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1. IMPORTANT EXAMPLES OF TOPOLOGICAL SPACES

1.1. Euclidian space, spheres, disks. The notations R", C" have usual meaning through-
out the course. The space C" is identified with R?" by the correspondence

(113'1 + Z.yb s Yn + Zzn) — (xlayb s axnayn)~

The unit sphere in R*™! centered in the origin is denoted by S™, the unit disk in R by D",
and the unit cube in R™ by I"™. Thus S"~! is the boundary of the disk D". Just in case we
give these spaces in coordinates:

snt = {($1a~~~>zn)€Rn | [L’%—F—FZLQ:I},

(1) D" = {(x1,...,x,) ER" | 22 +---+22 <1},

The symbol R* is a union (direct limit) of the embeddings
R'cR*Cc---CcR"C--.

Thus a point € R™ is a sequence of points =z = (z1,...,%,,...), where z, € R and z; =0
for j greater then some k. Topology on R*™ is determined as follows. A set F' C R™® is

closed, if each intersection FFNR™ is closed in R™. In a similar way we define the spaces C*
and S°°.

Exercise 1.1. Let 2V = (ay,0,...,0,...), ..., ™ =(0,0,...,an,...), ... be a sequence of
elements in R*>. Prove that the sequence {z(")} converges in R if and only if the sequence
of numbers {a,} is finite.

Probably you already know the another version of infinite-dimensional real space, namely the
Hilbert space ¢ (which is the set of sequences {x,} so that the series )z, converges). The
space {y is a metric space, where the distance p({z,},{y.}) is defined as

Pt s {yn}) = /220 (Un — 2n)*.

Clearly there is a natural map R>® — /5.
Remark. The optional exercises are labeled by *.

Exercise 1.2. Is the above map R — {5 homeomorphism or not?

Consider the unit cube I*° in the spaces R>®, (5, ie. [ ={{z,} |0< 2z, <1 }.

Exercise 1.3. Prove or disprove that the cube I is compact space (in R or {3).

We are going to play a little bit with the sphere S™.
Claim 1.1. A punctured sphere S™\ {x¢} is homeomorphic to R".

Proof. We construct a map f: 5™\ {zo} — R"™ which is known as stereographic projection.
Let S™ be given as above (1). Let the point x, be the North Pole, so it has the coordinates
(0,...,0,1) € R, Consider a point x = (x1,...,2,41) € S, * # xy, and the line
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going through the points x and xy. A directional vector of this line may be given as v =

(=21,...,—Tp, 1 —x,11), so any point of this line could be written as
0,...,0,1) +t(—x1,...,—xp, 1 — Tpy1) = (—txy, ..., —txy, 1 + (1 — 2p41)).
The intersection point of this line and R™ = {(z1,...,2,,0)} € R""! is determined by
vanishing the last coordinate. Clearly the last coordinate vanishes if t = _1—x1n+1 . The map
f:8™\ {pt} — R" is given by
fi(rr,. ., o) — <1_:E7;HH,...,1_I7;;H,O) .
The rest of the proof is left to you. O

FIGURE 1. Stereographic projection

We define a hemisphere S7 = {:L"% +ot 2l =1& T > 0}~

Exercise 1.4. Prove the that ST and D™ are homeomorphic.

1.2. Real projective spaces. A real projective space RP" is a set of all lines in R"™! going
through 0 € R*™!. Let £ € RP" be a line, then we define a basis for topology on RP" as
follows:

U.(0) = {¢' | the angle between ¢ and ¢ less then €} .

Exercise 1.5. A projective space RP' is homeomorphic to the circle S*.

Let (x1,...,2Z,41) be coordinates of a vector parallel to ¢, then the vector (Azq,..., ATp41)
defines the same line ¢ (for A # 0). We identify all these coordinates, the equivalence class
is called homogeneous coordinates (xq : ... : x,41). Note that there is at least one x; which
is not zero. Let
Uy={{=(x1:...:2p41) | 2; #0 } C RP"
Then we define the map ij :U; — R" by the formula
(x1:... 1 Tpy1) — (ﬂ,@,...,xj_l,l,xj_l,...,xnﬂ) )
T Tj Z;j Z;j ZT;

Remark. The map ij is a homeomorphism, it determines a local coordinate system in RP™
giving this space a structure of smooth manifold of dimension n.

There is natural map c: S® — RP™ which sends each point s = (s1,...,8,41) € S™ to the
line going through zero and s. Note that there are exactly two points s and —s which map
to the same line ¢ € RP".
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We have a chain of embeddings
RP!cRP?C---c RP"CRP""' C ...,

we define RP* = J, ., RP" with the limit topology (similarly to the above case of R>).

1.3. Complex projective spaces. Let CP™ be the space of all complex lines in the complex
space C""1. In the same way as above we define homogeneous coordinates (z1 : ... : Zpy1)
for each complex line ¢ € CP™, and the “local coordinate system”:

U={l=(z1:...:2,) | 2140 } C CP".
Clearly there is a homemorphism f€: U; — Cn¥l,

Exercise 1.6. Prove that the projective space CP' is homeomorphic to the sphere S2.

Consider the sphere S?"*! c C"*!. Each point

2= (21, 2001) €577 a4 F )P =1
of the sphere S*"*1 determines a line £ = (21 : ... : 2,41) € CP™. Observe that the point
€%z = (e%z1,...,€%2,,1) € S?! determines the same complex line £ € CP™. We have

defined the map g(n) : S*"*' — CP".

Exercise 1.7. Prove that the map g(n) : S***1 — CP" has a property that g(n)=(¢) = S*
for any £ € CP™.

The case n = 1 is very interesting since CP' = S?, here we have the map g(1) : S3 — S5?
where g(1)7!(x) = St for any 2 € S%. This map is the Hopf map, it gives very important
example of nontrivial map S® — S%. Before this map was discovered by Hopf, people
thought that there are no nontrivial maps S*¥ — S™ for k > n (“trivial map” means a map
homotopic to the constant map).

Exercise 1.8. Prove that RP™, CP"™ are compact and connected spaces.

Besides the reals R and complex numbers C there are quaternion numbers H. Recall that
g € H may be thought as a sum ¢ = a + ib + jc + kd, where a,b,c,d € R, and the symbols
1, J, k satisfy the identities:

==k =1, ij=—ji=k, jk=—kj=1i, ki=—ik=]j.

Then two quaternions ¢; = ay +1by +jc1 +kdy and g = as+1iby + jco + kds may be multiplied
using these identies. The product here is not commutative, however one can choose left or
right multiplication to define a line in H"™!. A set of all quaternionic lines in H"*! is the
quaternion projective space HP".

Exercise 1.9. Give details of the above definition. In particular, check that the space HP"
is well-defined. Identify the quaternionic line HP' with some well-known topological space.
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1.4. Grassmannian manifolds. These spaces generalize the projective spaces. Indeed, the
space G(n,k) is a space of all k-dimensional vector subpaces of R™ with natural topology.
Clearly G(n,1) = RP!. Tt is not difficult to introduce local coordinates in G(n,k). Let

m € G(n,k) be a k-plane. Choose k linearly independent vectors vy, ..., v, generating
and write their coordinates in the standard basis eq,...,e, of R":

ai; -+ Qip

A—

(07 R )
Since the vectors vy, ..., v, are linearly independent there exist k£ columns of the matrix A
which are linearly independent as well. In other words, there are indices i1, ...,4; so that a
projection of the plane 7w on the k-plane (e;,,...,e; ) generated by the coordinate vectors
€iys- .-, €, 1s a linear isomorphism. Now it is easy to introduce local coordinates on the
Grassmanian manifold G(n, k). Indeed, choose the indices iq,...,ig, 1 <i; < -+ < i <,
and consider all k-planes m € G(n, k) so that the projection of 7 on the plane (e;,...,e;)

is a linear isomorphism. We denote this set of k-planes by U;, i, -

Exercise 1.10. Construct a homeomorphism f;, ., Ui, ;. — RFE(—F)

The result of this exercise shows that the Grassmannian manifold G(n, k) is a smooth manifold
of dimension k(n—k). The projective spaces and Grassmannian manifolds are very important
examples of spaces which we will see many times in our course.

Exercise 1.11. Define a complex Grassmannian manifold CG(n,k) and construct a local
coordinate system for CG(n, k). In particular, find its dimension.

We have a chain of spaces:
Gk, k) CcGk+1,k)C---CGnk)CGn+1,k)C---.

Let G(oo,k) be the union (inductive limit) of these spaces. The topology of G(oo,k) is
given in the same way as to R™: a set F' C G(00, k) is closed if and only if the intersection
F N G(n,k) is closed for each n. This topology is known as a topology of an inductive limit.

Exercise 1.12. Prove that the Grassmannian manifolds G(n, k) and CG(n, k) are compact
and connected.

1.5. Flag manifolds. Here we just mention these examples without further considerations
(we are not ready for this yet). Let 1 < k; <--- < ks <n—1. A flag of the type (ki, ..., ks)
is a chain of vector subspaces V; C --- C V, of R"™ such that dimV; = k;. A set of flags of
the given type is the flag manifold F'(n;ky, ..., ks). Hopefully we shall return to these spaces:
they are very interesting and popular creatures.

1.6. Classic Lie groups. The first example here is the group GL(R™) of nondegenerated
linear transformations of R™. Once we choose a basis eq,...,¢e, of R, each element A €
GL(R™) may be identified with an n x n matrix A with det A # 0. Clearly we may identify
the space of all n x n matrices with the space R". The determinant gives a continuous
function det : R™ — R, and the space GL(R™) is an open subset of R™:

GL(R") = R™ \ det™(0).
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In particular, this identification defines a topology on GL(RF). In the same way one may
construct an embedding GL(C™) € C" . The orthogonal and special orthogonal groups O(k),
SO(k) are subgroups of GL(R¥), and the groups U(k), SU(k) are subgroups of GL(C¥).
(Recall that O(n) (or U(n)) is a group of those linear transformations of R™ (or C™) which
preserve a Euclidian (or Hermitian) metric on R™ (or C™), and the groups SO(k) and SU (k)
are subgroups of O(k) and U(k) of matrices with the determinant 1.)

Exercise 1.13. Prove that SO(2) and U(1) are homeomorphic to S', and that SO(3) is
homeomorphic to RP3.

Hint: To prove that SO(3) is homeomorphic to RP? you have to analyze SO(3): the key
fact is the geometric description of an orthogonal transformation o € SO(3), it is given by
rotating a plane (by an angle ¢ ) about a line ¢ perpendicular to that plane. You should use the
line ¢ and the angle ¢ as major parameters to construct a homeomorphism SO(3) — RP?,
where it is important to use a particular model of RP?3, namely a disk D? where one identifies
the opposite points on S? = 9D C D3.

Exercise 1.14. Prove that the spaces O(n), SO(n), U(n), SU(n) are compact.

Exercise 1.15. Prove that the space O(n) has two path-connected components, and that the
spaces SO(n), U(n), SU(n) are path-connected.

Exercise 1.16. Prove that each matric A € SU(2) may be presented as:

A= ( _aB g),where a,BeC, o+ |82 =1

Use this presentation to prove that SU(2) is homeomorphic to S>.

It is important to emphasize that the classic groups O(n), SO(n), U(n), SU(n) are all
manifolds, i.e. for each point « there there exists an open neighborhood homeomorphic to a
Euclidian space.

Exercise 1.17. Prove that the space for any point « € SO(n) there ezists an open neighbor-
hood homeomorphic to the Euclidian space of the dimension w

Exercise 1.18. Prove that the spaces U(n), SU(n) are manifolds and find their dimension.

The next set of examples is also very important.

1.7. Stiefel manifolds. Again, we consider the vector space R™. We call vectors vy,..., v
a k-frame if they are linearly independent. A k-frame vy,..., vy is called an orthonormal
k-frame if the vectors vy,..., v, are of unit length and orthogonal to each other. The space
of all orthonormal k-frames in R™ is denoted by V' (n, k). There are analogous complex and
quaternionic versions of these spaces, they are denoted as CV(n,k) and HV (n, k) respec-
tively. Here is an exercise where your knowledge of basic linear algebra may be crucial:

Exercise 1.19. Prove the following homeomorphisms: V(n,n) = O(n), V(n,n — 1) =
SO(n), CV(n,n) = U(n), CV(n,n —1) = SU(n), V(n,1) = S"! CV(n,1) = S 1
HV (n,1) & St
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We note that the group O(n) acts on the spaces V(n,k) and G(n,k): indeed, if a € O(n)
and vy, ...,y is an orthonormal k-frame, then a(v),...,a(v;) is also an orthonormal k-
frame. As for the Grassmannian manifold, one can easily see that «(II) is a k-dimensional
subspace in R™ if II is.

The group O(n) contains a subgroup O(j) which acts on R/ C R™, where R? = (ey, ..., ¢;)
is generated by the first j vectors ey, ..., e; of the standard basis ey, ..., e, of R". Similarly
U(n) acts on the spaces CG(n, k) and CV(n, k), and U(j) is a subgroup of U(n).

Exercise 1.20. Prove the following homeomorphisms:

(a) S~ 0(n)/O(n—1) = SO(n)/SO(n — 1),
(b) S21 = U(n)/U(n — 1) = SU(n)/SU(n — 1),
(c) G(n,k) = O(n)/O(k) x O(n— k),

(c) CG(n,k) = U(n)/U(k) x Uln — k).

We note here that O(k) x O(n — k) is a subgroup of O(n) of orthogonal matrices with two
diagonal blocks of the sizes k x k and (n — k) x (n — k) and zeros otherwise.

There is also the following natural action of the orthogonal group O(k) on the Stieffel
manifold V(n,k). Let vy,...,v; be an orthonormal k-frame then O(k) acts on the space
V = (vq,...,v), in particular, if a« € O(k), then a(vy),...,a(v) is also an orthonormal
k-frame. Similarly there is a natural action of U(k) on CV(n,k).

Exercise 1.21. Prove that the above actions of O(k) on V(n,k) and of U(k) on CV(n,k)
are free.

Exercise 1.22. Prove the following homeomorphisms:

(a) V(n,k)/O(k) = G(n, k),
(b) CV(n,k)/U(k) = CG(n, k).

There are obvious maps V(n, k) == G(n, k), CV(n,k) 2 CG(n,k) (where each orthonor-
mal k-frame vy,..., v maps to the k-plane m = (vy,...,vx) generated by this frame). It is
easy to see that the inverse image p~!(7) may be identified with O(k) (in the real case) and
U(k) (in the complex case). We shall return to these spaces later on. In particular, we shall
describe a cell-structure of these spaces and compute their homology and cohomology groups.

1.8. Surfaces. Here I refer to Chapter 1 of Massey, Algebraic topology, for details. I would
like for you to read this Chapter carefully even though most of you have seen this material
before. Here I briefly remind some constructions and give exercises. The section 4 of the
reffered Massey book gives the examples of surfaces. In particular, the torus 7?2 is described
in three different ways:

(a) A product S' x S*.
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(b) A subspace of R? given by: {(m,y, 2)ER3| (Va2 4+9y2—2)2+22=1 } _

(c) A unit square I? = {(z,y) e R* |0 <2 < 1,0 <y <1} with the identification:
(,0) = (z,1) (0,y)=(1,y) foral 0 <z <1, 0<y<l1.

Exercise 1.23. Prove that the spaces described in (a), (b), (c) are indeed homeomorphic.

b b

b b

T2 RP?
F1GURE 2. Torus and projective plane

The next surface we want to become our best friend is the projective space RP?2. Earlier we
defined RP? as a space of lines in R? going through the origin.

Exercise 1.24. Prove that the projective plane RP? is homeomorphic to the following spaces:

(a) The unit disk D* = {(x,y) € R? | 2> +y? < 1} with the opposite points (x,y) =
(—z,—y) of the circle S* = {(z,y) € R?* | 2% +y* = 1} C D? have been identified.

(b) The unit square, see Fig. 3, with the arrows a and b identified as it is shown.

(c) The Mébius band which boundary (the circle) is identified with the boundary of the
disk D*, see Fig. 3.

b

Mé D? The Klein bottle
FIiGURE 3

Here the Mébius band is constructed from a square by identifying the arrows a. The Klein
bottle K1? may be described as a square with arrows identified as it is shown in Fig. 3.

Exercise 1.25. Prove that the Klein bottle KI? is homeomorphic to the union of two Mébius

bands along the circle.

Massey carefully defines connected sum S;#5s of two surfaces S; and Ss.
Exercise 1.26. Prove that KI*>#RP? is homeomorphic to RP?*#T?.
Exercise 1.27. Prove that KI?#KI? is homeomorphic to KI?.

Exercise 1.28. Prove that RP?#RP? is homeomorphic to KI?.
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2. CONSTRUCTIONS

2.1. Product. Recall that a product X x Y of X, Y is a set of pairs (z,y), z € X,y € Y.
If X, Y are topological spaces then a basis for product topology on X x Y is given by the
products U x V', where U C X, V C Y are open. Here are the first examples:

Example. The torus 7" = S* x --- x S'. Note that the torus 7™ may be identified with
U() x---xU(1) cU(n) (diagonal orthogonal complex matrices).

Exercise 2.1. Consider the surface X in S°, given by the equation
T1Tg — ToXs + 324 = 0
(where S° C R is given by 1 + -+ + a3 = 1). Prove that X = S? x S%.

Exercise 2.2. Prove that the space SO(4) is homeomorphic to S® x RP3.

Hint: Consider carefully the map SO(4) — S® = SO(4)/SO(3) and use the fact that S3
has a natural group structure: it is a group of unit quaternions. It should be emphasized that
it is not true that SO(n) = S"! x SO(n — 1) if n > 4.

We note also that there are standard projections X x Y X X and X xY 225 Y, and to
giveamap f:Z — X xY is the same as to give two maps fx : Z — X and fy : Z — Y.

2.2. Cylinder, suspension. Let I = [0,1] C R. The space X x I is called a cylinder over
X, and the subspaces X x {0}, X x {1} are the bottom and top “bases”. Now we will
construct new spaces out of the cylinder X x I.

Remark: quotient topology. Let “~” be an equivalence relation on the topological space
X . We denote by X/ ~ the set of equivalence classes. There is a natural map (not continuos
so far) p: X — X/ ~. We define the following topology on X/ ~: the set U C X/ ~ is
open if and only if p~*(U) is open. This topology is called a quotient topology.

The first example: let A C X be a closed set. Then we define the relation “~” on X as
follows ([ | denote an equivalence class):

r} ifx ¢ A,
[x]:{{A} if:ciA.

The space X/ ~ is denoted by X/A.

The space C'(X) =X x I/X x {1} is a cone over X . A suspention ¥X over X is the space
C(X)/X x {0}.

Exercise 2.3. Prove that the spaces C(S™) and ¥.S™ are homeomorphic to D" and S™+
respectively.

Here is a picture of these spaces:
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—
N

C(X) X x 1 >¥X
FIGURE 4

2.3. Glueing. Let X and Y be topological spaces, A CY and ¢ : A — X be a map. We
consider a disjoint union X UY | and then we identify a point a € A with the point p(a) € X.
The quotient space X UY/ ~ under this identification will be denoted as X U, Y, and this
procedure will be called glueing X and Y by means of ¢. There are two special cases of this
construction.

Let f: X — Y be a map. We identify X with the bottom base X x {0} of the cylinder
X x I. The space X x I Uy Y = Cyl(f) is called a cylinder of the map f. The space
C(X)UyY is called a cone of the map f. Note that the space Cyl(f) contains X and Y as
subspaces, and the space C'(f) contains X .

Cyl(f) C(f)

FIGURE 5

Let f:S™ — RP"™ be the (we have studied before) map which takes a vector ¥ € S™ to the
line ¢ = (¥) spanned by ¥.

RP"

C(s™)

FIGURE 6

Claim 2.1. The cone C(f) is homeomorphic to the projective space RP™ .

Proof (outline). Consider the cone over S, clearly C(S") = D"™! (Exercise 2.3). Now
the cone C(f) is a disk D™ with the opposite points of S™ identified, see Fig. 6. O
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In particular, a cone of the map f : S1 — S' = RP! (given by the formula ¢ — ¢%¥)
coincides with the projective plane RP2.

Exercise 2.4. Prove that a cone C(h) of the Hopf map h : S*"*' — CP™ is homeomorphic
to the projective space CP"*!.

Here is the construction which should help you with Exercise 2.4. Let us take one more

look at the Hopf map h : S?**1 — CP*: we take a point (21, -+, 2p41) € S, (where
211> 4 -+ + |zka]* = 1), then h takes it to the line (21 : -+~ : z41) € CP*. Moreover
Wz, 2eg1) = (21, 5 2p4q) if and only if 2§ = €z;. Thus we can identify CP* with
the following quotient space:

(2) CPF = S%*t1/ ~ where (21, , zjp1) ~ (€21, -+, €% 2p41).

Now consider a subset of lines in CP* where the last homogeneous coordinate is nonzero:

U1 = {(z1: - 2e41) | 2641 # 0}

We already know that U, is homeomorphic to C* by means of the map

(zlz---:zk+1)|—><zl .. Z’“)

Zp1’ " 24

Now we use (2) to identify Uy, with an open disk D* C C* as follows. Let us think about
Ups1 C S*F1/ ~ asabove. Let £ € Upy1. Choose apoint (zy,- -+, zp1) € S?**! representing
¢. Then we have that

‘Zl‘2+"'+‘zk+1‘2:1’ and Zk-}-l;éo.

A complex number z;,; has a unique representation zj,; = re®, where r = |2zz41|. Notice
that 0 < r < 1. Then the point

—ix —ix —ix o —ix —ix 2k+1
(e 2,6z e Y2yq) = (62,6 2o ) ES
represents the same line ¢ € U, ;. Moreover, this representation is unique. We have:
2 2 2
e e A e

which describes the sphere Sf/% C CF of radius v/1 — 2. The union of the spheres 5\2/%

over 0 < r < 1 is nothing but an open unit disk in C*. Then we notice that we can let z,;
to be equal to zero: zp, 1 = 0 corresponds to the points

(21, , 21, 0) € S* with |z >+ + |z* =1,
ie. the sphere S?*~! < CF modulo the equivalence relation (zy,---,2,0) ~
(€21, -+ ,€%2,,0). This is nothing but the projective space CP*~'. We summarize our

construction:
Lemma 2.1. There is a homeomorphism

CP* = D*/ ~,
where (21, ,2K) ~ (24, ,25.) if and only if

1P al? =1 [P [P =1, and
z; = ez forallj=1,... k.
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2.4. Join. A join X Y of spaces X Y is a union of all linear paths I, , starting at x € X
and ending at y € Y'; the union is taken over all points x € X and y € Y. For example,
a joint of two intervals I; and Iy lying on two non-parallel and non-intersecting lines is
a tetrahedron: A formal definition of X * Y is the following. We start with the product

FIGURE 7

X XY x I: here there is a linear path (z,y,t), t € I for given points z € X, y € Y. Then
we identify the following points:

(,y,1) ~ (z,y", 1) forany z € X,y y" €Y,
(«',y,0) ~ (2",y,0) forany 2’2" € X,y €Y.

Exercise 2.5. Prove the homeomorphisms

(a) X *{one point} = C(X);
(b) X * {two points} = X(X);
(c) S™x Sk = Snthtl Hint: prove first that S+ S = S3.

2.5. Spaces of maps, loop spaces, path spaces. Let X, Y are topological spaces. We
consider the space C(X,Y) of all continuous maps from X to Y. To define a topology of
the functional space C(X,Y) it is enough to describe a basis. The basis of the compact-open
topology is given as follows. Let K C X be a compact set, and O C Y be an open set. We
denote by U(K,O) the set of all continuous maps f: X — Y such that f(K) C Y, this is
(by definition) a basis for the compact-open topology on C(X,Y).

Examples. Let X be a point. Then the space C(X,Y’) is homeomorphic to Y. If X be a
space consisting of n points, then C(X,Y) =Y x --- x Y (n times).

Let X, Y, and Z be Hausdorff and locally compact! topological spaces. There is a natural
map

T:C(X,C(Y,Z)) — C(X xY,Z),
given by the formula: {f: X — C(Y,2)} — {(z,y) — (f(2))(y)}.

Exercise 2.6. Prove that the map T : C(X,C(Y,Z)) — C(X x Y, Z) is a homeomorphism.

LA topological space X is called locally compact if for each point x € X and an open neighborhood U
of X there exists an open neighbourhood V' C U such that the closure V of V is compact.
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Recall we call a map f : I — X a path, and the points f(0) = xy f(1) = x; are the
beginning and the end points of the path f. The space of all paths C(I, X) contains two
important subspaces:

1. £(X, xg,x1) is the subspace of paths f: I — X such that f(0) = z¢ and f(1) = xy;
2. £(X, xp) is the space of all paths with xy the begining point.
3. Q(X,x0) = E(X, xg,x0) is the loop space with the begining point xg.
Exercise 2.7. Prove that the spaces Q(S™, x) and Q(S™, x') are homeomorphic for any points
x, ¢’ € S".

Exercise 2.8. Give examples of a space X other than S™ for which Q(X,z) and Q(X, ')
are homeomorphic for any points x, ©' € X. Why does it fail for an arbitrary space X ? Give
an example when this is not true.

The loop spaces (X, z) are rather difficult to describe even in the case of X = S™, however,
the spaces X and (X, z) are intimately related. To see that, consider the following map
(3) p:E(X,z0) — X

which sends a path f: I — X, f(0) = g, to the point z = f(1). Notice that p~!(zq) =
Q(X,x9). The map (3) may be considered as a map of pointed spaces (see the definitions
below):

p: (8(X7x0>7*> - (X7 *)7
where the path % : I — X sends the interval to the point *(t) = x, for all t € I. Clearly
p(*) = xo.

2.6. Pointed spaces. A pointed space (X, xq) is a topological space X together with a base
point zg € X. A map f: (X,z9) — (Y,90) is a continuous map f : X — Y such that
f(zo) = yo. Many operations preserve base points, for example the product X x Y of pointed
spaces (X, zg), (Y,yo) have the base point (xg,y9) € X x Y. Some other operations have to
be modified.

The cone C(X,x9) = C(X)/{xo} x I: here we identify with the point all interval over the
base point zy, and the image of {z¢} X I in C(X,xq) is the base point of this space.

The suspension:
Y(X, ) =2(X)/{xo} x [ =C(X) /(X x{0}UzgxI)=C(X,2)/(X x {0}).

The space of maps C(X,x,Y, o) for pointed spaces® (X, z) and (Y,y,) is the space of
continuous maps f : X — Y such that f(z¢) = yo (with the same compact-open topology).
The base point in the space C(X,Y) is the map ¢: X — Y which sends all space X to the
point yo € Y.

If X is a pointed space, then Q(X, z) is the space of loops begining and ending at the base
point o € X, and the space £(X,xg) is the space of paths starting at the base point z.

Exercise 2.9. Let X and Y are pointed space. Prove that the space C(X(X),Y) and the
space C(X,Q(Y)) are homeomorphic.

2 We will denote this space by C(X,Y) when it is clear what the base points are.
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Exercise 2.10. Let S' = {e*?} be a circle and sy =1 (¢ = 0) be a base point. How many
path-connected components does the space Q(S') (a space of loops with sq the begining point)
have? Try the same question for Q(RP?).

There are two more operations which are specific for pointed spaces.

1. A one-point-union (or a bouquet) X VY of pointed spaces (X, zo) and (Y1) is a disjoint
union X UY with the points zy and yy identified, see Fig. 8.

)

—

J

FIGURE 8
2. A smash-product X AY is the factor-space: X AY = X xY/((zg x Y) U (X X yp)), see
Fig. 9:

XANY: Y

Xx0

FIGURE 9

Exercise 2.11. Prove that the space S™ N\ S™ is homeomorphic to S™™ as pointed spaces.

Exercise 2.12. Prove that X A S' is homeomorphic to X(X) as pointed spaces.

Remark. We have mentioned several natural homeomorphisms, for instance, the homeomor-
phisms

(a) C(Z(X),Y) =5 C(X,Q(Y)),

(b) X A S5 B(X)

are natural. We would like to give more details.

First, let f: X — X', and ¢g:Y — Y’ be maps of pointed spaces, then there the maps
fF:C(XY)—CX,Y),
g« C(X,Y) — C(X,Y),

given by the formula:

f*:((p:X’—>Y)l—>(XL>X’i>Y),

G (X —Y)— (X Ly Ly,
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We have the following diagram of maps:

C(X,Y) r C(X',Y)
(4) gx gx
C(X,Y") r C(X',Y")

We claim that the diagram (4) is commutative. Let ¢ : X’ — Y be an element in the right
top corner of (4). By definition, we obtain the following diagram:

{XLX’&Y} I {X’iﬂf}

gx gx

f*

{XLX'imi)Y'} {X’i>Yi>Y’}

Clearly both ways from the right top corner to the bottom left one give the same result.
Next, we notice that the maps f: X — X', and ¢:Y — Y’ induce the maps
XX — XX, Qg: QY — QY
given by the formula
Sf(@t) = (f(z),1), Qg):(y:I —Y)r(goy:1 —Y).

We call the homeomorphism Fyy : C(X(X),Y) — C(X,Q(Y)) natural since for any maps
f: X — X' ¢g:Y — Y’ the following diagram of pointed spaces and maps commutes:

C(2(X), V") Xy (X, Q(Y")
g /- Qg
C(2(X),Y) Ty C(X,QY))
(5) /
o C(S(XY),Y") o C(X,0(Y")
g Qg+
C(S(X), V) C(X', (Y))

Exercise 2.13. Check commutativity of the diagram (5).

Exercise 2.14. Show that the homeomorphism X A S - Y(X) is natural.
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3. HOMOTOPY AND HOMOTOPY EQUIVALENCE

3.1. Definition of a homotopy. Let X and Y be topological spaces. Two maps
fo: X —Y and f1: X — Y

are homotopic (notation: fy ~ f1) if there exists a map F : X x I — Y such that the
restriction F'|x, (o coincides with fy, and the restriction F|x, (1 coincides with f;.

The map F': X xI — Y is called a homotopy. We can think also that a homotopy between
maps fo and f; is a continuous family of maps ¢, : X — Y, 0 <t < 1, such that ¢y = f,
v1 = fi,and themap F': X x I — Y, F(z,t) = ¢4(x) is a continuous map for every t € I.

If the spaces X and Y are “good spaces” (like our examples S™, RP", CP™, HP", G(n,k)
V(n, k) and so on), then we can think about homotopy between f; and f; as a path in the
space of continuous maps C(X,Y) joining fy and f;. Furthemore, in such case, the set of

homotopy classes [X,Y] (see below) may be identified with the set of path-components of
the space C(X,Y).

If amap f: X — Y is homotopic to a constant map X — pt € Y, we call the map f
null-homotopic.

Example. Let Y C R™ (or R*) be a convex subset. Then for any space X any two maps
fo: X — Y and f; : X — Y are homotopic. Indeed, the map

F:x— (1—1t)fo(x)+tfi(x)

defines a corresponding homotopy.

3.2. Homotopy classes of maps. Clearly a homotopy determines an equivalence relation
on the space of maps C(X,Y). The set of equivalence classes is denoted by [X,Y] and it is
called a set of homotopy classes.

Examples. 1. The set [X, %] consists of one point for any space X .

2. The space [*,Y] is the set of path-connected components of Y.

Let ¢ : X — X' be a map (continuous), then we define the map (not continuous since we
do not have a topology on the set [X,Y]) ¢*: [X"| Y] — [X,Y] as follows. Let a € [X',Y]

be a homotopy class. Choose any representative f : X’ — Y of the class a, then ¢*(a) is a
homotopy class contaning the map fop: X — Y.

Now let ¢ : Y — Y’ be a map. Then the map v, : [X,Y] — [X,Y”] is defined as follows.
For any b € [X,Y] and a representative g : X — Y the map ®pog: X — Y’ determines a

homotopy class (b) = [¢ o ¢g].

Exercise 3.1. Prove that the maps ©* and . are well-defined.

3.3. Homotopy equivalence. We will give three different definitions of homotopy equiva-
lence.
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Definition 3.1. (HE-I) Two spaces X; and X5 are homotopy equivalent (X, ~ X5 ) if there
exist maps f : X1 — Xs and g : Xo — Xy such that the compositions go f : X1 — X,
and fog: Xy — Xy are homotopy equivalent to the identity maps Ix, and Ix, respectively.

In this case we call maps f and g mutually inverse homotopy equivalences, and both maps
f and g are homotopy equivalences.

Remark. If the maps go f and f o g are the identity maps, then f and g are mutually
inverse homeomorphisms.

Definition 3.2. (HE-Il) Two spaces X1 and Xs are homotopy equivalent (X1 ~ X ) if there
is a rule assigning for any space Y a one-to-one map @y : [X1,Y]| — [X2, Y] such that for
any map h:Y — Y’ the diagram

ey

[X1,Y] [X5,Y]
(6) B B
X1, Y] [Xs, Y]

commutes, i.e. py o hy, = h, o py.
Definition 3.3. (HE-IIl) Two spaces X1 and X5 are homotopy equivalent (X1 ~ X5 ) if there
is a rule assigning for any space Y a one-to-one map ¥ : [V, X,] — [Y, Xy such that for
any map h:Y — Y’ the diagram

Y

Y, X1] d Y, Xo]
(7) h* h*
[X1,Y7] (X2, Y]

commutes, i.e. ¥ oh* =h*o ¥ .
Theorem 3.4. Definitions 3.1, 3.2 and 3.3 are equivalent.

Proof. Here we prove only that Definitions 3.1 and 3.2 are equivalent. Let X; ~ X5 in the
sence of Definition 3.2. Then there is one-to-one map ¢y, : [X1, Xo] — [X2, Xs]. Let Iy, be
the identity map, Iy, € [Xa, Xa]. Let a = ¢ ([Ix,]) € [X1,Xs] and f € a, f: X1 — Xo
be a representative.

There is also a one-to-one map ¢x, : [X1, X1] — [Xo, Xi]. We let 5 = vx, ([Ix,]) and we
choose a map ¢: Xy — X;, g € 3. We shall show that fog~ Ix,. The diagram

PXq

[XlaXl] [X2aXl]
(8) fx fx
[X1, Xo] = [Xa, Xo]
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commutes by Definition 3.2. It implies that ¢y, o fi = fi o px,. Let us consider the image
of the element [Iy,] in the diagram (8). We have:

flllx ) =1folx,] =[], ex([f]) = [Ix]
by definition and by the choice of f. It implies that
¥x, © f*([[Xl]) = [IX2]'
On the other hand, we have:
feopx (Ix]) = fullg]) = [f o g].
Commutativity of (8) implies that [f o g] = [Ix,], i.e. fog~ Ix,.

A similar argument proves that go f ~ Iy, . It means that X; ~ X5 in the sence of Definition
3.1.

Now assume that X; ~ X, in the sence of Definition 3.1, i.e. there are maps f: X; — Xo
and ¢g: X; — Xj such that fog~ Ix, and go f ~ Ix,. Let Y be any space and define

oy = 9" [X1,Y] — [Xo, Y]
We shall show that this map is inverse to the map
[ Xe, Y] — [X4,Y].
Indeed, let h € C(X1,Y), then
f* o g ([A]) = £*([h o g]) = (by definition of f*) = [ho (g0 f)] = [h] (since go f ~ Ix,).

This shows that f* is inverse to ¢*. With a similar argument we prove that ¢* is inverse to
f*. Thus ¢y = ¢g* is a bijection. Now we have to check naturality.

Let Y’ be a space and k: Y — Y’ be a map. We show that the diagram

X, Y] X, Y]
(9) ko ks
[Xl : Y,] Oyt =g* [X2’ Y,]

commutes. Let h € C(X;,Y) be a map. Then we have
ko([p]) = [koh],  g"([koh]) =[(koh)og],
and also

g°([h]) = [hogl, ku[hog]) =[ko(hog)]
It means that (9) commutes. Thus Definitions 3.1 and 3.2 are equivalent. |

Exercise 3.2. Prove the equivalence of Definitions 3.1 and 3.3.

We call a class of homotopy equivalent spaces a homotopy type. Obviously any homeomor-
phic spaces are homotopy equivalent. The simpest example of spaces which are homotopy
equivalent, but not homeomorphic is the following: X; is a circle, and X5 is an annulus, see
Fig. 24.
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FIGURE 10

Exercise 3.3. Give 3 examples of spaces homotopy equivalent and not homeomorphic spaces.

We call a space X a contractible space if the identity map [ : X — X null-homotopic, i.e.
it is homotopic to the “constant map” *: X — X, mapping all X to a single point.

Exercise 3.4. Prove that a space X is contractible if and only if it is homotopy equivalent
to a point.

Exercise 3.5. Prove that a space X is contractible if and only if every map f:Y — X s
null-homotopic.

Exercise 3.6. Prove that the space of paths E(X, o) is contractible for any X .

Exercise 3.7. Let Xy, Xs be pointed spaces. Prove that if X; ~ Xy then %(X;) ~ 3X(X3)

3.4. Retracts. We call a subspace A of a topological space X its retract if there exists a
map r: X — X (a retraction) such that r(X) = A and r(a) = a for any a € A.

Examples. 1. A single point x € X is a retact of the space X since a constant map
r: X — x is a retraction.

2. The subspace A = {0} U {1} of the interval I = [0, 1] is not a retract of I, otherwise we
would map I to the disconnected space A.

3. In general, the sphere S™ is not a retract of the disk D™ for any n, however we do not
have enough tools in our hands to prove it now.

4. The “base” X x {0} is a retract of the cylinder X x I.

Exercise 3.8. Prove that the “base” X x {0} of the cone C(X) is a retract of C(X) if and
only if the space X is contractible.

