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1 September 3, 2015

1.1 Overview

My name is Siu([see-you]), and there are no textbooks for this course. The
website for this course is http://math.harvard.edu/~siu/math55a. There
will be no clear division between abstract algebra and analysis.

These are the things I will tell you during the lectures.

e Motivation, background, and history for the material
e Techniques, methods, ideas, and structures
e “Rigorous” presentation

I will emphasize the last one, but it is useless to only know rigorous things.
There will be weekly problem sets, and we encourage discussions. And of
course, you need to write the solutions down in you own words.
The actual level of difficulty will depend on the feedback I get from your
assignments.

1.2 Things we will cover

We focus on solving equations in a number system. There are two kinds of
equations:

e polynomial equations - This is algebra, and will be the A part

e differential equations - This is real and complex analysis and will be cov-
ered in the B part

We start with Peano’s five axioms, and from this, we can define N, Q, R,
and C. You can choose what number system you would like work in, and this
is why number systems are important. For instance, the fundamental theorem
of algebra holds in C, but does not hold in R or Q.

Historically, the whole algebra came from solving polynomial equations.
There are symmetry involved in solving equations. For instance, if

(x—ay) - (z—an) =2" —01Tp_1 + 02Tp—1 — ++ -,

we get 01 = a1+ +ay, 03 =ajas +- -+ an_1a,. The coeflicients have sym-
metry between the a;s. So basically solving a polynomial equation is bringing
all-symmetry down to no-symmetry. This is basically what Galois did, but by
going down steps of partial symmetry.

1.3 Peano’s axioms

I want to start from:


http://math.harvard.edu/~siu/math55a
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Russell’s paradox. Consider the set A of all sets which do not belong to them-
selves. Is A€ A?

In any way, you get a contradiction. The problem start from the fact that
you should know all sets before defining the set of all set, which is absurd. To
put it another way, it is circular. To overcome it, you may use the theory of
types (which I will not go into explaining). The point is that you need to be
very rigorous when doing axiomatic stuff.

Peano’s five axioms.

1. (Non-emptiness) There exists 1 € N.

2. (Successor map) There exists a map ! : N — N called the successor map
which sends x +— 2.

3. (Special element) ¥’ # 1 for any x € N.
4. (Infectivity of successor map) ¥’ =y’ implies x = y.

5. (Induction aziom) If a subset A C N contains 1, and ' € A for any
x € A, then A=N.

I’ll give two examples of proof using the axioms as a warm-up.
Proposition 1.1. There ezist no fived point for the successor map.

Proof. We make use of the induction axiom. Let
A={zeN:z#a'}.

First, 1 € A since 1 # 2’ for any z € A. Next we need to prove that z € A
implies 2’ € A. If z € A, by definition x # z’. And this implies 2’ # x” because
of injectivity of the successor map. Lastly, using the induction axiom, we get
A=N. O

Proposition 1.2. The image of the successor map is N\ {1}.

Proof. To use the induction axiom, we add 1 to the set we are interested in. Let
A={1}U{s":x € A}
1€ Ais clear. Also, if z € A, then z € N and thus 2’ € A. O

The amazing thing about Peano’s axioms is that you can get addition from
them. Let us define addition and multiplication.
Because we have two variables, we first fix the first variable.

Definition 1.3 (Addition). Define z + 1 = 2’. Suppose we have defined x + y.
Then we define z + ¢’ = (x + y)’. By induction axiom, we have defined x 4+ y
for all x and y.

Theorem 1.4. Addition is associative.
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Proof. Let us prove (x 4+ y)+ 2z =z + (y + 2). First fix z and y. Let
Ary={2zeN:(z+y)+z=x+(y+2)}.
First 1 € A, , since
(t+y+l=(@+y) =z+)=c+@y+1).
Also if z € A, y, then
@ty +2=((e+y)+2) =@+y+2) =c++2) =z+@y+2)
Thus z € A implies 2’ € A, and it follows that A, , = N. O
Theorem 1.5. Addition is commutative.
Proof. We want to prove v +y =y +z. Fix y € N. Let
Ay={zcA:z+y=y+az}

The first thing we need to prove is 1 € A,, whichis 14+ y =y + 1. We use
another induction inside this induction.

Let
B={yeN:14+y=y+1}

Obviously 1 € B, and y € B implies
l+y =14y =@E+1) =y+Q+)=@y+)+1=y +1,

which in turn, implies ¢y’ € B. Thus 1 +y =y + 1 for all y € N.
Now suppose that € A,. For 2/, we have

yta'=(y+a)=@+y) =ev+y=s+0+y)=(@+)+y=2"+y.
Thus A, = N. O
Now let us define multiplication.

Definition 1.6 (Multiplication). Let -1 = 2 and -y’ = z-y+2. This defines
multiplication in general because of the induction axiom.

Theorem 1.7. For any x,y,z € N, we have the following:
(a)z-y=y- -z

(b)(x-y)-z=x-(y-2)

(c)z-(y+z)=x-y+a-z

Proof. Homework. O
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1.4 Rational numbers

Now we begin to handle division. We construct the set Q4 of all positive frac-
tions (or positive rational numbers). But first we need the concept of equivalence
relations, because we need to say ¢ = § if ad = be.

Definition 1.8. Let X be a set. A relation in X is a subset R C X x X. We
use the notation a ~ b to mean (a,b) € R. The relation R (also denoted by ~)
is an equivalence relation if

(Reflexivity) x ~ x for all z € X,

(Symmetry) z ~y if and only if y ~ x,

(Transitivity) = ~y and y ~ z imply = ~ z.

Theorem 1.9 (Decomposition statement). An equivalence relation divides up
X into a disjoint union of subsets.

Proof. For x € X, let X, = {y € X : y ~ z}, known as the equivalence class
which contains x. It is clear that
X=J X

zeX

We also need to show that what we have is a disjoint union in the following
sense:

X, N X, # 0 implies X, = X,,.
Because of symmetry, it is sufficient to show X, C X,. By assumption there
exists an element z € X, N X, and we get z ~ x and z ~ y. Take any u € X,.
Because u ~ x, x ~ z and z ~ y, we have u ~ y. This shows u € X,. O

Now we finally define Q, the set of positive rational numbers.

Definition 1.10. Introduce ~ in X = N x N such that (a,b) = (¢,d) if and
only if ad = bc. We call the equivalence classes Q.

You can check that it actually is a equivalence relation.

Next class, we will define Ry by Dedekind cuts. We have to go into the
realm of analysis to define the reals, because we need the mean-value property.
For instance, let me sketch a proof of the fundamental theorem of algebra.

Let

n—1
P(z)=z2"+ Z a;z’
j=0

be a monic polynomial with complex variables and no roots. Let f(z) = 1/P(z).
Then by certain facts in complex analysis,

1 2

f(e) fle+ rew)de

" 21 Joso
and

27
£ < 52 [ 18t re®)ias

21 Jo=o
Sending r — oo, we get a contradiction.
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2 September 8, 2015

The CAs would like to get the solutions for the problem sets typed in IXTEX.
Last time we studied the five Peano axiom, and defined N, addition, multi-
plication, and Q. Now we will introduce R, and lastly C.

2.1 Non-rigorous proof of the fundamental theorem of al-
gebra

We do we need Dedekind cuts to make sure every polynomial equation is solv-
able? Last class, I said that the crucial thing was the process of averaging.
Let me prove the fundamental theorem of algebra in more detail, but not in a
rigorous way.

Theorem 2.1. For any
n—1
P(z)=z2"+ Z a; 2’
§=0

with a; € C and n > 1, there exists a zo € C such that P(z) = 0.

Assume P(z) # 0 for any z € C. Then f(z) = 1/P(z) is well-defined on
C. Obviously |f(z)| = 0 as |z| — oo since n > 1. The limit of the difference
quotient exists for f(z) = 1/P(z) in the setting of complex numbers.

For a real-valued function g(z) of a real variable € R, the difference quo-
tient (or quotient of difference) is defined as

i 9@ = g(wo)

_

We have not defined what a limit is, but let us just assume that we know this.
In the complex numbers, differentiation is defined similarly. A complex-
valued function f(z) of a complex variable z € C. We say that the complex

derivative exists if
z)— f(z
zZ—20 zZ— 20
This looks similar to the differentiablity of real functions, but it is much stronger
in a sense that there are many ways to approach a single point. If z: R — C is
a curve passing a point zo at time ty, we have

g9(t) —g(to) _ f(z(t)) = f(2(to))  2(t) = =(to)

t—to Z(t)—Z(to) t—to

where g(t) = f(z(t)). Then we have

g =1Co ()
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Because f’(zp) is independent of the curve, we get a degree of freedom.
As we have set f(z) = 1/P(z), we have

n—1 n—1 . j—1
nzg ~+ ijl a;jzy

P(20)?

f(20) = —

There exists a derivative of f under the assumption that P has no zeros, al-
though we have not proved it yet.
Now the mean value property states that

f(z0) = average of f(z) at the circle centered at z of radius r > 0.

This can be deduced from the chain rule.

Proof of the mean value property. Analytically it can be written down as

27

f(z0) = % - f(z0 +re'?)db.

I have not defined e yet, but e’ = cos@ 4 isinf. We consider the map

27

e — f(z0 +re'?)dd.
27 Jo—o

If we prove that the derivative is always 0, and that the limit when » — 07T is
f(20), we have proven the formula. The latter is immediate since f(zo+re?®) —
f(z0) as r — 0T. Note that this is possible because any curve in the complex
plane can can be retracted to a point. So we prove the former. We will apply
the chain rule to two different curve; the line going through the origin, and the
circle.

First, we have

d 2m ) 2m ) )
— f(zo +7€?)dh = / (f(zo + 7“6“9)) de.
0 /] 87"

d’l’ 0— =0
Looking in the radial direction, we obtain

~ lim f(z0 +re®) — f(z0 + roe'?)

=70 =70 T—7T0

9 _
Ef(zo + re’g)

. flzo+ rew) — f(z0 + roew) (z0 + rew) — (20 + roeie)
= lim . . .
roro (20 +ret?) — (20 + roet?) r—r10

— f/(z() + T06i9)€i97

27 27
/ <8f(zo + rew) df = / e f' (2o + re'?)db.
o=0 \Or 6=0

and thus



Math 55a Notes 11

To calculate f’(zo +re’®), we do the same thing over again. Looking at the
circle, we get

0 i0 o flzo +re’?) — f(zo 4 et)
%f(zo +ret) 0=00 6113(910 0 — 0
. flzo+71e?) — f(zo +1ei?) (29 +1e!) — (20 + rei?o)
= lim - . .
060 (20 + rei®) — (zg + reifo) 6 — 6

= f'(z0 + re*)riet®

Therefore

/27r e f!(z +rei9)d9/2ﬂ1 2f(z +re?) ) do
9=0 0 ~ Jo—o i \007 7

1 . 27
z—,f(zo—krew)‘ =0.
71

O
Proof of the fundamental theorem of algbera. Take any zg € C. Since
1 2m )
f(z0) = — f(z0 +re')do
21 Jo=o
and the f(zg + re'?) goes to 0 as r — oo, we get
1 2 .
fGoll < 5 [ 18Ga+relds =0
T Jo=0
which contradicts f(z9) = 1/P(zo) # 0. O

As you can see, analysis is needed to prove a theorem in algebra.

We needed two things; first is the notion of averaging which is same as
integrals, and the two-dimensional situation which makes it possible to consider
multiple directions.

2.2 Order relations

Back to rigorous presentations. Let us define upper bounds, and the least upper
bound. But first we need to define what x < y or z < y means.

Definition 2.2. Let z,y € N. We say that = > y if and only if there exists a
u € N such that x = y + u. Let © < y if and only if y > .

Theorem 2.3 (Trichotomy). For any x,y € N, precisely one of the following
three statements holds.

x=y, x>y, x<y

The key point in the proof is that there are no fixed points in the addition
operation. In other words, for any fixed x € N, we have y # z+y for any y € N.
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Proof. First, fix = and let

A, ={yeN:y#z+y}

1 € A, since 1 is not a successor. And y # = + y impies y # x + 3y by the
injectivity of the successor function. Thus A, = N, and addition has no fixed
points.

Now let us go back to the trichotomy. We need to prove two things, namely
exclusivity and inclusivity. Actually exclusivity is immediately verified by the
fact that addition has no fixed proof. For instance, if z > y and y > x, we get
x=y+aand y=x+b, and thus x =z + (a + b).

For inclusivity, we fix z € N and let

B, ={y eN:eitherx =yorz>yorz<y}.

One can prove 1 € B, by dividing into cases x = 1 and = # 1. If x = 1, then
1=1. If z # 1, there exists a u for which x =« =1+ w. Then z > 1.
Assume y € A,. Now we have three cases. If y = x, then ¢y =z +1 > z.
If y < x, there exists a u for which z = y +u. If u = 1, we have x = 3/, and
ifu#1 wehave z =y+u=y+v =y +v for some v € N. If y > z, there
exists a u for which y = z + u, and then y' = 2 + «’. Therefore B, = N. O

As we have introduced ordering in N, we can extend this to Q.

Definition 2.4. We say

SRS
Ul O

if and only if ad > be.

You can check the ordering is well-defined.

2.3 Dedekind cuts

Definition 2.5. An upper bound of a subset A C @4 is a number U such
that x < U for any = € A. A least upper bound means an upper bound lub
such that lub < U for any upper bound U.

We want to make every set which has an upper bound admits a least upper
bound. Dedekind used some good logic to make this true.
To define v/2, you look at the set

a a2
{be(@+2b2<2}.

This set doesn’t have a least upper bound, but we want it to exist. So you just
throw the number in. It doesn’t cost money. You just consider any set of the
form

(seai<g

as a real number.
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Definition 2.6. A Dedekind cut is a proper subset £ of Q such that

1. (containing all numbers less than some non-member) For any x € £ and
y € Q4 \ & we have z < y.

2. (containing no upper bound) There does not exist an z € & such that
x>y forally ek

Definition 2.7. The (positive) real numbers is defined as

R, = {all Dedekind cuts}.

We can embed Q4 into Ry according to the map

reQr—&={seQy:s<r}

We can also easily define ordering, addition, and multiplication on the real
numbers.

Definition 2.8. Let £ and n be two distinct Dedekind cuts. Define £ > n if
and only if £ D n, and £ < 7 if and only if £ C a. Also, define

E+n={z+y:ze€&yen}
and
En={vy:zeyen}
Now we can define QQ as

Q=(-Qy)u{0}uQy

and also
R=(-Ry)U{0}UR,.

You can define addition, multiplication, ordering on these sets, but I am not
going to do this, because I do not want to write a whole book.

Definition 2.9. The complex numbers is defined as the product C = R x R.
The operations on the set are given as

(a,b)(c,d) = (ac — bd, ad + be),
(a,b) + (¢,d) = (a+ ¢, b+ d).
Letting ¢ = (0, 1), we get the notation we are used to.

In the first class, I said that we will be studying polynomial equations. There
are two kinds of things we want to do.

e Single polynomial of a single variable - This is mainly Galois theory.

e System of line equations in several variables - We will be doing this to do
Stokes’ theorem.

Next time, we will discuss how to solve a polynomial equation with one variable.
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3 September 10, 2015

Solving quadratic equations is easy. Given a equation ax? + bz + ¢ = 0, we can
solve it by “completing the squares”.

(x+£)27b2—4ac
“ 2a)  4a

and now if we take roots, we get the solution.

3.1 Scipione del Ferro’s solution of the cubic equation

A general method of solving the cubic equation was first discovered by del Ferro.
Let F(X) = ax®+ bx? + cx + d. Imitating the quadratic case, one can translate
the variable x by letting = ¢t + a.. For a good «, one can eliminate the second
degree term and obtain

t3 4+ pt +q=0.

But this does not solve the equation.
So we try some other translation. Let t = u + v. Then

2+ pt+q= (0’ +0°) + (u+0)(3uv + p) +q.

Note that this is a polynomial of degree 3 over u. But we don’t want to just see
this as a polynomial over u, because it destroys the symmetry between u and
v. Instead, we set 3uv + p = 0. Then it is the same as

w02 +q=0
3uv+p=20

Note that 3uv +p = 0 is the artificial relation, and u3 +v3+ ¢ = 0 is the original
equation. Cubing the second equation, we get u3v® = —p3/27, and then we get

a quadratic equation
3

p
X2 4 gX — =
T
whose zeroes are u® and v®. Then you get three solutions for each variable,
and plugging each of the solutions, you finally get three solution pairs. This
quadratic polynomial is called the resolvent.

3.2 Lagrange’s idea

Lagrange saw this solution of del Ferro’s and realized that actually what del
Ferro had done was same as this.
Let e = (—1+ \/3)2 be the cubic root of unity. The main trick is just setting

T =u-+v, £L'2:€u+€21), z3:62u+ev.
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Generally this is not possible since there are two variables and three equations,
but because 1 + x2 + x3 = 0, we can do this. If we solve the system of linear
equations, we get
u = 5(z1 + exy + 3)
= %(1‘1 + 62$2 + 63?3)

This is called the Lagrange’s resolvent.
Solving an equation is basically given the elementary symmetric polynomials

o1 =21+ -+, O0O3= E TiTj, ..y Op =2T1 " Tp,
i<j
describing each x1, ..., x, in terms of these polynomials using radicals and ratio-
nals. When z1,...,z, are permuted, note that the symmetric polynomials are

not changed. So solving the equation is the same as bring the whole symmetry
to no symmetry in this sense.

Lagrange started to observe what happens to u and v when x1, x5, x3 are per-
muted. Using a “ladder diagram”, you see that all permutations are generated
by (12) and (23). The permutation (12) acts on v and v as

1 2 € 2
u»—>§(x2+ex1+e $3)=§($1+6 To + €x3) = €V, V> €u.

Also, (23) acts as
U v, U

To get rid of the €, we consider the cube of v and v. Then we see that u3 + v*
and u3v? are both symmetric functions in terms of x1, z2, z3. Hence we get a
equation with lower degree.

Lagrange applied this idea to quartic equations. Quartic roots of 1 are
1,7, —1, —i. Hence according to what previously did, we need to look at

T1+ X+ X3+ T4
£L'1+7;I27$372‘£Z}4
Tl — T2+ X3 — T4
T1 — 1Ty — X3 + 1T4.

But just considering the third term x; — x2 4+ x3 — x4, there are three possible
outcomes when a permutation acts on {x1,x9,x3,x4}. So Lagrange just let

(1 + 22 + 23 + 4)
(1 — 22 + x3 — T4)
(1 + 22 — 3 — 24)
( ).

T1 — X2 — X3+ T4

<
[
I
N D= N N[

Because any permutation acts by changing y; to y;, the symmetric polynomials
of y%,y%,yg are symmetric respect to x1,Ts,r3,x4. Then you can calculate
Y1, Y2, y3 using the cubic formula, and subsequently, x1, x2, x3, 4.
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Actually the quartic formula was first discovered by Ferrari. But this is not
relevant with our topic, so I will go over it quickly. Starting with the equation
z* + ax® 4 ba? + cx + d = 0, we change it to

22(2% + az) = —ba® — cx — d,
a\\? _ 1,5, 2
(x(x—i—Q)) = 4a T bx cx —d,
2 1
(xQ—i—gx) = ia2x2—bx2—cac—d.

