3

2

1

Two colors are not sufficient, but we
can do it with three colors.

1

2

3
4

56

Question: What is the fewest number of colors that will be sufficient to
color any map in the plane?
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Dual Graphs of Maps

The dual graph of a map is a connected simple graph with one vertex
corresponding to each region and an edge connecting two vertices if the
corresponding regions on the map are adjacent.

1

2

3
4

56

4

32

1

6 5

Note that the dual graph of a map will always be planar.
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Coloring a Graph

Definition

The coloring of a simple graph is the assignment of a color to each vertex
of the graph so that no two adjacent vertices have the same color.

Definition

The chromatic number of a graph G is the least number of colors needed
for a coloring of the graph and is denoted χ(G ).

What is the chromatic number of these graphs?

A B C D
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The Four Color Theorem
The problem of how many colors are needed to color a map is equivalent to
asking “what is the largest chromatic number a planar graph can have?”

While first formulated in 1852, this question was not properly answered
until 1976, establishing the following Theorem:

Theorem (Four Color Theorem)

The chromatic number of a planar graph is no greater than four.

In that year Appel and Haken presented a proof by cases of the Four
Color Theorem that used a computer to check about 1800 separate
cases.

Generally accepted as the first use of a computer to prove a theorem.

Postmark from 1994
commemorating the proof of
the Four Color Theorem.
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Chromatic Number

What is the chromatic number of the following graphs?

Kn:

Since each vertex will need its own color, χ(Kn) = n.

Km,n:

The vertices of Km,n are partitioned into two sets with each
edge connecting a vertex in one set to a vertex in the other set. Thus,
only two colors are needed, so χ(Km,n) = 2.

Cn (the cycle graph with n vertices):

The chromatic number depends
on the parity of n:

I χ(Cn) = 1 if n = 1
I χ(Cn) = 2 if n is even
I χ(Cn) = 3 if n is odd and n > 1

MAT230 (Discrete Math) Graph Theory Fall 2019 70 / 72



Chromatic Number

What is the chromatic number of the following graphs?

Kn: Since each vertex will need its own color, χ(Kn) = n.

Km,n:

The vertices of Km,n are partitioned into two sets with each
edge connecting a vertex in one set to a vertex in the other set. Thus,
only two colors are needed, so χ(Km,n) = 2.

Cn (the cycle graph with n vertices):

The chromatic number depends
on the parity of n:

I χ(Cn) = 1 if n = 1
I χ(Cn) = 2 if n is even
I χ(Cn) = 3 if n is odd and n > 1

MAT230 (Discrete Math) Graph Theory Fall 2019 70 / 72



Chromatic Number

What is the chromatic number of the following graphs?

Kn: Since each vertex will need its own color, χ(Kn) = n.

Km,n: The vertices of Km,n are partitioned into two sets with each
edge connecting a vertex in one set to a vertex in the other set. Thus,
only two colors are needed, so χ(Km,n) = 2.

Cn (the cycle graph with n vertices):

The chromatic number depends
on the parity of n:

I χ(Cn) = 1 if n = 1
I χ(Cn) = 2 if n is even
I χ(Cn) = 3 if n is odd and n > 1

MAT230 (Discrete Math) Graph Theory Fall 2019 70 / 72



Chromatic Number

What is the chromatic number of the following graphs?

Kn: Since each vertex will need its own color, χ(Kn) = n.

Km,n: The vertices of Km,n are partitioned into two sets with each
edge connecting a vertex in one set to a vertex in the other set. Thus,
only two colors are needed, so χ(Km,n) = 2.

Cn (the cycle graph with n vertices): The chromatic number depends
on the parity of n:

I χ(Cn) = 1 if n = 1
I χ(Cn) = 2 if n is even
I χ(Cn) = 3 if n is odd and n > 1

MAT230 (Discrete Math) Graph Theory Fall 2019 70 / 72



Example

Suppose a summer institute offers seven courses. Students can take more
than one course.
The following lists show all pairings of courses that have at least one
student in common:

Course 1 : 2, 3, 4, 7

Course 2 : 3, 4, 5, 7

Course 3 : 4, 6, 7

Course 4 : 5, 6

Course 5 : 6, 7

Course 6 : 7

Find the fewest number of final exam slots
that are needed to avoid any conflicts.
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Example

To solve this problem we construct a graph where each vertex represents a
course and an edge between vertices means the corresponding courses
have a student in common. We then color the graph to find its chromatic
number.

Course 1 : 2, 3, 4, 7

Course 2 : 3, 4, 5, 7

Course 3 : 4, 6, 7

Course 4 : 5, 6

Course 5 : 6, 7

Course 6 : 7

1

2

3

45

6

7

Since the chromatic number is 4, we conclude that four different final
exam periods will be sufficient.

MAT230 (Discrete Math) Graph Theory Fall 2019 72 / 72



Example

To solve this problem we construct a graph where each vertex represents a
course and an edge between vertices means the corresponding courses
have a student in common. We then color the graph to find its chromatic
number.

Course 1 : 2, 3, 4, 7

Course 2 : 3, 4, 5, 7

Course 3 : 4, 6, 7

Course 4 : 5, 6

Course 5 : 6, 7

Course 6 : 7

1

2

3

45

6

7

Since the chromatic number is 4, we conclude that four different final
exam periods will be sufficient.

MAT230 (Discrete Math) Graph Theory Fall 2019 72 / 72


	Definitions
	Theorems
	Representations of Graphs: Data Structures
	Traversal: Eulerian and Hamiltonian Graphs
	Graph Optimization
	Planarity and Colorings