Sometimes a retraction r : X — X (where r(X) = A) is homotopic to the identity map
Id: X — X, in that case we call A a deformation retract of X ; moreover if this homotopy

may be chosen to be the identity map on A,> then we call A a strict deformation retract of
X.

Lemma 3.5. A subspace A is a deformation retract of X if and only if the inclusion A — X
1s a homotopy equivalence.

3 je. a homotopy h: X x I — X between r : X — X and the identity map Id : X — X has the
following property: h(a,t) = a for any a € A.
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Exercise 3.9. Prove Lemma 3.5.

Lemma 3.5 shows that a concept of deformation retract is not really new for us; a concept of
strict deformation retract is more restrictive, however these two concepts are different only in
some pathological cases.

Exercise 3.10. Let A ¢ X, and r© : X — A, v+ X — A be two deformation
retractions. Prove that the retractions v, v may be joined by a continuous family of
deformation retractions r®) : X — A, 0 < s < 1. Note: It is important here that r© , r()
are both homotopic to the identity map Ix .

3.5. The case of “pointed” spaces. The definitions of homotopy, homotopy equivalence
have to be changed (in an obvious way) for spaces with base points. The set of homotopy
clases of “pointed” maps f : X — Y will be also denoted as [X,Y]. We need one more
generalization.

Definition 3.6. A pair (X, A) is just a space X with a labeled subspace A C X ; a map
of pairs [ : (X,A) — (Y, B) is a continuous map f : X — Y such that f(A) C B.
Two maps (X, A) — (Y,B), fi : (X,A) — (Y, B) are homotopic if there exist a map
F:(XxI,Ax1I)— (Y,B) such that

Flxxqoyaxioy = fo,  Flxxpyaxpy = fie

We have seen already the example of pairs and their maps. Let me recall that the cones of
the maps ¢ : 8" — RP" and h: S?"*! — CP" give us the commutative diagrams:

f g

Dn+1 RPn—H D2n+2 CPn-H
(10) i i i i

s RP" ot CP"

which are the maps of pairs:
f: (D" 8" — (RP™ RP"), g:(D**? 8**) — (CP""! CP").
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4. CW -COMPLEXES

Algebraic topologists rarely study arbitrary topological spaces: there is not much one can
prove about an abstract topological space. However, there is very well-developed area known
as general topology which studies simple properties (such as conectivity, the Hausdorff prop-
erty, compactness and so on) of complicated spaces. There is a giant Zoo out there of very
complicated spaces endowed with all possible degrees of pathology, i.e. when one or another
simple property fails or holds. Some of these spaces are extremely useful, such as the Cantor
set or fractals, they help us to understand very delicate phenomenas observed in mathematics
and physics. In algebraic topology we mostly study complicated properties of simple spaces.

It turns out that the most important spaces which are important for mathematics have some
additional structures. The first algebraic topologist, Poincare, studied mostly the spaces
endowed with “analytic” structures, i.e. when a space X has natural differential structure
or Riemannian metric and so on. The major advantage of these structures is that they all
are natural, so we should not really care about their existence: they are given! There is the
other type of natural structures on topological spaces: so called combinatorial structures, i.e.
when a space X comes equipped with a decomposition into more or less “standard pieces”, so
that one could study the whole space X by examination the mutual geometric and algebraic
relations between those “standard pieces”. Below we formalize this concept: these spaces are
known as C'W -complexes. For instance, all examples we studied so far are like that.

4.1. Basic definitions. We will call an open disk D™ (as well as any space homeomorphic
to D™) by n-cell. Notation: e". We will use the notation € for a “closed cell” which is
homeomorphic to D™. For n =0 we let ¢ = D° (point). Let de" be a “boundary” of the cell
e™; Oe™ is homeomorphic to the sphere S"~!. Recall that if we have a map ¢ : 9e" — K,
then we can construct the space K U, e", such that the diagram

oe” K

commutes. We will call this procedure an attaching of the cell €™ to the space K. The map
@ :0e™ — K is the attaching map, and the map ® : e" — K U, e" the characteristic map
of the cell e™. Notice that ® is a homeomorphism of the open cell €” on its image.

An example of this construction is the diagram (10), where the maps ¢ : S — RP”" and
h: S+l — CP™ are the attaching maps of the corresponding cells e®™! and e?"*2. As we
shall see below,

RP" U, "' 2 RP" and CP"U, "2 >~ CP" 'L,

We return to this particular construction a bit later.
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Definition 4.1. A Hausdorff topological space X is a CW -complex (or cell-complez) if it is
decomposed as a union of cells:

x-UlU)

g=0 \i€l,

where the cells ef N5 =0 unless ¢ = p, i = j, and for each € there exists a characteristic
o4
map Y : D! — X such that its restriction (IDBq gives a homeomorphism Q>|Bq D — el

It is required that the following axioms are satisfied:

(C) (close finite) The boundary del = el \ el of the cell el is a subset of the union of finite

number of cells €}, where r < q.

(W) (weak topology) A set F' C X is closed if and only if the intersection F'Ne" is closed
for every cell el.

Example 1. The sphere S™. There are two standard cell decompositions of S™:

(a) Let €° be a point (say, the north pole (0,0,...,0,1) and e = S™\ €, so S"e®Uem. A
characteristic map D" — S™ which corresponds to the cell e” may be defined by

(x1, 22, ..., 2,) — (xysinmp, ..., x,sin7wp,cosmp), where p= /22 + ...+ 22
(b) We define S™ = J,_,el, where
el ={(z1,...xpp1) €S | Tgy2o=... =241 =0, and =z, >0}, see Fig. 11.
Tn+1

() (b)

FIGURE 11

There exist a lot more cell decompositions of the sphere S™: one can decompose S™ on
(3"*1 —1) cells as a boundary of (n + 1)-dimension simplex® A"+ or on (272 —2) cells as
a boundary of the cube I™.

Exercise 4.1. Describe these cell decompositions of S™.

Example 2. Any of the above cell decompositions of the sphere S"~! may be used to
construct a cell decomposition of the disk D™ by adding one more cell: Id: D™ — D™. The
most simple one gives us three cells.

4 A simplex AF is determined as follows:
AF = {(x1,...,xpp1) € RM 21 >0, 20 20, Yl =1 }.

1=
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4.2. Some comments on the definition of a C'W-complex. 1° Let X be a CW-complex.
We denote X the union of all cells in X of dimension < n. This is the n-th skeleton of
X . The n-th skeleton X™ is an example (very important one) of a subcomplex of a CTV -
complex. A subcomplex A C X is a closed subset of A which is a union of some cells of
X . In particular, the n-th skeleton A™ is a subcomplex of X for each n > 0. A map
f: X — Y of CW-complexes is a cellular map if f|ym» maps the n-th skeleton to the
n-skeleton Y for each n > 0. In particular, the inclusion A C X of a subcomplex is a
cellular map. A CW -complex is called finite if it has a finite number of cells. A C'W -complex
is called locally finite if X has a finite number of cells in each dimension. Finally (X, z) is
a pointed C'W -complex, if xq is a 0-cell.

Exercise 4.2. Prove that a CW -complex compact if and only if it is finite.

2° It turns out that a closure of a cell within a C'WW-complex may be not a CW -complex.

Exercise 4.3. Construct a cellular decomposion of the wedge X = SV S? (with a single
2-cell €% ) such that a closure of the cell €* is not a CW -subcomplex of X .

3° (Warning) The axiom (W) does not imply the axiom (C). Indeed, consider a decom-
position of the disk D? into 2-cell e? which is the interior of the disk D? and each point of
the circle S is considered as a zero cell.

Exercise 4.4. Prove that the disk D?* with the cellular decomposition described above satisfies
(W), and does not satisfy (C).

FIGURE 12

4° (Warning) The axiom (C') does not imply the axiom (7). Indeed, consider the following
space X . We start with an infinite (even countable) family I, of unit intervals. Let X =
V., 1o, where we identify zero points of all intervals I,. We define a topology on X by means
of the following metric. Let ¢’ € I, and t” € I,». Then a distance is defined by

;o |t/ _ t//| lf O/ — Of//
p(t’t)_{t/_'_t// ifo/%a//

Exercise 4.5. Check that a natural cellular decomposition of X into the interiors of I, and
remaining points (zero cells) does not satisfy the aziom (W).

4.3. Operations on CW -complexes. All operations we considered are well-defined on the
category of C'WW -complexes, however we have to be a bit careful. If one of the C'W -complexes
X and Y is locally finite, then the product X x Y has a canonical C'W -structure. The same
holds for a smash-product X A'Y of pointed CW -complexes. The cone C(X), cylinder
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X x I, and suspension ¥(X) has canonical CW -structure determined by X. We can glue
CW -complexes XUy Y if f: A — Y a cellular map, and A C X is a subcomplex. Also the
quotient space X/A is a CW-complex if (A, X) is a CW -pair. The functional spaces C(X,Y)
are two big to have natural CWW -structure, however, a space C(X,Y’) is homotopy equivalent
to a CW-complex if X and Y are C'W-complexes. The last statement is a nontrivial result
due to J. Milnor (1958).

4.4. More examples of C'W-complexes. Real projective space RP™. Here we choose in
RP"™ a sequence of projective subspaces:

x=RP°CcRP'c...c RP"!c RP"

and set e* = RP?, ¢! = RP!'\ RP’,...e" = RP"\ RP"'. The diagram (10) shows that
the map ¢ : S¥' — RP¥ is an attaching map, and its extension to the cone over S*~!
(the disk D*) is a characteristic map of the cell e*. Alternatively this decomposition may be
described in the homogeneous coordinates as follows. Let

el ={(zvo:a1: - 12) |24 # 0,441 =0,...2, =0} .
Exercise 4.6. Prove that €4 is homeomorphic to RPY\ RP7 !,
Exercise 4.7. Construct cell decompositions of CP™ and HP™.

Exercise 4.8. Represent as CW -complex every 2-dimensional manifold. Try to find a CW -
strucute with a minimal number of cells.

Exercise 4.9. Prove that a finite CW -complez (with finite number of cells) may be embedded
into Fuclidean space of finite dimension.

4.5. CW -structure of the Grassmanian manifolds. We describe here the Schubert de-
composition, and the cells of this decomposition are known as the Schubert cells. We consider
the space G(n, k). We choose the standard basis ey, ...,e, of R". Let R? = (ey,...,¢,). It
is convenient to denote R® = {0}. We have the inclusions:

R'CR'CcR*C---CR"
Let m € G(n, k). Clearly m determines a collection of nonnegative numbers
0 <dim(R'N7) <dim(R*N7) <--- <dim(R"N7) = k.
We note that dim(R’ N7) < dim(R~*N7) 4+ 1. Indeed, we have linear maps

j-th coordinate

(11) 0 >R 'nr S RiNn R
where the first one, i : R"~! N7t — R/ N, is an embedding, and the map
j-th coordinate : R N7w — R

is either onto or zero. In the first case dim(R/ N7) = dim(R~' N7) + 1, and in the second
case dim(R’ N 7) = dim(R/~' N 7). Thus there are exactly k& “jumps” in the sequence
(0,dim(R' N7),...,dim(R"N~)).

A Schubert symbol o = (04, ...,0,) is a collection of integers, such that

1< <oy < <o, <n.
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Let e(0) C G(n, k) be the following set of the following k-planes in R"™
e(o) ={m e Gn,k) | dmR7 N7)=j & dmRBR“ 'Nm)=j-1, j=1,....k }.

Notice that every m € G(n, k) belongs to exactly one subset e(c). Indeed, in the sequence of
subspaces

R'NnrcR’NrCc---CR"Nr=n
their dimensions “jump” by one exactly k times. Clearly 7 € e(o0), where o = (oy,...,0,)
and

o, =min {j [dim(R/ N7) =t} .

Our goal is to prove that the set e(o) is homeomorphic to an open cell of dimension d(o) =
(o =1)+ (69 —2)+ -+ (0x — k). Let H C R" denote an open “half j-plane of R/:

H’ = {(21,...,2;,0,...,0) | z; > 0}.

It will be convenient to denote I’ = {(z1,...,240,...,0) | ; > 0}.

Claim 4.1. A k-plane © belongs to e(o) if and only if there exists its basis vy, ..., v, such
that vy € H', ..., vy € H*.
Proof. Indeed, if there is such a basis vy, ..., v, then

dim(R% N 7) > dim(R% ! N )

for j=1,...,k. Thus 7 € e(0). The following lemma proves Claim 4.1 in the other direction.
O

Lemma 4.2. Let w € e(0), where 0 = (01,...,0,). Then there exists a unique orthonormal
basis vy, ...,v, of w, so that v; € H°', ..., v, € H%.

Proof. We choose v; to be a unit vector which generates the line R7* M. There are only two
choices here, and the condition that the o;-th coordinate is positive determines v; uniquely.
Then the unit vector vy € R?2Nx should be chosen so that v, L v;. There are two choices like
that, and again the positivity of the o,-th coordinate determines vy uniquely. By induction
one obtains the required basis. This completes proof of Lemma 4.2 and Claim 4.1. O
We define the following subset of the Stiefel manifold V'(n, k):
E(o)={(v1,...,v) € V(n, k) |vi € H,...,u, € H™* }.

Lemma 4.2 gives a well-defined map ¢ : e(0) — E(0). It is convenient to denote E(c) =
{(v,...,00) €V(nk) v e H " ...,op e H "},

Claim 4.2. The set E(o) C V(n, k) is homeomorphic to the closed cell of dimension d(o) =
(01—1)+(09—2)+" - -+ (or—k). Furthermore the map q : e(c) — FE(0) is a homeomorphism.

Proof. Induction on k. If k =1 the set E(o;) consists of the vectors
vy = (211, .+, %10,,0,...,0), such that Zaﬁj =1, and xy,, >0.

Clearly E(o;) is a closed hemisphere of dimension (o, — 1), i.e. E(0;) is homeomorphic to
the disk Dot —1.

To make an induction step, consider the following construction. Let u,v € R™ be two unit
vectors such that v # —v. Let T, , an orthogonal transformation R" — R™ such that
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(1) Tup(u) = v;
(2) To(w) =w if w € (u,v)*.

In other words, T, is a rotation in the plane (u,v) taking the vector u to v, and is identity
on the orthogonal complement to the plane (u,v) generated by u and v.

Claim 4.3. The transformation T, (where u,v € R", u # —v ) has the following properties:

(a) Tyu=1d;

(b) Tou="T,,;

(c¢) Tyu : R — R™ is be given by
(u+v,x)

Tuplw) = = 1+ (u,v)

(u+v) + 2(u, x)v;

(d) a vector T, ,(x) depends continuously on u,v,x;

(e) Tuw(x) =2 (mod R?) if u,v € R.

The properties (a), (b), (e) follow from the definition.
Exercise 4.10. Prove (c), (d) from Claim 4.3.

Let ¢; € H? be a vector which has o;-coordinate equal to 1, and all others are zeros. Thus

(€1,...,€x) € E(o). For each k-frame (vy,...,v;) € E(0) consider the transformation:
(12) T = Telka e} 7—'%7171%71 O cvewnn 0o 7"6171)1 : Rn — Rn

First we notice that v; # —¢; since v; € H’'. Thus the transformations 7. e;.v; are well-defined.
Exercise 4.11. Prove that the transformation T takes the k-frame (e1,...,€) to the frame

(vl,...,vk).

Ok+1 |

Consider the following subspace D ¢ H "*':
D= {ueﬁak+1 | Jul=1, (eu)y=0,j=1,....k}.

Exercise 4.12. Prove that D is homeomorphic to the hemisphere of the dimension opyq1 —
kE—1.

Thus D is a closed cell of dimension 0,1 —k—1. Now we make an induction step to complete
a proof of Claim 4.2. We define the map

f:E(o1,...,00) x D — E(01,...,0%, 0rs1)
by the formula f((vy,...,v),u) = (v1,..., vk, Tu) where T is given by (12). We notice that
(v;, Tu) = (Te¢;, Tu) = (e;,u) =0, i=1,... Kk,
and (T'u, Tu) = (u,u) =1 by definition of 7" and since T" € O(n).

Exercise 4.13. Recall that oy, < o11. Prove that Tu € " ifueD.
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The inverse map f~1: E(oy,...,0%, 0r11) — E(01,...,0) x D is defined by

Uj :f_lvj,j: 1,...,]{3,

U = f_lvk+1 = (T_1Uk+1) = TU1751 © Tv2,62 e © Tvk,ék (Uk-l-l) €D.

Both maps f and f~! are continuous, thus f is a homeomorphism. This concludes induction
step in the proof of Claim 4.2. Lemma 4.2 implies that e(oy,...,0x) is homeomorphic to an
open cell of dimension d(c) = (o1 — 1) + (02 —2) + -+ -+ (op — k).

O

Remark. Let (vq,...,v) € E(o)\ E(c), then the k-plane 7 = (vy,...,v;) does not
belong to e(o). Indeed, it means that at least one vector v; € R~ = 9 (FU]). Thus
dim(R%~'Nn) > j, hence 7 ¢ e(o). O

Theorem 4.3. A collection of ( 7]2 ) cells e(o) gives G(n, k) a cell-decomposition.

Proof. We should show that any point x of the boundary of the cell e(o) belongs to some
cell e(r) of dimension less than d(c). We use the map ¢ : e(60) — FE(0) to see that
q(e(c)) = E(o). Thus we can describe m € e(0) \ e(o) as a k-plane (vi,...,v;), where
v; € H”. Clearly v; € R%, thus dim(R% Nw) > j for each j =1,...,k. Hence 1y < oy,
.., Tt < 0. However, at least one vector v; belongs to the subspace R%~! =9 (ﬁaj ), and

corresponding 7; < ;. Thus d(7) < d(o). The number of all cells is equal to ( fz ) by
counting. O
Now we count a number of cells of dimension r in the cell decomposition of G(n, k). Recall

that a partition of an integer r is an unordered collection (iy,...,%s) such that i;+---+is = r.
Let p(r) be a number of partitions of . This are values of p(r) for r < 10:

r |0]1{23]4|5]6 | 7|89 |10
p(r) [ 111|235 |7|11|15]22]30 |42

Each Schubert symbol o = (071, ..., 0%) of dimension d(o) = (o7 — 1)+ (09 —2)+ -+ (o —
k) = r gives a partition (i,...,is) of 7 which is given by deleting zeros from the sequence
(Ul - 1)7(02 _2)>"'a(0k _k)

Exercise 4.14. Show that
1< <ip<---<iy, <k, and s<n-—k.
Prove that a number of r-dimensional cells of G(n,k) is equal to a number of partitions

(11,...,1s) of r such that s <n—k and iy, < k.

Remark. There is a natural chain of embeddings G(n, k) — G(n+1,k) — --- — G(n+
l,k). It is easy to notice that these embeddings preserve the Schubert cell decomposition,
and if [ and k are large enough, the number of cells of dimension r is equal to p(r). In
particular, the Schubert cells give a cell decomposition of G(o0, k) and G(o0,0). O
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Remark. Let ¢ = (iq,.
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..,1s) be a partition of r as above (i.e. s<n—Fkand 1 <i; <-.-<

is < k). The partition ¢ may be represented as a Young tableau.

Igls—1" " 1291

This Young tableau gives a parametrization of the corre-
sponding cell e(¢). Clearly the Schubert symbols ¢ are in one-
to-one correspondence with the Yaung tableaux corresponding
to the partitions (i1,...,75) as above. The Young tableaus
were invented in the representation theory of the symmetric
group S,,. This is not an accident, it turns out that there is a
deep relationship between the Grasmannian manifolds and the
representation theory of the symmetric groups.
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5. CW -COMPLEXES AND HOMOTOPY

5.1. Borsuk’s Theorem on extension of homotopy. We call a pair (of topological spaces)
(X, A) a Borsuk pair, if for any map F': X — Y a homotopy f; : A — Y, 0<t <1,
such that fo = F|4 may be extended up to homotopy F; : X — Y, 0 < ¢ < 1, such that
Fila=f; and Fy = F.

— C
- -

FIGURE 13

A major technical result of this subsection is the following theorem.

Theorem 5.1. (Borsuk) A pair (X, A) of CW -complexes is a Borsuk pair.

Proof. We are given amap ® : Ax I — Y (ahomotopy f;) and amap F : X x {0} — Y,

such that F|sxf0y = ®|axfoy. We combine the maps F' and ® to obtain a map
F':XUAxI) —Y,

where we identify A C X and A X {0} C AxI. Toextend a homotopy f+ up to homotopy F;

is the same as to construct a map F: X xI — Y such that F|XU(AX1) F’. We construct

F by induction on dimension of cells of X \ A. In more detail, we will construct maps

F® . XU((AUXM)x ) — Y

fo each n = 0,1,... such that F(* |XU(AX1) = F’. Furthermore, the following diagram will

commute
Fn+1)

XU((AuXmDy )

Fn)

U((AUX®™) x 1)
where ¢ is induced by the imbedding X ™ c X ™+,

The first step is to extend F” to the space X U (AU X©) x I as follows:

FO(g 1) = F(z), ifzisa0-cell from X and if z ¢ A,
TUTN O(x,t), ifxe A

Now assume by induction that F™ is defined on X U (AU X™) x I). We notice that it is
enough to define a map

F"Y X U((AuX™Uuet)y xI) — Y
extending F™ to a single cell "™, Let ¢"*! be a (n + 1)-cell such that "™ C X \ A.
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By induction, the map F® ig already given on the cylinder (e"™!\e"*1)x I since the boundary
Oentl = ertl\ entl ¢ XMW Let g: D" — X+ be a characteristic map corresponding

to the cell e"™'. We have to define an extension of ﬁl(n) from the side ¢g(S™) x I and the
bottom base g(D™*1) x {0} to the cylinder g(D™*!) x I. By definition of C'W -complex, it is
the same as to construct an extension of the map

W=F"og: (D" x {0})U(S" xI) — Y
to a map of the cylinder ¢/ : D" x I — Y. Let
n: D" x I — (D" x {0}) U (S™ x 1)

be a projection map of the cylinder D"*! x I from a point s which is near and a bit above
of the top side D" x {1} of the cylinder D" x I, see the Figure below.

The map 7 is an identical map on (D" x {0})U (S™ x I). We

/ \ define an extension 1)’ as follows:
D T (DM X {0 U (St x I) 5 Y.

This procedure may be carried out independently for all (n+1)-
cells of X', so we obtain an extension

FOHD - X U (AU X)) x 1) — Y.

Exercise 5.1. Let D" x I ¢ R™™! given by:
Dn+1 x I = {(zla .- 'axn+l>xn+2) | Zlﬁ'% +oe +x3z+1 < 1a Tni2 € [07 1]} .

Give a formula for the above map 7.

Thus, going from the skeleton X ™ to the skeleton X ™1 we construct an extension F
X xI —Y ofthemap F': XU(AXxI) —Y.

We should emphasize that if X is an infinite-dimensional complex, then our construction
consists of infinite number of steps; in that case the axiom (W) implies that F is a continuous
map. O

Corollary 5.2. Let X be a CW -complex and A C X be its contractible subcomplex. Then
X is homotopy equivalent to the complex X/A.

Proof. Let p: X — X/A be a projection map. Since A is a contractible there exists a
homotopy f; : A — A such that f;: A — A is an identity map, and f1(A) = xy € A. By
Theorem 5.1 there exists a homotopy F; : X — X, 0 <t <1, such that Fy, = Idx and
Fi|a = fi. In particular, F}(A) = zo. It means that F; may be considered as a map given
on X/A, (by definition of the quotient topology), i.e.

Fi=qop: X L X/A L X,
where ¢ : X/A — X is some continuous map. By construction, Fy ~ Fy, i.e. qop ~ Idx.

Now, Fi(A) C A for any t, i.e. po F(A) = xo. It follows that p o F; = h; o p, where
he : X/A — X/A is some homotopy, such that hy = Idx/a and h; = p o ¢; it means that
poqr~ IdX/A. O
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Corollary 5.3. Let X be a CW -complex and A C X be its subcomplex. Then X/A is
homotopy equivalent to the complex X U C(A), where C(A) is a cone over A.

Exercise 5.2. Prove Corollary 5.3.

5.2. Cellular Approximation Theorem Let X and Y be C'W -complexes. Recall that a
map f: X — Y is a cellular map if f(X™) C Y™ for every n = 0,1,.... We emphasize
that it is not required that the image of n-cell belongs to a union of n-cells. For example, a
constant map * : X — x¢ = €° is a cell map. The following theorem provides very important
tool in algebraic topology.

Theorem 5.4. Any continuous map f : X — Y of CW -complexes is homotopic to a
cellular map.

We shall prove the following stronger statement:

Theorem 5.5. Let f : X — Y be a continuous map of CW -complexes, such that a re-
striction f|a is a cellular map on a CW -subcomplex A C X . Then there exists a cell map
g: X — Y such that g|la = f|a and, moreover, f ~ g rel A.

First of all, we should explain the notation f ~ g rel A which we are using. Assume that we
are given two maps f,g: X — Y such that f|4 = g|la. A notation f ~ g rel A means that
there exists a homotopy h; : X — Y such that hs(a) does not depend on ¢ for any a € A.
Certainly f ~ g rel A implies f ~ g, but f ~ g does not imply f ~ g rel A.

Exercise 5.3. Give an example of a map f :[0,1] — S which is homotopic to a constant
map, and, at the same time f is not homotopic to a constant map relatively to A = {0}U{1} C
I.

Proof of Theorem 5.5. We assume that f is already a cellular map not only on A, but
also on all cells of X of dimension less or equal to (p — 1). Consider a cell e# C X \ A.
The image f(e?) has nonempty intersection only with a finite number of cells of Y': this is
because f(éP) is a compact. We choose a cell of maximal dimension €? of Y such that it has
nonempty intersection with f(e?). If ¢ < p, then we are done with the cell e’ and we move
to another p-cell. Consider the case when ¢ > p. Here we need the following lemma.

o q
Lemma 5.6. (Free-point-Lemma) Let U be an open subset of R?, and ¢ : U — D be 8
continuous map such that the set V.= o=1(d) C U zs compact for some closed disk d? C D
If q > p there exists a continuous map ¢ : U — D such that

L. Yl = elow:
2. the image ¥(V') does not cover all disk d?, i.e. there exists a point yo € d?\ Y(U).

We postpone a proof of this Lemma for a while.

Remark. The maps ¢ and ¢ from Lemma 5.6 are homotopic relatively to U \ V: it is
q

enough to make a linear homotopy: hy(x) = (1 —1t)¢(x)+t)(x) since the disk D is a convex
set.
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Claim 5.1. Lemma 5.6 implies the following statement: The map
flaoxe-voe is homotopic rel (AU X® D) to a map f:AUXP Y Ue? — Y,

such that the image f'(e?) does not cover all cell €.

Proof. Indeed, let h : D? — X, k: D9 — Y be the characteristic maps of the cells e
and €7 respectively. Let

U=h"(e"nfH(eM),

odq
and let ¢ : U — D be the composition:

h, p g S bR
U—ePNfre? — el — D .

o4

od
Let d? be a small disk inside D (with the same center as D ). The set V = ¢~1(d?) is

op odq
compact (as a closed subset of the disk D ). Let ¢y : U — D be a map from Lemma 5.6.
We define a map f’' on h(U) as the composition:

WY U S D S acy,
and f'(z) = f(x) for = ¢ h(U). Clearly the map
flrAUXP Dy Y
is continuous (since it coincides with f on A(U \ V)) and
flrAUXPTD U — Y~ flaoxe-nue rel (AUX®TY),
moreover,
frAUXPD U — Y~ flagxe-vue el (AUXPTVU e\ (V)

(the latter follows from a homotopy ¢ ~ ¢ rel (U \ V)). Also it is clear that f’(e?) does not
cover all cell €.

FIGURE 14
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E =

FIGURE 15

5.3. Completion of the proof of Theorem 5.5. Now the argument is simple. Firstly, a
homotopy between the maps

f‘Aux(pﬂ)Uep and f’ rel (AUX(p—l))

can be extend to all X by Borsuk Theorem. In particular, we can assume that f’ with all
above properties is defined on all X .

Secondly, we consider a point yy € €7 C Y which does not belong to the image f'(e?), and
“blow away” the map f’|» from that point as it is shown at Fig. 15. This is a homotopy
which may be described as follows:

If . ce?,and z ¢ (f) ' (e7), then Hy(x) = f'(x) for all ¢.
If z €el, and = € (f)"(e?), then f'(z) moves along the ray connecting 3o and the
boundary of €? to a point on the boundary of €?.

We extend this homotopy to a homotopy of the map f’| 4 xe-vuer (relatively to eP), and
then up to homotopy the map f': X — Y. The resulting map f” is homotopic to f’ (and
f), and f”(e?) does not touch the cell €? and any other cell of dimension > ¢g. Now we can
apply the procedure just described several times and we obtain a map f; homotopic to f,
such that f; is a cellular map on the subcomplex AU X®~1 UeP. Note that each time we
applied homotopy it was fixed on (relative to) AUX®~1 It justifies the induction step, and
proves the theorem. O

Exercise 5.4. Find all points in the argument from “Completion of the proof of Theorem
5.5”7 where we have used Borsuk Theorem.

Remark. Again, if the CW-complex X is infinite, then the axiom (W) takes care for the
resulting cellular map to be continuous.

5.4. Fighting a phantom: Proof of Lemma 5.6. There are two well-known ways to prove
our Lemma. The first one is to approximate our map by a smooth one, and then apply so
called Sard Theorem. The second way is to use a simplicial approximation of continuous
maps. The first way is more elegant, but the second is elementary, so we prove our Lemma
following the second idea. First we need some new “standard spaces” which live happily
inside the Euclidian space R".

Let ¢ < n+1, and ¥,...,7;41 be vectors those endpoints do not belong to any (¢ — 1)-
dimensional subspace. We call the set

AUTy, .. Up) ={ i1+ ...+t [+ .+t =1, 1 >0,...,t;4+1 >0}
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a g-dimensional simplex.

Exercise 5.5. A(Uy,...,Up1) s homeomorphic (moreover, by means of a linear map) to the
standard simplex

Al = {(1’1,...,qu+1) € Ret! ‘ Ty > O,...,xq+1 >0, Z;]:llxz =1 }
Example. A 0-simplex is a point; a simplex A! is the interval connecting two points; a
simplex 2 is a nondegenerated triangle in the space R"; a simplex A3 is a pyramid in R"
with the vertices vy, U1, Ua, U3, see the picture below:

FIGURE 16

A j-th side of the simplex A9(¢}, ..., U,41) is the following (¢ — 1)-simplex:
Aq_l(’(_fl, ey Uj—la Uj+1, ey Uq)j == {tl’l_fl +...+ tq+117q+1 S Aq(’(_fl, e ,Uq+1> ‘ tj == 0 } .

We are not going to develop a theory of simplicial complezes (this theory is parallel to the
theory of C'W-complexes), however we need the following definition

Definition 5.7. A finite triangulation of a subset X C R™ is a finite covering of X by
simplices {A"™(i)} such that each intersection A"(i) N A™(j) either empty, or

A™(i) N A™(j) = A" (i)
for some k=0,...,n.
Exercise 5.5. Let AT,..., Al be a finite set of n-dimensional simplexes in R". Prove that
the union K = AT UAY U---UA? is a finite simplicial complex.

Exercise 5.6. Let A}, A be two simplices. Prove that K = A} x Af is a finite simplicial
complex.

A barycentric subdivision of a g-simplex AY is a subdivision of this simplex on (¢+1)! smaller
simplices as follows. First let us look at the example:

FIGURE 17
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In general, we can proceed by induction. The picture above shows a barycentric subdivision
of the simplices A', and A%. Assume by induction that we have defined a barycentric
subdivision of the simplices A’/ for j < ¢ — 1. Now let 2* be a weight center of the simplex
A?. We already have a barycentric subdivision of each j-the side Ag by (¢ — 1)-simplices
Ag-l), . ..,Agn), n = ¢q!. The cones over these simplices, 7 = 0,...,q, with a vertex z*
constitute a barycentric subdivision of A?. Now we will prove the following “Approximation
Lemma”:

Lemma 5.8. Let V C U be two open sets of R" such that their closure V, U are compact
sets and V. C U. Then there exists a finite triangulation of V' by n-simplices {A™(i)} such
that A"(i) C U.

Proof. For cach point 2 € V there exists a simplex A™(z) with a center at 2 and A™(z) C U.
By compactness of V' there exist a finite number of simplices A™(x;) covering V. It remains to
use Exercise 5.6 to conclude that a union of finite number of A™(z;) has a finite triangulation.
O

od
5.5. Back to the Proof of Lemma 5.6. We consider carefully our map ¢ : U — D .
First we construct the disks d;, ds, d3, d4 inside the disk d with the same center and of radii
r/5, 2r/5, 3r/5, 4r/5 respectively, where r is a radius of d. Then we cover V = p~!(d) by
finite number of p-simplexes AP(j), such that A™(j) C U. Making, if necessary, a barycentric
subdivision (a finite number of times) of these simplices, we can assume that each simplex
AP has a diameter d(¢(AP)) < r/5. Let K; be a union of all simplices A? such that the
intersection ¢(A) N dy is not empty. Then

diNp(U) C p(Ky) Cd.

Now we consider a map ¢’ : K; — d4 which coincides with ¢ on all vertices of our trian-
gulation, and is linear on each simplex A C K;. The maps ¢|g, and ¢’ are homotopic, i.e.
there is a homotopy ¢; : K1 — dy, such that ¢o = |k, and ¢ = ¢'.

FIGURE 18
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Exercise 5.7. Construct a homotopy ¢; as above.

o4
Now we construct a map ¢ : U — D out of maps ¢, ¢; and ¢’ as follows:
p(u) if o(u) ¢ ds,
Y(u) =< ¥'(u) if @(u) € dy,

@3_57-_@)('&) if QO(U) S d3 \ dg.
Here r(u) is a distance from ¢(u) to a center of the disk d, see Fig. 5.7.

Now we notice that ¢ is a continuous map, and it coincides with ¢ on U \ V. Furthermore,
the intersection of its image with d;, the set ¢ (U) Ndy, is a union of finite number of pieces
of p-dimensional planes, i.e. there is a point y € d; which y ¢ ¥(U).

Exercise 5.8. Let 7,..., 7 be a finite number of p-dimensional planes in R?, where p < q.

Prove that the union 7 U --- U, does cover any open subset U C R".

Thus Cellular Approximation Theorem proved. O

5.6. First applications of Cellular Approximation Theorem. We start with the fol-
lowing important result.

Theorem 5.9. Let X be a CW -complex with only one zero-cell and without q-cells for
0<qg<n, and Y be a CW -complex of dimension < n, i.e. Y =Y®  where k <n. Then
any map Y — X is homotopic to a constant map. The same statement holds for “pointed”
spaces and “pointed” maps.

Exercise 5.9. Prove Theorem 5.9 using the Cellular Approximation Theorem.

Remark. For each pointed space (X, ) define m,(X,z¢) = [S*, X] (where we consider
homotopy classes of maps f : (S*,s9) — (X,z0)). Very soon we will learn a lot about
(X, xg), in particular, that there is a natural group structure on (X, xy) which are called
homotopy groups of X .

The following statement is a particular case of Theorem 5.9:

Corollary 5.10. The homotopy groups m;(S™) are trivial for 1 <k <n.

We call a space X n-connected if it is path-connected and 7, (X) =0 for k =1,...,n.

Exercise 5.10. Prove that a space X is O-connected if and only if it is path-connected.

Theorem 5.11. Let n > 1. Any n-connected CW -complex homotopy equivalent to a CW -
complex with a single zero cell and without cells of dimensions 1,2,...,n.

Proof. Let us choose a cell €® and for each zero cell €? choose a path s; connecting € and
¢ (these paths may have nonempty intersections). By Cellular Approximation Theorem we
can choose these paths inside 1-skeleton. Now for each path s; we glue a 2-disk, identifying
a half-circle with s;, see the picture:
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FIGURE 19

We denote the resulting C'W -complex by X. The CW -complex X has the same cells as X
and new cells e}, e? (the top half-circles and interior of 2-disks). A boundary of each cell e?
belongs to the first skeleton since the paths s; are in the first skeleton.

Clearly the complex X is a deformational retract of X (one can deform each cell €? to the
path s;). Let Y be a closure of the union | J, e; . Obviously Y is contractible. Now note that

)Z/Y ~ X ~ X, and the complex )Z/Y has only one zero cell.

Now we use induction. Let us assume that we already have constructed the C'W-complex
X’ such that X’ ~ X and X’ has a single zero cell, and it does not have cells of dimensions
1,2,...,k — 1, where k¥ < n. Note that a closure of each k-cell of X’ is a sphere S* by
induction. Indeed, an attaching map for every k-cell has to go to X'(®. Since X’ is still
k-connected, then the embedding S* — X’ (corresponding to a cell ef) may be extended
to a map D' — X’. Again, Cellular Approximation Theorem implies that we can choose
such extention that the image of D¥! belongs to the (k+1)-skeleton of X’. Now we glue the
disk D¥+2 to X' using the map D**' — X'*+1 (we identify the disk D**' with a bottom
half-sphere S*™ of the boundary sphere S**' = 9DF+2). We denote this (k + 2)-cell ef+?
and the (k + 1)-cell given by the top half-sphere Sfﬁ“, by ef“. We do this procedure for
each k-cell ef of the complex X’ and construct the complex X' Certainly X' ~ X' ~X.
Now let Y’ be a closure of the union |J, ef“, where, as above, ef“ are the top half-spheres

of the cells e?“. Clearly Y” is contractible, and we obtain a chain of homotopy equivalences:
XY ~ X' ~ X ~ X,
where X’/Y” has no k-cells. This proves Theorem 5.11. O

Corollary 5.12. Let Y be n-connected CW -complex, and X be an n-dimensional CW -
complex. Then the set [X,Y] consists of a single element.