In the cubic formula, we introduced a generic translation ¢ = u+v and imposed
an additional condition. We do this again. Translating (2% 4+ %), we get
9 1 \2 1
(g ) =

1 1
12 2 _ < _ 12
5 5 4a b—|—y)x —|—( cx+2ay)x+( d+4y )

Ferrari wanted to make the right-hand side a square of a polynomial, or in
other words, make its discriminant zero. This condition in terms of y is a cubic
equation. So it is possible to calculate y, and thus x by solving the corresponding
quadratic equation.

3.3 Schematics for solving a polynomial equation

As T have said, solving a polynomial equation is performing on the coefficients
of the polynomial equations (or symmetric functions o1, ...,0,) the operations
of the form of rational functions and roots(radicals). Actually the roots is what
destroys the symmetry, because you need to choose what roots you will use. We
can drawing the schematic as:

01,02,...,0p
lroot—taking

1 1) (1)

T 5T e Tmy

I
J

O D7

l

Tlyeeey Ty

Each “layer” actually represents the field of functions which share some specific

symmetry. For instance the first layer is C(o71, .. ., 0,,) which is the set of rational

symmetric functions. In each step, we take roots to extend the set of functions.
Let us represent the process of solving a quadratic equation in this way.

(C (0’1 s 02)
lroot—taking

C(a1,22) = C(r{V, V)
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Writing down the symmetry of each layer in terms of groups(you can just think
this as a set of permutations for now), this is

{].}ZGl CGOZSQ,

where S, is the set of permutations on {1,2,...,n} and 1 is the identity per-
mutation.
The cubic equation has two steps.

{I}ZGQCG1CG0:S?,

where Gy = {1, (123), (132)} is the alternating group. It can be drawn as

C(Ulu 02, 03)
1
cr, ", mM,mY)

1

(C(ﬂﬁh x2,T3, 3?4)

where . . . .
A L N L)

The schematic for solving the quartic equation can be drawn as
{1}CK4CA4CS4

where Ay is the alternating group and Ky = {1, (12)(34), (13)(24), (14)(23)} is
the Klein four-group. This diagram is not the solution itself; it is more of a
reverse engineering kind of thing that shows us how complete symmetry was
brought down to no symmetry in each of the cases.
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4.1 More on solving polynomial equations

Last class, I have explained the schematics of solving a polynomial. Galois was
interested in the possibility of such a scheme.

01y...,0n
1
(1 1
SO
1
1
T1y-.-,Tn

As I has said, the process of taking rationals is not very important, because it
does not destroy the symmetry. For instance, o1/09 still possess whole sym-
metry. The important thing is roots, because it involves taking the root. In
quadratic equations, the symmetry is destroyed when we consider \/o? — 405.
This can be either 1 — x5 or o2 — x1, but because we don’t really know what
is what, we can go down to partial (or no) symmetry.

When we go down a step

C(o1,...,0n) = C(Tl(o),...,ﬂ(,?g)

4
(C(Tl(l)7 .. ,7'7(,%1))
2
2
(C(Jﬁh. .. ,l‘n)

it is not clear what means by taking ‘roots’ of a polynomial. So instead, we
consider it to be (T;I))’“J € C(o1,...,0n), that is, some power of an element
in the lower step is in the upper step. Galois’ theory states that in each step,
(C(T(j), ... ,7'7%)) is equal to C(z1,...,2,)% for some G;, which is the subset of
C(z1,...,x,) consisting of elements which are invariant under the action of G,.

So, basically, this schematics is equivalent to a ‘tower’ of groups
{1} c G, C---CGy=S5,.

There is a geometrical interpretation of the solution of quartic equation.
Consider four points Py, Py, P3, Py on the plane, and Q1 = Py P> N P3Py, Qo =
P1P30P2P4, Q3=P1P4QP2P3.
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Because the set {Q1, Q2, @3} is only permuted by the permutation of { Py, P, Ps, Py},
we can represent the elementary symmetric polynomials of @1, @2, @3 in terms

of elementary symmetric polynomials of P, P, P53, P;. But it is not so simple as

it looks, because the formula for @1, @2, Q3 involves complex conjugates. What

you need to do is just write down the formula, and take the part which does not
involve any complex conjugates. Then because permutations does not change
where conjugates are, you get a polynomial with no conjugates, and does not
change after permutation.

4.2 Basic linear algebra

When we talked about groups, they were finite groups which lay in a symmetric
group. In Lagrange’s resolvent, y;’s were represented by linear combinations of
I/S.

These are the things we are going to do now.

e Solution of a system of linear equations

Change of variables as a matrix multiplication
e Inverse of a matrix
e Determinant of a matrix
e Cramer’s rule and the adjoint matrix
We are actually doing determinants to do higher dimensional analysis.

When we have a curve, we calculate the length of the curve by projecting it
to an axis, and then adding up the lengths. In other word, it is

/\/Mz/\/l—f—(%)zdx.

In calculating higher dimensional objects, such as the area of a surface, we do
the same thing with an higher dimensional analogue of Pythagoras theorem.
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We will do some review. A system of linear equations

Y1 = G11T1 + -+ G1pTy

Ym = Gm1T1 + - + QGmnTn
can be represented by

Y1 aix - Qip T
Ym m1 " Gmn LTn

n
J=Y w4
j=1

where A; is the jth column of the matrix.
Gauss came up with a procedure to solve the equation. Using the following
elementary row operations, we can make the matrix in to a row echelon form.

or

e Multiply a row by a nonzero number.
e Switch two rows.

e replace the ith row by adding a constant times the jth row.

Everyone knows this. The important observation is that an elementary row
operation E applied to A to get A’ is the same as applying the operation to I,
to get I, and left multiply A to get A’.

Why is this? The jth column of the n x m matrix A is

a1y
— -
= aij€i + -+ AmjEm-

Amj

Looking at each vector separately, applying a row operation is actually manip-
ulating the coefficient of the vector expansion correspondingly. Thus it is same
as left-multiplying a matrix.
Now consider the equation
AZ=1b
where b is a column m-vector, and & is a column n-vector to solve as the coef-
ficients of the n column m-vectors A. We look at the augmented matrix

-,

(A[b)

and apply k elementary row operations. Let those elementary row operations
operated on the identity matrix be Fq, Es, ..., Ex. Then after the operations,
we will get .

(Ey--- E1A|Ek ... E1b).
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Using the Gauss elimination, there exists a wise choice of operations which
makes Ey --- F1A = A’ a row echelon matrix. The system is solvable if and only
if when the last ¢ rows of A’ are identically zero the last ¢ entries of Fj - - - Eib
are zero.

Applying this theory to square matrices, we get the following theorem.

Theorem 4.1. Let A be a square matriz. Then the followings are equivalent.
(a) Elementary row operation recedes A to I.

(b) A is a product of elementary row operations.

(c) The inverse A~1 exists.

(d) AZ = 0 implies Z = 0.

4.3 Determinant of a matrix

Definition 4.2. We define the determinant of a matrix inductively as the
following. For a 1 x 1 matrix, the determinant is same as the only entry. For a
n x n matrix, denote A;; by the matrix obtained by throwing the ith row and
the jth column of A away. Then define

det A = Z(—l)j_lajl det Aj1~
Jj=1

This is characterized by the following properties.

e The function det is a polynomial of the entries.

e Multiplying on row by a leaves the determinant multiplied by a.

e Switching two row changes the sign of the determinant.

e Adding a scalar multiple of a row to another row leaves the determinant

unchanged.

You can check each of these by induction. In fact, these properties characterizes
the determinant, because you can use the elementary operations to reduce any
matrix to either a I or a matrix with a zero row. We can also prove det(AB) =
det Adet B from this argument.
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The next topic we want to discuss is a preparation for analysis. Stokes’ theorem
is the higher dimensional version of the fundamental theorem of calculus. We
need the notion of exterior algebra to do this. For two vectors i,7 € R3,
there is the inner product(=dot product) @ - ¢. And there is also the vector
product(=cross product) @ x U. Exterior algebra is the higher dimensional
version of the cross product. This will be used to calculate the surface, volume,

etc, of an object.

5.1 Review of basic matrix theory

The main ingredient of this theory is the elementary row operations, which is
motivated by the Gauss elimination.

There were three kinds of elementary row operations. The first one is
E(;)(j) which is exchanging the ith row and the jth row. (These are not
standard notations.) The second one is E;)_,.(;) which is multiplying the ith
row by a nonzero number c¢. The third one is E;)_,(;)4¢(;) Which is adding ¢
times the jth row to the ith row. Here, the entries of the matrix can be either
Q,R,C, or other fields.

We can reduce a m X n matrix A to a row echelon form A’.

Definition 5.1. A row with a pivot means a row, not identically zero, where
the first (from the left) entry is 1, called the pivot.

Definition 5.2. A m x n matrix A is in row echelon form if for some 0 <
r<m

e the first r rows are rows with a pivot,

e the last m — r rows are identically zero,

e the position of the pivot is strictly to the right of a pivot on the preceding

row,

e and all entries above a pivot are zero.
We can make a matrix into a row echelon form using the following procedure.

1. Locate the first not identically zero column.

2. E()o () (if needed) to make the number at the first row.
3. E(i)c(i) (if needed) to make the number 1.

4. E(j)-(i)+c(;) to make all entries under the 1 zero.

This originally was developed to solve equations and determine the solvable

ones, of form
AZ =10

where A is a m x n matrix, & is a column n-vector, and b is a column m-vector.
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Elementary row operations is equivalent to left multiplication by the result
of applying the operation to the identity matrix I,,, of order m.

Apply elementary row operation matrices F1, Fo, ..., Ep on A to make A a
row echelon form. Then

EEy_y - EyE AT = Ej, - -- E1b.

Letting Ey ---E1A= A" and F ... E1b =V, we have

We can now determine solvability. Obviously, the last m — r components (from
the top) of V' should vanish for a solution to exist. And actually this condition
is sufficient, because you can arbitrarily prescribe values for x; for the values
where there is no pivot in the jth column.

We can translate this into matrix algebra. If we let

S = (0|Im—r)EkEk—1 e E2E1

then the equation AZ = b is solvable if and only if S b = 0. This matrix is called
the compatibility matrix.
The name if this matrix actually come from partial differential equations. A

system of equations
12}
{£=me

90 = Q(z,y)

is solvable only if

oP  0Q

oy Or

This kind of thing is called the compatibility.

Our second goal is determining when the compatibility is not necessary; i.e.,
when the equation is solvable (and also unique) for all b. Let A beamxn
matrix, where m is the number of equations, and n is the number of variables.

If m < n, the solution is never unique. There are not enough pivots, and
there is always a column free with pivots. Because we can set the variable to
any number, there are at least two solutions to AZ = 0. If m > n, compatibility
comes in.

Therefore, m = n should be true. Then the row echelon form of A should
be the identity matrix I,,. This means that Ej --- F1 A = I,,, and then we have
A7l = E1_1 . Ek_1 Thus A is invertible. If A is invertible, the solution for
A% = b can be easily described as & = A1

This also gives an algorithm for inverting a matrix. If we make the matrix
(A|I) into a row echelon form, then the result will be (I|A~1).
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5.2 Determinants again

Last time, we defined
det A =) "(=1)'"'a;1 det A;y.
j=1

Consider the effect on the determinant by the elementary row operations. We
get

det(E(i)H(j)A) =—detA

det(E(i)%C(i)A) =cdet A

det(E(i)*)(i)Jrc(j)A) =det A
In the first operation, the sign always changes, because two switch the ith row

and the jth row, you need to move the ¢th row down j — i steps, and then move
the jth row up j — i — 1 steps. The sum is always odd. Note that

det Eyerj) = =1, det Bgyey = ¢, det By y4e() = 1-
If naturally follows that det(EA) = det E det A. Then we get the following.

Theorem 5.3.
det(AB) = det A - det B.

Proof. First suppose that A is invertible. Then there exist elementary matrices
Ei,...,Eg such that Ey,---EyA=1. Then A= E;'---E_ " and

det A=det E;'---det E '

Then
det(AB) = det(E; ' - E; ' B) = det Adet B.
If Ais not invertible, then the row reduced echelon form has a zero row. Then

det A = 0, and because AB is also not invertible, det AB = 0 = det Adet B. [

Note that we have also proved in this proof that a matrix A is invertible if
and only if det A #£ 0.

Inductively we can obtain the formula to compute the determinant from
elementary row operation matrix.

det A = Z sgn(p)ap(l)lap(Z)Z ©Qp(n)ns
PESn

where sgn is the signature, the number of exchanges to make p.
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5.3 Cramer’s rule

Definition 5.4. The adjugate matrix adj A is defined as
(adj A)ij = (—1)""7 det Aj;,

where Aj; is minor matrix.

Actually the ajugate was originally called the adjoint matrix, but the adjoint
matrix is used to call the transpose. So we use the non-word ‘adjugate’.

Theorem 5.5 (Cramer’s rule).

_ 1 .
A7l = detA(ade).

Proof. Let us look at the (i, k)th entry of (adj A)A. It is

n

Z(adj A)ijajk = Z(—l)H—j det Aji c Ak
j=1

j=1

If i = Kk, the result is det A, by definition. If i # k, the the result is the
determinant of the matrix obtained by replacing the ith column with the kth
column. After one elementary column operation, we can make the ith column
all zero. Then the value is zero. Thus we get the desired formula. O

Note that if AZ = b, then

1 .
T =——(adj A)b
= Gera i)
and each entry of (ad] A)g is a determinant of a matrix with some column of A

replaced by b.
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Today, we are going to do matrix theory in a coordinate-free manner. It is
necessary to go to exterior algebra, which is motivated by Stokes’ theorem,
which is a generalization of the fundamental theorem of calculus.

6.1 Groups, rings, and fields

Definition 6.1. A group is a set G along with the map G x G — G which
satisfies the following.

(i) Associativity: (zy)z = z(yz).
(ii) Identity: There exists 1 € G such that 1 -z =z -1=x.

(iii) Inverse: There is a z7! € G such that z71 -z =z - 271 = 1.

Example 6.2. G = {invertible matrices} and G = S,, = {permutations of {1,...

are groups.

Definition 6.3. A ring is a set R with two maps + : R X R — R and - :
R X R — R, where R with addition is a commutative group with identity 0, and
the associativity of multiplication and both right and left distributivity holds.

Definition 6.4. A ring D with 1 is called a division ring if for any = # 0, the
multiplicative inverse z~! exists.

Definition 6.5. A field is a commutative division ring.
Example 6.6. F = Q,R,C are all fields.

Definition 6.7. A module over a ring R is a set M with addition M x M — M
with scalar multiplication R x M — M where M with addition is an abelian
group and the (mixed) associative law a(bx) = (ab)x and the distributive laws
a(x +y) = ax + ay and (a + b)z = ax + bz holds.

Definition 6.8. A vector space over a field F' is a F-module V such that
l-z==x.

We are only interested in vector spaces. A vector space has scalar multipli-
cation and addition.

6.2 Vector spaces

Definition 6.9. A set {z1,...,Zm,...} in a vector space V is called spanning
if every v € V is an F-linear combination of a finite number of elements form

the set.
v = Z a;T;
jeT

;n}}
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Definition 6.10. A vectors space V is finite dimensional if there exists a
finite spanning subset.

For now, we will only consider finite dimensional matrices.

Definition 6.11. For vy,...,v,, € V, they are called linearly independent
if E;":l ajv; = 0 for some a; € F implies a; = 0 for all j.

Definition 6.12. A spanning linearly independent set is called a basis of V.

Note that {e1,...,emn} is a basis if and only if every v € V' can be uniquely
expressed as
m
v = Z aj€j.
j=1

Proposition 6.13. Every spanning set contains a subset which is a basis.

Proof. Take away dependent elements. If {vq,...,v,,} is the spanning set, and
it is linearly dependent, then there is a; € J such that Z;ﬂ:l a;jv; = 0 where a;

are not all 0. If a,, # 0, then v,, = —-% Zm:;l a;v; can be spanned by other

Ay £

elements. Thus it may be taken away with conserving the spanning property. [

Using this technique of removing linearly dependent elements according to
some prescribed preference order, we can also prove the following.

Proposition 6.14. The cardinality of any linearly independent set is less than
the cardinality of any spanning set. Also, any linearly independent set can be
expanded to a basis.

Proof. If vi,..., vy, are linearly dependent, you remove v; wit the largest j
according to the earlier argument.
(a) Let {v1,...,vm} be a spanning set, and let {u1,...,u,} be a linearly
independent set. We will substitute vy,..., v, by u1,...,u, one at a time.
Add u,, to vis to make u,,v1,..., v, and because v1,..., v, Span u,, we
can remove one element of vi. Without loss of generality, let it be v,,. Then
we get a new spanning set {u,,v1,...,0n—1}. Then you add u,_1, and pull

another element out. If n > m, then you would need to remove u; at some
time. This means that some u;s are linearly dependent. Therefore, we arrive at
a contradiction and n < m.

(b) Start from any linearly independent set w1, ..., u,. Andlet vy,..., v, be
a spanning set. (This is possible since it is a finite vector space.) We do the same
thing on {u1,...,Un,v1,...,0y} and remove the elements. Since we cannot
remove u;s, the resulting set would be a basis which contains uq,...,u,. O

Corollary 6.15. The cardinality of any two bases are the same.

Definition 6.16. The dimension of a vector space V is defined as the cardi-
nality of any basis.
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6.3 Linear maps and the dual space

Definition 6.17. A F-linear map from a vector space V over F' to another
vector space W over F is a map T : V — W such that

T(au+ bv) = aT(u) + T (v)
for any a,b € F and u,v € V.

Given a basisey,...,e, of Vand f1,..., f, of W, a F-linearmapT : V — W
such that

m

T(e;) =Y a, fr:
k=1
it can be expressed as a matrix (a;) with columns
(T(er),...,T(en)).
Definition 6.18. The dual V* of a vector space V is defined as
V* = {F-linear maps from V to W}

when F' is regarded as a l-dimensional vector space over F. (Any nonzero
element of F'is a basis.) The addition is defined for any ¢,¢ € V* as

(@ +¢)(v) = ¢(v) +¥(v),

and the scalar multiplication is defined as

(a9)(v) = a(¢(v)).

The dimension dim V* = dim V', because if ey, ..., e, is a basis for V over
F, then e} : V' — I such that e (ex) = d;x form a basis of V™.

The trivial conclusion is that V is the double dual of itself. That is, V** = V.
We can define the ® : V' — (V*)* as

This is injective, and because the dimension are the same, this is a isomorphism.

In the homework, there was a problem about the Pythagorean theorem for
parallelepiped. We can do this coordinate-free. But let us first introduce the
length abstractly via inner product. We confine F' to either R or C.

Definition 6.19. Let V be a vector space over C. An inner product (—, —)y
means a V x V' — C such that:

(i) u > (u,v) is C-linear for fixed v € V.

(ii) (u,v) = (v,u). (conjugate symmetric, or Hermitian symmetric)

(iii) (w,u) > 0 for all u, and equality hold if and only if u = 0.
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Proposition 6.20. A vector space over C with an inner product (—,—)y is
conjugate self-dual.

Proof. This is because for a fixed u € V, we can define a C-linear map from V
into C (or a functional on V') by

v (v, u)y.
But (v, u) is conjugate C-linear in u. O

This is important, especially in partial differential equations, and is know as
the Riesz representation theorem.

Definition 6.21. Given a vector space V over C, the complex conjugate V is
a vector space defined as follows.

