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Preface

These notes are intended for a course in harmonic analysis on R™ which was offered to
graduate students at the University of Kentucky in Spring of 2001. The background for
this course is a course in real analysis which covers measure theory and the basic facts
of life related to LP spaces. The students who were subjected to this course had studied
from Measure and integral by Wheeden and Zygmund and the book by Folland, Real
analysis: a modern introduction.

Much of the material in these notes is taken from the books of Stein Singular integrals
and differentiability properties of functions, and Harmonic analysis and the book of Stein
and Weiss, Fourier analysis on Euclidean spaces.

The exercises serve a number of purposes. They illustrate extensions of the main
ideas that I did not have time to carry out in detail. They occasionally state difficult and
unsolvable problems. They provide a chance to state simple results that will be needed
later. Often, the result stated will be wrong. Please let me know about errprs.
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Chapter 1

The Fourier transform on !

In this section, we define the Fourier transform and give the basic properties of the Fourier
transform of an L'(R™) function. We will use L' to be the space of Lebesgue measurable
functions with the norm || f||; = [g~ |f(2)| dx. More generally, LP(R") denotes the space
of Lebesgue measurable functions for which || f|l, = (Jg» |f(2)|P dz)/?. When p = oo,
the space L*(R™) is the collection of measurable functions which are bounded, after we
neglect a set of measure zero. These spaces of functions are examples of Banach spaces.

We recall that a vector space V over C with a function || - || is called a normed vector
space if || - || : V' — [0, 00) and satisfies
If+gl < WA+Mgll,  figeV
IAfI = AfIL, few, AeC
Ifll = 0, if and only if f = 0.
A function || - || which satisfies these properties is called a norm. If || - || is a norm, then
|f — g|| defines a metric. A normed vector space V, || - || is called a Banach space if V

is complete in the metric defined using the norm. Throughout these notes, functions are
assumed to be complex valued.

1.1 Definition and symmetry properties

We define the Fourier transform. In this definition, x - £ is the inner product of two
elements of R", x - § = >0 2;¢;.

Definition 1.1 If f € L*(R"), then the Fourier transform of f, f, is a function defined

1



2 CHAPTER 1. THE FOURIER TRANSFORM ON L}

on R™ and s given by

f©) = [ flae<an.

The Fourier transform is a continuous map from L! to the bounded continuous func-
tions on R™.

Proposition 1.2 If f € LY(R"), then f is continuous and

1 lloe < 11 £1]r-

Proof. 1If £ — &, then e7™®% — e~™¢. Hence by the Lebesgue dominated convergence

theorem, f(fj) — f(g) I

The inequality in the conclusion of Proposition 1.2 is equivalent to the continuity of
the map f — f. This is an application of the conclusion of the following exercise.

Exercise 1.3 A linear map T : V — W between normed vector spaces is continuous if
and only if there exists a constant C' so that

1T fllw < Clifllv-

In the following proposition, we use A" = (A™')* for the transpose of the inverse of
an n X n matrix, A.

Exercise 1.4 Show that if A is an n x n invertible matriz, then (A~1)t = (AY)~L
Exercise 1.5 Show that A is an n X n matriz, then Az -y = x - Aly.
Proposition 1.6 If A is an n X n invertible matriz, then

foA=|detAlfo A",

Proof. If we make the change of variables, y = Ax in the integral defining f/o\A, then
we obtain

[ FoA(@)dr=|det A [ f(y)e ey = [det A [ f(y)e A S dy.
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A simple application of this theorem is that if we set f.(x) = e " f(x/€), then

~

fe(&) = f(e©). (1.7)

Recall that an orthogonal matrix is an n X n-matrix with real entries which satisfies
O'O = I, where I, is the n x n identity matrix. Such matrices are clearly invertible since
O~ = O'. The group of all such matrices is usually denoted by O(n).

Corollary 1.8 If f € L*(R") and O is an orthogonal matriz, then fo O = foO.

Exercise 1.9 If x € R", show that there is an orthogonal matrix O so that Ox =
)

Exercise 1.10 Show that an nxn matriz on R™ is orthogonal if and only if Ox-Ox = x-x
for all x € R".

We say that function f defined on R" is radial if there is a function F' on [0, 00) so
that f(z) = F(|z|). Equivalently, a function is radial if and only if f(Ox) = f(x) for all
orthogonal matrices O.

Corollary 1.11 Suppose that f is in L' and f is radial, then f is radial.

Proof. We fix £ in R" and Czhoose O 50 that O¢ = (|£/,0,...,0). Since fo O = f, we
have that f(§) = f 0 O(§) = f(O¢) = f([¢].0,...,0). '

The main applications of the Fourier transform depend on the fact that it turns
operations that commute with translations into multiplication operations. That is, it
diagonalizes operations which commute with translations. The first glimpse we will see of
this is that the operation of translation by A (which surely commutes with translations)
corresponds to multiplying the Fourier transform by e”¢. We will use 7, to denote
translation by h, 7, f(z) = f(x + h).

Exercise 1.12 If f is a nice function on R™, show that
0 0
8—1;]-Thf = Tha—xjf-
Proposition 1.13 If f is in L*(R"), then
wf(€) = " f(€).

Also, ‘ )
(e fY = T-n(f). (1.14)
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Proof. We change variables y = x + h in the integral

f€) = [ fle M= de = [ fl)e < dy = ),
The proof of the second identity is just as easy and is left as an exercise. 1

Example 1.15 If I = {z : |z;| < 1}, then the Fourier transform of f = x; is easily

computed,
L 2sin g

R LS s g
f@ggﬁe v =11

In the next exercise, we will need to write integrals in polar coordinates. For our
purposes, this means that we have a Borel measure ¢ on the sphere, S"! = {2/ € R" :
|z’| = 1} so that

[Rn f(z)dz = /OOO /sn_1 fra’)do (2 )r™ " dr.

Exercise 1.16 If B,(z) = {y : |t —y| < r} and f = XxB,(0), compute the Fourier
transform f

Hints: 1. Since f is radial, it suffices to compute f at (0,...,r) for r > 0. 2.
Wrrite the integral over the ball as an iterated integral where we integrate with respect to
' = (x1,...,2,-1) and then with respect to x,. 3. You will need to know the volume of a
ball, see exercise 1.29 below. 4. At the moment, we should only complete the computation
in 8 dimensions (or odd dimensions, if you are ambitious). In even dimensions, the
answer cannot be expressed in terms of elementary functions. See Chapter 13 for the
answer in even dimensions. The is

; Wiz [T itlel g _ 2y(n-1)/2
= Sn2 1—t dt.
o) = 22 [ e - )

Theorem 1.17 (Riemann-Lebesque) If f is in L*(R"), then

lim f(£) = 0.

€] —o00
Proof. We let X C L'(R"™) be the collection of functions f for which lim f() =o.
It is easy to see that X is a vector space. Thanks to Proposition 1.2, X is closed in
the L'-norm. According to Example 1.15, Proposition 1.13 and Proposition 1.6 the
characteristic function of every rectangle is in X. Since finite linear combinations of
characteristic functions of rectangles are dense in L', X = L'(R"). 1
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Combining the Riemann-Lebesgue theorem and the first proposition above, we can
show that the image of L' under the Fourier transform is contained in Cy(R™), the
continuous functions on R™ which vanish at infinity. This containment is strict. We will
see that the Fourier transform of the surface measure on the sphere S"~! is in Cy(R™).
It is a difficult and unsolved problem to describe the image of L' under the Fourier
transform.

One of our goals is to relate the properties of f to those of f . There are two general
principles which we will illustrate below. These principles are: If f is smooth, then f
decays at infinity and If f decays at infinity, then f 1s smooth. We have already seen
some weak illustrations of these principles. Proposition 1.2 asserts that if f is in L!,
which requires decay at infinity, then f is continuous. The Riemann-Lebesgue lemma
tells us that if f is in L', and thus is smoother than the distributions to be discussed
below, then f has limit 0 at infinity. The propositions below give further illustrations of
these principles.

Proposition 1.18 If f and z;f are in L', then f is differentiable and the derivative is

given by
9 .
Yog ! =il
Furthermore, we have
of
L < s Fll-.
I o < s

Proof. Let h € R and suppose that e; is the unit vector parallel to the z;-axis. Using
the mean-value theorem from calculus, one obtains that

e—ix-({-i—hej) _ e—i:cf
h

< ||

Our hypothesis that z;f is in L' allows to use the dominated convergence theorem to
bring the limit inside the integral to compute the partial derivative

of (&) ..
o, m

/ e—ia:~(§+h6j) _ e—iz~§

- flz)dz = / (—iz;)e € f(z) da.

The estimate follows immediately from the formula for the derivative. 1
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Note that the notation in the previous proposition is not ideal since the variable x;
appears multiplying f, but not as the argument for f. One can resolve this problem by
decreeing that the symbol x; stands for the multiplication operator f — x;f and the j
component of z.

For the next proposition, we need an additional definition. We say f has a partial
derivative with respect to x; in the L? sense if f is in L” and there exists a function

df /Ox; so that
of

a1
lim {| = (he, f = f) = a—xij = 0.
Proposition 1.19 If f is differentiable with respect to x; in the L'-sense, then
L. Of
&5 f = 8_95]

Furthermore, we have

N 8}"
16 Flle < ||a

11

Proof. Let h > 0 and let e; be a unit vector in the direction of the x; - axis. Since the
difference quotient converges in L', we have

/n efixfﬁ(:v) dr = lim e’”ff(x + hej) — f(@) d

al'j h—0 JRn h

X.

In the last integral, we can “difference-by-parts” to move the difference quotient over to
the exponential. More precisely, we can make a change of variables y = = + he; to obtain

—i(z—he;)-& _ ,—ix€

e e
x)dx.

s ; e

Since the difference quotient of the exponential converges pointwise and boundedly (in

) to i&;e” ¢, we can use the dominated convergence theorem to obtain a\f/@xj = zgjf
1

Finally, our last result on translation invariant operators involves convolution. Recall
that if f and g are measurable functions on R", then the convolution is defined by
frgl)= [ F@—y)gly)dy
provided the integral on the right is defined for a.e. x.
Some of the basic properties of convolutions are given in the following exercises. The
solutions can be found in most real analysis texts.
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Exercise 1.20 If f is in L' and g are in LP, with 1 < p < oo, show that f * g(z) is
defined a.e. and
1+ glly < 1 fl12llgllp-

Exercise 1.21 Show that the convolution is commutative. If f x g(x) is given by a
convergent integral, then

f+g(@) = g % f(2).
If f, g and h are in L', show that convolution is associative
frl(gxh)=(fxg)xh
Hint: Change variables.

Exercise 1.22 The map f — f * g commutes with translations:

m(f*g) = (Tf) * g.

Exercise 1.23 (Young’s convolution inequality) If the exponents p, q and s satisfy 1/s =
1/p+1/q—1, then
1S * glls < N FNollglle-

Proposition 1.24 If f and g are in L', then
(f*9)= fg.

We calculate a very important Fourier transform. The function W in the next propo-
sition gives (a multiple of) the Gaussian probability distribution.

Proposition 1.25 Let W (z) be defined by W (z) = exp(—|z|?/4). Then
W () = (Vian)" exp(—[¢*).

Proof. We use Fubini’s theorem to write W as a product of one-dimensional integrals
n
/ e—\x|2/4€—ix~§ dr = H/ e—x§/4e—ixj£j d[Ej.
n i1 R

To evaluate the one-dimensional integral, we use complex analysis which makes every-
thing trivial. We complete the square in the exponent for the first equality and then use
Cauchy’s integral theorem to shift the contour of integration in the complex plane. This
gives

/ oA g0 ol / o~ (5HO? gy — o leP / o Vo4 g0 — e lE
R R R
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Exercise 1.26 Carefully justify the shift of contour in the previous proof.

Exercise 1.27 FEstablish the formula

/ e ™ol gy =1

which was used above. a) First consider n = 2 and write the integral over R* in polar
coordinates.
b) Deduce the general case from this special case.

In the next exercise, we use the I' function, defined for Res > 0 by
0o dt
I'(s) = / e ' —.
0 t
Exercise 1.28 Use the result of the previous exercise and polar coordinates to compute
Wn_1, the n — 1-dimensional measure of the unit sphere in R"™ and show that
2 7Tn/2
I'(n/2)

Wp—1 = O'(Snil) =
For the next exercise, we introduce our notation for the Lebesque measure of a set
E, m(E)

Exercise 1.29 Use the result of the previous exercise and polar coordinates to find the
volume of the unit ball in R™. Show that

m(B1(0)) = w,_1/n.

1.2 The Fourier inversion theorem

In this section, we show how to recover an L!-function from the Fourier transform. A
consequence of this result is that we are able to conclude that the Fourier transform
is injective. The proof we give depends on the Lebesgue differentiation theorem. We
will discuss the Lebesgue differentiation theorem in the chapter on maximal functions,
Chapter 4.

We begin with a simple lemma.

Lemma 1.30 If f and g are in L*(R™), then

[ @) de= [ f(@)g(a) do.
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Proof. We consider the integral of f(z)g(y)e™*? on R?". We use Fubini’s theorem to
write this as an iterated integral. If we compute the integral with respect to x first, we
obtain the integral on the left-hand side of the conclusion of this lemma. If we compute
the integral with respect to y first, we obtain the right-hand side. 1

We are now ready to show how to recover a function in L! from its Fourier transform.

Theorem 1.31 (Fourier inversion theorem) If f is in L'(R™) and we define f; fort >0

by
F) = g Jo €€
then
Jim 1fy = £l =0
and

lim fi(x) = f(x), a.e. .

t—0+

Proof. We consider the function g(x) = e !+ By Proposition 1.25, (1.7) and
(1.14), we have that

g(z) = (2n)"(4mt) ™ exp(—ly — z[*/4t).

Thus applying Lemma 1.30 above, we obtain that

1 N 2 _ 72
@) | f@ese P ag = [ f)(ant) 2 exp(—%> da.

Thus, fi(z) is the convolution of f with the Gaussian and it is known that f; — f
in L'. That f, converges to f pointwise is a standard consequence of the Lebesgue
differentiation theorem. A proof will be given below. 1

It is convenient to have a notation for the inverse operation to the Fourier transform.
The most common notation is f. Many properties of the inverse Fourier transform follow
easily from the properties of the Fourier transform and the inversion. The following
simple formulas illustrate the close connection:

. 1 ~
@) = ) (1.3
f@) = J(a). (1.33)
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If f' is in L', then the limit in ¢ in the Fourier inversion theorem can be brought inside
the integral (by the dominated convergence theorem) and we have

5 o f©esde.

Exercise 1.34 Prove the formulae (1.32) and (1.33) above.



Chapter 2

Tempered distributions

In this chapter, we introduce the Schwartz space. This is a space of well-behaved functions
on which the Fourier transform is invertible. One of the main interests of this space
is that other interesting operations such as differentiation are also continuous on this
space. Then, we are able to extend differentiation and the Fourier transform to act
on the dual space. This dual space is called the space of tempered distributions. The
word tempered means that in a certain sense, the distributions do not grow to rapidly
at infinity. Distributions have a certain local regularity—on a compact set, they only
involve finitely many derivatives. Given the connection between the local regularity of a
function and the growth of its Fourier transform, it seems likely that any space on which
the Fourier transform acts should have some restriction on the growth at infinity.

2.1 Test functions and tempered distributions

The main notational complication of this chapter is the use of multi-indices. A multi-
index is an n-tuple of non-negative integers, @ = (ay,...,a,). For a multi-index «, we
let

="

Qn
n -

We also use this notation for partial derivatives,
aa aa1 80¢n

oxe  Oxft T Oz

Several other related notations are

lal=a1+...+a, and al=ao!...a,

11
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Note that the definition of the length of «, |a|, appears to conflict with the standard
notation for the Euclidean norm. This inconsistency is firmly embedded in analysis and
I will not try to change it.

Below are a few exercises which illustrate the use of this notation.

Exercise 2.1 The multi-nomial theorem.

(14 . Fm) =)

Exercise 2.2 Show that

ol
(z4+y)*= > — Py,
B B!

Exercise 2.3 The Leibniz rule. If f and g have continuous derivatives of order up to k
on R"™ and « is a multi-index of length k, then
0°(f9) ol 9f g

= - 2.4
Ox® ﬁ%::a B! 0xP Ox (24)

Exercise 2.5 Show for each multi-index «,

o*

oz« o

= qal.

More generally, show that

o° .  a e

028" (o —pP)!

The right-hand side in this last equation is defined to be zero if any component of o — 3
18 negative.

To define the Schwartz space, we define a family of norms on the collection of C>°(R™)
functions which vanish at oo. For each pair of multi-indices o and 3, we let

We say that a function f is in the Schwartz space on R™ if p,s(f) < oo for all o and
(. This space is denoted by S(R™). Recall that a norm was defined in Chapter 1. If
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a function p : V. — [0,00) satisfies p(f + g) < p(f) + p(g) for all f and g in V and
p(Af) = |A|lp(f), then p is called a semi-norm on the vector space V.

The Schwartz space is given a topology using the norms p,s in the following way. Let
p; be some arbitrary ordering of the norms p,g. Let p; = min(p;,1). Then define

p(f—9)=>_27p;(f — 9).
j=1
Lemma 2.6 The function p is a metric on S(R™) and S is complete in this metric. The
vector operations (f,qg) — f+ g and (\, f) — Af are continuous.

Exercise 2.7 Prove the assertions in the previous Lemma.

Note that our definition of the metric involves an arbitrary ordering of the norms
Pap- Readers who are obsessed with details might worry that different choices of the
order might lead to different topologies on S(R™). The following proposition guarantees
that this does not happen.

Proposition 2.8 A set O is open in S(R™) if and only if for each f € O, there are
finitely many semi-norms pa,p, and €, > 0,1 =1,..., N so that

ﬂﬁil{g : pazﬂi<f - g) < 61'} c O.

We will not use this proposition, thus the proof is left as an exercise. It is closely
related to Proposition 2.11.

Exercise 2.9 Prove Proposition 2.8

Exercise 2.10 The Schwartz space is an example of a Fréchet space. A Fréchet space is
a vector space X whose topology is given by a countable family of semi-norms {p;} using
a metric p(f — g) defined by p(f —g) = > 279p;(f — g). The space X is Fréchet if the
resulting topology is Hausdorff and if X is complete in the metric p. Show that S(R™)
15 a Fréchet space. Hint: If one of the semi-norms is a norm, then it is easy to see the
resulting topology s Hausdorff. In our case, each semi-norm is a norm.

Proposition 2.11 A linear map T from S(R") to S(R") is continuous if and only if for
each semi-norm pag, there exists a finite collection of semi-norms {pa,p, 11 =1...,N}
and a constant C so that

pes(TF) < CS pasi(F).

i=1
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A map u from S(R™) to a normed vector space V is continuous if and only if there
ezists a finite collection of semi-norms {pa,s, i =1...,N} and a constant C' so that

L)l < CS pasnlf).

i=1

Proof. We first suppose that 7': § — S is continuous. Let the given semi-norm p,3 =
pn under the ordering used to define the metric. Then T is continuous at 0 and hence
given € = 2771 there exists § > 0 so that if p(f) < &, then p(T'f) < 27V~1. We may
choose M so that 3272,/ 4 277 < 4/2. Given f, we set

o f
2 Zj]\/il 279p;(f)

The function f satisfies p(f) < & and thus p(Tf) < 27N=1_ This implies that pN(Tf) <
1/2. Thus, by the homogeneity of py, we obtain

f=

o (T) <53 (),

Now suppose that the second condition of our theorem holds and we verify that the
standard € — ¢ formulation of continuity holds. Since the map T is linear, it suffices to
prove that 7' is continuous at 0. Let € > 0 and then choose N so that 27 < ¢/2. For
each j =1,..., N, there exists C; and N; so that

Nj
pi(Tf) < C; > p(f)-
k=1
If we set Ny = max(Ny,...,N;), and Cy = max(Ch,...,Cx), then we have

N _ ¢
p(Th) < 3270, +5
j=1

N

< Gy (z—j ﬁpkm) +

Jj=1

(2.12)

DO ™

Now we define & by § = 27 min(1,¢/(2NoCp)). If we have p(f) < 4, then we have
pe(f) < 1and pp(f) < €/(2NoCy) for k = 1,..., N. Hence, we have pi(f) < €/(2NyCo)
for k =1,..., Ny. Substituting this into the inequality (2.12) above gives that p(T'f) < e.

The proof of the second part is simpler. 1
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Finally, it would be a bit embarrassing if the space S(R") turned out to contain only
the zero function. The following exercise guarantees that this is not the case.

Exercise 2.13 a) Let
| exp(—1/t), t>0
qb(t)‘{ 0, t<o.

Show that ¢(t) is in C*°(R). That is, ¢ has derivatives of all orders on the real line.
Hint: Show by induction that ¢*)(t) = Pyr(1/t)e"'/* for t > 0 where Py is a polynomial
of order 2k.

b) Show that ¢(—1/(1 — |z|?)) is in S(R™). Hint: This is immediate from the chain

rule and part a).

Lemma 2.14 If1 <p < oo, then S(R") is dense in LP(R").

Proof. 1If welet f.(x) = ¢c* f(x) where n(x) = cp(x) with ¢ the function in the previous
exercise and c is chosen so that [n = 1. Hence, n.(z) = e "n(z/¢) will also have integral
1. It is known from real analysis that if f € LP(R"), then

T s () = f@)ly =0, 1<p<oo

and that this fails when p = co and f is not continuous.
Finally, since ¢(0) = 1,

f617€2 (x) = ¢(€2$)(77e1 * f(l‘)7

we can choose €; and then e, small so that when f is in LP, p < oo, then || f — fe, .||, 18
as small as we like. Since f, ., is in S(R"), we have proven the density of S(R") in L”. &

We define the space of tempered distributions, S’'(R") as the dual of S(R™). If V is a
topological vector space, then the dual is the vector space of continuous linear functionals
on V. We give some examples of tempered distributions.

Example 2.15 FEach f € § gives a tempered distribution by the formula

9= uglg) = | fla)g(z)dar.
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Example 2.16 If f is in LP(R") for some p, 1 < p < oo, then we may define a tempered
distribution uy by

uplg) = [ flw)gle)da

To see this, note that if N is an integer, then (1+|x|>)N/2|f(x)| is bounded by a linear
combination of the norms, pao for || < N. Thus, for f € S(R"), we have

(1@ ) <C Y paol N[, (1+]af2) 7 da) /. (2.17)

a<N R

If pN > n/2, then the integral on the right-hand side of this inequality if finite. Thus,
we have an estimate for the || f||, norm. As a consequence, if f is in LP, then we have
lur(g)] < | fllpllglly by Hélder’s inequality. Now the inequality (2.17) applied to g and
Proposition 2.11 imply that uy is continuous.

Exercise 2.18 Show that the map f — uy from S(R™) into S'(R") is injective.

Example 2.19 The delta function ¢ is the tempered distribution given by

Example 2.20 More generally, if p is any finite Borel measure on R"™, we have a dis-
tribution w, defined by

w(f) = [ fd.

