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Chapter 4

Linear Algebra

4.1 Bilinear Forms

Definition 4.1.1 [def:bilinear form] Let R be a ring, V an R-module and W a right
R-module and s : V × W → R, (v, w) → (v | w) a function. Let A ⊆ V and B ⊆ W .
Suppose that s is R-bilinear, that is (

∑n
i=1 rivi |

∑m
j=1wjsj) =

∑n
i=1

∑m
j=1 ri(vi | wj)sj for

all vi ∈ V,wj ∈W and ri, sj ∈ R. Then

(a) [a] s is called a bilinear form.

(b) [b] s is called symmetric if V = W and (v | w) = (w | v) for all v, w ∈ V .

(c) [z] s is called symplectic if V = W and (v | v) = 0 for all v ∈ V .

(d) [c] Let v ∈ V and w ∈ W we say that v and w are perpendicular and write v ⊥ w if
(v | w) = 0.

(e) [d] We say that A and B are perpendicular and write A ⊥ B if a ⊥ b for all a ∈ A,
b ∈ B.

(f) [e] A⊥ = {w ∈W | A ⊥ w} and ⊥B = {v ∈ V | v ⊥ B}. A⊥ is called the right perp of
A and ⊥B the left perp of B.

(g) [f] If A is an R-submodule of V , define sA : W → A∗ by sA(w)(a) = (a | w) for all
a ∈ A,w ∈W .

(h) [g] If B is an R-submodule of W , define sB : V → B∗ by sB(v)(b) = (v | b) for all
v ∈ V, b ∈ B.

(i) [h] s is called non-degenerate if V ⊥ = 0 and ⊥W = 0.

(j) [i] If V is free with basis V and W is free with basis W, then the V × W matrix
MW
V (s) = ( (v | w) )v∈V,w∈W is called the Gram Matrix of s with respect to V and W.

Observe that the Gram Matrix is just the restriction of s to V ×W.
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92 Chapter 4. Linear Algebra

Let I be a set, R a ring, W = i
I R and V =

⊕
I R. Define s : V × W → R,

(v | w) =
∑

i∈I viwi. Note that this is well defined since almost all vi are zero. Note also
that if we view v and w as I × 1 matrices we have (v | w) = vTw.

As a second example let V be any R-module and W = V ∗ and define (v | w) = w(v). If
V is a free R-module this example is essentially the same as the previous:

Lemma 4.1.2 [dual basis] Let V be a free R module with basis V. For u ∈ V define
u∗ ∈ V ∗ by u∗(v) = δuv. Define

φV : V →
⊕
V
R, v → (w∗(v))w∈V

and
φV∗ : V ∗ → i

V
R,α→ (α(v))v∈V

(a) [a] Both φV and φV∗ are R-isomorphisms.

(b) [b] Let w ∈ V ∗ and v ∈ V and put ṽ = φV(v) and w̃ = φV∗(w). Then w(v) = ṽTw̃.

Proof: (a) Since V is free with basis V, the map ⊕VR → V, (rv) →
∑

v∈V rvv is an R-
isomorphism. Clearly φV is the inverse of this map and so φV is an R-isomorphism. To
check that φV∗ is an R-linear map of right R-modules recall first that V ∗ is a right R-module
via (wr)(v) = w(v)r. Also i

V R is a right R-module via (rv)vr = (rvr)v. We compute

φV∗(wr) = ((wr)(v))v = (w(v)r)v = (w(v))vr

and so φV∗ is R-linear. Given (rv)v ∈ i
V R, then w : V → R,

∑
v∈V svv →

∑
v∈V svrv is

the unique element of V ∗ with w(v) = rw for all v ∈ V, that is with φV∗(w) = (rv)v. So φV∗
is a bijection.

(b) For u ∈ V let su = u∗(v) and ru = w(u). Then v =
∑

u∈V suu and so w(v) =∑
u∈V suw(u) =

∑
u∈V suru = ṽTw̃. �

Definition 4.1.3 [dual map] Let R be a ring and α : V →W an R-linear map. Then the
R-linear map α∗ : W ∗ → V ∗, φ→ φ ◦ α is called the dual of α.

Lemma 4.1.4 [matrix of dual] Let R be a ring and V and W free R modules with basis
V and W, respectively. Let α : V → W be an R-linear map and M its matrix with respect
to V and W. Let δ ∈W ∗. Then

φV∗(α∗(δ)) = MTφW∗(δ)

Proof: Let v ∈ V. Then the v-coordinate of φV∗(α∗(δ)) is α∗(δ)(v) = (δ◦α)(v) = δ(α(v)).
By definition of M = (mwv)w∈W,v∈V , α(v) =

∑
w∈W mwvw and so
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φV∗(α∗(δ)) = (δ(α(v)))v = (
∑
w∈W

mwvδ(w)) = MTφW∗(δ)

�

Lemma 4.1.5 [associated non-deg form] Let R be a ring and s : V ×W → R an R-
bilinear form. Let A be an R-subspace of V and B an R-subspace of W . Then

sAB : A/A ∩ ⊥B ×B/B ∩A⊥, (a+ (A ∩ ⊥B), b+ (B ∩A⊥) → (a | b)

is a well-defined non-degenerate R-bilinear form.

Proof: Readily verified. �

Lemma 4.1.6 [basic bilinear] Let R be a ring and let s : V ×W → R be an R-bilinear
form.

(a) [a] Let A be an R-subspace of V , then A⊥ = ker sA.

(b) [b] Let B be an R-subspace of W then ⊥B = ker sB.

(c) [c] s is non-degenerate if and only if sV and sW are 1-1.

Proof: (a) and (b) are obvious and (c) follows from (a) and (b). �

Lemma 4.1.7 [finite dim non-deg] Let F be a division ring and s : V ×W → F a non-
degenerate F-bilinear form. Suppose that one of V or W is finite dimensional. Then both
V and W are finite dimensional, both sV and sW are isomorphisms and dimF V = dimFW .

Proof: Without loss dimF V <∞ and so dimV = dimV ∗. By 4.1.6(c), sV and sW are 1-1
and so dimW ≤ dimV ∗ = dimV . So also dimW is finite and dimV ≤ dimW ∗ = dimW .
Hence dimV = dimW = dimW ∗ = dimV ∗. Since sV and sW are 1-1 this implies that sV
and sW are isomorphisms. �

Corollary 4.1.8 [dual s-basis] Let F be a division ring, s : V ×W → F a non-degenerate
F-bilinear form, B a basis for V . Suppose that B is finite. Then for each b ∈ B there exists
a unique b̃ ∈ W with s(a, b̃) = δab for all a, b ∈ B. Moreover, (b̃ | b ∈ B) is an F-basis for
W .

Proof: By 4.1.7 sV : W → V ∗ is an isomorphism. Let b∗ ∈ V ∗ with b∗(a) = δab and define
b̃ = s−1

V (b∗). �
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Definition 4.1.9 [def:s-dual basis] Let F be a division ring, s : V × W → F a non-
degenerate F-bilinear form, B a basis for V . A tuple (b̃ | b ∈ B) such that for all a, b ∈ B,
b̃ ∈ W (a | b̃) = δab and (b̃ | b ∈ B) is basis for W is called the basis for W dual to B with
respect to s.

Definition 4.1.10 [def:adjoint] Let R be ring , si, Vi × Wi → R (i = 1, 2) R-bilinear
forms and α : V1 → V2 and β : W2 → W1 R-linear maps. We say that α and β are adjoint
(with respect to s1 and s2) or that β is an adjoint of α provided that

(α(v1) | w2)2 = (v1 | β(w2))1

for all v1 ∈ V1, w2 ∈W2.

Lemma 4.1.11 [basic adjoint] Let R be a ring , si : Vi × Wi → R, (v, w) → (v | w)i
(i = 1, 2) R-bilinear forms and α : V1 → V2 and β : W2 → W1 R-linear maps. Then α and
β are adjoint iff s1V1 ◦ β = α∗ ◦ s2V2.

Proof: Let v1 ∈ V1 and w2 ∈W2. Then

(αv1 | w2)2 = s2V2(w2)(α)(v1) = (α∗(s2V2(w2))(v1) = (α∗ ◦ s2V2)(w2)(v1)

and
(v1 | β(w2))1 = s1V1(β(w2))(v1) = (s1V1 ◦ β)(w2)(v1)

and the lemma holds. �

Lemma 4.1.12 [kernel of adjoint] Let R be a ring , si : Vi × Wi → R (i = 1, 2) R-
bilinear forms and α : V1 → V2 and β : W2 → W1 R-linear maps. Suppose α and β are
adjoint. Then kerα ≤ ⊥ Imβ with equality if ⊥W2 = 0.

Proof: Let v1 ∈ V1. Then

v1 ∈ kerα
⇐⇒ α(v1) = 0

=⇒ (⇐⇒ if W⊥
2 = 0) (α(v1) | w2) = 0 ∀w2 ∈W2

⇐⇒ (v1 | β(w2)) = 0 ∀w2 ∈W2

⇐⇒ v1 ∈ ⊥ Imβ

�

Lemma 4.1.13 [unique adjoint] Let R be a division ring, si : Vi ×Wi → R (i = 1, 2)
R-bilinear forms and α : V1 → V2 and β : W2 → W1 R-linear maps. Suppose s1 is non-
degenerate and V1 is finite dimensional over R.

(a) [a] There exists a unique adjoint αad of α with respect to s1 and s2.
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(b) [b] Suppose that also s2 is non-degenerate and V2 is finite dimensional. Let Vi be a
basis for Vi and Ṽi = (ṽ | v ∈ Vi) the basis Wi dual to Vi with respect to si. If M is the
matrix of α with respect to V1 and V2, then MT is the matrix for αad with respect to
Ṽ2 and Ṽ1.

Proof: (a) By 4.1.7 s1V1 is an isomorphism and so by 4.1.11 s−1
1V1

◦ α∗ ◦ s2V2 is the unique
adjoint of α. �

(b) Let vi ∈ Vi. Then the (v1, v2)-coefficient of M is (α(v1) | ṽ2)2. By definition of the
adjoint (α(v1) | ṽ2)2 = (v1 | αad(ṽ2))1 and so (b) holds.

Corollary 4.1.14 [dual basis for subspace] Let F be a field, V a finite dimensional F-
space and s : V × V → F an non-degenerate symmetric F-bilinear form on V . Let W be an
s-non-degenerate F-subspace of V . Let V be an F-basis for V and W an W-basis for W .
Let Ṽ = (ṽ | v ∈ V and W̃ = (w̃ | w ∈ W) be the corresponding dual basis for W and V ,
respectively. Let M = (mvw) be the V ×W matrix over F defined by

v +W⊥ =
∑
w∈W

mvww +W⊥

for all v ∈ V. Then

w̃ =
∑
v∈V

mvww̃

Proof: Since W is non-degenerate, V = W fW⊥. Let α : V → W be the orthogonal
projection onto W , that is if v = w + y with w ∈W and y ∈W⊥, then w = α(v). Observe
that the matrix of α with respect to V and W is MT. Let β : W → V,w → w, be the
inclusion map. Then for all v ∈ V,w ∈W :

(α(v) | w) = (v | w) = (v | βw)

and so β is the adjoint of α. Thus by 4.1.13(b) the matrix for β with respect to W̃ and Ṽ
is MTT = M . So

w̃ = β(w̃) =
∑
v∈V

mvww̃.

�

Lemma 4.1.15 [gram matrix] Let R be a ring, V a free R-module with basis V and W a
free right R-module with basis W. Let φV : V →

⊕
V R, φW : V →

⊕
W R, φV∗V ∗ → i

V R
and φW∗W

∗ → i
V R be the associated isomorphisms. Let s : V ×W → R be bilinear form

and M its Gram Matrix with respect to V and W. Let v ∈ V , w ∈ W , ṽ = φV(v) and
w̃ = φW(w),
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(a) [a] (v | w) = ṽTMw̃.

(b) [b] φV(V ⊥) = Null(M), the Null space of M .

(c) [c] φV(⊥W ) = NullMT

(d) [d] φW∗(sW (v)) = MTṽ.

(e) [e] φV∗(sV (w)) = Mw̃.

Proof: (a) We have v =
∑

a∈V ṽaa, w =
∑

b∈W bw̃b and M = ((a | b))ab. Since s is
R-bilinear,

(v | w) =
∑

a∈V,b∈W
ṽa(a | b)w̃b = ṽTMw̃

(b) By (a) w ∈ V ⊥ iff ṽTMw̃ = 0 for all ṽ, iff Mw̃ = 0 and iff w̃ ∈ Null(M).
(c) v ∈ ⊥W iff ṽTM = 0, iff MTṽ = 0 iff ṽ ∈ NullMT.
(d) Let u = sW (v) and ũ = ΦW∗(v). Then by “right-module” version of 4.1.2

u(w) = w̃T ·op ũ = ũT · w̃.

On the other hand

u(w) = sW (v)(w) = (v | w) = ṽTM · w̃ =

Thus ũT = ṽTM and so ũ = MTv and (d) holds.
(e) Let u = sV (w) and ũ = ΦV∗(u). Then by 4.1.2

u(v) = ṽT · ũ.

On the otherhand
u(v) = sV (w)(v) = (v | w) = ṽT ·Mw̃.

So ũ = Mw̃ and (e) holds. �

Lemma 4.1.16 [gram matrix of dual basis] Let F be a division ring and s : V ×W → F
a non-degenerate F-bilinear form. Let V and W be F-basis for V and W respectively and Ṽ
and W̃, the corresponding dual basis for W and V . Let M be the Gram matrix for s with
respect to V and W. Let N the Gram matrix for s with respect to W̃ and Ṽ. Then

(a) [a] MT is the matrix for idV with respect to V and W̃.

(b) [b] N is the matrix for idW with respect to W and Ṽ

(c) [c] M and N are inverse to each other.
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Proof: (a) We have idV : V sW→ W ∗ s−1
W→ V . By 4.1.15(d), the matrix of sW with respect

to V and W∗ is M . By definiton of W̃ the matrix of s−1
W with respect to W∗ and W̃ is the

identity matrix. So (a) holds.
(b) Similar to (a), use sV and 4.1.15(e).
(c) By (b) N−1 is the matrix of idW with respect to Ṽ and W. Note that idV is the

adjoint of idW . So by (a) and 4.1.13(b), N−1 = MTT = M . �

Lemma 4.1.17 [circ and bilinear] Let R be a commutative ring, G a group and let V
and W be RG-modules. Let s : V ×W → R be R-bilinear form.

(a) [a] s is G-invariant iff (a◦v | w) = (v | aw) for all a ∈ inRG.

(b) [b] Let a ∈ RG. Then AW (a) ≤ (a◦V )⊥ with equality if V ⊥ = 0.

Proof: (a) Recall first for a =
∑

g∈G agg ∈ Rg, a◦ =
∑

g∈G agg
−1. Thus

s is G invariant
⇐⇒ (gu | gw) = (u | w) ∀g ∈ G, u ∈ V,w ∈W

(u→ v = gu is a bijection) ⇐⇒ (v | gw) = (g−1v | w) ∀g ∈ G, v ∈ V,w ∈W
(s is R bilinear) ⇐⇒ (v | aw) = (a◦v | w) ∀a ∈ RG, v ∈ V,w ∈W

(b) By (a) a and a◦ are adjoints. So (b) follows from 4.1.12 �

Lemma 4.1.18 [extending scalars and bilinear] Let R ≤ R̃ be an extensions of rings
and s : V ×W → R an R-bilinear form. There exists a unique R̃-bilinear form

s̃ : R̃⊗R V ×W ⊗R R̃→ R̃, (a⊗ v, w ⊗ b) = a((| v), w)b

for all a, b ∈ R̃, v ∈ V,w ∈ V .

Proof: Observe that the map

R̃× V ×W × R̃ toR̃, (a, v, b, w) → a((| v), w)b

is R-balanced in (a, v) and (b, w). The universal property of the tensor product now shows
the existence of the map s̃. A simple calculation shows that s̃ is R̃-bilinear. �

Lemma 4.1.19 [extending scalars and intersections] Let F ≤ K be an extension of
division rings and V an F space.

(a) [a] Let W be a set of F-subspaces of V . Then

⋂
W∈W

K⊗W = K⊗
⋂

W∈W
W
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(b) [b] Let s : V ⊗W → F be an F-bilinear form and extend s to a bilinear form s̃ : K⊗F
V ×W ⊗F K → K (see 4.1.18). Let X an F-subspace of V . Then K⊗FX

⊥ = (K⊗X)⊥.

Proof: (a) Suppose first thatW = {W1,W2}. Then there exists F-subspacesXi ofWi with
Wi = Xi⊕(W1∩W2). Observe thatW1+W2 = (W1∩W2)⊕X1⊕X2. ForX an F-subspace of
V let X = K⊗FX ≤ K⊗FV . Then Wi = W1 ∩W2⊕Xi and W1 +W2 = W1 ∩W2⊕X1⊕X2

and so W1 ∩W2 = W1 ∩W2. So (a) holds if |W| = 2. By induction it holds if W is finite.
In the general case let v ∈ V . Then there exists a finite dimensional U ≤ V with v ∈ U

Moreover, there exists a finite subset X of W with U ∩
⋂
X∈X X = U ∩

⋂
X∈W X. By the

finite case, U ∩
⋂
X∈X X = U ∩

⋂
X∈X X and so (a) is proved.

(b) Note that X⊥ =
⋂
x∈X x

⊥. So by (a) we may assume that X = Fx for some x ∈ X.
If X ⊥ V , then also X ⊥ V and we are done. Otherwise dimV/X⊥ = 1 and so also
dimV /X⊥ = 1. From X⊥ ≤ X

⊥
< V we conclude that X⊥ = X

⊥. �

Lemma 4.1.20 [symmetric form for p=2] Let F be a field with char F = 2. Define σ :
F → F, f → f2 and let Fσ by the F-space with Fσ = F as abelian group scalar multiplication
f ·σ k = f2l. Let s a symmetric form on V and define α : V → Fσ : v → (v | v). Then α is
F-linear, W := kerα = {v ∈ V | (v | v) = 0} is an F-subspace, s |W is a symplectic form
and dimF V/W ≤ dimF Fσ = dimF2 F.

Proof: Since (v+w | v+w) = (v | v)+(v | w)+(w | v)+(w | w) = (v | v)+2(v | w)+(w |
w) = (v | v) + (w | w) and (fv | fv) = f2(v | v) = f ·σ (v | v) conclude that α is F-linear.
Thus W = kerα is an F-subspace of V and V/W ∼= Imα. Also dimF Imα ≤ dimF Fσ. The
map (σ, idF : F× Fσ → F2 × F, (f, k) → (f2, k) provides an isomorphism of the F space Fσ
and the F2-space F. So dimF Fσ = dimF2 F.

Cleary s |W is a symplectic form. �

Lemma 4.1.21 [symplectic forms are even dimensional] Let F be a field, V a finite
dimensional F-space and s a non-degenerate symplectic F-form on V . Then there exists an
F-basis vi, i ∈ {±1,±2, . . .± n} for V with (vi | vj) = δi,−j · sgn(i). In particular dimF V is
even.

Proof: Let 0 6= v1 ∈ V . Since v1 /∈ 0 = V ⊥, there exists v ∈ V with (v1 | v) 6= 0 . Let
v−1 = (v1 | v)−1v. Then (v1 | v−1) = 1 = −(v−1 | v1). Let W = F〈v1, v−1〉. The Gram

Matrix of s on W with respect to (v1, v−1) is
(

0 1
−1 0

)
. So the Gram matrix has determinant

1 6= 0. Thus W is non-degenerate and so V = W fW⊥. Hence also W⊥ is non-degenerate
and the theorem follows by induction on dimF V . �

Lemma 4.1.22 [selfdual and forms] Let F be field, G a group and V simple FG module.
Suppose that V is self-dual (that is V ∗ ∼= V as FG-module).
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(a) [a] There exists a non-degenerate G-invariant symplectic or symmetric form s on V .

(b) [b] Suppose that char F = 2 and F is perfect. Then either V ∼= FG or s is symplectic.

(a) Let α : V → V ∗ be an FG-isomorphism and t : V × V → F, (v, w) → α(v)(w), the
corresponding G-invariant F-bilinear form. Since V is a simple FG-module any non-zero
G-invariant bilinear form on V is non-degenerate.

Define r(v, w) = t(v, w) + t(w, v). Then r is a symmetric form. If r 6= 0, then (a) holds
with s = r. If r = 0 then t(v, w) = −t(w, v) for all v, w ∈ V . If char F = 2, then t is
symmetric and (a) holds with s = t. If char F 6= 2, then t(v, v) = −t(v, v) implies that t is
symplectic. So again (a) holds with s = t.

(b) Let s be as in (a) and observe that in either case of (a), s is symmetric. Let
α : V → Fσ be as in 4.1.20. View Fσ as an FG-module with G acting trivially. Then by
4.1.20 α is F linear and since S isG-invariant also FG-linear. Since F is perfect, dimF F

σ = 1.
So Fσ ∼= FG has FG-modulo and either α = 0 or α is onto. If α = 0, s is symplectic. If
α is onto kerα 6= V is an FG-submodule of V . Since V is simple, kerα = 0 and so
V ∼= Imα = F σ ∼= FG. �
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Chapter 5

Representations of the Symmetric
Groups

5.1 The Symmetric Groups

For n ∈ Z+ let Ωn = {1, 2, 3 . . . , n} and Sym(n) = Sym(Ωn). Let g ∈ Sym(n) and let
O(g) = {O1, . . . 0k} be the sets of orbits for g on Ωn. Let |Oi| = ni and choose notation
such that n1 ≥ n2 ≥ n3 ≥ . . . nk. Define ni = 0 for all i > 1. Then the sequence (ni)∞i=1

is called the cycle type of g. Pick ai0 ∈ Oi and define aij = gj(ai0) for all j ∈ Z. Then
aij = aik if and only if j ≡ k (mod n)i. The denote the element g by

g = (a11, a12, . . . a1n1)(a21, a22, . . . , a2n2) . . . (ak1, ak2, . . . aknk
).

Lemma 5.1.1 [conjugacy classes in sym(n)] Two elements in Sym(n) are conjugate if
and only if they have the same cycle type.

Proof: Let g be as above and h ∈ Sym(n). Then

hgh−1 =
(h(a11), h(a12), . . . h(a1n1))(h(a21), h(a22), . . . , h(a2n2)) . . . (h(ak1), h(ak2), . . . h(aknk

))

and the lemma is now easily proved. �

Definition 5.1.2 [def:partition of n] A partition of n ∈ N is a non decreasing sequence
λ = (λi)∞i=1 of non-negative intergers with n =

∑∞
i=1 λi.

Note that if λ is a partion of n the necessarily λi = 0 for almost all i. For example
(4, 4, 4, 3, 3, 1, 1, 1, 1, 0, 0, 0, . . .) is a partition of 22. We denote such a partition by (43, 32, 14).

Observe that the cycle type of g ∈ Sym(n) is a partition of n. Together with 3.1.3(f) we
conclude

101
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Lemma 5.1.3 [number of partitions] Let n ∈ Z+. The follwing numbers are equal:

(a) [a] The numbers of partitions of n.

(b) [b] The numbers of conjugacy classes of Sym(n).

(c) [c] The number of isomorphism classes of simple CSym(n)-modules. �

Our goal now is to find an explicit 1-1 correspondence between the set of partions of n
and the simple CSym(n)-modules. We start by associating a Sym(n)-module Mλ to each
partition λ of n. But this modules is not simple. In later section we will determine a simple
section of Mλ.

Definition 5.1.4 [def:lambda partition] Let I be a set of size n and λ a partition of n.
A λ-partition of I is a sequence ∆ = (∆i)∞i=1 of subsets of ∆ such that

(a) [a] I =
⋃∞
i=1 ∆i

(b) [b] ∆i ∩∆j = ∅ for all 1 ≤ i < j <∞.

(c) [c] |∆i| = λi.

