
NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY”

BORIS BOTVINNIK

Contents

1. Important examples of topological spaces 6

1.1. Euclidian space, spheres, disks. 6

1.2. Real projective spaces. 7

1.3. Complex projective spaces. 8

1.4. Grassmannian manifolds. 9

1.5. Flag manifolds. 9

1.6. Classic Lie groups. 9

1.7. Stiefel manifolds. 10

1.8. Surfaces. 11

2. Constructions 13

2.1. Product. 13

2.2. Cylinder, suspension 13

2.3. Glueing 14

2.4. Join 16

2.5. Spaces of maps, loop spaces, path spaces 16

2.6. Pointed spaces 17

3. Homotopy and homotopy equivalence 20

3.1. Definition of a homotopy. 20

3.2. Homotopy classes of maps 20

3.3. Homotopy equivalence. 20

3.4. Retracts 23

3.5. The case of “pointed” spaces 24

4. CW -complexes 25

Date:
1



2 BORIS BOTVINNIK

4.1. Basic definitions 25

4.2. Some comments on the definition of a CW -complex 27

4.3. Operations on CW -complexes 27

4.4. More examples of CW -complexes 28

4.5. CW -structure of the Grassmanian manifolds 28

5. CW -complexes and homotopy 33

5.1. Borsuk’s Theorem on extension of homotopy 33

5.2. Cellular Approximation Theorem 35

5.3. Completion of the proof of Theorem 5.5 37

5.4. Fighting a phantom: Proof of Lemma 5.6 37

5.5. Back to the Proof of Lemma 5.6 39

5.6. First applications of Cellular Approximation Theorem 40

6. Fundamental group 43

6.1. General definitions 43

6.2. One more definition of the fundamental group 44

6.3. Dependence of the fundamental group on the base point 44

6.4. Fundamental group of circle 44

6.5. Fundamental group of a finite CW -complex 46

6.6. Theorem of Seifert and Van Kampen 49

7. Covering spaces 52

7.1. Definition and examples 52

7.2. Theorem on covering homotopy 52

7.3. Covering spaces and fundamental group 53

7.4. Observation 54

7.5. Lifting to a covering space 54

7.6. Classification of coverings over given space 56

7.7. Homotopy groups and covering spaces 57

7.8. Lens spaces 58

8. Higher homotopy groups 60

8.1. More about homotopy groups 60

8.2. Dependence on the base point 60



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY” 3

8.3. Relative homotopy groups 61

9. Fiber bundles 65

9.1. First steps toward fiber bundles 65

9.2. Constructions of new fiber bundles 67

9.3. Serre fiber bundles 70

9.4. Homotopy exact sequence of a fiber bundle 73

9.5. More on the groups πn(X,A; x0) 75

10. Suspension Theorem and Whitehead product 76

10.1. The Freudenthal Theorem 76

10.2. First applications 80

10.3. A degree of a map Sn → Sn 80

10.4. Stable homotopy groups of spheres 80

10.5. Whitehead product 80

11. Homotopy groups of CW -complexes 86

11.1. Changing homotopy groups by attaching a cell 86

11.2. Homotopy groups of a wedge 88

11.3. The first nontrivial homotopy group of a CW -complex 88

11.4. Weak homotopy equivalence 89

11.5. Cellular approximation of topological spaces 93

11.6. Eilenberg-McLane spaces 94

11.7. Killing the homotopy groups 95

12. Homology groups: basic constructions 98

12.1. Singular homology 98

12.2. Chain complexes, chain maps and chain homotopy 99

12.3. First computations 100

12.4. Relative homology groups 101

12.5. Relative homology groups and regular homology groups 104

12.6. Excision Theorem 107

12.7. Mayer-Vietoris Theorem 108

13. Homology groups of CW -complexes 110

13.1. Homology groups of spheres 110



4 BORIS BOTVINNIK

13.2. Homology groups of a wedge 111

13.3. Maps g :
∨

α∈A
Snα→

∨

β∈B
Snβ 111

13.4. Cellular chain complex 112

13.5. Geometric meaning of the boundary homomorphism ∂
≀

q 115

13.6. Some computations 117

13.7. Homology groups of RPn 117

13.8. Homology groups of CPn , HPn 118

14. Homology and homotopy groups 120

14.1. Homology groups and weak homotopy equivalence 120

14.2. Hurewicz homomorphism 122

14.3. Hurewicz homomorphism in the case n = 1 124

14.4. Relative version of the Hurewicz Theorem 125

15. Homology with coefficients and cohomology groups 127

15.1. Definitions 127

15.2. Basic propertries of H∗(−;G) and H∗(−;G) 128

15.3. Coefficient sequences 129

15.4. The universal coefficient Theorem for homology groups 130

15.5. The universal coefficient Theorem for cohomology groups 132
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18.1. Definition of the cap product 159

18.2. Crash course on manifolds 160
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1. Important examples of topological spaces

1.1. Euclidian space, spheres, disks. The notations Rn , Cn have usual meaning through-
out the course. The space Cn is identified with R2n by the correspondence

(x1 + iy1, . . . , yn + ixn)←→ (x1, y1, . . . , xn, yn).

The unit sphere in Rn+1 centered in the origin is denoted by Sn , the unit disk in Rn by Dn ,
and the unit cube in Rn by In . Thus Sn−1 is the boundary of the disk Dn . Just in case we
give these spaces in coordinates:

(1)

Sn−1 = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n = 1} ,

Dn = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n ≤ 1} ,

In = {(x1, . . . , xn) ∈ Rn | 0 ≤ xj ≤ 1, j = 1, . . . , n} .
The symbol R∞ is a union (direct limit) of the embeddings

R1 ⊂ R2 ⊂ · · · ⊂ Rn ⊂ · · · .
Thus a point x ∈ R∞ is a sequence of points x = (x1, . . . , xn, . . .), where xn ∈ R and xj = 0
for j greater then some k . Topology on R∞ is determined as follows. A set F ⊂ R∞ is
closed, if each intersection F ∩Rn is closed in Rn . In a similar way we define the spaces C∞

and S∞ .

Exercise 1.1. Let x(1) = (a1, 0, . . . , 0, . . .), . . ., x(n) = (0, 0, . . . , an, . . .), . . . be a sequence of
elements in R∞ . Prove that the sequence

{
x(n)
}

converges in R∞ if and only if the sequence
of numbers {an} is finite.

Probably you already know the another version of infinite-dimensional real space, namely the
Hilbert space ℓ2 (which is the set of sequences {xn} so that the series

∑
n xn converges). The

space ℓ2 is a metric space, where the distance ρ({xn} , {yn}) is defined as

ρ({xn} , {yn}) =
√∑

n(yn − xn)2.

Clearly there is a natural map R∞ −→ ℓ2 .

Remark. The optional exercises are labeled by ∗ .

Exercise 1.2. Is the above map R∞ −→ ℓ2 homeomorphism or not?

Consider the unit cube I∞ in the spaces R∞ , ℓ2 , i.e. I∞ = {{xn} | 0 ≤ xn ≤ 1 } .
Exercise 1.3. Prove or disprove that the cube I∞ is compact space (in R∞ or ℓ2 ).

We are going to play a little bit with the sphere Sn .

Claim 1.1. A punctured sphere Sn \ {x0} is homeomorphic to Rn .

Proof. We construct a map f : Sn \{x0} −→ Rn which is known as stereographic projection.
Let Sn be given as above (1). Let the point x0 be the North Pole, so it has the coordinates
(0, . . . , 0, 1) ∈ Rn+1 . Consider a point x = (x1, . . . , xn+1) ∈ Sn , x 6= x0 , and the line
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going through the points x and x0 . A directional vector of this line may be given as ~v =
(−x1, . . . ,−xn, 1− xn+1), so any point of this line could be written as

(0, . . . , 0, 1) + t(−x1, . . . ,−xn, 1− xn+1) = (−tx1, . . . ,−txn, 1 + t(1− xn+1)).

The intersection point of this line and Rn = {(x1, . . . , xn, 0)} ⊂ Rn+1 is determined by
vanishing the last coordinate. Clearly the last coordinate vanishes if t = − 1

1−xn+1
. The map

f : Sn \ {pt} −→ Rn is given by

f : (x1, . . . , xn+1) 7→
(

x1

1− xn+1
, . . . ,

xn
1− xn+1

, 0

)
.

The rest of the proof is left to you.

Figure 1. Stereographic projection

We define a hemisphere Sn+ =
{
x2

1 + · · ·+ x2
n+1 = 1 & xn+1 ≥ 0

}
.

Exercise 1.4. Prove the that Sn+ and Dn are homeomorphic.

1.2. Real projective spaces. A real projective space RPn is a set of all lines in Rn+1 going
through 0 ∈ Rn+1 . Let ℓ ∈ RPn be a line, then we define a basis for topology on RPn as
follows:

Uǫ(ℓ) = {ℓ′ | the angle between ℓ and ℓ′ less then ǫ} .
Exercise 1.5. A projective space RP1 is homeomorphic to the circle S1 .

Let (x1, . . . , xn+1) be coordinates of a vector parallel to ℓ, then the vector (λx1, . . . , λxn+1)
defines the same line ℓ (for λ 6= 0). We identify all these coordinates, the equivalence class
is called homogeneous coordinates (x1 : . . . : xn+1). Note that there is at least one xi which
is not zero. Let

Uj = {ℓ = (x1 : . . . : xn+1) | xj 6= 0 } ⊂ RPn

Then we define the map fR

j : Uj −→ Rn by the formula

(x1 : . . . : xn+1) −→
(
x1

xj
,
x2

xj
, . . . ,

xj−1

xj
, 1,

xj−1

xj
, . . . ,

xn+1

xi

)
.

Remark. The map fR

j is a homeomorphism, it determines a local coordinate system in RPn

giving this space a structure of smooth manifold of dimension n.

There is natural map c : Sn −→ RPn which sends each point s = (s1, . . . , sn+1) ∈ Sn to the
line going through zero and s. Note that there are exactly two points s and −s which map
to the same line ℓ ∈ RPn .
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We have a chain of embeddings

RP1 ⊂ RP2 ⊂ · · · ⊂ RPn ⊂ RPn+1 ⊂ · · · ,

we define RP∞ =
⋃
n≥1 RPn with the limit topology (similarly to the above case of R∞ ).

1.3. Complex projective spaces. Let CPn be the space of all complex lines in the complex
space Cn+1 . In the same way as above we define homogeneous coordinates (z1 : . . . : zn+1)
for each complex line ℓ ∈ CPn , and the “local coordinate system”:

Ui = {ℓ = (z1 : . . . : zn) | zi 6= 0 } ⊂ CPn.

Clearly there is a homemorphism fC

i : Ui −→ Cn+1 .

Exercise 1.6. Prove that the projective space CP1 is homeomorphic to the sphere S2 .

Consider the sphere S2n+1 ⊂ Cn+1 . Each point

z = (z1, . . . , zn+1) ∈ S2n−1, |z1|2 + · · ·+ |zn+1|2 = 1

of the sphere S2n+1 determines a line ℓ = (z1 : . . . : zn+1) ∈ CPn . Observe that the point
eiϕz = (eiϕz1, . . . , e

iϕzn+1) ∈ S2n+1 determines the same complex line ℓ ∈ CPn . We have
defined the map g(n) : S2n+1 −→ CPn .

Exercise 1.7. Prove that the map g(n) : S2n+1 −→ CPn has a property that g(n)−1(ℓ) = S1

for any ℓ ∈ CPn .

The case n = 1 is very interesting since CP1 = S2 , here we have the map g(1) : S3 −→ S2

where g(1)−1(x) = S1 for any x ∈ S2 . This map is the Hopf map, it gives very important
example of nontrivial map S3 −→ S2 . Before this map was discovered by Hopf, people
thought that there are no nontrivial maps Sk −→ Sn for k > n (“trivial map” means a map
homotopic to the constant map).

Exercise 1.8. Prove that RPn , CPn are compact and connected spaces.

Besides the reals R and complex numbers C there are quaternion numbers H . Recall that
q ∈ H may be thought as a sum q = a + ib + jc + kd , where a, b, c, d ∈ R , and the symbols
i, j, k satisfy the identities:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Then two quaternions q1 = a1 + ib1 +jc1 +kd1 and q2 = a2 + ib2 +jc2 +kd2 may be multiplied
using these identies. The product here is not commutative, however one can choose left or
right multiplication to define a line in Hn+1 . A set of all quaternionic lines in Hn+1 is the
quaternion projective space HPn .

Exercise 1.9. Give details of the above definition. In particular, check that the space HPn

is well-defined. Identify the quaternionic line HP1 with some well-known topological space.
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1.4. Grassmannian manifolds. These spaces generalize the projective spaces. Indeed, the
space G(n, k) is a space of all k -dimensional vector subpaces of Rn with natural topology.
Clearly G(n, 1) = RP1 . It is not difficult to introduce local coordinates in G(n, k). Let
π ∈ G(n, k) be a k -plane. Choose k linearly independent vectors v1, . . . , vk generating π
and write their coordinates in the standard basis e1, . . . , en of Rn :

A =




a11 · · · a1n
...

...
...

ak1 · · · akn




Since the vectors v1, . . . , vk are linearly independent there exist k columns of the matrix A
which are linearly independent as well. In other words, there are indices i1, . . . , ik so that a
projection of the plane π on the k -plane 〈ei1 , . . . , eik〉 generated by the coordinate vectors
ei1 , . . . , eik is a linear isomorphism. Now it is easy to introduce local coordinates on the
Grassmanian manifold G(n, k). Indeed, choose the indices i1, . . . , ik , 1 ≤ i1 < · · · < ik ≤ n,
and consider all k -planes π ∈ G(n, k) so that the projection of π on the plane 〈ei1 , . . . , eik〉
is a linear isomorphism. We denote this set of k -planes by Ui1,...,ik .

Exercise 1.10. Construct a homeomorphism fi1,...,ik : Ui1,...,ik −→ Rk(n−k) .

The result of this exercise shows that the Grassmannian manifold G(n, k) is a smooth manifold
of dimension k(n−k). The projective spaces and Grassmannian manifolds are very important
examples of spaces which we will see many times in our course.

Exercise 1.11. Define a complex Grassmannian manifold CG(n, k) and construct a local
coordinate system for CG(n, k). In particular, find its dimension.

We have a chain of spaces:

G(k, k) ⊂ G(k + 1, k) ⊂ · · · ⊂ G(n, k) ⊂ G(n + 1, k) ⊂ · · · .
Let G(∞, k) be the union (inductive limit) of these spaces. The topology of G(∞, k) is
given in the same way as to R∞ : a set F ⊂ G(∞, k) is closed if and only if the intersection
F ∩G(n, k) is closed for each n. This topology is known as a topology of an inductive limit.

Exercise 1.12. Prove that the Grassmannian manifolds G(n, k) and CG(n, k) are compact
and connected.

1.5. Flag manifolds. Here we just mention these examples without further considerations
(we are not ready for this yet). Let 1 ≤ k1 < · · · < ks ≤ n− 1. A flag of the type (k1, . . . , ks)
is a chain of vector subspaces V1 ⊂ · · · ⊂ Vs of Rn such that dimVi = ki . A set of flags of
the given type is the flag manifold F (n; k1, . . . , ks). Hopefully we shall return to these spaces:
they are very interesting and popular creatures.

1.6. Classic Lie groups. The first example here is the group GL(Rn) of nondegenerated
linear transformations of Rn . Once we choose a basis e1, . . . , en of Rn , each element A ∈
GL(Rn) may be identified with an n× n matrix A with detA 6= 0. Clearly we may identify
the space of all n × n matrices with the space Rn2

. The determinant gives a continuous
function det : Rn2 −→ R , and the space GL(Rn) is an open subset of Rn2

:

GL(Rn) = Rn2 \ det−1(0).
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In particular, this identification defines a topology on GL(Rk). In the same way one may
construct an embedding GL(Cn) ⊂ Cn2

. The orthogonal and special orthogonal groups O(k),
SO(k) are subgroups of GL(Rk), and the groups U(k), SU(k) are subgroups of GL(Ck).
(Recall that O(n) (or U(n)) is a group of those linear transformations of Rn (or Cn ) which
preserve a Euclidian (or Hermitian) metric on Rn (or Cn ), and the groups SO(k) and SU(k)
are subgroups of O(k) and U(k) of matrices with the determinant 1.)

Exercise 1.13. Prove that SO(2) and U(1) are homeomorphic to S1 , and that SO(3) is
homeomorphic to RP3 .

Hint: To prove that SO(3) is homeomorphic to RP3 you have to analyze SO(3): the key
fact is the geometric description of an orthogonal transformation α ∈ SO(3), it is given by
rotating a plane (by an angle ϕ) about a line ℓ perpendicular to that plane. You should use the
line ℓ and the angle ϕ as major parameters to construct a homeomorphism SO(3)→ RP3 ,
where it is important to use a particular model of RP3 , namely a disk D3 where one identifies
the opposite points on S2 = ∂D3 ⊂ D3 .

Exercise 1.14. Prove that the spaces O(n), SO(n), U(n), SU(n) are compact.

Exercise 1.15. Prove that the space O(n) has two path-connected components, and that the
spaces SO(n), U(n), SU(n) are path-connected.

Exercise 1.16. Prove that each matrix A ∈ SU(2) may be presented as:

A =

(
α β
−β̄ ᾱ

)
,where α, β ∈ C, |α|2 + |β|2 = 1

Use this presentation to prove that SU(2) is homeomorphic to S3 .

It is important to emphasize that the classic groups O(n), SO(n), U(n), SU(n) are all
manifolds, i.e. for each point α there there exists an open neighborhood homeomorphic to a
Euclidian space.

Exercise 1.17. Prove that the space for any point α ∈ SO(n) there exists an open neighbor-

hood homeomorphic to the Euclidian space of the dimension n(n−1)
2

.

Exercise 1.18. Prove that the spaces U(n), SU(n) are manifolds and find their dimension.

The next set of examples is also very important.

1.7. Stiefel manifolds. Again, we consider the vector space Rn . We call vectors v1, . . . , vk
a k -frame if they are linearly independent. A k -frame v1, . . . , vk is called an orthonormal
k -frame if the vectors v1, . . . , vk are of unit length and orthogonal to each other. The space
of all orthonormal k -frames in Rn is denoted by V (n, k). There are analogous complex and
quaternionic versions of these spaces, they are denoted as CV (n, k) and HV (n, k) respec-
tively. Here is an exercise where your knowledge of basic linear algebra may be crucial:

Exercise 1.19. Prove the following homeomorphisms: V (n, n) ∼= O(n), V (n, n − 1) ∼=
SO(n), CV (n, n) ∼= U(n), CV (n, n − 1) ∼= SU(n), V (n, 1) ∼= Sn−1 , CV (n, 1) ∼= S2n−1 ,
HV (n, 1) ∼= S4n−1 .
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We note that the group O(n) acts on the spaces V (n, k) and G(n, k): indeed, if α ∈ O(n)
and v1, . . . , vk is an orthonormal k -frame, then α(v1), . . . , α(vk) is also an orthonormal k -
frame. As for the Grassmannian manifold, one can easily see that α(Π) is a k -dimensional
subspace in Rn if Π is.

The group O(n) contains a subgroup O(j) which acts on Rj ⊂ Rn , where Rj = 〈e1, . . . , ej〉
is generated by the first j vectors e1, . . . , ej of the standard basis e1, . . . , en of Rn . Similarly
U(n) acts on the spaces CG(n, k) and CV (n, k), and U(j) is a subgroup of U(n).

Exercise 1.20. Prove the following homeomorphisms:

(a) Sn−1 ∼= O(n)/O(n− 1) ∼= SO(n)/SO(n− 1),

(b) S2n−1 ∼= U(n)/U(n− 1) ∼= SU(n)/SU(n− 1),

(c) G(n, k) ∼= O(n)/O(k)×O(n− k),

(c) CG(n, k) ∼= U(n)/U(k) × U(n− k).

We note here that O(k)× O(n− k) is a subgroup of O(n) of orthogonal matrices with two
diagonal blocks of the sizes k × k and (n− k)× (n− k) and zeros otherwise.

There is also the following natural action of the orthogonal group O(k) on the Stieffel
manifold V (n, k). Let v1, . . . , vk be an orthonormal k -frame then O(k) acts on the space
V = 〈v1, . . . , vk〉 , in particular, if α ∈ O(k), then α(v1), . . . , α(vk) is also an orthonormal
k -frame. Similarly there is a natural action of U(k) on CV (n, k).

Exercise 1.21. Prove that the above actions of O(k) on V (n, k) and of U(k) on CV (n, k)
are free.

Exercise 1.22. Prove the following homeomorphisms:

(a) V (n, k)/O(k) ∼= G(n, k),

(b) CV (n, k)/U(k) ∼= CG(n, k).

There are obvious maps V (n, k)
p−→ G(n, k), CV (n, k)

p−→ CG(n, k) (where each orthonor-
mal k -frame v1, . . . , vk maps to the k -plane π = 〈v1, . . . , vk〉 generated by this frame). It is
easy to see that the inverse image p−1(π) may be identified with O(k) (in the real case) and
U(k) (in the complex case). We shall return to these spaces later on. In particular, we shall
describe a cell-structure of these spaces and compute their homology and cohomology groups.

1.8. Surfaces. Here I refer to Chapter 1 of Massey, Algebraic topology, for details. I would
like for you to read this Chapter carefully even though most of you have seen this material
before. Here I briefly remind some constructions and give exercises. The section 4 of the
reffered Massey book gives the examples of surfaces. In particular, the torus T 2 is described
in three different ways:

(a) A product S1 × S1 .
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(b) A subspace of R3 given by:
{

(x, y, z) ∈ R3 | (
√
x2 + y2 − 2)2 + z2 = 1

}
.

(c) A unit square I2 = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 } with the identification:

(x, 0) ≡ (x, 1) (0, y) ≡ (1, y) for all 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Exercise 1.23. Prove that the spaces described in (a), (b), (c) are indeed homeomorphic.

T 2 RP2

⇐⇒aa

b

b

aa

b

b

Figure 2. Torus and projective plane

The next surface we want to become our best friend is the projective space RP2 . Earlier we
defined RP2 as a space of lines in R3 going through the origin.

Exercise 1.24. Prove that the projective plane RP2 is homeomorphic to the following spaces:

(a) The unit disk D2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1} with the opposite points (x, y) ≡
(−x,−y) of the circle S1 = {(x, y) ∈ R2 | x2 + y2 = 1} ⊂ D2 have been identified.

(b) The unit square, see Fig. 3, with the arrows a and b identified as it is shown.
(c) The Mëbius band which boundary (the circle) is identified with the boundary of the

disk D2 , see Fig. 3.

M ë D2

aa a a

b

b

The Klein bottle
Figure 3

Here the Mëbius band is constructed from a square by identifying the arrows a. The Klein
bottle Kl2 may be described as a square with arrows identified as it is shown in Fig. 3.

Exercise 1.25. Prove that the Klein bottle Kl2 is homeomorphic to the union of two Mëbius
bands along the circle.

Massey carefully defines connected sum S1#S2 of two surfaces S1 and S2 .

Exercise 1.26. Prove that Kl2#RP2 is homeomorphic to RP2#T 2 .

Exercise 1.27. Prove that Kl2#Kl2 is homeomorphic to Kl2 .

Exercise 1.28. Prove that RP2#RP2 is homeomorphic to Kl2 .
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2. Constructions

2.1. Product. Recall that a product X × Y of X , Y is a set of pairs (x, y), x ∈ X, y ∈ Y .
If X , Y are topological spaces then a basis for product topology on X × Y is given by the
products U × V , where U ⊂ X , V ⊂ Y are open. Here are the first examples:

Example. The torus T n = S1 × · · · × S1 . Note that the torus T n may be identified with
U(1)× · · · × U(1) ⊂ U(n) (diagonal orthogonal complex matrices).

Exercise 2.1. Consider the surface X in S5 , given by the equation

x1x6 − x2x5 + x3x4 = 0

(where S5 ⊂ R6 is given by x2
1 + · · ·+ x2

6 = 1). Prove that X ∼= S2 × S2 .

Exercise 2.2. Prove that the space SO(4) is homeomorphic to S3 ×RP3 .

Hint: Consider carefully the map SO(4) −→ S3 = SO(4)/SO(3) and use the fact that S3

has a natural group structure: it is a group of unit quaternions. It should be emphasized that
it is not true that SO(n) ∼= Sn−1 × SO(n− 1) if n > 4.

We note also that there are standard projections X × Y prX−−→ X and X × Y prY−−→ Y , and to
give a map f : Z −→ X×Y is the same as to give two maps fX : Z −→ X and fY : Z −→ Y .

2.2. Cylinder, suspension. Let I = [0, 1] ⊂ R . The space X × I is called a cylinder over
X , and the subspaces X × {0} , X × {1} are the bottom and top “bases”. Now we will
construct new spaces out of the cylinder X × I .

Remark: quotient topology. Let “∼” be an equivalence relation on the topological space
X . We denote by X/ ∼ the set of equivalence classes. There is a natural map (not continuos
so far) p : X −→ X/ ∼. We define the following topology on X/ ∼: the set U ⊂ X/ ∼ is
open if and only if p−1(U) is open. This topology is called a quotient topology.

The first example: let A ⊂ X be a closed set. Then we define the relation “∼” on X as
follows ([ ] denote an equivalence class):

[x] =

{
{x} if x /∈ A,
A if x ∈ A.

The space X/ ∼ is denoted by X/A.

The space C(X) = X × I/X ×{1} is a cone over X . A suspention ΣX over X is the space
C(X)/X × {0}.

Exercise 2.3. Prove that the spaces C(Sn) and ΣSn are homeomorphic to Dn+1 and Sn+1

respectively.

Here is a picture of these spaces:
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C(X) X × I ΣX

Figure 4

2.3. Glueing. Let X and Y be topological spaces, A ⊂ Y and ϕ : A −→ X be a map. We
consider a disjoint union X∪Y , and then we identify a point a ∈ A with the point ϕ(a) ∈ X .
The quotient space X ∪ Y/ ∼ under this identification will be denoted as X ∪ϕ Y , and this
procedure will be called glueing X and Y by means of ϕ . There are two special cases of this
construction.

Let f : X −→ Y be a map. We identify X with the bottom base X × {0} of the cylinder
X × I . The space X × I ∪f Y = Cyl(f) is called a cylinder of the map f . The space
C(X)∪f Y is called a cone of the map f . Note that the space Cyl(f) contains X and Y as
subspaces, and the space C(f) contains X .
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Cyl(f) C(f)

Figure 5

Let f : Sn −→ RPn be the (we have studied before) map which takes a vector ~v ∈ Sn to the
line ℓ = 〈~v〉 spanned by ~v .

Dn+1

C(Sn)

f RPn

Figure 6

Claim 2.1. The cone C(f) is homeomorphic to the projective space RPn+1 .

Proof (outline). Consider the cone over Sn , clearly C(Sn) ∼= Dn+1 (Exercise 2.3). Now
the cone C(f) is a disk Dn+1 with the opposite points of Sn identified, see Fig. 6.
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In particular, a cone of the map f : S1 −→ S1 = RP1 (given by the formula eiϕ 7→ e2iϕ )
coincides with the projective plane RP2 .

Exercise 2.4. Prove that a cone C(h) of the Hopf map h : S2n+1 −→ CPn is homeomorphic
to the projective space CPn+1 .

Here is the construction which should help you with Exercise 2.4. Let us take one more
look at the Hopf map h : S2k+1 −→ CPk : we take a point (z1, · · · , zk+1) ∈ S2k+1 , (where
|z1|2 + · · · + |zk+1|2 = 1), then h takes it to the line (z1 : · · · : zk+1) ∈ CPk . Moreover
h(z1, · · · , zk+1) = (z′1, · · · , z′k+1) if and only if z′j = eiϕzj . Thus we can identify CPk with
the following quotient space:

(2) CPk = S2k+1/ ∼, where (z1, · · · , zk+1) ∼ (eiϕz1, · · · , eiϕzk+1).

Now consider a subset of lines in CPk where the last homogeneous coordinate is nonzero:

Uk+1 = {(z1 : · · · : zk+1) | zk+1 6= 0} .
We already know that Uk+1 is homeomorphic to Ck by means of the map

(z1 : · · · : zk+1) 7→
(

z1
zk+1

, . . . , zk

zk+1

)

Now we use (2) to identify Uk+1 with an open disk D2k ⊂ Ck as follows. Let us think about
Uk+1 ⊂ S2k+1/ ∼ as above. Let ℓ ∈ Uk+1 . Choose a point (z1, · · · , zk+1) ∈ S2k+1 representing
ℓ. Then we have that

|z1|2 + · · ·+ |zk+1|2 = 1, and zk+1 6= 0.

A complex number zk+1 has a unique representation zk+1 = reiα , where r = |zk+1| . Notice
that 0 < r ≤ 1. Then the point

(e−iαz1, e
−iαzk · · · , e−iαzk+1) = (e−iαz1, e

−iαzk · · · , r) ∈ S2k+1

represents the same line ℓ ∈ Uk+1 . Moreover, this representation is unique. We have:

|z1|2 + · · ·+ |zk|2 = 1− r2

which describes the sphere S2k−1√
1−r2 ⊂ Ck of radius

√
1− r2 . The union of the spheres S2k−1√

1−r2
over 0 < r ≤ 1 is nothing but an open unit disk in Ck . Then we notice that we can let zk+1

to be equal to zero: zk+1 = 0 corresponds to the points

(z1, · · · , zk, 0) ∈ S2k+1 with |z1|2 + · · ·+ |zk|2 = 1,

i.e. the sphere S2k−1 ⊂ Ck modulo the equivalence relation (z1, · · · , zk, 0) ∼
(eiϕz1, · · · , eiϕzk, 0). This is nothing but the projective space CPk−1 . We summarize our
construction:

Lemma 2.1. There is a homeomorphism

CPk ≡ D2k/ ∼,
where (z1, · · · , zk) ∼ (z′1, · · · , z′k) if and only if

{
|z1|2 + · · ·+ |zk|2 = 1, |z′1|2 + · · ·+ |z′k|2 = 1, and

z′j = eiϕzj for all j = 1, . . . , k.
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2.4. Join. A join X ∗ Y of spaces X Y is a union of all linear paths Ix,y starting at x ∈ X
and ending at y ∈ Y ; the union is taken over all points x ∈ X and y ∈ Y . For example,
a joint of two intervals I1 and I2 lying on two non-parallel and non-intersecting lines is
a tetrahedron: A formal definition of X ∗ Y is the following. We start with the product

I1

I2

Figure 7

X × Y × I : here there is a linear path (x, y, t), t ∈ I for given points x ∈ X , y ∈ Y . Then
we identify the following points:

(x, y′, 1) ∼ (x, y′′, 1) for any x ∈ X, y′, y′′ ∈ Y ,
(x′, y, 0) ∼ (x′′, y, 0) for any x′, x′′ ∈ X, y ∈ Y .

Exercise 2.5. Prove the homeomorphisms

(a) X ∗ {one point} ∼= C(X);
(b) X ∗ {two points} ∼= Σ(X);
(c) Sn ∗ Sk ∼= Sn+k+1 . Hint: prove first that S1 ∗ S1 ∼= S3 .

2.5. Spaces of maps, loop spaces, path spaces. Let X , Y are topological spaces. We
consider the space C(X, Y ) of all continuous maps from X to Y . To define a topology of
the functional space C(X, Y ) it is enough to describe a basis. The basis of the compact-open
topology is given as follows. Let K ⊂ X be a compact set, and O ⊂ Y be an open set. We
denote by U(K,O) the set of all continuous maps f : X −→ Y such that f(K) ⊂ Y , this is
(by definition) a basis for the compact-open topology on C(X, Y ).

Examples. Let X be a point. Then the space C(X, Y ) is homeomorphic to Y . If X be a
space consisting of n points, then C(X, Y ) ∼= Y × · · · × Y (n times).

Let X , Y , and Z be Hausdorff and locally compact1 topological spaces. There is a natural
map

T : C(X, C(Y, Z)) −→ C(X × Y, Z),

given by the formula: {f : X −→ C(Y, Z)} −→ {(x, y) −→ (f(x))(y)} .
Exercise 2.6. Prove that the map T : C(X, C(Y, Z)) −→ C(X × Y, Z) is a homeomorphism.

1 A topological space X is called locally compact if for each point x ∈ X and an open neighborhood U
of X there exists an open neighbourhood V ⊂ U such that the closure V of V is compact.
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Recall we call a map f : I −→ X a path, and the points f(0) = x0 f(1) = x1 are the
beginning and the end points of the path f . The space of all paths C(I,X) contains two
important subspaces:

1. E(X, x0, x1) is the subspace of paths f : I −→ X such that f(0) = x0 and f(1) = x1 ;
2. E(X, x0) is the space of all paths with x0 the begining point.
3. Ω(X, x0) = E(X, x0, x0) is the loop space with the begining point x0 .

Exercise 2.7. Prove that the spaces Ω(Sn, x) and Ω(Sn, x′) are homeomorphic for any points
x, x′ ∈ Sn .
Exercise 2.8. Give examples of a space X other than Sn for which Ω(X, x) and Ω(X, x′)
are homeomorphic for any points x, x′ ∈ X . Why does it fail for an arbitrary space X ? Give
an example when this is not true.

The loop spaces Ω(X, x) are rather difficult to describe even in the case of X = Sn , however,
the spaces X and Ω(X, x) are intimately related. To see that, consider the following map

(3) p : E(X, x0) −→ X

which sends a path f : I −→ X , f(0) = x0 , to the point x = f(1). Notice that p−1(x0) ∼=
Ω(X, x0). The map (3) may be considered as a map of pointed spaces (see the definitions
below):

p : (E(X, x0), ∗) −→ (X, ∗),
where the path ∗ : I −→ X sends the interval to the point ∗(t) = x0 for all t ∈ I . Clearly
p(∗) = x0 .

2.6. Pointed spaces. A pointed space (X, x0) is a topological space X together with a base
point x0 ∈ X . A map f : (X, x0) −→ (Y, y0) is a continuous map f : X −→ Y such that
f(x0) = y0 . Many operations preserve base points, for example the product X×Y of pointed
spaces (X, x0), (Y, y0) have the base point (x0, y0) ∈ X × Y . Some other operations have to
be modified.

The cone C(X, x0) = C(X)/ {x0} × I : here we identify with the point all interval over the
base point x0 , and the image of {x0} × I in C(X, x0) is the base point of this space.

The suspension:

Σ(X, x0) = Σ(X)/ {x0} × I = C(X)/(X × {0} ∪ x0 × I) = C(X, x0)/(X × {0}).
The space of maps C(X, x0, Y, y0) for pointed spaces2 (X, x0) and (Y, y0) is the space of
continuous maps f : X −→ Y such that f(x0) = y0 (with the same compact-open topology).
The base point in the space C(X, Y ) is the map c : X −→ Y which sends all space X to the
point y0 ∈ Y .

If X is a pointed space, then Ω(X, x0) is the space of loops begining and ending at the base
point x0 ∈ X , and the space E(X, x0) is the space of paths starting at the base point x0 .

Exercise 2.9. Let X and Y are pointed space. Prove that the space C(Σ(X), Y ) and the
space C(X,Ω(Y )) are homeomorphic.

2 We will denote this space by C(X,Y ) when it is clear what the base points are.
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Exercise 2.10. Let S1 = {eiϕ} be a circle and s0 = 1 (ϕ = 0) be a base point. How many
path-connected components does the space Ω(S1) (a space of loops with s0 the begining point)
have? Try the same question for Ω(RP2).

There are two more operations which are specific for pointed spaces.

1. A one-point-union (or a bouquet) X ∨Y of pointed spaces (X, x0) and (Y, y0) is a disjoint
union X ∪ Y with the points x0 and y0 identified, see Fig. 8.
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2. A smash-product X ∧ Y is the factor-space: X ∧ Y = X × Y/((x0 × Y ) ∪ (X × y0)), see
Fig. 9:
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X ∧ Y :

X x0

y0

Y

Figure 9

Exercise 2.11. Prove that the space Sn ∧ Sn is homeomorphic to Sn+m as pointed spaces.

Exercise 2.12. Prove that X ∧ S1 is homeomorphic to Σ(X) as pointed spaces.

Remark. We have mentioned several natural homeomorphisms, for instance, the homeomor-
phisms

(a) C(Σ(X), Y )
FX,Y−−−→ C(X,Ω(Y )),

(b) X ∧ S1 G−→ Σ(X)

are natural. We would like to give more details.

First, let f : X −→ X ′ , and g : Y −→ Y ′ be maps of pointed spaces, then there the maps

f ∗ : C(X ′, Y ) −→ C(X, Y ),

g∗ : C(X, Y ) −→ C(X, Y ′),

given by the formula:

f ∗ : (ϕ : X ′ −→ Y ) 7→ (X
f−→ X ′ ϕ−→ Y ),

g∗ : (ψ : X −→ Y ) 7→ (X
ψ−→ Y

g−→ Y ′).
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We have the following diagram of maps:

(4)

C(X, Y )

?

g∗

C(X ′, Y )

?

g∗

� f∗

C(X, Y ′) C(X ′, Y ′)� f∗

We claim that the diagram (4) is commutative. Let ϕ : X ′ → Y be an element in the right
top corner of (4). By definition, we obtain the following diagram:

{
X

f−→ X ′ ϕ−→ Y
}

?

g∗

{
X ′ ϕ−→ Y

}

?

g∗

� f∗

{
X

f−→ X ′ ϕ−→ Y
g−→ Y ′

} {
X ′ ϕ−→ Y

g−→ Y ′
}

� f∗

Clearly both ways from the right top corner to the bottom left one give the same result.

Next, we notice that the maps f : X −→ X ′ , and g : Y −→ Y ′ induce the maps

Σf : ΣX −→ ΣX ′, Ωg : ΩY −→ ΩY ′

given by the formula

Σf(x, t) = (f(x), t), Ω(g) : (γ : I −→ Y ) 7→ (g ◦ γ : I −→ Y ′).

We call the homeomorphism FX,Y : C(Σ(X), Y ) −→ C(X,Ω(Y )) natural since for any maps
f : X −→ X ′ , g : Y −→ Y ′ the following diagram of pointed spaces and maps commutes:

(5)

C(Σ(X), Y ′) C(X,Ω(Y ′)-
FX,Y ′

C(Σ(X), Y )
�

�
�

���g∗
6

Σf∗

C(X,Ω(Y ))
�

�
�

���Ωg∗

-
FX,Y

C(Σ(X ′), Y ′)

6
f∗

C(X ′,Ω(Y ′)

6

f∗

FX′,Y ′

-

C(Σ(X ′), Y )

6

Σf∗

�
�

�
���g∗

C(X ′,Ω(Y ))
�

�
�

���Ωg∗

6

-
FX′,Y

Exercise 2.13. Check commutativity of the diagram (5).

Exercise 2.14. Show that the homeomorphism X ∧ S1 G−→ Σ(X) is natural.
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3. Homotopy and homotopy equivalence

3.1. Definition of a homotopy. Let X and Y be topological spaces. Two maps

f0 : X −→ Y and f1 : X −→ Y

are homotopic (notation: f0 ∼ f1 ) if there exists a map F : X × I −→ Y such that the
restriction F |X×{0} coincides with f0 , and the restriction F |X×{1} coincides with f1 .

The map F : X× I −→ Y is called a homotopy. We can think also that a homotopy between
maps f0 and f1 is a continuous family of maps ϕt : X −→ Y , 0 ≤ t ≤ 1, such that ϕ0 = f0 ,
ϕ1 = f1 , and the map F : X × I −→ Y , F (x, t) = ϕt(x) is a continuous map for every t ∈ I .

If the spaces X and Y are “good spaces” (like our examples Sn , RPn , CPn , HPn , G(n, k)
V (n, k) and so on), then we can think about homotopy between f0 and f1 as a path in the
space of continuous maps C(X, Y ) joining f0 and f1 . Furthemore, in such case, the set of
homotopy classes [X, Y ] (see below) may be identified with the set of path-components of
the space C(X, Y ).

If a map f : X −→ Y is homotopic to a constant map X −→ pt ∈ Y , we call the map f
null-homotopic.

Example. Let Y ⊂ Rn (or R∞ ) be a convex subset. Then for any space X any two maps
f0 : X −→ Y and f1 : X −→ Y are homotopic. Indeed, the map

F : x −→ (1− t)f0(x) + tf1(x)

defines a corresponding homotopy.

3.2. Homotopy classes of maps. Clearly a homotopy determines an equivalence relation
on the space of maps C(X, Y ). The set of equivalence classes is denoted by [X, Y ] and it is
called a set of homotopy classes.

Examples. 1. The set [X, ∗] consists of one point for any space X .

2. The space [∗, Y ] is the set of path-connected components of Y .

Let ϕ : X −→ X ′ be a map (continuous), then we define the map (not continuous since we
do not have a topology on the set [X, Y ]) ϕ∗ : [X ′, Y ] −→ [X, Y ] as follows. Let a ∈ [X ′, Y ]
be a homotopy class. Choose any representative f : X ′ −→ Y of the class a, then ϕ∗(a) is a
homotopy class contaning the map f ◦ ϕ : X −→ Y .

Now let ψ : Y −→ Y ′ be a map. Then the map ψ∗ : [X, Y ] −→ [X, Y ′] is defined as follows.
For any b ∈ [X, Y ] and a representative g : X −→ Y the map ψ ◦ g : X −→ Y ′ determines a
homotopy class ψ(b) = [ψ ◦ g].

Exercise 3.1. Prove that the maps ϕ∗ and ψ∗ are well-defined.

3.3. Homotopy equivalence. We will give three different definitions of homotopy equiva-
lence.



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY” 21

Definition 3.1. (HE-I) Two spaces X1 and X2 are homotopy equivalent (X1 ∼ X2 ) if there
exist maps f : X1 −→ X2 and g : X2 −→ X1 such that the compositions g ◦ f : X1 −→ X1

and f ◦ g : X2 −→ X2 are homotopy equivalent to the identity maps IX1 and IX2 respectively.

In this case we call maps f and g mutually inverse homotopy equivalences, and both maps
f and g are homotopy equivalences.

Remark. If the maps g ◦ f and f ◦ g are the identity maps, then f and g are mutually
inverse homeomorphisms.

Definition 3.2. (HE-II) Two spaces X1 and X2 are homotopy equivalent (X1 ∼ X2 ) if there
is a rule assigning for any space Y a one-to-one map ϕY : [X1, Y ] −→ [X2, Y ] such that for
any map h : Y −→ Y ′ the diagram

(6)

[X1, Y ]

?

h∗

[X2, Y ]

?

h∗

-ϕY

[X1, Y
′] [X2, Y

′]-
ϕY ′

commutes, i.e. ϕY ′ ◦ h∗ = h∗ ◦ ϕY .

Definition 3.3. (HE-III) Two spaces X1 and X2 are homotopy equivalent (X1 ∼ X2 ) if there
is a rule assigning for any space Y a one-to-one map ϕY : [Y,X1] −→ [Y,X2] such that for
any map h : Y −→ Y ′ the diagram

(7)

[Y,X1] [Y,X2]-ϕY

[X1, Y
′]

6

h∗

[X2, Y
′]

6

h∗

-
ϕY ′

commutes, i.e. ϕY ◦ h∗ = h∗ ◦ ϕY ′

.

Theorem 3.4. Definitions 3.1, 3.2 and 3.3 are equivalent.

Proof. Here we prove only that Definitions 3.1 and 3.2 are equivalent. Let X1 ∼ X2 in the
sence of Definition 3.2. Then there is one-to-one map ϕX2 : [X1, X2] −→ [X2, X2]. Let IX2 be
the identity map, IX2 ∈ [X2, X2]. Let α = ϕ−1([IX2 ]) ∈ [X1, X2] and f ∈ α , f : X1 −→ X2

be a representative.

There is also a one-to-one map ϕX1 : [X1, X1] −→ [X2, X1]. We let β = ϕX1([IX1]) and we
choose a map g : X2 −→ X1 , g ∈ β . We shall show that f ◦ g ∼ IX2 . The diagram

(8)

[X1, X1]

?

f∗

[X2, X1]

?

f∗

-
ϕX1

[X1, X2] [X2, X2]-
ϕX2
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commutes by Definition 3.2. It implies that ϕX2 ◦ f∗ = f∗ ◦ ϕX1 . Let us consider the image
of the element [IX1] in the diagram (8). We have:

f∗([IX1 ] = [f ◦ IX1 ] = [f ], ϕX2([f ]) = [IX2]

by definition and by the choice of f . It implies that

ϕX2 ◦ f∗([IX1]) = [IX2 ].

On the other hand, we have:

f∗ ◦ ϕX1([IX1 ]) = f∗([g]) = [f ◦ g].
Commutativity of (8) implies that [f ◦ g] = [IX2 ], i.e. f ◦ g ∼ IX2 .

A similar argument proves that g◦f ∼ IX1 . It means that X1 ∼ X2 in the sence of Definition
3.1.

Now assume that X1 ∼ X2 in the sence of Definition 3.1, i.e. there are maps f : X1 −→ X2

and g : X1 −→ X1 such that f ◦ g ∼ IX2 and g ◦ f ∼ IX1 . Let Y be any space and define

ϕY = g∗ : [X1, Y ] −→ [X2, Y ].

We shall show that this map is inverse to the map

f ∗ : [X2, Y ] −→ [X1, Y ].

Indeed, let h ∈ C(X1, Y ), then

f ∗ ◦ g∗([h]) = f ∗([h ◦ g]) = (by definition of f ∗ ) = [h ◦ (g ◦ f)] = [h] (since g ◦ f ∼ IX1 ).

This shows that f ∗ is inverse to g∗ . With a similar argument we prove that g∗ is inverse to
f ∗ . Thus ϕY = g∗ is a bijection. Now we have to check naturality.

Let Y ′ be a space and k : Y −→ Y ′ be a map. We show that the diagram

(9)

[X1, Y ]

?

k∗

[X2, Y ]

?

k∗

-ϕY =g∗

[X1, Y
′] [X2, Y

′]-
ϕY ′=g∗

commutes. Let h ∈ C(X1, Y ) be a map. Then we have

k∗([h]) = [k ◦ h], g∗([k ◦ h]) = [(k ◦ h) ◦ g],
and also

g∗([h]) = [h ◦ g], k∗([h ◦ g]) = [k ◦ (h ◦ g)].
It means that (9) commutes. Thus Definitions 3.1 and 3.2 are equivalent.

Exercise 3.2. Prove the equivalence of Definitions 3.1 and 3.3.

We call a class of homotopy equivalent spaces a homotopy type. Obviously any homeomor-
phic spaces are homotopy equivalent. The simpest example of spaces which are homotopy
equivalent, but not homeomorphic is the following: X1 is a circle, and X2 is an annulus, see
Fig. 24.
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X1 X2
Figure 10

Exercise 3.3. Give 3 examples of spaces homotopy equivalent and not homeomorphic spaces.

We call a space X a contractible space if the identity map I : X −→ X null-homotopic, i.e.
it is homotopic to the “constant map” ∗ : X −→ X , mapping all X to a single point.

Exercise 3.4. Prove that a space X is contractible if and only if it is homotopy equivalent
to a point.

Exercise 3.5. Prove that a space X is contractible if and only if every map f : Y −→ X is
null-homotopic.

Exercise 3.6. Prove that the space of paths E(X, x0) is contractible for any X .

Exercise 3.7. Let X1 , X2 be pointed spaces. Prove that if X1 ∼ X2 then Σ(X1) ∼ Σ(X2)
and Ω(X1) ∼ Ω(X2).

3.4. Retracts. We call a subspace A of a topological space X its retract if there exists a
map r : X −→ X (a retraction) such that r(X) = A and r(a) = a for any a ∈ A.

Examples. 1. A single point x ∈ X is a retact of the space X since a constant map
r : X −→ x is a retraction.

2. The subspace A = {0} ∪ {1} of the interval I = [0, 1] is not a retract of I , otherwise we
would map I to the disconnected space A.

3. In general, the sphere Sn is not a retract of the disk Dn+1 for any n, however we do not
have enough tools in our hands to prove it now.

4. The “base” X × {0} is a retract of the cylinder X × I .

Exercise 3.8. Prove that the “base” X × {0} of the cone C(X) is a retract of C(X) if and
only if the space X is contractible.

Sometimes a retraction r : X −→ X (where r(X) = A) is homotopic to the identity map
Id : X −→ X , in that case we call A a deformation retract of X ; moreover if this homotopy
may be chosen to be the identity map on A,3 then we call A a strict deformation retract of
X .

Lemma 3.5. A subspace A is a deformation retract of X if and only if the inclusion A −→ X
is a homotopy equivalence.

3 i.e. a homotopy h : X × I −→ X between r : X −→ X and the identity map Id : X −→ X has the
following property: h(a, t) = a for any a ∈ A .
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Exercise 3.9. Prove Lemma 3.5.

Lemma 3.5 shows that a concept of deformation retract is not really new for us; a concept of
strict deformation retract is more restrictive, however these two concepts are different only in
some pathological cases.

Exercise 3.10. Let A ⊂ X , and r(0) : X −→ A, r(1) : X −→ A be two deformation
retractions. Prove that the retractions r(0) , r(1) may be joined by a continuous family of
deformation retractions r(s) : X −→ A, 0 ≤ s ≤ 1. Note: It is important here that r(0) , r(1)

are both homotopic to the identity map IX .

3.5. The case of “pointed” spaces. The definitions of homotopy, homotopy equivalence
have to be changed (in an obvious way) for spaces with base points. The set of homotopy
clases of “pointed” maps f : X −→ Y will be also denoted as [X, Y ]. We need one more
generalization.

Definition 3.6. A pair (X,A) is just a space X with a labeled subspace A ⊂ X ; a map
of pairs f : (X,A) −→ (Y,B) is a continuous map f : X −→ Y such that f(A) ⊂ B .
Two maps (X,A) −→ (Y,B), f1 : (X,A) −→ (Y,B) are homotopic if there exist a map
F : (X × I, A× I) −→ (Y,B) such that

F |(X×{0},A×{0} = f0, F |(X×{1},A×{1} = f1.

We have seen already the example of pairs and their maps. Let me recall that the cones of
the maps c : Sn −→ RPn and h : S2n+1 −→ CPn give us the commutative diagrams:

(10)

Dn+1 RPn+1 D2n+2 CPn+1-f -g

Sn

6

i

RPn

6

i

S2n+1

6

i

CPn

6

i

-c -h

which are the maps of pairs:

f : (Dn+1, Sn) −→ (RPn+1,RPn), g : (D2n+2, S2n+1) −→ (CPn+1,CPn).
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4. CW -complexes

Algebraic topologists rarely study arbitrary topological spaces: there is not much one can
prove about an abstract topological space. However, there is very well-developed area known
as general topology which studies simple properties (such as conectivity, the Hausdorff prop-
erty, compactness and so on) of complicated spaces. There is a giant Zoo out there of very
complicated spaces endowed with all possible degrees of pathology, i.e. when one or another
simple property fails or holds. Some of these spaces are extremely useful, such as the Cantor
set or fractals, they help us to understand very delicate phenomenas observed in mathematics
and physics. In algebraic topology we mostly study complicated properties of simple spaces.

It turns out that the most important spaces which are important for mathematics have some
additional structures. The first algebraic topologist, Poincarè, studied mostly the spaces
endowed with “analytic” structures, i.e. when a space X has natural differential structure
or Riemannian metric and so on. The major advantage of these structures is that they all
are natural, so we should not really care about their existence: they are given! There is the
other type of natural structures on topological spaces: so called combinatorial structures, i.e.
when a space X comes equipped with a decomposition into more or less “standard pieces”, so
that one could study the whole space X by examination the mutual geometric and algebraic
relations between those “standard pieces”. Below we formalize this concept: these spaces are
known as CW -complexes. For instance, all examples we studied so far are like that.

4.1. Basic definitions. We will call an open disk Dn (as well as any space homeomorphic
to Dn ) by n-cell. Notation: en . We will use the notation ēn for a “closed cell” which is
homeomorphic to Dn . For n = 0 we let e0 = D0 (point). Let ∂en be a “boundary” of the cell
en ; ∂en is homeomorphic to the sphere Sn−1 . Recall that if we have a map ϕ : ∂en −→ K ,
then we can construct the space K ∪ϕ en , such that the diagram

en K ∪ϕ en-Φ

∂en

6

i

K

6

i

-ϕ

commutes. We will call this procedure an attaching of the cell en to the space K . The map
ϕ : ∂en −→ K is the attaching map, and the map Φ : en −→ K ∪ϕ en the characteristic map
of the cell en . Notice that Φ is a homeomorphism of the open cell en on its image.

An example of this construction is the diagram (10), where the maps c : Sn −→ RPn and
h : S2n+1 −→ CPn are the attaching maps of the corresponding cells en+1 and e2n+2 . As we
shall see below,

RPn ∪c en+1 ∼= RPn+1 and CPn ∪h e2n+2 ∼= CPn+1.

We return to this particular construction a bit later.
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Definition 4.1. A Hausdorff topological space X is a CW -complex (or cell-complex) if it is
decomposed as a union of cells:

X =

∞⋃

q=0




⋃

i∈Iq
eqi



 ,

where the cells eqi ∩ epj = ∅ unless q = p, i = j , and for each eqi there exists a characteristic

map Φ : Dq −→ X such that its restriction Φ ◦

D
q gives a homeomorphism Φ| ◦

D
q :

◦
D
q

−→ eqi .

It is required that the following axioms are satisfied:

(C) (close finite) The boundary ∂eqi = ēqi \ eqi of the cell eqi is a subset of the union of finite
number of cells erj , where r < q .

(W) (weak topology) A set F ⊂ X is closed if and only if the intersection F ∩ ēn is closed
for every cell eqi .