This is a tempered distribution because

| ()] < |l (R™)poo(f)-

Example 2.21 Any polynomial P (or any measurable function of polynomial growth)
gives a tempered distribution by

up(f) = [ P(@)f() do.

Example 2.22 For each multi-index o, a distribution is given by

sy = 240,
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2.2 Operations on tempered distributions

If T is a continuous linear map on S(R") and u is a tempered distribution, then f —
u(Tf) is also a distribution. The map u — w o T is called the transpose of 7" and is
sometimes written as T'u = u o T. This construction is an important part of extending
familiar operations on functions to tempered distributions. Our first example considers
the map o f

U oz
which is clearly continuous on the Schwartz space. Thus if u is a distribution, then we
can define a new distribution by

o~ f
o(f) = a5 ),
If we have a distribution u which is given by a Schwartz function f, we can integrate by
parts and show that
0%g
_1 @ == o Oxr .
(=1) uf(f)xa) Uga f /0 (9)

Thus we will define the derivative of a distribution wu by the formula

Tl = (P2,

This extends the definition of derivative from smooth functions to distributions. When
we say extend the definition of an operation 7' from functions to distributions, this means
that we have

Tu f=ury

whenever f is a Schwartz function. Given a map T, we can make this extension if we
can find a (formal) transpose of T, T*, that satisfies

/ ngdx:/ fTtgdx
R R

for all f,g € S(R™). Then if T" is continuous on S(R™), we can define 7' on S'(R™) by
Tu(f) = u(T"f).

Exercise 2.23 Show that if a and (3 are multi-indices and u is a tempered distribution,
then
o o° 9% o~
u= u.
Ox® Oxf 0xP Oz
Hint: A standard result of vector calculus tells us when partial derivatives of functions
commute.
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Exercise 2.24 Let H(t) be the Heaviside function on the real line. Thus H(t) = 1 if
t >0 and H(t) =0 if t <0. Find the distributional derivative of H. That is find H'(¢)
for ¢ in S.

We give some additional examples of extending operations from functions to distribu-
tions. If P is a polynomial, then we f — Pf defines a continuous map on the Schwartz
space. We can define multiplication of a distribution by a polynomial by Pu(f) = u(Pf).

Exercise 2.25 Show that this definition extends to ordinary product of functions in the
sense that if f is a Schwartz function,
Upy = PUf.

Exercise 2.26 Show that if f and g are in S(R™), then fg is in S(R™) and that the
map
f—Tg

15 continuous.

Exercise 2.27 Show that 1/x defines a distribution on R by

This way of giving a value to an integral which is not defined as an absolutely convergent
integral is called the principal value of the integral. Hint: The function 1/x is odd, thus
if we consider f{€<|x|<1} f(x)/xdx, we can subtract a constant from f without changing
the value of the integral.

Exercise 2.28 Show that we cannot in general define the product between two distribu-
tions in such a way that the product is associative. (Vague?)

Next we consider the convolution of a distribution and a test function. If f and g are
in the Schwartz class, we have by Fubini’s theorem that

/Rnf*g(x)h(ﬂf) dr = /Rnf(y) /R h(x)§(y — x) dz dy.

The reflection of g, g is defined by g(x) = g(—z). Thus, we can define the convolution
of a tempered distribution v and a test function g, g * u by

g*xu(f) =u(f *g).
This will be a tempered distribution thanks to the following.
Exercise 2.29 Show that if f and g are in S(R"), then fx g € S(R"™). Furthermore,

show that f — f * g is continuous on S. Hint: The simplest way to do this is to use the
Fourier transform to convert the problem into a problem about pointwise products.
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2.3 The Fourier transform

Proposition 2.30 The Fourier transform is a continuous linear map from S(R™) to
S(R™) with a continuous inverse, f — f.

Proof. We use the criterion of Proposition 2.11. If we consider the expression in a
semi-norm, we have

R
& 2611 © = (5a"h)

where we have used Propositions 1.18 and 1.19. By the Leibniz rule in (2.4), we have

o al @
(e V= 2 7!5!((axv“’ﬁ)ax6f)‘

y+o=a

Hence, using the observation of (2.17) and Proposition 1.18, we have that

~

paﬁ(f) <C Z pv/\(f)-

ASBvI<]al+n+1

Given (1.33) or (1.32) the continuity of f is immediate from the continuity of f and
thus it is clear that f lies in the Schwartz space and hence L' for f € S(R). Then, we
can use (1.33) and then the Fourier inversion theorem to show

R4

~s
I

~=p b
I

~~p«
I

~

Next, recall the identity

[ f@g@)de = [ f@)jlw) do

of Lemma 1.30 which holds if f and g are Schwartz functions. Using this identity, it is
clear that we want to define the Fourier transform of a tempered distribution by

i(g) = u(g).
Then the above identity implies that if u; is a distribution given by a Schwartz function,
or an L' function, then
ui(g) = ag(g).
Thus, we have defined a map which extends the Fourier transform. )
In a similar way, we can define @ for a tempered distribution u by u(f) = u(f).
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Theorem 2.31 The Fourier transform is an invertible linear map on S'(R").

Proof.  We know that f — f is the inverse of the map f — f on S(R™). Thus, it is easy
to see that u — @ is an inverse to v — @ on §’'(R™). 1

Exercise 2.32 Show that if f is in S, then f has a derivative in the L'-sense.

Exercise 2.33 Show from the definitions that if u is a tempered distribution, then

(o) = (i)
and that 94
(—i)"u) = (50

2.4 More distributions

In addition to the tempered distributions discussed above, there are two more common
families of distributions. The (ordinary) distributions D’(R™) and the distributions of
compact support, &'(R™). The D’ is defined as the dual of D(R"), the set of functions
which are infinitely differentiable and have compact support on R"™. The space £’ is the
dual of £(R™), the set of functions which are infinitely differentiable on R™.

Since we have the containments,

DR") Cc S(R") Cc E(R"),
we obtain the containments
E'R") CcS'(R") Cc D'(R").

To see this, observe that (for example) each tempered distribution defines an ordinary
distribution by restricting the domain of u from & to D.

The space D'(R") is important because it can also be defined on open subsets of R"
or on manifolds. The space £ is interesting because the Fourier transform of such a
distribution will extend holomorphically to C™. The book of Laurent Schwartz [12, 11]
is still a good introduction to the subject of distributions.



Chapter 3

The Fourier transform on LZ.

In this section, we prove that the Fourier transform acts on L? and that f — (27)™/2 f
is an isometry on this space. Each L? function gives a tempered distribution and thus its
Fourier transform is defined. Thus, our main accomplishment in is to prove the Plancherel
identity which asserts that f — (2m)~"/2 f is an isometry.

3.1 Plancherel’s theorem

Proposition 3.1 If f and g are in the Schwartz space, then we have

[ T@iydr = o [ 06 de

Proof. According to the Fourier inversion theorem in Chapter 1,

Thus, we can use the identity (1.30) of Chapter 1 to conclude the Plancherel identity for
Schwartz functions. 1

Theorem 3.2 (Plancherel) If f is in L2, then f is in L? and we have

Jlr@p i = o [1f©)Rac

Furthermore, the map f — f 15 1nwvertible.

21
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Proof. If fisin L%, then we may approximate f by Schwartz functions f;. Applying the
previous proposition with f = g = f; — f; we conclude that the sequence fz is Cauchy in
L?. Since this L? is complete, the sequence f; has a limit, F. Since f; — f in L? we also
have that f; converges to f as tempered distributions. To see this, we use the definition
of the Fourier transform, and then that f; converges in L? to obtain that

Uf(g):/fﬁda:: hm/fi@d%:/figda::/nga:.

Thus f = F. The identity holds for f and f since it holds for each f;.

We know that f has an inverse on S, f — f. The Plancherel identity tells us this
inverse extends continuously to all of L2, It is easy to see that this extension is still an
inverse on L2 1

Recall that a Hilbert space H is a complete normed vector space where the norm
comes from an inner product. An inner product is a map (,-,-) : H x H — C which
satisfies

(x,y) = (y,x), ite,ye™H
(Ar,y) = XNaz,y), r,yce H,A e C

(x,x) > 0, re€H

(x,x) = 0, if and only if x =0

Exercise 3.3 Show that the Plancherel identity holds if [ takes values in finite dimen-
stonal Hilbert space. Hint: Use a basis.

Exercise 3.4 Show by example that the Plancherel identity does not always hold if f does
not take values in a Hilbert space. Hint: The characteristic function of (0,1) C R should
provide an example. Norm the complex numbers by the co-norm, ||z|| = max(Re z, Im z).

Exercise 3.5 (Heisenberg inequality.) If f is a Schwartz function, show that we have
the inequality:

n [ 1@ de < 2 )|V £l
-

Hint: Write
L nlf@Pde = [ (@iva)l () do



3.2. MULTIPLIER OPERATORS 23

and integrate by parts. Recall that the gradient operator V and the divergence operator,
div are defined by

or  of : _N 9
agﬁ,...,agcn) and div(fi,..., fn) —jz::lawj.

V=
This inequality has something to do with the Heisenberg uncertainty principle in quan-
tum mechanics. The function | f(z)|? is a probability density and thus has integral 1. The
expression x f is related to the position of the particle represented by f and the expression
V f is related to the momentum. The inequality gives a lower bound on the product of
position and momentum.
If we use Plancherel’s theorem and Proposition 1.19, we obtain

LV = o [ jef e de.
Rn R"

If we use this to replace |V f||2 in the above inequality, we obtain a quantitative version
of the statement “We cannot have f and f concentrated near the origin.”

3.2 Multiplier operators

If m(&) is a tempered distribution, then m defines a multiplier operator T,, by

(T f ) =m(&)f.

The function m is called the symbol of the operator. It is clear that T,, is maps S to
S’. Note that we cannot determine if this map is continuous, since we have not given the
topology on S'(R™).

Our main interest is when m is a locally integrable function. Such a function will be
a tempered distribution if there are constants C' and N so that

/ m(€)| de < C(1+ RY),for all R > 0.
Br(0)

Exercise 3.6 Is this condition necessary for a positive function to give a tempered dis-
tribution?

There is a simple, but extremely useful condition for showing that a multiplier oper-
ator is bounded on L2,
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Theorem 3.7 Suppose T, is a multiplier operator given by a measurable function m.
The operator T, is bounded on L* if and only if m is in L>=. Furthermore, || T = [|m||co-

Proof. If m is in L™, then Plancherel’s theorem implies the inequality

[T fll2 < lmllool fll2-

Now consider E; = {£ : [m(&)| > t} and suppose this set has positive measure. If we
choose F; C E; with 0 < m(F}) < oo, then we have

1T O F = Elixr 2
Hence, || Ty = [[m]oc- '

Exercise 3.8 (Open.) Find a necessary and sufficient condition for T,, to be bounded
on LP.

Example 3.9 If s is a real number, then we can define Jg, the Bessel potential operator
of order s by

(Jof 7= (L4 |2 f
If s > 0, then Theorem 3.7 implies that J,f lies in L2 when f is L. Furthermore, if o
is multi-index of length |a| < s, then for some finite constant C' we have

The operator [ — 2J.f is a multiplier operator with symbol (i€)*/(1 + |¢]*)*/?,
which is bounded.

< C[l 12

3.3 Sobolev spaces

The Example 3.9 motivates the following definition of the Sobolev space L%. Sobolev
spaces are so useful that each mathematician has his or her own notation for them.
Some of the more common ones are H*, W*2 and B3

Definition 3.10 The Sobolev space L*(R") is the image of L*(R") under the map J;.
The norm s given by

15 fll2,s = 171l

or, since Jy o J_g is the identity, we have

[fll2.s = [ f1l2-
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Note that if s > 0, then L? C L? as observed in Example 3.9. For s = 0, we have
L2 = L?. For s < 0, the elements of the Sobolev space are tempered distributions, which
are not, in general, given by functions.

The following propositions are easy consequences of the definition and the Plancherel
theorem, via Theorem 3.7.

Proposition 3.11 If s > 0 is an integer, then a function f is in the Sobolev space L? if
and only if f and all its derivatives of order up to s are in L>.

Proof. If f is in the Sobolev space L?, then f = J, o0 J_,f. Using the observation of
Example 3.9 that

801
f— %Jsf
is bounded on L?, we conclude that
1l = 120 T fll < OISl = ]
Ore 2 — Ox s —sJ |12 = —sJ |12 — 2,5-

If f has all derivatives of order up to s in L?, then we have that there is a finite
constant C' so that

1+ P21 < L+ 3 617!

j=1
Since each term on the right is in L?, we have f in the Sobolev space. 1

The characterization of Sobolev spaces in the above theorem is the more standard
definition of Sobolev spaces. It is more convenient to define a Sobolev spaces for s
a positive integer as the functions which have (distributional) derivatives of order less
or equal s in L? because this definition extends easily to give Sobolev spaces on open
subsets of R"™ and Sobolev spaces based on LP. The definition using the Fourier transform
provides a nice definition of Sobolev spaces when s is not an integer.

Proposition 3.12 If s < 0 and —|a| > s, then 0°f/0x* is in L? and

806
19 L o < 17l
Proof. 'We have
0°f .
(14N = (€)1 + €)1 F(E).

If |a] < —s, then the factor in square brackets on the right is a bounded multiplier and
hence if f is in L?, then the left-hand side is in L?. Now Plancherel’s theorem tells us
that 9% f/0z* is in the Sobolev space L. 1
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Exercise 3.13 Show that for all s in R, the map
o~ f

H
ox®

S

maps Lg — L§_|a|.
Exercise 3.14 Show that L*, is the dual of L?. More precisely, show that if X : L? — C

is a continuous linear map, then there is a distribution u € L*  so that

—S8

for each f € S(R"™). Hint: This is an easy consequence of the theorem that all continuous
linear functionals on the Hilbert space L? are given by f — [ fg.
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Interpolation of operators

In the section, we will say a few things about the theory of interpolation of operators.
For a more detailed treatment, we refer the reader to the book of Stein and Weiss [15]
and the book of Bergh and Lofstrom [1].

By interpolation, we mean the following type of result. If T" is a linear map which is
bounded! on X and X, then T is bounded on X, for ¢ between 0 and 1. It should not
be terribly clear what we mean by “between” when we are talking about pairs of vector
spaces. In the context of LP space, L? is between LP and L" will mean that ¢ is between
p and r.

For these results, we will work on a pair of o-finite measure spaces (M, M, 1) and

(N, N, v).

4.1 The Riesz-Thorin theorem

We begin with the Riesz-Thorin convexity theorem.

Theorem 4.1 Let p;, q;, j = 0,1 be exponents in the range [1,00] and suppose that
po < p1- If T is a linear operator defined (at least) on simple functions in L'(M) into
measurable functions on N that satisfies

1T fllo; = Ml £l

LA linear map T : X — Y is bounded between normed vector spaces X and Y if the inequality
ITflly < C|fllx holds. The least constant C' for which this inequality holds is called the operator norm
of T

27
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If we define p; and q; by

1 1—1¢ t 1 1—1¢ t
= +— and — =
Pt Po Y4 qt qo0 a1

we will have that T extends to be a bounded operator from LP* to L9 :

1T fllq < Mil[ f1lp.-
The operator norm, M, satisfies M; < My~ " M.
Before giving the proof of the Riesz-Thorin theorem, we look at some applications.

Proposition 4.2 (Hausdorff-Young inequality) The Fourier transform satisfies for 1 <
p<2

~ n(1—1
Hf”p’ < (2m) « p)Hf”p'

Proof. This follows by interpolating between the L!-L* result of Proposition 1.2 and
Plancherel’s theorem, Theorem 3.2. 1

The next result appeared as an exercise when we introduced convolution.

Proposition 4.3 (Young’s convolution inequality) If f € LP(R™) and g € LY(R"), 1 <
p,q,7 < 00 and

then
1f* gl < 1 lpllgllq-

Proof. We fix p 1 < p < 0o and then will apply Theorem 4.1 to the map ¢ — f*g. Our
endpoints are Holder’s inequality which gives

[f* 9(@)] < [ fllpllgll

and thus ¢ — f*g maps L” (R") to L>(R"™) and the simpler version of Young’s inequality
which tells us that if g is in L', then

1F+gllp < W pllgll-
Thus g — f * ¢ also maps L' to LP. Thus, this map also takes L% to L™ where
I 1-t 1 I 1—-t t

—=—+4+t1—--) and —=—-+ —.
q 1 D T D 00
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If we subtract the definitions of 1/r; and 1/¢;, then we obtain the relation
1 1 1
- =1
L0 p

The condition ¢ > 1 is equivalent with £ > 0 and r» > 1 is equivalent with the condition
t < 1. Thus, we obtain the stated inequality for precisely the exponents p, ¢ and r in the
hypothesis. 1

Exercise 4.4 The simple version of Young’s inequality used in the proof above can be
proven directly using Holder’s inequality. A proof can also be given which uses the Riesz-
Thorin theorem. To do this, use Tonelli’s and then Fubini’s theorem to establish the
inequality

1 gl < [[fllllglls-
The other endpoint s Holder’s inequality:

1 * glle < 1 fllllglloo-

Then, apply Theorem 4.1 to the map g — f * g.

Below is a simple, useful result that is a small generalization of the simple version of
Young’s inequality.

Exercise 4.5 a) Suppose that K : R" x R" — C is measurable and that

/Rn K (2,y)[dy < Mo
and

[ 1Kyl de < My,

Rn
Show that

Tf()= [ K(x.y)f(y)dy
defines a bounded operator T on LP and
ITAllp < MDY | 11l

Hint: Show that M is an upper bound for the operator norm on L' and My, is an upper
bound for the operator norm on L* and then interpolate with the Riesz-Thorin Theorem,
Theorem 4.1.

b) Use the result of part a) to provide a proof of Young’s convolution inequality

1S glly < [Lf[12llgll-
To do this, write f * g(z) = [gn f(z —y)9(y) dy and then let K(z,y) = f(x —y).
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Our next step is a lemma from complex analysis (which makes everything trivial), that
is usually called the three lines theorem. This is one of a family of theorems which state
that the maximum modulus theorem continues to hold in unbounded regions, provided
we put an extra growth condition at infinity. I believe such results are called Phragmen-
Lindelof theorems, though this may or may not be accurate. This theorem considers
analytic functions in the strip {z: @« < Rez < b}.

Lemma 4.6 (Three lines lemma) If f is analytic in the strip {z : a < Rez < b}, f is
bounded and

M, = sup |f(a + it)] and M, = sup |f(b+ it)],
then . B

|f(x +iy)| < Mg~ My~
o zt+iy—b a—(xz+iy)

Proof. We consider f.(x + iy) = e @) f(x 4+ iy)M, ™ M, ™ for e > 0. This
function satisfies

|fola+iy)| < e and | fo(b + iy)| < e’

and
lim sup |fe(z+iy)| =0.

y—Foo a<z<b

Thus by applying the maximum modulus theorem on sufficiently large rectangles, we can
conclude that for each z € S,

|fo(2)] < max(e@”, ).
Letting ¢ — 0" implies the Lemma. 1
Exercise 4.7 If instead of assuming that f is bounded, we assume that
|f(@ +iy)| < e

for some M > 0, then the above Lemma holds and with the same proof. Show this. What
18 the best possible growth condition for which the above proof works? What is the best
possible growth condition? See [13].

The proof of the Riesz-Thorin theorem will rely on the following family of simple
functions.
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Lemma 4.8 Let py, p1 and p with po < p < p1 be given. Consider s = 3~ aja;xg; be a
simple function with o are complex numbers of length 1, |a;| =1, aj > 0 and {E;} is
a pairwise disjoint collection of measurable sets where each is of finite measure. Suppose

|s]l, = 1. Let
I 1=z z

D= Do P

and define
S, = Zaja§/szEj.

This family satisfies

1, forO0<Rez< 1.

HSZHpRez =

Proof. We have that
[ el du = 3" (B

Exercise 4.9 State and prove a similar lemma for the family of Sobolev spaces. Show
that if so < s < sy and u € L2 with ||u|| ;2 = 1, then we can find a family of distributions
u, so that

l|ure - | 2, = 1, sop < Rez < ;.

This family will be analytic in the sense that if f € S(R™), then u.(f) is analytic.

We are now ready to give the proof of the Riesz-Thorin theorem, Theorem 4.1.

Proof.  (Proof of Riesz-Thorin theorem.) We are now ready to give the proof of the
Riesz-Thorin theorem, Theorem . We fix a p = p;,, 0 < ¢y < 1 and consider simple
functions s on M and s" on N which satisfy [|s[|,,, = 1 and ||s'[[ = 1. We let s. and s
be the families from the previous Lemma where s, is constructed using p;, j = 0,1 and
s’, is constructed using the exponents ¢}, j =0, 1.

According to our hypothesis,

6(2) = [ sL(0)Ts. (@) dv(a)
N
is an analytic function of z. Also, using Lemma 4.8 and the assumption on 7',

sup [¢(j +iy)| < M;, J=0,1.
yeR
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Thus by the three lines theorem, Lemma 4.6, we can conclude that
|/8'Ts dp| < Mg~ M.

Since, §' is an arbitrary simple function with norm 1 in LY, we can conclude that
175 ]lq, < My~ M.

Finally, since simple functions are dense in LP*, we may take a limit to conclude that T
can be extended to all of L” and is bounded. ]

The next exercise may be used to carry the extension of T' from simple functions to
all of LP.

Exercise 4.10 Suppose T' : A — Y is a map defined on a subset A of a metric space
X into a metric space Y. Show that if T' is uniformly continuous, then T has a unique
continuous extension T : A — Y to the closure of A, A. If in addition, X is a vector
space, A is a subspace and T is linear, then the extension is also linear.

Exercise 4.11 Show that if T is a linear map (say defined on S(R™)) which maps ng
into L7 for j = 0,1, then T maps L3, into L7, for 0 <t <1, where s; = (1 —t)so + s
and ry = (1 — t)rg + try.

4.2 Interpolation for analytic families of operators

The main point of this section is that in the Riesz-Thorin theorem, we might as well let
the operator T" depend on z. This is a very simple idea. We will see below that often a
good deal of cleverness is needed in applying this theorem.

I do not wish to get involved the technicalities of analytic operator valued functions.
(And am not even sure if there are any technicalities needed here.) If one examines the
above proof, we see that the hypothesis we will need on an operator T, is that for all sets
of finite measure, £ C M and ' C N, we have that

Z—>/NXETz<XF) dv (4.12)

is an analytic function of z. This hypothesis can often be proven by using Morera’s
theorem which replaces the problem of determining analyticity by the simpler problem
of checking if an integral condition holds. The integral condition can often be checked
with Fubini’s theorem.
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Theorem 4.13 (Stein’s interpolation theorem) For z in S = {z : 0 < Rez < 1}, let
T, be a family of linear operators defined simple functions for which we have that the
function in 4.12 is bounded and analytic in S. We assume that for j = 0,1, Tj.,,, maps
LPi(M) to L%(N). Also assume that 1 < py < p1 < oo. We let p; and g have the
meanings as in the Riesz-Thorin theorem and define

My = sup || Tp1y |
yeR

where || Ty1iy|| denotes the norm of Ty as an operator from LP*(M) to L%*(N). We
conclude that T, maps LP* to L and we have

M; < Myt M.
The proof of this theorem is the same as the proof of the Riesz-Thorin theorem.