1. (V,+) is same as (V,+).
2. For a € C, v € V, define the scalar product of a and v as av.

Then the map ® : V — V such that v — v is not linear, but complex
conjugate C-linear.

Definition 6.22. Suppose we have finite dimensional C-vector spaces V and W
with inner products (—, —)y and (—, —)w. Given a C-linear map T': V. — W,
the adjoint T™ of T is a C-linear map W* — V* such that

(Z%UUOW’:(UaTWw)V~

There is a conjugate C-linear map Wy : V — V* defined via the inner
product as
(Tyo)(u) = (u,v)y.

That is, ¥y (av) = a¥y(v). There is the same for W, Uy,. Then we get a
commutative diagram

Vv L .w

J{‘I’V J{‘IIW

Ve W
T

6.4 Tensor products

Let us define tensor products of V* and W*. The reason we use the dual is
because of the the historical context.

Definition 6.23. Let V, W be a vector spaces over F. For an element f of V*
and g of W*, define f ® g as an F-linear map from V x W — F as

(f @ g)(v,w) = f(v)g(w).
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Here, F-linear means that the function is linear respect to each variable v
and w.

Definition 6.24. The tensor product V* ® W* of V* and W* is defined as
the set of all F-linear maps from V x W — F.

So, for two f € V* and g € W*, the tensor product f®@ge V@ W.
The dimension of the tensor product is

This is because if we take a basis {f1,..., fm} and {g1,...,gn}, then the set
{fj (9 gk}lgjgm,lgkgn is a basis of V* @ W*.

This was all motivated to calculate the area of a parallelepiped. It started
from analysis, but afterwards people wanted to get rid of analysis, and think
differential forms as linear functionals.

We can also define the tensor product of many vector spaces

ViV - @VF =

This is the set of multilinear functionals f : V x --- x V — F.
The exterior algebra AFV is the set of all alternating multilinear maps f
from V x -+ x V — F such that

f(vlv o 7Uk) = (Sgl’lO')f(UU<1), s 7vo'(k))'
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We will talk in more detail about tensor products and exterior products. We
defined it for dual spaces, and it is because this is the historic order. I will do
exterior differential forms and Riemannian metric tensors for examples. Tensor
products will be used in handling polynomials of higher degree in many variables.

7.1 More explanation on tensor products

We started with two dual vectors spaces V* and W*. The tensor product
V* ® W* is the set of functions

[ V*xW" = F
which is linear in each variable. That is,

flarvr + agv2, w) = ay f(vi, w) + az f (v, w)
fu,bywy + bows) = by f(v,w1) + ba f (v, wo)

for each variable. If dimp V = n with basis eq,...,e, and dimgp W = m with
basis é1,...,én,, then f € V* ® W* is determined by f(e;,é;) for 1 < j < n
and 1 < k <m. Sodimp V* Q W* = nm.

For an element o € V* and 8 € W*, we can define

(@@ B)(v,w) = a(v) B(w).

Such o ® [ is called decomposable. Not all elements are decomposable; some

sum
N

Zal@)ﬁl eV QW*
=1

may be not decomposable.

7.2 'Wedge products and some differential geometry

Let me explain how people arrived at this, in an analytic perspective. Ricci first
introduced this thing. Let’s look at R™, and a function F' on a neighborhood of
0 in R. People know how do differentiate; partial differentiation in one direction.
Let ¥ € V' = {vector of R at 0}. The we can differentiate in the direction of ¥,

" (OF
vor =3 (5 )
Jj=1

where ¥ = (v1,...,v,). This is actually the dF' € V*, because given a vector
in v, we have a number VzF. If F' is the coordinate function F' = z;, then
dr; € V*. Then dx; ® drp € V* @ V* makes sense, where

dr; ®dxy : V xV =R,
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This is known as the tensor.

There is also the Riemannian metric tensor. Suppose that you have a way
of measuring a vector. It may not be the Euclidean length, because it is not
interesting. This is the Riemannian metric tensor, and is written as

> gi(P)(da; @ day) € VF @ V*
1,7=1

where g;;(P) € R and g;;(P) = ¢;i(P). In the standard Euclidean metric,
9ij(P) = 0;;. In this case, the length of the vector will be

191 = || (3 g0 (P)da; © dn)) .9

ij=1

The exterior product is only defined only for V= W. We write V*AV* =
/\2‘/*.

Definition 7.1. The wedge product V* AV* is a subset of V* @ V*. A map
fisin V*®V* if and only if it is skew-symmetric (also called alternating), i.e.,

f(v1,v2) = = f(v2,01).
Definition 7.2. The wedge product
NV =V AVA AV CV RV ="V

is the set of functions which is F-linear in each variable and alternating, i.e.,
f(Vo(1), Vo(2)s - -+ Vo(ry) = sgn(0) - fv1,...,vp)

for any permutation o.

The function f A g is the is the skew-symmetrization of f ® g. That is,

(f A g)(vr,v2) = (f ® g)(v1,v2) — (9@ f)(v1,v2).

In the case when V is the tangent space, then

(dl’l AN dl’g)(’Ul,Ug) = (dl’l & dIQ)(Ul,’UQ) - (dl’g (24 d%l)(vl,'{)Q)
= (dz1)(v1)(dw2)(v2) — (dw2)(v1)(dw1)(v2)

_ vvl xl V’UQ :,Cl
vvl x2 vvg z/'L‘2

Suppose that we have a 2-dimensional surface M in R™ which is parametrized
by s and ¢, and a point P on M. Let

V' =Ty, p = plane of all tangent vectors to M at P.
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Then we can restrict the form dx; as dxj‘TM . € (Ta,p)*. Then

da; A drg € (Tarp)* N(Tarp)*

and we can calculate the volume as
/ > |(dzj A day)(5s, 5)[2ds dt.
M \[1<j<k<n

As we have done in the problem sets, this is something like the higher dimen-
sional Pythagorean theorem.

7.3 Polarization of a polynomial

Consider a polynomial in many variables of general degree. It will look like

n n
F(zy,...,zn) =70+Z%'1‘j+ Z VikTiTh +
j=1 Gok=1

We divide the variables to two parts x1,...,Zn,Y1,-- -, Ym, and write it as

n n
G(xlw"vxnaylw"vym) =ap+ (Za]‘r.? + Zbkyk>
j=1 k=1

n n m m
- ( PORUTEEIE D IPPIEITEDD Cjkyjyk) e

3 k=1 j=1k=1 G k=1

If the two a;xs and c;is are zero, then the polynomial is bilinear in each parts.
Then the second degree middle term can be thought as a function in

The thing we did by assuming things zero is not actually a special thing, because
even in
F(xla"'axn) :’70+T1+T2+ 5

we can view Tj as a element T, = (C")* @ (C*)* where

To(z1, . yy) = To(X1, .oy T X1y ey X))

This technique is called polarization. It is useful, because it is looking a function
of many variables regard the variables as coordinates in a vector space.

7.4 Binet-Cauchy formula from wedge products

I deliberately assigned the Binet-Cauchy formula as a homework. It is a formula
for the determinant of a product of non-square matrices. This follows very
naturally from wedge products.
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Let T : V — W be a map, and consider the map
TE . VX o xVoasWx---xW

which takes each element to its map. Now I can to do the alternation of this
and make the map
AT - NFT — NP
Note that I am skipping V** = V.
Now let

v Law S5 U
where dimV =dimU = k and dimW =n and n > k. We can extend this to
/\kv AT AkW NFS /\kU

Note that the dimension of A¥T and A*U is 1 while the dimension of A¥W is
(2) If we let eq, ..., e, be the basis of V and é4, ..., é; be the basis of W, then
one can check

NS -T)(er A ANeg) = det(ST)(é1 A--- A éy).

This is because each space is a spaces of dimension 1. Also, in each space, A*T
and \*U are represented by (Z) vectors. Each of them exactly corresponds to
the choice of k rows or columns.

Also the Pythagorean theorem for the volume of a parallelepiped is the rela-
tion between inner products of V and inner products of A*V. Let dimg V = n.
Note that the inner product (-,-)y on V is the same as specifying an orthonor-
mal basis e1,...,e,. Then e; -e; = (e;,€e;)y = d;5. The question is “Is there
a naturally induced inner product on AFV?” There is, because we can just
naturally say that e; ,...,e; where 1 < j; < --- < jr < n. But then does it
depend on the choice of another orthonormal basis?

Let uq, ..., uy, be another choice of the orthonormal basis of V. Presumably,
the uj, A---Auj, for 1 < j; < --- < ji < nshould be orthonormal with respect
to the inner product defined by ey, ..., e,. We need to check that

(uil N Ny ugy A /\ujk,) = 6i1j1 o '(Sik-,jk'
The left hand side is precisely the determinant
Wy = Ujy mrr Ugy - Ugy, Uiy
det = (Ujl T Ujk) :

Us

Then we use can use the Binet-Cauchy formula and get a sum of some products
of the determinant [q,...,[xth column matrix and the [q,...,[;th row matrix.
This is the wedge product

(wjy A AN, e A+ Aeg, ).
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Then we have

(uil A N gy Ugy /\"'/\ujk)/\kv =

E (uil/\---/\uik,ell/\---/\elk)/\kv
1<l <<l <n

'(611 N Ney,Uj, /\"'/\Ujk)/\kv

What we get after all this is the Lefschetz decomposition theorem.
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8 September 29, 2015

There will be a in-class midterm exam on November 3, Tuesday. It will mostly
cover solving equations; polynomial equations in one variable, and many linear
equations in many variables.

8.1 Historical background

Let me explain the historical starting point of tensors as higher dimensional
arrays. There is the vector ¢ = (v1,...,v,) which is an 1-dimensional array,
and is used in physics as force, acceleration, etc. Then there is the matrix,
which is a 2-dimensional array A = (a;;). In physics, this is used in describing
forces exerted on many particles, such as stress tensors or strain tensors. Then
there is the k-dimensional array. After a while, people realized that it can be
defined abstractly, and without choosing a basis.

Let V1,...,V, be finite dimensional vector spaces over a field F. We defined
the V" ® --- @ VS as the set of linear functionals

{flf:Vix--xV,— F}
If dimgV; = n; and the basis for V; is egi),...,egi)7 there is the dual basis
(egf))l, ..., ("), Then every function f can be written as

f= Z f’il-uip(eil))il X (eiQ))iz R ® (eip))iP

1<i <ny

where f;,...;, is some element of F'. Then f can be viewed as the p-dimensional
array (fi,..i,)1<i,<n,-

Moreover, f T e V¥ ®---® Vp* W1 ®---® W, then it is a multilinear map
Vix.-xVp,x Wi x...Wy — F. Then T can be represented as T' = (Tijll,i'_'ijqq).
Then p is called the the covariant rank, and ¢ is called the contravariant rank.
The reason we write some indices on the top, and some on the bottom is because
we want to distinguish between the dual and the not dual.

8.2 Evaluation tensor and the contraction map

Let V' be a vector space over F. An element f € V ® V* is a linear functional
f:V*xV — F. Consider the evaluation tensor, which is

f0"u) = v (u)

for v* € V* and v € V. This has covariant rank 1 and contravariant rank 1.
Let us give this a name Evaly, and represent it in terms of basis.
Let eq,...,e, be a basis of V, and el,...,e? be the dual basis. Then

Evaly (e, ex) = el (ex) = 5%.
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Then the array is (5%) Note that we wrote j on top and k on the bottom. If
we write it as d,x, it is not a tensor.
Before introducing the contraction operator, let us consider the dual of tensor
product. The product Vi* ® --- ® V" is the set of multilinear functionals V; x
- x V, — F. What is the dual of this vector space? We can show that it
isVi®@---@V, Let f € V®---®V). Then for a decomposable element
V®--®up € V) X -+ x V), we can define

(1 ®@vp)(f) = f(o1,-.. 0p).

Then we have shown that V1 x... V), C (Vi'®---®@V,’)*, and because V; x---xV,,
generates V; ® - -- ® V,,. After calculating the dimension, you can show that

Ve V) =e oV,
Rephrasing it, we can write this as
Vi@ @V =Homp(Vi ®--- @V, F).
In a general setting, you can replace F' by a tensor product. Then
Vi@ eVyeaW @ - @W;=Homp(Vi® - @V, W@ W,).
Specifically,
Ve -V, eW @W =Homp(V1 ®@--- @ V,, W* @ W).

But we have the evaluation map Evaly, : W* @ W — F,| and composing it with
the Homp (Vi ® --- @ V,,, W* @ W), we get a map

‘/1*®®VP*®W*®W_>HOH1F(‘/1®®V;),F):Vl*®®‘/p*

This looks complicated, but it is more simpler in terms of bases. In terms of
bases, this map is actually (7} *’) s (T-+»§]). This is called the contrac-
tion map.

If there is a inner product, we don’t need the dual space. If V is a vector
space over R, then the inner product gives an isomorphism V = V* by u —
(v = (v,u)y). Tt is more complicated if V is a vector space over C. The same
map gives us an isomorphism V* 2 V', where V is the complex conjugate vector
space.

Now back to contraction maps. If W is a vector space over R, then we can
define the contraction map

Vio @V, eWeW Vo0V,

because we have W = W*. In terms of basis, if uq, ..., uy, is a basis for W and
(Uj,uk)w =gjk € R, then

(Til-uz'pjk) — (T“zp)
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where
T = g T“"'Z”]kgjk.
gk

In the complex cases, we can similarly define

N - Vp,aWeaW =V -V,

8.3 Exterior product of two different vector spaces

Recall that if V' is a vector space over F, the exterior product V* AV* is defined
as the set of elements of V* ® V* which is skew symmetric. It doesn’t make
sense if the two vector spaces are different.

But there is a need for this. In complex analysis, we have dz',...,dz",
and sometimes we have dz!,...dz". But because z' # z!, sometimes exterior
product of different vector spaces are needed.

It can be done by embedding V and W into V @& W. This is generally
impossible, but in this case, we can specify an element, namely 0. When there
is a linear map V @ W — F, we can extend it to a multilinear map (V& W) ®
(V@ W) — F, and then this is an element of (V & W)* @ (V & W)*. Then

VieW c(VeW) e (Ve W),

and inside this, we can define V* AW™*.
There was a homework problem about this. If V is a vector space over C,
we consider as a vector space over R. Then

VerC=VaV.
Then we have
VAV C Ve WVAV eV)=(Vaer C)A(V @ C).
Generally,
NV erC)=A\(VeV)= _@k(/\p‘/) ® (A"V).

This is known as the Hodge decomposition, and let me explain.

8.4 Hodge decomposition

For instance, let k = 2, and consider A%2(V* @ V*), and consider an element f.
Then f is a multilinear map

f:(VeV)x(VaeV)—C.

Then f(vy @ U2, w1 ® wa) € C. Then you can break up f into four parts
f = fi+ fo+ f3 + fa by linearity. The four pieces will be complex function
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defined on V x V,V x V,V x V,V x V. When we impose the skew symmetry
condition on the pieces, the first and fourth pieces are just skew symmetry. So it
is just A2V and A2V. The second and third pieces have some kind of relation,
and if we view it as the third being coming out from the second one, we can
write it as V' ® V. However, if we view it as a whole, we can write it down as
V A V. In fact, these two are the same thing. So

NVaV)=NVeVaV)a ANV =AVe (VAV)e A*V.
Generally, we have

Nvev)= @ NV)2AV)= D (NVIANY).

p+q=k pt+q=k
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9 October 1, 2015

We started out with determinants, and introduced exterior products and tensor
products, which are array or entries. There were various techniques; multi
linearity, duality, alternation, contraction, complex structure for real vector
spaces, and ultimately, Lefschetz theorem. The Lefschetz theorem breaks down
the product into simpler building blocks, by contraction with inner product. It
only works in C-vector spaces with the inner product.

9.1 Philosophy of the Lefschetz theorem

Let me explain more about the Lefschetz theorem. We consider the vector space
V over C. Then (APV)A(A?V) € APT9(V @ V). The contraction sends (p, q) of
(Z) (Z) dimension to (p— 1, —1) of (pfl) (qﬁl) dimension. On the other hand,
for the Lefschetz operator does the exterior product and sends (APV*)A(A?V*)
to (APT'VF)A(ATTV*). This sends the dimension (7) (1) to (1) (1)

Let ey, ..., e, be a C-basis of V and let (-, )y be a Hermitian inner product.
Let g;z = (ej,er)v. Then the tensor by which we product in the Lefschetz
operator is Y g;zeh ® €k = g;pel N ek

Because people are finding wedge products to hard, I am going to give some
time to digest, and delay the proof of the Lefschetz theorem. Meanwhile, I will

do something else, which will be used in the proof.

9.2 Hodge star operator

Let V be a vector space over R with a inner product (-,-)y. Let e1,...,e, be
an orthonormal basis, and the dimension of A*V and the dimension of A" ¥V
is the same, because the basis of A*V is ej, A= ANelk for j; < -+ < ji and the
basis of /\”*kV isej, N---Ne;,_, forig <--- <ip_p. Then for a pair, we can
assign a number as

(ej, A+ Aejy,ein A Aey, ) (€, A Aej )A€ A Ney, ) = sgn(m)er A - -Aep,.

Then we get a map (A*V)A(A"*V) — R. This map is independent of the
basis, up to orientation. The star operator * : A¥V — A"~*V as a composite
of the paring and the use of the inner product. Because the paring induces an
isomorphism (A*V)* = A" %V, and because there is a inner product on A\*V/,
we get a isomorphism * : AFV — A"7FV.

What does it mean to be independent up to orientation? It means that we
need a choice of an element § which has unit length in A¥V. Then we can
express the definition of the star operator as

v A (xu) = (v,u) Ary 0

for v,u € AF.
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9.3 Normal form of a matrix

The idea of the normal form is building up from simpler things, just like the
Lefschetz theorem. Because tensor is far more complex than the matrix, for the
time being, we just consider matrices, or 2-tensors.

We use the technique of elementary row operations and column operations.
But we do it on a ring. The difference is that we can’t divide an element, and
make the value of the pivot to 1. So we choose the ‘smallest’ element on the
pivot column. If the ring is Z, we choose the one with smallest absolute value,
and if the ring is F[\], we choose the one with smallest degree. The we use
the Euclidean algorithm to make the elements of the column smaller. Then
eventually, we will end up with a unique nonzero element. We do this also for
the column. Then we end up with

dy
dy
PAQ =
ds
0

with dy | dy | --- | ds, where P and @ are invertible matrices.

Let F be a field and let V be a vector space over F. Let T : V — V be a
linear map. Consider the F[A] & --- @ F[A]. This has a additive structure, and
scalar multiplication. This kind of thing is called a free F[A]-module of rank n,
and is denoted as F'[A]". Anyways, we can give a F'[A]-module structure over V'
by

(f(A),0) = f(T) - 0.