For example ({1, 3, 5}, {2, 4}, {6}, ∅, ∅, . . .) is a (3, 2, 1) partition of I6 where In = {1, 2, 3, . . . n}.
we will write such a partition as

1 3 5
2 4
1

The lines in this array are a remainder that the order of the elements in the row does
not matter. On the otherhand since sequences are ordered

1 3 5
2 4 6

6= 2 4 6
1 3 5

Let Mλ be the set of all λ-partions of In. Note that Sym(n) acts on λ via π∆ =
(π(∆i))∞i=1). Let F be a fixed field and let Mλ = Mλ

F = FM(λ). Then Mλ is an FSym(n)-
module. Note that for M (n−1,1) ∼= FIn. Let (· | ·) the unique bilinear form on Mλ with
orthonormal basis Mλ. Then by (· | ·) is Sym(n)-invariant and non-degenerate.

5.2 Diagrams,Tableaux and Tabloids

Definition 5.2.1 [def:diagram] Let D ⊆ Z+ × Z+

(a) [z] Let (i, j), (k, l) ∈ Z+ × Z+. Then (i, j) ≤ (k, l) provided that i ≤ k and j ≤ l
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(b) [a] D is called a diagram i if for all d ∈ D and e ∈ Z+×Z+ with e ≤ d one has e ∈ D.

(c) [b] The elements of diagram are called the nodes of the diagram.

(d) [c] r : Z+ × Z+ × (i, j) → i and c : Z+ × Z+ × (i, j) → j.

(e) [e] The i-th row of D is Di := D∩{i}×Z+ and the j-column of D is Dj := Z+×{j}.

(f) [d] λ(D) = (|Di|)∞i=1 and λ′(D) = (|Dj |)∞j

Definition 5.2.2 [def:diagram2] λ ∈ Z∞+ define

[λ] = {(i, j) ∈ Z+ × Z+ | 1 ≤ j ≤ λi}.

Lemma 5.2.3 [basic diagram] Let n ∈ N. Then the map D → λD is a bijection between
the Diagram of size n and the partitions of n. The inverse is is by λ→ [λ].

Proof: Let D be a diagram of size n and put λ = λ(D). Let i ∈ N and let j be maximal
with (i, j) ∈ D. By maximality of j and the definition of a diagram, (i, k) ∈ D iff k ≤ j.
Thus j = |Di| = λi and D = [λ]. Let k ≤ i. Since (i, λi) ∈ D, the defintion of a diagram
implies (k, λi) and so λi ≤ λk. Thus λ is non-increasing. Clearly

∑∞
i=1 λi = |D| = n and so

λ is a partition of n.
Conversely suppose that λ is a partition of n. Let (i, j) ∈ D and (a, b) ∈ Z+ × Z+ with

a ≤ i and b ≤ j. Then a ≤ i ≤ λj ≤ λb and so (a, b) ∈ [λ]. Thus [λ] is a diagram. Clearly
|[λ]i| = λi, that is λ([λ]) = λ. �

We draw diagams as in the following example:

[5, 33, 22, 1] =

x x x x x
x x x
x x x
x x x
x x
x x
x

Definition 5.2.4 [def:dominates] Let λ and µ be partitions of n ∈ Z+. We say that λ
dominates µ and write λD µ if

j∑
i=1

λi ≥
j∑
i=1

µi

for all j ∈ Z+.
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Note that “dominates” is a partial ordering but not a total ordering. For n = 6 we have(6)

(5, 1)

(4, 2)

�
�

@
@

(3, 3) (4, 12)

@
@

�
�

(3, 2, 1)

�
�

@
@

(3, 13) (23)

@
@

�
�

(22, 12)

(2, 14)

(16)
On rare occasions it will be useful to have a total ordering on the partition.

Definition 5.2.5 [def:lexiographic ordering] Let λ and µ be partitions of n ∈ Z+. We
write λ > µ provided that there exists i ∈ Z+ with λi > µi and λj = µj for all 1 ≤ j < i.

Observe that ′′ <′′ is a total ordering on the partitions of n, called the lexiographic
ordering. If λBµ and i is minimal with λi 6= mui, then

∑i−1
j=1 λj =

∑i−1
j=1 µi and

∑i
j=1 λj ≥∑i

j=1 µi. Thus λi ≥ µi and so λ > µ.

Definition 5.2.6 [def:conjugate partition]

(a) [a] Let D ⊆ Z+ × Z+. Then D′ = {(j, i) | (i, j) ∈ D}. D′ is called the conjugate of D.

(b) [b] Let λ be a partition of n. Then λ′ = (|[λ]i|) is the number of nodes in the i’th
column of [λ].

Lemma 5.2.7 [basic conjugate]

(a) [a] The conjugate of a diagram is a diagram.

(b) [b] Let D be a diagram. Then the rows of D′ are the conjugates of the columns of D:
D′
i = (Di)′.

(c) [c] Let λ be a partition of n. Then λ′ is a partition of n and [λ]′ = [λ′].
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Proof: (a) follows immediately from the definition of a diagram.
(b) is obvious.
(c) By (b) |[λ]′i| = |[λi] = λ′i. Thus λ′ = λ([λ]′). So (c) follows from 5.2.3. �

Lemma 5.2.8 [reverse ordering] Let λ and µ be partitions of n. Then λDµ if and only
if λ′ E µ′.

Proof: Let j ∈ Z+ and put i = µ′j .Define the following subsets of Z+ × Z+

Top = {(a, b) | a ≤ i} Bottom = {(a, b) | a > i}
Left = {(a, b) | b ≤ j} Right = {(a, b) | b > i}

Since λ dominates µ:

(1) |Top ∩ [λ]| ≥ |Top ∩ [µ]|

By definition of i = µ′j , λi ≥ j and λi+1 > j. Thus

Top ∩ Left ⊆ [µ] and Bottom ∩Right ∩ [µ] = ∅

Hence

(2) |Top ∩ Left ∩ [λ]| ≤ |Top ∩ Left ∩ [µ]|

and

(3) |Bottom ∩Right ∩ [λ]| ≥ |Bottom ∩Right ∩ [µ]

From (1) and (2) we conclude

(4) |Top ∩Right ∩ [λ]| ≥ |Top ∩Right ∩ [µ]|

(3) and (4) imply:

|Right ∩ [λ]| ≥ |Bottom ∩ [µ]

Since |[λ]| = n = |[µ]| we conclude

|Left ∩ [λ]| ≥ Left ∩ [µ]

Thus
∑j

c=1 λ
′
c ≤

∑j
c=1 µ

′
c and λ′ E µ′. �



106 Chapter 5. Representations of the Symmetric Groups

Definition 5.2.9 [def:tableau] Let λ be a partition of n. A λ-tableau is a function t :
[λ] → In.

We denote tableaux as in the following example

5 1 4
2 3

denotes the [3, 2]-tableau t : (1, 1) → 4, (1, 2) → 1, (1, 3) → 4, (2, 1) → 2, (2, 2) → 3.

Definition 5.2.10 [def:partition of tableau] Let t : D → In be a tableau. Then ∆(t) =
(t(Di))∞i=1) and ∆′(t) = (t(Di))∞i=1. ∆(t) is called the row partition of t and ∆′(t) the
column partition of t.

Note that if t is a λ-tableau, then ∆(t) is a λ partition of In and ∆′(t) is a λ-partition
of In. For example

if t =
2 4 3
6 1
5

then ∆(t) =
2 4 3
6 1
5

Definition 5.2.11 [def:tabloids] Let s, t be λ-tableaux.

(a) [a] s and t are called row-equivalent if ∆(t) = ∆(s). An equivalence class of this
relations is called a tabloid and the tabloid containing t is denoted by t.

(b) [b] s and t are called column-equivalent if ∆′(t) = ∆′(s). The equivalence class of this
relations containing t is denoted by |t|.

For example if t =
1 4
2 3

then

t =
{

1 4
2 3

,
4 1
2 3

,
1 4
3 2

,
4 1
3 2

}

Lemma 5.2.12 [action on tableaux] Let λ be partition of n. Let π ∈ Sym(n) and s, t be
λ tableaux.

(a) [a] Sym(n) acts transitively on the set of λ-tableaux via πt = π ◦ t.

(b) [b] π∆(t) = ∆(πt)).

(c) [c] s and t are row equivalent iff πs and πt are row equivalent. In particular, Sym(n)
acts on the set of λ-tabloids via πt = πt.



Section 5.2. Diagrams,Tableaux and Tabloids 107

Proof: (a) Clearly πt = π ◦ t defines an action of Sym(n) on the set of λ tableaux. Since
s, t a bijections from [λ] → In, ρ := s ◦ t−1 ∈ Sym(n). Then ρ ◦ t = s and so the action is
transitive.

(b) Let D = [λ]. Then ∆(t) = (Di)∞i=1) and so

π∆(t) = π(t(Di)∞i=1) = (π(t(Di)∞i=1) = ((πt)(Di))∞i=1 = ∆(πt)

(c) s is row-equivalent to t iff ∆(s) = ∆(t) and so iff π∆(s) = π∆(t). So by (b) iff
∆(πs) = ∆(πt) and iff πt and πs are row-equivalent. �

Let ∆ = (∆i)∞i=1 be λ-partition of In. Let π ∈ Sym(n). Recall that π ∈ CG(∆) means
π∆ = ∆ and so π(∆i) = ∆i for all i.

CSym(n)(∆) =
⋂∞
i=1NSym(n)(∆i)) = i∞

i=1 Sym(∆i). So CSym(n)(∆) has order λ! :=∏∞
i=1 λi!.

Definition 5.2.13 [def: row stabilizer] Let t be a tableau. The Rt = CSym(n)(∆(t) and
Ct = CSym(t)(∆′(t). Rt is called the row stabilzer and Ct the column stablizer of t.

Lemma 5.2.14 [char row equiv] Let s and t be λ-tableaux. The s and t are row equiva-
lent iff s = πt for some π ∈ Rt.

Proof: Then by 5.2.12(a), s = πt for some π ∈ Sym(n). Then s is row-equivalent to t if
and only if ∆(t) = ∆(πt). By 5.2.12(b), ∆(π)t) = π∆(t) and so s and t are row equivalent
iff π ∈ Rt. �

Lemma 5.2.15 [basic combinatorical lemma] Let λ and µ be partions of n, t a λ-
tableau and s a µ-tableau. Suppose that for all i, j, |∆(t)i ∩ |∆′(s)j | ≤ 1 ( That is no two
entrees from the same row of t lie in the same column of s). Then λEµ. Moreover if λ = µ,
then there exists λ-tableau r such that r is row equivalent to t and r is column equivalent to
s.

Proof: Fix a column C of Changing the order the entrees of C neither effects the assump-
tions nor the conclusions of the lemma. So we may assume that if i appears before j in
C, then i also lies earlier row than j in the tableau t. We do this for all the columns of
s. It follows that an entree in the k-row of t must lie in one of the first k-rows of s. Thus∑k

r=1 λi ≤
∑l

r=1 µi and µ dominates λ.
Suppose now that λ = µ. Since λ1 = µ1 and the firs row of t is contained in the first row

of s, the first row of ∆(t)1 = ∆(s)1. Proceeding by induction we see that ∆(t)k = ∆(s)t for
all s and t. So s and t are row equivalent. �



108 Chapter 5. Representations of the Symmetric Groups

5.3 The Specht Module

Definition 5.3.1 [def:fh] Let G be a group, H ⊆ G, R a ring and f ∈ RG. Then fH =∑
h∈H fhh.

Lemma 5.3.2 [basic fh] Let G be a group, R a ring and f ∈ RG. Suppose that f view as
a function is a multiplicative homomorphism.

(a) [a] Let A,B ⊆ G such that the maps A×B → G, (a, b) → G is 1−1, then fAB = fAfB.

(b) [b] Let A ≤ B ≤ G and T a left-transversal to A in B. Then fB = fT fA.

(c) [c] Let A1, A2, An ≤ G and A = 〈Ai | 1 ≤ i ≤ n〉 Suppose A = in
i=1Ai, then

fA = fA1fA2 . . . fAn.

(d) [d] Suppose f is a class function, then for all g ∈ G and H ⊆ G, gfHg−1 = fgHg−1.

Proof: (a) Since the map (a, b) → ab is 1−1, every element in AB can be uniquely written
has ab with a ∈ A and b ∈ B. Thus

fAfB =
∑

a∈A faa ·
∑

b∈B fbb =
∑
a ∈ A, b ∈ Bfafbab

=
∑

a∈A,b∈B fabab =
∑

c∈AB fcc

= fAB

(b) is a special case of (a).
(c) follows from (a) and induction on n.
(d) Readily verified.
Since the map t→ ∆(t) is a well defined bijection between the λ tabloids and the the λ

partitions of In we will often identify t with ∆(t). In particular, we have t ∈Mλ.

Definition 5.3.3 [polytabloid] Let t be λ-tableau.

(a) [a] kt = sgnCt
=

∑
π∈Ct

sgnππ ∈ FSym(n).

(b) [b] et = ktt =
∑

π∈Ct
sgnππt ∈Mλ. et is called a polytabloid.

(c) [c] Sλ is the F -subspace of Mλ spanned by the λ-polytabloids. Sλ is called a Specht
module.

(d) [d] F λ is the left ideal in FSym(n) generated by the kt, t a λ-tableau.

As a first example consider t =
3 2 5
1 4

.

The Ct = Sym({1, 3})× Sym({{2, 4},
kt = (1− (13) · (1− (24)) = 1− (13)− (24) + (13)(24) and

et =
3 2 5
1 4

− 1 2 5
3 4

− 3 4 5
1 2

+
1 4 5
3 2
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As a second example consider λ = (n − 1, 1) and t =
i . . .
j

. Then Ci = Sym({i, j} =

{1, (i, j)} kt = 1− (i, j) and

et =
i . . .

j
− j . . .

i

For i ∈ In put xi := (In\, {i}) =
1 2 . . . i− 1 i+ 1 . . . n
i

Then M (n−1,1) is the F space with basis (xi, i ∈ In) and et = xj − xi. Thus

S(n−1,1) = F 〈xj − xi | i 6= j ∈ In〉 = {
n∑
i=1

fixi | fi ∈ F |
n∑
i=1

fi = 0} = (x1 + x2 + . . .+ xn)⊥

The reader should convince herself that if char F - n, then S(n−1,1) is a simple FSym(n)-
module and if char F | n, then x :=

∑n
i=1 xi ∈ S(n−1,1) and S(n−1,1)/Fx is a simple FSym(n)-

module.

Lemma 5.3.4 [transitive on polytabloids] Let π ∈ Sym(n) and t a tableau.

(a) [z] πktπ
−1 = kπt

(b) [a] πet = eπt.

(c) [b] Sym(n) acts transitively on the set of λ-polytabloids.

(d) [c] Sλ is a FSym(n)-submodule of Mλ.

(e) [d] If π ∈ Ct, then kπt = kt = sgnπkt and eπt = sgnπet.

Proof:
(a) We have Cπt = πCtπ

−1 and so by 5.3.2(d) applied to the class function sgn on
Sym(n),

kπt = sgnCπt
= sgnπCtπ−1 = πsgnCt

π−1 = πktπ
−1

(b) Using (b), eπt = kπtπt = πktπ
−1πt = πktt = πet

(c) and (d) follow from (b).
(e) Since π ∈ Ct, Cπt = Ct = Ctπ. Thus kt = kπt and

kt =
∑

α∈Ct
sgnα · α =

∑
β∈Ct

sgn(βπ) · (βπ)
= sgnπ

∑
β∈Cπt

sgnβ · β = sgnπktπ

The second statement follows from the first and πt = πt. �
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Lemma 5.3.5 [action of es on ml] Let λ and µ be partitions of n.

(a) [a] If FµMλ 6= 0, then λE µ.

(b) [b] If t and s are λ-tableau with kst 6= 0, then then kst = ±es.

Proof: Let s be a µ tableau and t and λ-tableau with kst 6= 0.
Suppose first that there exists a i 6= j ∈ In such that i and j are on the same row of t

and in the same column of s. Let H = Sym({i, j} = {1, (i, j)}. Then

sgnHt = t+ sgn((i, j))(i, j)t = t = b = 0.

Since i, j are in the same column of s, H ≤ Cs and we can choose a transversal T to H
in Cs. Then

kst = (sgnT )sgnHt = 0,

contrary to our assumption. Thus no such i, j exists. So by 5.2.15 λ E µ. Moreover, if
λ = µ, there exists a λ tableau r which is row equivalent to t an columns equivalent to s.
Hence kr = ks and r = s. Moreover πs = r for some π ∈ Cs and so by 5.3.4(e),

kst = er = sgnπes

�

Lemma 5.3.6 [es self dual] Let λ and µ be partitions of n and s an µ-tableau. Then

(a) [a] kS = k◦S

(b) [b] (kSMλ)⊥ = AMλ(ks).

(c) [c] ksM
µ = Fes and AMµ(ks) = e⊥s .

(d) [d] ksv = (v | es)es for all v ∈Mµ.

Proof: (a) If π ∈ Cs then also π−1 ∈ Cs. Moreover sgnπ = sgnπ−1 and (a) holds.
(b) Follows from (a) and 4.1.17
(c) By 5.3.5 eSMλ = Fes and so by (b) AMλ(ks) = e⊥s .
(d) By (c) ksv = fes for some f ∈ F . Hence

(v | es) = (v | kst) = (ksv | t) = (fet | t) = f

�

Lemma 5.3.7 [fl and ml] F λMλ = Sλ and AMΛ(F λ) = Sλ⊥.
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Proof: This follows immediately from 5.3.6(b) and 5.3.6(c). �

Lemma 5.3.8 [submodules of ml] Supp F is a field and let λ be a partition of n and V
be an FSym(n)-submodule of Mλ. Then either F λV = Sµ and Sµ ≤ V orF λV = 0 and
Sλ ≤ V .

Proof: If F λV = 0, then by 5.3.7, V ≤ Sλ⊥.
So suppose F λV 6= 0. Then ksV 6= 0 for some λ-tableau s. So 5.3.6 implies ksV = Fes =

ksM
λ. Since by 5.3.4(a) implies ksV = ksM

λ for all λ-tableaux s. Thus F λV = F λMλ = Sλ

and Sλ ≤ V . �

If F ≤ K is a field extensions we view Mλ = Mλ
F has a subset of Sµ. Note also that Mλ

K
is canonically isomorphic to K⊗F M

λ. Put Dλ = Sλ/(Sλ ∩ Sλ⊥).

Lemma 5.3.9 [dl=fldl] Let λ be a partition of n. If F is a field then F λDλ = Dλ.

Proof: By 5.3.8 either F λSλ = Sλ or Sλ ≤ Sλ⊥. In the first case F λDλ = Dλ and in the
second Dλ = 0 and again F λDλ = Dλ.

Proposition 5.3.10 [dl=du] Let λ and µ be partitions of n with Dλ = 0. Suppose F
is a field. If Dλ is isomorphic to an FSym(n)-section of Mµ, then λ E µ. In particular,
Dλ ∼= Dµ then λ = µ.

Proof: By 5.3.9 F λDλ = Dλ 6= 0. Hence also F λDµ 6= 0 and F λMµ 6= 0. So by 5.3.5(a),
λE µ. If Dλ ∼= Dµ, the Dµ is a section of Mλ and so µE λ and µ = λ. �

Lemma 5.3.11 [scalar extensions of ml] Let λ be a partition of n and F ≤ K a field
extension.

(a) [a] SλK = KSλ ∼= K ⊗F S
λ.

(b) [b] Sλ⊥K = K(Sλ⊥) ∼= K⊗F S
λ⊥.

(c) [d] SλK ∩ Sλ⊥K = K(Sλ ∩ Sλ⊥) = K⊗F S
λ ∩ Sλ⊥).

(d) [c] Dλ
K
∼= K⊗F D

λ.

Proof: (a) is obvious.
(b) follows from (a) and 4.1.19(b)
(a) follows from (a), (b) and 4.1.19(a).
(d) follows from (a) and (c). �

Lemma 5.3.12 [dl absolutely simple] Let λ be a partition of n and suppose Dλ 6= 0.
Then Dλ is an absolutely simple FSym(n)-module.
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Proof: By 5.3.11(d) it suffices to show that Dλ is simple. So let V be an FSym(n)-
submodule of Sλ with Sλ ∩Sλ⊥ ≤ V . By 5.3.8 either Sλ ≤ V or V ≤ Sλ⊥. In the first case
V = Sλ and in the second V ≤ Sλ ∩ Sλ⊥ and V = S ∩ Sλ⊥. Thus Dλ = Sλ/(Sλ ∩ Sλ⊥) is
simple. �

5.4 Standard basis for the Specht module

Proposition 5.4.1 [garnir relations] Let t be a λ-tableau, i < j ∈ Z+, X ⊆ ∆′(t)i and
Y ⊆ ∆′(t)j. Let T be any transversal to Sym(X)× Sym(Y ) in Sym(X ∪ Y ).

(a) [a] sgnT et is independent from the choice of the tranversal T .

(b) [b] If |X ∪ Y | > λ′i. Then
sgnT et = 0

Proof: (a) Let π ∈ Sym(X ∪ Y ) and ρ ∈ Sym(X)× Sym(Y ) ≤ Ct. Then

sgn(πρ) · πρ · et = sgn(π)π · sgn(ρ)ρet
5.3.4(e)

= sgn(π)πet

and so (a) holds.
(b) Since |X ∩ Y | > λ′i ≥ λ′j , there exists i ∈ X and j in Y such that i and j are in

the same row of t. So (1 − (ij))πt = 0. If π ∈ Sym(X ∪ Y ), then π and π · (ij) lie in
differen cosets of Sym(X) × Sym(Y ). Hence we can choose R ⊆ Sym(X ∪ Y ) such that
R ∩ R · (i, j) = ∅ and R ∪ R · (ij) is a transversal to Sym(X) ∪ Sym(Y ). By (a) we may
assume T = R∪R · (ij) and so

sgnT = sgnRsgn{1,(ij)} = sgnR · (1− (ij))

and
sgnT et = sgnR · (1− (ij))et = 0.

�

Definition 5.4.2 [def:garnir] Let t be a λ-tableau, i < j ∈ Z+, X ⊆ ∆′(t)i and Y ⊆
∆′(t)j.

(a) [a] TXY is the set of all π ∈ Sym(X ∪ SymY ) such that the restrictions of π ◦ t to
π−1(X) and π−1(Y ) are increasing.

(b) [b] GXY t = sgnTXY
. GXY t is called a Garnir element in FSym(n).

Lemma 5.4.3 [basic garnir] Let t be a λ-tableau, i < j ∈ Z+, X ⊆ ∆′(t)i and Y ⊆ ∆′(t)j.

(a) [a] TXY is a transvsersal to Sym(X)× Sym(Y ) in Sym(X ∪ Y ).
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(b) [b] If |X ∪ Y | > λ′i. Then
GXY tet = 0.

Proof: (a) Just observe that if π ∈ Sym(X ∪ Sym(Y ), then there exists a unique element
ρ ∈ Sym(X)∪Sym(Y ) such that the restriction of πρ to t−1(X) and to t−1(Y ) are increasing.
(b) follows from (a) and 5.4.1(b). �

Consider n = 5, λ = (3, 2), t =
1 2 3
4 5

, X = {2, 5}, Y = {3}

Then GXY et = 0 gives

1 2 3
4 5

− 1 3 2
4 5

− 1 2 5
4 3

= 0

Definition 5.4.4 [def:increasing tableau] Let λ be a partion of n and t a λ-tableau.

(a) [a] rt = r ◦ t−1 and ct = s ◦ t−1. So i ∈ In lies in row rt(i) and column ct(i) of t.

(b) [b] We say that t is row-increasing ct is increasing on each row ∆i(t) of t

(c) [c] We say that t is column-increasing if rt is increasing on column ∆′
i(t).

Note that rt only depends on T and so we will also write rt for rt. Indeed r = s iff
rt = rs.

Lemma 5.4.5 [basic increasing] Let λ be a partion of n and t a λ-tableau.

(a) [a] t contains a unique row-increasing tableau.

(b) [b] |t| contains a unique column-increasing tableau.

(c) [c] Let π ∈ Sym(n) and i ∈ I. Then rt(i)) = rπt(πi).

Proof: (a) and (b) are readily verfied.
(c) rπt ◦ π = r ◦ (π ◦ t)−1 ◦ π = r ◦ t−1 = rt. �

Definition 5.4.6 [def:standart tableau] Let λ be a partition of n and t a λ-tableau. A
standard tableau is row- and column-increasing tableau. A tabloid is called standard if it
contains a standard tableau. If t is a standard tableau, then et is called standard polytabloid.