Exercise 4.14 (Interpolation with change of measure) Suppose that T is a linear map
which which maps LP(dp) into LY (w;dv) for j = 0,1. Suppose that wy and wy are two
non-negative functions which are integrable on every set of finite measure in N. Show
that T maps LP*(dp) into L%(w;) for 0 < t < 1. Here, q; and p; are defined as in the
Riesz-Thorin theorem and w, = wy 'wt.

Exercise 4.15 Formulate and prove a similar theorem where both measures p and v are
allowed to vary.

4.3 Real methods

In this section, we give a special case of the Marcinkiewicz interpolation theorem. This
is a special case because we assume that the exponents p; = ¢; are the same. The full
theorem includes the off-diagonal case which is only true when ¢ > p. To indicate the
idea of the proof, suppose that we have a map T which is bounded on LP° and LP'. If we
take a function f in LP, with p between py < p < p;, then we may truncate f by setting

= { g m E ; (4.16)

and then f* = f — f\. Since f* is L and f, is in LP!, then we can conclude that
Tf =Tf\ +Tfis defined. As we shall see, if we are clever, we can do this splitting
in such a way to see that not only is T'f defined, but we can also compute the norm of
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T f in LP. The theorem applies to operators which are more general than bounded linear
operators. Instead of requiring the operator T to be bounded, we require the following
condition. Let 0 < ¢ < oo and 0 < p < oo we say that T' is weak-type p,q if there exists
a constant A so that

q
s ) > < (A1)
If ¢ = 0o, then an operator is of weak-type p, oo if there exists a constant A so that
1T flloo < Allf]l,-
We say that a map T is strong-type p,q if there is a constant A so that
1T fllg < Allflp-
For linear operators, this condition is the same as boundedness. The justification for

introducing the new term “strong-type” is that we are not requiring the operator T to
be linear.

Exercise 4.17 Show that if T is of strong-type p,q, then T is of weak-type p,q. Hint:
Use Chebyshev’s inequality.

The condition that 7' is linear is replaced by the condition that 1" is sub-linear. This
means that for f and g in the domain of 7', then

T(f +9)(@)| < [Tf(x)] +[Tg(x)].

The proof of the main theorem will rely on the following well-known representation
of the L? norm of f.

Lemma 4.18 Let p < oo and [ be measurable, then
» 00 p dA
£ =p [ ne: 1) > apw S

Proof. 1t is easy to see that this holds for simple functions. Write a general function as
an increasing limit of simple functions. 1
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Our main result is the following theorem:

Theorem 4.19 Let 0 < pg < p1 < o0 for 7 = 0,1 and let T take measurable functions
on M to measurable functions on N. Assume also that T is sublinear and the domain of
T is closed under taking truncations. If T' is of weak-type p;,p; for j = 0,1, then T is of
strong-type py, py for 0 <t <1 and we have for py < p < p1, that when p; < o

pAp() plApl
T )P ]l

Tf|, <2
1711, (p_p0 S

When p, = oo, we obtain

Abp
TFl|P A 0 1/p P
ITfP < (1+ 1)(p p) [

Proof. We first consider the case when p; < oo We fix p = p; with 0 < t < 1, choose
f in the domain of T" and let A > 0 . We write f = f\ + f* as in (4.16). Since T is
sub-linear and then weak-type p;, p;, we have that

v ITF@)] > 20 < vl{e s [TP@)] > M) +v({e [ThH)] > A
(AOHJ;\ ||p0> +<A1uiaupl> | 20

We use the representation of the LP-norm in Lemma 4.18, the inequality (4.20) and the
change of variables 2\ — A to obtain

IN

dr d\
27ITFIE < Appo / 7 e s 1P @) > e m e

At [ / (r: @) > T Twn @ (o)

Note that the second integral on the right extends only to A since f) satisfies the inequality
|fa] < A. We consider the second term first. We use that p({z : |fi(x)] > 7}) < p({z :
|f(z)| > 7}) and thus Tonelli’s theorem gives the integral in the second term is bounded
by

o0 ‘ ey AAdT pp1 o0 . p AT
o [l L@l =) [T B < B [ (e @) > b

g (4.22)
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We now consider the first term to the right of the inequality sign in (4.21). We observe
that when 7 > X\, u({x : |fA(x)] > 7}) = p({z : |f(x)| > 7}), while when 7 < )\, we have
p{z - [fA(@)] > 7}) = p({z : [f(2)] > A}). Thus, we have

o [ [t 1)l > })d—A%
= ppo/ / !>T})T”°d7¥’_”°%
d>\
[ ula s @) > A
= DI (4.23)

D —Po
Using the estimates (4.22) and (4.23) in (4.21) gives

Po Pl

S AL gl

Which is what we hoped to prove.
Finally, we consider the case p; = 0co. Since T is of type 0o, 0o, then we can conclude
that, with fy as above, v({z : |T'fa(x)| > A1A}) = 0. To see how to use this, we write

v({z |Tf(2)] > 1+ A)AY) < v({z: T (@) > A}) +v({z: [Tf(@)] > AiA})
= v({z:[Tf )| > A}).

Thus, using Lemma 4.18 that T is of weak-type pg, po, and the calculation in (4.22) we
have
—p P Po >\ pod p—po " dA
A+ A)ITL = Appwo [ [ e | @) > e oSS
AQ'p
| FIIp.
P—Do

<



Chapter 5

The Hardy-Littlewood maximal
function

In this chapter, we introduce the Hardy-Littlewood maximal function and prove the
Lebesgue differentiation theorem. This is the missing step of the Fourier uniqueness
theorem in Chapter 1.

Since the material in this chapter is familiar from real analysis, we will omit some of
the details. In this chapter, we will work on R"™ with Lebesgue measure.

5.1 The LP-inequalities

We let x = nxp,(0)/wn—1 be the characteristic function of the unit ball, normalized so
that [ xdx = 1 and then we set x,(x) = r"x(z/r). If f is a measurable function, we
define the Hardy-Littlewood maximal function by

Mf(@) = sup |f] + xi o).

Here and throughout these notes, we use m(FE) to denote the Lebesgue measure of a set
E.

Note that the Hardy-Littlewood maximal function is defined as the supremum of
an uncoutable family of functions. Thus, the sort of person! who is compulsive about
details might worry that M f may not be measurable. The following lemma implies the
measurability of M f.

Lemma 5.1 If f is measurable, then M f is upper semi-continuous.

!Though not your instructor.

37
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Proof. If M f(z) > A, then we can find a radius r so that

BT Bt@)) [, @ldy >

Since this inequality is strict, for s slightly larger than r, say r + 0 > s > r, we still have

m /BT(Z) [f(y)ldy > .

But then by the monotonicity of the integral,
Mf(z) > A

if Bs(z) D B,(z). That is if |z — 2| < 0. We have shown that the set {x : M f(z) > A} is
open. 1

Exercise 5.2 If {f, : a € A} is a family of continuous real valued functions on R™ show
that

g(z) = Sup fa()

1S upper semi-continuous.

If f is locally integrable, then y, * f is continuous for each r > 0 and the previous
exercise can be used to establish the upper semi-continuity of M f. Our previous lemma
also applies to functions for which the integral over a ball may be infinite.

Qops. At this point, I am not sure if I have defined local integrability. We say that
a function is locally integrable if it is in Li, (R"™). We say that a function f is L} (R")

if f € LP(K) for each compact set K. If one were interested (and we are not), one can
define a topology by defining the semi-norms,

on(f) = | fllo (8. (0)) forn=1,2...

and then using this countable family of semi-norms, construct a metric as we did in
defining the topology on the Schwartz space.

Exercise 5.3 Show that a sequence converges in the metric for L} (R™) if and only if
the sequence converges in LP(K) for each compact set K.

Exercise 5.4 Let f = x(_11) on the real line. Show that Mf > 1/|x| if |z| > 1.
Conclude that M f is not in L.
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Exercise 5.5 Show that if M f is in L*(R"), then f is zero.

The first main fact about the Hardy-Littlewood maximal function is that it is finite
almost everywhere, if f is in L!. This is a consequence of the following theorem.

Theorem 5.6 If f is measurable and \ > 0, then there exists a constant C' = C(n) so
that

m(e M@ > ) < S [ 1@ d

The observant reader will realize that this theorem asserts that the Hardy-Littlewood
maximal operator is of weak-type 1,1. It is easy to see that it is sub-linear and of weak
type oo, o0 and thus by the diagonal case of the Marcinkiewicz interpolation theorem,
Theorem 4.19, we can conclude it is of strong-type p, p.

The proof of this theorem depends on a Lemma which allows us to extract from a
collection of balls, a subcollection whose elements are disjoint and whose total measure
is relatively large.

Lemma 5.7 Let f=1/(2-3"). If E is a measurable set of finite measure in R" and we
have a collection of balls B = {By}aca 0 that E C UB,, then we can find a subcollection
of the balls { By, ..., By} which are pairwise disjoint and which satisfy

N

>_m(Bj) > Bm(E).

j=1
Proof. We may find K C E which is compact and with m(K) > m(E)/2. Since K is
compact, there is a finite sub-collection of the balls B; C B which cover E. We let B; be
the largest ball in B; and then we let By be the balls in B; which do not intersect Bj.
We choose Bj to be the largest ball in By and continue until By, is empty. The balls
By, Bs, ..., By are disjoint by construction. If B is a ball in B; then either B is one of
the chosen balls, call it Bj, or B was discarded in going from B;, to Bj,11 for some j.
In either case, B intersects one of the chosen balls, Bj,, and B has radius which is less
than or equal to the radius of Bj,. Hence, we know that

K C Upes, B C UL;3B;

where if B; = B,(z), then 3B; = Bs,(z). Taking the measure of the sets K and U3B;,
we obtain
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Now, we can give the proof of the weak-type 1,1 estimate for M f in Theorem 5.6.

Proof.  (Proof of Theorem 5.6) We let E\ = {x : M f(x) > A} and choose a measurable
set B C F)\ which is of finite measure. For each € F), there is a ball B, so that

m(B)™ [ 1f(@)]dw > A (5.8)

x

We apply Lemma 5.7 to the collection of balls B C {B, : x € E'} to find a sub-collection
{Bi,...,Bn} C B of disjoint balls so that

m(E)
23"

N
<Y mB) <5 [ 1wy < 20

J=1

The first inequality above is part of Lemma 5.7, the second is (5.8) and the last holds
because the balls B; are disjoint. Since E is an arbitrary, measurable subset of E) of
finite measure, then we can take the supremum over all such £ and conclude F) also
satisfies

23"

Frequently, in analysis it becomes burdensome to keep track of the exact value of
the constant C' appearing in the inequality. In the next theorem and throughout these
notes, we will give the constant and the parameters it depends on without computing its
exact value. In the course of a proof, the value of a constant C' may change from one
occurrence to the next. Thus, the expression C' = 2C' is true even if C # 0!

Theorem 5.9 If f is measurable and 1 < p < oo, then there exists a constant C' = C(n)

Cp
M £, < Eﬂfllp-

Proof. This follows from the weak-type 1,1 estimate in Theorem 5.6, the elementary
inequality that || M f|lco < ||f]|c and Theorem 4.19. The dependence of the constant can
be read off from the constant in Theorem 4.19. 1
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5.2 Differentiation theorems

The Hardy-Littlewood maximal function is a gadget which can be used to study the
identity operator. At first, this may sound like a silly thing to do—what could be easier
to understand than the identity? We will illustrate that the identity operator can be
interesting by using the Hardy-Littlewood maximal function to prove the Lebesgue dif-
ferentiation theorem—the identity operator is a pointwise limit of averages on balls. In
fact, we will prove a more general result which was used in the proof of the Fourier inver-
sion theorem of Chapter 1. This theorem amounts to a complicated representation of the
identity operator. If this does not convince you that the identity operator is interesting,
in a few Chapters, we will introduce approximations of the zero operator, f — 0.

The maximal function is constructed by averaging using balls, however, it is not hard
to see that many radially symmetric averaging processes can be estimated using M. The
following useful result is lifted from Stein’s book [14]. Before stating this proposition,
given a function ¢ on R", we define the non-increasing radial majorant of ¢ by

¢*(x) = sup [o(y)l.

ly[> ||

Proposition 5.10 Let ¢ be in L' and f in LP, then
sup 6, x f(@)| < [ 6" (2) dzM f ().
Proof. 1t suffices to prove the inequality
o f() < [ olw) dad ()

when ¢ is non-negative and radially non-increasing and thus ¢ = ¢* a.e. Also, we may
assume f > 0. We begin with the special case when ¢(z) = >=; ajXB,,(0) () and then

bnfr) = Tl e | %(x)f(y)dy

< _”Mf Zaj rpj

- Mf@) [ o

The remainder of the proof is a picture. We can write a general, non-increasing, radial
function as an increasing limit of sums of characteristic functions of balls. The mono-
tone convergence theorem and the special case already treated imply that ¢, x f(z) <
M f(x) [ ¢ dz and the Proposition follows. 1
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IxI

Finally, we give the result that is needed in the proof of the Fourier inversion theorem.
We begin with a Lemma. Note that this Lemma suffices to prove the Fourier inversion

theorem in the class of Schwartz functions. The full differentiation theorem is only needed
when f is in L.

Lemma 5.11 If f is continuous and bounded on R™ and ¢ € L*(R™), then for all z,
Timy 6+ /() = /(@) [ 0.
Proof. Fix x in R"™ and n > 0. Recall that [ ¢, is independent of ¢ and thus we have
b0 J(@) = [(@) [ 6(w)de = [ 6y)(f (@~ ) = J(x)) dy
Since f is continuous at x, there exists § > 0 so that |f(z —y) — f(z)| <nif |y| < 4. In

the last integral above, we consider |y| < § and |y| > § separately. We use the continuity
of f when |y| is small and the boundedness of |f| for |y| large to obtain:

6% f(e) = f(o) [odel < [ fow)ldy 2l Sl [ o)l dy

The first term on the right is finite since ¢ is in L! and in the second term, a change of
variables and the dominated convergence theorem implies we have

lim [9e(y)| dy = lim [9(y)| dy = 0.

€
e—0" J{y:ly|>6} =0t J{y:|y[>/e}
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Thus, we conclude that

limsup |6+ f () = f(x) [ o(w)dy| < | 10]dy.
Since n > 0 is arbitrary, the conclusion of the lemma follows. 1

Theorem 5.12 If ¢ has radial non-increasing majorant in L', and f is in LP for some
p, 1 <p < oo, then for a.e. x € R,

hm e * / odx.

Proof. The proof for p=1, 1 < p < 0o and p = oo are each slightly different.

Let 0(f)(x) = limsup,_,g+ |0 * f(z) — f(z) [ ¢|. Our goal is to show that 6(f) =
a.e. Observe that according to Lemma 5.11, we have if g is continuous and bounded,
then

0(f) =0(f —9)-
Also, according to Proposition 5.10, we have that there is a constant C' so that with
=]l
0(f —9)(x) < [f(@) = g(@)|I + CM(f — g)(x). (5.13)

If fisin L' and X\ > 0, we have that for any bounded and continuous ¢ that

m({z:0(f)(x) > A}) < m({z:0(f - g)( ) > A/2}) +m({a I f(x) = g(x)| > A/2})

< A/!f )| du.

The first inequality uses (5.13) and the second uses the weak-type 1,1 property of the
maximal function and Tchebishev. Since we can approximate f in the L' norm by
functions ¢ which are bounded and continuous, we conclude that m({z : 8(x) > A\}) = 0.
Since this holds for each A > 0, then we have that m({z : 6(xz) > 0}) =0

If fisin LP, 1 < p < oo, then we can argue as above and use the that the maximal
operator is of strong-type p, p to conclude that for any continous and bounded g,

mlfe0(x) > \}) < O [ 17) — gl do.

Again, continous and bounded functions are dense in LP, if p < 0o so we can conclude
0(f) =0 a.e.

Finally, if p = oo, we claim that for each natural number, n, the set {z : 0(f)(z) >
0 and |z| < n} has measure zero. This implies the theorem. To establish the claim,
we write f = XB,,0)f + (1 = XByn(0))f = fi + fo. Since f; is in LP for each p finite,
we have 6(f;) = 0 a.e. and it is easy to see that O(fy)(x) = 0 if |z| < 2n. Since
O(f)(z) <O0(f1)(x) + 0(f2)(x), the claim follows. 1
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The standard Lebesgue differentiation therorem is a special case of the result proved
above.

Corollary 5.14 If f isin L} (R"), then

loc

. 1
fla) = Jim s [, o, f@)dy

Corollary 5.15 If f is in L} (R™), then there is a measurable set E, with R" \ E of
Lebesgue measure 0 and so that

1

rliggm/lgr(m) |fly) = f(x)|dy=0, z€E.

We omit the proof of this last Corollary.

The set E from the previous theorem is called the Lebesgue set of f. It is clear from
the definition that the choice of the representative of f may change F by a set of measure
ZEro.



Chapter 6

Singular integrals

In this section, we will introduce a class of symbols for which the multiplier operators
introduced in Chapter 3 are also bounded on L?. The operators we consider are modelled
on the Hilbert transform and the Riesz transforms. They were systematically studied
by Calderén and Zygmund in the 1950’s and are typically called Calderén-Zygmund
operators. These operators are (almost) examples of pseudo-differential operators of
order zero. The distinction between Calderén Zygmund operators and pseudo-differential
operators is the viewpoint from which the operators are studied. If one studies the
operator as a convolution operator, which seems to be needed to make estimates in
L? then one is doing Calderén Zygmund theory. If one is studying the operator as a
multiplier, which is more efficient for computing inverses and compositions, then one is
studying pseudo-differential operators. One feature of pseudo-differential operators is
that there is a general flexible theory for variable coefficient symbols. Our symbols will
only depend on the frequency variable &.

6.1 Calderén-Zygmund kernels

In this chapter, we will consider linear operators 7' : S(R™) — S§’(R™). In addition, we
assume that 7" has a kernel K : R" x R" — C which gives the action of T" away from the
diagonal. The kernel K is a function which is locally integrable on R" x R™ \ {(z,y) :
x = y}. That K gives the action of 7" away from the diagonal means that that for any
two functions f and g in D(R™) and which have disjoint support, we have that

Tf(g) = /R L K (z,y) f(y)g(x) do dy. (6.1)

45
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Note that the left-hand side of this equation denotes the distribution 7T'f paired with the
function g. We say that K is a Calderén-Zygmund kernel if there is a constant C'x so
that K satisfies the following two estimates:

Ck

|K(z,y)| < p—T (6.2)
Ck
VoK (z,y)| + [V, K(z,y)| < 7=y (6.3)

Exercise 6.4 Show that the kernel is uniquely determined by the operator.
Exercise 6.5 What is the kernel of the identity operator?

Exercise 6.6 Let o be a multi-index. What is the kernel of the operator

9,
ozxe’

To =
Conclude that the operator is not uniquely determined by the kernel.

If an operator T has a Calderén-Zygmund kernel K as described above and T is
L? bounded, then T is said to be a Calderon-Zygmund operator. In this chapter, we
will prove two main results. We will show that Calderén-Zygmund operators are also
LP-bounded, 1 < p < oo and we will show that a large class of multipliers operators are
Calderén-Zygmund operators.

Since Calderén-Zygmund kernels are locally bounded in the complement of {(z,y) :
r = y}, if f and g are L? and have disjoint compact supports, then (6.1) continues to
hold. To see this we approximate f and g by smooth functions and note that we can
arrange that we only increase the support by a small amount when we approximate.

Exercise 6.7 Suppose that Q is a smooth function near the sphere S"~' C R", then
show that
T —y 1

Koy = M D=y

1s a Calderon-Zygmund kernel.

Exercise 6.8 Ifn >3 and j,k are in {1,...,n}, then

02 1
0z ;0xy, | — y|n—?
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1s a Calderon-Zygmund kernel. Of course, this result is also true for n = 2, but it is not
very interesting.
In two dimensions, show that for and j and k,

82
Ox;0xy,

log |z — |
15 a Calderon-Zygmund kernel.

Theorem 6.9 If T is a Calderon-Zygmund operator, then for 1 < p < oo there is a
constant C' so that

1T fll < CllFllp-

The constant C' < Amax(p,p’) where A depends on the dimension n, the constant in the
estimates for the Calderdn-Zygmund kernel and the bound for T on L*.

The main step of the proof is to prove a weak-type 1,1 estimate for 7" and then to
interpolate to obtain the range 1 < p < 2. The range 2 < p < oo follows by applying the
first case to the adjoint of T

Exercise 6.10 Let H be a Hilbert space with inner product (,) If T : H — H is a bounded
linear map on a Hilbert space, then the map v — (T'z,y) defines a linear functional on
H. Hence, there is a unique element y* so that (Tx,y) = (x,y*).

a) Show that the map y — y* = T*y is linear and bounded.

b) Suppose now that T is bounded on the Hilbert space L?, and that, in addition to
being bounded on L*, the map T satisfies | T f|l, < Al fllp, say for all f in L*. Show that

17" fllyr < All Sl

Exercise 6.11 IfT is a Calderon-Zygmund operator, then show that T* is also a Calderdn-
Zygmund operator and that the kernel of T™ is

K*(z,y) = K(y, v).

Exercise 6.12 IfT,, is a multiplier operator with bounded symbol, show that the adjoint
1s a multiplier operator with symbol m, T, = T

Theorem 6.13 If T is a Calderén-Zygmund operator, f is in L*(R"™) and X\ > 0, then

i 7@ > A < S [ 1@
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This result depends on the following decomposition lemma for functions. In this
Lemma, we will use cubes on R". By a cube, we mean a set of the form Q,(z) = {y :
|z; — y;| < h/2}. We let Dy be the mesh of cubes with sidelength 1 and whose vertices
have integer coordinates. For k an integer, we define Dy to be the cubes obtained by
applying the dilation z — 2*z to each cube in Dy. The cubes in D, have sidelength 2*
and are obtained by bisecting each of the sides of the cubes in D;_;. Thus, if we take
any two cubes Q and @', in D = U, Dy, then either one is contained in the other, or the
two cubes have disjoint interiors. Also, given a cube ), we will refer to the 2" cubes
obtained by dividing ) as the children of ). And of course, if () is a child of @), then @’
is a parent of (). The collection of cubes D will be called the dyadic cubes on R™.