Then the module structure is linked to the normal form of the linear map 7.
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10 October 6, 2015

We did elementary row and column operation over a ring last class. There are
two applications.

e Structure of a finitely generated abelian groups (R = 7Z)

e Normal form of a matrix (R = F[)])
The important thing is the you need Euclidean algorithm. The “size” of an
element is defined as the absolute value in the ring of integers, and the degree in
the ring of polynomials. If size b < size a, then there is a r such that sizer < sized
and a = ¢b + r. You can successively apply this algorithm to get the greatest

common divisor ged(a,b) = ¢ such that ¢ = pa + ¢b for some p,q € R.
For a matrix A, consider the element with smallest size

Smin = min{size(ai;) f1<i<m,1<j<n-

Using row and column exchanges, we can move this to the top left place. Then
using Euclid’s algorithm, we can either make some element smaller than sy, or
make them all zero. If some element becomes smaller than s,,;,, we replace this
as the spin element. Otherwise, we get a first we get a smaller (m—1) x (n—1)
matrix. Since elementary row operations and column operations can be regarded
as multiplying matrices, we get

dy

PAQ = dy

10.1 F[A\|-module structure of a vector space

Let R = F[\ and T be an n x n matrix with coefficients in a field F. Then we
canregard T as T : V — V, or T € Homp(V, V). Here,

VZéFek
k=1

which means that e1,...,e, is a basis. If T'= (a; j)1<;, j<n, then

n
Tej: E Q€4
i=1

where e; is the column vector with one 1 in the jth place.
V' is a vector space over F', which is also a module over F'. We want to make
V a module over the ring F[A]. The scalar multiplication is defined as

(f(A),v) = f(T)v
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where f()) is a polynomial in F[A\] and v € V. What does f(T) mean? If
f) =300 cj/\? with ¢j € F, then f(T) = Yo ¢;T79 so that

FT)0 =3 ei(T7).

This is a more complicated structure, because the map 7T is incorporated in the
structure. If we know the structure of this module, we know the map 7.

Now we need to come up with a matrix, because we want to apply the ele-
mentary row and column operations. We introduce the notion of a free module.

Definition 10.1. A free module over R of rank n is
R®---@R={(r1,...,rn):71,...,m € R}.

Let me write é; for the column vector with 1 in the jth position in the free
module F[A\]®". Then we can make a map

O FN" >V

such that é; — e;. This map is over the ring F[A], which means that it is linear
in the sense of scalar multiplication of a polynomial. That is,

j=1 j=1
Then we get an so-called exact sequence:

0 —— Ker® —— FN" -2V —— 0

We claim that

Claim. As an F[A]-module, we have the isomorphism
Ker ® = F[\]®".
Using this claim, we can change the diagram to:
0 —— FA®" —— F\®" 25V —— 0
This second arrow is then a n X n matrix, which contains the information of 7.

10.2 Kernel of the map induced by T'

Now we prove the claim. By definition,

n
Tej = Zaijei evV.
i=1
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In F[\]®™ we have
Aej — Y aijé; € Ker @
i=1

because the image is zero. Denote this element by fj. Then it suffices to prove
that f1,..., fn, make Ker @ a free F[A\]-module of rank n, or in other words,

Ker® = @_ F[\|f;.

We need to prove two things; spanning and independence. First let us prove
spanning. Take any element Y27, g;(A)é; € Ker ®. Note that

Aej = fi + Zaijéi € ZF[)\]fz + ZFéi C F[\®"™.
Jj=1 i=1 i=1

We want to get rid of the > | Fé; part.
Now we prove that

N'éj e Xn: FINfi + an Fé;.
! i=1

=1

This is done by induction on £. If A%; is in that module, than
Nl € Y FINSi+ ) F(Mé:)
i=1 i=1
which, in turn, is then in 30 FIAlfi + 325, é;.

Any
S o e € STFINF Y Fe
j=1 i=1 i=1

can be represented as

n

D gi(Ne =D hiNfi+ > bié;.
j=1 j=1

j=1

Since the left hand side ¢ is in the kernel of ®, we can apply the map ®. Then

we get
0= ijq)(éj) = ijej
j=1 7j=1

and thus b; = 0. Therefore, 2;21 g5 (N)é; is generated by fjs.
We now prove linear independence. Suppose that

> hiN =0
j=1



Math 55a Notes 45

Then

n

> () (2 - Zn: aijéi) =0

j=1
and it follows that

Y (hj(/\))\ - gaﬁhi@)>éj —0.

j=1

Then for each h,
hi(MA = ajihi(A).
i=1

If you look at the degree of the h;s, you get a contradiction, because the h;
with the maximal degree times A cannot be expressed as a linear combination
of other polynomials.

10.3 Decomposition of the module structure on V

Finally, we get a n x n matrix with entries in F[\]. Because we actually know
what the basis is, we can actually specify what the matrix looks like. Because
we are changing the basis from f; to é;, and

fi =X — Zaijéz’a
the jth column is the matrix is
—ay;
—ay;

A= agj

—ap,
Then we get
dn Mn—4 bn @
0 —— FN¥" =<5 F\]" — V —— 0
We can apply the elementary row and column operations over F[)\] to get

1

P(M\, — A)Q = di(N)
da(N)
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where d; € F[A] and di(X) | d2(N) | --- | ds(X). Note that there are no zeros on
the diagonal, because the determinant is nonzero. Also, V is the cokernel of the
map A, — A. The each di(A),...,ds()) is called the invariant factor.

The matrix P is the change of basis in the third F[A\]®™, and Q is the change
of basis in the second F[A\]®"

The lots of 1 on the diagonal does not contribute anything to the cokernel.
The entry d;(\) contribute

FIN/dj\NFN =F@F\@--- @ FA%ed !
to the cokernel. But because V is of dimension n, we have
degd; +-- -+ degds =n.

Now we have decomposed V into parts which are invariant under 7. But
we can further reduce things by interpolation techniques (Chinese remainder
theorem). That is, if d(A) = g(A)h(X) with g and h relatively prime, then

FN/ANFN = FIA/ 9N FA @ FIAI/RA)FAL

This is because they have the same dimension and the map is surjective. To
show that it is surjective, we need to find f; and f5 such that

fi(A) =1 mod g(N) and f2(A) = 0mod g(N)
f1(A) =0 mod h()N) f2(A) =1 mod h())

These exist because there are ¢; and ¢ such that 1 = g1g + g2h.
In the special case F' = C, we can use the fundamental theorem of algebra

to write
t

F\/ EBF JO =) FA.
Then each of V is a direct summand of

V= @F )k PN

This gives rise to the Jordan normal form.

We will focus on each F[)\]/(\ — r)*F[)\]. Because this is the cokernel, the
element 1 mod (A —7)* goes to some v € V. Then A will go to Twv € V, and
likewise, Ak — 1 will go to T*~*v € V. Then, A¥ = A¥ — (A — r)* will then go
to TFv — (T — r)*v.
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Now we continue our discussion of a normal form of a matrix. The technique is
using elementary row and column operations over a ring. The main reason we
are doing only for Z and F[A] is because we can use Euclid’s algorithm.

11.1 Review of the decomposition of V' as a F[A\]-module

We started we a linear map T': V — V, and make V a F[\]-module by defining
Av="Tuv. Ifeq,...,e,isabasis of V over F, we constructed a map F[N\]®" — V
by é1,...,é, > €1,...,e, and got the exact sequence

0 — Kerd —— F\®" 257V —— 0.

If we let fj = Xé;—> " | a;;é;, then f1,..., f was the basis for the F[M]-module
of Ker ®. We proved spanning by calculating the error, and independence by
considering the maximal degree. The map Ker ® — F[\]®" was actually AI,,—T,

and with the elementary operations, made it into a diagonal matrix with entries
1,...,1,d1(N),...,ds(N). Also, V was the cokernel of AI,, — T. If P(AI,, — T)Q

is the diagonal matrix, then P is changing the basis é;,...,é, and actually
replaces é; by the jth column of P = (p;;())). In other words, é; is replaced by

p1;(A)
: Zplj(/\)é1 +~-~+pnj()\)éj.
Pnj(N)

This new basis is the good basis, and this means that
{p1;(Mex + -+ pnji(Ten}i—y

is a basis of V, because P is an invertible basis with polynomial entries.
Now when we take the cokernel, the many 1s in the diagonal matrix have
zero contribution, and we obtain that V' is isomorphic as a F[A]-module to

S

DEN /(N FN)en-s+;.

j=1
We want to decompose further. Assume that F' = C (so as to apply the funda-
mental theorem of algebra to get roots of polynomials.) Decompose F'[A]/d;(\)F[A]
by the Chinese Remainder Theorem.

11.2 Chinese remainder theorem

For Z, consider ny,...,n; € Z4+ such that they are pairwise relatively prime.
Then there exist integers q1, ..., gr such that

k
1= g q]nln]_lnj+1nk
j=1
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If we let a; = gjny---mj_1njq1 -+ - ng, we have
(mod n;)

a; 1
{ 0 (modjx) (k# 7).

Then we see that given b;, there exists an a such that a = b; mod n; for all 7,
namely a = ) bja;.

Ditto for Ff)\] Let g1 (), ..., gi () relatively prime, and we can do the same
thing

1=2 6910+ g1 (N gs1(0) -+ 9k (V-
Then again,
a;(A) =1 (mod g;(N))
{ajm 0 (mod gu(N) (k# j):
It then follows that given b;(A) mod g;(\), there exists a unique a(X) such that
a(A) = b;(A) mod g;(A), defined by a = Z?Zl a;b; mod g1 - - - gi.
Now factor d;(A) = g1,;(A) -+~ g,,(A). Then we have

k;
FN/d;(\NFN = @ FN/g;(MFA.
=1

If we want to get the inverse of this decomposition, we need to write

1= qu,] )91,5(A) +++ gi-1,;(N) G141, (A) =+ gre; 5 (A)-

Then the inverse map is
kj

bi, ..., bg; — ZQI,jgl,j()\) g1, (N g5 (A) - gy (A)bi(N).
=1

We can phrase it differently. We have an embedding

FN/g1;(NFN = FN/d;(MF[A

which is the multiplication by ¢i; = q1,;91,;(A) - -~ 91-1,; (AN gir1,;(A) - - - gr; 5 (A)-
We can extend the identity

S

FIN®" /(AL = T)FIN®" = DFN/dj (V) FN)én—s+;,

j=1

using the decomposition we just made to write

FINE" /(AL — TP = (D) (@qm /gy (A >Fm>).

Jj=1 =1



Math 55a Notes 49

11.3 Jordan normal form
Now let us get back to V. Using the map ¢, we see that

k;

V=@ (B rmen .y ).

j=1 Ni=1

Because this is a direct summand, 7" maps to each part ¢ ;(T)en—sy; to itself.
This is a single vector, and let us denote €, ; = §;,;(T)en—s+;-
Each of ¢;;(A) = (A — A;;)®9 should be a power of a linear polynomial.
Note that
(G FN)en—st5) = F[T)e; C V.

as an F[A]-module. (This subspace is not necessarily dimension 1 over F'.)
Because ¢, ;(A) was missing only g; ;(A), when we multiply it, the element & ;
becomes zero. That means that

(T — A j)7é;,=0
in V. Then the F-basis of F[T|é; ; is
€y (T = Nij)érg, -, (T = Niy)™i ey
This is because any polynomial h(\) can be written uniquely as
h(X) = coter (A=A )+ea(A=X ;)24 e, ,—1(A=X;)* 71 (mod (A=X;;)*7).
What is the matrix representing this basis? It is

Ay 1

This is because T' maps €; ; to
Te; = Njew; + (T = Aij)e,

and
T(T — N j)*er; = N (T = Nj)ke; + (T — Ny)kEHe .

Now because these are direct decompositions, we can do this for every part
and choose a basis of V' so that T is represented by the matrix

Ji1
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This is thek.]ordan normal form. Note that the sum of the size of the blocks
is Zj’:1 >l deggr; = 25:1 degd; = n.

Let me give some names now. Consider the matrix AI,, —T. Then d,;()) is
the same as

ged of the det of all (n—s+j)-minors/ged of the def of all (n—s+j—1)-minors.

Suppose that the A1,..., A\, are all distinct. Then we see that the invariant
factor is just (A — A1) - (A= Ap).

Definition 11.1. The last invariant factor ds()) is called the minimal poly-
nomial. This is because d, is the minimal polynomial such that ds(T") - v = 0
for all v e V.

Definition 11.2. A nonzero vector v € V' is an eigenvector with eigenvalue
Afor T:V — V if (T — A)v =0. The eigenspace F) is the set

{eigenvectors for eigenvalue A} U {0}.

Definition 11.3. A generalized eigenvector v (of rank m) of T' with eigen-
value A for a T : V — V is a nonzero vector such that

(T—N"v=0 and (T —\)""tv#0.
Likewise, the generalized eigenspace is
E\{v: v is a generalized eigenvector} U {0}.

Now you might feel home, so I will again begin talking about tensor and
wedge products. You will be comfortable with the complex structure of a vector
space V over R. When we give a complex structure, you have to give some kind
of i. So, you need to give a map J such that J: V — V such that J? = —1I.

One bad thing is that we want to say things about the eigenvalues or eigen-
vectors, but because V is over R, we cannot use the fundamental theorem of
algebra. So we extend J to the map V ® C — V ® C between tensor products.
Then J becomes a C-linear map, and then the eigenvalues of J will be ¢ and —1,
because J? = —1. If we let Py = 3(1 —iJ) and P» = 1(1+iJ), the eigenspace
of 7 is 1

E;,=ImP; =Im 5(1 —1iJ).
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For a matrix T': V' — V over the field F', we used the technique of replacing the
action of T on V by an F[A]-module structure for V. We used the elementary row
and column operations over the ring F[A] on the characteristic matrix AL, — T
Note that this can be done over any field F', while F' has to be algebraically
closed to further decompose it to a Jordan normal form.

12.1 Justifying complex multiplication on real vector spaces

We go back to the complex structure J of a real vector space V/R. The map
J:V — Jis an element J € Homg(V, V) such that J? = —1. We want to look
at the eigenspace and eigenvalues. (The reason I come back to this is because it
is a bridge between real analysis and complex analysis. This is very important.)
If v is an eigenvector, Jv = Av and hence J?v = A%v = —v, so A = +i. But
because this is not real, we need to extend it to a vector space over C.

The intuitive idea is to multiply a vector from V by i by brute force. For
instance, if the basis of V over R is e1,...,e,, we just write ie;. But we
have to justify this. We do it by regarding V' = (V*)*. For an element v €
Homg(V*,R) = V, we can regard it as a R-linear map V* — R. Then we
can compose it with the embedding R — C, and then v can be regarded as an
element of Homg (V*,C) =V ®g C.

More generally, let F' be a field, and E be an extension field of F'. Then for
any vector space W over F', we have

W @p E = Homp(W*, E) = Homp(Homp (W, F), E).

This is called a basis change.
Back to the complex structure. For a linear map J : V' — V| we consider
the pullback J* : V* — V* of J. This is defined by

fol=1T'(f).

Note that the pullback of the pullback (J*)* is the same as the original map J.
For this, we consider the diagram

Hom(V*,R) —— R —— C

A

Hom(V*,R)

and compose the map with the embedding with R — C. Then we get an
extension J : Homg(V*,C) — Homg(V*,C), and a C-linear map J ® idc :
V ®r C - V ®g C. This is just a justification, and you don’t have to worry
about this when doing real things.

We now decompose the space V ®g C into eigenspaces by Chinese remainder
theorem. There are two eigenvalue ¢ and —i for (the C-linear extension of) J.
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Then

Id=1=-(1—iJ)+ (l—i—zJ)

2(
Then as in the homework assignment, the two spaces 3(1 —iJ)(V ®g C) is
the eigenspace for the eigenvalue 7 in the C-vectorspace V' ® C. The two maps
m = 3(1—iJ) and mp = 1(1+4J) are projection maps; 71 +72 = 1 and 77 = 7y,
W% = Trg.

Before we go back, I want to talk about normalizing constants. We had the
identity 1 = 2(1—14J)+ 3(1+4J). But there is the constant 1/2 which is a kind
of nuisance. Some authors just don’t write the constant explicitly, and some
authors do. Similar things happens for wedge products too. When we want to

calculate for instance
( Z ail...ip(eil /\"'/\eip)> A ( Z ajl.,.jq(ejl /\.../\ejq))
i1 < <ip J1<<Jq

we need to change the order. If we want to avoid lots of (—1)", we used the

alternating convention, requiring the a;,...;, alternating i1,...,%,. Then
g (€iy N---Ney,) = g iy iy (€ Ao Neg).
i1 <<

This also arises when looking at double integrals.

12.2 Field extensions

Let me move on. We will look at the logical foundation of Galois theory. For
an equation az? + bz 4+ ¢ = 0, we can solve it as

 —bx Vb —dac

2a

But what does this v/ mean? When working in complex numbers, it is not
clear what it exactly is.

We work in the field F = Q(a, b, ¢) which consists of all rational functions
of the three independent variables a,b,c. What we want to do is to solve the
equation az?+bx+c = 0 in the field F = Q(a, b, ¢). Of course, it is not solvable,
because the solution involves square roots. So wee need to justify this radical.

How do we justify solving 22 — a = 0 over the field F = Q(a). We want
to construct an extension field £ of F' such that in E the equation 2> — a = 0
can be solved. Because the rule is that you can only do addition, subtraction,
division, multiplication and taking radicals, we are solving only the equations
of form z" — k.

The idea is that F[z]/(2? — a)F[z] is a field. In general, if p(z) is an
irreducible element of F[z], then F[ |/p(z)F[z] is a field. That is, for any
f(z) € Flz] such that f(z) # 0 mod p(z), then by Euclid’s algorithm, we can

write

1=g(z)f(x) 4+ h(zx)p(x)
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and g(z) becomes an inverse of f(z).

Then E = F[z]/(2? — a)F[z] is an extension of F, and the image z* of x of
F[z] in the quotient F[x]/(2z? — a)F|[x] satisfies (z*)? —a = 0. This * then is
the justification of y/a. Because the other root is automatically —z*, we don’t
really need to distinguish between /a and —+/a, and it doesn’t really make
sense to distinguish between them.

In the 1820s, people proposed the problem to find a formula, but people first
needed to define what a formula means. For a polynomial equation

2" — o o 24+ (=)0, =0

where o01,...,0, are independent variables. The field we are working on is
Fy=F =C(01,...,0n). Now for some dy > 2 and ag € Fp, we extend the field
Fy, = Fylz]/(xq, — ao)Fo[x]. This is one step of the formula. For instance, if
n = 2, we choose ag = 0‘% — 409 and dy = 2. Next you choose some dy > 2 and
a1 € Fy. You do this until you get some F; such that the solution z1,...,z,
are the elements of Fj.

12.3 The rise of Galois theory

Let z1,...,x, be independent variables over F. We need to find a chain of
extensions
Fy, = F(Z‘l, R ,Jjn) = Fg_1[a:]/(xdf*1 - CLg_1)Fg_1[l‘]
U
Fpy = Fpoola]/(x%-2 — ag_) Fy_ola]
U

P = E)[x]/(f;do — ap) Fo[z]
U
FOZF(O'17...,0'n)

Lagrange first observed that each step is actually the stabilizer of some group.
The chain of groups 1 C G; C Go C -+ C Gy = S, then corresponds to

Fo=F(z1,...,5,)

U
Fyp 1 =FGy
U
U
Fy = FF".

For each step the group Gj_; should be a normal subgroup of G;, and the
quotient group G;/G;_1 should be a cyclic group. I will explain this later.