By 5.4.5(a), a standard tabloid contains a unique standard tableau.
We will show that the standard polytabloids form a basis of Sλ for any ring F .
For this we need to introduce a total order on the tabloids

Definition 5.4.7 [def:order tabloids] Let t and s be the distinct λ-tabloids. Let i ∈ In
be maximal with rt(i) 6= rs(i). Then t < s provided that rt(i) < rs(i).
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Lemma 5.4.8 [basic order tabloids] < is a total ordering on the set of λ tabloids.

Proof: Any tabloid t is uniquely determined by the tuple (rt(i))
n
i=1. Moreover the ordering

is just a lexiographic ordering in terms of it associated tuple. �

Lemma 5.4.9 [proving maximal I] Let A and B be totally ordered sets amd f : A→ B
be a function. Suppose A is finite and π ∈ Sym(A) with f 6= f ◦ pi. Let a ∈ A be maximal
with f(a) 6= f(π(a)). If f is non-decreasing then f(a) > f(π(a)) and if f is non-increasing
then f(a) < f(π(a)).

Proof: Reversing the ordering on F if necessary we may assume that f is non-decreasing.
Let J = {j ∈ J | f(j) > f(a)} and let j ∈ J . Since f is non-decreasing, j > a and so
by maximality of f , f(πj) = f(j) > f(a). Hence π(J) ⊆ J . Since J is finite this implies
π(J) = J andso since π is 1− 1, π(I \ J) ⊆ I \ J . Thus π(a) /∈ J , f(π(a) ≤ f(a) and since
f(π(a)) 6= f(a), f(π(a)) < f(a). �

The above lemma is false if I is not finite ( even if there exists a maximal a): Define
f : Z+ → {0, 1} by f(i) = 0 if i ≤ 0 and f(i) = 1 otherwise. Define π : Z+Z+, i → i + 1.
Then f is non-decreasing and a = 0 is the unique element with f(a) 6= f(π(a)). But
f(a) = 0 < 1 = f(π(a)).

Allthough the lemma stays true if there exists a maximal a and f is increasing ( de-
creasing). Indeed in thus case J = CI(π) and so π(I \ J) = I \ J .

Lemma 5.4.10 [proving maximal] Let t be a λ-tableau and X ⊆ In.

(a) [a] Suppose that rt is non-decreasing on X. Then πt ≤ t for all π ∈ Sym(X).

(b) [b] Suppose that rt is non-increasing on X. Then πt > t for all π ∈ Sym(X).

Proof: (a) Suppose that πt 6= t. Let i be maximal in In with rt(i) 6= rπt(i). Note that
rπt(i) = rt(π−1(i) Since rt is non-decreasing 5.4.9 gives rt(i) < rt(π−1i) = rπt(i). Thus
t < πt.

(b) Similar to (a). �

Lemma 5.4.11 [maximal in et] Let t be column-increasing λ tableau. Then t is the max-
imal tabloid involved in et.

Proof: Any tabloid involved in et is of the form πt with π ∈ Ct. Since rt is increasing
on each column, we can apply 5.4.10 to the restriction of π to each of the columns. So the
result holds. �



Section 5.4. Standard basis for the Specht module 115

Lemma 5.4.12 [linear independent and order] Let F be ring, V a vector space with a
totally ordered basis B and L a subset of V . Let b ∈ B and v ∈ V . We say that b is involved
in v if the b-coordinate of v is non-zero. Let bv be maximal element of V involved in v.
Suppose that the bl, l ∈ L are pair wise distinct and the coefficient fl of bl in l is not a left
zero divisor.

(a) [a] L is linearly independent.

(b) [b] Suppose in addition that each fl, l ∈ L is a unit and L is finite. Put C = {bl | l ∈ L}
and D = B \ C.

(a) [a] L ∪ D is an R-basis for M .

(b) [b] Suppose R is commutative and (· | ·) be the unique R bilinar form on M with
orthormal basis B. Then

(a) [a] For each d ∈ D there exists a unique ed ∈ d+RC with ed ∈ L⊥.
(b) [b] (ed | d ∈ D is an R-basis for L⊥.
(c) [c] L⊥⊥ = RL.

Proof: (a) Let 0 6= (fl) ∈
⊕

L F . Choose l ∈ L with bl maximal with respect to fl 6= 0.
Then bl > bk for l 6= k ∈ L with fk 6= 0. So bl is involved in fll, but in not other fkk. Thus∑

l∈L fll 6= 0 and L is linearly independent.
(b) We assume without loss that fl = 1 for all l ∈ L.
(b:a) Let m =

∑
b∈Bmbb ∈ M . We need to show that m ∈ R(D ∪ L. If mb = 0 for all

b ∈ BL, this is obvious. Otherwise pick b ∈ BL maximal with mb 6= 0 and let l ∈ L with
b = bl. Then by induction on b, m−mbl ∈ R(D ∪ L).

(b:b) We will first show that

(∗) R ∩ C ∩ L⊥ = 0

Let 0 6= m =
∑

l∈Lmlbl and choose l withml 6= 0 and bl minimal. Then (m | l) = ml 6= 0
and m /∈ L⊥.

(b:b:a) This is just the Gram Schmidt process. For completeness here are the details.
Let L = {l1, l2, . . . ln} and bi = bli with b1 < b2 < . . . bn}. Put e0 = d and suppose
inductively that we have found ei ∈ d + Rb1 + . . . + Rei with ei ⊥ lj for all 1 ≤ j ≤ ei. If
i < n put ei+1 = ei − (ei | li+1)bl+1. Then (ei+1 | li+1 = 1 and since bi+1 ⊥ lj for all j ≤ i.
Put ed = en. By (*), ed is unique.

(b:b:b)) Clearly (ed | d ∈ D) is R-linearly independent. Moreover if m =
∑

b∈caBmbb ∈
L⊥, then m̃ := m−

∑
d∈Dmded ∈ RC ∩ L⊥ . So (*) implies m̃ = 0 and (b:b:b) holds.

(b:b:c) m =
∑

b∈caBmbb ∈ L⊥⊥. By (b:a) there exists m̃ ∈ RL with m = m̃ ∈ RD and
so we may assume that mc = 0 for all c ∈ C. Then 0 = (m | ed) = md for all d ∈ D and so
m = 0. �



116 Chapter 5. Representations of the Symmetric Groups

Theorem 5.4.13 [standard basis] Let F be a ring and λ a partition of n. The standard
polytabloids form a basis of Sλ. Moreover, Sλ⊥⊥ = Sλ and there exists an R-basis for Sλ

indexed by the nonstandard λ-polytabloids.

By 5.4.10(a) and 5.4.12 the standard polytabloids are linearly independent. Let t be λ-
tableau. Let |t| be the column equivalence class of t. Total order the column euqivalence
classes analog to 5.4.7 We show by downwards induction that et is a F -linear combination
of the standard polytableaux. Since et = ±es for any s column-equivalent to t we may
assume that t is column increasing. If t is also row-increasing, t is standard tableaux and
we are done. So suppose t is not row-increasing so there exists (i, j) ∈ Z+× such that
t(i, j) > t(i, j + 1). Let X = {t(k, j) | i ≤ k ≤ λ′i and Y = {t(k, j + 1) | 1 ≤ k ≤ j. Then
|X ∪ Y | = λ′j + 1 and so by 5.4.1 ∑

π∈TXY

sgnπeπt = 0

Since ct is increasing on X and on Y and since t(i, j) > t(i, j + 1), rt is non-increasing
on X ∪Y . So by 5.4.10 |πt| > |— for all 1 6= π ∈ Sym(X∪). Thus by downwards induction
eπt is an R-linear combination of the standard polytabloids. Hence the same is true for
et = −

∑
1 6=πT sgnπeπt.

The remaining statements now follow from 5.4.12. �

5.5 The number of simple modules

Definition 5.5.1 [def:p-regular class] Let p be an integer. An element g in a group G is
called p-singular if p divides |g|. Otherwise g is called p-regular. A conjugacy class is called
p-regular if its elements are p-regular.

The goal of this section is to show that if K is an algebraicly closed field, G is a finite
group and p = charK then the number of isomorpism classes of simle KG-modules equals
the number of p-regular conjugacy classes.

Lemma 5.5.2 [cyclic permutation]

(a) [a] Let G be a group, n ∈ Z+ and a1, . . . an ∈ G. Then for all i ∈ N ai+1ai+2 . . . ai+n
is conjugate a1a2 . . . an in G.

(b) [b] Let R be a group, n ∈ Z+ and a1, . . . an ∈ R. Then for all i ∈ N, ai+1ai+2 . . . ai+n ≡
a1a2 . . . an (mod )S(R)

Proof: (a) We have a−1
1 · a1a2 . . . an . . . a1 = a2 . . . ana1. So (a) follows by induction on n.

(b) a1 · a2 . . . an − a2 . . . an · a1 ∈ S(R) So (b) follows by induction on n. �
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Definition 5.5.3 [def: sr] Let R be ring and p = charR. Then S(R) = 〈xy − yx | x, y ∈
R〉Z. Let p̃ = p if p 6= 0 and p̃ = 1 if p = 0. T(R) = {r ∈ R | rp̃m ∈ S(R) for some m ∈ N}.

Lemma 5.5.4 [sr for group rings] Let R be a commutative ring and G a group. Then
S(RG) consists of all a =

∑
rgg

∈ RG with
∑

g∈C rg = 0 for all conjugacy classes C of G.

Proof: Let U consists of a =
∑

rgg
∈ RG with

∑
g∈C rg = 0 for all conjuagacy classes C

of G. Note that both S(R) and U are R-submodules. As an R-modules S(R) is spaned by
the gh− hg wth g, h ∈ G. By 5.5.2 gh and hg are conjugate in G. Thus gh = hg ∈ U and
S(R) ⊆ U . U is spanned by the g − h where g, h in G are conjuagte. Then h = aga−1 and
g − h = a−1 · ag = ag · a−1 and so g − h ∈ S(R) and U ⊆ S(R). �

Lemma 5.5.5 [basic sr] Let R be a ring with p := charR a prime.

(a) [a] (a+ b)p
m ≡ ap

m
+ bp

m
mod S(R) for all a, b ∈ R and m ∈ N.

(b) [b] T(R) is an additive subgroup of R.

(c) [c] Suppose that R =
⊕s

i=1Ri. Then S(R) =
⊕r

i=1 Si and T (R) =
⊕
T (Ri).

(d) [d] Let I be an ideal in R. Then S(R/I) = S(R) + I/I.

(e) [e] Let I be a nilpotent ideal in R. Then I ≤ T (R), T (R/I) = T (R)/I and R/T (R) ∼=
(R/I)/T (R/I).

Proof: (a) Let A = {a, b}p and let H = 〈h〉 be a cyclic group of order p acting on A via
h(ai) = (ai+1). Then H has two fixed points on A namely the constant sequence (a) and
(b). Since the length of any orbit of H divises |H|, all other orbits have lenghth p. Let C
be an orbit of length p for H on A. For a = (a1, a2, . . . ap) ∈ A puy

∏
a = a1a2 . . . ap/ Then

by 5.5.2
∏
a ≡

∏
b (mod )S(R) for all a, b ∈ C and so

∑
b∈C

∏
b ≡ p

∏
a = 0 mod S(R).

Hence for (a+ b)p =
∑

αinA

∏
a ≡ ap + bp mod S(R). (a) now follows by induction on m.

(b) Follows from (a).
(c) Obvious.
(d) Obvious.
(e) Since I is nilpotent, Ik = 0 for some integer k. Choose m with pm ≥ k. Then for

all i ∈ I, ip
m

= 0 ∈ S(R) and so i ∈ T(R). Thus I ≤ T(R). Since S(R) + I/I = S(T/I)
we have T (R)/I ≤ T (R/I). Conversely if t+ I ∈ T (R/I), then tp

l ∈ S(R) + I. Since bith
S(R) and I are in T (R), (b) implies tp

l ∈ T (R) and so also t ∈ T (R). �

Lemma 5.5.6 [tr for group rings] Let F be an integral domain with char F = p. Let G
be a periodic group and let Cp be the set of p-regular conjugacy classes of G. For C ∈ Cp let
gC ∈ C. Then (gC + S(FG) | C ∈ Cp) is a F -basis for FG/ S(FG).
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Proof: Let g ∈ G and write g = ab with [a, b] = 1, ap
m

= 1 and b, p-regular. Then
gp

m − bp
m

= 0 and so by 5.5.5(b), g ≡ mod T(FG). Also by 5.5.4 b ≡ gC where C = Gb.
(gC + ( FG) | C ∈ Cp) is a spanning set for FG/ S(FG). Now let rC ∈ R with∑

C∈Cr

rcgC ∈ T(FG)

Then there exists m ∈ N with (
∑

C∈Cp
rcgC)p

m ∈ S(FG). Since gC is p-regular, p - gC
and so p is invertible in Z/|gC |Z. Hence there exists mC ∈ Z with |gC | | pmC − 1. Put
k = m

∏
C∈Cp

mC . Then gp
k

C = gC and (
∑

C∈Cp
rcgC)p

k ∈ S(FG). By 5.5.5(b),∑
C∈Cp

rp
k

C gC =
∑
C∈Cp

rp
k

C g
p
C ∈ S(FG)

Thus 5.5.4 shows that rp
k

C = 0 for all C ∈ Cp. So also rC = 0 and (gC + ( FG) | C ∈ Cp)
is a linearly independent. �

Lemma 5.5.7 [sr for matrix ring] Let R be a commutative ring and p = charR.

(a) [a] S(Mn(R)) consists of the trace zero matrices and Mn(R)/S(Mn(R)) ∼= R.

(b) [b] p = char K is a prime, then T(Mn(R)) = {a ∈ Mn(R) | tr(a)p̃
m

= 0for somem ∈
N}}.

(c) [c] If R is a field, then S(Mn(R)) = T(Mn(R)) and Mn(R)/T(Mn(R)) ∼= R.

Proof: Since tr(xy) = tr(yx) and so S(Mn(R)) ≤ ker tr. ker tr is generted by the matrices
Eij and Eii − Ejj with i 6= j. Eij = EiiEij − EijEii and so Eij ∈ S(Mn(R). Eii − Ejj =
EijEji − EjiEij and so Eii − Ejj ∈ ker tr.

Suppose now that p is a prime and let a ∈ Mn(R). Let b = tr(a)E11 and c = a − b.
Then trc = 0, c ∈ S(Mn(R)) and so by 5.5.5 a ∈ T (Mn(R)0 if and only if b ∈ T(Mn(R)).
Since tr(bp

m
) = tr(a)p

m
the lemma is proved. �

Theorem 5.5.8 [pmodular simple] Let G be a finite group, F an algebraicly closed field
and p = charF . Then the number of isomorphism classes of simple FG-modules equals the
number of p-regular conjugacy classes.

Proof: By 5.5.6 the number of p′ conjugacy classes is dimF FG/T(FG).
Let A = FG/J(FG). By 6.3.4 J(FG) is nilpotent and so by 5.5.5(e), FG/T(FG) ∼=

A/T(A).
By 2.5.24 R ∼=

⊕n
i=1 Mdi

(F), where n is the number of isomorphism classes of simple
FG-modules.

Thus by 5.5.5(c) and 5.5.7(c), R/T (R) ∼= Fn. So dimF FG/T(FG) is the number of
isomorphism classes of simple FG-modules. �
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5.6 p-regular partitions

Definition 5.6.1 [def:p-regular partition] Let p and n be positive integers with p being
a prime. A partition λ of n is called p-singular, if there eixsts i ∈ N with λi+1 = λi+2 =
. . . = λi+p. Otherwise λ is called p-regular.

Lemma 5.6.2 [p-regular=p-regular] Let p, n be positive integers with p beieng a prime.
The number of p-regular conjugacy classes of Sym(n) equals the number of p-regular parti-
tions of Sym(n).

Proof: Let g ∈ G and µ its cycle-type. Then g is p-regular iff none of the µi is divisible
by p. Any such partions we can uniquely determined by a sequence (zi)p-i of non-negative
integers with

∑
izi = n, where ji is the number of k′s with µk = i. Any p-regular partion

we can write as a sequence (zi)∞i=1 with 0 ≤ ji < p.

Let f =
Q∞

i=1(1−xpi)Q∞
i=1(1−xi)

viewed as an element of Z(x)), the ring of formal integral power
series.

We compute f in two different ways:

(i) [1] Let A = N \ pN. For each i cancel the factor 1 − xpi in the numerator and
denumerator of f to obtain:

f =
∏
p∈A

1
1−xi =

∏
p∈A

∑∞
j=0 x

ij

=
∑

(ji)∈⊕AN
∏
i∈A x

iji =
∑

(ji)∈⊕AN x
P

i∈A iji

Thus the coefficent of xn is the number of partions of n, none of whose parts is divisible
by p. So the coefficent of xn is the number of p-regular conjugacy classes in Sym(n).

(ii) [2] Let B = {0, 1, . . . p− 1}.

f =
∏∞
i=1

1−xpi

1−xi =
∏∞
i=1

∑
j=0 p− 1xj

=
∑

(ji)∈⊕∞B
∏
xji =

∑
(ji)∈⊕∞B x

P∞
i=1 iji

So the coefficient of xn in f is the number of p-regular partitions.

�

Definition 5.6.3 [def:glambda] Let λ be a partition of n and F = Z. Then

gλ = gcd {(et | es) | t, sλ− tableaux}

Lemma 5.6.4 [glambda and dlambda] Let λ be a partition of n. Then Dλ = 0 iff
charF | gλ.
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Proof: Since Sλ is spanned by the λ-polytabloid we have

Dλ = 0

⇐⇒ Sλ = Sλ ∩ Sλ⊥

⇐⇒ Sλ ⊥ Sλ

⇐⇒ et ⊥ es ∀λ− tableauxs, t

⇐⇒ (et | es) ∀λ-tableauxs, t

⇐⇒ charF | (et | es)Z ∀λ-tableauxs, t

⇐⇒ charF | gλ

�

Lemma 5.6.5 [glambda] Let λ be a partition of n and for F = Z define

gλ = gcd {(et | es) | t, sλ− tableaux}

Let zj = |{i | λi = j|}. Then gλ divides
∏∞
j=1(zj !)

j and
∏∞
j=1 zj ! divides gλ.

Define two λ-tabloids s and t to be equivalent {∆i(t) | i ∈ Z+ = {∆i(s) | i ∈ Z}, that is if
t and s have the rows but in possible different orders. Define Zj = {i ∈ Z+ | λi = j and
Z = (Zj)∞j=1. Then Z is partition of Z+. Note that t and s s are this is the case if and only
if there exists π = π(r, s) ∈ Sym(Z+) with ∆πi(t) = ∆i(s). Then λπt = |∆πt| = |∆i(s)| = λi
and so πZ = Z. Conversely if π ∈ Sym(Z) := CSym(Z+)(Z) = i

j∈Z+ Sym(Zj), then there
exists a unique tabloid s with ∆i(s) = ∆πi(t) and s is equivalent to s.

Hence

1◦ [1] Each equivalence class contains |Sym(Z) = z! :=
∏∞
j=1 zj ! tabloids.

For a tabloid r and a tableau t let εt(r) be the coefficient of r in et. So et =
∑
εt(r)r.

2◦ [2] Let r and s are equivalent λ-tableaux. Then there exists ε = ε(r, s) ∈ {±1} such
that for any λ-tableaux t, εt(s) = ε · εt(r).

Let π = π(r, s). Let πj be the restriction of π to Zj and define ε =
∏
j sgnπj . We may

assume that r is involved in et and so r = ρt for some ρ ∈ Ct. Without loss r = ρt. Define
π∗ ∈ Sym(n by π∗(r(i, j) = r(π(i), j). Then π∗ ∈ Ct, sgnπ∗ = ε and π∗r = s. Thus s = π∗ρ,
the coefficent of r in et is sgnρ and the coefficent of s is sgn(π ∗ sgnρ) = εsgnρ.

3◦ [3] z! divides gλ.
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Let t, u be λ tableaux. Let A be an equivalence class of tabloids and r ∈ A. Let s ∈ A
and choose ε as in (2◦). Then

εt(s)εu(s) = ε · εt(s) · ε · εs(r) = εt(r)εt(s)

Thus
∑

s∈A εt(s)εu(s) = |A|εt(r)εu(r)
By (1◦), |A| = z!. Summing over all the A’s we conclude that z! divides (et | es). Thus

(3◦) holds.
Let t be λ-tableau. Define σ ∈ Sym(n) by σ(t(i, j)) = t(i, λi + 1 − j) and put t̃ = σt.

So t̃ is the tableaux obtained by reversing the rows of t. We will show that (et | () | et̃) =∏∞
i=1(zi!)

j .
Put Ui := Ui(t) :=

⋃
k∈Zi

∆k(t), the union of the rows of t of size i. Note that Ui = Ui(t̃)
and U = (Ui) is partion of In. Also put U ji := U ji (t) = Ui ∩∆′

j , the part of column j of t
lying in Ui. Then U ji (t̃) = U i+1−j

i = σ(U ji ). Let P = (U ji ) | i, j ∈ Z). Then P is a partition
of In refining both U and column partition. ∆′(t). Hence Sym(U) ≤ Ct. Also σ permutes
the Uij and so σ normalizes Sym(U) and so Sym(U) ≤ σCtσ

−1 = Ct̃. Observe |U ji (t)| = zj
if j ≤ i and U ji (t) = ∅ otherwise. Thus

4◦ [4] |Sym(U)| =
∏
i,j |U

j
i (t)|! =

∏∞
i=1(zi!)

i.

We show next

5◦ [5] Let π ∈ Sym(U). Then εt(πt) = εt̃(πt) = sgnπ.

Since π ∈ Ct we have εt(πt) = sgnπ.
Since π ∈ Ct̃ we have εt(πt̃) = sgnπ.
Since σ fixes the rows of t, πσπ−1 fixes the rows of πt. Thus

πt = πσπ−1πt = πσt = πt̃

and so (5◦) holds.

6◦ [6] Let π ∈ Ct such that πt is involved in et̃. Then π ∈ Sym(U).

Since πt is involved in et̃ there exists π̃ ∈ Ct̃ with πt = π̃t̃. Hence for all k ∈ In,
rπt)(k) = rπ̃t̃(k) and so rt(π−1k) = rt̃(π̃−1k). Put α = π−1 and α̃ = π∗−1. Then for all
k ∈ I.

(∗) α ∈ Ct, α̃ ∈ Ct̃ and rt(α(k)) = rt̃(α̃(k))

We need to show that α(U ji ) = U ji = α̃(U ji ) for all i, j. The proof uses double induction.
First on j and then downwards on i.
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For I, J ⊂ Z+ let UJI =
⋃
{U ji | i ∈ I, j ∈ J}. If I = Z+ or J = Z+ we drop the

subscript I, respectively superscript. For example U≤j =
⋃
Uki | i, k ∈ Z+ | k ≤ j} consists

ofthe first j columns of t.
Suppose that α(U lk) = U lk = α̃(U lk) whenever l < j or l = j and k > i. Then α(U j>i) =

α(U j>i) and α(U j) = U j implies α(U ji ) ⊆ U j≤i. Hence by (*) also

(∗∗) ãlpha(U ji ) ⊆ U≤i

Let c = i+ 1− j. Then U ji = Ũ ci and

Ũ c<i =
⋃
k<i

U c+1−k
k

and so by induction α̃Ũ c<i = U c<i. Hence α̃(U ji ) ⊆ α̃(Ũ c≥i) = Ũ c≥i ⊆ Ũ≥i = U≥i. So by
(**) α̃(U ji ) ⊆ Ui ∩ Ũ c = Ũ ci = U ji and ã(U ji ) = Uij . Hence by (*) also α(UJi ≤ Ui ∩U j = U ji
and α(U ji ) = U ji .

So (6◦) is proved.

From (5◦) and (6◦) we conclude that (et | et̃) = |Sym(U)| =
∏∞
i=1(zi!)

i. Since gλ divides
(et | et̃) the lemma is proved. �

Proposition 5.6.6 [dlambda not zero] Suppose F is an integral domain and λ is a par-
tition of n. Let p = charF . Then Dλ 6= 0 iff λ is p-regular.