Example 1. The sphere Sn . There are two standard cell decompositions of Sn :

(a) Let e0 be a point (say, the north pole (0, 0, . . . , 0, 1) and en = Sn \ e0 , so Sne0 ∪ en . A
characteristic map Dn −→ Sn which corresponds to the cell en may be defined by

(x1, x2, . . . , xn) −→ (x1 sin πρ, . . . , xn sin πρ, cosπρ), where ρ =
√
x2

1 + . . .+ x2
n

(b) We define Sn =
⋃n
q=0 e

q
± , where

eq± = {(x1, . . . xn+1) ∈ Sn | xq+2 = . . . = xn+1 = 0, and ± xq+1 > 0 } , see Fig. 11.
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Figure 11

There exist a lot more cell decompositions of the sphere Sn : one can decompose Sn on
(3n+1− 1) cells as a boundary of (n+ 1)-dimension simplex4 ∆n+1 , or on (2n+2− 2) cells as
a boundary of the cube In .

Exercise 4.1. Describe these cell decompositions of Sn .

Example 2. Any of the above cell decompositions of the sphere Sn−1 may be used to
construct a cell decomposition of the disk Dn by adding one more cell: Id : Dn −→ Dn . The
most simple one gives us three cells.

4 A simplex ∆k is determined as follows:
∆k =

{
(x1, . . . , xk+1) ∈ Rk+1 | x1 ≥ 0, . . . , xk+1 ≥ 0, Σk+1

i=1
xi = 1

}
.
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4.2. Some comments on the definition of a CW -complex. 1o Let X be a CW-complex.
We denote X(n) the union of all cells in X of dimension ≤ n. This is the n-th skeleton of
X . The n-th skeleton X(n) is an example (very important one) of a subcomplex of a CW -
complex. A subcomplex A ⊂ X is a closed subset of A which is a union of some cells of
X . In particular, the n-th skeleton A(n) is a subcomplex of X(n) for each n ≥ 0. A map
f : X −→ Y of CW -complexes is a cellular map if f |X(n) maps the n-th skeleton to the
n-skeleton Y (n) for each n ≥ 0. In particular, the inclusion A ⊂ X of a subcomplex is a
cellular map. A CW -complex is called finite if it has a finite number of cells. A CW -complex
is called locally finite if X has a finite number of cells in each dimension. Finally (X, x0) is
a pointed CW -complex, if x0 is a 0-cell.

Exercise 4.2. Prove that a CW -complex compact if and only if it is finite.

2o It turns out that a closure of a cell within a CW -complex may be not a CW -complex.

Exercise 4.3. Construct a cellular decomposion of the wedge X = S1 ∨ S2 (with a single
2-cell e2 ) such that a closure of the cell e2 is not a CW -subcomplex of X .

3o (Warning) The axiom (W ) does not imply the axiom (C). Indeed, consider a decom-
position of the disk D2 into 2-cell e2 which is the interior of the disk D2 and each point of
the circle S1 is considered as a zero cell.

Exercise 4.4. Prove that the disk D2 with the cellular decomposition described above satisfies
(W ), and does not satisfy (C).

Figure 12

4o (Warning) The axiom (C) does not imply the axiom (W ). Indeed, consider the following
space X . We start with an infinite (even countable) family Iα of unit intervals. Let X =∨
α Iα , where we identify zero points of all intervals Iα . We define a topology on X by means

of the following metric. Let t′ ∈ Iα′ and t′′ ∈ Iα′′ . Then a distance is defined by

ρ(t′, t′′) =

{
|t′ − t′′| if α′ = α′′

t′ + t′′ if α′ 6= α′′

Exercise 4.5. Check that a natural cellular decomposition of X into the interiors of Iα and
remaining points (zero cells) does not satisfy the axiom (W ).

4.3. Operations on CW -complexes. All operations we considered are well-defined on the
category of CW -complexes, however we have to be a bit careful. If one of the CW -complexes
X and Y is locally finite, then the product X×Y has a canonical CW -structure. The same
holds for a smash-product X ∧ Y of pointed CW -complexes. The cone C(X), cylinder
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X × I , and suspension Σ(X) has canonical CW -structure determined by X . We can glue
CW -complexes X ∪f Y if f : A −→ Y a cellular map, and A ⊂ X is a subcomplex. Also the
quotient space X/A is a CW -complex if (A,X) is a CW -pair. The functional spaces C(X, Y )
are two big to have natural CW -structure, however, a space C(X, Y ) is homotopy equivalent
to a CW -complex if X and Y are CW -complexes. The last statement is a nontrivial result
due to J. Milnor (1958).

4.4. More examples of CW -complexes. Real projective space RPn . Here we choose in
RPn a sequence of projective subspaces:

∗ = RP0 ⊂ RP1 ⊂ . . . ⊂ RPn−1 ⊂ RPn.

and set e0 = RP0 , e1 = RP1 \RP0, . . . en = RPn \RPn−1 . The diagram (10) shows that
the map c : Sk−1 −→ RPk is an attaching map, and its extension to the cone over Sk−1

(the disk Dk ) is a characteristic map of the cell ek . Alternatively this decomposition may be
described in the homogeneous coordinates as follows. Let

eq = {(x0 : x1 : · · · : xn) | xq 6= 0, xq+1 = 0, . . . xn = 0} .
Exercise 4.6. Prove that eq is homeomorphic to RPq \RPq−1 .

Exercise 4.7. Construct cell decompositions of CPn and HPn .

Exercise 4.8. Represent as CW -complex every 2-dimensional manifold. Try to find a CW -
strucute with a minimal number of cells.

Exercise 4.9. Prove that a finite CW -complex (with finite number of cells) may be embedded
into Euclidean space of finite dimension.

4.5. CW -structure of the Grassmanian manifolds. We describe here the Schubert de-
composition, and the cells of this decomposition are known as the Schubert cells. We consider
the space G(n, k). We choose the standard basis e1, . . . , en of Rn . Let Rq = 〈e1, . . . , eq〉 . It
is convenient to denote R0 = {0} . We have the inclusions:

R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rn.

Let π ∈ G(n, k). Clearly π determines a collection of nonnegative numbers

0 ≤ dim(R1 ∩ π) ≤ dim(R2 ∩ π) ≤ · · · ≤ dim(Rn ∩ π) = k.

We note that dim(Rj ∩ π) ≤ dim(Rj−1 ∩ π) + 1. Indeed, we have linear maps

(11) 0 −→ Rj−1 ∩ π i−→ Rj ∩ π j -th coordinate−−−−−−−−−−−→ R

where the first one, i : Rj−1 ∩ π −→ Rj ∩ π , is an embedding, and the map

j -th coordinate : Rj ∩ π −→ R

is either onto or zero. In the first case dim(Rj ∩ π) = dim(Rj−1 ∩ π) + 1, and in the second
case dim(Rj ∩ π) = dim(Rj−1 ∩ π). Thus there are exactly k “jumps” in the sequence
(0, dim(R1 ∩ π), . . . , dim(Rn ∩ π)).

A Schubert symbol σ = (σ1, . . . , σn) is a collection of integers, such that

1 ≤ σ1 < σ2 < · · · < σk ≤ n.
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Let e(σ) ⊂ G(n, k) be the following set of the following k -planes in Rn

e(σ) =
{
π ∈ G(n, k) | dim(Rσj ∩ π) = j & dim(Rσj−1 ∩ π) = j − 1, j = 1, . . . , k

}
.

Notice that every π ∈ G(n, k) belongs to exactly one subset e(σ). Indeed, in the sequence of
subspaces

R1 ∩ π ⊂ R2 ∩ π ⊂ · · · ⊂ Rn ∩ π = π

their dimensions “jump” by one exactly k times. Clearly π ∈ e(σ), where σ = (σ1, . . . , σn)
and

σt = min
{
j | dim(Rj ∩ π) = t

}
.

Our goal is to prove that the set e(σ) is homeomorphic to an open cell of dimension d(σ) =
(σ1 − 1) + (σ2 − 2) + · · ·+ (σk − k). Let Hj ⊂ Rn denote an open “half j -plane of Rj :

Hj = {(x1, . . . , xj, 0, . . . , 0) | xj > 0} .
It will be convenient to denote H

j
= {(x1, . . . , xj , 0, . . . , 0) | xj ≥ 0} .

Claim 4.1. A k -plane π belongs to e(σ) if and only if there exists its basis v1, . . . , vk , such
that v1 ∈ Hσ1 , . . ., vk ∈ Hσk .

Proof. Indeed, if there is such a basis v1, . . . , vk then

dim(Rσj ∩ π) > dim(Rσj−1 ∩ π)

for j = 1, . . . , k . Thus π ∈ e(σ). The following lemma proves Claim 4.1 in the other direction.

Lemma 4.2. Let π ∈ e(σ), where σ = (σ1, . . . , σn). Then there exists a unique orthonormal
basis v1, . . . , vk of π , so that v1 ∈ Hσ1 , . . ., vk ∈ Hσk .

Proof. We choose v1 to be a unit vector which generates the line Rσ1∩π . There are only two
choices here, and the condition that the σ1 -th coordinate is positive determines v1 uniquely.
Then the unit vector v2 ∈ Rσ2∩π should be chosen so that v2 ⊥ v1 . There are two choices like
that, and again the positivity of the σ2 -th coordinate determines v2 uniquely. By induction
one obtains the required basis. This completes proof of Lemma 4.2 and Claim 4.1.

We define the following subset of the Stiefel manifold V (n, k):

E(σ) = {(v1, . . . , vk) ∈ V (n, k) | v1 ∈ Hσ1 , . . . , vk ∈ Hσk } .
Lemma 4.2 gives a well-defined map q : e(σ) −→ E(σ). It is convenient to denote E(σ) ={
(v1, . . . , vk) ∈ V (n, k) | v1 ∈ H

σ1
, . . . , vk ∈ H

σk
}

.

Claim 4.2. The set E(σ) ⊂ V (n, k) is homeomorphic to the closed cell of dimension d(σ) =
(σ1−1)+(σ2−2)+· · ·+(σk−k). Furthermore the map q : e(σ) −→ E(σ) is a homeomorphism.

Proof. Induction on k . If k = 1 the set E(σ1) consists of the vectors

v1 = (x11, . . . , x1σ1 , 0, . . . , 0), such that
∑

x2
1j = 1, and x1σ1 ≥ 0.

Clearly E(σ1) is a closed hemisphere of dimension (σ1 − 1), i.e. E(σ1) is homeomorphic to
the disk Dσ1−1 .

To make an induction step, consider the following construction. Let u, v ∈ Rn be two unit
vectors such that u 6= −v . Let Tu,v an orthogonal transformation Rn −→ Rn such that
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(1) Tu,v(u) = v ;
(2) Tu,v(w) = w if w ∈ 〈u, v〉⊥ .

In other words, Tu,v is a rotation in the plane 〈u, v〉 taking the vector u to v , and is identity
on the orthogonal complement to the plane 〈u, v〉 generated by u and v .

Claim 4.3. The transformation Tu,v (where u, v ∈ Rn , u 6= −v) has the following properties:

(a) Tu,u = Id;
(b) Tv,u = T−1

u,v ;
(c) Tv,u : Rn −→ Rn is be given by

Tu,v(x) = x− 〈u+ v, x〉
1 + 〈u, v〉 (u+ v) + 2〈u, x〉v;

(d) a vector Tu,v(x) depends continuously on u, v, x;
(e) Tu,v(x) = x (mod Rj ) if u, v ∈ Rj .

The properties (a), (b), (e) follow from the definition.

Exercise 4.10. Prove (c), (d) from Claim 4.3.

Let ǫi ∈ Hσi be a vector which has σi -coordinate equal to 1, and all others are zeros. Thus
(ǫ1, . . . , ǫk) ∈ E(σ). For each k -frame (v1, . . . , vk) ∈ E(σ) consider the transformation:

(12) T = Tǫk,vk
◦ Tǫk−1,vk−1

◦ · · · · · · ◦ Tǫ1,v1 : Rn −→ Rn

First we notice that vi 6= −ǫi since vi ∈ H
σi

. Thus the transformations Tǫi,vi
are well-defined.

Exercise 4.11. Prove that the transformation T takes the k -frame (ǫ1, . . . , ǫk) to the frame
(v1, . . . , vk).

Consider the following subspace D ⊂ H
σk+1

:

D =
{
u ∈ Hσk+1 | |u| = 1, 〈ǫj, u〉 = 0, j = 1, . . . , k

}
.

Exercise 4.12. Prove that D is homeomorphic to the hemisphere of the dimension σk+1 −
k − 1.

Thus D is a closed cell of dimension σk+1−k−1. Now we make an induction step to complete
a proof of Claim 4.2. We define the map

f : E(σ1, . . . , σk)×D −→ E(σ1, . . . , σk, σk+1)

by the formula f((v1, . . . , vk), u) = (v1, . . . , vk, Tu) where T is given by (12). We notice that

〈vi, Tu〉 = 〈Tǫi, Tu〉 = 〈ǫi, u〉 = 0, i = 1, . . . , k,

and 〈Tu, Tu〉 = 〈u, u〉 = 1 by definition of T and since T ∈ O(n).

Exercise 4.13. Recall that σk < σk+1 . Prove that Tu ∈ Hσk+1 if u ∈ D .
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The inverse map f−1 : E(σ1, . . . , σk, σk+1) −→ E(σ1, . . . , σk)×D is defined by

vj = f−1vj , j = 1, . . . , k,

u = f−1vk+1 = (T−1vk+1) = Tv1,ǫ1 ◦ Tv2,ǫ2 ◦ · · · · · · ◦ Tvk,ǫk(vk+1) ∈ D.
Both maps f and f−1 are continuous, thus f is a homeomorphism. This concludes induction
step in the proof of Claim 4.2. Lemma 4.2 implies that e(σ1, . . . , σk) is homeomorphic to an
open cell of dimension d(σ) = (σ1 − 1) + (σ2 − 2) + · · ·+ (σk − k).

Remark. Let (v1, . . . , vk) ∈ E(σ) \ E(σ), then the k -plane π = 〈v1, . . . , vk〉 does not
belong to e(σ). Indeed, it means that at least one vector vj ∈ Rσj−1 = ∂

(
H
σj
)
. Thus

dim(Rσj−1 ∩ π) ≥ j , hence π /∈ e(σ).

Theorem 4.3. A collection of

(
k
n

)
cells e(σ) gives G(n, k) a cell-decomposition.

Proof. We should show that any point x of the boundary of the cell e(σ) belongs to some
cell e(τ) of dimension less than d(σ). We use the map q : e(σ) −→ E(σ) to see that
q(e(σ)) = E(σ). Thus we can describe π ∈ e(σ) \ e(σ) as a k -plane 〈v1, . . . , vk〉 , where
vj ∈ H

σj
. Clearly vj ∈ Rσj , thus dim(Rσj ∩ π) ≥ j for each j = 1, . . . , k . Hence τ1 ≤ σ1 ,

. . ., τk ≤ σk . However, at least one vector vj belongs to the subspace Rσj−1 = ∂
(
H
σj
)
, and

corresponding τj < σj . Thus d(τ) < d(σ). The number of all cells is equal to

(
k
n

)
by

counting.

Now we count a number of cells of dimension r in the cell decomposition of G(n, k). Recall
that a partition of an integer r is an unordered collection (i1, . . . , is) such that i1+· · ·+is = r .
Let ρ(r) be a number of partitions of r . This are values of ρ(r) for r ≤ 10:

r 0 1 2 3 4 5 6 7 8 9 10
ρ(r) 1 1 2 3 5 7 11 15 22 30 42

Each Schubert symbol σ = (σ1, . . . , σk) of dimension d(σ) = (σ1− 1) + (σ2− 2) + · · ·+ (σk −
k) = r gives a partition (i1, . . . , is) of r which is given by deleting zeros from the sequence
(σ1 − 1), (σ2 − 2), . . . , (σk − k).
Exercise 4.14. Show that

1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ k, and s ≤ n− k.
Prove that a number of r -dimensional cells of G(n, k) is equal to a number of partitions
(i1, . . . , is) of r such that s ≤ n− k and it ≤ k .

Remark. There is a natural chain of embeddings G(n, k) −→ G(n+ 1, k) −→ · · · −→ G(n+
l, k). It is easy to notice that these embeddings preserve the Schubert cell decomposition,
and if l and k are large enough, the number of cells of dimension r is equal to ρ(r). In
particular, the Schubert cells give a cell decomposition of G(∞, k) and G(∞,∞).
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Remark. Let ι = (i1, . . . , is) be a partition of r as above (i.e. s ≤ n− k and 1 ≤ i1 ≤ · · · ≤
is ≤ k ). The partition ι may be represented as a Young tableau.

is is−1 · · · i2 i1

n− k

k

This Young tableau gives a parametrization of the corre-
sponding cell e(σ). Clearly the Schubert symbols σ are in one-
to-one correspondence with the Yaung tableaux corresponding
to the partitions (i1, . . . , is) as above. The Young tableaus
were invented in the representation theory of the symmetric
group Sn . This is not an accident, it turns out that there is a
deep relationship between the Grasmannian manifolds and the
representation theory of the symmetric groups.



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY” 33

5. CW -complexes and homotopy

5.1. Borsuk’s Theorem on extension of homotopy. We call a pair (of topological spaces)
(X,A) a Borsuk pair, if for any map F : X −→ Y a homotopy ft : A −→ Y , 0 ≤ t ≤ 1,
such that f0 = F |A may be extended up to homotopy Ft : X −→ Y , 0 ≤ t ≤ 1, such that
Ft|A = ft and F0 = F .

Figure 13

A major technical result of this subsection is the following theorem.

Theorem 5.1. (Borsuk) A pair (X,A) of CW -complexes is a Borsuk pair.

Proof. We are given a map Φ : A×I −→ Y (a homotopy ft ) and a map F : X×{0} −→ Y ,
such that F |A×{0} = Φ|A×{0} . We combine the maps F and Φ to obtain a map

F ′ : X ∪ (A× I) −→ Y,

where we identify A ⊂ X and A×{0} ⊂ A×I . To extend a homotopy ft up to homotopy Ft
is the same as to construct a map F̂ : X × I −→ Y such that F̂ |X∪(A×I) = F ′ . We construct

F̂ by induction on dimension of cells of X \ A. In more detail, we will construct maps

F̂ (n) : X ∪ ((A ∪X(n))× I) −→ Y

fo each n = 0, 1, . . . such that F (n)|X∪(A×I) = F ′ . Furthermore, the following diagram will
commute

X ∪ ((A ∪X(n+1))× I) Y-bF (n+1)

X ∪ ((A ∪X(n))× I)

6
ι

���������*
bF (n)

where ι is induced by the imbedding X(n) ⊂ X(n+1) .

The first step is to extend F ′ to the space X ∪ (A ∪X(0))× I as follows:

F̂ (0)(x, t) =

{
F (x), if x is a 0-cell from X and if x /∈ A,
Φ(x, t), if x ∈ A.

Now assume by induction that F̂ (n) is defined on X ∪ ((A ∪X(n))× I). We notice that it is
enough to define a map

F̂
(n+1)
1 : X ∪ ((A ∪X(n) ∪ en+1)× I) −→ Y

extending F̂ (n) to a single cell en+1 . Let en+1 be a (n+ 1)-cell such that en+1 ⊂ X \ A.



34 BORIS BOTVINNIK

By induction, the map F̂ (n) is already given on the cylinder (ēn+1\en+1)×I since the boundary
∂en+1 = ēn+1 \ en+1 ⊂ X(n) . Let g : Dn+1 −→ X(n+1) be a characteristic map corresponding

to the cell en+1 . We have to define an extension of F̂
(n)
1 from the side g(Sn) × I and the

bottom base g(Dn+1)×{0} to the cylinder g(Dn+1)× I . By definition of CW -complex, it is
the same as to construct an extension of the map

ψ = F̂ (n) ◦ g : (Dn+1 × {0}) ∪ (Sn × I) −→ Y

to a map of the cylinder ψ′ : Dn+1 × I −→ Y . Let

η : Dn+1 × I −→ (Dn+1 × {0}) ∪ (Sn × I)
be a projection map of the cylinder Dn+1 × I from a point s which is near and a bit above
of the top side Dn+1 × {1} of the cylinder Dn+1 × I , see the Figure below.
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The map η is an identical map on (Dn+1×{0})∪ (Sn× I). We
define an extension ψ′ as follows:

ψ′ : Dn+1 × I η−→ (Dn+1 × {0}) ∪ (Sn × I) ψ−→ Y.

This procedure may be carried out independently for all (n+1)-
cells of X , so we obtain an extension

F̂ (n+1) : X ∪ ((A ∪X(n+1))× I) −→ Y.

Exercise 5.1. Let Dn+1 × I ⊂ Rn+1 given by:

Dn+1 × I =
{
(x1, . . . , xn+1, xn+2) | x2

1 + · · ·+ x2
n+1 ≤ 1, xn+2 ∈ [0, 1]

}
.

Give a formula for the above map η .

Thus, going from the skeleton X(n) to the skeleton X(n+1) , we construct an extension F̂ :
X × I −→ Y of the map F ′ : X ∪ (A× I) −→ Y .

We should emphasize that if X is an infinite-dimensional complex, then our construction

consists of infinite number of steps; in that case the axiom (W) implies that F̂ is a continuous
map.

Corollary 5.2. Let X be a CW -complex and A ⊂ X be its contractible subcomplex. Then
X is homotopy equivalent to the complex X/A.

Proof. Let p : X −→ X/A be a projection map. Since A is a contractible there exists a
homotopy ft : A −→ A such that f0 : A −→ A is an identity map, and f1(A) = x0 ∈ A. By
Theorem 5.1 there exists a homotopy Ft : X −→ X , 0 ≤ t ≤ 1, such that F0 = IdX and
Ft|A = ft . In particular, F1(A) = x0 . It means that F1 may be considered as a map given
on X/A, (by definition of the quotient topology), i.e.

F1 = q ◦ p : X
p−→ X/A

q−→ X,

where q : X/A −→ X is some continuous map. By construction, F1 ∼ F0 , i.e. q ◦ p ∼ IdX .

Now, Ft(A) ⊂ A for any t, i.e. p ◦ Ft(A) = x0 . It follows that p ◦ Ft = ht ◦ p, where
ht : X/A −→ X/A is some homotopy, such that h0 = IdX/A and h1 = p ◦ q ; it means that
p ◦ q ∼ IdX/A .
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Corollary 5.3. Let X be a CW -complex and A ⊂ X be its subcomplex. Then X/A is
homotopy equivalent to the complex X ∪ C(A), where C(A) is a cone over A.

Exercise 5.2. Prove Corollary 5.3.

5.2. Cellular Approximation Theorem. Let X and Y be CW -complexes. Recall that a
map f : X −→ Y is a cellular map if f(X(n)) ⊂ Y (n) for every n = 0, 1, . . .. We emphasize
that it is not required that the image of n-cell belongs to a union of n-cells. For example, a
constant map ∗ : X −→ x0 = e0 is a cell map. The following theorem provides very important
tool in algebraic topology.

Theorem 5.4. Any continuous map f : X −→ Y of CW -complexes is homotopic to a
cellular map.

We shall prove the following stronger statement:

Theorem 5.5. Let f : X −→ Y be a continuous map of CW -complexes, such that a re-
striction f |A is a cellular map on a CW -subcomplex A ⊂ X . Then there exists a cell map
g : X −→ Y such that g|A = f |A and, moreover, f ∼ g rel A.

First of all, we should explain the notation f ∼ g rel A which we are using. Assume that we
are given two maps f, g : X −→ Y such that f |A = g|A . A notation f ∼ g rel A means that
there exists a homotopy ht : X −→ Y such that ht(a) does not depend on t for any a ∈ A.
Certainly f ∼ g rel A implies f ∼ g , but f ∼ g does not imply f ∼ g rel A.

Exercise 5.3. Give an example of a map f : [0, 1] −→ S1 which is homotopic to a constant
map, and, at the same time f is not homotopic to a constant map relatively to A = {0}∪{1} ⊂
I .

Proof of Theorem 5.5. We assume that f is already a cellular map not only on A, but
also on all cells of X of dimension less or equal to (p − 1). Consider a cell ep ⊂ X \ A.
The image f(ep) has nonempty intersection only with a finite number of cells of Y : this is
because f(ēp) is a compact. We choose a cell of maximal dimension ǫq of Y such that it has
nonempty intersection with f(ep). If q ≤ p, then we are done with the cell ep and we move
to another p-cell. Consider the case when q > p. Here we need the following lemma.

Lemma 5.6. (Free-point-Lemma) Let U be an open subset of Rp , and ϕ : U →
◦
D

q

be a

continuous map such that the set V = ϕ−1(dq) ⊂ U is compact for some closed disk dq ⊂
◦
D
q

.

If q > p there exists a continuous map ψ : U −→
◦
D
q

such that

1. ψ|U\V = ϕ|U\V ;
2. the image ψ(V ) does not cover all disk dq , i.e. there exists a point y0 ∈ dq \ ψ(U).

We postpone a proof of this Lemma for a while.

Remark. The maps ϕ and ψ from Lemma 5.6 are homotopic relatively to U \ V : it is

enough to make a linear homotopy: ht(x) = (1− t)ϕ(x)+ tψ(x) since the disk
◦
D
q

is a convex
set.
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Claim 5.1. Lemma 5.6 implies the following statement: The map

f |A∪X(p−1)∪ep is homotopic rel (A ∪X(p−1)) to a map f ′ : A ∪X(p−1) ∪ ep −→ Y,

such that the image f ′(ep) does not cover all cell ǫq .

Proof. Indeed, let h : Dp −→ X , k : Dq −→ Y be the characteristic maps of the cells ep

and ǫq respectively. Let

U = h−1(ep ∩ f−1(ǫq)),

and let ϕ : U −→
◦
D
q

be the composition:

U
h−→ ep ∩ f−1ǫq

f−→ ǫq
k−1

−−→
◦
D
q

.

Let dq be a small disk inside
◦
D
q

(with the same center as
◦
D
q

). The set V = ϕ−1(dq) is

compact (as a closed subset of the disk
◦
D
p

). Let ψ : U −→
◦
D
q

be a map from Lemma 5.6.
We define a map f ′ on h(U) as the composition:

h(U)
h−1

−−→ U
ψ−→

◦
D
q

−→ ǫq ⊂ Y,

and f ′(x) = f(x) for x /∈ h(U). Clearly the map

f ′ : A ∪X(p−1) ∪ ep −→ Y

is continuous (since it coincides with f on h(U \ V )) and

f ′ : A ∪X(p−1) ∪ ep −→ Y ∼ f |A∪X(p−1)∪ep rel (A ∪X(p−1)),

moreover,

f ′ : A ∪X(p−1) ∪ ep −→ Y ∼ f |A∪X(p−1)∪ep rel (A ∪X(p−1) ∪ (ep \ h(V )))

(the latter follows from a homotopy ϕ ∼ ψ rel (U \ V )). Also it is clear that f ′(ep) does not
cover all cell ǫq .
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Figure 14
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Figure 15

5.3. Completion of the proof of Theorem 5.5. Now the argument is simple. Firstly, a
homotopy between the maps

f |A∪X(p−1)∪ep and f ′ rel (A ∪X(p−1))

can be extend to all X by Borsuk Theorem. In particular, we can assume that f ′ with all
above properties is defined on all X .

Secondly, we consider a point y0 ∈ ǫq ⊂ Y which does not belong to the image f ′(ep), and
“blow away” the map f ′|ep from that point as it is shown at Fig. 15. This is a homotopy
which may be described as follows:

If x ∈ ep , and x /∈ (f ′)−1(ǫq), then Ht(x) = f ′(x) for all t.

If x ∈ ep , and x ∈ (f ′)−1(ǫq), then f ′(x) moves along the ray connecting y0 and the
boundary of ǫq to a point on the boundary of ǫq .

We extend this homotopy to a homotopy of the map f ′|A∪X(p−1)∪ep (relatively to ep ), and
then up to homotopy the map f ′ : X −→ Y . The resulting map f ′′ is homotopic to f ′ (and
f ), and f ′′(ep) does not touch the cell ǫq and any other cell of dimension > q . Now we can
apply the procedure just described several times and we obtain a map f1 homotopic to f ,
such that f1 is a cellular map on the subcomplex A ∪ X(p−1) ∪ ep . Note that each time we
applied homotopy it was fixed on (relative to) A∪X(p−1) . It justifies the induction step, and
proves the theorem.

Exercise 5.4. Find all points in the argument from “Completion of the proof of Theorem
5.5” where we have used Borsuk Theorem.

Remark. Again, if the CW -complex X is infinite, then the axiom (W) takes care for the
resulting cellular map to be continuous.

5.4. Fighting a phantom: Proof of Lemma 5.6. There are two well-known ways to prove
our Lemma. The first one is to approximate our map by a smooth one, and then apply so
called Sard Theorem. The second way is to use a simplicial approximation of continuous
maps. The first way is more elegant, but the second is elementary, so we prove our Lemma
following the second idea. First we need some new “standard spaces” which live happily
inside the Euclidian space Rn .

Let q ≤ n + 1, and ~v1, . . . , ~vq+1 be vectors those endpoints do not belong to any (q − 1)-
dimensional subspace. We call the set

∆q(~v1, . . . , ~vq+1) = { t1~v1 + . . .+ tq~vq+1 | t1 + . . .+ tq+1 = 1, t1 ≥ 0, . . . , tq+1 ≥ 0 }
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a q -dimensional simplex.

Exercise 5.5. ∆(~v1, . . . , ~vq+1) is homeomorphic (moreover, by means of a linear map) to the
standard simplex

∆q =
{
(x1, . . . , xq+1) ∈ Rq+1 | x1 ≥ 0, . . . , xq+1 ≥ 0,

∑q+1
i=1 xi = 1

}
.

Example. A 0-simplex is a point; a simplex ∆1 is the interval connecting two points; a
simplex δ2 is a nondegenerated triangle in the space Rn ; a simplex ∆3 is a pyramid in Rn

with the vertices ~v0, ~v1, ~v2, ~v3 , see the picture below:

Figure 16

A j -th side of the simplex ∆q(~v1, . . . , ~vq+1) is the following (q − 1)-simplex:

∆q−1(~v1, . . . , ~vj−1, ~vj+1, . . . , ~vq)j = {t1~v1 + . . .+ tq+1~vq+1 ∈ ∆q(~v1, . . . , ~vq+1) | tj = 0 } .
We are not going to develop a theory of simplicial complexes (this theory is parallel to the
theory of CW -complexes), however we need the following definition

Definition 5.7. A finite triangulation of a subset X ⊂ Rn is a finite covering of X by
simplices {∆n(i)} such that each intersection ∆n(i) ∩∆n(j) either empty, or

∆n(i) ∩∆n(j) = ∆n−1(i)k

for some k = 0, . . . , n.

Exercise 5.5. Let ∆n
1 , . . . ,∆

n
s be a finite set of n-dimensional simplexes in Rn . Prove that

the union K = ∆n
1 ∪∆n

2 ∪ · · · ∪∆n
s is a finite simplicial complex.

Exercise 5.6. Let ∆p
1 , ∆q

2 be two simplices. Prove that K = ∆p
1 ×∆q

2 is a finite simplicial
complex.

A barycentric subdivision of a q -simplex ∆q is a subdivision of this simplex on (q+1)! smaller
simplices as follows. First let us look at the example:
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Figure 17
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In general, we can proceed by induction. The picture above shows a barycentric subdivision
of the simplices ∆1 , and ∆2 . Assume by induction that we have defined a barycentric
subdivision of the simplices ∆j for j ≤ q − 1. Now let x∗ be a weight center of the simplex
∆q . We already have a barycentric subdivision of each j -the side ∆q

j by (q − 1)-simplices

∆
(1)
j , . . . ,∆

(n)
j , n = q!. The cones over these simplices, j = 0, . . . , q , with a vertex x∗

constitute a barycentric subdivision of ∆q . Now we will prove the following “Approximation
Lemma”:

Lemma 5.8. Let V ⊂ U be two open sets of Rn such that their closure V̄ , Ū are compact
sets and V̄ ⊂ U . Then there exists a finite triangulation of V by n-simplices {∆n(i)} such
that ∆n(i) ⊂ U .

Proof. For each point x ∈ V̄ there exists a simplex ∆n(x) with a center at x and ∆n(x) ⊂ U .
By compactness of V̄ there exist a finite number of simplices ∆n(xi) covering V̄ . It remains to
use Exercise 5.6 to conclude that a union of finite number of ∆n(xi) has a finite triangulation.

5.5. Back to the Proof of Lemma 5.6. We consider carefully our map ϕ : U −→
◦
D
q

.
First we construct the disks d1 , d2 , d3 , d4 inside the disk d with the same center and of radii
r/5, 2r/5, 3r/5, 4r/5 respectively, where r is a radius of d . Then we cover V = ϕ−1(d) by
finite number of p-simplexes ∆p(j), such that ∆n(j) ⊂ U . Making, if necessary, a barycentric
subdivision (a finite number of times) of these simplices, we can assume that each simplex
∆p has a diameter d(ϕ(∆p)) < r/5. Let K1 be a union of all simplices ∆q such that the
intersection ϕ(∆) ∩ d4 is not empty. Then

d4 ∩ ϕ(U) ⊂ ϕ(K1) ⊂ d.

Now we consider a map ϕ′ : K1 −→ d4 which coincides with ϕ on all vertices of our trian-
gulation, and is linear on each simplex ∆ ⊂ K1 . The maps ϕ|K1 and ϕ′ are homotopic, i.e.
there is a homotopy ϕt : K1 −→ d4 , such that ϕ0 = ϕ|K1 and ϕ1 = ϕ′ .

ϕ=ψ ϕ

ψ

ϕ′
ϕ′=ψ

ϕ=ψ

Figure 18



40 BORIS BOTVINNIK

Exercise 5.7. Construct a homotopy ϕt as above.

Now we construct a map ψ : U −→
◦
D
q

out of maps ϕ , ϕt and ϕ′ as follows:

ψ(u) =





ϕ(u) if ϕ(u) /∈ d3,
ϕ′(u) if ϕ(u) ∈ d2,
ϕ

3− 5r(u)
r

(u) if ϕ(u) ∈ d3 \ d2.

Here r(u) is a distance from ϕ(u) to a center of the disk d, see Fig. 5.7.

Now we notice that ψ is a continuous map, and it coincides with ϕ on U \ V . Furthermore,
the intersection of its image with d1 , the set ψ(U) ∩d1 , is a union of finite number of pieces
of p-dimensional planes, i.e. there is a point y ∈ d1 which y /∈ ψ(U).

Exercise 5.8. Let π1, . . . , πs be a finite number of p-dimensional planes in Rq , where p < q .
Prove that the union π1 ∪ · · · ∪ πs does cover any open subset U ⊂ Rn .

Thus Cellular Approximation Theorem proved.

5.6. First applications of Cellular Approximation Theorem. We start with the fol-
lowing important result.

Theorem 5.9. Let X be a CW -complex with only one zero-cell and without q -cells for
0 < q < n, and Y be a CW -complex of dimension < n, i.e. Y = Y (k) , where k < n. Then
any map Y −→ X is homotopic to a constant map. The same statement holds for “pointed”
spaces and “pointed” maps.

Exercise 5.9. Prove Theorem 5.9 using the Cellular Approximation Theorem.

Remark. For each pointed space (X, x0) define πk(X, x0) = [Sk, X] (where we consider
homotopy classes of maps f : (Sk, s0) −→ (X, x0)). Very soon we will learn a lot about
πk(X, x0), in particular, that there is a natural group structure on πk(X, x0) which are called
homotopy groups of X .

The following statement is a particular case of Theorem 5.9:

Corollary 5.10. The homotopy groups πk(S
n) are trivial for 1 ≤ k < n.

We call a space X n-connected if it is path-connected and πk(X) = 0 for k = 1, . . . , n.

Exercise 5.10. Prove that a space X is 0-connected if and only if it is path-connected.

Theorem 5.11. Let n ≥ 1. Any n-connected CW -complex homotopy equivalent to a CW -
complex with a single zero cell and without cells of dimensions 1, 2, . . . , n.

Proof. Let us choose a cell e0 and for each zero cell e0i choose a path si connecting e0i and
e0 (these paths may have nonempty intersections). By Cellular Approximation Theorem we
can choose these paths inside 1-skeleton. Now for each path si we glue a 2-disk, identifying
a half-circle with si , see the picture:
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X
e01

s1

e00 s2 e02

X̃

Y

e11

e12

Figure 19

We denote the resulting CW -complex by X̃ . The CW -complex X̃ has the same cells as X
and new cells e1i , e

2
i (the top half-circles and interior of 2-disks). A boundary of each cell e2i

belongs to the first skeleton since the paths si are in the first skeleton.

Clearly the complex X̃ is a deformational retract of X (one can deform each cell e2i to the
path si ). Let Y be a closure of the union

⋃
i e

1
i . Obviously Y is contractible. Now note that

X̃/Y ∼ X̃ ∼ X , and the complex X̃/Y has only one zero cell.

Now we use induction. Let us assume that we already have constructed the CW -complex
X ′ such that X ′ ∼ X and X ′ has a single zero cell, and it does not have cells of dimensions
1, 2, . . . , k − 1, where k ≤ n. Note that a closure of each k -cell of X ′ is a sphere Sk by
induction. Indeed, an attaching map for every k -cell has to go to X ′(0) . Since X ′ is still
k -connected, then the embedding Sk −→ X ′ (corresponding to a cell eki ) may be extended
to a map Dk+1 −→ X ′ . Again, Cellular Approximation Theorem implies that we can choose
such extention that the image of Dk+1 belongs to the (k+1)-skeleton of X ′ . Now we glue the
disk Dk+2 to X ′ using the map Dk+1 −→ X ′(k+1) (we identify the disk Dk+1 with a bottom
half-sphere Sk+1

− of the boundary sphere Sk+1 = ∂Dk+2 ). We denote this (k + 2)-cell ek+2
i

and the (k + 1)-cell given by the top half-sphere Sk+1
+ , by ek+1

i . We do this procedure for

each k -cell eki of the complex X ′ and construct the complex X̃ ′ . Certainly X̃ ′ ∼ X ′ ∼ X .
Now let Y ′ be a closure of the union

⋃
i e
k+1
i , where, as above, ek+1

i are the top half-spheres

of the cells ek+2
i . Clearly Y ′ is contractible, and we obtain a chain of homotopy equivalences:

X̃ ′/Y ′ ∼ X̃ ′ ∼ X ′ ∼ X,

where X̃ ′/Y ′ has no k -cells. This proves Theorem 5.11.

Corollary 5.12. Let Y be n-connected CW -complex, and X be an n-dimensional CW -
complex. Then the set [X, Y ] consists of a single element.

A pair of spaces (X,A) is n-connected if for any k ≤ n and any map of pairs

f : (Dk, Sk−1) −→ (X,A)

homotopic to a map g : (Dk, Sk−1) −→ (X,A) (as a map of pairs) so that g(Dk) ⊂ A.

Exercise 5.11. What does it mean geometrically that a pair (X,A) is 0-connected? 1-
connected? Give some alternative description.
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Exercise 5.12. Let (X,A) be an n-connected pair of CW -complexes. Prove that (X,A) is
homotopy equivalent to a CW -pair (Y,B) so that B ⊂ Y (n) .
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6. Fundamental group

6.1. General definitions. Here we define the homotopy groups πn(X) for all n ≥ 1 and
examine their basic properties. Let (X, x0) be a pointed space, and (Sn, s0) be a pointed
sphere. We have defined the set [Sn, X] as a set of homotopy classes of maps f : Sn −→ X ,
such that f(s0) = x0 , and homotopy between maps should preserve this property. In different
terms we can think of a representative of [Sn, X] as a map In −→ X such that the image of
the boundary ∂In of the cube In maps to the point x0 .

The sum of two spheres f, g : Sn −→ X is defined as the map

f + g : Sn −→ X,

constructing as follows. First we identify the equator of the sphere Sn (which contains the
point s0 ) to a single point, so we obtain a wedge of two spheres Sn ∧ Sn , and then we map
the “top sphere” Sn with the map f , and the “bottom sphere” Sn with the map g , see the
picture below:

��

����

Figure 20

Exercise 6.1. Prove that this operation is well-defined and induces a group structure on the
set πn(X) = [Sn, X]. In particular check associativity and existence of the unit.

Lemma 6.1. For n ≥ 2 the homotopy group πn(X) is a commutative group.

Proof. The corresonding homotopy is given below, where the black parts of the cube map
to the point x0 :

g
f

g

f

g

f

g g

f

g
f

g f
f

Figure 21

Remark. We note that the first homotopy group5 π1(X) is not commutative in general. We
will use “+” for the operation in the homotopy groups πn(X) for n ≥ 2 and product sign
“·” for the fundamental group.

Now let f : X −→ Y be a map; it induces a homomorphism f∗ : πn(X) −→ πn(Y ).

5 There is a special name for the group π1(X): the fundamental group of X .



44 BORIS BOTVINNIK

Exercise 6.2. Prove that if f, g : X −→ Y are homotopic maps of pointed spaces, than the
homomorphisms f∗, g∗ : πn(X) −→ πn(Y ) coincide.

Exercise 6.3. Prove that πn(X × Y ) ∼= πn(X)× πn(Y ) for any spaces X, Y .

6.2. One more definition of the fundamental group. The definition above was two
general, we repeat it in more suitable terms again.

We consider loops of the space X , i.e. such maps ϕ : I −→ X that ϕ(0) = ϕ(1) = x0 .
The loops ϕ , ϕ′ are homotopic if there is a homotopy ϕt : I −→ X , (0 ≤ t ≤ 1) such that
ϕ0 = ϕ , ϕ1 = ϕ′ . A “product” of the loops ϕ , ψ is the loop ω , difined by the formula:

ω(t) =

{
ϕ(2t), for 0 ≤ t ≤ 1/2,

ψ(2t− 1), for 1/2 ≤ t ≤ 1.

This product operation induces a group structure of π1(X). It is easy to check that a group
operation is well-defined. Note that the loop ϕ̄(t) = ϕ(1 − t) defines a homotopy class
[ϕ]−1 = [ϕ̄]

Exercise 6.4. Write an explicit formula givinig a null-homotopy for the composition ϕ̄ · ϕ.

6.3. Dependence of the fundamental group on the base point.

Theorem 6.2. Let X be a path-connected space, then π1(X, x0) ∼= π1(X, x1) for any two
points x0, x1 ∈ X .

Proof. Since X is path-connected, there exist a path α : I −→ X , such that α(0) = x0 ,
α(1) = x1 . We define a homomorphism α# : π1(X, x0) −→ π1(X, x1) as follows. Let
[ϕ] ∈ π1(X, x0). We define α#([ϕ]) = (αϕ)α−1 . 6 It is very easy to check that α# is well-
defined and is a homomorphism. Moreover, the homomorphism α−1

# : π1(X, x1) −→ π1(X, x0)

defined by the formula α−1
# ([ψ]) = [(α−1ψ)α], gives a homomorphism which is inverse to α# .

The rest of the proof is left to you.

Perhaps the isomorphism α# depends on α . Let β be the other path, β(0) = x0 , β(1) = x1 .
Let γ = βα−1 which defines an element [γ] ∈ π1(X, x1).

Exercise 6.5. Prove that β# = [γ]α#[γ]−1 .

Exercise 6.6. Let f : X −→ Y be a homotopy equivalence, and x0 ∈ X . Prove that
f∗ : π1(X) −→ π1(Y, f(x0)) is an isomorphism.

6.4. Fundamental group of circle. Here we will compute the fundamental group of the
circle. In fact, we will be using a “universal covering space” of the circle which we did not
defined yet.

Theorem 6.3. π1S
1 ∼= Z.

Proof. Consider the map exp : R −→ S1 defined by the formula: x −→ eix . We can think
about the circle S1 as the quotient group R/Z (where Z is embedded R as the set of the

6 here we “multiply” not just loops, but paths as well: we can always do that if the second path starts at
the same point where the first ends
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numbers 2πk , k = 0,±1,±2, . . .). A loop ϕ : I −→ S1 (ϕ(0) = ϕ(1) = e0 ) may be lifted to
a map ϕ̃ : I −→ R . It means that ϕ is decomposed as

ϕ : I
eϕ−→ R

exp−−→ R/Z = S1,

where ϕ̃(0) = 0 and ϕ̃(1) = 2πk for some integer k . Note that a lifting ϕ̃ : I −→ R with the
above properties is unique.

Note that if the loops ϕ, ϕ′ : I −→ S1 are homotopic, then the paths ϕ̃ , ϕ̃′ have the same
end point 2πk (since we cannot “jump” from 2πk to 2πl if l 6= k by means of continuous
homotopy!). Now the isomorphism π1

∼= Z becomes almost obvious: [ϕ] −→ k ∈ Z. It
remains to see that the loop ϕ : I −→ S1 (ϕ̃ : I −→ R , where ϕ̃(0) = 0 and ϕ̃(1) = 2πk ) is

homotopic to the “standatrd loop” h̃k going from 0 to 2πk , see picture below:
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Figure 22

It remains to observe that h̃kh̃l ∼ h̃k+l .

Theorem 6.4. Let XA =
∨

α∈A
S1
α . Then π1(XA) is a free group with generators ηα , α ∈ A.

Proof. Let iα : S1 −→ XA be an embedding of the corresponding circle. Let ηα ∈ π1(XA)
be the element given by iα . We prove the following statement.

Claim 6.1. 1o Any element β ∈ π1(XA) may be represented as a finite product of elements
ηα , η−1

α , α ∈ A:

(13) β = ηǫ1α1
· · · ηǫsαs

, ǫj = ±1.

2o The presentation (13) is unique up to cancelation of the elements ηαη
−1
α or η−1

α ηα .

Claim 6.1 is equivalent to Theorem 6.4. Now we prove 1o , and we postpone 2o to the next
section.

Proof of 1o . Let Iα , Jα be two closed intervals in the circle, Jα ⊂ IntIα , and Iα does not
contain the base point.

Jα ⊂ Iα Jα′ ⊂ Iα′

Now let ϕ : I −→ XA be a loop. We find n such that for any
interval J of the length 1/n if the intersection ϕ(J)∩ Jα 6= ∅ ,
then ϕ(J) ⊂ Iα . Let K be the following union:

K =
⋃

ϕ([k/n,(k+1)/n])∩(∪αJα)6=∅
[k/n, (k + 1)/n].
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Now we construct a map ϕ1 : I −→ XA which coincides with ϕ outside of K and in all points
with the coordinates k/n, and it is linear on each interval [k/n, (k + 1)/n] ⊂ K .7

Exercise 6.7. Give a formula for the map ϕ1 .

Tα

S1
α

h0

h1

Homotopy ht

Clearly the loop ϕ1 is homotopic to ϕ . Now we find an
interval Tα ⊂ Jα , so that Tα does not contain points ϕ1(k/n).
We can do this since there is only finite number of points like
that inside of each Jα . We notice that ϕ−1

1 (Tα) ⊂ I is a finite

number of disjoint intervals S
(1)
α , . . . , S

(rα)
α so that the map

ϕ1|S(j)
α

: S
(j)
α −→ Tα is linear for each j . The last step: we

define a homotopy ht : XA −→ XA which stretches linearly
each interval Tα on the circle S1

α and taking S1
α \ Tα to the

base point.

Exercise 6.8. Give a formula for the homotopy ht .

Exercise 6.9. Prove that the inverse image ϕ−1
1 (∪αTα) ⊂ I consists of finite number of

disjoint intervals.

Then the map ψ = ϕ1 ◦ h1 gives a loop which maps I as follows. For each α ∈ A there is

finite number of disjoint intervals S
(j)
α ⊂ I so that S

(j)
α maps linearly on the circle S1

α . The

restriction ψ|
S

(j)
α

maps the interval S
(j)
α clock or counterclock wise; this corresponds to either

element ηα or η−1
α . Then the rest of the interval I , a complement to the union

⋃

α∈A
(S(1)

α ⊔ · · · ⊔ S(rα)
α )

maps to the base point.

6.5. Fundamental group of a finite CW -complex. Here we prove a general result show-
ing how to compute the fundamental group π1(X) for arbitrary CW -complex X .

Remark. Let X be a path-connected. If a map S1 −→ X sends a base point s0 to a
base point x0 then it determines an element of π1(X, x0); if f sends s0 somethere else, then
it defines an element of the group π(X, f(s0)), which is isomorphic to π1(X, x0) with an
isomorphism α# . The images of the element [f ] ∈ π(X, f(s0)) in the group π1(X, x0) under
all possible isomorphisms α# define a class of conjugated elements. So we can say that a map
S1 −→ X to a path-connected space X determines an element of π1(X, x0) up to conjugation.

Let X be a CW -complex with a single zero-cell e0 = x0 , one-cells e1i , i ∈ I , and two-
cells e2j , j ∈ J . Then we identify the first skeleton X(1) with

∨
i∈I S

1
i . The inclusion map

S1
i →

∨
i∈I S

1
i determines an element αi ∈ π1(X

(1), x0). By Theorem 6.4 π1(X
(1), x0) is a

free group on generators αi , i ∈ I . The characteristic map gj : D2 −→ X of the cell e2j
determines attaching map fj : S1 −→ X(1) which determines an element βj ∈ π1(X

(1), x0)
up to conjugation.

7 A linear map I −→ S1 is given by t 7→ (cos(λt+ µ), sin(λt+ ν)) for some constants λ, µ, ν .
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Theorem 6.5. Let X be a CW -complex with a single zero cell e0 , one-cells e1i (i ∈ I ),
and two-cells e2j (j ∈ J ). Let αi be the generators of π1(X

(1), x0) corresponding to the the

cells e1i , and βj ∈ π1(X
(1), x0) = F (αi | i ∈ I) be elements determined by the attaching maps

fj : S1 −→ X1 of the cells e2j . Then

1. π1(X, x0) ∼= π1(X
(2), x0);

2. π1(X, x0) is a group on generators αi , i ∈ I , and relations βj = 1, j ∈ J .

Proof. We consider the circle S1 as 1-dimensional CW -complex. Cellular Approximation
Theorem implies then that any loop S1 −→ X homotopic to a loop in the first skeleton, i.e.
the homomorphism

ι∗ : π1(X
(1), x0) −→ π1(X, x0)

induced by the inclusion ι : X(1) −→ X , is an epimorphism. It is enough to prove that
Ker i∗ is generated by βj , j ∈ J . It is clear that βj ∈ Ker ι∗ . Indeed, the attaching map
fj : S1 −→ X(1) is extended to the characteristic map gj : D2 −→ X , and determines a
trivial element in the group π1(X, fj(s0)); and this element corresponds to βj under some
isomorphism π1(X, fj(s0)) ∼= π1(X, x0).

It is more difficult to prove that if γ ∈ Ker i∗ then γ may be presented as a product of
elements β±

j : here we will apply again the Cellular Approximation Theorem. We identify

each cell e2j with the open disk D2
j in R2 , so we can construct disks d(j) ⊂ D2

j of radius r(j) ,

and disks d
(j)
1 , d

(j)
2 , d

(j)
3 and d

(j)
4 (with the same center) of radius r(j)/5, 2r(j)/5, 3r(j)/5 and

4r(j)/5 respectively.

Now let ϕ : S1 −→ X(1) be a representative of an element γ ∈ Ker i∗ . Clearly there is an
extension Φ : D2 −→ X of the map ϕ . By the Cellular Approximation Theorem we can
assume that Φ(D2) ⊂ X(2) . We triangulate D2 in such way that if ∆ is a triangle from this

triangulation such that Φ(∆) ∩ d(j)
4 6= ∅ , then

(a) Φ(∆) ⊂ d(j) and

(b) diam(Φ(∆) < r(j)/5.

Let K be a union of all triangles ∆ of our triangulation such that

Φ(∆) ∩
(
⋃

j∈J
d

(j)
4

)
6= ∅.

Now we make the map Φ′ : K −→ X(2) which concides with Φ on the vertexes of each simplex
and is linear on each simplex ∆. The maps Φ′ and Φ|K are homotopic (inside the cell e2j ) by
means of a homotopy Φt = (1− t)Φ + tΦ′ , with Φ0 = Φ|K , Φ1 = Φ′ . Now we use a familiar
formula

Φ′′(u) =





Φ(u), if Φ(u) /∈ ⋃j d
(j)
3

Φ′(u), if Φ(u) ∈ ⋃j d
(j)
2

Φ
3− 5r(u)

rj

(u), if Φ(u) ∈ d(j)
3 \ d(j)

2
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to define a map Φ′′ , which is a piece-wise linear on the inverse image of
⋃
j d

(j)
1 .

Now we choose a small disk δ(j) ⊂ d
(j)
1 which does not intersect with images of all vertices

and 1-sides of all simlexes ∆. There are two possibilities:

1. δ(j) ⊂ Φ′′(∆) for some simplex ∆;

2. (Φ′′)−1(δ(j)) = ∅ .

Let ωj : X(2) −→ X(2) be a map identical on X(1) and mapping each disk δ(j) on the cell e2j
(by pushing e2 \ δ(j) to the boundary of e2j ). The map

Ψ : D2 Φ′′

−−→ X(2) ω−→ X(2),

extends the same map ϕ : S1 −→ X(1) .

Note that in the case 1. the inverse image of δ(j) under the map Φ′′ is a finite number of
ovals E1, . . . , Es (bounded by an ellips), and in the case 2. the inverse image of δ(j) is empty.
We see that the map Ψ maps the complement D2 \ (

⋃
sEs) to X(1) , and maps each oval

E1 . . . , Ek linearly on one of the cells e2j .

We join now a point s0 ∈ S1 ⊂ D2 with each oval E1, . . . , Ek by paths s1, . . . sk , which do
not intersect with each other, see the picture below:

Figure 23

We denote by σ1, . . . , σk the loops, going clock-wise around each oval. Then the loop σ going
clock-wise along the circle S1 ⊂ D2 is homotopic in D2 \⋃t Int(Et) to the loop:

(skσks
−1
k ) · · · (s2σ2s

−1
2 )(s1σ1s

−1
1 ),

see Fig. 6.6.