Starting with an irreducible polynomial p(z) € F[z] (generalizing 22 — a),
we extend F to E = Flx]/(p(x)F[z]). Then E is actually a F-vector space. We
define the degree of extension as the dimension dimp E = [E : F].
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But when we extend, are the “other” roots of p(z) inside E of not? Generally
they are not all in F/, and you can easily write down an example. In resolving this
problem, the key idea is applying Euclid’s algorithm. Denote by x* the image
of x € F[z] in Flx]/(p(x)F[z]). Then after extending to E, the p(z) € E[z] will
contain the factor z — z*, because p(z*) = 0. Write

p(x) = (z —2")p1(z) = (z — 2")g1 () - - gr(x)

for some irreducible polynomials g1, ...,gx € E[z]. Then we extend the field E
respect to g1, and we strictly increase the number of roots of p(x). This means
that after a finite number of step, we have an extension field F O F such that
[F: F] < 0o and p(z) can be regarded as and element of F'[z] which completely
factor in to linear factors

p(x) = alz —a1)--- (& — zn)

with z1,...,2, eF.

Now we might have extended more than needed. So we just consider the
field F(z1,...,x,), which is the set of all elements of F which can be expressed
as rational functions of the elements of z1,...,z, of F with coefficients in F.
This has a name

Definition 12.1. F(z1,...,x,) is called a splitting field for p(x) € F[z].
(Note that p need not be irreducible.)

Actually the dimension of the splitting field [F(z1,...,2,) : F] is unique,
and it is related the automorphism group Autp(F(z1,...,2,)) which is the
group of automorphisms which fixes the field F. This is the contribution of
Galois.
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We want to look at Galois theory. The question is how to solve polynomial
equation over single variable. The main point of Galois theory is the relation
between intermediate fields and subgroup of partial symmetry. There is a one-
one correspondence, and this is the key of Galois theory.

13.1 Galois theory

We start with elementary symmetric functions Fy = F'(o1,...,0,) and make it
down to Fy = F(x1,...,%,). Starting with an equation

" — oz 4 (1) 0,

we want to end up with the solution in Fj, and the whole point is expressing
Z1,...,Ty With o1,..., 0, using rational functions and roots. We want

F():F((Tl,...,O'n)

N
Fy = Fo( %/ap)
N

Fy = Fi(/ay)
N

N
Fy=F(x1,...,2,)

But this is not Galois theory.
The field Fy can be written as Fjy = FZS ”:GO, where this means the set which

is fixed by Sp. Actually eat of Fj can be written as Fj, = FZG’“ with the tower
GoD> Gy D---DGy.

This is the key of Galois theory. It show that the chain of fields is finite.

You start out with a small field Fy and extend it to Fy. But there is a rule
that in each step, it should be extended to a splitting field.

We have to define the automorphism group.

Definition 13.1. An automorphism group Auty F of a field E over F is the
set of bijections f : F — E such that the restriction of f to F' is the identity.

Let F be an intermediate field between E and F.

M C =mC ™
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We want to show that there is a one-one correspondence between intermediate
fields and the automorphism groups. Let G = Auty F and let

H = {g € G: g fixes every elements in F'}.
We can go back to the field by
Ef7 ={¢cE:g(¢) =¢forallge H}.

We can do it the other way. Starting with a subgroup H C G, we can think
of a intermediate field F = E¥ and back to groups by Autz(E).

What I presented is a way of going from intermediate fields to automorphism
groups, and another way of going from automorphism groups to intermediate
fields by considering the set of elements fixed by the group. The question is
whether these two procedures are inverses of each other. In other words, is

Ef =F and Autz(E)= H in the two situations?

These are true if F' is a splitting extension of E.

Let us look at the process of making a splitting field. For a field F', we take a
polynomial f(z) with coefficients in F'. Then we construct it as F|z|/f(x)F[z].
Then the root of f(x) in E is &, which is the image of z. If F' C F C Eis an
intermediate field, then if we want to construct F from F, we can just take the
exactly same polynomial f(z). Since f € F[z], it is also inside F[z]. Then we
see that F is also a splitting field of F'.

But is F' a spitting field of F'? Yes it is, if and only if F = EH for a certain
H. We call subgroups with this certain property normal.

13.2 Normal groups and solvability

Definition 13.2. A subgroup H of a group G is called normal, if ghg~' € H
for any g € G and h € H.

This means that if we consider the tower
{1} =Gy CGy_1 C---CG1 CGy=5,,

which is the solution to solving equations, G; should be normal in G;_;. But
because we allow only taking roots, the quotient G;/G;_1 should be cyclic.
Note that any abelian group can be written as a direct sum of cyclic groups. So
we can loosen the condition G;/G;_1 being cyclic to G;/G;_1 being abelian.

Also, the condition H C G is normal and G/H is abelian, is actually equiva-
lent to H containing the commutator subgroup, which is the group generated
by

{ghg™*h™t:g,h € G}.

We then can just consider the tower
G D comm(G) D comm(comm(G)) D --- D {1}.

We can introduce a definition.
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Definition 13.3. A finite group G is called solvable if and only if some
comm(- - - (comm(G))---) = {1}

Now if we assume Galois theory, the solvability of a equation of degree n
boils down to the solvability of .S,,.
Let me introduce one theory about the solvability of groups.

Theorem 13.4 (Feit-Thompson). Every group of odd order is solvable.

But this doesn’t really help when finding out whether S, is solvable. Because
Sy, has a lots of 2s, we need to take out all the trouble makers. If |S,| = n! =
2% . (0dd), then we would want a H C S,, with |H| = 2* which is normal. If we
This was actually done by Sylow.

Theorem 13.5 (Sylow). If |G| = p™ - (p-free product), then G contains a sub-
group of order p™.

But I will not go into all this. Maybe I will assign as a homework problem.

13.3 Bounding theorems for Galois extensions

Now let us go back to Galois theory. There were two operations: forming the

automorphism group over a field, and forming the fixed field. We will prove

that they are inverses by bounding the dimension of the intermediate field.
One direction is bonding the “size” of the field.

Theorem 13.6 (Artin). Let E be an field, and let G C AutE be a finite
subgroup. If we consider the field F = E¢, then [E : F] < |G].

Proof. Let m = |G|, suppose that n > m and let x4, ..., 2, be any elements in
E. Tt suffices to prove that there exists a nonzero solution to the equation

ax1+ -+ apTy, =0

such that aq,...,a, € F. Then it will show that n > [E : F] since any z1,...,2,
are linearly independent. Because n > [E : F] for any n > m, it will follow that
[E:F]<m=|G|

Let G = {g;}}_;, and consider the system of equations

algj(x1> +- 4+ angj(xn) =0.

Since there are more variables than equations, there should be a nonzero solution
(a1,y...,a,) € E™. But since it is not a solution in F', we need to bring it down
to F.

We now have a nonzero solution ai,...,a, € E. Consider the solution
ai,...,a, € F with the maximal number of elements which are not zero. Since
we can multiply any nonzero element of E to all ay,...,a, simultaneously, we
may assume without loss of generality a; = 1. Suppose that there is some a;
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which is not in F, say as € F. Then there should be some g € G such that
as # gi(az). Now for any 1 < j < m, we have

gr(a1)gj(z1) + gr(az)gj(z2) + -+ + gr(an)gj(z,) = 0

since we can apply the whole automorphism g, to the system of equations. On
the other hand we have

argj(w1) + azg;(x2) + - -+ + ang;(xn) =0,

which is the original system of equations. Subtracting the two equations, we
get a new solution

(gr(a1) — a1, gr(az) — az, ..., gr(an) — an).

This solution is nonzero because gi(az) # as, and there is at least one more
zero because gi(a1) — a; = 0. Therefore, we get a contradiction, and it follows
that a1,...,a, € F. O

The other direction is:

Theorem 13.7. Given a field F' and a polynomial f(x) € F[z], construct a
splitting field E of f(x) over F. Then [E : F] = |Autg E|.

Proof. The idea is to count the degree of freedom in the remainder of Euclid’s
algorithm. If g(x) € F[z] is irreducible, then deg ¢ is the number of embeddings
of F(§) into a splitting field E, where ¢ is the image of x in F[z]|/g(z)F[z]. This
is because f(z) can be decomposed into linear factors.

Now degg = [F(¢) : F], and thus [F(§) : F] is the number of embeddings
of F(§) into E. Since g is irreducible, the minimal polynomial of £ should be
exactly g. This means that actually F(&) is just E, and thus [F(§) : F] =
Auty F(€)].

But g may not be irreducible. Suppose that g(z) = gi(x)---. Consider a
root &; such that g;(&) = 0. Then the field F(&) factors in F[¢] to g(z) =
(x — & )hi(x)---. Let & be the root of hy and consider F'(&1)(&2).

Then E = F(&)(&2) - - - (&). For each k, the number of embedding

F(&)- (&) = E
which fixes F(&1) - (§g—1) will be [F(&1,...,&) : F(&,...,&—1)]. Then the
number of embeddings F — FE fixing F' will be the product

[TIFE, ... &) Fer, ... .&-0)] = [F(é,....&) : F] = [E: F).

k=1
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We want to solve a polynomial equation, and the only known ones are quadratic,
cubic, and quartic cases. If you start out Fy = F(oq,...,0,), and extend it to
Fy = Fy( %/ag), Fo = Fi( %/a1), and so forth, until Fy, = F(xq,...,x,), we get
a complicated solution. Lagrange first related it to fixed fields of subgroups of
Sh.

The whole game is the correspondence between intermediate fields and sub-
groups. If you look at intermediate fields, it looks like there are infinitely many
choices, but if you look at subgroups, it is much more easier. Historically people
tried to to things in intermediate fields and got stuck. Galois came and said
that you can look at subgroups instead.

Generally, let E be a splitting field of a field for a polynomial f(z) with
coefficients in F'. This means that the polynomial f(z) factors into linear factors,
ie.,

f($) = a(m - Tl) e ($ _Tﬂ,)
where 71,...,7, € E. Also, because E should be the minimal field, we have
E = F(ry,...,ry). These two conditions are the definition. The reason for
making this notion is to justify logically the formulas.

14.1 Separability of a polynomial

One more important thing is that all roots of a irreducible polynomial in F[x]
should be distinct. Later, it will be used in counting elements in the subgroup of
automorphism group. For a field with characteristic 0, that is, 1+1+---4+1 # 0,
the roots will be always distinct. This is because for any irreducible f, the
polynomial f and f’ cannot share a common factor. If the characteristic is
zero, problems can occur. For instance, let F' = (Z/pZ)(t), and consider the
polynomial X? — ¢ € F[X]. In the splitting field, if factors into

XP —t= (X — Yt)P.

We want to say that a polynomial has distinct roots. But there might be two
or more non-isomorphic splitting fields, and one might have same roots while
the other have distinct roots. So we need the following theorem.

Theorem 14.1. Let f(x) € Flz], and let F — E be a splitting field, and sup-
pose that you have another splitting field F' — E. Then there is an isomorphism
E>~F.

Proof. We prove this by induction. Let f(z) = g1(x)---gx(x) and 2* € E be a
root of f(z). In E, the polynomial f(z) will split into
f@)=(x—r)--(x—rn),

and we should map z* to some r;. Suppose that g;(z*) = 0. In E there should
be some 71 such that g;(r;) = 0. Then we construct

Flz]/gi1(x)Flzx] = F(r1) C E
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and the elements 1,2*, (z*)2,..., (2*)48 91~ will be linearly independent in
the left side, while 1,71,72, ..., 719! will be lincarly independent in the

right side. So we construct a isomorphism F[z]/g;(x)F[z] — F(r1) by sending
x* > r1. Now if we let ' = F[z]/g1(w)F[z] = F(r1), the fields E' and E are both
splitting fields of F'. Then we can inductively construct the isomorphism. [

Definition 14.2. A polynomial f(z) € F|x] is called separable if all its foots
(in a splitting field) are distinct.

14.2 The second counting argument

There are two counting proposition. One is Artin’s theorem. The other one is
this. This bounds the size of the group by the degree.

Theorem 14.3. Let E be a splitting field for a separable polynomial f(x) with
coefficients in F. Then [E : F] = |Autp(E)|.

Proof. Again, we use induction on n—k, where n = deg f and f(z) = g1(x) - - - g ().
We prove the following more general formulation.

Suppose E is another extension field of F which contains a splitting field
of F. Then the number of embeddings of E into E is equal to [E : F].

Let F' = F[z]/g1(z)F[z]. The the number of embedding of F into E over
F' is deg g1 = m, because an embedding is uniquely determined by the image
of z*. (Note that the fact that g; has distinct roots is used here.) Now fix any
embedding ¢;. Then
F o oy(F) C E.
We identify the two field so that both E and E are extension fields of . Then
in the new field F, the polynomial f(z) splits into

f(x) = (& = 27)g1 (2)ga(2) - - gr ().

Because this has smaller n — k, we can use the induction hypothesis.
Then the number of embeddings E — E over F(p;(F)) is [E : F]. Then
the number of all embeddings E < E over F' is

[E: F|[F:F|=|E:F).

This shows that [E : F] = [Autg(E)|. O

14.3 Galois extension
There are three equivalent characteristics of a splitting field.

(i) E is a splitting field of a polynomial with coefficients in F.
(ii) For some finite subgroup of G of Aut(FE), the field F is the fixed field E€.

(iii) E is a finite extension field of F, which is both normal and separable.
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Definition 14.4. Let E be a extension field of F. The field F is normal over
F if the minimum (monic) polynomial for any element of E with coefficient in
F splits in E. The field F is separable over F' if the minimum polynomial is
separable, i.e., all roots are distinct. If E is both normal and separable over F,
then it is called Galois over F.

We will prove this next class.
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You start out with a field F' and a splitting field for a separable polynomial. (The
theory started out with no condition on separability.) The main point is that
the splitting field is unique, before induction. The main trick is that you can
generally construct F[z]/f(z)F|[x]. After we have that it is unique, we can say
something about separability. You need separability because you want to count
things. The first thing is the dimension of E over F', and the second thing is the
number of automorphisms of E over F. Then you have [E : F| = |Autp(E)|.
You want to make a correspondence between intermediate fields and subgroups,
and one inclusion is obvious. The other inclusion requires these countings.

15.1 Three equivalent definitions of Galois extensions
We pick up from what we left of last time.
Theorem 15.1. The three statements are equivalent.

(i) E is a splitting field of a separable polynomial f(x) over FE|
(ii) For a finite group G C Aut E, the field F is the fized field EC.

(iii) E is a separable, normal finite extension of F.

Proof of (i) = (ii). We have f(z), and we need the group G. Because we have
f(z), we have Autp(E). We use this group as G. Of course, we have to check.
Let F = EY, and we want to show that ' = F’. By definition, F C F’, because
all automorphisms of G fixes F.

Now we use the counting. The second counting tells us that [E : F] =
Autp(FE), and because F C F’ C E, the field E is a splitting field over F’. So
again, [E : F'] = Autp/(F). But let us look at Autp/(FE). This is in Autp(F),
because F’ is bigger than F'. On the other hand, every element of Autg(E)
fixes F’, so it follows that Autp (E) = Autr(E). Hence

[E: F') = |Autp (E)| = |[Autp(E)| = [E : F].

By the tensor product thing, we have [E : F'][F’ : F] = [E : F]. But because
[E: F'] =[E: F], we see that [F’ : F] = 1. Therefore, F' = F. O

Proof of (i) = (iii). Given a finite group G inside Aut(E), we want to show
that F it is separable and normal over F = E¢. Let ¢ € E'\ F, and we want to
show that the minimal polynomial fe(x) has all roots in E, and that they are
distinct. The trick is to produce another polynomial by Artin’s technique and
compare to fe(z).

The group G acts on & to produce the orbit {y{} for v € G. And we can
consider the stabilizer subgroup

Ge={reG:=¢}

INo irreducibility is used, because we want E to be also a splitting field for f over K for
any FC K C E.
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Then G is the disjoint union

G= |J G
1<j<m
for some 71, ...,vm € G, and moreover the orbit is

€ = {mé&, ... v}

We now form the polynomial ge¢(x) from the elementary symmetric functions of
elements in the orbit G, i.e.,

9e(x) = (x =m&) -+ (& — &) € Flz].

Then g¢(z) is separable, and al the roots are in E. All the elements in the orbit
are in f¢(x) because f¢ € F[z], and hence g¢(x) divides fe(x). But because
fe(x) is irreducible, we see that fe(x) = age(z) for some a € F \ {0}. This
shows that the extension is normal and separable.

Lastly, Artin’s theorem shows that the extension is finite. This finishes the
proof. O

Proof of (#i) = (i). Let &1,...,& be a basis, so that E = F& + -+ + F&.
Consider g¢, be the minimal polynomial of &. Let

and delete all duplicates. Then we get a separable polynomial. The splitting
field of F over f(x) shall be E. O

15.2 Some comments about normality

Let E/F be a Galois extension. By this, I mean that E is separable, normal,
and finite over F'. If we have a intermediate F' C K C E, we know that if F is
Galois of F, then F is also Galois over K. But is K Galois over E?

You want to imitate the argument in (ii) = (iii) to show that K is normal
over I, but the big problem is that the orbit of some element in K might get
out of K. Then you would ask, “Is y(K) C K for all y € G = Autp(E) =
Gal(E/F)?” This condition is called the invariance of K under G.

Proposition 15.2. The extension K/F is Galois if and only if G = Autp(FE)
maps K to K. And this is true if and only if Auty (E) is normal in G.

We shall prove this claim. This is part of the Fundamental theorem of Galois
theory.

15.3 Fundamental theorem of Galois theory

We are now ready to state the theorem
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Theorem 15.3 (Fundamental theorem of Galois theory). Let E/F be a Galois
extension, i.e., E is a splitting field of some separable polynomial with coeffi-
cients in F. Let G = Autp(FE). Let

H ={H : H is a subgroup of G},

and let
K={K:K isa field with E C K C F}.

Then there is a correspondence between H and K, which is natural in the fol-
lowing sense: for H <> K, we have

H = Autg(E), K=FE",

Moreover, [E : K] = |K| and |G|/|H| = [K : F]. Furthermore, H is normal G
if and only if K/F is Galois.

Proof of the first direction of correspondence (group — field — group).
Let FE be a field, and G be a finite subgroup of Aut(F). Let F be the fixed field
F = EY. We want to prove that G = Autp(E). Note that I have removed the
base field to simplify the notation.

First, there is the trivial inclusion G C Autpr(F), because by definition G
fixes F.

Now by Artin’s theorem counting, we have [E : F| < |G|. Since F is a fixed
field of some subgroup, we see that E is a splitting field of some polynomial over
F'. Hence we can use the second counting to get [E : F| = |[Autp(E)|. Hence

|Autp(E)| = [E : F] < |G].
Together with the trivial inclusion, we see that G = Autp(E). O

Proof of the second direction of the correspondence (field — group — field).
We start with the Galois extension E/F, andlet F' C K C E. Let G = Autg(E)
and L = E¢. We want to show that K C L. Again, we have the trivial inclusion
K CL.

We have two Galois extensions E/K and E/L. The second one is Galois
since K C L C E. Using the second counting, we see that

[E:L] = |Aut,(E)|, [E:K]=|Autx(E).

But because L = E¢ and G = Autg(E), from the first part of correspondence
we have, we know that Auty(E) = G = Autg(E). Hence [E : L] = [E : K],
and therefore we get L = K. O

Now we need to show the last sentence of the theorem; that H is normal in
G if and only if K/F is Galois. We will do this next time.
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16 October 27, 2015

There will be four questions in the midterm: two questions in linear algebra,
and two questions in Galois theory.

16.1 Wrapping up Galois theory

If E/F is Galois, and F' C K C FE is an intermediate subfield, then E/K is
automatically Galois. But the question is when K/F is also Galois.

