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Chapter 4

Linear Algebra

4.1 Bilinear Forms

Definition 4.1.1 [def:bilinear form| Let R be a ring, V an R-module and W a right
R-module and s : V x W — R, (v,w) — (v | w) a function. Let A CV and B C W.
Suppose that s is R-bilinear, that is (3 i, rvi | Y201, wysy) = Dy Y50 v | wy)s; for
all v e V,w; € W oand ri,s; € R. Then

(a) [a] s is called a bilinear form.
(b) [b] s is called symmetric if V=W and (v |w) = (w | v) for all v,w € V.
(c) [z] s is called symplectic if V=W and (v |v) =0 for allv e V.

(d) [c] Letv eV and w € W we say that v and w are perpendicular and write v L w if
(v|w)=0.

(e) [d] We say that A and B are perpendicular and write A L B if a L b for all a € A,
beB.

(f) [e] At={weW|ALw}and B ={veV|vLlB}. At is called the right perp of
A and B the left perp of B.

(9) [f] If A is an R-submodule of V, define sq : W — A* by sa(w)(a) = (a | w) for all
acAweW.

(h) [g] If B is an R-submodule of W, define sp : V. — B* by sg(v)(b) = (v | b) for all
veVbe B.

(i) [h] s is called non-degenerate if V- =0 and *W = 0.

() [i] If V is free with basis V and W is free with basis W, then the V x W matriz
MY (s) = ((v | w) )vevwew is called the Gram Matrix of s with respect to V and W.
Observe that the Gram Matriz is just the restriction of s to V x W.
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92 Chapter 4. Linear Algebra

Let I be a set, R aring, W = @;R and V = @;R. Define s : Vx W — R,
(v | w) = > ,c;viw;. Note that this is well defined since almost all v; are zero. Note also
that if we view v and w as I x 1 matrices we have (v | w) = vTw.

As a second example let V' be any R-module and W = V* and define (v | w) = w(v). If

V is a free R-module this example is essentially the same as the previous:

Lemma 4.1.2 [dual basis| Let V' be a free R module with basis V. For u € V define
u* € V* by u*(v) = dyy. Define

¢y :V - P Rv— (w(v)wey

v

and

B V' = @ Roa = (a(v))uey

(a) [a] Both ¢y and ¢y, are R-isomorphisms.
(b) [b] Letw € V* and v € V and put © = ¢y(v) and @ = ¢y (w). Then w(v) = 9Td.

Proof: @ Since V' is free with basis V, the map ®yR — V,(r,) — >, cp7ov is an R-
isomorphism. Clearly ¢y is the inverse of this map and so ¢y is an R-isomorphism. To
check that ¢y, is an R-linear map of right R-modules recall first that V* is a right R-module
via (wr)(v) = w(v)r. Also @y R is a right R-module via (r,),r = (r,7),. We compute

Py« (wr) = ((wr)(v))o = (W(V)r)y = (W(v))or

and so ¢y, is R-linear. Given (r,), € @y R, then w : V — R, D wey Sul = D ey SoTw 18
the unique element of V* with w(v) = ry, for all v € V, that is with ¢y.(w) = (74)s. So Py.
is a bijection.

For u € V let s, = w*(v) and r, = w(u). Then v = >
> ey Suw(w) =3 ey Sury = 0710,

wey Sut and so w(v)

O
Definition 4.1.3 [dual map]| Let R be a ring and o : V- — W an R-linear map. Then the
R-linear map o : W* — V* ¢ — ¢ o« is called the dual of .

Lemma 4.1.4 [matrix of dual] Let R be a ring and V' and W free R modules with basis
V and W, respectively. Let o :' V — W be an R-linear map and M its matriz with respect
toV and W. Let § € W*. Then

Pyx (a*(5)) = MT¢W* (6)

Proof: Let v € V. Then the v-coordinate of ¢y, (a*(9)) is a*(0)(v) = (doa)(v) = §(a(v)).
By definition of M = (muwy)wew,vev, a(v) = >, cpp Muwvw and so
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QSV*(CK*((;)) = Z mwv M ¢W*( )

weWw
]

Lemma 4.1.5 [associated non-deg form| Let R be a ring and s : V. x W — R an R-
bilinear form. Let A be an R-subspace of V and B an R-subspace of W. Then

Sap:AJANTBx B/BN AL (a+ (ANLB),b+ (BNAY) = (a|b)
is a well-defined non-degenerate R-bilinear form.

Proof: Readily verified. O

Lemma 4.1.6 [basic bilinear| Let R be a ring and let s : V x W — R be an R-bilinear
form.

(a) [a] Let A be an R-subspace of V, then At =kersa.
(b) [b] Let B be an R-subspace of W then B = ker sp.

(c) [c] s is non-degenerate if and only if sy and sy are 1-1.

Proof: @ and (]ED are obvious and follows from @ and (]ED O

Lemma 4.1.7 [finite dim non-deg] Let F be a division ring and s : V. x W — F a non-
degenerate F-bilinear form. Suppose that one of V. or W is finite dimensional. Then both
V and W are finite dimensional, both sy and sw are isomorphisms and dimgp V = dimp W.

Proof: Without loss dimp V' < oo and so dim V' = dim V*. By , sy and sy are 1-1
and so dimW < dimV* =dim V. So also dim W is finite and dimV < dim W* = dim W.
Hence dimV = dim W = dim W* = dim V*. Since sy and sy are 1-1 this implies that sy
and sy are isomorphisms. O

Corollary 4.1.8 [dual s-basis] Let F be a division ring, s : V. x W — F a non-degenerate
F-bilinear form, B a basis for V. Suppose that B is finite. Then for each b € B there exists
a unique b € W with s(a,b) = dqp for all a,b € B. Moreover, (b | b € B) is an F-basis for
W.

Proof: By[.1.7sy : W — V* is an isomorphism. Let b* € V* with b*(a) = d, and define
b= syt (bY). O
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Definition 4.1.9 [def:s-dual basis] Let F be a division ring, s : V. x W — F a non-
degenerate F-bilinear form, B a basis for V. A tuple (b | b € B) such that for all a,b € B,
be W (a|b)=0du and (b | b€ B) is basis for W is called the basis for W dual to B with
respect to s.

Definition 4.1.10 [def:adjoint] Let R be ring , s;,V; x Wy — R (i = 1,2) R-bilinear
forms and o : Vi — Vo and B : Wy — W1 R-linear maps. We say that a and (8 are adjoint
(with respect to s1 and s3) or that 3 is an adjoint of a provided that

(a(v1) | wa)2 = (v1 | B(w2))1
for all vi € V1, wy € Wi

Lemma 4.1.11 [basic adjoint] Let R be a ring , s; : Vi x W; — R, (v,w) — (v | w);
(i =1,2) R-bilinear forms and o : Vi — Va and 5 : Wy — Wi R-linear maps. Then « and
B are adjoint iff s1y, o B = a* o s9y;.

Proof: Let v; € V4 and wy € Ws. Then

(a1 | wa)2 = savy (w2)(a)(v1) = (" (5215 (w2))(v1) = (" 0 s913) (w2)(v1)
and
(v1 | B(w2))1 = s1v3 (B(w2))(v1) = (s1v4 © B)(w2)(v1)
and the lemma holds. O

Lemma 4.1.12 [kernel of adjoint] Let R be a ring , s; : Vi x W; — R (i = 1,2) R-
bilinear forms and o« : Vi — Vo and B : Wo — W1 R-linear maps. Suppose o and (3 are
adjoint. Then ker o < +1Im 3 with equality if ~Wo = 0.

Proof: Let v; € V4. Then

v1 € ker av
= a(vy)) =0
— (<= if W5t =0) (a(v1) | wa) = 0Vws € Wh
(’1)1 ’ ﬁ(wz)) = 0Vwy € Wy
v1 € FImp

117

O

Lemma 4.1.13 [unique adjoint| Let R be a division ring, s; : V; x W; — R (i = 1,2)
R-bilinear forms and o : Vi — Vo and B : Wo — W1 R-linear maps. Suppose s1 is non-
degenerate and Vi is finite dimensional over R.

(a) [a] There exists a unique adjoint o of o with respect to s and ss.
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(b) [b] Suppose that also sz is non-degenerate and Va is finite dimensional. Let V; be a
basis for V; and V; = (0 | v € V;) the basis W; dual to V; with respect to s;. If M is the
matriz of o with respect to Vi and Vs, then M is the matriz for a®d with respect to

]72 and ])1.

Proof: @) By s1v; is an isomorphism and so by 4.1.11 51_\}1 o a* o s9y, is the unique

adjoint of a. O

() Let v; € V;. Then the (v1,v2)-coefficient of M is (a(v1) | T2)2. By definition of the
adjoint (a(vy) | ¥2)2 = (v | a®d(#2))1 and so @ holds.

Corollary 4.1.14 [dual basis for subspace] Let F be a field, V' a finite dimensional F-
space and s : V XV — F an non-degenerate symmetric F-bilinear form on V. Let W be an
s-non-degenerate F-subspace of V. Let V be an F-basis for V. and W an W-basis for W.
Let V= (0|veVand W= (0| weW) be the corresponding dual basis for W and V,
respectively. Let M = (myy,) be the V x W matriz over F defined by

U“‘WL: Z 777/1)1UUJ‘|‘VVL
weWw

for allveV. Then
W= Myl

Proof: Since W is non-degenerate, V.= W oW+, Let a : V — W be the orthogonal
projection onto W, that is if v = w + y with w € W and y € W+, then w = a(v). Observe
that the matrix of a with respect to V and W is M*. Let 3 : W — V,w — w, be the
inclusion map. Then for all v € V,w € W:

(a(v) [w) = (v|w) = (v ] fw)

and so ( is the adjoint of . Thus by 4.1.13@ the matrix for 3 with respect to W and V
is M = M. So

W= B(W) =Y Mywth.
vey
O

Lemma 4.1.15 [gram matrix| Let R be a ring, V a free R-module with basis V and W a
free right R-module with basis W. Let ¢y : V. — @y R, oy : V — @, R, op. V" — Dy R
and gy W* — @y R be the associated isomorphisms. Let s : V x W — R be bilinear form
and M its Gram Matriz with respect to V and W. Letv € V, w € W, 0 = ¢p(v) and

w = ¢W(’w)7
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(a) [a] (v]w)=0"Mwb.

(b) [b] ¢yp(VL) = Null(M), the Null space of M.
(c) [e] ¢py(*W)=NullMT

(d) [d] pwa(sw(v)) = MTo.

(¢) ] ¢vil(sv(w)) = Mb.

Proof: @ We have v = > oy 0qa, w = > o) biy and M = ((a | b))ap. Since s is
R-bilinear,

(wlw)= > Talal|b)iby=7" M
aeV,bew

(b) By (a) w € V* iff 5T Mw = 0 for all 9, iff M = 0 and iff @ € Null(M).
(c) ve Wit 5TM =0, iff MTo =0iff o € Null M.
(d) Let uw = s (v) and @ = Py, (v). Then by “right-module” version of

T T

ww) =W op=1u -u.

On the other hand

u(w) = sy (v)(w) = (v|w) ="M - =
Thus @¥ = 9" M and so & = MTv and @ holds.
(€) Let uw = sy(w) and @ = Py, (u). Then by
u(v) = 9" - a.

On the otherhand
u(v) = sy(w)(v) = (v|w) =3" - M.

So 4= Mw®w and @ holds. O

Lemma 4.1.16 [gram matrix of dual basis] Let F be a division ring and s : VW — F
a non-degenerate F-bilinear form. Let V and W be F-basis for V and W respectively and V
and W, the corresponding dual basis for W and V. Let M be the Gram matriz for s with
respect to V and W. Let N the Gram matrix for s with respect to W and V. Then

(a) [a] MT is the matriz for idy with respect to V and W.
(b) [b] N is the matriz for idy with respect to W and V

(c) [c] M and N are inverse to each other.
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-1
Proof: (Q} We have idy : V 2% W+ oy By 4.1.15@}, the matrix of sy with respect
to V and W* is M. By definiton of W the matrix of sy, with respect to W* and W is the
identity matrix. So @ holds.
(b)) Similar to @, use sy and (ED
1) By |D N1 is the matrix of idy with respect to V and W. Note that idy is the

adjoint of idy. So by (a) and 1. 1.13[), N=' = M™T = M. O

Lemma 4.1.17 [circ and bilinear| Let R be a commutative ring, G a group and let V
and W be RG-modules. Let s: V x W — R be R-bilinear form.

(a) [a] s is G-invariant iff (a®v | w) = (v | aw) for all a € inRG.
(b) [b] Let a € RG. Then Aw(a) < (a°V)* with equality if V+ = 0.
Proof: @ Recall first for a =3 s aq9 € Rg, a® =3 ¢ agg—t. Thus

s is G invariant
— (gu|gw)=(u|w) VgeGueV,weW
(u — v = gu is a bijection) <= (v | gw) = (¢ |w) Vge G,v e V,w e W

(s is R bilinear) <~ (v|aw) = (av |w) Yae RG,v e Vwe W
([®) By a and a° are adjoints. So (b)) follows from [1.1.12 O

Lemma 4.1.18 [extending scalars and bilinear| Let R < ]?N be an extensions of rings
and s : V x W — R an R-bilinear form. There exists a unique R-bilinear form

§:RORVXWRrR— R, (a®v,w®b) =a((|v),w)b
foralla,be RoveV,weV.
Proof: Observe that the map

RxV xW x R toR, (a,v,b,w) — a((| v),w)b

is R-balanced in (a,v) and (b, w). The universal property of the tensor product now shows
the existence of the map §. A simple calculation shows that 5 is R-bilinear. ]

Lemma 4.1.19 [extending scalars and intersections| Let F < K be an extension of
division rings and 'V an F space.

(a) [a] Let W be a set of F-subspaces of V.. Then

| KeWw=Ke (| W
wew wew
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(b) [b] Lets:V@W —F be an F-bilinear form and extend s to a bilinear form §: K ®p
VxWerK — K (seel|4.1.18). Let X an F-subspace of V. Then Kop X+ = (K® X)* .

Proof: @ Suppose first that W = {1, Wa}. Then there exists F-subspaces X; of W; with
W; = X;®(W1NWs). Observe that Wi +Wsy = (W1NW3)® X1 ® Xs. For X an F-subspace of
Viet X = KepX < K@pV. Then W; = Wi N WX, and Wi + Wo = Wi N Wod X1 0 X>
and so W, N Wy = W; N Ws,. So @) holds if [W| = 2. By induction it holds if W is finite.

In the general case let ¥ € V. Then there exists a finite dimensional U < V with v € U
Moreover, there exists a finite subset X of W with UN(Nycx X = UN(\xep X. By the
finite case, U NNxexr X = U N(Nxer X and so (EI) is proved.

(]EI) Note that X+ = MNeex z. So by @ we may assume that X = Fx for some z € X.
If X 1 V, then also X L V and we are done. Otherwise dimV/X* = 1 and so also

dimV/X+ = 1. From X+ < X" <V we conclude that X~ = X . O

Lemma 4.1.20 [symmetric form for p=2] Let F be a field with charF = 2. Define o :
F — T, f— f? and let F° by the F-space with F° = F as abelian group scalar multiplication
fok=f2l. Let s a symmetric form on'V and define o : V — F° : v — (v | v). Then « is
F-linear, W :=kera = {v € V | (v | v) = 0} is an F-subspace, s |w is a symplectic form
and dimp V/W < dimp F? = dimp2 F.

Proof: Since (v+w |v+w) = (v]|v)+(v|w)+(w|v)+(w]|w)=(v|v)+2(v]|w)+(w |
w) = (v]v)+ (w|w)and (fv | fv) = f2(v|v) = f s (v ] v) conclude that « is F-linear.
Thus W = ker « is an F-subspace of V and V/W = Ima. Also dimypIma < dimp F?. The
map (o,idp : F x F7 — F2 x F, (f, k) — (f2, k) provides an isomorphism of the F space F’
and the F2-space F. So dimp F? = dimgp: F.

Cleary s | is a symplectic form. O

Lemma 4.1.21 [symplectic forms are even dimensional] Let F be a field, V a finite
dimensional F-space and s a non-degenerate symplectic F-form on V. Then there exists an
F-basis v;,i € {£1,£2,... £ n} for V with (v; | vj) = 6; —; - sgn(i). In particular dimg V' is
even.

Proof: Let 0 # vy € V. Since vy ¢ 0 = V=, there exists v € V with (v; | v) # 0. Let
v_1 = (v1 | v)"tv. Then (v | v_1) =1 = —(v_1 | v1). Let W = F(vy,v_1). The Gram

1
Matrix of s on W with respect to (vi,v_1) is (_01 O)' So the Gram matrix has determinant
1 # 0. Thus W is non-degenerate and so V = W @ W=. Hence also W+ is non-degenerate

and the theorem follows by induction on dimp V. ([l

Lemma 4.1.22 [selfdual and forms| Let F be field, G a group and V simple FG module.
Suppose that V is self-dual (that is V* =2V as FG-module).
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(a) [a] There exists a non-degenerate G-invariant symplectic or symmetric form s on V.

(b) [b] Suppose that charF = 2 and F is perfect. Then either V= TFq or s is symplectic.

() Let a : V. — V* be an FG-isomorphism and ¢ : V x V — F, (v,w) — a(v)(w), the
corresponding G-invariant F-bilinear form. Since V is a simple FG-module any non-zero
G-invariant bilinear form on V' is non-degenerate.

Define 7(v, w) = t(v,w) + ¢(w,v). Then r is a symmetric form. If r # 0, then (&) holds
with s = r. If r = 0 then t(v,w) = —t(w,v) for all v,w € V. If charF = 2, then ¢t is
symmetric and (a)) holds with s = ¢. If charF # 2, then ¢(v,v) = —t(v,v) implies that ¢ is
symplectic. So again @ holds with s =t.

(]ED Let s be as in @ and observe that in either case of @, s is symmetric. Let
a:V — Fo be as in [£.1.20] View F? as an FG-module with G acting trivially. Then by
4120« is F linear and since S is G-invariant also FG-linear. Since F is perfect, dimp F7 = 1.
So F? 2 Fg has FG-modulo and either o = 0 or « is onto. If a = 0, s is symplectic. If
« is onto kera # V is an FG-submodule of V. Since V is simple, kera = 0 and so
V2Ima=F°=Fg. ]
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Chapter 5

Representations of the Symmetric
Groups

5.1 The Symmetric Groups

For n € Z* let Q, = {1,2,3...,n} and Sym(n) = Sym(f,). Let g € Sym(n) and let
O(g) = {O1,...0;} be the sets of orbits for g on Q,. Let |O;| = n; and choose notation
such that ny > ng > n3 > ...n;. Define n; = 0 for all @ > 1. Then the sequence (n;):2,
is called the cycle type of g. Pick ajo € O; and define a;; = ¢/(aj) for all j € Z. Then
a;j = a;i, if and only if j = k (mod n);. The denote the element g by

g= (011, a12, ... alm)(a217az2, cee 7a2n2) cee (akh a2, . . ~aknk)-

Lemma 5.1.1 [conjugacy classes in sym(n)| Two elements in Sym(n) are conjugate if
and only if they have the same cycle type.

Proof: Let g be as above and h € Sym(n). Then

hgh~' =
(h(all), h(alg), e h(alm))(h(agl), h(azg), ceey h(a2n2)) e (h(akl), h(akg), e h(a;mk))

and the lemma is now easily proved. O

Definition 5.1.2 [def:partition of n] A partition of n € N is a non decreasing sequence
A= (Ni)$2, of non-negative intergers with n =Y .2, A;.

Note that if A is a partion of n the necessarily \; = 0 for almost all 7. For example
(4,4,4,3,3,1,1,1,1,0,0,0,...) is a partition of 22. We denote such a partition by (43,32, 1%).

Observe that the cycle type of g € Sym(n) is a partition of n. Together with [3.1.3{(f) we
conclude

101
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Lemma 5.1.3 [number of partitions] Let n € Z*. The follwing numbers are equal:
(a) [a] The numbers of partitions of n.
(b) [b] The numbers of conjugacy classes of Sym(n).

(¢) [c] The number of isomorphism classes of simple CSym(n)-modules. O

Our goal now is to find an explicit 1-1 correspondence between the set of partions of n
and the simple CSym(n)-modules. We start by associating a Sym(n)-module M* to each
partition A of n. But this modules is not simple. In later section we will determine a simple
section of M.