Proof: Since F is an integral domain, p = 0 or p is a prime. Let λ = (izi )i=1. Then
p |

∏
i zi! iff p ≤ zi for some i, iff p |

∏
i(zi!)

i and iff λ is p-singular.
So 5.6.5 implies that p | gλ iff λ is p-singular. And so by 5.6.4, Dλ = 0 iff λ is p-singular.

�

Theorem 5.6.7 [all simple sym(n)-modules] Let F be a field, n a postive integer and
p = charF .

(a) [a] Let λ be a p-regular partition of n. Then Dλ is an absolutely simple, selfdual
FSym(n)-module.

(b) [b] Let I be a simple FSym(n)-module. Then there exists a unique p-regular partition
λ of n with I ∼= Dλ.

Proof: (a) By 5.6.6 Dλ 6= 0. By 4.1.5, s induces a non-degenerate G-invariant form on
Dλ and so by 4.1.6(c), Dλ is isomorphic to its dual. By 5.3.12, Dλ is absolutely simple.

(b) If λ and µ are distinct p-regular partition then by 5.3.10 and (a), Dλ and Dµ are
non-isomorphic simple FSym(n)-modules. The number of simple FSym(n)-modules is less
or equal to the number simple Sym(n)-modules over the algebraic closure of F. The latter
number is by 5.5.8 equal to to the number of p′-conjuagacy classes and so by 5.6.2 equal to
the number of p-regular partitions of n. So (b) holds. �
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5.7 Series of R-modules

Definition 5.7.1 [def:series] Let R be a ring and M and R-module. Let S be a set of
R-submodules of M . Then S is called an R-series on M provided that:

(a) [a] 0 ∈ S and M ∈ S.

(b) [b] S is totally ordered with respect to inclusion.

(c) [c] For all ∅ 6= T ⊂ S,
⋂
T ∈ S and

⋃
T ∈ S.

For example Z > 2Z > 6Z > 30Z > 210Z > . . . > 0 is an Z-series on Z.

Definition 5.7.2 [def:jumps] Let R be a ring, M an R-module and S an R-series on M .
For 0 6= A ∈ S put A− =

⋃
{B ∈ S | B ⊂ A}. If A 6= A− then (A−, A) is called a jump of

S and A/A− a factor of S. S is called a composition series for R on S provided that all its
factors are simple R-modules.

The above example is composition series and its sets of factors is isomorphic to Z/pZ,
p a prime.

Lemma 5.7.3 [basic series] Let R be a ring, M an R-module, S an R-series on M .

(a) [a] Let A,B ∈ S with B ⊂ A. Then (B,A) is a jump iff A = C or B = C for all
C ∈ S with B ⊆ C ⊆ A.

(b) [b] Let U ⊂M . Then there exists a unique A ∈ U minimal with U ⊆ A. If U is finite
and contains a non-zero element then A− 6= A and A ∪ U * A−.

(c) [c] Let 0 6= m ∈ M . Then there exists a unique jump (B,A) if S with v ∈ A and
v 6∈ B.

Proof: (a) Suppose first that (B,A) is a jump. Then B = A−. Let C ∈ S with B ⊆ C ⊆ A
Suppose C ⊂ A. Then C ⊆ A− = B and C = B.

Suppose next that A = C or B = C for all C ∈ S with B ⊆ C ⊆ A. Since B ⊆ A,
B ⊆ A−. Let C ∈ S with C ⊂ A. Since S is totally ordered, C ⊆ B or B ⊆ C. In the latter
case, B ⊆ C ⊂ A and so by assumption B = C. So in any case C ⊆ B and thus A− ⊆ B.
We conclude that B = A− and so (B,A) is a jump.

(b) Put A =
⋃
{S ∈ S | U ⊆ S}. By A ∈ S and so clearly is minimal with respect

to U ⊆ A and is unique with respect to this property. Suppose now that U is finite and
contains a non-zero element. Then A 6= 0. Suppose that A = A−. Then for each u ∈ U we
can choose Bu ∈ S with u ∈ Bu and Bu ⊂ A. Since U is finite {Bu, u ∈ U} has a maximal
elemeent B. Then U ⊆ B ⊂ A, contradicting the minimality of A

Thus A 6= A− and by minimality of A, U * A.
(c) Follows from (b) applied to U = {m}. �
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Lemma 5.7.4 [series and basis] Let R be a ring, M a free R-module with basis B and S
be an R-series on M . Then the following four statements are equivalent. one of the follwing
holds:

(a) [a] For each A ∈ S, A ∩ B spans A over R.

(b) [b] For each B ∈ S, (a+B | a ∈ B \B} is R-linear independent in V/B. Then

(c) [c] For each jump (B,A) of S, (a+B | a ∈ B∩A\B} is R-linear independent in A/B.

(d) [d] For all A,B ∈ S with B ⊆ A, (a+B | a ∈ B ∩A \B} is an basis R-basis for A/B.

Proof: (a)=⇒ (b): (ra) ∈
⊕

a∈B\AR with
∑

a∈B\A raa ∈ B. Then by (a) applied to B

there exists (ra) ∈
⊕

a∈B∩A with ∑
a∈B\A

raa =
∑

a∈B∩A
raa

Since B is linearly independent over R this implies ra = 0 for all a ∈ B and so (b) holds.
(b)=⇒ (c): Obvious.

(c)=⇒ (a): Let a ∈ A. Since B spans M over R there exists afinite subset C of B and

(rc) ∈
⊕

C R
] with a =

∑
c∈C rcc. Let D ∈ S by minimal with C ⊆ D. Then (D−, D) is a

jump and C \D− 6= ∅. Suppose that D * A. Since S is totally ordered, A ⊆ D−. Thus

0D/D− = a+D− =
∑
c∈C

rcc+D− =
∑

c∈C\D−

rcc+D−

a contradiction to (c).
(a)=⇒ (d): (a) implies that (a + B | a ∈ A} and so also (a + B | a ∈ A} spans A/B.

Since (a) implies (b), (a + B | a ∈ B \ B} and so also (a + B | a ∈ B ∩ A \ B} is R-linear
independent. So (d) holds.

(d)=⇒ (a): Just apply (d) with B = 0. �

5.8 The Branching Theorem

Definition 5.8.1 [def:removable node] Let λ be partion of n

(a) [a] A node d ∈ [λ] is called removable if [λ] \ {d} is a Ferrers diagram.

(b) [b] di = (ri, ci), 1 ≤ i ≤ k are the the removable nodes of [λ] ordered such that r1 <
r2 < . . . < rk. λ(i) = λ([λ] \ {di} and λ ↓= {λ(i) | 1 ≤ i ≤ k}

(c) [c] e ∈ Z+ → Z+ is called an exterior node of [λ if D ∪ {e} is a Ferrers diagram . λ ↑
is the set of partions of n obtained by extending [λ] by an exterior node.
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Lemma 5.8.2 [basic removable] Let λ be a partition of n and (i, j) ∈ D. Then the
following are equivalent

(a) [a] (i, j) is a removable node of [λ].

(b) [b] j = λi and λi > λi+1.

(c) [c] i = λ′j and λ′j > λ′j+1.

(d) [d] j = λi and i = λ′j.

Proof: Obvious. �

Definition 5.8.3 [def:restrictable] Let λ be partition of n and t be a λ-tableau. We say
that t is restrictable if t−1(n) is a removable node of [λ]. In this case t |t−1(In−1) is denoted
by t ↓. t is called restrictable if t contains a restrictable tableau s. In this case we define
t ↓= s ↓

Lemma 5.8.4 [basic restrictable] Let λ be a partion of t. If t is restricable then t ↓ is
a tableau. If t is standard then t is restrictable and t ↓ is standard. Let π ∈ Sym(n − 1).
Then t is restrictable iff πt is restrictible. In this case (πt) ↓= π(t ↓). t is restrictable iff πt
is restrictable In this case (πt) ↓= π(tt ↓).

Proof: Obvious.

Theorem 5.8.5 [restricting specht] Let λ be a partition of n. For 0 ≤ i ≤ k let Vi be
the F -submodule of Sλ spanned by all et where t is a restrictable λ-tableau with n in one of
the rows r1, r2, . . . ri. Then

0 = V0 < V1 . . . < Vk−1 < Vk = Sλ

as a series of FSym(n− 1)-submodules with factors Vi/Vi−1
∼= Sλ

(i)
.

Proof: Clearly the the set of restrictable λ tableaux with n in row ri is invariant under
the action of Sym(n− 1). Thus each Vi is an FSym(n− 1) submodule of Sλ. Also clearly
Vi−1 ≤ Vi and it remains to show that Vi/Vi−1

∼= Sλ
(i)

. For this define and F -linear map

(1) θi : Mλ →Mλ(i)
, t→

{
t ↓ if n is in row ri of t
0 otherwise

Clearly θi commutes with the action of Sym(n−1) and so θi is FSym(n−1) linear. Let
n be a restrictable tableau with n in row rj . Then for all π ∈ Ct n is in a row less or equal
to ri, with equality iff π fixes n, that is if π ∈ Ct↓. Thus
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(2) θi(et) =

{
et↓ if j = i

0 if j < i

If s is a λ(i)-tableau, then s = t ↓ for a (unique) restrictable λ tableau t with n in row
ri. Hence

(3) Vi−1 ≤ Vi ∩ ker θi and Vi/Vi ∩ ker θi ∼= Im θi = Sλ
(i)

Let B be the set of standard λ-polytabloids and Bi the et with t standard and n in row
ri. Then by (1) θi(Bi) is the standard basis for Sλ

(i) and so is linear independently. Thus
also the image of Bi in Vi/Vi ker θi is linearly independent. Consider the series of F -modules

0 = V0 ≤ V1 ∩ ker θ1 ≤ V1 ≤ V2 ∩ ker θ2 < V2 < . . . < Vk−1 ≤ Vk ∩ ker θk < Vk < Sλ

Each et ∈ B lies in a unique Bi and so in Vi \ (Vi ∩ kerπi). Thus B ∩ Vi ∩ ker θi ⊆ Vi−1.
So we can apply 5.7.4 to the series of F -modules and conlcude that Vi ∩ ker θi/Vi−1 is as
the emptyset as an R-basis. Hence Vi−1 = Vi ∩ ker θi. For the same reason Vk = Sλ and
theorem now follows from (3). �

Theorem 5.8.6 (Branching Theorem) [branching theorem] Let F be a field with charF =
0 and λ a partition of n.

(a) [a]
Sλ ↓Sym(n−1)=

⊕
µ∈λ↓

Sµ

(b) [b]
Sλ ↑Sym(n−1)=

⊕
µ∈λ↑

Sµ

Proof: (a) Follows from 5.8.5 and Maschke’s Theorem 2.3.2
(b) Follows from (a) and Frobenius Reprocity 2.7.4.

5.9 S(n−2,2)

In this section we investigate the Specht modules S(n), S(n−1,1) and Sn−2,2.

Lemma 5.9.1 [s(n)] M (n) = S(n) ∼= D(n) ∼= F .

Proof: There there a unique (n)-tabloid t and πt = t for all π ∈ Sym(n). Moreover et = t
and so S(n) = M (n). Also S(n)⊥ = 0 and the lemma is proved. �
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Lemma 5.9.2 [s(n-1)] Let xi the unique (n−1, 1)-tabloid with i in row 2. Let z =
∑n

i=1 xi
be the sum of all λ-tabloids. Then

(a) [a] S(n−1,1) = {
∑n

i=1 fixi | fi ∈ F,
∑n

i=1 fi = 0.

(b) [b] S(n−1,1)⊥ = Fz.

(c) [c] S(n−1,1)⊥ ∩ S(n−1,1) = {fx | f ∈ F, nf = 0}.

Proof: (a) If t is tableau with t(1, 1) = i and t(2, 1) = j, then et = xi − xj . This easily
implies (a).

(b)
∑

fizi
⊥ xi − xj iff fi = fj .

(c) Follows from (a) and (b). �

Corollary 5.9.3 [dim d(n-1)] Let F be a field and p = char F.

(a) [a] If p - n, then S(n−1,1) ∼= D(n−1,1) has dimension n− 1 over D.

(b) [b] If p | n, then D(n−1,1) has dimension n− 2 over F .

Proof: Follows immediately from 5.9.2. �

To analyze S(n − 2, 2) we introduce the follwing notation: Let n ∈ N with n ≥ 4 and
λ = (n − 2, 2). Let P be the set for subsets of size two in In. For P ∈ Pn let xP be the
λ-partition (P, In \ P ). Then (xP | P ∈ P) is an F -basis for Mλ. For a, b, c, d pairwise
distinct elements in In put eab|cd = xac + xbd − xad − xbc. So eab|cd = et for any λ tableau

of the form
a c . . .

b d
.

For i ∈ In define xi :=
∑

i∈P∈P xP and yi =
∑

i/∈P∈P xP . Also let z =
∑

P∈P xP and
observe that xi + yi = z for all i ∈ I.

Lemma 5.9.4 [basis for s(n-2,2)perp]

(a) [a] x1, x2, . . . xn−1, yn is an F -basis for Sλ⊥.

(b) [b] x1, x2, . . . xn−1, z is an F -basis for Sλ⊥.

(c) [c] y1, y2, . . . yn−1, z is an F -basis for Sλ⊥.

(d) [d] If 2 is invertible in F then x1, x2, . . . xn is an F -basis for Sλ⊥.

(e) [e] If n− 2 is invertible in F , then y1, y2, . . . yn is an F -basis for Sλ⊥.
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Proof: (a) We will first show that xi ⊥ eab|cd for all appropriate i, a, b, c, d. If i /∈
{a, b, c, d}, xi and eab|cd have do not share a tabloid and so (xi | eab|cd) = 0. So suppose
i = a, then xi and eab|cd share xac and xad with opposite signs and so again xi ⊥ eab|cd.
Clearly z ⊥ eab|cd and so also yi ⊥ eab|cd. Thus xi, yi and z are all contained in Sλ⊥.

Now let a =
∑

P∈P rPxP ∈ Sλ⊥. We need to show that a is a unique F -linear combi-
nation of x1, x2, . . . xn−1, yn. For n 6= i ∈ In, xi is the only one involving xin. So replacing
a by a −

∑n−1
i=1 rinxi we assume that rin = 0 for all i 6= n. And we need to show that a

is scalar multiple of yn. That is we need to show that rij = rkl whenever {i, j}, {k, l} ∈ P
with n /∈ {i, j, k, l}. Suppose first that P ∩ Q 6= ∅ and say i = k and withoutloss j 6= l.
Since a ∈ Sλ⊥, a ⊥ ein|jl. Thus rij + rnl − ril − rnj = 0. By assumption rnl = rnj = 0 and
so rij = ril = rkl. In the geneal case we conclude rij = rik = rkl and (a) is proved.

(b) Observe that z =
∑n−1

i=1 xi − yn. Thus (b) follows from (a).
(c) Since yi = z − xi this follows from (b).
(d) Observe that

∑n
i=1 xi = 2z and so xn = −

∑n−1
i=1 xi + 2z. So (d) follows from (b).

(e) We have
∑n

i=1 yi =
∑n

i=1(z − xi) = nz −
∑n

i=1 xi = (n− 2)z. So yn = −
∑n−1

i=1 yi +
(n− 2)z and (e) follows from (c). �

It might be interesting to observe that y1, . . . , yn−1, xn is only a basis if n−2 is invertible.
Indeed xn = −

∑n−1
i=1 xi + 2z =

∑n−1
i=1 (yi − z) + 2z =

∑
i=1 yi + (n− 2)z.

We know proceed to compute Sλ ∩ Sλ⊥ if F is a field.

Lemma 5.9.5 [s(n-2) cap s(n-2)perp] Suppose F is field and put p = charF .

(a) [a] Suppose p = 0 or p is odd and n 6≡ 1, 2 mod p or p = 2 and n ≡ 3 mod 4. Then
n Sλ ∩ Sλ⊥ = 0.

(b) [b] Suppose p is odd and n ≡ 1 mod p or p = 2, n ≡ 1 mod 4. Then Sλ ∩Sλ⊥ = Fz.

(c) [c] Suppose p is odd and n ≡ 2 mod p or p = 2 and n ≡ 2 mod 4, then Sλ ∩ Sλ⊥ =
〈Fyi | 1 ≤ i ≤ n〉 and

∑n
i=1 yi = 0.

(d) [d] Suppose p = 2 and n ≡ 0 mod 4. Then Sλ ∩ Sλ⊥ = 〈Fyiyj | 1 ≤ i < j ≤ n〉 and∑n
i=1 yn = 0.

Proof: Since F is a field and (· | ·) is non-degenerate, Sλ⊥⊥ = Sλ and so Sλ ∩ Sλ⊥ =
Sλ⊥⊥ ∩ Sλ⊥ is the radical of the restriction of (· | ·) to Sλ.

By 5.9.4 y1, y2 . . . yn−1z is basis for Sλ⊥. Let a = r0z +
∑n−1

i=1 riyi. Then
Observe that

(yi | yi) =
(
n−1

2

)
(yi | yj) =

(
n−2

2

)
i 6= j

(yi | z) =
(
n−1

2

)
(z | z) =

(
n
2

)



Section 5.9. S(n−2,2) 129

So (a | yj) = r0
(
n−1

2

)
+rj

(
n−1

2

)
+

∑n−1
i6=j=1 ri

(
n−2

2

)
. Put r =

∑n−1
i=1 ri. Since

(
n−1

2

)
−

(
n−2

2

)
=(

n−2
1

)
= n− 1 we conclude a ∈ Sλ if and only if

(1) (a | yj) =
(
n− 1

2

)
r0 + (n− 2)rj +

(
n− 2

2

)
r = 0∀1 ≤ j < n

and

(2) (a | z) = r0

(
n

2

)
+ r

(
n− 1

2

)
= 0

.
Sustracting (1) for two diffrent values of for j gives

(3) (n− 2)rj = (n− 2)rk∀1 ≤ j < k ≤ n− 1

and so

(4) (n− 2)r = (n− 1)(n− 2)rj

Substracting (2) from (1) gives

(5) (n− 1)r0 + (n− 2)rj = (n− 2)r

and using (4)

(6) (n− 1)r0 = (n− 2)2rj

Note also that (1) and (2) are equivalent to (2),(3) and (6).
Suppose first that n−2 = 0 in F . Then

∑n
i=1 yn = (n−2)z = 0 and 〈yi | 1 ≤ i ≤ n〉F =

〈yi | 1 ≤ i ≤ n− 1〉F and
Also n − 1 6= 0. So (3) and (6) hold if and only if r0 = 0. If p 6= 2 or p = 2 and n ≡ 2

mod 4, then also
(
n−1

2

)
= 0 in F and so also (6) holds. Thus (c) holds in this case. If p = 2

and n ≡ 0 mod 4, then
(
n−1

2

)
= 1 and so (6) holds if and only if r = 0. Observe also that∑n

i=1 yi = 0 and n even implies 〈yi + yj | 1 ≤ i < j ≤ n〉F = 〈yi + yj | 1 ≤ i < j ≤ n− 1〉F
and so (d) holds.

Suppose next that n− 2 6= 0 in F . Then (3) just says rj = rk. Assume that n− 1 = 0
in F. Then (6) holds iff rj = 0 for all j. Hence (2) says r0

(
n
2

)
r = 0. If p 6= 2 or p = 2 and

n ≡ 1 mod 4,
(
n
2

)
= 0 and (b) holds. If p = 2 and n ≡ 3 (mod 4), then

(
n
2

)
= 1. So r0 = 1

and (a) holds.
Assume next that n−1 6= 0 and so p 6= 2. Multipying (2) with 2

n−1 gives nr0 = −(n−2)r.
Adding to (5) gives r0 = 0. So also 0 = (n − 2)r = (n − 2)(n − 1)rj and rj = 0. Thus (a)
holds. �
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Corollary 5.9.6 [dimension of d(n-2,2)] Suppose F is a field, then dimF S
(n−2,2) =

n(n−3)
2 Moreover,

(a) [a] Suppose p = 0 or p is odd and n 6≡ 1, 2 mod p or p = 2 and n ≡ 3 mod 4. Then
dimF D

(n−2,2) = n(n−3)
2 .

(b) [b] Suppose p is odd and n ≡ 1 mod p or p = 2, n ≡ 1 mod 4. Then dimF D
(n−2,2) =

n(n−3)
2 − 1

(c) [c] Suppose p is odd and n ≡ 2 mod p or p = 2 and n ≡ 2 mod 4. Then dimF D
(n−2,2) =

(n−1)(n−4)
2 − 1.

(d) [d] Suppose p = 2 and n ≡ 0 mod 4. Then dimF D
(n−2,2) = (n−1)(n−4)

2 .

Proof: Since dimDλ = dimSλ − dim(Sλ ∩ Sλ⊥), this follows from 5.9.5 and some simple
calculations. �

Definition 5.9.7 [def:shape] Let M be an R-module.

(a) [a] A shape of height n of M is inductively defined as follows:

(i) [i] A shape of height 1 of M is any R-module isomorphic to M .

(ii) [ii] A shape of height h of M is one of the following.

(a) [1] A triple (A,⊕, B) such that there exists R-submodules X,Y of M with
M = X ⊕ Y such that A is a shape of height i of X, B is a shape of height j
of Y and k = i+ j.

(b) [2] A triple (A, |, B) such that there exists R-submodules X of Y such that A
is shape of height i of X, B is a shape of height j of M/X and k = i+ j.

(b) [b] If M ∼ S means that S is a shape of M . A shape (A,⊕, B) as in (a:ii:a) is denoted

by A⊕B. A shape (A, |, B) as in (a:ii:a) is denoted by A | B or
A

B
.

(c) [c] A factor of a S shape of M is incuctively defined as follows: If S has height 1, then
S itseld the only fcator of S. If S = A | B or S = A⊕B, then any factor of A or B is
a factor of S.

(d) [d] A simple shape of M is a shape all of its factors are simple.

Observe that if M ∼ A | (B | C then also M ∼ (A | B) | C and we just write
M | A | B | C. Similar M ∼ (A ⊕ B ⊕ C) means M ∼ (A ⊕ B) ⊕ C and equally well
A ⊕ B(⊕C). We also have M ∼ A ⊕ B iff M ∼ B ⊕ A. But M ∼ A | B does not imply
M ∼ B | A. We have M ∼ A ⊕ (B | C) implies M | (A ⊕ B) | C and M ∼ B | (A ⊕ C).
But M ∼ (A⊕B) | C does not imply M ∼ A⊕ (B ∼ C).
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For example if F is a field with charF = p then by 5.9.2 M (n−1,1) ∼ D(n) ⊕D(n−1,1) if
p - n and M (n−1,1)∼D(n | D(n−1,1) | D(n) if p | n.

If might also be worthwhile to define the following binary operation on classes of R-
modules. If A,B are classes of R-modules, then A⊕B denotes the set of all R-modules M
such that M ∼= X ⊕ Y with X ∈ A and Y ∈ B. A | B is the class of all R-modules M such
that M has an R-submodule X with X ∈ A and M/X ∈ B. A shape of M then can be
interpreted as a class of R-modules containing M obtained form the isomorphism classes of
R modules and repeated application of the operations ⊕ and |.

To improve readabilty we write D(a, b, c . . .) for D(a,b,c,...) in the next lemma.