It means that the loop ϕ : S1 −→ X(2) is homotopic (in X(1) ) to the loop

[Ψ ◦ (skσks
−1
k )] · · · [Ψ ◦ (s2σ2s

−1
2 )][Ψ ◦ (s1σ1s

−1
1 )].

It remains to observe that the loop [Ψ ◦ (sjσjs
−1
j )] determines an element in π1(X, x0),

conjugate to β±1
j .
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We see now that the element γ belongs to a normal subgroup of F (αi | i ∈ I), generated by
βj .

Exercise 6.10. Finish the proof in the case 2, i.e. when (Φ′′)−1(δ(j)) = ∅.

Theorem 6.5 helps to compute fundamental groups of all classic spaces. In the case of Sn

(n ≥ 2) and CPn , n ≥ 1 we see that the fundamental group is trivial. However, there are
several interesting cases:

Theorem 6.6. Let M2
g be a two-dimensional manifold, the sphere with g handles (oriented

manifold of genus g ). Then π1(M
2
g ) is generated by 2g generators a1, . . . ag, b1, . . . , bg with a

single relation:
a1b1a

−1
1 b−1

1 · · ·agbga−1
g b−1

g = 1.

Exercise 6.11. Prove Theorem 6.6.

Exercise 6.12. For a group π , we let [π, π] be its commutator. Compute the group π/[π, π]
for π = π1(Mg).

Remark. We note that in particular π1(T
2) ∼= Z ⊕ Z, which is obvious from the product

formula π1(X × Y ) ∼= π1(X)× π1(Y ).

Recall that a non-oriented two-dimensional manifold of genus g is heomeomorphic either to
M2

g (1), a connective sum of a projective plane RP2 and g tori T 2# · · ·#T 2 , or to M2
g (2), a

connective sum of the Klein bottle Kl2 and g tori T 2# · · ·#T 2 .

Theorem 6.7. 1. The group π1(M
2
g (1)) is isomorphic to a group on generators c1, . . . , c2g+1

wit a single relation
c21 · · · c22g+1 = 1.

2. The group π1(M
2
g (2)) is isomorphic to a group on generators c1, . . . , c2g+2 wit a single

relation
c21 · · · c22g+1c

2
2g+2 = 1.

Exercise 6.13. Prove Theorem 6.7.

Exercise 6.14. Compute π1(RPn), π1(Kl
2).

Exercise 6.15. Compute the group π/[π, π] for the groups π = π1(M
2
g (1)), π1(M

2
g (2)).

Exercise 6.16. Prove that the fundamental groups computed in Theorems 6.6, 6.7 are pair-
wise nonisomorphic. Prove that any two manifolds above are not homeomorphic and even are
not homotopy equivalent to each other.

6.6. Theorem of Seifert and Van Kampen. Here we will need some algebraic material,
we give only basic definition and refer to [Massey, Chapter 3] and [Hatcher, 1.2] for detailes.

Let G1 , G2 be two groups with system of generators A1 , A2 and relations R1 , R2 respectively.
A group with a system of generators A1∪A2 (disjoint union) and system of relations R1∪R2

is called a free product of G1 and G2 and is denoted as G1 ∗G2 .

Exercise 6.17. Prove that the group Z2 ∗ Z2 contains a subgroup isomorphic to Z and
(Z2 ∗ Z2)/Z ∼= Z2 .
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Exercise 6.18. Let X , Y be two CW -complexes. Prove that π1(X ∨ Y ) = π1(X) ∗ π1(Y ),
where the base points x0 ∈ X and y0 ∈ Y are identified with a base point in X ∨ Y .

Remark. As it is defined in [Massey, Ch. 3], the group G = G1 ∗ G2 may be characterized
as follows. Let ϕ1 : G1 −→ G and ϕ2 : G2 −→ G be natural homomorphisms and let L
be a group and ψ1 : G1 −→ L, ψ2 : G2 −→ L, then there exist a unique homomorphism
ψ : G −→ L, such that the diagram

(14)

G

?

ψG1

�
�

�
���ϕ1

@
@

@
@@R

ψi

G2

@
@

@
@@I ϕ2

�
�

�
��	

ψ2

L

is commutative. The above definition may be generalized as follows. Assume that we also
are given two homomorphisms ρ1 : H −→ G1 , ρ2 : H −→ G2 . Let us choose generators {hα}
of H and define a group G1 ∗H G2 by adding the relations ρ1(hα) = ρ2(hα) to relations of
G1 ∗G2 .

In different terms we may define the group G1 ∗H G2 as follows. Assume that we are given a
commutative diagram:

(15)

G1

@
@

@
@@R

ψ1

H

�
�

�
���ρ1

@
@

@
@@R

ρ2

L-
ψ1,2

G2

�
�

�
���

ψ2

The group G1 ∗H G2 is characterized by the following property: There are such homomor-
phisms σ : H −→ G1 ∗H G2 , σ1 : G1 −→ G1 ∗H G2 and σ2 : G2 −→ G1 ∗H G2 that for each
homomorphisms ψ1 : G1 −→ L, ψ2 : G2 −→ L and ψ1,2 : H −→ L such that the diagram
(15) is commutative, there exists a unique homomorphism ψ : G1 ∗H G2 −→ L such that the
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following diagram is commutative:

(16)

G1 ∗H G2

?

ψH

���������*
σ

HHHHHHHHHj
ψ1,2

G1

@
@

@
@@R

ψ1

�
�

�
���

σ1

G2

�
�

�
��	

ψ2

@
@

@
@@I

σ2

H

HHHHHHHHHY
σ

����������
ψ1,2

-ρ1 � ρ2

L

Exercise 6.19.∗ Prove that the group SL2(Z) of unimodular 2 × 2-matrices is isomorphic
to Z4 ∗Z2 Z6 .

Theorem 6.8. (Seifert, Van Kampen) Let X = Y1 ∪ Y2 be a connected CW -complex,
where Y1 , Y2 and Z = Y1 ∩ Y2 are connected CW -subcomplexes of X . Let a base point
x0 ∈ Y1 ∩ Y2 ⊂ X , and ρ1 : π1(Y1) −→ π1(X), ρ2 : π1(Y2) −→ π1(X). Then

π1(X) ∼= π1(Y1) ∗π1(Z) π1(Y2).

Exercise 6.20. Prove Theorem 6.8 in the case of finite CW -complexes using induction on
the number of cells of Y1 ∩ Y2 .

Remark. There is more general version of Van Kampen Theorem, see [Massey, Ch. 4] and
[Hatcher, 1.2].
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7. Covering spaces

7.1. Definition and examples. A path-connected space T is a covering space over a path-
connected space X , if there is a map p : T −→ X such that for any point x ∈ X there
exists a path-connected neighbourhood U ⊂ X , such that p−1(U) is homeomorphic to U ×Γ
(where Γ is a discrete set), futhermore the following diagram commutes

(17)

p−1(U)

@
@

@
@@R

p

U × Γ

�
�

�
��	

pr

-
∼=

U

The neighbourhood U from the above definition is called elementary neighborhood.

Examples. 1. p : R −→ S1 , where S1 = {z ∈ C | |z| = 1 } , and p(ϕ) = eiϕ .

2. p : S1 −→ S1 , where p(z) = zk , k ∈ Z, and S1 = {z ∈ C | |z| = 1 } .
3. p : Sn −→ RPn , where p maps a point x ∈ Sn to the line in Rn+1 going through the
origin and x.

7.2. Theorem on covering homotopy. The following result is a key fact allowing to classify
coverings.

Theorem 7.1. Let p : T → X be a covering space and Z be a CW -complex, and f : Z → X ,

f̃ : Z → T such that the diagram

(18)

T

?

p

Z

�
�

�
���

ef

X-f

commutes; futhermore it is given a homotopy F : Z × I −→ X such that F |Z×{0} = f . Then

there exists a unique homotopy F̃ : Z −→ T such that F̃ |Z × {0} = f̃ and the following
diagram commutes:

T

?

p

Z × I
�

�
�

���
eF

X-F

We prove first the following lemma:

Lemma 7.2. For any path s : I −→ X and any point x̃0 ∈ T , such that p(x̃0) = x0 = s(0)
there exists a unique path s̃ : I −→ T , such that s̃(0) = x̃0 and p ◦ s̃ = s.
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U1
U2 U3 Un

Ũ1
Ũ2 Proof. For each t ∈ I we find an elementary neighbour-

hood Ut of the point s(t). A compactness of I = [0, 1]
implies that there exists a finite number of points

0 = t1 < t2 < . . . < tn = 1,
such that Uj ⊃ s([tj , tj+1]). The inverse image p−1(U1) is

homeomorphic to U1 × Γ Let Ũ1 be such that x̃0 ∈ Ũ1 .
Then the path s|[0,t2] : [0, t2] −→ X has a unique lifting
s̃ : [0, t2] −→ T covering the path s|[0,t2] . Then we do the
same in the neighbourhood U2 and so on. Note that we
have a finite number of Uj , and in each neighbourhood Uj
a “lifting” is unique, see Figure to the left.

Proof of Theorem 7.1. Let z ∈ Z be any point. The formula t −→ F (z, t) defines a path

in X . Lemma 7.2 gives a unique lifting of this path to T , such that it starts at f̃(z). It gives

a map Z × I −→ T . This is our homotopy F̃ .

7.3. Covering spaces and fundamental group.

Theorem 7.3. Let p : T −→ X be a covering space, then p∗ : π1(T, x̃0) −→ π1(X, x0) is a
monomorphism (injective).

Proof: Let s̃ : I −→ T be a loop, where s̃(0) = s̃(1) = x̃0 . Denote x0 = p(x̃0). Assume that
the loop s = p ◦ s̃ : I −→ X is homotopic to zero. Let st : I −→ X be such a homotopy:
s0 = s, st(0) = st(1) = x0 , and s1(I) = x0 .

x0

x̃0

x̃′0

α̃

α

Theorem 7.1 implies that there is a homotopy s̃t : I −→ T
covering the homotopy st . Since the inverse image p−1(x0) is a
discrete set, then s̃t(0) = s̃t(1) = x̃0 .

The subgroup p∗(π1(T, x̃0)) ⊂ π1(X, x0) is called the covering

group of T
p−→ X . Let x̃′0 6= x̃0 , p(x̃′0) = p(x̃0) = x0 . Consider

a path α̃ : I −→ T such that α̃(0) = x̃0 , α̃(1) = x̃′0 . Then
the projection α = p(α̃) is a loop in X , see Figure to the left.
Clearly α# : p∗(π1(T, x̃0)) −→ p∗(π1(T, x̃

′
0)) given by α#(g) =

αgα−1 is an isomorphism.

Consider the coset π1(X, x0)/p∗(π1(T, x̃0)) (the subgroup p∗(π1(T, x̃0)) ⊂ π1(X, x0) is not
normal subgroup in general).

Claim 7.1. There is one-to-one correspondence p−1(x0)←→ π1(X, x0)/p∗(π1(T, x̃0)).

Proof. Let [γ] ∈ π1(X, x0), where γ : I −→ X ,
γ(0) = γ(1) = x0 . There exists a unique lifting
γ̃ : I −→ T of γ , so that γ̃(0) = x̃0 . We define
A([γ]) = γ̃(1) ∈ p−1(x0), see Fig. (a). The
homotopy lifting property implies that if γ ∼ γ′

then γ̃ ∼ γ̃′ and γ̃(1) = γ̃′(1). Now let A([γ]) =
A([γ′]). Then the loop β = (γ′)−1γ is covered

by the loop β̃ = (γ̃′)−1γ̃ , see Fig. (b). Thus
[β] = [(γ′)−1γ] ∈ p∗(π1(T, x̃0)).

x0

x̃0

γ̃(1)

γ̃

γ

(a)

x0

x̃0

γ̃(1)

γ̃

γ
γ′

γ̃′

(b)
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This proves that A : π1(X, x0)/p∗(π1(T, x̃0)) −→ p−1(x0) is an injection. Clearly A is onto
since T is path-connected, and if x̃ ∈ p−1(x0) there exists a path connecting x0 and x which
projects to a loop in X .

Claim 7.2. Let p : T −→ X be a covering and x0, x1 ∈ X . There is one-to-one correspon-
dence p−1(x0)←→ p−1(x1).

Exercise 7.1. Prove Claim 7.2. Hint: Consider a path connecting x0 and x1 .

7.4. Observation. Let γ be a loop in X , γ(0) = γ(1) = x0 , and γ̃ : I −→ T be its lifting
with γ̃(0) = x̃0 . Then if γ̃(1) 6= γ̃(0) then the loop γ is not homotopic to zero. Indeed, if
such homotopy would exist, then necessarily it implies that γ̃(1) = γ̃(0).

XA

ηǫ1α1
ηǫ2α2

T

We use this observation to complete the proof of The-
orem 6.4, or, to be precise, the proof of Claim 6.1,
2o . Indeed, let β = ηǫ1α1

· · · ηǫsαs
, ǫj = ±1, where

all elements ηαη
−1
α , η−1

α ηα are canceled It is enough
to show that β 6= e, where e is the identity elele-
ment. Recall that ηα is given by the inclusion S1

α −→∨
α∈A S

1
α = XA . It is enough to construct a covering

space p : T −→ XA so that the loop β is covered by a

loop β̃ with the property that β̃(0) 6= β̃(1). Consider
s + 1 copies of the wedge XA placed over XA , see
Fig. 7.5. We assume that these copies of XA project
vertically on XA . Consider the word β = ηǫ1α1

· · · ηǫsαs
.

Then we delete small intervals of the circles S1
α1

at the
first and second levels and “braid” these two circles
together

as it is shown at Figure above. We extend the verical projection to the “braid” in the obvious
way. Then we join by a braid the circles S1

α2
at the second and the third levels, and so on.

In this way we construct a covering space T so that the loop β = ηǫ1α1
· · · ηǫsαs

is covered by β̃
which starts at the first level and ends at the last level. Thus β = ηǫ1α1

· · · ηǫsαs
6= 0.

7.5. Lifting to a covering space. Consider the following situation. Let p : T −→ X be a
covering space, x0 ∈ X , x̃0 ∈ p−1(x0) ∈ T . Let f : Z −→ X be a map, so that f(z0) = x0 .
There is a natural question:

Question: Does there exist a map f̃ : Z −→ T covering the map f : Z −→ X , such

that f̃(z0) = x̃0? In other words, the lifting map f̃ should make the following diagram
commutative:

(19)

T

?

p

Z

�
�

�
���

ef

X-f
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where f(z0) = x0 , f̃(z0) = x̃0 . Clearly the diagram (19) gives the following commutative
diagram of groups:

(20)

π1(T, x̃0)

?

p∗

π1(Z, z0)
�

�
�

���
ef∗

π1(X, x0)-f∗

It is clear that commutativity of the diagram (20) implies that

(21) f∗(π1(Z, z0)) ⊂ p∗(π1(T, x̃0)).

Thus (21) is a necessary condition for the existence of the map f̃ . It turns out that (21) is
also a sufficient condition.

Theorem 7.4. Let p : T −→ X be a covering space, and Z be a path-connected space,
x0 ∈ X , x̃0 ∈ T , p(x̃0) = x0 . Given a map f : (Z, z0) −→ (X, x0) there exists a lifting

f̃ : (Z, z0) −→ (T, x̃0) if and only if f∗(π1(Z, z0)) ⊂ p∗(π1(T, x̃0)).

Proof (outline). We have to define a map f̃ : (Z, z0) −→ (T, x̃0). Let z ∈ Z . Consider a
path ω : I −→ Z , so that ω(0) = z0 , ω(1) = z . Then the path f(ω) = γ has a unique lift γ̃

so that γ̃(0) = x̃0 . We define f̃(z) = γ̃(1) ∈ T . We have to check that the construction does
not depend on the choice of ω . Let ω′ be another path such that ω′(0) = z0 , ω′(1) = z , see
Fig. 7.6.

z z0

ω′

ω

f(z) x0 = f(z0)

γ

γ′

Figure 24

Let γ′ = f(ω′). Then we have a loop β = (γ′)−1γ , and [β] ∈ f∗(π1(Z, z0)). Since

f∗(π1(Z, z0)) ⊂ p∗(π1(T, x̃0)), the loop β may be lifted to the loop β̃ in T . In particular, it
follows that γ̃(1) = γ̃′(1) because of uniqueness of the liftings γ̃ and γ̃′ and γ̃ .

Exercise 7.2. Prove that the map f̃ we constructed is continuous.

Exercise 7.3. Let p : T −→ X be a covering, and f̃ , f̃ ′ : Y −→ T be two maps so that

p ◦ f̃ = p ◦ f̃ ′ = f , where Y is path-connected. Assume that f̃(y) = f̃ ′(y) for some point

y ∈ Y . Prove that f̃ = f̃ ′ .

Hint: Consider the set V =
{
y ∈ Y | f̃(y) = f̃ ′(y)

}
and prove that V is open and closed

in Y .

Exercise 7.2 completes the proof. Exercise 7.3 implies that the lifting f̃ is unique.
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7.6. Classification of coverings over given space. Consider a category of covering over

a space X . The objects of this category are covering spaces T
p−→ X , and a morphism

of covering T1
p1−→ X to T2

p2−→ X is a map ϕ : T1 −→ T2 so that the following diagram
commutes:

(22)

T1

@
@

@
@@R

p1

T2

�
�

�
��	

p2

-ϕ

X

Claim 7.3. Let ϕ, ϕ′ : T1 −→ T2 be two morphisms, and ϕ(t) = ϕ′(t) for some t ∈ T1 . Then
ϕ = ϕ′ .

Exercise 7.4. Use Exercise 7.3 to prove Claim 7.3.

Claim 7.4. Let T1
p1−→ X , T2

p2−→ X be two coverings, x0 ∈ X , x̃
(1)
0 ∈ p1(x0), x̃

(2)
0 ∈

p2(x0). There exists a morphism ϕ : T1 −→ T2 such that ϕ(x̃
(1)
0 ) = x̃

(2)
0 if and only if

(p1)∗(π1(T1, x̃
(1)
0 )) ⊂ (p1)∗(π1(T2, x̃

(2)
0 )).

Exercise 7.5. Prove Claim 7.4.

A morphism ϕ : T −→ T is automorphism if there exists a morphism ψ : T −→ T so that

ψ ◦ ϕ = Id and ϕ ◦ ψ = Id . Now consider the group Aut(T
p−→ X) of automorphisms of a

given covering p : T −→ X . The group operation is a composition and the identity element

is the identity map Id : T −→ T . An element ϕ ∈ Aut(T
p−→ X) acts on the space T .

Claim 7.5. The group Aut(T
p−→ X) acts on the space T without fixed points.

Exercise 7.6. Prove Claim 7.5.

Hint: A point t ∈ T is a fixed point if ϕ(t) = t.

Claim 7.6. Let T
p−→ X be a covering, x0 ∈ X , x̃0, x̃

′
0 ∈ p−1(x0). Then there exists

an automorphism ϕ ∈ Aut(T
p−→ X) such that ϕ(x̃0) = x̃′0 if and only if p∗(π1(T, x̃0)) =

p∗(π1(T, x̃
′
0)).

Exercise 7.7. Prove Claim 7.6.

Theorem 7.5. Two coverings T1
p1−→ X and T2

p−→ X are isomorphic if and only if for any

two points x̃
(1)
0 ∈ p−1

1 (x0), x̃
(2)
0 ∈ p−1

2 (x0) the subgroups (p1)∗(π1(T1, x̃
(1)
0 )) (p1)∗(π1(T2, x̃

(2)
0 ))

belong to the same conjugation class.

Exercise 7.8. Prove Theorem 7.5.

Let H ⊂ G be a subgroup. Recall that a normalizer N(H) of H is a maximal subgroup of G
such that H is a normal subgroup of that group. The subgroup N(H) of the group G may
be described as follows:

N(H) =
{
g ∈ G | gHg−1 = H

}
.
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Recall also that the group π1(X, x0) acts on the set Γ = p−1(x0), and Γ may be considered
as a right π1(X, x0)-set; the subgroup p∗(π1(T, x̃0)) is the “isotropy group” of the point x̃0 ∈
p−1(x0). Again, we have seen that coset π1(X, x0)/p∗(π1(T, x̃0)) is isomorphic to p−1(x0).

Corollary 7.6. The group of automorphisms Aut(T
p−→ X) is isomorphic to the group

N(H)/H , where H = p∗(π1(T, x̃0)) ⊂ π1(X, x0) for any points x0 ∈ X , x̃0 ∈ p−1(x0).

Exercise 7.9. Prove Corollary 7.6.

Now remind that a covering space p : T −→ X is a regular covering space if the group
p∗(π1(T, x̃0)) is a normal subgroup of the group π1(X, x0).

Exercise 7.10. Prove that a covering space p : T −→ X is regular if and only if there is no
loop in X which is covered by a loop and a path (starting and ending in different points) in
the same time.

Exercise 7.11. Prove that if a covering space p : T −→ X is regular then there exists a free
action of the group G = π1(X, x0)/π1(T, x̃0) on the space T such that X ∼= T/G.

Exercise 7.12. Prove that a two-folded covering space p : T −→ X is always a regular one.

We complete this section with the classification theorem:

Theorem 7.7. Let X be a “good” path-connected space (in particular, CW -complexes are
“good” spaces), x0 ∈ X . Then for any subgroup G ⊂ π1(X, x0) there exist a covering space
p : T −→ X and a point x̃0 ∈ T , such that p∗(π1(T, x̃0)) = G.

The idea of the proof: We consider the following equivalence relation on the space of paths
E(X, x0): two paths s ∼ s1 if s(1) = s1(1) and a homotopy class of the loop ss−1

1 belongs to
G. We define T = E(X, x0)/ ∼. The projection p : T −→ X maps a path s to a point s(1).
The details are left to you.

Exercise 7.13. Prove that in the above construction p∗(π1(T, x̃0)) = G.

In particular, Theorem 7.7 claims the existence of the universal covering space T̂
bp−→ X (i.e.

such that π1(T̂ , x̃0) = 0).

Exercise 7.14. Let T̂
bp−→ X be a universal covering over X , and T −→ X be a covering.

Prove that there exists a morphism ϕ : T̂ −→ T so that it is a covering over T .

7.7. Homotopy groups and covering spaces. First, we have the following result:

Theorem 7.8. Let p : T −→ X be a covering space and n ≥ 2. Then the homomorphism
p∗ : πn(T, x̃0) −→ πn(X, x0) is an isomorphism.

Exercise 7.15. Prove Theorem 7.8.

Theorem 7.8 allows us to compute homotopy groups of several important spaces. Actually
there are only few spaces where all homotopy groups are known. Believe me or not, here we
have at least half of those examples.
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Theorem 7.9. πn(S
1) =

{
Z if n = 1,
0 if n ≥ 2.

One may prove Theorem 7.9 by applying Theorem 7.8 to the covering space R
exp−−→ S1 ; of

course, one should be able to prove πn(R) = 0 for all n ≥ 0.

Corollary 7.10. Let X =
∨
S1 . Then πn(X) = 0 for n ≥ 2.

Exercise 7.16. Prove Theorem 7.9 and Corollary 7.10.

Hint: Construct a universal covering space over
∨
S1 ; see the pictures given in [Hatcher,

p.59].

The next example is T 2 : here we have a universal covering R2 −→ T 2 , so it follows from
Theorem 7.7 that πn(T

2) = 0 for n ≥ 2.

Exercise 7.17. Let Kl2 be the Klein bottle. Construct two-folded covering space Kl2 −→ T 2 .
Compute πn(Kl

2) for all n.

Theorem 7.11. Let M2 be a two-dimensional manifold without boundary, M2 6= S2,RP2 .
Then πn(M

2) = 0 for n ≥ 2.

Exercise 7.18. Prove Theorem 7.11.

Hint: One way is to construct a universal covering space over M2 ; this universal covering
space turns our to be R2 . The second way may be as follows: Let M2 be a sphere with two
handles, and X −→ M2 be the covering space pictured below:

Figure 25

Theorem 7.8 shows that πn(X) = πn(M
2). Now let f : Sn −→ X , you may observe that

f(Sn) lies in the compact part of X ; after cutting down the rest of X it becomes two-
dimensional manifold with boundary and homotopy equivalent to its one-skeleton (Prove it!).
Now it remains to make an argument in a general case.

7.8. Lens spaces. We conclude with important examples. Let S1 = {z ∈ C | |z| = 1}. The
group S1 acts freely on the sphere S2n−1 ⊂ Cn by (z1, . . . , zn) 7→ (eiϕz1, . . . , e

iϕzn). The
group Z/m may be thought as a subgroup of S1 :

Z/m =
{
e2iπm/k | k = 0, . . . , m− 1

}
⊂ S1.

Thus Z/m acts freely on the sphere S2n−1 . The space L2n−1(Z/m) = S2n−1/(Z/m) is called a
lens space. Thus S2n−1 is a universal covering space over the lens space L2n−1(Z/m). Clearly
π1(L

2n−1(Z/m)) ∼= Z/m, and πj(L
2n−1(Z/m)) ∼= πj(S

2n−1) for j ≥ 2. The case m = 2 is
well-known to us: L2n−1(Z/2) = RP2n−1 .
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Exercise 7.19. Describe a cell decomposition of the lens space L2n−1(Z/m).

Consider the sphere S3 ⊂ C2 . Let p be a prime number, and q 6= 0 mod p. We define
the lens spaces L3(p, q) as follows. We consider the action of Z/p on S3 ⊂ C2 given by the
formula: T : (z1, z2) 7→ (e2πi/pz1, e

2πiq/pz2). Let L3(p, q) = S3/T .

Exercise 7.20. Prove that π1(L
3(p, q)) ∼= Z/p.

Certainly the lens spaces L3(p, q) are 3-dimensional manifolds, and for given p they all have
the same fundamental group and the same higher homotopy groups πj(L

3(p, q)) for j ≥ 2
since S3 is a universal covering space for all of them. Clearly one may suspect that some of
these spaces are homeomorphic or at least homotopy equivalent. The following theorem gives
classification of the lens spaces L3(p, q) up to homotopy equivalence. The result is rather
surprising.

Theorem 7.12. The lens spaces L3(p, q) and L3(p, q′) are homotopy equivalent if and only
if q′ ≡ ±kq mod p for some integer k .

We are not ready to prove Theorem 7.12. For instance the lenses L3(5, 1) and L3(5, 2) are
not homotopy equivalent, and L3(7, 1) and L3(7, 2) are homotopy equivalent. However it is
known that the lenses L3(7, 1) and L3(7, 2) are not homeomorphic, and the classification of
the lenses L3(p, q) is completely resolved.
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8. Higher homotopy groups

8.1. More about homotopy groups. Let X be a space with a base point x0 ∈ X . We
have defined the homotopy groups πn(X, x0) for all n ≥ 1 and even noticed that the groups
πn(X, x0) are commutative for n ≥ 2 (see the begining of Section 6). Now it is a good time
to give more details. First we have defined πn(X, x0) = [(Sn, s0), (X, x0)], where s0 ∈ Sn is
a based point. Alternatively an element α ∈ πn(X, x0) could be represented by a map

f : (Dn, Sn−1) −→ (X, x0) or a map

f : (In, ∂In) −→ (X, x0).

We already defined the group operation in πn(X, x0), where the unit element is represented
my constant map Sn −→ {x0} ⊂ X . It is convenient to construct a canonical inverse −α for
any element α ∈ πn(X, x0). Let f ∈ α be a map

f : (Dn, Sn−1) −→ (X, x0)

representing α . We construct the map (−f) : (Dn, Sn−1) −→ (X, x0) as follows. Consider
the sphere Sn = Dn

+ ∪Sn−1 Dn
− , where the hemisphere Dn

+ is identified with the above disk
Dn , as a domain of the map f , see Fig. 26.

Dn
−

Dn
+ f

τ

Figure 26

Let τ : Sn −→ Sn be a map which is identical on Dn
+ and which maps Dn

− to Dn
+ by the

formula (x1, . . . , xn+1) 7→ (x1, . . . ,−xn+1). Then −f = f ◦ τ : Dn
− −→ X .

Exercise 8.1. Prove that the map f+(−f) : Sn −→ X is null-homotopic. Hint: It is enough
to show that the map f + (−f) : Sn −→ X exends to a map g : Dn+1 −→ X .

Exercise 8.2. Prove that πn(X × Y, x0 × y0) ∼= πn(X, x0)× πn(Y, y0). Compute πn(T
k) for

all n and k .

8.2. Dependence on the base point. Let X be a path-connected space, and x0, x1 ∈ X
be two different points. Choose a path γ : I −→ X so that γ(0) = x0 and γ(1) = x1 . We
define a homomorphism

γ# : πn(X, x0) −→ πn(X, x1)

as follows. Consider the sphere Sn with a base point s0 ∈ Sn and the map ω : Sn −→ Sn ∨ I
(Fig 8.2 below shows how to construct the map ω ). Indeed, the map ω takes the base point
s0 ∈ Sn to the point {1} ∈ I ⊂ Sn ∨ I . Then for any map f : (Sn, s0) −→ (X, x0) we define
γ#(f) to be the composition

γ#(f) : Sn
ω−→ Sn ∨ I f∨γ̄−−→ X,
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where γ̄(t) = γ(1− t).

Sn ω

s0

s0 s0 s0

s0

f ∨ γ̄

x1
x0

Figure 27

It is easy to check that γ#(f + g) ∼ γ#(f) + γ#(g) and that (γ−1)# = (γ#)−1 .

Exercise 8.3. Prove that γ# is an isomorphism.

A path-connected space X is called n-simple if the isomorphism

γ# : πk(X, x0) −→ πk(X, x1)

does not depend on the choice of a path γ conecting any two points for k ≤ n.

Consider the case when x0 = x1 . We have that any element σ ∈ π1(X, x0) = π acts on the
group πn(X, x0) for each n = 1, 2, . . . by isomorphisms, i.e. any element σ ∈ π determines an
isomorphism σ# : πn(X, x0) −→ πn(X, x0). We consider the case n ≥ 2. This action turns

the group πn(X, x0) into Z[π]-module as follows. Let σ =
∑N

i kiσi ∈ Z[π], where σi ∈ π ,
and ki ∈ Z. Then the module map

Z[π]⊗ πn(X, x0) −→ πn(X, x0)

is defined by σ(α) =
∑N

i kiσi(α) ∈ πn(X, x0). The above definition may be rephrased as
follows. A path-connected space X is n-simple if the Z[π]-modules πk(X, x0) are trivial for
k ≤ n (i.e. each element σ ∈ π acts on πk(X, x0) identically).

8.3. Relative homotopy groups. Let (X,A) be a pair of spaces and x0 ∈ A be a
base point. A relative homotopy group πn(X,A; x0) is a set of homotopy classes of maps

(Dn, Sn−1; s0)
f−→ (X,A; x0), i.e. f(Sn−1) ⊂ A, f(s0) = x0 , where a base point s0 ∈ Sn−1 ,

see Figure below.

X

A

The other convenient geometric representation is to
map cubes: f : (In, ∂In) −→ (X,A), so that the base
point s0 ∈ ∂In maps to x0 . We shall use both geo-
metric interpretations. Let α, β ∈ πn(X,A; x0) be
represented by maps f, g : (Dn, Sn−1) −→ (X,A)
respecively. To define the sum α + β we construct
a map f + g as follows. First we define a map
c : Dn −→ Dn ∨ Dn collapsing the equator disk to
the base point, and the we compose c with the map
f ∨ g .
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Let α, β ∈ πn(X,A; x0) be represented by maps f, g : (Dn, Sn−1) −→ (X,A) respecively.
To define the sum α + β we construct a map f + g as follows. First we define a map
c : Dn −→ Dn∨Dn collapsing the equator disk to the base point, and the we compose c with
the map f ∨ g . Thus f + g = (f ∨ g) ◦ c, and α+ β = [f + g], see Fig. 28.

��

��

(X,A)

f

g

c

Dn Dn ∨Dn

Figure 28

Again it is convenient to describe precisely the inverse element −α . Let

f : (Dn, Sn−1) −→ (X,A)

represent α ∈ πn(X,A; x0). We define a map −f as follows. We consider the disk Dn =
Dn

− ∪Dn−1 Dn
+ ⊂ Rn ⊂ Rn+1 , see Fig. 29.

Dn = Dn
− ∪Dn−1 Dn

+

xn+1

xn

xn+1

xn

xn+1

xn

Figure 29

The disks Dn
− and Dn

+ are defined by the unequalities ±xn ≥ 0. We consider a map ϕ :
Dn

− ∪Dn−1 Dn
+ −→ Dn

− flipping over the disk Dn
+ onto Dn

− , see Fig. 29. We may assume that
the map f : (Dn, Sn−1) −→ (X,A) is defined on the disk Dn

− so that f |Dn−1 sends Dn−1 to
the base point x0 . Now we difine

−f : Dn
+

ϕ|Dn
+−−−→ Dn

−
f−→ X.

Exercise 8.4. Prove that f + (−f) ∼ ∗, where −f as above.

Exercise 8.5. Prove that the group πn(X,A; x0) is commutative for n ≥ 3.

Note that if we have a map of pairs (X,A)
f−→ (Y,B), such that f(x0) = y0 , then there is a

homomorphism
f∗ : πn(X,A; x0) −→ πn(Y,B; y0).

Exercise 8.6. Prove that if f, g : (X,A)
f−→ (Y,B) are homotopic maps, than f∗ = g∗ .
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Remark: Note the homotopy groups πn(X, x0) may be interpreted as “relative homotopy
groups”: πn(X, x0) = πn(X, {x0} ; x0). Moreover, one may construct a space Y such that
πn(X,A; x0) ∼= πn−1(Y, y0). We will see this construction later.

The maps of pairs

(A, x0)
i−→ (X, x0), (X, x0)

j−→ (X,A)

give the homomorphisms:

πn(A, x0)
i∗−→ πn(X, x0), πn(X, x0)

j∗−→ πn(X,A; x0).

Exercise 8.7. Let π be a group. Give definition of the center of π . Prove that the image

of the homomorphism j∗ : π2(X, x0)
j∗−→ π2(X,A; x0) belongs to the center of the group

π2(X,A; x0).

Also we have a “connective homomorphism”:

∂ : πn(X,A; x0) −→ πn−1(A, x0)

which maps the relative spheroid f : (Dn, Sn−1) −→ (X,A), f(s0) = x0 to the spheroid
f |Sn−1 : (Sn−1, s0) −→ (A, x0).

Theorem 8.1. The following sequence of groups is exact:

(23) · · · −→ πn(A, x0)
i∗−→ πn(X, x0)

j∗−→ πn(X,A; x0)
∂−→ πn−1(A, x0) −→ · · ·

First we remind that the sequence of groups and homomorphisms

· · · −→ A1
α1−→ A2

α2−→ A3
α3−→ · · ·

is exact if Ker αi+1 = Im αi .

Exercise 8.8. Prove that the sequence (23) is exact

(a) in the term πn(A, x0),

(b) in the term πn(X, x0),

(c) in the term πn(X,A; x0).

In the following exercises all groups are assumed to be abelian.

Exercise 8.9. Prove the following statements

(a) The sequence 0 −→ A −→ B is exact if and only if A −→ B is a monomorphism; and
the sequence A −→ B −→ 0 is exact if and only if A −→ B is an epimorphism.

(b) The sequence 0 −→ A −→ B −→ C −→ 0 is exact if and only if C ∼= B/A.

Corollary 8.2. 1. Let A ⊂ X be a contractible subspace. Then πn(X, x0) ∼= πn(X,A; x0)
for n ≥ 1.

2. Let X be contractible, and A ⊂ X . Then πn(X,A; x0) ∼= πn−1(A, x0) for n ≥ 1.

3. Let A ⊂ X be a deformational retract of X . Then πn(X,A; x0) = 0.

Exercise 8.10. Prove Corollary 8.2.
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Exercise 8.11. Let A ⊂ X be a retract. Prove that

• i∗ : πn(A, x0) −→ πn(X, x0) is monomorphism,
• j∗ : πn(X, x0) −→ πn(X,A; x0) is epimorphism,
• ∂ : πn(X,A; x0) −→ πn−1(A, x0) is zero homomorphism.

Exercise 8.12. Let A be contractible in X . Prove that

• i∗ : πn(A, x0) −→ πn(X, x0) is zero homomorphism,
• j∗ : πn(X, x0) −→ πn(X,A; x0) is monomorphism,
• ∂ : πn(X,A; x0) −→ πn−1(A, x0) is epimorphism.

Exercise 8.13. Let ft : X −→ X be a homotopy such that f0 = IdX , and f1(X) ⊂ A. Prove
that

• i∗ : πn(A, x0) −→ πn(X, x0) is epimorphism.,
• j∗ : πn(X, x0) −→ πn(X,A; x0) is zero homomorphism,
• ∂ : πn(X,A; x0) −→ πn−1(A, x0) is monomorphism.

Lemma 8.3. (Five-Lemma) Let the following diagram be commutative:

(24)

A1

?

ϕ1

A2

?

ϕ2

A3

?

ϕ3

A4

?

ϕ4

A5

?

ϕ5

- - - -

B1 B2 B3 B4 B5
- - - -

Furthermore, let the rows be exact and the homomorphisms ϕ1, ϕ2, ϕ4, ϕ5 be isomorphisms.
Then ϕ3 is isomorphism.

Exercise 8.14. Prove Lemma 8.3.

Exercise 8.15. Let us exclude the homomorphism ϕ3 from the diagram (24) and keep all
other conditions of Lemma 8.3 the same. Does it follow then that A3

∼= B3? If not, give a
counter example.

Exercise 8.16. Let 0 −→ A1 −→ A2 −→ · · · −→ An −→ 0 be an exact sequence of finitely
generated abelian groups, then

∑n
i=1(−1)irank Ai = 0.

Exercise 8.17. Let 1 −→ G1 −→ G2 −→ · · · −→ Gn −→ 1 be an exact sequence of finite
groups (not necessarily abelian), then

∑n
i=1(−1)i|Gi| = 0, where |Gi| is the order of Gi .

Corollary 8.4. Let f : (X,A) −→ (Y,B) be a map of pairs, f(x0) = y0 , where x0 ∈ A,
y0 ∈ B . Then any two following statements imply the third one:

• f∗ : πn(X, x0) −→ πn(Y, y0) is an isomorphism for all n.
• f∗ : πn(A, x0) −→ πn(A, y0) is an isomorphism for all n.
• f∗ : πn(X,A; x0) −→ πn(Y,B; y0) is an isomorphism for all n.

Exercise 8.18. Prove Corollary 8.4.



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY” 65

9. Fiber bundles

9.1. First steps toward fiber bundles. Covering spaces may be considered as a perfect
tool to study the fundamental group. Fiber bundles provide the same kind of tool to study
the higher homotopy groups, as we shall see soon.

Definition 9.1. A locally trivial fiber bundle is a four-tuple (E,B, F, p), where E,B, F are
spaces, and p : E −→ B is a map with the following property:

• For each point x ∈ B there exists a neighborhood U of x such that p−1(U) is home-
omorphic to U × F , moreover the homeomorphism ϕU : p−1(U) −→ U × F should
make the diagram

p−1(U)

@
@

@
@@R

p

U × F
�

�
�

��	

pr

-ϕU

U

commute. Here pr : U × F −→ U is a projection on the first factor.

The spaces E,B, F have their special names: E is a total space, B is a base, and F is a
fiber. The inverse image Fx ∼= p−1(x) is clearly homeomorphic to the fiber F for each point
x ∈ B . However, these homemorphisms depend on x. As in the case of covering spaces, the
following commutative diagram

E1

@
@

@
@@R

p1

E2

�
�

�
��	

p2

-f

B

gives a morphism of fiber bundles (E1, B, F1, p1) to (E2, B, F2, p2). Two fiber bundles
(E1, B, F1, p1) and (E2, B, F2, p2) are equivalent if there exist morphisms

f : (E1, B, F1, p1) −→ (E2, B, F2, p2), g : (E2, B, F2, p2) −→ (E1, B, F1, p1)

such that f ◦ g = Id and g ◦ f = Id . In particular, a fiber bundle p : E −→ B is trivial if it
is equivalent to the bundle B × F −→ B :

E

@
@

@
@@R

p

B × F
�

�
�

��	

pr

-f

B
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Möbius band.

Examples. 1. Trivial bundle B × F −→ B .

2. Covering spaces.

3. A projection M −→ S1 of the Möbius band on the
middle circle, see Fig. 9.1. The fiber is the interval I .

4. The Hopf bundle h : S2n+1 −→ CPn with a circle S1 as
a fiber.

5. Let G be a Lie group and H be its compact subgroup.
Then the space of cosets G/H is a base space of the bundle
G −→ G/H with a fiber H .

6. Let G be a Lie group. Assume that G acts freely on a smooth manifold M . We denote
by M/G the space of orbits, then the projection M −→ M/G is a fiber bundle with the fiber
G.

It is not so difficult to verify that the examples above are indeed locally trivial fiber bundles.
To give a sample of such verification, we consider the Example 4 in more detail:

Lemma 9.2. The Hopf map h : S2n+1 −→ CPn is a locally trivial fiber with a fiber S1 .

Proof. We use the construction given in the proof of Lemma 2.1 (Section 2). Again, we take
a close look at the Hopf map h : S2n+1 −→ CPn : we take a point (z1, · · · , zn+1) ∈ S2n+1 ,
(where |z1|2 + · · ·+ |zn+1|2 = 1), then h maps the point (z1, · · · , zn+1) to the line (z1 : · · · :
zn+1) ∈ CPn . Moreover h(z1, · · · , zn+1) = h(z′1, · · · , z′n+1) if and only if z′j = eiϕzj . Thus we
can identify CPn with the following quotient space:

(25) CPn = S2n+1/ ∼, where (z1, · · · , zn+1) ∼ (eiϕz1, · · · , eiϕzn+1).

For each j = 1, . . . , n+ 1, consider the following open subset in CPn

Uj =
{
(z1, · · · , zn+1) ∈ S2n+1 | zj 6= 0 and (z1, · · · , zn+1) ∼ (eiϕz1, · · · , eiϕzn+1)

}
.

Since zj 6= 0, we may write zj = reiα , where 0 < r ≤ 1. Then the map g : Uj −→
◦
D

2n

is
given by

(z1, · · · , zj−1, re
iα, zj+1, · · · , zn+1) 7→ (e−iαz1, · · · , e−iαzj−1, r, e

−iαzj+1, · · · , e−iαzn+1)

is a homeomorphism. Indeed, we have:

|z1|2 + · · ·+ |zj−1|2 + |zj+1|2 + · · ·+ |zn+1|2 = 1− r2,

and for a given r , 0 < r ≤ 1, a point (e−iαz1, · · · , e−iαzj−1, e
−iαzj+1, · · · , e−iαzn+1) ∈ Cn

belongs to the sphere S2n−1 of radius
√

1− r2 . Since 0 < r ≤ 1, this gives parametrization

of open disk
◦
D

2n

of radius 1.

Now let ℓ ∈ CPn . In order to prove that the Hopf map h : S2n+1 −→ CPn is a locally trivial
fiber bundle, we have to find a neighborhood U of ℓ such that h−1(U) is homemorphic to
the product U × S1 . Notice that there exists j , 1 ≤ j ≤ n + 1, such that ℓ ∈ Uj . Hence it
is enough to show that h−1(Uj) is homeomorphic to Uj × S1 , and that a projection on the
first factor pr : Uj × S1 −→ Uj coincides with the Hopf map.
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Now we see that h−1(Uj) ⊂ S2n+1 is given as

h−1(Uj) = {(z1, · · · , zn+1) ∈ S2n+1 | zj = reiα 6= 0}

∼= {((e−iαz1, · · · , e−iαzj−1, r, e
−iαzj+1, · · · , e−iαzn+1), e

−iα)} = Uj × S1.

Clearly the projection on the first factor coincides with the Hopf map.

Exercise 9.1. Prove that the Hopf map S4n+3 −→ HPn is locally trivial fiber bundle.

Exercise 9.2. Here we specify the example 5. Note that Sp(1) = S3 , and S1 is a subgroup
of Sp(1). Prove that the fiber bundle Sp(1) −→ Sp(1)/S1 is equivalent to the Hopf bundle
S3 −→ CP1 .8

Exercise 9.3. Here we specify the example 6. Let S2n+1 be a unit sphere in Cn+1 ,
S2n+1 = {|z1|2 + . . .+ |zn+1| = 1|}. The group S1 = {eiϕ} acts on S2n+1 by the formula
(z1, . . . , zn+1) −→ (eiϕz1, . . . , e

iϕzn+1). Prove that this action is free, and that a fiber bundle
S2n+1 −→ S2n+1/S1 is equivalent to the Hopf bundle S2n+1 −→ CPn .

Exercise 9.4. Let f : M −→ N be a smooth map, where M , N are smooth manifolds.
Assume that the map f is a submersion, i.e. f is onto and the differential dfx : TMx −→
TMf(x) is an epimorphism for any x ∈M . Prove that (M,N, f−1(x), f) is a locally-trivial
fiber bundle.

Exercise 9.5. Prove that the fiber bundles from the examples 3–6 are nontrivial fiber bundles.

9.2. Constructions of new fiber bundles. There are two important ways to construct
new fiber bundles.

1. Restriction. Let E
p−→ B be a fiber bundle with a fiber F , and let B′ ⊂ B be a subset.

Let E ′ = p−1(B′). The bundle E ′ p′−→ B′ , where p′ = p|E′ is a restriction of the bundle

E
p−→ B on the subspace B′ ⊂ B .

2. Induced fiber bundle. Let E
p−→ B be a fiber bundle with a fiber F , and X

f−→ B be
a map. Let f ∗(E) ⊂ X ×E be the following subspace:

f ∗(E) = {(x, e) ∈ X ×E | f(x) = p(e) } .

There are two natural maps: f ∗(E)
f∗−→ E (where f ∗(x, e) = e) and f ∗(E)

p′−→ X (where

p′(x, e) = x). It is easy to check that the map f ∗(E)
p′−→ X is a locally–trivial bundle over

X with the same fiber F and that the diagram

f ∗(E)

?

p′

E

?

p

-f∗

X B-f

commutes. The bundle f ∗(E)
p′−→ X is called induced fiber bundle.

8 It may be helpfull to remember that Sp(1) is the set of all unit quaternions α = α1 + iα2 + jα3 +kα4 ∈
Sp(1), and S1 = {α1 + iα2} .
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Lemma 9.3. Any locally–trivial fiber bundle over the cube Iq is trivial.

Proof. Let E
p−→ Iq be a locally–trivial fiber bundle. We prove the statement in two steps.

Step 1. First we assume that the restriction of the bundle
E

p−→ Iq on each of the cubes

Iq1 = {(x1, . . . , xq) ∈ Iq | xq ≤ 1/2 } ,

Iq2 = {(x1, . . . , xq) ∈ Iq | xq ≥ 1/2 } .
is a trivial fiber bundle. Let p1 : E1 −→ Iq1 , p2 : E2 −→ Iq2
be these restrictions. Since these bundles are trivial, we can
assume that E1 = Iq1 × F , E1 = Iq1 × F , so a point of E1 has
coordinates (x, y), x ∈ Iq1 , y ∈ F , and, analogously, a point of
E2 has coordinates (x, y′), x ∈ Iq2 , y′ ∈ F .

In particular, if x ∈ Iq1∩Iq2 , then the map fx : y 7→ y′ is well-defined, and is a homeomorphism
of the fiber F . We define a projection π : Iq1 −→ Iq1 ∩ Iq2 by the formula: π(x1, . . . , xq) =
(x1, . . . , xq−1, 1/2). Define new map ϕ : E1 −→ Iq1 ×F by the formula ϕ(x, y) = (x, fπ(x)(y)).
It gives a homeomorphism E1

∼= Iq1 × F which coincide with the chosen trivialization over
Iq2 , i.e. we obtain a homeomorphism E −→ Iq × F .

Step 2. Now we prove the general case. Since the bundle p : E −→ Iq is a locally–trivial
bundle, we may cut the cube Iq into finite number of small cubes Iqi , i = 1, 2, . . ., such
that a restriction of the bundle p : E −→ Iq on each of these small cubes is trivial, and
each space Jk =

⋃k
i=1 I

q
i is homeomorphic to a cube Iq1 . Assume that we have constructed a

trivialization of the bundle over Jk , then Jk+1 = Jk ∪ Iqk+1 homeomorphic to a cube. Choose
homeomorphisms Jk ∼= Iq1 and Iq2 and then Step 1 completes the proof.

We will say that a covering homotopy property (CHP) holds for a map p : E −→ B , if for
any CW -complex Z and commutative diagram

E

?

p

Z

�
�

�
���

eg

B-g

and a homotopy G : Z × I −→ B , such that G|Z×{0} = g there exists a homotopy G̃ :

Z × I −→ E such that G̃|Z×{0} = g̃ and the diagram

E

?

p

Z × I
�

�
�

���
eG

B-G

commutes.
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Theorem 9.4. (Theorem on Covering Homotopy) The covering homotopy property
holds for a locally-trivial fiber bundle E −→ B .

We will prove a stronger version of Theorem 9.4, namely we assume in addition the following.

• There is a subcomplex Z ′ ⊂ Z and a homotopy G̃′ : Z ′ × I −→ E covering the
homotopy G|Z′×I .

Proof. Case 1. Let the fiber bundle p : E −→ B be trivial, and Z be any CW -complex. We
identify E ∼= B×F , and maps to B×F with the pairs of maps to B and F . Then the map
g̃ : Z −→ E = B × F is given by a pair g̃ = (g, h), where g : Z −→ B is the above map, and

h : Z −→ F be some continuous map. The homotopy G̃′ : Z ′ × I −→ E is given by the pair

G̃′ = (G′, H ′), where G′ = G|Z′×I : Z ′ × I −→ B is determined by the homotopy G and and
the homotopy H ′ : Z ′ × I −→ F is such that H ′|Z′×{0} = h|Z′ . Thus the Borsuk Theorem
gives us that there exists a homotopy H : Z × I −→ F extending the map h : Z −→ F and
the homotopy H ′ : Z ′ × I −→ F . The covering homotopy G̃ : Z × I −→ B × F = E is

defined by G̃(z, t) = (G(z, t), H(z, t)).

Case 2. The fiber bundle p : E −→ B is arbitrary, Z = Dn , Z ′ = Sn−1 . Let g : Dn −→ B ,

g′ : Sn−1 −→ B , f̃ : Dn −→ E , g̃′ : Sn−1 −→ E , and G : Dn × I −→ B , G̃′ : Sn−1 × I −→ E
be the corresponding maps and homotopies.

The map G : Dn×I −→ B induces the bundle G∗(E) −→ Dn×I , which is trivial by Lemma
9.3. Recall that the total space

G∗(E) = {((x, t), e) | G(x, t) = p(e)} ⊂ (Dn × I)× E.

Let G∗ : G∗(E) −→ E be a natural map (projection). We define a map h̃ : Dn −→ G∗(E) by

h̃(x) = ((x, 0), g̃(x)). This map is well-defined since G(x, 0) = g(x) = p ◦ g̃(x) and h̃ covers
the map h : Dn −→ Dn× I given by x 7→ (x, 0). The homotopy H : Dn× I −→ Dn× I (the

identity map!), and H̃ ′ : Sn−1 × I −→ G∗(E), where H̃ ′(x, t) = ((x, t), G̃′(x, t)) satisfy the
conditions of the theorem. Indeed, we have the commutative diagrams:

(26)

G∗(E)

?

p′

Sn−1 Dn

�
�

�
���

eh

Dn × I- -h

G∗(E)

?

p′

Sn−1 × I
���������*

eH′

D × I
�

�
�

���
eH

Dn × I- -H=Id

The map H̃ from (26) exists be the Case 1. Thus the map G̃ = G∗ ◦ H̃ : Dn× I −→ E covers
the homotopy G : Dn × I −→ B as required.

Case 3. Now the fiber bundle E
p−→ B is arbitrary, and the CW -complex Z is finite. By

induction, we may assume that the difference Z \ Z ′ is a single cell en . Let Φ : Dn −→ Z
be a corresponding characteristic map, and ϕ = Φ|Sn−1 be an attaching map. Then the map

h̃ = g̃ ◦ Φ : Dn −→ E and the homotopies

H = G ◦ (Φ× Id) : Dn × I −→ B,
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H ′ = G̃′ ◦ (Φ|Sn−1 × Id) : Sn−1 × I −→ E

satisfy the conditions of the theorem, so by Case 2 one completes the proof.

Exercise 9.6. Prove the general case, i.e. when Z is an arbitrary CW -complex and E −→ B
is any locally trivial bundle.

9.3. Serre fiber bundles. Serre fiber bundles generalize locally trivial fiber bundles. We
start with a definition and examples.

Definition 9.5. A map p : E −→ B is a Serre fiber bundle if the CHP holds for any
CW -complex.

Remark. We emphasize that we do not assume uniqueness of the covering homotopy. A
Serre fiber bundle in general is not locally trivial, see Fig. 9.3.

Fig. 9.3.

Examples. 1. Locally-trivial fiber bundles.

2. Let Y be an arbitrary path-connected space, E(Y, y0) be
the space of paths starting at y0 . The map p : E(Y, y0) −→ Y,
where p(s : I −→ Y ) = s(1) ∈ Y is Serre fiber bundle. Note
that p−1(y0) = Ω(Y, y0).

Let f : X −→ Y be a map, f̃ : X −→ E(Y, y0) be a covering
map, and F : X × I −→ Y be a homotopy of f (F |X×{0} = f ).

Then a covering homotopy F̃ : X × I −→ E(Y, y0) may be
defined

by the formula (see Fig. 9.4):

(27) (F̃ (z, t))(τ) =

{
(f̃(z))(τ(1 + t)) if τ(1 + t) ≤ 1,
F (z, τ(1 + t)− 1) if τ(1 + t) ≥ 1

Exercise 9.7. Check that the formula (27) indeed defines a covering homotopy as required.