Definition 5.1.4 [def:lambda partition] Let I be a set of size n and \ a partition of n.
A A-partition of I is a sequence A = (A;)°, of subsets of A such that

(a) [a] T =UZ, A
(b) b] A;iNA; =0 foralll <i<j<oo.

(c) le] 1Al = A

For example ({1, 3,5}, {2,4},{6},0,0,...)isa (3,2, 1) partition of Is where I,, = {1,2,3,...n}.
we will write such a partition as

135

24

[a—

The lines in this array are a remainder that the order of the elements in the row does
not matter. On the otherhand since sequences are ordered

13 24
24 7 13

t
D

D
ot

Let M* be the set of all A-partions of I,. Note that Sym(n) acts on A via 7A =
(m(A;))22,). Let F be a fixed field and let M* = Mp = FM()). Then M* is an FSym(n)-
module. Note that for M™~11 = FJ,. Let (- | -) the unique bilinear form on M?* with
orthonormal basis M?*. Then by (- | -) is Sym(n)-invariant and non-degenerate.

5.2 Diagrams,Tableaux and Tabloids
Definition 5.2.1 [def:diagram| Let D C Z, x Z4

(a) [z] Let (i,7),(k,l) € Z* X ZT. Then (i,j) < (k,l) provided that i < k and j <1
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(b) [a] D is called a diagram i if for alld € D and e € Z4 x Z4 with e < d one has e € D.
(¢) [b] The elements of diagram are called the nodes of the diagram.
(d) [c] r:ZT xZ" x (i,j) — i and ¢ : Z* x Z* x (i,j) — j.
(e) [e] The i-th row of D is D; := DN {i} x Z* and the j-column of D is D’ := Z x {j}.
(f) [d] MD) = (IDi)iZ; and N'(D) = (|D?])5°
Definition 5.2.2 [def:diagram2] A\ € ZS° define

A ={(i,)) € Z4 xZ1 [1 < j < A}

Lemma 5.2.3 [basic diagram| Let n € N. Then the map D — Ap is a bijection between
the Diagram of size n and the partitions of n. The inverse is is by X — [A].

Proof: Let D be a diagram of size n and put A = A(D). Let ¢ € N and let j be maximal
with (i,7) € D. By maximality of j and the definition of a diagram, (i,k) € D iff £ < j.
Thus j = |D;| = A\; and D = [A]. Let k <. Since (i, \;) € D, the defintion of a diagram
implies (k, A;) and so A; < A,. Thus X is non-increasing. Clearly Y .2, A; = |D| = n and so
A is a partition of n.

Conversely suppose that A is a partition of n. Let (¢,5) € D and (a,b) € Z4+ X Z4 with
a<iand b<j. Thena <i<\; <X\ and so (a,b) € [A]. Thus [\ is a diagram. Clearly
[[Ali] = i, that is A([A]) = A. O

We draw diagams as in the following example:

TTTTT
TTT
TTT
[5,3%,22 1] =222
TT
TT
x

Definition 5.2.4 [def:dominates] Let A\ and p be partitions of n € Z*. We say that \
dominates p and write A\ > u if

forall j € Z™".
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Note that “dominates” is a partial orderi(qg but not a total ordering. For n = 6 we have

(5,1)

(1

On rare occasions it will be useful to have a total ordering on the partition.

Definition 5.2.5 [def:lexiographic ordering] Let A\ and p be partitions of n € Z+. We
write X\ > p provided that there exists i € Z with N\; > p; and \j = p; for all 1 < j <.

Observe that ” <” is a total ordering on the partitions of n, called the lexiographic

ordering. If A> p and 4 is minimal with A\; # mu;, then Z;;ll Aj = Z;;ll i and 23:1 Aj >
23:1 wi- Thus A\; > p; and so A > p.

Definition 5.2.6 [def:conjugate partition]
(a) [a] Let D CZ* xZ*. Then D' = {(j,i) | (i,7) € D}. D' is called the conjugate of D.

(b) [b] Let \ be a partition of n. Then N = (|[\]!]) is the number of nodes in the i’th
column of [A].

Lemma 5.2.7 [basic conjugate]
(a) [a] The conjugate of a diagram is a diagram.

(b) [b] Let D be a diagram. Then the rows of D' are the conjugates of the columns of D:
Dj = (D",

(c) [c] Let A be a partition of n. Then X' is a partition of n and [N = [N].
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Proof: @ follows immediately from the definition of a diagram.

(b)) is obvious.

(c) By () |[\)j] = [[X'] = Ai. Thus X = A([\]"). So (d) follows from O
Lemma 5.2.8 [reverse ordering| Let A and u be partitions of n. Then A> p if and only
if N <.

Proof: Let j € Z* and put i = yf;.Define the following subsets of Z* x Z*

Top = {(a,b) | a < i} Bottom = {(a,b) | a > i}
Left ={(a,b) | b<j} Right={(a,b)|b> 1}

Since A dominates p:

(1) [Top N [A]| = [T'op N [p]|

By definition of i = u;-, Ai > j and A\jy1 > j. Thus

TopN Left C [u] and Bottom N Right N [u] = 0

Hence
@) (Top Left NN| < |Top ) Left 0 [u]
and
(3) | Bottom N Right N [A]| > |Bottom N Right N [u]

From (1) and (2) we conclude

(4) |Top N Right N [A]| > |Top N Right N [p]]
(3) and (4) imply:

|Right N [A]| > |Bottom N [p]

Since |[A]] = n = |[p]| we conclude

Left O[N] > Left [
Thus Zzzl A< ijl ploand N <. O

C
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Definition 5.2.9 [def:tableau| Let A be a partition of n. A A-tableau is a function t :
A — I.

We denote tableaux as in the following example

514
23

denotes the [3,2]-tableau ¢ : (1,1) — 4,(1,2) — 1,(1,3) — 4,(2,1) — 2,(2,2) — 3.
Definition 5.2.10 [def:partition of tableau| Let t : D — I,, be a tableau. Then A(t) =

(t(D;))2,) and A'(t) = ((D")2,. A(t) is called the row partition of t and A/(t) the
column partition of t.

Note that if ¢ is a A-tableau, then A(t) is a A partition of I,, and A’(t) is a A-partition
of I,. For example

243 243
ift=61 then A(t)=61
5 5

Definition 5.2.11 [def:tabloids| Let s,t be A-tableau.

(a) [a] s and t are called row-equivalent if A(t) = A(s). An equivalence class of this
relations is called a tabloid and the tabloid containing t is denoted by t.

(b) [b] s andt are called column-equivalent if A’'(t) = A’(s). The equivalence class of this
relations containing t is denoted by |t|.

For example if t = ;g then

|+
Il
—N—
—_
o~
o~
—_
—_
o~
N
—_

|

Lemma 5.2.12 [action on tableaux| Let A be partition of n. Let m € Sym(n) and s,t be
A tableaux.

[\)
w
[\)
w
w
[\)
w
[\)

(a) [a] Sym(n) acts transitively on the set of A\-tableauz via 7t = wot.
(b) [b] wA(t) = A(nt)).

(c) [c] s andt are row equivalent iff ms and wt are row equivalent. In particular, Sym(n)
acts on the set of \-tabloids via 7t = mt.



Section 5.2. Diagrams, Tableaux and Tabloids 107

Proof: (fg]) Clearly mt = 7 ot defines an action of Sym(n) on the set of A tableaux. Since
s,t a bijections from [\] — I, p := sot~! € Sym(n). Then pot = s and so the action is
transitive.

() Let D = [A]. Then A(t) = (D;)$2,) and so

mAt) = m(H(Di)Z1) = (m(t(Di)Z1) = ((wt)(Di))iZ1 = A(mt)

(d) s is row-equivalent to t iff A(s) = A(t) and so iff 7A(s) = 7A(¢). So by (b)) iff
A(rs) = A(nt) and iff 7t and 7s are row-equivalent. O

Let A = (A;)2, be A-partition of I,,. Let 7 € Sym(n). Recall that 7 € Cg(A) means
A = A and so w(4;) = A; for all 4.

CSym(n)(A> = ﬂzoi1 NSym(n)(Az)) = ®$il Sym(Az) So CSym(n)(A) has order A! :=
[T, Al

Definition 5.2.13 [def: row stabilizer| Let t be a tableau. The Ry = Cgym(n)(A(t) and
Ct = Csym (t)(A'(t). Ry is called the row stabilzer and Cy the column stablizer of t.

Lemma 5.2.14 [char row equiv] Let s and t be A-tableauz. The s and t are row equiva-
lent iff s = ©t for some ™ € Ry.

Proof: Then by [5.2.12)), s = mt for some 7 € Sym(n). Then s is row-equivalent to ¢ if
and only if A(t) = A(nt). By [p.2.12(b), A(7)t) = 7A(t) and so s and ¢ are row equivalent
iff me R;. O

Lemma 5.2.15 [basic combinatorical lemma| Let A\ and u be partions of n, t a A-
tableaw and s a p-tableau. Suppose that for all i,j, |A(t); N |A'(s);| <1 ( That is no two
entrees from the same row of t lie in the same column of s). Then A<pu. Moreover if A = p,
then there exists A-tableau r such that r is row equivalent to t and r is column equivalent to
S.

Proof: Fix a column C of Changing the order the entrees of C' neither effects the assump-
tions nor the conclusions of the lemma. So we may assume that if ¢ appears before j in
C, then 7 also lies earlier row than j in the tableau t. We do this for all the columns of
s. It follows that an entree in the k-row of ¢ must lie in one of the first k-rows of s. Thus
Zle Ai < Zi’:l w; and p dominates .

Suppose now that A = p. Since A\; = p1 and the firs row of ¢ is contained in the first row
of s, the first row of A(t); = A(s)1. Proceeding by induction we see that At); = A(s); for
all s and t. So s and t are row equivalent. ]
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5.3 The Specht Module

Definition 5.3.1 [def:fh] Let G be a group, H C G, R a ring and f € RG. Then fg =
ZheH fuh.

Lemma 5.3.2 [basic fh] Let G be a group, R a ring and f € RG. Suppose that f view as
a function is a multiplicative homomorphism.

(a) [a] Let A, B C G such that the maps Ax B — G, (a,b) — G is 1 —1, then fap = fafB.
(b) [b] Let A< B <G and T a left-transversal to A in B. Then fp = frfa.

(c) [c] Let A1,A2, A, < G and A = (A; | 1 < i < n) Suppose A = @;_, A;, then
Ja=fafa, - fa,-

(d) [d] Suppose f is a class function, then for all g € G and H C G, gfug~ ' = fotg—1-

Proof: @ Since the map (a,b) — abis 1—1, every element in AB can be uniquely written
has ab with a € A and b € B. Thus

fafe=" Ylacafaa 3 pepfob =3 a€Abe Bfafrab
=2 weapen fabab =3 cap fec
= faB
(]E[) is a special case of @
follows from @ and induction on n.
@ Readily verified.
Since the map £ — A(t) is a well defined bijection between the A tabloids and the the A
partitions of I,, we will often identify Z with A(#). In particular, we have £ € M?*.

Definition 5.3.3 [polytabloid] Let t be \-tableau.
(a) [a] ki =sgne, = o, senmm € FSym(n).
(b) [b] e = kit = > reC, sgnmt € M. e; is called a polytabloid.

(c) [c] S* is the F-subspace of M* spanned by the \-polytabloids. S is called a Specht
module.

(d) [d] F* is the left ideal in FSym(n) generated by the k;, t a A-tableau.

325

14 -

The Cy = Sym({1,3}) x Sym({{2,4},

k= (1—(13) - (1 —(24)) =1 — (13) — (24) 4 (13)(24) and
325 125 345 145

=14 34 12 32

As a first example consider t =

€t
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As a second example consider A = (n — 1,1) and t = ; Then C; = Sym({i,j} =
{17 (27.7)} kt =1- (Zvj) and

.

€t =
2

‘u.

For i € I, put z; = (In\’{i}):12...2—124—1...71

Then M (™11 ig the F space with basis (xi,i € I,) and e, = x; — ;. Thus

S("_Ll):F(wj—:m]i#je[n>:{2f¢:ri]f,;eF\Zfi:O}:(x1+x2+...+xn)L
i=1 i=1

The reader should convince herself that if char F { n, then S*~11) is a simple FSym(n)-
module and if char F | n, then x := Y7 x; € S™~1Y and =LY /Fz is a simple FSym(n)-
module.

Lemma 5.3.4 [transitive on polytabloids| Let 7 € Sym(n) and t a tableau.
(a) lz] mhy™! = kn
(b) [a] mer =ent.
(¢) [b] Sym(n) acts transitively on the set of A-polytabloids.
(d) [c] S is a FSym(n)-submodule of M.
(e) [d] If m € Cy, then kry = ky = sgnrk, and ey = sgnmey.
Proof:

@) We have Cry = nCin~! and so by @ applied to the class function sgn on
Sym(n),

krt = sgng_, = sgn o, -1 = ngnctﬂ_l = kw1

Using , ent = kmrt = Tk It = wkit = ey

and @ follow from .
@ Since w € Cy, Cry = Cy = Cyr. Thus ky = k and

ke = Zaec’t sgno - = Zﬁect sgn(0m) - (B)
=SgnT Y 5.0, sen - = sgnmkym

The second statement follows from the first and 7t = «t. O
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Lemma 5.3.5 [action of es on ml] Let A\ and p be partitions of n.
(a) [a] If FFM* #0, then A < p.
(b) [b] Ift and s are A-tableau with kst # 0, then then kst = +es.

Proof: Let s be a yu tableau and ¢ and A-tableau with kst # 0.
Suppose first that there exists a ¢ # j € I, such that i and j are on the same row of ¢
and in the same column of s. Let H = Sym({7,j} = {1, (¢,7)}. Then

sgngd = T+ sgn((i, 1)) )= E =5 = 0,
Since i, j are in the same column of s, H < Cs and we can choose a transversal 7 to H
in Cs. Then
kst = (sgn7 )sgnHt = 0,

contrary to our assumption. Thus no such 4, j exists. So by 5.2.15| A < u. Moreover, if
A = u, there exists a A tableau r» which is row equivalent to ¢ an columns equivalent to s.
Hence k, = ks and T = 5. Moreover s = r for some 7w € Cs and so by @,

kst = e, = sgnmes

O
Lemma 5.3.6 [es self dual] Let X\ and p be partitions of n and s an p-tableau. Then
(a) [a] ks =Fkg
(b) [b] (ksM*)* = Appa(ks).
(c) [c] ksMH = Fey and Apru(ks) = ex.
(d) [d] ksv=(v|es)es for allv e M*.
Proof: @ If T € Oy then also 7! € C,. Moreover sgnm = sgnm ! and @ holds.
(b)) Follows from (@) and
(c) By esM? = Fe, and so by (]EI) A (ks) = ex.
@ By ksv = feg for some f € F. Hence
(v]es) = (v]kst) = (ksv [ 1) = (fer [ 1) = f
O

Lemma 5.3.7 [fl and ml] FAM?* = S* and Ay (F?) = S
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Proof: This follows immediately from [5.3.6|(b) and [5.3.6/(d). O

Lemma 5.3.8 [submodules of ml| Supp F' is a field and let \ be a partition of n and V
be an FSym(n)-submodule of M*. Then either FAV = S* and S* <V orFAV = 0 and
SA<V.

Proof: If FAV =0, then by V< SM

So suppose FAV # 0. Then k,V # 0 for some A-tableau s. Sounphes ksV = Feg =
ksM?. Since by- implies k,V = k,M* for all \-tableaux s. Thus FAV = FAM* = §*
and S* < V. ]

If F < K is a field extensions we view M? = Mﬁ‘ has a subset of S*. Note also that Mﬂé
is canonically isomorphic to K ®@p M. Put DX = S*/(S* N SA).

Lemma 5.3.9 [dl=fldl] Let \ be a partition of n. If F is a field then FAD* = D*.

Proof: By E either FASA = S* or S < M. In the first case FAD* = D* and in the
second D* = 0 and again FAD* = D>,

Proposition 5.3.10 [dl=du] Let A and p be partitions of n with D* = 0. Suppose F
is a field. If D is isomorphic to an FSym(n)-section of M*, then A < . In particular,
D* = DF then A = p.

Proof: By [5.3.9 FAD*» = D* # 0. Hence also FAD* # 0 and F*M* # 0. So by-@
A< p. If DA = DF, the D* is a section of M* and so < A and p = \.

Lemma 5.3.11 [scalar extensions of ml] Let \ be a partition of n and F < K a field
extension.

(a) [a] S} =KS*=K @p S,

(b) [b] S =K(SM) =K ep S

(c) [d] S NSt =K(S*nSM)=KapS*ns*).
(d) [¢] D} =K op D,

Proof: @ is obvious.

(]E[) follows from @ and (]ED
@ follows from @, (]ED and .
@ follows from @ and . OJ

Lemma 5.3.12 [d] absolutely simple] Let \ be a partition of n and suppose D* # 0.
Then D? is an absolutely simple FSym(n)-module.
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Proof: By @) it suffices to show that D is simple. So let V be an FSym(n)-
submodule of S with S* N S*M < V. By either S* <V or V < S*. In the first case
V = S* and in the second V < S* N SM and V = SN SM. Thus DY = $*/(S* N S is
simple. ]

5.4 Standard basis for the Specht module

Proposition 5.4.1 [garnir relations| Let t be a A-tableau, i < j € ZT, X C A'(t); and
Y C A'(t);. Let T be any transversal to Sym(X) x Sym(Y) in Sym(X UY).

(a) [a] sgny e is independent from the choice of the tranversal T .

(b) [b] If|IXUY|>\. Then
sgnye; = 0

Proof: () Let 7 € Sym(X UY) and p € Sym(X) x Sym(Y) < C;. Then

[
w
N

sgn(mp) - wp - e = sgn(m)w - sgn(p)pey — = 9 sgn(m)mey
and so (&) holds.

@ Since |[X NY| > A; > X}, there exists i € X and j in Y such that i and j are in
the same row of t. So (1 — (ij))nt = 0. If 7 € Sym(X UY), then 7 and 7 - (ij) lie in
differen cosets of Sym(X) x Sym(Y'). Hence we can choose R C Sym(X UY) such that
RNR-(i,j) =0 and RUR - (ij) is a transversal to Sym(X) U Sym(Y). By (a)) we may
assume 7 = RUR - (ij) and so

Sgh7 = SgNRSEN( (55} = S&UR - (1 —(i5))

and
sgnre; = sgng - (1 — (ij))er = 0.
U

Definition 5.4.2 [def:garnir] Let t be a A-tableau, i < j € Zt, X C A'(t); and Y C
A'(t);.

(a) [a] Txy is the set of all m € Sym(X U SymY') such that the restrictions of wot to
77 Y(X) and 771 (Y) are increasing.

(b) [b] Gxy:=sgnr,,. . Gxy is called a Garnir element in F'Sym(n).
Lemma 5.4.3 [basic garnir| Let t be a A-tableau, i < j € ZT, X C A'(t); andY C A'(t),.

(a) [a] Txy is a transvsersal to Sym(X) x Sym(Y) in Sym(X UY).
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(b) [b] If|IXUY|> X,. Then
GXy,get =0.

Proof: () Just observe that if 7 € Sym(X USym(Y'), then there exists a unique element
p € Sym(X)USym(Y) such that the restriction of 7p to t~!(X) and to t~*(Y') are increasing.

(]ED follows from @ and @ O

Consider n =5, A = (3,2), t = 1? , X ={2,5},Y = {3}

w

S

Then Gxye: =0 gives

123_132_125_0
45 45 43

Definition 5.4.4 [def:increasing tableau] Let \ be a partion of n and t a \-tableau.
(a) [a] r¢=rot™' andc; =sot™t. Soi € I, lies in row r(i) and column ci(i) of t.
(b) [b] We say that t is row-increasing c; is increasing on each row A;(t) of t

(c) [c] We say that t is column-increasing if ¢ is increasing on column AL(t).

Note that r; only depends on T and so we will also write g for ;. Indeed 7 = 5 iff
Tt = Ts.

Lemma 5.4.5 [basic increasing| Let \ be a partion of n and t a A-tableau.
(a) [a] T contains a unique row-increasing tableau.

(b) [b] |t| contains a unique column-increasing tableau.

(c) [c] Let me Sym(n) andi € I. Then (i) = rpe(mi).

Proof: @ and (]E[) are readily verfied.

cl) rreom=ro Wot_low:rot_lzrt. ]
(c) (

Definition 5.4.6 [def:standart tableau] Let A be a partition of n and t a A-tableau. A
standard tableau is row- and column-increasing tableau. A tabloid is called standard if it
contains a standard tableau. Ift is a standard tableau, then e; is called standard polytabloid.