A pair of spaces (X, A) is n-connected if for any k < n and any map of pairs
f(DF,S" ) — (X, A)
homotopic to a map g : (D*, S¥71) — (X, A) (as a map of pairs) so that g(D*) C A.

Exercise 5.11. What does it mean geometrically that a pair (X, A) is 0-connected? 1-
connected? Give some alternative description.
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Exercise 5.12. Let (X, A) be an n-connected pair of C'W -complexes. Prove that (X, A) is
homotopy equivalent to a CW -pair (Y, B) so that B C Y™,
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6. FUNDAMENTAL GROUP

6.1. General definitions. Here we define the homotopy groups m,(X) for all n > 1 and
examine their basic properties. Let (X, xy) be a pointed space, and (S",sg) be a pointed
sphere. We have defined the set [S™, X] as a set of homotopy classes of maps f:S" — X,
such that f(sg) = xo, and homotopy between maps should preserve this property. In different
terms we can think of a representative of [S™, X| as a map I" — X such that the image of
the boundary 90I™ of the cube I™ maps to the point xy.

The sum of two spheres f,g:S™ — X is defined as the map
fhgism— X,

constructing as follows. First we identify the equator of the sphere S™ (which contains the
point sg) to a single point, so we obtain a wedge of two spheres S™ A S™, and then we map
the “top sphere” S™ with the map f, and the “bottom sphere” S™ with the map ¢, see the
picture below:

5 9.

FIGURE 20

Exercise 6.1. Prove that this operation is well-defined and induces a group structure on the
set m,(X) = [S™, X]. In particular check associativity and ezistence of the unit.

Lemma 6.1. For n > 2 the homotopy group m,(X) is a commutative group.

Proof. The corresonding homotopy is given below, where the black parts of the cube map
to the point zq:

NSRS ) o | oimact

FIGURE 21

Remark. We note that the first homotopy group® m(X) is not commutative in general. We
will use “4” for the operation in the homotopy groups m,(X) for n > 2 and product sign
“.” for the fundamental group.

Now let f: X — Y be a map; it induces a homomorphism f, : m,(X) — m,(Y).

5 There is a special name for the group m (X): the fundamental group of X .
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Exercise 6.2. Prove that if f,g: X — Y are homotopic maps of pointed spaces, than the
homomorphisms f., g : 7 (X) — m,(Y) coincide.

Exercise 6.3. Prove that m,(X xY) = 7m,(X) x m,(Y) for any spaces X,Y .

6.2. One more definition of the fundamental group. The definition above was two
general, we repeat it in more suitable terms again.

We consider loops of the space X, i.e. such maps ¢ : I — X that ¢(0) = ¢(1) = zo.
The loops ¢, ¢’ are homotopic if there is a homotopy ¢; : I — X, (0 <t < 1) such that
w0 =@, o1 = ¢'. A “product” of the loops ¢, v is the loop w, difined by the formula:

_ p(2t), for 0<t<1/2,
wit) = { P2t —1), for 1/2<t<1.

This product operation induces a group structure of 71 (X). It is easy to check that a group

operation is well-defined. Note that the loop @(t) = (1 — t) defines a homotopy class

el ™ = [7]

Exercise 6.4. Write an explicit formula givinig a null-homotopy for the composition ¢ - ¢.

6.3. Dependence of the fundamental group on the base point.

Theorem 6.2. Let X be a path-connected space, then m (X, xo) = m (X, 1) for any two
points xg, 1 € X.

Proof. Since X is path-connected, there exist a path « : I — X, such that «(0) = xo,
a(l) = z;. We define a homomorphism ay : m(X,29) — m(X,21) as follows. Let
(] € m (X, m0). We define ax([¢]) = (ap)a~t. ® It is very easy to check that ay is well-
defined and is a homomorphism. Moreover, the homomorphism oz;l s (X, ) — m (X, x0)
defined by the formula a,'([¢)]) = [(a~")a], gives a homomorphism which is inverse to .
The rest of the proof is left to you. O

Perhaps the isomorphism ay depends on «. Let 8 be the other path, 3(0) =z, 5(1) = 2.
Let v = Ba~! which defines an element [y] € 7 (X, z1).

Exercise 6.5. Prove that B34 = [y]ay[y]™".

Exercise 6.6. Let f : X — Y be a homotopy equivalence, and xq € X. Prove that

fe:m(X) — m(Y, f(xo)) is an isomorphism.

6.4. Fundamental group of circle. Here we will compute the fundamental group of the
circle. In fact, we will be using a “universal covering space” of the circle which we did not
defined yet.

Theorem 6.3. ™ S' = Z.

Proof. Consider the map exp : R — S! defined by the formula: z — €. We can think
about the circle S' as the quotient group R/Z (where Z is embedded R as the set of the

6 here we “multiply” not just loops, but paths as well: we can always do that if the second path starts at
the same point where the first ends
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numbers 27k, k= 0,41,42,...). Aloop ¢ : I — S' (0(0) = (1) = ) may be lifted to
amap ¢ : I — R. It means that ¢ is decomposed as

exp

gp:I&R—>R/Z251,
where ¢(0) =0 and @(1) = 2wk for some integer k. Note that a lifting ¢ : I — R with the
above properties is unique.

Note that if the loops ¢, ¢’ : I — S are homotopic, then the paths @, @’ have the same
end point 27k (since we cannot “jump” from 27k to 2wl if [ # k by means of continuous
homotopy!). Now the isomorphism m; = Z becomes almost obvious: [p] — k € Z. It
remains to see that the loop ¢ : I — S' (¢ : 1 — R, where ¢(0) =0 and ¢(1) = 27k) is
homotopic to the “standatrd loop” 7% going from 0 to 27k, see picture below:

I

A\ A A/v

AWAVL
U

FIGURE 22

It remains to observe that EJLZ ~ Ek.”. O

Theorem 6.4. Let X4 = \/ SL. Then 71 (X4) is a free group with generators n,, a € A.
acA

Proof. Let i, : S' — X4 be an embedding of the corresponding circle. Let 7, € m(X4)
be the element given by 7,. We prove the following statement.

Claim 6.1. 1° Any element 3 € m(Xa) may be represented as a finite product of elements
-1
Nos My, @ € A:

(13) B=mng ny, € ==L

2° The presentation (13) is unique up to cancelation of the elements nan;* or 15 1,

Claim 6.1 is equivalent to Theorem 6.4. Now we prove 1°, and we postpone 2° to the next
section.

Proof of 1°. Let I,, J, be two closed intervals in the circle, J, C Intl,, and I, does not
contain the base point.

Now let ¢ : I — X4 be a loop. We find n such that for any
interval J of the length 1/n if the intersection ¢(J)NJ, # 0,
then ¢(J) C I,. Let K be the following union:

K = U [k/n, (k+1)/n].

e([k/n,(k+1)/n)N(UaJa) #0
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Now we construct a map ¢; : I — X4 which coincides with ¢ outside of K and in all points
with the coordinates k/n, and it is linear on each interval [k/n, (k+1)/n] C K.
Exercise 6.7. Give a formula for the map ¢y .
Sa hy Clearly the loop ¢; is homotopic to ¢. Now we find an
interval T,, C J,, so that T, does not contain points @1 (k/n).
We can do this since there is only finite number of points like
that inside of each .J,. We notice that ¢;*(7,,) C I is a finite
number of disjoint intervals S&l), ey ST 5o that the map
ho g01|s(j) : S&’) — T, 1is linear for each j. The last step: we
define a homotopy h; : X4 — X4 which stretches linearly
Homotopy hy each interval T, on the circle S. and taking S} \ T, to the
base point.

T

Exercise 6.8. Give a formula for the homotopy h;.

Exercise 6.9. Prove that the inverse image @7 (UsT,) C I consists of finite number of
disjoint intervals.

Then the map ¥ = @1 o hy gives a loop which maps I as follows. For each a € A there is
finite number of disjoint intervals S I so that SY maps linearly on the circle S}. The
restriction 1| gl maps the interval S clock or counterclock wise; this corresponds to either
element 7, or n;'. Then the rest of the interval I, a complement to the union

U (S 1.y 8y
maps to the base point. O

6.5. Fundamental group of a finite C'W-complex. Here we prove a general result show-
ing how to compute the fundamental group m(X) for arbitrary CW -complex X .

Remark. Let X be a path-connected. If a map S! — X sends a base point sy to a
base point zg then it determines an element of 71 (X, zo); if f sends sy somethere else, then
it defines an element of the group (X, f(s¢)), which is isomorphic to m (X, z¢) with an
isomorphism . The images of the element [f] € 7(X, f(s0)) in the group m (X, zo) under
all possible isomorphisms a define a class of conjugated elements. So we can say that a map
S — X to a path-connected space X determines an element of 71 (X, zg) up to conjugation.

Let X be a CW-complex with a single zero-cell € = z(, one-cells e}, i € I, and two-
cells €2, j € J. Then we identify the first skeleton X" with \/,.; S}. The inclusion map
S} — V,e; S} determines an element o, € m1(XW, zg). By Theorem 6.4 (XM, z0) is a
free group on generators «;, @ € I. The characteristic map g; : D? — X of the cell e?
determines attaching map f; : S' — X which determines an element 3; € m (XW, z)

up to conjugation.

7 A linear map I — S' is given by ¢+ (cos(\t + p),sin(\t + v)) for some constants X, j, v.
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Theorem 6.5. Let X be a CW -complex with a single zero cell €°, one-cells e} (i € I),

and two-cells €2 (j € J). Let o; be the generators of m (XM, xg) corresponding to the the
cells e}, and B; € T (XW x) = F(oy | i € I) be elements determined by the attaching maps

fi: St — X' of the cells €2. Then

j .

1. 7T1(X, [L'()) = 7T1(X(2),[L’0),'
2. m(X,x0) is a group on generators oy, i € I, and relations B; =1, j € J.

Proof. We consider the circle S* as 1-dimensional CW -complex. Cellular Approximation
Theorem implies then that any loop S* — X homotopic to a loop in the first skeleton, i.e.
the homomorphism
b (XM 20) — m (X, x0)

induced by the inclusion ¢ : X — X is an epimorphism. It is enough to prove that
Ker i, is generated by §;, j € J. It is clear that 3; € Ker «,. Indeed, the attaching map
fi + S* — X is extended to the characteristic map g; : D> — X, and determines a
trivial element in the group m (X, f;(so)); and this element corresponds to ; under some
isomorphism 71 (X, f;(s0)) = m1 (X, zo).

It is more difficult to prove that if v € Ker i, then v may be presented as a product of
elements 6%: here we will apply again the Cellular Approximation Theorem. We identify

cach cell 2 with the open disk D? in R?, so we can construct disks d) C D? of radius 9,
and disks d, d), d¥) and d\ (with the same center) of radius r@) /5, 2r() /5, 3r0) /5 and
4r1) /5 respectively.

Now let ¢ : S' — X be a representative of an element v € Ker i,. Clearly there is an
extension ® : D? — X of the map ¢. By the Cellular Approximation Theorem we can
assume that ®(D?) ¢ X? . We triangulate D? in such way that if A is a triangle from this

triangulation such that ®(A) N d{) # 0, then
(a) ®(A) c dV¥) and
(b) diam(®(A) < rV)/5,

Let K be a union of all triangles A of our triangulation such that
B(A) N <U dy”) 0.
jed

Now we make the map & : K — X® which concides with ® on the vertexes of each simplex
and is linear on each simplex A. The maps ® and ®|x are homotopic (inside the cell €3) by
means of a homotopy ®; = (1 — t)® + t®’, with &y = ®|, ¢; = &’. Now we use a familiar

formula '
(u), it (u) ¢ U, dy
O () = 4 (u), it d(u) e, dy

By s (u), if B(u) € d§\ df)

Tj
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to define a map ®”, which is a piece-wise linear on the inverse image of [ J i dgj )

Now we choose a small disk ) C dgj ) which does not intersect with images of all vertices
and 1-sides of all simlexes A. There are two possibilities:

1. 69 C ®"(A) for some simplex A;

2. (®")71(6W)) = 0.

Let w;: X® — X® be a map identical on X and mapping each disk 6¥) on the cell €?
(by pushing e? \ 6Y) to the boundary of ?). The map

v p? 2 x@ 2 x@)

extends the same map ¢ : S' — X,

Note that in the case 1. the inverse image of 6¢) under the map ®” is a finite number of
ovals Ey, ..., E, (bounded by an ellips), and in the case 2. the inverse image of §U) is empty.

We see that the map W maps the complement D?\ (|, Es) to X1, and maps each oval

Ei ..., E; linearly on one of the cells e?.

We join now a point s, € S' C D? with each oval E,..., E}, by paths sq,...s;, which do
not intersect with each other, see the picture below:

FIGURE 23

We denote by o1, ..., 0. the loops, going clock-wise around each oval. Then the loop ¢ going
clock-wise along the circle ST C D? is homotopic in D?\ |J, Int(E}) to the loop:

(skowsy ') -+ (520085 ) (s100s7 ),

see Fig. 6.6.

It means that the loop ¢ : S' — X is homotopic (in X)) to the loop
[W o (spopsy )] -+ [W o (sa02s;, )][W o (s101s7 )]

It remains to observe that the loop [V o (sjajsj_l)] determines an element in (X, xg),
conjugate to 6%1.
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We see now that the element v belongs to a normal subgroup of F'(a; | i € I), generated by

Bj. O
Exercise 6.10. Finish the proof in the case 2, i.e. when (®")~1(60)) = 0.

Theorem 6.5 helps to compute fundamental groups of all classic spaces. In the case of S"
(n > 2) and CP™, n > 1 we see that the fundamental group is trivial. However, there are
several interesting cases:

Theorem 6.6. Let Mg2 be a two-dimensional manifold, the sphere with g handles (oriented

manifold of genus g ). Then 7r1(Mg2) is generated by 2g generators ay,...aq, by, ..., by, with a
single relation:

arbia; byt - -agbgag_lbgl =1
Exercise 6.11. Prove Theorem 6.6.

Exercise 6.12. For a group w, we let [m, ] be its commutator. Compute the group m/|m, 7|
for m=m (M,).

Remark. We note that in particular 7(7?%) = Z & Z, which is obvious from the product
formula m (X x V) 271 (X) x m(Y).

Recall that a non-oriented two-dimensional manifold of genus ¢ is heomeomorphic either to
M?Z(1), a connective sum of a projective plane RP* and g tori T%# - --#17?, or to M7(2), a
connective sum of the Klein bottle K1 and g tori T2# --- #7172,

Theorem 6.7. 1. The group 7r1(M92(1)) is isomorphic to a group on generators cy,. .., Cagt1
wit a single relation

vy = 1.
2. The group 7T1(Mg2(2)) is isomorphic to a group on generators ci,...,Cagro Wit a single

relation
2 2 2 _

Exercise 6.13. Prove Theorem 6.7.
Exercise 6.14. Compute 7 (RP"), 7 (KI?).
Exercise 6.15. Compute the group =/[r, x| for the groups m = m (M7 (1)), m (M (2)).

Exercise 6.16. Prove that the fundamental groups computed in Theorems 6.6, 6.7 are pair-
wise nonisomorphic. Prove that any two manifolds above are not homeomorphic and even are
not homotopy equivalent to each other.

6.6. Theorem of Seifert and Van Kampen. Here we will need some algebraic material,
we give only basic definition and refer to [Massey, Chapter 3] and [Hatcher, 1.2] for detailes.

Let Gy, G5 be two groups with system of generators A;, Ay and relations Ry, Ry respectively.
A group with a system of generators A; U A, (disjoint union) and system of relations Ry U Ry
is called a free product of G; and G5 and is denoted as Gy * Go.

Exercise 6.17. Prove that the group Zo x Zo contains a subgroup isomorphic to Z and
(ZQ*ZQ)/ZEZQ
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Exercise 6.18. Let X, Y be two CW -complezes. Prove that m(X VY) = m(X) xm(Y),
where the base points xo € X and yo € Y are identified with a base point in X VY .

Remark. As it is defined in [Massey, Ch. 3], the group G = G; * Gy may be characterized
as follows. Let ¢ : Gy — G and ¢y : Gy — G be natural homomorphisms and let L
be a group and ¥y : Gy — L, ¥y : Go — L, then there exist a unique homomorphism
¥ : G — L, such that the diagram

(14) Gy ¥ G

b P2

is commutative. The above definition may be generalized as follows. Assume that we also
are given two homomorphisms p; : H — Gy, ps : H — G5. Let us choose generators {h, }
of H and define a group G; xy Go by adding the relations p;(hs) = p2(hs) to relations of
G1 * G2 .

In different terms we may define the group G xy G5 as follows. Assume that we are given a
commutative diagram:

Gy
p1 1
P,
(15) it - L
P2 Yo
Gy

The group G *y Gy is characterized by the following property: There are such homomor-
phiSHlS c: H — Gl X Gg, o1 . Gl — Gl X G2 and 09 G2 — Gl X G2 that for each
homomorphisms ¢, : Gy — L, ¢y : Gy — L and 919 : H — L such that the diagram
(15) is commutative, there exists a unique homomorphism v : Gy xy Gy — L such that the
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following diagram is commutative:

G+ Go
o g A o
(16) H—"—~ G ¥ G, 22—
1 2
1,2 Y12
L

Exercise 6.19.* Prove that the group SLs(Z) of unimodular 2 x 2-matrices is isomorphic
to Z4 *Z, ZG .

Theorem 6.8. (Seifert, Van Kampen) Let X = Y; UY, be a connected CW -complez,
where Yy, Yo and Z = Y, NYy are connected CW -subcomplexes of X . Let a base point
1o €Y1INYs CX, and py : m (Y1) — mi(X), p2: m(Ya) — m(X). Then

T (X) = 7 (Y1) #7y(2) T1(Y2).

Exercise 6.20. Prove Theorem 6.8 in the case of finite CW -complezes using induction on
the number of cells of Y1 NY5.

Remark. There is more general version of Van Kampen Theorem, see [Massey, Ch. 4] and
[Hatcher, 1.2].
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7. COVERING SPACES

7.1. Definition and examples. A path-connected space T is a covering space over a path-
connected space X, if there is a map p : T — X such that for any point z € X there
exists a path-connected neighbourhood U C X, such that p~'(U) is homeomorphic to U x T
(where I' is a discrete set), futhermore the following diagram commutes

o

p H(U) UxT

(17)

pr

U
The neighbourhood U from the above definition is called elementary neighborhood.
Examples. 1. p: R — S' where S'={2€ C | |z| =1}, and p(p) = €'*.
2. p: St — S where p(z) =2F, k€Z,and S'={z€C||z|]=1}.

3. p:S" — RP", where p maps a point z € S™ to the line in R"*! going through the
origin and x.

7.2. Theorem on covering homotopy. The following result is a key fact allowing to classify
coverings.

Theorem 7.1. Let p: T'— X be a covering space and Z be a CW -complex, and [ : Z — X,
f:Z — T such that the diagram

(18) v

Z

commutes; futhermore it is given a homotopy F : Z x I — X such that F|ZX{0} = f. Then

there exists a unique homotopy F : Z — T such that F|Z x {0} = f and the following
diagram commutes:

T

Zx] —2 v x

We prove first the following lemma:

Lemma 7.2. For any path s : I — X and any point Ty € T, such that p(Zy) = zo = s(0)
there exists a unique path s : 1 — T, such that 5(0) =T¢ and pos=s.
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o, Us Proof. For each t € I we find an elementary neighbour-
@ hood U, of the point s(t). A compactness of I = [0, 1]
implies that there exists a finite number of points
O=ti <ty <...<t, =1,
l such that U; D s([t;,t;j11]). The inverse image p~ (Ul)
homeomorphic to U; x I' Let U1 be such that 7y € U1

Then the path s|j4, : [0,2] — X has a unique lifting
m 5:10,ty] — T covering the path sfg . Then we do the
o U, Us Un same in the neighbourhood U, and so on. Note that we
have a finite number of U;, and in each neighbourhood Uj

a “lifting” is unique, see Figure to the left.
Proof of Theorem 7.1. Let z € Z be any point. The formula t — F'(z,t) defines a path
in X. Lemma 7.2 gives a unique lifting of this path to T, such that it starts at f(z). It gives

amap 4 x I — T. This is our homotopy F'. O

7.3. Covering spaces and fundamental group.
Theorem 7.3. Let p: T — X be a covering space, then p, : m (T, 7o) — 7 (X, x0) is a
monomorphism (injective).

Proof: Let s: I — T be a loop, where 5(0) = 5(1) = . Denote zy = p(Tp). Assume that
the loop s = pos: I — X is homotopic to zero. Let s, : I — X be such a homotopy:
so =8, 5(0) = s4(1) = xg, and s1(1) = z.

Theorem 7.1 implies that there is a homotopy s; : I — T

~
o covering the homotopy s;. Since the inverse image p~'(z) is a
= ~ discrete set, then 5:(0) = 5,(1) = Zy. i
- The subgroup p.(m (T, %)) C m (X, xo) is called the covering
group of T 25 X . Let ) # To, p(T})) = p(To) = x9. Consider
o a path a : I — T such that a(0) = 7y, a(l) = Z,. Then
@ o the projection o = p(a) is a loop in X, see Figure to the left.

Clearly oy : pu(mi (T, %)) — pe(m (T, 7)) given by ax(g) =
aga~! is an isomorphism.

Consider the coset (X, xq)/p«(m1(T, %)) (the subgroup p.(mi(T,To)) C (X, z0) is not
normal subgroup in general).

Claim 7.1. There is one-to-one correspondence p‘l(xo) — m (X, x0) /P (m (T, Zy)) -
Proof. Let [y] € m (X, o), where v: I — X, ( )

7(0) = (1) = x¢. There exists a unique lifting

v:I — T of v, so that 7(0) = 7y. We define

A7) = 7(1) € pY(xg), see Fig. (a). The

homotopy lifting property implies that if v ~ ~/

then ¥ ~ 4" and 7(1) =7'(1). Now let A([y]) = g
A([v]). Then the loop § = (/)7 ty is covered <§D v v
by the loop 8 = (/)75 see Fig. (b). Thus .

8] = (1)) € pu(m (T, T)). ®) )
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This proves that A : (X, z0)/p.(m1(T,To)) — p~'(xp) is an injection. Clearly A is onto
since T is path-connected, and if T € p~!(zy) there exists a path connecting zy and x which
projects to a loop in X. O

Claim 7.2. Let p: T — X be a covering and xqg,x; € X. There is one-to-one correspon-
dence p~i(zg) — p~L(z1).

Exercise 7.1. Prove Claim 7.2. Hint: Consider a path connecting zy and z;.

7.4. Observation. Let v be a loop in X, 7(0) = v(1) = x¢, and 7 : I — T be its lifting
with 7(0) = Zy. Then if 7(1) # ¥(0) then the loop 7 is not homotopic to zero. Indeed, if

such homotopy would exist, then necessarily it implies that 5(1) = 5(0). O

We use this observation to complete the proof of The-
orem 6.4, or, to be precise, the proof of Claim 6.1,
2°. Indeed, let B = ng, ---ng, ¢ = L1, where
all elements 7,m,", 1, ', are canceled It is enough
T to show that 8 # e, where e is the identity elele-
ment. Recall that 7, is given by the inclusion S —
Voea Se = Xa. It is enough to construct a covering
space p: T' — X, so that the loop [ is covered by a
loop (8 with the property that 5(0) # 3(1). Consider
nel ne s + 1 copies of the wedge X4 placed over X4, see
X4 <)C> Fig. 7.5. We assume that these copies of X, project
vertically on X4. Consider the word 3 = ng ---nS .
Then we delete small intervals of the circles S at the
first and second levels and “braid” these two circles
together

as it is shown at Figure above. We extend the verical projection to the “braid” in the obvious
way. Then we join by a braid the circles Scly2 at the second and the third levels, and so on.

In this way we construct a covering space T' so that the loop 8 = ng! -+ 15 is covered by E
which starts at the first level and ends at the last level. Thus 8 =ng ---n5 # 0. O

7.5. Lifting to a covering space. Consider the following situation. Let p: T — X be a
covering space, 19 € X, To € p~'(xg) € T. Let f: Z — X be a map, so that f(z) = zo.
There is a natural question:

Question: Does there exist a map fv: Z — T covering the map f : Z — X, such

that f(z9) = Zo? In other words, the lifting map f should make the following diagram
commutative:

(19) P
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where f(z0) = z0, f(20) = To. Clearly the diagram (19) gives the following commutative
diagram of groups:

st (T, g(])
(20) P

(2, 20) L 1 (X, 20)

It is clear that commutativity of the diagram (20) implies that
(21) f(m1(Z, 20)) C pe(mi(T, Zo)).

Thus (21) is a necessary condition for the existence of the map f. It turns out that (21) is
also a sufficient condition.

Theorem 7.4. Let p : T — X be a covering space, and Z be a path-connected space,
xg € X, g € T, p(To) = 9. Given a map [ : (Z,z0) — (X, x0) there ezists a lifting

Ti(2,20) — (T,30) if and only if fu(m1(Z, %)) C pa(ma(T, 50)).

Proof (outline). We have to define a map f : (Z,z) — (T,%). Let z € Z. Consider a
path w: I — Z, so that w(0) = zp, w(1) = 2. Then the path f(w) =~ has a unique lift ¥

so that 7(0) = Zy. We define f(z) = 7(1) € T. We have to check that the construction does
not depend on the choice of w. Let w’ be another path such that w'(0) = 2y, &'(1) = 2z, see

Fig. 7.6.

z w@ 20 f(z®07(zo)

FIGURE 24

Let v/ = f(w'). Then we have a loop 8 = (v')"'y, and [f] € [im(Z, 2)). Since
fe(m(Z, zo)) C ps (7r1 (T, Zy)), the loop  may be lifted to the loop £ in T'. In particular, it
follows that 7(1) = 7'(1) because of uniqueness of the liftings ¥ and 7’ and 7.

Exercise 7.2. Prove that the map f we constructed 1s continuous.

Exercise 7.3. Let p : T — X be a covering, and f f’ Y — T be two maps so that
pof=pof = [ where Y is path-connected. Assume that f( ) = f( ) for some point
y € Y. Prove that f f’

Hint: Consider the set V = { yeY | fly)=Fy) } and prove that V' is open and closed
inY.

Exercise 7.2 completes the proof. Exercise 7.3 implies that the lifting f is unique. O
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7.6. Classification of coverings over given space. Consider a category of covering over
a space X. The objects of this category are covering spaces T —» X, and a morphism

of covering T7 25 X to Th, =2 X is amap ¢ : Ty — Tb so that the following diagram
comimutes:

T

15

(22)

Claim 7.3. Let p, ¢’ : Ty — Ty be two morphisms, and p(t) = ¢'(t) for some t € Ty. Then
o=
Exercise 7.4. Use Fxercise 7.3 to prove Claim 7.35.

Claim 7.4. Let T 2% X, Ty 2 X be two coverings, xy € X, f(()l) € pi(xg), f(()z) €

po(xo). There exists a morphism ¢ : Ty — Ty such that <p(§gl)) = f(()z) if and only if
(p)o(ma(T1,75) © (p1)a(mi (T2, 7))

Exercise 7.5. Prove Claim 7.4.

A morphism ¢ : T — T is automorphism if there exists a morphism ¢ : T" — T so that
Yoy =1Id and po1 = Id. Now consider the group Aut(T -~ X) of automorphisms of a
given covering p : T' — X . The group operation is a composition and the identity element
is the identity map Id: T — T. An element ¢ € Aut(T" = X) acts on the space 7.

Claim 7.5. The group Aut(T - X) acts on the space T without fized points.
Exercise 7.6. Prove Claim 7.5.
Hint: A point ¢ € T is a fixed point if p(t) =t.

Claim 7.6. Let T 2 X be a covering, ©y € X, To, Ty € p~*(xo). Then there exists
an automorphism ¢ € Aut(T - X) such that ©(To) = Ty if and only if p.(m (T, To)) =
p(m (T’ 7)) -

Exercise 7.7. Prove Claim 7.6.

Theorem 7.5. Two coverings Ty += X and Ty 2> X are isomorphic if and only if for any
two points Ty € py’ (o), T € py ' (x0) the subgroups (p1).(mi(T1, 7y")) (pr).(m (T2, "))

belong to the same conjugation class.

Exercise 7.8. Prove Theorem 7.5.

Let H C G be a subgroup. Recall that a normalizer N(H) of H is a maximal subgroup of G
such that H is a normal subgroup of that group. The subgroup N(H) of the group G may
be described as follows:

N(H)={geG|gHg ' =H}.
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Recall also that the group (X, zo) acts on the set I' = p~!(x¢), and I" may be considered
as a right m (X, xg) -set; the subgroup p.(m (T, Zo)) is the “isotropy group” of the point z, €
p~H(xo). Again, we have seen that coset m1 (X, xq)/p.(m1 (T, Zy)) is isomorphic to p~1(z).

Corollary 7.6. The group of automorphisms Aut(T > X) is isomorphic to the group
N(H)/H, where H = p,(m1(T,T0)) C m (X, xo) for any points xo € X, Ty € p~*(0).

Exercise 7.9. Prove Corollary 7.6.
Now remind that a covering space p : T — X is a reqular covering space if the group
p«(m (T, Tp)) is a normal subgroup of the group (X, zo).

Exercise 7.10. Prove that a covering space p :' T — X 1is reqular if and only if there is no
loop in X which is covered by a loop and a path (starting and ending in different points) in
the same time.

Exercise 7.11. Prove that if a covering space p:'T — X s reqular then there exists a free
action of the group G = m (X, xg)/m1(T,Zo) on the space T such that X = T/G.

Exercise 7.12. Prove that a two-folded covering space p: T — X is always a reqular one.

We complete this section with the classification theorem:

Theorem 7.7. Let X be a “good” path-connected space (in particular, CW -complexes are
“good” spaces), xo € X . Then for any subgroup G C m (X, xo) there exist a covering space
p: T — X and a point o € T, such that p.(m(T,Z0)) = G.

The idea of the proof: We consider the following equivalence relation on the space of paths
E(X,w0): two paths s ~ s; if s(1) = s1(1) and a homotopy class of the loop ss;* belongs to
G. We define T'= E(X, zg)/ ~. The projection p: T — X maps a path s to a point s(1).
The details are left to you. O

Exercise 7.13. Prove that in the above construction p.(m (T, To)) = G.

In particular, Theorem 7.7 claims the existence of the universal covering space T2 x (i.e.
such that m (T, 7o) = 0).

Exercise 7.14. Let T -5 X be a universal covering over X, and T — X be a covering.
Prove that there exists a morphism ¢ : T — T so that it is a covering over T .

7.7. Homotopy groups and covering spaces. First, we have the following result:

Theorem 7.8. Let p: T — X be a covering space and n > 2. Then the homomorphism
Py (T, 7o) — mo(X, 20) 1S an isomorphism.

Exercise 7.15. Prove Theorem 7.8.
Theorem 7.8 allows us to compute homotopy groups of several important spaces. Actually

there are only few spaces where all homotopy groups are known. Believe me or not, here we
have at least half of those examples.
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Z if n=1,

Theorem 7.9. m,(5') = { 0 if n>2

One may prove Theorem 7.9 by applying Theorem 7.8 to the covering space R — S1; of
course, one should be able to prove m,(R) =0 for all n > 0.

Corollary 7.10. Let X =\/S'. Then 7,(X) =0 for n > 2.

Exercise 7.16. Prove Theorem 7.9 and Corollary 7.10.

Hint: Construct a universal covering space over \/ S'; see the pictures given in [Hatcher,
p.59].

The next example is T?: here we have a universal covering R?> — T2, so it follows from
Theorem 7.7 that m,(T?) =0 for n > 2.

Exercise 7.17. Let KI? be the Klein bottle. Construct two-folded covering space KI> —s T?.
Compute m,(KI*) for all n.

Theorem 7.11. Let M? be a two-dimensional manifold without boundary, M? # S* RP?.
Then m,(M?) =0 for n > 2.

Exercise 7.18. Prove Theorem 7.11.

Hint: One way is to construct a universal covering space over M?; this universal covering
space turns our to be R%. The second way may be as follows: Let M? be a sphere with two
handles, and X — M? be the covering space pictured below:

5 LS

FIGURE 25

Theorem 7.8 shows that 7,(X) = m,(M?). Now let f : S" — X, you may observe that
f(S™) lies in the compact part of X; after cutting down the rest of X it becomes two-
dimensional manifold with boundary and homotopy equivalent to its one-skeleton (Prove it!).
Now it remains to make an argument in a general case.

7.8. Lens spaces. We conclude with important examples. Let S' = {z € C | |z] = 1}. The
group S! acts freely on the sphere S**~1 C C" by (z1,...,2,) — (€%21,...,€%2,). The
group Z/m may be thought as a subgroup of S*:

Z/m:{ezi”m/k | k=0,....m—1}cC5S"

Thus Z/m acts freely on the sphere S*"~1. The space L*"~1(Z/m) = S**~1/(Z/m) is called a
lens space. Thus S?"~! is a universal covering space over the lens space L*"~'(Z/m). Clearly
m (L YZ/m)) =2 Z/m, and 7;(L*""Y(Z/m)) = 7;(5?"!) for j > 2. The case m = 2 is
well-known to us: L*"~}(Z/2) = RP?"~1.
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Exercise 7.19. Describe a cell decomposition of the lens space L*"~*(Z/m).

Consider the sphere S3 C C2. Let p be a prime number, and ¢ # 0 mod p. We define
the lens spaces L3(p,q) as follows. We consider the action of Z/p on S* C C? given by the
formula: T : (21, 22) = (e¥™/P2, 2™4/P2)) . Let L3(p,q) = S°/T.

Exercise 7.20. Prove that 71 (L3(p,q)) = Z/p.

Certainly the lens spaces L3(p,q) are 3-dimensional manifolds, and for given p they all have
the same fundamental group and the same higher homotopy groups 7;(L*(p,q)) for j > 2
since S® is a universal covering space for all of them. Clearly one may suspect that some of
these spaces are homeomorphic or at least homotopy equivalent. The following theorem gives
classification of the lens spaces L3(p,q) up to homotopy equivalence. The result is rather
surprising.

Theorem 7.12. The lens spaces L3(p,q) and L*(p,q") are homotopy equivalent if and only
if ¢ = +kq mod p for some integer k.

We are not ready to prove Theorem 7.12. For instance the lenses L3(5,1) and L3(5,2) are
not homotopy equivalent, and L3(7,1) and L3(7,2) are homotopy equivalent. However it is
known that the lenses L3(7,1) and L3(7,2) are not homeomorphic, and the classification of
the lenses L3(p, q) is completely resolved.
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8. HIGHER HOMOTOPY GROUPS

8.1. More about homotopy groups. Let X be a space with a base point xo € X. We
have defined the homotopy groups m,(X, z) for all n > 1 and even noticed that the groups
(X, x9) are commutative for n > 2 (see the begining of Section 6). Now it is a good time
to give more details. First we have defined m,(X, x¢) = [(S™, s0), (X, x¢)], where sy € S™ is
a based point. Alternatively an element « € 7,(X, zg) could be represented by a map

f: (D", 5" ) — (X,x9) or amap

f(Im0I") — (X, x).

We already defined the group operation in 7,(X, zg), where the unit element is represented
my constant map S” — {xy} C X. It is convenient to construct a canonical inverse —a for
any element « € m,(X,zg). Let f € o be a map

f:(D™, 5" — (X, )
representing «v. We construct the map (—f) : (D", S"1) — (X, 1¢) as follows. Consider

the sphere S™ = DY Ugn-1 D", where the hemisphere D7 is identified with the above disk
D™, as a domain of the map f, see Fig. 26.

FIGURE 26

Let 7 : 8" — S™ be a map which is identical on D% and which maps D" to D} by the
formula (z1,...,2,41) — (21,...,—Zpy1). Then —f = for: D" — X.

Exercise 8.1. Prove that the map f+(—f) : S™ — X is null-homotopic. Hint: It is enough
to show that the map f + (—f):S® — X exends to a map ¢g: D" — X.

Exercise 8.2. Prove that m,(X x Y, 29 X yo) = m.(X, 79) X 7,(Y,90). Compute 7,(T*) for
all n and k.

8.2. Dependence on the base point. Let X be a path-connected space, and zg,z; € X
be two different points. Choose a path v : I — X so that v(0) = zp and (1) = z;. We
define a homomorphism
Yot (X, o) — (X, 21)

as follows. Consider the sphere S™ with a base point sq € S™ and the map w: 5™ — S"V I
(Fig 8.2 below shows how to construct the map w). Indeed, the map w takes the base point
sp € S™ to the point {1} € I C S™V I. Then for any map f : (5", s9) — (X, z) we define
v4(f) to be the composition

vu(f) s Sm <5 smv T L x
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where ¥(t) =v(1 —t).

FIGURE 27

It is easy to check that vx(f + g) ~ vx(f) + 7x(g) and that (y71)x = ()"
Exercise 8.3. Prove that vy is an isomorphism.

A path-connected space X is called n-simple if the isomorphism
/7# . ﬂ-k(X7 IO) — ﬂ-k(X7 .];'1)
does not depend on the choice of a path v conecting any two points for k£ < n.

Consider the case when zy = x;. We have that any element o € m(X,z9) = 7 acts on the
group 7, (X, zg) for each n = 1,2, ... by isomorphisms, i.e. any element o € m determines an
isomorphism oy : m,(X,z9) — 7, (X, x0). We consider the case n > 2. This action turns
the group m,(X,zo) into Z[r]-module as follows. Let o = SV k;o; € Z[n], where o; € 7,
and k; € Z. Then the module map

Zir| @ (X, z9) — mn(X, o)

is defined by o(a) = ZZN kioi(a) € m,(X,x0). The above definition may be rephrased as
follows. A path-connected space X is n-simple if the Z[r|-modules 7, (X, x¢) are trivial for
k <n (i.e. each element o € 7 acts on m,(X, xy) identically).