Lemma 6.14 (Calderén-Zygmund decomposition) If f € L*(R™) and A\ > 0, then we
can find a family of cubes Qy with disjoint interiors so that | f(z)| < X a.e. in R™\ UpQy
and for each cube we have

1
m(Qr)
As a consequence, we can write f = g+b where |g(x)] < 2"\ a.e. and b =3 by where

each by is supported in one of the cubes Qy, each by has mean value zero [ b, = 0 and
satisfies [[bg|ly < 2 [, |f|dx. The function g satisfies ||g|ly < || f|l

<

/Qk f(x)| dz < 27X

Proof. Given f € L' and X\ > 0, we let € be the collection of cubes @Q € D which satisfy
the inequality

@/Qﬁ(xﬂdx Y (6.15)

Note that because f € L', if m(Q)™*||f]l1 < A, then the cube @ will not be in €. That
is £ does not contain cubes of arbitrarily large sidelength. Hence, for each cube @' in &,
there is a largest cube @ in £ which contains . We let these maximal cubes form the
collection {Qy}, which we index in an arbitrary way. If @}, is the parent of Qy, then @,
is not in € and hence the inequality (6.15) fails for Q},. This implies that we have

[y r@lde < [ 1)< 2'm(@er (6.16)

Hence, the stated conditions on the family of cubes hold.

For each selected cube, Q, we define by = f — m(Q)™" Jo, f(z)dx on Q) and zero
elsewhere. We set b = >, by, and then g = f —0b. It is clear that [ b, = 0. By the triangle
inequality,

[@ldz <2 | (5@ de.
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It is clear that ||g||1 < ||f|l. We verify that |g(z)| < 2"\ a.e. On each cube @, this
follows from the upper bound for the average of | f| on Q. For each x in the complement
of UrpQyg, there is sequence of cubes in D, with arbitrarily small sidelength and which
contain x where the inequality (6.15) fails. Thus, the Lebesgue differentiation theorem
implies that |g(z)| < A a.e. 1

Our next step in the proof is the following Lemma regarding the kernel.

Lemma 6.17 If K is a Calderdn-Zygmund kernel and x,y are in R™ with |x — y| < d,
then

/ K (2,2) — K(2,y)|dz < C.
R™\ Bag(x)

The constant depends only on the dimension and the constant appearing in the definition
of the Calderon-Zygmund kernel.

Proof. We apply the mean-value theorem of calculus to conclude that if y € By(x) and
z € R"\ Byg(x), then the kernel estimate (6.3)

K (z,2) — K(z,9)| < [z -y sup IVyK(z,y)| < 2" Ckla —yllz — 27" (6.18)
yeBgq(x

The second inequality uses the triangle inequality |y — z| > |z — 2| — |y — 2| and then
that |z — z| — |y — 2| > | — z|/2 if |[r — y| < d and |z — z| > 2d. Finally, if we integrate
the inequality (6.18) in polar coordinates, we find that

/ K (z,7) — K(z,y)|dz < dC’K2”+1wn_1/ rhn dr = 2wy,
R™\Bag(x) 2d

This is the desired conclusion. 1
Now, we give the proof of the weak-type 1,1 estimate in Theorem 6.13.

Proof of Theorem 6.13. We may assume that f is in L' N L2. We let A > 0. We apply
the Calderén-Zygmund decomposition, Lemma 6.14 at A to write f = g + b. We have

{z|Tf(x)] > A} C{z: |Tg(x)| > A2} U{x : |Tb(x)| > \/2}.

Using Tchebisheff’s inequality and that T is L*-bounded, and then that |g(z)| < C\ we
obtain c

mi{e  [To@)| > M2Y) < 4 [ lo@)de < S [ ot ds
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Finally, since ||g||x < ||f]]1, we have

m({e: 1Tg(w) > M/2}) < Sl

Now, we turn to the estimate of Th. We let O, = UB), where each ball B}, is chosen
to have center xy, the center of the cube Q) and the radius of By, is v/n multiplied by
the sidelength of Q. Thus, if y € Qy, then the distance |z; — y| is at most half the radius
of By. This will be needed to apply Lemma 6.17. We estimate the measure of O, using
that

m(0y) S CXm(Qy) < zﬁWﬂm<4w1

Next, we obtain an L' estimate for Th,. If x is in the complement of Qy, we know that
To(x) = [ K(z,y)be(y)dy = [(K(x,y) — K(x,zk))bk(y) dy where the second equality
uses that b; has mean value zero. Now, applying Fubini’s theorem and Lemma 6.17, we
can estimate

Lo 0@ de < [ )l [ V)~ K ()| dedy
R"\ B, R™\ By,
< o Iwldy < [ 1fw)dy
Thus, if we add on k, we obtain
Jroy PO Ay <32 [ 1Th)dy < CIS (6.19)
R™\O,
Finally, we estimate

m({z: Th(z) > A/2}) < m(Oy) + m({ac e R"\ Oy : |Th(x)| > A/2})
<m0y + SISl

A

Where the the last inequality uses Chebishev and our estimate (6.19) for the L'-norm of
Tb in the complement of O,. 1

Exercise 6.20 Let ) be a cube in R™ of sidelength h > 0, Q = {x : 0 < z; < h}.
Compute the diameter of Q. Hint: The answer is probably h+/n.

Proof of Theorem 6.9. Since we assume that T is L>-bounded, the result for 1 < p < 2,
follows immediately from Theorem 6.13 and the Marcinkiewicz interpolation theorem,
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Theorem 4.19. The result for 2 < p < oo follows by observing that if 7" is a Calderén-
Zygmund operator, then the adjoint 7™ is also a Calderon-Zygmund operator and hence
T* is LP-bounded, 1 < p < 2. Then it follows that 7" is LP-bounded for 2 < p < oo.

The alert reader might observe that Theorem 4.19 appears to give a bound for the
operator norm which grows like |p —2|7! near p = 2. This growth is a defect of the proof
and is not really there. To see this, one can pick one’s favorite pair of exponents, say
4/3 and 4 and interpolate (by either Riesz-Thorin or Marcinkiewicz) between them to
see that norm is bounded for p near 2. 1

6.2 Some multiplier operators

In this section, we study multiplier operators where the symbol m is smooth in the
complement of the origin. For each k € R, we define a class of multipliers which we call
symbols of order k. We say m is symbol of order k if for each multi-index «, there exists
a constant C,, so that
(63

e
The operator given by a symbol of order k corresponds to a generalization of a differ-
ential operator of order k. Strictly speaking, these operators are not pseudo-differential
operators because we allow symbols which are singular near the origin. The symbols we
study transform nicely under dilations. This makes some of the arguments below more
elegant, however the inhomogeneous theory is probably more useful.

< C, || lolr, (6.21)

Exercise 6.22 a) If P(£) is homogeneous polynomial of degree k, then P is a symbol of
order k.

b) The mutiplier for the Bessel potential operator (1 + |£|?)™%/2 is a symbol of order
—s for s > 0. What if s <07

We begin with a lemma to state some of the basic properties of these symbols.

Lemma 6.23 a) If m; is a symbol of order k; for j = 1,2, then myms is a symbol of
order ki + ko and each constant for mims depends on finitely many of the constants for
my and meo.

b) If n € S(R™), then n is a symbol of order k for any k < 0.

c¢) If m is a symbol of order k, then for all € > 0, e *m(e€) is a symbol of order k
and the constants are independent of €.

d) If m;, j = 1,2 are symbols of order k, then my + my is a symbol of order k.

Proof. A determined reader armed with the Leibniz rule will find that these results are
either easy or false. 1
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Exercise 6.24 o) Use Lemma 6.23 to show that if m is a symbol of order 0 and n €
S(R™) with n = 1 near the origin, then m.(§) = n(e€)(1 — n(&/e))m(&) is a symbol of
order 0.

b) Show that if n(0) = 1, then for each f € L*(R™) the multiplier operators given by
m and m, satisfy

lim [T — Ty flls =0,

¢) Do we have lim. o+ || T,, — Tpn.|| = 07 Here, ||T|| denotes the operator norm of T

as an operator on L2.

€

Exercise 6.25 Show that if m is a symbol of order O and there is a 6 > 0 so that
|m(&)] > & for all £ # 0, then m™t is a symbol of order 0.

Lemma 6.26 If m is in the Schwartz class and m is a symbol of order k > —n, then
there is a constant C' depending only on finitely many of the constants in (6.21) so that

m(z)] < Cla ™"

Proof.  To see this, introduce a cutoff function 1y € D(R") and fix |x| so that n9(§) =1
if |€] <1 and ny = 0 if || > 2 and set 1, = 1 — 1. We write

K@) = @m)" [ e (elelim(€) dg, = 0,00,
For j = 0, the estimate is quite simple since no(¢|z|) = 0 if || > 2/|z|. Thus,

Ko@) < (2m)7" [ |l dg = Cla] ",
l€1<2/x|

For the part near oo, we need to take advantage of the cancellation that results from

integrating the oscillatory exponential against the smooth kernel m. Thus, we write

(ix)*e®€ = gg—iem‘f and then integrate by parts to obtain

(1) Knle) = [ (e nae(€lalym(€) d€ = (1) [ €€ 2 nelelalm() .

The boundary terms vanish since the integrand is in the Schwartz class. Using the symbol
estimates (6.21) and that 7., is zero for |£| near 0, we have for k — |a| < —n, that

|(2$)QKQO($)| <C |§|k—\a| dé = C«|x|—n—kz+|a|_
€1>1/1«|

This implies the desired estimate that | K, (z)] < Clx|="7*. 1
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We are now ready to show that the symbols of order 0 give Calderén Zygmund
operators.

Theorem 6.27 If m is a symbol of order 0, then T, is a Calderon-Zygmund operator.

Proof. The L2-boundedness of T, is clear since m is bounded, see Theorem 3.7. We
will show that the kernel of T, is of the form K (z — y) and that for all multi-indices «
there is a constant C,, so that K satisfies

9
= < —n—lal
2 K@) < Cla

The inverse Fourier transform of m, 1, is not, in general, a function. Thus, it is
convenient to approximate m by nice symbols. To do this, we let n € D(R"™) satisfy
n(x) = 1if || < 1 and n(x) = 0 if |z| > 2. We define m.(&) = n(e&)(1 — n(&/e))m(§).
By Lemma 6.23, we see that m, is a symbol with constants independent of e. Since
m. € S(R"), by Lemma 6.26 we have that K. = m, satisfies for each multi-index «,

8a —n—|x
|%K(x)| < C|x| el (6.28)

This is because the derivative of order o of K, by Proposition 1.19 is the inverse Fourier
transform of (—i&)*m. (), a symbol of order |a|. Since the constants in the estimates are
uniform in €, we can apply the Arzela-Ascoli theorem to prove that there is a sequence
{€;} with lim; ... e; = 0 so that K., and all of its derivatives converge uniformly on
compact subsets of R” \ {0} and of course the limit, which we call K, satisfies the
estimates (6.28).

It remains to show that K (z —y) is a kernel for the operator 7,,,. Let f be in S(R").
By the dominated convergence theorem and the Plancherel theorem, T}, f — T, f in L?
as € — 07. By Proposition 1.24, T,,. f = K. f. Finally, if f and g have disjoint support,
then

[ Tt @g(@)de = lim [T, f()g(e) da

Jj—00

= lim [ Ko (o = ) f(y)gle) dudy

= /K(x — ) f(y)g(x) d dy.

The first equality above holds because Ty, f converges in L?, the second follows from
Proposition 1.24 and the third equality holds because of the locally uniform convergence
of K in the complement of the origin. This completes the proof that K (z —y) is a kernel
for T,,. |
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We can now state a corollary which is usually known as the Mikhlin multiplier theo-
rem.

Corollary 6.29 If m is a symbol of order 0, then the multiplier operator T}, is bounded
on LP for 1 <p < oo.

We conclude with a few exercises.

Exercise 6.30 If m is infinitely differentiable in R™\ {0} and is homogeneous of degree
0, then m is a symbol of order zero.

n 9?2

In the next exercise, we introduce the Laplacian A =377, 5.
J

Exercise 6.31 Let 1 < p < oo, n > 3. If f € S(R"), then we can find a tempered
distribution u so that Au = f and we have the estimate
H 0%u
8xj8xk

lp < Cli A1l

where the constant in the estimate C' depends only on p and n. Why is n = 2 different?
In two dimensions, show that we can construct u if f(0) = 0. (This construction can be
extended to all of the Schwartz class, but it is more delicate when f(0) # 0.)

This exercise gives an estimate for the solution of Au = f. This estimate follows
immediately from our work so far. We should also prove uniqueness: If u is a solution
of Au = 0 and wu has certain growth properties, then v = 0. This is a version of the
Liouville theorem. The above inequality is not true for every solution of Au = f. For
example, on R?, if u(z) = e® %2 then we have Au = 0, but the second derivatives are
not in any LP(R?).

Exercise 6.32 Let O = g—; — A be the wave operator which acts on functions of n + 1
variables, (z,t) € R" x R. Can we find a solution of Ou = f and prove estimates like
those in Exercise 6.31¢ Why or why not?

Exercise 6.33 Show that if A € C is not a negative real number, the operator given by
m(&) = (A + [£]*)7! is bounded on LP for 1 < p < oo and that we have the estimate

[T fllp < Cllf -

Find the dependence of the constant on .



Chapter 7

Littlewood-Paley theory

In this chapter, we look at a particular singular integral and see how this can be used
to characterize the LP norm of a function in terms of its Fourier transform. The theory
discussed here has its roots in the theory of harmonic functions in the disc or the up-
per half-plane. The expressions Q)i f considered below, share many properties with the
27*Vu(z’,27%) where u is the harmonic function in the upper-half plane x, > 0 whose
boundary values are f. Recently, many of these ideas have become part of the theory
of wavelets. The operators () f decompose f into pieces which are of frequency approx-
imately 2¥. A wavelet decomposition combines this decomposition in frequency with a
spatial decomposition, in so far as this is possible.

7.1 A square function that characterizes L’

We let ¢ be a real-valued function in D(R™) which is supported in {{ : 1/2 < |§| < 4}
and which satisfies 22 (€)% = 1 in R™\ {0} where 1;,(§) = 1(£/2) and we will call
1 a  Littlewood-Paley function. It is not completely obvious that such a function exists.

Lemma 7.1 A Littlewood-Paley function ezists.

Proof. We take a function ¢» € D(R™) which is non-negative, supported in {€ : 1/2 <
|€| < 4} and which is strictly positive on {£ : 1 < [£] < 2}. We set

BEO = DO/ S BHE/2)0

k=—00

%)
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For f in L, say, we can define Qf =ty x f = (wkf)'. We define the square function
S(f) by )
S(H@) = (X 1Qu(H)@)?)2.
k=—00

From the Plancherel theorem, Theorem 3.2, it is easy to see that

[fll2 = 1S CHIl2 (7.2)

and of course this depends on the identity >°, ¢? = 1. We are interested in this operator
because we can characterize the L” spaces in a similar way:.

Theorem 7.3 Let 1 < p < co. There is a finite nonzero constant C' = C(p,n, ) so that
if fisin LP, then
Cy Ll < ISUHls < Coll flp-

This theorem will be proven by considering a vector-valued singular integral. The
kernel we consider will be

K(z,y)= (..., Q"k@L(Qk(m —Y)),...)

Lemma 7.4 If ¢ is in S(R"), then the kernel K defined above is a Calderén-Zygmund
kernel.

Proof. We write out the norm of K

[e.9]

K (z,y)l* = >0 225 - y)P

k=—o00

We choose N so that 2V < |z — y| < 2V*! and split the sum above at —N. Recall that

Y isin S (an) and decays faster than any polynomial. Near 0, that is for k < —N, we
use that ¥(z) < C. For k > —N, we use that ¢(z) < Clz| ™. Thus, we have

—N 00
|K(l‘, y)|2 S O( Z 22nk + Z 22nk(2k+N)—2(n+1)) _ 02—2nN'
k=—o0 k=—N+1

Recalling that 2V is approximately |r — y|, we obtain the desired upper-bound for
K(z,y). To estimate the gradient, we observe that V K (z,y) = (..., 2~ "DV ((x —
y)/2%),...). This time, we will need a higher power of |z| to make the sum converge.
Thus, we use that |Vi)(x)| < C near the origin and |V¢)(z)| < C|z|~"2. This gives that

—-N 00
‘VK(JC)‘Z < C( Z 92k(n+1) + Z 22k(n+1)(2k+N>—2(n+2)) — (972N (n+1)
k=—o0 k=—N+1

Recalling that 2% is approximately |z — y| finishes the proof. 1
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Proof of Theorem 7.3. To establish the right-hand inequality, we fix N and consider
the map f — (w,Nf, o ,wa)V = Ky * f. The kernel Ky is a vector-valued function
taking values in the vector space C*¥*1. We observe that the conclusion of Lemma 6.17
continues to hold, if we interpret the absolute values as the norm in the Hilbert space
C*M*1 | with the standard norm, |(z_x, ..., zx)| = (X0 n |2k]?) 2

As a consequence, we conclude that Ky * f satisfies the LP estimate of Theorem 6.9
and we have the inequality

N
(3 1QuEY 21, < Il (75)
k=—N
We can use the monotone convergence theorem to let N — co and obtain the right-hand
inequality in the Theorem.
To obtain the other inequality, we argue by duality. First, using the polarization
identity, we can show that for f, g in L2

[ Y @@ de = [ fa) d (7.6)
R, R"

Next, we suppose that f is LN LP and use duality to find the LP norm of f, the identity
(7.6), and then Cauchy-Schwarz and Hélder to obtain

Il = sup [ fla)g@)de= sup [ ST QuAE@)Q(G)) dx < IS IS0l

llgll,r=1/R" llgllpr=1

Now, if we use the right-hand inequality, (7.5) which we have already proven, we obtain
the desired conclusion. Note that we should assume g is in L?(R") N L¥ (R™) to make
use of the identity (7.2).

A straightforward limiting argument helps to remove the restriction that f is in L?
and obtain the inequality for all f in LP. 1

7.2 Variations

In this section, we observe two simple extensions of the result above. These modifications
will be needed in a later chapter.

For our next proposition, we consider an operators (), which are defined as above,
except, that we work only in one variable. Thus, we have a function ¢ € D(R) and
suppose that

S (E,/20P =

k=—o00
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We define the operator f — Qnf = (¥(€,/2F)f(€)):
Proposition 7.7 If f € LP(R"), then for 1 < p < oo, we have

CllFIE < (1O 1QRFI) 2R < Cyll f1IE.
k

Proof. 1f we fix 2’ = (z1,...,2,_1), then we have that

Coll F(@, Mnmy < 12 1Qf (', )21 < Collf (@' )1

k

This is the one-dimensional version of Theorem 7.3. If we integrate in the remaining
variables, then we obtain the Proposition. 1

We will need the following Corollary for the one-dimensional operators. Of course the
same result holds, with the same proof, for the n-dimensional operator.

Corollary 7.8 If2 < p < oo, then we have

17l < CCX2 QRSIR)Y2.

k=—o00

If 1 < p <2, then we have

(> NQufIR)* < Cliflly.

k=—o00

Proof. To prove the first statement, we apply Minkowski’s inequality bring the sum out
through an L?/? norm to obtain

(O3 1Quf@ P2y < 3 |Quf2
k=—o0 k=—o0
The application of Minkowski’s inequality requires that p/2 > 1. If we take the square
root of this inequality and use Proposition 7.7, we obtain the first result of the Corollary.
The second result has a similar proof. To see this, we use Minkowski’s integral
inequality to bring the integral out through the ¢2/? norm to obtain

[e.9]

(> (/Rn Qi f(x)|?dx)?/P)P/? < /Rn(ki: Qi f(2)|})P/2.

k=—o0

Now, we may take the pth root and apply Proposition 7.7 to obtain the second part of
our Corollary. I



Chapter 8

Fractional integration

In this chapter, we study the fractional integration operator or Riesz potentials. To mo-
tivate these operators, we consider the following peculiar formulation of the fundamental
theorem of calculus: If f is a nice function, then

f@ = rwe-o"ta

Thus the map g — [*_ g(t) dt is a left-inverse to differentiation. A family of fractional
integrals in one dimension are the operators, defined if o > 0 by

1 x
[T f(z) = —— / — Lt
0 = g [0 =yt
Exercise 8.1 Show that if o > O0and > 0, then

Iy (I3 (F) = 1y s(f)-

In this section, we consider a family of similar operators in all dimensions. We will
establish the L? mapping properties of these operators. We also will consider the Fourier
transform of the distribution given by the function |z|*". Using these results, we will
obtain the Sobolev inequalities.

We begin by giving an example where these operators arise in nature. This exercise
will be much easier to solve if we use the results proved below.

Exercise 8.2 If f is in S(R™), then

fa) = o [ Af)le—yP " dy

(2 —n)w,_1

59
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8.1 The Hardy-Littlewood-Sobolev theorem
The operators we consider in R™ are the family of Riesz potentials

L(f)(@) = (o) [ f@)le =y
for «v satisfying 0 < o < n. The constant, «y(a, n) is probably given by

2 eT((n—a)/2)
10 ) = e (a2)

Note the condition a > 0 is needed in order to guarantee that |z|*~™ is locally integrable.
Our main goal is to prove the L mapping properties of the operator I,. We first observe
that the homogeneity properties of this operator imply that the operator can map LP to
L% only if 1/p — 1/q = a/n. By homogeneity properties, we mean: If r > 0 and we let
d,f(x) = f(rx) be the action of dilations on functions, then we have

100 f) = 176 (1o f). (8.3)

This is easily proven by changing variables. This observation is essential in the proof of
the following Proposition.

Proposition 8.4 If the inequality

Hafllg < ClA
holds for all f in S(R™) and a finite constant C, then
I 1 «
p g n

Proof. Observe that we have ||6, f||, = 7~"/?|| f||,- This is proven by a change of variables
if 0 < p < oo and is obvious if p = co. (Though we will never refer to the case p < 1,
there is no reason to restrict ourselves to p > 1.) Next, if f is in S(R"), then by (8.3)

a6 F)llg = 7708 (Laf)llg = = ™| La f .

Thus if the hypothesis of our proposition holds, we have that for all Schwartz functions
f and all » > 0, that

P L fllg < O fllpr ™.
If ||Iofll; # O then the truth of the above inequality for all » > 0 implies that the
exponents on each side of the inequality must be equal. If f # 0 is non-negative, then
I, f > 0 everywhere and hence ||I,f||; > 0 and we can conclude the desired relation on
the exponents. 1
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Next, we observe that the inequality must fail at the endpoint p = 1. This follows by
choosing a nice function with [¢ = 1. Then with ¢.(z) = e "¢(x/€), we have that as
e— 0",

If the inequality ||Io®c||n/(n—a) < C|l¢e|l1 = C holds uniformly as €, then Fatou’s Lemma
will imply that |2[*™ lies in L™/ (=)  which is false.

Exercise 8.5 Show that I, : LP — L% if and only if I, : LY — L. Hence, we can
conclude that I, does not map L'V to L*°.

Exercise 8.6 Can you use dilations, &, to show that the inequality

1f*gllr < [Ifllpll9llg
can hold only if 1/r =1/p+1/q— 17
Exercise 8.7 Show that estimate

IV Al < Clifllg

can not hold. That is if we fix p and q, there is no constant C' so that the above inequality
is true for all f in the Schwartz class. Hint: Let f(z) = n(x)e*L where n is a smooth
bump.

We now give the positive result. The proof we give is due Lars Hedberg [4]. The
result was first considered in one dimension (on the circle) by Hardy and Littlewood.
The n-dimensional result was considered by Sobolev.