By [5.4.5|fa]), a standard tabloid contains a unique standard tableau.
We will show that the standard polytabloids form a basis of S* for any ring F.
For this we need to introduce a total order on the tabloids

Definition 5.4.7 [def:order tabloids| Let t and 5 be the distinct A-tabloids. Let i € I,
be mazximal with r(i) # rs(i). Then t <3 provided that r(i) < rs(i).
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Lemma 5.4.8 [basic order tabloids| < is a total ordering on the set of \ tabloids.

Proof: Any tabloid £ is uniquely determined by the tuple (r7());-;. Moreover the ordering
is just a lexiographic ordering in terms of it associated tuple. U

Lemma 5.4.9 [proving maximal I] Let A and B be totally ordered sets amd f: A — B
be a function. Suppose A is finite and m € Sym(A) with f # fopi. Let a € A be mazimal
with f(a) # f(n(a)). If f is non-decreasing then f(a) > f(w(a)) and if f is non-increasing
then f(a) < f(m(a)).

Proof: Reversing the ordering on F' if necessary we may assume that f is non-decreasing.
Let J ={j e J| f(j) > f(a)} and let j € J. Since f is non-decreasing, j > a and so
by maximality of f, f(7j) = f(j) > f(a). Hence m(J) C J. Since J is finite this implies
m(J)=J andso since mis 1 — 1, 7(I \ J) C I\ J. Thus n(a) ¢ J, f(7(a) < f(a) and since
F(r(@)) # f(a), f(x(a)) < f(a). O

The above lemma is false if I is not finite ( even if there exists a maximal a): Define
f:Z" — {0,1} by f(i) =01if i <0 and f(i) = 1 otherwise. Define m : ZTZ% i — i+ 1.
Then f is non-decreasing and a = 0 is the unique element with f(a) # f(w(a)). But
fla) =0 <1 = f(r(a)).

Allthough the lemma stays true if there exists a maximal a and f is increasing ( de-
creasing). Indeed in thus case J = Cy(w) and so (I \ J) =1\ J.

Lemma 5.4.10 [proving maximal| Let ¢t be a A\-tableau and X C I,,.
(a) [a] Suppose that ry is non-decreasing on X. Then wt <t for all * € Sym(X).

(b) [b] Suppose that ry is non-increasing on X. Then wt >t for all m € Sym(X).

Proof: () Suppose that 7t # £. Let i be maximal in I,, with r¢(i) # 7r(i). Note that
rrt(i) = r¢(m~1(i) Since r; is non-decreasing [5.4.9| gives (i) < ri(7 ') = rm(i). Thus
t <7t

(]EI) Similar to @ O

Lemma 5.4.11 [maximal in et| Let ¢t be column-increasing A tableau. Then t is the maz-
1mal tabloid involved in e;.

Proof: Any tabloid involved in e; is of the form 7wt with 7 € C;. Since r; is increasing
on each column, we can apply to the restriction of m to each of the columns. So the
result holds. O
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Lemma 5.4.12 [linear independent and order| Let F be ring, V a vector space with a
totally ordered basis B and L a subset of V.. Letb € B andv € V.. We say that b is involved
in v if the b-coordinate of v is mon-zero. Let b, be mazximal element of V involved in v.
Suppose that the by, l € L are pair wise distinct and the coefficient f; of by in l is not a left
zero divisor.

(a) [a] L is linearly independent.

(b) [b] Suppose in addition that each fi,1 € L is a unit and L is finite. PutC ={b; |l € L}
and D =B\ C.

(a) [a] LUD is an R-basis for M.

(b) [b] Suppose R is commutative and (- | -) be the unique R bilinar form on M with
orthormal basis B. Then

(a) [a] For each d € D there exists a unique eq € d + RC with eq € L*.
(b) [b] (eq|d €D isan R-basis for L.
(c) [c] £+ =RL.

Proof: @ Let 0 # (f;) € @, F. Choose | € £ with b maximal with respect to f; # 0.
Then b; > by, for | # k € £ with fi # 0. So b; is involved in f;l, but in not other fik. Thus
> ier il #0 and L is linearly independent.

@ We assume without loss that f; =1 for all [ € L.

Let m = ) ,cgmpb € M. We need to show that m € R(DU L. If my = 0 for all
b € B, this is obvious. Otherwise pick b € B, maximal with m; # 0 and let [ € £ with
b = b;. Then by induction on b, m —myl € R(D U L).

We will first show that

(*) RNCNLT=0

Let 0 # m = >, myb; and choose [ with m; # 0 and b; minimal. Then (m | [) = m; # 0
and m ¢ Lt

This is just the Gram Schmidt process. For completeness here are the details.
Let £ = {l1,la,...1,} and b; = b, with by < by < ...b,}. Put ep = d and suppose
inductively that we have found e; € d + Rby + ... + Re; with e; L [ forall 1 < j <e;. If
i <mnput e =e — (€ | liz1)bi41. Then (e;41 | li+1 = 1 and since b1 L [ for all j <.
Put eq = e,. By (*), €4 is unique.

(b:b:b)) Clearly (eq | d € D) is R-linearly independent. Moreover if m = >, .. pmpb €
L1, then m :=m — Y jop maeq € RCN LE . So (*) implies m = 0 and holds.

M= pcean Msb € L+, By there exists m € RL with m = m € RD and
so we may assume that m, = 0 for all ¢ € C. Then 0 = (m | eq) = my for all d € D and so
m = 0. ]
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Theorem 5.4.13 [standard basis] Let F' be a ring and X a partition of n. The standard
polytabloids form a basis of S*. Moreover, S*™+ = S* and there exists an R-basis for S
indexed by the nonstandard \-polytabloids.

By 5.4.10@ and |5.4.12| the standard polytabloids are linearly independent. Let ¢ be A-
tableau. Let |t| be the column equivalence class of ¢. Total order the column eugivalence

classes analog to We show by downwards induction that e; is a F-linear combination
of the standard polytableaux. Since e; = +eg for any s column-equivalent to t we may
assume that ¢ is column increasing. If ¢ is also row-increasing, t is standard tableaux and
we are done. So suppose t is not row-increasing so there exists (i,7) € Z*x such that
t(i,7) > t(i,j+1). Let X ={t(k,j) |i <k <X andY = {t(k,j+1)|1 <k <j. Then
| X UY]| =X\, +1 and so by [5.4.1]

Z sgnmers = 0

WETXY

Since ¢; is increasing on X and on Y and since t(i,j) > t(i,j + 1), r¢ is non-increasing
on X UY. So by 5.4.10 |7t| > |— for all 1 # 7 € Sym(XU). Thus by downwards induction
exrt 1s an R-linear combination of the standard polytabloids. Hence the same is true for

er = — 217&”7 SENTEry.
The remaining statements now follow from [5.4.12 U

5.5 The number of simple modules

Definition 5.5.1 [def:p-regular class| Let p be an integer. An element g in a group G is
called p-singular if p divides |g|. Otherwise g is called p-regqular. A conjugacy class is called
p-reqular if its elements are p-reqular.

The goal of this section is to show that if K is an algebraicly closed field, G is a finite
group and p = char K then the number of isomorpism classes of simle KG-modules equals
the number of p-regular conjugacy classes.

Lemma 5.5.2 [cyclic permutation]

(a) [a] Let G be a group, n € Z" and a1,...a, € G. Then for all i € N a;41a;42 ... 0i1n
is conjugate ai1as . ..a, in G.

(b) [b] Let R be a group, n € Z" and ay,...a, € R. Then for alli € N, aj110i12...aj1n =
ajasy...a, (mod )S(R)

Proof: @ We have al_1 SA1a9 .. .0y ... Q1 = A9 ...0p01. SO @ follows by induction on n.
(]E[) ay-ag...anp —ag...a,-a; € S(R) So (]ED follows by induction on n. O
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Definition 5.5.3 [def: sr| Let R be ring and p = char R. Then S(R) = (zy —yx | z,y €
R)z. Let p=pifp#0andp=1ifp=0. T(R)={r € R|rP" € S(R) for some m € N}.

Lemma 5.5.4 [sr for group rings| Let R be a commutative ring and G a group. Then
S(RG) consists of all a = ngg € RG with dec rq = 0 for all conjugacy classes C of G.

Proof: Let U consists of a = ngg € RG with dec rq = 0 for all conjuagacy classes C
of G. Note that both S(R) and U are R-submodules. As an R-modules S(R) is spaned by
the gh — hg wth g,h € G. By [5.5.2] gh and hg are conjugate in G. Thus gh = hg € U and
S(R) CU. U is spanned by the g — h where g, h in G are conjuagte. Then h = aga™! and
g—h=a'ag=ag-a ! andso g—h € S(R)and U C S(R). O

Lemma 5.5.5 [basic sr| Let R be a ring with p := char R a prime.

(a) [a] (a+0b)P" =a”" +b"" mod S(R) for all a,b € R and m € N.

(b) [b] T(R) is an additive subgroup of R.

(¢c) [c] Suppose that R = @;_, Ri. Then S(R) =@._,S; and T(R) = DT (R;).
(d) [d] Let I be an ideal in R. Then S(R/I) = S(R)+I/I.

(e) [e] LetI be a nilpotent ideal in R. Then I <T(R), T(R/I)=T(R)/I and R/T(R) =
(R/D)/T(R/T).

Proof: () Let A = {a,b}? and let H = (h) be a cyclic group of order p acting on A via
h(a;) = (aj+1). Then H has two fixed points on A namely the constant sequence (a) and
(b). Since the length of any orbit of H divises |H]|, all other orbits have lenghth p. Let C
be an orbit of length p for H on A. For a = (a1,a2,...ap) € Apuy [[a =ajaz...a,/ Then
byHa =][b (mod )S(R) forall a,bc C andso ) ;.o [[b=p[[a=0 mod S(R).
Hence for (a+b)P =3 ;,4Ta =a? + b mod S(R). (&) now follows by induction on m.

(o) Follows from (a)).

Obvious.

(d) Obvious.

(e) Since I is nilpotent, I* = 0 for some integer k. Choose m with p™ > k. Then for
alli € I, " =0 € S(R) and so i € T(R). Thus I < T(R). Since S(R) + I/I = S(T/I)
we have T(R)/I < T(R/I). Conversely if t + I € T(R/I), then t*' € S(R) + I. Since bith
S(R) and I are in T'(R), (]%I} implies 7' € T(R) and so also t € T(R). O

Lemma 5.5.6 [tr for group rings| Let F be an integral domain with charF = p. Let G
be a periodic group and let Cp, be the set of p-reqular conjugacy classes of G. For C € C,, let
gc € C. Then (9c + S(FG) | C € Cp) is a F-basis for FG/S(FG).
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Proof: Let g € G and write g = ab with [a,b] = 1, a®" = 1 and b, p-regular. Then

g?" — """ = 0 and so by -(]EI) g = mod T(FG). Also by- 5.5.4 b = gc where C' = .
(9c + (FG) | C € Cp) is a spanning set for FG/S(FG). Now let rc € R with

Z rege € T(FG)
CceC,

Then there exists m € N with (3 cce, regc)?" € S(FQG). Since g¢ is p-regular, p { gc
and so p is invertible in Z/|gc|Z. Hence there exists meo € Z with |go ipmc — 1. Put
b

k=m]]cec, mc. Then g‘gk = gc and (P e, rege)? € S(FG). By [5.5.5((b

k k
Z % go = Z %, gt € S(FG)

)

cec, cec,
Thus shows that rgk =0 for all C € Cp. So also r¢ =0 and (gc + (FG) | C € Cp)
is a linearly independent. O

Lemma 5.5.7 [sr for matrix ring] Let R be a commutative ring and p = char R.
(a) [a] S(M,,(R)) consists of the trace zero matrices and M,(R)/S(M,(R)) = R.

(b) [b] p = charK is a prime, then T(M,(R)) = {a € M,(R) | tr(a)?” = Ofor somem €
N}}.
(c) [c] If R is a field, then S(M,,(R)) = T(M,(R)) and M,(R)/ T(M,(R)) = R.

Proof: Since tr(zy) = tr(yz) and so S(M,,(R)) < ker tr. ker tr is generted by the matrices
E;j and E;; — Ej; with i # j. E;; = EE;j — EijE;; and so Ej; € S(Mp(R). Eiy — Ejj =
EijEji — Ej’iEZj and so Fj;; — EJ] € ker tr.

Suppose now that p is a prime and let a € M, (R). Let b = tr(a)E11 and ¢ = a — b.
Then trc = 0, ¢ € S(M,,(R)) and so by a € T(M,(R)0 if and only if b € T(M,(R)).
Since tr(b?") = tr(a)?™ the lemma is proved. O

Theorem 5.5.8 [pmodular simple| Let G be a finite group, F an algebraicly closed field
and p = char F'. Then the number of isomorphism classes of simple FG-modules equals the
number of p-reqular conjugacy classes.

Proof: By [5.5.6) the number of p’ conjugacy classes is dimg FG/ T(FG).

Let A = FG/J(FG). By [6.3.4] J(FG) is nilpotent and so by [p.5.5(¢), FG/ T(FG) =
A/ T(A).

By [2.5.24 R = ;" ; My, (FF), where n is the number of isomorphism classes of simple
FG-modules.

Thus by [.5.5((d) and [5.5.7(c), R/T(R) = F". So dimpFG/T(FG) is the number of

isomorphism classes of simple FG-modules. O
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5.6 p-regular partitions

Definition 5.6.1 [def:p-regular partition| Let p and n be positive integers with p being
a prime. A partition X\ of n is called p-singular, if there eizsts i € N with A\jy1 = Mjro =
... = Nitp- Otherwise X is called p-regular.

Lemma 5.6.2 [p-regular=p-regular| Let p,n be positive integers with p beieng a prime.
The number of p-reqular conjugacy classes of Sym(n) equals the number of p-reqular parti-
tions of Sym(n).

Proof: Let g € G and p its cycle-type. Then g is p-regular iff none of the p; is divisible
by p. Any such partions we can uniquely determined by a sequence (z;),y; of non-negative
integers with > iz; = n, where j; is the number of &’s with p, = 4. Any p-regular partion
we can write as a sequence (z;)5°; with 0 < j; < p.

Let f = % viewed as an element of Z(x)), the ring of formal integral power
series. -

We compute f in two different ways:

(i) [1] Let A = N\ pN. For each i cancel the factor 1 — zP* in the numerator and
denumerator of f to obtain:

) g
[ = [lpen =5 = Jlea>isoz”
Z(jz’)e@AN Hz‘eA g = Z(ji)E@AN g2iea i

Thus the coefficent of ™ is the number of partions of n, none of whose parts is divisible
by p. So the coefficent of " is the number of p-regular conjugacy classes in Sym(n).

(ii) [2] Let B={0,1,...p—1}.

Io= [T 11_—3? = H?Lijop—lxj
Sipeannlleh = Tippequpe=ins

So the coefficient of ™ in f is the number of p-regular partitions.

Definition 5.6.3 [def:glambda] Let A be a partition of n and F = Z. Then

g =ged{(es | e) | t, sA — tableaux}

Lemma 5.6.4 [glambda and dlambda] Let \ be a partition of n. Then D* = 0 iff
char F' | g*.
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Proof: Since S* is spanned by the A-polytabloid we have

D =0
= S =5 nsM
= SA 1L SA
= er 1 eg VA — tableauxs, t
= (et | es) V-tableauxs, t
<= charF | (e; | es)z VA-tableauxs,t
= char F | g

Lemma 5.6.5 [glambda] Let A be a partition of n and for F =7 define

g = ged {(es | es) | t, s\ — tableauz}
Let z; = |{i | \i = j|}. Then g* divides [1521(2Y) and [152, 2! divides g

Define two A-tabloids s and £ to be equivalent {A;(t) | i € Z1t = {A;(s) | i € Z}, that is if
t and s have the rows but in possible different orders. Define Z; = {i € Z* | \; = j and
7 = (Zj);?‘;l. Then Z is partition of Z*. Note that £ and 3 5 are this is the case if and only
if there exists 7 = 7 (7, s) € Sym(Z™") with Az;(¢t) = Ai(s). Then Ay = [Ar| = |Ai(s)] = N
and so 7Z = Z. Conversely if 7 € Sym(Z) := Csymz+)(Z) = @jez+ Sym(Z;), then there
exists a unique tabloid s with A;(s) = Ar;(¢) and $ is equivalent to s.

Hence

1° [1]  Each equivalence class contains |Sym(Z) = z!:=[[}Z, z;! tabloids.
For a tabloid 7 and a tableau t let €,(T) be the coefficient of T in e;. So e, = > €/(T)T.

2° [2]  LetT and s are equivalent A-tableauz. Then there exists € = €(T,5) € {£1} such
that for any A-tableauz t, €,(3) = € - €(F).

Let m = m(T,5). Let 7; be the restriction of 7 to Z; and define € = [, sgnm/. We may
assume that 7 is involved in e; and so T = pt for some p € C;. Without loss r = pt. Define
7 € Sym(n by 7*(r(i, j) = 7(n (i), j). Then 7* € Cy, sgnm* = € and T°r = 5. Thus 3 = 7% p,
the coefficent of 7 in e; is sgnp and the coefficent of 3 is sgn(7 * sgnp) = esgnp. o

3° [3] 2! divides g’



Section 5.6. p-regular partitions 121

Let ¢,u be A tableaux. Let A be an equivalence class of tabloids and 7 € A. Let s € A
and choose € as in . Then

€t(8)eu(3) = €- €(3) - € €5(T) = €(T)e(5)
Thus >, g €1(5)eu(s) = |Aler(T)eu(T)
By (1), |A|] = z!. Summing over all the A’s we conclude that 2! divides (e; | e5). Thus

holds.

Let t be A-tableau. Define o € Sym(n) by o(t(i,)) = t(i, \; + 1 — j) and put ¢ = ot.
So t is the tableaux obtained by reversing the rows of t. We will show that (e; | () | ¢;) =
21 (2! ~

Put U; :=U;(t) := Upez, Ak(t), the union of the rows of ¢ of size i. Note that U; = U;(?)
and U = (U;) is partion of I,,. Also put Ug = Uij(t) = U; N A}, the part of column j of ¢
lying in U;. Then Uij(f) = UZH_j = U(Ul-j). Let P = (Uz]) | i,7 € Z). Then P is a partition
of I, refining both U and column partition. A’(¢). Hence Sym(U) < C;. Also o permutes
the U;; and so o normalizes Sym(U) and so Sym(U) < ocCio~! = C;. Observe |U} ()| = z;
if j <i and Uij (t) = 0 otherwise. Thus

4 (4] [Sym(U)| =TI, [U7 ()] =TI, (=)
We show next
5° [5]  Let m € Sym(U). Then e(xt) = €;(xt) = sgnr.

Since m € C} we have ¢/(nt) = sgnm.
Since m € C; we have ¢ (nt) = sgnr.
Since o fixes the rows of t, mom ! fixes the rows of 7t. Thus

it = wom 17rt:ﬁ::t~

and so holds.

6° (6]  Let € C} such that zt is involved in e;. Then m € Sym(U).

Since mt is involved in e; there exists 7 € C; with nt = E Hence for all k£ € I,
Ty (k) = r27(k) and so ry(m k) = rg(7—1k). Put @ = 7~ and @ = 7*~'. Then for all
kel

(%) acC, aecC; and r(alk)) =rialk))

We need to show that a(UZ:j )= Uij = d(Uij ) for all 7, j. The proof uses double induction.
First on 7 and then downwards on <.
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For I,J C Zt let U = U{U/ |i e I,j € J}. If I = Zt or J = Z* we drop the
subscript 1, respectively superscript. For example U</ = (JUF | i,k € ZT | k < j} consists
ofthe first j columns of t. ‘

Suppose that a(U}) = U} = &(U}) whenever | < j or I = j and k > i. Then a(UZ,) =
a(Uii) and a(U?) = U’ implies oz(Uij) - Uiz Hence by (*) also

(%) alpha(U7) C Ug;
Let c=74+1—j. Then Ufzf]f and

vg;=Juittt
k<i

and so by induction aU¢, = US,. Hence a(U?y d(UgZ) = ng C Us; = Us;. So by
(") a(U}) CU;n0° = Uf = U} and a(U!) = Uy;. Hence by (*) also a(U{ <U;NU7 = U}
and o(U}) =U;.

So is proved.