Corollary 5.9.8 [shape of m(n-2,2)] Suppose F is a field. Then D(n−2,2) has simply
shapes as follows:

(a) [a] Suppose p = 0 or p is odd and n 6≡ 0, 1, 2 mod p or p = 2 and n ≡ 3 mod 4. Then

M (n−2,2) ∼ D(n− 2, 2)⊕D(n− 1, 1)⊕D(n)

(b) [b] Supose p 6= 0, 2 and n ≡ 0 mod p. Then

M (n−2,2) ∼ D(n− 2, 2) ⊕
D(n)

D(n− 1, 1)
D(n)

(c) [c] Suppose p is odd and n ≡ 1 mod p or p = 2, n ≡ 1 mod 4. Then

M (n−2,2) ∼
D(n)

D(n− 2, 2)
D(n)

⊕ D(n− 1, 1)

(d) [d] Suppose p is odd and n ≡ 2 mod p. Then

M (n−2,2) ∼
D(n− 1, 1)
D(n− 2, 2)
D(n− 1, 1)

⊕ D(1)

(e) [e] Suppose p = 2 and n ≡ 2 mod 4. Then

M (n−2,2) ∼

D(n− 1, 1)
D(n)

D(n− 2, 2)
D(n)

D(n− 1, 1)

⊕ D(1)
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(f) [f] Suppose p = 2 and n ≡ 0 mod 4. Then

M (n−2,2) ∼
D(n− 1, 1)⊕D(n)

D(n− 2, 2)
D(n− 1, 1)⊕D(n)

Proof: This is straighforward from 5.9.5. As an example we consider the case p = 2 and
n ≡ 2 (mod 4). Observe that (z | z) =

(
n
2

)
6= 0 and so Mλ = Fz. Thus Mλ ∼ D(n)⊕ z ⊥,

and the restrition of (· | ·) to z⊥ is a non-degenerate.
5.9.5 B := Sλ ∩ Sλ⊥ = 〈yi | 1 ≤ 1 ≤ n〉. So B has the submodule, A = 〈yiyj | 1 ≤ u <

j ≤ n〉. Since
∑n

i=1 yi = 0, B ∼= D(n − 1, 1). Since n is even, A/B 6= 1 and A/B ∼= D(n).
Sλ/A = Dλ = D(n−2, 2). Since Sλ⊥ = A+Fz, Sλ = z⊥∩A⊥. So z⊥∩B⊥/Sλ ∼= (A/B)∗ ∼=
D(n)∗ ∼= D(n). Moreover, z⊥/z⊥ ∩A⊥ ∼= A∗ ∼= D(n− 1, 1)∗ ∼= D(n− 1, 1). Thus (e) holds.
�

5.10 The dual of a Specht module

Definition 5.10.1 [def:twisted module] Let R be a ring, G a group , M an RG-module
and ε : G → Z(R)] a multiplicative homomoprhism. Then Mε is the RG-module which is
equal to M as an R-module and g ·ε m = ε(g)gm for all g ∈ G,m ∈M .

Note that this definition is consistent with our definition of the RG-module Rε.

Proposition 5.10.2 [slambdaprime] Let λ be a partion of n. Then

Sλ∗ ∼= Mλ/Sλ⊥ ∼= Sλ
′

sgn

as FSym(n)-module.

Proof: Fix a λ tableau s. Let π ∈ Rs = CG(s). Since Rs = Cs′ , 5.3.4(e) gives πes′ =
sgnπes′ = π ·sgn es′ . Hence there exists a unique FSym(n)-linear homorphism

(1) αs : Mλ →Mλ′ with s→ es′

Let t be any λ-tabloids. Then the exists π ∈ Symn with πs = t (namely π = ts−1) and
so

αs(t)αs(πs) = π ·sgn es′ = sgn(π)eπs′ = sgn(ts−1)et′

that is

(2) αs(t) = sgn(ts−1)et′
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Observe that (2) implies

(3) Imαs = Sλ
′

Since λ′′ = λ we also obtain a unique FSym(n− 1) linear map

(4) αs′ : Mλ →Mλ, t′ → sgn(ts−1)et

Then

(5) Imαs′ = Sλ

We claim that αs′ is the adjoint of αs. That is

(6) (αs(t) | r′) = (t | αs′(t))r

for all λ-tableaux t, r.
Indeed suppose that r′ is involved in involved in αs(t) = sgnts−1et′ . Then there exists

β ∈ Ct′ with r′ = βt′ and so there exists δ ∈ Rr′ with δr′ = βt′. Moreover

(αs(t) | r′) = sgn(ts−1)sgnβ

Observe that δ ∈ Cr and β ∈ Rt. Thus t = βt = δr and so t is involved in er and

(t | αs′(r′)) = sgn(rs−1)sgnδ

δr = βt implies δrs−1 = βts−1 and so

sgn(rs−1)sgnδ = sgn(ts−1)sgnβ

and so (6) holds.

Let m ∈ Mλ. (· | ·) is non-degenereate, (6) implies αs(m) = 0 iff (αs(m) | m′) = 0 for
all m′ ∈Mλ′ iff (m | αs′(m′)) = 0 and iff m ∈ (Imαs′)⊥. So by (5) kerαs = Sλ

⊥
and so

Mλ/Sλ⊥ ∼= Mλ/ kerαs ∼= Imαs = Sλ

�

Lemma 5.10.3 [tensor and twist] Let R be a ring, G a group , M an RG-module and
ε : G→ Z(R)] a multiplicative homomoprhism. Then

Mε
∼= Rε ⊗RM

as an RG-module.
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Proof: Observe first that there exists an R-isomorphism α : Rε⊗RM →M with r⊗m→
rm. Moreover, if g ∈ G, r ∈ R and m ∈M then

α(g(r ⊗m) =α(g ·ε r ⊗ gm) = α(ε(g)r)⊗ gm
= ε(g)rgm = ε(g)grm
= g ·ε rm = g ·ε α(r ⊗m)

and so α is an RG-ismomorphism. �

Corollary 5.10.4 [slambdaprime II]

(a) [a] S(1n) ∼= Fsgn.

(b) [b] Let λ be a partition of n. Then Sλ∗ ∼= S(1n)⊗ Sλ
′

Proof: (a) By 5.9.1 S(n) ∼= F and so by 5.10.2 F ∼= F ∗ ∼= S(n)∗ ∼= S
(n)′
sgn = S

(1n)
sgn .

(b) Sλ∗ ∼= Sλ
′

sgn
∼= Fε ⊗ Sλ

′ ∼= S(1n) ⊗ Sλ
′
. �



Chapter 6

Brauer Characters

6.1 Brauer Characters

Let p be a fixed prime. Let A be the ring of algebraic integers in C. Let I be an maximal
ideal in A containing pA and put F = A/I. Then F is a field with with char F = p.

∗ : A → F, a→ a+ I

be the correspoding ring homorphism.
Let Ã be the localization of A with respect to the maximal ideal I, that is Ã = {ab | a ∈

A, b ∈ A \ I. Observe that ∗ extends to a homomorphism

∗ : Ã → F,
a

b
→ a∗(b∗)−1

In particular Ĩ := ker ∗ = {ab | a ∈ I, b ∈ A \ I} is an maximal ideal in Ã, Ã/Ĩ ∼= F and
is the kernel of the homomorphism Ĩ ∩A = I. Let U be the set of elements of finite p′-order
in A].

Lemma 6.1.1 [f=fpbar]

(a) [a] The restriction U → F], u→ u∗ is an isomorphism of multiplicative groups.

(b) [b] F is an algebraic closure of its prime field Z∗ ∼= Fp.

Proof: Let u ∈ U and m the multiplicative order of u. Then

m−1∑
i=0

xi =
xm − 1
x− 1

=
m−1∏
i=1

(x− ui)

Substituting 1 for x we see that 1 − u divided m in A. Thus 1 − u∗ divides m∗ in F.
Since p - 0 and charF = p, m∗ 6= 0 and so also 1− u∗ 6= 0. Thus ∗ is 1-1 on U .

135
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If a ∈ A then f(a) = 0 for some monic f ∈ Z[x]. Then also f∗(a) = 0 and f∗ 6= 0. So a∗

is algebraic over Z∗. Let K be an algebraic closure of F and so of Z∗. Let 0 6= k ∈ K. Then
km = 1 where m = |Z∗[k]| − 1 is coprime to p. Since U∗ contains all m roots of xm − 1 we
get k ∈ U∗. Thus K∗ ⊆ U∗ ⊆ F∗ ⊆ K∗ and the lemma is proved. �

Definition 6.1.2 [def:brauer character] Let G be a finite group and M an FG-module.
G̃ is the set of p-regular elements in G. Let g ∈ G̃ and choose ξ1, . . . ξn ∈ U such that
ηM (g) =

∏n
i=1(x − ξ∗i ), where ηM (g) is the characteristic polynomial of g on M . Put

φM (g) =
∑n

i=1 ξi. Then the function

φM : G̃→ A, g → φM (g)

is called the Brauer character of G with respect to M .

Recall that if H ⊆ G then we view RH as R an an R-submodule of RG. Also note that
φM =

∑
g∈G̃ φM (g)g ∈ AG̃ ⊆ AG. Observe also that 1G◦ is the Brauer character of the

trivial module FG.

Lemma 6.1.3 [basic brauer] Let M be a G-module.

(a) [a] φM is a class function.

(b) [b] φM (g) = φM (g−1).

(c) [c] φM = φM∗.

(d) [d] If H ≤ G then φ |H= φM |H .

(e) [e] F be the sets of factors of some FG-series on M . Then

φM =
∑
F∈F

φF

Proof: Readily verified. See 3.2.8. �

Definition 6.1.4 [def tilde a]

(a) [a] For g ∈ G let gp, gp′ be defined by gp, gp′ ∈ 〈g〉, g = gpgp′, gp is a p- and gp′ is a
p′-element.

(b) [b] For a =
∑

g∈G agg ∈ CG, ã = a |G̃=
∑

g∈G̃ agg.

(c) [c] For a = CG̃ define ǎ ∈ CG by ǎ(g) = a(gp′.

Recall that χM (g) = trM (g) is the trace of g on M .
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Lemma 6.1.5 [brauer and trace] Let M be a FG-module. Then (φ̌M )∗ = χM .

Proof: Let Wi, 1 ≤ i ≤ n be the factors of an F〈g〉 composition series on M . Then since
F is algebraically closed, Wi is 1-dimensionaly and g acts as a scalar µi on Wi. Since F
contains no non-trivially p-root of unity gp acts trivially on Wi and so also gp′ acts as µi on
Wi. Pick ξi ∈ U with ξ∗i = µi. Then

φ̌M (g) = φM (gp′) =
n∑
i=1

ξi

and so

(φ̌M (g))∗ =
n∑
i=1

µi = χM (g)

�

Let Sp be a set of representatives for the simple FG-modules.

6.2 Algebraic integers

Definition 6.2.1 [def:tracekf] Let F : K be a finite separable field extension and E a
splitting field of F over K. Let Σ be set of F-linear monomorphism from F to K.

tr = trF
K : F → K | f →

∑
σ∈Σ

σ(f)

Lemma 6.2.2 [basic tracekf] Let F : K be a finite separable field extension. Then s :
F× F → K, (a, b) → tr(ab) is a non-degenerate symmetric K-bilinear form.

Proof: Clearly s isK-bilinear and symmetric. Suppose that a 6= f ∈ F⊥. Then tr(ab) = 0
for all b ∈ F and since a 6= o, tr(f) = 0 for all f ∈ F . Thus

∑
σ∈Σ σ, contradiction the linear

idependence of filed monomorphism [Gr, III.2.4].

Corollary 6.2.3 [trace dual basis] Let F : K be a finite separable field extension and B
a K basis for F. Then b ∈ B there exists a unique b̃ ∈ F with tr(ab̃) = δab for all ab ∈ F.

Proof: 6.2.2 and 4.1.8. �

Definition 6.2.4 [def:integral] Let S be a commutative ring and R a subring.

(a) [a] a ∈ R is called integral over S if there exists a monic f ∈ S[x] with f(a) = 0.

(b) [b] IntS(R) is the set of elements in S intgeral over R.
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(c) [c] R is integrally closed in S if IntR(S).

(d) [d] If Ris an integral domain, then R is called integrall closed if R is integraly closed
in its field of fractions FR.

Lemma 6.2.5 [basic integral] Let S be a commutative ring, R a subring and a ∈ S.
Then the following are equivalent:

(a) [a] a is integral over S.

(b) [b] R[a] is finitely generated S-submodule of R.

(c) [c] There exists a faithful, finitely R-generated R[a] module M

Proof: (a)=⇒ (b): Let f ∈ R[x] be monic with f(a) = 0. Then an ∈ R〈1, . . . , an−1〉 and

so R[a] = R〈1, a, . . . , an−1〉 is finitely R-generated.
(a)=⇒ (b): Take M = R[a].

(b)=⇒ (c): Let B ⊆ M be finite with M = RB. Choose a matrix D = (dij) ∈ MB(R)

with ai =
∑

i∈B dijj for all i ∈ B. Let f be the characteristic polynomial of D. Then
f ∈ R[x] and f is monic. By Cayley-Hamilton [La, XV Theorem 8] f(D) = 0. Since
f(a)i =

∑
j∈B f(D)ijj for all i ∈ I we get f(a)M = 0. Since AR(M) = 0 we have f(a) = 0.

�

Lemma 6.2.6 [integral closure] Let S be a commutative ring and R a subring of S.

(a) [a] Let a ∈ S. If a is integral over R, then also R[a] is integral over R.

(b) [b] Let T be a subring of S with R ⊆ T . Then S is integral over R iff T is integral
over R and S is integral over T .

(c) [c] IntS(R) is a subring of R and IntR(S) is integrally closed in S.

Proof: (a) Let b ∈ R[a]. By 6.2.5(b), R[a] is finitely R-generated. Since R[a] is a faithful
R[b]-module, 6.2.5(c) implies that b is integral over R.

(b) One direction is obvious. So suppose S : T and T : R are integral and let a ∈ S. Let
f = sumn

i=1tix
i ∈ T [x] be monic with f(a) = 0. Put R0 = R and inductively Ri = Ri−1[ai].

Then ai is integral over Ri−1, Ri is finitely Ri−1-generated. Also f ∈ Rn[x] and so Rn[a] is
finitely Rn-generated. It follows that Rn[a] is finitely R-generated and so by 6.2.5(c), a is
integral over R.

(c) Let a, b ∈ IntS(R). By (a) R[a] : R and R[a, b] : R[a] are integral. So by (b)
R[a, b] : R is integral and so R[a, b] ⊆ IntS(R) and IntS(R) is a subring. Since both
IntS(IntS(R) : IntS(R) and IntS(R) are integral, (b) implies that IntS(R) is integrally
closed in R. �
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Lemma 6.2.7 [f integral] Let R be a integral domain with field of fraction F and let K
be a field extension of F . Let a ∈ F be integral over R and f the minimal polynomial of a
over F.

(a) [a] All coefficents of f are integral over R.

(b) [b] If K : F is finite seperable, then tr(a) is integral over R.

Proof: (a) Let A be the set of roots of f in some splitting of f over K. Alos let g ∈ R[x]
be monic with f(a) = 0. Then f | g in F[x] and so f(b) = 0 for all b ∈ A. Thus A is integral
over R. Since f ∈ R[A][x], (a) holds.

(b) Let Σ be the set of monomorphism from K to the splitting field of K over 0F. Then
each σ(a), σ ∈ Σ is a root of f . Thus tra =

∏
σ∈Σ σ(a) ∈ R[A]. �

Lemma 6.2.8 [k=int/r]Suppose R is an integral domain with field of fraction F. Let K
be an algebraic field extension of F. Then K = { ir | i ∈ IntK(R), r ∈ R]}. In particular, K
is the field of fraction of IntR(S).

Proof: Let k ∈ K. Then ther exists a non-zero f ∈ F[x] with f(k) = 0. Multitiplying f
with the product of the denominatos of its coeeficents we may assume that f ∈ R[x]. Let
f =

∑n
i=0 aixi with an 6= 0. Put g(x) = an−1

n f( x
an

) =
∑n

i=0 aia
n−1−ixi. Then g ∈ R[x], g is

monic and g(ank) = an−1
n f(k) = 0. Thus ank ∈ IntK(R) and k = ank

k . �

Definition 6.2.9 [def:lattice] Let R be a ring, S a subring of R, M an R-module and L
an S-module of M . Then L is called a R : S-lattice for M provided that there exists an
S-basis B for L such that B is also an R-basis for M .

Lemma 6.2.10 [intfr noetherian] Suppose R is an integral domain with field of fraction
F. Let K be a finite seperable extension of F.

(a) [a] There exists an F : R-lattice in K containing IntK(R).

(b) [b] If R is Noetherian, so is IntK(R).

(c) [c] If R is a PID, IntK(R) is an F : R-lattice in K.

(a) Let B be a F basis for K. For each b ∈ B there exisst ib ∈ IntK(R) and rb ∈ R] with
b = iB

rb
. So replacing B by b

∏
d∈B rb we may assume that B ⊆ IntK(R). By 6.2.2 and

4.1.8 there exists b∗ ∈∈ K with tr(b∗d) = δbd for all b, d ∈ B and (b∗ | b ∈ B) is a F-basis
for K. Thus L = IntK(R)〈b∗ | b ∈ B〉 is an IntK(R)-lattice in K. Let i ∈ IntK(R). Then
i =

∑
b∈T tr(bi)b∗. Since IntK(R) is a subring bi ∈ IntK(R). So by 6.2.7(b) tr(bi) ∈ IntK(R)

and so i ∈ L.
(b) By (a) IntK(R) is contained in a finitely generated R-module. Since R is Noetherian

we conclude that IntK(R) is a Noetherian R- and so also a Neotherian IntK(R)-module.
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(c) By (a) IntK(S) ia a finitely generated, torsion free R-module and so is free with
R- basis say D. It is easy to see that D is also linearly independent over F. From 6.2.8,
K = FIntK(S) and so FD = K and D is also an F basis. �

Definition 6.2.11 [def:algebraic number field] An algebraic number field is a finite
field extension of Q.

Lemma 6.2.12 [primes are maximal] Let K be an algebraic number field and J a non-
zero prime ideal in R := IntK(Z). R/J is a finite field and in particular J is a maximal
ideal in R.

Proof: Let 0 6= j ∈ J and let f ∈ Z[x] monic of minimal degree with f(j). Let f(x) =
g(x)x + a with a ∈ Z. Then f(j) = 0 gives a = −g(j)j ∈ J . By minimality of deg f ,
g(j) 6= 0 and so also a 6= 0. Thus J ∩ Z 6= 0 and so Z + J/J is finite. By 6.2.10(a) R is a
finite generate Z-module. Thus R/J is a finitely generated Z + J/J-module and so R/J is
a finite. Since J is prime, R/J is an integral domain and so R/J is a finite field. �

Definition 6.2.13 [def:dedekind domain] A Dedekind domain is an integrally closed
Noetherian domain in which every which every non-zero prime ideal is maximal.

Corollary 6.2.14 [algebraic integers are dedekind] The set of algebriac integers in an
algebraic number field form a Dedekind domain.

Proof: Let K be an algebraic number field and R := IntK(Z). By 6.2.8 K is the field of
fraction of R. So by 6.2.6(c) R is integrally closed. By 6.2.10 R is Noetherian and by 6.2.12
all prime ideals in R are maximal. �

Lemma 6.2.15 (Noetherian Induction) [noetherian induction] R be a ring and M
be an Noetherian R-module and A and B sets of R-submodules of M . Suppose that for all
A ∈ A such that D ∈ B for all A < D ∈ A, then A ⊆ B.

Proof: Suppose not. Then A \ B has a maximal element element A. But then D ∈ B for
all A < D ∈ A and so by assumption A ∈ B, a contradiction. �

Lemma 6.2.16 [contains product of prime] Let R be a commutative Noetherian ring
and J an ideal in R. Then there exist prime ideals P1, P2 . . . Pn ∈ R with J ⊆ Pi and∏n
i=1 Pi ∈ J .

Proof: If J is is a prime ideal the lemma holds with n = 1 and P1 = J . So suppose J is
not a prime ideal. The there exists ideal J < Jk < R, k = 1, 1 with J1J2 ⊆ R. By Notherian
induction we may assume that there exists prime ideals Jk ⊆ Pik in R with

∏nk
i=1 Pik ⊆ Jk.

Thus
∏2
k=1

∏nk
i=1 Pik ≤ J1J2 ⊆ J . �
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Definition 6.2.17 [def:division] Let M be an R module and N ⊆ M and J ⊆ R. Then
N ÷M J =: {m ∈M | Jm ⊆ N} .

For example 0 ÷M J = AM (J) and if N is an R-submodule of M , then N ≤ N ÷M J
and N ÷M J/N = AM/N (J). If R is an integral domain with field of fraction K and a, b ∈ K
with b 6= 0, then Ra÷K Rb = Ra

b .

Definition 6.2.18 [def:fractional ideal] Let R be a integral domain with field of fraction
K. A fractional ideal of R is a non-zero R-submodule J of R such that kJ ⊆ R for some
k ∈ K]. FI(R) is the set of fractional ideals of R. Observe that FI(R) is an abelian
monoid under multiplication with identity element R. A fractional ideal is called invertible
if its invertible in the monoid FI(R). FI∗(R) is the group of invertible elements in FI(R).

Lemma 6.2.19 [basic monoid] Let H be a monoid.

(a) [a] Every h has at most one inverse.

(b) [b] Let a, b ∈ H. If H is abelian and ab is invertible, then a and b are invertible.
invertible.

Proof: (a) If ah = 1 and hb = 1, then b = (ah)b = a(hb) = a.
(b) Let h be an inverse of a. Then 1 = h(ab) = (ha)b and so since H is abelian, ha is

an inverse of b. By symmetry hb is an inverse for a. �

Lemma 6.2.20 [basic invertible] Let R be a integral domain with field of fraction K and
let J be a fractional ideal of R.

(a) [a] If T 6= 0 is an R-submodule of J , then T is a fraction ideal of R and R÷KJ ⊆ R÷KT .

(b) [b] R÷K J is a fractional ideal of I.

(c) [c] J is invertible iff and only if (R÷K J)J = R. In this case its inverse is (R÷K J)J .

Proof: By defintion of a fractiona ideal there exists k ∈ K] with kJ ⊆ R.
(a) Note that kT ⊆ R and so T is a fractional ideal. If lK ⊆ R then also lT ⊆ R and

(a) is proved.
(b) Since k ∈ R÷K J , R÷K J 6= 0. Let t ∈ J ]. Then by (a) applied to T = Rt,

R÷K J ⊆ R÷K Rrt = R
1
t

and so t(R÷K J) ⊆ R and R÷K J is a fractional ideal.
(c) If (R ÷K J)J = R, then R ÷K J is an inverse for J in FI(R). Suppose now that

T ∈ FI(R) with TJ = R. Then clearly T ⊆ R÷F J . Thus

R = TJ ⊆ (R÷F J)J ⊆ R

Thus both T and R÷K F are inverse of J and so T = R÷K F . �



142 Chapter 6. Brauer Characters

Lemma 6.2.21 [partial inverse] Let R be an Dedekind domain with field of fraction K
and J proper ideal in R. Then R < R÷K J .

Proof: Let P be a maximal ideal in R with J ≤ P . Let a ∈ J ]. By 6.2.16 there exists
non-zero prime ideals P1, P2, . . . Pn with

∏n
i=1 Pi ≤ Ra. We also assume that n is minimal

with with property. Since Ra ≤ P and P is a prime ideal we must have Pi ≤ P for some i.
By definition of a Dekind domain, Pi is a maximal ideal and so Pi = P . Let Q =

∏n
i6=j=1 Pj .

Then PQ ≤ Ra and by minimality of n, Q � Ra. Thus Ja−1Q ≤ PQa−1 ≤ R and and
a−1Q � R. So a−1Q ≤ R÷K J and hence R÷K J � R. Clearly R ≤ R÷K J and the lemma
is proved.

Proposition 6.2.22 [fi for dekind] et R be an Dedekind domain with field of fraction K.
Let P be a nonzero prime ideal in the Dedekind domain R and J a non-zero ideal with
J ⊆ P . Then P invertible and J < JP−1 ≤ R.

Proof: Put Q := R÷K. Then R ≤ Q and J ⊆ JQ ⊆ R. Suppose that J = JQ. Since
R is Noetherian, J is finitely R-generated. Since K is an integral domain and J 6= 0, J is
a faithful Q-module. Thus 6.2.5(c) implies that Q is integral over R. By defintition of a
Dekind domain, R is integrally closed in K and so Q ≤ R. But this contradicts 6.2.21

Thus J < JQ−1 and inparticular P < PQ ≤ R. By definition of a Dekind Domain P is
a maximal ideal in R and so PQ = P . Thus Q = P−1 and the proposition is proved. �

Theorem 6.2.23 [structure of dedekind] Let R be a Dedekind domain and let P be the
set of non-zero prime ideals in R. Then the map

τ : ⊕PZ → FI(R) | (zP ) →
∏
P∈P

P zP

is an isomorphism of monoids. In particular, FI(R) is a group. Moreover τ(z) ≤ R if and
only if z ∈ ⊕PN.