Theorem 8.8 (Hardy-Littlewood-Sobolev) If 1/p —1/q = a/n and 1 < p < n/a, then
there exists a constant C'= C(n,«,p) so that

o fllg < ClIflp-

The constant C' satisfies C < C(a,n) min((p — 1)~07w), (2 — 1)=0=30),

P
Proof of Hardy-Littlewood-Sobolev inequality. We may assume that the LP norm of f
satisfies || f]|, = 1. We consider the integral defining I, and break the integral into sets
where |z —y| < R and |z —y| > R:

I.f(x) < y(a,n) (/B Mdy—i—/l{n\BR(‘r Mdy) =v(a,n)(I + II).

r@) | —y|me ) |z —y|ne
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By Proposition 5.10, we can estimate

R Re
I(z,R) < Mf(x)wn_l/ romen =l gy = Mf(a:);wn_l
0

where we need that a > 0 for the integral to converge. To estimate the second integral,
II(x, R), we use Holder’s inequality to obtain

, / 1 L/ Rla-wran AP
II(x,R) < wl/_p (/ T(Oé—n)p +n—1 d?") _ wl/_p
(@, B) < Iflpwn=1\ | e
1/p Rai%
= [Iflpwn’?

"= n)p +n)VY

where we need a@ < n/p for the integral in r to converge. Using the previous two
inequalities and recalling that we have set || f||, = 1, we have constants C; and C so
that .

|I.(f)(x)] < C1R*M f(z) + CoR* ». (8.9)

If we were dedicated analysts, we could obtain the best possible inequality (that this
method will give) by differentiating with respect to R and using one-variable calculus
to find the minimum value of the right-hand side of (8.9). However, we can obtain an
answer which is good enough by choosing R = M f(z)™?/". We substitute this value of
R into (8.9) and obtain

Ha(@)] < (C1 + Co) M f(x)'=om7
and if we raise this inequality to the power pn/(n — ap) we obtain
| L f ()PP ("=P) < (Cy + Co)™/ "P) M f(2)P.

Now, if we integrate and use the Hardy-Littlewood theorem Theorem 5.9 we obtain the
conclusion of this theorem. 1

Exercise 8.10 The dependence of the constants on p, a and n is probably not clear from
the proof above. Convince yourself that the statement of the above theorem is correct.

Exercise 8.11 It may seem as if the obsession with the behavior of the constants in the
Hardy-Littlewood-Sobolev theorem, Theorem 8.8, is an indication that your instructor
does not have enough to do. This is false. Here is an example to illustrate how a good
understanding of the constants can be used to obtain additional information. Suppose
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that f is in L™ and f = 0 outside B,(0). We know that, in general, If is not in L>.
The following is a substitute result. Consider the integral

= 1 kn
I, n/(n=a)y dp — L nk/(n—ka) I, —
PSP O) dr = 3 [ o Tl @] do

Since f is in L™/ and f is zero outside a ball of radius 1, we have that f is in LP(R™) for
allp <n/a. Thus, I,f is in every Li-space for oo > q > n/(n — «). Hence, each term
on the right-hand side s finite. Show that in fact, we can sum the series for € small.

Exercise 8.12 If a is real and 0 < oo < n, show by example that I, does not map L*
to L. Hint: Consider a function f with f(z) = |z|~*(—log|z|)~" if |z| < 1/2.

Next, we compute the Fourier transform of the tempered distribution v(c, n)|x|* .
More precisely, we are considering the Fourier transform of the tempered distribution

f=lan) [ 2" () da.
Theorem 8.13 If0 < Rea < n, then

(e, n) (|27 = €177

Proof. We let n(|£]) be a standard cutoff function which is 1 for |{| < 1 and 0 for |£| > 2.
We set m(§) = n(|¢]e)(1 — n([&]/€))|€]~*. The multiplier m. is a symbol of order —«
uniformly in €. Hence, by the result Lemma 6.26 of Chapter 6, we have that K. = m.
satisfies the estimates

8
O K@) < Ola B) a0 (8.14)

Hence, applying the Arzela-Ascoli theorem we can extract a sequence {¢;} with ¢; — 0
so that K., converges uniformly to some function K on each compact subset of R™\ {0}.
We choose f in S(R") and recall the definition of the Fourier transform of a distribution
to obtain

/ K@) f(z)de = lim / K. (2)f(z) d

n Jj—00

— lim / me, (€) f(€) de

J—00

= [leres©
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The first equality depends on the uniform estimate for K. in (8.14) and the locally
uniform convergence of the sequence K.,. Thus, we have that K(€) = |¢| in the sense
of distributions. Note that each m,. is radial. Hence, K. and thus K is radial. See
Chapter 1.

Our next step is to show that the kernel K is homogeneous:

K(Rx) = R "K(x). (8.15)

To see this, observe that writing K = lim; ., K, again gives that

~

/ K(Re)f(x)de = lim K. (Rx)f(z)da

J]—00

= R lim [ mg(¢/R)f(€)de = R / €1 f(€) dg
- Ra_"/K(x)f(x) dx.

This equality for all f in S(R™) implies that (8.15) holds. If we combine the homogeneity
with the rotational invariance of K observed above, we can conclude that

m(x) = clx|*".

It remains to compute the value of ¢. To do this, we only need to find one function where
we can compute the integrals explicitly. We use the friendly gaussian. We consider

¢ / 2| e o g = (47)"2 / €]~ E7/4 de = on-a (qqr) /2 / €76 16 gg. (8.16)

2

Writing the integrals in polar coordinates, substituting s = r*, and then recalling the

definition of the Gamma function, we obtain

3 |22 © 4 odr
/ lz| Pe el dx = wn,l/ e
n 0

_ Wnot (% mop)2,s 98
2 Jo S
1 _
— _p(u
2% 2

)wn_l.

Using this to evaluate the two integrals in (8.16) and solving for ¢ gives

_ 2" T ((n — a)/2)
(An)"/ 2T (a/2)
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We give a simple consequence.
Corollary 8.17 For f in S(R"), we have

L(f) = (f(&)lE™):

A reader who is not paying much attention, might be tricked into thinking that this
is just an application of Proposition 1.24. Though I like to advocate such sloppiness, it
is traditional to be a bit more careful. Note that Proposition 1.24 does not apply to the
study of I, f because I, f is not the convolution of two L' functions. A proof could be
given based on approximating the multiplier |£|~® by nice functions. However, I elect to
obtain the result by algebra—that is by using distributions. This result should, perhaps,
have appeared in Chapter 2. However, following the modern “just-in-time” approach to
knowledge delivery, we have waited until the result was needed before making a proof.

Proposition 8.18 If u is a tempered distribution and f is a Schwartz function, then

N

(f *uy = fi.

Proof. Recall the definition for convolutions involving distributions that appeared in
Chapter 2. By this and the definition of the Fourier transform and inverse Fourier
transform, we have

(f *ul(g) = f*u(g) = a(f = g) = a((f = g)).

Now, we argue as in the proof of Proposition 1.24 and use the Fourier inversion theorem,
1.31 to obtain

(F 2 g)a) = @) [ F(§=matnye= € dedn = fla)g(x).
Thus, we have (f xu)(g) = a(fg) = (fa)(g). '

Proof of Corollary 8.17. This is immediate from Theorem 8.13 which gives the Fourier
transform of the distribution given by v(«, n)|x|* ™ and the previous proposition. 1
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8.2 A Sobolev inequality

Next step is to establish an inequality relating the L%-norm of a function f with the
LP-norm of its derivatives. This result, known as a Sobolev inequality is immediate from
the Hardy-Littlewood-Sobolev inequality, once we have a representation of f in terms of
its gradient.

Lemma 8.19 If f is a Schwartz function, then

fx) = 1 /an(y)‘(flr—y)dy‘

B Wn—1 |z —y|"

Proof. We let 2/ € S"~! and then write

(@) :—/(]w%f(x+tz’)dt:—/Oooz’-(Vf)(a:—l—tz’)dt.

If we integrate both sides with respect to the variable 2/, and then change from the polar
coordinates t and 2’ to y which is related to ¢t and 2’ by y — x = tz/, we obtain

1

————dy.
o=y

_ o ’ Nyn—1+1-n r_ r—y .
wno1f(x) = /swl/o 2V fr+t)t dtdz /Rn =] Viy)

This gives the conclusion. 1

Theorem 8.20 If 1 < p < n (and thus n > 2), f is in the Sobolev space LY and q is
defined by 1/q = 1/p — 1/n, then there is a constant C' = C(p,n) so that

1Fllq < CIVFlp-

Proof. According to Lemma 8.19, we have that for nice functions,?

[f(@)] < L(Vf]) ().

Thus, the inequality of this theorem follows from the Hardy-Littlewood-Sobolev theorem
on fractional integration. Since the Schwartz class is dense in the Sobolev space, a routine
limiting argument extends the inequality to functions in the Sobolev space. 1

!This assumes that w,*; = v(1,n), which T have not checked.
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The Sobolev inequality continues to hold when p = 1. However, the above argument
fails. The standard argument for p = 1 is an ingenious argument due to Gagliardo, see
Stein [14, pp. 128-130] or the original paper of Gagliardo [3].

Exercise 8.21 If p > n, then the Riesz potential, I, produces functions which are in
Hélder continuous of order v =1— (n/p). If 0 < v < 1, define the Héolder semi-norm by

|f(z) = fy)]

lz -yl

Ifll¢+ = sup

zFy

a) Show that if f is a Schwartz function, then ||I(f)|cv < C| fl|, provided p > n and

v =1—(n/p). b) Generalize to 1,. c) The integral defining I,(f) is not absolutely

convergent for all f in LP if p > n. Show that the differences I f(x) — I f(y) can be

expressed as an absolutely convergent integral. Conclude that if f € LY, then f € C7 for
v and p as above.

Exercise 8.22 Show by example that the Sobolev inequality, || flle < CIVflln fails if
p=n and n > 2. Hint: For appropriate a, try f with f(x) = n(x)(—log |x|)* with n a
smooth function which is supported in |x| < 1/2.

Exercise 8.23 Show that there is a constant C' = C(n) so that if g = I(f), then

1
su _ ) — (9)ro| dx < C|fl|,.
i J |96 = @l dr < CI)
Here, (f),. denotes the average of f on the ball B, (x).

Nee = T fy oy T0) 0

Exercise 8.24 Show that in one dimension, the inequality || f|le < || fll1 is trivial for
nice f. State precise hypotheses that f must satisfy.
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Chapter 9

Singular multipliers

In this section, we establish estimates for an operator whose symbol is singular. The
results we prove in this section are more involved than the simple L? multiplier theorem
that we proved in Chapter 3. However, roughly speaking what we are doing is taking
a singular symbol, smoothing it by convolution and then applying the L? multiplier
theorem. As we shall see, this approach gives estimates in spaces of functions where we
control the rate of increase near infinity. Estimates of this type were proven by Agmon
and Hormander. The details of our presentation are different, but the underlying ideas
are the same.

9.1 Estimates for an operator with a singular symbol
For the next several chapters, we will be considering a differential operator,

A42(-V =e A"t
where ¢ € C" satisfies ¢ - ¢ = 327 (;(; = 0.

Exercise 9.1 Show that ( € C" satisfies ( - ¢ = 0 if and only if ( = & + in where & and
n are in R™ and satisfy |£] = |n| and £ -n = 0.

Exercise 9.2 a) Show that Ae* = 0 if and only if (- ¢ = 0. b) Find conditions on
7 € R and £ € R" so that €™ satisfies
82

(@ _ A)etr+x~§ =0.

69
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The symbol of this operator is
—|€2 +2i¢ - € = |Tm()? — [Tm ¢ 4 €> + 2iRe( - €.

Thus it is clear that this symbol vanishes on a sphere of codimension 2 which lies in the
hyperplane Re ¢ - £ = 0 and which has center — Im ¢ and radius | Im {|. Near this sphere,
the symbol vanishes to first order. This means that the reciprocal of the symbol is locally
integrable. In fact, we have the following fundamental estimate.

Lemma 9.3 Ifn € R" and r > 0 then there exists a constant C' depending only on the
CTn_l

dimension n so that
1
/Br(m —|€!2+2i6-5‘ Iq

Proof. We first observe that we are trying to prove a dilation invariant estimate, and we
can simplify our work by scaling out one parameter. If we make the change of variables,
¢ = |(]z, we obtain

/BT (n)

where ¢ = ¢/|¢|. Thus, it suffices to consider the estimate when |¢| = 1 and we assume
below that we have |¢| = 1.

We also, may make rotation £ = Ox so that O' Re( = e, /v/2, with e, the unit vector
in the z; direction and O'Im ¢ = 62/\/5. Then, we have that

‘/BT (n)

Thus, it suffices to prove the Lemma in the special case when ¢ = (e; + ies)/v/2.

We let X = {€: —|¢|* + 2i - € = 0} be the zero set of the symbol.

Case 1. The ball B,(n) satisfies < 1/100, dist(n, ;) < 2r. In this case, we make
an additional change of variables. We rotate in the variables (s, ... &, ) about the center
of ¢, —(31/\/57 so that n is within 2r units of the origin. We can find a ball Bs, of radius
3r and centered 0 in X, so that B,(n) C Bs, Now, we use coordinates z; = Re( - ¢,
oy = |Im¢]? — |Im¢ + &|? and x; = § for j = 3,...,n. We leave it as an exercise to
compute the Jacobian and show that it is bounded above and below on B,.(n). This gives
the bound

/\B37‘

dg <

1

1
g =l S
—|£|2+2l<-€’ <1 B/l —|z|2 +2¢ - =

1

—|z]? 4 2i0%¢ - x da.

1
—[€]? + 2i¢ - €| = /Br(om)

1 1
— | ds < C — dxydas ... dx, = Cr" L.
_|§|2+2ig~§| = By (0) |1 + e 1At v r
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a

€1

Case 2. We have B,(n) with dist(n, X¢) > 2r. In this case, we have

1
sup - <C/r
S T jerraic-g =

and the Lemma follows in this case.

Case 3. The ball B,(n) satisfies r > 1/100 and dist(n, ;) < 2.

In this case, write B,.(n) = By U By where By = B,.(n) N B4(0) and By, = B.(n) \ Bo.
By case 1 and 2,

1
Jo TP 4= ¢
Since B,(0) contains the set ¥¢, one can show that
e < O/l

| = [€? + 2i¢ - ]

on B, and integrating this estimate gives
/ L ge<orm
Boo | = [§7 + 2iC - €]

Since r > 1/100, the estimates on By and B, imply the estimate of the Lemma in this
case. 1
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As a consequence of this Lemma, we can define the operator G, : S(R") — S'(R")
by )
ol = (S vaee)
Lemma 9.4 The map G¢ is bounded from S(R"™) to S'(R™) and we have
(A+20-V)Gef =Ge(A+2¢C-V)f = f
if feSRY).

Proof.  According to the previous lemma, the symbol of G satisfies the growth condition
of Example 2.21 in Chapter 2. Hence G.f is in S'(R"™). The remaining results rely on
the Proposition 1.18 of Chapter 1. 1

It is not enough to know that G¢f is a tempered distribution. We would also like
to know that the map G is bounded between some pair of Banach spaces. This will be
useful when we try to construct solutions of perturbations of the operator A + 2¢ - V.
The definition of the spaces we will use appears similar to the Besov spaces and the
Littlewood-Paley theory in Chapter 7. However, now we are decomposing f rather than
f . To define these spaces, we let

Bj = B,i(0)

and then put R; = B;\ B;_;. We let M P#(R™) denote the space of functions u for which
the norm

. 1/q
q
[l yps = ( > 122l o s, ) < 0.

k=—00

Also, we let MP* be the space of measurable functions for which the norm

o0

1/q
S q
e = (mnto > [ ulioen] ) -

These definitions are valid for 0 < p < 00, s € R and 0 < ¢ < oco. We will also need the
case when ¢ = oo and this is defined by replacing the ¢7 norm of the sequence 2** ||| e gy
by the supremum. Our primary interests are the spaces where p =2, ¢ =1 and s = 1/2
and the space where p = 2, ¢ = oo and s = —1/2. The following exercises give some
practice with these spaces.

!There is a sign error in the version of this Proposition handed out in class.
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Exercise 9.5 For which a do we have
(1+ |2 € ME2(R").

Exercise 9.6 Show that if r > q, then

MP* C M2,
Exercise 9.7 Show that if s > 0, then

MP* c MP*,
Exercise 9.8 Let T be the multiplication operator

Tf(x) = (1+ |2[*)" 92 f ().

Show that if € > 0, then

T M2V2 o M2

Exercise 9.9 Show that we have the inclusion M:"* C L*(R", dus) where dug = (1 +
|z|2)?dx. This means that we need to establish that for some C' depending on n and s,
we have the inequality

el oo + 3 Nullogry < OC[ ul@)P(0+ [af?)* da)*
k=1

Hint: The integral on R"™ dominates the integral on each ring. On each ring, the
weight changes by at most a fixed factor. Thus, it makes sense to replace the weight by
its smallest value. This will give an estimate on each ring that can be summed to obtain
the ]\412’1/2 norm.

The main step of our estimate is the following lemma.

Lemma 9.10 Let ¢ and v’ are Schwartz functions on R"™ and set 1y,(z) = (27 %z) and
P(z) = (27x). We define a kernel K : R x R™ — C by

J

)i (€ — &)
24 2iC- ¢

K(&1,&) = /Rn %(f_1|§—| dg.
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Then there is a constant C so that

27
sup/ |K(&,6)ds2 < — (9.11)
&1 |C’
C2*
sup [ |K(6.&)1ds < <= (9.12)
&2 |§|
As a consequence, the operator T; given by
T (€)= [ (& &)/(&) dé
satisfies
1Tk fllp < %2’”1’2]'“”. (9.13)

Proof. Observe that 1 (&) = 2’“”}&(52@ = (¢)g-1(€). Thus, |11 is independent of k.
Since ¢ € S(R™), we have that [|¢||; is finite. Thus if we use Tonelli’s theorem, we have

|¢/ &1 —9)|
€] + 2iC - €]

JRCRAE T de.

To estimate the integral on the right of this inequality, we break the integral into rings
centered at & and use that Y’ decays rapidly at infinity so that, in particular, we have
¥'(€) < Cmin(1, [£]™™). Then applying Lemma 9.3 gives us

PAGEE3] S 1
Lo de < (b2 [ e
| — |€]? + 2iC - €] By (&) | — [&]* + 2i¢ - ¢
s . . 1
£ ognig—nli-) / —de
Z By j11(&1)\By—j11-1(&1) ’ - |§|2 + 2i¢ - 5‘

_23 2l
< 1 Z

This gives the first estimate (9.11). The second is proven by interchanging the roles of
&1 and &. The estimate (9.11) gives a bound for the operator norm on L>. The estimate
(9.12) gives a bound for the operator norm on L'. The bound for the operator norm on
L? follows by the Riesz-Thorin interpolation theorem, Theorem 4.1. See exercise 4.5. 1
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Exercise 9.14 Show that it suffices to prove the following theorem for |(| = 1. That is,
show that if the theorem holds when |(| = 1, then by rescaling, we can deduce that the
result holds for all ¢ with (- ¢ = 0.

Exercise 9.15 The argument given should continue to prove an estimate as long as Re
and Im ¢ are both nonzero. Verify this and show how the constants depend on (.

Theorem 9.16 The map G satisfies

a C
sup 2797 Ge fll L2 (s,) < meHMlmm
J

and o
sup 27| G fl p2(s5) < meHval/z-
J

Proof. We first suppose that f is in the Schwartz space. We choose 1) > 0 as in Chapter
7 so that suppy) C {z: 1/2 <z < 2} and with ¢ (z) = (27%x), we have

> ¢i=1, inR"\{0}.
k=—0o0
Welet ¢ = 11if [z] <1, ¢ >0, » € D(R") and set ¢;(z) = ¢(2772). We decompose f
using the 1;’s to obtain
¢;Gef = Y ¢;Gif.
k=—o00

The Plancherel theorem implies that
05Ge(WENIE = @2m) ™ [ [Tutnf 2 de.

Here, the operator Tjj is as in the previous lemma but with ¢ replaced by ¢ and v’
replaced by ¥. Hence, from Lemma 9.10 we can conclude that

c .
l6;Gevifllz < WWW > ltnref 2 (9.17)
le]<1

Now, using Minkowski’s inequality, we have

1Gefllezy) <C Y. No;Getrnfll2mn)- (9.18)

k=—00>®
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The first conclusion of the theorem now follows from (9.17) and (9.18).
The estimate in the inhomogeneous space follows by using Cauchy-Schwarz to show

k=—o00 k=—0o0 k=—00

0 0 1/2 0 1/2 \/§ 1/2
Z 2k/2||f||L2(Rk) < ( Z ||f||%2(Rk)> ( Z Qk/Q) = (ﬂ— 1) ||f||L2(Bo)-

Finally, to remove the restriction that f is in the Schwartz space, we observe that the
Lemma below tells us that Schwartz functions are dense in ]\412 2 and ]\412 12, 1

Lemma 9.19 We have that S(R™) N MPY? s dense in M and S(R™") N MPYV? s

o r21/2
dense in M, /2,

Proof. To see this, first observe that if we pick f in M12 /2 and define

0, lz| < 27N or |z| > 2V

LCR PR Sy

then fy converges tof in M12 12, Next, if we regularize with a standard mollifier, then
fNe = fn * 1. converges to fy in L?. If we assume that 7 is supported in the unit ball,
then for ¢ < 27V=1 fy  will be supported in the shell {z : 27¥=1 < |z| < 2¥+1}. For
such functions, we may use Cauchy-Schwarz to obtain

N+1 1/2 N+1 . 1/2

2

v = fvellizr < {22 Ifve = Inlliocry > 2 =C|lfx = el
k=—N k=—N

Hence, for functions supported in compact subsets of R™ \ {0}, the L? convergence of
fne to fy implies convergence in the space ]\/[12 /2, Approximation in M12 /2 s easier
since we only need to cut off near infinity. 1

Exercise 9.20 Are Schwartz functions dense in M2~1/2?

Exercise 9.21 Use the ideas above to show that

sup 2792 |V G fl 128, < CI 1l o
J

Hint: One only needs to find a replacement for Lemma 9.5.

Exercise 9.22 Use the ideas above to show that I, : My™* — M2~%/2. Hint: Again,
the main step is to find a substitute for Lemma 9.5.
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Finally, we establish uniqueness for the equation Au + 2¢ - Vu = 0 in all of R"™. In
order to obtain uniqueness, we will need some restriction on the growth of u at infinity.

Theorem 9.23 Ifu in L2, and satisfies

loc

lim 27j||u||L2(Bj(0)) =0

j—o0
and Au + 2¢ - Vu = 0, then u = 0.
The following is taken from Hérmander [6], see Theorem 7.1.27.

Lemma 9.24 [f u is a tempered distribution which satisfies

liglsup R*dHUHLQ(BR(O)) =M < oo

and u is supported in a compact surface S of codimension d, then there is a function
ug € L*(S) so that

(o) :/S¢U0d<7
and |Juo|| r2(s) < CM.