From (5°) and we conclude that (e; | ¢;) = [Sym(U)| = [[52,(z:!)%. Since g* divides
(et | €f) the lemma is proved. O

Proposition 5.6.6 [dlambda not zero| Suppose F is an integral domain and X\ is a par-
tition of n. Let p = char F. Then D # 0 iff X is p-reqular.

Proof: Since F' is an integral domain, p = 0 or p is a prime. Let A\ = (i7);=1. Then
p | T, 2! iff p < z; for some i, iff p | [[;(2:!)¢ and iff X is p-singular.

So implies that p | gy iff A is p-singular. And so by Dy = 0 iff \ is p-singular.
O

Theorem 5.6.7 [all simple sym(n)-modules] Let F be a field, n a postive integer and
p = char F.

(a) [a] Let A be a p-regular partition of n. Then Dy is an absolutely simple, selfdual
FSym(n)-module.

(b) [b] Let I be a simple FSym(n)-module. Then there exists a unique p-regular partition
X\ of n with I = D>,

Proof: @ By D* £ 0. By s induces a non-degenerate G-invariant form on
D* and so by 4.1.6{[c), D* is isomorphic to its dual. By D? is absolutely simple.
(]EI) If A and p are distinct p-regular partition then by and @), D* and D* are
non-isomorphic simple F'Sym(n)-modules. The number of simple F'Sym(n)-modules is less
or equal to the number simple Sym(n)-modules over the algebraic closure of F. The latter
number is by equal to to the number of p’-conjuagacy classes and so by equal to
the number of p-regular partitions of n. So (]ED holds. O
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5.7 Series of R-modules

Definition 5.7.1 [def:series| Let R be a ring and M and R-module. Let S be a set of
R-submodules of M. Then S is called an R-series on M provided that:

(a) [a] 0€S and M € S.

(b) [b] S is totally ordered with respect to inclusion.
(c) [c] ForallD#T CS, NT €S and|JT €S.

For example Z > 27 > 6Z > 30Z > 210Z > ... > 0 is an Z-series on Z.

Definition 5.7.2 [def:jumps]| Let R be a ring, M an R-module and S an R-series on M.
For0#AeSput A~ ={BeS|BCA}. If A# A™ then (A~,A) is called a jump of
S and AJ/A™ a factor of S. S is called a composition series for R on S provided that all its
factors are simple R-modules.

The above example is composition series and its sets of factors is isomorphic to Z/pZ,
p a prime.

Lemma 5.7.3 [basic series| Let R be a ring, M an R-module, S an R-series on M.

(a) [a] Let A,B € S with B C A. Then (B, A) is a jump iff A= C or B = C for all
C e S with BCC C A.

(b) [b] Let U C M. Then there exists a unique A € U minimal with U C A. If U is finite
and contains a non-zero element then A~ # A and AUU ¢ A™.

(c) [c] Let 0 # m € M. Then there exists a unique jump (B, A) if S with v € A and
v ¢ B.

Proof: @ Suppose first that (B, A) isajump. Then B=A". Let C e SwithBC C C A
Suppose C C A. Then C C A~ = B and C = B.

Suppose next that A = C or B = C for all C € § with B C C C A. Since B C A,
B C A™. Let C' € § with C' C A. Since S is totally ordered, C C B or B C C. In the latter
case, B C C C A and so by assumption B = C. So in any case C C B and thus A~ C B.
We conclude that B = A~ and so (B, A) is a jump.

@) Put A =J{S € S| U C S}. By A€ S and so clearly is minimal with respect
to U C A and is unique with respect to this property. Suppose now that U is finite and
contains a non-zero element. Then A # 0. Suppose that A = A~. Then for each u € U we
can choose B, € S with u € B, and B, C A. Since U is finite {By,u € U} has a maximal
elemeent B. Then U C B C A, contradicting the minimality of A

Thus A # A~ and by minimality of A, U ¢ A.

Follows from (b)) applied to U = {m}. O
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Lemma 5.7.4 [series and basis| Let R be a ring, M a free R-module with basis B and S

be an R-series on M. Then the following four statements are equivalent. one of the follwing
holds:

(a) [a] For each A€ S, ANB spans A over R.

(b) [b] For each B€ S, (a+ B |a € B\ B} is R-linear independent in V/B. Then

(¢) [c] For each jump (B, A) of S, (a+ B | a € BNA\B} is R-linear independent in A/B.
(d) [d] Forall A,B €S with BC A, (a+B|aeBnA\B} is an basis R-basis for A/B.

Proof: @: @: (ra) € Daepya B with 3= cp a7aa € B. Then by @ applied to B
there exists (14) € @,epna With

E T = g a0

a€B\A a€BNA

Since B is linearly independent over R this implies r, = 0 for all @ € B and so @ holds.
:> : Obvious.
:> @: Let a € A. Since B spans M over R there exists afinite subset C of B and

(re) € @¢ R* with a = )" o rcc. Let D € S by minimal with C € D. Then (D, D) is a
jump and C \ D~ # (. Suppose that D ¢ A. Since S is totally ordered, A C D~. Thus

Op/p-=a+D" = ZTCC—I—D_ = Z rec+ D™
ceC ceC\D~

a contradiction to .
(@)= (d): () implies that (a + B | @ € A} and so also (a + B | a € A} spans A/B.

Since () implies (b)), (e + B | a € B\ B} and so also (a+ B | a € BN A\ B} is R-linear
independent. So @ holds.
@:> @: Just apply @ with B = 0. ]

5.8 The Branching Theorem
Definition 5.8.1 [def:removable node| Let A be partion of n
(a) [a] A node d € [N is called removable if [\ \ {d} is a Ferrers diagram.

(b) [b] di = (ri,¢i),1 < i <k are the the removable nodes of [\] ordered such that r; <
ro < ... <1 A = XN\ {di} and X |= {\D |1 <i<k}

(c) [c] e € ZT — ZT is called an exterior node of [\ if D U{e} is a Ferrers diagram . \ |
is the set of partions of n obtained by extending [\ by an exterior node.
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Lemma 5.8.2 [basic removable| Let A\ be a partition of n and (i,j) € D. Then the
following are equivalent

(a) [a] (i,j) is a removable node of [A].
(b) o] j =\ and Ai > Ais1.

(c) [e] i=X, and \}; > N}, ;.

(d) [d] j=X andi=X,

Proof: Obvious. O

Definition 5.8.3 [defirestrictable] Let \ be partition of n and t be a \-tableau. We say
that t is restrictable if t=*(n) is a removable node of [\]. In this case t |-1(;, .y is denoted
by t |. t is called restrictable if t contains a restrictable tableau s. In this case we define

tl=sl

Lemma 5.8.4 [basic restrictable| Let A be a partion of t. If t is restricable then t | is
a tableau. If t is standard then t is restrictable and t | is standard. Let m € Sym(n — 1).
Then t is restrictable iff 7t is restrictible. In this case (wt) |= 7 (t |). t is restrictable iff ©t
is restrictable In this case (wt) |= (¢t |).

Proof: Obvious.

Theorem 5.8.5 [restricting specht] Let A be a partition of n. For 0 < i < k let V; be
the F-submodule of S* spanned by all e; where t is a restrictable A\-tableau with n in one of
the rows r1,72,...7;. Then

0=Vo<Vi...< Vi1 <V =28
as a series of FSym(n — 1)-submodules with factors V;/V;_1 = S
Proof: Clearly the the set of restrictable A tableaux with n in row r; is invariant under

the action of Sym(n — 1). Thus each V; is an F'Sym(n — 1) submodule of S*. Also clearly
Vi—1 <V, and it remains to show that V;/V;_1 = S’\m. For this define and F-linear map

(1) 6, M — M, T t| ifniSiI‘lrowri of t
0 otherwise
Clearly 0; commutes with the action of Sym(n —1) and so 6; is F'Sym(n — 1) linear. Let

n be a restrictable tableau with n in row r;. Then for all 7 € C; n is in a row less or equal
to r;, with equality iff 7 fixes n, that is if 7 € Cy|. Thus
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e, j=1i
9 0:(e,) —
@ (ee) {o if j <

If 5 is a A(D-tableau, then s = ¢ | for a (unique) restrictable A tableau ¢ with n in row
r;. Hence

(3) Vi1 <Vinkerd; and V;/V;Nker6; = Img; = S*”

Let B be the set of standard A-polytabloids and B; the e; with ¢ standard and n in row
r;. Then by (1) 0;(B;) is the standard basis for 29 and so is linear independently. Thus
also the image of B; in V;/V; ker 0; is linearly independent. Consider the series of F-modules

0=Vo<Vinkerf <Vi <Viankerfy < Vo< ...< Vi1 <ViNkerfp <V < S*

Each e; € B lies in a unique B; and so in V; \ (V; Nker ;). Thus BNV; Nkerf; C V;_.
So we can apply to the series of F-modules and conlcude that V; Nkerf;/V;_; is as
the emptyset as an R-basis. Hence V;_; = V; Nker#;. For the same reason Vj, = S* and
theorem now follows from (3). O

Theorem 5.8.6 (Branching Theorem) [branching theorem)| Let F' be a field with char F' =
0 and A a partition of n.

(a) [a]

s* LSym(nfl): @ St
HEAL

(b) [b]
S)\ TSym(n—l): @ SH
HEAT

Proof: (f]) Follows from and Maschke’s Theorem [2.3.2]
() Follows from (&) and Frobenius Reprocity
5.9 S22
In this section we investigate the Specht modules S, §(=11) and §7~22,
Lemma 5.9.1 [s(n)] M = s = p) ~ p,

Proof: There there a unique (n)-tabloid ¢ and 7t = t for all # € Sym(n). Moreover e; =t
and so S = M) Also S+ = 0 and the lemma is proved. O
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Lemma 5.9.2 [s(n-1)] Let x; the unique (n—1,1)-tabloid with i in row 2. Let z =Y " | x;
be the sum of all A-tabloids. Then

(a) [a] SO=UD = {3 | fi; | fie F,Y0, fi=0.
(b) [b] SC—LOL = pz,

(c) [c] S=LDLng0=1L — (f2| fe Fnf=0}.

Proof: (@) If ¢ is tableau with #(1,1) = i and #(2,1) = j, then e; = x; — x;. This easily
implies @

() >y, Lowi—z; it fi = fj.

(c) Follows from @ and (]ED O

Corollary 5.9.3 [dim d(n-1)] Let F' be a field and p = charF.
(a) [a] If ptn, then S=1D = D=L has dimension n — 1 over D.

(b) [b] Ifp|n, then D1V has dimension n — 2 over F.
Proof: Follows immediately from [5.9.2] O

To analyze S(n — 2,2) we introduce the follwing notation: Let n € N with n > 4 and
A = (n—2,2). Let P be the set for subsets of size two in I,,. For P € P, let xp be the
A-partition (P, I, \ P). Then (zp | P € P) is an F-basis for M*. For a,b,c,d pairwise
distinct elements in I,, put €abled = Tac + Tbd — Tad — The- So Cabled = €t for any A tableau

ac...
of the form v

For i € I, define z; := Y ,cpcpxp and y; = ZiéPeP xp. Alsolet z = ) popap and
observe that x; +y; = z for all ¢ € I.

Lemma 5.9.4 [basis for s(n-2,2)perp]

(a) [a] x1,2,... 20 1,Yn is an F-basis for SM.
(b) [b] x1,29,...2n 1,2 is an F-basis for SM.

(c) [c] y1,y2,.- - Yn_1,2 is an F-basis for S .
(d) [d] If2 is invertible in F then x1,xa,. ..y, is an F-basis for SM.

(e) [e] Ifn —2 is invertible in F, then y1,ya, ... Yn is an F-basis for SM-.
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Proof: @) We will first show that z; L eg)q for all appropriate i, a,b,c,d. If i ¢
{a,b,¢,d}, v and eqp|cq have do not share a tabloid and so (z; | €gp)eq) = 0. So suppose
i = a, then z; and e,p|.q share x4, and x,q With opposite signs and so again x; L €gp|cq-
Clearly z L egpjcq and so also y; L egpjeq- Thus z;,y; and 2 are all contained in S

Now let a = ) pep 'PTP € S We need to show that a is a unique F-linear combi-
nation of x1,x9,...Ty_1,yn. For n # i € I, x; is the only one involving x;,. So replacing
a by a — Z?:_ll rinT; we assume that r;, = 0 for all ¢ # n. And we need to show that a
is scalar multiple of y,,. That is we need to show that r;; = ri; whenever {7, j}, {k,l} € P
with n ¢ {i,j,k,l}. Suppose first that PN Q # 0 and say i = k and withoutloss j # .
Since a € SM, a L €in)ji- Thus rij + 1y — 1y — rpy = 0. By assumption 7, = rp,; = 0 and
so 13j = 1y = 71 In the geneal case we conclude r;; = ry, = 71y and @ is proved.

Observe that z = Z?:_ll x; — Yn. Thus @ follows from @

(c) Since y; = z — x; this follows from (b)).

(d) Observe that 37" | 2; = 2z and so z, = — Z?:_ll x; +22. So @ follows from @

@ We have 370y = >0 (2 — @) =nz — 30 2 = (n—2)2. Soyn = — 2305 4 +
(n —2)z and () follows from (d. O

It might be interesting to observe that y1, ..., yn_1, Ty is only a basis if n—2 is invertible.
Indeed @, = — S0 @i + 22 =30 (i — 2) + 22 = 3, vi + (n — 2)2.
We know proceed to compute S* N SM if F is a field.

Lemma 5.9.5 [s(n-2) cap s(n-2)perp| Suppose F' is field and put p = char F'.

(a) [a] Suppose p=0 orp is odd and n # 1,2 mod p or p =2 and n =3 mod 4. Then
n SM N SM = 0.

(b) [b] Suppose p is odd andn =1 mod p orp=2, n=1 mod 4. Then S*NSM = Fz.

(c) [c] Suppose p is odd and n =2 mod p or p =2 and n =2 mod 4, then S} N SM =
(Fy; |1 <i<mn) and >  y; =0.

(d) [d] Suppose p =2 and n =0 mod 4. Then S* N SM = (Fyy; |1 <i<j<n)and
Z?:l Yn = 0.

Proof: Since F is a field and (- | -) is non-degenerate, S*+ = S* and so S* N S*M =
SAM-L N S s the radical of the restriction of (- | -) to S

By Y1, Y2 - - Yn—1% is basis for SM. Let a = roz + Z?;ll r;y;. Then

Observe that

i L) = ("))

(Wi ly) = (") i#J

(i | 2) = ("3")
(z]2) = (3)
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So(a|y;) =ro("3 ") +ri (" )+ tsm i ("57). Putr = 305 . Since (") —("57) =

(”Iz) =n — 1 we conclude a € S* if and only if
(1) (alyj)I(n2 )ro+(n2)m~+<"2 >7“:0V1§j<n
and

(2) <a\z)=ro(g)+r<";1):o

Sustracting (1) for two diffrent values of for j gives

(3) n=2)rj=Mm-2)V1<j<k<n-1

(4) (n—2)r = (n—1)(n—2)r,

Substracting (2) from (1) gives

(5) (n—1Drg+ (n—2)r; =(n—2)r

and using (4)

(6) (n—1)rog=(n-— 2)2rj

Note also that (1) and (2) are equivalent to (2),(3) and (6).

Suppose first that n —2=0in F. Then > ;y, = (n—2)z=0and (y; | 1 <i<n)p =
(yi|1<i<n-—1)p and

Alson —1# 0. So (3) and (6) hold if and only if 7o = 0. If p £ 2 or p=2 and n = 2
mod 4, then also (ngl) = 0in F and so also (6) holds. Thus () holds in this case. If p =2
and n =0 mod 4, then (”51) =1 and so (6) holds if and only if » = 0. Observe also that
Soiiyi =0and neven implies (y; +y; |1 <i<j<nmp=(yi+y;|1<i<j<n—1)p
and so @ holds.

Suppose next that n — 2 # 0 in F. Then (3) just says r; = r,. Assume that n —1 =0
in F. Then (6) holds iff 7; = 0 for all j. Hence (2) says ro(3)r =0. If p# 2 or p =2 and
n=1 mod 4, (g) =0 and @ holds. If p =2 and n = 3 (mod 4), then (g) =1.Sorg=1
and @) holds.

Assume next that n—1 # 0 and so p # 2. Multipying (2) with % gives nrg = —(n—2)r.
Adding to (5) gives ro = 0. So also 0 = (n — 2)r = (n — 2)(n — 1)r; and r; = 0. Thus (&)
holds. O
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Corollary 5.9.6 [dimension of d(n-2,2)] Suppose F is a field, then dimp S("=22) =

@ Moreover,

(a) [a] Suppose p =0 orp is odd and n # 1,2 mod p or p =2 and n =3 mod 4. Then
dimp D(n=22) = Mn=3),

(b) [b] Suppose p is odd andn =1 mod p orp=2,n=1 mod 4. Then dimp D22 =

n(n—3
(-3

(¢) [c] Supposep isoddandn =2 mod p orp=2andn =2 mod 4. Then dimp D("~22) =
(n—1)(n—4) 1
S 1.

(d) [d] Suppose p=2 andn =0 mod 4. Then dimp D*~22) = ("71)2&.

Proof: Since dim D* = dim S* — dim(S* N S*+), this follows from and some simple
calculations. 1

Definition 5.9.7 [def:shape] Let M be an R-module.
(a) [a] A shape of height n of M is inductively defined as follows:

(i) [i] A shape of height 1 of M is any R-module isomorphic to M.
(i1) [ii] A shape of height h of M is one of the following.
(a) [1] A triple (A, ®, B) such that there exists R-submodules X,Y of M with
M =X ®Y such that A is a shape of height i of X, B is a shape of height j
of Y and k =i+ j.
(b) [2] A triple (A, |, B) such that there exists R-submodules X of Y such that A
is shape of height i of X, B is a shape of height j of M/X and k =1+ j.

(b) [b] If M ~ S means that S is a shape of M. A shape (A, ®, B) as in is denoted

by A® B. A shape (A,|,B) as in (a:ii:d) is denoted by A | B or %

(c) [c] A factor of a S shape of M is incuctively defined as follows: If S has height 1, then
S itseld the only feator of S. If S=A| B or S = A® B, then any factor of A or B is
a factor of S.

(d) [d] A simple shape of M is a shape all of its factors are simple.

Observe that if M ~ A | (B | C then also M ~ (A | B) | C and we just write
M| A|B|C. Similar M ~ (A@& B& C) means M ~ (A@® B) & C and equally well
A® B(®C). We also have M ~ A@ B it M ~ B® A. But M ~ A | B does not imply
M ~B|A Wehave M ~ A& (B | C) implies M | (A& B) |C and M ~ B | (Aa ().
But M ~ (A@® B) | C does not imply M ~ A& (B ~ C).
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For example if F' is a field with char F' = p then by MO=1L1) D) g pn=L1) jf
ptn and M@=LU~D" | D=L | D(p) if p | n.

If might also be worthwhile to define the following binary operation on classes of R-
modules. If A, B are classes of R-modules, then A @& B denotes the set of all R-modules M
such that M 2 X @Y with X € Aand Y € B. A| B is the class of all R-modules M such
that M has an R-submodule X with X € A and M/X € B. A shape of M then can be
interpreted as a class of R-modules containing M obtained form the isomorphism classes of
R modules and repeated application of the operations @ and |.

To improve readabilty we write D(a,b,c...) for D(®b¢) in the next lemma.

Corollary 5.9.8 [shape of m(n-2,2)] Suppose F is a field. Then D22 has simply
shapes as follows:

(a) [a] Supposep =0 orp is odd andn #0,1,2 mod p orp=2 andn =3 mod 4. Then

M®=22)  D(n—2,2)@ D(n—1,1) & D(n)
(b) [b] Supose p# 0,2 and n=0 mod p. Then

D(n)
M2~ D(n-2,2) @® D(n—1,1)
D(n)

(c) [c] Suppose p is odd andn =1 modp orp=2,n=1 mod 4. Then

D(n)
M"=22 ~ Dn-22 @ Dn-1,1)
D(n)

(d) [d] Suppose p is odd and n =2 mod p. Then

D(n—1,1)
M=22 . Dn-22) @& D)
D(n—1,1)

(e) [e] Suppose p=2 andn =2 mod 4. Then

D(n—1,1)
D(n)
M=22 o Dn-2,2) @& D)
D(n)
D(n—1,1)
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(f) [f] Suppose p=2 and n =0 mod 4. Then

D(n—1,1) & D(n)
M™=22) 7 D(n —2,2)
D(n—1,1)® D(n)

Proof: This is straighforward from As an example we consider the case p = 2 and
n =2 (mod 4). Observe that (z | z) = (3) # 0 and so M* = Fz. Thus M* ~ D(n) & z L,
and the restrition of (- | -) to z* is a non-degenerate.