3. (A generalization of the previous exam-
ple.) Let A ⊂ X , and (X,A) be a Bor-
suk pair (for example, a CW -pair). Let
E = C(X, Y ), B = C(A, Y ), and the map
p : E −→ B be defined as p(f : X −→ Y ) =
(f |A : A −→ Y ).

Exercise 9.8. Prove that the map

p : C(X, Y ) −→ C(A, Y )

defined above is indeed a Serre fiber bundle.
Fig. 9.4.

As far as the fibers of a Serre fiber bundle p : E −→ B are concerned, we cannot claim that
for any two points x0, x1 ∈ B the fibers p−1(x0), p

−1(x1) are homeomorphic. However, we
will prove here that the fibers are weak homotopy equivalent.

Definition 9.6. Spaces X and Y are weak homotopy equivalent if there is a natural one-to-

one correspondence ϕK : [K,X]
∼=−→ [K, Y ] for any CW -complex K . Naturality means that



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY” 71

for any map f : K −→ K ′ the following diagram

[K,X] [K,Y ]-ϕK

[K ′,X]

6

f∗

[K ′, Y ]

6

f∗

-ϕK ′

commutes. (Compare with Definitions 3.1, 3.2, 3.3.)

Exercise 9.9. Prove that finite CW -complexes X , Y are weak homotopy equivalent if and
only if they are homotopy equivalent.

Theorem 9.7. Let p : E −→ B be Serre fiber bundle, where B is a path-connected space.
Then the spaces F0 = p−1(x0) and F1 = p−1(x1) are weak homotopy equivalent for any two
points x0, x1 ∈ B .

Proof. Let s : I −→ B be a path connecting x0 and x1 . We have to define one-to-one
correspondence ϕK : [K,F0] −→ [K,F1] for any CW -complex K .

Let h0 : K −→ F0 be a map. Denote i0 : F0 −→ E the inclusion map. We have the map:

f̃ : K
h0−→ F0

i0−→ E

which lifts the map f : K −→ {x0} ⊂ B . Consider also the homotopy F : K×I −→ B , where

F (x, t) = s(t) of the map f . By the CHP there exists a covering homotopy F̃ : K×I −→ E of

the map f̃ such that p◦F̃ = F , in particular, F̃ (K×{t}) ⊂ p−1(s(t)), and F̃ (K×{1}) ⊂ F1 .

We define ϕK(h0 : K −→ F0) = (h1 : K −→ F1), where h1 = F̃ |K×{1} . We should show that
the map ϕK is well-defined.

��
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��
��
��
��

��
��
��
��

��
��
��
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��
��
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��
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��
��

��
��
��
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����
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Fig. 9.5.

Let s′ be a different path connecting x0 and x1 , and

f̃ ′ : K −→ E , F ′ : K × I −→ B , h′ : K −→ F1 be corre-
sponding maps and homotopies determined by s′ . Assume
that s and s′ are homotopic, and let S : I × I −→ B be
a corresponding homotopy. Denote by T : I × I −→ B a
map defined by T (t1, t2) = S(t2, t1), see Fig. 9.5. We are
going to use the relative version of the CHP for the pair
Z ′ ⊂ Z where Z = K × I and Z ′ = K × {0, 1}.
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Consider the following commutative diagram:

����������������������:

G̃′

(28)

E

?

p

(K × {0, 1})× I (K × I)× I
���������*

G̃

�
�

�
���g̃

B- -G

(K × {0, 1})× {0}

6

(K × I)× {0}

6

���������*
g

�
�

�
��

-

Here the map g : (K× I)×{0} → B sends everything to x0 , and g̃ : K× I −→ E defined by
g̃(k, t1) = h0(k) (see above). The homotopy G : (K× I)× I −→ B is defined by the formula:

G(k, t1, t2) = T (t1, t2). The map G̃′ : (K × {0, 1})× I → E is defined by the homotopies F
and F ′ :

G̃′|K×{0}×I = F, G̃′|K×{1}×I = F ′.

The relative version of the CHP implies that there exists G̃ : K × I −→ E covering G and

G̃′ as it is shown at in (28). The map (k, t) −→ G̃(k, t, 1) maps K × I to F1 : this is the
homotopy connecting h1 and h′1 , see Fig. 9.6. Thus a path s : I −→ B defines a map
ϕK(s) : [K,F0] −→ [K,F1], F0 = p−1(s(0)), F1 = p−1(s(1)), which does depend only of the
homotopy class of s.

Fig. 9.6.

Clearly the map ϕK is natural with respect to K ;
note also that if s is a constant path, then ϕK = IdF0 .
Moreover, if a composition of paths s2 ·s1 (i.e. s1(1) =
s2(0)) gives a map ϕK(s2 · s1) = ϕK(s2) ◦ ϕK(s1). In
particular, the map ϕK(s−1) is inverse to ϕK(s): it
implies that ϕK(s) is one-to-one.

Now let f : X −→ Y be a map. We say that a
map f1 : X1 −→ Y1 is homotopy equivalent to f ,
if there are homotopy equivalences ϕ : X −→ X1 ,
ψ : Y −→ Y1

such that the following diagram commutes:

X

?

ϕ

Y

?

ψ

-f

X1 Y1
-f1

Theorem 9.8. For any continuous map f : X −→ Y there exists homotopy equivalent map
f1 : X1 −→ Y1 , such that f1 : X1 −→ Y1 is Serre fiber bundle.



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY” 73

Remark. It will be clear from the construction below that the space Y1 may be chosen to
be equal to Y . It is also important that the construction below is natural. It means that the
commutative diagram on the left implies a commutativity of the diagram on the right:

X

?

α

Y

?

β

-f

X ′ Y ′-f ′

X

?

α

Y

?

β

-f

X1

�
�

�
���

ϕ

?

α1

Y1

�
�

�
���

ψ

?

β1

-f1

X ′ Y ′-f ′

X ′
1

�
�

�
���

ϕ′

Y ′
1

�
�

�
���

ψ′

-
f ′1

Proof of Theorem 9.8. Let Y1 = Y , and

X1 = {(x, s) ∈ X × E(Y ) | s(0) = f(x) } .

Then p : X1 −→ Y is defined by p(x, s) = s(1). Clearly X and X1 are homotopy equivalent.

The following statement is “dual” to Theorem 9.8:

Claim 9.1. Let f : X −→ Y be a continuous map. Then there exists a homotopy equivalent
map g : X −→ Y ′ , so that g is an inclusion.

Proof. Let Y ′ = (X × I) ∪f Y be the cylinder of the map f . Clearly Y ′ ∼ Y , and
g : X −→ Y ′ is an embedding of X into the top base of X × I .

9.4. Homotopy exact sequence of a fiber bundle. First we prove the following important
fact:

Lemma 9.9. Let p : E −→ B be Serre fiber bundle, y ∈ E be any point, x = p(y),
F = p−1(x). The homomorphism

p∗ : πn(E,F ; y) −→ πn(B, x)

is an isomorphism for all n ≥ 1.
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ϕ1/6

ϕ2/6

ϕ3/6

ϕ4/6
ϕ5/6

(b)

(a)

Fig. 9.7.

Proof. p∗ is a monomorphism. Let α ∈ πn(E,F ; y)

be represented by a map f̃ : Dn −→ E (where f̃ |Sn−1 :

Sn−1 −→ F , and f̃(s0) = y ). Then the map

f = p ◦ f̃ : Dn −→ B

has the property that f(Sn−1) = x and [f ] = p∗(α) ∈
πn(B, x). Assume α ∈ Ker p∗ , then there exists a homo-
topy ft : Dn −→ B , so that f0 = f and f1(D

n) = x. The
covering homotopy property (the strong version) implies

that there exists a homotopy f̃t : Dn −→ E covering the
homotopy ft . In particular f̃1(D

n) ⊂ F = p−1(x) since

p ◦ f̃1(D
n) = f1(D

n) = x.

p∗ is an epimorphism. Consider the homotopy ϕt :
Sn−1 −→ Sn , so that ϕ : Sn−1×I −→ Sn , ϕ(Sn−1×I) =
Sn as it is shown at Fig. 9.7 (a). Let f : Sn −→ B be a
map representing β ∈ πn(B, x). Consider the homotopy
gt = f ◦ ϕt : Sn−1 −→ B . Then we lift the homotopy gt
up to a homotopy g̃t : Sn−1 −→ E by applying the CHP.
The homotopy g̃t may be considered as a map h̃ : Dn −→
E , where the disk Dn is covered by (n − 1)-spheres as
it is shown, see Fig. 9.7 (b), and the map h on these
spheres is given by g̃t . Clearly the map h : Dn −→ E

gives a representative of an element α ∈ πn(E,F ), so that p∗(α) = β .

Now the exact sequence of the pair (E,F ; y):

· · · −→ πn(F, y)
i∗−→ πn(E, y)

j∗−→ πn(E,F ; y)
∂−→ πn−1(F, y) −→ · · ·

gives the exact sequence:

(29) · · · −→ πn(F, y)
i∗−→ πn(E, y)

j∗−→ πn(B, x)
∂−→ πn−1(F, y) −→ · · ·

We call the sequence (29) a homotopy exact sequence of Serre fibration.

Exercise 9.10. Apply the sequence (29) for the Hopf fibration S3 −→ S2 . Prove that (a)
π2(S

2) = π1(S
1) = Z; (b) πn(S

3) = πn(S
2).

Exercise 9.11. Let S∞ −→ CP∞ be the Hopf fibration. Using the fact S∞ ∼ ∗, prove that
πn(CP∞) = 0 for n 6= 2, and π2(CP∞) = Z.

Exercise 9.12. Prove that πn(Ω(X)) ∼= πn+1(X) for any X and n ≥ 0.

Exercise 9.13. Prove that if the groups π∗(B), π∗(F ) are finite (finitely generated), then
the groups π∗(E) are finite (finitely generated) as well.

Exercise 9.14. Assume that a fiber bundle p : E −→ B has a section, i.e. a map s : B −→ E ,
such that p ◦ s = IdB . Prove the isomorphism πn(E) ∼= πn(B)⊕ πn(F ).
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9.5. More on the groups πn(X,A; x0). Now we construct such a space Y that

πn(X,A; x0) ∼= πn−1(Y, y0). First, we construct Serre fiber bundle A1
p−→ X which is homo-

topy equivalent to the inclusion A
i−→ X . Let Y = p−1(x0) be a fiber of this fiber bundle.

By construction above, Y is a space of loops in X which starting in A and ending at the
point x0 :

Y = {(a, γ) | γ(0) = a, γ(1) = x0 } .
We construct a homomorphism α : πn−1(Y, y0) −→ πn(X,A; x0) as follows.

A map Sn−1 g−→ Y gives a map G : Dn = C(Sn−1) −→ X by the formula: G(s, t) = g(s)(t),
s ∈ Sn−1 , t ∈ I . Here g(s) = γ(t). Clearly it is well-defined since γ(1) = x0 for all paths γ
such that (γ(0), γ) ∈ Y . The map α may be included to the commutative diagram:

(C)

· · · πn(A1)

?

πn(X)

?

πn−1(Y )

?

α

πn−1(A1)

?

πn−1(X)

?

· · ·- -(p1)∗ - - - -

· · · πn(A) πn(X) πn(X,A) πn−1(A) πn−1(X) · · ·- -i∗ - - - -

where rows are exact. Five–Lemma implies that α : πn−1(Y ) −→ πn(X,A) is an isomorphism.
In particular, we conclude that πn(X,A) is abelian group for n ≥ 3.

Exercise 9.15. Prove that the square (C) of the above diagram commutes.
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10. Suspension Theorem and Whitehead product

10.1. The Freudenthal Theorem. Let X be a space with a base point x0 . We construct
the homomorphism

(30) Σ : πq(X) −→ πq+1(ΣX)

as follows. Let α ∈ πq(X), and a map f : Sq −→ X be a representative of α . The map

Σf : ΣSq = Sq+1 −→ ΣX

defined by the formula Σf(y, t) = (f(y), t) ∈ ΣX gives a representative for Σ(a) ∈ πq+1(ΣX).
It is not hard to check that

1. f ∼ g implies that Σf ∼ Σg ;

2. Σf + Σg ∼ Σ(f + g).

The homomorphism Σ is called the suspension homomorphism.

Theorem 10.1. (Freudenthal Theorem) The suspension homomorphism

Σ : πq(S
n) −→ πq+1(S

n+1)

is isomorphism for q < 2n− 1 and epimorphism for q = 2n− 1.

Remark. This is the “easy part” of the suspension Theorem. The “hard part” will be
discussed later, see Theorem 10.11. The general Freudenthal Theorem goes as follows:

Theorem 10.2. Let X be an (n− 1)-connected CW -complex (it implies that πi(X) = 0 for
i < n). Then the suspension homomorphism Σ : πq(X) −→ πq+1(ΣX) is isomorphism for
q < 2n− 1 and epimorphism for q = 2n− 1.

Proof that Σ is surjective. Let f : Sq+1 −→ Sn+1 be an arbitrary map. We have to
prove that we can perform a homotopy of this map f to a map Σh, where h : Sq −→ Sn .
We will assume that n > 0, and q ≥ n. In particular, the group πq+1(S

n+1) is abelian, and
π1(S

n+1) = 0, so we can forget about particular choice of the base point.

Let a, b be the north and south poles of the sphere Sn+1 . We identify the sphere Sq+1 with
the space Rq+1 ∪∞ , moreover, we choose this identification in such way that f−1(a), f−1(b)
do not contain the infinity.

First we should take care about the sets f−1(a) and f−1(b). We do not have any control over
the map f , the only property we can use is that f continuous. However clearly f−1(a) and
f−1(b) are compact sets in Rq+1 . Recall that if K is a finite simplicial complex in Rq+1 ,
then dimK is a maximal dimension of the simplices of K .

Lemma 10.3. There exists a map f1 : Sq+1 −→ Sn+1 homotopic to f (and, actually as close
to f as one may wish), such that f−1

1 (a), f−1
1 (b) are finite simplicial complexes in Rq+1 of

dimension less or equal to q − n.

Proof. Here we apply the same constuction as we used in “free point Lemma”.

Let us recall briefly the main steps:
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1. Find five small disks a ∈ D
(a)
1 ⊂ . . . ⊂ D

(a)
5 centered at a, and five small disks

b ∈ D(b)
1 ⊂ . . . ⊂ D

(b)
5 centered at b. We assume that the radius of the disk D

(j)
i is ir

5
,

i = 1, . . . , 5, j = a, b. 9

2. Find a huge simplex ∆ in Rq+1 containing f−1(D
(a)
5 ) ∪ f−1(D

(b)
5 ).

3. Find fine enough barycentric triangulation {∆α} of the simplex ∆,

∆ =
⋃

α

∆α,

such that for any simplex ∆α satisfies the following conditions:

• if f(∆α) ∩D(j)
i 6= ∅ , then f(∆α) ⊂ D

(j)
i+1 (here i = 1, 2, 3, 4, j = a, b);

• the diameter of the image f(∆α) is no more than r/5 for each α .
4. Consider the simplicial complex

K =
⋃

f(∆α)∩(D
(a)
4 ∪D(b)

4 )6=∅

∆α.

5. Construct a map f ′ : K −→ Sn+1 which coincides with f on each vertex of K and
extended linearly to all simplices.

6. “Glue” the maps f ′ and f to get a map f1 which coincides with f ′ on f−1(D
(a)
2 ∪D(b)

2 )

and with f outside of f−1(D
(a)
3 ∪D(b)

3 ).

This gives us a map f1 (which is homotopic to f ) with the following property:

The inverse images f−1
1 (D

(a)
1 ) and f−1

1 (D
(b)
1 ) are covered by finite number of q + 1-simplices

∆α , such that f1|∆i
is a linear map.

Assume for a moment that there is such a simplex ∆α ⊂ ∆ that the simplex f1(∆α) ⊂ Sn+1

has dimesion less than (n+ 1), and a ∈ f1(∆α). Then we can change a little bit the map f1

(it is enough to change a value of f1 at one vertex!) to get a map f2 such that a /∈ f1(∆α).

This observation allows us to assume that if a ∈ f2(∆α), then the simplex f2(∆α) has
dimension (n+1). Since the restriction f2|∆α

is a linear map of maximal rank, than f−1
2 (a) =

K consists of simplices of dimension at most (q + 1)− (n+ 1) = q− n. This proves that the
inverse images K = f−1

2 (a), L = f−1
2 (b) are simplicial complexes of dimension at most n− q .

Fig. 10.1.

Now we have to introduce a couple of defini-
titions.
A homotopy F : Rp×I −→ Rp is an isotopy
if Ft : Rp −→ Rp is a homeomorphism for
eact t ∈ I . A hyperplane Π ⊂ Rp divides
Rp \ Π into two half-spaces: Rp

− and Rp
+ .

We say that two simlicial complexes K,L ⊂ Rp are not linked if there exist a hyperplane
Π ⊂ Rp , and an isotopy Ft : Rp −→ Rp , so that F0 = Id , and the sets F1(K) and F1(L)
are separated by the hyperplane Π. Fig. 10.1 shows an example of two linked circles.

9 Once again, we identify a neighborhood of a (respectively of b) with an open subset of Rn+1 via, say,
the stereographic projection.
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Lemma 10.4. Let K,L ⊂ Rp be two finite simplicial complexes of dimensions k , l respec-
tively. Let k + l + 1 < p. Then the simplicial complexes K and L are not linked.

Proof. First let Π ⊂ Rp be a hyperplane such that K ∩ Π = ∅ , and L ∩ Π = ∅ . If K and
L are in the different half-spaces, then we are done. Let K and L be in Rp

+ . We want to
produce an isotopy Ft : Rp −→ Rp such that F0 = IdRp and F1(K) and F1(L) are separated
by the hyperplane Π. We need the following statement.

Claim 10.1. There exists a point x0 ∈ Rp
− such that any line going through x0 does not

intersect both K and L.

Proof of Claim 10.1. Let W1, . . . ,Wν ⊂ Rp be planes (of minimal dimensions) containing
the simplices ∆1, . . . ,∆ν of the simplicial complex K , and let U1, . . . , Uµ ⊂ Rp be the
corresponding planes containing the simplices of L. Notice that dimWi ≤ k and dimUj ≤ l ,
i = 1, . . . , ν , j = 1, . . . , µ . Let Πij be a minimal plane containing Wi and Uj . Notice that
the maximal dimension of Πij is k + l + 1. Indeed, let w ∈ Wi , u ∈ Uj be any points.
Then a basis of Wi , a basis of Uj , and the vector w − u generate Πij , see Fig. 10.2. Since
k + l + 1 < p, there exists a point x0 of Rp

− , such that x0 /∈
⋃

Πij .

Wi

Uj

Fig. 10.2: The plane Πij .

Now we continue the proof of Lemma 10.4. The
isotopy Ft may be costructed as follows. Consider
the space of all lines going through the point x0 ∈
Rp . This is the projective space RPp−1 . Choose
a continuous nonnegative function

ϕ : RPp−1 −→ R

such that ϕ(λ) = 0 if λ∩L 6= ∅ , and ϕ(λ) = v0 >
0 if λ ∩K 6= ∅ .

Now the isotopy Ft : Rp −→ Rp moves a point x ∈ Rp along the line λ (connecting x and
x0 ) toward x0 with the velocity ϕ(λ), where ϕ is as above.

K

L

F1(K)

Π

Fig. 10.3: The isotopy Ft .

Clearly at some moment the image of K will be inside of
Rp

− , see Fig. 10.3.

We complete the proof that Σ is surjective. We
use Lemma 10.3 and Lemma 10.4 to construct a map f2 :
Sq+1 −→ Sn+1 homotopic to f such that the inverse im-
ages f−1

2 (a) and f−1
2 (b) are located in the “northern” and

respectively “southern” parts of the sphere Sq+1 (we use
here the following obvious estimation: (q−n)+(q−n)+1 =
2q−(2n−1) ≤ 2q−q < q+1 provided q ≤ 2n−1). Further-
more, there are two “ice caps”, disks A and B centered at
the poles a and b respectively, which do not touch the
equator of Sn+1 ,

and such that f−1
2 (A) and f−1

2 (B) do not touch the equator of Sq+1 as well, see the picture
below:
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Fig. 10.4.

Now we make a homotopy Sn+1 −→ Sn+1 which sretches A and B to the north and the south
hemispheres respectively, and squeezes the remainder onto the equator sphere Sn ⊂ Sn+1 .
By composing this map with f2 , we obtain a map f3 which sends the equator of Sq+1 to the
equator of Sn+1 , and the north and south poles of Sq+1 sends to the north and south poles
of Sn+1 . Now we look at the spheres Sq+1 and Sn+1 from the North:

Fig. 10.5.

Here we see only the northern hemispheres. We have here all possible meridians of Sq+1 and
their images under the map f3 . The further homotopy which finally turns the map f4 into
the suspension map may be constructed as follows:

Fig. 10.6.

This construction due to J. Alexander.

Exercise 10.1. Describe the last homotopy in more detail.

Proof that Σ is injective for q < 2n− 1. Let f0 = Σh0 : Sq+1 −→ Sn+1 , and f1 = Σh1 :
Sq+1 −→ Sn+1 , and f0 ∼ f1 . We should show that h0 ∼ h1 .

We consider the homotopy F : Sq+1 × I −→ Sn+1 . Again, we examine F−1(a) and F−1(b),
and by Lemma 10.3 (to be precise, its generalization) we conclude that F is homotopic to F1

such that F−1
1 (a) = K and F−1

1 (b) = L are finite simplicial complexes of dimension at most
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q+ 1−n. The condition q < 2n− 1 and Lemma 10.4 imply that the simplicial complexes K
and L may be separated. The rest of the arguments are very similar to those applied in the
above proof.

Exercise 10.2. Prove the injectivity of Σ in detail.

10.2. First applications.

Theorem 10.5. (Hopf) πn(S
n) ∼= Z for each n ≥ 1.

Exercise 10.3. Prove Theorem 10.5.

Exercise 10.4. Prove that π3(S
2) ∼= Z, and the Hopf map S3 −→ S2 is a representative of

the generator of π3(S
2).

Corollary 10.6. The sphere Sn is not contractible.

10.3. A degree of a map Sn → Sn . A map f : Sn −→ Sn gives a representative of some
element α ∈ πn(Sn) ∼= Z. We choose the generator ιn of πn(S

n) as a homotopy class of the
identity map. Thus [f ] = α = λιn . The integer λ ∈ Z is called a degree of the map f . The
notation is deg f .

Exercise 10.5. Prove the following properties of the degree:

(a) Two maps f, g : Sn −→ Sn are homotopic if and only if deg f = deg g .

(b) A map f : Sn −→ Sn , deg f = λ induces the homomorphism f∗ : πn(S
n) −→ πn(S

n)
which is a multiplication by λ.

(c) The suspension Σf : ΣSn −→ ΣSn has degree λ if and only if the map f : Sn −→ Sn

has degree λ.

10.4. Stable homotopy groups of spheres. Consider the following chain of the suspension
homomorphisms:

πk+1S
1 Σ−→ πk+2S

2 Σ−→ · · · Σ−→ πk+nS
n Σ−→ πk+n+1S

n+1 Σ−→ · · ·
By the Suspension Theorem the homomorphism Σ : πk+nS

n −→ πk+n+1S
n+1 is isomorphism

provided that n ≥ k + 2. The group πk+nS
n with n ≥ k + 2 is called the stable homotopy

group of sphere. The notation:

πsk(S
0) = πk+nS

n where n ≥ k + 2 .

So far we proved that π0(S
0) = πnS

n ∼= Z. The problem to compute the stable homotopy
groups of spheres is highly nontrivial. We shall return to this problem later.

10.5. Whitehead product. Consider the product Sn × Sk as a CW -complex. Clearly we
can choose a cell decomposition of Sn × Sk into four cells of dimensions 0, n, k, n + k . The
first three cells give us the wedge Sn ∨ Sk ⊂ Sn × Sk . The last cell en+k ⊂ Sn × Sk has the
attaching map w : Sn+k−1 −→ Sn ∨ Sk . This attaching map is called the Whitehead map. It
is convenient to have a particular construction of the map w .
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We can think about the sphere Sn+k−1 as a boundary of the unit disk Dn+k ⊂ Rn+k . Thus
a point x ∈ Sn+k−1 has coordinates (x1, . . . , xn+k), where x2

1 + · · ·+ x2
n+k = 1. We define

U =
{
(x1, . . . , xn+k) ∈ Sn+k−1 | x2

1 + · · ·+ x2
n ≤ 1/2

}
,

V =
{
(x1, . . . , xn+k) ∈ Sn+k−1 | x2

n+1 + · · ·+ x2
n+k ≤ 1/2

}

Exercise 10.6. Prove that U is homeomorphic to Dn × Sk−1 , V is homeomorphic to
Sn−1 ×Dk , and that

Sn+k−1 ∼= Dn × Sk−1 ∪Sn−1×Sk−1 Sn−1 ×Dk

Remark. The same decomposition may be constructed by using the homeomorphisms:

Sn+k−1 = ∂(Dn+k) = ∂(Dn ×Dk) = ∂(Dn)×Dk ∪Sn−1×Sk−1 Dn × ∂(Dk)

= Sn−1 ×Dk ∪Sn−1×Sk−1 Dn × Sk−1.

The map w : Sn+k−1 −→ Sn ∨ Sk is defined as follows. First we construct the maps

ϕU : U −→ Sn ∨ Sk and ϕV : V −→ Sn ∨ Sk

as the compositions:

ϕU : U
∼=−→ Dn × Sk−1 pr−→ Dn −→ Dn/Sn−1

∼=−→ Sn −→ Sn ∨ Sk,

ϕV : V
∼=−→ Sn−1 ×Dk pr−→ Dk −→ Dk/Sk−1

∼=−→ Sk −→ Sn ∨ Sk.
Clearly we have that

ϕU |Sn−1×Sk−1 = ∗ = ϕV |Sn−1×Sk−1

and hence the maps ϕU , ϕV define the map w : Sn+k−1 −→ Sn ∨ Sk .
Remark. It is easy to see that the above map w : Sn+k−1 −→ Sn ∨ Sk is the attaching map
for the cell en+k in the product Sn × Sk .
Now let α ∈ πn(X, x0) and β ∈ πk(X, x0) be represented by maps

f : Sn −→ X, g : Sk −→ X.

We define a map h : Sn+k−1 −→ X as the composition:

h : Sn+k−1 w−→ Sn ∨ Sk f∨g−−→ X.

A homotopy class of the map h defines an element [α, β] ∈ πn+k−1(X, x0) which is called the
Whitehead product.

Lemma 10.7. The Whitehead product satisfies the following properties:

(1) Naturality: Let f : (X, x0) −→ (Y, y0) be a map, α ∈ πn(X, x0)) and β ∈ πk(X, x0).
Then

f∗([α, β]) = [f∗(α), f∗(β)],

where f∗ : π∗(X, x0) −→ π∗(Y, y0) is the homomorphism induced by the map f .
(2) [α + β, γ] = [α, γ] + [β, γ].
(3) If α ∈ πn(X), β ∈ πk(X) then [α, β] = (−1)nk[β, α].
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(4) If α ∈ πn(X), β ∈ πk(X), γ ∈ πℓ(X), then (the Jacobi identity)

(−1)nℓ[[α, β], γ] + (−1)nk[[β, γ], α] + (−1)kℓ[[γ, α], β] = 0.

(5) If α ∈ π1(X), β ∈ π1(X) then [α, β] = αβα−1β−1 .

Exercise 10.7. Prove the above property (3).

Exercise 10.8. Prove the above property (5).

To prove more about the Whitehead product we have to figure out several facts about the
Whitehead map w : Sn+k−1 −→ Sn∨Sk . The map w defines an element w ∈ πn+k−1(S

n∨Sk).
Remark. Denote ιn ∈ πn(S

n), ιk ∈ πk(S
k) the generators given by the identity maps

Id : Sn −→ Sn , Id : Sk −→ Sk respectively. We denote also by ιn , ιk the image of the
elements ιn , ιk in πn(S

n ∨ Sk), πk(Sn ∨ Sk) respectively. Comparing the definitions of the
Whitehead map w : Sn+k−1 −→ Sn ∨ Sk and of the Whitehead product gives the identity:

w = [ιn, ιk] ∈ πn+k−1(S
n ∨ Sk).

Theorem 10.8. The element w ∈ πn+k−1(S
n ∨ Sk) has infinite order. In particular, the

group πn+k−1(S
n ∨ Sk) is infinite.

Proof. The map w is the attaching map of the cell en+k in the product Sn × Sk . It gives
us the commutative diagram:

Sn+k−1

?

p′

Sn ∨ Sk

?

i

-w

Dn+k Sn × Sk-Φ

Clearly the map Φ : Dn+k −→ Sn × Sk determines an element ι ∈ πn+k(S
n × Sk, Sn ∨ Sk).

Consider the map

j̄ : (Sn × Sk, Sn ∨ Sk) −→ (Sn+k, s0)

which maps Sn ∨ Sk to the base point s0 ∈ Sn+k . The composition j̄ ◦ Φ : Dn+k −→ Sn+k

is a representative of a generator of the group πn+k(S
n+k) ∼= Z. Thus we conclude that the

element ι ∈ πn+k(S
n × Sk, Sn ∨ Sk) is nontrivial and has infinite order.

Next we consider the long exact sequence in homotopy for the pair (Sn × Sk, Sn ∨ Sk):

πn+k(S
n ∨ Sk) i∗−→ πn+k(S

n × Sk) j∗−→ πn+k(S
n × Sk, Sn ∨ Sk) ∂−→ πn+k−1(S

n ∨ Sk)
We claim that i∗ is epimorphic since πn+k(S

n × Sk) = πn+k(S
n) ⊕ πn+k(S

k). Thus the
homomorphism j∗ is zero, and ∂ is monomorphims. Since w = ∂(ι) it follows that the group
πn+k−1(S

n ∨ Sk) is infinite and w has infinite order.

Excercise 10.9. Give a proof that the above homomorphism

i∗ : πn+k(S
n ∨ Sk)→ πn+k(S

n × Sk)
is epimorphism.
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Lemma 10.9. The element w ∈ πn+k−1(S
n ∨ Sk) is in a kernel of each of the following

homomorphisms:

(1) i∗ : πn+k−1(S
n ∨ Sk) −→ πn+k−1(S

n × Sk),
(2) pr

(n)
∗ : πn+k−1(S

n ∨ Sk) −→ πn+k−1(S
n),

(3) pr
(k)
∗ : πn+k−1(S

n ∨ Sk) −→ πn+k−1(S
k).

Proof. The exact sequence

−→ πn+k(S
n × Sk, Sn ∨ Sk) ∂−→ πn+k−1(S

n ∨ Sk) i∗−→ πn+k−1(S
n × Sk) −→

implies that w ∈ Ker i∗ since w = ∂(ι).

The commutative diagram

πn+k−1(S
n ∨ Sk)

HHHHHHHHHj

pr
(n)
∗

πn+k−1(S
n × Sk)

?

pr∗

-i∗

πn+k−1(S
n)

(where pr : Sn × Sk −→ Sn is a map collapsing Sk to the base point) implies that w ∈
Ker pr

(n)
∗ and similarly w ∈ Ker pr

(n)
∗ .

Now consider the suspension homomorphism

Σ : πq(S
n ∨ Sk) −→ πq+1(Σ(Sn ∨ Sk)).

Claim 10.2. The element w ∈ πn+k−1(S
n ∨ Sk) is in the kernel of the suspension homomor-

phism

Σ : πn+k−1(S
n ∨ Sk) −→ πn+k(Σ(Sn ∨ Sk)).

Proof. Consider the commutative diagram:

(31)

πn+k−1(S
n)

?

Σ

πn+k−1(S
n ∨ Sk)

?

Σ

πn+k−1(S
k)

?

Σ

� pr
(n)
∗ -pr

(k)
∗

πn+k(S
n+1) πn+k(Σ(Sn ∨ Sk)) πn+k(S

k+1)�Σ(pr
(n)
∗ ) -Σ(pr

(k)
∗ )

where pr denote the collapsing maps. By Claim 10.9 w ∈ Ker pr
(n)
∗ , w ∈ Ker pr

(k)
∗ . Notice

that Σ(Sn ∨ Sk) ∼ Sn+1 ∨ Sk+1 . We need the following lemma.

Lemma 10.10. There is an isomorphism

πn+k(S
n+1 ∨ Sk+1) ∼= πn+k(S

n+1)⊕ πn+k(S
k+1)
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Proof. Consider the long exact sequence for the pair (Sn+1 × Sk+1, Sn+1 ∨ Sk+1):

(32)
πn+k+1(S

n+1 × Sk+1, Sn+1 ∨ Sk+1)
∂−→ πn+k(S

n+1 ∨ Sk+1)
i∗−→ πn+k(S

n+1 × Sk+1)

j∗−→ πn+k(S
n+1 × Sk+1, Sn+1 ∨ Sk+1) −→

We notice that the (n+k+1)-skeleton of the product Sn+1×Sk+1 is the wedge Sn+1∨Sk+1 .
Thus any map Dk+n+1 −→ Sn+1 × Sk+1 may be deformed to the subcomplex Sn+1 ∨ Sk+1 .
Thus πn+k+1(S

n+1 × Sk+1, Sn+1 ∨ Sk+1) = 0. The same argument gives that

πn+k(S
n+1 × Sk+1, Sn+1 ∨ Sk+1) = 0.

Thus the long exact sequence (32) gives the isomorphism:

i∗ : πn+k(S
n+1 ∨ Sk+1)

∼=−→ πn+k(S
n+1 × Sk+1) ∼= πn+k(S

n+1)⊕ πn+k(S
k+1).

To complete the proof of Claim 10.2 we notice that Lemma 10.10 and the diagram (31) imply
that w ∈ Ker Σ.

Claim 10.3. Let α ∈ πn(X), β ∈ πk(X). Then [α, β] ∈ Ker Σ, where

Σ : πn+k−1(X) −→ πn+k(ΣX)

is the suspension homomorphism.

Exercise 10.9. Prove Claim 10.3.

S2q S2q ∨ S2q

Fig. 10.7.

Now we want to study a particular case. Consider the map µ : S2q −→ S2q ∨ S2q which
collapses the equator sphere, see Fig. 10.7. It induces the homomorphism

µ∗ : π∗(S
2q) −→ π∗(S

2q ∨ S2q).

Let ι2q ∈ π2q(S
2q) be the generator represented by the identity map Id : S2q −→ S2q . Let

ι
(1)
2q ∈ π2q(S

2q ∨ S2q) be the image of the element ι2q under the inclusion map i(1) : S2q −→
S2q ∨ S2q of the sphere S2q to the first sphere in S2q ∨ S2q . Let ι

(2)
2q be the corresponding

element for the second sphere in S2q ∨ S2q . Clearly µ∗(ι2q) = ι
(1)
2q + ι

(2)
2q .

Claim 10.4. The Whitehead product [ι2q, ι2q] ∈ π4q−1(S
2q) is a nontrivial element of infinite

order.

Proof. The map µ : S2q ∨ S2q −→ S2q induces the homomorphism

µ∗ : π4q−1(S
2q) −→ π4q−1(S

2q ∨ S2q).
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By naturality we have that

µ∗([ι2q, ι2q]) = [µ∗(ι2q), µ∗(ι2q)] = [ι
(1)
2q + ι

(2)
2q , ι

(1)
2q + ι

(2)
2q ].

By additivity and commutativity (Claim 10.7 (2), (3)) we also have:

µ∗([ι2q, ι2q]) = [ι
(1)
2q + ι

(2)
2q , ι

(1)
2q + ι

(2)
2q ]

= [ι
(1)
2q , ι

(1)
2q ] + [ι

(1)
2q , ι

(2)
2q ] + [ι

(2)
2q , ι

(1)
2q ] + [ι

(2)
2q , ι

(2)
2q ]

= [ι
(1)
2q , ι

(1)
2q ] + [ι

(1)
2q , ι

(2)
2q ] + (−1)4q[ι

(1)
2q , ι

(2)
2q ] + [ι

(2)
2q , ι

(2)
2q ]

= [ι
(1)
2q , ι

(1)
2q ] + [ι

(2)
2q , ι

(2)
2q ] + 2w2q

where w2q = [ι
(1)
2q , ι

(2)
2q ]. Notice that we used the fact that the sphere S2q is even-dimensional.

Now assume that the element [ι2q, ι2q] ∈ π4q−1(S
2q) has finite order. Then the elements

[ι
(j)
2q , ι

(j)
2q ] ∈ π4q−1(S

2q), j = 1, 2 also have finite order since ι
(j)
2q is the image of the generator

ι2q under the homomorphism π2q(S
2q) −→ π2q(S

2q ∨ S2q). Then it follows that for some
integer λ

0 = µ∗(λ[ι2q, ι2q]) = λ[ι
(1)
2q , ι

(1)
2q ] + λ[ι

(2)
2q , ι

(2)
2q ] + 2λw2q = 2λw2q.

This contradicts to Claim 10.8. Thus the element [ι2q, ι2q] ∈ π4q−1(S
2q) has infinite order.

We specify Claims 10.3, 10.4 to get so called “hard part” of the Suspension Theorem.

Theorem 10.11. (1) The Whitehead product [ι2q, ι2q] ∈ π4q−1(S
2q) has infinite order.

(2) The Whitehead product [ι2q, ι2q] ∈ π4q−1(S
2q) is in the kernel of the suspension homo-

morphism, i.e. Σ([ι2q , ι2q]) = 0 in π4q(S
2q+1).

Remark. Actually, π4q−1(S
2q) ∼= Z⊕{finite group} and these groups are the only homotopy

groups of spheres (besides πn(S
n)) which are infinite. We shall return to the Whitehead

product to study the Hopf invariant.

Now we consider the product Sn × Sk .
Corollary 10.12. The suspension Σ(Sn × Sk) is homotopy equivalent to the wedge

Sn+1 ∨ Sk+1 ∨ Sn+k+1.

Exercise 10.10. Prove Corollary 10.12.
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11. Homotopy groups of CW -complexes

11.1. Changing homotopy groups by attaching a cell. Let X be a CW -complex, and
f : Sn −→ X be an attaching map for new cell. Let Y = X ∪f Dn+1 . We would like to
understand how do the homotopy groups π∗X and π∗Y relate to each other.

Theorem 11.1. Let X be a path-connected space (not necessarily a CW -complex) with a
base point x0 ∈ X , f : Sn −→ X be a map such that f(s0) = x0 , where s0 is a base point of
Sn . Let Y = X ∪fDn+1 , and i : X −→ Y be the inclusion. Then the induced homomorphism

(33) i∗ : πq(X, x0) −→ πq(Y, x0)

(1) is an isomorphism if q < n,
(2) is an epimorphism if q = n, and
(3) the kernel Ker i∗ : πn(X, x0) −→ πn(Y, x0) is generated by γ−1[f ]γ ∈ πn(X, x0) where

γ ∈ π1(X, x0).

Proof. First we prove a technical result. Let Em be either Dm or Sm . In both cases we
choose Rm to be a subspace of Em :

Sm = Rm ∪ {x0} ,

Dm =
o

Dm ∪ Sm−1,
o

Dm ∼= Rm.

Lemma 11.2. Let h : Em −→ Y be a map, such that h|Em\Rm sends Em \Rm to X . Then
there exists a map h1 : Em −→ Y homotopic to h such that:

(a) h1|h−1(X) = h|h−1(X) .
(b) If m ≤ n then h1(E

m) ⊂ X .
(c) If m = n + 1 there exist disks d1, . . . , dr ⊂ Em such that

(c1) h1(E
m \

r⋃

s=1

ds) ⊂ X ;

(c2) the restriction h1|o
ds

:
o

ds −→ Dm is a linear homeomorphism, s = 1, . . . , r .

Proof. The proof goes down the line of arguments which we used several times starting with
Free Point Lemma. We give here the outline only.

(1) Consider the disks (centered at the same point) Dm
1 ⊂ Dm

2 ⊂ Dm
3 ⊂ Dm

4 ⊂ Dm
5 ⊂ Dm

of radii iρ/5, i = 1, . . . , 5.
(2) The set h−1(Dm

5 ) ⊂ Em is compact, furthermore, h−1(Dm
5 ) ⊂ Rm ⊂ Em . Choose a

simplex ∆m ⊃ h−1(Dm
5 ) and a triangulation {∆α} of ∆ such that if h(∆α)∩Dm

i 6= ∅
then h(∆α) ⊂ Dm

i+1 for i = 1, 2, 3, 4, and diam(h(∆α)) < ρ/5.

(3) Let K =
⋃

h(∆α)∩Dm
4 6=∅
∆α . Then we construct a map h′ : K −→ Dm by extending linearly

h restricted on the vertices of K .
(4) We assume that the center y0 of the disks Dm

i is not in the image of any face of the
simplices ∆α . If it happens to be in such image, we choose a homotopy which moves
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a point y0 away from those images. Thus there is a small disk dm0 centered at y0 so
that the points of d0 are not in the image of any face of the simplices ∆α as well.

(5) Now we use the same formula as before to construct a map h′′ : Em −→ Y so that h′′

coincides with h outside of K and h′′ coincides with h′ on h−1(Dm
2 ).

(6) We notice that for each simplex ∆α of the above triangulation the disk dm0 is either
in the image of the interior of h′′(∆α) or dm0 ∩ h′(∆α) = ∅ . If the latter holds for
all simplices ∆α , then the map h is homotopic to a map h1 : Em −→ Y so that
h1(E

m) ⊂ X since we can just blow off the map h′′ out of the free point y0 .
(7) Notice that if dm0 ∩h′′(∆α) 6= ∅ , then (h′′)−1(dm0 ) is an ellipsoid since h′′ restricted on

the simplex ∆α is linear. Thus the inverse image of the disk dm0 is a finite number of
ellipsoids dm1 , . . . , d

m
r ⊂ Rm .

(8) Now we stretch the disk dm0 up to the disk Dm : it gives a a map h′1 (homotopic to
h′′ ) which sends each ellipsoid dmj linearly to the disk Dm .

Lemma 11.2 is proved.

Conclusion of proof of Theorem 11.1. Lemma 11.2 implies that the homomorphism (33)
is epimorphism if q < n. (Notice that the surjectivity of i∗ for q = n follows directly from
the cell-aproximation arguments.)

Now let g : Sn −→ X be a map representing an element of Ker i∗ , where

i∗ : πn(X, x0) −→ πn(Y, x0),

i.e. g extends to a map h : Dn+1 −→ Y . We apply Lemma 11.2 to the map h to construct
a map h1 : Dn+1 −→ Y such that h1|Sn = g = h|Sn , and that the map h1 restricted to the
boundary of each disk dn+1

j coincides with the composition

∂(dn+1
j )

ℓj−→ Sn
f−→ X

where ℓj is a linear map. Now we can use the argument simillar to the one we used to prove
Theorem 6.5. We choose a path γj connecting the base point s0 with some point sj ∈ ∂(dj)
in the same way as we did in Theorem 6.5, see Fig 11.1.

Fig. 11.1.

The rest of the proof is left to a reader.

Corollary 11.3. Let A ⊂ X be a CW -pair, such that X \ A does not contain cells of
dimension ≤ n. Then the homomorphism i∗ : πq(A) −→ πq(X) is isomorphism if q < n and
is epimorphism if q = n. In particular πn(X

(n+1)) ∼= πn(X), where X(n+1) is the (n + 1)th
skeleton of X .



88 BORIS BOTVINNIK

11.2. Homotopy groups of a wedge.

Theorem 11.4. Let X be an n-connected CW -complex, and Y be a k -connected CW -
complex. Then

(1) πq(X ∨ Y ) ∼= πq(X)⊕ πq(Y ) for q ≤ n+ k ;
(2) for each q ≥ 1 the group πq(X∨Y ) contains a direct summand isomorphic to πq(X)⊕

πq(Y ).

Proof. By Theorem 5.11 the CW -complexes X and Y are homotopy equivalent to CW -
complexes without cells in dimensions in between 0 and n + 1 (for X ) and in between 0
and k + 1 (for Y ). Thus we may assume that X and Y are such complexes. Consider the
product X×Y with the product cell-structure. The wedge X ∨Y is a subcomplex of X×Y .
Furthermore the difference X × Y \ X ∨ Y has cells of dimension at least n + k + 2. By
Corollary 11.3,

πq(X ∨ Y ) ∼= πq(X × Y ) ∼= πq(X)⊕ πq(Y ).

To prove the second statement we notice that the composition

πq(X)⊕ πq(Y )
iX
∗
⊕iY

∗−−−−→ πq(X ∨ Y ) −→ πq(X × Y )
∼=−→ πq(X)⊕ πq(Y ),

(where iX : X −→ X ∨ Y , iY : Y −→ X ∨ Y are the caninical embeddings) is the identity
homomorphism.

Corollary 11.5. There is an isomorphism πn(S
n ∨ · · · ∨ Sn) ∼= Z⊕ · · · ⊕ Z with generators

induced by the embeddings Sn −→ Sn ∨ · · · ∨ Sn .

Exercise 11.1. Let X be an n-connected CW -complex, and Y be a k -connected CW -
complex. Prove the isomorphism:

πn+k+1(X ∨ Y ) ∼= πn+k+1(X)⊕ πn+k+1(Y )⊕ [πn+1(X), πk+1(Y )].

In particular it follows that π3(S
2 ∨ S2) ∼= Z⊕ Z⊕ Z.

11.3. The first nontrivial homotopy group of a CW -complex. Let X be (n − 1)-
connected CW -complex. We know very well that the homotopy groups πq(X) = 0 if q ≤
n − 1. Our goal is to describe the group πn(X). Again we can assume that X does not
contain cells of dimension in between 0 and n. Then the n-skeleton X(n) is a wedge of
spheres: X(n) = Sn1 ∨ · · · ∨ Sns . Let gi : Sn −→ Sn1 ∨ · · · ∨ Sns be the embedding of the i-th
sphere, and let rj : Sn −→ Sn1 ∨· · ·∨Sns be the attaching maps of the n+1 cells en+1

1 , . . . , en+1
β .

The maps gi determine the generators of the group πn(X
(n)), and let ρj ∈ πn(X(n)) be the

elements determined by the maps rj . The following theorem is a straightforward corollary of
Theorem 11.1.

Theorem 11.6. The homotopy group πn(X) is isomorphic to the factor group of the homo-
topy group πn(X

(n)) ∼= Z⊕ · · · ⊕ Z by the subgroup generated by ρj , j = 1, . . . , β .

Remark. Theorem 11.6 is analogous to Theorem 6.5 about the fundamental group. This
result gives an impression that we can calculate the first nontrivial homotopy group of any
CW -complex without any problems. However, we do not offer here an efficient algorithm to
do this calculation. The difficulty shows up when we start with any CW -complex X and
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construct new CW -complex X ′ homotopy equivalent to X and without cells in dimensions
≤ n−1. The process we described in Theorem 5.11 is not really algoriphmic. Thus Theorem
11.6 should not be considered as a computational tool, but rather as a “theoretical device”
which allows to prove general facts about homotopy groups.

Exercise 11.2. Let (X,A) be a CW -pair with connected subcomplex A, and such that
X \ A contains cells of dimension ≥ n, where n ≥ 3. Let π = π1(A) acting on πn(X,A) by
changing a base point. This action gives πn(X,A) a structure of Z[π]-module. Prove that
the Z[π]-module πn(X,A) is generated by the n-cells of X \A with relations corresponding
the (n+ 1)-cells of X \ A.

Exercise 11.3. Let (X,A) be a CW -pair with simply connected subcomplex A, and such
that X \ A contains cells of dimension ≥ n ≥ 2. Prove that the natural map j : (X,A) −→
(X/A, ∗) induces isomomorphism j∗ : πn(X,A) −→ πn(X/A).

11.4. Weak homotopy equivalence. Recall that spaces X and Y are weak homotopy
equivalent if there is a natural bijection ϕZ : [Z,X] −→ [Z, Y ] for any CW -complex Z
(natural with respect to maps Z −→ Z ′ . We have seen that the fibers of a Serre fiber bundle
are weak homotopy equivalent. The definition of weak homotopy equivalence does not offer
any hint how to construct the bijection ϕZ . The best possible case is when the bijection ϕZ
is induced by a map f : X −→ Y .

A map f : X −→ Y is a weak homotopy equivalence if for any CW -complex Z the induced
map f∗ : [Z,X] −→ [Z, Y ] is a bijection.

Remark. Clearly if f : X −→ Y is a weak homotopy equivalence, then X is weak homotopy
equivalent to Y . The opposite statement fails. Indeed, let X = Z ⊂ R , and Y = Q ⊂ R
with induced topology. It is easy to check that Z

w∼Q, however there is no continiuos bijection
f : Q −→ Z. Thus there is no bijection [pt,Q] −→ [pt,Z] induced by any continuous map
f . However, if any two (reasonably good spaces, like Hausdorff) X , Y are weak homotopy
equivalent, then we will prove soon that there exist a CW -complex W and weak homotopy
equivalences f : W −→ X , g : W −→ Y . Also we are about to prove that weak homotopy
equivalence coincides with homotopy equivalence on the category of CW -complexes.

Theorem 11.7. Let f : X −→ Y be a continuous map. Then the following statements are
equivalent.

(1) The map f : X −→ Y is weak homotopy equivalence.
(2) The induced homomorphism f∗ : πn(X, x0) −→ πn(Y, f(x0)) is isomorphism for all n

and x0 ∈ X .
(3) Let (W,A) be a CW -pair, and h : A −→ X , g : W −→ Y be such maps that the

following diagram commutes up to homotopy

(34)

X Y-f

A

6

h

���������*
f◦h

W

6
g

-i
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i.e. f ◦h ∼ g|A = i◦g . Then there exists a map h̃ : W −→ X such that h̃|A = h̃◦i = h

and f ◦ h̃ ∼ g in the diagram

(35)

X Y-f

A

6

h

W

6
g

HHHHHHHHHY
h̃

-i

Proof. The implication (1) =⇒ (2) is obvious.

(3) =⇒ (1). Let (W,A) = (Z, ∅). Then we have that for any map g : Z −→ Y there exists

a map h̃ : Z −→ X so that the triangle

(36)

X Y-f

Z

6
g

HHHHHHHHHY
h̃

commutes up to homotopy. It implies that the map f∗ : [Z,X] −→ [Z, Y ] is epimorphism.
To prove that f∗ is injective, consider the pair (W,A) = (Z × I, Z × {0} ∪ Z × {1}). Let
h0 : Z −→ X , h1 : Z −→ X be two maps so that the compositions h0 ◦ f : Z −→ Y ,
h1 ◦ f : Z −→ Y are homotopic. Let G : Z × I −→ Y be a homotopy between the maps
h0 ◦ f and h1 ◦ f . The statement (3) implies that there exists a homotopy H̃ : Z × I −→ X
so that the diagram

(37)

X Y-f

Z × {0} ∪ Z × {1}

6
h0∪h1

Z × I

6

G

HHHHHHHHHY
H̃

-i

commutes up to homotopy. In particular, it means that the maps h0, h1 : Z −→ X were
homotopic in the first place.

(2) =⇒ (3). Let f : X −→ Y satisfy (2). We assume that W = A ∪α Dn+1 , where
α : Sn −→ A is the attaching map. Let h : A −→ X , g : A ∪α Dn+1 −→ Y be such maps
that f ◦ h ∼ g|A . Consider the diagram:

(38)

X Y-f

Sn A

6

h

A ∪α Dn+1

6
g

-α -i
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The composition i ◦ α : Sn −→ A∪α Dn+1 is null-homotopic by construction, hence the map
g ◦ i ◦ α : Sn −→ Y is null-homotopic as well. Thus [g ◦ i ◦ α] = 0 in the group πn(Y ).
Notice that the map f ◦ h ◦ α : Sn −→ Y gives the same homotopy class as the map g ◦ i ◦ α
since the diagram (38) is commutative up to homotopy by conditions of the statement (3). In
particular, we have that f∗([h◦α]) = [g◦i◦α] = 0. Hence [h◦α] = 0 in the group πn(X) since
f∗ : πn(X) −→ πn(Y ) is isomorphism. It implies that there exists a map β : Dn+1 −→ X
extending the map h ◦ α : Sn −→ X . We have the following diagram:

(39)

Dn+1 X Y-β -f

Sn

6

A

6

h

A ∪α Dn+1

6
g

-α -i

where the left square is commutative, and the right one is commutative up to homotopy. The
left square gives us a map h̃′ : A ∪α Dn+1 −→ X , so that f ◦ h̃′|A = f ◦ h ∼ g|A . We choose
a homotopy H : A× I −→ Y so that

H|A×{0} = g|A, H|A×{1} = f ◦ h̃′|A = f ◦ h.

Consider the cylinder Dn+1 × I and its boundary Sn+1 = ∂(Dn+1 × I). No we construct a
map γ : Sn+1 −→ Y as it is shown below, see Fig. 11.2.

�����������
�����������
�����������
�����������
�����������
�����������
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�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

Dn+1 × {0}

Dn+1 × {1}

Sn × I A× I
α× Id H

Y

X

β

f

g|Dn+1

Fig. 11.2.

If the map γ : Sn+1 −→ Y is homotopic to zero, then we are done since we can extend γ to
the interior of the cylinder Dn+1 × I , and it will give us a homotopy between f ◦ h̃′ and g .
However, there is no any reason to assume that γ ∼ 0. To correct the construction we make
the following observation.

Lemma 11.8. Let ξ ∈ πq(Y, y0) be any element, and β : Dq −→ Y , such that β(s0) = y0 ,
where x0 ∈ Sq−1 = ∂(Dq). Then there exists a map β ′ : Dq −→ Y such that

(a) β ′|Sq−1 = β|Sq−1 ;
(b) the map β ∪ β ′ : Sq −→ Y represents the element ξ ∈ πq(Y, y0).