8.3. Relative homotopy groups. Let (X, A) be a pair of spaces and zp € A be a
base point. A relative homotopy group m,(X, A;xzq) is a set of homotopy classes of maps

(D™, S™1; s0) 7, (X, A;xg), ie. f(S™Y) C A, f(sg) = xg, where a base point sy € S"71,
see Figure below.

The other convenient geometric representation is to
map cubes: f: (I[",0I") — (X, A), so that the base
point sg € OI™ maps to xy. We shall use both geo-
metric interpretations. Let «, € m,(X, A;x9) be
represented by maps f,g : (D", S"1) — (X, A)
respecively. To define the sum o + 3 we construct
a map f + g as follows. First we define a map
c: D" — D™V D" collapsing the equator disk to
the base point, and the we compose ¢ with the map

fVyg.
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Let «,3 € m,(X,A;z¢) be represented by maps f,g : (D", S"!) — (X, A) respecively.
To define the sum « + 3 we construct a map f 4+ ¢g as follows. First we define a map
c: D" — D"V D" collapsing the equator disk to the base point, and the we compose ¢ with
the map fVg. Thus f+g=(fVg)oc,and a+ [ = [f+g], see Fig. 28.

‘ : -

D"\ D"
FIGURE 28

Again it is convenient to describe precisely the inverse element —a. Let
(D™, S"h — (X, A)

represent o € m,(X, A;x9). We define a map —f as follows. We consider the disk D" =
D™ Upn1 D C R™ C R™*!, see Fig. 29.

Tn41 Tntl Tn41
= D" Upn—1 D?
FI1GURE 29

The disks D" and D" are defined by the unequalities £z, > 0. We consider a map ¢ :
D" Upn— DY — D™ flipping over the disk D onto D", see Fig. 29. We may assume that
the map f: (D" S" ') — (X, A) is defined on the disk D™ so that f|p»-1 sends D"! to
the base point z5. Now we difine

%0|Di f
—f:Di — D" = X.

Exercise 8.4. Prove that f + (—f) ~ *, where —f as above.

Exercise 8.5. Prove that the group m,(X, A;xo) is commutative for n > 3.

Note that if we have a map of pairs (X, A) 2, (Y, B), such that f(z¢) = yo, then there is a
homomorphism
formn (X, A; $0) — (Y, B; o).

Exercise 8.6. Prove that if f,g: (X, A) (Y, B) are homotopic maps, than f. = g..
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Remark: Note the homotopy groups 7, (X, xy) may be interpreted as “relative homotopy
groups”: 7w, (X, xo) = m(X,{xo};x0). Moreover, one may construct a space Y such that
(X, A;20) = m1(Y, y0). We will see this construction later.

The maps of pairs ’
(A,ZL’Q) — (X> 1’0), (X, xO) e (Xa A)
give the homomorphisms:

Tu(A, 1) 5 ma(X,20), (X, 20) L5 ma(X, A; 20).

Exercise 8.7. Let m be a group. Give definition of the center of m. Prove that the image

of the homomorphism j, = m(X,x0) <= mo(X, A;xg) belongs to the center of the group
7T2(X,A;ZL’0).

Also we have a “connective homomorphism”:
0 mo (X, A;29) — m_1(A, x0)

which maps the relative spheroid f : (D", S"!) — (X, A), f(sg) = x¢ to the spheroid
flgn-1:(S"71 80) — (A, x0).

Theorem 8.1. The following sequence of groups is exact:

(23) o (A 10) 5 (X m) L (X, Ay o) D 1 (A, ag) — -

First we remind that the sequence of groups and homomorphisms
.HAI&,%&A?)&)...

is exact if Ker o1 = Im ;.

Exercise 8.8. Prove that the sequence (23) is exact

(a) in the term m,(A, xo),

(b) in the term m, (X, xo),

(c) in the term m, (X, A; x).

In the following exercises all groups are assumed to be abelian.
Exercise 8.9. Prove the following statements

(a) The sequence 0 — A — B is exact if and only if A — B is a monomorphism; and
the sequence A — B — 0 is exact if and only if A — B is an epimorphism.

(b) The sequence 0 — A — B — C — 0 is exact if and only if C = B/A.

Corollary 8.2. 1. Let A C X be a contractible subspace. Then m,(X,xo) = m,(X, A; )
form >1.

2. Let X be contractible, and A C X. Then m,(X, A;x0) = m-1(A, x) for n > 1.
3. Let A C X be a deformational retract of X. Then m,(X, A;z9) = 0.
Exercise 8.10. Prove Corollary 8.2.
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Exercise 8.11. Let A C X be a retract. Prove that

o i, m(A z9) — m (X, z0) is monomorphism,
o j.: (X, x0) — T (X, A;20) is epimorphism,
o 0:m,(X,A;x9) — m_1(A, o) is zero homomorphism.

Exercise 8.12. Let A be contractible in X . Prove that
o i, m(A z9) — m(X,x0) is zero homomorphism,

o j. (X, x0) — m (X, A;30) is monomorphism,
o 0:7m, (X, A;x0) — ma_1(A, x0) is epimorphism.

Exercise 8.13. Let f, : X — X be a homotopy such that fo = Idx, and f1(X) C A. Prove
that

o i, :mu(A x9) — m(X,x0) is epimorphism.,
o j.: (X, x0) — T (X, A;20) is zero homomorphism,
o 0:7, (X, A;x9) — mu1(A, xg) is monomorphism.

Lemma 8.3. (Five-Lemma) Let the following diagram be commutative:

Al A2 A3 A4 A5
(24) #1 P2 ©»3 Y4 ©s
Bl BQ Bg B4 BS

Furthermore, let the rows be exact and the homomorphisms 1, s, 4, 5 be isomorphisms.
Then 3 1s isomorphism.

Exercise 8.14. Prove Lemma 8.3.

Exercise 8.15. Let us exclude the homomorphism @3 from the diagram (24) and keep all
other conditions of Lemma 8.8 the same. Does it follow then that As = Bs? If not, give a
counter example.

Exercise 8.16. Let 0 — Ay — Ay — -+ — A, — 0 be an exact sequence of finitely
generated abelian groups, then Y . (—1)'rank A; = 0.

Exercise 8.17. Let 1 — G; — Gy — --- — G, — 1 be an exact sequence of finite
groups (not necessarily abelian), then > " (—=1)'|G;| = 0, where |G;| is the order of G;.
Corollary 8.4. Let f : (X,A) — (Y,B) be a map of pairs, f(xo) = yo, where g € A,
Yo € B. Then any two following statements imply the third one:

fo (X, x0) — (Y, 90) is an isomorphism for all n.
fo (A, xg) — mo(A, 10) is an isomorphism for all n.
fo (X, As2g) — m, (Y, B;yo) is an isomorphism for all n.

Exercise 8.18. Prove Corollary 8.4.
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9. FIBER BUNDLES

9.1. First steps toward fiber bundles. Covering spaces may be considered as a perfect
tool to study the fundamental group. Fiber bundles provide the same kind of tool to study
the higher homotopy groups, as we shall see soon.

Definition 9.1. A locally trivial fiber bundle is a four-tuple (E, B, F,p), where E, B, F' are
spaces, and p: E — B is a map with the following property:

e For each point x € B there exists a neighborhood U of x such that p~*(U) is home-
omorphic to U x F, moreover the homeomorphism oy : p~*(U) — U x F should
make the diagram

YU

p H(U) UxF

U

commute. Here pr: U x F — U 1s a projection on the first factor.

The spaces F, B, ' have their special names: FE is a total space, B is a base, and F' is a
fiber. The inverse image F, = p~!(z) is clearly homeomorphic to the fiber F' for each point
x € B. However, these homemorphisms depend on . As in the case of covering spaces, the
following commutative diagram

gives a morphism of fiber bundles (Ey, B, Fi,p1) to (Es, B, Fy,ps). Two fiber bundles
(E1, B, Fi,p1) and (Es, B, Fy,ps) are equivalent if there exist morphisms

[ (B, B, Fi,p1) — (Eo, B, Fa,pa), g:(Es, B, Fy,p) — (Ev, B, Fi,p1)

such that fog=Id and go f = Id. In particular, a fiber bundle p: £ — B is trivial if it
is equivalent to the bundle B x ' — B:

FE B x F
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Examples. 1. Trivial bundle B x F' — B.
2. Covering spaces.

3. A projection M — S! of the Mobius band on the
middle circle, see Fig. 9.1. The fiber is the interval I.

4. The Hopf bundle h: S?"*!1 — CP" with a circle S! as
a fiber.

5. Let G be a Lie group and H be its compact subgroup.
Then the space of cosets G/H is a base space of the bundle

Mébius band. G — G/H with a fiber H.

6. Let G be a Lie group. Assume that G acts freely on a smooth manifold M. We denote
by M/G the space of orbits, then the projection M — M/G is a fiber bundle with the fiber
G.

It is not so difficult to verify that the examples above are indeed locally trivial fiber bundles.
To give a sample of such verification, we consider the Example 4 in more detail:

Lemma 9.2. The Hopf map h : S*"*1 — CP" is a locally trivial fiber with a fiber S*.

Proof. We use the construction given in the proof of Lemma 2.1 (Section 2). Again, we take
a close look at the Hopf map h : S*"*' — CP": we take a point (21, -+, z,41) € S*]
(where |2+ -+ + |2,41/> = 1), then h maps the point (21, ,2,.1) to the line (2 : -+ :
Znt1) € CP™. Moreover h(z1,-- -, 2p41) = h(2],- -+, 2,,,) if and only if zé = ¢“?z;. Thus we
can identify CP™ with the following quotient space:

(25) CP" = S* "/~ where (21, -+, 2p11) ~ (€21, -+ ,€%2p11).
For each j =1,...,n+ 1, consider the following open subset in CP"

Up=1{(21,- 2001) € S [ 2; #0 and (21, -+, 2011) ~ (%21, €2,00) } .

O 2n

Since z; # 0, we may write z; = re’®, where 0 < r < 1. Then the map g : U; — D is
given by

—ix

i —ia —ia —ia
(217”' y Zj—1,T€ "y Zj41, 0 azn-i-l)'_) (6 21,7, € RZj-1,T,€ Zj41, € Zn-i—l)
is a homeomorphism. Indeed, we have:
2 2 2 2 2
A e e+ P = 1=,
df g 0 <1 int —io —i0 | —iQ —i Ccn
and for a given r, 0 < r < 1, a point (e™**zy, -+ ,e 21, "“2jq1, -, € "“2p41) €
belongs to the sphere S?"~! of radius v/1 — r2. Since 0 < r < 1, this gives parametrization
O 2n
of open disk D  of radius 1.

Now let £ € CP™. In order to prove that the Hopf map h : $?"*1 — CP" is a locally trivial
fiber bundle, we have to find a neighborhood U of ¢ such that h=*(U) is homemorphic to
the product U x S'. Notice that there exists j, 1 < j < n+ 1, such that ¢ € U;. Hence it
is enough to show that A~'(U;) is homeomorphic to U; x S*, and that a projection on the
first factor pr: U; x St — U; coincides with the Hopf map.
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Now we see that h~(U;) C S?"! is given as

RHU;) = {(z21, -, 2041) € ST | 25 = e’ # 0}

~ {((e7™zy, - ey, m e 20, e ), e ) = U x ST
Clearly the projection on the first factor coincides with the Hopf map. O
Exercise 9.1. Prove that the Hopf map S***3 — HP™ is locally trivial fiber bundle.

Exercise 9.2. Here we specify the example 5. Note that Sp(1) = S3, and S is a subgroup
of Sp(1). Prove that the fiber bundle Sp(1) — Sp(1)/S* is equivalent to the Hopf bundle
S3 — CP'B

Exercise 9.3. Here we specify the ewample 6. Let S*™*' be a unit sphere in C"!,
Sl = {1212 + ... + |zng1| = 1|} The group S* = {e*} acts on S by the formula
(21, 2Zng1) — (€%21,...,€%2,41). Prove that this action is free, and that a fiber bundle
Sl G2l /S s equivalent to the Hopf bundle S*"' — CP™.

Exercise 9.4. Let f : M — N be a smooth map, where M, N are smooth manifolds.
Assume that the map f is a submersion, i.e. f is onto and the differential  df, : TM, —
TM;y is an epimorphism for any x € M. Prove that (M, N, f~'(z), f) is a locally-trivial
fiber bundle.

Exercise 9.5. Prove that the fiber bundles from the examples 3—6 are nontrivial fiber bundles.

9.2. Constructions of new fiber bundles. There are two important ways to construct
new fiber bundles.

1. Restriction. Let E 25 B be a fiber bundle with a fiber F', and let B’ C B be a subset.

Let E' = p~Y(B’). The bundle £’ z, B’, where p’ = p|g is a restriction of the bundle
E 25 B on the subspace B' C B.

2. Induced fiber bundle. Let F - B be a fiber bundle with a fiber F, and X L. B e
a map. Let f*(F) C X X E be the following subspace:

JH(E)={(z,e) e X x E | f(z) =ple) }.
There are two natural maps: f*(FE) 2 FE (where f*(z,e) = e) and f*(F) X (where

p'(x,e) = x). It is easy to check that the map f*(F) 2 X isa locally—trivial bundle over
X with the same fiber F' and that the diagram

*(E) I E

X B

commutes. The bundle f*(E) P, X is called induced fiber bundle.

8 1t may be helpfull to remember that Sp(1) is the set of all unit quaternions o = a3 + i+ jasz +kay €
Sp(1), and S' = {ag +ias}.
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Lemma 9.3. Any locally—trivial fiber bundle over the cube 19 is trivial.

Proof. Let E 2 I7 be a locally—trivial fiber bundle. We prove the statement in two steps.

STEP 1. First we assume that the restriction of the bundle

S E 2 19 on each of the cubes
/V\//\/ [g:{(xl7>$q)€]q|xq§1/2}a
L
L | q
J/\ I ={(xy,...,0) €19 | 2, >1/2 }.
//\\_//\x is a trivial fiber bundle. Let p; : By — I{, po : By — I
be these restrictions. Since these bundles are trivial, we can

assume that By = I§ x F', By = I{ x F', so a point of E; has
coordinates (z,y), z € I{, y € F, and, analogously, a point of
E5 has coordinates (z,y'), x € I, y € F.

In particular, if z € I{NIJ, then the map f, : y — ¢’ is well-defined, and is a homeomorphism
of the fiber F'. We define a projection 7 : I{ — I{ N IJ by the formula: 7(z1,...,2,) =
(21,...,24-1,1/2). Define new map ¢ : By — I{ x I by the formula ¢(z,y) = (z, fr@)(v))-
It gives a homeomorphism FE; = I{ X F which coincide with the chosen trivialization over
I3, i.e. we obtain a homeomorphism F — 7 x F.

STEP 2. Now we prove the general case. Since the bundle p : £ — [? is a locally—trivial
bundle, we may cut the cube I? into finite number of small cubes I, i = 1,2,..., such
that a restriction of the bundle p : E — I? on each of these small cubes is trivial, and
each space Jj = Ule I is homeomorphic to a cube I{. Assume that we have constructed a
trivialization of the bundle over J, then Jy,1 = JyUI ,Z 41 homeomorphic to a cube. Choose
homeomorphisms J, = I{ and I and then Step 1 completes the proof. O

We will say that a covering homotopy property (CHP) holds for a map p : E — B, if for
any CW -complex Z and commutative diagram

and a homotopy G : Z x I — B, such that G|z.(0 = g there exists a homotopy G :
Z x 1 — E such that G|z« = ¢ and the diagram

E

Zx] —C

B

commutes.
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Theorem 9.4. (Theorem on Covering Homotopy) The covering homotopy property
holds for a locally-trivial fiber bundle E — B.

We will prove a stronger version of Theorem 9.4, namely we assume in addition the following.

o There is a subcomplex Z' C Z and a homotopy G' : Z' x I — E covering the
homotopy G|z«1-

Proof. CASE 1. Let the fiber bundle p : E — B be trivial, and Z be any CW -complex. We
identify £ = B x F', and maps to B x F' with the pairs of maps to B and F'. Then the map
g:Z — E =B xF is given by a pair g = (g,h), where g : Z — B is the above map, and
h:Z — F be some continuous map. The homotopy G :7Z xI— Fis given by the pair
G = (G',H'), where G’ = G|zx; : Z' x I — B is determined by the homotopy G and and
the homotopy H' : Z' x I — F is such that H'|z. (0 = h|z. Thus the Borsuk Theorem
gives us that there exists a homotopy H : Z x [ — F' extending the map h : Z — F and
the homotopy H' : Z/ x I — F. The covering homotopy G:ZxI — BxF=EFis
defined by G(z,t) = (G(z, 1), H(z,1)).

CASE 2. The fiber bundle p : E — B is arbitrary, Z = D", Z' = S"!. Let g: D" — B,
g:S5"! — B, f:D”—)E, 7:9"' S E and G:D"xI — B, G :5"'x] — E
be the corresponding maps and homotopies.

The map G : D" x I — B induces the bundle G*(E) — D" x I, which is trivial by Lemma
9.3. Recall that the total space

G*(E) ={((z,t),e) | G(z,t) =p(e)} C (D" x I) x E.

Let G* : G*(E) — E be a natural map (projection). We define a map h : D" — G*(E) by
h(z) = ((2,0),3(z)). This map is well-defined since G(z,0) = g(z) = po §(z) and h covers
the map h: D" — D" x [ given by = + (x,0). The homotopy H : D" x I — D™ x I (the
identity map!), and H' : S"!' x I — G*(E), where H'(z,t) = ((,t),G'(2,t)) satisfy the
conditions of the theorem. Indeed, we have the commutative diagrams:

G*(E) G*(E)

gl —~ pr ML pryg gn-ly] — Dx] = pryr

The map H from (26) exists be the Case 1. Thus the map G=G*oH:D"xI — E covers
the homotopy G : D™ x [ — B as required.

CASE 3. Now the fiber bundle E = B is arbitrary, and the CW -complex Z is finite. By
induction, we may assume that the difference Z \ Z’ is a single cell e". Let & : D" — Z
be a corresponding characteristic map, and ¢ = ®|g»-1 be an attaching map. Then the map

h=go®: D" — FE and the homotopies
H=Go(®dxId): D"xI — B,




70 BORIS BOTVINNIK

H =G o (®|gn1 xId): S" ' x I — E
satisfy the conditions of the theorem, so by Case 2 one completes the proof. O

Exercise 9.6. Prove the general case, i.e. when Z is an arbitrary CW -complex and E — B
15 any locally trivial bundle.

9.3. Serre fiber bundles. Serre fiber bundles generalize locally trivial fiber bundles. We
start with a definition and examples.

Definition 9.5. A map p : F — B is a Serre fiber bundle if the CHP holds for any
CW -complex.

Remark. We emphasize that we do not assume uniqueness of the covering homotopy. A
Serre fiber bundle in general is not locally trivial, see Fig. 9.3.

Examples. 1. Locally-trivial fiber bundles.

the space of paths starting at yy. The map p: E(Y,yo) — Y,
where p(s : I — Y) = s(1) € Y is Serre fiber bundle. Note
that p~"(yo) = Y, o).

i i L i L i L i Letf:X—>Ybeamap,f:Xég(Kyo)beacovermg
map, and F: X x I — Y be a homotopy of f (F|XX{0} = f).

Then a covering homotopy F : X x I — &(Y,y) may be
defined

by the formula (see Fig. 9.4):

- IEE)GIEN: if 7(1+1¢) <1,
(27) (F(z1)(r) = { Ev<(z,)3§1(+ t) Z)1) ifTEl +t; > 1

2. Let Y be an arbitrary path-connected space, £(Y, 1) be

Fig. 9.3.

Exercise 9.7. Check that the formula (27) indeed defines a covering homotopy as required.

3. (A generalization of the previous exam-
ple.) Let A C X, and (X,A) be a Bor-
suk pair (for example, a CW-pair). Let
E =CX,)Y), B =C(AY), and the map
p: E — B be defined as p(f : X — Y) =
(fla: A—Y).

Exercise 9.8. Prove that the map
p:C(X,Y) — C(AY)
defined above is indeed a Serre fiber bundle.

Fig. 9.4.

As far as the fibers of a Serre fiber bundle p : F — B are concerned, we cannot claim that
for any two points zg,z; € Bthe fibers p~!(xg), p~'(x;) are homeomorphic. However, we
will prove here that the fibers are weak homotopy equivalent.

Definition 9.6. Spaces X and Y are weak homotopy equivalent if there is a natural one-to-
one correspondence gy : [K, X| — [K,Y] for any CW -complex K. Naturality means that
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for any map f: K — K' the following diagram

K, X] e K,Y]
f f
K, X] o K", Y]

commutes. (Compare with Definitions 3.1, 3.2, 3.5.)

Exercise 9.9. Prove that finite CW -complezes X, Y are weak homotopy equivalent if and
only if they are homotopy equivalent.

Theorem 9.7. Let p: E — B be Serre fiber bundle, where B is a path-connected space.
Then the spaces Fy = p~t(xg) and Fy = p~Y(xy) are weak homotopy equivalent for any two
points xg,x1 € B.

Proof. Let s : I — B be a path connecting zy and z;. We have to define one-to-one
correspondence ¢ : [K, Fy] — [K, Fy] for any CW-complex K.

Let hg : K — Fy be a map. Denote g : Fy — FE the inclusion map. We have the map:

f K—>FOHE

which lifts the map f: K — {z¢} C B. Consider also the homotopy F' : K xI — B, where
F(z,t) = s(t) of the map f. By the CHP there exists a covering homotopy F:KxI — E of
the map f such that poF = F, in particular, F(K x {t}) C p~(s(t)), and F(K x {1}) C F}.

We define ¢g(hg: K — Fy) = (hy : K — F}), where hy = ﬁ|KX{1}. We should show that
the map ¢g is well-defined.

Let s' be a different path connecting zo and z;, and
f' K —E, F':KxI— B,h:K — F; be corre-
sponding maps and homotopies determined by s’. Assume
that s and s’ are homotopic, and let S : I x I — B be
a corresponding homotopy. Denote by T': [ x [ — B a
map defined by T'(t1,t2) = S(t2,t1), see Fig. 9.5. We are
going to use the relative version of the CHP for the pair
7' C Z where Z = K x I and Z' = K x {0, 1}.

Fig. 9.5.
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Consider the following commutative diagram:

(K x 1)

(28) (K x{0,1}) x I

//

(K x I) x {0}

(K < {0,1}) x {0}

Here the map ¢ : (K xI) x {0} — B sends everything to x¢, and g : K x I — E defined by
g(k,t1) = ho(k) (see above). The homotopy G : (K x I) x I — B is defined by the formula:
G(k,t1,t2) = T(t1,t2). The map G': (K x {0,1}) x I — E is defined by the homotopies F
and F':

é,|K><{0}><I =F, é,|K><{1}><I =F"

The relative version of the CHP implies that there exists G:KxI—E covering GG and
G’ as it is shown at in (28). The map (k,t) — G(k,t,1) maps K x I to Fy: this is the
homotopy connecting h; and h}, see Fig. 9.6. Thus a path s : I — B defines a map
or(s) : [K, Fy) — [K,Fy], Fo = p~'(s(0)), F1 = p~'(s(1)), which does depend only of the
homotopy class of s.
Clearly the map ¢g is natural with respect to K;
note also that if s is a constant path, then px = Idp,.

Moreover, if a composition of paths sg-s1 (i.e. s1(1) =
o s2(0)) gives a map @i (s2 - 51) = Pr(s2) 0 pr(s1). In
particular, the map g (s7!) is inverse to @g(s): it
) implies that ¢k (s) is one-to-one. O
N Now let f : X — Y be a map. We say that a
map f1 @ X; — Y] is homotopy equivalent to f,
Fig. 9.6. if there are homotopy equivalences ¢ : X — Xj,

VY — Y

such that the following diagram commutes:

X Y

X, bit Y,

Theorem 9.8. For any continuous map f : X — Y there exists homotopy equivalent map
f1: Xy — Y1, such that f,: X1 — Y7 is Serre fiber bundle.
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Remark. It will be clear from the construction below that the space Y; may be chosen to
be equal to Y. It is also important that the construction below is natural. It means that the
commutative diagram on the left implies a commutativity of the diagram on the right:

f
X Y

o b

X ! % X, o il Y, 5
a 3

X/ fl Y/ aq X/ f/ QL Y/

S0/ w/

fl
X! ! Y]

Proof of Theorem 9.8. Let Y7 =Y, and
Xi=A(z,s) e X x&E(Y) | s(0) = f(x) }.

Then p: X; — Y is defined by p(x,s) = s(1). Clearly X and X; are homotopy equivalent.
O

The following statement is “dual” to Theorem 9.8:

Claim 9.1. Let f: X — Y be a continuous map. Then there exists a homotopy equivalent
map g: X — Y’ so that g is an inclusion.

Proof. Let Y’ = (X x I) Uy Y be the cylinder of the map f. Clearly Y’ ~ Y, and
g: X — Y’ is an embedding of X into the top base of X x I. O

9.4. Homotopy exact sequence of a fiber bundle. First we prove the following important
fact:

Lemma 9.9. Let p : E — B be Serre fiber bundle, y € E be any point, x = p(y),
F =pYx). The homomorphism

s (B, Fiy) — mn(B, 1)

1s an isomorphism for all n > 1.
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Proof. p. IS A MONOMORPHISM. Let o € wn(E~, F;y)
be represented by a map f: D" — E (where f|gn-1 :
Sl — Fand f(sg) =y). Then the map

f=pof:D" — B

has the property that f(S"™!) = z and [f] = p.(a) €
(B, ). Assume a € Ker p,, then there exists a homo-
topy fi : D" — B, sothat fo = f and f1(D") = z. The
covering homotopy property (the strong version) implies
that there exists a homotopy ft : D" — FE covering the
homotopy f;. In particular f1(D") C F = p~!(z) since
po fi(D") = fi(D") = =.

P« IS AN EPIMORPHISM. Consider the homotopy ¢; :
Sn=l — 8™ sothat ¢ : S"Ex T — S™ (ST =
S™ as it is shown at Fig. 9.7 (a). Let f:S™ — B be a
map representing (3 € m,(B,z). Consider the homotopy
g = fop,: S"' — B. Then we lift the homotopy ¢,
up to a homotopy g, : S" ! — E by applying the CHP.
The homotopy ¢; may be considered as a map h : D" —
E, where the disk D" is covered by (n — 1)-spheres as
(b) Fig. 9.7. it is shown, see Fig. 9.7 (b), and the map h on these
spheres is given by g;. Clearly the map h: D" — FE

] w36

gives a representative of an element o € m,(E, F'), so that p.(a) = f3. O

Now the exact sequence of the pair (E, F;y):

- m(Ey) T m(Eyy) T mu(EL Fry) < mea(Fy) —
gives the exact sequence:
(29) o m(Fy) 5 m(B,y) 2 m(Bya) 5 me(Fy) — -
We call the sequence (29) a homotopy exact sequence of Serre fibration.

Exercise 9.10. Apply the sequence (29) for the Hopf fibration S* — S*. Prove that (a)
m2(S?) = m (SY) = Z; (b) 7, (S?) = 7, (S5?).

Exercise 9.11. Let S — CP> be the Hopf fibration. Using the fact S ~ %, prove that
Tn(CP>®) =0 for n # 2, and my(CP>) =Z.

Exercise 9.12. Prove that 7,(QUX)) = m,41(X) for any X and n > 0.

Exercise 9.13. Prove that if the groups m.(B), m.(F) are finite (finitely generated), then
the groups m.(E) are finite (finitely generated) as well.

Exercise 9.14. Assume that a fiber bundle p : E — B has a section, i.e. amap s: B — F,
such that p o s = Idg. Prove the isomorphism m,(F) = m,(B) ® m,(F).



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY” 75

9.5. More on the groups m,(X,A;zp). Now we construct such a space Y that
(X, A;20) = m,_1(Y, yo). First, we construct Serre fiber bundle A, %, X which is homo-
topy equivalent to the inclusion A 2 X. Let Y = p~Y(xp) be a fiber of this fiber bundle.
By construction above, Y is a space of loops in X which starting in A and ending at the
point zg:

V' ={(a,7) [ v(0) =a, 7(1) =m0 }.
We construct a homomorphism « : m,_1(Y,yo) — m,(X, A; o) as follows.

A map S"' L Y gives amap G : D" = C(S"') — X by the formula: G(s,t) = g(s)(t),
s€ S"1 tel. Here g(s) =7(t). Clearly it is well-defined since (1) = xq for all paths v
such that (v(0),7) € Y. The map a may be included to the commutative diagram:

(pl)*

. 7Tn(A1) — Wn(X) — 7Tn_1(Y) Ing 7Tn_1(A1) g 7Tn_1(X) —_—

“(©)

e m(A) e (X)) — Tu(X,A) ~ T (A) — Ty (X) —— -

where rows are exact. Five-Lemma implies that a : 7,1 (Y) — m,(X, A) is an isomorphism.
In particular, we conclude that m,(X, A) is abelian group for n > 3.

Exercise 9.15. Prove that the square (C) of the above diagram commutes.
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10. SUSPENSION THEOREM AND WHITEHEAD PRODUCT

10.1. The Freudenthal Theorem. Let X be a space with a base point xy. We construct
the homomorphism

(30) X mg(X) — mg (3X)

as follows. Let a € m,(X), and a map f:S? — X be a representative of av. The map
Nf:ust=81"" - ¥X

defined by the formula X f(y,t) = (f(y),t) € XX gives a representative for ¥(a) € m,41(2XX).

It is not hard to check that

1. f ~ g implies that X f ~ Xg;

2. Xf+Xg~%2(f+g9g).

The homomorphism ¥ is called the suspension homomorphism.

Theorem 10.1. (Freudenthal Theorem) The suspension homomorphism
S mg(S") — e (ST)

1s 1somorphism for ¢ < 2n — 1 and epimorphism for ¢q =2n — 1.

Remark. This is the “easy part” of the suspension Theorem. The “hard part” will be
discussed later, see Theorem 10.11. The general Freudenthal Theorem goes as follows:

Theorem 10.2. Let X be an (n—1)-connected CW -complex (it implies that m;(X) =0 for
i < mn). Then the suspension homomorphism X : m,(X) — m41(XX) is isomorphism for
q < 2n—1 and epimorphism for ¢ =2n — 1.

Proof that ¥ is surjective. Let f : S%"! — S"*! be an arbitrary map. We have to
prove that we can perform a homotopy of this map f to a map Xh, where h : §S¢9 — S".
We will assume that n > 0, and ¢ > n. In particular, the group m,41(S™™) is abelian, and
7 (S™1) = 0, so we can forget about particular choice of the base point.

Let a, b be the north and south poles of the sphere S™*!. We identify the sphere S9*! with
the space R?™! U oo, moreover, we choose this identification in such way that f~'(a), f~*(b)
do not contain the infinity.

First we should take care about the sets f~*(a) and f~1(b). We do not have any control over
the map f, the only property we can use is that f continuous. However clearly f~!(a) and
f~Y(b) are compact sets in R?™!. Recall that if K is a finite simplicial complex in RI*!,
then dim K is a maximal dimension of the simplices of K.

Lemma 10.3. There exists a map fi : ST — S"T homotopic to f (and, actually as close
to f as one may wish), such that f;7*(a), f{'(b) are finite simplicial complexes in RIT' of
dimension less or equal to ¢ —n.

Proof. Here we apply the same constuction as we used in “free point Lemma”.

Let us recall briefly the main steps:
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1. Find five small disks a € Dia) C ... C Déa) centered at a, and five small disks
be ng) C...C Déb) centered at b. We assume that the radius of the disk DZ-(j ) is z,
i=1,...,5,j=a,b. °

2. Find a huge simplex A in R7! containing f~1(D{) U f~1(DY).

. Find fine enough barycentric triangulation {A,} of the simplex A,

A=A,

such that for any simplex A, satisfies the following conditions:
o if f(A,)NDY £, then f(A,) C DY) (here i =1,2,3,4, j = a,b);
e the diameter of the image f(A,) is no more than r/5 for each a.
4. Consider the simplicial complex

K= U A,.

F(A)N(DSUDP)£0

W

5. Construct a map f': K — S™! which coincides with f on each vertex of K and
extended linearly to all simplices.

6. “Glue” the maps f’ and f to get a map f; which coincides with f’ on f~1(DS”UD)
and with f outside of f~1(D{" U D).

This gives us a map f; (which is homotopic to f) with the following property:

The inverse images f; 1(D%’l)) and f 1(Dg’)) are covered by finite number of ¢ + 1-simplices
A,, such that fi|a, is a linear map.

Assume for a moment that there is such a simplex A, C A that the simplex fi(A,) C S™H
has dimesion less than (n+ 1), and a € fi;(A,). Then we can change a little bit the map f;
(it is enough to change a value of f; at one vertex!) to get a map fy such that a ¢ f1(A,).

This observation allows us to assume that if a € fy(A,), then the simplex fy(A,) has
dimension (n+1). Since the restriction fy|a, is a linear map of maximal rank, than f,*(a) =
K consists of simplices of dimension at most (¢+1) — (n+ 1) = ¢ —n. This proves that the
inverse images K = f,'(a), L = f; *(b) are simplicial complexes of dimension at most n —gq.
O

Now we have to introduce a couple of defini-
titions.

A homotopy F': RP xI — RP? is an isotopy
if F; : R» — RP? is a homeomorphism for
eact t € I. A hyperplane II C RP? divides

R” \ II into two half-spaces: R” and R’.
Fig. 10.1.

We say that two simlicial complexes K, L C RP are not linked if there exist a hyperplane
IT ¢ R?, and an isotopy F; : R? — RP?, so that Iy = Id, and the sets F(K) and Fi(L)
are separated by the hyperplane II. Fig. 10.1 shows an example of two linked circles.

9 Once again, we identify a neighborhood of a (respectively of b) with an open subset of R"*! via, say,
the stereographic projection.
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Lemma 10.4. Let K,L C RP be two finite simplicial complezes of dimensions k, | respec-
tively. Let k+ 141 < p. Then the simplicial complexes K and L are not linked.

Proof. First let IT C R? be a hyperplane such that K NII =0, and LNII = (. If K and
L are in the different half-spaces, then we are done. Let K and L be in R%. We want to
produce an isotopy F; : R? — R?” such that Fy = Idrr and Fi(K) and Fi(L) are separated
by the hyperplane II. We need the following statement.

Claim 10.1. There exists a point o € R such that any line going through xy does not
intersect both K and L.

Proof of Claim 10.1. Let Wy,..., W, C R? be planes (of minimal dimensions) containing
the simplices Ay,...,A, of the simplicial complex K, and let Ui,...,U, C R” be the
corresponding planes containing the simplices of L. Notice that dim W; < k and dim U; <,
t=1,...,v,75=1,...,u. Let II;; be a minimal plane containing W; and U;. Notice that
the maximal dimension of II;; is k + 1+ 1. Indeed, let w € W;, u € U; be any points.
Then a basis of W;, a basis of U;, and the vector w — u generate II;;, see Fig. 10.2. Since
k+1+1 < p, there exists a point z, of R” , such that zo ¢ [JIL;. O

Now we continue the proof of Lemma 10.4. The
U; isotopy F; may be costructed as follows. Consider
\ the space of all lines going through the point zy €
RP. This is the projective space RPP~!. Choose

W; a continuous nonnegative function

¢ :RPP! - R
such that o(A\) =0 if A\NL # 0, and p(\) = vg >
0if ANK 0.

Now the isotopy F; : RP — RP moves a point x € R? along the line A (connecting x and
xo) toward zo with the velocity ¢(\), where ¢ is as above.

Fig. 10.2: The plane II;;.

Clearly at some moment the image of K will be inside of
W R” |, see Fig. 10.3. O
F(K) . We complete the proof that > is surjective. We

use Lemma 10.3 and Lemma 10.4 to construct a map f :
Satl — Sl homotopic to f such that the inverse im-
ages fy '(a) and f,*(b) are located in the “northern” and
respectively “southern” parts of the sphere St (we use
here the following obvious estimation: (¢q—n)+(¢—n)+1 =
2q—(2n—1) < 2q—q < g+1 provided g < 2n—1). Further-
more, there are two “ice caps”, disks A and B centered at
the poles a and b respectively, which do not touch the
equator of S"+!

and such that f;*(A) and f;*(B) do not touch the equator of S9! as well, see the picture
below:

Fig. 10.3: The isotopy F;.
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Fig. 10.4.

Now we make a homotopy S — S™*! which sretches A and B to the north and the south
hemispheres respectively, and squeezes the remainder onto the equator sphere S™ C S"*i.
By composing this map with f,, we obtain a map f; which sends the equator of S+ to the
equator of S"*! and the north and south poles of S9*! sends to the north and south poles
of S"*!1. Now we look at the spheres S and S"*! from the North:

SN

Fig. 10.5.

Here we see only the northern hemispheres. We have here all possible meridians of S and
their images under the map f3. The further homotopy which finally turns the map f; into
the suspension map may be constructed as follows:

Vi) @5 ) (0

Fig. 10.6.
This construction due to J. Alexander. O
Exercise 10.1. Describe the last homotopy in more detail.
Proof that ¥ is injective for ¢ < 2n — 1. Let fy = Yhy : S9! — S"*1 and f, = Bh, :
Satl — S+l and fy ~ fi. We should show that hg ~ hy.