Proof: Clearly τ is an homomorphism. Suppose there exists 0 6= z ∈ ker τ . Let X =
{P ∈ P | zP < 0 and Y = {P ∈ P | zP > 00. Then X ∩ Y = ∅ and X ∪ Y 6= ∅. Moreover,
τ(z) = R implies ∏

P∈X
P−zp =

∏
P∈Y

P zP

In particular both X and not empty. Let Q ∈ X. Then∏
P∈Y

P zP ≤ Q

a contrdiction since P � Q for all P ∈ Y and sinceR/Q is a prime ideal.
Thus τ is 1− 1.
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Next let J be a proper ideal in R and P a maximal ideal in R with J ≤ P . By 6.2.22
J < JP−1 ≤ R. By Noetherian induction JP−1 = P1 . . . Pn for some prime ideals P1, . . . Pn
and so J = PP1 . . . Pn, that is J = τ(z) for some z ∈ ⊕PN.

Finally let J be an arbitray fraction ideal in K. Then by definition ther exists kJ ⊆ R
for some k ∈ K]. Then k = r

s with r, s ∈ R] and so rJ = skJ ⊆ R. Let u, v ∈
⊕

P N with
τ(u) = Rr and τ(v) = rJ . Then

τ(v − u) = (Rr)−1(rJ) = Rr−1rJ = J and so τ is onto. �

The next proposition shows that Dedekind domains are not far away from being principal
domains.

Proposition 6.2.24 [nearly principal] Let R be a Dedekind domain.

(a) [a] Let A and B be a fractional ideals of R with B ≤ A. Then A/B is a cyclic R-module.

(b) [b] Let A be a fractional ideal of R. Then there exists a, b ∈ A with A = Ra+Rb.

Proof: (a) Replacing A and B by kA and kB for a suitable k ∈ R we may assume that B ≤
A ≤ R, Let Q be a finite set of prime ideals in R with A =

∏
P∈Q P

aP and B =
∏
P∈Q P

bP

for some ap, bP ∈ N. Choose xP ∈ P ap \ P ap+1. Observe that P ap+1 + QaQ+1 = R for
disctinct P,Q ∈ Q. So by the Chinese Remainder Theorem 2.5.15(e) the exists x ∈ R with
x + P ap+1 = xp + P ap+1 for all P ∈ Q. Thus x ∈

⋂
P∈Q P

ap = A and x /∈ P aP +1. Since
B ≤ Rx + B, Rx + B =

∏
P∈Q P

cP for some cP ∈ N. Since Rx + B ≤ A, cP ≥ aP . Since
x /∈ P aP +1, cP ≤ ap. Thus aP = cP for all P ∈ Q and so A = Rx+B.

(b) Let 0 6= b ∈ A and put B = Ra. By (a) A/B = Ra + B/B for some a ∈ A. Thus
A = Ra+Rb. �

6.3 The Jacobson Radical II

Lemma 6.3.1 (Nakayama) [nakayama] Let R be a ring and M a non zero finitely gen-
erated R-module then J(R)M 6= 0.

Let B ⊆ M be minimal with RB = M . Let b ∈ B, then M 6= R(B \ {b} and repplacing M
be M/R(B \ {b} we mau assume that M = Rb. Then M ∼= R/AR(b). Let J be maximal
left ideal of R with AR(b) ≤ J . Then J(R) +AR(b) ≤ J < R and so also J(R) < M . �

Lemma 6.3.2 [jr and inverses] Let R be a ring and x ∈ R.

(a) [a] x ∈ J(R) iff rx− 1 has a left inverse for all x ∈ R.

(b) [b] x is left invertible in R iff x+ J(R) is left invertible in R/J(R).

(c) [c] The J(R) is equal to the right Jacobson radical J(Rop.
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(d) [d] x is invertible in R iff x+ J(R) is invertible in R/J(R).

Proof: (a) Let x ∈ R and let M be the set of maximal left ideals in R. The the follwing
are equivalent

x /∈ J(R)

x /∈M for someM ∈M

Rx+M = R for someM ∈M

rx+m = 1 for someM ∈M,m ∈M, r ∈ R

rx− 1 ∈M for some r ∈ R,M ∈M

R(rx− 1) 6= R for somer ∈ R

(rx− 1) is not left invertible for somer ∈ R

(b) If x is left invertible, then x+ J(R) is left invertible. Suppose now that x+ J(R) is
left invertible. Then 1 − yx ∈ J(R) for some y ∈ R. By (a) yx = 1 − (1 − yx) has a left
inverse. Hence also x as a left inverse.

As a step towards (c) and (d) we prove next:

1◦ [1] If x− 1 ∈ J(R). Then x is invertible.

By (b) there exists k ∈ R with kx = 1. Thus k − 1 = k − kx = k(1− x) ∈ J(R) and so
by (b) again k has a left inverse l. So by 2.2.2 x = l and k is an inverse of x.

(c) Let j ∈ J(R) and r ∈ J(R). Since J(R) is an ideal, jr ∈ J(R). Thus by (1◦) 1 + jr
is invertible. So by (a) applied to Rop, j ∈ J(Rop. Hence J(R) ≤ J(Rop. By symmetry
J(R) ≤ J(Rop.

(d) Follows from (b) applied to R and Rop. �

Lemma 6.3.3 [jr cap za] Let A be a ring, R a subring and suppose that A is finite gen-
erated as an R-module. Then J(R) ∩ Z(A) ≤ J(A).

Proof: Let M be a simple A-module. Then M is cylcic as an A-module and so finitely
generated as an R-module. Thus by 6.3.1, J(R)M 6= M . Hence also (J(R) ∩ Z(A))M < M
and since (J(R) ∩ Z(A))M is an A-submodule we conclude that J(R) ∩ Z(A) ≤ AA(M).
Thus J(R) ∩ Z(A) ≤ J(A). �

Proposition 6.3.4 [jza] Let A be a ring.

(a) [a] If K is a nilpotent left ideal in A, then K ≤ J(A)

(b) [b] If A is artian, J(A) is the largest nilpotent ideal in A.
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(c) [c] If A is artian and finitely Z(A)-generated then J(A) ∩ Z(A) = J(Z(A)).

Proof:
(a) Let k ∈ K. Then rk is nilpotent and so 1 + rk is invertible in in R. So by 6.3.2(a),

k ∈ J(A).
(b) Since A is Artinian we can choose n ∈ N with J(A)n minimal. Then J(A)J(A)n =

J(A)n. Suppose J(A)n 6= 0 and choose a left ideal K in A minimal with J(A)nK 6= 0. Let
k ∈ K with J(A)nk 6= 0 . Then J(A)nJ(A)k = J (A)nk 6= 0 and so by mimimality of K,
K = J(A)k. Thus k = jk for some j ∈ J(A). Thus (1− j)k = 0. By 6.3.2 1− j is invertible
and so k = 0, a contradiction.

(c) By (b) J(A)∩Z(A) is a nilpotent ideal in Z(A) and so by (a) J(A)∩Z(A) ≤ Z(J(A)).
By 6.3.3 J(Z(A)) ≤ J(A) ∩ Z(A) and (c) is proved. �

Lemma 6.3.5 [invertible in ere] Let R be a ring, S ≤ Z(R) and suppose that R is a
finitely generated S-module. Let e ∈ R be an idempotent and x ∈ eRe with x + J(S)R =
e+ J(S)R. Then there exists a unique y ∈ eRe with xy = yx = e.

Proof: Since (ere)(ete) = e(eter)e, eRe is a ring with identity e. We need to show that
x is invertible in eRe. If R = ST for a finite subset T of R then also eRe = eS(eTe)
and so eRe is a finitely geneerated eS-module. Also eS = eSe ≤ Z(eRe) and so by 6.3.3
J(eS) ≤ J(eRe). Since e : S → eS is an onto ring homomorphism, eJ(S) ≤ J(eS) ≤ J(eRe).
Since x ∈ eRe and x− e ∈ J(S)R

x− e = e(x− e)e ∈ eJ(S)Re = eJ(s)eRe ≤ J(eRe)eRe ≤ J(eRe)

Thus x− e ∈ J(eRe) and by 6.3.2 x has an inverse in eRe. �

6.4 A basis for CG̃

Lemma 6.4.1 [from oq to f] Let X be non-empty finite subset of Q]. Then there exists
b ∈ Q(X) with bX ⊆ A and bX * I.

Proof: By 6.2.22 applied with K = Q(X) we have I−1I = A. So there exists b ∈ I−1 with
bX * I. �

Corollary 6.4.2 [f linearly independent] Let V be an Q-space and (vi)ni=1 ∈ V n. Let
W = A < vi | 1 ≤ i ≤ n. and suppose that (vi+IW )ni=1 is F-linearly independent in W/IW .
Then (vi)ni=1 is linearly idenpendet over Q.

Proof: Suppose there exists ai ∈ Q not all zero with
∑n

i=1 aivi = 0. By 6.4.1 there exists
b ∈ Q with bai ∈ A anf baj /∈ I for some 1 ≤ j ≤ n. Then

∑n
i=1(bai + I)(vi + IW ) = 0 but

baj + I 6= I, a contradcition. �
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Lemma 6.4.3 [linear independence of characters]

(a) [a] (χM |M ∈ Sp) is F-linear independent in FG.

(b) [b] (φM |M ∈ Sp) is C-linearly independent in CG̃.

Proof: (a) Let fM ∈ F with
∑
fMχM = 0. Pick eM ∈ EndF(M) with trM (eM ) = 1.

2.5.18 there exists aM ∈ FG such that aM acts as eM on N and trivially on N for all
M 6= N ∈ Sp. Then

0 =
∑
N∈Sp

fNχN (eM ) = fM

and so (a) holds.
(b) Since all coefficents of φM are in A, φM | M ∈ Sp) is C-linearly independent iff

(φM | M ∈ Sp) is Q-linearly independent and iff (φ̌M | M ∈ Sp) is Q-linearly independent.
By 6.1.5 (φ̌M )∗ = χM and so by (a) (φ̌M )∗ | M ∈ Sp) is F-linearly independent. So (b)
follows from 6.4.2. �

Lemma 6.4.4 [existence of a lattice] Let V be an oQ-space and W a finitely generated
AI submodule of V with V = QW . Then W is an AI-lattice in V .

Proof: Note that W/IIW is a finite dimensional vector space over AI/II = F and so has
a basis ui + IIW, 1 ≤ i ≤ n. By 6.4.2 (ui)ni=1 is linearly independent over Q and so also
over AI . Let U = Ai〈ui od1 ≤ i ≤ n. Then W = U + IIW . Since II is the unique maximal
ideal in AI , II = ( AI). Thus by the Nakayama Lemma 6.3.1 applied to W/U gives W = U .
Hence also V = QW = QV 〈ui | 1 ≤ i ≤ n〉 �

Lemma 6.4.5 [existence of oq lattice] Let E : K be a field extension and M a simple
KG-module. If K is algebraicly closed then there exists an G-invarinant K lattice L is M .
For any such L, L is a simple KG-module and M ∼= E⊗K L.

Proof: Since G is finite there exists a simple KG-submodule L in M . Moreover there is a
non-zero EG-linear map α : E⊗K L→M, e⊗ l→ el. Since K is algebraicly closed, E⊗K L
is a simple EG-module. The same is true for M and so α is an isomorphism. In particular,
any K basis for L is also a E-basis for M and so L is a K-lattice in M .

Now let L is any K-lattice in G. If ) 6= N ≤ L is a KG-submodule then EN is a
EG-submodule of M . Thus EN = M and dimKN = dimE EN = dimEM = dimK L and so
N = L and L is a simple KG-module. �

Lemma 6.4.6 [existence of ai lattice] Let M be an CG-module. Then there exists a
G-invariant AI-lattice L in M .
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Proof: By 6.4.5 there exists a G-invariant Q-lattice V in M . Let X be a Q-basis for V
and put L = AIGX. Since G and X are finite, L is finitely AI -generated. Thus by 6.4.4, L
is an AI -lattice in V and so also in M . �

Lemma 6.4.7 [characters are brauer characters] Let M be an CG-module and L a
G-invariant AI-lattice in M . Let M◦ be the FG-module, L/IIL. Then χ∗M = χM◦ and
χ̃M = φM◦

Proof: Let B be an AI basis for L, g ∈ G and D the marix for g with respect to B.
Then D∗ is the matrix for g with respect to the basis (b+ ILL)b∈B for M◦. Since ηM (g) =
det(xI dn −D) we conclude that ηM (g)∗ = ηM◦(g). In particular χM (g)∗ = χM◦(g) and if
ηM (g) =

∏n
i=1(x− ξi) then ηM◦(g) =

∏n
i=1(x− ξ∗i ). So if g ∈ G◦, then χM (g) = φM◦(g).�

Definition 6.4.8 [def:Irr G]

(a) [a] Irr(G) = {χM |M ∈ S} is the set of simple characters of G.

(b) [b] IBr(G) = {φM |M ∈ Sp} is the set of simple Brauer characters of G.

(c) [c] ZCG̃ := CG̃ ∩ Z(CG) is the set of complex valued class function on G̃.

(d) [d] If M be an CG-module and L an G invariant C : AI lattice in M , then M◦ = L/IIL
is called a reduction modulo p of M .

Theorem 6.4.9 [ibr basis]

(a) [a] ZC(G̃) is the C-span of the Brauer characters.

(b) [b] IBr(G) is a C-basis forZC(G̃)

(c) [c] |S|p = |IBr(G) is the number of p′-conjugacy classes.

Proof: (a) Observe that the map˜: Z(CG) → ZC(G̃) is an orthogonal projection and so
onto. On the otherhand since Z(CG) is an C -span of the G-characters we conclude from
6.4.7 that the image of˜is conatained in C-span of the Brauer characters. So (a) holds.

(b) By 6.1.3(e) every Brauer chacter is a sum of simple Brauet charcters. So by (a),
IBr(G) spans ZC(G̃) By 6.4.3(b) IBr(G) is linearly independent over C and so (b) holds.

(c) Both IBr(G) and (aC | Cap′ conjugacy class} are bases for ZC(G̃) �

Definition 6.4.10 [def:decomposition matrix]

(a) [a] D = D(G) = (dphiχ) is the matrix of˜: ZCG → ZCG̃ with respect to Irr(G) and
IBr(G). D is called the decompositon matrix of G.
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(b) [b] C = C(G) = (cφψ) is the inverse of Gram matrix of (· | ·) with respect to IBr(G).
C is called the Cartan matrix of G.

(c) [c] For φ ∈ IBr(G), Φφ =
∑

χ∈Irr(G) dφχχ is called the projective indecomposable
character associated to φ. For M ∈ Sp put ΦM = ΦφM

.

Lemma 6.4.11 [basic decomposition]

(a) [a] Let χ ∈ Irr(G). Then χ̃ =
∑

φ∈IBr(G) dφχφ.

(b) [z] Let M ∈ S(G), M◦ a p-reduction of M , N ∈ Sp(G) and F a FG-composition series
on M . Then dφNχM

is the number of factors of |caF isomorphic to N .

(c) [b] Let φ, ψ ∈ IBr(G). Then Φφ ∈ ZCG̃ and (Φφ | ψ) = δφψ. So (Φφ | φ ∈ Irr(G)) is
the dual basis for ZCG̃.

(d) [c] C−1 = ((φ | ψ))φψ

(e) [d] C = ((Φφ | Φψ)) is Gram matrix of (cot | ·) with respect to (Φφ | φ ∈ IBr(G).

(f) [e] Let φ ∈ Ψ. Then Φφ = Φ̃φ =
∑

ψ∈IBr(G) cφψψ.

(g) [f] C = DDT.

Proof: (a) Immediate from the definition of D.
(b) For N ∈ Sp(G) Let aN be the number of compostion factors of G isomorphic to N .

Then by 6.1.3(e), φM◦ =
∑

N∈Sp(G) aNφN .
By 6.4.7 φM◦ = χ̃M . So (a) and the linearly independence of IBr(G) implies dφNχM

=
aN .

(c) Follows from 4.1.14
(d) Immediate from the definition of C.
(e) and (f) follows from 4.1.16
(g) From (d) and the definition of Φπ:

cφψ = (
∑

χ∈Irr(G)

dφχχ |
∑

χ∈Irr(G)

dψχχ) =
∑

χ∈Irr(G)

dφχdψχ

and so (g) holds.

Corollary 6.4.12 [dphichi not zero] For each φ ∈ IBr(G), there exists χ ∈ Irr(G) with
dφχ6=0. In otherwords, for each M ∈ Sp there exists a M̌ ∈ S such that M is isomorphic to
a composition factor of nay p-reduction of M̌ .

Proof: Follows from the fact that˜: Z(CG) → ZCG̃ is onto. �
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Corollary 6.4.13 [projective is regular] Let M ∈ Sp and P ∈ Sylp(M). Then dim ΦM

is divisiple |P |. Moreover, ΦM restricted to P is an integral multiple of the regular character
for P .

Proof: Since ΦM = Φ̃M we have ΦM (g) = 0 for all g ∈ P ]. Thus (ΦM |P | 1P )P =
1
|P |ΦM (1) and so |P | divides ΦM (1). Therefore

ΦM (1) =
ΦM (1)
|P |

χPreg

�

Theorem 6.4.14 [pprime=0] Suppose G is a p′ group.

(a) [a] Irr(G) = IBr(G) and D = (δφψ).

(b) [b] For M ∈ S let M◦ be a reduction modulo p. Then M◦ is a simple FG-module and
the map S → Sp,M →M◦ is bijection.

Proof: By 3.1.3(c) |G| =
∑

φ∈IBr(G) φ(1)2 =
∑

χ∈Irr(G) χ(1)2 Thus

|G| =
∑

χ∈Irr(G)

χ(1)2 =
∑

χ∈Irr(G)

 ∑
φ∈IBr(G)

dφχφ(1)

2

≥
∑

χ∈Irr(G)

∑
φ∈IBr(G)

dφχ)2φ(1)2 =
∑

φ∈IBr(G)

 ∑
χ∈Irr(G)

dφχ)2

φ(1)2

≥
∑

φ∈IBr(G)

φ(1)2 = |G|

Hence equality holds everythere. In particular
∑

χ∈Irr(G) dφχ)
2 = 1 for all φ ∈ IBr(G).

So there exists a unique χφ ∈ Irr(G) with dφχφ
6= 0. Moreover dφχφ

= 1.

Also
(∑

φ∈IBr(G) dφχ

)2
=

∑
φ∈IBr(G)(dφχ)

2 and so for each χ ∈ IBr(G) there exists
unique φχ ∈ IBr(G) with dφχχ 6= 0. Hence χ = χφχ , dφχχ = 1, χ = χ̃ = φχ = χχ and (a)
holds.

(b) follows from (a) and 6.4.11(b). �

Proposition 6.4.15 [fong] Suppose that p = 2 and φ ∈ IBr(G). If φ is real valued and
φ(1) is odd, then φ = 1G̃.

Proof: Let M ∈ Sp with φ = φM . Then φM∗ = φM = ΦM and some M ∼= M∗. Thus the
proposition follows from 4.1.22 and 4.1.21. �
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Lemma 6.4.16 [opg trivial] Let M ∈ Sp. Then Op(G) ≤ CG(M).

Proof: Let W be a simple FOp(G) submodule in M . The number of p′ conjugacy classes
of Op(G) = 1. So up to isomorphism Op(G) has a unique simple module, namely FOp(G).
Thus 0 6= W ≤ CM (Op(G)). Since CM (Op(G)) is an FG-submodule we conclude M =
CM (Op(G)) and Op(G) ≤ CG(M). �

6.5 Blocks

Lemma 6.5.1 [omegam] Let K be an algebraicly closed field and M a simple GG-moudle.

(a) [a] a ∈ Z(KG) there exists a unique ωM ∈ K with ρM (a) = ωM (a)idM .

(b) [b] ωM : Z(KG) → K is a ring homomorphism.

(c) [c] χM (a) = dimKM · ωM (a) = χM (1)ωM (a).

(d) [d] If K = C then and a ∈ Z(AG), then ωM (a) ∈ A.

Proof: (a) follows from Schurs Lemma 2.5.3.
(b) and (c) are obvious.
(d) By 3.2.13 ωM (aC) ∈ A for all C ∈ C. Since (aC | C ∈ C) is a A-basis for Z(AG), (d)

follows from (b). �

Definition 6.5.2 [def:lambdaphi]

(a) [a] Let M ∈ S and χ = χM . Then ωχ = ωM .

(b) [b] Let M ∈ S and χ = χM . Then λχ : Z(FG) → F is define by λχ(a∗) = ωχ(a)∗ for
all a ∈ Z(AIG).

(c) [c] Let M ∈ Sp and φ = φM . Then λφ = ωM .

(d) [d] Define the relation ∼p on Irr(G) ∪ IBr(G) by α ∼p β if λα = λβ. A block (or
p-block) of G is an equivalence class of ∼p.

(e) [e] Bl(G) is the set of blocks of G.

(f) [f] If B is a block of G then Irr(B) = B ∩ Irr(G) and IBr(B) = B ∩ IBr(G).

(g) [g] For A ⊆ Irr(G), put A† = {φ ∈ IBr(G) | dφχ6=0 for some χ ∈ A}.

(h) [h] For B ⊆ IBr(G), put B† = {χ ∈ Irr(G) | dφχ6=0 for some φ ∈ B}.

Proposition 6.5.3 [d and lambda]
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(a) [a] Let χ ∈ Irr(G) and φ ∈ IBr(G). If dφχ 6= 0 then λφ = λχ.

(b) [b] Let B be a block of G then IBr(B) = Irr(B)† and Irr(B) = IBr(B)†.

Proof: (a) Let M ∈ S with χ = χM and N ∈ Sp with φ = φN . Let L be an G-invariant
AI -lattice in M . Since dφχ6=0, N is isomorphic to FG composition factor of M◦ = L/IIL.
Let a ∈ Z(AG). Then a acts as the scalar ωχ(a) on M and on L. Thus a acts as the scalar
ωχ(a)∗ = λχ(a∗) on M◦ and on N . Thus λχ(a∗) = λφ(a∗) and (a) holds.

(b) φ ∈ IBr(G) with dφχ for some χ ∈ Irr(B) then by (a) φ ∈ B. Thus Irr(B)† ⊆ IBr(B).
Conversely if phi ∈ IBr(B) we can choose (by 6.4.12) χ ∈ IBr(G) with dφχ 6= 0. Then by
(a) χ ∈ B and so IBr(B) ⊆ Irr(B)†. Thus IBr(B) = Irr(B)†. Similary Irr(B) = IBr(B)†. �

Let χ ∈ Irr(G) and φ ∈ IBr(G). Then λχ is defined by ??(??) and λφ by ??(??). If
λ = φ then 6.5.3(a) shows that λχ = λφ.

Definition 6.5.4 [brauer graph] Let χ, ψ ∈ Irr(G). We say that φ and ψ are linked if
there exists φ ∈ IBr(G) with dφχ 6= 0 6= dφψ. The graph on IBr(G) with edges the linked
pairs is called the Brauer graph of G. We say χ and ψ are connected if φ and ψ lie in the
same connected component of the Brauer graph.

Corollary 6.5.5 [blocks and connected component]

(a) [a] Let A ⊆ Irr(G). Then A†† consist of all simple characters linked to some element
of A.

(b) [b] Let A ⊆ Irr(G). Then A is union of connected components of the Brauer graph iff
and only if A = A††.

(c) [c] If B is a block then Irr(B) is a union of connected components of the Brauer Graph.