Proof. Let ϕ : Sq −→ Y be any map representing the element ξ ∈ πq(Y, y0). We consider the
sphere Sq1 = Dq

N ∪Sq−1 Dq
S . Let p : Sq1 −→ Sq be a map which takes the southern hemisphere
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Dq
S to the base point s0 ∈ Sq . Clearly the composition

Sq1
p−→ Sq

ϕ−→ Y

represents the same element ξ ∈ πq(Y, y0). Fig. 11.3 below is supposed to hint how to
construct new map ϕ′ : Sq1 −→ Y so that ϕ′ = β ∪ β ′ represents the element ξ ∈ πq(Y, y0).
The details are left to you.

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
�

p ϕ
YSq1

Sq1

ϕ

p′
β

−β

ϕ′ = β ∪ β′

Fig. 11.3.

Now we complete a proof of the implication (2) =⇒ (3). The above map γ : Sn+1 −→ Y
gives an element γ ∈ πn+1(Y ). Then we consider the element −γ ∈ πn+1(Y ) and use Lemma
11.8 to find a map β ′ : Dn+1 −→ Y , such that β ′|Sn = β|Sn and the map β ′∪β represents the
element −γ . We put together the maps we constructed to get new map γ′ : Sn+1 −→ Y which
homotopic to zero, see Fig. 11.4. Since γ′ ∼ 0 we are done in the case when W = A∪αDn+1 .
The general case follows then by induction: the n-th step is to do the above construction for
all (n+ 1)-cells of the difference W \ A.
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Dn+1 × {0}

Dn+1

Sn × I A× I
α× Id H

Y

β′

X

β

f

g|Dn+1

Fig. 11.4. The map γ′ : Sn+1 −→ Y .

Corollary 11.9. (Whitehead Theorem) Let X , Y be CW -complexes. Then if a map f :
X −→ Y induces isomorphism

f∗ : πn(X, x0) −→ πn(Y, f(x0))
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for all n ≥ 0 and x0 ∈ X , then f is a homotopy equivalence.

Exercise 11.4. Prove Corollary 11.9.

Exercise 11.5. Prove that the homotopy groups of the spaces S3 × CP∞ and S2 are
isomorphic, and that they are not homotopy equivalent.

Exercise 11.6. Let k 6= n. Prove that the homotopy groups of the spaces RPn × Sk and
Sk ×RPk are isomorphic, and that they are not homotopy equivalent.

11.5. Cellular approximation of topological spaces. Let X be an arbitrary Hausdorff
space. There is a natural question: is there a natural cellular approximation of the space X ?
This is the answer:

Theorem 11.10. Let X be a Hausdorff topological space. There exists a CW -complex K and
a weak homotopy equivalence f : K −→ X . The CW -complex K is unique up to homotopy
equivalence.

Proof. We assume that X is a path-connected space. We construct a chain of CW -complexes

K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn−1 ⊂ Kn ⊂ · · ·
and maps fj : Kj −→ X so that

(1) fj|Kj−1
= fj−1 : Kj−1 −→ X ,

(2) (fj)∗ : πq(Kj) −→ πq(X) is an isomorphism for all q ≤ j .

Let K0 = {x0} , and f0 : K0 −→ X be a choice of a base point. Assume that we have
constructed the maps fj : Kj −→ X for all j ≤ n − 1 satisfying the above conditions. Let
π = π1(X, x0). We consider the group πn(X, x0) and choose generators gα of πn(X, x0) as a
Z[π]-module and representing maps gα : Snα −→ X . Let

K ′
n = Kn−1 ∨

(
∨

α

Snα

)

We define f ′
n : K ′

n −→ X to be fn−1 on Kn−1 and to be
∨

α

gα on
∨

α

Snα . The induction

hypothesis and Theorem 11.1 implies that f ′
n induces isomorphism

πq(K
′
n)

(f ′n)∗−−−→ πq(X)

for q ≤ n − 1. The homomorphism (f ′
n)∗ : πn(K

′
n) −→ πn(X) is epimorphism since all

generators gα are in the image. However it may not monomorphic. We choose generators
hβ of the kernel Ker (f ′

n)∗ ⊂ πn(K
′
n) (which is also a Z[π]-module) and representatives

hβ : Snβ −→ K ′
n . Now we attach the cells en+1

β using the maps hβ as attaching maps. Let Kn

be the resulting CW -complex. The map f ′
n : K ′

n −→ X may be extended to fn : Kn −→ X
since each composition

Snβ
hβ−→ K ′

n

f ′n−→ X

is homotopic to zero. Thus f ′
n : K ′

n −→ X may be extended to all cells en+1
β we attached.

Theorem 11.1 implies that (fn)∗ : πq(Kn) −→ πq(X) is an isomorphism for q ≤ n − 1 and
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also that πn(Kn) ∼= πn(K
′
n)/Ker (f ′

n)∗
∼= πn(X). Thus (fn)∗ : πn(Kn) −→ πn(X) is an

isomorphism as well.

Exercise 11.7. Prove that the CW -complex K we constructed is unique up to homotopy.

This concludes the proof of Theorem 11.10.

Exercise 11.8. Let X , Y be two weak homotopy equivalent spaces. Prove that there exist
a CW -complex K and maps f : K −→ X , g : K −→ Y which both are weak homotopy
equivalences.

11.6. Eilenberg-McLane spaces. Let n be a positive integer and π be a group (abelian)
if n ≥ 2. A space X is called an Eilenberg-McLane space of the type K(π, n) if

πq(X) =

{
π if q = n
0 else.

Theorem 11.11. Let n be a positive integer and π be a group (abelian) if n ≥ 2. Then the
Eilenberg-McLane space of the type K(π, n) exists and unique up to weak homotopy equiva-
lence.

Remark. If a space X is an Eilenberg-McLane space of the type K(π, n), we will say that
X is K(π, n).

Proof of Theorem 11.11. Let {gα} be generators of the group π , and {rβ} be relations

(if n > 1 we mean relations in the abelian group). Let Xn =
∨

α

Snα . Then πq(Xn) = 0 if

q ≤ n− 1 and πn(Xn) =
⊕

α

Z (or free group with generators {gα} if n = 1). Each relation

rβ defines a unique element rβ ∈ πn(Xn). We choose maps rβ : Snβ −→ Xn representing

the above relations and attach cells en+1
β using rβ as the attaching maps. Let Xn+1 be the

resulting space. Theorem 11.1 implies that πq(Xn+1) = 0 if q ≤ n − 1 and πn(Xn+1) = π .
Then we choose generators of πn+1(Xn+1) and attach (n + 2)-cells using maps representing
these generators as the attaching maps. Let Xn+2 be the resulting CW -complex. Again
Theorem 11.1 implies that πq(Xn+2) = 0 if q ≤ n− 1 or q = n+ 1 and πn(Xn+2) = π . Now
we proceed by induction killing the homotopy group πn+2(Xn+2) and so on.

Exercise 11.9. Prove that an Eilenberg-McLane space of the type K(π, n) is unique up
to weak homotopy equivalence, i.e. if K1 , K2 are two Eilenberg-McLane spaces of the type
K(π, n) then there exist weak homotopy equivalences f1 : X −→ K1 and f2 : X −→ K2 ,
where X is the space we just constructed.

This concludes the proof of Theorem 11.11

Remark. The above construction is not algorithmic at all: we have no idea what groups
πn+k(Xn+k) we are going to get in this process.

Examples. (1) K(Z, 1) = S1 .

(2) K(Z/2, 1) = RP∞ .

(3) K(Z, 2) = CP∞ .
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(4) Let L2n−1(Z/m) be the lens space we defined at the end of Section 7, and let

L∞(Z/m) = lim
n−→∞

L2n−1(Z/m).

Then L∞(Z/m) = K(Z/m, 1).

Exercise 11.10. Construct the space K(π, 1), where π is a finitely generated abelian group.

Exercise 11.11. Let X = K(π, n). Prove that ΩX = K(π, n− 1).

11.7. Killing the homotopy groups. There are two constructions we discuss here. The
first one we used implicitly several times. Let X be a space, then for each n there is a space
Xn and a map fn : X −→ Xn , such that

(1) πq(Xn) =

{
πq(X) if q ≤ n

0 else
(2) (fn)∗ : πq(X) −→ πq(Xn) is isomorphism if q ≤ n.

We know how to construct Xn : start with generators {gα} of the group πn+1(X), then
attach the cells en+2

α using the maps gα : Sn+1
α −→ X . Then the resulting space Yn+1 has

the homotopy groups πn+1(Yn+1) = 0 and πq(Yn+1) = πq(X) if q ≤ n. Then one kills in the
same way the homotopy group πn+2(Yn+1) to construct the space Yn+2 with πn+1(Yn+2) = 0,
πn+2(Yn+2) = 0, and πq(Yn+2) = πq(X) if q ≤ n, and so on. The limiting space is Xn with
the above properties. The map fn : X −→ Xn is the embedding.

Let X be (n− 1)-connected. Then Xn = K(πn(X), n). This construction may be organized
so that there is a commutative diagram

(40)

...

?

in+k+1

Xn+k

?

in+k

...

?

in+2

X

�
�

�
�

�
�

�
�

�
�

���

fn+k

HHHHHHHHHj

fn

Xn+1

?

in+1

-fn+1

K(πn, n)
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where πq = πq(X). The maps iq : Xq −→ Xq−1 in the diagram (40) are homotopy equivalent
to Serre fiber bundles, so that the diagram (40) becomes commutative up to homotopy. Let

Fq be the fiber of the Serre bundle Xq
iq−→ Xq−1 . The exact sequence in homotopy

· · · −→ πj(Fq) −→ πj(Xq) −→ πj(Xq−1) −→ πj−1(Fq) −→ · · ·

for the Serre bundle Xq
iq−→ Xq−1 immediately implies that Fq = K(πq, q) = ΩK(πq, q + 1).

Consider for a moment the Eileberg-McLane space K(π, q + 1). We have a canonical Serre
fiber bundle π : E(K(π, q + 1)) → K(π, q + 1). It is easy to identify the fiber ΩK(π, q + 1)
with the space K(π, q) (up to weak homotopy equivalence).

Here there is an important fact which we state without a proof:

Claim 11.1. Let p : E → B be a Serre fiber bundle with a fiber F = K(π, q). Then there
exists a map k : B → K(π, q+1), such that the following diagram commutes up to homotopy:

E

?

p

?

ΩK(π,q+1)

E(K(π, q + 1))

?

π

?

ΩK(π,q+1)

-k̂

B K(π, q + 1)-k

where we identify ΩK(π, q + 1) with K(π, q).

In particular, we obtain the following commutative diagram:

(41)

Xq

?

iq

?

ΩK(πq,q+1)

E(K(πq, q + 1))

?

p

?

ΩK(πq,q+1)

-k̂q

Xq−1 K(πq, q + 1)-kq

Here the maps kq : Xq−1 −→ K(πq+1, q + 2) are known as the Postnikov invariants of the
space X . In fact, the maps kq : Xq−1 −→ K(πq+1, q + 2) are defined up to homotopy and
determine the elements in cohomology

kq ∈ Hq+2(X; πq+1), q ≥ n.
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The diagram

(42)

...

?

in+k+1

Xn+k

?

in+k

?

K(πn+k,n+k)

K(πn+k, n+ k + 1)-
kn+k+1

...

?

in+2

?

K(πn+2,n+2)

X

�
�

�
�

�
�

�
�

�
�

���

fn+k

HHHHHHHHHj

fn

Xn+1

?

in+1

?

K(πn+1,n+1)

K(πn+2, n+ 3)-fn+1 -kn+2

K(πn, n) K(πn+1, n+ 2)-kn+1

is called the Postnikov tower of the space X . The Postnikov tower exists and unique up to
homotopy under some restrictions on X . For instance, it exists when X is a simply-connected
CW -complex. The existence of diagram (42) shows that the Eilenberg-McLane spaces are
the “elmentary building blocks” for any simply connected space X . The Postnikov tower also
shows that there are many spaces with the same homotopy groups, while these spaces are
not homotopy equivalent. Again, this construction does not provide an algorithm to compute
the homotopy groups, however it leads to some computational procedure called the Adams
spectral sequence. We are not ready even to discuss this, and we shall return to the above
constructions later on.

There is the second way to kill homotopy groups. Let X be (n − 1)-connected as above.
The map fn : X −→ Xn = K(πn, n) may be turned into Serre fiber bundle. Let X|n be its
fiber, and jn : X|n −→ X be the inclusion map. The exact sequence in homotopy for the

fiber bundle X
X|n−−→ K(πn, n) implies that the map jn : X|n −→ X induces isomorphism

πq(X|n) ∼= πq(X) if q ≥ n + 1, and also that πq(X|n) = 0 if q ≤ n. One can iterate this
construction to build the space X|n+k and the map jn+k : X|n+k −→ X so that the induced
homomorphism πq(X|n+k) −→ πq(X) is isomorphism if q ≥ n + k and πq(X|n+k) = 0 if
q ≤ n + k − 1.

Exercise 11.13. Let X = S2 . Prove that X|3 = S3 .

Exercise 11.14. Let X = CPn . Prove that X|3 = X|2n+1 = S2n+1 .



98 BORIS BOTVINNIK

12. Homology groups: basic constructions

The homotopy groups πq(X) are very important invariants. They are defined in the most
natural way, and capture an important information about topological spaces. However it is
very difficult to compute the homotopy groups, as we have seen. There are just few finite
CW -complexes for which all homotopy groups are known. Even for the sphere Sn the problem
to compute the homotopy groups is far from to be solved. Here we define different invariants:
homology groups Hn(X) and cohomology groups Hn(X). These groups are much easier to
compute: we will be able to compute the homology groups for all basic examples. However,
their definition requires more work.

12.1. Singular homology. We alredy defined the standard q -simplex:

∆q =

{
(t0, . . . , tq) | t0 ≥ 0, . . . , tq ≥ 0,

q∑

i=0

ti = 1

}
⊂ Rq+1.

Remark. Note that the standard simplex ∆q has vertices A0 = (1, 0, . . . , 0), A1 =
(0, 1, 0, . . . , 0), . . . , Aq = (0, 0, . . . , 0, 1) in the space Rq+1 . In particular it defines the ori-
entation of ∆q . The simplex ∆q has the i-th face (i = 0, . . . , q )

∆q−1(i) = {(t0, . . . , tq) | ti = 0 }
which is a standard (q − 1)-simplex in the space

Rq(i) = {(t0, . . . , tq) | ti = 0 } ⊂ Rq+1

with the induced orientation.

A singular q -simplex of the space X is a continuous map f : ∆q −→ X . A singular q -chain is
a finite linear combination

∑
kifi , where each fi : ∆q −→ X is a singular q -simplex, ki ∈ Z.

The group q -chains Cq(X) is a free abelian group generated by all singular q -simplices of the
space X .

Now we define the “boundary homomorphism” ∂q : Cq(X) −→ Cq−1(X) as follows. Let
f : ∆q −→ X be a singular simplex, then we denote Γi(f) = f |∆q−1(i) its restriction on the
i-th face ∆q−1(i). We define:

∂qf =

q∑

i=0

(−1)iΓi(f).

Lemma 12.1. The composition

Cq+1(X)
∂q+1−−−→ Cq(X)

∂q−→ Cq−1(X)

is trivial, i.e. Im ∂q+1 ⊂ Ker ∂q .

Proof. It follows from the definition and the identity:

(43) Γi(Γj(f)) =

{
Γj−1(Γi(f)) for j > i,
Γj(Γi+1(f)) for j ≤ i.

Exercise 12.1. Check the identity (43) and complete the proof of Lemma 12.1.
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Main Definition: The group Hq(X) = Ker ∂q/Im ∂q+1 is a q -th homology group of the
space X . (The group H0(X) = C0(x)/Im ∂1 , and Hq(X) = 0 for q < 0.)

The group Zq(X) = Ker ∂q is called the group of cycles, and the group Bq(X) = Im ∂q+1

the group of boundaries. Thus Hq(X) = Zq(X)/Bq(X). If c1, c2 ∈ Cq(X) are such elements
that c1 − c2 = ∂q+1(d), then we say that the chain c1 is homologic to c2 . We call a class
[c] ∈ Hq(X) a homological class of a cycle c.

The group Hq(X) is an abelian group; if it is finitely-generated, then Hq(X) ≡ Z⊕ . . .⊕Z⊕
Zk1 ⊕ . . .⊕ Zkm

; the rank of this group (i.e. the number of Z’s in this decomposition) is the
Betti number of the space X .

12.2. Chain complexes, chain maps and chain homotopy. A chain complex C is a
sequence of abelian groups and homomorphisms

(44) . . . −→ Cq+1
∂q+1−−−→ Cq

∂q−→ Cq−1 −→ . . . −→ C1
∂1−→ C0 −→ 0 ,

such that ∂q ◦ ∂q+1 = 0 for all q ≥ 1. For a given chain complex C the group Hq(C) =
Ker ∂q/Im ∂q+1 is the q -th homology group of C . The chain complex

(45) . . . −→ Cq+1(X)
∂q+1−−−→ Cq(X)

∂q−→ Cq−1(X) −→ . . . −→ C1(X)
∂1−→ C0(X) −→ 0 ,

will be denoted as C(X). Thus Hq(X) = Hq(C(X)).

Let C′ , C′′ be two chain complexes. A chain map ϕ : C′ −→ C′′ is a collection of homomor-
phisms ϕq : C ′

q −→ C ′′
q such that the diagram

(46)

. . . C ′
q

?

ϕq

C ′
q−1

?

ϕq−1

. . . C ′
1

?

ϕ1

C ′
0

?

ϕ0

0-
∂′q+1 -

∂′q -
∂′q−1 - -

∂′1 -

. . . C ′′
q C ′′

q−1
. . . C ′′

1 C ′′
0 0-

∂′′q+1 -
∂′′q -

∂′′q−1 - -
∂′′1 -

commutes. It is clear that a chain map ϕ : C′ −→ C′′ induces the homomorphisms ϕ∗ :
Hq(C′) −→ Hq(C′′). In particular, a map g : X −→ Y induces the homomorphism g# :
Cq(X) −→ Cq(Y ) (which maps a singular simplex f : ∆q −→ X to a singular simplex
g ◦ f : ∆q −→ Y ). It defines a chain map g# : C(X) −→ C(Y ) and homomorphisms
g∗ : Hq(X) −→ Hq(Y ).

Exercise 12.2. Prove the following statements:
1. Let g : X −→ Y , h : Y −→ Z be two maps. Then (h◦g)# = h#◦g# , and (h◦g)∗ = h∗◦g∗ .
2. Let i : X −→ X be the identity map. Then i∗ = Id .

Let ϕ, ψ : C′ −→ C′′ be two chain maps. We say the ϕ, ψ are chain homotopic if there are
homomorphisms Dq : C ′

q −→ C ′′
q−1 such that for each q

Dq−1 ◦ ∂′q + ∂′′q+1 ◦Dq = ϕq − ψq,
(here D−1 = 0). In that case we will write down ϕ ∼ ψ .

Theorem 12.2. Let ϕ, ψ : C′ −→ C′′ be two chain maps, and ϕ ∼ ψ . Then

ϕ∗ = ψ∗ : Hq(C′) −→ Hq(C′′).
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Exercise 12.3. Prove Theorem 12.2.

Theorem 12.3. Let g, h : X −→ Y be homotopic maps, then g∗ = h∗ : Hq(X) −→ Hq(Y ).
In other words, homotopic maps induce the same homomorphism in homology groups.

Proof. By definition we have a homotopy H : X × I −→ Y , such that H|X×{0} = g ,
H|X×{1} = h. Then for any singular simplex f : ∆q −→ X we have a map H ◦ (f × I) :
∆q× I −→ Y . The cylinder ∆q× I has a canonical simplicial structure: we subdivide ∆q× I
into (q + 1)-simplices ∆

q+1
(i), i = 0, . . . , q , as follows:

∆
q+1

(i) = {(t0, . . . , tq, τ) ∈ ∆q × I | t0 + . . .+ ti−1 ≤ τ ≤ t0 + . . .+ ti } ,
see Fig. 12.1. for q = 1, 2:

(1,0)                   (0,1) (1,0,0)

(0,1,0)

(0,0,1)

Fig. 12.1.

The map G = H ◦ (f × I) : ∆q × I −→ Y defines (q + 1) singular simplices of dimension
(q + 1). We define

D(f) =

q∑

i=0

(−1)iG|
∆

q+1
(i)
.

It is easy to check that the homomorphisms

Dq : Cq(X) −→ Cq+1(Y ), Dq

(∑
kifi

)
=
∑

kiDq(fi)

define a chain homotopy D : C(X) −→ C(Y ).

Corollary 12.4. Let X and Y be homotopy equivalent spaces. Then Hq(X) ∼= Hq(Y ) for
all q .

Remark. There is a natural question: what happens if X and Y are weak homotopy
equivalent? We will find the answer on this question in the next section.

12.3. First computations. By definition, the groups Cq(X) are really huge, and it is dif-
ficult to compute homology directly. We will learn how to do this in a while, however even
now we can prove several important facts.

Let ∗ be a space consisting of a single point. Clearly there is a unique map fq : ∆q −→ ∗
for any q . We have that Cq(∗) = Z for all q ≥ 0. By definition, ∂q(fq) =

∑
(−1)iΓi(fq) =
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∑
(−1)ifq−1 . It follows then that

∂q(fq) =

{
0, for odd q,
1, for even q.

The complex C(∗) is the following:

. . .Z
Id−→ Z

0−→ Z
Id−→ Z

0−→ Z −→ 0.

The argument above proves the following statement.

Claim 12.1. Hq(∗) =

{
Z, if q = 0
0, else.

A space X with the same homology groups as of the point is called an acyclic space.

Corollary 12.5. Let X be a contractible space, then it is acyclic.

Fig. 12.2.

Remark. The opposite statement does not hold. The simplest
example may be constructed out of the function sin 1

x
, see Fig.

12.2.

Exercise 12.4. Prove that H0(X) ∼= Z if X is a path-
connected space.

Exercise 12.5. Prove that H0(X) ∼= Z ⊕ . . . ⊕ Z, where the
number of Z’s is the same as the number of path-connected
components of X .

Exercise 12.6. Prove that if f : X −→ Y is a map of path-connected spaces, then f∗ :
H0(X) −→ H0(Y ) is an isomorphism.

12.4. Relative homology groups. Let A be a subspace of X . Then Cq(A) ⊂ Cq(X), and
∂q(Cq(A)) ⊂ Cq−1(A) by definition. Notice that each generator of the group Cq(A) maps to
a generator of the group Cq(X). The group Cq(X,A) = Cq(X)/Cq(A) is a group of relative
q -chains of the space X modulo subspace A. Note that Cq(X,A) is a free abelian group.
Alternatively the group Cq(X,A) may be defined as a free abelian group with generators

f : ∆q −→ X, f(∆q) ∩ (X \A) 6= ∅.
The boundary operator ∂q : Cq(X) −→ Cq−1(X) induces the operator ∂q : Cq(X,A) −→
Cq−1(X,A), and we obtain the complex C(X,A):

(47) · · · −→ Cq(X,A)
∂q−→ Cq−1(X,A)

∂q−1−−−→ · · · ∂2−→ C1(X,A)
∂1−→ C0(X,A) −→ 0.

It is easy to check that we have a short exact sequence of complexes:

(48) 0 −→ C(A)
i#−→ C(X)

j#−→ C(X,A) −→ 0.

It is very common situation in the homological algebra to work with a short exact sequence
of complexes. The nature of the complexes is not important for the following statement: the
complexes below may be over any abelian category.
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Lemma 12.6. (LES-Lemma) Let 0 −→ C′ i−→ C −→ C′′ −→ 0 be a short exact sequence of
complexes. Then there is a long exact sequence of homology groups

(49) · · · −→ Hq(C′) i∗−→ Hq(C) j∗−→ Hq(C′′) ∂−→ Hq−1(C′) i∗−→ · · ·
where the homomorphisms i∗ and j∗ are induced by i and j respectively, and ∂ is the boundary
homorphism to be defined.

Proof. First we define the boundary homomorphism ∂ : Hq(C′′) −→ Hq−1(C′). We have the
following commutative diagram:

(50)

0 C ′
q+1

?

∂′q+1

Cq+1

?

∂q+1

C ′′
q+1

?

∂′′q+1

0- -
iq+1 -

jq+1 -

0 C ′
q

?

∂′q

Cq

?

∂q

C ′′
q

?

∂′′q

0- -iq -jq -

0 C ′
q−1 Cq−1 C ′′

q−1 0- -
iq−1 -

jq−1 -

Let α ∈ Hq(C′′), and c′′ ∈ Ker ∂′′q such that α = [c′′]. Choose an element c̃ ∈ Cq such that
jq(c̃) = c′′ , then the element c = ∂q(c̃) ∈ Cq−1 is such that jq−1(c) = 0 by commutativity of
(50). The exactness of the bottom row gives that there exists an element c′ ∈ C ′

q−1 such that
iq(c

′) = c.

Now we notice that c′ ∈ Ker ∂′q−1 : it follows from the commutative diagram

(51)

0 C ′
q−1

?

∂′q−1

Cq−1

?

∂q−1

C ′′
q−1

?

∂′′q−1

0- -
iq−1 -

jq−1 -

0 C ′
q−2 Cq−2 C ′′

q 0- -
iq−2 -

jq−2 -

since iq−1 is monomorphism, c = ∂q(c̃), and

iq−1 ◦ ∂′q−1(c
′) = ∂q−1 ◦ iq(c) = ∂q−1 ◦ ∂q(c̃) = 0.

Thus c′ ∈ Ker ∂q−1 , and we define ∂(α) = [c′] ∈ Hq−1(C′).
Exercise 12.7. Prove that the homomorphism ∂ : Hq(C′′) −→ Hq−1(C′) is well-defined.

The proof that the sequence (49) is exact is rather routine exercise. We will prove only the
exactness at the term Hq(C′′), i.e. that Im j∗ = Ker ∂ .

The inclusion Im j∗ ⊂ Ker ∂ follows immediately from the definition. Now we prove that
Ker ∂ ⊂ Im j∗ . Let α ∈ Ker ∂ . As above (in the definition of ∂ ) we consider a cycle c′′ ∈ C ′′

q ,
an element c̃ , such that jq(c̃) = c′′ , then the element c = ∂q(c̃), and, finally, the element c′

such that iq−1(c
′) = c. We know that [c′] = 0, i.e. c′ ∈ Im ∂q . Let b′ ∈ C ′

q be such that
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∂q(b
′) = c′ . Let c̃1 = iq(b

′). By commutativity of (50) ∂q(c̃ − c̃1) = 0, and by exatness of
the second row of (50) jq(c̃ − c̃1) = c′′ . Thus the element d = c̃ − c̃1 ∈ Cq is a cycle, and
jq(d) = c′′ , and j∗([d]) = α .

Exercise 12.8. Prove the exactness of (49) at the term Hq(C′).
The exactness of (49) at the term Hq(C) is an easy exercise.

Now we specify Lemma 12.6 in the case of the exact sequence of complexes

0 −→ C(A)
i#−→ C(X)

j#−→ C(X,A) −→ 0.

The boundary operator ∂q : Cq(X,A) −→ Cq−1(X,A) is induced by the boundary operator
∂q : Cq(X) −→ Cq−1(X), and clearly ∂q(c) ∈ Cq−1(A) if c ∈ Cq−1(X,A) is a cycle.

Corollary 12.7. Let (X,A) be a pair of spaces. Then there is an exact sequence of homology
groups:

(52) · · · ∂−→ Hq(A)
i∗−→ Hq(X)

j∗−→ Hq(X,A)
∂−→ Hq−1(A)

i∗−→ · · · .

Let B ⊂ A ⊂ X be a triple of spaces. We have the following maps of pairs:

(53) (A,B)
i−→ (X,B)

j−→ (X,A)

which induce the homomorphisms C(A,B)
i#−→ C(X,B)

j#−→ C(X,A).

Exercise 12.9. Prove that the sequence of complexes

(54) 0 −→ C(A,B)
i#−→ C(X,B)

j#−→ C(X,A) −→ 0

is exact.

Exercise 12.9 and the LES-Lemma imply the following result.

Corollary 12.8. Let B ⊂ A ⊂ X be a triple of spaces. Then there is a long exact sequence
in homology:

(55) · · · −→ Hq(A,B)
i∗−→ Hq(X,B)

j∗−→ Hq(X,A)
∂−→ Hq−1(A,B)

i∗−→ · · · .

The relative homology groups are natural invariant.

Exercise 12.10. Let B ⊂ A ⊂ X and B′ ⊂ A′ ⊂ X ′ be two triples of spaces, and
f : X −→ X ′ be such a map that f(B) ⊂ B′ , and f(A) ⊂ A′ . Prove that the following
diagram commutes:

· · · Hq(A,B)

?

f∗

Hq(X,B)

?

f∗

Hq(X,A)

?

f∗

Hq−1(A,B)

?

f∗

· · ·- -i∗ -j∗ -∂ -

· · · Hq(A
′,B′) Hq(X

′,B′) Hq(X
′,A′) Hq−1(A

′,B′) · · ·- -i∗ -j∗ -∂ -

Exercise 12.11. Let f : (X,A) −→ (X ′, A′) be such map of pairs that the induced maps
f : X −→ X ′ and f |A : A −→ A′ are homotopy equivalences. Prove that f∗ : Hq(X,A) −→
Hq(X

′, A′) is an isomorphism for each q .
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Remark. One may expect that there is a long exact sequence in homology groups for a Serre
fiber bundle E −→ B . However there is no such exact sequence in general case: here there
is a spectral sequence which relates the homology groups of the base, the total space and the
fiber. Again, we are not ready even to discuss this yet.

12.5. Relative homology groups and regular homology groups. Let (X,A) be a pair
of spaces. The space X/A has a base point a (the image of A under the projection X −→ A.
There is a map of pairs p : (X,A) −→ (A, a) induced by the projection X −→ X/A. Besides,
the is the inclusion map i : X −→ X ∪ C(A), and thus the map of pairs i : (X,A) −→
(X ∪ C(A), C(A)). Let v be the vertex of the cone C(A).

Theorem 12.9. Let (X,A) be a pair of spaces. Then the inclusion

i : (X,A) −→ (X ∪ C(A), C(A))

induces the isomorphism Hq(X,A) ∼= Hq(X ∪ C(A), C(A)) = Hq(X ∪ C(A), v).

We have to get ready to prove Theorem 12.9. Recall that for each simplex ∆q there is the
barycentric subdivision of ∆q . First we examine the barycentric subdivision one more time.
Let ∆q be given by the vertices A0, . . . , Aq . Let f : ∆q −→ X be a singular simplex. We
would like to give a natural description of all q -simplices of the barycentric subdivision of ∆q

in terms of the symmetric group Σq+1 acting on the vertices (A0, . . . , Aq) of ∆q .

0 1

2

1 0

2

0

2

1

2

1

0
0

1

2

0

1

2

0 1

2

(0,1,2) (1,0,2)

(2,0,1)

(2,1,0)(1,2,0)

(0,2,1)

Fig. 12.3.

First, let q = 1, then ∆1 is given by ver-
tices (A0, A1). Let B0 is the barycen-

ter of ∆1 . Then we let ∆
1
(0, 1) :=

(A0, B0) and ∆
1
(0, 1) := (A1, B0). Here

the simplex ∆
1
(0, 1) is obtained from

∆
1
(0, 1) by permutation (0, 1) which acts

on the vertices (A0, A1). By induction,
let ∆

q
(0, . . . , q) be the simplex which has

the same first q vertices as the simplex

∆
q−1

(0, . . . , q− 1) and the last one being
the barycenter of the simplex ∆q . The
symmetric group Σq+1 acts on the ver-
tices (A0, . . . , Aq) of ∆q , and each per-
mutation σ ∈ Σq+1 gives a linear map
σ : ∆q → ∆q leaving the barycenter B0

of ∆q fixed.

Then the simplex ∆
q
(σ) is defined as the image σ(∆

q
(0, . . . , q)). Thus we can list all simplices

∆
q
(σ) of the barycentric subdivision of ∆q by the elements σ ∈ Σq+1 . Let (−1)σ be the sign

of the permutation σ ∈ Σq+1 , see Fig. 12.4.

Now we define a chain map β : C(X) −→ C(X) as follows. Let f : ∆q −→ X be a generator,
and fσ = f |∆q

(σ) . Then

β(f : ∆q −→ X) =
∑

σ∈Σq+1

(−1)σ(fσ : ∆
q
(σ) −→ X).
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Then we define β(
∑

i λifi) =
∑

i λiβ(fi). It is easy to check that β∂q = ∂qβ . (Here the
choice of the above sign (−1)σ is important.)

Lemma 12.10. The chain map β : C(X) −→ C(X) induces the identity homomorphism in
homology:

Id = β∗ : Hq(C(X)) −→ Hq(C(X)) for each q ≥ 0.

Proof. It is enough to construct a chain homotopy Dq : Cq(X) −→ Cq+1(X) so that
β − Id = Dq−1 ◦ ∂′q + ∂′′q+1 ◦Dq . We construct the triangulation of ∆q × I as follows.

q=0 q=1
q=2

Fig. 12.4.

The cases q = 0, 1, 2 are shown at Fig. 12.4. Now the bottom simplex ∆q × {0} is given
the standard triangulation (just one simplex), and the top simplex ∆q × {1} is given the
barycentric subdivision. The side ∂∆q × I is given the subdivision by induction. Now
consider the center v of the simplex ∆q ×{1} , and consider the cones with the vertex v over
each q -simplex ∆

q
, where

∆
q ⊂ ∆q × {0} ∪ ∂∆q × I ∪∆q × {1} .

This triangulation gives the chain Dq(f), where f : ∆q −→ X is a singular simplex. We
notice that Dq(f) is defined as via the map

G : ∆q × I projection−−−−−−−→ ∆q × {0} f−→ X

by restricting G on the corresponding simplices. Lemma 12.9 follows.

Let U = {Ui} be a finite open covering of a space X . We define the group

CU

q (X) = {free abelian group} (f : ∆q −→ X | f(∆q) ⊂ Ui for some Ui ∈ U).

Clearly CU

q (X) ⊂ Cq(X) and the restriction of the boundary operator ∂q : Cq(X) −→
Cq−1(X) defines the operator ∂q : CU

q (X) −→ CU

q−1(X). Thus we have the complex CU(X).

Lemma 12.11. The chain map (inclusion) i : CU(X) −→ C(X) induces isomorphism in the
homology groups

(56) i∗ : Hq(CU(X))
∼=−→ Hq(C(X)).

Proof. Let α ∈ Hq(C(X)) = Hq(X), and α = [c], where c ∈ Zq(X) is a cycle. To prove that
i∗ is epimorphism, it is enough to prove that

(i) there is c′ ∈ ZU

q (X) and d ∈ Cq+1(X) so that ∂q+1(d) = c− c′ .
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Let α′ ∈ Hq(CU(X)), α′ = [c′], where c′ ∈ ZU

q (X). Assume that i∗(α
′) = 0, i.e. c′ = ∂q+1d

where d ∈ Cq+1(X). To prove that i∗ is monomorphism, it is enough to show that

(ii) there is d′ ∈ CU

q+1(X) such that ∂q+1(d
′) = c′ .

The above statements follow from the following three observations:

(1) For any c ∈ Cq(X) there is n ≥ 1 so that βnc ∈ CU

q (X).
(2) For any c ∈ Cq(X) and n ≥ 1 there is d ∈ Cq(X) such that ∂q+1(d) = c − βnc.

(Lemma 12.10.)
(3) Let c′ ∈ ZU

q (X), then for any n ≥ 1 there is d′ ∈ CU

q+1(X) such that ∂q+1d = c′−βnc′ .

Exercise 12.12. Prove the properties (1) and (3).

Exercise 12.13. Show that the above statements (i), (ii) follow from (1), (2), (3).

This concludes the proof.

Remark. Let V = {Vj} be a finite covering of X , such that X =
⋃

j

o

V j , where
o

V is

the interior of V . Then the chain map CV(X) −→ C(X) also induces isomorphism in the
homology groups.

Remark. Let (X,A) be a pair of spaces. Then a covering U = {Uj} induces a covering
{Uj ∩ A} . We denote a corresponding chain complex by CV(A). Then for each q we have a
short exact sequence

0→ CV

q (A) −→ CV

q (X) −→ CV

q (X,A)→ 0

which determines the relative chain complex CV(X,A). It easy to modify the proof of Lemma
12.11 (and use five-lemma) to show that the natural chain map CV(X,A) −→ C(X,A) induces
an isomorphism in the homology groups

Hq(CV(X,A))
∼=−→ Hq(C(X,A)) = Hq(X,A).

Proof of Theorem 12.9. Consider the following covering of the space X ∪ C(A).
Let U1 = (X ∪ C(A)) \ X and U2 = X ∪ C(A), where C(A) is the half-cone over A, i.e.
C(A) = {(a, t) ∈ C(A) | 0 ≤ t < 1/2} . The relative version of Lemma 12.11 (see the above
remark) implies that the embedding

CU(X ∪ C(A), C(A)) −→ C(X ∪ C(A), C(A))

induces an isomorphism in the homology groups. By definition of a relative chain complex,
we have the isomorphism:

CU

q(X ∪ C(A), C(A))∼=CU

q(X ∪ C(A))/CU

q (C(A)).

Then we observe that there is an isomorphism

CU

q (X ∪ C(A))/CU

q (C(A)) ∼= Cq(X ∪ C(A))/Cq(C(A)) = Cq(X ∪ C(A), C(A)).
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Fig. 12.5.

Indeed, let f : ∆q → X ∪ C(A) be a generator in CU

q (X ∪ C(A), C(A)), i.e.

f(∆q) ∩ (X ∪ C(A) \ C(A)) 6= ∅
and f(∆q) ⊂ U1 or f(∆q) ⊂ U2 . Since U1 = (X ∪ C(A)) \X , f(∆q) ⊂ U2 = X ∪ C(A) and
f(∆q) ∩ C(A) = ∅ , the map f : ∆q → X ∪ C(A) is a generator of the free abelian group

Cq(X ∪ C(A), C(A)) = Cq(X ∪ C(A))/Cq(C(A)).

It is also easy to check that any generator in Cq(X ∪ C(A))/Cq(C(A)) gives a generator in
the group CU

q (X ∪ C(A), C(A)).

Since X ∪ C(A) is homotopy equivalent to X , and C(A) ∼ A, we obtain the isomorphisms

Hq(X ∪ C(A), C(A)) ∼= Hq(X ∪ C(A), C(A)) ∼= Hq(X,A).

This concludes the proof of Theorem 12.9.

Corollary 12.12. Let (X,A) be a Borsuk pair. Then the projection p : (X,A) −→ (A, a)
induces the isomorphism p∗ : Hq(X,A) −→ Hq(X/A, a) for each q .

Exercise 12.14. Prove Corollary 12.12.

12.6. Excision Theorem. Let (X,A) be a pair of spaces, and B ⊂ A. The map of pairs
e : (X \B,A \B) −→ (A,B) induces the excision homomorphism:

(57) e∗ : Hq(X \B,A \B) −→ Hq(X,A)

The following result is known as the Excision Theorem.

Theorem 12.13. Let (X,A) be a pair of Hausdorff spaces, and B ⊂ A so that B ⊂
o

A.
Then the homomorphism e∗ : Hq(X \B,A \B) −→ Hq(X,A) is an isomorphism.

Proof. We use the condition B ⊂
o

A to notice that
o

(X \B) ⊃ X \B ⊃ X \
o

A.

Thus
o

A ∪
o

(X \B) = X . We consider the covering V = {V1, V2} of X , where V1 = A,
V2 = X \ B . The chain complex CV(X) (see the remark following Exercise 12.13) gives the
chain map i : CV(X) −→ C(X). Note that for each q

CV

q (X) ∼= Cq(A) + Cq(X \B) ⊂ Cq(X).
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Consider the relative chain complex CV(X,A). To prove the excision property we consider
the following commutative diagram of chain complexes:

(58)

C(X \B,A \B)
HHHHHHHHHj

j2

C(X,A)-j1

CV(X,A)

6
j3

Here the chain maps j1 and j3 are induced by natural inclusions.

Now we construct the chain map j2 . By definition

Cq(X \B,A \B) = Cq(X \B)/Cq(A \B) ∼= Cq(X \B)/(Cq(X \B) ∩ Cq(A))

since Cq(A \B) = Cq(X \B) ∩ Cq(A). Similarly,

CV

q (X,A) = CV

q (X)/CV

q (A) = (Cq(X \B) + Cq(A))/Cq(A).

Now recall the following standard fact from the group theory.

Claim 12.2. Let G1, G2 ⊂ G be subgroups of an abelian group G. Then

G1/(G1 ∩G2) ∼= (G1 +G2)/G2.

If we let G1 := Cq(X \B), G2 := Cq(A), then the isomorphism

j2 : Cq(X \B,A \B) −→ CV

q (X,A)

is given by Claim 12.2. We obtain the induced commutative diagram in homology groups

(59)

Hq(X \B,A \B)
HHHHHHHHHj

(j2)∗

Hq(X,A)-(j1)∗

Hq(CV(X,A))

6
(j3)∗

where (j1)∗ , (j2)∗ and (j3)∗ are isomorphisms. Thus Hq(X \B,A \B) ∼= Hq(X,A).

12.7. Mayer-Vietoris Theorem. Let X = X1∪X2 . We notice that C(X1∩X2) = C(X1)∩
C(X2), and that C(X1), C(X2) are subcomplexes of C(X1 ∪X2). In particular, the complex
C(X1) + C(X2) ⊂ C(X1 ∪X2) is well-defined. Let

j(1) : C(X1 ∩X2) −→ C(X1), j(2) : C(X1 ∩X2) −→ C(X2),

i(1) : C(X1) −→ C(X1 ∪X2), i(2) : C(X2) −→ C(X1 ∪X2)

be the inclusions. Consider the following sequence of complexes:

(60) 0 −→ C(X1 ∩X2)
α−→ C(X1)⊕ C(X2)

β−→ C(X1) + C(X2) −→ 0.

where α(c) = j(1)(c)⊕ j(2)(c), and β(c1 ⊕ c2) = c1 − c2 ∈ C(X1) + C(X2).

Claim 12.3. The sequence (60) is a short exact sequence of chain complexes.
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Exercise 12.15. Prove Claim 12.3.

Lemma 12.14. Let X1, X2 ⊂ X , and X1 ∪ X2 = X ,
o

X1 ∪
o

X2 = X . Then the chain map
C(X1) + C(X2) −→ C(X1 ∪X2) induces isomorphism in the homology groups.

Proof. Consider the covering V = {X1, X2} . Then by definition CV(X1 ∪ X2) = C(X1) +
C(X2). Lemma 12.11 and the remark following Lemma 12.11 completes the proof.

Theorem 12.15. (Mayer-Vietoris Theorem) Let X be a space, and X = X1 ∪ X2 , and

X =
o

X1 ∪
o

X2 . Then there is a long exact sequence

(61) · · · → Hq(X1 ∩X2)
α∗−→ Hq(X1)⊕Hq(X2)

β∗−→ Hq(X1 ∪X2)
∂−→ Hq−1(X1 ∩X2)→ · · ·

This is the Mayer-Vietoris long exact sequence.

Proof. The short exact sequence of chain complexes (60) induces the long exact sequnce

· · · → Hq(C(X1 ∩X2))
α∗−→ Hq(C(X1))⊕Hq(C(X2))

β∗−→ Hq(C(X1) + C(X2))

∂−→ Hq−1(C(X1 ∩X2))
α∗−→ Hq−1(C(X1))⊕Hq−1(C(X2))→ · · ·

To complete the proof we replace the groups Hq(C(X1)+C(X2)) by Hq(X1∪X2) using Lemma
12.14.
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13. Homology groups of CW -complexes

The main goal of this section is to develop a technique to compute homology groups of CW -
complexes. The singular chain complex C(X) is far too big to peform computations. We will
construct here a cellular chain complex E(X) which is much smaller than C(X). We start
with computations of homology groups of spheres and wedges of spheres.

13.1. Homology groups of spheres.

Theorem 13.1.

H̃q(S
n) ∼=

{
Z if q = n,
0 else.

Remark. We use here reduced homology groups to unify the formula for n = 0 and n ≥ 1.

We already know that H0(S
0) = Z⊕ Z, hence H̃0(S

0) = Z.

Proof. Consider a long exact sequence for the pair (Dn, Sn−1):

H̃q(S
n−1) −→ H̃q(D

n) −→ Hq(D
n, Sn−1) −→ H̃q−1(S

n−1) −→ H̃q−1(D
n) .

We have H̃q(D
n) = 0, H̃q−1(D

n) = 0. Thus Hq(D
n, Sn−1) ∼= H̃q(S

n−1). Induction on n
concludes the proof.

Theorem 13.2. Let X be a space. Then H̃q+1(ΣX) ∼= H̃q(X) for each q .
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X

C+X

C−X

Fig. 13.1.

Proof. We notice that ΣX = C+X ∪ C−X , see Fig.
13.1. Consider a long exact sequence in homology for the
pair (C+X,X):

· · · → H̃q(C+X) −→ Hq(C+X,X) −→ H̃q−1(X)

−→ H̃q−1(C+X)→ · · ·
Clearly we have that H̃∗(C+X) = 0 since the cone C+X
is contractible.

Thus Hq(C+X,X) ∼= H̃q−1(X). Notice that the pair (C+X,X) is always a Borsuk pair, thus

Hq(C+X,X) ∼= H̃q(C+X/X) ∼= H̃q(C+X ∪ C−X) = H̃q(ΣX).

Theorem 13.2 is proved.

Remark. The homeomorphism ∆q
∼=−→ Dq gives a particular repesentative for a generator

ῑq ∈ Hq(D
q, Sq−1) ∼= Z. The composition ∆q

∼=−→ Dq pr−→ Dq/Sq−1 gives a particular
repesentative for the generator ιq ∈ Hq(S

q) ∼= Z. Clearly ῑq maps to ιq−1 under the boundary
homomorphism Hq(D

q, Sq−1)→ Hq−1(S
q−1).

Theorem 13.2 leads to the following construction. Let f : ∆q −→ X be a singular simplex.
Consider the composition

Σf : ∆q+1 = C∆q Cf−−→ CX
projection−−−−−−−→ CX/X ∼= ΣX.

Thus we have the chain map Σ : Cq(X) −→ Cq+1(ΣX).
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Excercise 13.1. Show that the map Σ : Cq(X) −→ Cq+1(ΣX) commutes with the boundary

operator and induces the isomorphism Σ : H̃q(X) −→ H̃q+1(ΣX).

13.2. Homology groups of a wedge.

Theorem 13.3. Let A be a set of indices, and Snα be a copy of the n-th sphere, α ∈ A.
Then

H̃q

(
∨

α∈A
Snα

)
=





⊕

α∈A
Z(α), if q = n,

0, else.

Here
⊕

α∈A
Z(α) is a free abelian group with generators α ∈ A.

This result follows from Theorem 13.2 because of the homotopy equivalence

Σ

(
∨

α∈A
Snα

)
∼
∨

α∈A
ΣSnα =

∨

α∈A
Sn+1
α .

On the other hand Theorem 13.3 is a particular case in the following result.

Theorem 13.4. Let (Xα, xα) be based spaces, α ∈ A. Assume that the pair (Xα, xα) is
Borsuk pair for each α ∈ A. Then

H̃q

(
∨

α∈A
Xα

)
=
⊕

α∈A
H̃q(Xα).

Excercise 13.2. Prove Theorem 13.4. Hint: The wedge
∨

α∈A
Xα is a factor-space of the

disjoint union
⊔

α∈A
Xα by the union of the base points.

13.3. Maps g :
∨

α∈A
Snα→

∨

β∈B
Snβ . Let f : Sn −→ Sn be a map. Then the homotopy class

[f ] = dιn , where d ∈ Z, and ιn ∈ πn(S
n) is a generator represented by the identity map

Sn −→ Sn . Recall that d = deg f .

Claim 13.1. Let f : Sn −→ Sn be a map of degree d = deg f . Then the induced homomor-
phism f∗ : Hn(S

n) −→ Hn(S
n) is multiplication by d.

Proof. We constructed earlier a map g(d) : Sn −→ Sn of the degree d :

�
�
�
�
��
��
��
���

�
�
�

g1 g2

Fig. 13.2.
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where the map g1 : Sn −→
d∨

j

Snj collapses (d− 1) spheres Sn−1 as it is shown at Fig. 13.2,

and g2 :
d∨

j

Snj −→ Sn is a folding map. The map g(d) = g2 ◦ g1 is of degree d since this is

a representative of dιn . Thus g(d) ∼ f . The composition of the map g1 with a projection

pj :
d∨

j

Snj −→ Snj is homotopic to the identinty. Thus (g1)∗ : Hn(S
n) −→ Hn(

∨d
j S

n
j ) gives

(g1)∗(1) = 1 ⊕ · · · ⊕ 1. We notice that the map Snj
ij−→ ∨d

j S
n
j

g2−→ Sn is homotopic to the

identity map. Thus (g2)∗(1⊕· · ·⊕1) = 1+ · · ·+1 = d . This implies that the homomorphism
g(d)∗ = (g2)∗ ◦ (g1)∗ : Hn(S

n) −→ Hn(S
n) is the multiplication by d . This completes the

proof since the map f is homotopic to the map g(d).

Now we consider a map g :
∨

α∈A
Snα

g−→
∨

β∈B
Snβ . Let iα : Snα −→

∨

α∈A
Snα be the canonical

inclusion, and pβ :
∨

β∈B
Snβ −→ Snβ be the projection on the β -th summand. We have the

commutative diagram:

(62)

∨

α∈A
Snα

∨

β∈B
Snβ

?

pβ

-g

Snα

6
iα

Snβ-
gαβ

Let the map gαβ : Snα −→ Snβ have degree dαβ , and let {dαβ}α∈A,β∈B be the matrix of those
degrees.

Theorem 13.5. Let g :
∨

α∈A
Snα

g−→
∨

β∈B
Snβ be a map. Then the homomorphism

⊕

α∈A
Z(α) = Hn

(
∨

α∈A
Snα

)
g∗−→ Hn

(
∨

β∈B
Snβ

)
=
⊕

β∈B
Z(β)

is given by multiplication with the matrix {dαβ}α∈A,β∈B , where dαβ = deg gαβ .

Excercise 13.3. Use Claim 13.1 to prove Theorem 13.5.

13.4. Cellular chain complex. Let X be a CW -complex, and X(q) be its q -th skeleton.

The factor-space X(q)/X(q−1) is homeomorphic to the wedge
∨

i∈Eq

Sqi , where Eq is the set of

q -cells of X . It implies that

(63) Hj(X
(q), X(q−1)) =





⊕

i∈En

Z(i) if j = q,

0 else.
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We define the cellular chain complex E(X) as follows. Let Eq(X) = Hq(X
(q), X(q−1)) =⊕

i∈En

Z(i). The boundary operator ∂
≀

q : Eq(X) −→ Eq−1(X) is the boundary homomorphism

in the long exact sequnce for the triple (X(q), X(q−1), X(q−2)):

· · · → Hq(X
(q), X(q−2)) Hq(X

(q), X(q−1)) Hq(X
(q−1), X(q−2))→ · · ·- -∂∗

Eq(X)

6
∼=

Eq−1(X)

6
∼=

-
∂
≀

q

The following result implies that E(X) is a chain complex.

Claim 13.2. The composition Eq+1(X)
∂
≀

q+1−−−→ Eq(X)
∂
≀

q−→ Eq−1(X) is zero.

Proof. We have the following commutative diagram of pairs:

(X(q), X(q−2))

?

α

(X(q+1), X(q−2))

?

γ

(X(q+1), X(q))

?

Id

- -

(X(q), X(q−1)) (X(q+1), X(q−1)) (X(q+1), X(q))- -

This diagram gives the following commutative diagram in homology groups:

...

?

Hq+1(X
(q+1), X(q−2))

?

γ∗

Hq+1(X
(q+1), X(q))

?

Id

HHHHHHHHHj

∂
≀

q+1

Hq(X
(q), X(q−2))

?

α∗

· · ·- -∂∗ -

Hq+1(X
(q+1), X(q−1)) Hq+1(X

(q+1), X(q)) Hq(X
(q), X(q−1))

?

∂
≀

q

· · ·- -∂∗ -

Hq−1(X
(q−1), X(q−2))

?
...
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Here the right column is the long exact sequence for the triple (X(q), X(q−1), X(q−2)). The

boundary operator ∂
≀

q+1 = α∗ ◦ ∂∗ by commutativity. Thus ∂
≀

q ◦ ∂
≀

q+1 = ∂
≀

q ◦ (α∗ ◦ ∂∗) =

(∂
≀

q ◦ α∗) ◦ ∂∗ = 0 since ∂
≀

q ◦ α∗ = 0 by the exactness of the column.

The chain complex E(X)

· · · −→ Eq(X)
∂
≀

q−→ Eq−1(X) −→ · · · −→ E1(X)
∂
≀

1−→ E0(X) −→ 0

is the cellular chain complex of X .

Theorem 13.6. There is an isomorphism Hq(E(X)) ∼= Hq(X) for each q and any CW -
complex X .

Proof. We prove the following three isomorphisms:

(a) Hq(E(X)) ∼= Hq(X
(q+1), X(q−2)),

(b) Hq(X
(q+1), X(q−2)) ∼= H̃q(X

(q+1)),
(c) Hq(X

(q+1)) ∼= Hq(X).

(a) Consider the following commutative diagram

Hq(X
(q−1),X(q−2)) = 0

?
Hq+1(X

(q+1),X(q))
HHHHHHHHHHj

∂
≀

q+1

Hq(X
(q),X(q−2))

?

β

α−→ Hq(X
(q+1),X(q−2))→ Hq(X

(q+1),X(q)) = 0-∂∗

Hq(X
(q),X(q−1)) = Eq(X)

?