Proof. We choose ¢ € D(R"), suppp C B1(0), ¢ even, [ ¢ = 1 and consider @ * ¢.. By
Plancherel’s theorem, we have that

/|1l % Goi|> dE = / 0277 2 )u(x)|? de < C2-U M2,
To establish this, we break the integral into the integral over the unit ball and integrals

over shells. We use that ¢ is in S(R") and satisfies |¢(z)| < C min(1, |z|~@). For j
large enough so that 2_jdHuHLz(Bj) < 2M, we have

[l @i < [ s [ e s

< O2¥UM? 4 2D i 2740 = CM*2%.
k=j

If we let S, = { : dist(&, suppS) < €} and ¥ is in the Schwartz class, then we have

/SW(JE)\ZCZU =Cy El_igi e /s [y (z)|? d.
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Since ¢, *x ¢ — 1 in S, we have

(9) = lim (-5 * ).
Then using Cauchy-Schwarz and the estimate above for u * ¢5-;, we obtain

(v ¢3)| = | [ @x b (@)(a) dal < OMPY([ (@) do) 2

2—J

If we let € — 0, we obtain that |u(¢))] < CM]|j1|r2s). This inequality implies the
existence of ug. 1

Now we can present the proof of our uniqueness theorem.

Proof of Theorem 9.23. Since Au + 2¢ - Vu = 0, we can conclude that the distribution
@ is supported on the zero set of —[£| 4+ 2i¢ - &, a sphere of codimension 2. Now the
hypothesis on the growth of the L? norm and the previous lemma, Lemma 9.24 imply
that 4 = 0. 1

Corollary 9.25 If f is in Mf’l/z, then there is exactly one solution u of
Au+2(-Vu=f
which lies in M2%~'/2. This solution satisfies

(Sl 212 + IVl 22 < ClE 22

Proof. The existence follows from Theorem 9.16 and exercise 9.21. If u is in M%~1/2,

then we have v is in L}, and that

leIglo 2_aj||U,||L2(B2j (0) = 0

if & > 1/2. Thus, the uniqueness follows from Theorem 9.23. 1



9.2. A TRACE THEOREM. 79

9.2 A trace theorem.

The goal of this section is to provide another application of the ideas presented above.
The result proven will not be used in this course. Also, this argument will serve to
introduce a technical tool that will be needed in Chapter 14.

We begin with a definition of a Ahlfors condition. We say that a Borel measure p
in R™ satisfies an Ahlfors condition if for some constant A it satisfies u(B,(z)) < Ar"=1.
This is a property which is satisfied by surface measure on the boundary of a C''-domain
as well as by surface measure on a graph {(2/,z,) : =, = ¢(2’)} provided that the
Vlloo < 0.

Our main result is the following theorem.

Theorem 9.26 If f is in S(R™) and p satisfies the Ahlfors condition, then there is a
constant C' so that

[ 1O du < Clalf s
R" 1

This may seem peculiar, but as an application, we observe that this theorem implies
a trace theorem for Sobolev spaces.

Corollary 9.27 If yu satisfies the Ahlfors condition and s > 1/2 then we have
/Rn ul? dp < Cllull22@mn):

Proof. First assume that v € S(R™). Applying the previous theorem to u(z) =
(2m)~"u(—x) gives that

2 < O|d] v/
[ 1P duz) < Clil gz
It is elementary (see exercise 9.9), to establish the inequality
lollypors < Co [ oGP+ o) da
when s > 1/2. Also, from exercise 9.7 or the proof of theorem 9.16, we have
Jollyzore < Colloll e

Combining the two previous inequalities with v = u gives the desired conclusion. 1



30 CHAPTER 9. SINGULAR MULTIPLIERS

-1/2

Lemma 9.28 The map g — [ -gdx is an isomorphism from Mfo to the dual space

21/2  1r2.1/2,
of M=, Mj )

Proof. 1t is clear by applying Hélder’s inequality twice that
A—tn fgde < |\ fllyzr2llgllpz,-re-

Thus, our map takes M2? into the dual of M>Y2. To see that this map is onto, suppose
!/ .

that A € M>%. Observe L*(Ry,) C M}'? in the sense that if f € L?(Rj), then the

function which is f in Ry and 0 outside Ry lies in M12 12 Thus, for such f,

M) < WMz 1 lLygzare = 221N g | f L 2(m-
Since we know the dual of L?*(Ry), we can conclude that there exists g, with
lgrllrzry) < 2k/2||>\!|M12,1/2/ (9.29)

so that
A(f) = /Rk fgdx (9.30)

for f € L*(Ry). We set g = 332 gr. Note that there can be no question about the

meaning of the infinite sum since for each x at most one summand is not zero. The

estimate (9.29) implies ||g[| ;2-12 < [[All 2072, If f is supported in Uiy Ry, then
oo 1

summing (9.30) implies that
Af) = / fgdz.

Finally, such f are dense in Mf’1/2, so we conclude \(f) = [ fgdz for all f. 1

We have defined the adjoint of an operator on a Hilbert space earlier. Here, we need
a slightly more general notion. If 7': X — H is a continuous linear map from a normed
vector space into a Hilbert space, then x — (T'z,y) is a continuous linear functional of
X. Thus, there exists yx € X’ so that y*(x) = (T'z,y). One can show that the map
y — y* = T*y is linear and continuous. The map T* : H — X' is the adjoint of
the map T. There adjoint discussed here is closely related to the transpose of a map
introduced when we discussed distributions. For our purposes, the key distinction is
that the transpose satisfies (T'f,g) = (f,T'g) for a bilinear pairing, while the adjoint is
satisfies (T'f, g) = (f,T*g) for a sesquilinear pairing (this means linear in first variable
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and conjugate linear in the second variable). The map T'— T will be linear, while the
map 7' — T™ is conjugate linear.

The following lemma is a simple case of what is known to harmonic analysts as the
Peter Tomaés trick. It was used to prove a restriction theorem for the Fourier transform
in [18].

Lemma 9.31 Let T : X — 'H be a map from a normed vector space X into a Hilbert
space H. If T*T : X — X', and

IT"Tfllx < A% fllx

then
ITfllwe < Allfllx-

Proof. We have
T*Tf(f) = (Tf,Tf) = |Tfll3
and since |T*Tf(f)| < |T*T fllx /|| fllx < A% fllx, the lemma follows. "

Proof of Theorem 9.26. We consider f in M12,1/2 and let T" denote the map f — f as a
map into L?*(u). The map T*T is given by

TTf(@) = [ f©)e = ()

n

Using the Ahlfors condition on the measure 1 one may repeat word for word our proof of
Theorem 9.16 to conclude T*T maps M>"? — M?271/2 Now the two previous Lemmas

give that T : ]\.412’1/2 — L*(). 1

Exercise 9.32 Prove a similar result for other co-dimensions—even fractional ones. That
is suppose that (B, (z)) < Cr"® for 0 < a < n. Then show that

/Rn FOP du(&) < Cfll ypre-
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In this chapter, we introduce a good deal of the machinery of elliptic partial differential
equations. This will be needed in the next chapter to introduce the inverse boundary
value problem we are going to study.

10.1 Domains in R"

For O an open subset of R", we let C*(O) denote the space of functions on O which have
continuous partial derivatives of all orders a with || < k. We let C*(O) be the space
of functions for which all derivatives of order up to k£ extend continuously to the closure
O, O. Finally, we will let D(O) to denote the space of functions which are infinitely
differentiable and are compactly supported in O.

We say that 2 C R" is a domain if €2 is a bounded connected open set. We say that a
domain is of class C¥ if for each z € Q, there is an r > 0, ¢ € C*(R"!) and coordinates
(2',2,) € R"! x R (which we assume are a rotation of the standard coordinates) so that

OO0 N By(x) = {(2,2,): 2, = P(2)}

QN By(x) = {2 2): @y > P(a)}.
Here, 0 is the boundary of a set. We will need that the map x — (2', 2¢(z') — x,) map
QN B,(z) into Q°. This can always be arranged by decreasing r. We also will assume

that V¢ is bounded in all of R"!.

In these coordinates, we can define surface measure do on the boundary by

Lo @@= [ e ) Vo) dy

33
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X, = (X)

Also, the vector field v(y) = (Vo ('), —=1)(1 + |[Vé(y)|?) /2 defines a unit outer normal
for y € B,.(z) N oS

Since our domain is bounded, the boundary of €2 is a bounded, closed set and hence
compact. Thus, we may always find a finite collection of balls, {B,(z;) : i =1,...,N}
as above which cover 0f).

Many of arguments will proceed more smoothly if we can divide the problem into
pieces, choose a convenient coordinate system for each piece and then make our calcu-
lations in this coordinate system. To carry out these arguments, we will need partitions
of unity. Given a collection of sets, {A,}, which are subsets of a topological space X,
a partition of unity subordinate to {A,} is a collection of real-valued functions {¢,} so
that supp¢, C A, and so that >, ¢, = 1. Partitions of unity are used to take a problem
and divide it into bits that can be more easily solved. For our purposes, the following
will be useful.

Lemma 10.1 If K is a compact subset in R™ and {Uy,...,Un} is a collection of open
sets which cover K, then we can find a collection of functions ¢; with each ¢; in D(U;),
0§¢J§1 andZé\;l(bj:l on K.

Proof. By compactness, we can find a finite collection of balls { B;}*, so that each By
lies in some U; and the balls cover K. If we let F = UBj, be the union of the closures of
the balls By, then the distance between K and R™ \ F is positive. Hence, we can find
finitely many more balls {B;11,. .., By} to our collection which cover OF and which
are contained in R"\ K. We now let 7, be the standard bump translated and rescaled
to the ball By. Thus if By = B,.(z), then 7jx(y) = exp(—1/(r* — |y — z|*)) in By and 0
outside By. Finally, we put n = ZQ@[L M and then n, = 7 /7. Each g, k=1,..., M is
smooth since 7 is strictly positive on O. Then we have 342, m. = 1 on K and we may
group to obtain one ¢; for each Uj. 1
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The following important result is the Gauss divergence theorem. Recall that for a C"
valued function F' = (F}, ..., F,), the divergence of F, is defined by

" OF;
divF = -7
jzl 8xj

Theorem 10.2 (Gauss divergence theorem) Let Q be a C' domain and let F : Q — C"
be in C*(Q). We have

/m F(z) - v(z)do(x) = /QdivF(x) dz.

The importance of this result may be gauged by the following observation: the theory
of weak solutions of elliptic pde (and much of distribution theory) relies on making this
result an axiom.

An important Corollary is the following version of Green’s identity. In this Corollary
and below, we should visualize the gradient of u, Vu as a column vector so that the
product AVwu is makes sense as a matrix product.

Corollary 10.3 IfQ is a C'-domain, v is in C*(Q), u is in C*(Q) and A(x) is an nxn
matriz with C'(Q) entries, then

/asz v(x)A(x)Vu(x) - v(z)do(z) = /QA(x)Vu(x) -Vo(x) + v(z)divA(z)Vu(z) d.
Proof. Apply the divergence theorem to vAVu. 1

Next, we define Sobolev spaces on open subsets of R™. Our definition is motivated
by the result in Proposition 3.11. For k a positive integer, we say that u € L}(€) if u has
weak or distributional derivatives for all a for |a| < k and these derivatives, 0%u/0x®,
lie in L?(€2). This means that for all test functions ¢ € D(f2), we have

o° o°
[ us—o(w)do = (-1)‘&'/9%;(3;) dz.

The weak derivatives of u are defined as we defined the derivatives of a tempered dis-
tribution. The differences are that since we are on a bounded open set, our functions
are supported there and in this instance we require that the derivative be a distribution
given by a function.
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It should be clear how to define the norm in this space. In fact, we have that these
spaces are Hilbert spaces with the inner product defined by

(10.4)

We let [|ul|z2(q) be the corresponding norm.

Exercise 10.5 Show that if  is a bounded open set, then C*(Q2) C L2().

Example 10.6 If u is in the Sobolev space Li(R™) defined in Chapter 3 and § is an
open set, then the restriction of u to S, call it ru, is in the Sobolev space Li(Q). If Q
has reasonable boundary, (C* will do) then the restriction map r : Li(R"™) — Li(Q) is
onto. However, this may fail in general.

Exercise 10.7 a) Prove the product rule for weak derivatives. If ¢ is in C*(Q) and all
the derivatives of ¢, 0%¢/0z* with |a| < k are bounded, then we have that

Ogu _ ol 0760
ore Promisiot OxP Oz

b)If ¢ € C*(Q), conclude that the map u — ¢u takes L2()) to L2()) and is bounded.
¢) If ¢ € CHQ), show that the map v — du maps L} ((Q) — L3 ((Q).

Lemma 10.8 If Q is a C' domain and u is in the Sobolev space L3(2), then we may
write u = Z;V:o u; where uy has support in a fized (independent of u) compact subset of €
and each uj, j =1,..., N is supported in a ball B,(x) as in the definition of C* domain.

Proof. We cover the boundary, 92 by balls {By,..., By} as in the definition of C!
domain. Then, K = Q\UY_, By, is a compact set so that the distance from K to R™\ ) is
positive, call this distance §. Thus, we can find an open set Uy = {z : dist(x,0Q) > §/2}
which contains K and is a positive distance from 0{2. We use Lemma 10.1 to make a
partition of unity 1 = Z;V:O n; for the open cover of Q {Uy, By ..., By} and then we
decompose u = ijzo n;u . The product rule of exercise 10.7 allows us to conclude that
each term u; = nju is in Li(Q). i
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Recall that we proved in Chapter 2 that smooth (Schwartz, actually) functions are
dense in L’(R™), 1 < p < 0o. One step of the argument involved considering the map

n*u

where 7 is a Schwartz function with [ = 1. This approach may appear to break down
u is only defined in an open subset of R", rather than all of R". However, we can make
sense of the convolution in most of Q if we require that the function ¢ have compact
support. Thus, we let n € D(R™) be supported in B;(0) and have [n = 1.

Lemma 10.9 Suppose u is the Sobolev space L} (), 1 < p < oo, for k=0,1,2,.... Set
Q. = QN {x: dist(z,00Q) > €}. If we set us = ns * u, then for |o| < k, we have
0“ ( 0~ )
—us = (=—u
e \oge 'V

Hence, for each ¢ > 0, we have

for x € Q. with 6 < e.

S ffu —usll g0,y = 0.

Proof. We assume that u is defined to be zero outside of Q2. The convolution u * ns(x)
is smooth in all of R™ and we may differentiate inside the integral and then express the
x derivatives as y derivatives to find

aa
wenste) = [ o) st = o) dy = (<D [ alo) 3 nsle — v)dy.

If we have § < € and z € €, then ns(x — -) will be in the space of test functions D(£2).
Thus, we can apply the definition of weak derivative to conclude

aa
'a‘/ —y)d :/ g — ) dy.
na r—y)dy Q(ayﬂ(y))%(r y)dy
|
Lemma 10.10 If Q is a C'-domain and k = 0,1,2, ..., then C*>°(Q) is dense in L(£).

Proof.  We may use Lemma 10.8 to reduce to the case when u is zero outside B, (z) N {2
for some ball centered at a boundary point x and 02 is given as a graph, {(2, z,) : =, =
(")} in B,(z). We may translate u to obtain u.(z) = u(z + €e,). Since u. has weak
derivatives in a neighborhood of €2, by the local approximation lemma, Lemma 10.9 we
may approximate each u, by functions which are smooth up to the boundary of €. 1
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Lemma 10.11 If Q and ' are bounded open sets and F : Q — Q' is C'(Q) and F~'
Q' — Qs also CY(QY), then we have u € L3(Y) if and only if u € LI(Y).

Proof. The result is true for smooth functions by the chain rule and the change of
variables formulas of vector calculus. Note that our hypothesis that F' is invertible
implies that the Jacobian is bounded above and below. The density result of Lemma
10.9 allows us to extend to the Sobolev space. 1

Lemma 10.12 IfQ is a C'-domain, then there exists an extension operator E : L3(Q) —
Li(R™).

Proof. We sketch a proof when k£ = 1. We will not use the more general result. The
general result requires a more substantial proof. See the book of Stein [14], whose result
has the remarkable feature that the extension operator is independent of k.

For the case k = 1, we may use a partition of unity and to reduce to the case where u
is nonzero outside B, (z)N{2 and that 0f is the graph {(2/, x,,) : x, = ¢(2’)} in B.(z). By
the density result, Lemma 10.10, we may assume that u is smooth up to the boundary.
Then we can define Fu by

_ [ ul), o > OT)
Eu(z) = { w(@', 20(2)) — x,), T < P(2')

If v is test function in R", then we can apply the divergence theorem in €2 and in
R™\ 2 to obtain that

E
/ Eu—aw + ¢a 4 dr = YEuv -e;do
Q 8xj ('3xj o0
E
/ 7Eua—w—i—w(9 ud:v = —/ YEuv -e;do
R\Q  O0z; Ox; 09

In the above expressions, the difference in sign is due to the fact that the normal which
points out of €2 is the negative of the normal which points out of R™ \ Q.

Adding these two expressions, we see that Fu has weak derivatives in R™. These weak
derivatives are given by the (ordinary) derivative 0FEu/0x;, which is defined except on
09). In general, Fu will not have an ordinary derivative on 0f). Using Lemma 10.11, one
can see that this extension operator is bounded. The full extension operator is obtained
by taking a function u, writing u = Z;V:O n;ju as in Lemma 10.8 where the support of 7
does not meet the boundary. For each n; which meets the boundary, we apply the local
extension operator constructed above and then sum to obtain Fu = nou + Zé\;l E(n;u).
Once we have defined the extension operator on smooth functions in L%, then we can use
the density result of Lemma 10.10 to define the extension operator on the full space. 1
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Next, we define an important subspace of L7(£2), L} ((Q2). This space is the closure of
D(2) in the norm of L}(2). The functions in L (Q2) will be defined to be the Sobolev
functions which vanish on the boundary. Since a function w in the Sobolev space is
initially defined a.e., it should not be clear that we can define the restriction of u to a
lower dimensional subset. However, we saw in Chapter 9 that this is possible. We shall
present a second proof below. The space L3 ;(€2) will be defined as the space of functions
which have zero boundary values.

Remark: Some of you may be familiar with the spaces L}(Q) as H'(Q) and L3 ,(Q)
as Hy ().

We define the boundary values of a function in L?(Q) in the following way. We say
that u = v on IQ if u —v € L7,(Q). Next, we define a space Lj,(9Q) to be the
equivalence classes [u] = u + L} ((0Q) = {v : v —u € L}((Q)}. Of course, we need a
norm to do analysis. The norm is given by

lullzz ,c00) = nf{[[vll 2 - v — v € Li (@)} (10.13)

It is easy to see that this is a norm and the resulting space is a Banach space. It is
less clear L? /Q(aQ) is a Hilbert space. However, if the reader will recall the proof of
the projection theorem in Hilbert space one may see that the space on the boundary,
L3 5(092), can be identified with the orthogonal complement of L7 () in L7(2) and thus
inherits an inner product from L?((Q).

This way of defining functions on the boundary should be unsatisfyingly abstract to
the analysts in the audience. The following result gives a concrete realization of the
space.

Proposition 10.14 Let Q be a C'-domain. The map
r: CHQ) — L*(09)
which takes ¢ to the restriction of ¢ to the boundary, r¢ satisfies
||7‘U||L2(8Q) < C”UHL%(Q)

and as a consequence extends continuously to L3(Q). Since v(L3,(Q)) = 0, the map
r is well-defined on equivalence classes in L%/Q(GQ) and gives a continuous injection
r L%m(aﬂ) — L?(09).

Exercise 10.15 Prove the above proposition.
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Exercise 10.16 IfQ is a C' domain, let H be a space of functions f on 0S) defined as
follows. We say that f € H if for each ball B.(x) as in the definition of C* domains and
each 1 € D(B,(x)), we have (nf)(y', ¢(y')) is in the space L3 ;,(R"") defined in Chapter
3. In the above, ¢ is the function whose graph describes the boundary of € near . A
norm in the space H may be defined by fixing a covering of the boundary by balls as in
the definition of C*-domains, and then a partition of unity subordinate to this collection
of balls, > n and finally taking the sum

; ||nkaf/2(R"*1)

Show that H = L3 ,5(0%).
Hint: We do not have the tools to solve this problem. Thus this exercise is an excuse
to indicate the connection without providing proofs.

Lemma 10.17 If Q is a C* domain and u € C*(Q), then there is a constant C so that
| u@Pdo(@) < C [ Ju@) + |Vu(x) de.

Proof.  According to the definition of a C'-domain, we can find a finite collection of balls
{Bj:j=1,...,N} and in each of these balls, a unit vector, «;, which satisfies a; - v >
0 > 0 for some constant . To do this, choose a; to be —e,, in the coordinate system which
is used to describe the boundary near B;. The lower bound will be min;(1+ ||V ¢;||2,)~1/?
where ¢; is the function which defines the boundary near B;. Using a partition of unity
>_; ¢; subordinate to the family of balls B; which is 1 on 02, we construct a vector field

a(z) = Z_: ¢;(x)a;.

We have a(x) - v(x) > § since each «a; satisfies this condition and each ¢; takes values in
[0,1]. Thus, the divergence theorem gives

J - lu(z)|? do(z) < /8(2 lu(2)|?a(z) - v(z) do

= [ Iu(diva) + 2Re(u(e)a - Va(e)) da.

Applying the Cauchy-Schwarz inequality proves the inequality of the Lemma. The con-
stant depends on () through the vector field o and its derivatives. 1
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Proof of Proposition 10.14. The proposition follows from the lemma. That the map r
can be extended from nice functions to all of L?(Q2) depends on Lemma 10.10 which
asserts that nice functions are dense in L?(12). 1

Exercise 10.18 Suppose that Q is a C* domain. Show that if $ € C1(Q) and ¢(z) =
on 99, then ¢(x) is in the Sobolev space L7 1(€2).

Finally, we extend the definition of one of the Sobolev spaces of negative order to
domains. We define L?,(€2) to be the dual of the space L7 (€2). As in the case of R,
the following simple lemma gives examples of elements in this space.

Proposition 10.19 Assume € is an open set of finite measure, and g and f1,..., f, are
functions in L*(Q). Then

¢ — Ag) = /Qg(w)szﬁ(x) + f:lfj@)agf) d
18 1N L2_1(Q)-

Proof. According to the Cauchy-Schwarz inequality, we have

1/2
30 < ([ e + [Vu@)dr) (/rg |2+|sz |da:) .

10.2 The weak Dirichlet problem

In this section, we introduce elliptic operators. We let A(z) be function defined on an
open set {2 and we assume that this function takes values in n x n-matrices with real
entries. We assume that each entry is Lebesgue measurable and that A satisfies the
symmetry condition

A=A (10.20)

and ellipticity condition, for some A > 0,

MNEP < A@)E-E <A, €eRM, x e (10.21)
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We say that u is a local weak solution of the equation divA(z)Vu = f for f € L?,(Q) if
wisin L?,,.(Q) and for all test functions ¢ € D(2), we have

1,loc

- [A@)Vu(@) - Vo(a) d = [(0).