Proof: (a) Let ψ ∈ Irr(G). Then

ψ is linked to some element of A
iff

there exists χ ∈ A and φ ∈ IBr(G) with dφχ 6= 0 6= dφψ
iff

there exists φ ∈ A† with dφψ 6= 0
iff

ψ ∈ A††

So (a) holds.
(b) follows immediately from (a).
(c) By 6.5.3 Irr(B)†† = IBr(B)† = Irr(B).
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Proposition 6.5.6 [osima] Let A ⊆ Irr(G) with A = A††. Let x ∈ G̃ and y ∈ G. Then∑
χ∈A

χ(x)χ(y) =
∑
φ∈A†

φ(x)Φφ(y)

Proof: We compute

∑
χ∈A

χ(x)χ(y) =
∑
χ∈A

 ∑
φ∈IBr(G)

dφχφ(x)

χ(y)

=
∑
χ∈A

 ∑
φ∈A†

dφχφ(x)

χ(y) =
∑
χ∈A†

∑
φ∈A

dφχχ(y)

φ(x)

=
∑
χ∈A†

 ∑
φ∈Irr(G)

dφχχ(y)

φ(x) =
∑
χ∈A†

Φφ(y)φ(x)

�

Corollary 6.5.7 (Weak Block Orthogonality) [weak block orthogonality] Let B be
block of G, x ∈ G̃ and y ∈ G \ G̃. Then∑

χ∈Irr(B)

χ(x)χ(y) = 0

Since Irr(G)†† = Irr(G) we can apply 6.5.6:∑
χ∈Irr(B)

χ(x)χ(y) =
∑

χ∈Irr(B)

χ(x)χ(y−1) =
∑
φ∈A†

φ(x)Φφ(y−1)

Since y−1 6 G̃ 6.4.11(c) implies Φφ(y−1 = 0 and so the Corollary is proved. �

Definition 6.5.8 [def:ea]

(a) [a] For M ∈ S and χ = χM put eχ = eM ( see 3.1.3(d).

(b) [b] For A ⊆ Irr(G), put eA =
∑

χ∈A eχ.

Corollary 6.5.9 [ea in ai(tilde g)] Let A ⊆ Irr(G) with A = A††. Then eA ∈ ZAIG̃.

Proof: Let χ ∈ A and g ∈ G. By 3.2.12(a), g coefficents of eχ is 1
|G|χ(1)χ(x) Let fg be

the g-coefficent of eA. Then by 6.5.6

fg =
1
|G|

∑
χ∈A

χ(1)χ(x−1) =
1
|G|

∑
φ∈A†

φ(1)Φφ(g−1)
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If g /∈ G̃ we conclude that fg = 0 and so

(∗) eA ∈ CG̃

Suppose now that g ∈ G̃. Then using 6.5.6 one more time:

fg =
1
|G|

∑
χ∈A

χ(g−1)χ(1) =
1
|G|

∑
φ∈A†

φ(g−1)Φφ(1) =
∑
φ∈A†

φ(g−1)
Φφ(1)
|G|

By 6.4.13 Φφ(1)
|G| ∈ AI . Also φ(g−1 ∈ A ∈ AI and so fg ∈ Ai. Thus eA ∈ AG. Together

with (*) and the fact that eχ is class function we see that the Corollary holds. �

Lemma 6.5.10 [unions of blocks] Let A ⊆ Irr(G) with eA ∈ Z(AI(G)). Then A =⋃k
i=1 Irr(Bi) for some blocks B1, . . . Bk.

Proof: Let χ, ψ ∈ Irr(G). Then ωχ(eψ) = δχψ and so ωχ(eA) = 1 if χ ∈ A and ωχ(eA) = 0
otherwise. By assumption eA ∈ Z(AI(G)) and so λχ(e∗A) = ωχ(eA) and so

(∗) χ ∈ A iff λχ(e∗A) = 1

Let B be the block containg χ and ψ ∈ Irr(B). Then λχ(e∗A) = λψ(e∗A) and so by (*),
χ ∈ A iff ψ ∈ A. �

Theorem 6.5.11 [block=connected components] If B is block, then Irr(B) is con-
nected in the Brauer Graph. So the connected components of the Brauer graph are exactly
the Irr(B), B a block.

Proof: If B is a block then by 6.5.5(c), Irr(B) is the union of connected components.
Connversely if A is a connected component then by 6.5.9 eA ∈ Z(AIG) and so by 6.5.10 A
is a union of blocks. �

Definition 6.5.12 [def:fb]

(a) [a] Let B be a block. Then eB = e∗Irr(B) and fB = eIrr(B).

(b) [b] Let A be set of blocks. Then eA =
∑

B∈A eB and fA =
∑

BinB fB

(c) [c] Let B be block, then FB := FGeB.

(d) [d] If A is a set of blocks, then FA = FGeA.

(e) [e] Let B be a block then λB = λφ for any φ ∈ IBr(G).
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(f) [f] Let B be a block, then Sp(B) = {M ∈ Sp | φM ∈ B} and S(B) = {M ∈ S | χM ∈ B}

Lemma 6.5.13 [omega chi fy] Let X,Y be blocks and χ ∈ X. Then ωχ(fY ) = δXY and
λX(eY ) = δXY

Proof: This follows from ωχ(eψ) = δχψ for all χψ ∈ Irr(G). �

Theorem 6.5.14 [structure of fg]

(a) [a]
∑

B∈Bl(G) eB = 1.

(b) [b] eB ∈ Z(FG) for all blocks B

(c) [c] eXeY = 0 for any distinct blocks X and Y .

(d) [d] e2B = eB for all blocks b

(e) [e] FG =
⊕

B∈B FB.

(f) [f] Z(FG) =
⊕

B∈B Z(FB).

(g) [g] J(FG) =
⊕

B∈B J(FB).

(h) [h] Let X,Y be blocks. Then λX(eY ) = δXY .

(i) [i] Let X and Y be distincts blocks. Then FX annihilates all M ∈ Sp(Y ).

(j) [j] Let B be a block. Then §p(B) is set of representativves for the isomorphism classes
classes of simple FB-modules.

Proof: (a)
∑

χ∈Irr(G) eχ = 1 and so also
∑

B∈Bl(G) eIrr(B) = 1. Applying ∗ gives (a).
(b) Since eχ ∈ Z(CG), eIrrG ∈ Z(AIG) and so (b) holds.
(c) eχeψ = 0 for distinct simple characters. So eIrr(X)eIrr(Y ) = 0 and so (c) holds.
(d) follows from e2Irr(B) = eIrr(B).
(e) (a) implies FG =

∑
B∈Bl(G) FB. Let B ∈ B and B = Bl(G) \ {B}. Then by (c)

FB · FB = 0. Moreover if x ∈ FB then eBx = x and if x ∈ FB then eBx = 0. Thus
FB ∩ FB = 0 and so (d) holds.

(f) follows from (d).
(g) follows from (d) and 2.5.16(e).
(h) Let χ ∈ Irr(X). Then λX(eY ) = λX(e∗Irr(Y )) = ωX((eIrr(Y ))∗ = δ∗XY = δXY .
(i) Let M ∈ Sp(Y ). Then eX acts as the scalar λφ(eX) = λY (eX) on M . So by (h) eX

annhilates M . Thus also FX = FGeX annihilates M .
(j) Any simple FB-module is also a simple FG-module. So (j) follows from (i). �
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Theorem 6.5.15 [zfb is local] Z(FB) is a local ring with unique maximal ideal J(Z(FB)) =
kerλB ∩ Z(FB).

Proof: Let M ∈ Sp(B) and z ∈ Z(F(B)). Then z acts as the scalar λB(z) on M . So z
annihilates M if and only if z ∈ kerλB. Thus Z(F(B)) ∩AFB(M) = Z(FB) ∩ kerλB and so

J(Z(FB)) 6.3.4= Z(FB)) ∩ J(F(B)) 2.4.7=
6.5.14(j)

Z(F(B)) ∩
⋂

M∈Sp(B)

AFB(M) = Z(FB) ∩ kerλB

So J(Z(FB)) = kerλB ∩Z(FB). Since Z(FB)/kerλB ∩Z(FB) ∼= ImλB = F we conclude
that J(Z(FB)) is a maximal ideal in Z(F(B)). This clearly implies that J(Z(FB)) is the
unique maximal ideal in F(B). �

Corollary 6.5.16 [blocks indecomposable] Let B be a block.

(a) [a] Then FB is indecompsable as a ring.

(b) [b] Let e be an idempotent in ZF (G) then eT for some T ⊆ Bl(G).

Proof: (a) Suppose FB = X ⊕ Y for some proper ideals X and Y . Then both X and Y
have an identity. Thus Z(X) 6= 0, Z(Y ) 6= 0 and Z(F(B) = Z(X)⊕ Z(Y ), a contradiction
to 6.5.15.

(b) Since e =
∑

B∈Bl(B) eeB and each non-zero eeB is an idempotent we may assume
that e = eeB ∈ FB for some block B. Then FB = eFB ⊕ (e − eB)FB and (a) implies
e− eB = 0 and so e = eB. �

Lemma 6.5.17 [phi fb] Let B be a block then

φFB =
∑

χ∈Irr(B)

χ(1)χ̃ =
∑
φ∈IBr

Φφ(1)φ

Proof: By 3.2.11(c) χCG =
∑

χ∈Irr(G) χ(1)χ. So by 6.4.7 applied to the AI -lattice AIG in
CG,

(1) φFGG = χ̃CG =
∑

χ∈Irr(G)

χ(1)χ̃ =
∑

B∈Bl(G)

∑
χ∈B

χ(1)χ̃

Observe that

(2)
∑
χ∈B

χ(1)χ̃ =
∑

χ∈Irr(B)

χ(1)

 ∑
φ∈Irr(B)

dφχφ

 =
∑

φ∈IBr(B)

Φφ(1)φ
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and so by (1)

(3) φFG =
∑

B∈Bl(G)

∑
φ∈IBr(B)

Φφ(1)φ

Now let B a block. If M is composition factor for FG of FB then eB acts identity on
M . So by 6.5.14 φM ∈ B. It follows that

(4) φFB =
∑

φ∈IBr(G)

dφφ

for some dφ ∈ N. Since FG =
∑

B∈Bl(G) FB we conclude

(5) φFG =
∑

B∈Bl(G)

∑
φ∈IBr(B)

dφφ

From (3) and (5) and the linear independence of IBr(G) we get dφ = Φφ(1) for all
φ ∈ IBr(G). The lemma now follows from (4) and (2). �

6.6 Brauer’s Frist Main Theorem

Definition 6.6.1 [def:defect group c] Let C be a conjugacy class of G.

(a) [z] A defect group of C is a Sylow p-subgroup of CG(x) for some x ∈ C.

(b) [a] Syl(C) is the set of all defect groups of G.

(c) [b] We fix gC ∈ C and DC ∈ Sylp(CG(gC)).

(d) [d] Let A and B be set of subgroups of G. We write A ≺ B if for all A ∈ A there exists
B ∈ B with A ≤ B.

(e) [e] Let A be a set subgroups of G. Then CA = {C ∈ C | Syl(C) ≺ A}} and ZA(FG) =
F〈aC | C ∈ CA〉.

(f) [f] For A ⊆ Z(FG) set CA = {C ∈ C(G) | a(gC) 6= 0 for some a ∈ A}.

(g) [g] For A,B,C ∈ C put KABC = {(a, b) ∈ A×B | ab = gC}.

Lemma 6.6.2 [trivial zdfg] Let z ∈ Z(FG) and D a set of subgroups of G. Then z ∈
ZD(FG) iff aC ∈ ZD(FG) for all C ∈ Cz and iff Syl(C) ≺ D for all C ∈ Cz.
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Proof: Since z =
∑

C∈C(G) z(gC)aC and (aC | C ∈ C(G)) is linearly independent this
follows immediately from the definition of ZD(FG). �

Lemma 6.6.3 [syl c prec syl a] Let A,B,C ∈ C

(a) [a] |KABC | ≡ |{(a, b) ∈ A× B | a, b ∈ CG(DC), ab = gC}| (mod p).

(b) [b] If p - |KABC | then Syl(C) ≺ Syl(A).

Proof: (a) Observe that CG(gC) acts on KABC by coordinate wise conjugation. All non-
trivial orbits of DC on KABC have length divisble by p and so (a) holds.

(b) By (a) there exists a ∈ A withDC ∈ CG(a) and soDC ≤ D for someD ∈ Sylp(CG(a).
Since G acts transitively on Syl(C), Syl(C) ≺ Syl(A). �

Proposition 6.6.4 [zdfg ideal] Let D be set of subgroups of G. Then ZD(FG) is an ideal
in G.

Proof: Let A,B ∈ C with Syl(A) ≺ D. Then in FG:

aAaB =
∑
C∈C

|KABC |aC =
∑

C∈C,φ-|KABC |

|KABCaC

By 6.6.3 Syl(C) ≺ Syl(A) ≺ D whenever p - |KABC |. Then aC ∈ ZD(FG) and so
aAaB ∈ ZD(FG). �

Definition 6.6.5 [def:fa]

(a) [a] G be the set of sets of of subgroups of G. G◦ consist of all A ∈ G such that A,B ∈ A
with A ⊆ B implies A = B.

(b) [b] If A ∈ G, then max(A) is the set maximal elements of A with respect to inclusion.

(c) [c] Let A,B ∈ G. Then A ∧ B := max({A ∩B | A ∈ A, B ∈ B}).

(d) [d] Let A, αB ∈ G. The A ∨ B = max(A ∪ B).

Lemma 6.6.6 [basis fa] Let A,B,D ∈ G.

(a) [a] ≺ is reflexive and transitive.

(b) [b] A ≺ maxA and maxA ≺ A.

(c) [c] max(A) ∈ G◦ and if A is G-invariant so is maxA.

(d) [d] A ≺ B iff max(A) ≺ max(B).
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(e) [e] If all elements in A have the same size, A ∈ G◦.

(f) [f] If A is conjugacy class of subgroups of G, then A ∈ G◦.

(g) [g] CA = Cmax(A) and ZA(FG) = Zmax(A)(FG).

(h) [h] Restricted to G◦, ≺ is a partial ordering.

(i) [i] (A ∨ B) ≺ D iff A ≺ D and B ≺ D.

(j) [j] D ≺ (A ∧ B) iff D ≺ A and D ≺ B.

Proof:
(a) Obvious.
(b) Clearly maxA ≺ A. Let A ∈ A since G is finite we can choose B ∈ A of maxial size

with A ⊆ B. Then B ∈ max(A0 and so A ≺ maxA.
(c) If A,B ∈ max(A) with A ⊆ B, then A = B by maximalty of A.
(d) Follows from (a) and (b).
(e) is obvious.
(f) follows from (e).
(g) The first statement follows from (d) and the second from the first.
(h) Let A,B ∈ A(G) with A ≺ B. Let A ∈ A and choose B ∈ B with A ≤ B. Then

choose D ∈ A with B ≤ D. Then A ≤ D and so A = D and A = B. Thus A ⊆ B. By
symmetry B ⊆ A. So A = B. (h) now follows from (a).

(i) By (d) (A ∨ B) ≺ D iff (A ∪ B) ≺ D and so iff A ≺ D and B ≺ D.
(j) By (d) D ≺ (A∧B) iff D ≺ {A∩B | A ∈ A, B ∈ B} and so iff D ≺ A and D ≺ B. �

Lemma 6.6.7 [basic zdfg] Let D, E ∈ D◦.

(a) [a] If D ≺ E, then CD ⊆ CE and ZD(FG) ≤ ZE(FG).

(b) [b] (D ∧ E) ≺ D.

(c) [c] CD ∩ CE = CD∧E and ZD(FG) ∩ ZE(FG) = ZD∧E(FG)

(d) [d] Let A ⊆ Z(F(G)). Let G◦(A) := {A ∈ G◦ | ZD(FG). Then there exists a unique
E ∈ G◦(A) with E ≺ D for all D ∈ G◦(A). We denote this E by Syl(A).

(e) [e] If A ⊆ B ⊆ Z(F(G)), then Syl(A) ≺ Syl(B).

(f) [f] For all C ∈ C, Syl(aC) = Syl(C)

(g) [g] Syl(Z(FG)) = Syl(G)

(h) [h] For all A ⊆ Z(F(G)), Syl(A) ≺ Syl(G), that is Syl(A) is a set of p subgroups of G.

(i) [i] Let A,B ⊆ Z(FG). Then Syl(A ∪B) = Syl(A) ∨ Syl(B).
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(j) [j] Let A ⊂ Z(FG) then Syl(A) = Syl({aC | C ∈ A}) =
∨
C∈CA

Syl(C).

Proof: (a) and (b) are obvious.
(c) Let C ∈ C. Then C ∈ CD ∩ CE iff Syl(C) ≺ D and Syl(C) ≺ E . Thus by ?? iff

Syl(C) ≺ D ∧ E and iff C ∈ CD∧E . So the first statement in (b) holds.
Since {aC | C ∈ C} is F-linearly independent

ZD(FG) ∩ ZE(FG) = F{aC | C ∈ CD ∩ CE}

So the second statement in (c) follows from the first.
(d) Put E =

∧
D∈G◦(A)D. By (c), A ≤ ZE(FG) and by (b) E ≺ D for all D ∈ A. Since

≺ is antisymmetric on G◦, E is unique.
(e) Observe that Syl(B) ∈ G◦ and so (e) follows from (d).
(f) Since Syl(C) ≺ Syl(C), C ∈ CSylC and so aC ∈ ZSyl(C)(FG). Since aC ∈ ZSyl(aC)(FG)

we conclude from 6.6.2 that C ∈ CSyl(ac) and so Syl(C) ≺ Syl(aC). Since ≺ is anti-symmetric
(f) holds.

(g) Let S ∈ Syl(G), 1 6= x ∈ Z(S) and C = Gx. Then clearly Syl(C) = Syl(G) and so
by (e) and (f), Syl(Z(FG)) ≺ Syl(G). Clearly Syl(C) ≺ Syl(G) for all C ∈ C. So CSyl(G) = C
and ZSyl(G)(FG) = Z(FG). (d) implies Syl(Z(FG)) ⊆ Syl(G) and so (g) holds.

(h) follows from (e) and (g).
(i) We have ZSyl(A)∨Syl(B)(FG) = ZSyl(A)∪Syl(B)(FG) = ZSyl(A)(FG)+ZSyl(B)(FG) and so

A∪B ⊆ ZSyl(A)∨Syl(B)(FG). Thus Syl(A∪B) ≺ Syl(A)∨ Syl(B). Since A ≤ ZSyl(A∪B)(FG,
Syl(A) ≺ Syl(A ∪ B) and by symmetry Syl(B) ≺ Syl(A ∪ B). Thus Syl(A) ∨ Syl(B) ≺
Syl(A ∪B) and (i) holds.

(j) By 6.6.2 Syl(A) = Syl({aC | C ∈ CA}. By (i) and (f) Syl({aC | C ∈ CA} =∨
C∈CA

Syl(aC). �

Lemma 6.6.8 [eb in sum k] Let B be a block and K a set of ideals in Z(FG) with eB ∈∑
K. Then Z(FB) ≤ K for some K ∈ K.

Proof: Since eB = e2B ∈
∑

K∈K eBK there exists K ∈ K with eBK � J(Z(FB)). Since by
2.2.4 all elements in Z(FB)) \ J(Z(FB)) are invertible, Z(FB) = eBK ≤ K. �

Definition 6.6.9 [sylb] Let B be a block. Then Syl(B) := Syl(eB). The members of
Syl(B) are called the defect groups of B.

Proposition 6.6.10 [sylow theorem for blocks] Let B be block of G. Then G acts tran-
sitively on Syl(B).

Proof: Let D be the set of orbits for G on Syl(B). Then clearly CSyl(B) =
⋃
D∈DCD and

so
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eB ∈ ZSyl(B)(FG) =
∑
D∈D

ZD(FG)

So by 6.6.8 eB ∈ ZD(FG) for some D ∈ D. Thus by 6.6.7(d) implies Syl(B) = Syl(eB) ≺
D. Since D ⊆ Syl(eB) we get Syl(eB) = D. �

Definition 6.6.11 [def:defect class] Let B be a block and C ∈ C(G). Then C is called a
defect class of B provided that λB(aC) 6= 0 6= εB(gC).

Lemma 6.6.12 [existence of defect class] Every block has at least one defect class.

Proof: We have eB =
∑

C∈C(G) eB(gC)aC and so

1 = λB(eB) =
∑

C∈C(G)

eB(gC)λ(aC).

Proposition 6.6.13 [min-max] Let B be a block of G and C a conjuagacy class.

(a) [a] If λB(aC) 6= 0, then Syl(B) ≺ Syl(C).

(b) [b] If εB(aC) 6= 0 then Syl(C) ≺ Syl(B)

(c) [c] If C is a defect class of B, then Syl(C) = Syl(B).

Proof: (a) Since λB(aC) 6= 0 and aC ∈ ZSyl(C)(FG) we have ZSyl(C)(FG) � kerλB.
Since λB has codimension 1 on Z(FG) we conclude

Z(FG) = kerλB + ZSyl(C)(FG)

Since eB /∈ kerλB 6.6.8 implies eB ∈ ZSyl(C)(FG). Thus by 6.6.7(d), Syl(B) ≺ Syl(C).
(b) This follows from 6.6.7(j).
(c) Follows from (a) and (b). �

Lemma 6.6.14 [ac in jzfg] Let C ∈ C(G) with C ∩CG(Op(G)) = 1, then aC ∈ J(Z(F(G))
and so λB(aC) = 0 for all blocks B.

Proof: Let M ∈ Sp(G) and let P be an orbit for Op(G) on C and g ∈ P . By assumption
|P | 6= 1 and so p | |P |. By 6.4.16 ρM (Op(G)) = 1 and so ρM (qg) = ρM (g) for all g ∈ Op(G).
Thus ρM (aP ) = |P |ρM (g) = 0 and so also ρM (aC) = 0. Thus aC ∈ J(F(G)). 6.3.4 completes
the proof. �

Lemma 6.6.15 [defect classes] All defect class of G are contained in CG(Op(G)).
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Proof: Let C be a defect class of the block B. Then λB(aC) 6= 0 and so aC /∈ J(Z(FB)).
Thus by 6.6.14 C ∩ CG(Op(G)) 6= ∅. Since G is transitive on C, C ⊆ CG(Op(G)). �

Proposition 6.6.16 [opg in defect group]

(a) [a] Op(G) is contained in any defect group of any block of G.

(b) [b] If P is a defect group of some block of G and P EG then P = Op(G)

(a)Let B be a block, C a defect class of B. By 6.6.15 Op(G) ≤ CG(gC) and so Op(G) ≤ DC .
(b) Follows immediateley from (a) �

Definition 6.6.17 [def:brauer map] Let P be a p-subgroup. Then BrP : Z(FG) →
Z(FCG(P )), a→ a |CG(P ) is called the Brauer map of P .

Proposition 6.6.18 [basic brauer map]

(a) [a] Let K ⊆ G. Then BrP (aK) = aK∩CG(P ).

(b) [b] BrP is an algebra homomophism.

(c) [c] If CG(P ) ≤ H ≤ NG(P ) then Im BrP ≤ Z(FH) and so we obtain algebra homomor-
phism

BrHP : Z(FG) → Z(FH), a ∈ BrP (H)

Proof: (a) is obvious.
(b) Let A,B ∈ C(G). We need to show that BrP (aAaB) = BrP (aA)BrP (aB). Let

g ∈ CG(P ). Then the coeficient of g in BrP (aAaB) is the order of the set

{(a, b) ∈ A×B | ab = g}

The coefficient of g in BrP (aAaB) is the order of

{(a, b) ∈ A×B | a ∈ CG(P ), b ∈ CG(P ), ab = g}

Since P centralizes g, P acts on the first set and the second set consists of the fixedpoints
of P . So the size of the two sets are equal modulo p and (b) holds.

(c) Let α : FG → FCG(P ) be the restriction map. Since CG(P ) E H, α(hah−1) =
α(hah−1) for all a ∈ G and all h ∈ H. Hence the same is true for all a ∈ FG, h ∈ H. Thus
ImBrP = α(Z(FG)) ≤ Z(FH). �

Lemma 6.6.19 [kernel of brauer map] Let P be a p-subgroup of G.
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(a) [a] Let C ∈ C(G). Then C ∩ CG(P ) 6= ∅ iff P ≺ Syl(C).

(b) [b]
ker BrP = F〈aC | C ∈ C(G), P ⊀ Syl(C)〉

Proof: (a) C ∩ CG(P ) 6= ∅ iff P ≤ CG(g) for some g ∈ C and so iff P ≤ D for some
D ∈ Syl(C), that is iff P ≺ Syl(C).