∂
≀

q

Hq−1(X
(q−1),X(q−2)) = Eq−1(X)

The exactness at the term Hq(X
(q), X(q−2)) implies

Hq(X
(q+1), X(q−2)) ∼= Hq(X

(q), X(q−2))/Ker α ∼= Hq(X
(q), X(q−2))/Im ∂∗.

The homomorphism β is monomorphism since Hq(X
(q−1), X(q−2)) = 0. Thus

Hq(X
(q), X(q−2))/Im ∂∗ ∼= β(Hq(X

(q), X(q−2)))/β(Im ∂∗) ∼=

Im β/Im (β ◦ ∂∗) ∼= Ker ∂
≀

q/Im ∂
≀

q+1 = Hq(E(X)).
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(b) Consider long exact sequence for the triple (X(q+1), X(i), X(i−1)) where i = q − 2, q −
3, . . . , 1, 0:

0=Hq(X
(i), X(i−1))−→Hq(X

(q+1), X(i−1))
∼=−→Hq(X

(q+1), X(i))−→Hq−1(X
(i), X(i−1))= 0

Thus we obtain the isomorphisms:

Hq(X
(q+1), X(q−2)) ∼= Hq(X

(q+1), X(q−3)) ∼= · · · ∼= Hq(X
(q+1), X(0)) ∼= H̃q(X

(q+1)).

(c) Consider long exact sequence in homology for the pair (X(j), X(q+1)) for j = q + 2,
q + 3, . . .:

0 = Hq+1(X
(j), X(q+1)) −→ Hq(X

(q+1))
∼=−→ Hq(X

(j)) −→ Hq(X
(j), X(q+1)) = 0.

Thus Hq(X
(q+1)) ∼= Hq(X

(q+2)) ∼= · · · ∼= Hq(X).

13.5. Geometric meaning of the boundary homomorphism ∂
≀

q . Consider closely the

groups Eq(X) and the boundary operator ∂
≀

q : Eq(X) −→ Eq−1(X). First we recall that

Eq(X) =
{∑

i∈Eq
λie

q
i

}

where eqi are the q -th cells of the CW -complex X . The isomorphism of the group Eq(X)
with free abelian group is not unique: it depends on the choice of the homeomorphism
X(q)/X(q−1) ∼=

∨
Sq . The choice of this homeomorphism is detemined by the characteris-

tic maps

Dq
X(q)-Φi

Sq−1

6

X(q−1)

6

-ϕi

The map of pairs (Φi, ϕi) : (Dq, Sq−1)→ (X(q), X(q−1)) induces the homeomorphism

Φ̄i : Sq = Dq/Dq−1 −→ ēq/∂eq ⊂ X(q)/X(q−1).

Definition 13.7. We say that two characteristic maps Φi,Φ
′
i : (Dq, Sq−1) −→ (X(q), X(q−1))

are of the same orientation if the composition (which is a homeomorphism)

Sq
Φ̄i−→ ēq/∂eq

(Φ̄′

i)
−1

−−−−→ Sq

has degree one. It means that the map Φ̄i ◦ (Φ̄′
i)
−1 is homotopic to the identity map. If

the degree of the map Φ̄i ◦ (Φ̄′
i)

−1 is −1, the characteristic maps Φi,Φ
′
i have the opposite

orientation.

Thus the group

Eq(X) =
{∑

i∈Eq
λie

q
i

}

should be thought as a free abelian group with oriented q -cells as generators.
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Let eqi be a q -cell of X , and σq−1
j be a (q− 1)-cell. The attaching map ϕi : Sq−1 −→ X(q−1)

defines the map

ψ : Sq−1 ϕi−→ X(q−1) projection−−−−−−−→ X(q−1)/(X(q−2) ∪
{
all (q − 1)-cells except σq−1

j

}
) =

σ̄q−1
j /∂σq−1

j

(Φ̄j)−1

−−−−→ Sq−1.

Let degψ = [eqi : σq−1
j ].

Remark. The number [eqi : σq−1
j ] depends on the choice of characteristic maps for the cells

eqi , σ
q−1
j only through the orientation. It is easy to see that the number will change the sign

if the orientation of either cell eqi or σq−1
j would be different. It is important to notice that

[eqi : σq−1
j ] = 0 if the cells eqi , σ

q−1
j do not intersect. Thus the number [eqi : σq−1

j ] 6= 0 only for

finite number of cells σq−1
j .

Theorem 13.8. The boundary operator ∂
≀

q : Eq(X) −→ Eq−1(X) is given by the formula:

(64) ∂
≀

q(e
q) =

∑

j∈Eq−1

[eq : σq−1
j ]σq−1

j .

Proof. Let Φ̄ : (Dq, Sq−1, ∅) −→ (X(q), X(q−1), X(q−2)) be the map determined by the char-
acteristic map of the cell eq :

Dq
X(q)-Φ

Sq−1

6

X(q−1)

6

-ϕ

We have the following commutative diagram in homology groups:

Z Hq(D
q, Sq−1)

?

α

Hq−1(S
q−1)

?

β

Z-
∼= -∂∗ �

∼=

H̃q(X
(q)/X(q−1)) ∼= Hq(X

(q),X(q−1))

?

∼=

Hq−1(X
(q−1),X(q−2))

?

∼=

∼= H̃q−1(X
(q−1)/X(q−2))-∂

Eq(X) Eq−1(X)-
∂
≀

q
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Here α and β are induced by the map Φ̄ and α(1) = eq , β(1) = ∂
≀

eq . Consider the
composition

γ : Hq−1(S
q−1)

β−→ Hq−1(X
(q−1), X(q−2)) = H̃q−1(X

(q−1)/X(q−2)) = Hq−1(
∨

j

Sq−1
j )

=
⊕

j

Hq−1(S
q−1
j )

projection−−−−−−−→ Hq−1(S
q−1

σq−1
j

).

By definition the degree of the homomorphism γ the coefficient with σq−1
j in ∂

≀

eq is equal to

[eq : σq−1
j ]. Thus

∂
≀

q e
q =

∑

j

[eq : σq−1
j ]σq−1

j .

13.6. Some computations. First we compute again the homology groups Sn . We choose
the standard cell decomposition: Sn = en ∪ e0 .

n = 1. Here we have E0 = Z with the generator e0 , E1 = Z with the generator e1 , Eq = 0 if
q 6= 0, 1. Clearly ∂e1 = e0 − e0 = 0.

(1) n > 1. Here we have E0 = Z with the generator e0 , En = Z with the generator en ,

Eq = 0 if q 6= 0, n. Clearly ∂
≀

qe
n = 0.

Thus in both cases we have that H̃n(S
n) = Z, and H̃q(S

n) = 0 if q 6= n.

13.7. Homology groups of RPn . Here we have to work a bit harder. We need the following
geometric fact. Let the sphere Sn ⊂ Rn+1 is given by the equation x2

1 + · · ·+ x2
n+1 = 1.

Lemma 13.9. Let A : Sn −→ Sn be the antipodal map, A : x 7→ −x, and ιn ∈ πn(Sn) be the
generator represented by the identity map Sn −→ Sn . Then the homotopy class [A] ∈ πn(Sn)
is equal to

[A] =

{
ιn, if n is odd,
−ιn, if n is even.

Excercise 13.4. Prove Lemma 13.9.

Let e0, . . . , en be the cells in the standard cell decomposition of RPn . Recall that (RPn)(q) =
RPq , and eq = RPq/RPq−1 , and that the Hopf map Sq−1 −→ RPq−1 is the attaching map
of the cell eq .

Lemma 13.10. Let e0, . . . , en be the cells in the standard cell decomposition of RPn . Then

[eq : eq−1] =

{
2 if q is odd,
0, if q is even.

Proof. Let h : Sq−1 −→ RPq−1 be the Hopf map. We identify RPq−1 with the sphere
Sq−1 where the points x,−x ∈ Sq−1 are identified. The projective space RPq−2 ⊂ RPq−1 is
then the equator sphere Sq−2 ⊂ Sq−1 with the intipodal points identified as well. Now the
composition

Sq−1 h−→ RPq−1 −→ RPq−1/RPq−2 = Sq−1
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represents the element [A]+ ιq−1 ∈ πq−1(S
q−1), see Fig. 13.3. Lemma 13.9 implies the desired

formula.

c

A

Id

Fig. 13.3.

Thus the chain complex E(RP2k+1) is the following one

0 −→
2k+1

Z
0−→

2k

Z
·2−→

2k−1

Z
0−→ · · · 0−→

2

Z
·2−→

1

Z
0−→

0

Z

Hence we have

H̃q(RP2k+1) =





Z/2, q = 1, 3, . . . , 2k − 1,
Z, q = 2k + 1,
0, else.

The chain complex E(RP2k) is the following one

0 −→
2k

Z
·2−→

2k−1

Z
0−→

2k−1

Z
0−→ · · · 0−→

2

Z
·2−→

1

Z
0−→

0

Z

Thus we have

H̃q(RP2k) =

{
Z/2, q = 1, 3, . . . , 2k − 1,
0, else.

13.8. Homology groups of CPn , HPn . These groups are very easy to compute since
E2q(CPn) = Z, q = 0, 2, . . . , 2n, and E2q+1(CPn) = 0. Similarly E4q(HPn) = Z, q =
0, 4, . . . , 4n, and Eq(HPn) = 0 for all other q . Thus

Hq(CPn) =

{
Z, q = 0, 2, . . . , 2n,
0, else.

, Hq(HPn) =

{
Z, q = 0, 4, . . . , 4n,
0, else.

Exercise 13.5. Prove that there is no map f : Dn −→ Sn−1 so that the restriction

f |Sn−1 : Sn−1 −→ Sn−1

has nonzero degree.

Theorem 13.11. (Brouwer Fixed Point Theorem) Let g : Dn −→ Dn be a continious map.
Then there exists a fixed point of g , i.e. such x ∈ Dn that g(x) = x.

Exercise 13.6. Use Exercise 13.5 to prove Theorem 13.11.

Exercise 13.7. Let Mg = T 2# · · ·#T 2 (g times). Compute the following homology groups:

(a) Hq(Mg),
(b) Hq(Mg#RP2),
(c) Hq(Mg#Kl

2).
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Exercise 13.8. Let G(n, k) be the real Grassmannian manifold. Use the CW -decomposition
of G(n, k) given in Section 4 to compute the homology groups:

(a) Hq(G(4, 2)),
(b) Hq(G(5, 3)).

Exercise 13.9. Compute the homology groups:

(a) Hq(RP2 ×RP3),
(b) Hq(RP5 ×RP3),
(c) Hq(RP2 ×RP4).

Exercise 13.10. Let f(z) = anz
n + an−1z

n−1 + · · ·+ a1z+ a0 be a complex polynomial with
an 6= 0. Show that a polynomial f(z), viewed as a map f : C→ C, can be always extended

to a continious map f̂ : S2 → S2 . Prove that the degree of the map f̂ equals to n.

Exercise 13.11. Let f : S2n → S2n be a map. Prove that there exists a point x ∈ S2n such
that either f(x) = x or f(x) = −x.

Exercise 13.12. Let f : Sn → Sn be a map of degree zero. Prove that there exist two points
x, y ∈ Sn with f(x) = x and f(y) = −y .

Exercise 13.13. Construct a surjective map f : Sn → Sn of degree zero.
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14. Homology and homotopy groups

14.1. Homology groups and weak homotopy equivalence. Our goal here is to prove
the following fact.

Theorem 14.1. Let f : X −→ Y be a weak homotopy equivalence. Then the induced
homomorphism f∗ : Hq(X) −→ Hq(Y ) is an isomorphism for all q ≥ 0.

We start with a preliminary lemma.

Lemma 14.2. Let X be a topological space, α ∈ Hq(X). Then there exist a CW -complex
K , a map f : K −→ X , an element β ∈ Hq(K) such that f∗(β) = α.

Proof. Let c =
∑

i λifi , fi : ∆q
i −→ X , be a chain representing α ∈ Hq(X). Consider the

space

K ′ =
⊔

i

∆q
i .

Recall that the simplex ∆q ⊂ Rq+1 is given by the vertices ∆q = (v0, . . . , vq), where v0 =
(1, 0, . . . , 0), . . ., vq = (0, . . . , 0, 1). We can describe all subsimplices of ∆q as follows. Let
0 ≤ t1 < · · · < tq−r ≤ q . Then

Γrt1,...,tq−r
(∆q) = (v0, . . . , v̂t1 , . . . , v̂tq−r

, . . . , vq)

is an r -dimensional simplex with the vertices (v0, . . . , v̂t1 , . . . , v̂tq−r
, . . . , vq). We introduce the

following equivalence relation in K :

Γrt1,...,tq−r
(∆q

i ) ≡ Γrs1,...,sq−r
(∆q

j) iff fi|Γr
t1,...,tq−r

(∆q
i ) = fj |Γr

s1,...,sq−r
(∆q

j ).

Let K = K ′/ ∼. The maps fi : ∆q
i −→ X determine a map f : K −→ X . Furthermore, let

gj : ∆q
j

inclusion−−−−−−→ K ′ projection−−−−−−−→ K.

Then the chain c̄ =
∑

j λjgj ∈ Cq(K) maps to the chain c by construction. One has to notice

that c̄ is a cycle since c is a cycle. Then β = [c̄] maps to α under the induced homomorphism
f∗ .

There is the relative version of Lemma 14.2 which may be proved by slight modification of
the above proof.

Lemma 14.3. Let (X,A) be a pair of topological spaces, α ∈ Hq(X,A). The there exist
a CW -pair (K,L), a map f : (K,L) −→ (X,A), and element β ∈ Hq(K,L), such that
f∗(β) = α.

Exercise 14.1. Prove Lemma 14.3.

Proof of Theorem 14.1. Recall that f : X −→ Y is a weak homotopy equivalence if for
any CW -complex Z , the induced map f# : [Z,X] −→ [Z, Y ] is a bijection.

(1): f∗ is an epimorphism. Let α ∈ Hq(Y ). Then by Lemma 14.2 there exists a CW -complex
K , a map g : K −→ Y such that g∗(β) = α . Consider a map h ∈ f−1

# ([g]) ∈ [K,X]. We
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have the following diagram

X Y-f

K

HHHHHHHHHY
h

6
g

which commutes up to homotopy. Now we obtain a commutative diagram:

Hq(X) Hq(Y )-f∗

Hq(K)
HHHHHHHHHY

h∗
6

g

Thus f∗(h∗(β)) = α .

(2): f∗ is a monomorphism. First we can change the map f : X −→ Y to a homotopy
equivalent map f ′ : X ′ −→ Y ′ , so that f ′ is an embedding. Thus we assume that X ⊂ Y
and f = i : X ⊂ Y is an embedding. Let α ∈ Hq(X), and i∗(α) = 0. Consider the long
exact sequence in homology groups:

· · · → Hq+1(Y,X)
∂∗−→ Hq(X)

i∗−→ Hq(Y )→ · · ·
The exactness implies that there is γ ∈ Hq+1(Y,X) such that ∂∗(γ) = α . By Lemma 14.3
there exist a pair (K,L), a map g : (K,L) −→ (Y,X), and β ∈ Hq+1(K,L) such that
g∗(β) = γ . Then since f : X −→ Y is a weak homotopy equivalence, there exists a map
h : K −→ X making the diagram

X Y-f

L

6
g|L

K

HHHHHHHHHY
h

6
g

-i

is commutative up to homotopy. Furthermore, by Theorem 11.7 the map h : K −→ Y may
be chosen so that (i ◦ h)|L = g|L . We have the commutative diagram

Hq+1(Y,X) Hq(X) Hq(Y ) · · ·-∂∗ -i∗ -

Hq+1(K,L)

6
g∗

Hq(L)

6
(g|L)∗=((i◦h)|L)∗

Hq(K)
HHHHHHHHHY

h∗
6

g∗

· · ·-∂∗ -i∗ -

Thus we have that α = ∂∗(γ) = ∂∗(g∗(β)) = (g|L)∗(∂∗(γ) = h∗(i∗(∂∗(β))) = 0 because of the
exactness. Theorem 14.1 is proved.
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Recall that we proved (Theorem 11.7) that a map f : X −→ Y is weak homotopy equivalence
if the induced homomorphism f∗ : πq(X, x0) −→ πq(Y, f(x0)) is an isomorphism for all q ≥ 0
and x0 ∈ X . We reformulate Theorem 14.1:

Theorem 14.4. Let a map f : X −→ Y induce an isomorphism in homotopy groups f∗ :
πq(X, x0) −→ πq(Y, f(x0)) for all q ≥ 0 and x0 ∈ X . Then f induces isomorphism in the
homology groups f∗ : Hq(X) −→ Hq(Y ) for all q ≥ 0 .

The following exercises show that some naive generalizations of Theorem 14.4 fail.

Exercise 14.2. Show that the spaces CP∞ × S3 and S2 have isomorphic homotopy groups
and different homology groups. Thus these spaces are not homotopy equivalent.

Exercise 14.3. Show that the spaces RPn × Sm and Sn ×RPm (n 6= m, m,n ≥ 2) have
isomorphic homotopy groups and different homology groups.

Exercise 14.4. Show that the spaces S1 ∨ S1 ∨ S2 and S1 × S1 have the same homology
groups and different homotopy groups.

Exercise 14.5. Show that the Hopf map h : S3 −→ S2 induces trivial homomorphism in
reduced homology groups, and nontrivial homomorphism in homotopy groups.

Exercise 14.6. Show that the projection

S1 × S1 projection−−−−−−−→ (S1 × S1)/(S1 ∨ S1) = S2

induces trivial homomorphism in homotopy groups, and nontrivial homomorphism in homol-
ogy groups.

14.2. Hurewicz homomorphism. Let X be a topological space with a base point x0 ∈ X .
Let sn be a canonical generator of Hn(S

n), n = 1, 2, . . ., given by the homeomorphism

∂∆n+1
∼=−→ Sn . For any element α ∈ πn(X, x0) consider a representative f : Sn −→ X ,

[f ] = α . We have the induced homomorphism f∗ : Hn(S
n) −→ Hn(X). Let

h(α) = f∗(sn) ∈ Hn(X).

Clearly the element h(α) ∈ Hn(X) does not depend on the choice of the representing map
f . Furthermore, the correspondence α 7→ h(α) determines the homomorphism

h : πn(X, x0) −→ Hn(X), n = 1, 2, . . . .

The homomorphism h is the Hurewicz homomorphism. The Hurewicz homomorphism is
natural with respect to maps (X, x0) −→ (Y, y0) of based spaces.

Exercise 14.7. Prove that h : πn(X, x0) −→ Hn(X) is a homomorphism.

Exercise 14.8. Let x0, x1 ∈ X , and γ : I −→ X be a path connecting the points x0, x1 :
γ(0) = x0 , and γ(1) = x1 . The path γ determines the isomorphism

γ# : πn(X, x0) −→ πn(X, x1).
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Prove that the following diagram commutes:

πn(X, x0)

@
@

@
@@R

h

πn(X, x1)

�
�

�
��	

h

-
γ#

Hn(X)

Theorem 14.5. (Hurewicz) Let (X, x0) be a based space, such that

(65) π0(X, x0) = 0, π1(X, x0) = 0, · · · , πn−1(X, x0) = 0,

where n ≥ 2. Then
H1(X) = 0, H2(X) = 0, · · · , Hn−1(X) = 0,

and the Hurewicz homomorphism h : πn(X, x0) −→ Hn(X) is an isomorphism.

Proof. By Theorem 11.10 there exist a CW -complex K and a weak homotopy equivalence
f : K −→ X . Theorem 14.1 guarantees that f induces an isomorphism in homology groups.
Thus it is enough to prove the statement in the case when X is a CW -complex. Then the
condition (65) means that X is (n−1)-connected CW -complex. Theorem 5.9 implies that up
to homotopy equivalence X may be chosen so that it has a single zero-cell, and it does not have
any cells of dimensions 1, 2, . . . , n−1. In particular, this implies that H1(X) = 0, H2(X) = 0,
· · · , Hn−1(X) = 0. Now the n-th skeleton of X is a wedge of spheres: X(n) =

∨
i S

n
i . Let

gi : Sni −→
∨
i S

n
i be the embedding of the i-th sphere, and let rj : Sn −→ ∨

i S
n
i be the

attaching maps of the (n+1)-cells en+1
j . The maps gi determine the generators of the group

πn(X
(n)), and let ρj ∈ πn(X(n)) be the elements determined by the maps rj .

Theorem 11.6 describes the first nontrivial homotopy group πn(X, x0) as a factor-group of
the homotopy group πn(X

(n)) ∼= Z⊕ · · · ⊕ Z by the subgroup generated by ρj . Notice that
the cellular chain group

En(X) = Hn(X
(n)) = Hn

(
∨

i

Sni

)
,

and Hn(X) = En(X)/Im ∂
≀

n+1 . Finally we notice that the Hurewicz homomorphism h :
πn(S

n) −→ Hn(S
n) is an isomorphism. Thus we have the commutative diagram

πn

(
∨

i

Sni

)
Hn

(∨
Sni

)
-h

πn(S
n
j )

6
(ρj)∗

Hn(S
n
j )

6
(ρj)∗

-h

where the horizontal homomorphisms are isomorphisms. Hence h induces an isomorphism
πn(X, x0) −→ Hn(X).

Corollary 14.6. Let X be a simply connected space, and H1(X) = 0, H2(X) = 0 · · ·
Hn−1(X) = 0. Then π1(X) = 0, π2(X) = 0 · · · πn−1(X) = 0 and the Hurewicz homomor-
phism h : πn(X, x0) −→ Hn(X) is an isomorphism.
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Corollary 14.7. Let X be a simply-connected CW -complex with H̃n(X) = 0 for all n. Then
X is contractible.

Exercise 14.9. Prove Corollary 14.6.

Exercise 14.10. Prove Corollary 14.7.

Remark. Let X be a CW -complex. The above results imply that if πq(X, x0) = 0 for all
q ≥ 0 or Hq(X) = 0 for all q ≥ 0, then X is homotopy equivalent to a point. However
for a given map f : X −→ Y the fact that f induces trivial homomorphism in homotopy
or homology groups does not imply that f is homotopic to a constant map. The following
exercises show that even if f induces trivial homomorphism in both homotopy and homology
groups, it does not imply that f is homotopic to a constant map.

Exercise 14.11. Consider the torus X = S1 × S1 × S1 . We give X an obvious product
CW -structure. In particular, X(1) = S1 ∨ S1 ∨ S1 . Consider the map

f : S1 × S1 × S1 projection−−−−−−−−→ (S1 × S1 × S1)/(S1 × S1 × S1)(2) = S3 Hopf−−−−→ S2.

Prove that f induces trivial homomorphism in homology and homotopy groups, however f
is not homotopic to a constant map.

Exercise 14.12. Consider the map

g : S2n−2 × S3 projection−−−−−−−−→ (S2n−2 × S3)/(S2n−2 ∨ S3) = S2n+1 Hopf−−−−→ CPn.

Prove that g induces trivial homomorphism in homology and homotopy groups, however g
is not homotopic to a constant map.

14.3. Hurewicz homomorphism in the case n = 1.

Theorem 14.8. (Poincarè) Let X be a connected space. Then the Hurewicz homomor-
phism h : π1(X, x0) −→ H1(X) is epimorphism, and the kernel of h is the commutator
[π1(X, x0), π1(X, x0)] ⊂ π1(X, x0). Thus H1(X) ∼= π1(X, x0)/[π1(X, x0), π1(X, x0)].

Fig. 14.1.

Exercise 14.13. Prove Theorem 14.8.

Exercise 14.14. We say that a map f : S1 −→ X is
cobordant to zero if there is an oriented surface M with
boundary ∂M = S1 and a map F : M −→ X such that
F |∂M = f , see Fig. 14.1. Let f : S1 −→ X be a map
representing an element α ∈ π1(X, x0). Prove that α ∈
Ker h if and only if the map f : S1 −→ X is cobordant to
zero.

Exercise 14.15. Let M2
g be an oriented surface of genus g . As we know, H2(M

2
g )
∼= Z, and

a generator s ∈ H2(M
2
g ) may be represented by the identity map M2

g −→ M2
g . Let X be a

simply connected space. Prove that for any class α ∈ H2(X) there exist a surface M2
g , and

a map f : M2
g −→ X such that f∗(s) = α .
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14.4. Relative version of the Hurewicz Theorem. One defines the relative Hurewicz
homomorphism h : πn(X,A, x0) −→ Hn(X,A) similarly to the regular Hurewicz homo-
morphism. Let s ∈ Hn(D

n, Sn−1) be a canonical generator given by the homeomorphism

(∆n, ∂∆n)
∼=−→ (Dn, Sn−1). Let f : (Dn, Sn−1) −→ (X,A) be a map representing an element

α ∈ πn(X.A). Then h(α) = f∗(sn) ∈ Hn(X,A). There is a relative version of the above
Hurewics Theorem:

Theorem 14.9. Let (X,A) be a pair of simply connected spaces, x0 ∈ A, such that

(66) π0(X,A, x0) = 0, π1(X,A, x0) = 0, · · · , πn−1(X,A, x0) = 0,

where n ≥ 2. Then

H1(X,A) = 0, H2(X,A) = 0, · · · , Hn−1(X,A) = 0,

and the Hurewicz homomorphism h : πn(X,A, x0) −→ Hn(X,A) is an isomorphism.

We do not give a proof of Theorem 14.9, however it is very similar to the proof of the above
Hurewicz Theorem.

Exercise 14.16. Prove Theorem 14.9.

Theorem 14.10. (Whitehead Theorem-II) Let X , Y be simply connected spaces and
f : X −→ Y be a map.

(a) If the induced homomorphism in homotopy groups f∗ : πq(X, x0) −→ πq(Y, f(x0))
is isomorphism for q = 2, 3, . . . , n − 1, and epimorphism if q = n, then the
homomorphism in homology groups f∗ : Hq(X) −→ Hq(Y ) is isomorphism for
q = 2, 3, . . . , n− 1, and epimorphism if q = n.

(b) If the induced homomorphism in homology groups f∗ : Hq(X) −→ Hq(Y ) is isomor-
phism for q = 2, 3, . . . , n− 1, and epimorphism if q = n, then the homomorphism in
homotopy groups f∗ : πq(X, x0) −→ πq(Y, f(x0)) is isomorphism for q = 2, 3, . . . , n−1,
and epimorphism if q = n.

Proof. (a) We can assume that f : X −→ Y is an embedding, see Claim 9.1. Then the long
exact sequence in homotopy

(67) · · · → πq(X, x0)
f∗−→ πq(Y, x0) −→ πq(Y,X, x0)

∂−→ πq−1(X, x0)→ · · ·
gives that if f∗ : πq(X, x0) −→ πq(Y, f(x0)) is isomorphism for q = 1, 2, 3, . . . , n − 1, and
epimorphism if q = n, then πq(Y,X, x0) = 0 if q ≤ n. Then Theorem 14.9 implies that
Hq(Y,X) = 0 for q ≤ n. Then the long exact sequence in homology

(68) · · · → Hq(X)
f∗−→ Hq(Y ) −→ Hq(Y,X) −→ Hq−1(X)→ · · ·

implies that f∗ : Hq(X)→ Hq(Y ) is isomorphism for q = 1, 2, 3, . . . , n− 1, and epimorphism
if q = n.

(b) Analogously, let f∗ : Hq(X) → Hq(Y ) be an isomorphism for q = 1, 2, 3, . . . , n − 1,
and epimorphism if q = n. Then the long exact sequence in homology (68) implies that
Hq(Y,X, x0) = 0 for q ≤ n. Then again, Theorem 14.9 implies that πq(Y,X, x0) = 0 for
q ≤ n and the exact sequence (67) gives that f∗ : πq(X, x0) −→ πq(Y, f(x0)) is isomorphism
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for q = 1, 2, 3, . . . , n−1, and epimorphism if q = n. Thus in both cases the relative Hurewicz
Theorem 14.9 implies the desired result.

Corollary 14.11. Let X , Y be simply connected spaces and f : X −→ Y be a map which
induces isomorphism f∗ : Hq(X) −→ Hq(Y ) for all q ≥ 0. Then f is weak homotopy
equivalence. (In particular, if X , Y are CW -complexes, then f is homotopy equivalence.)

Exercise 14.17. Let X be a connected, simply connected CW -complex with H̃n(X) = Z,

n ≥ 2, and H̃q(X) = 0 if q 6= n. Prove that X is homotopy equivalent to Sn .
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15. Homology with coefficients and cohomology groups

Here we define homology and cohomology groups with coefficients in arbitrary abelian group
G. We should be aware that these constructions could be done rather formally by means of
basic homological algebra. We choose to avoid a total “algebraization” of those constructions:
there are great classical books (say, by S. MacLane, Homology, Springer, 1967 or by S.
Eilenberg & N. Steenrod, Foundations of Algebraic Topology) where you can find the most
abstract algebraic approach concerning the homology and cohomology theories. We will
describe only those algebraic constructions which are really necessary.

15.1. Definitions. Let G be an abelian group. A singular q -chain of a space X with coef-
ficients in G is a linear combination

∑

i

λifi, where λi ∈ G, and fi : ∆q −→ X is a singular simplex.

We denote a group of q -chains Cq(X;G). Clearly, Cq(X;G) = Cq(X) ⊗ G. The bound-
ary operator ∂q : Cq(X;G) −→ Cq−1(X;G) is induced by the regular boundary operator
∂q : Cq(X) −→ Cq(X). In more detail, recall that a simplex ∆q is defined by the vertices
(v0, . . . , vq), and Γj∆

q is the face of ∆q given by the vertices (v0, . . . , v̂j, . . . , vq). Then

∂q(f : ∆q −→ X) =

q∑

j=0

(−1)j(f |Γj∆q : Γj∆
q −→ X).

Let C∗(X) be the singular chain complex:

(69) · · · ∂q+1−−−→ Cq(X)
∂q−→ Cq−1(X)

∂q−1−−−→ · · · ∂2−→ C1(X)
∂1−→ C0(X) −→ 0.

Then we have the chain complex C∗(X)⊗G:

· · · ∂q+1−−−→ Cq(X)⊗G ∂q−→ Cq−1(X)⊗G ∂q−1−−−→ · · · ∂2−→ C1(X)⊗G ∂1−→ C0(X)⊗G −→ 0.

We define the homology groups with coefficients in G:

Hq(X;G) = Hq(C∗(X)⊗G) =
Ker(∂q : Cq(X)⊗G −→ Cq−1(X)⊗G)

Im(∂q+1 : Cq+1(X)⊗G −→ Cq(X)⊗G)
.

Now we consider the cochain complex C∗(X;G) = Hom(C∗(X), G):

· · · δq

←− Hom(Cq(X), G)
δq−1

←−−− Hom(Cq−1(X), G)
δq−2

←−−− · · · δ0←− Hom(C0(X), G) ←− 0.

In other words, a cochain ξ ∈ Hom(Cq(X), G) = Cq(X;G) is a linear function on Cq(X)
with values in the group G, ξ : Cq(X)→ G.

It is convenient to denote ξ(c) = 〈ξ, c〉 ∈ G. Notice that by definition, 〈δqξ, a〉 = 〈ξ, ∂q+1a〉 ,
where ξ ∈ Cq(X;G), and a ∈ Cq+1(X). Clearly δq+1δq = 0 since

〈δq+1δqξ, a〉 = 〈δqξ, ∂q+2a〉 = 〈ξ, ∂q+1∂q+2a〉 = 0.

We define the cohomology groups

Hq(X;G) = Hq(C∗(X;G)) =
Ker(δq : Cq(X;G) −→ Cq+1(X;G))

Im(δq−1 : Cq−1(X;G) −→ Cq(X;G))
.
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Recall that there is a canonical homomorphism ǫ : C0(X) −→ Z sending c =
∑

j λjfj to the

sum
∑

j λj ∈ Z. The homomorphism ǫ induces the homomorphisms

ǫ∗ : C0(X;G) −→ G and ǫ∗ : G −→ C0(X;G).

Clearly ǫ∗ :
∑

j λjfj 7→
∑

j λj ∈ G, and ǫ∗ : λ 7→ ξλ , where 〈ξλ, fj〉 = λ for any generator

fj ∈ C0(X). Then we define the complexes C̃∗(X)⊗G and C̃∗(X;G) as

· · · ∂q+1−−→ Cq(X)⊗G ∂q−→ Cq−1(X)⊗G ∂q−1−−→ · · · ∂1−→ C0(X)⊗G ǫ∗−→ G −→ 0,

· · · δq

←− Cq(X;G)
δq−1

←−− Cq−1(X;G)
δq−2

←−− · · · δ0←− C0(X;G)
ǫ∗←− G←− 0.

Thus H̃0(X;G) = Ker ǫ∗/Im ∂1 , and H̃0(X;G) = Ker δ0/Im ǫ∗ . It is convenient to call the
elements of Cq(X;G) a cochain, the elements of Zq(X;G) = Ker δq ⊂ Cq(X;G) cocycles,
and the elements of Bq(X;G) = Im δq−1 ⊂ Zq(X;G) coboundaries.

15.2. Basic propertries of H∗(−;G) and H∗(−;G). Here we list those properties of homol-
ogy and cohomology groups which are parallel to the above features of the integral homology
groups.

(1) (Naturality) The homology groups Hq(X;G) and cohomology groups Hq(X;G) are
natural, i.e. if f : X −→ Y is a map, then it induces the homomorphisms

f∗ : Hq(X;G) −→ Hq(Y ;G), and f ∗ : Hq(Y ;G) −→ Hq(X;G).

In other words, the homology H∗(−;G) is a covariant functor on the category of
spaces, and the cohomology H∗(−;G) is a contravariant functor.

(2) (Homotopy invariance) Let f ∼ g : X −→ Y . then

f∗ = g∗ : Hq(X;G) −→ Hq(Y ;G), and f ∗ = g∗ : Hq(Y ;G) −→ Hq(X;G).

(3) (Additivity) Let X =
⊔
j Xj be a disjoint union. Then

H∗

(
⊔

j

Xj;G

)
∼=
⊕

j

H∗(Xj;G), and H∗

(
⊔

j

Xj;G

)
∼=
∏

j

H∗(Xj ;G).

(4) (Homology of the point) H0(pt;G) = G, Hq(pt;G) = 0, and Hq(pt;G) = 0,
Hq(pt;G) = 0 for q ≥ 1.

(5) (Long exact sequences) For any pair (X,A) there are the following long exact se-
quences:

· · · → Hq(A;G) −→ Hq(X;G) −→ Hq(X,A;G)
∂−→ Hq−1(A;G)→ · · · ,

· · · → Hq(X,A;G) −→ Hq(X;G) −→ Hq(A;G)
δ−→ Hq+1(X,A;G)→ · · ·

(6) (Excision) If (X,A) is a Borsuk pair, then

Hq(X,A;G) ∼= H̃q(X/A;G), Hq(X,A;G) ∼= H̃q(X/A;G).

In general case, there are the excision isomorphisms:

Hq(X \B,A \B) ∼= Hq(X,B), Hq(X \B,A \B) ∼= Hq(X,B),

under the same assumptions as before (i.e. that B ⊂ A and B ⊂
o

A).
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(7) (Mayer-Vietoris long exact sequnces) Let X1, X2 ⊂ X , and X1∪X2 = X ,
o

X1∪
o

X2 =
X . Then there are the Mayer-Vietoris long exact sequnces:

· · · → Hq(X1 ∩X2;G)
α∗−→ Hq(X1;G)⊕Hq(X2;G)

β∗−→ Hq(X1 ∪X2;G)
∂−→ · · ·

· · · → Hq(X1 ∪X2;G)
α∗

−→ Hq(X1;G)⊕Hq(X2;G)
β∗

−→ Hq(X1 ∩X2;G)
δ−→ · · ·

Exercise 15.1. Compute the groups Hq(S
n;G) and Hq(Sn;G).

Exercise 15.2. Compute the groups Hq(CPn;G) and Hq(CPn;G).

Exercise 15.3. Compute the groups Hq(RPn;Z/p), Hq(RPn;Z/p) for any prime p.

Exercise 15.4. Let Mg be an oriented surface of genus g . Compute the groups Hq(Mg;Z/p)
and Hq(Mg;Z/p) for any prime p.

Exercise 15.5. Compute the homology and cohomology groups Hq(Mg#RP2;Z/p) and
Hq(Mg#RP2;Z/p) for any prime p.

Exercise 15.6. Compute the homology and cohomology groups Hq(Mg#Kl
2;Z/p) and

Hq(Mg#Kl
2;Z/p) for any prime p.

15.3. Coefficient sequences. We have to figure out the relationship between homology and
cohomology groups with different coefficients. Let ϕ : G −→ H be a homomorphism of
abelian groups. Then clearly ϕ induces the chain (cochain) maps of complexes:

ϕ# : C∗(X;G) −→ C∗(X;H), and ϕ# : C∗(X;G) −→ C∗(X;H).

(Notice that the homomorphisms ϕ# and ϕ# are going in the same direction.) Thus ϕ
induces the homomorphisms:

ϕ∗ : H∗(X;G) −→ H∗(X;H) and ϕ∗ : H∗(X;G) −→ H∗(X;H).

Now let 0 −→ G′ α−→ G
β−→ G′′ −→ 0 be a short exact sequence of abelian groups. It is easy

to notice that this short exact sequnce induces the short exact sequnces of complexes:

0 −→ C∗(X;G′)
α#−→ C∗(X;G)

β#−→ C∗(X;G′′) −→ 0,

0 −→ C∗(X;G′)
α#

−→ C∗(X;G)
β#

−→ C∗(X;G′′) −→ 0.

These short exact sequences immediately imply the coefficient exact sequences:

· · · → Hq(X;G′)
α∗−→ Hq(X;G)

β∗−→ Hq(X;G′′)
∂−→ Hq−1(X;G′)→ · · · ,

· · · → Hq(X;G′)
α∗

−→ Hq(X;G)
β∗

−→ Hq(X;G′′)
δ−→ Hq+1(X;G′)→ · · · ,

Example. Consider the short exact sequence 0 −→ Z
·m−→ Z −→ Z/m −→ 0. Then we have

the connecting homomorphisms

∂ = βm : Hq(X;Z/m) −→ Hq+1(X;Z), and δ = βm : Hq(X;Z/m) −→ Hq+1(X;Z).



130 BORIS BOTVINNIK

These homomorphisms are known as the Bockstein homomorphisms. Let α ∈ Hq(X;Z/m),
and a ∈ Cq(X;Z/m) a cycle representing α . Then ∂q(a) = 0 in Cq−1(X;Z/m), however in
general, ∂q(a) 6= 0 in Cq−1(X;Z). It is easy to check that ∂q(a) = m·b, where b ∈ Cq−1(X;Z)

is a cycle. Thus βm(α) =
[
∂q(a)
m

]
∈ Hq−1(X;Z).

15.4. The universal coefficient Theorem for homology groups. We recall few basic
constructions from elementary group theory. Let G be an abelian group. Then there is a free
resolution of G:

0 −→ R
β−→ F

α−→ G −→ 0,

i.e. the above sequence is exact and the groups F , R are free abelian. Roughly a choice of
free resolution corresponds to a choice of generators and relations for the abelian group G.

This choice is not unique, however, if 0 −→ R1
β1−→ F1

α1−→ G −→ 0 is another free resolution,
there exist homomorphisms ψ : F −→ F1 , θ : R −→ R1 which make the following diagram
commute:

0 R

?

θ

F

?

ψ

G

?

Id

0- -β -α -

0 R1 F1 G 0- -β1 -α1 -

Now let H be an abelian group.

Claim 15.1. There is the exact sequence

0 −→ Ker(β ⊗ 1) −→ R⊗H β⊗1−−→ F ⊗H α⊗1−−→ G⊗H −→ 0.

Exercise 15.7. Prove Claim 15.1.

We define Tor(G,H) = Ker(β ⊗ 1).

Exercise 15.8. Prove that the group Tor(G,H) is well-defined, i.e. it does not depend on
the choice of resolution.

Let 0 −→ R
β−→ F

α−→ G −→ 0 be a resolution of G. We denote R(G) the chain complex

0 −→ R
β−→ F −→ 0.

Clearly H0(R(G)) = G, and Hj(R(G)) = 0 if j > 0. Consider the complex R(G)⊗H :

0 −→ R⊗H β−→ F ⊗H −→ 0.

By definition we have that

Hj(R(G)⊗H) =






G⊗H if j = 0,
Tor(G,H) if j = 1,

0 else.

Now consider an exact sequence

(70) 0 −→ G′ −→ G −→ G′′ −→ 0.



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY” 131

The sequence (70) induces a short exact sequence of the complexes:

0 −→ R(G′) −→ R(G) −→ R(G′′) −→ 0,

and a short exact sequence of the complexes:

0 −→ R(G′)⊗H −→ R(G)⊗H −→ R(G′′)⊗H −→ 0.

Thus we have the long exact sequence in homology groups:

(71) 0→ Tor(G′, H)→ Tor(G,H)→ Tor(G′′, H)→ G′ ⊗H → G⊗H → G′′ ⊗H → 0

Exercise 15.9. Let G,H be abelian groups. Prove that there is a canonical isomorphism
Tor(G,H) ∼= Tor(H,G).

Exercise 15.10. Let G,G′, G′′ be abelian groups. Prove the isomorphism

Tor(Tor(G,G′), G′′) ∼= Tor(G,Tor(G′, G′′)).

Exercise 15.11. Let F be a free abelian group. Show that Tor(F,G) = 0 for any abelian
group G.

Exercise 15.12. Let G be an abelian group. Denote T (G) a maximal torsion subgroup of
G. Show that Tor(G,H) ∼= T (G)⊗ T (H) for finite generated abelian groups G,H . Give an
example of abelian groups G,H , so that Tor(G,H) 6= T (G)⊗ T (H).

Theorem 15.1. Let X be a space, G be an abelian group. Then there is a split short exact
sequence

(72) 0→ Hq(X)⊗G −→ Hq(X;G) −→ Tor(Hq−1(X), G)→ 0

Remark. The splitting of the sequence (15.1) is not natural. In the course of the proof we
shall see that that this splitting depends on a splitting of the chain complex C∗(X).

Proof. Let 0 −→ R
β−→ F

α−→ G −→ 0 be a free resolution of G. We have the five-term
exact sequence

Hq(X;R)
β∗−→ Hq(X;F )

α∗−→ Hq(X;G)
∂−→ Hq−1(X;R)

β∗−→ Hq−1(X;F ).

We notice that Hq(X;R) ∼= Hq(X) ⊗ R , and Hq(X;F ) ∼= Hq(X) ⊗ F . Thus we have the
exact sequence

(73) Hq(X)⊗ R β∗−→ Hq(X)⊗ F α∗−→ Hq(X;G)
∂−→ Hq−1(X)⊗ R β∗−→ Hq−1(X)⊗ F

Consider carefully the sequence (73). First, we notice that it gives a short exact sequence

0 −→ Coker β∗ −→ Hq(X;G) −→ Ker β∗ −→ 0,

where

Coker β∗ = (Hq(X)⊗ F )/Im(β∗ : Hq(X)⊗R β∗−→ Hq(X)⊗ F ) and

Ker β∗ = Ker(β∗ : Hq−1(X)⊗R β∗−→ Hq−1(X)⊗ F ).

On the other hand, β∗ = 1 ⊗ β = β ⊗ 1. Hence Coker β∗ = Hq(X) ⊗ G, and Ker β∗ =
Tor(Hq−1(X), G).
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Now we have to show the splitting of the short exact sequence (72). Let Cq = Cq(X). Recall
that Zq = Ker ∂q , and Bq−1 = Im ∂q ⊂ Cq−1 . We have a short exact sequence of free abelian
groups:

0 −→ Zq −→ Cq −→ Bq−1 −→ 0.

Since the above groups are free abelian, there is a splitting Cq = Zq ⊕Bq−1 . Now we analyze
the chain complex C∗ using the above splitting for each q ≥ 0. We have the commutative
diagram:

?

inclusion

Cq+1

?

∂q+1

= Zq+1 ⊕ Bq

?

inclusion

Cq =

?

∂q

Zq ⊕ Bq−1

Cq−1 = Zq−1 ⊕ Bq−2

This shows that the chain complex C∗ splits into a direct sum of short chain complexes C∗(q):

· · · −→ 0 −→
q

Bq−1
inclusion−−−−−−→

q−1

Z q−1 −→ 0 −→ · · ·
Clearly Hq−1(C∗(q)) = Hq−1(X) since we have the short exact sequence

(74) 0 −→ Bq−1 −→ Zq−1 −→ Hq−1(X) −→ 0.

by definition of the homology group. Also we consider (74) as free resolution of the group
Hq−1(X). We have the isomorphism of chain complexes:

C∗ =
⊕

q≥0

C∗(q), and C∗ ⊗G =
⊕

q≥0

(C∗(q)⊗G).

We notice that

Hj(C∗(q)⊗G) =





Hq−1(X)⊗G if j = q − 1
Tor(Hq−1(X), G) if j = q
0 else.

Thus
Hq(X;G) = Hq(C∗ ⊗G) = (Hq(X)⊗G)⊕ Tor(Hq−1(X), G).

This proves Theorem 15.1.

15.5. The universal coefficient Theorem for cohomology groups. First we have to
define the group Ext(G,H). I assume here that we all know basic things about the group
Hom(G,H). Consider the short exact sequence

0 −→ Z
·2−→ Z −→ Z/2 −→ 0.

We apply the functor Hom(−,Z/2) to this exact sequence:

0 ←−
Z/2

Hom (Z,Z/2)
·2←−

Z/2

Hom (Z,Z/2) ←−
Z/2

Hom (Z/2,Z/2) ←− 0.
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Clearly this sequence is not exact.

Let G be an abelian group and 0 −→ R
β−→ F

α−→ G −→ 0 be a free resolution.

Claim 15.2. Let H be an abelian group. The following sequence is exact:

(75) 0 ←− Coker β# ←− Hom(R,H)
β#

←−− Hom(F,H)
α#

←−− Hom(G,H) ←− 0.

Exercise 15.13. Prove Claim 15.2.

We define Ext(G,H) = Coker β# . Consider the cochain complex Hom(R(G), H):

0 ←− Hom(R,H)
β#

←−− Hom(F,H) ←− 0.

Then Claim 15.2 implies that

Hj(Hom(R(G), H)) =






Hom(G,H) if j = 0,
Ext(G,H) if j = 1,
0 else.

Exercise 15.14. Prove that the group Ext(G,H) is well defined, i.e. it does not depend on
the choice of free resolution of G.

Exercise 15.15. Let 0 −→ G′ −→ G −→ G′′ −→ 0 be a short exact sequence of abelian
groups. Prove that it induces the following exact sequence:

0→ Hom(G′′, H)→ Hom(G,H)→ Hom(G′, H)→

Ext(G′′, H)→ Ext(G,H)→ Ext(G′, H)→ 0

Exercise 15.16. Prove that Ext(Z, H) = 0 for any group H .

Exercise 15.17. Prove the isomorphisms: Ext(Z/m,Z/n) ∼= Z/m ⊗ Z/n, Ext(Z/m,Z) ∼=
Z/m.

Exercise 15.18. Let G or H be Q, R or C. Then Ext(G,H) = 0.

Theorem 15.2. Let X be a space, G an abelian group. Then there is a split exact sequence

(76) 0 −→ Ext(Hq−1(X), G) −→ Hq(X;G) −→ Hom(Hq(X), G) −→ 0

for each q ≥ 0. Again, the splitting of this sequence is not natural.
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Proof. First, consider the splitting of the groups Cq = Cq(X) = Bq−1 ⊕ Zq . We have the
commutative diagram:

...

?

...

?

...

?
0 Zq

?
0

Cq

?
∂q

Bq−1

?
0

0- -iq -jq -

0 Zq−1

?
0

Cq−1

?

Bq−2

?
0

0- -
iq−1 -

jq−1 -

...
...

...

This diagram may be thought as a short exact sequence of chain complexes:

(77) 0 −→ Z∗
i#−→ C∗

j#−→ B∗ −→ 0.

Remark. It is interesting to notice that the long exact sequence

· · · −→ Hq(Z∗) −→ Hq(C∗) −→ Hq(B∗) −→ Hq−1(Z∗) −→ · · ·
corresponding to the short exact sequence (77) splits into the short exact sequences

0 −→ Bq
αq−→ Zq −→ Hq(X) −→ 0.

Exercise 15.19. Prove the above splitting.

Now we have a short exact sequence of cochain complexes:

(78) 0 ←− Hom(Z∗, G)
i#←− Hom(C∗, G)

j#←− Hom(B∗, G) ←− 0

Notice that the cochain complexes Hom(Z∗, G) and Hom(B∗, G) have zero differentials, hence

Hq(Hom(Z∗, G)) = Hom(Zq, G), and Hq(Hom(B∗, G)) = Hom(Bq−1, G).

The sequence (78) induces the long exact sequence in cohomology groups:

Hom(Bq, G)
δq

←− Hom(Zq, G)
i∗←− Hq(Hom(C∗, G))

j∗←− Hom(Bq−1, G)
δq−1

←−−− Hom(Zq−1, G)

It is easy to notice that the coboundary homomorphism δq : Hom(Zq, G) −→ Hom(Bq, G)
coincides with the homomorphism α#

q = Hom(αq, 1). We have the following exact sequence:

0 ←− Kerα#
q ←− Hq(Hom(C∗, G)) ←− Coker α#

q−1 ←− 0.

Now we identify Kerα#
q = Hom(Hq(X), G) and Coker α#

q−1 = Ext(Hq−1(X), G) to get the
desired exact sequence.

Recall that we have splitting C∗ =
⊕

q≥0

C∗(q), and hence

Hom(C∗, G) =
⊕

q≥0

Hom(C∗(q), G).
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Consider the cochain complex Hom(C∗(q), G):

0 ←−
q

Hom (Bq−1, G) ←−
q−1

Hom (Zq−1, G) ←− 0.

We notice that the sequence 0 −→ Bq−1 −→ Zq−1 −→ Hq−1(X) −→ 0 may be considered as
free resolution of the group Hq−1(X). Thus we have:

Hj(Hom(C∗(q), G)) =





Hom(Hq−1(X), G) if j = q − 1,
Ext(Hq−1(X), G) if j = q,
0 else.

Thus we use the above splitting of Hom(C∗, G) to get the isomorphism:

Hq(X;G) = Hq(Hom(C∗, G)) = Hom(Hq(X), G)⊕ Ext(Hq−1(X), G).

This completes the proof of Theorem 15.2.

Theorem 15.3. Let X be a space, and G an abelian group. Then there is a split exact
sequence

0 −→ Hq(X;Z)⊗G −→ Hq(X;G) −→ Tor(Hq+1(X;Z), G) −→ 0

for any q ≥ 0. Again the splitting is not natural.

Exercise 15.20. Prove Theorem 15.3.

Let G be a finitely generated abelian group. It is convenient to denote F (G) the maximum
free abelian subgroup of G, and T (G) the maximum torsion subgroup, so that G = F (G)⊕
T (G). Perhaps such decomposition makes only for finitely generated groups.

Exercise 15.21. Let X be a space so that the groups Hq(X) are finitely generated. Prove
that Hq(X;Z) are also finitely generated and Hq(X;Z) ∼= F (Hq(X;Z))⊕ T (Hq−1(X;Z)).

Exercise 15.22. Let F be Q, R or C. Prove that

Hq(X;F ) = Hq(X)⊗ F, Hq(X;F ) = Hom(Hq(X), F ).

Exercise 15.23. Let F be a free abelian group. Show that Ext(G,F ) = 0 for any abelian
group G.

Exercise 15.23. Let X be a finite CW -complex, and F be a field. Prove that the number

χ(X)F =
∑

q≥0

(−1)q dim Hq(X;F)

does not depend on the field F and is equal to the Euler characteristic

χ(X) =
∑

q≥0

(−1)q {# of q -cells of X } .
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15.6. The Künneth formula. Let C∗ and C′∗ be two chain complexes:

· · · −→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0

ǫ−→ Z,

· · · −→ C ′
3

∂′3−→ C ′
2

∂′2−→ C ′
1

∂′1−→ C ′
0

ǫ′−→ Z.

A tensor product C∗ ⊗ C′∗ is the complex

· · · −→ C̄3
∂̄3−→ C̄2

∂̄2−→ C̄1
∂̄1−→ C̄0

ǭ−→ Z

where
C̄q =

⊕

r+s=q

Cr ⊗ C ′
s,

and the boundary operator ∂̄q : C̄q −→ C̄q−1 ,

∂̄q :
⊕

r+s=q

Cr ⊗ C ′
s −→

⊕

r+s=q−1

Cr ⊗ C ′
s

is given by the formula (where c ∈ Cr , c′ ∈ C ′
s ):

∂̄q(c⊗ c′) = (∂rc)⊗ c′ + (−1)rc⊗ ∂′sc′ ∈ (Cr−1 ⊗ Cs)⊕ (Cr ⊗ Cs−1) ⊂
⊕

r+s=q−1

Cr ⊗ C ′
s.

We emphasize that the sign in the above formula is very important.

Exercise 15.24. Prove that ∂̄q+1∂̄q = 0.

The Künneth formula describes homology groups of the produt X×X ′ in terms of homology
groups of X and X ′ . It is tempted to use the same singular chain complexes we used to
prove the universal coefficient formulas. However there is a serious problem here. Indeed, the
singular chain complex C∗(X ×X ′) is not isomorphic to the tensor product C∗(X)⊗ C∗(X ′).
There is a general result showing that the chain complexes C∗(X ×X ′) and C∗(X)⊗ C∗(X ′)
are chain homotopy equivalent (this is the Eilenberg-Zilber Theorem). We already have
some technique to avoid this general result: we can always replace the spaces X , X ′ to
weak homotopy equivalent CW -complexes and use the cellular chain complexes. Thus the
following is the key property of the cellular chain complex:

Claim 15.3. Let X , X ′ be CW -complexes. We give the product X ×X ′ the product CW -
structure. Then E∗(X ×X ′) ∼= E∗(X)⊗ E∗(X ′).