We consider the homotopy F : S x I — S™™1. Again, we examine F~!(a) and F~1(b),
and by Lemma 10.3 (to be precise, its generalization) we conclude that F' is homotopic to Fj
such that F;'(a) = K and F;!(b) = L are finite simplicial complexes of dimension at most
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g+ 1—mn. The condition ¢ < 2n — 1 and Lemma 10.4 imply that the simplicial complexes K
and L may be separated. The rest of the arguments are very similar to those applied in the
above proof. O

Exercise 10.2. Prove the injectivity of X in detail.

10.2. First applications.
Theorem 10.5. (Hopf) m,(S™) = Z for each n > 1.

Exercise 10.3. Prove Theorem 10.5.

Exercise 10.4. Prove that 73(S?) = Z, and the Hopf map S® — S? is a representative of
the generator of 3(5?).

Corollary 10.6. The sphere S™ is not contractible.

10.3. A degree of a map S" — S™. A map f:S" — S™ gives a representative of some
element a € m,(S™) = Z. We choose the generator ¢, of m,(S™) as a homotopy class of the
identity map. Thus [f] = a = Ai,,. The integer A\ € Z is called a degree of the map f. The
notation is deg f.

Exercise 10.5. Prove the following properties of the degree:
(a) Two maps f,g:S™ — S™ are homotopic if and only if deg f = degg.

(b) Amap f: 5" — S, deg f = X induces the homomorphism f, : 7,(S™) — m,(S™)
which is a multiplication by .

(c) The suspension Xf : ¥.S™ — ¥.S™ has degree A if and only if the map f : S" — S"
has degree \.

10.4. Stable homotopy groups of spheres. Consider the following chain of the suspension
homomorphisms:

7Tk+151 i 7Tk+252 i i 7Tk+n5m i 7Tk+n+15n+1 i
By the Suspension Theorem the homomorphism ¥ : 7,1, S" — Tpyn1S™ Tt is isomorphism
provided that n > k + 2. The group m4,5" with n > k + 2 is called the stable homotopy
group of sphere. The notation:

73 (S%) = mnS™ where n >k + 2.

So far we proved that my(S°) = 7,S™ = Z. The problem to compute the stable homotopy
groups of spheres is highly nontrivial. We shall return to this problem later.

10.5. Whitehead product. Consider the product S x S* as a CW -complex. Clearly we
can choose a cell decomposition of S™ x S* into four cells of dimensions 0,n,k,n + k. The
first three cells give us the wedge S™ Vv S¥ € S™ x S*. The last cell e"™* C S™ x S* has the
attaching map w : S"**=1 — S§7\/ S*. This attaching map is called the Whitehead map. It
is convenient to have a particular construction of the map w.
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We can think about the sphere S"™*~! as a boundary of the unit disk D"** ¢ R"**. Thus
a point x € S"**~! has coordinates (x1,...,Z,4;), where 23 + -+ 22, = 1. We define

U = {(&1,...,%psx) €S 2f 4o 422 < 1/2},

Vo= {(z1,...,&nqn) €S 22 422, < 1/2)

Exercise 10.6. Prove that U is homeomorphic to D" x S*~', V is homeomorphic to
S™~1 x DF . and that

S22 DM x SM T Ugnoryggnr 877 x DF

Remark. The same decomposition may be constructed by using the homeomorphisms:
Snth=l — 9(D"F) = 9(D™ x D*) = 9(D") x D* Ugn-1,gx-1 D™ x 9(D")

= 8"l x D Ugn-1y g1 D™ x SFL,
The map w : S"*F=1 — S v S* is defined as follows. First we construct the maps
oy :U — S"VS* and ¢p:V — S"v Sk
as the compositions:

o

v U — D" x Sk 2 pn ., pn/gn=1 =, gn __, gny Gk

py 1V = "1 x DE L DF . DE/SEL 2 gk gy G,
Clearly we have that

SOU‘.S‘"*1><S’V*1 =k = Qv |gn-1xgk-1
and hence the maps ¢y, ¢y define the map w : ST+t — §7 v G,

Remark. It is easy to see that the above map w : S"**~! — S§7\/ S* is the attaching map
for the cell e"** in the product S™ x S*.

Now let o € m, (X, x9) and € mp(X, zo) be represented by maps
f:5" — X, g¢:5%— X
We define a map h : S"**=1 — X as the composition:
By gkl 2y gny gk 1Y,k

A homotopy class of the map h defines an element [a, 8] € T, 4-1(X, o) which is called the
Whitehead product.

Lemma 10.7. The Whitehead product satisfies the following properties:

(1) Naturality: Let f: (X,z0) — (Y,90) be a map, o € m,(X,x0)) and B € m(X, x0).
Then
fellew, B) = [fu(a), £(B)],

where f, @ m (X, x0) — m(Y,y0) is the homomorphism induced by the map f.
]

(2) [a+ 8,9 =[]+ [8.7]-
(3) If a € my(X), B € mp(X) then [a, B] = (—=1)"%[B,q].
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4) If aem(X), pem(X), vem(X), then (the Jacobi identity)

(_l)nz[[aa /G]a 7] + (_1)nk[[ﬁ’ 7]7 Oz] + (_I)M[ha O‘]ﬁ /6] = 0.
(5) If a € m(X), B €m(X) then [o, ] = aBa™ 371,

Exercise 10.7. Prove the above property (3).
Exercise 10.8. Prove the above property (5).

To prove more about the Whitehead product we have to figure out several facts about the
Whitehead map w : S"™*~! — S"v Sk The map w defines an element w € m, 41 (S"V.S*).

Remark. Denote 1, € m,(S"), 1z € m(S*) the generators given by the identity maps
Id : 8" — S™, Id: S* — S* respectively. We denote also by ¢,, ¢ the image of the
elements ¢, ¢, in m,(S™V S¥), m,(S™ v S*) respectively. Comparing the definitions of the
Whitehead map w : S"tF~1 — 8" v S*¥ and of the Whitehead product gives the identity:

W= [tn, k] € Tpgr—1(S™V Sk.
Theorem 10.8. The element w € 7, ,_1(S™ V S*) has infinite order. In particular, the
group T, p—1(S™V S*) is infinite.

Proof. The map w is the attaching map of the cell ¢"** in the product S™ x S*. It gives
us the commutative diagram:

Sn-l—k—l Sn \/ Sk
P’ 7
Dntk 2 Smox Sk

Clearly the map ® : D"™* — 8" x S* determines an element ¢ € m, (5" x S* 5™ v S¥).
Consider the map

7 (8" x Sk S v SF) — (S™TF s))
which maps S™ VV S* to the base point sy € S"**. The composition j o ® : D"tk — gtk
is a representative of a generator of the group m,,,(S"™*) =2 Z. Thus we conclude that the
element ¢ € ,1(S™ x S*, 8™V S*) is nontrivial and has infinite order.

Next we consider the long exact sequence in homotopy for the pair (S x Sk, 8" v S¥):
T (S™V SF) 25 (8™ x SF) 25 7 (8™ % SE, S v SF) s e 1 (ST SF)

We claim that 4, is epimorphic since 7w, x(S™ x S*) = 7, x(S") ® m,x(S¥). Thus the
homomorphism j, is zero, and 0 is monomorphims. Since w = 9(¢) it follows that the group
Tnik—1(S™ V S*) is infinite and w has infinite order. O

Excercise 10.9. Give a proof that the above homomorphism
iyt Tngk(S™V S*) — Tk (S™ x S*)

is epimorphism.
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Lemma 10.9. The element w € T, 5_1(S™ V S*) is in a kernel of each of the following
homomorphisms:

(1) 4y Tk 1(S™V SF) — w1 (S™ x SF),
(2) pr£:) P Tpak—1(S™V Sk) — Tptr-1(S"),
(3) i) Tnih1(S"V S*) — m,01(S¥).

Proof. The exact sequence
n k n k 0 n k U n k
— Tpak(S™ X S*, 8"V SY) — ik 1(STV SY) = w1 (ST x SY) —
implies that w € Ker i, since w = 9(¢).

The commutative diagram

=

7Tn+k_1(Sn V Sk) 7Tn+k_1(5n X Sk)

pTE(n)
P

Tn+k—1 (Sn>

(where pr : S x S¥ — 8" is a map collapsing S* to the base point) implies that w €

Ker pr™ and similarly w € Ker pr™. O

Now consider the suspension homomorphism
¥ (S™V SF) — w1 (B(S™ v SF)).

Claim 10.2. The element w € Ty p_1(S™V Sk) is in the kernel of the suspension homomor-
phism

Y Tk (8™ V SF) — m ik (2(S™ v SF)).

Proof. Consider the commutative diagram:
() (k)

Tk 1 (S") ————— M1 (S"V S*) ——— muia(S")
(31) by by s
n+1 E(prin)) n k Z(prﬁk)) k41
7Tn+k(S ) 7Tn+k(2(5 VS )) 7Tn+k(S )

where pr denote the collapsing maps. By Claim 10.9 w € Ker pri"), w € Ker prik). Notice

that X(S™ Vv S*) ~ S v Sk+1 We need the following lemma.
Lemma 10.10. There is an isomorphism

7Tn+k(Sn+1 V; Sk—l—l) ~ 7Tn+k(5n+1) D 7Tn+k(Sk+1)
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Proof. Consider the long exact sequence for the pair (S"+! x Sk+1 gntly Gh+l).
Tareg1 (STHL x GhHL gl Ghitl) 2, T (S™HL Y GEHD) AR Tan(S™HL x k1)
(32)
AN 71.n_‘_k(‘sm-i-l % Sk—i—l’ gntlyy Sk—i—l) N
We notice that the (n+ k& + 1)-skeleton of the product S™™ x S¥¥1 is the wedge S"™' v SF+1,

Thus any map DF"+1 — §n+l x S8+ may be deformed to the subcomplex ™tV Sk+1
Thus m,4pe1 (ST x SFFL SnHLy §E+1) — (. The same argument gives that

71_n_‘_k(sn-l-l % Sk-i—l’ Sn-‘rl Vi Sk-i—l) —0.

Thus the long exact sequence (32) gives the isomorphism:

~

iy 7Tn+k(Sn+1 v Sk—i—l) i 7Tn+k(Sn+1 X Sk—i—l) ~ 7Tn+k(Sn+1) D 7Tn+k(Sk+1)- 0

To complete the proof of Claim 10.2 we notice that Lemma 10.10 and the diagram (31) imply
that w € Ker X. 0

Claim 10.3. Let a € m,(X), B € m(X). Then [a, f] € Ker ¥, where
Y ko 1(X) — mk(EX)

18 the suspension homomorphism.

Exercise 10.9. Prove Claim 10.3.

JE——

=
\_

S24 524\ S
Fig. 10.7.

Now we want to study a particular case. Consider the map p : S — 5% v S% which
collapses the equator sphere, see Fig. 10.7. It induces the homomorphism

fy s T (S%1) — 7, (5% Vv S*).
Let 1o, € m2,(5%1) be the generator represented by the identity map Id : S* — S27. Let
ng) € (527 S?7) be the image of the element iy, under the inclusion map " : 520 —

524/ 24 of the sphere S?¢ to the first sphere in S v S%¢. Let qu) be the corresponding

o,

element for the second sphere in S?7V 5?0, Clearly 11, (12g) = to, + Lo -

Claim 10.4. The Whitehead product [iay, tag] € Tag—1(S?1) is a nontrivial element of infinite
order.

Proof. The map p: S%7V S?7 — S27 induces the homomorphism
s * 7T4q_1(52q) — 7T4q_1(52q V S2q).
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By naturality we have that

1
11 ([t2g, taq)) = [t (t2g), (1)) = [15) + 1500 152 + 1521,

By additivity and commutativity (Claim 10.7 (2), (3)) we also have:
1 1 2
l(tags t20)) = [ty + i g + 5]
1 1 2 1 2
=[5 051+ 5 5] + e s ) + L1 185
1 1 2 2
g ] [y 05+ (=)0 5]+ 155 )

W W, @ @

= [L2q 7L2q] + [L2q 7L2q] + 2w2q

where wq, = [qu), Lg])] Notice that we used the fact that the sphere S* is even-dimensional.

Now assume that the element [igq,t2,] € m4e_1(5??) has finite order. Then the elements
[ngq), Lé{l)] € myy-1(5%), j = 1,2 also have finite order since L(] ) is the image of the generator
L2, under the homomorphlsm Tog(521) — o, (5% Vv S%). Then it follows that for some
integer A

0 = pa(A[tags tag]) = )\[L% , L2q] + )\[qu , LSJ] + 2wy, = 2A\wy,.

This contradicts to Claim 10.8. Thus the element [ia,, t2,] € T4,—1(5??) has infinite order. O
We specify Claims 10.3, 10.4 to get so called “hard part” of the Suspension Theorem.

Theorem 10.11. (1) The Whitehead product [, t2g] € Tag—1(S??) has infinite order.
(2) The Whitehead product [tag, Lag) € Taq—1(S5??) is in the kernel of the suspension homo-
morphism, i.e. 3([tag, tag]) = 0 in w4, (ST,

Remark. Actually, 7, 1(5%) = Z @ {finite group} and these groups are the only homotopy
groups of spheres (besides 7,(S™)) which are infinite. We shall return to the Whitehead
product to study the Hopf invariant.

Now we consider the product S™ x S*.

Corollary 10.12. The suspension L(S™ x S*) is homotopy equivalent to the wedge
Sn-‘rl vV Sk-l—l vV Sn—i—k—i—l‘

Exercise 10.10. Prove Corollary 10.12.
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11. HoMmoTOPY GROUPS OF C'W -COMPLEXES

11.1. Changing homotopy groups by attaching a cell. Let X be a CW -complex, and
f 8" — X be an attaching map for new cell. Let Y = X Uy D", We would like to
understand how do the homotopy groups 7, X and .Y relate to each other.

Theorem 11.1. Let X be a path-connected space (not necessarily a CW -complex) with a
base point xo € X, f: 8" — X be a map such that f(sg) = xo, where sy is a base point of
Sm. Let Y = XUy D" andi: X — Y be the inclusion. Then the induced homomorphism

(33) b 1 Ty (X, 20) — (Y, 0)

(1) is an isomorphism if ¢ <n,

(2) is an epimorphism if ¢ =n, and

(3) the kernel Ker i, : m,(X,x9) — (Y, o) is generated by v~ [f]y € mn(X, zo) where
v € m (X, zo).

Proof. First we prove a technical result. Let E™ be either D™ or S™. In both cases we
choose R™ to be a subspace of E™:

S™m=R"U {1’0},

pm—pmyugsml pm~Rm

Lemma 11.2. Let h: E™ — Y be a map, such that h|gm\g= sends E™ \R™ to X. Then
there exists a map hy : E™ — Y homotopic to h such that:

(a) h1|h*1(X) = h‘hfl(x) .
(b) If m <n then hy(E™) C X.
(c) If m=n+1 there exist disks dy,...,d, C E™ such that

(c1) m(E™\ | Jd) C X;

s=1

(c2) the restriction hylo :ds — D™ is a linear homeomorphism, s =1,...,r.

ds
Proof. The proof goes down the line of arguments which we used several times starting with
Free Point Lemma. We give here the outline only.

(1) Consider the disks (centered at the same point) D7 C Dy C Dy C DJ* C D € D™
of radii ip/5, i=1,...,5.

(2) The set h='(DF") C E™ is compact, furthermore, h=*(Dg*) C R™ C E™. Choose a
simplex A™ D h~!(D?") and a triangulation {A,} of A such that if h(A,)N D™ # ()
then h(A,) C D}, for i =1,2,3,4, and diam(h(A,)) < p/5.

(3) Let K = U A, . Then we construct a map h': K — D™ by extending linearly

h(Aa)NDP#D
h restricted on the vertices of K.

(4) We assume that the center yo of the disks D! is not in the image of any face of the

simplices A, . If it happens to be in such image, we choose a homotopy which moves
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a point 1y away from those images. Thus there is a small disk dfj’ centered at 1y, so
that the points of dy are not in the image of any face of the simplices A, as well.

(5) Now we use the same formula as before to construct a map h” : E™ — Y so that h”
coincides with i outside of K and h” coincides with A’ on h~' (D).

(6) We notice that for each simplex A, of the above triangulation the disk dj* is either
in the image of the interior of h"(A,) or dy* N K(A,) = 0. If the latter holds for
all simplices A,, then the map h is homotopic to a map h; : E™ — Y so that
hy(E™) C X since we can just blow off the map A" out of the free point yq.

(7) Notice that if dJ* NR"(A,) # 0, then (h")~1(dJ") is an ellipsoid since h” restricted on
the simplex A, is linear. Thus the inverse image of the disk dj* is a finite number of
ellipsoids d7*,...,d"" C R™.

(8) Now we stretch the disk df' up to the disk D™: it gives a a map A} (homotopic to
h") which sends each ellipsoid df* linearly to the disk D™.

Lemma 11.2 is proved. O

Conclusion of proof of Theorem 11.1. Lemma 11.2 implies that the homomorphism (33)
is epimorphism if ¢ < n. (Notice that the surjectivity of i, for ¢ = n follows directly from
the cell-aproximation arguments.)

Now let g : S* — X be a map representing an element of Ker i, , where
7;* . 7Tn(X, .]J'(]) — 77.”(}/’7 ZI}'(]),

i.e. g extends to a map h: D" — Y. We apply Lemma 11.2 to the map h to construct
amap hy : D" — Y such that hy|s» = g = h|gn, and that the map h; restricted to the
boundary of each disk d;‘“ coincides with the composition

o) = sm Lo x
where /; is a linear map. Now we can use the argument simillar to the one we used to prove

Theorem 6.5. We choose a path ~; connecting the base point s, with some point s; € 9(d;)
in the same way as we did in Theorem 6.5, see Fig 11.1.

Fig. 11.1.

The rest of the proof is left to a reader. O

Corollary 11.3. Let A C X be a CW -pair, such that X \ A does not contain cells of
dimension < n. Then the homomorphism i, : m,(A) — m,(X) is isomorphism if ¢ < n and
is epimorphism if ¢ = n. In particular m,(X™+)) = 1, (X), where XY is the (n 4 1)th
skeleton of X .
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11.2. Homotopy groups of a wedge.

Theorem 11.4. Let X be an n-connected CW -complex, and Y be a k-connected CW -
complex. Then

(1) m(X VYY) = m(X) @ m(Y) for q<n+k;
(2) for each ¢ > 1 the group m (X VY') contains a direct summand isomorphic to w,(X)®
T (Y).

Proof. By Theorem 5.11 the CW -complexes X and Y are homotopy equivalent to C'W -
complexes without cells in dimensions in between 0 and n + 1 (for X) and in between 0
and k+ 1 (for Y). Thus we may assume that X and Y are such complexes. Consider the
product X xY with the product cell-structure. The wedge X VY is a subcomplex of X xY.
Furthermore the difference X x Y\ X VY has cells of dimension at least n + k + 2. By
Corollary 11.3,
T (X VY)Zm(X xY)=Z7m,(X)®m,(Y).
To prove the second statement we notice that the composition

iX@iY &
T(X) @ 7y(Y) 225 m (X VY) — (X X Y) = my(X) @ 1y (Y),

(where i* : X — X VY, ¥ :Y — X VY are the caninical embeddings) is the identity
homomorphism. O

~Y

Corollary 11.5. There is an isomorphism m,(S™V ---V S") = Z & - - - & Z with generators
induced by the embeddings S™ — S™V ---V S™.

Exercise 11.1. Let X be an n-connected CW -complex, and Y be a k-connected C'W -
complex. Prove the isomorphism:

Tkt 1 (X VY) 2 mi1(X) © T 1 (V) © [mng1 (X)), T 1 (V)]
In particular it follows that 73(S?*V S*) X Z 9 Z D Z.

11.3. The first nontrivial homotopy group of a CW-complex. Let X be (n — 1)-
connected CW -complex. We know very well that the homotopy groups m,(X) = 0 if ¢ <
n — 1. Our goal is to describe the group m,(X). Again we can assume that X does not
contain cells of dimension in between 0 and n. Then the n-skeleton X™ is a wedge of
spheres: X = Snv...v S Let g; : S — SPV ...V S? be the embedding of the i-th
sphere, and let r; : S® — S7V---V.S™ be the attaching maps of the n+1 cells ef ™, ..., eZH.
The maps g; determine the generators of the group m,(X™), and let p; € 7,(X™) be the
elements determined by the maps r;. The following theorem is a straightforward corollary of
Theorem 11.1.

Theorem 11.6. The homotopy group m,(X) is isomorphic to the factor group of the homo-
topy group m,(X™) X Z @ ---®Z by the subgroup generated by p;, j=1,...,0.

Remark. Theorem 11.6 is analogous to Theorem 6.5 about the fundamental group. This
result gives an impression that we can calculate the first nontrivial homotopy group of any
C'W -complex without any problems. However, we do not offer here an efficient algorithm to
do this calculation. The difficulty shows up when we start with any C'W-complex X and
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construct new CW -complex X’ homotopy equivalent to X and without cells in dimensions
< n—1. The process we described in Theorem 5.11 is not really algoriphmic. Thus Theorem
11.6 should not be considered as a computational tool, but rather as a “theoretical device”
which allows to prove general facts about homotopy groups.

Exercise 11.2. Let (X, A) be a CW-pair with connected subcomplex A, and such that
X \ A contains cells of dimension > n, where n > 3. Let m = m;(A) acting on 7,(X, A) by
changing a base point. This action gives 7,(X, A) a structure of Z[r]-module. Prove that

the Z[r|-module m,(X, A) is generated by the n-cells of X \ A with relations corresponding
the (n + 1)-cells of X \ A.

Exercise 11.3. Let (X, A) be a CW -pair with simply connected subcomplex A, and such
that X \ A contains cells of dimension > n > 2. Prove that the natural map j: (X, A) —
(X/A, %) induces isomomorphism j, : m,(X, A) — m,(X/A).

11.4. Weak homotopy equivalence. Recall that spaces X and Y are weak homotopy
equivalent if there is a natural bijection ¢z : [Z,X] — [Z,Y] for any CW-complex Z
(natural with respect to maps Z — Z’. We have seen that the fibers of a Serre fiber bundle
are weak homotopy equivalent. The definition of weak homotopy equivalence does not offer
any hint how to construct the bijection ¢,. The best possible case is when the bijection ¢y
is induced by amap f: X — Y.

Amap f: X — Y is a weak homotopy equivalence if for any C'W -complex Z the induced
map f.:[Z,X]| — [Z,Y] is a bijection.

Remark. Clearly if f: X — Y is a weak homotopy equivalence, then X is weak homotopy
equivalent to Y. The opposite statement fails. Indeed, let X =Z C R, and Y = Q C R
with induced topology. It is easy to check that Z ~ Q, however there is no continiuos bijection
f:Q — Z. Thus there is no bijection [pt,Q] — [pt,Z] induced by any continuous map
f. However, if any two (reasonably good spaces, like Hausdorff) X, Y are weak homotopy
equivalent, then we will prove soon that there exist a C'W-complex W and weak homotopy
equivalences f: W — X, g: W — Y. Also we are about to prove that weak homotopy
equivalence coincides with homotopy equivalence on the category of C'W -complexes.

Theorem 11.7. Let f: X — Y be a continuous map. Then the following statements are
equivalent.

(1) The map f: X — Y is weak homotopy equivalence.

(2) The induced homomorphism f, : m,(X, o) — T, (Y, f(x0)) is isomorphism for all n
and xg € X .

(3) Let (W, A) be a CW -pair, and h : A — X, g : W — Y be such maps that the
following diagram commutes up to homotopy

X d Y

foh
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i.e. foh~ gla =iog. Then there exists a map h:W — X such that f~L|A = hoi=h
and foh ~ g in the diagram

X ! Y

A |44

Proof. The implication (1) = (2) is obvious.
(3) = (1). Let (W, A) = (Z,0). Then we have that for any map g: Z — Y there exists
amap h:Z — X so that the triangle

X d Y

(36) g

Z

commutes up to homotopy. It implies that the map f. : [Z, X] — [Z,Y] is epimorphism.
To prove that f, is injective, consider the pair (W, A) = (Z x I,Z x {0} U Z x {1}). Let
hy: Z — X, hy : Z — X be two maps so that the compositions hgo f : Z7 — Y,
hiof:Z — Y are homotopic. Let G : Z X I — Y be a homotopy between the maps
hoo fand hy o f. The statement (3) implies that there exists a homotopy H : Z x I — X
so that the diagram

X Y

(37) hoUhy a

Zx{0UZ x {1} : Zx1

commutes up to homotopy. In particular, it means that the maps hg,h; : Z7 — X were
homotopic in the first place.

(2) = (3). Let f: X — Y satisfy (2). We assume that W = A U, D" where
a: 8" — A is the attaching map. Let h: A — X, g: AU, D" — Y be such maps
that foh ~ g|la. Consider the diagram:

(38) h g
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The composition 70 a : S* — AU, D"*! is null-homotopic by construction, hence the map
goioa : S — Y is null-homotopic as well. Thus [goioa] = 0 in the group m,(Y).
Notice that the map fohoa:S"™ — Y gives the same homotopy class as the map goio«
since the diagram (38) is commutative up to homotopy by conditions of the statement (3). In
particular, we have that f.([hoa]) = [goioa] = 0. Hence [hoa] = 0 in the group m, (X)) since
fo : ma(X) — m,(Y) is isomorphism. It implies that there exists a map 3 : D" — X
extending the map hoa : S — X . We have the following diagram:

Dn+1 p X f Y

(39) h g

S A AU, D"

where the left square is commutative, and the right one is commutative up to homotopy. The
left square gives us a map h' : AU, D" — X so that foh/|4 = foh ~ g|a. We choose
a homotopy H : A x I — Y so that

Hl|axioy = 9la, Hlaxpy=fo W|a=foh.

Consider the cylinder D™ x I and its boundary S™*! = 9(D"*! x I). No we construct a
map v : S"" — Y as it is shown below, see Fig. 11.2.

B
Dn+1 % {1
n N
\
a x Id H
AxI]— Y
glpr+1
Dn+1 x {0
{0} Fig. 11.2.

If the map 7 : S"™' — Y is homotopic to zero, then we are done since we can extend 7 to
the interior of the cylinder D™*! x I, and it will give us a homotopy between f o h’ and g¢.
However, there is no any reason to assume that v ~ 0. To correct the construction we make
the following observation.

Lemma 11.8. Let £ € m,(Y,yo0) be any element, and [ : D! — Y, such that 3(so) = yo,
where xg € STt = 9(DY). Then there exists a map 3 : DI — Y such that

(a) B'|si-1 = Blsa-;
(b) the map SUF : ST — Y represents the element & € (Y, o).

Proof. Let ¢ : S — Y be any map representing the element & € 7, (Y, yo). We consider the
sphere S = D% Uga—1 D% Let p: S} — S be a map which takes the southern hemisphere
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DY to the base point sg € S?. Clearly the composition
S§ 2 81 5y

represents the same element ¢ € 7, (Y,y). Fig. 11.3 below is supposed to hint how to
construct new map ¢’ : ST — Y so that ¢’ = U [’ represents the element £ € 7, (Y, yo).
The details are left to you. O

S

Fig. 11.3.

Now we complete a proof of the implication (2) = (3). The above map 7 : S — YV
gives an element v € m,,1(Y). Then we consider the element —y € m,,1(Y) and use Lemma
11.8 to find a map (' : D" — Y, such that ('|sn = (|s» and the map ('U/[3 represents the
element —vy. We put together the maps we constructed to get new map ' : S"*! — Y which
homotopic to zero, see Fig. 11.4. Since 7' ~ 0 we are done in the case when W = AU, D"*1.
The general case follows then by induction: the n-th step is to do the above construction for
all (n + 1)-cells of the difference W \ A.

O

Dn+1 X {0}
Fig. 11.4. The map ' : S"t! — Y.

Corollary 11.9. (Whitehead Theorem) Let X, Y be CW -complezes. Then if a map f :
X — Y induces isomorphism

fot (X, 20) — (Y, f(0))
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forall m >0 and zo € X, then f is a homotopy equivalence.

Exercise 11.4. Prove Corollary 11.9.

Exercise 11.5. Prove that the homotopy groups of the spaces S x CP* and S? are
isomorphic, and that they are not homotopy equivalent.

Exercise 11.6. Let k # n. Prove that the homotopy groups of the spaces RP" x S* and
Sk x RP* are isomorphic, and that they are not homotopy equivalent.

11.5. Cellular approximation of topological spaces. Let X be an arbitrary Hausdorff
space. There is a natural question: is there a natural cellular approximation of the space X7
This is the answer:

Theorem 11.10. Let X be a Hausdorff topological space. There exists a CW -complex K and
a weak homotopy equivalence f : K — X . The CW -complex K is unique up to homotopy
equivalence.

Proof. We assume that X is a path-connected space. We construct a chain of C'W -complexes
KoCK1CK2C"'CKn_1CKnC"'
and maps f; : K; — X so that

(]‘) f]|KJ 1 f] 1- ] 1_>X
(2) (fj)«: my(K;) — my(X) is an isomorphism for all ¢ < j.

Let Ky = {x0}, and fy : Ky — X be a choice of a base point. Assume that we have
constructed the maps f; : K; — X for all j < n — 1 satisfying the above conditions. Let
m=m(X,z). We consider the group m,(X,zo) and choose generators g, of m,(X,zo) as a
Z[r]-module and representing maps g, : Si — X . Let

K=K,V (\/ Sg)

We define f! : K — X to be f,—; on K,_; and to be \/ga on \/S” The induction
hypothesis and Theorem 11.1 implies that f! induces 1somorphlsm

Wq(K;L) L) 71'q(X>

for ¢ < n —1. The homomorphism (f!). : m,(K]) — m,(X) is epimorphism since all
generators g, are in the image. However it may not monomorphic. We choose generators
hg of the kernel Ker (f)). C m,(K]) (which is also a Z[r|-module) and representatives
hg : Si — K,,. Now we attach the cells egﬂ using the maps hg as attaching maps. Let K,
be the resulting CW -complex. The map f/ : K/ — X may be extended to f, : K, — X
since each composition

sy g I x

is homotopic to zero. Thus f! : K/ — X may be extended to all cells egH we attached.
Theorem 11.1 implies that (f,). : m,(K,) — m,(X) is an isomorphism for ¢ < n — 1 and



94 BORIS BOTVINNIK

also that m,(K,) = m,(K])/Ker (f})s & m,(X). Thus (fn)s : m(K,) — m,(X) is an
isomorphism as well.

Exercise 11.7. Prove that the C'W-complex K we constructed is unique up to homotopy.
This concludes the proof of Theorem 11.10. O

Exercise 11.8. Let X, Y be two weak homotopy equivalent spaces. Prove that there exist
a CW-complex K and maps f: K — X, g: K — Y which both are weak homotopy
equivalences.

11.6. Eilenberg-McLane spaces. Let n be a positive integer and 7 be a group (abelian)
if n > 2. A space X is called an Filenberg-McLane space of the type K(mw,n) if
m ifg=n
mo(X) = { 0 else.
Theorem 11.11. Let n be a positive integer and 7 be a group (abelian) if n > 2. Then the

Filenberg-McLane space of the type K(m,n) exists and unique up to weak homotopy equiva-
lence.

Remark. If a space X is an Eilenberg-McLane space of the type K(m,n), we will say that
X is K(m,n).

Proof of Theorem 11.11. Let {g,} be generators of the group =, and {rg} be relations
(if n > 1 we mean relations in the abelian group). Let X, = \/SZ Then 7, (X,) = 0 if

g<n-—1and m,(X,) = @ Z (or free group with generators {g,} if n =1). Each relation

75 defines a unique element rg € m,(X,). We choose maps r3 : Sj — X, representing
the above relations and attach cells eg“ using rg as the attaching maps. Let X,;; be the
resulting space. Theorem 11.1 implies that m,(X,4+1) =0 if ¢ <n —1 and 7, (X,41) = 7.
Then we choose generators of m,41(X,+1) and attach (n + 2)-cells using maps representing
these generators as the attaching maps. Let X, .o be the resulting C'W-complex. Again
Theorem 11.1 implies that my(X,42) =0if ¢ <n—1or ¢=n+1 and 7,(X,,42) = 7. Now
we proceed by induction killing the homotopy group m,42(X,12) and so on.

Exercise 11.9. Prove that an Eilenberg-McLane space of the type K(m,n) is unique up
to weak homotopy equivalence, i.e. if K;, K, are two Eilenberg-McLane spaces of the type
K (m,n) then there exist weak homotopy equivalences f; : X — K; and fy : X — Ko,
where X is the space we just constructed.

This concludes the proof of Theorem 11.11 O

Remark. The above construction is not algorithmic at all: we have no idea what groups
Tntk(Xnik) We are going to get in this process.

Examples. (1) K(Z,1) = S'.
(2) K(Z/2,1) = RP>.
(3) K(Z,2) = CP>.
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(4) Let L*1(Z/m) be the lens space we defined at the end of Section 7, and let
L>*(Z/m) = lim L*YZ/m).
n——>00

Then L*(Z/m) = K(Z/m,1).
Exercise 11.10. Construct the space K (m, 1), where 7 is a finitely generated abelian group.

Exercise 11.11. Let X = K(m,n). Prove that QX = K(m,n —1).

11.7. Killing the homotopy groups. There are two constructions we discuss here. The
first one we used implicitly several times. Let X be a space, then for each n there is a space
X, and amap f,: X — X,, such that

oo (0 £

(2) (fu)s: m(X) — my(X,,) is isomorphism if ¢ < n.

We know how to construct X,: start with generators {g,} of the group m,41(X), then
attach the cells e”*? using the maps g, : S""' — X. Then the resulting space Y, has
the homotopy groups m,4+1(Y,41) =0 and 7,(Y,11) = m,(X) if ¢ <n. Then one kills in the
same way the homotopy group 7,12(Y,11) to construct the space Y, o with m,41(Y,42) =0,
Tnta(Yoi2) = 0, and 7y(Yi42) = m(X) if ¢ < n, and so on. The limiting space is X,, with
the above properties. The map f, : X — X, is the embedding.

Let X be (n— 1)-connected. Then X,, = K(m,(X),n). This construction may be organized
so that there is a commutative diagram

Intk41
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where m, = m,(X). The maps i, : X, — X,_; in the diagram (40) are homotopy equivalent
to Serre fiber bundles, so that the diagram (40) becomes commutative up to homotopy. Let

F, be the fiber of the Serre bundle X, SN Xg4—1. The exact sequence in homotopy

- mi(Fy) — mi(Xy) — mi(Xgm1) — ma(Fy) —

for the Serre bundle X, SN X,—1 immediately implies that F, = K(m,,q) = QK (m,, ¢+ 1).

Consider for a moment the Eileberg-McLane space K(m,q + 1). We have a canonical Serre
fiber bundle 7 : E(K(m,q+ 1)) — K(m,q+ 1). It is easy to identify the fiber QK (7, q + 1)
with the space K(m,q) (up to weak homotopy equivalence).

Here there is an important fact which we state without a proof:

Claim 11.1. Let p : E — B be a Serre fiber bundle with a fiber F' = K(m,q). Then there
exists a map k : B — K(mw,q+1), such that the following diagram commutes up to homotopy:

E E(K(m,q+1))
QK (m,q+1) | P QK(m,q+1) | 7
B k K(m,q+1)

where we identify QK (m,q+ 1) with K(m,q).

In particular, we obtain the following commutative diagram:

kq
X, E(K(my,q+1))
(41) QK (mq,q+1) | iq QK (mq,q+1) | P
kq
Xq—l K(?Tq,q+1)

Here the maps k, : X,-1 — K(m441,9 + 2) are known as the Postnikov invariants of the
space X . In fact, the maps k, : X,y — K(m;41,q + 2) are defined up to homotopy and
determine the elements in cohomology

k, € H™(X;m041), q>n.
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The diagram

lntk+1

kn+k+l

)(n+k

K(Trn+k,n+ k + 1)

In+k K(7rn+kvn+k)

int2 | K(mni2,n+2)

kn+2

fn+1
X )(n+1

K(Wn+2, n -+ 3)

In .
tn+41 K(ﬂ'nJrlyn‘l'l)

knt1

K(m,,n) K(mpy1,n+ 2)

is called the Postnikov tower of the space X . The Postnikov tower exists and unique up to
homotopy under some restrictions on X . For instance, it exists when X is a simply-connected
CW -complex. The existence of diagram (42) shows that the Eilenberg-McLane spaces are
the “elmentary building blocks” for any simply connected space X . The Postnikov tower also
shows that there are many spaces with the same homotopy groups, while these spaces are
not homotopy equivalent. Again, this construction does not provide an algorithm to compute
the homotopy groups, however it leads to some computational procedure called the Adams
spectral sequence. We are not ready even to discuss this, and we shall return to the above
constructions later on.

There is the second way to kill homotopy groups. Let X be (n — 1)-connected as above.
The map f, : X — X,, = K(m,,n) may be turned into Serre fiber bundle. Let X|, be its
fiber, and 7, : X|, — X be the inclusion map. The exact sequence in homotopy for the

fiber bundle X —, (mn,n) implies that the map j, : X|, — X induces isomorphism
(X |n) = m(X) if ¢ > n+ 1, and also that 7,(X|,) = 0 if ¢ < n. One can iterate this
construction to build the space X/, x and the map j,ix @ X|nix — X so that the induced
homomorphism 7,(X|,4+x) — 7,(X) is isomorphism if ¢ > n + k and 7, (X|,4%) = 0 if
g<n+k-—1.

Exercise 11.13. Let X = S%. Prove that X|3 = S3.

Exercise 11.14. Let X = CP". Prove that X|3 = X|o,;1 = S***1.
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12. HOMOLOGY GROUPS: BASIC CONSTRUCTIONS

The homotopy groups m,(X) are very important invariants. They are defined in the most
natural way, and capture an important information about topological spaces. However it is
very difficult to compute the homotopy groups, as we have seen. There are just few finite
CW -complexes for which all homotopy groups are known. Even for the sphere S™ the problem
to compute the homotopy groups is far from to be solved. Here we define different invariants:
homology groups H,(X) and cohomology groups H™(X). These groups are much easier to
compute: we will be able to compute the homology groups for all basic examples. However,
their definition requires more work.