Theorem 16.1. An intermediate field K is Galois over F if and only if Aut i (E)
is normal in Autp(E).

Proof. By Galois theory, the field K is the fixed field of Autx(E) = H. First
assume that K is Galois over F. Then we need to show that for any v € G,
the conjugate YH~y~! is in H. Consider any z € K. Because K is an Galois
extension of F, the map v 'z should be in KE| Then H fixes K, so then v
turns it back to x. So YH~y 'z = x. Hence H is normal in G.

(Siu skipped the other direction.) O

16.2 Solvability of the polynomial with degree n

So let us get back the the solvability of a general degree n polynomial. Since
F(xy,...,x,) is Galois over F(o1,...,0,), we know that they are all fixed fields
of some groups.

FO:F(01,~";UTL):F(xl,“';xn)STL:GU

F(a1,...,2,)

In each step, Fj41 is an extension field of F; by adjoint the root of X4 — aj.
For instance, if we let Fj1; = Fj;(§;), then a; = 5;-1'7 € F;. That is, Fj41 =
Fj[X]/(X% — a;)F;[X]. Assume that F contains all d;th roots of unity. Then

2This is Artin’s technique. You look at the orbit of z under G, which is U'YkeG Ygx. Then
TT(X — yxz) is the minimal polynomial of z.



Math 55a Notes 66

all roots of X% — a; is in Fj4q and hence Fjji; is just the splitting field. This
means that Fj; should be Galois over F;. We can even claim the following.

Claim. Assume that d; is prime. The extension from F; to Fji1 is taking the
djth root if and only if Galp,(Fjy1) is cyclic of order d;.

Proof. There are two directions. We have assumed that the ground field F
contains the dth root of unity. Then if you have a root & of X% —a then you get
all the roots by the form w*¢. Let 4, be the automorphisms sending X +— w®X.
Then 7 0 y; maps X to w*T'X. So this shows that the Galois group is cyclic.

The other direction uses Lagrange resolvent. We convert the Galois group
action to multiplication by root of unity. Let i be a generator. Then the all the
automorphisms are 1,7,...,7% 1. Take one element ¢ € E\ F. Then F(¢) = E,
because [E : F] is prime and [F(£) : E] > 1. Then &,n(€),n*(€),...,n% (&)
shall be the basis of F' over E. Define

d—1
o= (WY€)

j=1

for 0 < ¢ < d— 1. This is the same thing we did for the cubic formula. Then

S

-1

n(Ge) = (W TH(E) = w .

1

<
Il

Then (¢;)? is invariant under 7, and hence ()¢ is in the field F}. O

So solvability of a polynomial of degree n is equivalent to the existence of
the tower of groups

{I}=G,C---CGCGLCGy=8,

such that G4 is normal in G; and G;/G ;41 is the cyclic group of prime order.
There is an easier formulation using abelian groups. If H is a finite abelian
group, then it can be represented as

H= @(Z/pf.%).

Then you can easily find a subgroup H' C H such that H/H' is cyclic of prime
order. This shows that you can replace the condition “G;/Gj+1 is the cyclic
group of prime order” with “G;/G,11 is an abelian group.”

You can further shorten the tower by doing the following. You can consider
the minimal Gj4+1 C G; such that G;/Gj4+1 is abelian. This minimal subgroup
G 11 is actually the commutator subgroup of Gj, which is the group generated
by elements of form aba='b~! with a,b € G. So such a tower exists if and
only if the commutator of the commutator of the commutator of the --- of the
commutator is {1}.

Suppose that n > 5. First, if you consider the commutator subgroup of .S,,,
it is A,,.



Math 55a Notes 67

Theorem 16.2. For any n > 5, the group A, has no proper normal subgroup
except for {1}.

Proof. Suppose that there is a proper normal subgroup N of A,,. Consider the
“least disturbing permutation” inside N, that is the permutation with most
fixed point (except for the identity). We will first show that this is o = (123).
Apply the inner automorphism of A,, on ¢, and then we get all 3-cycles. Then
N should contain all permutations generated by 3-cycles. But using “ladder
diagrams,” we see that every even permutation is generated by 3-cycles. This
contradicts our assumption that N is proper in A,,.

Now all we are left with is proving that ¢ indeed is a 3-cycle. It is obvious
that o is a composition of distinct cycles. Then o should either have a cycle
with at least 3 elements, or have at least 2 disjoint transposition. We claim
that if o is not a 3-cycle, then there is a less disturbing permutation. It can be
done by observing a thing like 707 1o~! for like 7 = (345). I will check this
later. U

16.3 Digression: Primitive element theorem

There is a recipe for computing the Galois group. Suppose that E/F is a
Galois extension and let [E : F] = n. Also for convenience, assume that F
has characteristic zero. We want to reduce it into a simple extension. This
means that one step is enough to construct F. That is, there exists a £ € F
such that £ = F(£). Then for the minimal polynomial fe(x) of &, the field
E = F[X]/fe(X)F[X]. This kind of element is called primitive.

The idea is roughly the following. Suppose that E = F(&1,...,&). Then

there is a sufficiently “generic” choice of a1, ..., a; such that £ = 2521 a;§&; is

a primitive element. This is possible, because F is infinite.

Now you can compute the Galois group from this using this fact. Besides ¢,
there exists other roots, and let them by { = &,...,&,. We want §; = h;(§)
to be true for some h;(X) € F[X]. Let G = Gal(E/F) and then we will have
|G| =n=[E:F|. Let G={v,...,7}, where 71 = idg and v;(§) = &;. Then
«y; corresponds to the polynomial h;. That is, you can compute the Galois group
by composing the polynomial h; modulo f(z).
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17 October 29, 2015

We continue on our discussion of the insolvability of polynomial of degree n > 5.
Using Galois theory, we showed that a solution corresponds to a tower of groups

{1}=G,C---CGj11CG;C---CGLCGy=8,

where G;41 is normal in G; and G;/G, 41 is cyclic of order d;. The the question
reduces to whether S, is solvable or not. In retrospect, we haven’t used a lot of
tricks. We used some estimates, and the trick of extending fields.

17.1 Insolvability of S,
We were showing that

Theorem 17.1. A, is simple, i.e., has no proper normal subgroup other than
1, forn > 5.

Proof. Suppose the contrary, and assume that there is a normal subgroup {1} #
N # A,. Note that A, is generated by 3-cycles. This is because every cycle is
a composition of a even number of transposition, and (13)(24) = (234) - (123).

If N contains a 3-cycle, then it contains all 3-cycles. This is because if p is
a 3-cycle then opo~! can be any other 3-cycle for ¢ € A4,,. Then N would just
be A,,. Therefore it suffices to show that IV contains a 3-cycle.

Consider the 1 # o € N with the most number of fixed points. Obviously,
o cannot be a 4-cycle since a 4-cycle is not in A,,. This means that o will have
the form of either

(123---)--- or (12)(34)---.

Let 7 = (345). Let us look at the permutation o7 ~to~1. If you write it out,

you will see that it is not the identity, and that it has an additional fixed point.
So o should be the 3-cycle, and then we arrive at a contradiction. O

Then people started to look at subclass of quintic polynomials which are
solvable. But it is not simple, and I don’t want to get into this topic.

17.2 Galois group of 2P — sz — ¢
This was problem 8 in the problem set.

Problem 8. Let Fy be a field of characteristics p (where p is an odd prime)
and F = Fy(s,t) where s and t are two independent indeterminates over Fy.
Let f(x) € F(x) be the polynomial zP*! — sz — t with coefficients in F. Show
that the Galois group of the polynomial f(x) over F is isomorphic to the group
of all linear fractional transformations

ar +b
cr+d

(where a,b, c,d € Z/pZ with ad — bc # 0)

on Z/pZ.
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Consider the field F = (Z/pZ)(s,t). Our goal is showing that the Galois
group, which acts on F, is isomorphic to some group which acts on Z/pZ. So
we need to bring F' down to Z/pZ. One important trick is that if you want to
show that o € Z/pZ then you can alternatively show o=t = 1.

Let me try to explain the geometry.

e There is the Euclidean geometry. In this geometry, lengths are fixed, so
there is only rigid motion, and there are only the translations x — x + .
For any two points p and ¢, the length p — ¢ is invariant. The frame of
reference is defined by only 1 point.

e There is also the affine geometry. You can translate, but also rescale. So
the translations look like z — ax +b. In this case, the ratio (¢ —p)/(r —p)
is invariant. The frame of reference is defined by 2 points.

e In projective geometry, the maps are factional translations. This is called
projective geometry, because it is analogous to projective a line to another
line from a light source. The cross ratio

q—s/q—p_ (q—s)(r—p)

r—s/ r—p (¢—p)(r—s)

is preserved in this case. The frame of reference is defined by 3 points in
this case.

You can actually show that preserving the cross ratio is equivalent to the
transformation being a linear fractional transformation. That is,

x—p /r—p T—p [T—D
r—q/ r—q F—qG/ F—§

is equivalent to

for some a, b, ¢, d.

Let « be a automorphism of the splitting field. Because an extension E of
F is also a vector space over F' with degree n = [E : F], then you can consider
~ as a matrix. This gives a injection

G — GL,(F).

But this looses a lot of information, because it does not contain any information
about multiplication. So there is another embedding

G—=S,.

We do a similar thing to embed it into the group of linear fractional transfor-
mations.

Let «, 3,7 be three roots of zP*! — sz —t = 0. We want to mirror the
action of the Galois group onto Z/pZ. We use the cross-ration as some kind of
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coordinate. We already have some frame «, 3,7 and a automorphism o changes
the frame to o(a),0(8),0(y). The coordinates change by the map

z—a [y—a o@)—ala) [o(y) —o(x)
z—p v—BHU(w)—U(ﬁ)/G(W)—G(B)'

That is, the o acts on the coordinates in the same manner.

But actually, the coordinates are in Z/pZ for roots x. This can be proved by
computing. If /71 —sy—t = 0 and a?*! —sa—t = 0 then YP*! —aPt!l = s(y—a).
Likewise, we have v**! — 8p 4+ 1 = s(y — ). Then

O e e (e e B e R L (<A
Then because we are working in characteristic p, we have

aly—ay ! = By - Byt

(=)
v—-B o

This shows that the (p — 1)th power of the cross ratio is always 1, and hence
the cross ratio is always inside Z/pZ. This brings down F to Z/pZ.

Why care about the polynomial 2Pt — sz — t? It started before Abel and
Galois. When solving the equation 2" — oy2" ! +--- + (=1)"0,, = 0, you can
get rid of one term by translating z +— x + a. But this introduces only one
degree of freedom. So people started to do other translations, and somehow got
down to 2% — sz — t. This is why we care about such things.

and

17.3 Constructing a regular polygon

You are allowed to use only an unmarked straightedge and compass. We want
to construct a regular n-gon, that is, all the vertices. Then getting to a point
by only a ruler and a compass is actually considering the tower of fields, where
only square roots are allowed. Let z = ¢?™/17, You want to solve the equation
2" = 1 using only square roots. How will you be able to do this?

This is an alternative formulation. Let Fy = Q, and let Fy = Fy[X]/(X? +
aoX + bo)Fo[X]. Then let Fy = F1[X]/(X?% + a1 X + b1)F1[X]. We keep con-
structing extension fields until z is in Fj,. The problem is constructing the
intermediate fields.

Gauss’s idea is to start from z!7 = 1. Then we have

A0 415 L a1 =0.

And then you break z'6 + ... + 2 into two parts of eight terms such that the
product is inside Q. His idea is breaking up into

0 2 14 1 15
2423 4428 and 2% 4+ ... 423 .

Then you break up each into two parts, and then do the similar things. I will
finish doing this next time.
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18 November 3, 2015

There was an in-class midterm this day. There were 4 problems and we were
supposed to solve them in one and a half hour.

18.1 Midterm

This was the hardest problem in the exam.

Problem’| (Wronskian and Linear Dependency) Let F be a field of char-
acteristic zero and let x be an indeterminate. Define the F-linear operator
D : F(z) — F(x) by first defining D as an F-linear map form Flz] to F|x]

which sends
n

P(z) = Zajxj with ag,...,a, € F
§=0

to
n

(DP)(x) = jaja? ™"

Jj=1

and then defining

p(L) - 2ra- 0o
Q Q?

for P(z),Q(z) € Flx] with Q(z) being nonzero element of F[z]. Assume as

known the well-definedness of D : F(x) — F(z) described above and assume

also as known its derivation property that

D(fi-fa) = Zfl"'fj—l(ij)fj+l"'fn
j=1

for f1,...,fn € F(x).
(b) Let n > 2 be an integer. Let

f=(f1,..., fn) € F(z)®"

and
DFt = (D*fy,...,D*f,) € F(z)®"

for 1 <k <n—1. Show that the set f1,..., f, in F(z) is F-linearly dependent
if and only if
fADEA---AD"f

is the zero element of A"(F(x)®"), where the exterior product A"(F(z)®") is
taken with F(z)®™ regarded as a vector space of dimension n over the field

3This was Problem 1 in the exam. Part (a) was more or less same as the case n = 2.
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19 November 5, 2015

Today I will continue the discussion on tower of fields.

19.1 Gauss’s straightedge-and-compass construction of a
regular polygon of 17 sides

The main point of the construction is to look at z = e?™?17. The rules are to
first take 0 and 1. and rational functions of the points, and square roots. That
is, we need to find a field extension

Fy= qul(aqfl)

Fp=Q

such that z € Fj.
Because z!7=1and z # 1, we have 1 + 2z + - -- + 2'6 = 0. That is,

24224210 = 1

We break this into two pieces x7 and xo such that x; - x5 is computable in Q.
Then z; and o will be the roots of a quadratic polynomials and hence will be
in a degree 2 extension. Next break ;1 = y; +y2 and x5 = y3 + y4 and etcetera.
Gauss realized that if you break it up into z+23+---4+2'% and 22 +- - -+ 26

it doesn’t work. So he did it in a multiplicative way to
230+232 +~~+z314 and 2% +z‘33 +«~+z315

by observing that {3} is exactly (Z/17Z)*.
We will first do it by brute force. It is not that bad. We have

3

3
T = Z (z32k + z_?’%) and 9 = Z (z?’%+1 + 2_3%“).
k=0

Checking the numbers, we see that

1 =241V 2y + 24+ 2y and 1o =J3+ Z7+ L5+ Zg
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where Z; = 27 4+ 277, Because ZiZy = Zjyi + Z)j_x|, we can multiply the two
things and get

X129 = (21 + Zs+ Zs+ Z2)(Zs+ Zr + Zs + Zs)
(

=(Zy+ Z2)+ (Zs + Zs) + (Z7 + Z1) + (Z5 + Z1)
+(Zs+ Zs) + (Zo+ Z1) + (Zs + Z3) + (Zs + Zs5)
+(Zo + Za) + (Za + Z3) + (Zs + Z1) + (Z7 + Z3)
+(Z7+Z5)+(Z3+Zz) (Z7 + Z2) + (Zs + Zy)
=—4

and you can see that every term appears four times. Hence 7 and zo are the
roots of X? + X —4 =0 and then X = (-1 ++/17)/2.
We now break x1 to y1 + y2. We let

1

1
Y1 = Z Z34_7‘ and Yo = Z Z32(2j+1).
7=0

=0
Then actually y1 = Z1+ Z4 and yo = Zs+ Z5. The sum is something we already
know. The product is
v1y2 = (Z1 + Z4)(Zs + Z2)
=(Zs+Z:)+ (Zs+ Z4)+ (Zs+ Z1) + (Zs + Zo) = —

We see that y; and yo are the roots of X2 —
Likewise, we can let y3 = Z3 + Z5 and y4 = Z7 + Zg and get

—1+/17 _
=EVITX 1 =0.

Y3Yas = Zn+Zy+ Zs+ Zo+ Zg + Z3 + Zg + Zy = —

Now y1 = Z1 + Z4 and Z1Z4 = Z5 + Z3 = y3. This shows that Z; is
computable, and then Z; = z + z~! and thus z is computable.

In general, for this method to work, the prime p should be of the form
p=2"+1. If n = kf where £ is odd, then one can factor

p=2M4+1=02"+1)(-).

So ¢ should be just 1 and thus p = 22" 4 1.
We can do this with less brute force. We have

1=3-2=3"-3"=3"4+3% (mod 17).

The claim is that every number is covered in the form 3°99 4- 3¢ven exactly four
times. This can be checking that 1 is covered exactly four times and multiplying
3% to see that 3" is covered exactly four times.

So how do you actually add, subtract, multiply, divide complex numbers with
straightedge and compass? Adding and subtracting is just constructing paral-
lelograms; multiplying and dividing is just drawing similar triangles. Lastly, to
get the square root, you can just consider the circle with diameter 1 4+ a and
draw a perpendicular line to obtain the length +/a.
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19.2 Lefschetz decomposition

This is extremely important in algebraic geometry and differential geometry.
But the argument is purely linear algebraic.

We start out be a finite-dimensional C-vector spaces with a Hermitian inner
product. The vector space V' can be regarded as an R-vector space together
with the (almost) complex structure J.

The complex structure of a real vector space is a R-linear map J : V — V
such that J2 = —1. Then the scalar multiplication is defined by (i,v) — J(v).
We can then look at the eigenspace of J for eigenvalues i and —: when we go
from V to V ®g C. A decomposition

1 1
VR C = (I - il)(VerC)+ 5 (1+i])(V & C)

into the eigenspaces follows. The maps (1 +4J) and £ (1 — iJ) are projection
maps.

The space V ®g C has two complex structures. The multiplication by v/—1
can be interpreted as a J ®g (1¢) and (1y) ®g 4. This is not surprising, because
it is the tensor product. But the surprising thing is that the two complex
structures are equal on the eigenspace

1
5([ —iJ)(V ®@r C).
So in the literature, people just write
VeorRC=Va® V.

There was a Hermitian inner product. Let v € V and consider the norm
|lv||. Then the square of the norm can be written as ||v|| = (v,v) for some inner
product if and only if the parallelogram law

lu+l? + [lu = v|* = 2[jull® + 2]jv]*

holds. A Hermitian inner product also satisfies (iu,v) = i(u,v) and (u,v) =
(v, u).

At first, V was a C-vector space. We apply the forgetful functor to forget
the C-vector space structure and consider it as a R-vector space, but keep the
complex structure J. Then by making it to V ®g C again, we can now consider
eigenspaces. If (-,-) was a Hermitian inner product on V, then we can extend
(+,+) by C-bilinearity to V ®g C.

Now we have

NVeRC)=A"(VaeV)

where A* = @, AP. The wedge product VAV is contained in the space \*(V @
V).
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We were looking at Lefschetz decomposition. Normally it is not part of the ab-
stract algebra curriculum, but it is important in algebraic geometry and complex
analysis in higher dimension.

20.1 Setting of the Lefschetz decomposition

We set V' as a vector space over R with a complex structure J € Homg(V, V)
with J2 = —1. This is not that much, and the important thing is the inner
product (-,-)y : V x V — R which is compatible with J. Under this situation,
we have a matrix, which is nilpotent, on a finite dimensional vector space, which
is the exterior algebra V. And we ask for a normal form for the matrix, which
is compatible with both the bidegrees of the exterior algebra of V ® C. Let me
explain what this means.