Now this is the Künneth formula.

Theorem 15.4. Let X , X ′ be topological spaces. Then for each q ≥ 0 there is a split exact
sequence

0→
⊕

r+s=q

Hr(X)⊗Hs(X
′) −→ Hq(X ×X ′) −→

⊕

r+s=q−1

Tor(Hr(X), Hs(X
′))→ 0

Proof. As we mentioned, it is enough to prove the above formular in the case when X
and X ′ are CW -complexes. Let E∗ = E∗(X), E ′∗ = E∗(X ′). We denote Zq = Ker ∂

≀

q , and

Bq = Im ∂
≀

q+1 . Again, we have the short exact sequnce

0 −→ Zq −→ Eq −→ Bq−1 −→ 0.
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Since all groups here are free abelian, we have a splitting

Eq = Zq ⊕ Bq−1.

Similarly as we did before, this decomposition allows us to split the complex E∗ into the direct
sum of short chain complexes E∗(q):

· · · −→ 0 −→
q

Bq−1
iq−→

q−1

Z q−1 −→ 0 −→ · · ·

As before, we have that Hq−1(E∗(q)) = Hq−1(E∗) and Hj(E∗(q)) = 0 if j 6= q − 1.

We define such complexes E∗(q), E ′∗(q), thus we have the decompositions:

E∗ =
⊕

r≥0

E∗(r), and E ′∗ =
⊕

s≥0

E ′∗(s).

Thus the tensor product E∗ ⊗ E ′∗ is decomposed as follows:

E∗ ⊗ E ′∗ =
⊕

r,s≥0

E∗(r)⊗ E ′∗(s).

We examine the tensor product E∗(r)⊗ E ′∗(s):
s+r s+r−1 s+r−2

· · ·→0→Br−1 ⊗ B′
s−1

∂̄s+r−−−→
(
Zr−1 ⊗ B′

s−1

)
⊕
(
Br−1 ⊗Z ′

s−1

) ∂̄s+r−1−−−−→Zr−1 ⊗ Z ′
s−1→0→· · ·

Now we have to compute the homology groups of this chain complex. First we put together
all short exact sequences we need. We have the complexes E∗(r) and E ′∗(s):

· · · −→ 0 −→ Br−1
ir−→ Zr−1 −→ 0 −→ · · ·

· · · −→ 0 −→ B′
s−1

i′s−→ Z ′
s−1 −→ 0 −→ · · ·

Also we need the short exact sequences which will be considered as free resolutions of the
groups Hr−1(X), Hs−1(X

′):

0 −→ Br−1
ir−1−−→ Zr−1

pr−1−−→ Hr−1 −→ 0, Hr−1 = Hr−1(X),

0 −→ Bs−1

i′s−1−−→ Z ′
s−1

p′s−1−−→ H ′
s−1 −→ 0, H ′

s−1 = Hs−1(X
′).
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Consider the following diagram:

(79)

0

?

0

?

0

?
0→ Br−1 ⊗ B′

s−1

?
Id

Zr−1 ⊗ B′
s−1 ⊕ Br−1 ⊗ B′

s−1

?
1⊗1⊕1⊗i′s−1

Zr−1 ⊗ B′
s−1

?
1⊗i′s−1

→ 0-dr+s -dr+s−1

0→ Br−1 ⊗ B′
s−1

?

Zr−1 ⊗ B′
s−1 ⊕ Br−1 ⊗Z ′

s−1

?
0⊕1⊗p′s−1

Zr−1 ⊗Z ′
s−1

?
1⊗p′s−1

→ 0-∂̄s+r -∂̄s+r−1

0 0

?

Br−1 ⊗H ′
s−1

?

Zr−1 ⊗H ′
s−1

?

→ 0- - -ir−1⊗1

0 0 0

Here the homomorphisms ∂̄s+r , ∂̄s+r are given by

∂̄s+r(b⊗ b′) = (ir−1b)⊗ b′ ⊕ (−1)rb⊗ (i′s−1b
′) ∈ Zr−1 ⊗ B′

s−1 ⊕ Br−1 ⊗ Z ′
s−1,

∂̄s+r−1(z ⊗ b′ ⊕ b⊗ z′) = (−1)r−1z ⊗ (i′s−1b
′) + (ir−1b)⊗ z′ ∈ Zr−1 ⊗ Z ′

s−1.

The homomorphisms dr+s , dr+s−1 are defined similarly:

ds+r(b⊗ b′) = (ir−1b)⊗ b′ ⊕ (−1)rb⊗ b′ ∈ Zr−1 ⊗ B′
s−1 ⊕ Br−1 ⊗ B′

s−1,

ds+r−1(z ⊗ b′1 ⊕ b⊗ b′2) = (−1)r−1z ⊗ b′1 + (ir−1b)⊗ b′2 ∈ Zr−1 ⊗ B′
s−1.

It is easy to check that the diagram (79) commutes and the columns are exact. We consider
the diagram (79) as a short exact sequence of chain complexes. We notice that the sequence

0→ Br−1 ⊗ B′
s−1

dr+s−−−→ Zr−1 ⊗ B′
s−1 ⊕ Br−1 ⊗ B′

s−1

dr+s−1−−−−→ Zr−1 ⊗ B′
s−1 → 0

is exact. Thus the homology groups of this complex are trivial. On the other hand, the
homology groups of the complex

0 −→ Br−1 ⊗H ′
s−1

ir−1⊗1−−−−→ Zr−1 ⊗H ′
s−1 → 0

are equal to Hr−1 ⊗H ′
s−1 (in degree r + s− 2), and Tor(Hr−1, H

′
s−1) (in degree r + s − 1)

and zero otherwise. The long exact sequence in homology groups corresponding to the short
exact sequence of chain complexes (79) immediately implies that

Hj(E∗(r)⊗ E ′∗(s)) =






Hr−1 ⊗H ′
s−1 if j = r + s− 2,

Tor(Hr−1, H
′
s−1) if j = r + s− 1,

0 else.

Now it is enough to assemble the homology groups of the chain complex E∗ ⊗ E ′∗ out of
the homology groups of the chain complexes E∗(s) ⊗ E ′∗(r) to get the desired formula. This
concludes the proof of Theorem 15.4.



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY” 139

Theorem 15.5. Let X , X ′ be topological spaces. Let H∗(−) = H∗(−;Z). Then for each
q ≥ 0 there is a split exact sequence

0→
⊕

r+s=q

Hr(X)⊗Hs(X ′) −→ Hq(X ×X ′) −→
⊕

r+s=q+1

Tor(Hr(X), Hs(X ′)) −→ 0.

Exercise 15.25. Outline a proof of Theorem 15.5.

Exercise 15.26. Let F be a field. Prove that

Hq(X ×X ′;F ) ∼=
⊕

r+s=q

Hr(X;F )⊗Hs(X
′;F ),

Hq(X ×X ′;F ) ∼=
⊕

r+s=q

Hr(X;F )⊗Hs(X ′;F ).

Exercise 15.27. Let βq(X) = RankHq(X) be the Betti number of X . Prove that

βq(X ×X ′) =
∑

r+s=q

βr(X)βs(X
′).

Exercise 15.28. Let X , X ′ be such spaces that their Euler characteristics χ(X), χ(X ′) are
finite. Prove that χ(X ×X ′) = χ(X) · χ(X ′).

15.7. The Eilenberg-Steenrod Axioms. At the end of 50s, Eilenber and Steenrod sug-
gested very simple axioms which characterize the homology theory on the category of CW -
complexes. In this short section we present these axioms, however we are not going to prove
that these axioms completely determine the homology theory.

First we should carefully describe what do we mean by a “homology theory”. Let Top denote
the category of pairs of topological spaces, i.e. the objects of Top are pairs (X,A) and
the morphisms are continuous maps of pairs. Let Ab∗ be the category of graded abelian
groups, i.e. the objects of Ab∗ are graded abelian groups A = {Aq}q∈Z

, and the morphisms
are homomorphisms Φ : A −→ B given by a collection of group homomorphisms Φ =
{ϕq : Aq −→ Bq+k} . The integer k is the degree of the homorphism Φ.

A homology theory (H, ∂) consists of the following:

(1) A covarint functor H : Top −→ Ab∗ , i.e. for each pair (X,A) H(X,A) is a graded
abelian group, and for each map of pairs f : (X,A) −→ (Y,B) there is a homomor-
phism H(f) : H(X,A) −→ H(Y,B) of degree zero.

(2) A natural transformation ∂ of the functor H of degree −1, i.e for any pair (X,A)
there is a homomorphism ∂ : H(X,A) −→ H(A, ∅) of degree −1. It is natural with
respect to continuous maps of pairs f : (X,A) −→ (Y,B), i.e. the following diagram

H(X,A)

?

H(f)

H(A, ∅)

?

H(f)

-∂

H(Y,B) H(B, ∅)-∂
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commutes.
The functor H and transformation ∂ should satisfy the following axioms:

1. Homotopy Axiom. Let f, g : (X,A) −→ (Y,B) be homotopic maps, then
H(f) = H(g).

2. Exactness axiom. For any pair (X,A) and the inclusions i : (A, ∅) ⊂ (X,A),
and j : (X, ∅) ⊂ (X,A) there is an exact sequence:

· · · → H(A, ∅) H(i)−−→ H(X, ∅) H(j)−−−→ H(X,A)
∂−→ H(A, ∅)→ · · ·

3. Excision Axiom. For any pair (X,A), and open subset U ⊂ X , such that

U ⊂
o

A, then the excision map e : (X \U,A \U) −→ (X,A) induces the isomorphism

H(e) : H(X \ U,A \ U) −→ H(X,A).

4. Dimension Axiom. Let P = {pt} . Then the coefficient group H(P, ∅) =
{Hq(P )} is such that

Hq(P ) =

{
Z, if q = 0,
0, if q 6= 0.

Eilenberg-Steentrod proved that the above axioms completely characterize the homology the-
ory (X,A) 7→ {Hq(X,A)} in the following sense. Let (H′, ∂) be a homology theory then
on the category of pairs having a homotopy type of CW -complexes, the homology theory
(H′, ∂) coincides with the singular homology theory. The Eilenberg-Steentrod axioms have
led to unexpected discoveries (in the begining of 60s). It turns out there are functors (H′, ∂)
which satisfy the first three axioms, and, in the same time, their coefficient group H(pt) is
not concentrated just in the degree zero. The first examples were the K -theory, and different
kind of cobordism theories. Now we call such homology theory a generalized homology theory.
These days the word “generalized” dropped, since they were incorporated into major areas
of mathematics.
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16. Some applications

16.1. The Lefschetz Fixed Point Theorem. We still start with some algebraic construc-
tions. Let A be a finitely generated abelian group. Denote F (A) the free part of A, so that
A = F (A) ⊕ T (A), where T (A) is a maximum torsion subgroup of A. Let ϕ : A −→ A be
an endomorphism of A. We define F (ϕ) : F (A) −→ F (A) by composition:

F (ϕ) : F (A)
inclusion−−−−−−→ A

ϕ−→ A
projection−−−−−−−→ F (A).

The homomorphism F (ϕ) is an endomorphism of the free abelian finitely generated group
F (A). Hence the trace Tr(F (ϕ)) ∈ Z is well-defined. We define Tr(ϕ) = Tr(F (ϕ)). Now
let A = {Aq}q≥0 be a finitely generated graded abelian group, i.e. each group Aq is finitely
generated. A homomorphism Φ : A −→ B of two graded abelian groups is a collection of
homomorphisms {ϕq : Aq −→ Bq−k} (the number k is the degree of Φ).

Now let A = {Aq}q≥0 be a finitely generated graded abelian group, and let

Φ = {ϕq} : A −→ A
be an endomorphism of degree zero. We assume that F (Aq) = 0 for q ≥ n (for some n). We
define the Lefschetz number Lef(Φ) of the endomorphism Φ by the formula:

Lef(Φ) =
∑

q≥0

(−1)qTr(ϕq).

Clearly we have several natural examples of such endomorphisms. The main example we are
going to work with is the following. Let X be a finite CW -complex, and f : X −→ X be a
map. Then there are the induced endomorphisms of degree zero

f# : E∗(X) −→ E∗(X), f∗ : H∗(X) −→ H∗(X),

where E∗(X) = {Eq(X)} , H∗(X) = {Hq(X)} are considered as graded abelian groups.

Claim 16.1. Let C be a chain complex, C = {Cq}, such that Cq = 0 for q ≥ n (for some
n). Let ϕ : C −→ C be a chain map, and ϕ∗ : H∗C −→ H∗C be the induced homomorphism
in homology groups. Then

Lef(ϕ) = Lef(ϕ∗).

Exercise 16.1. Prove Claim 16.1.

Let f : X −→ X be a map of finite CW -complex to itself. We define the Lefschetz number
Lef(f) = Lef(f∗), where f∗ : H∗(X) −→ H∗(X) is the induced homomorphism in homology
groups. Clearly the Lefschetz number Lef(f) depends on the homotopy class of f .

Theorem 16.1. (Lefschetz Fixed Point Theorem) Let X be a finite CW -complex and
f : X −→ X be a map such that Lef(f) 6= 0. Then f has a fixed point, i.e. such a point
x0 ∈ X that f(x0) = x0 .

Proof. First we recall that a finite CW -complex X may be embedded as a compact subspace
into the Euclidian space Rn for some n. In particular, the metric on X (which is the induced
metric from Rn ) determines the original topology on X . Let d(x, x′) be the distance function
induced by this metric.
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Assume that f(x) 6= x for each point x ∈ X . Since X is a compact, there exists a positive
number ǫ > 0 so that d(f(x), x) > ǫ for all x ∈ X . For every cell eq of X , we use a
homeomorphism ∆q ∼= eq to define new CW -structure on X as follows. We find a barycentic
subdivision of ∆q such that

diam(∆̃) < ǫ/9, and diam(f(∆̃)) < ǫ/9

for each simplex ∆̃ of that barycentic subdivision. The simplices ∆̃ of this barycentic subdi-
vision define new CW -structure on X . Let

{
σqj
}

be the cells of this CW -structure on X .
For each cell σq0 we define the subcomplex

Eq
0 =

⋃

σ̄j∩σ̄q
0 6=∅

σj.

Notice that the diameter diam(Eq
0) < 4ǫ/9. Indeed, let x, x′ ∈ Eq

0 . Choose x0 ∈ σq0 . Then
d(x, x0) < 2ǫ/9, and d(x′, x0) < 2ǫ/9. Thus

d(x, x′) ≤ d(x, x0) + d(x′, x0) < 4ǫ/9.

Clearly diam(f(Eq
0)) < 4ǫ/9 as well. Now it is clear that d(Eq

0 , f(Eq
0)) > ǫ − 8ǫ/9 = ǫ/9.

Hence
Eq

0 ∩ f(Eq
0) = ∅.

Now we use the cellular approximation Theorem 5.5 where we constructed a cellular map
f ′ ∼ f . It is easy to see that f ′(σ̄q0) ⊂ f(Eq

0) by construction we gave in the proof of
Theorem 5.5. Thus σ̄q0∩f ′(σ̄q0) = ∅ . Now consider the homomorphism f ′

# : Eq(X) −→ Eq(X).
We have that

f ′
#(σq0) =

∑

i

λiσ
q
i , where σqi 6= σq0.

Hence Tr(f ′
#) = 0 for each q ≥ 0, and

0 = Lef(f ′
#) = Lef(f#) = Lef(f∗) = Lef(f).

This concludes the proof.

Corollary 16.2. Let X be a finite contractible CW -complex. Then any map f : X −→ X
has a fixed point.

Exercise 16.2. Prove Corollary 16.2.

A continuous family ϕt : X −→ X of maps is called a flow if the following conditions are
satisfied:

(a) ϕ0 = IdX ,
(b) ϕt is a homeomorphism for any t ∈ R ,
(c) ϕs+t(x) = ϕs ◦ ϕt(x).

It is convenient to treat a flow ϕt as a map ϕ : X ×R −→ R , where ϕ(x, t) = ϕt(x). A flow
is also known as one-parameter group of homeomorphisms. The following statement is not
very hard to prove, however, it provides an important link to analysis.

Theorem 16.3. Let X be a finite CW -complex with χ(X) 6= 0, and ϕt : X −→ X be a
flow. Then there exists a point x0 ∈ X so that ϕt(x0) = x0 for all t ∈ R.
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Proof. By definition, each map ϕt ∼ IdX . Thus Lef(ϕt) = Lef(IdX) = χ(X) 6= 0. Thus

there exists a fixed point x
(t)
0 of ϕt for each t. Let

An =
{
x ∈ X | ϕ1/2n(x) = x

}
.

Clearly An ⊃ An+1 , and each An is a closed subset (as the intersection of the diagonal
∆(X) = {(x, x)} ⊂ X × X and the graph Γ(ϕ1/2n) =

{
(x, ϕ1/2n(x))

}
⊂ X × X ). Thus

F = ∩nAn is not empty. Let x ∈ F . Clearly x is a fixed point for any ϕm/2n . Since the
numbers m/2n are dense in R , x is a fixed point for ϕt for any t ∈ R .

Remark. Let X = Mn be a smooth manifold, and assume a flow ϕ : Mn × R −→ Mn is
a smooth flow, i.e. the map ϕ is smooth, and ϕt is a diffeomorphism. We can even assume
that the flow ϕ is defined only for t ∈ (−ǫ, ǫ). Let x ∈Mn , the

dϕ0(x)

dt
= lim

τ→0

ϕτ (x)− ϕ0(x)

τ
= lim

τ→0

ϕτ (x)− x
τ

is a tangent vector to Mn at the point x, and the correspondence

v : x 7→ dϕ0(x)

dt

defines a smooth tangent vector field v(x) on Mn . Theorem 16.3 implies that if χ(Mn) 6= 0,
then there is no tangent vector field on M without zero points. Actually, a generic tangent
vector field always has only isolated nondegenerated zero points, so that each zero point has
index ±1. The Euler-Poincarè Theorem states that the sum of those indices is exactly the
Euler characteristic χ(M). 10

Exercise 16.3. Let f : RP2n −→ RP2n be a map. Prove that f always has a fixed point.
Give an example that the above statement fails for a map f : RP2n+1 −→ RP2n+1 .

Exercise 16.4. Let n 6= k . Prove that Rn is not homeomorphic to Rk .

Exercise 16.5. Let f : Sn −→ Sn be a map, and deg(f) be the degree of f . Prove that
Lef(f) = 1 + (−1)n deg(f).

Exercise 16.6. Prove that there is no tangent vector field v(x) on the sphere S2n such that
v(x) 6= 0 for all x ∈ S2n . (Compare with Lemma 13.9.)

16.2. The Jordan-Brouwer Theorem. This is a classical result about an embedded sphere
Sn−1 ⊂ Sn .

Theorem 16.4. (The Jordan-Brouwer Theorem) Let Sn−1 ⊂ Sn be an embedded sphere in
Sn . Then the complement X = Sn \Sn−1 has two path-connected components: X = X1⊔X2 ,
where X1 , X2 are open in Sn . Furthermore, ∂X1 = ∂X2 = Sn−1 .

First we prove a technical result.

10 See J. Milnor, Differential topology, mimeographic notes. Princeton: Princeton University Press, 1958,
for details.
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Lemma 16.5. Let K ⊂ Sn be homeomorphic to the cube Ik , 0 ≤ k ≤ n. Then

H̃q(S
n \K) = 0 for all q ≥ 0 .

Proof. Induction on k . The case k = 0 is obvious. Assume that the statement holds
for all 0 ≤ k ≤ m − 1, and let K is homeomorphic to Im . We choose a decomposition
K = L × I , where L is homeomorphic to Im−1 . Let K1 = L × [0, 1

2
], and K2 = L × [1

2
, 1].

Then K1 ∩K2 = L×
{

1
2

} ∼= Im−1 . By induction,

H̃q(S
n \K1 ∩K2) = 0 for all q ≥ 0 .

We notice that the sets Sn \K1 , Sn \K2 are both open in Sn . Thus we can use the Mayer-
Vietoris exact sequence

· · · → H̃q(S
n \K1 ∪K2) −→ H̃q(S

n \K1)⊕ H̃q(S
n \K2) −→ H̃q(S

n \K1 ∩K2)→ · · ·
Thus we have that

H̃q(S
n \K1 ∪K2) ∼= H̃q(S

n \K1)⊕ H̃q(S
n \K2).

Assume that H̃q(S
n \K1 ∪K2) 6= 0, and z0 ∈ H̃q(S

n \K1 ∪K2), z0 6= 0. Then z0 = (z′0, z
′′
0 ),

thus there exists z1 6= 0 in the group H̃q(S
n \K1) or H̃q(S

n\K2). Let, say, z1 ∈ H̃q(S
n \K1),

z1 6= 0. Then we repeat the argument for K1 , and obtain the sequence

K ⊃ K(1) ⊃ K(2) ⊃ K(2) ⊃ · · ·
such that

(1) K(s) is homeomorphic to Im ,
(2) the inclusion is : Sn \ K ⊂ Sn \ K(s) takes the element z to a nonzero element

zs ∈ H̃q(S
n \K(s)),

(3) the intersection
⋂

s

K(s) is homeomorphic to Im−1 .

We have that any compact subset C of Sn \
⋂

s

K(s) lies in Sn \K(s) for some s, we obtain

that Cq(S
n \
⋂

s

K(s)) = lim−→s
Cq(S

n \K(s)), and, respectively,

H̃q(S
n \
⋂

s

K(s)) = lim−→s
H̃q(S

n \K(s)).

By construction, there exists an element z∞ ∈ H̃q(S
n \⋂sK

(s)), z∞ 6= 0. Contradiction to
the inductive assumption.

Theorem 16.6. Let Sk ⊂ Sn , 0 ≤ k ≤ n− 1. Then

(80) H̃q(S
n \ Sk) ∼=

{
Z, if q = n− k − 1,
0 if q 6= n− k − 1.

Proof. Induction on k . If k = 0, then Sn \ S0 is homotopy equivalent to Sn−1 . Thus the
formula (80) holds for k = 0. Let k ≥ 1, then Sk = Dk

+ ∪Dk
− , where Dk

+ , Dk
− are the south
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and northen hemispheres of Sk . Clearly Dk
+ ∩Dk

− = Sk−1 . Notice that the sets Sn \Dk
± are

open in Sn , we can use the Mayer-Vietoris exact sequence:

· · · → H̃q+1(S
n \Dk

+)⊕ H̃q+1(S
n \Dk

−)→ H̃q+1(S
n \Dk

+ ∩Dk
−)→

→ H̃q(S
n \ Sk)→ H̃q(S

n \Dk
+)⊕ H̃q(S

n \Dk
−)→ · · ·

The groups at the ends are equal zero by Lemma 16.5, thus

H̃q(S
n \ Sk) ∼= H̃q+1(S

n \ Sk−1)

since Dk
+ ∩Dk

− = Sk−1 . This completes the induction.

Proof of Theorem 16.4. Theorem 16.6 gives that H̃0(S
n \Sn−1) ∼= Z. Thus X = Sn \Sn−1

has two path-connected components: X = X1 ⊔ X2 . Notice that Sn−1 ⊂ Sn is closed and
compact; thus its complement Sn \ Sn−1 is open. Hence X1 and X2 are open subsets of
Sn . In paricular, for any point x ∈ Sn \ Sn−1 there is a small open disk which is contained
completely either in X1 or X2 . Assume that x ∈ ∂X1 := X1 \ X1 . Then if x ∈ X2 , then
there is an open ǫ-disk W centered at x, and W ⊂ X2 ; on the other hand, W ∩X1 6= ∅ since
x ∈ ∂X1 , or X1 ∩X2 6= ∅ . Contradiction. We conclude that Sn−1 ⊃ ∂X1 , Sn−1 ⊃ ∂X2 .

We have to prove that Sn−1 ⊂ X1 ∩ X2 . It is enough to show that for any point x ∈ Sn−1

and any open neigborhood V of x is Sn , U ∩
(
X1 ∩X2

)
6= ∅ . Let x ∈ Sn−1 , assume that

x /∈ ∂X1 . Then there exists an open disk V in Sn centered at x such that V ∩X1 = ∅ .

Sn−1

p1

A
p2x

Fig. 16.1.

Let B be an open disk in Sn−1 centered at x such that
B ⊂ V . Then A := Sn−1 \ B is homeomorphic to Dn−1 ,
and Lemma 16.5 implies that

H̃q(S
n \ A) = 0 for all q ≥ 0 .

In particular, it means that the subspace Sn \ A is path-
connected. Then we have:

Sn \ A = X1 ∪X2 ∪ B ⊂ X1 ∪X2 ∪ V.
By assumption, X1 ∩ (X2 ∪ V ) = ∅ , thus

Sn \ A = (X1 ∩ (Sn \ A)) ∪ ((X2 ∪ V )) ∩ (Sn \ A))

is a disjoint union of two nonempty open sets. Contradiction.

Remark. To visualize this argument, we can do the following. We just proved that for any
x ∈ Sn−1 and any open neighborhood V of x in Sn , the intersections V ∩X1 and V ∩X2 are
nonempty. Let p1 ∈ X1 ∩ V , and p2 ∈ X2 ∩ V . As we have seen above, the subspace Sn \ A
is path-connected, hence there exists a path γ : I −→ Sn \ A connecting p1 and p2 , see Fig.
16.1. Thus there exists t ∈ I so that γ(t) ∈ B . Clearly p = γ(t) belongs to X1 ∩X2 , and
p ∈ Sn−1 . It means that V ∩

(
X1 ∩X2

)
6= ∅ . Since this is true for any open neighborhood

U of x, we see one more time that x ∈ X1 ∩X2 .
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16.3. The Brouwer Invariance Domain Theorem. This is also a classical result.

Theorem 16.7. (The Brouwer Invariance Domain Theorem) Let U and V be subsets of Sn ,
so that U and V are homeomorphic, and U are open in Sn . Then V is also open in Sn .

Proof. Let h : U −→ V be a homeomorphism, and h(x) = y . Since U is an open subset of
Sn , there exsits a neighborhood A of x in U , so that A is homeomorphic to the disk Dn .
Let B = ∂A. Denote A′ = h(A) ⊂ V , B′ = h(B) ⊂ V . By Lemma 16.5 the subset Sn \ A′

is path-connected, and by Theorem 16.4 the subset Sn \ B′ has two path-components. We
have that

Sn \B′ = (Sn \ A′) ∪ (A′ \B′),

and the sets Sn \ A′ and A′ \ B′ are path-connected, then they are the path-components of
Sn \ B′ . Thus A′ \ B′ is open in Sn . Since A′ \ B′ ⊂ V , and y ∈ V is an arbitrary point,
the set V is open in Sn .

16.4. Borsuk-Ulam Theorem. First we introduce new long exact sequence in homology
which corresponds to a two-fold covering p : T → X . We observe that the chain map
p# : C(T ;Z/2)→ C(X;Z/2) fits into the following exact sequence of chain complexes:

(81) 0→ C(X;Z/2)
τ−→ C(T ;Z/2)

p#−→ C(X;Z/2)→ 0.

Here the chain map τ : C(X;Z/2) → C(T ;Z/2) is defined as follows. Let h : ∆q → X be

a generator of Cq(X;Z/2). Let ∆q = (v0, . . . , vq), and x0 = h(v0). Let x
(1)
0 , x

(2)
0 ∈ T be

two lifts of the point x0 . Then, since ∆q is simply-connected, there exist exactly two lifts

h̃(i) : ∆q → T , i = 1, 2 such that h̃(1)(v0) = x
(1)
0 and h̃(2)(v0) = x

(2)
0 . Then

τ(h : ∆q → X) := (h̃(1) : ∆q → T ) + (h̃(2) : ∆q → T ).

The homomorphism τ is sometimes called a transfer homomorphism. On the other hand,
it easy to see that the kernel of p# : Cq(T ;Z/2) → Cq(X;Z/2) is generated by the sums

(h̃(1) : ∆q → T ) + (h̃(2) : ∆q → T ). Thus the short exact sequence (81) gives a long exact
sequence in homology groups (with Z/2 coefficients):

(82) · · · → Hq(X;Z/2)
τ∗−→ Hq(T ;Z/2)

p∗−→ Hq(X;Z/2)
∂−→ Hq−1(X;Z/2)→ · · ·

We will use the long exact sequence (82) to prove the following result, known as Borsuk-Ulam
Theorem.

Theorem 16.8. Let f : Sn → Sn be a map such that f(−x) = −f(x) (an “odd map”).
Then deg f is odd.

Proof. Consider the long exact sequence (82) for the covering Sn → RPn :

0→ Hn(RPn)
τ∗−→ Hn(S

n)
p∗−→ Hn(RPn)

∂−→ Hn−1(RPn)→ 0→ · · ·

· · · → 0→ Hq(RPn)
∂−→ Hq−1(RPn)→ 0→ · · ·

· · · → 0→ H1(RPn)
∂−→ H0(RPn)→ H0(S

n)
p∗−→ H0(RPn)→ 0
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The exactness forces that the homomorphisms

τ∗ : Hn(RPn)→ Hn(S
n),

∂ : Hq(RPn)→ Hq−1(RPn), q = n, n− 1, . . . , 1,

p∗ : H0(S
n)→ H0(RPn)

to be isomorphisms, and p∗ : Hq(S
n)→ Hq(RPn) to be zero for q > 0.

Now let f : Sn → Sn be a map such that f(−x) = −f(x). Then it induces a quotient map
f̄ : RPn → RPn , such that the diagram

Sn

?

p

Sn

?

p

-f

RPn RPn-f̄

Now we notice that f∗ : H0(S
n) → H0(S

n) f̄∗ : H0(RPn) → H0(RPn) are isomorphisms,
then we use naturality of the exact sequence (82) to get the commutative diagrams

Hq(RPn)

?

f̄∗

Hq−1(RPn)

?

f̄

-∂

Hq(RPn) Hq−1(RPn)-∂

Hn(RPn)

?

f̄∗

Hn(S
n)

?

f∗

-τ

Hn(RPn) Hn(S
n)-τ

.

for q = 1, . . . n. In particular, we obtain that f∗ : Hn(S
n;Z/2)→ Hn(S

n;Z/2) is an isomor-
phism. On the other hand, we know that for integral homology groups

f∗ : Hn(S
n)→ Hn(S

n)

is a multiplication by the degree deg f . We obtain that after reduction modulo two f∗ is
isomorphism:

Hn(S
n;Z)

?

pr

Hn(S
n;Z)

?

pr

-f∗

Hn(S
n;Z/2) Hn(S

n;Z/2)-
∼=

Thus the degree deg f must be odd.

Exercise 16.7. Let 0 ≤ p, q ≤ n− 1, and the wedge Sp ∨ Sq is embedded to Sn . Compute
the homology groups Hq(S

n \ (Sp ∨ Sq)).
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Exercise 16.8. Prove that for each n ≥ 1 there exists a space X with

H̃q(X) =

{
Z/m, if q = n,

0, if q 6= n.

Exercise 16.9. Let H = {Hq} be a graded abelian group. We assume that Hq = 0 for
q < 0, and H0 is a free abelian. Prove that there exists a space X such that Hq(X) = Hq

for all q . In particular, construct a space X with the homology groups:

H̃q(X) =

{
Z[1

p
], if q = n,

0, if q 6= n.
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17. Cup product in cohomology.

17.1. Ring structure in cohomology. The homology groups are more “geometric” than
the cohomology. However, there is a natural ring structure in cohomology groups which is
very useful. The Künneth formula gives natural homomorphism

m : Hk(X;Z)⊗H l(X;Z) −→ Hk+l(X ×X;Z)

Consider the diagonal map ∆ : X −→ X × X which sends x to the pair (x, x). Then we
have the composition

Hk(X;Z)⊗H l(X;Z)
m−→ Hk+l(X ×X;Z)

∆∗

−−→ Hk+l(X;Z).

which gives the product structure in cohomology. The way we defined this product does not
allow us to compute actual ring structure for particular spaces. What we are going to do is
to work out this in detail starting with cup-product at the level of singular cochains.

17.2. Definition of the cup-product. First we need some notations. We identify a simplex
∆q with one given by its vertices (v0, . . . , vq) in Rq+1 . Let g : ∆q −→ X be a map. It is
convenient to use symbol (v0, . . . , vq) to denote the singular simplex g : ∆q −→ X , and, say,
(v0, . . . , vs) the restriction g|(v0,...,vs) .

Let R be a commutative ring with unit. We consider cohomology groups with coefficients in
R . The actual examples we will elaborate are when R = Z, Z/p, Q, R . Let ϕ ∈ Ck(X),
ψ ∈ C l(X) be singular cochains, and f : ∆k+l −→ X be a singular simplex. We define the
cochain ϕ ∪ ψ ∈ Ck+l(X) as follows:

〈ϕ ∪ ψ, (v0, . . . , vk+l)〉 = (ϕ ∪ ψ)(v0, . . . , vk+l) := ϕ(v0, . . . , vk)ψ(vk, . . . , vk+l).

To see that the cup-product at the level of cochains induces a product in cohomology groups,
we have to undestand the coboundary homomorphism on ϕ ∪ ψ .

Lemma 17.1. Let ϕ ∈ Ck(X), ψ ∈ C l(X). Then

δ(ϕ ∪ ψ) = δϕ ∪ ψ + (−1)kϕ ∪ δψ.

Proof. Let g : ∆k+l+1 −→ X be a singular simplex. We compute 〈δϕ∪ψ, g〉 and 〈ϕ∪δψ, g〉 :

(83)

〈δϕ ∪ ψ, g〉 =

k+1∑

j=0

(−1)jϕ(v0, . . . , v̂j, . . . , vk+1)ψ(vk+1, . . . , vk+l+1),

〈ϕ ∪ δψ, g〉 =

k+l+1∑

j=k

(−1)j+kϕ(v0, . . . , vk)ψ(vk, . . . , v̂j, . . . , vk+l+1).

= (−1)k
k+l+1∑

j=k

(−1)jϕ(v0, . . . , vk)ψ(vk, . . . , v̂j, . . . , vk+l+1).
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Consider the following terms in (83):

(−1)k+1ϕ(v0, . . . , . . . , vk)ψ(vk+1, . . . , vk+l+1)

(−1)kϕ(v0, . . . , . . . , vk)ψ(vk+1, . . . , vk+l+1)

The first one corresponds to j = k + 1 in the formula for 〈δϕ ∪ ψ, g〉 , and the second one
corresponds to j = k in the formula for 〈ϕ ∪ δψ, g〉 . Clearly they cancel each other, and we
have that

(84)

〈δϕ ∪ ψ + (−1)kϕ ∪ δψ, g〉 =

k∑

j=0

(−1)jϕ(v0, . . . , v̂j, . . . , vk+1)ψ(vk+1, . . . , vk+l+1)

+

k+l+1∑

j=k+1

(−1)jϕ(v0, . . . , vk)ψ(vk, . . . , v̂j, . . . , vk+l+1)

=
k+l+1∑

j=0

(−1)j(ϕ ∪ ψ)(v0, . . . , v̂j, . . . , vk+l+1)

= 〈ϕ ∪ ψ, ∂g〉 = 〈δ(ϕ ∪ ψ), g〉.

This concludes the proof.

Now it is clear that the cup product of two cocyles is a cocycle, and the cup-product of cocycle
and coboundary is a coboundary. We conclude that the cup-product in the cochain groups
induces the cup-product in cohomology:

∪ : Hk(X;R)×H l(X;R) −→ Hk+l(X;R),

where R is a commutative ring. The cup-product induces the ring structure on H∗(X;R). Let
K∗ =

⊕
Kj be a graded R-module, with K0 = R and Kj = 0 for j < 0. We say that K∗ is a

graded algebra over R if there is a product µ : K∗⊗K∗ −→ K∗ so that µ : Kk⊗Kℓ −→ Kk+ℓ ,
and the unit 1 ∈ R = K0 is the unit of the product µ , i.e. µ(1 ⊗ a) = µ(a ⊗ 1) = a. We
say that (K∗, µ) is a graded commutative R-algebra if µ(a ⊗ b) = (−1)kℓµ(b ⊗ a), where
deg a = k , deg b = ℓ.

Claim 17.1. Let R be a commutative ring. Then H∗(X;R) is a graded commutative R-
algebra.

Construction. Let f : ∆q −→ X be a singular simplex, and the simplex ∆q is given by its
vertices (v0, . . . , vq). Consider the singular simplex f̄ : ∆̄q −→ X , where ∆̄q = (vq, . . . , v0),
and

f̄ : ∆̄q T−→ ∆q f−→ X
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where T is given by the linear isomorphism T : Rq+1 −→ Rq+1 sending vertices (v0, . . . , vq)
to (vq, . . . , v0) respectively. Clearly as a linear map, T is given by the matrix

T =




0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
...

...
0 1 · · · 0 0
1 0 · · · 0 0




which has determinant detT = (−1)
q(q+1)

2 . Thus T induces the chain map

t : C∗(X) −→ C∗(X)

sending a generator f : ∆q −→ X to the generator f̄ : ∆̄q −→ X .

Exercise 17.1 Prove that there is a chain homotopy between t and (−1)
q(q+1)

2 Id .

The homomorphism t : C∗(X) −→ C∗(X) induces the homomorphism

t∗ : C∗(X;R) −→ C∗(X;R).

Clearly in cohomology the homomorphism t∗ coincides with

(−1)
q(q+1)

2 Id : Hq(X;R) −→ Hq(X;R).

Proof of Claim 17.1. Let ϕ ∈ Ck(X;R), ψ ∈ C l(X;R), and f : ∆k+l −→ X be a singular
simplex. As above, we denote the singular simplex by its vertices (v0, . . . , vk+l). We have:

(ϕ ∪ ψ)(v0, . . . , vk+l) = ϕ(v0, . . . , vk)ψ(vk, . . . , vk+l)

= (−1)
k(k+1)

2 ϕ(vk, . . . , v0)(−1)
l(l+1)

2 ψ(vk+l, . . . , vk)

= (−1)
k(k+1)

2
+

l(l+1)
2 ψ(vk+l, . . . , vk)ϕ(vk, . . . , v0)

= (−1)
k(k+1)

2
+

l(l+1)
2 (ψ ∪ ψ)(vk+l, . . . , v0)

= (−1)
k(k+1)

2
+ l(l+1)

2 (−1)
(k+l)(k+l+1)

2 (ψ ∪ ψ)(v0, . . . , vk+l)

= (−1)kl(ψ ∪ ϕ)(v0, . . . , vk+l).

Here we have identified singular simplex ḡ = g ◦ T with the map (−1)
q(q+1)

2 g for a singular
simplex g : ∆q −→ X .

Theorem 17.2. (Properties of the cup-product) Let X be a space and R a commutative ring
with unit. Let γ ∈ Hq(X;R), γ′ ∈ Hq′(X;R), γ′′ ∈ Hq′′(X;R) j = 1, 2, 3 be any elements.
Then

(1) γ ∪ γ′ = (−1)qq
′

γ′ ∪ γ ;
(2) (γ ∪ γ′) ∪ γ′′ = γ ∪ (γ′ ∪ γ′′);
(3) f ∗(γ ∪ γ′) = (f ∗γ) ∪ (f ∗γ′) and α∗(γ ∪ γ′) = (α∗γ) ∪ (α∗γ′) for any map f : X → X ′

and ring homomorphism α : R→ R′ .
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17.3. Example. We compute the cup-product in cohomology H∗(M2
g ;Z), where M2

g is the
oriented surface of genus g . We think of M2

g as a 4g -sided polygon with corresponding edges
identified. We consider carefully only a part of this polygon given at Fig. 17.1. The only
cup-product of interest is the product

H1(M2
g ;Z)×H1(M2

g ;Z)
∪−→ H2(M2

g ;Z).

To compute this product we choose particular generators in the first homology and cohomol-
ogy groups. First, we choose a simplicial (and cell) structure on M2

g as it is shown at Fig.
17.1.

ai

bi

bi

ai

O

A
(0)
i

A
(1)
i A

(2)
i

A
(3)
i

A
(4)
i

v
(0)
i

v
(1)
i v

(2)
i

v
(3)
i

v
(4)
i

Fig. 17.1.

A basis for the homology group H1(M
2
g ) is given

by the 1-simplices (or 1-cells) ai, bi , i = 1, . . . , g .
Then the basis of

H1(M2
g ;Z) = Hom(H1(M

2
g ),Z)

is given by elements αi , βi , so that

〈αi, bj〉 = 0, 〈αi, aj〉 = δij,
〈βi, bj〉 = δij , 〈βi, aj〉 = 0.

We choose the following cocycles ϕi , ψi repre-
senting αi , βi respectively.

We define ϕi to be equal to 1 on the adges meeting the dash-line connecting the sides ai , and
zero on all others. Similarly we define ψi to be on the adges meeting the dash-line connecting
the sides bi , and zero on all others. Thus

〈ϕ, v(1)
i 〉 = 〈ϕ, v(2)

i 〉 = 〈ϕ, ai〉 = 1,

〈ψ, v(2)
i 〉 = 〈ψ, v(3)

i 〉 = 〈ψ, bi〉 = 1,

and they are zero on all other 1-simplices. It is easy to check that δϕi = 0 and δψi = 0. For
example, we see that

〈δϕi, (O,A(0)
i , A

(1)
i )〉 = 〈ϕi, ∂(O,A(0)

i , A
(1)
i )〉 = 〈ϕi, ai〉 − 〈ϕi, v(1)

i 〉+ 〈ϕi, v
(0)
i 〉 = 0,

〈δϕi, (O,A(1)
i , A

(2)
i )〉 = 〈ϕi, ∂(O,A(1)

i , A
(2)
i )〉 = 〈ϕi, v(1)

i 〉+ 〈ϕi, bi〉 − 〈ϕi, v
(2)
i 〉 = 0.

To compute the cup-product, we notice that ϕi ∪ ϕj = 0 if i 6= j . Now we have:

〈ϕi ∪ ψi, (O,A(0)
i , A

(1)
i )〉 = 〈ϕi, v(0)

i 〉〈ψi, ai〉 = 0,

〈ϕi ∪ ψi, (O,A(1)
i , A

(2)
i )〉 = 〈ϕi, v(1)

i 〉〈ψi, bi〉 = 1,

〈ϕi ∪ ψi, (O,A(2)
i , A

(3)
i )〉 = 〈ϕi, v(2)

i 〉〈ψi, ai〉 = 0,

〈ϕi ∪ ψi, (O,A(3)
i , A

(4)
i )〉 = 〈ϕi, v(3)

i 〉〈ψi, bi〉 = 0.
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Now we notice that the cycle generating H2(M
2
g ) is represented by

c =

g∑

i=1

(
(O,A

(0)
i , A

(1)
i ) + (O,A

(1)
i , A

(2)
i ) + (O,A

(2)
i , A

(3)
i ) + (O,A

(3)
i , A

(4)
i )
)
.

Hence we have that 〈ϕi ∪ ψi, c〉 = 1, and the element ϕi ∪ ψi = γ , where γ is a generator of
H2(M2

g ;Z), such that 〈γ, c〉 = 1.

Claim 17.2. The cohomology ring H∗(M2
g ;Z) has the following structure:

αi ∪ βj = δijγ,
αi ∪ αj = 0, βi ∪ βj = 0,
αi ∪ βj = −βj ∪ αi.

where αi, βi are generators of H1(M2
g ;Z), and γ is a generator of H2(M2

g ;Z),

Exercise 17.2. Compute the cup-product for H∗(RP2;Z/2). Hint: Use the simplicial (or
cell-decomposition) indicated on Fig. 17.2.

∆2 RP2

Fig. 17.2.

Exercise 17.3. Let N2
g be nonoriented surface of genus g , i.e. N2

g = T 2# · · ·T 2#RP2 .

Compute the cup-product for H∗(N2
g ;Z/2).

Exercise 17.4. Compute the cup product for H∗(RP2;Z/2k), k ≥ 2.

Exercise 17.5. Let X = S1 ∪fk
e2 , where fk : S1 −→ S1 is a degree k map. Compute the

cup product for H∗(X;Z/k).

17.4. Relative case. The same formula which defines the cup product

Hk(X;R)×H l(X;R) −→ Hk+l(X;R)

also gives the products:

Hk(X;R)×H l(X,A;R)
∪−→ Hk+l(X,A;R),

Hk(X,A;R)×H l(X;R)
∪−→ Hk+l(X,A;R),

Hk(X,A;R)×H l(X,A;R)
∪−→ Hk+l(X,A;R).
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Furthermore, if A, B are open in X or A, B are subcomplexes of a CW -complex X , then
there is a more general cup relative product

Hk(X,A;R)×H l(X,B;R)
∪−→ Hk+l(X,A ∪B;R).

We do not give details to define the last product. However we mention that the absolute cup

product Ck(X;R)× C l(X;R)
∪−→ Ck+l(X;R) restricts to a cup product

Ck(X,A;R)× C l(X,B;R)
∪−→ Ck+l(X,A +B;R),

where the group Cq(X,A + B;R) consits of cochains which vanish on chains in Cq(A) and
in Cq(B). Then one should show that the inclusion map

Cq(X,A+B;R) −→ Cq(X,A ∪B;R)

induce isomorphism in cohomology groups, in a similar way as we did proving the Excision
Theorem and Mayer-Vietoris Theorem.

Exercise 17.6. Prove that the cup product is natural, i.e. if f : X −→ Y is a map, and
f ∗ : H∗(Y ;R) −→ H∗(X;R) is the induced homomorphism, then

f ∗(a ∪ b) = f ∗(a) ∪ f ∗(b).

17.5. External cup product. We define an external cup product

µ : H∗(X1;R)⊗R H∗(X2;R) −→ H∗(X1 ×X2;R)

as follows. Let pi : X1 ×X2 −→ Xi (i = 1, 2) be the projection onto Xi , i.e. pi(x1, x2) = xi .
Then µ(a⊗ b) = p∗1(a)∪p∗2(b). The above tensor product ⊗R is taken over the ring R , where
H∗(Xi;R) are considered as R-modules. The tensor product H∗(X1;R) ⊗R H∗(X2;R) has
natural multiplication defined as

(a1 ⊗ a2) · (b1 ⊗ b2) = (−1)deg b1 deg a2(a1b1 ⊗ a2b2).

Claim 17.3. The external product H∗(X1;R) ⊗R H∗(X2;R)
µ−→ H∗(X1 × X2;R) is a ring

homomorphism.

Proof. Indeed, we have:

µ((a1 ⊗ a2) · (b1 ⊗ b2)) = µ((−1)deg b1 deg a2(a1b1 ⊗ a2b2))

= (−1)deg b1 deg a2p∗1(a1 ∪ b1) ∪ p∗2(a2 ∪ b2)

= (−1)deg b1 deg a2p∗1(a1) ∪ p∗1(b1) ∪ p∗2(a2) ∪ p∗2(b2)

= p∗1(a1) ∪ p∗2(a2) ∪ p∗1(b1) ∪ p∗2(b2)

= µ(a1 ⊗ a2)µ(b1 ⊗ b2).
There are many important cases when the external product µ is an isomorphism, for example
for X1 = Sk1 , and X2 = Sk2 .
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Theorem 17.3. Let a space X2 be such that Hq(X2;R) is finitely generated free R-module
for each q . Then the external product

H∗(X1;R)⊗R H∗(X2;R)
µ−→ H∗(X1 ×X2;R)

is a ring isomomorphism.

Proof. First we notice that it is enough to prove Theorem 17.3 for CW -complexes X1 and X2

since for any space X there is a weak homotopy equivalent CW -complex X ′ . Next we notice

that if k , l are given, then the external product Hk(X1;R)⊗RH l(X2;R)
µ−→ Hk+l(X1×X2;R)

is determined of finite skeletons of X1 and X2 . Thus it is enough to prove the statement for
finite CW -complexes X1 and X2 . We need the following result.

Lemma 17.4. Let (X,A) be a pair spaces, and Y be a space. The following diagram com-
mutes:

(85)

H∗(X,A)⊗H∗(Y )

?

µ

H∗(X)⊗H∗(Y )
����������

j⊗1

?

µ

-β⊗1

H∗(A)⊗H∗(Y )
HHHHHHHHHY

δ⊗1

?

µH∗(X × Y,A× Y ) H∗(X × Y )
����������

j̄

-β̄

H∗(A× Y )
HHHHHHHHHY

δ̄

where the above homomorphisms are from the exact sequences:

H∗(X,A) H∗(X)

�
�

�
��	

j

-β

H∗(A)
@

@
@

@@I
δ

H∗(X × Y,A× Y ) H∗(X × Y )

�
�

�
��	

j̄

-β̄

H∗(A× Y )
@

@
@

@@I
δ̄

Proof. The commutativity follows from the naturality of the external product and the
naturality of the Künneth formula.

We return to the proof of Theorem 17.3. Let X1 be a zero-dimensional CW -complex, then

µ : H∗(X1)⊗H∗(X2) −→ H∗(X1 ×X2)

is an isomorphism since Hq(X1 × X2) ∼= H0(X1) ⊗ Hq(X2). Assume Theorem 17.3 holds
for all CW -complexes X1 of dimension at most n − 1. Consider the pair (Dn, Sn−1). The
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homomorphisms

µ : H∗(Dn)⊗H∗(X2) −→ H∗(Dn ×X2),

µ : H∗(Sn−1)⊗H∗(X2) −→ H∗(Sn−1 ×X2)

are isomorphisms: the first one since Dn ∼ ∗ , and the second one by induction. Consider the
diagram

(86)

H∗(Dn, Sn−1)⊗H∗(X2)

?

µ

H∗(Dn)⊗H∗(X2)
����������

j⊗1

?

µ

-β⊗1

H∗(Sn−1)⊗H∗(X2)
HHHHHHHHHY

δ⊗1

?

µ
H∗(Dn ×X2, S

n−1 ×X2) H∗(Dn ×X2)
����������

j̄

-β̄

H∗(Sn−1 ×X2)
HHHHHHHHHY

δ̄

which commutes by Lemma 17.4. Recall that H∗(X2) is a finitely generated free R-module.
This implies that tensoring by over R by H∗(X2) preserves exactness. In other words, we
have the implication:

H∗(Dn, Sn−1) H∗(Dn)

�
�

�
��	

j

-β

H∗(Sn−1)
@

@
@

@@I
δ

exact sequence

=⇒

H∗(Dn, Sn−1)⊗H∗(X2) H∗(Dn)⊗H∗(X2)

�
�

�
��	

j⊗1

-β⊗1

H∗(Sn−1 ⊗H∗(X2)
@

@
@

@@I
δ⊗1

exact sequence

Now by 5-lemma, applied to the diagram (86), the homomorphism

µ : H∗(Dn, Sn−1)⊗H∗(X2) −→ H∗(Dn ×X2, S
n−1 ×X2)

is an isomorphism. It follows now that the homomorphism

µ : H∗(X,A)⊗H∗(X2) −→ H∗(X ×X2, A×X2),

where X =
∨

j

Dn
j , A =

∨

j

Sn−1
j ⊂ X is an isomorphism as well.
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Now we prove the induction step. Consider the pair (X(n), X(n−1)). We have the commutative
diagram:

H∗(
∨

j

(Dn
j , S

n−1
j ))⊗H∗(X2)

@
@

@
@@R

∼=

?

∼=

H∗(X(n), X(n−1))⊗H∗(X2)

?

µ

H∗(X(n))⊗H∗(X2)
����������

j⊗1

?

µ

-β⊗1

H∗(X(n−1))⊗H∗(X2)

HHHHHHHHHY
δ⊗1

?

µ
H∗(X(n) ×X2, X

(n−1) ×X2) H∗(X(n) ×X2)
����������

j̄

-β̄

H∗(
∨

j

Dn
j ×X2,

∨
Sn−1
j ×X2)

�
�

�
���∼=

H∗(X(n−1) ×X2)

HHHHHHHHHY
δ̄

Now 5-lemma implies that

µ : H∗(X(n))⊗H∗(X2) −→ H∗(X(n) ×X2)

is an isomorphism. .

We notice that in fact we proved a relative version of Theorem 17.3:

Theorem 17.5. Let (X,A) be any pair of spaces, and (Y,B) be such a pair that Hq(Y,B;R)
is finitely generated free R-module for each q ≥ 0. Then the external product

µ : H∗(X,A;R)⊗R H∗(Y,B;R) −→ H∗(X × Y,A× Y ∪X × B;R)

is an isomorphism.

Remark. Recall that we can define the product in H∗(X) as the composition

Hk(X)⊗H l(X)
µ−→ Hk+l(X ×X)

∆∗

−−→ Hk+l(X),

where ∆ : X −→ X ×X is the diagonal map. Indeed, we have:

∆∗µ(a× b) = ∆∗(p∗1(a) ∪ p∗2(b)) = ∆∗(p∗1(a)) ∪∆∗(p∗2(b)) = a ∪ b.
Here X

p1←− X ×X p2−→ X are the projections on the first and the second factors.

Recall that the exterior algebra ΛR(x1, . . . xn) over a ring R is given by the relations:

xixj = −xjxi, if i 6= j and x2
i = 0.
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Corollary 17.6. Let X = S2ℓ1+1 × · · · × S2ℓt+1 × S2k1 × · · · × S2ks . Then

H∗(X;R) ∼= ΛR(x2ℓ1+1, . . . , x2ℓt+1)⊗R[x2k1 , . . . , x2ks
]/x2

2k1
, . . . , x2

2ks
,

where deg x2ℓi+1 = 2li + 1, deg x2kj
= 2kj .

Example. Here is an important application of Theorem 17.5. We consider the pairs (X,A) =
(Dk, Sk−1) and (Y,B) = (Dℓ, Sℓ−1). Then clearly the pair (Dℓ, Sℓ−1) satisfies the conditions
of Theorem 17.5. Thus we have a ring isomorphism

H∗(Dk, Sk−1;R)⊗R H∗(Dℓ, Sℓ−1;R) ∼= H∗(Dk ×Dℓ, Sk−1 ×Dℓ ∪ (−1)kDk × Sℓ−1;R)

∼= H∗(Dk+ℓ, Sk+ℓ−1;R)

since Sk−1 ×Dℓ ∪ (−1)kDk × Sℓ−1 ∼= Sk+ℓ−1 .
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18. Cap product and the Poincarè duality.