MB =S5 N SM = (y; |1 <1<n). So B has the submodule, A = (y;y; | 1 <u <
Jj <mn). Since Y i ;y; =0, B= D(n—1,1). Since n is even, A/B # 1 and A/B = D(n).
S*JA = D* = D(n—2,2). Since SM = A+ Fz, S* = ztNAt. SoztNB+/S* = (A/B)* =
D(n)* = D(n). Moreover, z+/z+ N A+ = A* =~ D(n —1,1)* = D(n —1,1). Thus (EI) holds.
(]

5.10 The dual of a Specht module

Definition 5.10.1 [def:twisted module| Let R be a ring, G a group , M an RG-module
and € : G — Z(R)! a multiplicative homomoprhism. Then M, is the RG-module which is
equal to M as an R-module and g-c m = €(g)gm for all g € G,m € M.

Note that this definition is consistent with our definition of the RG-module R..
Proposition 5.10.2 [slambdaprime] Let A\ be a partion of n. Then
S)\* ~ M)\/S}\J_ ~ Ss)\gn

as FSym(n)-module.

Proof: Fix a A tableau s. Let m € Ry = C(3). Since Ry = Cy, @ gives mey =
SgNTey = T -sgn €y. Hence there exists a unique F'Sym(n)-linear homorphism

(1) ag : M — MY with 5 — ey

Let t be any A-tabloids. Then the exists 7 € Symn with ws = ¢ (namely 7 = ts~!) and
SO

Qg @)as (E) = T 'sgn €5/ = Sgn(ﬂ')ews’ = Sgn(t‘sil)et’

that is

(2) as(D) = sen(ts e
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Observe that (2) implies

(3) Ima, = SN

Since A" = \ we also obtain a unique F'Sym(n — 1) linear map

(4) oy s M — MM — sgn(ts™Y)e
Then
(5) Im oy = S*

We claim that ag is the adjoint of as. That is

(6) (as(®) | 1) = (] ax (t)T

for all A-tableaux ¢,7.
Indeed suppose that 77 is involved in involved in ay(f) = sgnts~'ey. Then there exists
B € Cp with 17 = Bt’ and so there exists 0 € R,» with d7" = 5t'. Moreover

(as(@) | /) = sgn(ts™')sgnp
Observe that § € C,. and 3 € R;. Thust = @ = dr and so t is involved in e, and

(T | g (17)) = sgn(rs™")sgnd
or = [t implies 6rs~! = Bts~! and so
sgn(rs1)sgnd = sgn(ts~!)sgns
and so (6) holds.
Let m € M*. (-] ) is non-degenereate, (6) implies as(m) = 0 iff (as(m) | m’) = 0 for
all m' € M iff (m | g (m/)) = 0 and iff m € (Imag) L. So by (5) ker iy = S* and so
M*/SM = M* /kera, = Ima, = S*
]
Lemma 5.10.3 [tensor and twist| Let R be a ring, G a group , M an RG-module and
€: G — Z(R)* a multiplicative homomoprhism. Then
M.= R.®r M

as an RG-module.
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Proof: Observe first that there exists an R-isomorphism « : Re®@r M — M with r@m —
rm. Moreover, if g € G,r € R and m € M then

a(glr@m)=a(g-er@gm) = a(e(g)r) ® gm
= e(g)rgm=e(g)grm
= greTm = gea(r®m)
and so « is an RG-ismomorphism. U

Corollary 5.10.4 [slambdaprime II]
(a) [a] SO = Fg.
(b) [b] Let X be a partition of n. Then SM = S(1") @ SN

Proof: (a) By [5.9.1] S 2 F and so by [5.10.9 F = F* = g0+ = @) — gl
) M= 8X, =Fe s8N =50 g sV, O

sgn
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Brauer Characters

6.1 Brauer Characters

Let p be a fixed prime. Let A be the ring of algebraic integers in C. Let I be an maximal
ideal in A containing pA and put F = A/I. Then F is a field with with charF = p.

tA—-TFa—a+1

be the correspoding ring homorphism.
Let A be the localization of A with respect to the maximal ideal I, that is A = {¢ | a €
A,be A\ I. Observe that * extends to a homomorphism

LA F,% — a*(b*)_1

In particular I := ker* = {{ | a € I,b € A\ I} is an maximal ideal in A, A/T 2 F and
is the kernel of the homomorphism I NA = I. Let U be the set of elements of finite p/-order
in Af,
Lemma 6.1.1 [f=fpbar|
(a) [a] The restriction U — F* u — u* is an isomorphism of multiplicative groups.
(b) [b] F is an algebraic closure of its prime field Z* = TF,,.
Proof: Let u € U and m the multiplicative order of u. Then

m_q m—1

m—1 ' - — '
Z xt = p— (x —u')
=0

=1

Substituting 1 for x we see that 1 — w divided m in A. Thus 1 — «* divides m* in F.
Since p 10 and char F' = p, m* # 0 and so also 1 — u* # 0. Thus * is 1-1 on U.

135
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If a € A then f(a) = 0 for some monic f € Z[z]. Then also f*(a) =0 and f* # 0. So a*
is algebraic over Z*. Let K be an algebraic closure of F and so of Z*. Let 0 # k € K. Then
k™ =1 where m = |Z*[k]| — 1 is coprime to p. Since U* contains all m roots of " — 1 we
get k € U*. Thus K* C U* C F* C K* and the lemma is proved. O

Definition 6.1.2 [def:brauer character| Let G be a finite group and M an FG-module.
G is the set of p-reqular elements in G. Let g € G and choose &,...&, € U such that
n(g) = [l (@ — &), where na(g) is the characteristic polynomial of g on M. Put
dm(g) = D11 &. Then the function

or G — A g — dulg)

is called the Brauer character of G with respect to M.

Recall that if H C G t}}en we view RH as R an an R-submodule of RG. Also note that
oM = deé om(9)g € AG C AG. Observe also that 1ge is the Brauer character of the
trivial module F.

Lemma 6.1.3 [basic brauer| Let M be a G-module.

(a) [a] ¢ is a class function.

(b) o] Barlg) = darle™)-

(c) [e] s = our--

(@) [d] If H<G then ¢ 5= ba,-

(e) [e] F be the sets of factors of some FG-series on M. Then

¢M=Z¢F

FeF

Proof: Readily verified. See O

Definition 6.1.4 [def tilde a]

(a) [a] For g € G let gp,gy be defined by gy, 9y € (9), 9 = GpGp» gp 5 a p- and gy is a
p’-element.

(b) [b] Fora=3% cqaq9 € CG, a=alg=3 cqa99-
(¢) [c] Fora=CG define a € CG by a(g) = a(gy -

Recall that xas(g) = tras(g) is the trace of g on M.
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Lemma 6.1.5 [brauer and trace] Let M be a FG-module. Then (dpr)* = xar.

Proof: Let W;,1 <i < n be the factors of an F(g) composition series on M. Then since
F is algebraically closed, W; is 1-dimensionaly and g acts as a scalar p; on W;. Since F
contains no non-trivially p-root of unity g, acts trivially on W; and so also g,y acts as y; on
W;. Pick & € U with £ = p;. Then

on(g) = omlgy) =D &
=1

and so

(Dar(9))" =D pi = xm(g)
i=1

Let S, be a set of representatives for the simple FG-modules.

6.2 Algebraic integers

Definition 6.2.1 [def:tracekf] Let F : K be a finite separable field extension and E a
splitting field of F over K. Let X3 be set of F-linear monomorphism from F to K.

trztr%:[F—»K|f—>Za(f)

oeEY

Lemma 6.2.2 [basic tracekf] Let F : K be a finite separable field extension. Then s :
FxF —K,(a,b) — tr(ab) is a non-degenerate symmetric K-bilinear form.

Proof: Clearly s isK-bilinear and symmetric. Suppose that a # f € F+. Then tr(ab) = 0
for all b € F and since a # o, tr(f) =0 for all f € F. Thus ) .5, o, contradiction the linear
idependence of filed monomorphism [Grl, I11.2.4].

Corollary 6.2.3 [trace dual basis] Let F : K be a finite separable field extension and B
a K basis for F. Then b € B there exists a unique b € F with tr(ab) = dqp for all ab € F.

Proof: [6.2.2] and 4.1.8 O

Definition 6.2.4 [def:integral| Let S be a commutative ring and R a subring.

(a) [a] a € R is called integral over S if there exists a monic f € S[x] with f(a) = 0.

(b) [b] Ints(R) is the set of elements in S intgeral over R.
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(c) [c] R is integrally closed in S if Intg(S).

(d) [d] If Ris an integral domain, then R is called integrall closed if R is integraly closed
in its field of fractions Fg.

Lemma 6.2.5 [basic integral] Let S be a commutative ring, R a subring and a € S.
Then the following are equivalent:

(a) [a] a is integral over S.
(b) [b] Rla] is finitely generated S-submodule of R.
(c) [c] There exists a faithful, finitely R-generated Rla] module M

Proof: ()= (b): Let f € R[z] be monic with f(a) = 0. Then a" € R(l,...,a" ') and

so Rla] = R(1,a,...,a""!) is finitely R-generated.
(&)= (b): Take M = Rla].

()= (d): Let B € M be finite with M = RB. Choose a matrix D = (d;;) € Mp(R)

with ai = ), pd;;j for all i € B. Let f be the characteristic polynomial of D. Then
f € R[z] and f is monic. By Cayley-Hamilton [La, XV Theorem 8] f(D) = 0. Since
fla)i=23_,cp f(D)ijj for all i € I we get f(a)M = 0. Since Ag(M) = 0 we have f(a) = 0.

]

Lemma 6.2.6 [integral closure| Let S be a commutative ring and R a subring of S.
(a) [a] Leta € S. If a is integral over R, then also Rla] is integral over R.

(b) [b] Let T be a subring of S with R C T. Then S is integral over R iff T is integral
over R and S is integral over T .

(c) [c] Ints(R) is a subring of R and Intr(S) is integrally closed in S.

Proof: () Let b € R[a]. By[6.2.5|[b), R[a] is finitely R-generated. Since Rla] is a faithful
R[b]-module, implies that b is integral over R.

One direction is obvious. So suppose S : T and T : R are integral and let a € S. Let
f = sum!_ t;x* € T[z] be monic with f(a) = 0. Put Ry = R and inductively R; = R;_1[a;].
Then a; is integral over R;_1, R; is finitely R;_i-generated. Also f € R,[z| and so Ry[a] is
finitely R,-generated. It follows that R,[a] is finitely R-generated and so by , a is
integral over R.

Let a,b € Intg(R). By (a) Rla] : R and Rla,b] : Rla] are integral. So by (b)
Rla,b] : R is integral and so R[a,b] C Intg(R) and Intg(R) is a subring. Since both
Intg(Intg(R) : Intg(R) and Intg(R) are integral, (D) implies that Intg(R) is integrally
closed in R. D
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Lemma 6.2.7 [f integral| Let R be a integral domain with field of fraction F and let K
be a field extension of F'. Let a € F' be integral over R and f the minimal polynomial of a
over IF.

(a) [a] All coefficents of f are integral over R.
(b) [b] IfK:T is finite seperable, then tr(a) is integral over R.

Proof: @ Let A be the set of roots of f in some splitting of f over K. Alos let g € R[x]
be monic with f(a) = 0. Then f | g in F[z] and so f(b) = 0 for all b € A. Thus A is integral
over R. Since f € R[A][z], (g]) holds.

(o) Let ¥ be the set of monomorphism from K to the splitting field of K over OF. Then
each o(a),o € ¥ is a root of f. Thus tra =[], .5 0(a) € R[A]. O

Lemma 6.2.8 [k=int/r|Suppose R is an integral domain with field of fraction F. Let K
be an algebraic field extension of F. Then K = {% | i € Intg(R),r € R*}. In particular, K
is the field of fraction of Intg(S).

Proof: Let k € K. Then ther exists a non-zero f € Flz| with f(k) = 0. Multitiplying f
with the product of the denominatos of its coeeficents we may assume that f € R[z]. Let
f =31 aiw; with a, # 0. Put g(z) = ap~' f(£) = Yl gaa" ' ~'z’. Then g € R[z], g is
monic and g(a,k) = a1 f(k) = 0. Thus a,k € Intx(R) and k = 2. O

Definition 6.2.9 [def:lattice] Let R be a ring, S a subring of R, M an R-module and L
an S-module of M. Then L is called a R : S-lattice for M provided that there exists an
S-basis B for L such that B is also an R-basis for M.

Lemma 6.2.10 [intfr noetherian| Suppose R is an integral domain with field of fraction
F. Let K be a finite seperable extension of F.

(a) [a] There exists an F : R-lattice in K containing Intg (R).
(b) [b] If R is Noetherian, so is Intg(R).
(¢) [c] If R is a PID, Intg(R) is an F : R-lattice in K.

@ Let B be a [ basis for K. For each b € B there exisst 4, € Intg(R) and r, € Rf with
b = i—f. So replacing B by b][,;cpm we may assume that B C Intg(R). By @ and
there exists b* €€ K with tr(b*d) = dpq for all b,d € B and (b* | b € B) is a F-basis
for K. Thus L = Intg(R)(b* | b € B) is an Intg(R)-lattice in K. Let i € Intgx(R). Then
i =) e tr(bi)b*. Since Intg(R) is a subring bi € Intg (R). So by tr(bi) € Intg(R)
and so ¢ € L.

(]E[) By @ Intg (R) is contained in a finitely generated R-module. Since R is Noetherian
we conclude that Intg(R) is a Noetherian R- and so also a Neotherian Intk (R)-module.
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By @ Intg (S) ia a finitely generated, torsion free R-module and so is free with
R- basis say D. It is easy to see that D is also linearly independent over F. From
K = FIntx(S) and so FD = K and D is also an F basis. O

Definition 6.2.11 [def:algebraic number field] An algebraic number field is a finite
field extension of Q.

Lemma 6.2.12 [primes are maximal| Let K be an algebraic number field and J a non-
zero prime ideal in R := Intg(Z). R/J is a finite field and in particular J is a maximal
tdeal in R.

Proof: Let 0 # j € J and let f € Z[z] monic of minimal degree with f(j). Let f(z) =
g(x)r + a with @ € Z. Then f(j) = 0 gives a = —g(j)j € J. By minimality of deg f,

9(j) # 0 and so also a # 0. Thus JNZ # 0 and so Z + J/J is finite. By [6.2.10|fa) R is a
finite generate Z-module. Thus R/J is a finitely generated Z + J/J-module and so R/.J is
a finite. Since J is prime, R/J is an integral domain and so R/J is a finite field. O

Definition 6.2.13 [def:dedekind domain] A Dedekind domain is an integrally closed
Noetherian domain in which every which every non-zero prime ideal is mazximal.

Corollary 6.2.14 [algebraic integers are dedekind] The set of algebriac integers in an
algebraic number field form a Dedekind domain.

Proof: Let K be an algebraic number field and R := Intg(Z). By [6.2.§ K is the field of
fraction of R. So by -. c) R is integrally closed. By m 6.2.10| R is Noetherian and bym

all prime ideals in R are maximal.

Lemma 6.2.15 (Noetherian Induction) [noetherian induction] R be a ring and M
be an Noetherian R-module and A and B sets of R-submodules of M. Suppose that for all
A€ A such that D € B for all A< D € A, then A C B.

Proof: Suppose not. Then A\ B has a maximal element element A. But then D € B for
all A < D € A and so by assumption A € B, a contradiction. O

Lemma 6.2.16 [contains product of prime| Let R be a commutative Noetherian ring
and J an ideal in R. Then there exist prime ideals Py, P>... P, € R with J C P; and
[Tie, PieJ.

Proof: If J isis a prime ideal the lemma holds with n = 1 and P; = J. So suppose J is
not a prime ideal. The there exists ideal J < J, < R, k = 1,1 with J;J5 C R. By Notherian
induction we may assume that there exists prime ideals J; C P in R with H?:’Cl Py, C Jg.
Thus [T;_, [11*, Px < J1J2 C J. O
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Definition 6.2.17 [def:division| Let M be an R module and N C M and J C R. Then
N+yJ={meM|JmCN}.

For example 0 +ps J = Ap/(J) and if N is an R-submodule of M, then N < N +; J
and N =y J/N = Apyn(J). If R is an integral domain with field of fraction K and a,b € K
with b # 0, then Ra +x Rb = RY.

Definition 6.2.18 [def:fractional ideal] Let R be a integral domain with field of fraction
K. A fractional ideal of R is a non-zero R-submodule J of R such that kJ C R for some
k € K. FI(R) is the set of fractional ideals of R. Observe that FI(R) is an abelian
monoid under multiplication with identity element R. A fractional ideal is called invertible
if its invertible in the monoid FI(R). FI*(R) is the group of invertible elements in FZ(R).

Lemma 6.2.19 [basic monoid] Let H be a monoid.

(a) [a] Every h has at most one inverse.

(b) [b] Let a,b € H. If H is abelian and ab is invertible, then a and b are invertible.
invertible.

Proof: () If ah = 1 and hb = 1, then b = (ah)b = a(hb) = a.
([0) Let h be an inverse of a. Then 1 = h(ab) = (ha)b and so since H is abelian, ha is
an inverse of b. By symmetry hb is an inverse for a. O

Lemma 6.2.20 [basic invertible] Let R be a integral domain with field of fraction K and
let J be a fractional ideal of R.

(a) [a] IfT # 0 is an R-submodule of J, then T is a fraction ideal of R and R+xJ C R+xT.
(b) [b] R-=xJ is a fractional ideal of I.
(c) [c] J is invertible iff and only if (R+x J)J = R. In this case its inverse is (R+x J)J.

Proof: By defintion of a fractiona ideal there exists & € K§ with kJ C R.
@ Note that ¥T" C R and so T is a fractional ideal. If [K C R then also [T C R and

@ is proved.
(b) Since k € R+x J, R+g J #0. Let t € J%. Then by (a)) applied to T = Rt,
1
R%KJQR+KRTt:R2

and so t(R +g J) € R and R +g J is a fractional ideal.
If (R+x J)J = R, then R+ J is an inverse for J in FZ(R). Suppose now that
T € FI(R) with TJ = R. Then clearly T C R <+ J. Thus

R=TJC(R+pJ)JCR
Thus both T and R +k F' are inverse of J and so T'= R+ F. ]
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Lemma 6.2.21 [partial inverse| Let R be an Dedekind domain with field of fraction K
and J proper ideal in R. Then R < R +x J.

Proof: Let P be a maximal ideal in R with J < P. Let a € J* By there exists
non-zero prime ideals Py, P»,... P, with H;;l P; < Ra. We also assume that n is minimal
with with property. Since Ra < P and P is a prime ideal we must have P; < P for some i.
By definition of a Dekind domain, P; is a maximal ideal and so P, = P. Let Q = H;;j:l P;.
Then PQ < Ra and by minimality of n, @ £ Ra. Thus Ja='Q < PQa' < R and and
a'Q £ R. Soa™'Q < R+g J and hence R+ J £ R. Clearly R < R+ J and the lemma
is proved.

Proposition 6.2.22 [fi for dekind] et R be an Dedekind domain with field of fraction K.
Let P be a nonzero prime ideal in the Dedekind domain R and J a non-zero ideal with
J C P. Then P invertible and J < JP~' < R.

Proof: Put @ := R+g. Then R < @ and J C JQ C R. Suppose that J = J@Q. Since
R is Noetherian, J is finitely R-generated. Since K is an integral domain and J # 0, J is
a faithful -module. Thus implies that Q) is integral over R. By defintition of a
Dekind domain, R is integrally closed in K and so ) < R. But this contradicts
Thus J < JQ~! and inparticular P < PQ < R. By definition of a Dekind Domain P is
a maximal ideal in R and so PQ = P. Thus Q = P~! and the proposition is proved. O

Theorem 6.2.23 [structure of dedekind| Let R be a Dedekind domain and let P be the
set of non-zero prime ideals in R. Then the map

T:®pL — FI(R) | (zp) — [] P**
pPeP

is an isomorphism of monoids. In particular, FZ(R) is a group. Moreover 7(z) < R if and
only if z € &pN.