Since the derivatives of u are locally in L?, we can extend to test functions ¢ which are
in L3 ,(€2) and which (have a representative) which vanishes outside a compact subset of
Q). However, let us resist the urge to introduce yet another space.

Statement of the Dirichlet problem. The weak formulation of the Dirichlet problem
is the following. Let g € L?(2) and f € L?,(Q), then we say that u is a solution of the
Dirichlet problem if the following two conditions hold:

u € L3(Q) (10.22)
u—g € Liy(Q) (10.23)
- [ A@)Vu@)Vo(x)da = £(6) ¢ € L3y(%). (10.24)

Note that both sides of the equation (10.24) are continuous in ¢ in the topology of
L3 4(€2). Thus, we only need to require that this hold for ¢ in a dense subset of L7 ().

A more traditional way of writing the Dirichlet problem is, given g and f find v which
satisfies

divAVu = f, in
{ u =g, on 0f2

Our condition (10.24) is a restatement of the equation, divAVu = f. The condition
(10.23) is a restatement of the boundary condition v = f. Finally, the condition (10.22)
is needed to show that the solution is unique.

Theorem 10.25 If Q) is an open set of finite measure and g € L3(Q) and f € L*,(Q),
then there is exactly one weak solution to the Dirichlet problem, (10.22-10.24). There is
a constant C'(A\,n, Q) so that the solution u satisfies

HUHL%,O(Q) < Cllgllzzy + 11|22, @)-

Proof.  Ezistence. If u € L}y () and n > 3 then Holder’s inequality and then the
Sobolev inequality of Theorem 8.20 imply

[ e < ( [ @) as) 7 @ < @ [ [Fuw)Rar
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If n = 2, the same result holds, though we need to be a bit more persistent and use
Holder’s inequality, the Soboleve inequality and Holder again to obtain:

/Q|u(1‘)|2dx < </Q |u(x)|4dx>1/2 m(Q)V? < (/Q V()3 dm)g/Qm(Q)l/Q
< [ 1Vu(@) dz m(2).

Note that in each case, the application of the Sobolev inequality on R" is allowed because
L3 5(€2) may be viewed as a subspace of L}(Q2) by extending functions on Q to be zero
outside 2. Thus we have

[ul| 2y < Cm(Q)Y™|Vaul|z2(q)- (10.26)

Next, we observe that the ellipticity condition (10.21) implies that
h / Vu(z)? < / A(z)Vu(z)Va(z) de < A7 / Vu(z)[? de. (10.27)
Q Q Q

We claim the expression
/ A(x)Vu(z)Vo(z) dx (10.28)
Q

rovides an inner product on L? ,(€2) which induces the same topology as the standard
p p 1,0

)

inner product on L3 ,(Q) C L3(€2) defined in (10.4). To see that the topologies are the
same, it suffices to establish the inequalities

/Q V(@) + u(@)? de < AY(1 + Cm(Q)2/™) /Q A(2)Vu(z) V() dz
and that
/QA(x)Vu(:L*)Vﬂ(x) dr < xl/ﬁyvu(m)wx < xl/ﬁyvu(a:)m lu(z)|? de.

These both follow from the estimates (10.26) and (10.27). As a consequence, standard
Hilbert space theory tells us that any continuous linear functional on LiO(Q) can be
represented using the inner product defined in (10.28). We apply this to the functional

¢— — | AVgVodz - f(0)

and conclude that there exists v € L7 4(2) so that

[ A@Ve@)V(@)dr = — [ A@)Vg(@)Vo(e)dz— f(9), o€ Lip(®). (10.29)
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Rearranging this expression, we can see that u = g+ v is a weak solution to the Dirichlet
problem.

Uniqueness. If we have two solutions of the Dirichlet problem w; and us, then their
difference w = u; — uy is a weak solution of the Dirichlet problem with f = ¢ = 0. In
particular, w is in L7 j(©2) and we can use w as a test function and conclude that

/A(x)Vw(x) -Vw(x)dr = 0.
Thanks to the inequalities (10.26) and (10.27) we conclude that

/Q w(x)|? dz = 0.

Hence, u; = us.
Stability. Finally, we establish the estimate for the solution. We replace the test
function ¢ in (10.29) by v. Using the Cauchy-Schwarz inequality gives

/QAVU -Vudr < AilH”HLio(Q)HVQHL%(Q) + Hf”L?_l(Q)HUHLiO(Q)-

If we use that the left-hand side of this inequality is equivalent with the norm in L%’O(Q),
cancel the common factor, we obtain that

||U||Lf’0((2) < CHgHLio(Q) + 122 0
We have u = v + g and the triangle inequality gives

||U||L§(Q) < ||9||L§(Q) + ||U||L%’O(Q)
so combining the last two inequalities implies the estimate of the theorem. 1

Exercise 10.30 (Dirichlet’s principle.) Let g € L3(Q2) and suppose that f = 0 in the
weak formulation of the Dirichlet problem.
a) Show that the expression

I(u) = /Q Ax)Vu(z) - Va(z) do

attains a minimum value on the set g + L7,(Q) = {g+ v :v € L7 ((Q)}. Hint: Use the
foil method. This is a general fact in Hilbert space.

b) If w is a minimizer for I, then w is a weak solution of the Dirichlet problem,
divAVu = 0 and u = g on the boundary.

c) Can you extend this approach to solve the general Dirichlet problem divAVu = f
in  and u = g on the boundary?



Chapter 11

Inverse Problems: Boundary
identifiability

11.1 The Dirichlet to Neumann map

In this section, we introduce the Dirichlet to Neumann map. Recall the space L? 12(082)
which was introduced in Chapter 10. We let €2 be a bounded open set, A a matrix which
satisfies the ellipticity condition and given f in L? /2(8Q), we let © = uy be the weak
solution of the Dirichlet problem

{ divAVu = 0, on )

u=f, on 0f2. (11.1)

Given u € L?(2) we can define a continuous linear functional on L}(Q) by

¢ — /Q A(x)Vu(z)Ve(x)dx.

If we recall the Green’s identity (10.3), we see that if u and A are smooth, then

/a A@)Vu(@) - v(@)o(x) do(x) = /Q A(2)Vu(z) V() + ¢(x)divA(z)Vau(z) dr.

Thus, if u solves the equation divAVu = 0, then it reasonable to define AVu - v as a
linear functional on L7 ,(99) by

AV - v(¢) = /Q A(2)Vu(z) - Vo(z) da. (11.2)

95
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We will show that this map is defined on L? /2(082) The expression AVu - v is called the
conormal derivative of u at the boundary. Note that it is something of a miracle that we
can make sense of this expression at the boundary. To appreciate that this is surprising,
observe that we are not asserting that the full gradient of u is defined at the boundary,
only the particular component AVu - v. The gradient of v may only be in L*(Q2) and
thus there is no reason to expect that any expression involving Vu could make sense on
the boundary, a set of measure zero.

A potential problem is that this definition may depend on the representative of ¢
which is used to define the right-hand side of (11.2). Fortunately, this is not the case.

Lemma 11.3 Ifu € L3(Q) and u is a weak solution of divAVu = 0, then the value of
AVu - v(¢) is independent of the extension of ¢ from OS2 to Q.
The linear functional defined in (11.2) is a continuous linear functional on L%/Q(OQ).

Proof. To establish that AVu - v is well defined, we will use that u is a solution of
divAVu = 0. We choose ¢1, ¢5 in L?(Q2) and suppose ¢y — ¢y € L%}O(Q). According to
the definition of weak solution,

/Q A(2)Vu(z) - V(1 (z) — ¢o(2)) dz = 0.

To establish the continuity, we need to choose a representative of ¢ which is close to
the infinum in the definition of the L ,-norm (see (10.13)). Thus we need [|p]|2q) <
2||rol| 12,,(09)" Here, r¢ denotes the restriction of ¢ to the boundary. With this choice of

¢ and Cauchy-Schwarz we have
AV - v(9)] < C|Vull 29[ Vel 12(0)-
This inequality implies the continuity. 1

We will define L? ,(9Q) as the dual of the space L7 ,(09). Now, we are ready to
define the Dirichlet to Neumann map. This is a map

Ag: L%/2(Q) - Lzl/z(aQ)

defined by
Asgf =AVu-v

where u is the solution of the Dirichlet problem with boundary data f.
The traditional goal in pde is to consider the direct problem. For example, given
the coefficient matrix A, show that we can solve the Dirichlet problem. If we were more
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persistent, we could establish additional properties of the solution. For example, we could
show that the map A — A4 is continuous, on the set of strictly positive definite matrix
valued functions on (2.

However, that would be the easy way out. The more interesting and difficult problem
is the inverse problem. Given the map A 4, can we recover the coefficient matrix, A. That
is given some information about the solutions to a pde, can we recover the equation. The
answer to the problem, as stated, is no, of course not.

Exercise 11.4 Let Q be a bounded domain and let F' : Q@ — Q be a C1(Q2) diffeomorphism
that fixes a neighborhood of the boundary. Show that if A gives an elliptic operator divAV
on ), then there is an operator divBV so that

divAVu =0 < divBVuo F =0.

As a consequence, it is clear that the maps Ay = Ag. Hint: See Lemma 11.10 below for
the answer.

Exercise 11.5 Show that the only obstruction to uniqueness is the change of variables
described in the previous problem.

Remark: This has been solved in two dimensions, by John Sylvester [16]. In three
dimensions and above, this problem is open.

Exercise 11.6 Prove that the map A — A4 is continuous on the set of strictly positive
definite and bounded matriz-valued functions. That is show that

1Aa = ABllz2 12 ) < CAllA = Bl

1/277=1/2

~ 2 2
Here, || - ”ﬁ(Lf/Q,Lz,m) denotes the norm on linear operators from L, to L2, 5.

a) As a first step, show that if we let uy and up satisfy divAVus = divBVug = 0
in an open set  and up = ug = f on 052, then we have

[ 19a = Vus? dz < Cll sz, oo 14 — B

Hint: We have divBVuy = div(B — A)Vuy since ua is a solution.
b) Conclude the estimate above on the Dirichlet to Neumann maps.
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However, there is a restricted version of the inverse problem which can be solved. In
the remainder of these notes, we will concentrate on elliptic operators when the matrix
A is of the form A(z) = ~(x)I where [ is the n X n identity matrix and ~(z) is a scalar
function which satisfies

A< y(a) <A (11.7)

for some constant A > 0. We change notation a bit and let A, be the Dirichlet to
Neumann map for the operator divyV. Then the inverse conductivity problem can be
formulated as the following question:

Is the map v — A, injective?

We will answer this question with a yes, if the dimension n > 3 and we have some rea-
sonable smoothness assumptions on the domain and . This is a theorem of J. Sylvester
and G. Uhlmann [17]. Closely related work was done by Henkin and R. Novikov at about
the same time [5, 9]. One can also ask for a more or less explicit construcion of the inverse
map. A construction is given in in the work of Novikov and the work of A. Nachman [7]
for three dimensions and [8] in two dimensions. This last paper also gives the first proof
of injectivity in two dimensions. My favorite contribution to this story is in [2]. But this
is not the the place for a complete history.

We take a moment to explain the appearance of the word conductivity in the above.
For this discussion, we will assume that function v and v are smooth. The problem we
are considering is a mathematical model for the problem of determining the conductivity
~ by making measurements of current and voltage at the boundary. To try and explain
this, we suppose that u represents the voltage potential in €2 and then Vu is the electric
field. The electric field is what makes electrons flow and thus we assume that the current
is proportional to the electric field, J = vVu where the conductivity ~ is a constant of
proportionality. Since we assume that charge is conserved, for each subregion B C (2,
the net flow of electrons or current through B must be zero. Thus,

0= - YWVu(x) - v(z)do(x).

The divergence theorem gives that

0= /88 Y(2)Vu(z) - v(z)do(z) = /B divy(x)Vu(z) dz.

Finally, since the integral on the right vanishes, say, for each ball B C €2, we can conclude
that divyVu = 0 in .
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11.2 Identifiability

Our solution of the inverse conductivity problem has two steps. The first is to show that
the Dirichlet to Neumann map determines v on the boundary. The second step is to
use the knowledge of v on the boundary to relate the inverse conductivity problem to a
problem in all of R™ which turns out to be a type of scattering problem. We will use the
results of Chapter 9 to study this problem in R".

Theorem 11.8 Suppose that O is C. If v is in C°(Q) and satisfies (11.7), then for
each x € 0X), there exists a sequence of functions uy so that
Y(@) = Jim Aux(ay).

Theorem 11.9 Suppose 2 and vy are as in the previous theorem and also OS2 is C? and
v is in CH(Q). If e is a constant vector and uy as in the previous theorem, then we have

Vy(z)-e= A}l_r)Iloo - (7(:E)|VUN($)|26 -v(x) —2Re W(m)a;ljv(x)e : Vu(x)) do.

The construction of the solutions uy proceeds in two steps. The first step is to write
down an explicit function which is an approximate solution and show that the conclusion
of our Theorem holds for this function. The second step is to show that we really do have
an approximate solution. This is not deep, but requires a certain amount of persistence.
I say that the result is not deep because it relies only on estimates which are a byproduct
of our existence theory in Theorem 10.25.

In the construction of the solution, it will be convenient to change coordinates so that
in the new coordinates, the boundary is flat. The following lemma keeps track of how
the operator divyV transforms under a change of variables.

Lemma 11.10 Let A be an elliptic matriz and F : Q' — Q be a C'(Q)-diffeomorphism,
F: Q' — Q. Then have that divAVu = 0 if and only if divBVu o F where

B(y) = | det DF(y)| DF~(F(y))' A(F(y)) DF ' (F(y)).

Proof. 'The proof of this lemma indicates one of the advantages of the weak formulation
of the equation. Since the weak formulation only involves one derivative, we only need
to use the chain rule once.

We use the chain rule to compute
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This is valid for Sobolev functions also by approximation (see Lemma 10.11). We insert
this expression for the gradient and make a change of variables © = F(y) to obtain

/Q A2)Vu(z) - Vo(x) do
= / A(F(y))DF~H(F(y))V(uo F(y)) - DF'(F(y))V(¢ o F(y))| det DF(y)| dy

= /Q |det DF(y)|[DF~(F(y))' A(F(y)) DF ' (F(y))V(uo F(y)) - V(¢ 0 F(y)) dy.

This last integral is the weak formulation of the equation divBVu = 0 with the test
function ¢ o F'. To finish the proof, one must convince oneself that the map ¢ — ¢ o F
is an isomorphism' from L3 ;(Q) to L7 ;(€'). 1

Exercise 11.11 Figure out how to index the matrix DF~! so that in the application of
the chain rule in the previous Lemma, the product DF~'V (uo F) is matriz multiplication.
Assume that the gradient is a column vector.

Solution The chain rule reads

0 0G; Ou
ainOG— c%z a—ijG'
Thus, we want
_ 96G;
(DG);; = oz,

In the rest of this chapter, we fix a point x on the boundary and choose coordinates
so that x is the origin. Thus, we suppose that we are trying to find the value of ~
and Vv at 0. We assume that 99 is C'! near 0 and thus we have a ball B,(0) so that
By (0) N0 = {(2/,x,) : x, = ¢(2")} N Ba,(0). Welet x = F (v, yn) = (v, oY) + yn)-
Note that we assume that the function ¢ is defined in all of R*~! and thus, the map F
is invertible on all of R™. In the coordinates, (¢, y,), the operator divyV takes the form

divAVu =0

with A(y) = v(y)B(y). (Strictly speaking, this is v(F(y)). However, to simplify the
notation, we will use y(z) to represent the value of v at the point corresponding to z
in the current coordinate system. This is a fairly common convention. To carry it out

L An isomorphism for Banach (or Hilbert spaces) is an invertible linear map with continuous inverse.
A map which also preserves the norm is called an isometry.
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precisely would require yet another chapter that we don’t have time for...) The matrix
B depends on ¢ and, by the above lemma, takes the form

. | P ~Vo(y')
5= _voiyit 1+ wu )

Apparently, we are writing the gradient as a column vector. The domain €’ has 0 on the
boundary and near 0, 9’ lies in the hyperplane y, = 0 and £’ lies in the regions y, > 0.
We introduce a real-valued cutoff function 7(y) = f(y')g(y») which is normalized so that

/ )y =1 (11.12)
-

and so that ¢g(y,) = 1 if |y,| < 1 and ¢(y,) = 0 if |y,| > 2. Our next step is to set
nn(x) = NO=D/Ap(NY2y). We choose a vector a € R"™ and which satisfies

B0)a-e, = 0 (11.13)
B0)a-a = B(0)e, - ey. (11.14)

We define Ey by
En(y) = N"2 exp(=N(yn +ia - y))

and then we put
un(y) = nn (Y) En(y). (11.15)

The function vy is our approximate solution. The main facts that we need to prove
about vy are in Lemma 11.16 and Lemma 11.19 below.

Lemma 11.16 With vy and Q' as above,

]\}I_I)Iclx) |[divyBVon| 2 () = 0.

To visualize why this might be true, observe that Ey is a solution of the equation with
constant coefficients B(0). The cutoff function oscillates less rapidly than Ey (consider
the relative size of the gradients) and thus it introduces an error that is negligible for N
large and allows us to disregard the fact that Ey is not a solution away from the origin.

Our proof will require yet more lemmas. The function vy is concentrated near the
boundary. In the course of making estimates, we will need to consider integrals pairing
vy and its derivatives against functions which are in L%,O(Q). To make optimal estimates,
we will want to exploit the fact that functions in L7 () are small near the boundary.
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The next estimate, a version of Hardy’s inequality makes this precise. If we have not
already made this definition, then we define

0(z) = inf |z —yl.

The function § gives the distance from x to the boundary of €.

Lemma 11.17 (Hardy’s inequality) a) Let f be a C* function on the real line and sup-
pose that f(0) =0, then for 1 < p < oo,

[T <y [*1wpa

b) If f is in L} 4(S2), then

/ f(z)

6(x)
Proof. a) We prove the one-dimensional result with p < oo first. We use the fundamental
theorem of calculus to write

2

dv < C [ [Vf@) +| (@) dr.

t
fity=— [ fis)ds

Now, we confuse the issue by rewriting this as
51 — -1/p' 1/p ds
B = [0 X (U957 ()

d
- / K(t/s)s7 f'(s) f (11.18)
where K (u) = u™7'x(1,0)(u). A computation shows that
[T K@% = [T =y
0 S 0 t

which will be finite if p > 1. Thus, by exercise 4.5 we have that g — [ K(t/s)g(s)ds/s
maps LP(ds/s) into itself. Using this in (11.18) gives

(T ) o ([ rora”

Which is what we wanted to prove. The remaining case p = oo where the LP norms must
be replaced by L* norms is easy and thus omitted.
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b) Since D(Q) is dense in L7 (€2), it suffices to consider functions in D(Q2). By a
partition of unity, as in Lemma 10.8 we can further reduce to a function f which is
compactly supported B, (z) N €2, for some ball centered at = on the boundary, or to a
function f which is supported at a fixed distance away from the boundary. In the first
case have that 0€2 is given by the graph {(v',v.) : y» = ¢(v')} near x. Applying the
one-dimensional result in the y,, variable and then integrating in the remaining variables
, we may conclude that

1f(y)I? Ou
/QﬂBr(x) (Yn — B(y'))? dy <4

This is the desired inequality once we convince ourselves that (y, —#(y’))/d(y) is bounded
above and below in B, (z) N Q.

The second case where f is supported strictly away from the boundary is an easy
consequence of the Sobolev inequality, Theorem 8.20, because 1/§(x) is bounded above
on each compact subset of (2. 1

2
dy.
N L

The following Lemma will be useful in obtaining the properties of the approximate
solutions and may serve to explain some of the peculiar normalizations in the definition.

Lemma 11.19 Let vy, Ey and ny be as defined in (11.15). Let B be continuous at 0
then

Jim N/ Y)|nn (@) [2e 2% dy = B(0) /2. (11.20)

If k > —1 and 1 € D(R"), then for N sufficiently large there is a constant C' so that
[ OV 2y dy| < ONTE K, (11.21)

Proof. To prove the first statement, we observe that by the definition and the normal-
ization of the cutoff function, f, in (11.12) we have that

n

— ;1 _
/ 77N<y)26 2Nyn dy = N2 / f(Nl/Qy/)Qe 2Nyn, dy
, {y:yn>0}

+NTE (g(N'2yn)? = 1) (N2 )2e 20 dy,

{y:yn>0}

The first integral is 1/(2) and the second is bounded by a multiple of (2N) te=2N"?,
The estimate of the second depends on our assumption that g(t) = 1 for ¢ < 1. Thus,
we have that

2 —2Nyn _
]\}12(1)0]\7 o N ~n(y)“e dy =1/2.
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Using this to express the % as a limit gives

580) ~ tim N [ (e mdyl < im N [ 150) - 5(y)]

2 N—oo (9%
XnN(y)%’zNy"dy

< lim sup  21(0) — A(y)|

N=00 11y <21/2N-1/2} 2

XN/ nn (y)2e 2N dy.
Q/

Now the continuity of § implies that this last limit is 0.

The inequalities in the second statement follow easily, by observing that for N suffi-
ciently large, we have 0(y) = ¥, on the support of 7(N'/2y). If suppsj C Bg(0), then we
can estimate our integral by

[ o a e ey <l [ ke,

< CON'Z* 17k,

We can now give the proof of Lemma 11.22.

Lemma 11.22 With Q' and vy as above, suppose (3 is a bounded function on Q' which
18 continuous at 0, then

lim [ B(y)B(y)Vun(y) - Von(y) dy = 5(0)B(0)e, - en.

N—oo JO

Proof. Using the product rule, expanding the square and that ny is real valued gives

/ By)By)Von(y)Von(y)dy = N / B)(B(y)a - a+ By)e, - en)nn(y)2e 2N dy

—2 [ B)(By) Vi (y) - ennv (y)e 2 dy
+N~ / (y)Vnn(y) - VnN(y)e’QNy” dy
= I+ II+111.

By (11.20) of our Lemma 11.19, we have that

lim I = ((0)(B(0)e, - e,). (11.23)

N—oo
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where we have used (11.14) to replace B(0)a - a by B(0)e,, - €,. The integral 11 can be
bounded above by

II <2Nz

BB [ 1(Vn)(V 2y (N 2y) e dy < CNTVR - (11.24)
Q/

Here, we are using the second part of Lemma 11.19, (11.21). The observant reader will
note that we have taken the norm of the matrix B in the above estimate. The estimate
above holds if matrices are normed with the operator norm-though since we do not care
about the exact value of the constant, it does not matter so much how matrices are
normed.

Finally, the estimate for /11 also follows from (11.21) in Lemma 11.19 as follows:

11 < N"T’l||ﬂB||OO/ (Vi) (NY2y)|2e~2Nom gy < ON1, (11.25)
Q/
The conclusion of the Lemma follows from (11.23-11.25). 1

Now, we can make precise our assertion that vy is an approximate solution of the
equation divAVv = 0.

Lemma 11.26 With vy and Q' as above,

]\;ILI;O HdiVAVUNHLgl(Q’) =0.