18.1. Definition of the cap product. Let X be a space, and R be a commutative ring.
We define an R-linear cap product map ∩ : Ck+ℓ(X;R)×Ck(X;R) −→ Cℓ(X;R) as follows.
Let f : ∆k+ℓ −→ X be a generator of Ck+ℓ(X;R), and ϕ ∈ Ck(X;R). As before, we use the
notation (v0, . . . , vk+ℓ) for f : ∆k+ℓ −→ X . Then

f ∩ ϕ := ϕ(v0, . . . , vk)(vk, . . . , vk+ℓ).

By linearity we define the cap product σ ∩ ϕ for any σ ∈ Ck+ℓ(X;R) and ϕ ∈ Ck(X;R).

Let us fix a cochain ϕ ∈ Ck(X;R), then for any cochain ψ ∈ Cℓ(X;R), we have the compo-
sition

Ck+ℓ(X;R)
∩ϕ−−→ Cℓ(X;R)

ψ−→ R,

i.e. the element ψ(σ ∩ ϕ) ∈ R . We notice that in the case when σ = (v0, . . . , vk+ℓ) is a
generator f : ∆k+ℓ −→ X , then

ψ(σ ∩ ϕ) = ψ(ϕ(v0, . . . , vk)(vk, . . . , vk+ℓ))

= ϕ(v0, . . . , vk)ψ(vk, . . . , vk+ℓ)

= (ϕ ∪ ψ)σ.

We write this as 〈ψ, σ ∩ ϕ〉 = 〈ϕ ∪ ψ, σ〉 . In particular, we use Lemma 17.1 to compute

〈ψ, ∂(σ ∩ ϕ)〉 = 〈δψ, σ ∩ ϕ〉

= 〈ϕ ∪ δψ, σ〉

= (−1)k(〈δ(ϕ ∪ ψ), σ〉 − 〈δϕ ∪ ψ, σ〉)

= (−1)k(〈ϕ ∪ ψ, ∂σ〉 − 〈δϕ ∪ ψ, σ〉)

= (−1)k(〈ψ, ∂σ ∩ ϕ〉 − 〈ψ, σ ∩ δϕ〉).

Since the identity holds for any cochain ψ , we obtain that

(87) ∂(σ ∩ ϕ) = (−1)k(∂σ ∩ ϕ− σ ∩ δϕ)

Exercise 18.1 Prove formula (87) directly from the definition of the cap-product.

We see that the cap product of a cycle σ and a cocycle ϕ is a cycle. Furthermore, if ∂σ = 0
then ∂(σ ∩ ϕ) = ±(σ ∩ δϕ). Thus the cap product of a cycle and coboundary is a boundary.
Similarly if δϕ = 0, then ∂(σ ∩ ϕ) = ±(∂σ ∩ ϕ), so we obtain that the cap product of a
boundary and cocycle is a boundary. These facts imply that there is an induced cap product

Hk+ℓ(X;R)×Hk(X;R)
∩−→ Hℓ(X;R).
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Using the same formulas one checks that the cap product has the relative form

Hk+ℓ(X,A;R)×Hk(X;R)
∩−→ Hℓ(X,A;R),

Hk+ℓ(X,A;R)×Hk(X,A;R)
∩−→ Hℓ(X;R),

Hk+ℓ(X,A ∪ B;R)×Hk(X,A;R)
∩−→ Hℓ(X,B;R).

The last cap product is defined provided that A, B are open subsets of X or A, B are
subcomplexes of X (if X is a CW -complex).

Exercise 18.2 Check that the above relative cap products are well-defined.

Claim 18.1. Let f : X −→ Y be a map, and

f∗ : H∗(X;R) −→ H∗(Y ;R), f ∗ : H∗(Y ;R) −→ H∗(X;R)

be the induced homomorphisms. Then

f∗(σ ∩ f ∗(ϕ)) = f∗(σ) ∩ ϕ, σ ∈ H∗(X;R), ϕ ∈ H∗(Y ;R).

Exercise 18.3. Prove Claim 18.1.

Exercise 18.4. Let M2
g be the oriented surface of the genus g . Let [M2

g ] ∈ H2(M
2
g ;Z) ∼= Z

be a generator. Define the homomorphism D : H1(M2
g ;Z) −→ H1(M

2
g ;Z) by the formula

D : α 7→ [M2
g ] ∩ α . Compute the homomorphism D .

Exercise 18.5. Let N2
g be the non-oriented surface of the genus g , i.e.

N2
g = T 2# · · ·#T 2#RP2.

Let [N2
g ] ∈ H2(N

2
g ;Z/2) ∼= Z/2 be a generator. Define the homomorphism

D2 : H1(N2
g ;Z/2) −→ H1(N

2
g ;Z/2)

by the formula D2 : α 7→ [N2
g ] ∩ α. Compute the homomorphism D2 .

Remark. The above homomorphism is the Poincarè duality isomorphism specified for 2-
dimensional manifolds.

18.2. Crash course on manifolds. Here I will be very brief and give only necessary
definitions. A manifold is a second countable Hausdorff space M so that each point
x ∈ M has an open neighborhood U homeomorphic to Rn or a half-space Rn

+ =
{(x1, . . . , xn) ∈ Rn | xn ≥ 0}. Then we say that dimM = n, and those point of M which do
not have an open neighborhood homemorphic to Rn , form a boundary ∂M (which is also
a closed manifold ∂M of dimension (n − 1)). We have seen some examples of manifolds:
Rn , Sn , Dn (where ∂Dn = Sn−1 ), RPn , CPn , HPn , GLR(n), GLC(n), SO(n), U(n), all
classical Lie groups, Grassmannian, Stiefel manifolds and so on. To work with manifolds, we
should specify what do we mean by a smooth manifold.
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Definition 18.1. An n-dimensional smooth manifold is a second countable Hausdorff space
M together with a collection of charts, i.e. {Uα} of neighborhoods and homeomorphisms
ϕα → Rn (or ϕα → Rn

+ ) such that each point x ∈M is in some chart Uα , and if Uα∩Uα′ 6= ∅,
then the map ϕα′ ◦ ϕ−1

α : ϕα(Uα ∩ Uα′)→ ϕα′(Uα ∩ Uα′) from the diagram

ϕα(Uα ∩ Uα′)

?

open subset

Uα ∩ Uα′ ϕα′(Uα ∩ Uα′)

?

open subset

-ϕ−1
α -

ϕα′

Rn Rn

is a diffeomorphism.

All examples mentioned above are smooth manifolds. The following fact is very important in
the manifold theory.

Theorem 18.2. Any smooth manifold Mn is diffeomorphic to a submanifold of R2n , i.e.
any manifold Mn can be embedded to a finite-dimensional Euclidian space.

Remark. I strongly recommend to read carefully few sections of Hatcher (Section 3.3-3.4)
and Bredon (Sections II.1–II.4) to learn some basic facts and technique on smooth topology.

We recall that a subset X ⊂ Rk is triangulated (by q -simplices) if X is a union of simplices
X =

⋃
i ∆

q
i such that

• each simplex ∆q
i is a nondegenerated simplex in Rk ;

• the intersection ∆q
i ∩∆q

j is either empty or consists of is a single joint face of the
simplices ∆q

i and ∆q
j .

Theorem 18.2 implies the following result we need to prove the Poincaré duality.

Theorem 18.3. Any compact smooth manifold M of dimension n is homeomorphic to a
triangulated (by n-simlpices) subset of a finitely-dimensional Euclidian space.

Remarks. (1) If dimM = n, then the Euclidian space in Theorem 18.3 could be chosen
to be R2n . Notice also that a triangulation of a manifold M induces a triangulation (by
corresponding (n− 1)-simplices) on its boundary ∂M .

(2) Theorem 18.3 holds also in the case when M is not compact. Then the triangulation
should be infinite.

(3) We do not prove Theorems 18.2, 18.3; say, Theorem 18.2 is rather easy to prove, and
its proof could be found in most classical textbooks on Algebraic Topology; Theorem 18.3
is deeper than it seems. First ad hock (and correct!) proof is due to Wittney (end of 30’s).
A transperent version of that proof is given by Munkres in his “Lectures on Differential
Topology”.

Exercise 18.6. Construct an embedding of the projective spaces RPn , CPn , HPn into
Euclidian space.
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Exercise 18.7. Let Mn ⊂ Rk be a triangulated (by n-simplices) manifold, M =
⋃

∆n
i ,

with possibly non-empty boundary ∂M . Consider any (n − 1)-face ∆n−1 of a simplex ∆n
i .

Prove that if ∆n−1 does not belong to the induced triangulation of its boundary, then there
exists a unique simplex ∆n

j , j 6= i, which also has the simplex ∆n−1 as a face.

Consider the case when a manifold Mn ⊂ Rk is a compact closed (i.e. ∂Mn = ∅) manifold.
Then we can assume that the triangulation Mn =

⋃
i ∆

n
i is finite. In particular, the trian-

gulation Mn =
⋃
i ∆

n
i gives a CW -decomposition of the manifold M where n-cells eni are

identified with the enterior of the simplex ∆n
i , and ēni = ∆n

i . A triangulated manifold Mn is
said to be orientable (over a ring R) if there is a choice of orientations on each simplex ∆n

i ,
such that the chain

(88)
∑

i

eni (where the summation is taken over all indices i)

is a cycle in the chain complex E∗(M). Once we fix an orientations, we call the manifold M
oriented.

Remark. If R = Z/2, then any closed compact manifold has “orientation”, and its unique.
In that case one can see that the chain (88) is always a cycle.

We state the following result which summarizes our observations.

Theorem 18.4. Let Mn be a smooth compact manifold. Then

Hn(M ;Z) =

{
Z, if M is closed and oriented,
0, else

Hn(M ;Z/2) =

{
Z/2, if M is closed,

0, else

Remarks. (1) It is easy to see that if a manifold Mn is oriented over Z, then it is oriented
over any ring R . The converse is not true. It is also easy to see that any manifold Mn is
oriented over Z/2 (Prove it!). A cohomology class defined by the cycle (88) is denoted by
[Mn] ∈ Hn(M

n;R) and is called the fundamental class of Mn

(2) An example of a non-oriented manifold is RP2n : H2n(RP2n;Z) = 0; however, we have
the fundamental class [RP2n] ∈ H2n(RP2n;Z/2).

(3) We say that a homology class α ∈ Hk(M
n;R) is represented by a submanifold Nk ⊂ Mn

if i∗([Nk]) = α , where i : Nk → Mn is the inclusion map. For example, a generator
αk ∈ Hk(RPn) is represented by RPk ⊂ RPn ; as well as a generator βj ∈ H2j(CPn;Z) is
represented by CPj ⊂ CPn . It turns out that not every homology class of a smooth manifold
could be represented by a submanifold: this was discovered by Rene Thom in 1954.

18.3. Poincaré isomorphism. Let Mn be a closed manifold. We define a homomorphism

D : Hq(M ;Z) −→ Hn−q(M ;Z) α 7→ [M ] ∩ α if M is oriented

D : Hq(M ;Z/2) −→ Hn−q(M ;Z/2) α 7→ [M ] ∩ α if M is not oriented
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Theorem 18.5. (Poincaré isomorphism Theorem) Let Mn be a closed compact manifold.
Then the homorphism

D : Hq(M ;Z/2) −→ Hn−q(M ;Z/2)

is an isomorphism for each q . If, in addition, M is oriented manifold, then the homomor-
phism

D : Hq(M ;Z) −→ Hn−q(M ;Z)

is an isomorphism for each q .

Remark. There are several different ways to prove Theorem 18.5. In particular, nice proof
is given in the book by Hatcher (Sections 3.3-3.4). Here we will present a geometric proof
which is rather close to an original idea due to Poincaré.

Construction. Consider a triangulation T = {∆n
i } of an open disk Bn(r) ⊂ Rn of radius r .

Here it means that Bn(r) ⊂ ⋃i ∆
n
i , and the intersection ∆n

i ∩∆n
j is either empty or consists

of is a single joint face of the simplices ∆n
i and ∆n

j . We assume that the triangulation is fine
enough, say, if ∆n

i ∩ Bn(r/2) 6= ∅ , then ∆n
i ⊂ Bn(r). In other words, this triangulation is a

good local model of a neighborhood near a point on a manifold equipped with a triangulation.

Let ∆q ⊂ ∆n
i ∈ T be a subsimplex with barycenter x0 at the center of the ball Bn(r). Now

let βT be the barycentric subdivision of our triangultion. We define a barycentric star S(∆q)
as the following union (see Fig. 18.1):

S(∆q) :=
⋃

∆ ⊂ ∆n ∈ βT
∆ ∩∆q = {x0}

∆ .

Notice that all subsimplices ∆ with those properties have dimension (n − q), moreover,
S(∆q) ⊂ Bn(r) is homeomorphic to a disk Dn−q decomposed into (n− q)-simplices, see Fig.
18.2.

Proof of Theorem 18.5. Let T be a triangulation of a closed oriented manifold Mn . In
particular, the triangulation T determines a CW -decomposition of Mn , where all q -cells are
given by q -simplices {∆q

i} of T . We notice that the stars S(∆q) determine an alternative
“dual” CW -structure of Mn . Let E∗(Mn) be a chain complex determined by the first CW -
decomposition, and Ē∗(Mn) the chain complex determined by the dual CW -structure.

In particular, generators of the chain group Ēn−q(Mn) are the stars S(∆q
i ). Also, let

E∗(Mn) = Hom(E∗(Mn),Z) be the corresponding cochain complex. We define a homomor-
phism D̄ : Eq(Mn) → Ēn−q(Mn) as follows. For a cochain ϕ ∈ Eq(Mn), ϕ : ∆q

i 7→ λi , we
define

D̄(ϕ) :=
∑

i

λiS(∆q
i ) ∈ Ēn−q(Mn).
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Fig. 18.1. A barycentric star in Rn .

It is easy to check that D̄δϕ = ±∂D̄ϕ (we do not specify the sign here). Thus we have the
following commutative diagram:

Ēn(Mn) Ēn−1(M
n) · · · Ē1(Mn) Ē0(Mn)-∂n -∂n−1 -∂2 -∂1

E0(Mn)

6

D̄

E1(Mn)

6

D̄

· · · En−1(Mn)

6

D̄

En(Mn)

6

D̄

-δ1 -δ2 -δn−2 -δn−1

Thus we have that D̄ is an isomorphism for each q and, in fact, the above complexes
E∗(Mn) and Ē∗(Mn) are identical via the chain map D̄ . Hence we have that Hq(Mn;Z) ∼=
Hn−q(Mn;Z).

Exercise 18.9. Show that the duality isomomorphism D̄ induces the map as

D : Hq(Mn;Z)
[Mn]∩−−−−→ Hn−q(M

n;Z).

Hint: replace the cochain complex E∗(Mn) by the the cochain complex given by the barycentic
subdivision βT .

This concludes our proof of Theorem 18.5.

Corollary 18.6. Let Mn be a closed compact manifold of odd dimension n. Then χ(Mn) =
0.

Exercise 18.10. Prove Corollary 18.6. Notice that Mn is not necessarily an oriented mani-
fold.
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18.4. Some computations. Recall that for the cap-product

Hk+ℓ(X;R)×Hk(X;R)
∩−→ Hℓ(X;R).

we have the identity 〈ψ, σ ∩ϕ〉 = 〈ϕ∪ψ, σ〉 . For a closed oriented manifold Mn we consider
the pairing

(89) Hq(Mn;R)×Hn−q(Mn;R)→ R, (ϕ, ψ) := 〈ϕ ∪ ψ, [Mn]〉.
A bilinear pairing µ : A × B → R , (where A and B are R-modules) is nonsingular if the
maps

A→ HomR(B,R), a 7→ µ(a, ·) ∈ HomR(B,R), and

B → HomR(A,R), b 7→ µ(·, b) ∈ HomR(A,R)

are both isomorphisms.

Lemma 18.7. Let Mn be an oriented manifold (over R). Then the pairing (89) is nonsin-
gular provided that R is a field. Furthermore, if R = Z, then the induced pairing

(90) (Hq(Mn;Z)/Tor)×
(
Hn−q(Mn;Z)/Tor

)
→ Z, (ϕ, ψ) := 〈ϕ ∪ ψ, [Mn]〉.

is nonsingular.

Exercise 18.11. Prove Lemma 18.7. Hint: Make use of the universal coefficient Theorem
and Poincaré duality.

Corollary 18.8. Let Mn be an oriented manifold. Then for each element of infinite order
α ∈ Hq(Mn;Z), there exists an element β ∈ Hn−q(Mn;Z) of infinite order such that 〈α ∪
β, [Mn]〉 = 1, i.e. the element α ∪ β is a generator of the group Hn(Mn;Z).

Exercise 18.12. Prove Corollary 18.8.

Theorem 18.9. Let R be any ring. Then

(1) H∗(RPn;Z/2) ∼= Z/2[x]/xn+1 , where x ∈ H1(RPn;Z/2) is a generator;
(2) H∗(CPn;R) ∼= R[y]/yn+1 , where y ∈ H2(CPn;R) is a generator;
(3) H∗(HPn;R) ∼= R[z]/zn+1 , where z ∈ H4(HPn;R) is a generator.

Proof. We prove (2). Induction on n. Clearly H∗(CP1;R) ∼= R[y]/y2 . Induction step. The
inclusion i : CPn−1 → CPn induces an isomorphism

i∗ : Hq(CPn;Z)→ Hq(CPn−1;Z)

for q ≤ n− 1. In particular, the groups H2j(CPn−1;Z) are generated by yj for j ≤ n− 1.

By Corollary 18.7, there exists an integer m such that the element yn−1∪my = myn generates
the group H2n(CPn−1;Z) ∼= Z. Thus we obtain that m = ±1, and H∗(CPn;R) ∼= R[y]/yn+1 .

Corollary 18.10. Let R be any ring. Then

(1) H∗(RP∞;Z/2) ∼= Z/2[x], where x ∈ H1(RPn;Z/2) is a generator;
(2) H∗(CP∞;R) ∼= R[y], where y ∈ H2(CPn;R) is a generator;
(3) H∗(HP∞;R) ∼= R[z], where z ∈ H4(HPn;R) is a generator.
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19. Hopf Invariant

19.1. Whitehead product. Here we remind the Whitehead product: for any elements α ∈
πm(X), β ∈ πn(X) we construct the element [α, β] ∈ πm+n−1(X).

First we consider the product Sm × Sn . The cell structure of Sm × Sn is obvious: we
have cells σ0 , σm , σn , σm+n . A union of the cells σ0 , σm , σn is the space Sm ∨ Sn . Let
w : Sm+n−1 −→ Sm ∨ Sn be an attaching map of the cell σm+n , i.e.

Sm × Sn = (Sm ∨ Sn) ∪w Dm+n−1.

Now let f : Sm −→ X , g : Sn −→ X be representatives of elements α ∈ πm(X), β ∈ πn(X).
The composition

Sm+n−1 w−→ Sm ∨ Sn f∨g−−→ X

gives an element of πm+n−1(X). By definition,

[α, β] = {the homotopy class of (f ∨ g) ◦ w} .
The construction above does depend on a choice of the attaching map w .

Let ι2n be a generator of the group π2n(S
2n). We have proved “geometrically” the following

result.

Theorem 19.1. The group π4n−1(S
2n) is infinite for any n ≥ 1; the element [ι2n, ι2n] ∈

π4n−1(S
2n) has infinite order.

Next, we introduce an invariant, known as Hopf invariant to give another proof of Theorem
19.1.

19.2. Hopf invariant. Before proving the theorem we define the Hopf invariant. Let
ϕ ∈ π4n−1(S

2n), and let f : S4n−1 −→ S2n be a representative of ϕ . Let Xϕ = S2n ∪f D4n .
Compute the cohomology groups of Xϕ :

Hq(Xϕ;Z) =

{
Z, q = 0, 2n, 4n,
0, otherwise.

Let a ∈ H2n(Xϕ;Z), b ∈ H4n(Xϕ;Z) be generators. Since a2 = a ∪ a ∈ H4n(Xϕ;Z), then
a2 = hb, where h ∈ Z. The number h(ϕ) = h is the Hopf invariant of the element
ϕ ∈ π4n−1(S

2n).

Examples. Let h : S3 → CP1 = S2 and H : S7 → HP1 = S4 be the Hopf maps. Notice
that Xh = CP2 and XH = HP2 . As we have computed,

H∗(CP2;Z) = Z[y]/y3, y ∈ H2(CP2;Z),

H∗(HP2;Z) = Z[z]/z3, z ∈ H4(HP4;Z).

Thus h(h) = 1 and h(H) = 1. There is one more case when this is true. Let Ca be the
Calley algebra; this is the algebra defined on R8 . Furthermore, there exists a projective line
CaP1 ∼= S8 and a projective plane CaP2 with

H∗(CaP2;Z) = Z[σ]/σ3, σ ∈ H8(CaP2;Z).

The attaching map H : S15 → S8 for the cell e16 also has h(H) = 1.
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Lemma 19.2. h(ϕ1) + h(ϕ2) = h(ϕ1 + ϕ2).

Lemma 19.3. The Hopf invariant is not trivial, in particular,

h([ι2n, ι2n]) = 2.

Proof of Lemma 19.2. For given elements ϕ1, ϕ2 ∈ π4n−1(S
2n) we choose representatives

f1 : S4n−1 −→ S2n , f2 : S4n−1 −→ S2n and consider the spaces Xϕ1 , Xϕ2 , Xϕ1+ϕ2 . Also we
construct the following space:

Yϕ1,ϕ2 = (S2n ∪f1 D4n) ∪f2 D4n = S2n ∪f1∨f2 (D4n ∨D4n),

where [f1] = ϕ1 , [f2] = ϕ2 . We compute the cohomology groups of Yϕ1,ϕ2 :

Hq(Yϕ1,ϕ2;Z) =






Z, q = 0, 2n,
Z⊕ Z q = 4n,
0, otherwise.

Let a′ ∈ H2n(Yϕ1,ϕ2;Z), b′1, b
′
2 ∈ H4n(Yϕ1,ϕ2;Z) be generators. We have natural maps:

i1 : Xϕ1 −→ Yϕ1,ϕ2,

i2 : Xϕ2 −→ Yϕ1,ϕ2,

where i1 , i2 are cell-inclusion maps:

S2n ∪f1 D4n −→ S2n ∪f1∨f2 (D4n ∨D4n),

S2n ∪f2 D4n −→ S2n ∪f1∨f2 (D4n ∨D4n).

We choose generators

a1 ∈ H2n(Xϕ1 ;Z), b1 ∈ H4n(Xϕ1 ;Z),

a2 ∈ H2n(Xϕ2;Z), b2 ∈ H4n(Xϕ2;Z)

in such way that
i∗1(a

′) = a1, i∗1(b
′
1) = b1, i∗1(b

′
2) = 0,

i∗2(a
′) = a2, i∗2(b

′
2) = b2, i∗1(b

′
1) = 0.

Now we construct a map
j : Xϕ1+ϕ2 −→ Yϕ1,ϕ2

as follows. Recall that
Xϕ1+ϕ2 = S2n ∪f D4n,

where f is the composition:

S4n−1 −→ S4n−1 ∨ S4n−1 f1∨f2−−−→ S2n.

Now we send the sphere S2n ⊂ Xϕ1+ϕ2 , S2n Id−→ S2n ⊂ Yϕ1,ϕ2 identically, and j : D4n −→
D4n ∨D4n , where we contract the equator disk D4n−1 :

D4n - D4n ∨D4n

A restriction of j on the sphere S4n−1 gives the map



168 BORIS BOTVINNIK

S4n−1 - S4n−1 ∨ S4n−1

Note that the diagram of maps

S4n−1

@
@

@
@@R

f1+f2

S4n−1 ∨ S4n−1

�
�

�
��	

f1∨f2

-
j|

S4n−1

S2n

commutes by definition of the addition operation in homotopy groups. In particular, the
following diagram commutes as well:

D4n D4n ∨D4n-j

S4n−1

@
@

@
@@R

f1+f2

6

S4n−1 ∨ S4n−1

�
�

�
��	

f1∨f2

6

-
j|

S4n−1

S2n

The construction above defines the map

j : Xϕ1+ϕ2 −→ Yϕ1,ϕ2 .

Now we compute the homomorphisms i∗1 , i∗2 and j∗ in cohomology:

i∗1 : Hq(Yϕ1,ϕ2) −→ Hq(Xϕ1),

i∗2 : Hq(Yϕ1,ϕ2) −→ Hq(Xϕ2).

We have that
i∗1(a

′) = a1, i∗1(b
′
1) = b1, i∗1(b

′
2) = 0,

i∗2(a
′) = a2, i∗2(b

′
1) = 0, i∗1(b

′
2) = b2,

The homomorphism

j∗ : Hq(Yϕ1,ϕ2) −→ Hq(Xϕ1+ϕ2)

sends

j∗(a′) = a, j∗(b′1) = b, j∗(b′2) = b.

The element

(a′)2 ∈ H4n(Yϕ1,ϕ2)

is equal to (a′)2 = µ1b
′
1 + µ2b

′
2 . Since i∗1((a

′)2) = a2
1 = h(ϕ1)b1 , and i∗1(b

′
1) = b1 , then

µ1 = h(ϕ1). The same reason gives that µ2 = h(ϕ2). Note that a2 = h(ϕ1 + ϕ2)b, and since
j∗(a′) = a, j∗(b′1) = b, j∗(b′2) = b, we conclude that h(ϕ1 + ϕ2) = h(ϕ1) + h(ϕ2).
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Before we prove Lemma 19.3, we compute the cohomology (together with a product structure)
Hq(S2n × S2n). First compute the cohomology groups:

Hq(S2n × S2n;Z) =





Z, q = 0, 4n,
Z⊕ Z, q = 2n

0, otherwise.

Let c1, c2 ∈ H2n(S2n × S2n) be such generators that the homomorphisms

p∗1 : H2n(S2n
1 ) −→ H2n(S2n

1 × S2n
2 ),

p∗2 : H2n(S2n
2 ) −→ H2n(S2n

1 × S2n
2 ),

induced by the projections

S2n
1 × S2n

2

p1−→ S2n
1 , S2n

1 × S2n
2

p2−→ S2n
2

send the generators c1 and c2 to the generators of the groups H2n(S2n
1 ), H2n(S2n

2 ). Let
d ∈ H4n(S2n × S2n) be a generator. It follows from Corollary 17.6 that

c1c2 = d.

We also note that c21 = 0 and c22 = 0 since by naturality p∗1(c1)
2 = 0 and p∗2(c2)

2 = 0. So
we have that the ring H∗(S2n

1 × S2n
2 ) is generated over Z by the elements 1, c1 , c2 with the

relations c21 = 0, c22 = 0. In particular, we have:

(c1 + c2)
2 = c21 + 2c1c2 + c22 = 2d.

Proof of Lemma 19.3. We consider the factor space

X = S2n × S2n/ ∼,
where we identify the points (x, x0) = (x0, x), where x0 is the base point of S2n .

Claim 19.1. The space X = S2n× S2n/ ∼ is homeomorphic to the space S2n ∪f D4n , where
f is the map defining the Whitehead product [ι2n, ι2n].

Proof of Claim 19.1. Recall that S2n× S2n = (S2n ∨ S2n)∪w D4n , where w is the map we
described above. The generator ι2n is represented by the identical map S2n −→ S2n . The
composition

S4n−1 w−→ S2n ∨ S2n Id∨Id−−−→ S2n

represents the element [ι2n, ι2n]. It exatly means that the identification (S2n, x0) = (x0, S
2n)

we just did in the space S2n × S2n is the same as to attach D4n with the attaching map
(Id ∨ Id) ◦ w .

Compute the cohomology of X :

Hq(X;Z) =

{
Z, q = 0, 2n, 4n,
0, otherwise.

We note that the projection S2n × S2n −→ X sends the generator c ∈ H2n(X) to c1 + c2 .
Besides the generator d maps to a generator of H4n(X;Z) (we denote it also by d). So we
have: c2 = 2d , or h([ι2n, ι2n]) = 2.

This concludes our proof of Theorem 19.1.



170 BORIS BOTVINNIK

Remarks. (1) In fact, it is true that π4n−1(S
2n) = Z⊕{finite abelian group} , in particular,

as we know, π3(S
2) = Z, π7(S

4) = Z ⊕ Z/12, π11(S
6) = Z, π15(S

8) = Z ⊕ Z/120. More-
over, all homotopy groups of the spheres are finite with the exception of πn(S

n) = Z and
π4n−1(S

2n) = Z⊕ {finite abelian group} .

(2) We proved that the image of the Hopf invariant h : π4n−1(S
2n) −→ Z either all group Z

or 2Z.

Problem: Does there exists an element in π4n−1(S
2n) with the Hopf invariant 1?

This problem has several remarkable reformulations. One of them is the following: for which
n does the vector space Rn+1 admit a structure of real division algebra with a unit. Frank
Adams (1960) proved that there are elements with the Hopf invariant one only in the groups
π3(S

2) π6(S
4), π15(S

8). Thus there are only the following real division algebra with a unit:
R2 ∼= C, R4 ∼= H , and R8 ∼= Ca.
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20. Elementary obstruction theory

20.1. Eilenberg-MacLane spaces and cohomology operations. Let π and G be abelian
groups, n, m be nonnegtive integers.

Definition 20.1. A family of maps

θX : Hn(X; π)→ Hn′

(X; π′)

is called a cohomology operation θ of the type (π, n; π′, n′) if it is determined for every topo-
logical space X and such that for any map f : X → Y the diagram

Hn(X; π) Hn′

(X; π′)-θX

Hn(Y ; π)

6
f∗

Hn′

(Y ; π′)

6
f∗

-θY

commutes, i.e. f ∗θY = θXf
∗ . In different terms, we say that the operation θ is natural. The

set of all cohomological operations of the type (π, n; π′, n′) is denoted by O(π, n; π′, n′).

Example. For each n and any π the operation a 7→ a2 is a cohomology operation. Notice
that a cohomology operation is not, in general, a homomorphism.

Our next goal is to idendify the set O(π, n; π′, n′) with cohomology groups of the Eilenberg-
McLane spaces.

Let X be a space. We recall that there is Hurewicz homomorphism h : πq(X) → Hq(X;Z)
defined as follows. Let ιq ∈ Hq(S

q) be a canonical generator. Then for an element ϕ ∈ πq(X)
and its represenative f : Sq → X , the image h(ϕ) ∈ Hq(X;Z) is given by f∗(ιq).

Now assume that X is (n−1)-connected. Then Hq(X;Z) = 0 for q ≤ n−1 and the Hurewicz
homomorphism h : πn(X) → Hn(X;Z) is isomorphism. Then the universal coefficient for-
mula

0→ Ext(Hn−1(X;Z), π)→ Hn(X; π)→ Hom(Hn(X;Z), π)→ 0

shows that Hn(X; π) ∼= Hom(Hn(X;Z), π) since Hn−1(X;Z) = 0.

Let π = πn(X). Thus the group Hom(Hn(X;Z), π) contains the inverse h−1 to the Hurewicz
homomorphism h.

Definition 20.2. For an (n− 1)-connected space X , we denote by ιX the cohomology class

ιX := h−1 ∈ Hom(Hn(X;Z), π) ∼= Hn(X; π).

Sometimes the class ιX is called as fundamental class of (n− 1)-connected space X .

In particular, the Eilenberg-McLane space K(π, n) has a canonical class

ιn ∈ Hom(Hn(K(π, n);Z), π).

Below we will prove the following result.
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Theorem 20.3. There is a bijection

[X,K(π, n)]↔ Hn(X; π).

given by the formula [f ] 7→ f ∗ιn .

Here [f ] means a homotopy class of a map f : X → K(π, n). Before proving Theorem 20.3,
we derive several important corollaries of Theorem 20.3.

Corollary 20.4. Let π , π′ be abelian groups. There is a bijection

[K(π, n), K(π′, n)]↔ Hom(π, π′).

Proof. We combine the statement of Theorem 20.3 with the universal coefficient theorem
and Hurewicz isomorphism to see that

[K(π, n), K(π′, n)]↔ Hn(K(π, n); π′) ∼= Hom(Hn(K(π, n);Z), π′) ∼= Hom(π, π′).

This proves Corollary 20.4.

Corollary 20.5. Let π be an abelian group. The homotopy type of the Eilenberg-McLane
space K(π, n) is completely determined by the group π and the integer n.

Proof. According to Corollary 20.4, any isomorphism π → π is induced by some map f :
K(π, n)→ K(π, n). Since all other groups are trivial, the map f induces isomorphism in all
homotopy groups. Then Whitehead Theorem 14.10 implies that f is homotopy equivalence.

Now let θ be a cohomology operation of the type (π, n; π′, n′). Then we have en element
θ(ιn) ∈ Hn′

(K(π, n), π′).

Theorem 20.6. There is a bijection

O(π, n; π′, n′)↔ Hn′

(K(π, n), π′)

given by the formula θ ↔ θ(ιn).

Proof. Let ϕ ∈ Hn′

(K(π, n), π′). We define an operation ϕ ∈ O(π, n; π′, n′) as follows. We
should describe the action

Hn(X; π)
ϕX−−→ Hn′

(X; π′)

for any space X . Let u ∈ Hn(X; π), then, according to Theorem 20.3, there exists a map
f : X → K(π;n) such that [f ] 7→ f ∗(ιn) = u . Then we define

ϕ(u) = f ∗(ϕ) ∈ Hn′

(X; π′).

Thus we have the maps

O(π, n; π′, n′)→ Hn′

(K(π, n), π′), ϕ 7→ ϕ(ιn)

Hn′

(K(π, n), π′)→ O(π, n; π′, n′), ϕ(u) = f ∗(ϕ), where f ∗(ιn) = u.

Let X = K(π, n) and u = ιn , then f : K(π, n) → K(π, n) is homotopic the identity. Thus
ϕ(ιn) = f ∗(ϕ) = ϕ . In the other direction, let ϕ = θ(ιn). Then

ϕ(u) = f ∗(ϕ) = f ∗(θ(ιn)) = θ(f ∗(ιn)) = θ(u)

for any u ∈ Hn(X; π).
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Theorems 20.3 and 20.6 imply the following result:

Corollary 20.7. There is a bijection

O(π, n; π′, n′)↔ [K(π, n), K(π′, n′)].

Now we have to prepare some tools to prove Theorem 20.3.

20.2. Obstruction theory. Let Y be a space with a base point y0 ∈ Y . We recall that
the fundamental group π1(Y, y0) acts on the group πn(Y, y0) for each n. We will say that
a space Y is homotopically simple if this action is trivial. In the case when the space Y is
homotopically simple, we may (and will) ignore a choice of the base point. In particular, any
map f : Sn → Y gives well-defined element in the group πn(Y ).

Now let B be a CW -complex and A ⊂ B be its subcomplex. We denote Xn = B(n) ∪ A,
where B(n) is the n-th skeleton of B . Let σ = en+1 be an (n+ 1)-cell of B , which does not
belong to A. We denote by ϕσ : Sn → Xn be the attaching map corresponding to the cell
σ . We consider the cells σ as generators of the cellular chain group En+1(B,A).

For any map f : Xn → Y , where Y is homotopically simple, we define a cochain

c(f) ∈ En+1(B,A; πn(Y )) = Hom(En+1(B,A), πn(Y ))

as follows. The value c(f) on the generator σ is given by

c(f)(σ) = [f ◦ ϕσ] ∈ πn(Y ), where

f ◦ ϕσ : Sn
ϕσ−→ Xn f−→ Y.

Lemma 20.8. The cochain c(f) is a cocycle, i.e. δc(f) = 0.

Proof. We recall that if (K,L) is a CW -pair with π1K = π1L = 0, and pi1(K,L) = 0 for
q = 0, 1, . . . , n − 1, then the Hurewicz homomomorphism h : πn(K,L) → Hn(K,L;Z) is an
isomorphism. This is the relative version of the Hurewicz Theorem, see Theorem 14.9. We
will use this result below. Consider the following commutative diagram:

(91)

XXXXXXXXXXXXXXXXXXXXXXXXz

i

En+2(B,A)

?

∂
≀

n+2

Hn+2(X
n+2, Xn+1;Z)

?

∂
≀

n+2

πn+2(X
n+2, Xn+1)

?

∂̃

-
∼= -h

−1

πn+1X
n+1

?

j∗

En+1(B,A) Hn+1(X
n+1, Xn;Z) πn+1(X

n+1, Xn)

?

∂

-
∼= -h−1

πnX
n πnY-f∗
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Here the horizontal homomorphisms are given by the inverses to the Hurewicz isomorphisms.
By definition, the boundary operator

∂
≀

n+2 : Hn+2(X
n+2, Xn+1;Z) −→ Hn+1(X

n+1, Xn;Z)

is given by the boundary operator in the long exact sequence of the triple (Xn+2, Xn+1, Xn)
and thus by Hurewicz isomorphism is reduced to the boundary operator in the long exact
sequence in homotopies for the same triple:

∂ : πn+2(X
n+2, Xn+1) −→ πn+1(X

n+1, Xn)

which coincides with the composition:

πn+2(X
n+2, Xn+1)

∂̃−→ πn+1X
n+1 j∗−→ πn+1(X

n+1, Xn).

by construction. Here ∂̃ is the boundary operator in the long exact sequence in homotopy
groups for the pair (Xn+2, Xn+1). Then we identify the cochain c(f) : En+1(B,A) → πnY ;
clearly it coinsides with the composition f∗ ◦ i. Now let σ ∈ En+2(B,A). By definition,

δn+1c(f)(σ) = c(f)(∂
≀

n+2σ). On the other hand, we can first take σ to σ̄ ∈ πn+2(X
n+2, Xn+1)

via the Hurewicz isomorphism and then down the right column of the diagram (91). Then

we have ∂ ◦ f∗ ◦ ∂̃(σ̄) = 0 since ∂ ◦ f∗ = 0 by exactness.

Exercise 20.1. Prove the following Lemma 20.9.

Lemma 20.9. The map f : Xn → Y can be extended to a map f̃ : Xn+1 → Y if and only if
c(f) = 0.

Now let f, g : Xn → Y be two maps which coincide on Xn−1 , i.e. f |Xn−1 = g|Xn−1 . Then
for each n-cell ω , we define a map hω : Sn → Y as follows. We decompose Sn as union of
the hemispheres: Sn = Dn

+ ∪Sn−1 Dn
− . Then for each n-cell ω , we have the attaching map

ψω : Sn−1 → Xn−1 = B(n−1) ∪ A and characteristic map Ψω : Dn → Xn = B(n) ∪ A. Then
we define hω : Sn = Dn

+ ∪Sn−1 Dn
− → Y by

hω|Dn
+

= g ◦Ψω : Dn
+

Ψω−→ Xn g−→ Y,

hω|Dn
−

= f ◦Ψω : Dn
−

Ψω−→ Xn f−→ Y.

Clearly hω|Sn−1 = (f ◦ Ψω)|Sn−1 = (g ◦ Ψω)|Sn−1 since f |Xn−1 = g|Xn−1 . This construction
defines the distinguishing cochain d(f, g) in the cochain group En(B,A; πn(Y )).

Lemma 20.10. There are the following properties of the cochain d(f, g):

(1) Let f, g : Xn → Y be two maps which coincide on Xn−1 , then

δd(f, g) = c(g)− c(f).

(2) Let f, g, h : Xn → Y be three maps which coincide on Xn−1 , then

d(f, g) + d(g, h) = d(f, h).
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Proof. We prove (1) leaving (2) as an exercise. For simplicity, we assume that the maps
f, g : Xn → Y are different only on a single n-cell ω of Xn . Let σ be any (n + 1)-cell of
Xn+1 . Then, by definition,

δd(f, g)(σ) = d(f, g)(∂
≀

n+1σ),

where ∂
≀

n+1 : En+1(B,A)→ En(B,A) is the boundary operator in the cellular chain complex.

Let Φσ a characteristic map and ϕσ be an attaching map coresponding to the cell σ :

Dn+1 Xn+1-Φσ

Sn

6

Xn

6

-ϕσ

We consider the following diagram:

Sn

HHHHHHHHHj

ζ

Xn Xn/Xn−1

�
�

�
��	

=

-ϕσ -pr

Sne

∨

j

Snj�pe

Here Sne is the sphere corresponding to the cell e and pe the projection on Sne . Since f and
g are the same on all cells but e, we obtain

δd(f, g)(σ) = d(f, g)(∂
≀

n+1σ) = [σ : e]d(f, g)(e),

where [σ : e] = deg ζ , where ζ : Sn → Sne is the map from the above diagram. Now we recall

Sn

ζ0

ζ−1
0 (Dn

e )

Dn
j

Dn
i

Dn
e

Ψe
Xn

Xn/Xn−1 =
∨

k

Snk

Sne

Figure 30

that a map ζ : Sn → Sne of degree [σ : e] is homotopic to a map ζ0 : Sn → Sne which satisfies
the following properties:
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(1) there are disjoint disks Dn
1 , . . . , D

n
s ⊂ Sn such that

(a) ζ0|Dn
j

: Dn
j → Sne is a map of degree ±1;

(b) ζ0|Sn\(Dn
1 ⊔...⊔Dn

s ) : Sn \ (Dn
1 ⊔ . . . ⊔Dn

s )→ Sne is a constant map;

(2) the degree [σ : e] is the algebraic number of such disks counting ±1’s.

Now we can take a close look at the cell en ⊂ Xn , see Fig. 30. It shows that

(c(f)− c(g))(σ) = [σ : e]d(f, g)(e)

This proves the result.

It turns out that any cochain in En(B,A; πn(Y )) could be realized as a distinguishing cochain:

Lemma 20.11. For any map f : Xn → Y and a cochain d ∈ En(B,A; πn(Y )) there exists a
map g : Xn → Y such that f |Xn−1 = g|Xn−1 and d(f, g) = d.

Exercise 20.2. Prove Lemma 20.11.

We denote by [c(f)] ∈ Hn+1(B,A; πnY ) the cohomology class of c(f).

Theorem 20.12. Let Y be a homotopy simple space, (B,A) a CW -pair and Xn = B(n)∪A
for n = 0, 1, . . .. Assume f : Xn −→ Y is a map. Then there exists a map g : Xn+1 −→ Y
such that g|Xn−1 = f |Xn−1 if and only if [c(f)] = 0 in Hn+1(B,A; πnY ).

Proof. Let δd = c(f). Then we find g : Xn −→ Y such that g|Xn−1 = f |Xn−1 and d(f, g) =
−d . Since

c(f) = δd = −δd(f, g) = c(f)− c(g),
we obtain that c(g) = 0. Thus there exists an extension of g to Xn+1 .

Let K be a CW -complex. Then we let B = K × I , A = K × {0, 1}. To illustrate the
technique, we give another proof of the following simple fact.

Lemma 20.13. Let Y be n-connected space and K be a CW -complex of dimension n. Then
[K, Y ] = ∗.

Proof. Let h : K → Y be a map. We define a map f : K × {0, 1} → Y as

f |K×{0} = h, f |K×{1} = ∗
We choose a CW -structure of K × I to be a product-structure. In particular, all zero cells
of K × I are located inside of K × {0, 1}. Thus the map

f (0) : X0 = (K × I)(0) ∪K × {0, 1} → Y

is already defined. Assume that its exension

f (k) : Xk = (K × I)(k) ∪K × {0, 1} → Y

to the space Xk = (K × I)(k) ∪K ×{0, 1} for k = 0, . . . , ℓ− 1 is defined, where ℓ ≤ n. Then
the obstruction c(f (ℓ)) ∈ E ℓ(K × I,K × {0, 1} ; πℓ(Y )) vanishes since πℓ(Y ) = 0. This shows
that a homotopy between h and the constant map extends to K × I , i.e. we have proved
that [K, Y ] = ∗ .

Next, we would like to prove a result concerning exension of a homotopy in more general
setting.
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Theorem 20.14. Let f, g : K −→ Y be two maps, where K is a CW -complex and Y
is homotopy-simple space. Assume that f |K(n−1) = g|K(n−1) . Then the cohomology class
[d(f, g)] ∈ Hn(K, πnY ) vanishes if and only if there exists a homotopy between the maps
f |K(n) and g|K(n) relative to the skeleton K(n−2) .

Proof. We have that f |K(n−1) = g|K(n−1) . We would like to construct a homotopy between
f |K(n) and g|K(n) relative to the skeleton K(n−2) . We consider the pair

(B,A) = (K × I,K × {0, 1}).
Here again we choose a standard CW -structure on the interval I : two zero cells ǫ00 , ǫ01 and
one 1-cell ǫ1 . Then we denote Xk = (K× I)(k)∪ (K×{0, 1}). Since f |K(n−1) = g|K(n−1) , and
an n-cell of K× I is a product en−1× ǫ1 , where en−1 is an (n− 1)-cell of K , we have a map

H : (K × I)(n) ∪ (K × {0, 1})
such that H|K×{0} = f , H|K×{1} = g , and

H|K(n−1)×I = f |K(n−1) × Id = g|K(n−1) × Id.
Consider the obstruction cocycle c(H). Again, we notice that every (n + 1)-cell σn+1 of
(K× I)\ (K×{0, 1}) has a form en× ǫ1 . Then we can easily identify the obstruction cocycle
c(H) ∈ En+1(K × I,K × {0, 1} ; πnY ) with the distinguishing cochain

d(f, g) ∈ En(K; πnY ).

Indeed, each n-cell en of K gives a map

h : Sn = Dn × {0} ∪ Sn−1 × I ∪Dn × {1} → Y

where h|Dn×{0} is given by f and h|Dn×{1} is given by g . A homotopy class of h gives nothing
but the value of d(f, g) on the same cell en .

In this case, we have that c(f |K(n)) = 0 and c(g|K(n)) = 0 since f and g both are defined on
all K . Thus we have

δd(f, g) = c(g)− c(f) = 0.

Thus δd(f, g) = 0 and determines an element in cohomology [d(f, g)] ∈ Hn(K, πnY ). Now
Theorem 20.12 implies the result.

Exercise 20.3. Show details that Theorem 20.12 indeed implies the result at the end of the
above proof.

20.3. Proof of Theorem 20.3. Let ιn ∈ Hn(K(π, n); π) be the fundamental class. We
would like to prove that the map [f ] 7→ f ∗ιn gives a bijection

[X,K(π, n)]↔ Hn(X; π)

for a CW -complex X . Let α ∈ Hn(X; π), we have to find a map f : X → K(π, n) such that
f ∗ιn = α . We choose a cocycle a : En(X)→ π which represents α ∈ Hn(X; π). In particular,
a assigns an element a(σni ) ∈ πnK(π, n) = π . We choose representatives hi : Sni → K(π, n)
of the elements a(σni ) ∈ πnK(π, n). Now we define a map f (n) : X(n) → K(π, n) as follows.
We let f (n)|X(n−1) to be a constant map. Then we define f (n) as the composition

f (n) : X(n) → X(n)/X(n−1) =
∨

i

Sni

W

i hi−−−→ K(π, n).
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We notice that by construction, a coincides with the distinguishing cochain d(∗, f (n)). Since
a is a cocycle, we have:

0 = δa = δd(∗, f (n)) = c(f (n))− c(∗) = c(f (n)).

Thus c(f (n)) = 0 and there exists an extension of the map f (n) : X(n) → K(π, n) to a map
f (n+1) : X(n+1) → K(π, n). Then we notice that the further obstructions to extend the map
f (n+1) : X(n+1) → K(π, n) to the skeletons X(n+q) live in the corresponding groups

En+q(X; πn+q−1K(π, n)) = 0 for q ≥ 2.

This proves that the map [f ] 7→ f ∗ιn is surjective.

Now we assume that f, g : X → K(π, n) are such that f ∗ιn = g∗ιn in the cohomology group
Hn(X; π). By Cellular aproximation Theorem, we may assume that f |X(n−1) = g|X(n−1) =
∗ . Then as we have seen, the element f ∗ιn coincides with the cohomology class of the
distiguishing cocycle d(∗, f). Thus f ∗ιn = [d(∗, f)] and g∗ιn = [d(∗, g)]. Then

[d(f, g)] = [d(f, ∗)] + [d(∗, g)] = −f ∗ιn + g∗ιn = 0.

Thus by Theorem 20.14, there exists a homotopy f |X(n) ∼ g|X(n) relative to the skeleton
X(n−2) . Clearly all obstructions to extend this homotopy to the skeletons X(n+q) vanish. If
X is a CW -complex of infinite dimension, then we should use the intervals

[
2k−1
2k , 2k+1−1

2k+1

]
=
[
1− 1

2k , 1− 1
2k+1

]

to construct a homotopy between f |X(n+k) and g|X(n+k) . This proves Theorem 20.3.

Theorem 20.15. (Hopf) Let X be an n-dimensional CW -complex. Then there is a bijection:

Hn(X;Z) ∼= [X,Sn].

Exercise 20.4. Prove Theorem 20.15.

Consider a k -torus T k . We identify T k with the quotient space Rk/ ∼, where two vectors
~x ∼ ~y if and only if all coordinates of the vector ~x − ~y are integers. It is easy to see that a
linear map f̄ : Rk → Rℓ given by an k× ℓ-matrix A with integral entries descends to a map
f : T k → T ℓ . In that case a map f : T k → T ℓ is called linear.

Exercise 20.5. Prove that any map f : T k → T ℓ is homotopic to a linear map.
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20.4. Stable Cohomology operations and Steenrod algebra. We would like to conclude
this sections by brief description of the Steenrod algebra. Let π = π′ = Z/2. Then

O(Z/2, n;Z/2, n′) ∼= [K(Z/2, n), K(Z/2, n′)] ∼= Hn′

(K(Z/2, n);Z/2).

Since the group Hn′

(K(Z/2, n);Z/2) = 0 for n′ < n, all corresponding operations are trivial.

Definition 20.16. A sequence of operations θ = {θn} , where θn ∈ O(Z/2, n;Z/2, n+ q), is
called a stable operation if the following diagrams commute for each n:

Hn(X;Z/2)

?

Σ

Hn+q(X;Z/2)

?

Σ

-θn

Hn+1(ΣX;Z/2) Hn+1+q(ΣX;Z/2)-θn+1

Here Σ : H∗(X;Z/2)→ H∗+1(ΣX;Z/2) is the suspension isomorphism.
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21. Cohomology of some Lie groups and Stiefel manifolds

21.1. Stiefel manifolds. The Stiefel manifold Vk(R
n) is the manifold of orthonormal k -

frames (v1, . . . , vk) in the Euclidian space Rn . We note that there are canonical projection
maps pk,j : Vk(R

n) → Vj(R
n) for j ≤ k . To describe its topology and CW -structure, we

identify Vk(R
n) with the coset O(n)/O(n− k) as follows.

We recall that O(n) acts Rn . We would like to be specific: one can identify Rn the space of
column vectors with the standard basis {e1, . . . , ek, . . . , en} , then O(n) acts on Rn from the
left by matrix multiplication. Then we consider an embedding O(n) ⊂ O(n+1) given by the
formula

A 7→
[

0 1
A 0

]

Then for each orthonormal k -frame (v1, . . . , vk), there is a matrix A ∈ O(n) such that Ae1 =
v1, . . . , Aek = vk . Then the transformation A is defined up to an orthogonal transformation
B ∈ O(n − k). This identifies Vk(R

n) with the coset O(n)/O(n − k) and gives particular
topology to the Stiefel manifold.

Exercise 21.1. Show that Vk(R
n) is indeed a smooth manifold of dimension 1

2
k(2n−k−1).

In particular, we identify V1(R
n) ∼= O(n)/O(n − 1) ∼= Sn−1 . It is convenient to denote by

Pn the projective space RPn−1 . There is a map ϕn : Pn → O(n) which takes a line L ∈ Pn
to the reflection through the hyperplane L⊥ . Let x be a unit direction vector for L. Then
ϕ(L) ∈ O(n) is given by the formula:

ϕ(L) : y 7→ y − 2 〈y, x〉x ∈ Rn.

Moreover, if m ≤ n, we have a commutative diagram of maps

Pm

?

jm,n

O(m)

?

im,n

-ϕm

Pn

?

pr

O(n)

?

pr

-ϕn

Pn/Pm O(n)/O(m)-ϕ

We denote by Pn,q = Pn/Pn−q the truncated projective space. In particular, we have identified
Pn,1 with the sphere Sn−1 .

Lemma 21.1. The above map ϕ : Pn,1 → O(n)/O(n− 1) is a homeomorphism.

Proof. We identify Pn = RPn−1 with the hemisphere

Sn−1
+ =

{
(x1, . . . , xn) ∈ Sn−1 | xn ≥ 0

}
,
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where the opposite equator points (x1, . . . , xn−1, 0) and (−x1, . . . ,−xn−1, 0) are identified.
Then Pn,1 = RPn−1/RPn−2 is identified with the hemisphere Sn−1

+ where all equator points
(x1, . . . , xn−1, 0) are identified to one point.

(Σ̃8, g̃)(S7, h0)
(S7, h0)

Figure 31. The space Pn,1 = RPn−1/RPn−2

Now the map ϕ : Pn,1 → O(n)/O(n− 1) is easy to describe: for each vector x ∈ Sn−1
+ , ϕ(x)

is the image of the vector en under the reflection through the hyperplane x⊥ . In particular,
if x = en , e⊥n is the hyperplane given by the equation xn = 0, and hence ϕ(en) = −en . Also
notice that if x ∈ Sn−1

+ is in the equator (i.e. xn = 0, then the hyperplane x⊥ contains the
vector en , which means that ϕ(x)(en) = en .

Let x ∈ Sn−1
+ , and x = (x1, . . . , xn−1, xn), where xn = a. All such vectors give the sphere

Sn−2
a = Sn−1

+ ∩ {xn = a}