Proof: Clearly 7 is an homomorphism. Suppose there exists 0 # z € ker7. Let X =
{PeP|lzp<O0andY ={P e P|zp>00. Then XNY =0 and X UY # (). Moreover,
7(%2) = R implies

[17=1]

pPeX Pey
In particular both X and not empty. Let Q € X. Then

[177<e

PeYy

a contrdiction since P £ @ for all P € Y and sinceR/Q is a prime ideal.
Thus 7is 1 — 1.
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Next let J be a proper ideal in R and P a maximal ideal in R with J < P. By
J < JP~! < R. By Noetherian induction JP~! = P, ... P, for some prime ideals P, ... P,
and so J = PP, ... P,, that is J = 7(z) for some z € &pN.

Finally let J be an arbitray fraction ideal in K. Then by definition ther exists kJ C R
for some k € K#. Then k = L with r, s € R* and so rJ = skJ C R. Let u,v € @, N with
7(u) = Rr and 7(v) = rJ. Then

7(v—u) = (Rr)~Y(rJ) = Rr—1rJ = J and so 7 is onto. O

The next proposition shows that Dedekind domains are not far away from being principal
domains.

Proposition 6.2.24 [nearly principal| Let R be a Dedekind domain.
(a) [a] Let A and B be a fractional ideals of R with B < A. Then A/B is a cyclic R-module.

(b) [b] Let A be a fractional ideal of R. Then there exists a,b € A with A = Ra + Rb.

Proof: @ Replacing A and B by kA and kB for a suitable k € R we may assume that B <
A < R, Let Q be a finite set of prime ideals in R with A = HPeQ P and B = HPEQ pbr
for some a,,bp € N. Choose zp € P% \ P%*l  Observe that P%»T! + Q*! = R for
disctinct P,Q € Q. So by the Chinese Remainder Theorem the exists x € R with
x4+ Pt = g, + Pt for all P € Q. Thus z € (\peo P = A and z ¢ P?*!. Since
B<Rr+B,Rxr+ B= HPGQPCP for some cp € N. Since Rz + B < A, cp > ap. Since
¢ Pt cp < ap. Thus ap = cp for all P € Q and so A = Rx + B.

(o) Let 0 # b € A and put B = Ra. By (a) A/B = Ra+ B/B for some a € A. Thus
A = Ra+ Rb. O

6.3 The Jacobson Radical 11

Lemma 6.3.1 (Nakayama) [nakayama] Let R be a ring and M a non zero finitely gen-
erated R-module then J(R)M # 0.

Let B C M be minimal with RB = M. Let b € B, then M # R(B\ {b} and repplacing M
be M/R(B\ {b} we mau assume that M = Rb. Then M = R/ Ag(b). Let J be maximal
left ideal of R with Ar(b) < J. Then J(R) + Ar(b) < J < R and so also J(R) < M. O

Lemma 6.3.2 [jr and inverses| Let R be a ring and x € R.

(a) [a] =€ J(R) iff re — 1 has a left inverse for all x € R.

(b) [b] x is left invertible in R iff x + J(R) is left invertible in R/J(R).
(c) [c] The J(R) is equal to the right Jacobson radical J(R°P.
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(d) [d] x is invertible in R iff x + J(R) is invertible in R/J(R).

Proof: @ Let z € R and let M be the set of maximal left ideals in R. The the follwing
are equivalent

x ¢ J(R)
x ¢ M for someM € M
Rx+ M =R for someM € M
re+m=1 for someM € M,m e M,r € R
re—1e M for some r € R,M € M
R(re —1)# R for somer € R
(rxz — 1) is not left invertible for somer € R

() If z is left invertible, then = + J(R) is left invertible. Suppose now that x + J(R) is
left invertible. Then 1 — yz € J(R) for some y € R. By (d) yz = 1 — (1 — yz) has a left
inverse. Hence also x as a left inverse.

As a step towards and @ we prove next:

1° 1] Ifx—1€ J(R). Then x is invertible.

By (b)) there exists k € R with kx = 1. Thus k — 1 =k — ka = k(1 — z) € J(R) and so
by again k has a left inverse [. So by x =1 and k is an inverse of x.

Let j € J(R) and r € J(R). Since J(R) is an ideal, jr € J(R). Thus by 14 jr
is invertible. So by @ applied to R°P, j € J(R°P. Hence J(R) < J(R°P. By symmetry
J(R) < J(R°P.

@ Follows from (]ED applied to R and R°P. O

Lemma 6.3.3 [jr cap za] Let A be a ring, R a subring and suppose that A is finite gen-
erated as an R-module. Then J(R)NZ(A) < J(A).

Proof: Let M be a simple A-module. Then M is cylcic as an A-module and so finitely
generated as an R-module. Thus by J(R)M # M. Hence also (J(R) NZ(A)M < M
and since (J(R) NZ(A))M is an A-submodule we conclude that J(R) N Z(A) < Ax(M).
Thus J(R) NZ(A) < J(A). O

Proposition 6.3.4 [jza] Let A be a ring.
(a) [a] If K is a nilpotent left ideal in A, then K < J(A)

(b) [b] If A is artian, J(A) is the largest nilpotent ideal in A.
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(c) [c] If A is artian and finitely Z(A)-generated then J(A) NZ(A) = J(Z(A)).

Proof:

@ Let k € K. Then rk is nilpotent and so 1 4 rk is invertible in in R. So by @,
ke J(A).

(o) Since A is Artinian we can choose n € N with J(A)" minimal. Then J(A)J(A4)" =
J(A)™. Suppose J(A)" # 0 and choose a left ideal K in A minimal with J(A)"K # 0. Let
k € K with J(A)"k # 0 . Then J(A)"J(A)k = J(A)"k # 0 and so by mimimality of K,
K = J(A)k. Thus k = jk for some j € J(A). Thus (1 —j)k = 0. By[6.3.2]1 — j is invertible
and so k = 0, a contradiction.

By (b) J(A)NZ(A) is a nilpotent ideal in Z(A) and so by (a) J(4)NZ(A4) < Z(J(A)).
By J(Z(A)) < J(A)NZ(A) and (d) is proved. O

Lemma 6.3.5 [invertible in ere| Let R be a ring, S < Z(R) and suppose that R is a
finitely generated S-module. Let e € R be an idempotent and x € eRe with x + J(S)R =
e+ J(S)R. Then there exists a unique y € eRe with xy = yx = e.

Proof: Since (ere)(ete) = e(eter)e, eRe is a ring with identity e. We need to show that
x is invertible in eRe. If R = ST for a finite subset T of R then also eRe = eS(eTe)
and so eRe is a finitely geneerated eS-module. Also eS = eSe < Z(eRe) and so by
J(eS) < J(eRe). Since e : S — €S is an onto ring homomorphism, eJ(S) < J(eS) < J(eRe).
Since x € eRe and x —e € J(S)R

r—e=c¢e(x—e)ecel(S)Re =elJ(s)eRe < J(eRe)eRe < J(eRe)
Thus = — e € J(eRe) and by x has an inverse in eRe. O

6.4 A basis for CG

Lemma 6.4.1 [from oq to f] Let X be non-empty finite subset of @ﬁ. Then there exists
be Q(X) withbX CA and bX ¢ I.

Proof: By|6.2.22| applied with K = Q(X) we have I~1T = A. So there exists b € [~! with
bX ¢ I. O

Corollary 6.4.2 [f linearly independent| Let V be an Q-space and (v;)?_; € V™. Let
W =A <wv; | 1<i<n. and suppose that (v;+IW)?_, is F-linearly independent in W/IW .
Then (v;)?_y is linearly idenpendet over Q.

Proof: Suppose there exists a; € Q not all zero with Yo, aiv; =0. By there exists
b € Q with ba; € A anf ba; ¢ I for some 1 < j <n. Then Y " ;(ba; + I)(v; + IW) = 0 but
ba; + I # I, a contradcition. O
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Lemma 6.4.3 [linear independence of characters]
(a) [a] (xm | M € Sp) is F-linear independent in FG.

(b) [b] (éar | M € S,) is C-linearly independent in CG.

Proof: @ Let far € F with > farxamr = 0. Pick ey € Endp(M) with tras(ep) = 1.
2.5.18| there exists aps € FG such that ap; acts as ey on N and trivially on N for all
M # N € S,. Then

0= Y fnxnlem)=fu
NeS,
and so @ holds.

@ Since all coefficents of ¢y are in A, ¢y | M € Sp) is C-linearly independent iff
(pp | M € Sp) is Q-linearly independent and iff (¢ar | M € Sp) is Q-linearly independent.
By 6.1.5] (427)* = xas and so by @ (dr)* | M € S,) is F-linearly independent. So @
follows from 0

Lemma 6.4.4 [existence of a lattice| Let V' be an xQ-space and W a finitely generated
A7 submodule of V with V.= QW . Then W is an Aj-lattice in V.

Proof: Note that W/I;W is a finite dimensional vector space over A;/I; = F and so has
a basis u; + I;W,1 < i < n. By (u;)™; is linearly independent over Q and so also
over Ay. Let U = Aj(u;odl <i<n. Then W =U + I;W. Since I is the unique maximal
ideal in Ay, It = (Ay). Thus by the Nakayama Lemma applied to W/U gives W = U.
Hence also V =QW =QV(u; | 1 <i < n) O

Lemma 6.4.5 [existence of oq lattice| Let E : K be a field extension and M a simple
KG-module. If K is algebraicly closed then there exists an G-invarinant K lattice L is M.
For any such L, L is a simple KG-module and M = E Qk L.

Proof: Since G is finite there exists a simple KG-submodule L in M. Moreover there is a
non-zero EG-linear map o : EQg L — M,e® [ — el. Since K is algebraicly closed, E ®k L
is a simple EG-module. The same is true for M and so « is an isomorphism. In particular,
any K basis for L is also a E-basis for M and so L is a K-lattice in M.

Now let L is any K-lattice in G. If ) # N < L is a KG-submodule then EN is a
EG-submodule of M. Thus EN = M and dimg N = dimg EN = dimg M = dimg L and so
N = L and L is a simple KG-module. (|

Lemma 6.4.6 [existence of ai lattice| Let M be an CG-module. Then there exists a
G-invariant Ag-lattice L in M.
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Proof: By there exists a G-invariant Q-lattice V in M. Let X be a Q-basis for V
and put L = A;GX. Since G and X are finite, L is finitely A;-generated. Thus by L
is an Aj-lattice in V' and so also in M. ]

Lemma 6.4.7 [characters are brauer characters| Let M be an CG-module and L a
G-invariant Ar-lattice in M. Let M° be the FG-module, L/I;L. Then x}3; = xme and

XM = Qnre

Proof: Let B be an A; basis for L, g € G and D the marix for g with respect to B.
Then D* is the matrix for g with respect to the basis (b+ I, L)yep for M°. Since ny(g) =
det(zld,, — D) we conclude that ny(g)* = nare(g). In particular xar(g9)* = xame(g) and if

nu(g) = [T (x — &) then nae(g) = [[7L,(x = &). Soif g € G°, then xum(9) = dare(g). O

Definition 6.4.8 [def:Irr G]

(a) [a] Irr(G) ={xm | M € S} is the set of simple characters of G.

(b) [b] IBr(G) = {opm | M € Sp} is the set of simple Brauer characters of G.
(¢) [c] ZCG := CG N Z(CQ) is the set of complex valued class function on G.

(d) [d] If M be an CG-module and L an G invariant C : Ay lattice in M, then M° = L/I;L
is called a reduction modulo p of M.

Theorem 6.4.9 [ibr basis|

(a) [a] ZC(G) is the C-span of the Brauer characters.

(b) [b] IBr(G) is a C-basis forZC(G)

(c) [c] |S|p = [IBr(G) is the number of p’-conjugacy classes.

Proof: @ Observe that the map~: Z(CG) — ZC(G) is an orthogonal projection and so

onto. On the otherhand since Z(CG) is an C -span of the G-characters we conclude from

6.4.7 that the image of "is conatained in C-span of the Brauer characters. So @ holds.

(]:[) By -@ every Brauer chacter is a sum of simple Brauet charcters. So by @

IBr(G) spans ZC(G) By [6.4.3((b) IBr(G) is linearly independent over C and so (]EI) holds.
Both IBr(G) and (ac | Cap’ conjugacy class} are bases for ZC(G) O

Definition 6.4.10 [def:decomposition matrix|

(a) [a] D = D(G) = (dpniy) is the matriz of : ZCG — ZCG with respect to Trr(G) and
IBr(G). D is called the decompositon matrix of G.



148 Chapter 6. Brauer Characters

(b) [b] C = C(G) = (cgy) is the inverse of Gram matriz of (- | -) with respect to IBr(G).
C is called the Cartan matrix of G.

(c¢) [c] For ¢ € IBr(G), ¢, = erlrr(G) dgyXx s called the projective indecomposable
character associated to ¢. For M € S, put &y = Py, , .

Lemma 6.4.11 [basic decomposition]

(a) [a] Let x € Irr(G). Then X = 3 serpe(c) dox -

(b) [z] Let M € S(G), M° a p-reduction of M, N € S,(G) and F a FG-composition series
on M. Then dgyy,, is the number of factors of |caF isomorphic to N.

(c) [b] Let ¢,v» € IBr(G). Then &5 € ZCG and (®y | ) = Spy. S0 (By | ¢ € Trr(G)) is
the dual basis for ZCG.

(d) ] C7'=((¢]¥))gw

(e) [d] C = ((®y | Py)) is Gram matriz of (cot | -) with respect to (Py | ¢ € IBr(G).

(f) le] Let p € . Then &y = <:T_>¢ = Zd)elBr(G) Cop?).
(9) lff C=DDT.

Proof: @ Immediate from the definition of D.
(]ED For N € S,(G) Let ay be the number of compostion factors of G isomorphic to N.

Then by [6.1.3/(e]), opro = ZNeSp(G) ANON-
By ¢ne = Xm- So (b)) and the linearly independence of IBr(G) implies dgyy,, =
an.

Follows from |4.1.14

@ Immediate from the definition of C.

and @) follows from [4.1.16
From @ and the definition of ®:

Cop=( Y dox| D dpX)= D doydyy

x€lrr(G) x€lrr(G) X€Irr(G)

and so holds.

Corollary 6.4.12 [dphichi not zero| For each ¢ € IBr(G), there exists x € Irr(G) with
dgr+0- In otherwords, for each M € S, there exists a M € S such that M is isomorphic to
a composition factor of nay p-reduction of M.

Proof: Follows from the fact that™: Z(CG) — ZCG is onto. O
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Corollary 6.4.13 [projective is regular| Let M € S, and P € Syl,(M). Then dim @y,

is divisiple |P|. Moreover, ® s restricted to P is an integral multiple of the regular character
for P.

Proof: Since ®,; = ®;; we have ®r(g) = 0 for all g € P8 Thus (®yr |p| 1p)p =
L ®,,(1) and so | P| divides ®,;(1). Therefore

[P]
@y (1
( )xig
P

(1) =

Theorem 6.4.14 [pprime=0] Suppose G is a p! group.
(a) [a] Irr(G) =IBr(G) and D = (d4y)-

(b) [b] For M € S let M° be a reduction modulo p. Then M° is a simple FG-module and
the map & — Sy, M — M?° 1is bijection.

Proof: By -' ’G| Z(i)EIBr(G (1)2 = EXeIrr(G) X(1)2 Thus

G| = > x(1)? = ) > dye(1)

x€Irr(G) x€lrr(G) \¢€IBr(G)
> D D Al = Y | D dey) | e(1)
x€lrr(G) ¢€IBr(G) ¢€IBr(G) \ x€lrr(G)
> > o) = G
¢€IBr(G)

Hence equality holds everythere. In particular erhr(G) dgy)? = 1 for all ¢ € IBr(G).
So there exists a unique xg4 € Irr(G) with dg,, # 0. Moreover dg,, = 1.
2
Also (Z¢61Br d¢x> = Z¢61Br(G)(d¢X)2 and so for each x € IBr(G) there exists

unique ¢, € IBr(G) with dy,  # 0. Hence x = X4, dg. = 1, X = X = ¢y = Xy and @
holds.

@ follows from @ and (]ED OJ

Proposition 6.4.15 [fong] Suppose that p = 2 and ¢ € IBr(G). If ¢ is real valued and
#(1) is odd, then ¢ = 15.

Proof: Let M € S, with ¢ = ¢pr. Then ¢ = ¢y = ®ar and some M = M*. Thus the
proposition follows from [4.1.22] and [4.1.21] O
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Lemma 6.4.16 [opg trivial] Let M € S,. Then O,(G) < Cq(M).

Proof: Let W be a simple FO,(G) submodule in M. The number of p’ conjugacy classes
of Op(G) = 1. So up to isomorphism Op(G) has a unique simple module, namely Fp(q).
Thus 0 # W < Cp(Op(G)). Since Cpr(Op(G)) is an FG-submodule we conclude M =
Cm(Op(G)) and O,(G) < Cg(M). O

6.5 Blocks

Lemma 6.5.1 [omegam)| Let K be an algebraicly closed field and M a simple G-moudle.
(a) [a] a € Z(KQG) there ezists a unique wyr € K with ppr(a) = wpr(a)idyy.

(b) [b] wn: Z(KG) — K is a ring homomorphism.

(c) [e] xm(a) =dimg M -wp(a) = xm (1w (a).

(d) [d] If K=C then and a € Z(AG), then wyr(a) € A.

Proof: (@) follows from Schurs Lemma

(]E[) and are obvious.
(d) By B-2.13|war(ac) € A for all C € C. Since (ac | C € C) is a A-basis for Z(AG), (d)
follows from @ O

Definition 6.5.2 [def:lambdaphi]
(a) [a] Let M €S and x = xm. Then wy = wyy.

(b) [b] Let M €S and x = xpm- Then Ay : Z(FG) — F is define by A\ (a*) = wy(a)* for
all a € Z(A1G).

(c) [c] Let M €Sy, and ¢ = ¢rr. Then Ay = wiy.

(d) [d] Define the relation ~, on Irr(G) U IBr(G) by a ~p, B if A\a = Ag. A block (or

p-block) of G is an equivalence class of ~y.
(e) [e] BI(G) is the set of blocks of G.
(f) [f| If B is a block of G then Trr(B) = BN Irr(G) and IBr(B) = B N IBr(G).
(9) [g] For ACIrr(G), put AT = {¢ € IBr(G) | dgy0 for some x € A}.
(h) [h] For B CIBr(G), put Bt = {x € Irr(G) | dgy0 for some ¢ € B}.

Proposition 6.5.3 [d and lambda]
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(a) [a] Let x € Irr(G) and ¢ € IBr(G). If dyy # 0 then Ay = Ay.

(b) [b] Let B be a block of G then IBr(B) = Irr(B)' and Irr(B) = IBr(B)1.

Proof: @ Let M € § with x = xar and N € S, with ¢ = ¢n. Let L be an G-invariant
Aj-lattice in M. Since dgy.0, N is isomorphic to FG' composition factor of M° = L/IL.
Let a € Z(AG). Then a acts as the scalar w,(a) on M and on L. Thus a acts as the scalar
wy(a)* = Ay (a*) on M° and on N. Thus Ay (a*) = Ay(a*) and (@) holds.

(b) ¢ € IBr(G) with dy, for some y € Irr(B) then by (a) ¢ € B. Thus Irr(B)" C IBr(B).
Conversely if phi € IBr(B) we can choose (by x € IBr(G) with dg, # 0. Then by
(a) x € B and so IBr(B) C Irr(B)f. Thus IBr(B) = Irr(B)!. Similary Trr(B) = IBr(B)!. O

Let x € Irr(G) and ¢ € IBr(G). Then A, is defined by ??(??) and Ay by ?7(??). If
A = ¢ then @ shows that A\, = Ag.

Definition 6.5.4 [brauer graph| Let x,1 € Irr(G). We say that ¢ and v are linked if
there exists ¢ € IBr(G) with dg, # 0 # dgy. The graph on IBr(G) with edges the linked
pairs is called the Brauer graph of G. We say x and v are connected if ¢ and ¢ lie in the
same connected component of the Brauer graph.

Corollary 6.5.5 [blocks and connected component]

(a) [a] Let A C Irr(G). Then At consist of all simple characters linked to some element
of A.

(b) [b] Let AC Irr(G). Then A is union of connected components of the Brauer graph iff
and only if A= AT,

(c) [c] If B is a block then Irr(B) is a union of connected components of the Brauer Graph.