Proof. 'We compute and use that divA(0)VEx = 0 to obtain

divA(y)Vun(y) = div(A(y) — A(0))Vun(y) + divA(0)Von(y)
= div(A(y) — A(0))Vun(y)
+2A(0)Vnn(y)VEN(y) + ExdivA(0) Vi (y)
= I+ II+1II

In the term I, the divergence must be interpreted as a weak derivative. To estimate the
norm in L? | (), we must pair each of I through ITI with a test function ¢. With I, we
use the definition of weak derivative and recall that ny is supported in a small ball to
obtain

[1(¢)]

(A ~ A©)Tox(y) - Vly) dy
< sw (A - A0 Voxl@ I Véle:

|y‘<23/2N—1/2
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This last expression goes to zero with N because A is continuous at 0 and according to
(11.22) the L*(Q) of the gradient of vy is bounded as N — 0.

To make estimates for /I, we multiply and divide by d(y), use the Cauchy-Schwarz
inequality, the Hardy inequality, Lemma 11.17, and then (11.21)

(1@ = | ) 240 Vi (y)VEx(y)¥(y) dyl

2 1/2 .
(/' %‘ dy) (Nn;g/,6<y)2‘(V771(N1/2y)|2ezNyn dy) /

—1/2
< CN /||¢||Lf’0(ﬂ’)'

Finally, we make estimates for the third term

11@)] = | [ Ex(p)divA©) Vs (y) ]

(/ Y(y) nt1

) 1/2
o dy) (¥4 [ 30?1 (aivA) T (VY25 Py
< CH@Z)HLiO(Q’)N_l-

1/2

i(y)

Now, it is easy to patch up vy to make it a solution, rather than an approximate
solution.

Lemma 11.27 With Q' and B as above, we can find a family of solutions, wy, of
divAVwy = 0 with wy — vy € L7 4(€Y) so that

lim | B(y)B(y)Vwy(y) - Vion(y) dy = 3(0)B(0)e, - en.

N—oo JQ
Proof. According to Theorem 10.25 we can solve the Dirichlet problem

divAVoy = —divAVuy, in
Uy = vp, on 0N

The solution vy will satisfy
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by the estimates from the existence theorem, Theorem 10.25 and the estimate of Lemma
11.26.

If we set wy = vy + Uy, then we have a solution with the correct boundary values
and by (11.28) and Lemma 11.22

lim [ B(y)B(y)Vwn(y) - Voy(y)dy = lim | AVuy(y) - Von(y) dy

N—oo JQ N—oo JQ

= B(0)B(0)e, - e,.

We will need another result from partial differential equations-this one will not be
proven in this course. This Lemma asserts that solutions of elliptic equations are as
smooth as one might expect.

Lemma 11.29 If A is matriz with C*(Q) entries and Q is a domain with C?-boundary,
then the solution of the Dirichlet problem,

divAVu =0 mn €
u=f on 02

will satisfy
lullzz) < Cllfll ez

As mentioned above, this will not be proven. To obtain an idea of why it might be
true. Let u be a solution as in the theorem. This, we can differentiate and obtain that
v = Ou/Ox; satisfies an equation of the form divyVv = div(0v/dz;)Vu. The right-hand
side is in L?, and hence it is reasonable to expect that v satisfies the energy estimates
of Theorem 10.25. This argument cannot be right because it does not explain how the
boundary data enters into the estimate. To see the full story, take MA633.

Finally, we can give the proofs of our main theorems.

Proof of Theorem 11.8 and Theorem 11.9. We let F' : ' — € be the diffeomorphism
used above and let uy = wy o F~1/(1+ |[V¢(0)]?). According to the change of variables
lemma, uy will be a solution of the original equation, divyVuy = 0 in Q. Also, the
Dirichlet integral is preserved:

1

/Qﬂ(x)]VuN(x)|2d:c = TTTVROT

[ 8w B)Vux(y) - V() dy.
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Thus, the recovery of v at the boundary follows from the result in €' of Lemma 11.27
and we have

hm / 2)|Vuy(r)|* dz = hm A, (un)(an).

For the proof of the second theorem, we use the same family of solutions and the
Rellich identity [10]:

/89’)/(1‘>6 ()| Vuy(z)* — 2Rey(x )gg(x) e-Viu(x)dr = /Qe V()| Vuy () d.

This is proven by an application of the divergence theorem. The smoothness result in
Lemma 11.29 is needed to justify the application of the divergence theorem: we need to
know that uy has two derivatives to carry this out. The full gradient of uy is determined
by the boundary values of uy and the Dirichlet to Neumann map.
By Lemma 11.22, if v € C'(2), we can take the limit of the right-hand side and
obtain that
Iy

5 0) = Jim_ [ o) V()
|

Corollary 11.30 If we have a C? domain and for two C*(Q) functions, A,, = A.,, then
Y1 = Y2 on the boundary and Vs, = V7, on the boundary.

Proof. 'The boundary values of the function uy are independent of ;. The expression
Aun(uy) in Theorem 11.8 clearly depends only on uy and the map A.,. The left-hand
side Theorem 11.9 depends only on v and Vuy. Since Vuy which can be computed from
uy and the normal derivative of uy. Hence, we can use Theorem 11.9 to determine Vv~
from the Dirichlet to Neumann map. 1

Exercise 11.31 If v and 02 are regular enough, can we determine the second order
derivatives of vy from the Dirichlet to Neumann map?

It is known that all derivatives of u are determined by the Dirichlet to Neumann
map. I do not know if there is a proof in the style of Theorems 11.8 and 11.9 which tell
how to compute second derivatives of v by looking at some particular expression on the
boundary.

Exercise 11.32 If one examines the above proof, one will observe that there is a bit of
slop. We made an arbitrary choice for the vector a and used o in the determination of
one function, ~y. It is likely that in fact, we can determine (n — 1) parameters at the
boundary by considering (n — 1) linearly independent choices for . Run with this.



Chapter 12

Inverse problem: (Global uniqueness

The goal of this chapter is to prove the following theorem.

Theorem 12.1 IfQ is a C?-domain in R™, n > 3, and we have two C*(Q) conductivities
with Ay, = A,,, then v1 = 7.

The proof of this result relies on converting the problem of the uniqueness of ~ for
the equation divyV to a similar question about the uniqueness of the potential ¢ for
a Schrodinger equation of the form A — ¢ with ¢ = A,/7/,/7. One reason why this
Chapter is so long, is that we spend a great deal of time convincing ourselves that that
the uniqueness question for one equation is equivalent with the uniqueness question for
the other. Most of this chapter is lifted from the paper of Sylvester and Uhlmann [17].
A few of the details are taken from later works that simplify parts of the argument.

12.1 A Schrodinger equation

Here, we extend our notion of weak solution to equations with a potential or zeroth order
term.
We say that v is a weak solution of

Av—qu=0 on )
v=f on 02

if v e L}(Q), v— f € Li(Q) and
[ Vo) Vo) + a@pe(@)o(e) dr =0, ¢ € L3(%).

109
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If ¢ > 0 and ¢ € L™, then the quadratic form associated with this equation clearly
provides an inner product on LiO(Q) and hence we can prove an existence theorem by
imitating the arguments from Chapter 10. However, the potentials that we are studying
do not satisfy ¢ > 0, in general. Still, it is possible that the quadratic form is non-negative
even without this bound. That is one consequence of the following Lemma. We will use
the Lemma below to relate the existence and uniqueness for A — ¢ to divyV.

Lemma 12.2 Suppose that Q is C', v is C*(Q) and that vy is bounded above and below
as in (11.7) A function u in L2(Q) satisfies

divyVu =0, in Q
u=f, on 02

if and only if v = \/yu is a weak solution of

Av—qu=0, in{
v=./"f, on 0S)

Proof. We let C}(2) denote the space of functions in C*(2) which are compactly sup-
ported in Q. If ¢ € C1(Q), then \/7¢ is also in C}(€2) and hence lies in L7 ;(Q2). We
consider the quadratic expression in the weak formulation of divyVu = 0 and then use
the product rule twice to obtain

| /@) Vul@)Vola)da = /vam)u(x»-\r(x)w(w)
(@) Vo

= [ VA - <f<a:>a><x>>
—u(@)(VA()) - (V@) V()
~V(Vi@)u(a) - (V/A(@)6(x) do

Now, in the middle term, we use the divergence theorem to move the gradient operator
from ¢ to the remaining terms. Since we are not assuming that ¢ vanishes on the
boundary, we pick up a term on the boundary:

| u@(Vr@) - (@) Vo)) do 2 (A () (A)o()
V(A ) (@ >> (VVA(@))o(x) da

+ [ 6@) VAV A@) - v() do(a)
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We use this to simplify the above expression, note that two terms cancel and we
obtain, with ¢ = A,/v/,/7, that

J 1@ Vu(@)- Vo) de = [ V(@) - V(/A@)6)
+a(x)y/(@)u(z) 7 @)(x) da
\/_(x)u(x)qb(x)v\ﬁ(x)-yda. (12.3)

Since the map ¢ — /7¢ is invertible on Ccl(Q) we have that

/Q’V(iv)vu(l“) V() dr =0, for all ¢ € CH(Q),

if and only if with v = |/qu

/Q Vo(z) - Vé(x) + q(x)o(z)p(z) de = 0, for all ¢ € C1(Q).
|

Corollary 12.4 With q as above, if f € L3(Q), then there exist a unique weak solution
of the Dirichlet problem for A — q.

Proof. According to Lemma 12.2, solutions of the Dirichlet problem for Av — quv = 0
with data f are taken to solutions of the Dirichlet problem for divyVu = 0 with data
f/v/7 by the map v — v/,/7 and this map is invertible, the existence and uniqueness
for A — ¢ follows from the existence and uniqueness in Theorem 10.25. 1

Exercise 12.5 We claimed above that if ) is bounded and q > 0 is real and in L>°, then
the expression

/Vu-VT)—i-qu@dx
Q

defines an inner product on LiO(Q) which induces the same topology as the standard
inner product. Verify this.
Show that this continues to hold forn > 3, if ¢ € L™*(2). What goes wrong if n = 27

The following Lemma asserts that a function 3 € C'(Q) function defines a multiplier
on L? /2 (092) which depends only on the boundary values of 3. This should seem obvious.
That we need to prove such obvious statements is the price we pay for our cheap definition
of the space Lj ().
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Lemma 12.6 Let Q be a Ct-domain. If 31, B2 € CH(Q), By = B2 on 09, then for each
feLiQ), (61— Ba)f € Lio(Q). As a consequence, for each f € L1/2( Q), b1 f = Paf.

Proof. First note that the product rule, exercise 10.7 implies that §;f is in L3(Q) if f
is in L3(Q). To see that (8 — f2)f is in L7 1(2), we will establish the following:

Claim. If 3 € CY(Q) and 8 = 0 on 99, then the map f — Bf maps L3(2) into
13,(0).

To establish the claim, we may use a partition of unity to reduce to a function f
which is supported in a ball B,(xy) and so that near x, the boundary lies in a graph
{(2,2,) @z, = ¢(2')}. We let A(t) be a function which is smooth on all of R, is 0 if
t<landis1lift> 2. We let

ne(x) = M(zn — ¢(2'))/€).

Thus, 7 vanishes on QN B, (zg). The product n.(z)3(x) f(z) will be compactly supported
in Q, hence we can regularize as in Lemma 10.9 in order to approximate in the L%({)-
norm by functions in D(2) and conclude that 7.(z)G(z)f(x) is in L} ;(€2). Now we show
that

GE%L neBf — BfllL2() = 0. (12.7)
This will imply that 3f is in L7 (), since L} ;(€) is (by definition) a closed subspace of

We establish (12.7). It is an immediate consequence of the Lebesgue dominated con-
vergence theorem that n.3f — Bf in L*(Q2) as ¢ — 0. Now, we turn to the derivatives.
We compute the derivative

2 a)3) ) = (L) + ) ()

L

By the dominated convergence theorem, the second term on the right converges in L?(£2)
to the derivative of 3f. We show the first term on the right goes to zero in L% To
see this, we apply the mean value theorem of one variable calculus on the line segment
joining (2, ¢(z’)) to (2',z,) and use that F(z, #(z’)) = 0 to conclude that

|8(z)] < 26| Voo

Using this, and observing that Vn, is supported in a thin strip along the boundary and
satisfies |Vn| < C/e , we conclude that

[ 1S (@) @) de < ol @)

('3% {Br(z0){z:0<zn—¢(z")<2¢}
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The last integral goes to zero as € — 0%. Thus the claim follows.

It is easy to see that f — (3;f gives a map on L3(Q).

Now, if each §; and (3, are as in the theorem and f is a representative of an element
of L?,(09), then since 31 f — fBaf € L (), we can conclude that $,f and B, f give the

same function L3, (99). 1

Our next step is to establish a relation between the Dirichlet to Neumann map for ¢
and that for ~.

Lemma 12.8 If vy is in C?(Q) and satisfies the ellipticity condition (11.7), and Q is a
Ct-domain, then we have
1

Aq()—TV\/_ \F <f)

Proof. We fix fin L? /2(89) and suppose that v is the solution of the Dirichlet problem
for divyV with boundary data f. According to the identity (12.3) in the proof of Lemma
12.2, we have

MG = [ 1@ Vule) - Vola) da
= [ V(A@u@) - V(A@)6@) + )y @)u(@)yF@)s) d
~ [ VA@u@)é@) V@) - vdo
= VIMNWAN@) = [ VIV védo.

Making the substitution f = g/,/7 and dividing by /7 gives the desired conclusion. Ly

Remark. A clearer and more direct proof of this lemma can be given if we assume
the regularity result of Lemma 11.29. We may choose f which is nice, solve the Dirichlet
problem for divyV with data f to obtain u. We have that v = | /yu solves the Schrodinger
equation Av — gv = 0. Taking the normal derivative we have

)

MG = Vg

We now consider two conductivities v; and 7, and the corresponding potentials q; =

'In the above equation, we are not distinguishing between the multiplication operator that /Y gives
on L%/z (09) and the transpose of this operator to the dual, L31/2 (09). Did anyone notice?
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Proposition 12.9 If v, v € CY(Q), 71 = 72 and Vv, = Vs, then

A% = AWz
if and only if
Aql = qu'
Proof. This result follows from Lemma 12.8 and 12.6. 1

12.2 Exponentially growing solutions

In this section, we consider potential ¢ which are defined in all of R™ and are bounded and
compactly supported. In applications, ¢ will be of the form A,/y/,/7 in 2 and 0 outside
Q). The assumption that ¢ is bounded is needed in this approach. The assumtion that ¢
is compactly supported is too strong. What is needed is that ¢ defines a multiplication

operator from M2%~1/2 — ]\412’1/2 and thus there is a constant M (q) so that

g1l 212 < M0l 2,172 (12.10)

This requires that ¢ decay faster than (1 + |z|?)~/? at infinity, which is true if ¢ is
bounded and compactly supported.

Our goal is to construct solutions of the equation Av — qu = 0 which are close to the
harmonic functions e®¢. Recall that such an exponential will be harmonic if ¢ - { = 0.
We will succeed if ¢ is large.

Theorem 12.11 Assume M(q) is finite and let ( € C" satisfy ( - ( = 0. There exists a
constant C' = C(n) so that if |(| > C(n)M(q), then we can find a solution of

Av—qu=0
of the form v(z) = e*(1 + (x,()) which satisfies

CM(q)
HwHMgé*l/? < K‘ HQHM12,1/2.

Furthermore, the function 1 is the only function in M2~Y2 for which v as defined above
will satisfy Av — qu = 0.
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Proof.  FEuxistence. If we differentiate we see that Av — qu = 0 if and only if

AY+2C-Vy—qp =q. (12.12)

A solution of this equation may be constructed by solving the integral equation

Y —Ge(qy) = Gelq).

A solution of the integral equation (12.12) is given by the series
Y =" (Geq)(
7j=1

To see that the series can be summed, we apply the second estimate of Theorem 9.16 of
Chapter 9, and use the estimate for the multiplication operator given by ¢, (12.10), to

obtain . .
IGeaP (llzve < (Sl

Thus, if || is large, this series converges and defines a functions t in M2~Y/2. Fur-
thermore, according to exercise 9.21 Vi) = VG¢(q(1 +)) is in M%~1/2. Thus, v will be
a weak solution of the equation Av — qv =0 in R"™.

Uniqueness. If we have two solutions, 1, and ¢ of (12.12) which are in M2~'/2 then
their difference satisfies

A1 — ) +2¢ - V(1 — o) — q(y1 —1h2) =0

According to Theorem 9.23 we have ¢y — 1o = G¢(q(¢1 — 2)). Thus from the estimate
in Theorem 9.16 we have

CM(q)
q

If we have C'M (q)/|¢| < 1, then this inequality will imply that [[¢); — sl 2-12 = 0. u

b2 — el 22 < lths — all o 1o

Lemma 12.13 Suppose that Q) is C* and suppose that each q; is supported in Q and that
q; are of the form A\/f_y]/ﬁ If Ay = Ay, and vj = (1 + ;)€™ are the solutions for
A —q; from Theorem 12.11, then ¢r(x, () = Va(x, () for x € R"\ Q and all ¢ sufficiently

large.
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Proof. We use a cut-and-paste argument. Define a new function by

~ | a(x,Q), reR"\Q
(e, ) = { W(z,0), z e Q.

Here, 9(z,() = e ®Sv(z) — 1 where v is the solution of the Dirichlet problem

Av—quv=0 x e
v(z) = e (14 a(z,()) = €00

We claim that 1 (x, ¢) = e”<(1 + ;) is a solution of Av — g;v = 0 in all of R™. This
depends on the the hypothesis A,, = A,,. To establish this claim, we let ¢ € D(R") and
consider

/Rn Vi, - Vo + quipdr :/

R™\Q Vg - Vdz + /Q Vo(z) - Vé(z) + qi(z)v(r)d(r) du.

Since vy is a solution of Avy — govg = 0 in R”, we have that

i V02 VO = = [ V02V 4 s = A (12)(0).

Since vy = v on the boundary of €2 and A,, = A,, we have

A (12)(9) = Ay (0)(9) = /Q V- Vo + quéde.

Combining these last three equations shows that o is a weak solution of A —¢; in R". By
the uniqueness statement in Theorem 12.11, the function 1; defined by ¥, = e %<7, — 1
must equal ¢1. In particular, ¥; = 1 outside 2. 1

Lemma 12.14 Let q be a potential for which we can solve the Dirichlet problem. The
operator A, is symmetric. That is we have Ay(¢)(1) = Ay(¢)(9).

Proof. Let ¢1,¢2 be in L2 /2(082). We solve the Dirichlet problem with data ¢; to find a
function u; which solves the Dirichlet problem for A — ¢ with boundary data ¢;. Then
we have

A(¢1)(¢2) = /va - Vug + quiug d.

The integral on the right-hand side is symmetric in u; and uy so we can conclude

Ag(01)(d2) = Ag(¢2)(¢1)-
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Proof of Theorem 12.1. According to Corollary 11.30 and Proposition 12.9, we have
that if A,, = A,,, then A, = A,. We will show that if A, = A,,, then the Fourier
transforms satisfy ¢ = ¢1 (where we are assuming that each ¢; has been defined to be
zero outside Q). We fix £ € R™ and choose two unit vectors « and [ which satisfy
a-f=a-&=0-&£=0. (Here, we use our assumption that n > 3 in order to find three
mutually orthogonal vectors.) Next, for R > [£|/2, we define (; and (; by

(1= Ra+iByR2— |¢)2/4—i€/2  and (= —Ra —iB/R2 — |¢2/4 —i£/2.

These vectors satisfy ¢; - ¢; =0, (; + ( = —i€ and |(j| = V2R.

For R large, we let v; be the solution of Av; — gjv; = 0 corresponding to (; as in
Theorem 12.11. Since the Dirichlet to Neumann maps are equal and using Lemma 12.14,
we have

0= Ay (v1)(v2) = Ay, (v2)(v1) = /Q(ql(x) — qo(2))e""E (1 + by + Yo + 1aho) da.

Recall, that the 1; depend on the parameter R and that Theorem 12.11 implies that the

¢; — 0in L} as R — oco. Thus, we conclude

q1 = q2-

The Fourier inversion theorem implies q; = ¢2. Finally, the Lemma below tells us that if
¢1 = ¢2 and y; = gammas on the boundary, 71 = 7,. .

Lemma 12.15 If v and v in C*(Q) and if A7, /7, = AT,/ /Ty then u =
log(y1/72) satisfies the equation

divy/7172Vu = 0.

As a consequence, if Q is Ct, and 1 = o on the boundary, then v, = 7s.

Proof. Let ¢ be a D(2) function, say, which is compactly supported in 2. We multiply
our hypothesis, A\/7,/v/7, = Ay/7,/v/7, by ¢ and integrate by parts to obtain

AV AT YLy v
0= [ 5t = Rl == [ VYA V() = VYR VI

If we make the substitution ¢ = |/71,/72%, then we have

/Q\/WV(log\/ﬂ —log /%) - Vi dz = 0.

If 74 = 75 on the boundary and € is C?, then by Lemma 12.6we have log(7y1/72) is in
L3 (2). We can conclude that this function is zero in Q from the uniqueness assertion
of Theorem 10.25. 1

) dx

1
ek
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Exercise 12.16 Suppose the ) is a C*-domain in R™. Suppose that_u+ 15 a weak solution

Aut =01n Q and u~ is a local weak solution of Au~ =0 in R™\ Q and that Vu~ is in

L? of every bounded set in R"\ Q. Set v =1 in R"\ Q and set v =2 in Q. Define u by
] ut(x), x €

u(x)—{ u (), r€R"\ Q

What conditions must u™ satisfy in order for u to be a local weak solution of divyV in all
of R". Hint: There are two conditions. The first is needed to make the first derivatives
of u to be locally in L*. The second is needed to make the function u satisfy the weak
formulation of the equation.

Exercise 12.17 Show that the result of Lemma 12.15 continues to hold if we only require
that the coefficients v, and vy are elliptic and in L3(Q). In fact, the proof is somewhat
simpler because the equation A\/y1/\/71 = A\/V2/\/V2 and the boundary condition are
assumed to hold in a weak formulation. The proof we gave amounts to showing that the
ordinary formulation of these conditions imply the weak formulation.

Exercise 12.18 (Open) Show that a uniqueness theorem along the lines of Theorem 12.1
holds under the assumption that v is only C*(2).
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Bessel functions
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Restriction to the sphere
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Chapter 15

The uniform sobolev inequality

In this chapter, we give the proof of a theorem of Kenig, Ruiz and Sogge which can be
viewed as giving a generalization of the Sobolev inequality. One version of the Sobolev
inequality is that if 1 < p < n/2, then we have

[ull, < C(n, p)[[Aulp-

This can be proven using the result of exercise 8.2 and the Hardy-Littlewood-Sobolev
theorem, Theorem 8.8. In our generalization, we will consider more operators, but fewer
exponents p. The result is

Theorem 15.1 Let L = A+a-V +b where a € complexes™ and b € C and let p satisfy
1/p—1/p' =2/n. For each f with f € L? and D?*fLP we have

£l < CILS -
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Chapter 16

Inverse problems: potentials in /2
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