(b) Let z =
∑

g∈G z(g)g =
∑

C∈C(G) z(gc)aC ∈ Z(F(G)). Then BrP (z) = 0 iff z(g) = 0
for all g ∈ P , iff z(gc) = 0 for all C ∈ C with C ∩ P 6= ∅ and iff z ∈ F〈aC | C ∩ P = ∅〉. So
(a) implies (b). �

Proposition 6.6.20 [defect and brauer map] Let B be a block of G and P be a p-
subgroup of G.

(a) [a] BrP (eB) 6= 0 iff P ≺ Syl(B).

(b) [b] P ∈ Syl(B) iff P is p-subgroup maximal with respect to BrP (eB) 6= 0.

Proof: (a) By 6.6.19(b), BrP (eP ) 6= 0 iff eB /∈ F〈aC | C ∈ C(G), P ⊀ Syl(C)〉 and so iff
P ≺ Syl(C) for some C ∈ C(G) with eB(gC) 6= 0.

If P ≺ Syl(B), then by 6.6.13(c), P ≺ Syl(C) for amy defect class C of B. Thus
BrP (eB) 6= 0.

Conversely suppose BrP (eP ) 6= 0 and let C ∈ C(G) with eB(gC) 6= 0 and P ≺ Syl(C).
By 6.6.13(b), Syl(C) ≺ Syl(B) and so (a) is proved.

(b) follows immediately from (a). �

Definition 6.6.21 [def:lbg] Let H ≤ G and b a block of H.

(a) [a] λGb : Z(FG) → F, a→ λb(a |H).

(b) [b] If λGb is an algebra homomorphsim, the bG is the unique block of G with λbG = λGb .

Lemma 6.6.22 [syl(b) in syl(bg)] Let b be a block of H ≤ G. If bG is defined then
Syl(b) ≺ Syl(bG).

Proof: Let C be a defect class of B. Then 0 6= λbG(aC) = λGb (aC) = λb(aC∩H). Ot follows
that there exists c ∈ C(H) with c ⊆ C and λb(ac) 6= 0. Hence by 6.6.13(a), Syl(b) ≺ Syl(c).
Clearly Syl(c) ≺ Syl(C) = Syl(B) and the lemma is proved. �

Proposition 6.6.23 [lbg=brplb] Suppose that P is a p-subgroup of G and PCG(P ) ≤
H ≤ NG(P ).

(a) [a] λGb = λb ◦ BrP for all blocks b of H.
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(b) [b] bG is defined for all blocks b of H.

(c) [c] Let B be a block if G and b a block of H. Then B = bG iff λb(BrP (eB)) = 1.

(d) [d] Let B be a block. Then BrP (eB) =
∑
{eb | b ∈ Bl(H), bG = B}.

(e) [e] Let B be a block of G. Then B = bG for some block b of H iff P ≺ Syl(B).

Proof: (a) Let C ∈ (G) we have to show that

(∗) λb(aC∩H) = λb(aC∩CG(P ))

Since H nomrmalizes C ∩H and C ∩CG(P ). C ∩H \CG(P ) is a union of conjugacy classes
of H. Let c ∈ C(H) with c ⊆ C and c ∩ CG(P )∅. Since P ≤ Op(H), CH(Op(H)) ≤ CG(P )
and thus c∩CH(Op(H)) = 1. 6.6.14 implies ac ∈ J(Z(FH)) and so λb(ac) = 0. This implies
(*) and so (a) holds.

(b) Since both BrP and λb are homomorphism this follows from (a).
(c) By (b) λb(BrB(eB) = λbG(eB) = δB,bG .
(d) Since BrP is a homomorphism, BrP (eB) is either zero or an idempotent in Z(FH).

Hence by 6.5.16(b) ( applied to H Br(eB) = eT for some (possible empty) T ⊆ Bl(H). Let
b ∈ Bl(H). The λb(eT ) = 1 if b ∈ T and 0 otherwise. So by (c), T = {b ∈ Bl(G) | B = bG}.

(e) By (d) BrP (eB) 6= 0 iff ther exists b ∈ Bl(G) with B = bG. Thus (e) follows from
6.6.20(a). �

Definition 6.6.24 [def:G—P] Let P be a p-sugbroups of G. Then C(G|P ) = {C ∈ C(G) |
P ∈ Syl(C)} and Bl(G|P ) = {B ∈ Bl(G)midP ∈ Syl(G)}.

Proposition 6.6.25 [defect opg] Let B be a block of G with defect group Op(G). Then
Syl(C) = {Op(G)} for all C ∈ C(G) with eB(gC) 6= 0 and so eB ∈ C〈aC | C ∈ C(G|Op(G))〉

Proof: Let C ∈ C(G) with eB(gC) 6= 0. Then by 6.6.13(b), Syl(C) ≺ Syl(B) = {Op(G)}.
On the otherhand b = B is the unique block of G with B = bG and so by 6.6.23(d),
BrOp(G) = eB. It follows that C ≤ CG(Op(G)) and so Op(G) ≺ Syl(C). �

Lemma 6.6.26 [first for classes] Let P be a p-subgroup of G. Then the map

C(G|P ) → C(NG(P )|P ), C → C ∩ CG(P )

is a well defined bijection.
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Proof: Let C ∈ C(G|P ). To show that out map us well defined we have to show that
C ∩ CG(P ) is a conjugacy class for NG(P ). Since NG(P ) normalizes C and CG(P ) it
normalizes C ∩CG(P ). Note that Gacst on the set {(x,Q) | x ∈ C,Q ∈ Sylp(G) = {(x,Q) |
x ∈ C,Q ∈∼= GP, [x,Q] = 1}. Let x ∈ C. Then CG(x) acts tranistively on Sylp(CG(x))
and so by 1.1.10 NG(P ) is tranistive on C ∩ CG(P ). So C ∩ CG(P ) is a conjugacy class of
NG(P ).

Since distinct conjugacy clases are disjoint, our map is injective. Let L ∈ C(NG(P )|P )
and let C be the unique conjugacy class of G containing L. Let x ∈ L. Since P ∈ Syl(L) and
P E NG(P ), Syl(L) = {P} and so P ∈ Sylp(NG(P ) ∩ CG(x)). Let P ≤ Q ∈ Sylp(CG(x)).
Then PleqNQ(P ) ∈ NG(P ) ∩ CG(x) and so P = NQ(P ). 1.4.5(c) implies P = Q and
so P ∈ Syl(C) and C ∈ C(G | P ). Since C ∩ CG(P ) is a conjugacy class of NG(P ),
C ∩ CG(P ) = L and so our map is onto. �

Theorem 6.6.27 (Brauer’s First Main Theorem) [first] Let P be a p-subgroup of G.

(a) [a] The map Bl(NG(P )|P ) → Bl(G|P ), b→ bG is well defined bijection.

(b) [b] Let B ∈ Bl(G|P ) and b = Bl(NG(P )|P ), then B = bG iff BrP (eB) = eb.

Proof: Let b be a block of NG(P ) with defect group P . Since P ENG(P ), Syl(b) = {P}.
By 6.6.23 bG is defined and λbG = λGb = λb ◦ BrP .To show that our map is well defiend we
need to show P is a defect group of bG. Let L be a defect class of b. Then by 6.6.13(c),
Syl(L) = Syl(b) = {P} and thus L ∈ C(NG(P )|P ). Let C be the unique conjugacy class of
G containin L. By 6.6.26 P ∈ Syl(C) and C ∩ CG(P ) = L. Hence

λ(bG)(aC) = λ(BrP (aC)) = λb(aC∩CG(P )) = λb(aL) 6= 0

Thus by 6.6.13(a), Syl(bG) ≺ Syl(C) and so P contains a defect group of Syl(bG). By
6.6.22, {P} = Syl(b) ≺ Syl(bG). Thus P is contained in a defect group of bG. Hence P is a
defect group of bG.

To show that b → bG is onto let B ∈ Bl(G|P ). Let T be the set of blocks of NG(P )
with B = bG. Then by By 6.6.23(d), eB = eT and by 6.6.23(e), T 6= 0. Let b ∈ T . Since
P ≤ Op(NG(P )), 6.6.16 implies that P is contained in any defect group of b. By 6.6.22 any
defect groups of b is contained in a defect group of B = bG. Thus P is a defect group of b.

Finally assume that bG = dG for some b, d ∈ Bl(NG(P )|P ). Then λb ◦BrP = λbG = λd ◦
BrP . Thus λb(aC∩CG(P )) = λd(aC∩CG(P ) for all C ∈ C(G). Hence by 6.6.26, λb(aL) = λd(aL)
for all L ∈ C(NG(P ) | P ). Observe that by 6.6.16(b), P = Op(NG(P )) and so by 6.6.25 eb
is a C-linear combination of the aL, L ∈ C(NG(P )|P . Thus

1 = λb(eb) = λd(eb) = δbd

and b = d. So our map is 1-1. �
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Corollary 6.6.28 [p=opng] Let P be the defect group of some block of G. Then P =
Op(NG(P )).

Proof: By 6.6.27 P is a defect group of some block of NG(P ). So by 6.6.16(b), P =
Op(NG(P )). �

6.7 Brauer’s Second Main Theorem

Lemma 6.7.1 [x invertible in zag] Let B be block of G and x ∈ Z(AIG) with λB(x∗) =
1. Then there exists y ∈ fBZ(AIG) with yx = fB.

Proof: Since λB((fBx)∗) = λB(eB)λB(x) = 1 we may replace x by fBx and assume that
x ∈ fBZ(AIG)). Then fBx = x, eBx∗ = x∗ and x∗ ∈ FB. Since λB(x∗) = 1λB(eB)
and kerλB ∩ Z(FB) = J(Z(FB)) we conclude for 6.7.1 that x∗ is invertible in Z(FB)) =
eBZ(FG) = (fBZ(AIG))∗. So there exists u ∈ fBZ(AIG)) with (ux)∗ = eB. Observe
that ker(∗: AIH → FG) = IIG = J(AI) · AIG and ux ∈ fB · AIG · fB. Thus 6.3.5
shows that there exists a unique v ∈ fB · AIG · fB with vux = fB. Let g ∈ G. Then
t ∼= gv · ux = g(vux) = gfB = fB and so by uniqueness of v, gv = v and v ∈ Z(AIG). So the
lemma holds with y = vu. �

Lemma 6.7.2 [fb on fbprime] Let H ≤ G, b a block of H. Suppose that bG is define and
put B = bG. Then there exists w ∈ AI(G \H) such that

(a) [a] fbfB′ = wfB′.

(b) [b] fbw = w = wfb.

(c) [c] H centralizes.

Proof: Let x = fB |H and z = fB |H\H . Then fB = a + c. By defintion of B = BG,
λB = λGb and so

1 = λB(eB) = λn(eB | H) = λB((fB |H)∗) = λB(x∗).

Hence by 6.7.1 applied to H in place of G there exists y ∈ fBZ(AIH) with yx = fB.
Put w = −yz and note that H centralizes w. Since H · (G \H) ⊆ G \H, w ∈ AI(G \H).
Since fby = fb also fbw = w. It remains to prove (a).

yfB = y(x+ z) = yx+ yz = fB − w

Hence

(fb − w)fB′ = yfBfB′ = 0

This (a) holds.
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Lemma 6.7.3 [p partition]

(a) [a] Let 〈h〉 be a finite cyclic group acting on a set Ω. Suppose hp acts fixed-point freely
on Ω. Then there exists there exists an < h >-invariant partion of (Ωi)i∈Fp of Ω with
hΩi = Ωi+1.

(b) [b] If h ≤ H ≤ G with CH(hp) ≤ H, S a ring and w ∈ S[G \H]. If h centralizes w,
then there exists wi ∈ S[G \H], i ∈ Fp with hwih−1 = wi+1 and

∑
i∈Fp

wi = w.

(a) Put H = 〈h〉 act transitively on Ω. Let Ω0 be an orbit for Hp on Ω. Suppose that
Ω0 = Ω. Then by the Frattinargument, H = HpCH(ω) and so H/CH(ω) is a p′ group.
Thus hp ∈ CH(ω) contrary to the assumptions. Thus Ω0 6= Ω Since Hp EH, H/Hp ∼= Cp
acts tranistively on the set of orbits of Hp on Ω. So (a) holds with Ωi = hiΩ0, for i ∈ Fp.

(b) Since CG(hp) ≤ H, hp acts fixed-point freely on G \H via conjuagtion. Let Ωi be
as in (a) with Ω = G \H and put wi = w |Ωi . Then clearly w =

∑
i∈Fp

wi. Now

hwi = h(w | Ωi) = hw |hΩi
= w |Ωi+1= wi+1

and (b) is proved.

Lemma 6.7.4 [eigenvector for h] Let H ≤ G and b a block for G. Suppose that B = bG

us defined and that h ∈ H with CG(hp) ∈ H.

(a) [a] Let ω ∈ C with ωp = 1. If fB′fb 6= 0, then the exists a unit t in the ring fB′fb ·
AIG · fB′fb with ht = ωt.

(b) [b] If χ ∈ Irr(G) with χ /∈ B. Then χ(hfb) = 0.

Proof: (a) Let w be a as in 6.7.2. By 6.7.3(b) theer exists wi ∈ AIG with w = s
∑

i∈Fp
wi

and hwi = wi+1. By 6.7.2(b), w = fbwfb and so replacing wi by fbwifb we may assume that
wi ∈ fb · AIG · fb. Put s =

∑
i∈Fp

ωiwi. Then clearly hs = ωs and s ∈ fb · AIG · fb. Put
t = fB′s. fB′ ∈ Z(AIG) is a central idempotent, t ∈ fB′fb · AIG · fB′fb and ht = ωt. To
complete the proof of (a) we need to show that t is unit in the ring fB′fb · AIG · fB′fb.

Since F has no element of multiplicative order p, ω∗ = 1 and so s∗ =
∑

i∈Fp
w∗i = w∗

and so by 6.7.2(a),

fB′fb)∗ = (fB′w)∗ = (fB′s)∗ = t∗

So 6.3.5 applied with the idempotent f = fB′fb yields that t is a unit in fB′fb·AIG·fB′fb.
(b) Let M ∈ S(G) with χ = χM . Put V = fbM . Observe that V that CH submodule

of M . Moreover, M = AM (fb)⊕V and fb acts as idV on V . Thus χM (hfb) = χV (fb). Since
χ 6∈ B, fBM = 0 and so fB′ act as identity on M and on V . So also fB′fb acts as indentity
on V . The V = fB′fbM is a module for the ring fB′fb · AIG · fB′fb

If V = 0 clearly (b) holds. So suppose V 6= 0 and so also fB′fb 6= 0.
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For L be the set of eigenvalues for h on V and for l ∈ L let Vl be the corresponding
eigenspace. Then V =

⊕
l∈L Vl. Let ω be a primitive p-root of unity in U and choose t as

in (a). Then t is invertible on V . Moreover, if l ∈ L and v ∈ Vl, then htv = hth−1hv =
ωtlv = (ωl)tv. Thus tVl ≤ Vtl. In particular tpVl = VtpL = Vl and since tp is invertible,
tpVl = Vl and so also tVl = Vtl. T Inparticular < ω〉 acts an L be left multiplication and
dimVl = dimVωl. Let L0 be a set of representatoves for the orbits of 〈ω〉 in L. Then

χV (h) =
∑

l∈L χVl
(h) =

∑
l∈L l dimVl

=
∑

l∈L0

∑p−1
i=0 ω

il dimVωil =
∑

l∈L0

(∑p−1
i=0 ω

i
)
l dimVl = 0

�

Definition 6.7.5 [def:p-section] Let x ∈ G be a p-element. Then SG(x) = S(x) = {y ∈
G | yp ∈ Gx} is called the p-section if x in G.

Lemma 6.7.6 [basic p-section] Let x ∈ G be a p-elemenent and Y a set of representatives
for the p′-conjugact classes in CG(x). Then {xy | y ∈ Y } is a set of representaives for the
conjugacy classes of G in S(x).

Proof: Any s ∈ S(x) is uniquely determined by the pair (sp, sp′). So the lemma follows
from 1.1.10 �

Definition 6.7.7 [def:bx] Let x ∈ G be a p-element and B a block p-block and θ ∈ CG).

(a) [a] Let T a block or a set of blocks. Then θT : G→ C | g → θ(fT g).

(b) [b] θx : G→ C, x→ θ(xh).

(c) [c] Bx = {b ∈ Bl(CG(x))} | bG = B}.

Lemma 6.7.8 [fchi selfadjoint] Let T ⊆ Irr(G). Then

(a) [a] fT ◦ = fT

(b) [b] (afT | b) = (a | bfT ) for all a, b ∈ CG.

Proof: By linearity we may assume T = {χ} for some χ ∈ Irr(G).
(a) Since χ◦ = chi and fχ = χ(1)

|G| χ we have fχ◦ = fχ.

(b) By (a) f◦χ = fχ and 3.4.2(c) implies (afχ | b) = (a | bfχ).

Lemma 6.7.9 [dual of a block] Let B be a block.

(a) [a] B = {ψ | ψ ∈ B} is a block.
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(b) [b] λB(a) = λB(a◦).

(c) [c] fB = fB = f◦B.

(d) [d] eB = e◦B.

Proof: (a) and (b): Let ψ ∈ B and M the correspoding module. Then ψ corresponse to
M∗. By the definition of the action of a group ring on the dual ρM∗(a) = ρM (a◦)dual. It
follows that λψ(a) = λψ(a◦). Thus λα = λβ iff λα = λb and so (a) and (b) hold.

(c): Clearly fB = fB. By 6.7.8, fB = f◦T and so (c) holds.
(d): Apply ∗ to (c). �

Lemma 6.7.10 [theta b] Let T be a block or or a set of blocks and θ ∈ CG. Then
θB = θfB.

Proof: Let b ∈ G. Then by 6.7.8

θT (b) = θ(fBb) = |G|(θ | fT b) = |G|(θfT | b) = (θfB)(b).

�

Lemma 6.7.11 [theta fb] Let B be a block.

(a) [a] Irr(B) is a basis for CB := CGfB.

(b) [b] Both IBr(G) and (Φφ | φ ∈ IBr(G) are a basis for CB̃, where CB̃ := CG̃ ∩ CB.

(c) [c] If χ ∈ Irr(B), then χ̃ ∈ FB.

(d) [d] For all θ ∈ Z(CG), θ̃fB = θ̃fB and θ̃B = θ̃B.

(e) [e] Let θ ∈ Z(CG) and B a block of G. Then θfB =
∑

χ∈Irr(B)(θ | χ)χ.

Proof: (a): Let χ ∈ Irr(B). Then χ = |G|
φ(1)fχ ∈ CGB and so (a) holds.

(b) Let φ ∈ IBr(B). Then by (a)

Φψ =
∑

χ∈Irr(B)

dφχχ ∈ CB

and so (Φφ | φ ∈ IBr(G) is a basis for CB̃. Moreover,

φ =
∑

ψ∈IBr(B)

(φ | ψ)Φψ ∈ CB

and so (b) holds.
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(c) χ̃ =
∑

φ∈IBr(B) dφχφ. So (c) follows from (b).
(d) By linearity we may assume that θ ∈ Irr(G). If θ ∈ B then by (b) and (c)

θ̃fB = θ̃ = θ̃fB

and if θ /∈ B, then

θ̃fB = 0 = 0̃ = θ̃fB

So the first statement holds. The second now follows from 6.7.10
(e) follows from θ =

∑
χ∈Irr(G)(θ | χ) and (a). �

Lemma 6.7.12 [decomposing theta x] Let x ∈ G be a p-element, B a block of G.

(a) [a] If χ ∈ Irr(B), then χ̃x = χ̃xBx.

(b) [b] Let θ ∈ Z(CG), then ˜((θB)x) = (θ̃x)Bx.

Proof: (a) Let b ∈ Bl(CG(x)) \Bx and y ∈ C̃G(x)). Then

χ̃xb(y) = χ̃x(fby)
6.7.11(d)

= χx(fby) = χ(fbxy)
6.7.4(b)

= 0

Thus χ̃xb = 0 and so χ̃x =
∑

b∈IBr(CG(x)) χ̃
x
b =

∑
b∈IBr(Bx) χ̃

x
b = χ̃xBx .

(b) By linearity we may assume θ ∈ Irr(G) and say θ ∈ A ∈ Bl(G). So (b) follows from
(a). �

�

Theorem 6.7.13 [my second] Let X a set of representatives for the p-element classes.
Define

µ : Z(CG) → i
x∈XZCC̃G(x), θ → (θ̃x)x

and
ν : i

x∈XZCC̃G(x) → Z(CG), (τx)x → θ

where θ(g) = τx(y) for x ∈ X and y ∈ C̃G(x) with xy ∈ Gx.

(a) [a] µ and ν are inverse to each other and so both are C-isomorphism

(b) [b] µ(ZCC̃G(x)) = ZC S(x).

(c) [c] µ and ν are isometries.

(d) [d] Z(CG) = i
x∈XZC S(x).
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(e) [e] For each block B of G, Ξ(Z(CB)) = i
x∈XZCB̃x

(f) [f] Z(CB) = i
x∈X ν(ZCB̃x))

Proof: Observe that by 6.7.6 ν is well defined. Also we view ZCC̃G(x) has subring ofi
x∈XZCC̃G(x).
(a) and (b) are obvious.

(c) Let r, x ∈ X , s ∈ C̃G(r) and y ∈ C̃G(x). Let C 6= D ∈ C(G), E ∈ (CG(x) and
F ∈ CG(r) with rs ∈ C, xy ∈ D, s ∈ E and y ∈ F . Then µ(aC) = aE and µ(aD) = F .

Since C 6= D either x 6= y or E 6= F and in both cases aE ⊥ aF in i
x∈XZCC̃G(x). Note

that also aC ⊥ aD in Z(CG). Moreover

(aD | aD)G =
|D|
|G|

=
1

|CG(xy)|
=

1
|CCx(y)|

=
|F |

|CG(x)|
= (aF | aF )CG(x)

and so (c) holds.
(d) Follows since G is the disjoint union of the opS(x), x ∈ X . Alternaively it folloes

from (a) -(c).
(e) Follows from 6.7.12.
(f) follows from (e) and and (c). �

Lemma 6.7.14 [x decomposition] Let x ∈ G. Define the complex IBr(CG(x))× Irr(G)-
matrix Dx = (dxφχ) by

χ̃x =
∑

φ∈Irr(G)

δxφχφ

any χ ∈ Irr(G) Then

dxφχ =
∑

ψ∈Irr(CG(x))

(χ |H | ψ)H
ψ(x)
ψ(1)

φ(y)

Proof:
Let χ = χM with M ∈ S(G) an dy ∈ C̃G(x). Then as an CG(x)-module, M ∼=∑
N∈S(H)N

dN for some dN ∈ N. Since x ∈ Z(CG(x)), x acts as a scalar λxN on N . Then
χN (fBxy) = λxNχN (fBy). Moreover fB annhilates N if N /∈ S(B) and acts as identiity on
N if N ∈ S(B). Hence

(∗) χ(fBxy) =
∑

N∈S(Cg(x))

dNλ
x
NχN (fBy) =

∑
N∈S(B)

χN (y)

Observe that δN = (χ | H | χN ), λxN = χN (x)
χN (1) and χ̃N =

∑
φ∈IBr(CG(x)) dφχN

φN .
Substitution into (*) gives the lemma. �
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Theorem 6.7.15 (Brauer’s Second Main Theorem) [second] Let x be a p-element in
G and b ∈ Bl(CG(x)). If χ ∈ Irr(G) but χ /∈ Irr(bG), then dxφχ = 0 for all φ ∈ IBr(G).

Proof: Follows from 6.7.12(a).

Corollary 6.7.16 [chixy] Let x be a p-element in G, y ∈ CG(x) a p′-element, B a block
of B and χ ∈ Irr(B). Then

χ(xy) =
∑

{dxφχ | b ∈ Bl(CG(x)), B = bG}

Proof: This just rephrases 6.7.12(a).

Corollary 6.7.17 [gp in defect group] Let B be a block of G, χ ∈ Irr(B) and g ∈ G. If
χ(g) 6= 0 then gp is contained in a defect group of B,

Proof: Let x = gp, y = gp′ . Since χ(g) = χ(xy) 6= 0, 6.7.16 implies tat there exists
b ∈ IBr(G) with B = bG. Since x ∈ Op(CG(x) is contained in any defect group of b, 6.6.22
implies that x is contained a defect group of B. �
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