12.1. Singular homology. We alredy defined the standard q-simplex:

q
qu{(to,...,tq)\tozo,...,tqzo, d ti=1 } c ROt
i=0

Remark. Note that the standard simplex AY has vertices A, = (1,0,...,0), A4} =
(0,1,0,...,0),..., A, = (0,0,...,0,1) in the space R?™. In particular it defines the ori-
entation of A?. The simplex A? has the i-th face (1 =0,...,q)

ATG) = {(tg,. .., ty) | ti=01}
which is a standard (¢ — 1)-simplex in the space
RY(i) = {(to,...,ty) | i =0} C R
with the induced orientation.

A singular q-simplex of the space X is a continuous map f : A — X . A singular q-chain is
a finite linear combination Y k; f;, where each f; : A9 — X is a singular ¢-simplex, k; € Z.
The group g¢-chains C,(X) is a free abelian group generated by all singular g-simplices of the
space X .

Now we define the “boundary homomorphism” 0, : Cy(X) — C,_1(X) as follows. Let
f: A% — X be a singular simplex, then we denote I';(f) = f|as-1(;) its restriction on the
i-th face A%71(i). We define:

Ouf = 3 (=1Ti(f).

Lemma 12.1. The composition

Con(X) 2% €y (X) 2 Cpa(X)

is trivial, i.e. Im Oy C Ker 0.

Proof. It follows from the definition and the identity:

) B = { B 2

Exercise 12.1. Check the identity (43) and complete the proof of Lemma 12.1.



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY” 99

Main Definition: The group H,(X) = Ker 9,/Im 0,41 is a g-th homology group of the
space X . (The group Hy(X) = Cy(z)/Im 0;, and H,(X) =0 for ¢ <0.)

The group Z,(X) = Ker 9, is called the group of cycles, and the group B,(X) = Im 0,41
the group of boundaries. Thus Hy(X) = Z,(X)/B,(X). If ¢1,c2 € Cy(X) are such elements
that ¢; — co = 0,+1(d), then we say that the chain c¢; is homologic to co. We call a class
[c] € Hy(X) a homological class of a cycle c.

The group H,(X) is an abelian group; if it is finitely-generated, then H(X)=Z & ... ®Z®
Zy, @ ...®7Zy, ; the rank of this group (i.e. the number of Z’s in this decomposition) is the
Betti number of the space X.

12.2. Chain complexes, chain maps and chain homotopy. A chain complex C is a
sequence of abelian groups and homomorphisms

D1 B P
(44) oo — Cpy —C, 5 Cp gy — ... — C — Cy — 0,

such that 0, 0 0,01 = 0 for all ¢ > 1. For a given chain complex C the group H,(C) =
Ker 0,/Im 0,41 is the ¢-th homology group of C. The chain complex

(45) ... — Cpn(X) 255 0y (X) 25 O (X) — .o — CU(X) 25 Cy(X) — 0,

will be denoted as C(X). Thus H,(X) = H,(C(X)).

Let C', C" be two chain complexes. A chain map ¢ : C' — C” is a collection of homomor-
phisms ¢, : C; — C7 such that the diagram

o’ 9! o’ 9
q+1 / q / q—1 / 1 /
c c_, - ! ot 0
(46) ®q Yg—1 »1 ©o
a// 8" 8"7 o
q+1 1/ q 1/ q—1 1 1 1
c cr, - c ! 0

commutes. It is clear that a chain map ¢ : ¢’ — C” induces the homomorphisms ¢, :
H,(C) — H,/C"). In particular, a map ¢ : X — Y induces the homomorphism gy :
Cy(X) — Cy(Y) (which maps a singular simplex f : A? — X to a singular simplex
gof : Al — Y). It defines a chain map gx : C(X) — C(Y) and homomorphisms
go s Hy(X) — Hy(Y).

Exercise 12.2. Prove the following statements:

l.Let g: X — Y, h:Y — Z be two maps. Then (hog)y = hgogy, and (hog), = h,og..
2. Let 1 : X — X be the identity map. Then i, = Id.

Let ¢,1 : C" — C” be two chain maps. We say the ¢, are chain homotopic if there are
homomorphisms D, : C; — C;_; such that for each ¢

Dy-1 00, + 0411 0 Dy = ¢4 — g,
(here D_; =0). In that case we will write down ¢ ~ 1.
Theorem 12.2. Let ¢, : C' — C" be two chain maps, and @ ~ 1. Then
po =t Hy(C) — H,(C"),
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Exercise 12.3. Prove Theorem 12.2.

Theorem 12.3. Let g,h: X — Y be homotopic maps, then g, = h, : Hy(X) — Hy(Y).
In other words, homotopic maps induce the same homomorphism in homology groups.

Proof. By definition we have a homotopy H : X x I — Y, such that H|xxq = g9,
H|xxpy = h. Then for any singular simplex f : A? — X we have a map H o (f x I) :
A?x ] — Y. The cylinder A% x I has a canonical simplicial structure: we subdivide A? x

into (¢ + 1)-simplices Zqﬂ(i), 1=0,...,q, as follows:
AN = {(tey. .ty T) EAIXT [ tg+ ..+t <T<to+...+t},
see Fig. 12.1. for ¢ =1,2:

Y 001)

(10) ©,1) w00 =

(0,1,0)

\

Fig. 12.1.

The map G = Ho (f x I) : A?x I — Y defines (¢ + 1) singular simplices of dimension
(g +1). We define

q
D(f) = Z(_l)iG|Zq“(i)'
It is easy to check that the homomorphisr;zs0
Dy : Cy(X) — Con(Y), Dy (Z kz.fz) = Z kiDy(f2)
define a chain homotopy D : C(X) — C(Y). O

Corollary 12.4. Let X and Y be homotopy equivalent spaces. Then H,(X) = H,(Y) for
all q.

Remark. There is a natural question: what happens if X and Y are weak homotopy
equivalent? We will find the answer on this question in the next section.

12.3. First computations. By definition, the groups C,(X) are really huge, and it is dif-
ficult to compute homology directly. We will learn how to do this in a while, however even
now we can prove several important facts.

Let * be a space consisting of a single point. Clearly there is a unique map f, : A? — *
for any ¢. We have that C,(x) = Z for all ¢ > 0. By definition, 9,(f,) = >.(=1)Ty(f,) =
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S (=1)"fy—1. It follows then that

| 0, forodd g,
Oalfo) = { 1, for even g.

The complex C(x) is the following:
AN AN ALY AR A}

The argument above proves the following statement.

Z, ifq=0

Claim 12.1. H,(x) :{ 0. else

A space X with the same homology groups as of the point is called an acyclic space.

Corollary 12.5. Let X be a contractible space, then it is acyclic.

Remark. The opposite statement does not hold. The simplest
example may be constructed out of the function sin %, see Fig.
12.2.

Exercise 12.4. Prove that Hy(X) = Z if X is a path-
connected space.

Exercise 12.5. Prove that Ho(X) X Z & ... ® Z, where the
number of Z’s is the same as the number of path-connected
Fig. 12.2. components of X .

Exercise 12.6. Prove that if f : X — Y is a map of path-connected spaces, then f, :
Hy(X) — Hy(Y) is an isomorphism.

12.4. Relative homology groups. Let A be a subspace of X. Then C,(A) C Cy(X), and
0,(Cy(A)) C Cy—1(A) by definition. Notice that each generator of the group C,(A) maps to
a generator of the group C,(X). The group C,(X, A) = C,(X)/C,(A) is a group of relative
q-chains of the space X modulo subspace A. Note that Cy(X,A) is a free abelian group.
Alternatively the group C,(X, A) may be defined as a free abelian group with generators

FrAT — X, f(AY)N(X\ A)£D.

The boundary operator 0, : Cy(X) — C,-1(X) induces the operator 9, : C (X, A) —
Cy—1(X, A), and we obtain the complex C(X, A):

(47) s (X, A) 2 O (X A) 2 2 O (X A) 2 Cy(X, A) — 0.

It is easy to check that we have a short exact sequence of complexes:
(48) 0 — C(A4) 2 c(x) 25 ¢(X, A) — 0.

It is very common situation in the homological algebra to work with a short exact sequence
of complexes. The nature of the complexes is not important for the following statement: the
complexes below may be over any abelian category.
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Lemma 12.6. (LES-Lemma) Let 0 — C’ 5 C — C" — 0 be a short ezact sequence of
complexes. Then there is a long exact sequence of homology groups

(49) = Hy(C) 5 H,(C) T Hy(C') 5 Hya(C)
where the homomorphisms i, and j. are induced by © and j respectively, and O is the boundary

homorphism to be defined.

Proof. First we define the boundary homomorphism 0 : H,(C") — H,_;(C’). We have the
following commutative diagram:

/ ig41 Ja+1 1
0 Cq+1 C'q+1 Cq—l—l 0
%+1 Og+1 9
Cl iq C Ja C/l
(50) 0 g q 0
a, 04 oy
C/ iq—1 C C//
0 - 1 0

Let a € Hy(C"), and " € Ker 9] such that o = [¢"]. Choose an element ¢ € Cy such that
Jq(¢) = ", then the element ¢ = 9,(c) € C,_1 is such that j,_1(c) = 0 by commutativity of
(50). The exactness of the bottom row gives that there exists an element ¢’ € C7_; such that

ig(c) =c.

Now we notice that ¢’ € Ker g, ,: it follows from the commutative diagram

q - 1' C -1 jq_’ C// 0
(51) o,
q—2 i C;, 0

since 4,_; is monomorphism, ¢ = 8q(a, and
ig-100, 1(c) = 0g-10104(c) = 0g-100,(¢) =0
Thus ¢ € Ker 0,_1, and we define d(a) = [¢'] € H,—1(C').
Exercise 12.7. Prove that the homomorphism 0 : H,(C") — H,_;(C’) is well-defined.

The proof that the sequence (49) is exact is rather routine exercise. We will prove only the
exactness at the term H,(C"), i.e. that Im j, = Ker 0.

The inclusion Im j, C Ker 0 follows immediately from the definition. Now we prove that
Ker 0 C Im j,.. Let a € Ker 0. As above (in the definition of J) we consider a cycle ¢’ € C/,
an element ¢, such that j,(¢) = ¢”, then the element ¢ = J,(¢), and, finally, the element ¢
such that i,_1(c') = c. We know that [¢'] =0, ie. ¢ € Im §,. Let &' € C} be such that
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O0,(t') = . Let ¢; = iy(V'). By commutativity of (50) 0,(¢c —¢1) = 0, and by exatness of
the second row of (50) j,(¢ —¢;) = ¢”. Thus the element d = ¢ — ¢ € C, is a cycle, and
Jo(d) =", and j.([d]) = a.

Exercise 12.8. Prove the exactness of (49) at the term H,(C’).
The exactness of (49) at the term H,(C) is an easy exercise. O

Now we specify Lemma 12.6 in the case of the exact sequence of complexes

0 — C(A) £ (X)) 25 (X, A) — 0.

The boundary operator J, : Cy(X,A) — C,—1(X, A) is induced by the boundary operator
Oy : Cy(X) — Cy1(X), and clearly 9,(c) € Cy—1(A) if c € Cy1(X, A) is a cycle.

Corollary 12.7. Let (X, A) be a pair of spaces. Then there is an exact sequence of homology
groups:

(52) oo D H(A) S Hy(X) IS H(X,A) D Hyy(A) & -

Let B C A C X be a triple of spaces. We have the following maps of pairs:

(53) (4,B) = (X,B) = (X, 4)
which induce the homomorphisms C(A, B) 2%, C(X,B) 2%, C(X,A).

Exercise 12.9. Prove that the sequence of complexes

(54) 0 — C(A,B) % C(X,B) 2% C(X, A) — 0
is exact.

Exercise 12.9 and the LES-Lemma imply the following result.

Corollary 12.8. Let B C A C X be a triple of spaces. Then there is a long exact sequence
in homology:

(55) oo — H (A, B) 2 H(X,B) 25 H (X, A) -5 H, (A, B) 25 .. .

The relative homology groups are natural invariant.

Exercise 12.10. Let B ¢ A C X and B’ ¢ A" € X' be two triples of spaces, and

f: X — X’ be such a map that f(B) C B’, and f(A) C A’. Prove that the following
diagram commutes:

. —— H,(A,B) 2 H,(X.B) 2+ H(X,A) % H,_,(A,B) — -

f* f* f* f*

. Hy(A\B) 2 Hy(X'B') L Hy(X' AL Hy (A B) — -
Exercise 12.11. Let f: (X,A) — (X', A") be such map of pairs that the induced maps
f:X — X" and f|a: A — A’ are homotopy equivalences. Prove that f, : H, (X, A) —
H, (X' A’) is an isomorphism for each g¢.
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Remark. One may expect that there is a long exact sequence in homology groups for a Serre
fiber bundle £ — B. However there is no such exact sequence in general case: here there
is a spectral sequence which relates the homology groups of the base, the total space and the
fiber. Again, we are not ready even to discuss this yet.

12.5. Relative homology groups and regular homology groups. Let (X, A) be a pair
of spaces. The space X/A has a base point a (the image of A under the projection X — A.
There is a map of pairs p: (X, A) — (A, a) induced by the projection X — X/A. Besides,
the is the inclusion map ¢ : X — X U C(A), and thus the map of pairs i : (X, A) —
(XUC(A),C(A)). Let v be the vertex of the cone C'(A).

Theorem 12.9. Let (X, A) be a pair of spaces. Then the inclusion
i:(X,A) — (XUC(A),C(A))
induces the isomorphism Hy (X, A) = H, (X UC(A),C(A)) = H (X UC(A),v).

We have to get ready to prove Theorem 12.9. Recall that for each simplex AY there is the
barycentric subdivision of A?. First we examine the barycentric subdivision one more time.
Let A? be given by the vertices Ay,...,A,. Let f: A? — X be a singular simplex. We
would like to give a natural description of all ¢-simplices of the barycentric subdivision of A?
in terms of the symmetric group ¥, acting on the vertices (Ao, ..., A4,) of AJ.

First, let ¢ = 1, then A'! is given by ver-
tices (Ao, A1). Let By is the barycen-
ter of Al. Then we let A (0,1) :=
(Ag, B) and A'(0,1) := (A, By). Here
the simplex 31(0,1) is obtained from
Zl(O, 1) by permutation (0, 1) which acts
on the vertices (Ag, A;). By induction,

let A(0,...,q) be the simplex which has
the same first ¢ vertices as the simplex
Zq‘l(o, ...,q—1) and the last one being
the barycenter of the simplex A?. The
symmetric group X,41 acts on the ver-
tices (Ao,...,A,) of A7, and each per-

0 11 0 mutation o € X,4; gives a linear map
Fig. 12.3. o : A7 — A? leaving the barycenter B,
of A? fixed.

Then the simplex A’(0) is defined as the image o(A”(0,...,q)). Thus we can list all simplices
A’(0) of the barycentric subdivision of A? by the elements ¢ € ¥,11. Let (—1)7 be the sign
of the permutation o € X 41, see Fig. 12.4.

Now we define a chain map 5 :C(X) — C(X) as follows. Let f: A? — X be a generator,
and f, = flzv(,)- Then

B(f AT — X)= Y (=1)°(fo: &%) — X).

0€EXg+1
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Then we define B(> 0, \ifi) = >, MfB(fi). It is easy to check that 50, = 0,6. (Here the
choice of the above sign (—1)7 is important.)

Lemma 12.10. The chain map (3 : C(X) — C(X) induces the identity homomorphism in
homology:
Id=p,: H(C(X)) — H,(C(X)) foreach ¢ > 0.

Proof. It is enough to construct a chain homotopy D, : Cyu(X) — C,41(X) so that
fB—1Id= Dy 100,+ 0], 0D,. We construct the triangulation of A? x I as follows.

9=0 o=1 =2

Fig. 12.4.

The cases ¢ = 0,1,2 are shown at Fig. 12.4. Now the bottom simplex A? x {0} is given
the standard triangulation (just one simplex), and the top simplex A% x {1} is given the
barycentric subdivision. The side 9A? x [ is given the subdivision by induction. Now
consider the center v of the simplex A% x {1}, and consider the cones with the vertex v over
cach g-simplex A?, where

AT C AT x {0} UOAT x TUAT x {1}.

This triangulation gives the chain D,(f), where f : A? — X is a singular simplex. We
notice that D,(f) is defined as via the map

projection
_

G:AIx ] A x {0t L X
by restricting G on the corresponding simplices. Lemma 12.9 follows. O
Let 84 = {U;} be a finite open covering of a space X . We define the group
C{(X) = {free abelian group} (f : A? — X | f(A?) C U; for some U; € ).

Clearly CJY(X) C C¢(X) and the restriction of the boundary operator 9, : Co(X) —
Cy-1(X) defines the operator 9, : C3{(X) — Ci' (X). Thus we have the complex C*(X).

Lemma 12.11. The chain map (inclusion) i : C*(X) — C(X) induces isomorphism in the
homology groups

(56) i o Hy(CY(X)) — H,(C(X)).

Proof. Let o € H,(C(X)) = H,(X), and a = [¢c], where ¢ € Z,(X) is a cycle. To prove that
14 is epimorphism, it is enough to prove that

i) there is ¢ € ZX(X) and d € C,y1(X) so that O,41(d) =c— .
q q q
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Let o € Hy(CY(X)), o =[], where ¢ € Z/(X). Assume that i,(a/) =0, ie. ¢ = 0grd
where d € Cy+1(X). To prove that i, is monomorphism, it is enough to show that

(ii) there is d' € C}',

(X) such that Op+1(d') = ¢'.
The above statements follow from the following three observations:

(1) For any ¢ € Cy(X) there is n > 1 so that 3"c € C3{(X).

(2) For any ¢ € Cy(X) and n > 1 there is d € Cy(X) such that 0,41(d) = ¢ — f"c.
(Lemma 12.10.)

(3) Let ¢ € Z{(X), then for any n > 1 there is d’ € C}Y,(X) such that Og1d = ¢ — "¢

Exercise 12.12. Prove the properties (1) and (3).
Exercise 12.13. Show that the above statements (i), (ii) follow from (1), (2), (3).
This concludes the proof. O

Remark. Let U = {V,} be a finite covering of X, such that X = U‘O/j, where V is

J
the interior of V. Then the chain map C¥(X) — C(X) also induces isomorphism in the

homology groups.

Remark. Let (X, A) be a pair of spaces. Then a covering 4 = {U;} induces a covering
{U; N A}. We denote a corresponding chain complex by C¥(A). Then for each ¢ we have a
short exact sequence

0— CJ(A) — CP(X) — CJ(X,A) =0

which determines the relative chain complex CP(X, A). It easy to modify the proof of Lemma
12.11 (and use five-lemma) to show that the natural chain map C¥(X, A) — C(X, A) induces
an isomorphism in the homology groups

H,(C¥(X,A)) — Hy(C(X,A)) = H(X, A).

Proof of Theorem 12.9. Consider the following covering of the space X U C(A).
Let Uy = (X UC(A))\ X and U, = X UC(A), where C(A) is the half-cone over A, i.e.
C(A) = {(a,t) € C(A) | 0 <t < 1/2}. The relative version of Lemma 12.11 (see the above
remark) implies that the embedding

CHX UC(A),C(A)) — C(XUC(A),C(A))

induces an isomorphism in the homology groups. By definition of a relative chain complex,
we have the isomorphism:

CHX UC(A),C(A)=CHX UC(A)/CH(C(A)).

Then we observe that there is an isomorphism

Cy (X UC(A)/CHC(A)) 2 Co(X UC(A))/Co(C(A)) = Co(X UC(A), C(A)).



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY” 107

Fig. 12.5.

Indeed, let f: A7 — X UC(A) be a generator in C;{(X UC(A),C(A)), ie.
FAAN N (X UC(A)\C(A) #0

and f(AY) C Uy or f(AY) C U,y. Since Uy = (X UC(A)\ X, f(AY) C Uy = X UC(A) and
f(AY)NC(A) =0, the map f: A7 — X UC(A) is a generator of the free abelian group

Co(X UC(A),C(4)) = Ci(X UC(A))/Cy(C(A)).

It is also easy to check that any generator in C,(X U C(A))/C,(C(A)) gives a generator in
the group CJ(X UC(A),C(A)).

Since X U C(A) is homotopy equivalent to X, and C(A) ~ A, we obtain the isomorphisms
H, (X UC(A),C(A)) 2 H (X UC(A),C(A)) = H,(X, A).

This concludes the proof of Theorem 12.9. O

Corollary 12.12. Let (X, A) be a Borsuk pair. Then the projection p : (X, A) — (A, a)

induces the isomorphism p, : Hy (X, A) — H,(X/A,a) for each q.

Exercise 12.14. Prove Corollary 12.12.

12.6. Excision Theorem. Let (X, A) be a pair of spaces, and B C A. The map of pairs
e: (X \ B,A\ B) — (A, B) induces the excision homomorphism:

(57) e.: Hy(X \ B,A\ B) — H,(X,A)

The following result is known as the Fzcision Theorem.

Theorem 12.13. Let (X, A) be a pair of Hausdorff spaces, and B C A so that B C ;1
Then the homomorphism e, : Hy(X \ B,A\ B) — H,(X,A) is an isomorphism.

Proof. We use the condition B C Zl to notice that
(X\B)DX\B>X\A

Thus A U (X\B) = X. We consider the covering U = {V},V2} of X, where V} = A,
Vo = X \ B. The chain complex C¥(X) (see the remark following Exercise 12.13) gives the
chain map 7 : C¥(X) — C(X). Note that for each ¢

CP(X) = Cy(A) + Cy(X \ B) C Cy(X).
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Consider the relative chain complex CT(X, A). To prove the excision property we consider
the following commutative diagram of chain complexes:

C(X\ B,A\ B) d C(X, A)

(58) J3

CY(X, A)
Here the chain maps j; and j3 are induced by natural inclusions.
Now we construct the chain map j,. By definition
Co(X\ B, A\ B) = Cy(X \ B)/Cy(A\ B) = Cy(X \ B)/(Co(X \ B) N Cy(A))
since Cy(A\ B) = Cy(X \ B) N C,(A). Similarly,
Co(X, A) = C(X)/CJ(A) = (Cy(X \ B) + Cy(A))/Cy(A).
Now recall the following standard fact from the group theory.

Claim 12.2. Let G1,Gy C G be subgroups of an abelian group G. Then
G1/(G1NGy) = (G + Gy)/Gs.

If we let Gy := Cy(X \ B), Gy := Cy(A), then the isomorphism
jo: Co(X \ B,A\ B) — C(X, A)
is given by Claim 12.2. We obtain the induced commutative diagram in homology groups

H,(X\B,A\B) —" . g (x,A)

(59) U G

H,(CY(X, A))
where (j1)., (j2)« and (j3). are isomorphisms. Thus H, (X \ B, A\ B) = H,(X, A). O
12.7. Mayer-Vietoris Theorem. Let X = X;UX,. We notice that C(X;NX3) = C(X7)N

C(X2), and that C(X;), C(X3) are subcomplexes of C(X; U X3). In particular, the complex
C(X1) +C(X3) C C(X, U Xy) is well-defined. Let

](1) : C(Xl N Xg) — C(Xl), ](2) . C(Xl N X2) — C(XQ),

’L(l) : C(Xl) — C(Xl U XQ), 1(2) : C(Xg) — C(Xl U Xg)
be the inclusions. Consider the following sequence of complexes:
(60) 0 — C(X1NXy) -5 C(X)) 8 C(Xs) -5 C(Xy) +C(Xs) — 0.
where a(c) = j(c) ® jP)(c), and f(e1 @ ¢3) = 1 — ¢ € C(X1) +C(Xa).

Claim 12.3. The sequence (60) is a short exact sequence of chain complezes.



NOTES ON THE COURSE “ALGEBRAIC TOPOLOGY” 109
Exercise 12.15. Prove Claim 12.3.

Lemma 12.14. Let X;, Xy C X, and X,U Xy = X, X, U Xy = X. Then the chain map
C(Xp) +C(X2) — C(X1U Xy) induces isomorphism in the homology groups.

Proof. Consider the covering U = {X;, Xo}. Then by definition C*(X; U X3) = C(X;) +
C(X2). Lemma 12.11 and the remark following Lemma 12.11 completes the proof. O
Theorem 12.15. (Mayer-Vietoris Theorem) Let X be a space, and X = X; U Xy, and
X = XU Xy. Then there is a long exact sequence

(61) +++ = Hy(Xy N Xp) =5 Hy(X1) & Hy(X2) 25 Hy(Xy U Xo) 5 Hyy (Xy 0 Xp) — oo

This is the Mayer-Vietoris long exact sequence.

Proof. The short exact sequence of chain complexes (60) induces the long exact sequnce
= Hy(C(X1 N X)) 25 Hy(C(X1)) @ Hy(C(X2)) 2 Hy(C(X1) +C(X)

2y Hy 1 (C(X1 N Xy)) 25 Hy 1 (C(X1)) @ Hyy(C(X5)) — - -

To complete the proof we replace the groups H,(C(X1)+C(X2)) by H,(X;UX5) using Lemma
12.14. O



110 BORIS BOTVINNIK

13. HoMOLOGY GROUPS OF CW -COMPLEXES

The main goal of this section is to develop a technique to compute homology groups of C'W -
complexes. The singular chain complex C(X) is far too big to peform computations. We will
construct here a cellular chain complex £(X) which is much smaller than C(X). We start
with computations of homology groups of spheres and wedges of spheres.

13.1. Homology groups of spheres.

Theorem 13.1.

= oy~ ) Loifqg=m,
HQ(S):{O eésqe.

Remark. We use here reduced homology groups to unify the formula for n =0 and n > 1.
We already know that Hy(S°) = Z @ Z, hence Hy(S°) = Z.

Proof. Consider a long exact sequence for the pair (D", S"!):
H,(S"™Y) — H,(D") — H,(D",5""") — Hya(S"") — Hya (D)

We have H,(D") = 0, H,_y(D") = 0. Thus H,(D",S*') = H,(S"'). Induction on n
concludes the proof. O

Theorem 13.2. Let X be a space. Then Hyy1(SX) = Hy(X) for each q.

Proof. We notice that XX = C, X UC_X, see Fig.
Ci X 13.1. Consider a long exact sequence in homology for the
pair (Cy+ X, X):

X RN ﬁq(C+X) — Hq(C+X7X) _ ~q—1(X)
C_X B
s Hya(C2X) = -
Fig. 13.1. Clearly we have that H,(C,X) = 0 since the cone C; X

is contractible.

Thus H,(C,X,X) > H, 1(X). Notice that the pair (C}X, X) is always a Borsuk pair, thus
H,(C, X, X) > H(C,X/X)~ H(C.X UC_X) = H/(SX).

Theorem 13.2 is proved. O

Remark. The homeomorphism A? =, D¢ gives a particular repesentative for a generator

iy € Hy (D S971) = Z. The composition A? = pr D?/S971 gives a particular

repesentative for the generator ¢, € H,(S?) = Z. Clearly 7, maps to ¢, under the boundary
homomorphism H, (D4, 597 ') — H, (S ).

Theorem 13.2 leads to the following construction. Let f : A? — X be a singular simplex.
Consider the composition

Zf S AL — A cf OX projection C'X/X ~yy
Thus we have the chain map ¥ : Cy(X) — C 41 (XX).
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Excercise 13.1. Show that the map ¥ : Cy(X) — Cy4+1(XX) commutes with the boundary
operator and induces the isomorphism ¥ : H,(X) — H,1(XX).

13.2. Homology groups of a wedge.
Theorem 13.3. Let A be a set of indices, and S be a copy of the n-th sphere, o € A.

Then
Z bl . - )
ﬁq <\/ ng) = i‘é ) g =n

acA 0, else.

Here @ Z(«) is a free abelian group with generators o € A.
acA

This result follows from Theorem 13.2 because of the homotopy equivalence

) (\/ 53) ~\/ oSy =\/ sit

acA acA acA
On the other hand Theorem 13.3 is a particular case in the following result.

Theorem 13.4. Let (X,,x,) be based spaces, o € A. Assume that the pair (X,,xs) is
Borsuk pair for each o € A. Then

H, (\/ Xa> =P H,(x

acA a€A

Excercise 13.2. Prove Theorem 13.4. Hint: The wedge \/ X, is a factor-space of the
acA
disjoint union |_| X, by the union of the base points.
acA

13.3. Maps g : \/ Sh— \/ Si. Let f: 8" — S™ be a map. Then the homotopy class
acA peB

[f] = dt,,, where d € Z, and ¢, € 7,(S™) is a generator represented by the identity map

S™ — S™. Recall that d = deg f.

Claim 13.1. Let f:S™ — S™ be a map of degree d = deg f. Then the induced homomor-
phism f. : H,(S™) — H,(S™) is multiplication by d.

Proof. We constructed earlier a map g(d) : S™ — S™ of the degree d:
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d
where the map g; : S" — \/S]” collapses (d — 1) spheres S™~! as it is shown at Fig. 13.2,

J
d

and ¢y : \/ S¥ — S" is a folding map. The map g(d) = go 0 g is of degree d since this is

j
a representative of di,. Thus g(d) ~ f. The composition of the map g; with a projection
d

Dj \/Sj" — 8} is homotopic to the identinty. Thus (g1). : H,(S") — Hn(\/;l ST) gives
J

(91)«(1) = 1@ --- @ 1. We notice that the map S7 R \/;l S¥ 2, 8" is homotopic to the

identity map. Thus (¢g2).(1®---@®1) =1+---+1 = d. This implies that the homomorphism

g(d)s = (g2)x 0 (g1)s« : Hy(S™) — H,(S™) is the multiplication by d. This completes the

proof since the map f is homotopic to the map ¢(d). O

Now we consider a map g : \/ sn 2, \/ Sh. Let iy @ Sy — \/ S., be the canonical
acA BEB acA
inclusion, and pg : \/ S — Sj be the projection on the (-th summand. We have the

BeB
commutative diagram:

\/ sz g V 53
g Be

(62) ia ps

S S

Let the map gos : Sy — Sj have degree dop, and let {dag}, 4 seB be the matrix of those
degrees.

Theorem 13.5. Let g : \/ S N \/ Si be a map. Then the homomorphism

acA pBeB
P z(a) = H, (\/ sg) 2 H, (\/ S;) =Pz
acA acA BEB BEB

is given by multiplication with the matriz {das},c 4 g, Where dag = deg gag-
Excercise 13.3. Use Claim 13.1 to prove Theorem 13.5.

13.4. Cellular chain complex. Let X be a CW -complex, and X@ be its ¢-th skeleton.

The factor-space X (@ /X(@=1 is homeomorphic to the wedge \/ S?, where E, is the set of
i€E,

Pzi) iti=q

(63) Hy(X@, XYy = ¢ .55,
0 else.

g-cells of X . It implies that
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We define the cellular chain complex £(X) as follows. Let &,(X) = H,(X@, X)) =
@ Z(i). The boundary operator 5q 1 Ey(X) — &,-1(X) is the boundary homomorphism

i€,
in the long exact sequnce for the triple (X@, X~V x(a=2)).

N Hq(X(q)jX(q—m) — Hq(X(q),X(q_l)) O Hq(X(q_l),X(q_2)) ...

1%
1%

&(X) : E-1(X)

The following result implies that £(X) is a chain complex.

. .y . bq«b»l 8q .
Claim 13.2. The composition E,41(X) —— E,(X) — E,-1(X) is zero.

Proof. We have the following commutative diagram of pairs:

(X(‘I), X(q—2))

(X(‘Hl), X(q—2))

(X(q+1)7 X(q))

(X(q)’X(q—l)) (X(q+1)’X(q—1)) (X(q+1)’X(q))

This diagram gives the following commutative diagram in homology groups:

Hq+1(X(q+1),X(q‘2)) — Hq+1(X(q+1),X(q)) o Hq(X(q)’X(q—2)> .

Hq+1(X(q+1),X(q_l)) — Hq+1(X(q+1),X(q)) o Hq(X(q)
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Here the right column is the long exact sequence for the triple (X (@ X1 X (‘1_2)). The
boundary operator 5q+1 = a, o J, by commutativity. Thus 5q o 5q+1 = 5q o (a, 0 0y) =
(5q o) o d, =0 since 5q o a, = 0 by the exactness of the column. O

The chain complex £(X)

(X)) £ (X) e E(X) D E(X) 0

is the cellular chain complex of X .

Theorem 13.6. There is an isomorphism Hy (E(X)) = H,(X) for each q and any CW -
complex X .

Proof. We prove the following three isomorphisms:

(a) H,(E(X)) = A, (X(q“) X@2),
(b) H,y (X', Xa™2) = [, (X a*D),
(c) Hy(X0H) = H,y(X).

(a) Consider the following commutative diagram

Hy(x@ D x=2) =9

Hy(x@ x(=2)) 2, Hy(x@t) xa=2y g (x@t) x@) =¢

Hq_l(X(q—l),X(q—m) =&, 1(X)

The exactness at the term H,(X@ X (@=2) implies
Hy (XD x@=2) = (XD X2 /Ker a = H (X9, X9 /Im 0,.
The homomorphism 3 is monomorphism since H,(X (@=1) X(@=2)) = 0. Thus
H (X9 X@=2)/Im 9, = 3(H,(X@, X(@72))/3(Im 0,) =

Im 8/Im (80 0,) = Ker 9,/Im 9,,, = Hy(E(X)).
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(b) Consider long exact sequence for the triple (X X® X0=) where i = ¢ — 2, q —
3.....1,0:

O:Hq(X(i),X(i_l))—>Hq(X(q+l),X(i_l))in(X(q+l),X(i))—> q_l(X(i),X(i_l)): 0
Thus we obtain the isomorphisms:
Hy(X@+) x@2)y o~ g (x@t) x@dy o~ o g (x@t) x Oy~ g (xa+D)

(c) Consider long exact sequence in homology for the pair (X, X@+D) for j = ¢ + 2,
q+3,...:

0= Hyp (XD, XDy — g (X)) =, Hy (X)) — H, (XU, Xty = 0.
Thus H, (X))~ g (X@+D)) >~ ...~ [ (X). O

13.5. Geometric meaning of the boundary homomorphism (19(1. Consider closely the
groups &,(X) and the boundary operator 5q 1 Ey(X) — &;1(X). First we recall that

gq(X) = {Zz’eEq )‘ieg}

where e are the g-th cells of the CW-complex X . The isomorphism of the group &,(X)
with free abelian group is not unique: it depends on the choice of the homeomorphism
X@/x(a=1) =~ \/ S The choice of this homeomorphism is detemined by the characteris-
tic maps

d;

D1 X (@

Sa—1 x @1
The map of pairs (®;, ;) : (D9, 5971) — (X@ X (@ 1) induces the homeomorphism
®;: S1=D?/DI7! — g1/9et ¢ XD /X471,

Definition 13.7. We say that two characteristic maps ®;, ®, : (D9, 5971) — (X@ X(a=1)
are of the same orientation if the composition (which is a homeomorphism)

= H/\—1
g1 %1, &%/ det (@7 ga

has degree one. It means that the map ®; o (®{)~! is homotopic to the identity map. If
the degree of the map ®; o (®;)~1 is —1, the characteristic maps ®;, ®, have the opposite
orientation.

Thus the group
E(X) = { Lies, et }

should be thought as a free abelian group with oriented q-cells as generators.
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Let e! be a g-cell of X, and a;?_l be a (g — 1)-cell. The attaching map ¢; : 971 — X (1)
defines the map

projection
_

Wb S 2 x(a-) X0/ (X2 y {all (g — 1)-cells except a?_l}) =

o1 foott 0 st
Let dege) = [e] : a;?_l].
Remark. The number [ef : a;?_l] depends on the choice of characteristic maps for the cells

¢!, 0% only through the orientation. It is easy to see that the number will change the sign

1Yy
if the orientation of either cell e] or a;?_l would be different. It is important to notice that

el aj_l] = 0 if the cells e, aj_l do not intersect. Thus the number [ef : 0';?_1] # 0 only for

finite number of cells O’?_l.
Theorem 13.8. The boundary operator &1 1 EJ(X) — E;1(X) is given by the formula:
(64) Oe) = > [e": 0t Mot

JEEG1

Proof. Let ® : (D7, 5971 () — (X@ X1 X(=2) be the map determined by the char-
acteristic map of the cell e?:

D1 X (@

x (a=1)

Sa—t
We have the following commutative diagram in homology groups:

Ox =

7 —» H,(D? 87 Hy1(STY ~— 7

7]

ﬁq(X(q)/X(q—l)) o~ Hq(X(q),X(q—l)) Hq_l(X(q_l),X(q_2)) o~ ﬁq_l(X(q_l)/X(q_z))

1%
1%
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Here o and f are induced by the map ® and a(1) = ¢?, B(1) = 9 e?. Consider the
composition

v Hy (ST - (XD X0y = Ho (X X)) = H \/Sq )

projection _
@ (st Brodection, (51

J

By definition the degree of the homomorphism v the coefficient with ag_l in 0e? is equal to
e? a;?_l]. Thus

13.6. Some computations. First we compute again the homology groups S™. We choose
the standard cell decomposition: S™ = e™ U e'.

n = 1. Here we have & = Z with the generator ¢, £ = Z with the generator e', £, =0 if
q#0,1. Clearly 0e! = ¢ —e? = 0.

(1) n > 1. Here we have & = Z with the generator €°, &, = Z with the generator e”,
&, =0if ¢ #0,n. Clearly 8qe” =0.

Thus in both cases we have that H,(S") = Z, and fIq(S”) =0if ¢ #n.