If you have a vector space V over F', and another W over F', we can think of
the tensor product V@ W. If ®:V — V and ¥ : W — W are both F-linear,
then the map PRp V¥ : VRrW — V®p W defined by the commutative diagram

ve —L w

@] |v

e @O0

or alternatively,
(PR T)(vew)=o(v)¥(w).

Now if we have V ®g C, there are two complex structures .Ji, defined on V
and J¢ defined on C, which is multiplication by i. Now we can extend the map
JyonVitoJy @Ide : V®C — V ®C. Then we will have

(Jy ®1dc)? = — Idvec

and likewise, we have another complex structure
(Idy ®Jc)? = —Idyge .-

Also, if we let 7t = (1 —iJ) and 7~ = (1 +4J) we have the decomposition
VeC=Imrt®Imr~

where 7% and 7~ are projections. The spaces are the eigenspaces of Ji,. On the
space Im 7T, the two complex structures Jy ® Idc and Idy ®.J¢ agree. Because
there is a injection V < V @ C and a projection 77 : V@ C — Im 7+, we get a
bijection V' — Im 7. Because, the complex structures agree, this can be seen
as a isomorphism of complex vector spaces. So we write 77 ~ V. Likewise, we
can write 7~ ~ V. This is why people write just

VveC=VeV.
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Now from this we get
ANV eC) = @ (ANVIANNYV)).
p+q=k
We define the exterior algebra as
2n
NVeC) =PNVec) = G AVIANY).
k=0 0<p,g<n
20.2 Inner product on the complexified vector space

Given an inner product (-,-)y : V x V — R, we can extend it by C-bilinearity

to
(Ivec: (VeC)x (VeC) —C.

Definition 20.1. An inner product (-,-)y is said to be compatible with .J if
(Ju, Jv)y = (u,v)y.

The extended inner product (-, )ygc can be broken up into 4 pieces by the
decomposition

(VeaC)x(VeC) =VxV)a(VxV)e(VxV)a(VxV)

to ('7 ')V,V’ (" ')V,V» ('?')V,Vﬂ and ('7 ')V,V'
If we have the compatibility condition, we will have

(@, 0)v,v = (Ju, JO)v,y = —(4,0)y,v.

Then we have (@,?0)y,y for any 4,0, and hence (-,-)y;y = 0. Likewise, we
will have (-,-)y » = 0. Moreover, by symmetry of the inner product, we have
(@,0)y v = (0,@)y . Then we can define a Hermitian inner product by

(w1, we) = (wl,ﬂfz)v,\‘/

for wy,ws € V. I will assign verifying that it is a Hermitian as a homework
assignment.

Definition 20.2. An orthonormal basis for a real vector space V is said to be
compatible with J if it is of the form

glaJ§1a§27J€27"'7€n7J§n7

where dimg V' = 2n.

There always exists an orthonormal basis. We can actually construct it
inductively. First pick any & of unit length, and automatically we have J¢&;.
Then because

(&, J&)v = (J&, J(J&))v = (J&, —&)v = —(&, J&) v,
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we see that £ is perpendicular with J&;. You then pick &;, and etcetera.
If &, JE, .., &n, JE, is a basis, we can easily construct a basis of V®@C from
it. If we project it, we get

§1—1J&1, 80 — &, 6 — &y

in Im 7, and one can check that it is a orthogonal basis of Im 7+ by calculating

(§x — 1J&, & +iJE ) vec
So we write 4 '
e’ = —iJ§;, e’ = +iJE;.
Let .
w= %Zej/\éj e VAV.
j=1

Why is there a factor /27 This is because everything started from differen-
tial geometry. If z; = x; + +/—1y; then in the V = &7_,Cdz; we have

1 _ { . .
g(dzj NdzZj) = 5((dasj + tdy; ) \(dz; —idy;)) = dxj A dy;.

20.3 Lefschetz operator and Hodge star operator

Back to our discussion, the multiplication by w gives a C-linear map
L:AN"(V®C) - A"(VeC).

This is the Lefschetz operatorﬂ This is clearly nilpotent because if you wedge
w many times it goes to zero.
Let us try to actually try the decomposition. We have this

L = Lefschetz operation

which is the (exterior) multiplication by w. The exterior algebra is

NVeC = @ (ANVIANAY),

0<p,q<n

and we will just call this component (p,q). Because L is nilpotent, we see that
all the eigenvalues of L are 0. Also, L sends (p,q) = (p+ 1, + 1).

There are two tools we can use. The first one is the contraction operator A.
This operator, which we have defined many weeks before, sends (p+1,g+1) —
(p,q). The useful thing about this contraction is that the commutator is

[L,A] =c.

4The motivation for this whole operator is from algebraic geometry. If we have a variety
but is too complicated, we can cut it with a hyperplane. This is same as introducing a new
linear equation. The square of this linear equation can be roughly regarded as w.
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The other tool is the Hodge star operator for a real vector space V with an
inner product, assumed that there is a choice of orientation. If e1,... e, is a
orthonormal basis of V', then A™V ~ R. The orientation is a element in this
space with unit length, for instance e; A---Ae,,. Then the Hodge start operator
x: APV — APV is defined by

(0, ) (+1) = @ A (x9)),

where %1 is the orientation.

Now let us consider the whole thing in the context of our setting. If dimg V' =
2n = m then the star operator x : A¥V — A2"~*V is defined using the orien-
tation

(Le' neY YA A (Re"NE") = (G ATE) A A (G NTE) € NPV

By C-linearity, we can extend this to * : A¥(V ® C) — A?>"~*(V ® C) and then

* will send - -
#: (ANPVINATV) = (A" TVIAAPY).
The contraction A is conjugate to L (up to some normalizing factor by the
Hodge star operator. That is,
A = (const) * ' L.

It follows from this fact that the (generalized) eigenspaces for L are the same as
those for A. This makes things much easier, because A is simpler. The elements
in the kernel Ker A are called the primitive elements.

20.4 Statement of the Lefschetz decomposition
Now we finally get to the Lefschetz decomposition. The space

2n

NVeC) =PA Ve

k=0

has midpoint n. First thing to observe is that if £ > n then there is no primitive
element in A¥(V ® C). This is because among the indices of the APV part an
the indices of the A9V part there should be some index in common.
Let m = (k —n)T = max{k — n,0}. Then any ¢ € A¥(V ® C) can be
decomposed into
o= L'
>m

where ¢, € AF~2/(V ® C) is primitive. This is the statement of the theorem.
The exterior algebra breaks up into

NVeC =PNTec) = G A
k=0

0<p,q<n
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Then we have the Hodge diamond:

N0
ALO A0
N0 AL NO2

/\%0 o /\Om

/\n,n—2 /\n—l,n—l /\n—Q,n
/\n,nfl /\nfl,n
/\n,n

This is just a visualization of what the operators do on the space. The star
operator reflects the spaces with respect to the horizontal axes. Complex conju-
gation flips the diaper with respect to the vertical axes. The operator L moves
things down, and A moves things up.
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Before I start I ought to tell you about the final. It will be a take-home final
during the reading period.

21.1 Overview of Lefschetz decomposition

So we are doing this Lefschetz decomposition, and I posted the notes in great
detail. The setting, as I explained, is you start out with a 2n-dimensional
real vector space V. There are two additional structures: the almost complex
structure J : V — V for which J2 = —1, and an inner product (-,-)y : VxV —
R. The inner product should be J-invariant, i.e., (u,v)y = (Ju, Jv)y for any
u,v € V. The Lefschetz decomposition is about the normal form for the linear
transformation defined by the inner product which is compatible with J.

In algebraic geometry, one of the important tools is the Lefschetz theorem.
There are two part: the theory of harmonic forms, and the linear algebra part.
But the hard part is the linear algebra, and we are doing this part.

The inner product is a kind of an operator. If you give two vectors u and v,
the inner product gives a scalar. Now the inner product

(u,v) = (u, Jv)y

is skew-symmetric, and therefore it can be considered as an element of A\%V.
The multiplication with this element is the Lefschetz operator, and because it
shifts the dimension, it is considered as a map A*V — A*V.

Now we can extend this to L : A*(V®C) - A*(V®C). If m = 2n then
we would have L™ %! = 0. So all eigenvalues would all be 0. We can also think
of generalized eigenspaces, by considering ker L”.

We also have another operation * : A*V — A*V defined by

(@, ) (x1) = ¢ A (%)),

This sends * : APV — A?"~PV. This identifies ¢ € APV with xip € A\>"~PV.
Suppose that we are using the orientation oy A - -+ A ag,, where aq, ..., qqy, is
an orthonormal basis. Then * will send

ar A ANaP = appr A Aoy,

Now we have the construction operator A, and it is conjugate to L under *
by
A = (const) * ' L.

So understanding the normal form of L is same as understanding the normal
form of A. But people like A better, so we call the elements of kernel of A the
primitive elements. The Lefschetz decomposition decomposes the base space
N\*(V & C) according to the eigenspaces of A.
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21.2 Notations and basic formulas

We are going to use the orientation

(EATEYA - A (TN = (SLet A ) A A (S Lem A

for *, where ¢/ = &/ +/—1J¢7. Let A = (aq,...,a,) and B = (B1,...,[5) and
M = (g1, .., fim) be disjoint ordered subsets of {1,2,...,n}, we denote

e = A ne, WM =M A A A et At

So for instance,
et neB nwM

is in AP9, where p = m + a and ¢ = m + b. This notation is good for A and L,
but is bad for x.
To compute the x, we let A, and A, _, be a partition of {1,2,...,n}, and

likewise let B, and B,,_, also be a partition. For the basis elements, if we have

o = et AeBa we will get

*p = Cp,qu“*q Aehn-r,

The difficult thing is determining the constant C}, 4. From the definition we
have

(o, 0)(x1) = p Axp.

Because we have
(¢, )term = (¢, &)y = (¢ +V-1J¢, ¢ —V/~1&) = 2,
we have, for the left hand side,
(@, ) (x1) = 2PT9(L)(e' N ) A+ A (€™ nE™).

Then for the right hand side, we have

o NFp = er NePa A CpgeBr-a Nednr

= Cpg(—1)"""P) 5gn <gp A”p) (=)= D2et A AL Ae™ A

q n—q

So after comparing, we get

Consequently we have

,L'?’L

n(n—1) A B
W%M%:%@mszgW%(; ”OﬁwAﬁﬂ
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Now let us apply * to the habitat for L and A. We will have

x(e NeP A wM)
m(m—1) | n(n—1) s(s—1) i
_ =4+ =l 4 n(a+m)+ab+ma+sb+ 5 A =B S
= (— 2 2 2 _—
(-1) 2n_(a+b+2m)(e ANeP Aw?),

where A, B, M, S form a partition of {1,2,...,n}. The horrible horrible sign
comes from switching the various things aroundﬂ

21.3 Relations between L, A, and *

Let us check that Lx = *A. We apply both things to e A €% A wM and check
that the results agree. We have

Lx (e neP AwM) = (x(e? AeP AwM)) A (;Zeméﬂ')
j=1

m
= Z(const)eA AEB AW A whi
j=1

where M = {u1,..., tm}. On the other hand, we have

Ale* NeP nwM) = "(e? NP nwM ity
j=1

and hence

(et A el N wM—inlhy

NE

w(A(e? nEP AwM)) =

<.
Il
—

.

Il
—

(const),,; (et NeB AwS Awhd).
j

One can write down the constants and check that they agree .
So we have A = (const) x~! Lx. Because you have done it before in the
problem set, I skip the commutator part. We have

A, L] =n—(p+q)

if it acts on AP

21.4 Commutator of powers of A and L
Denote by II; the projection map of A*(V ® C) to A¥(V ® C). Then the
commutator of A and L can be written as

2n

(A, L] = (n— k).

k=0

5Actually I am not so sure I’ve written down things right.
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We now look at the commutator of A and L”. Because A and L do not commute,
there is a discrepancy, and it accumulates telescopically as

A L] = ZL’ 1A, L)L ZL’ = 1(2 k)nk>Lf

k=0
r—1 2n
= Z L1 ( Z Le(n - k‘)Hk_Qg) =L ! Z Z(n - k‘)Hk_Qg.
£=0 k=0 £=0 k=0

Note that we have I, L* = L‘II;,_5, because II does nothing except projecting,
and L shifts the degree. Therefore we get

2n
AL = r(n—k—r+1)L "I
k=0

Now we look at how A®L" acts on a primitive element ¢ in A*(V ®C). From
what we have already, we see that

AL"p=AT'AL o = AS"YAL" — L"A)gp
=NTHA Lo =r(n—k—r+ )AL Lo,
Then if r > s, we will have
NLo=r(r=1)---(r—s+1)(n—k—r+1)(n—k—r+2)--- (n—k—r+s)L" %p.
One conclusion we can draw from this formula is:

Proposition 21.1. There is no primitive element strictly below the middle row
of the Hodge diamond.

Proof. Suppose that there is a primitive element ¢ € A*(V ® C) with k > n.
Then letting s =r =n+ 1, we get

AL = (n 4+ DI(=K)(=k + 1) - (=k +n)p.

Because there is not enough room, we have L™ !y = 0 and hence the right hand
side is zero. But the right hand side is nonzero. O

Proposition 21.2. For any ¢ € A\*(V ® C), we have
o= Lo
L>m
where ¢, € N¥=2(V ® C) are primitive elements and m = max(k — n,0).

This is the Lefschetz decomposition, and unfortunately, we cannot finish it
today.



Math 55a Notes 84

22 November 17, 2015

The Lefschetz decomposition is an important example of a normal form of a
matrix. The setting is a vector space V over R with dimension 2n. There are
two additional structures: a complex structure J : V' — V such that J? = —1,
and a J-compatible inner product (-,-)y for V. With these structures, we are
going to consider a matrix (a R-linear transformation) on A*V = @?ZO NV.
If we go to V ®g C over C, we can decompose

VerC=ValV.
We can also consider an element of A2V which maps
u vt e Vi (Ju*,v") € R
This is in Homg(V* x V* R) and because it is alternating. The Lefschetz
operator L is exterior product by this element. In fact, it is

V=1 <N )
w = 5 Zlej/\é]
=

where &1, JEY, ... €7, JE™ is an orthonormal basis, which is J-compatible, and
el =& —\/=1J¢7. We also showed last time that A = *_1L*E| The eigenspace
of A, which is just the kernel ker A is called the primitive elements.

22.1 Proof of the Lefschetz decomposition
Now the Lefschetz decomposition states that
Theorem 22.1. Given p € \¥(V ®r C) C A*(V ®g C), there is a unique
decomposition
o= Z L'es
£>m
where o, € N*=2(V @ C) and m = max(0,k — n).

The reason we start from m is because we want to get the Lefschetz isomor-
phism between APZ and A"~ 9" P.

Let us prove this now. We have two tools: A = *~*Lx and [A, L] " (n—k)I.
From this, we obtained

2n
[A, L] = Zr(n —k—r+ 1)L,
k=0

and
NL'o=r(r=)---(r—s+1l)(n—k—r+1)(n—k—r+2)---(r—k—r+s)p
for primitive ¢ € A¥(V ® C) and r > s.

~ 6Siu changed the notation some time. The normal ‘contraction’ we were looking at is now
A and A is defined by A = %A.
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Proof. We first prove existence. Let ¢ € AF(V ® C). We want to find a
decomposition.

Case 1. k<n
Consider the minimal r > 0 such that Ao = 0. If r = 0 or r = 1, it is trivial.
We use induction on r. Suppose that we already have the decomposition for r,
and consider an element ¢ such that

AA"p) =0

and then it follows that A"y is primitive in A*~2"(V ® C). Using some identity
we found, we see that

NLT(AT) = A(A")
for some A # 0. The we see that

A (p— lL’”AT )=0

and hence by induction we are done.

Case 2. k>n
Let m = k—mn > 1. Let r be the smallest integer at least m such that A"¢ = 0.
This is essentially the same as the first case, and using the smear induction, we
can show that there are primitive elements ¢, € A*~2(V ® C) such that

r—1
A™ ((p — Z Lng) =0.

{=m
Let o' = ¢ — Zz;ln Lfp,. This is in A*¥(V ® C) and A™¢’ = 0. Using the star
operator, we get a xp’ € A2 7#(V ® C). Now we can decompose

r—1

o= L

(=0

Because A™¢’ = 0, we have

r'—1

0= Lm(*(p/) — Z Lm+é(ple
=0

and by uniqueness of Lefschetz decomposition, we have ¢} = 0. This shows that
x@’ = 0 and hence ¢’ = 0. So ¢ = ZZ;;@ Lty is a Lefschetz decomposition.
We now prove uniqueness. It suffices to show that

ZLEQO@ =0

£>m
implies ¢y = 0 for each £. Let s be the largest ¢ such that ¢, # 0. We see that

A°L?p, = (some nonzero constant)ps.
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If we apply A® to the assumption, we get

0= AL

£>m

But if £ < s the term A®L‘p, vanishes, and if £ = s, we get a nonzero constant
times ;. This contradicts our assumption that ¢z # 0. O

22.2 Prelude to our next topic

Now we finished Lefschetz decomposition, and I want to move to another topic,
namely spin system. This is used in quantum mechanics and is really useful. I
want to look it from the point of view of composing 2 rotations in R?. Rotations
in R? is just a multiplication by a complex number, and is simple, but rotations
in R? is complicated. The key in the theory is that rotation is two reflections
involving 1/2 of the angle.

Let me try two explain this in two dimensions. Say we want to rotate P by
angle #. This is easy in dimension 2, but in higher dimensions it is not easy.
The right way to look at things is considering two lines differing by 6/2, and
reflecting P by one line and then the other line.

In three dimensions, this turns into choosing two planes by which we perform
our reflections. But there is a certain degree of freedom, because as long as both
planes contain the axis, we can rotate the plane around. So if you have two
rotations, we can make the second reflection of the first rotation and the first
reflection of the second rotation agree, by taking the reflection plane to be the
plane containing both the first axis and the second axis. Then composition is
reduced to two reflections.
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There is the quaternions developed by Hamilton, from the viewpoint of compo-
sition of space rotations. Then people started to think about higher dimension
analogues, for instance octonions. However, there are no “good” hypercomplex
number systems in higher settings. This is connected with Clifford algebras and
independent vector fields on spheres of higher dimension. These were established
by the works of Hurwitz, Radon, and Eckmann in the 1920s.

Let us look what happens what when we extend R to C. Basically, C is a
vector space over R, but with some multiplication. We can do this further.

R—C—H—O

But when we extend C to H, we lose commutativity, and when we extend to O
we lose associativity. But still we have involution, and a multiplicative absolute
value. If we go further, we even lose this. The absolute value means that for
indeterminates x1,...,x, and yi,...,Yn, there is a rule of multiplication

n
Zj = E Ajul TEYl

k=1

such that

(@2 o) = A4 a

23.1 Rotations of R?

Rotations of R3 fix a point, which is the axis. We can decompose any rotation
into two reflections by two planes containing the axis and making angle 6/2.
Suppose we have two rotations, we can make the plane containing the first axis
and the second axis, the first plane for the second rotation and the second plane
for the first rotation.