Proof: () Let ¢ € Irr(G). Then

1) is linked to some element of A
iff
there exists x € A and ¢ € IBr(G) with dg, # 0 # dgy
iff
there exists ¢ € A" with dg, # 0
iff
w c ATT

So () holds.
follows immediately from @

(c) By Irr(B)'T = IBr(B)f = Irr(B).
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Proposition 6.5.6 [osima] Let A C Irr(G) with A= AT, Let z € G and y € G. Then

D x@xw) = ) b(@)Ps(y)

XEA Pe AT

Proof: We compute

> x(@)x(y) = Z( > d¢x¢(w)) X ()

XEA xcA \ ¢€IBr(G)
= > (Z d¢x¢(aﬁ)> Xw) = > (Zd¢>xx(y)) ¢(z)
XEA \pecAt xeAT \ oA
= Z ( Z d¢xx(y)) o(x) = Z Dy (y)o(z)
e At \ g€l (G) XEAT

O

Corollary 6.5.7 (Weak Block Orthogonality) [weak block orthogonality| Let B be
block of G, v € G andy € G\ G. Then

> x@x(y) =0

x€lrr(B)

Since Irr(G)1T = Irr(G) we can apply

Yo ox@x@ = Y x@xyh = o@)®s(y)

Xx€Elrr(B) Xx€lrr(B) pe At
Since y~! G 6.4.11 implies ®,(y~! = 0 and so the Corollary is proved. 0

Definition 6.5.8 [def:ea]

(a) [a] For M € S and x = xn put ey = enr( see[3.1.5(d).
(b) [b] For AC Irr(G), put ea =3, cex-

Corollary 6.5.9 [ea in ai(tilde g)] Let A C Irr(G) with A= A, Then eq € ZA;G.

Proof: Let x € Aand g € G. By 3.2.12@, g coefficents of e, is ‘—ax(l)y(x) Let f, be
6.5.6

the g-coefficent of e 4. Then by [6.5.6]

| L1 )
fa= 1 > x(W)x(z™) = @l > s()y(g7 ")

xXE€A P AT
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If g ¢ G we conclude that f, = 0 and so

(*) eq € CG

Suppose now that g € G. Then using [6.5.6| one more time:

9|c:\Z )= ia1 X st = 3 o™

pe At pe At

By [6.4.13 q)fcg‘l) € Ar. Also ¢(g7r € A € Ar and so f, € A;. Thus e4 € AG. Together
with (*) and the fact that e, is class function we see that the Corollary holds. 0

Lemma 6.5.10 [unions of blocks| Let A C Irr(G) with eq € Z(Ar(G)). Then A =
Ule Irr(B;) for some blocks By, ... By.

Proof: Let x,1 € Irr(G). Then wy(ey) = d,y and so wy(eq) = 1if x € Aand wy(eq) =0
otherwise. By assumption e4 € Z(A7(G)) and so A\y(€%) = wy(e4) and so

(%) x € Aiff A\ (efy) =1

Let B be the block containg x and ¢ € Irr(B). Then A, (e%) = Ay(e’y) and so by (*),
xeAiff ¢y € A O

Theorem 6.5.11 [block=connected components| If B is block, then Irr(B) is con-

nected in the Brauer Graph. So the connected components of the Brauer graph are exactly
the Irr(B), B a block.

Proof: If B is a block then by [6.5.5d), Irr(B) is the union of connected components.
Connversely if A is a connected component then by es € Z(ArG) and so by [6.5.10[.A
is a union of blocks. O

Definition 6.5.12 [def:fb]

(a) [a] Let B be a block. Then eg = ei‘rr(B) and fg = €hre(B)-

(b) [b] Let A be set of blocks. Then eq =) gcaep and fa = g5 fB
(c¢) [c] Let B be block, then FB := FGep.

(d) [d] If A is a set of blocks, then FA=TFGe 4.

(e) [e] Let B be a block then A\p = Ay for any ¢ € IBr(G).
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(f) [f] Let B be a block, then S,(B) ={M € S, | ¢p;s € B} and S(B) ={M € S| xm € B}

Lemma 6.5.13 [omega chi fy] Let X,Y be blocks and x € X. Then wy(fy) =0XY and
Ax(ey) =dxy

Proof: This follows from wy (ey) = 0y for all xy € Irr(G). O

Theorem 6.5.14 [structure of fg]

(a) [a] ZBEBI(G) egp = 1.
(b) [b] ep € Z(FG) for all blocks B

(c) [c] exey =0 for any distinct blocks X and Y .

(d) [d] e% = ep for all blocks b

(e) le] FG =Py pFB.

(1) 1) Z(FG) = Byep Z(FB).

(9) [8] I(FG) = DpeyI(FB).

(h) h] Let X,Y be blocks. Then \x(ey) = dxy.

(1) [i] Let X andY be distincts blocks. Then FX annihilates all M € Sy(Y').

(j) 1i] Let B be a block. Then §,(B) is set of representativves for the isomorphism classes
classes of simple FB-modules.

Proof: @) erlrr(G) ey = 1 and so also ZBeBl(G ene(B) = 1. Applying * gives @

@ Since ey, € Z(CG), enrg € Z(A[G) and so holds.
(c) eyey = 0 for distinct simple characters. So ef,..(x)er(y) = 0 and so holds.
@) follows from eir( B) = €u(B)-
() [@ implies FG = 3 pcp))FB. Let B € B and B = BI(G) \ {B}. Then by
FB -FB = 0. Moreover if x € FB then egx = x and if x € FB then egx = 0. Thus
FBNFB =0 and so @ holds.

@ follows from @

follows from @ and @

‘) Let x € Irr(X). Then Ax(ey) = AX(eikrr(Y)) = wX((eIrr(y))* =0y = 0xy.

(i) Let M € S,(Y). Then ex acts as the scalar A\g(ex) = Ay(ex) on M. So by ex
annhilates M. Thus also FX = FGex annihilates M.

(ED Any simple FB-module is also a simple FG-module. So (ED follows from . O
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Theorem 6.5.15 [zfb is local] Z(FB) is a local ring with unique mazimal ideal J(Z(FB)) =
ker \p N Z(FB).

Proof: Let M € S,(B) and z € Z(F(B)). Then z acts as the scalar Ag(z) on M. So z
annihilates M if and only if z € ker A\g. Thus Z(F(B)) N App(M) = Z(FB) Nker Ap and so

)R Z(FB) NIF(B) 22D Z(FB)N () Ass(M) = Z(FB) Nker Ap

J(Z(FB
65.14() Mes,(B)

So J(Z(FB)) = ker \gNZ(FB). Since Z(FB)/kerApNZ(FB) = Im Ap = F we conclude
that J(Z(FB)) is a maximal ideal in Z(F(B)). This clearly implies that J(Z(FB)) is the
unique maximal ideal in F(B). O

Corollary 6.5.16 [blocks indecomposable| Let B be a block.
(a) [a] Then FB is indecompsable as a ring.

(b) [b] Let e be an idempotent in ZF(G) then ep for some T C BI(G).

Proof: @ Suppose FB = X @Y for some proper ideals X and Y. Then both X and Y
have an identity. Thus Z(X) # 0, Z(Y) # 0 and Z(F(B) = Z(X) ® Z(Y), a contradiction
to

Since e = ) BEBI(B) €€B and each non-zero eep is an idempotent we may assume
that e = eep € FB for some block B. Then FB = e¢FB & (e — eg)FB and @ implies
e—eg=0and soe=eg. O

Lemma 6.5.17 [phi fb] Let B be a block then

grp= Y, x(DX= Y ®4(1)¢

x€lrr(B) ¢€lBr
Proof: By m' xca = errr( ) x(1)x. So by applied to the Aj-lattice A;G in
Ca,
(1) ¢reG=Xca = Y, x(Wx= > > x(
x€lrr(G) BeBI(G) xeB

Observe that

(2) SxWx= D x| D devo | = D 2(1)e

X€EB Xx€Elrr(B) ¢€lr(B) ¢€IBr(B)
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and so by (1)

(3) dra= Y, > P

BeBI(G) ¢€IBr(B)

Now let B a block. If M is composition factor for FG of FB then ep acts identity on
M. So by [6.5.14] ¢pr € B. It follows that

(4) $rp= Y dgo

$€IBr(G)

for some dy € N. Since FG = ZBeBl(G) FB we conclude

(5) dra= Y., > dgo

BeBI(G) ¢€IBr(B)

From (3) and (5) and the linear independence of IBr(G) we get dy = ®4(1) for all
¢ € IBr(G). The lemma now follows from (4) and (2). O

6.6 Brauer’s Frist Main Theorem

Definition 6.6.1 [def:defect group c| Let C be a conjugacy class of G.
(a) [z] A defect group of C' is a Sylow p-subgroup of Cg(x) for some x € C.
(b) [a] Syl(C) is the set of all defect groups of G.

(c) [b] We fix gc € C and D¢ € Syl,(Ca(gc))-

(d) [d] Let A and B be set of subgroups of G. We write A < B if for all A € A there exists
B e B with A < B.

(e) [e] Let A be a set subgroups of G. Then C4 = {C € C | Syl(C) < A}} and ZA(FG) =
Flac | C € Ca).

(f) [f] For ACZ(FG) set C4 = {C € C(G) | a(gc) # 0 for some a € A}.

(9) [g] For A,B,C €C put Kapc = {(a,b) € Ax B|ab=gc}.

Lemma 6.6.2 [trivial zdfg] Let z € Z(FG) and D a set of subgroups of G. Then z €
Zp(FG) iff ac € Zp(FQ) for all C € C, and iff Syl(C) < D for all C € C,.
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Proof: Since z = } cce() 2(9c)ac and (ac | C € C(G)) is linearly independent this
follows immediately from the definition of Zp(FG). O

Lemma 6.6.3 [syl c prec syl a] Let A,B,C €C
(a) [a] |Kapc|=|{(a,b) € AXxB|a,be Cq(Dc),ab= gc}| (mod p).
(b) [b] If pt|Kapc| then Syl(C) < Syl(A).

Proof: () Observe that Ce(gc) acts on K apc by coordinate wise conjugation. All non-
trivial orbits of Do on K 4pc have length divisble by p and so ([a]) holds.

@ By @) there exists a € A with D¢ € Cg(a) and so Do < D for some D € Syl,(Cg(a).
Since G acts transitively on Syl(C'), Syl(C) < Syl(A). O

Proposition 6.6.4 [zdfg ideal] Let D be set of subgroups of G. Then Zp(FQG) is an ideal
in G.

Proof: Let A, B € C with Syl(A) < D. Then in FG:

asap =Y |Kapclac= >  |Kapcac
ceC ceC,|Kapcl
By Syl(C) < Syl(A) < D whenever p t |Kapc|. Then ac € Zp(FG) and so
apap € ZD(FG) ]

Definition 6.6.5 [def:fa]

(a) [a] & be the set of sets of of subgroups of G. B, consist of all A € & such that A, B € A
with A C B implies A = B.

(b) [b] If A€ &, then max(A) is the set mazimal elements of A with respect to inclusion.
(c) [c] Let A,Be€ ®. Then ANB:=max({ANB|Ac A BEeB}).

(d) [d] Let A,aB € &. The AV B = max(AU B).

Lemma 6.6.6 [basis fa] Let A,B,D € &.

(a) [a] =< is reflexive and transitive.

(b) [b] A< maxA and max A < A.

(c) [c] max(A) € &, and if A is G-invariant so is max A.

(d) [d] A=< B iff max(A) < max(B).
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(e) [e] If all elements in A have the same size, A € B,.

(f) If] If A is conjugacy class of subgroups of G, then A € &,.
(9) 8] Ca = Cuax(a) and ZA(FG) = Ziax(a)(FG).

(h) [h] Restricted to &, < is a partial ordering.

(i) [i] (AVB)=<Diff A<D and B<D.

G) [i] D<(AAB) iff D<A and D < B.

Proof:

@ Obvious.

(o) Clearly max.A < A. Let A € A since G is finite we can choose B € A of maxial size
with A C B. Then B € max(.A0 and so A < max A.

If A, B € max(A) with A C B, then A = B by maximalty of A.

@ Follows from @ and @

@ is obvious.

@ follows from @

The first statement follows from @ and the second from the first.

Let A, B € A(G) with A < B. Let A € A and choose B € B with A < B. Then
choose D € A with B < D. Then A < D and so A =D and A = B. Thus A C B. By
symmetry B C A. So A =B. now follows from @

@ By (d) (AvB) <D iff (AUB) <D and so iff A <D and B < D

() By () D < (AAB)if D<{ANB| A€ A, BeB}andsoiff D<Aand D < B. O

Lemma 6.6.7 [basic zdfg| Let D, € € D,.

(a) [a] IfD <&, then Cp C Ce and Zp(FG) < Ze(FG).

(b) [b] (DANE)<D.

(¢) [c] CpNCe =Cppre and Zp(FG) N Ze(FG) = Zppe(FG)

(d) [d] Let A C Z(F(GQ)). Let ,(A) :={A € & | Zp(FG). Then there exists a unique
E € ®,(A) with € <D for all D € ,(A). We denote this £ by Syl(A).

(e) [e] If AC B CZ(F(G)), then Syl(A) < Syl(B).

(f) [f] For all C € C, Syl(ac) = Syl(C)

(9) 8] SYIZ(FG)) = SYI(G)

(h) [h] For all A C Z(F(G)), Syl(A) < Syl(G), that is Syl(A) is a set of p subgroups of G.
(i) [i] Let A, B C Z(FG). Then Syl(AU B) = Syl(A) v Syl(B).
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() ] Let A C Z(FG) then Syl(A) = Syl({ac | C € A}) = Vee, SYUO).

Proof: @ and (]ED are obvious.

Let C € C. Then C € Cp NCg¢ iff Syl(C) < D and Syl(C) < £. Thus by 77 iff
Syl(C) < DA E and iff C € Cpae. So the first statement in (b)) holds.

Since {ac | C € C} is F-linearly independent

ZD(FG) N Zg(]FG) = F{ac | Celpn Cg}

So the second statement in follows from the first.

@) Put £ = Apcg,(4)D- By , A < Zg(FG) and by @ & < D for all D € 2. Since
< is antisymmetric on &,, £ is unique.

Observe that Syl(B) € &, and so () follows from (d).

@ Since Syl(C) < Syl(C), C € Csyic and so ac € Zgyc)(FG). Since ac € Zgy(qp)(FG)
we conclude frommthat C € Cgyi(a,) and so Syl(C') < Syl(ac). Since < is anti-symmetric
@ holds.

Let S € Syl(G), 1 # = € Z(S) and C = %. Then clearly Syl(C) = Syl(G) and so
by @ and @, SYWZ(FG)) < Syl(G). Clearly Syl(C) < Syl(G) for all C € C. So Csyyqy =C
and Zgy(q)(FG) = Z(FG). (d) implies Syl(Z(FG)) € Syl(G) and so (g) holds.

follows from @ and.

We have Zgy1(ayvsyi(8) (FG) = Zsyiayusyi(B) (FG) = Zgyi(4)(FG) + Zgy ) (FG) and so
AUB Q ZSyl(A)\/Syl(B) (FG) Thus Sy1(A U B) < Syl(A) V Syl(B) Since A § ZSyl(AUB) (FG,
Syl(A) < Syl(A U B) and by symmetry Syl(B) < Syl(A U B). Thus Syl(A) Vv Syl(B) <
Syl(AU B) and (i) holds.

@) By Syl(A) = Syl({ac | C € Ca}. By and () Syl({ac | C € Ca}
Veee, Syllac). O

Lemma 6.6.8 [eb in sum k]| Let B be a block and K a set of ideals in Z(FG) with ep €
Y>.K. Then Z(FB) < K for some K € K.

Proof: Since ep = €% € Y xcic €K there exists K € K with egK & J(Z(FB)). Since by
all elements in Z(FB)) \ J(Z(FB)) are invertible, Z(FB) = epK < K. O

Definition 6.6.9 [sylb] Let B be a block. Then Syl(B) := Syl(eg). The members of
Syl(B) are called the defect groups of B.

Proposition 6.6.10 [sylow theorem for blocks| Let B be block of G. Then G acts tran-
sitively on Syl(B).

Proof: Let D be the set of orbits for G on Syl(B). Then clearly Csyi(p) = Upep Cp and
S0)
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ep € ZSyl B) FG Z ZD FG

De®
So by ep € Zp(FG) for some D € ©. Thus by implies Syl(B) = Syl(ep) <
D. Since D C Syl(ep) we get Syl(eg) = D. O

Definition 6.6.11 [def:defect class] Let B be a block and C € C(G). Then C is called a
defect class of B provided that Ag(ac) # 0 # ep(gc).

Lemma 6.6.12 [existence of defect class| Fvery block has at least one defect class.

Proof: We have eg = ZCec(G) ep(gc)ac and so
1=Xg(eg) = Y enlge)Mac).
cec(G)
Proposition 6.6.13 [min-max] Let B be a block of G and C a conjuagacy class.
(a) [a] If Ap(ac) # 0, then Syl(B) < Syl(C).
() [b] If enlac) 0 then SYI(C) < Syl(B)
(¢) [c] If C is a defect class of B, then Syl(C) = Syl(B).

Proof: @ Since Ap(ac) # 0 and ac € Zsy o) (FG) we have Zgyic)(FG) £ ker Ap.
Since Ap has codimension 1 on Z(FG) we conclude

Z(FG) = ker )\B + ZSyl(C) (FG)

Since ep ¢ ker \p 1mphes eB € Zsyic)(FG). Thus by [6.6.7] -@ Syl(B) < Syl(O).
(o) This follows fro 6.6.7(i)-
(c) Follows from @ and (]E[) 0

Lemma 6.6.14 [ac in jzfg] Let C € C(G) with CNCq(O,(G)) =1, then ac € J(Z(F(G))
and so Ag(ac) =0 for all blocks B.

Proof: Let M € Sy(G) and let P be an orbit for O,(G) on C and g € P. By assumption

|P| # 1 and so p | |P|. By [6.4.16{ pas(Op(G)) = 1 and so par(%9) = pa(g) for all g € Op(G).
Thus pyr(ap) = |Plpar(g) = 0 and so also ppr(ac) = 0. Thus ac € J(F(G)). [6.3.4|completes
the proof. O

Lemma 6.6.15 [defect classes| All defect class of G are contained in Cq(Op(G)).
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Proof: Let C be a defect class of the block B. Then Ag(ac) # 0 and so ac ¢ J(Z(FB)).
Thus by C N Ce(0p(G)) # 0. Since G is transitive on C, C C Cg(0,(G)). O

Proposition 6.6.16 [opg in defect group]
(a) [a] Op(G) is contained in any defect group of any block of G.
(b) [b] If P is a defect group of some block of G and P < G then P = O,(G)

@Let B be a block, C' a defect class of B. By [6.6.15|O,(G) < Cg(gc) and so O,(G) < Dc.
(]ED Follows immediateley from @ O

Definition 6.6.17 [def:brauer map| Let P be a p-subgroup. Then Brp : Z(FG) —
Z(FCg(P)),a — a|c,(p) is called the Brauer map of P.

Proposition 6.6.18 [basic brauer map]

(a) [a] Let K C G. Then Brp(ak) = axncy(p)-

(b) [b] Brp is an algebra homomophism.

(c) [c] If Cq(P) < H < Ng(P) then ImBrp < Z(FH) and so we obtain algebra homomor-
phism

Brl : Z(FG) — Z(FH),a € Brp(H)

Proof: @ is obvious.
() Let A,B € C(G). We need to show that Brp(apap) = Brp(aa)Brp(ap). Let
g € Cg(P). Then the coeficient of g in Brp(agap) is the order of the set

{(a,b) € Ax B |ab=g}

The coefficient of g in Brp(asap) is the order of

{(a,b) e Ax B|a€ Cqg(P),be Cq(P),ab= g}

Since P centralizes g, P acts on the first set and the second set consists of the fixedpoints
of P. So the size of the two sets are equal modulo p and (]E[) holds.

Let a : FG — FCg(P) be the restriction map. Since Cg(P) < H, a(hah™!) =
a(hah™!) for all a € G and all h € H. Hence the same is true for all a € FG, h € H. Thus
Im Brp = «(Z(FG)) < Z(FH). O

Lemma 6.6.19 [kernel of brauer map] Let P be a p-subgroup of G.
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(a) [a] Let C € C(G). Then CNCa(P) %0 iff P < Syl(C).

(b) [b]
ker Brp = F(ac | C € C(G), P £ Syl(C))

Proof: (&) C N Cq(P) # 0 iff P < Cg(g) for some g € C and so iff P < D for some
D e Syl(C), that is iff P < Syl(C).

Let z =3 cc2(9)9 = X cec(q) ?(9ec)ac € Z(F(G)). Then Brp(z) = 0 iff 2(g) = 0
for all g € P, iff 2(g.) =0 for all C € C with CNP # () and iff z € Flac | CN P = ). So

@ implies (]E[) O

Proposition 6.6.20 [defect and brauer map] Let B be a block of G and P be a p-
subgroup of G.