13.7. Homology groups of RP". Here we have to work a bit harder. We need the following
geometric fact. Let the sphere S™ C R™"! is given by the equation z7 +---+ a2, = 1.

Lemma 13.9. Let A:S™ — S™ be the antipodal map, A : x — —x, and v, € m,(S™) be the
generator represented by the identity map S™ — S™. Then the homotopy class [A] € m,(S™)
15 equal to

A] = { Ln, ifm is odd,

—tln, ifn is even.
Excercise 13.4. Prove Lemma 13.9.

Let €°, ..., e" be the cells in the standard cell decomposition of RP™. Recall that (RP”)(q) =
RPY, and ¢? = RPY/RP? !, and that the Hopf map S9! — RP?! is the attaching map
of the cell 9.

Lemma 13.10. Let €°,...,e" be the cells in the standard cell decomposition of RP™. Then
(69 : et 1] = { 2 if qis odd,

0, 1if q is even.

Proof. Let h : S97! — RP? ! be the Hopf map. We identify RPY"! with the sphere
S9! where the points x, —x € S9! are identified. The projective space RP92 C RP! is
then the equator sphere S92 C S9! with the intipodal points identified as well. Now the
composition

g1, Rprl — RPT!/RPY2 = 57!
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represents the element [A]+¢,_1 € m,_1(S77"), see Fig. 13.3. Lemma 13.9 implies the desired
formula. O

=g
\A/

Fig. 13.3.

Thus the chain complex &(RP?*1) is the following one

2 1 0
0— 7z YLz27z %Y. %7227 %7

Hence we have
B Z/2, ¢g=1,3,...,2k—1,
H,RP*)=( Z, q=2k+1,
0, else.

The chain complex £(RP?) is the following one

Thus we have

13.8. Homology groups of CP", HP". These groups are very easy to compute since
Ey(CP™) = Z, q = 0,2,...,2n, and &1 (CP") = 0. Similarly &,(HP") = Z, ¢ =
0,4,...,4n, and &,(HP") = 0 for all other ¢. Thus

n Z, ¢q=0,2,...,2n, n Z, ¢q=0,4,...,4n,
Hq(CP):{O, else. ’ Hq(HP):{O, else.

Exercise 13.5. Prove that there is no map f: D" — S™! so that the restriction
Flgnr : §771 — gt
has nonzero degree.
Theorem 13.11. (Brouwer Fixed Point Theorem) Let g : D" — D™ be a continious map.
Then there ezists a fized point of g, i.e. such x € D™ that g(z) = x.
Exercise 13.6. Use Exercise 13.5 to prove Theorem 13.11.

Exercise 13.7. Let M, = T?#---#T? (g times). Compute the following homology groups:
(a) Hy(My),

(b) Hy(M,#RP?),
(c) Hq(Mg#Klz)-
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Exercise 13.8. Let G(n, k) be the real Grassmannian manifold. Use the CTW -decomposition
of G(n, k) given in Section 4 to compute the homology groups:

(a) Hy(G(4,2)),
(b) Hy(G(5,3)).

Exercise 13.9. Compute the homology groups:

(a) H,(RP? x RP3),
(b) H,(RP° x RP?),
(c) H,(RP? x RP*)
(

Exercise 13.10. Let f(z) = a,2" + Ap_12" -+ a1z +ao be a complex polynomial with
a, # 0. Show that a polynomial f(z), viewed as a map f: C — C, can be always extended
to a continious map f : S? — S2. Prove that the degree of the map f equals to n.

Exercise 13.11. Let f: S?" — S?" be a map. Prove that there exists a point € S?" such
that either f(z) =z or f(z) = —=.

Exercise 13.12. Let f: 5™ — S™ be a map of degree zero. Prove that there exist two points
x,y € S™ with f(x) =z and f(y) = —y.

Exercise 13.13. Construct a surjective map f:S™ — S™ of degree zero.
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14. HOMOLOGY AND HOMOTOPY GROUPS

14.1. Homology groups and weak homotopy equivalence. Our goal here is to prove
the following fact.

Theorem 14.1. Let f : X — Y be a weak homotopy equivalence. Then the induced
homomorphism f. : Hy(X) — H,(Y) is an isomorphism for all ¢ > 0.

We start with a preliminary lemma.

Lemma 14.2. Let X be a topological space, o € H,(X). Then there exist a CW -complex
K, amap f: K — X, an element § € H,(K) such that f.(8) = «.

Proof. Let ¢ = >, \ifi, fi : Al — X, be a chain representing o € H,(X). Consider the
space
K =| |Al

Recall that the simplex A? C R?™! is given by the vertices A? = (vy,...,v,), where vy =

(1,0,...,0), ..., vy = (0,...,0,1). We can describe all subsimplices of A? as follows. Let
0<t; < - <ty <q. Then
le _____ tq,T(Aq):(Uov'"761517"‘7615(177"7“'71)4)
is an r-dimensional simplex with the vertices (vo,...,U,..., 0 _,,.-.,7). We introduce the
following equivalence relation in K:
Dt (DD =T s (A9 filey a0 = fileg, a9

Let K = K’/ ~. The maps f; : A — X determine a map f: K — X. Furthermore, let

g A? inclusion K’ projection ]

Then the chain ¢ =) iNg; € C,(K') maps to the chain ¢ by construction. One has to notice
that ¢ is a cycle since ¢ is a cycle. Then 8 = [¢] maps to « under the induced homomorphism
Je O

There is the relative version of Lemma 14.2 which may be proved by slight modification of

the above proof.

Lemma 14.3. Let (X, A) be a pair of topological spaces, o € Hy (X, A). The there exist
a CW-pair (K,L), a map f : (K,L) — (X, A), and element § € H,(K,L), such that
f(B) = a.

Exercise 14.1. Prove Lemma 14.3.

Proof of Theorem 14.1. Recall that f : X — Y is a weak homotopy equivalence if for
any CW -complex Z, the induced map fyu : [Z, X| — [Z,Y] is a bijection.

(1): f.isan epimorphism. Let a € H,(Y"). Then by Lemma 14.2 there exists a C'W -complex
K,amap g: K — Y such that g.(8) = a. Consider a map h € f,'([g]) € [K,X]. We
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have the following diagram

K
which commutes up to homotopy. Now we obtain a commutative diagram:

Hy(X) k Hy(Y)

H,y(K)
Thus f.(h«(B)) = «.

(2): f. is a monomorphism. First we can change the map f : X — Y to a homotopy
equivalent map f': X’ — Y’ so that f’ is an embedding. Thus we assume that X C Y
and f =1i:X CY is an embedding. Let aw € H,(X), and i.(«) = 0. Consider the long
exact sequence in homology groups:

e Hon (Y, X) 25 Hy(X) 5 Hy(Y) —

The exactness implies that there is v € H,11(Y, X) such that 0.(y) = . By Lemma 14.3
there exist a pair (K,L), amap ¢ : (K,L) — (Y, X), and 8 € H,1(K,L) such that
g«(f) = ~v. Then since f : X — Y is a weak homotopy equivalence, there exists a map

h: K — X making the diagram
\

is commutative up to homotopy. Furthermore, by Theorem 11.7 the map A : K — Y may
be chosen so that (i o h)|, = g|r. We have the commutative diagram

Ox

Hq+1(Y> X) Hq( ) - (Y
g+ (gle)+=((ioh)| L)+ ‘ \ ‘
Os Tx
Hq—i—l(Ka L) Hq(L) Hq(K

Thus we have that o = 0.(7) = 0x(9«(0)) = (g|1)«(0x(7) = hi(i4(0.(5))) = 0 because of the
exactness. Theorem 14.1 is proved. O
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Recall that we proved (Theorem 11.7) that amap f : X — Y is weak homotopy equivalence
if the induced homomorphism f, : m,(X, z9) — 7, (Y, f(z0)) is an isomorphism for all ¢ > 0
and zg € X. We reformulate Theorem 14.1:

Theorem 14.4. Let a map f : X — Y induce an isomorphism in homotopy groups f, :
(X, x0) — (Y, f(z0)) for all ¢ > 0 and xo € X. Then f induces isomorphism in the
homology groups f.: Hy(X) — Hy(Y) for all ¢ >0 .

The following exercises show that some naive generalizations of Theorem 14.4 fail.

Exercise 14.2. Show that the spaces CP>™ x S? and S? have isomorphic homotopy groups
and different homology groups. Thus these spaces are not homotopy equivalent.

Exercise 14.3. Show that the spaces RP" x §™ and S™ x RP™ (n # m, m,n > 2) have
isomorphic homotopy groups and different homology groups.

Exercise 14.4. Show that the spaces S'V S'V S? and S! x S! have the same homology
groups and different homotopy groups.

Exercise 14.5. Show that the Hopf map h : S® — S? induces trivial homomorphism in
reduced homology groups, and nontrivial homomorphism in homotopy groups.

Exercise 14.6. Show that the projection

projection
-

St x St (S x S1)/(S*v SY) = §?

induces trivial homomorphism in homotopy groups, and nontrivial homomorphism in homol-
0gy groups.

14.2. Hurewicz homomorphism. Let X be a topological space with a base point zy € X.
Let s, be a canonical generator of H,(S™), n = 1,2,..., given by the homeomorphism

OA™L =, S For any element « € m,(X,x¢) consider a representative f : S" — X,
[f] = a. We have the induced homomorphism f, : H,(S") — H,(X). Let

h(a) = fi(sn) € Ha(X).

Clearly the element h(a) € H,(X) does not depend on the choice of the representing map
f. Furthermore, the correspondence « — h(a) determines the homomorphism

h:m (X, z9) — Hp(X), n=1,2,....

The homomorphism h is the Hurewicz homomorphism. The Hurewicz homomorphism is
natural with respect to maps (X, z9) — (Y, o) of based spaces.

Exercise 14.7. Prove that h : m,(X,x¢) — H,(X) is a homomorphism.

Exercise 14.8. Let xg,z; € X, and v : I — X be a path connecting the points xg, z;:
7(0) = xo, and y(1) = x;. The path  determines the isomorphism

it (X, o) — (X, 21).
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Prove that the following diagram commutes:

7Tn()(v IO)

Ve

ﬂ-n(X7 'rl)

H,(X)

Theorem 14.5. (Hurewicz) Let (X, o) be a based space, such that
(65) 71-0(‘)(7 l’()) - 0) 7T1(Xa xO) = 0) T ,Wn_l(X, xO) = 07

where n > 2. Then
Hl(X) - 0, HQ(X) - 0,' t ,Hn_l(X) - 0,

and the Hurewicz homomorphism h : m,(X, xg) — H,(X) is an isomorphism.

Proof. By Theorem 11.10 there exist a C'W-complex K and a weak homotopy equivalence
f: K — X. Theorem 14.1 guarantees that f induces an isomorphism in homology groups.
Thus it is enough to prove the statement in the case when X is a CW -complex. Then the
condition (65) means that X is (n—1)-connected CW -complex. Theorem 5.9 implies that up
to homotopy equivalence X may be chosen so that it has a single zero-cell, and it does not have
any cells of dimensions 1,2, ...,n—1. In particular, this implies that H,(X) =0, Hz(X) =0,

-, H,—1(X) = 0. Now the n-th skeleton of X is a wedge of spheres: X™ =\/,S". Let
gi - SP — \/; SI' be the embedding of the i-th sphere, and let r; : S* — \/, S be the

attaching maps of the (n+ 1)-cells e}”l. The maps g; determine the generators of the group

7, (X®) and let p; € 7,(X™) be the elements determined by the maps r;.

Theorem 11.6 describes the first nontrivial homotopy group 7, (X, xy) as a factor-group of
the homotopy group m,(X™) =~ Z @ --- @ Z by the subgroup generated by p;. Notice that
the cellular chain group

Eu(X) = Hu(X™) = H, (\/ 5?) :

and H,(X) = &,(X)/Im §,,,. Finally we notice that the Hurewicz homomorphism h :
m(S™) — H,(S™) is an isomorphism. Thus we have the commutative diagram

T (\/ S{‘) o, (\57)

(pj) (p5)

Tu(S}) - H,(S5)

where the horizontal homomorphisms are isomorphisms. Hence h induces an isomorphism
(X, x0) — Hp(X). O

Corollary 14.6. Let X be a simply connected space, and Hy(X) = 0, Hy(X) =0 ---
H, 1(X)=0. Then m(X) =0, m(X)=0 -+ m,_1(X) =0 and the Hurewicz homomor-
phism h: m,(X,z9) — H,(X) is an isomorphism.
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Corollary 14.7. Let X be a simply-connected C'W -complex with f]n(X) =0 foralln. Then
X is contractible.

Exercise 14.9. Prove Corollary 14.6.
Exercise 14.10. Prove Corollary 14.7.

Remark. Let X be a CW-complex. The above results imply that if 7, (X, zo) = 0 for all
q >0 or H(X) =0 for all ¢ > 0, then X is homotopy equivalent to a point. However
for a given map f : X — Y the fact that f induces trivial homomorphism in homotopy
or homology groups does not imply that f is homotopic to a constant map. The following
exercises show that even if f induces trivial homomorphism in both homotopy and homology
groups, it does not imply that f is homotopic to a constant map.

Exercise 14.11. Consider the torus X = S' x St x S'. We give X an obvious product
CW -structure. In particular, XM = S v S* v S'. Consider the map

Hopf

projection (Sl % S % Sl)/(Sl % S % 51)(2) - g3 P g2

f:Stx Stx st
Prove that f induces trivial homomorphism in homology and homotopy groups, however f
is not homotopic to a constant map.

Exercise 14.12. Consider the map

Hopf

% §3 _projection (8272 x §3) /(S22 v §%) = g2+l 2, CP™.

'R S2n—2
Prove that ¢ induces trivial homomorphism in homology and homotopy groups, however g
is not homotopic to a constant map.

14.3. Hurewicz homomorphism in the case n =1.

Theorem 14.8. (Poincare) Let X be a connected space. Then the Hurewicz homomor-
phism h : m(X,z0) — Hi(X) is epimorphism, and the kernel of h is the commutator
[7T1(X, l’o),?Tl(X, 1’0)] - 7T1(X, 1’0). Thus Hl(X) = 7T1<X, Io)/[ﬂj(X, Io),ﬂj(X, Io)]

Exercise 14.13. Prove Theorem 14.8.

0 ’ Exercise 14.14. We say that a map f : S! — X is
cobordant to zero if there is an oriented surface M with
boundary OM = S* and a map F : M — X such that
Floyr = f, see Fig. 14.1. Let f : S* — X be a map
representing an element a € m(X,x9). Prove that a €
Ker h if and only if the map f:S* — X is cobordant to

Fig. 14.1. JoTO,
Exercise 14.15. Let Mg be an oriented surface of genus ¢g. As we know, Hg(Mg) =~ 7Z, and
a generator s € Hy(M7) may be represented by the identity map M7 — M. Let X be a
simply connected space. Prove that for any class a € Hy(X) there exist a surface M, 5, and
amap f:M? — X such that f.(s) = a.
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14.4. Relative version of the Hurewicz Theorem. One defines the relative Hurewicz
homomorphism h : 7,(X,A,z9) — H,(X,A) similarly to the regular Hurewicz homo-
morphism. Let s € H,(D",S"!) be a canonical generator given by the homeomorphism
(A", 0A™) = (D", 5"1). Let f: (D", 5"!) — (X, A) be a map representing an element
a € m(X.A). Then h(a) = fi(sn) € Hy(X,A). There is a relative version of the above
Hurewics Theorem:

Theorem 14.9. Let (X, A) be a pair of simply connected spaces, xo € A, such that
(66) mo(X, A, x9) =0, m (X, A,20) =0, ,m_1(X, A, 20) =0,
where n > 2. Then

H{(X,A) =0, Hy(X,A)=0,--- H, 1(X,A) =0,

and the Hurewicz homomorphism h : 7,(X, A, o) — H,(X, A) is an isomorphism.

We do not give a proof of Theorem 14.9, however it is very similar to the proof of the above
Hurewicz Theorem.

Exercise 14.16. Prove Theorem 14.9.

Theorem 14.10. (Whitehead Theorem-II) Let X, Y be simply connected spaces and
f: X —Y beamap.

(a) If the induced homomorphism in homotopy groups f. : (X, xo) — m,(Y, f(z0))
1s isomorphism for q = 2,3,...,n — 1, and epimorphism if ¢ = n, then the
homomorphism in homology groups f. : Hy(X) — H,(Y) is isomorphism for
qg=2,3,...,n—1, and epimorphism if ¢ =n.

(b) If the induced homomorphism in homology groups f. : Hy(X) — H,(Y) is isomor-
phism for q = 2,3,...,n— 1, and epimorphism if ¢ = n, then the homomorphism in
homotopy groups f. : my(X, x0) — m (Y, f(x0)) is isomorphism for ¢ =2,3,...,n—1,
and epimorphism if ¢ =n.

Proof. (a) We can assume that f: X — Y is an embedding, see Claim 9.1. Then the long
exact sequence in homotopy

(67) I 7Tq(Xv o) ELN 7Tq(Yv To) — 7Tq(Ya X, x0) 2, 7Tq—l(Xa Tg) — -

gives that if f, : m,(X,z9) — 7, (Y, f(z0)) is isomorphism for ¢ = 1,2,3,...,n — 1, and
epimorphism if ¢ = n, then 7,(Y, X, z9) = 0 if ¢ < n. Then Theorem 14.9 implies that
H,(Y,X) =0 for ¢ <n. Then the long exact sequence in homology

(68) s H(X) 25 H(Y) — H(Y,X) — Hy_y(X) — -

implies that f, : H,(X) — H,(Y) is isomorphism for ¢ = 1,2,3,...,n — 1, and epimorphism
if g=n.

(b) Analogously, let f, : Hy(X) — H,(Y) be an isomorphism for ¢ = 1,2,3,...,n — 1,
and epimorphism if ¢ = n. Then the long exact sequence in homology (68) implies that
H,(Y,X,z9) = 0 for ¢ < n. Then again, Theorem 14.9 implies that m,(Y, X, z,) = 0 for
¢ < n and the exact sequence (67) gives that f, : 7 (X, x0) — 7, (Y, f(z0)) is isomorphism
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for g =1,2,3,...,n—1, and epimorphism if ¢ = n. Thus in both cases the relative Hurewicz
Theorem 14.9 implies the desired result. O

Corollary 14.11. Let X, Y be simply connected spaces and f : X — Y be a map which
induces isomorphism f, : Hy(X) — H,(Y) for all ¢ > 0. Then f is weak homotopy
equivalence. (In particular, if X, Y are CW -complexes, then f is homotopy equivalence.)

Exercise 14.17. Let X be a connected, simply connected C'W -complex with I:jn(X) =17,
n>2,and Hy(X) =0 if ¢ # n. Prove that X is homotopy equivalent to S™.
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15. HOMOLOGY WITH COEFFICIENTS AND COHOMOLOGY GROUPS

Here we define homology and cohomology groups with coefficients in arbitrary abelian group
G. We should be aware that these constructions could be done rather formally by means of
basic homological algebra. We choose to avoid a total “algebraization” of those constructions:
there are great classical books (say, by S. MacLane, Homology, Springer, 1967 or by S.
Eilenberg & N. Steenrod, Foundations of Algebraic Topology) where you can find the most
abstract algebraic approach concerning the homology and cohomology theories. We will
describe only those algebraic constructions which are really necessary.

15.1. Definitions. Let G be an abelian group. A singular g-chain of a space X with coef-
ficients in G is a linear combination

Z Aifi,  where \; € G, and f; : A? — X is a singular simplex.

We denote a group of g-chains C,(X;G). Clearly, Cy(X;G) = Cy(X) ® G. The bound-
ary operator 0, : Cy(X;G) — C,—1(X;G) is induced by the regular boundary operator
Oy + Cy(X) — Cy(X). In more detail, recall that a simplex A? is defined by the vertices
(vo, ..., vq), and I';A? is the face of A? given by the vertices (vg,...,0;,...,v,). Then

Of(f : AT — X)) = Z(—l)j(f\pjm AT — X)),

=0
Let C.(X) be the singular chain complex:

aq 1 8(1 arrl 2 1
(69) T (X)) S O (X) S 2 (X)) S (X)) — 0.

Then we have the chain complex C,(X) ® G-
LX) G O (X) @G 2 B (X)) @G D Gy(X)® G — 0.
We define the homology groups with coefficients in G:

o ~ Ker(9,: Cy(X)® G — Cyr(X) ®G)
Hy(X;G) = Hy(C(X) © G) = O Con (D80 — C(X)80)

Now we consider the cochain complez C*(X; G) = Hom(C.(X), G):

§a-1 §9—2

% Hom(C,(X), G) <2 Hom(C,_1(X),G) < - & Hom(Cy(X),G) «— 0.

In other words, a cochain { € Hom(C,(X),G) = C9(X;G) is a linear function on C,(X)
with values in the group G, £ : Cy(X) — G.

It is convenient to denote £(c) = (€,¢) € G. Notice that by definition, (6%, a) = (£, Oy+1a),
where £ € C9(X;G), and a € Cyy1(X). Clearly §771§7 = 0 since

<5q+15q£’a> = (07, Ogy2a) = (£, Og10412a) = 0.
We define the cohomology groups

W Tl _ Ker(0?: C1(X;G) — C1Y(X;@))
HAX:G) = HY(C(X;5G)) = Im(de—1: Cr1(X;G) — Cu(X;Q))
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Recall that there is a canonical homomorphism € : Co(X) — Z sending ¢ =, \;f; to the
sum » ; Aj € Z. The homomorphism e induces the homomorphisms

6 :Co(X;:G) — G and € :G — C'X;G).
Clearly €. : >, Ajfj — >, € G, and € ;)\ — &x, Where~<§>\,fj> = ) for any generator
fi € Co(X). Then we define the complexes C.(X) ® G and C*(X;G) as

L G(X) @G O (X) 96T B G (X) 9 G G — 0,

RLENGUID Cle) RS TP e¥e) RN Lo N § ele) Uiy e puy))

Thus Hy(X;G) = Ker ¢,/Im 9y, and H°(X;G) = Ker 6°/Im €*. It is convenient to call the
elements of C%(X;G) a cochain, the elements of Z9(X;G) = Ker 07 C CUX;G) cocycles,
and the elements of BY(X;G) =1Im §7 ' C Z9(X;G) coboundaries.

15.2. Basic propertries of H,(—;G) and H*(—;G). Here we list those properties of homol-
ogy and cohomology groups which are parallel to the above features of the integral homology
groups.

(1) (Naturality) The homology groups H,(X;G) and cohomology groups H?(X;G) are
natural, i.e. if f: X — Y is a map, then it induces the homomorphisms

fo i H(X;G) — H(Y;G), and f*:HY(Y;G) — HIY(X;G).

In other words, the homology H,.(—;G) is a covariant functor on the category of
spaces, and the cohomology H*(—; G) is a contravariant functor.
(2) (Homotopy invariance) Let f ~ g: X — Y. then

fe=0.: H(X;G) — H,(Y;G), and [f"=g": H(Y;G) — HYX;G).
(3) (Additivity) Let X = |; X; be a disjoint union. Then

H, <|_|Xj§G> = @H*(Xj;G), and H* (ij;g> ~ HH*(Xj;G).

(4) (Homology of the point) Hy(pt;G) = G, Hipt;G) = 0, and H,(pt;G) = 0,
Hi(pt; G) =0 for ¢ > 1.

(5) (Long exact sequences) For any pair (X, A) there are the following long exact se-
quences:

- — H(A;G) — H(X;G) — Hy (X, A;G) 9, —1(A;G) — -,

= HY(X, A;G) — HY(X:G) — HI(A;G) > HITY(X, A;G) — - --
(6) (Excision) If (X, A) is a Borsuk pair, then
Hy (X, A:G) = H(X/A;G), HYX,A;G)~ HY(X/A:G).
In general case, there are the excision isomorphisms:

H,(X\ B,A\ B)~ H,(X,B), HYX\B,A\B)=~HX,B),

under the same assumptions as before (i.e. that B C A and B C A).
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(7) (Mayer-Vietoris long exact sequnces) Let X7, Xy C X, and X;UXy, = X, XU X, =
X . Then there are the Mayer-Vietoris long exact sequnces:

o H (X0 N Xy G) 25 Hy(X13G) @ Hy(Xa; G) 25 H(X, UXe G) -5

c HY(X, U Xo: G) 25 HY(X,; G) @ HY(Xy; G) 25 HI(X, N X0y G) -5 -

Exercise 15.1. Compute the groups H,(S";G) and HI(S™; G).
Exercise 15.2. Compute the groups H,(CP™;G) and H(CP™;G).
Exercise 15.3. Compute the groups H,(RP™;Z/p), HI(RP™;Z/p) for any prime p.

Exercise 15.4. Let M, be an oriented surface of genus g. Compute the groups H,(My; Z/p)
and HY(My;Z/p) for any prime p.

Exercise 15.5. Compute the homology and cohomology groups H,(M,#RP?%* Z/p) and
HY(M,#RP? Z/p) for any prime p.
Exercise 15.6. Compute the homology and cohomology groups H,(M,#KI?* Z/p) and
HY(M,#KI* Z/p) for any prime p.

15.3. Coefficient sequences. We have to figure out the relationship between homology and
cohomology groups with different coefficients. Let ¢ : G — H be a homomorphism of
abelian groups. Then clearly ¢ induces the chain (cochain) maps of complexes:

0u Cu(X;G) — Cu(X; H), and o7 :C*(X;G) — C*(X; H).

(Notice that the homomorphisms ¢4 and ¢# are going in the same direction.) Thus ¢
induces the homomorphisms:

oo H(X;G) — H (X;H) and ¢*:H"(X;G) — H*(X;H).

Now let 0 — G’ - G % G" — 0 be a short exact sequence of abelian groups. It is easy
to notice that this short exact sequnce induces the short exact sequnces of complexes:

0 — C(X; &) 25 0 (X;6) 2 (X, 6" — 0,

ot #
0 — C(X;G) — C(X;G) o C*(X;G") — 0.
These short exact sequences immediately imply the coefficient exact sequences:

o Hy (X G 25 Hy(X6) 5 Hy (X607 5 Hy (X6 — -

C S HUX G S HI(X;G) S H(X 6 S HIPY (X G — -

Example. Consider the short exact sequence 0 — Z —% Z — Z/m — 0. Then we have
the connecting homomorphisms

0=p": HI(X;Z/m) — H"YX;Z), and 0= By : H(X;Z/m) — H,1(X;Z).
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These homomorphisms are known as the Bockstein homomorphisms. Let a € Hy(X;Z/m),
and a € Cy(X;Z/m) a cycle representing «. Then 0,(a) =0 in C,_1(X;Z/m), however in
general, d,(a) # 0 in C,_1(X;Z). It is easy to check that 9,(a) = m-b, where b € C,_1(X;Z)

is a cycle. Thus f,,(a) = [8‘17@} € H 1(X;Z).

15.4. The universal coefficient Theorem for homology groups. We recall few basic
constructions from elementary group theory. Let G be an abelian group. Then there is a free
resolution of G':

0—RLF25G—0,
i.e. the above sequence is exact and the groups F', R are free abelian. Roughly a choice of
free resolution corresponds to a choice of generators and relations for the abelian group G.

This choice is not unique, however, if 0 — R; TN Fy 2% G — 0 is another free resolution,
there exist homomorphisms ¢ : FF — Fj, § : R — R; which make the following diagram
commute:

0 R F G 0

Now let H be an abelian group.

Claim 15.1. There is the exact sequence

0— Ker(B®1) — RoH 2L FoH 225 GoH — 0.

Exercise 15.7. Prove Claim 15.1.
We define Tor(G,H) = Ker(B® 1).

Exercise 15.8. Prove that the group Tor(G, H) is well-defined, i.e. it does not depend on
the choice of resolution.

Let 0 — R -2 F % G — 0 be a resolution of G. We denote R(G) the chain complex

0—RLF 0
Clearly Hy(R(G)) = G, and H;(R(G)) =0 if j > 0. Consider the complex R(G) ® H:

0—RoH L FeH — 0.
By definition we have that
GoH ifj=0,
H;(R(G)® H) =< Tor(G,H) ifj=1,
0 else.
Now consider an exact sequence

(70) 0—G —G—G" —0.
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The sequence (70) induces a short exact sequence of the complexes:

0 — R(G") — R(G) — R(G") — 0,
and a short exact sequence of the complexes:

0 — R(GY®H — R(G)@ H — R(G")®@ H — 0.

Thus we have the long exact sequence in homology groups:
(71) 0— Tor(G',H) — Tor(G,H) — Tor(G"H) - G'®@H - G®H —-G"®H — 0
Exercise 15.9. Let GG, H be abelian groups. Prove that there is a canonical isomorphism
Tor(G, H) = Tor(H,G).
Exercise 15.10. Let G, G, G” be abelian groups. Prove the isomorphism

Tor(Tor(G, G'), G") = Tor(G, Tor(G', G")).
Exercise 15.11. Let F' be a free abelian group. Show that Tor(F,G) = 0 for any abelian
group G.

Exercise 15.12. Let G be an abelian group. Denote T'(G) a maximal torsion subgroup of
G. Show that Tor(G,H) =2 T(G) ® T(H) for finite generated abelian groups G, H. Give an
example of abelian groups G, H, so that Tor(G,H) # T'(G) @ T(H).

Theorem 15.1. Let X be a space, G be an abelian group. Then there is a split short exact
sequence

(72) 0— H/(X)®G — Hy/(X;G) — Tor(H,~1(X),G) — 0

Remark. The splitting of the sequence (15.1) is not natural. In the course of the proof we
shall see that that this splitting depends on a splitting of the chain complex C,(X).

Proof. Let 0 — R LR F % G — 0 be a free resolution of G. We have the five-term
exact sequence

Hy(X; R) 5 Hy(X; F) 5 Hy(X;G) -5 Hyo (X3 R) 5 Hyo (X3 F),

We notice that H,(X;R) = Hy(X) ® R, and H,(X;F) = H,/(X)® F. Thus we have the
exact sequence

(73)  H X)®R 25 H(X)®F 25 H(X;G) -5 H (X))o R 25 Hy (X))@ F
Consider carefully the sequence (73). First, we notice that it gives a short exact sequence
0 — Coker ., — H, (X;G) — Ker g, — 0,

where

Coker 8, = (H,(X)® F)/Im(B, : Hy(X)® R 2 H,(X)® F) and

Ker 3, = Ker(8, : H,_1(X)® R 25 H,_,(X) ® F).

On the other hand, 8, = 1® f = f® 1. Hence Coker 8, = H,(X)® G, and Ker g, =
Tor(H,—1(X),G).
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Now we have to show the splitting of the short exact sequence (72). Let C;, = C,(X). Recall
that Z, = Ker 0,, and B,_y = Im 0, C C,_;. We have a short exact sequence of free abelian
groups:
0 — 2, — C;, — By-1 — 0.
Since the above groups are free abelian, there is a splitting C, = Z, ® B,_;. Now we analyze
the chain complex C, using the above splitting for each ¢ > 0. We have the commutative
diagram:
Cor1= Zgr1 ®© By

Og+1 inclusion
Cq = Zq @ Bq—l
inclusion
Oq
Cq—l = Zq—l > Bq—2

This shows that the chain complex C, splits into a direct sum of short chain complexes C,(q):

. . q
inclusion
+—0—B; ———m Z41 — 0 — -

Clearly H,_1(C.(q)) = H,—1(X) since we have the short exact sequence
(74) 0 — Byoy — Zyo1 — Hy (X)) — 0.

by definition of the homology group. Also we consider (74) as free resolution of the group
H,1(X). We have the isomorphism of chain complexes:

C.=EPC.q), and C.®G=EH(C.(q) ®G).
q>0 q>0

We notice that
H (X)®G ifj=qg—1
H;(Ci(q) ® G) =< Tor(H,.1(X),G) ifj=g¢q
0 else.
Thus
H,(X;G)=H,(C.®G) = (Hy(X)®G) @ Tor(H,—1(X),G).
This proves Theorem 15.1. O

15.5. The universal coefficient Theorem for cohomology groups. First we have to
define the group Ext(G, H). I assume here that we all know basic things about the group
Hom(G, H). Consider the short exact sequence

O—>ZiZ—>Z/2HO.
We apply the functor Hom(—,Z/2) to this exact sequence:

zZ/2 o 22 z/2
0 «— Hom (Z,Z/2) < Hom (Z,Z/2) «— Hom (Z/2,Z/2) «— 0.
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Clearly this sequence is not exact.
Let G be an abelian group and 0 — R P F % G — 0 be a free resolution.

Claim 15.2. Let H be an abelian group. The following sequence is exact:
(75) 0 «— Coker §# < Hom(R, H) < Hom(F, H) < Hom(G, H) — 0.

Exercise 15.13. Prove Claim 15.2.

We define Ext(G, H) = Coker $#. Consider the cochain complex Hom(R(G), H):

0 «— Hom(R, H) <~ Hom(F, H) — 0.
Then Claim 15.2 implies that

Hom(G,H) if j =0,
Hj(Hom(R(G),H)) =< Ext(G,H) ifj=1,
0 else.

Exercise 15.14. Prove that the group Ext(G, H) is well defined, i.e. it does not depend on
the choice of free resolution of G.

Exercise 15.15. Let 0 — G’ — G — G” — 0 be a short exact sequence of abelian
groups. Prove that it induces the following exact sequence:

0 — Hom(G", H) — Hom(G, H) — Hom(G', H) —
Ext(G",H) — Ext(G,H) — Ext(G',H) — 0

Exercise 15.16. Prove that Ext(Z, H) = 0 for any group H.

Exercise 15.17. Prove the isomorphisms: Ext(Z/m,Z/n) = Z/m ® Z/n, Ext(Z/m,Z) =
Z/m.

Exercise 15.18. Let G or H be Q, R or C. Then Ext(G, H) = 0.

Theorem 15.2. Let X be a space, G an abelian group. Then there is a split exzact sequence
(76) 0 — Ext(H,—1(X),G) — HY(X;G) — Hom(H,(X),G) — 0

for each ¢ > 0. Again, the splitting of this sequence is not natural.
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Proof. First, consider the splitting of the groups C, = Cy(X) = B,_1 & Z,. We have the
commutative diagram:

0 Zq “ C, ]q B,y — 0
0 9q 0
Tg—1 Jq—1
0 — Zq—l Cq—l Bq—2 — 0

This diagram may be thought as a short exact sequence of chain complexes:
(77) 0— 2z e B, — 0
Remark. It is interesting to notice that the long exact sequence
c— Hy(Z2,) — Hy(C) — Hy(By) — Hy1(2) — -+
corresponding to the short exact sequence (77) splits into the short exact sequences
0 — B, % Z, — Hy(X) — 0.
Exercise 15.19. Prove the above splitting.

Now we have a short exact sequence of cochain complexes:

(78) 0 «— Hom(Z.,G) < Hom(C.,G) < Hom(B,,G) — 0
Notice that the cochain complexes Hom(Z,, G) and Hom(B,, G) have zero differentials, hence
Hi(Hom(Z,,G)) =Hom(Z,,G), and H?Hom(B,,G)) =Hom(B,_1,G).

The sequence (78) induces the long exact sequence in cohomology groups:

§a—1

Hom(B,, G) <= Hom(Z,, G) <= HI(Hom(C,,G)) <= Hom(B,_,,G) <— Hom(Z,_,,G)

It is easy to notice that the coboundary homomorphism 6? : Hom(Z,,G) — Hom(B,, G)
coincides with the homomorphism ozjf = Hom(ay, 1). We have the following exact sequence:

0 «— Keraf «— H%Hom(C,,G)) «— Coker af_l — 0.
Now we identify Kera# = Hom(H,(X),G) and Coker af_l = Ext(H,-1(X),G) to get the
desired exact sequence.
Recall that we have splitting C, = @ C.(q), and hence

q>0

Hom(C,, G) = @ Hom(C.(q), G).

q>0
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Consider the cochain complex Hom(C.(q), G):

q q—1

0 «— Hom (B,-1,G) «— Hom (Z,-1,G) «— 0.

We notice that the sequence 0 — B,y — Z,_1 — H,_1(X) — 0 may be considered as
free resolution of the group H,_1(X). Thus we have:

' Hom(H, 1(X),G) if j=q—1,
H’(Hom(C.(q),G)) = ¢ Ext(H,-1(X),G) ifj=gq,
0 else.
Thus we use the above splitting of Hom(C,, G) to get the isomorphism:
HY(X:;G) = HHom(C.,G)) = Hom(H,(X),G) & Ext(H,—1(X),G).
This completes the proof of Theorem 15.2. O

Theorem 15.3. Let X be a space, and G an abelian group. Then there is a split exact
sequence

0 — HY(X;Z)® G — HY(X;G) — Tor(H"™(X;Z),G) — 0

for any q > 0. Again the splitting is not natural.

Exercise 15.20. Prove Theorem 15.3.

Let G be a finitely generated abelian group. It is convenient to denote F'(G) the maximum
free abelian subgroup of G, and T'(G) the maximum torsion subgroup, so that G = F(G) @
T(G). Perhaps such decomposition makes only for finitely generated groups.

Exercise 15.21. Let X be a space so that the groups H,(X) are finitely generated. Prove
that H9(X;Z) are also finitely generated and HY(X;Z) = F(H,(X;Z)) @ T(H,-1(X;Z)).

Exercise 15.22. Let F' be Q, R or C. Prove that
Hy(X;F) = Hy(X) & F, H'(X; F) = Hom(H,(X), F).

Exercise 15.23. Let F' be a free abelian group. Show that Ext(G, F') = 0 for any abelian
group G.