Then we have three planes:

1st plane of 1st rotation
2nd plane of 1st rotation = 1st plane of 2nd rotation

2nd plane of 2nd rotation

Because two reflections cancel out, we have the representation of the composition
of two rotations as the composition of two reflections. If we draw it on the 2-
sphere, representing planes by great circles, we have the figure below.
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Second plane of
first rotation \.
= first plane of second

rotation
2 Second plane \

of second
rotation

First plane of
first rotation

Axis of composite
rotation

FIGURE 2

The good thing about this representation is that it gives a geometric algorithm
determining the axis and the angle of the composite rotation. If we know the
angels and the axes, then we can draw an arc joining the two axes, and draw
two arcs making a given angle with the original arc, and take the intersection.

Now people wanted to relate “composition of rotations” to ”multiplication
of ‘hypercomplex’ numbers.” This was motivated by rotations in RZ; they are
represented with complex numbers with unit length. That was the job Hamilton
set out to solve.

23.2 Representation of rotation by quaternions and SU(2)

The complex numbers C is represented by a + bi for a,b € R. People then tried
a+ b+ jc for a,b,c € R and i2 = j?2 = —1, but failed. Then Hamilton came
along and said that you need one more variable. If we let

— — ——

Tk F=j Ji=i P=p-i--

)

we have
(a+ib+je+d)(a—ib—jc—kd) =a®+b* + 2 + d>.

But how is it related to rotations? if we need multiplication to represent
rotations, we need some “axis” which is unchanged by the rotation. The key
here is to consider the conjugation instead of multiplication. The map

T AZAT!

leaves 1 unchanged. Since it is an isometry, perpendicularity is preserved, and
hence the hyperplane 1+, which is the set of pure imaginary numbers, is pre-
served. So it maps

ib+ jo+ kd i + ¢ + kd'
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which now is a rotation in R3.
Another breakthrough was identifying the rotation with a complex 2 x 2
matrix. If we want a2 + b? + ¢ + d? as the determinant, we would have

atib c+idy (1 0 i 0 0 1 0 i
(—c—i—id a—ib>a<0 1)“’(0 —i>+c<—1 0>+d<i 0)
= aeqg + beq + ceq + des.

The great thing is that eg — 1, €1 — Z, e > f, and ez — kisa representation
of quaternions of length 1 by

sv@ ={ (% 0):lak+ior =1}

W. Pauli introduced the “infinitesimal” form. We can write a complex num-
ber of absolute value 1 as

e where 0 € R.

Likewise, if we have a 2 X 2 unitary matrix, we can write it as

e'*,  where A* = A is Hermitian.

So the Pauli matrices are

(01 P (R (10
Oy =— —1€3 = 1 0)° Oy = —1€2 = i 0 s 0, = —1€1 = 0 —1

and we have the relations

iy . s 2 _ 2 _ 2 _
Og0y = 10,, 0y0, =10y, 0,0, = 10y, O'I—O'y—O'z—]..

We will talk more about this when we (possibly) do Lie algebras.
Suppose we rotate R? around an axis (cos a, cos 3,cosvy) by angle §. Then
the quaternion representing this rotation is explicitly given by

0 0
R:cosi —isini(amcosoz+aycosﬂ+azc03’y

and then this rotations sends a pure imaginary & to RZR™! in the sense of
quaternion multiplication.

23.3 Hypercomplex number systems

The first major breakthrough was make by Hurwitz in 1922. We want to find a

ajx; such that
n

> 4= (Xj;ﬁ)(éyf)

j=1

for z; = 22,1:1 ajrixry;. This problem is reduced to the Clifford algebra. The
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Definition 23.1. The Clifford algebra is the algebra generated by ey =
1,e1,€9,..., e, with the relations

ejer = —epe; for distinct j,k # 0, e? =1

Now because the things of the form e;, ---e;, form a basis, we see that the
dimension should be 2*.

Example 23.2. In the case k = 2, the Clifford algebra is the quaternions. This
18 because we can set es = e1es and everything is the same.

Hurwitz proved that the problem can be solved only for n = 1,2,4,8. Let
me explain briefly how he did it. We generalize the situation to

S (595

Then we can write z as 2 = 21 A1+ - -+, A4, for some nxn matrices A,..., A,.
Then because we want the length to be preserved, the matrices should satisfy

(@A + -+ 2p A (@1 Ay + -+ apdy) =af 4+ 2l
after normalizing the matrices. The we have the system of equations
AL AL =1, A;Ak +ALA; =0 (k#37).

This looks like the Clifford algebra, and if we multiply i to everything, we get
the Clifford algebra. Then you can replace Ay by A 1A) and make A, = I.
Then you can use the anti-commutativity to do things.

Theorem 23.3 (Hurwitz, 1922). Given any n = u2***8 such that u is odd and
B =0,1,2,3, a solution exists if and only if p < 8a + 2°. If p = n, it is true
only forn=1,2,4,8.

If we denote the Clifford algebra by Cliff, its dimension dimpg Cliff;, = 2
and the set
{ei1~-~eim tm>0,4p < --- <Zm}

is a basis. Then

G={ke; e :m>0iy < <ip}

m

is a group.

Let V be a R-vector space of dimension n. Assume that V is a G-module,
and it acts as an isometry. Let S(V') be the unit sphere in V', which will be the
same as S" 1.

Theorem 23.4. For x € S"7!, the set {e1z,...,exx} form a orthonormal
frame on S(V).

This kind of gives an almost complex structure on S™.



Math 55a Notes 91

24 November 24, 2015

I will start a new topic, which is the Young diagram. It ties the polynomial
equations and linear systems up.

24.1 Decomposing a function into symmetric parts

What are the Young diagrams, and why is it important? First let us look at Ss.
This acts on the set of functions f(x,y). We see that there is a decomposition

f(@,y) = foda(,y) + feven(z,9)

where

oaa.) = 5 (F(.9) — F(3:2),
feven ) = 3 (F(9) + F,))

Then the question is what happens to more variables? Let see the three variable
case. If we have f(x1,x9,x3), we have the analogous symmetric component

1
fsum(l'lvx%xfi) = g Z f(xa(l)axa(Z)axa(S))
og€S3

and the alternating component

1
Jare (w1, T2, 73) = 30 Z sgn(0) f(Zo(1), To(2), To(3))-
oES3

What is the things in-between? We may guess it as a partially alternating and
partially symmetric object. But if f(x1,22,23) is symmetric between z; and
T2, and alternating in xo and 3, the function should be zero. So it means
that this doesn’t Workm This was observed by Alfred Young and Issai Schur
independently.

So instead of trying to make f possess both the symmetry of x; and zo
and the alternation for xs and x3, we do it independently and use the non-
commutativity of the two processes.

24.2 Young diagrams and Young symmetrizers

In general, consider any element in .S,,, and suppose that there are c number
of k-cycles. Then we see that

n=ai+ 2as + 3ag + -+ na,.

7This related to the braiding lemma, which is something we will do next semester in proving
the fundamental theorem of Riemannian geometry.
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We draw empty boxes, so that in the first row, there are fi = a3 + -+ + a,
boxes, and in the second row, there are fo = as + - -+ + «;, boxes, and so forth.
Then f1 + --- 4+ fn, = n. The diagram consisting of boxes is called a Young
diagram.

A Young diagram corresponds to a partition of n identical balls into certain
groups, so it corresponds to a conjugacy class of S,. If we put in numbers
1,2,...,n inside the boxes, then we get something more complicated. This is
called a Young tableau.

Given a Young tableau, we can construct the Young symmetrizer as the
following. Consider all permutations ¢ which only changes elements inside the
same rows, and add them up without the sgn(o) factor. So this will be some-
thing like the symmetrizing the f. Next consider all permutations 7 which only
changes elements inside the same columns, and add them up with the sgn(r)
factor. We stop here.

Let us consider the case n = 3. There are three Young diagrams. Consider
one of the more complex diagrams:

1]2]

The symmetrizer then shall be

1

Z((f(elae%@?)) + flez,e1,e3)) — (f(es,ea,e1) + f(€3,€1762)))-

24.3 Representation of a finite group

Consider the group G = §,,. Then you can represent G as a matrix, because we
can just consider the group algebra C[G] defined as the vector space generated
by the elements of G. Then for any h € S,, it acts as a linear map on C[G],

because h( Z a(g)g) — Z a(g)hg.

geG geG

So if we let m = |G|, we get a homomorphism G — GL(m,C). We also can
think about the normal form of the representation, so that the matrices look
like block matrices for some good basis choice. Then we get a decomposition
into smaller representations.

For example, if you have G = S,, we have a representation G — GL(2,C)

which maps
1 0 0 1
1+ (O 1) , (12) — (1 O) .
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This is called a representation.

Definition 24.1. Suppose that G is a finite group. A representation of the
group G is a homomorphism p : G — GL(m,F) = GL(V), where V is a n-
dimensional vector space over the field F'.

Definition 24.2. A representation p is called irreducible if the only subspaces
W of V with the property that g(W) C W forallg € Gare W =0and W =V.

Suppose that F' = C. Then we can introduce an inner product on V' which
is invariant under the action of any g € G by averaging the intro product over
G. That is, if we already have an inner product (-,+)y, we can let

()i = 157 S (o)

geG

Then this is clearly a G-invariant inner product. Suppose that p is not ir-
reducible. Then by definition there is a G-invariant subspace W of V where
W #0,V. Then for the G-invariant inner product we defined, we have

V=waewt

and the W+ will also be G-invariant. This means that we can break everything
down to irreducible representations.

24.4 Results of Schur’s theory

These are the main results in Schur’s theory.

1. A representation can be identified by a presentation by its character (which
is the trace of each matrix). This reduces matrices into scalars.

Theorem 24.3 (Schur). Let x, be the character of an irreducible repre-
sentation. Then the set {x,} is an orthonormal basis of character func-
tions of G.

This tells you how to calculate the number of irreducible representations.

2. We define the degree of p as the order of the matrix for the representation
p, and let us denote it by m,. Then we have

Gl =2 m}

and
m, | |G| for each p.

Also, there is one representation called the regular representation of G,
defined by the left multiplication on C[G]. This representation shall be
decomposed into many irreducible representations. Each representation p
occurs exactly m, times in the decomposition.
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We will prove this next time, but let me tell you the main tool. Suppose
we have two representations p : G — GL(V) and 7 : G — GL(W). The two
representations are equivalent if for any g

commutes. The T here is called the intertwining operator. In general, given
any T, possibly not intertwining, we can average it to get an intertwining one.
That is, we can let

/ 1 -1
T = @%:T(Q)Ta(g )

to get a intertwining 7”. Because both ¢ and 7 are irreducible, we see that T”
is either invertible, which will mean that o and 7 are equivalent, or 77 = 0.
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Young diagrams are related to representations of finite groups. Suppose that
we are trying to represent S,. Let § € S,, act on an arrangement

(e [a@) ] - [a@) ]

to yield

(B [BR) ] -+ [ B ]

There are two natural ways to make 6 act.

i) The first one is change the locations with respect to 6. That is, we let
0 : 1w kif (1) = B(k). This means that «(j) = B(6(j)) and hence
a=p0and §=p"1a

ii) The second one is changing the elements with the same location. That is,

we have
_ (a@) - a(n)
= (ﬁ(l) ﬁ(n)> '
Then 0(a(j)) = B(j) =0 = a1

We will be using the first action. As long as we don’t confuse one with the
other, it doesn’t matter.
We work in the group algebra. If we apply the action of some element on f

twice as (25(9)57) (Zc(g)g> flan, ... mn)

then it is same as the action of

(> e@3) (D clor)
on f.

25.1 Decomposition of the regular representation

Let G be a finite group. Let G act on C[G] by left multiplication. The action of
any g € G is clearly an automorphism of C[G]. Hence we get a homomorphism

rege : G — Autc(C[G))

which we will call the regular representation. We will decompose this in to
invariant summands.

Recall that a representation is a homomorphism p : G — GL(V,) where
dimc V,, = m,. This representation is called irreducible if any G-invariant sub-
space is either 0 or V.
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First note that there is always a G-invariant inner product on V,. Take any
Hermitian inner product on V, and let

1
(U, V)avg = @l Z(gmgv).

geG

Then this new inner product will be a G-invariant inner product. If W, is a
G-invariant subspace, then the orthogonal part WpL will be a new G-invariant
subspace and moreover we have a decomposition

V, =W, oW,

This proves that every non-irreducible representation can be always decomposed
to smaller representations.

Two representations p : G — GL(V,) and 0 : G — GL(V,) are called
equivalent if dim V), = dim V,; and there is an invertible T": V,, — V,, such that

Tp(g)T~" = o(g)

for any g € G. This just means that the representation differs only in a change
of basis.

Now in order to get a description of an irreducible representation, we need
to find some “invariant” which does not change under basis change. Clearly
the trace of a matrix is invariant under conjugation. The surprising result of
Schur is that if only the trace agrees, then the two irreducible representation
are actually equivalent.

Definition 25.1. A character of a representation p is the function

Xp 19— trp(g).

The character is a class function. That is, x,(hgh™1) = x,(g) and hence x,
can be viewed as a function on the conjugacy classes.
There are several results regarding irreducible representations.

1. One of the main result we will prove is that the set of characters of all
irreducible representations {x,} form an orthonormal basis for the vector
space of class functions. Here, the inner product on class functions is
defined just by

If we have the result, we know precisely how many irreducible representa-
tions there are. Because the number of irreducible representations is just
the dimension of class functions, we se that it is the number of conjugacy
classes.

2. The second result is that for any irreducible p, the order m, always divides
|G|. This is a deep result using algebraic integers.
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3. The third result is that if we decompose the regular representation to

regg = @(irred. rep. p)

then each p occurs precisely m,, times in the decomposition. This means
that for each matrix reg,(g) of size |G| x |G| can be simultaneously block-
diagonalized so that the pg(g) block occurs m, times. If we count the

order, we get
_ 2
|G| = Zmp.
p

Example 25.2. Consider Ss. There is the trivial representation p; : S35 —
GL(1,C) such that p1(g) = 1, and there is the alternated representation pi :
S3 — GL(1,C) such that p(g) = sgn(g). And there is the py using the Young
symmetrizer. Then we have one p1, one p}, and two py in the reqular represen-
tations.

25.2 Intertwining operator and Schur’s lemma
Let us start proving things. Most of these things are proved by Schur.

Definition 25.3. Let p: G — GL(V) and o : G — GL(W) be two irreducible
representations. An intertwining operator is a map T : V — W such that
the diagram

e p(9) %

T T
W o(g) W
commutes for all g € G.

Note that both KerT' C V and ImT C W are both G-invariant. Because
both are irreducible representations, we see that Ker 7' is either 0 or V. Likewise,
we have Im T is either 0 or W. From this, we see that T is either 0 or invertible.

Suppose that V' = W. Consider an eigenvalue A of T. Then T'— AI is also an
intertwining operator. This cannot be invertible. Thus 7" — Al = 0. Therefore
we have the following lemma.

Lemma 25.4 (Schur’s lemma). Suppose that T intertwines two inequivalent
irreducible representations. Then we have T = 0. Suppose that T intertwines
the same irreducible representation. Then we have T = clI for some c € C.

We can using the averaging technique to explicitly construct an intertwining
operator. Suppose p: G — GL(V) and o : G toGL(W) be two representations,
and let T be any linear map 7' : V — W. Then we see that

1 1
Tovs = 157 > p(9)To(g™")

geG
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is an intertwining operator because
g1 -1
p(h)TanU |G| Z )J(h ) = Tan'
geG
Then by Schur’s lemma, we would have T,y = cl.

Theorem 25.5. The characters of the irreducible representations form a or-
thonormal basis in the space of class functions.

Proof. Start with a map T}, : V — W, which is defined by the matrix with all
zeros and only one 1 in the jth row and kth column, where 1 < 57 < m and
1 <k <n where dimV =n and dim W = m. Then the averaging will be

Z a(9)Tjrp(g 1) =0orcl
geqG

for some c. Now assume that j # k, and consider the (j,k)th entry of the
matrix. No matter what the matrix is, that entry must be zero. This means

that
> a(9);ip(g ek = 0.
geG

Note that p(g)/! = 1 and hence every eigenvalue of p(g) has absolute value
one. Therefore x,(971) = x,(g). If p and o are inequivalent, we have

> o(9)iiplg™ ek =0

geG

even if j = k. If we sum it over j and k, we get

> xeol9)x,(9) = 0.

geG

If p are o are equivalent, then x, = X,. Because the matrix
> o) Tiplg™)
geG
is a constant times the identity, but the trace is
Ztr )T550(9 ZtrTM = |G,
geG geG

we see that the map is |G|/m, times the identity. So we get

|G‘ZXP ol9) |G\Z(Zp JJ)(ZP kk)zl.

This shows that the {x,} are orthonormal vectors.
Lastly, we should prove that any class function orthogonal to all x, is iden-
tically zero. We will prove this next time. O
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Last time we showed that x, are orthogonal and have unit length in the space
of all class functions on G. We now actually prove that it is a basis. We will
prove that the orthogonal complement is zero, i.e.,

> e(9)xo(9) =0
geG

for all irreducible p implies ¢ =0 on G.
Proof. Consider

1 -
T=T,,= @ Z ©(9)p(g)-
g€G
Clearly trT" = 0. Also, note that because

()T p(h~") = |71;| = S d@emp(g)ph ) =T
geG

since ¢ is a class function, we see that T is an intertwining operator between p
and p. Therefore T is a constant times the identity. But because T is traceless,
we see that T' = 0.

Now note that this is 0 for all irreducible representation p. Because any
representation can be decomposed into irreducible representations, we see that
for any representation p, the T should be zero. In particular, we have

1 R
@l > elg)rega(g) =0.
geG
If we consider the action of this on 14 € C[G], we see that
> wlg)g=0€eCla.
geG
Therefore ¢ = 0. O

This was the most complicated part. We now prove the following.

Theorem 26.1. Each irreducible representation p occurs as many times as m,
in the regular representation regg.

Proof. Note that when reg. is decomposed into irreducible representations and
block diagonalized, the character X eg., Will be a sum of x,s as many times as
the number it occurs in the decomposition. Because x, form an orthonormal
basis, we see that that number is just
(Xregg s Xp)-
But Xreg, is just |G| at 1¢ and 0 at other points. So we see that

1 -
(XregG7Xp) = @ Z Xregg (g)Xp(g) = Xp(lG) = Myp.
geG

Therefore p occurs m, times. O
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26.1 Representations of 5,

Let us look at representations of S,,. Because S, is a permutation group, we can

consider special permutations by perhaps making blocks and considering only

the permutations preserving blocks. Young’s idea was representing it as boxes.
Consider a partition n; > ng > --- > ny of n so that

n=niy+ng+---+nyg.

We represent it we a Young diagram with n; boxes in the jth row.

Iy = (R1,...,n;) is another Young diagram, we can consider the lexicograph-
ical order and write Y > Y if and only if the first ny — ny is positive.
If C[G] is decomposed into irreducible representations

Clel=VieV,a---aV,

then we can consider the projection II; : C — V; and it will commute with any
g€aqG.

clq) 5 v

ol

clc] 2w

Suppose that T : C[G] — C|[G] is an G-equivariant map; i.e., that T is a
left-multiplication by some T' = s T99- Then after some calculation one sees

that there is a T such that Ta = aT for any a € C[G].
A decomposition of C[S,,] is a set of idempotent maps ey, es, ..., e; such that
e1 +ex+---+e =1and eje, = 0. For a Young diagram Y, let ey be the

element defined by
€y = Z €y, g9

geaG

where

sgny if g = yp for a column-preserving v and row-preserving p
e =
v 0 otherwise.

El

8] gave up taking notes because I was not able to understand.
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