(a) [a] Brp(ep) # 0 iff P < Syl(B).

(b) [b] P € Syl(B) iff P is p-subgroup mazimal with respect to Brp(ep) # 0.

Proof: () By [6.6.19([b), Brp(ep) # 0 iff ep ¢ Flac | C € C(G), P £ Syl(C)) and so iff
P < Syl(C) for some C € C(G) with eg(g¢c) # 0.
If P < Syl(B), then by [6.6.13|[c), P < Syl(C) for amy defect class C' of B. Thus

Brp(ep) # 0.
Conversely suppose Brp(ep) # 0 and let C € C(G) with eg(gc) # 0 and P < Syl(C).

By [6.6.13|(b), Syl(C) < Syl(B) and so (@) is proved.

@ follows immediately from @ O

Definition 6.6.21 [def:lbg] Let H < G and b a block of H.
(a) [a] A :Z(FG) — F,a — \y(a |u).
(b) [b] If )\bG is an algebra homomorphsim, the bC is the unique block of G with \yc = )\,?.

Lemma 6.6.22 [syl(b) in syl(bg)] Let b be a block of H < G. 1If b¢ is defined then
Syl(b) < Syl(b%).

Proof: Let C be a defect class of B. Then 0 # M\ (ac) = A (ac) = M(acnu). Ot follows
that there exists ¢ € C(H) with ¢ C C and M\y(ac) # 0. Hence by [6.6.13|(a), Syl(b) < Syl(c).
Clearly Syl(c) < Syl(C') = Syl(B) and the lemma is proved. O

Proposition 6.6.23 [lbg=Dbrplb| Suppose that P is a p-subgroup of G and PCq(P) <
H < Ng(P).

(a) [a] XS = X\, 0Brp for all blocks b of H.
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(b) [b] b is defined for all blocks b of H.
(c) [c] Let B be a block if G and b a block of H. Then B = b% iff \y(Brp(ep)) = 1.
(d) [d] Let B be a block. Then Brp(eg) = {ey | b € BI(H),b" = B}.

(e) [e] Let B be a block of G. Then B = bC for some block b of H iff P < Syl(B).

Proof: () Let C' € (G) we have to show that

(%) Mo(acnm) = No(acncg(p))

Since H nomrmalizes CNH and CNCg(P). CNH\ Cg(P) is a union of conjugacy classes
of H. Let ¢ € C(H) with ¢ C C and ¢N Cg(P)D. Since P < O,(H), Cu(Op(H)) < Ci(P)
and thus cNCy(Op(H)) = 1. implies a. € J(Z(FH)) and so Ay(a.) = 0. This implies
(*) and so () holds.

(]E[) Since both Brp and A are homomorphism this follows from @

By @ Ab(BrB(eB) = )\bc(eB> = 5B,bG'

(d) Since Brp is a homomorphism, Brp(ep) is either zero or an idempotent in Z(FH).
Hence by [6.5.16|[b) ( applied to H Br(ep) = er for some (possible empty) T C BI(H). Let
b e BI(H). The )\b(eT) =1if b € T and 0 otherwise. So by , T = {be BI(G) | B =0b%}.

@ By @ Brp(ep) # 0 iff ther exists b € BI(G) with B = v“. Thus (EI) follows from

AF0) 0
Definition 6.6.24 [def:G—P)] Let P be a p-sugbroups of G. Then C(G|P) = {C € C(G) |
P e Syl(C)} and BI(G|P) = {B € BI(G)midP € Syl(G)}.

Proposition 6.6.25 [defect opg] Let B be a block of G with defect group Op(G). Then
Syl(C) = {0,(G)} for all C € C(G) with eg(gc) # 0 and so ep € Clac | C € C(G|Op(Q)))

Proof: Let C € C(G) with eg(gc) # 0. Then by m@ Syl(C) < Syl(B

On the otherhand b = B is the unique block of G with B = b% and so by ﬂ@)
Bro, (@) = ep. It follows that C' < Cg(0,(G)) and so O,(G) < Syl(C).

Lemma 6.6.26 [first for classes| Let P be a p-subgroup of G. Then the map
C(G|P) — C(Ng(P)|P),C — CNCg(P)

is a well defined bijection.



164 Chapter 6. Brauer Characters

Proof: Let C € C(G|P). To show that out map us well defined we have to show that
C N Cg(P) is a conjugacy class for Ng(P). Since Ng(P) normalizes C' and Cg(P) it
normalizes C'N Cg(P). Note that Gacst on the set {(z,Q) | » € C,Q € Syl,(G) = {(z,Q) |
z e C,Q €= GP,[z,Q] = 1}. Let z € C. Then Cg(x) acts tranistively on Syl,(Ca(z))
and so by N¢(P) is tranistive on C N Cg(P). So C N Cq(P) is a conjugacy class of
Ng(P).

Since distinct conjugacy clases are disjoint, our map is injective. Let L € C(Ng(P)|P)
and let C be the unique conjugacy class of G containing L. Let x € L. Since P € Syl(L) and
P <G Ng(P), Syl(L) = {P} and so P € Syl,(Ng(P) N Cg(z)). Let P < Q € Syl (Cg(x)).
Then PleqNg(P) € Ng(P) N Cg(z) and so P = Ng(P). implies P = @ and
so P € Syl(C) and C € C(G | P). Since C N Cq(P) is a conjugacy class of Ng(P),
CNCq(P)= L and so our map is onto. O

Theorem 6.6.27 (Brauer’s First Main Theorem) [first] Let P be a p-subgroup of G.
(a) [a] The map BI(Ng(P)|P) — BI(G|P),b — b% is well defined bijection.
(b) [b] Let B € BI(G|P) and b = BI(Ng(P)|P), then B = b iff Brp(ep) = .

Proof: Let b be a block of Ng(P) with defect group P. Since P < Ng(P), Syl(b) = {P}.
By b< is defined and \yc = )\g; = )\ o Brp.To show that our map is well defiend we
need to show P is a defect group of b. Let L be a defect class of b. Then by ,
Syl(L) = Syl(b) = {P} and thus L € C(Ng(P)|P). Let C be the unique conjugacy class of
G containin L. By P € Syl(C) and C N Cq(P) = L. Hence

A (ac) = ABrp(ac)) = M(acncgp) = Mvlar) # 0

Thus by @), Syl(b&) < Syl(C) and so P contains a defect group of Syl(b%). By
{P} = Syl(b) < Syl(b&). Thus P is contained in a defect group of b%. Hence P is a
defect group of b©.

To show that b — b% is onto let B € BI(G|P). Let T be the set of blocks of Ng(P)
with B = b“. Then by By @, ep = er and by (EI), T #0. Let b € T. Since

P < Op(Ng(P)),[6.6.16/implies that P is contained in any defect group of b. By [6.6.22| any
defect groups of b is contained in a defect group of B = b“. Thus P is a defect group of b.

Finally assume that b% = d“ for some b,d € BI(Ng(P)|P). Then \y0Brp = Mo = A\g0
Brp. Thus Ay(acncg(p)) = Ad(acncgp) for all C € C(G). Hence by Mo(ar) = Aalar)
for all L € C(Ng(P) | P). Observe that by [6.6.16{[b), P = Op(Ne(P)) and so by ep
is a C-linear combination of the ay, L € C(Ng(P)|P. Thus

1= Xy(ep) = Aaley) = pa

and b = d. So our map is 1-1. O
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Corollary 6.6.28 [p=opng| Let P be the defect group of some block of G. Then P =
Op(Ne(P)).

Proof: By [6.6.27] P is a defect group of some block of Ng(P). So by [6.6.16([b), P =
Op(Na(P)). O

6.7 Brauer’s Second Main Theorem

Lemma 6.7.1 [x invertible in zag] Let B be block of G and x € Z(ArG) with Ap(x*) =
1. Then there exists y € fpZ(A;G) with yr = fp.

Proof: Since Ap((fpx)*) = Ap(ep)Ap(x) =1 we may replace z by fpz and assume that
x € fpZ(A;G)). Then fpr = x, egpx™ = z* and x* € FB. Since Ag(z*) = 1\p(ep)
and ker \p N Z(FB) = J(Z(FB)) we conclude for that x* is invertible in Z(FB)) =
epZ(FG) = (fBZ(ArG))*. So there exists u € fpZ(A;G)) with (ux)* = ep. Observe
that ker(*: AJH — FG) = I;G = J(A;) - A;G and ux € fp - A;G - fp. Thus
shows that there exists a unique v € fp - A;G - fp with vur = fp. Let ¢ € G. Then

~ gv - ux = Yvuzx) = 9fg = fp and so by uniqueness of v, v = v and v € Z(A;G). So the
lemma holds with y = vu. O

Lemma 6.7.2 [fb on fbprime] Let H < G, b a block of H. Suppose that b€ is define and
put B =b%. Then there exists w € Ar(G \ H) such that

(a) [a] fofp =wfp.
(b) [b] fow =w=wfp.
(c) [c] H centralizes.

Proof: Let x = fp |g and 2 = fp [g\g- Then fp = a + c. By defintion of B = B,
AB = )\f and so

1=2Ag(es) = Anles | H) = As((fB |#)") = Ap(z").

Hence by applied to H in place of G there exists y € fpZ(ArH) with yz = fp.
Put w = —yz and note that H centralizes w. Since H - (G\ H) CG\ H, w € A;(G\ H).
Since fpy = fp also fyw = w. It remains to prove .

yfp=ylx+z2) =yr+yz=fp—w

Hence

(fo—w)fp =yfefer =0
This @ holds.
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Lemma 6.7.3 [p partition]

(a) [a] Let (h) be a finite cyclic group acting on a set 2. Suppose hy, acts fized-point freely
on Q. Then there erists there exists an < h >-invariant partion of (Q;)icr, of Q with
h&Y = Q1.

(b) [b] Ifh < H < G with Cy(hy,) < H, S a ring and w € S[G \ H|. If h centralizes w,
then there exists w; € S|G \ H),i € F), with hw;h = = w41 and Zier w; = W.

(a) Put H = (h) act transitively on Q. Let Qo be an orbit for H? on . Suppose that
Qo = Q. Then by the Frattinargument, H = HPCpy(w) and so H/Cg(w) is a p’ group.
Thus h, € Cy(w) contrary to the assumptions. Thus Qy # Q Since H? < H, H/H? = (),
acts tranistively on the set of orbits of HP on ). So @ holds with ; = h'Q, for i € F).

Since Cg(hp) < H, hy acts fixed-point freely on G\ H via conjuagtion. Let €; be
as in @) with @ = G\ H and put w; = w |o,. Then clearly w =}, wi. Now

Mw; ="(w | Q) =" g, = w |0, = Wit

and @ is proved.

Lemma 6.7.4 [eigenvector for h] Let H < G and b a block for G. Suppose that B = bC
us defined and that h € H with Cg(hy) € H.

(a) [a] Let w € C with wP? = 1. If fp fy # 0, then the exists a unit t in the ring fp: fp -
ArG - fp fy with 't = wt.

(b) [b] If x € Irx(G) with x ¢ B. Then x(hfy,) = 0.

Proof: @) Let w be a as inm By m@ theer exists w; € A;G with w = s Eier w;
and "w; = wi;1. By M@, w = fyw fp and so replacing w; by fyw; fr, we may assume that
w; € fp-ArG - fp. Put s = Zz‘er w'w;. Then clearly s = ws and s € f, - A;G - fp. Put
t = fms. fp € Z(A;G) is a central idempotent, t € fpify - A;G - fp/ fy and "t = wt. To
complete the proof of @ we need to show that ¢ is unit in the ring fp/ fy - A;G - f5 fp.
Since F has no element of multiplicative order p, w* = 1 and so s* = Zier wi = w

and so by @,

*

[ fo)” = (fpw)" = (fps) =t

So[6.3.5applied with the idempotent f = fp/ fy yields that ¢ is a unit in fp/ fo-A1G- fp fo.

() Let M € S(G) with x = xam. Put V = f,M. Observe that V that CH submodule
of M. Moreover, M = Ap/(fp) @V and fp acts as idy on V. Thus xa(hfs) = xv(fp). Since
x € B, feM =0 and so fpr act as identity on M and on V. So also fg/ f, acts as indentity
on V. The V = fp/ fyM is a module for the ring fp/ fp - A;G - fp' fp

If V =0 clearly (]ED holds. So suppose V' # 0 and so also fp/f; # 0.
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For L be the set of eigenvalues for h on V and for [ € L let V; be the corresponding
eigenspace. Then V' = @, Vi. Let w be a primitive p-root of unity in U and choose ¢ as
in @) Then t is invertible on V. Moreover, if [ € L and v € Vj, then htv = hth™'hv =
wtlv = (wl)tv. Thus tV; < Vy. In particular PV, = Vi, = V; and since tP is invertible,
tPV; = V; and so also tV; = V. T Inparticular < w) acts an L be left multiplication and
dimV; = dim V,,;. Let Lo be a set of representatoves for the orbits of (w) in L. Then

xv (h) = >1er Xvi(h) = > ep ldimy,
ZlGLo Zz 0 wlldlmV = ZZGLQ (ZZ ow ) [dimV, = 0

O

Definition 6.7.5 [def:p-section] Let x € G be a p-element. Then Sg(x) = S(x) = {y €
Glyp € Gx} is called the p-section if x in G.

Lemma 6.7.6 [basic p-section] Let x € G be a p-elemenent andY a set of representatives
for the p'-conjugact classes in Cg(x). Then {xy |y € Y} is a set of representaives for the
conjugacy classes of G in S(x).

Proof: Any s € S(x) is uniquely determined by the pair (sp,s,). So the lemma follows
from [LLI.10I g

Definition 6.7.7 [def:bx]| Let x € G be a p-element and B a block p-block and § € CG).
(a) [a] Let T a block or a set of blocks. Then 6p : G — C | g — 0(frg).

(b) [b] 6 :G — C, x — 0(xh).

(¢) [e] B*={beBl(Cs(x))} | " = B}.

Lemma 6.7.8 [fchi selfadjoint] Let T C Irr(G). Then

(a) [a] fro=fr

(b) [b] (afr|b)=(al|bfr) for all a,b € CG.

Proof: By linearity we may assume 7' = {x} for some x € Irr(G).
(1)X we have fyo = fx

@i Since x° = ¢hi and f, = €l
implies (afy | b) = (a | bfy).

By [ 7y = £y and pa3q
Lemma 6.7.9 [dual of a block] Let B be a block.
(a) [a] B = {v |4 € B} is a block.
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(b) [b] Ag(a) = Ap(a®).
(c) el fg="Fp= T3
(d) [d] eg=e}.

Proof: @ and @: Let ¢ € B and M the correspoding module. Then 1) corresponse to
M*. By the definition of the action of a group ring on the dual pas«(a) = par(a®)dual, It
follows that Aj(a) = Ay(a®). Thus Aq = Ag iff Az = Ay and so and @ hold.

(c): Clearly f5= fg. By fp = f% and so (c) holds.
(d): Apply * to (d). O

Lemma 6.7.10 [theta b] Let T' be a block or or a set of blocks and 6 € CG. Then

Proof: Let b € G. Then by

Or(b) = 0(fb) = |G|(0 | frb) = |G|(0fr | b) = (0.£5)(b)-

Lemma 6.7.11 [theta fb] Let B be a block.

(a) [a] Trr(B) is a basis for CB := CGfg.

(b) [b] Both IB(G) and (y | ¢ € IBx(G) are a basis for CB, where CB := CG N CB.
(c) [e] If x € Irr(B), then x € FB.

(d) [d] For all 0 € Z(CG), 0fp = 6f5 and 65 = .

(e) le] Let 6 € Z(CG) and B a block of G. Then 0fp =3 1m0 | X)x-

Proof: (EI): Let x € Irr(B). Then x = %fy € CGB and so @) holds.
() Let ¢ € IBr(B). Then by (&)

(I)IZJ = Z d¢>xX € CB
x€lrr(B)
and so (®y | ¢ € IBr(G) is a basis for CB. Moreover,

6= 3 (6|v)®,cCB

$€IBr(B)
and so @ holds.
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“ X = Z¢61Br(3) dg\@. So follows from @
(d) By linearity we may assume that € Irr(G). If € B then by and (c)
Ofp =0=0fg
and if § ¢ B, then
Ofp=0=0=0fg

So the first statement holds. The second now follows from [6.7.10]
(E[) follows from 6 =3, (0 | x) and (E[) O

Lemma 6.7.12 [decomposing theta x| Let x € G be a p-element, B a block of G.
(a) [a] If x € Irr(B), then X* = X% ga.

(b) [b] Let 6 € Z(CG), then ((05)*) = (6%)p-.

Proof: (@} Let b € Bl(Cg(x)) \ B* and y € Cg(z)). Then

-. 6.7.4(b)
X (y) = X2 (foy) X (foy) = x(foxzy) —=" 0
Thus ;C\Eb =0 and so x* ZbeIBr(CG @) * b= ZbeIBr Bz ,\5 =\ B
@ By linearity we may assume 6 € Irr(G) and say § € A l(G . ) follows from
]
O

Theorem 6.7.13 [my second] Let X a set of representatives for the p-element classes.
Define

and

v:@D,exZCCq(x) — Z(CQR), (14)r — 0

where 0(g) = 1,(y) for x € X and y € Cg(x) with xy € %x.

(a) [a] p and v are inverse to each other and so both are C-isomorphism

(b) [b] w(ZCCq(x)) = ZCS(z).
(c) [c] w and v are isometries.

(d) [d] Z(CG) = D ,exZCS(x).
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(e) €] For each block B of G, E(Z(CB)) = @ ,exZCB?

(f) lf] Z(CB) = @ sexv(ZCB"))

Proof: Observe that by v is well defined. Also we view ZCCg(x) has subring of
@ reX Z(CCG(LU) .
(&) and @ are obvious.
(c) Let r,x € X, s € Cg(r) and y € Cg(x). Let C # D € C(G), E € (Cg(x) and
F € Cq(r) with rs € C,zy € D, s € E and y € F. Then u(ac) = ag and p(ap) = F.

—_—

Since C' # D either x # y or E # F and in both cases ag L ar in @ ,cxZCCq(x). Note
that also ac L ap in Z(CG). Moreover

(ap | ap)o = g = o = ot = L = (ar [ ap)
PHPIETG] T [Colay)l T [Co )] T [Cala)] — O
and so holds.
(d) Follows since G is the disjoint union of the opS(z),z € X. Alternaively it folloes
from @ —.
(e) Follows from [6.7.12]
@ follows from E[) and and . O

Lemma 6.7.14 [x decomposition| Let x € G. Define the complex IBr(Cg(z)) x Irr(G)-
matriz D* = (dF, ) by

X" = Z Ogx P
pelr(G)
any x € Irr(G) Then

= X Gclnlwadew

Yelr(Ca(x))

Proof:

Let x = xym with M € S(G) an dy € Cg(z). Then as an Cg(x)-module, M =
doNes(H) N for some dy € N. Since z € Z(Cg(z)), = acts as a scalar A% on N. Then
X~ (fery) = Xxn(fBy). Moreover fg annhilates N if N ¢ S(B) and acts as identiity on
N if N € §(B). Hence

() X(fsry) = D dvdiw(fsy) = Y xn(®)

NEeS(Cy(x)) NeS(B)

Observe that 6y = (x | H | xn), Xy = igg; and XN = D 4eiBr(Cy(x)) doxn ON-

Substitution into (*) gives the lemma. O
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Theorem 6.7.15 (Brauer’s Second Main Theorem) [second] Let x be a p-element in
G and b € BI(Cg(z)). If x € Irr(G) but x ¢ Irr(b%), then dg, =0 for all ¢ € IBr(G).

Proof: Follows from 6.7.12@.

Corollary 6.7.16 [chixy] Let x be a p-element in G, y € Cg(z) a p'-element, B a block
of B and x € Irx(B). Then

x(zy) =Y {dj, | beBl(Ca(z), B =0

Proof: This just rephrases [6.7.12((a)).

Corollary 6.7.17 [gp in defect group| Let B be a block of G, x € Irt(B) and g € G. If
x(g) # 0 then g, is contained in a defect group of B,

Proof: Let z = g,y = gp. Since x(g9) = x(zy) # 0, [6.7.16) implies tat there exists
b € IBr(G) with B = b%. Since z € 0,(Cg() is contained in any defect group of b, [6.6.22

implies that x is contained a defect group of B. O
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