Exercise 15.23. Let X be a finite CW -complex, and F be a field. Prove that the number

X(X)p =) (~1)?dim H,(X;F)

q>0

does not depend on the field F and is equal to the Euler characteristic

X(X) = Z(—l)q {# of g-cells of X }.

q>0
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15.6. The Kiinneth formula. Let C, and C, be two chain complexes:

NS NG N I NG RN
A tensor product C, ® C, is the complex
where B
C,= P cac
r+s=q
and the boundary operator 9, : C; — Cy_1,
0, P cec,— P cec
r4+s=q r4+s=q—1
is given by the formula (where ¢ € C,., ¢ € C%):
ylc®d) = (0,0) 0 + (~1)e®dd € (G ®C) @ (CoCa)c P C o
r4+s=q—1
We emphasize that the sign in the above formula is very important.

Exercise 15.24. Prove that 5q+15q = 0.

The Kiinneth formula describes homology groups of the produt X x X’ in terms of homology
groups of X and X'. It is tempted to use the same singular chain complexes we used to
prove the universal coefficient formulas. However there is a serious problem here. Indeed, the
singular chain complex C.(X x X’) is not isomorphic to the tensor product C.(X) ® C.(X’).
There is a general result showing that the chain complexes C,(X x X’) and C,(X) ® C.(X")
are chain homotopy equivalent (this is the Eilenberg-Zilber Theorem). We already have
some technique to avoid this general result: we can always replace the spaces X, X’ to
weak homotopy equivalent C'W-complexes and use the cellular chain complexes. Thus the
following is the key property of the cellular chain complex:

Claim 15.3. Let X, X' be CW -complexes. We give the product X x X' the product CW -
structure. Then E,(X x X') = (X)) ® E(X).
Now this is the Kiinneth formula.

Theorem 15.4. Let X, X' be topological spaces. Then for each q > 0 there is a split exact
sequence

T+s5=q r+s=q—1

Proof. As we mentioned, it is enough to prove the above formular in the case when X
and X’ are CW-complexes. Let & = E.(X), & = E(X'). We denote Z, = Ker 5q, and
B, =Im éq +1- Again, we have the short exact sequnce

0 — 2, — & — B;-1 — 0.
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Since all groups here are free abelian, we have a splitting
gq == Zq @ Bq—l-

Similarly as we did before, this decomposition allows us to split the complex &, into the direct
sum of short chain complexes &£,(q):

q . q—1
7,
00— By 5 2 — 0 — -

As before, we have that H,_1(€.(q)) = Hy,—1(€) and H;(Ex(q)) =01if j #q—1.

We define such complexes E.(q), £.(q), thus we have the decompositions:

E.=@er), and & =PEls)

r>0 s>0

Thus the tensor product &, ® £ is decomposed as follows:

@& =EPEr)@Es

r,s>0

We examine the tensor product E.(r) ® EL(s):

Ss+r s+r—1 s+r—2

_>0HB7‘ 1®B i> (Zr—l ®B;_1) > (Br 1 ®Z; 1) LZT—I ®Z;_1—>O_>

Now we have to compute the homology groups of this chain complex. First we put together
all short exact sequences we need. We have the complexes E.(r) and E.(s):

~H0HBT_1LZT_1HO—>-~-

-/
(3
-—>0—>B;_1—S>Z;_1—>0—>---

Also we need the short exact sequences which will be considered as free resolutions of the
groups Hr—l(X)’ Hs—l(X/):

0_>Br ngr I&Hr 1_>O H’I‘—IZH’I‘—I(X)7

0— B, 1—>z' LR

— H;_, — 0, H,_,=H_(X).
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Consider the following diagram:

0 0 0
y drts , , drys—1 ,
O — BT—l ® BS—l ZT—l ® BS—l @ BT—l ® BS—l ZT’—l ® Bs—l — O
Id 19181Qi,_, 1®i, 4
55 T 55 r—
(79) 0— Br—l ® B;—l - Zr—l ® B;—l s> Br—l ® Z;_l S Zr—l & Z;_l — 0
0®1®p’,_, 1ep_4
ir71®1
0 0 B,_1®H,_, Z, 1®H., ;-0
0 0 0

Here the homomorphisms 55+,,, 58+T are given by

Os1r(bRV) = (i,10) @V & (-1)bR (i,_b) e Z, 1 B._,®&B,_1® Z,_,,

Dsir1(z@VBbR2)=(-1)""12x (@, V)+ (i,10) @2 € Z,_,® Z_,.
The homomorphisms d,,, d,,s 1 are defined similarly:

dyrr (DY) = (i) RV & (~1) bRV € Z, 1 @B, & By @By,

dsrr1(zQV, ®ORV,) = (=120, + (i,_1b) @V, € Z, 1@ B.,_,.

It is easy to check that the diagram (79) commutes and the columns are exact. We consider
the diagram (79) as a short exact sequence of chain complexes. We notice that the sequence

0— Br—l ® B;—l & Zr—l ® B;—l ©® Br—l ® B;—l M’ Zr—l & B;—l — 0

is exact. Thus the homology groups of this complex are trivial. On the other hand, the
homology groups of the complex

ir71®1
—_—

O — Brr_l ® H;—l Zfr—l ® H;—l — O

are equal to H,_; ® H_; (in degree r + s —2), and Tor(H,_1, H. ;) (in degree r +s —1)
and zero otherwise. The long exact sequence in homology groups corresponding to the short
exact sequence of chain complexes (79) immediately implies that

H._1®H,_, ifj=r+s—2,
H;(E(r)®EL(s)) =« Tor(H,_1,H,_|) ifj=r+s—1,
0 else.

Now it is enough to assemble the homology groups of the chain complex &, ® £, out of
the homology groups of the chain complexes &,(s) ® E.(r) to get the desired formula. This
concludes the proof of Theorem 15.4. O
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Theorem 15.5. Let X, X' be topological spaces. Let H*(—) = H*(—;Z). Then for each
q > 0 there is a split exact sequence

0— P B (X))o H(X) — HI(X xX') — P Tor(H"(X), H'(X')) — 0.

r4+s=q r+s=q+1

Exercise 15.25. Outline a proof of Theorem 15.5.

Exercise 15.26. Let F' be a field. Prove that
H/(X x X';F)= P H,(X;F)® H,(X"; F),

r+s=q

HYX x X';F) = @ H'(X;F)® H (X', F).
r+s=q

Exercise 15.27. Let §,(X) = RankH,(X) be the Betti number of X. Prove that
Be(X x X') = > B(X

r+s=q
Exercise 15.28. Let X, X’ be such spaces that their Euler characteristics x(X), x(X’) are
finite. Prove that x(X x X') = x(X) - x(X’).

15.7. The Eilenberg-Steenrod Axioms. At the end of 50s, Eilenber and Steenrod sug-
gested very simple axioms which characterize the homology theory on the category of C'W -
complexes. In this short section we present these axioms, however we are not going to prove
that these axioms completely determine the homology theory.

First we should carefully describe what do we mean by a “homology theory”. Let 7op denote
the category of pairs of topological spaces, i.e. the objects of Zop are pairs (X, A) and
the morphisms are continuous maps of pairs. Let Ab, be the category of graded abelian
groups, i.e. the objects of Ab, are graded abelian groups A = {Aq}qEZ’ and the morphisms
are homomorphisms ® : A — B given by a collection of group homomorphisms ® =
{¢q: Ay — Byir}. The integer k is the degree of the homorphism ®.

A homology theory (H,0) consists of the following:

(1) A covarint functor H : Top — Ab,, i.e. for each pair (X, A) H(X,A) is a graded
abelian group, and for each map of pairs f : (X, A) — (Y, B) there is a homomor-
phism H(f): H(X,A) — H(Y, B) of degree zero.

(2) A natural transformation 0 of the functor H of degree —1, i.e for any pair (X, A)
there is a homomorphism 0 : H(X, A) — H(A, D) of degree —1. It is natural with
respect to continuous maps of pairs f : (X, A) — (Y, B), i.e. the following diagram

H(X, A) 9 H(A,0)

H(f) H(S)

H(Y, B) H(B,0)




140 BORIS BOTVINNIK

commutes.
The functor H and transformation 0 should satisfy the following axioms:

1. Homotopy Axiom. Let f,g: (X,A) — (Y, B) be homotopic maps, then
H(f) = H(g)-

2. Exactness axiom. For any pair (X, A) and the inclusions i : (4,0) C (X, A),
and j: (X,0) C (X, A) there is an exact sequence:

o AL D) 2 1x0) 2L m(x, A) L HALD) —
3. Excision Axiom. For any pair (X, A), and open subset U C X, such that
UcC ;1, then the excision map e : (X \ U, A\ U) — (X, A) induces the isomorphism
H(e) : H(X\ U, A\U) — H(X, A).
4. Dimension Axiom. Let P = {pt}. Then the coefficient group H(P,0) =
{H,(P)} is such that

| Z, ifq=0,
Hq(P)_{ 0, ifgqg#0.

Eilenberg-Steentrod proved that the above axioms completely characterize the homology the-
ory (X,A) — {H,(X,A)} in the following sense. Let (H’,0) be a homology theory then
on the category of pairs having a homotopy type of CW -complexes, the homology theory
(H',0) coincides with the singular homology theory. The Eilenberg-Steentrod axioms have
led to unexpected discoveries (in the begining of 60s). It turns out there are functors (H', 0)
which satisfy the first three axioms, and, in the same time, their coefficient group H(pt) is
not concentrated just in the degree zero. The first examples were the K -theory, and different
kind of cobordism theories. Now we call such homology theory a generalized homology theory.
These days the word “generalized” dropped, since they were incorporated into major areas
of mathematics.
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16. SOME APPLICATIONS

16.1. The Lefschetz Fixed Point Theorem. We still start with some algebraic construc-
tions. Let A be a finitely generated abelian group. Denote F'(A) the free part of A, so that
A=F(A)@®T(A), where T(A) is a maximum torsion subgroup of A. Let ¢ : A — A be
an endomorphism of A. We define F(p): F(A) — F(A) by composition:

F(p) : F(A) Jnclusion o Projection  p 4y

The homomorphism F(y) is an endomorphism of the free abelian finitely generated group
F(A). Hence the trace Tr(F(y)) € Z is well-defined. We define Tr(y) = Tr(F(¢)). Now
let A = {Aq}, -, be a finitely generated graded abelian group, i.e. each group A, is finitely
generated. A homomorphism ® : A — B of two graded abelian groups is a collection of
homomorphisms {¢, : A, — By—x} (the number k is the degree of ®).

Now let A= {A,} ., be a finitely generated graded abelian group, and let

2= {p): A — A

be an endomorphism of degree zero. We assume that F'(A,;) =0 for ¢ > n (for some n). We
define the Lefschetz number Lef(®) of the endomorphism & by the formula:

Lef(®) = 3 (~1)Tx(,).

q>0

q>0

Clearly we have several natural examples of such endomorphisms. The main example we are
going to work with is the following. Let X be a finite C'W -complex, and f: X — X be a
map. Then there are the induced endomorphisms of degree zero

fo: Ed(X) — E(X), fo:HJ(X) — HJ(X),
where E,(X) = {&,(X)}, H.(X) = {H,(X)} are considered as graded abelian groups.

Claim 16.1. Let C be a chain complez, C = {C,}, such that C, = 0 for ¢ > n (for some
n). Let ¢ : C — C be a chain map, and p, : H.C — H.C be the induced homomorphism
in homology groups. Then

Lef(p) = Lef(p.).
Exercise 16.1. Prove Claim 16.1.

Let f: X — X be a map of finite C'W -complex to itself. We define the Lefschetz number
Lef(f) = Lef(f.), where f.: H.(X) — H.(X) is the induced homomorphism in homology
groups. Clearly the Lefschetz number Lef(f) depends on the homotopy class of f.

Theorem 16.1. (Lefschetz Fixed Point Theorem) Let X be a finite CW -complex and
f: X — X be a map such that Lef(f) # 0. Then f has a fized point, i.e. such a point
rog € X that f(:(f(]) = Xy.

Proof. First we recall that a finite CTW -complex X may be embedded as a compact subspace
into the Euclidian space R™ for some n. In particular, the metric on X (which is the induced
metric from R") determines the original topology on X . Let d(z,x’) be the distance function
induced by this metric.
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Assume that f(x) # x for each point x € X . Since X is a compact, there exists a positive
number € > 0 so that d(f(x),z) > € for all x € X. For every cell e? of X, we use a
homeomorphism A? = ¢4 to define new C'W -structure on X as follows. We find a barycentic
subdivision of A? such that

diam(A) < ¢/9, and diam(f(A)) < €/9

for each simplex A of that barycentic subdivision. The simplices A of this barycentic subdi-
vision define new CW -structure on X . Let {O’?} be the cells of this C'W -structure on X.
For each cell of we define the subcomplex

Eg = U O'j.
7;NGa#D
Notice that the diameter diam(EJ) < 4¢/9. Indeed, let z,2" € E}. Choose xy € 0. Then
d(x, ) < 2€¢/9, and d(z', xo) < 2¢/9. Thus
d(z,2") < d(x,z0) + d(2', zg) < 4€/9.

Clearly diam(f(Eg)) < 4€/9 as well. Now it is clear that d(E{, f(E{)) > € — 8¢/9 = €/9.
Hence

EG 0 f(EG) = 0.
Now we use the cellular approximation Theorem 5.5 where we constructed a cellular map
f'~ f. Tt is easy to see that f'(al) C f(E$) by construction we gave in the proof of

Theorem 5.5. Thus 74N f'(55) = . Now consider the homomorphism f}, : £(X) — &,(X).
We have that

fiulog) = E Niol,  where o # af.
Hence Tr(f),) = 0 for each ¢ > 0, and
#

0 = Lef(f},) = Lef(fy) = Lef(f.) = Lef(f).
This concludes the proof. O

Corollary 16.2. Let X be a finite contractible CW -complex. Then any map f: X — X
has a fized point.

Exercise 16.2. Prove Corollary 16.2.

A continuous family ¢; : X — X of maps is called a flow if the following conditions are
satisfied:

(a) ¢o=ldx,
(b) ¢ is a homeomorphism for any ¢ € R,

(€) psyt(m) = s 0 pi().

It is convenient to treat a flow ¢; as a map ¢ : X Xx R — R, where p(z,t) = ¢i(z). A flow
is also known as one-parameter group of homeomorphisms. The following statement is not
very hard to prove, however, it provides an important link to analysis.

Theorem 16.3. Let X be a finite CW -complex with x(X) # 0, and ¢, : X — X be a
flow. Then there ezists a point o € X so that pi(xg) = x¢ for all t € R.
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Proof. By definition, each map ¢; ~ Idx. Thus Lef(yp;) = Lef(Idx) = x(X) # 0. Thus
there exists a fixed point z(()t) of ¢; for each t. Let

Ay={zeX |pym(@)=z}.
Clearly A, D A,i1, and each A, is a closed subset (as the intersection of the diagonal
A(X) = {(z,2)} C X x X and the graph I'(p1/2) = {(z,¢120(2))} C X x X). Thus

F =n,A, is not empty. Let x € F'. Clearly z is a fixed point for any ¢,,o». Since the
numbers m/2" are dense in R, x is a fixed point for ¢, for any t € R. O

Remark. Let X = M"™ be a smooth manifold, and assume a flow ¢ : M" x R — M™ is
a smooth flow, i.e. the map ¢ is smooth, and ¢, is a diffeomorphism. We can even assume
that the flow ¢ is defined only for t € (—e¢,€). Let x € M™, the

doo(e) _ or@) = ole) _ . pule) -z
dt 7—0 T T—0 T

is a tangent vector to M"™ at the point x, and the correspondence

- dipo()
dt
defines a smooth tangent vector field v(z) on M™. Theorem 16.3 implies that if y(M™) # 0,
then there is no tangent vector field on M without zero points. Actually, a generic tangent
vector field always has only isolated nondegenerated zero points, so that each zero point has

index +1. The Euler-Poincare Theorem states that the sum of those indices is exactly the
Euler characteristic y(M). '

Exercise 16.3. Let f: RP?® — RP?" be a map. Prove that f always has a fixed point.
Give an example that the above statement fails for a map f: RP**! — RP**!,

Exercise 16.4. Let n # k. Prove that R™ is not homeomorphic to R¥.

Exercise 16.5. Let f : S" — S™ be a map, and deg(f) be the degree of f. Prove that
Lef(f) = 1+ (~1)" deg(/).

Exercise 16.6. Prove that there is no tangent vector field v(z) on the sphere S? such that
v(z) # 0 for all x € S?*. (Compare with Lemma 13.9.)

16.2. The Jordan-Brouwer Theorem. This is a classical result about an embedded sphere

Sn=t c §n.

Theorem 16.4. (The Jordan-Brouwer Theorem) Let S™~' C S™ be an embedded sphere in
S™. Then the complement X = S™\ S™"! has two path-connected components: X = X;UXo,
where X1, Xy are open in S™. Furthermore, 0X, = 0X, = S" L.

First we prove a technical result.

10 gee J. Milnor, Differential topology, mimeographic notes. Princeton: Princeton University Press, 1958,
for details.
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Lemma 16.5. Let K C S™ be homeomorphic to the cube I*, 0 < k <n. Then
Hy(S"\ K)=0 forall ¢>0.

Proof. Induction on k. The case £ = 0 is obvious. Assume that the statement holds
forall 0 < kK < m —1, and let K is homeomorphic to I™. We choose a decomposition
K = L x I, where L is homeomorphic to I™ . Let K; = L x [0, %], and Ky = L X [%,1].
Then K1 N Ky =1L x {%} =~ [m=1 By induction,

fIq(S" \KiNKy)=0 forall ¢ >0.

We notice that the sets S™\ K, S™\ K, are both open in S”. Thus we can use the Mayer-
Vietoris exact sequence

s Hy(S"\ Ky U Ky) — Hy(S"\ Ky) ® Hy(S"\ Ka) — Hy(S"\ K1 N Ky) — -+
Thus we have that
Hy(S™\ Ky U Ky) = Hy(S™\ K1) @ Hy(S™\ K).
Assume that H,(S™\ K; U K>) #0, and z € H,(S"\ K1 UK,), z # 0. Then z = (2, 20),

thus there exists z; # 0 in the group H,(S™\ K;) or H,(S™\ K5). Let, say, z; € Hy(S™\ K1),
z1 # 0. Then we repeat the argument for K7, and obtain the sequence

KOKD S K® 5 Kg® 5. ..
such that
(1) K® is homeomorphic to I,
(2) the inclusion i, : S® \ K C S"\ K takes the element z to a nonzero element
zs € Hy(S"\ K@),
(3) the intersection mK () is homeomorphic to I,

s

We have that any compact subset C' of S™\ m K® lies in S™\ K for some s, we obtain

that C,(S™\ ﬂK(s)) = lim C,(S™\ K®)) and, respectively,
—s
Hy(S"\ (K@) = lim Hy(S"\ KW).
S s

By construction, there exists an element z, € Hy(S™ \ (), K®)), zs # 0. Contradiction to
the inductive assumption. O

Theorem 16.6. Let S* € S™, 0<k<n—1. Then
7 n k\ ~ Z> qu:n_k_]-a
(50) Ayst\ s { Boden i)

Proof. Induction on k. If k¥ = 0, then S™\ S° is homotopy equivalent to S™~!. Thus the
formula (80) holds for k = 0. Let k > 1, then S* = D* U D*  where D%, D* are the south
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and northen hemispheres of S*. Clearly Dﬁ N D* = S*=1. Notice that the sets S™\ D% are
open in S™, we can use the Mayer-Vietoris exact sequence:

co = Hoa(S"\ D) @ Hyyr (S \ D*) — Hypi(S™\ DE N DF) —
— H,(S™\ %) — H,(S"\ D%) & H,(S"\ D*) — - -
The groups at the ends are equal zero by Lemma 16.5, thus
H,(S™\ 8*) 2 Hyan(S"\ S*7)
since DX N D* = S*=1. This completes the induction. O

Proof of Theorem 16.4. Theorem 16.6 gives that Ho(S™\ S"!) = Z. Thus X = 5\ "1
has two path-connected components: X = X; U X,. Notice that S"~' C S is closed and
compact; thus its complement S™\ S"~! is open. Hence X; and X, are open subsets of
S™. In paricular, for any point z € S™\ S"! there is a small open disk which is contained
completely either in X; or X,. Assume that € 0X; := X; \ X;. Then if 2 € X, then
there is an open e-disk W centered at x, and W C Xj; on the other hand, WNX; # ) since
x € 90Xy, or X; N X,y #0D. Contradiction. We conclude that S"~' 5 90X, S" ! D 0X,.

We have to prove that S*' C X; N X,. It is enough to show that for any point = € Sl
and any open neighorhood V of z is S", U N (X;NX,) # 0. Let 2 € "', assume that
x ¢ 0X;. Then there exists an open disk V' in S™ centered at x such that V N X; = 0.

Let B be an open disk in S™! centered at z such that
B C V. Then A := S"'\ B is homeomorphic to D"1
and Lemma 16.5 implies that

H,(S"\ A)=0 forall ¢>0.
In particular, it means that the subspace S™ \ A is path-
connected. Then we have:

By assumption, X; N (X, U V) =0, thus

S"NA=(Xin(S"\A) U ((XuV))n(5"\ A))
is a disjoint union of two nonempty open sets. Contradiction. O

Remark. To visualize this argument, we can do the following. We just proved that for any
x € "1 and any open neighborhood V of x in S™, the intersections VNX; and VN X, are
nonempty. Let p; € X; NV, and py € XoNV. As we have seen above, the subspace S™\ A
is path-connected, hence there exists a path v : I — S™\ A connecting p; and ps, see Fig.
16.1. Thus there exists t € I so that «(t) € B. Clearly p = () belongs to X; N X5, and
p € S"1. It means that V N (71 N 72) # (). Since this is true for any open neighborhood

U of x, we see one more time that z € X1 N X5.
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16.3. The Brouwer Invariance Domain Theorem. This is also a classical result.

Theorem 16.7. (The Brouwer Invariance Domain Theorem) Let U and V' be subsets of S™,
so that U and V' are homeomorphic, and U are open in S™. Then V 1is also open in S™.

Proof. Let h: U — V be a homeomorphism, and h(x) =y. Since U is an open subset of
S™. there exsits a neighborhood A of z in U, so that A is homeomorphic to the disk D".
Let B = 0A. Denote A’ = h(A) CV, B'=h(B) C V. By Lemma 16.5 the subset S™\ A’
is path-connected, and by Theorem 16.4 the subset S™\ B’ has two path-components. We
have that

S"\B'=(s"\A)u(4'\ B),
and the sets S™\ A" and A’ \ B’ are path-connected, then they are the path-components of
S™\ B'. Thus A’\ B" is open in S™. Since A’\ B’ C V', and y € V is an arbitrary point,
the set V' is open in S". O

16.4. Borsuk-Ulam Theorem. First we introduce new long exact sequence in homology
which corresponds to a two-fold covering p : T — X. We observe that the chain map
py :C(T3Z/2) — C(X;Z/2) fits into the following exact sequence of chain complexes:

(81) 0—C(X;Z/2) = C(T;2/2) 25 ¢(X:Z/2) — 0.

Here the chain map 7 : C(X;Z/2) — C(T;Z/2) is defined as follows. Let h : A7 — X be
a generator of Cy(X;Z/2). Let A? = (vg,...,v,), and zo = h(vy). Let :c(()l),x(()z) € T be
two lifts of the point zy. Then, since A? is simply-connected, there exist exactly two lifts
A A — T, i=1,2 such that AV (vy) = x((]l) and 7 (vy) = z(()2). Then

7(h: A= X):= (Y AT = T)+ (h? : A7 = T).

The homomorphism 7 is sometimes called a transfer homomorphism. On the other hand,
it easy to see that the kernel of py : Cy(T:Z/2) — C,(X;Z/2) is generated by the sums
(M A9 — T) + (h® : A? — T). Thus the short exact sequence (81) gives a long exact
sequence in homology groups (with Z/2 coefficients):

(82) -+ — Hy(X:Z/2) =5 H(T:Z/2) 25 H(X:Z/2) 2 H, 1(X:Z/2) — - --

We will use the long exact sequence (82) to prove the following result, known as Borsuk-Ulam
Theorem.

Theorem 16.8. Let f : S™ — S™ be a map such that f(—x) = —f(x) (an “odd map”).
Then deg f is odd.

Proof. Consider the long exact sequence (82) for the covering S™ — RP™:

0 — H,(RP") = H,(S") 2> H,(RP") % H, ;(RP") =0 — - -
= 0— H®RP") L H, (RP") -0 — - -

= 0= H(RP") % Hy(RP") — Hy(S") 25 Hy(RP™) — 0
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The exactness forces that the homomorphisms

T. : H,(RP™) — H,(S"),

0:H,RP") — H,_ ;(RP"), g=n,n—1,...,1,
to be isomorphisms, and p, : H,(S™) — H,(RP") to be zero for ¢ > 0.

Now let f:S™ — S™ be a map such that f(—z) = —f(z). Then it induces a quotient map

f: RP™ — RP", such that the diagram

S S"

RP" —— RP"

Now we notice that f, : Ho(S™) — Ho(S™) f. : Ho(RP") — Hy(RP") are isomorphisms,
then we use naturality of the exact sequence (82) to get the commutative diagrams

H,(RP") 0 H, ,(RP") H,(RP") T H, (5™
H,(RP") H, (RP") H,(RP™) u H,(S™)

for ¢ =1,...n. In particular, we obtain that f. : H,(S™;Z/2) — H,(S™;Z/2) is an isomor-
phism. On the other hand, we know that for integral homology groups

fe i Ho(S™) — Hn(S")

is a multiplication by the degree deg f. We obtain that after reduction modulo two f, is
isomorphism:

H,(S™: Z) I

H,(S™Z)

H,(S"2/2) ———— H,(S";Z/2)

Thus the degree deg f must be odd. O

Exercise 16.7. Let 0 < p,q < n — 1, and the wedge SP V 59 is embedded to S™. Compute
the homology groups H,(S™\ (57 V 57)).
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Exercise 16.8. Prove that for each n > 1 there exists a space X with

~ | Z/m, ifqg=n,

Hy(X) = { 0, ifqg#n.
Exercise 16.9. Let H = {H,} be a graded abelian group. We assume that H, = 0 for
q <0, and Hy is a free abelian. Prove that there exists a space X such that H,(X) = H,
for all ¢. In particular, construct a space X with the homology groups:

~ Z[}], ifq=n,
— P
Hqy(X) { 0, ifqg#n.
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17. CUP PRODUCT IN COHOMOLOGY.

17.1. Ring structure in cohomology. The homology groups are more “geometric” than
the cohomology. However, there is a natural ring structure in cohomology groups which is
very useful. The Kiinneth formula gives natural homomorphism

m: H¥X;Z)® H(X;Z) — H"'(X x X;Z)

Consider the diagonal map A : X — X x X which sends z to the pair (z,z). Then we
have the composition

HYX;Z)® H'(X;Z) 2% H"(X x X;Z) 25 H(X; Z).

which gives the product structure in cohomology. The way we defined this product does not
allow us to compute actual ring structure for particular spaces. What we are going to do is
to work out this in detail starting with cup-product at the level of singular cochains.

17.2. Definition of the cup-product. First we need some notations. We identify a simplex

AY with one given by its vertices (vp,...,v,) in R, Let g : A? — X be a map. It is
convenient to use symbol (v, ...,v,) to denote the singular simplex ¢ : A? — X, and, say,
(Vo, . - ., vs) the restriction g|w,,...0.)-

Let R be a commutative ring with unit. We consider cohomology groups with coefficients in
R. The actual examples we will elaborate are when R = Z, Z/p, Q, R. Let ¢ € C*(X),
¥ € CY(X) be singular cochains, and f : A*¥* — X be a singular simplex. We define the
cochain ¢ U1 € CF(X) as follows:

(U, (v, .-, k1)) = (@UD) (Vo -+, Ugt1) := @(Voy o, V) (Vg -+ o, Vpey)-

To see that the cup-product at the level of cochains induces a product in cohomology groups,
we have to undestand the coboundary homomorphism on ¢ U ).

Lemma 17.1. Let ¢ € C*(X), ¢ € CY(X). Then

S(pU) = Ut + (—1)Fp U sy

Proof. Let g : AF*H1 — X be a singular simplex. We compute (5o U1, g) and (@0Udp, g):

k+1
(Bput,g) = Y (=1V@(vo . Ty hs) (O, -, Vi),
=0
k+1+1
(83) (pUd,g) = D (=1 p(vo,. vk )P(vrs - Ty Vpgin):
j=k

k+14+1

= (=DF > (=1)p(vo, .., ) (O, - Ty Vkgig).

i=k
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Consider the following terms in (83):
(=D o(vg, .oy 0Vt - -+ Ukgis1)
(=1)*o(vo, ..oy U)WV (Vkgts - - Upgrs1)
The first one corresponds to j = k + 1 in the formula for (dp U %, g), and the second one

corresponds to j = k in the formula for (p Uy, g). Clearly they cancel each other, and we
have that

k
<6S0 U ¢ + (_1)]690 U 5w7 g) = Z(—l)]go(vo, s 7/U\jv e 7Uk+1)w(vk+17 v 7Uk+l+1)

7=0
k4141
+ Z (_1)]Q0('U07"'avk)w(vka"'>i}\ja"'>vk+l+l)
(84) =kt
k+14+1
= ) (1 (eUd) (v, Tj- s Vksinr)
7=0

= (pU,dg) = (0(pUY),9).

This concludes the proof. O

Now it is clear that the cup product of two cocyles is a cocycle, and the cup-product of cocycle
and coboundary is a coboundary. We conclude that the cup-product in the cochain groups
induces the cup-product in cohomology:

U: H*(X;R) x H(X;R) — H"(X;R),

where R is a commutative ring. The cup-product induces the ring structure on H*(X; R). Let
K* = @ K’ be a graded R-module, with K% = R and K7 = 0 for j < 0. We say that K* is a
graded algebra over R if there is a product p : K*®@K* — K* so that pu: KF@ K* — K¢,
and the unit 1 € R = K is the unit of the product u, i.e. p(l®a) =pla®@ 1) =a. We
say that (K*, u) is a graded commutative R-algebra if p(a ® b) = (—1)¥u(b ® a), where
dega =k, degb="/.

Claim 17.1. Let R be a commutative ring. Then H*(X;R) is a graded commutative R-

algebra.

Construction. Let f:A? — X be a singular simplex, and the simplex A? is given by its
vertices (v, ...,v,). Consider the singular simplex f: A? — X, where A7 = (v,,...,0),
and

Fiar Loar Lo x
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where T' is given by the linear isomorphism 7 : R — R9*! sending vertices (vo, .. .,v,)
to (vg,...,vo) respectively. Clearly as a linear map, 7" is given by the matrix
00 --- 01
00 --- 10
T=1]: : 31 1
01 --- 00
10 --- 00
alat1)

which has determinant detT = (—1)" 2 . Thus T induces the chain map
t:Ci(X) — Cu(X)
sending a generator f: A9 — X to the generator f: A? — X.

q(g+1)
2

Exercise 17.1 Prove that there is a chain homotopy between ¢ and (—1) Id.

The homomorphism ¢ : C,(X) — C.(X) induces the homomorphism
t*:C*(X; R) — C*(X; R).

Clearly in cohomology the homomorphism t* coincides with

q(g+1)

(—1)"2 " Id: HY(X; R) — HY(X:R).

Proof of Claim 17.1. Let ¢ € C*(X; R), ¢ € C'(X; R), and f: A¥" — X be a singular
simplex. As above, we denote the singular simplex by its vertices (vy,...,vx;). We have:

(pUW)(voy -y vk11) = @(Voy s V)0 (Vg oo, Vgegq)

k(k+1) 1(1+1)

= (_1) 2 SO('UkV"aUO)(_l) 2

k(k+1) | 1(1+1)
3t

(Uk+z, cee ,Uk)

¢(Uk+l7 e ,Uk)gO(’Uk, e ,Uo)

k(k+1) | 1(I+1)
T2 T2

(YU Y)(Vkt, - - -, Vo)
= (-1) (-1

= (DM Ue)(vo,- .., ven).
a(q+1)

Here we have identified singular simplex g = g o T with the map (—1)" 2 ¢ for a singular
simplex g : A? — X. O

k(k+1) | 1(1+1)
3 T2

(Y UY)(vo, ..., Vk4)

Theorem 17.2. (Properties of the cup-product) Let X be a space and R a commutative ring
with unit. Let v € HY(X;R), v/ € H'(X:R), " € H"(X;R) j = 1,2,3 be any elements.
Then

(1) YUy = (=1 Uxy;

(2) (YUY)UAY" =7yU (Y UY");

() fH(yUY) = (f"NU(fY) and a.(yU) = (a.7) U (ewy') for any map f: X — X'
and ring homomorphism «a: R — R’.
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17.3. Example. We compute the cup-product in cohomology H *(MQQ; Z), where ]\/[g2 is the
oriented surface of genus g. We think of M g2 as a 4¢g-sided polygon with corresponding edges
identified. We consider carefully only a part of this polygon given at Fig. 17.1. The only
cup-product of interest is the product

U
HYM2;Z) x H (M2, Z) — H?*(M}; 7).

To compute this product we choose particular generators in the first homology and cohomol-
ogy groups. First, we choose a simplicial (and cell) structure on M g2 as it is shown at Fig.
17.1.

A basis for the homology group Hi (M) is given
by the 1-simplices (or 1-cells) a;,b;, i =1,...,g.
Then the basis of
Hl(Mg; Z)= Hom(Hl(MQQ), Z)

is given by elements «;, (;, so that

<ai7bj> =0, <Oéi,aj> = 045,

(Bi, bj) = i, (Bi,a;) = 0.
We choose the following cocycles ;, 1; repre-
senting «;, [; respectively.

Fig. 17.1.

We define ¢; to be equal to 1 on the adges meeting the dash-line connecting the sides a;, and
zero on all others. Similarly we define v; to be on the adges meeting the dash-line connecting
the sides b;, and zero on all others. Thus

(0, 0") = (0, 0y = (p,a;) = 1,
(W, vy = (0, 0%y = (,b;) = 1,

and they are zero on all other 1-simplices. It is easy to check that d¢; = 0 and d¢; = 0. For
example, we see that

(001, (0, AV AN = {05, 0(0, AP, AV = (0, @) — (1, v) + (i, 0”) = 0,

(001, (0, AV AP = (0, 0(0, AN, APYY = (05, 0") + (1, bi) — (i, 07) = 0.

)

To compute the cup-product, we notice that ¢; Up; =0 if 7 # j. Now we have:
(i Ui, (0, A7, AD)) = (i) (W, 02) = 0,
(i Ui, (0, A7, AP)) = (i) s, ) = 1,
(i Ui, (0, A7, AY)) = (i) (W, 00) = 0,

(i Ui, (0, AP A = (5, 0V) (0, b) = 0.
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Now we notice that the cycle generating Hg(Mg) is represented by

g
C:Z <(O’AZ(O)>A£1))+(OvAz(l)?Az(Z))+(07A1(2)aA2(3))‘l‘(O,AEg),AZM))) ‘

i=1

Hence we have that (¢; U, c) = 1, and the element ¢; U; = v, where 7 is a generator of
H?*(M2;Z), such that (y,c) =1.

Claim 17.2. The cohomology ring H*(M};Z) has the following structure:
o U B = 047,
OéiUOéj:O, /G'LU/@]:O7
a; U ﬁj = _ﬁj UCYZ'.

where a;, 3; are generators of H'(MZ};Z), and v is a generator of H*(M};Z),

Exercise 17.2. Compute the cup-product for H*(RP?;Z/2). Hint: Use the simplicial (or
cell-decomposition) indicated on Fig. 17.2.

7

Fig. 17.2.

Exercise 17.3. Let Ng2 be nonoriented surface of genus g, i.e. Ng2 = Tt .- T?*#RP2.
Compute the cup-product for H*(NZ;Z/2).

Exercise 17.4. Compute the cup product for H*(RP?;Z/2%), k > 2.

Exercise 17.5. Let X = S* Uy, €?, where f; : S' — S' is a degree k£ map. Compute the
cup product for H*(X;Z/k).

17.4. Relative case. The same formula which defines the cup product
H*(X;R) x H(X;R) — H"(X;R)
also gives the products:
H*¥(X;R) x H'(X,A; R) — H*(X, A; R),
H¥(X, A; R) x H'(X; R) — H*(X, A; R),

H¥(X, A: R) x H'(X, A: R) — H*(X, A: R).
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Furthermore, if A, B are open in X or A, B are subcomplexes of a C'W-complex X, then
there is a more general cup relative product

H*(X,A; R) x H(X,B;R) — H"*'(X, AU B;R).

We do not give details to define the last product. However we mention that the absolute cup
product C*(X; R) x CY(X; R) — C*(X; R) restricts to a cup product

C*(X, A;R) x C'(X, B;R) — C"!(X, A+ B;R),

where the group C9(X, A + B; R) consits of cochains which vanish on chains in Cy(A) and
in Cy(B). Then one should show that the inclusion map

CYX,A+ B;R) — C1X,AUB;R)

induce isomorphism in cohomology groups, in a similar way as we did proving the Excision
Theorem and Mayer-Vietoris Theorem.

Exercise 17.6. Prove that the cup product is natural, i.e. if f: X — Y is a map, and
f*:H*(Y;R) — H*(X; R) is the induced homomorphism, then

fHaub) = f*(a) U f7(b).

17.5. External cup product. We define an external cup product
U [’[*()(17 R) QR [’[*()(27 R) — H*(Xl X XQ; R)

as follows. Let p; : X7 x Xo — X; (i = 1,2) be the projection onto X;, i.e. p;(x1,z2) = ;.
Then p(a®b) = pi(a) Upi(b). The above tensor product ®p is taken over the ring R, where
H*(X;; R) are considered as R-modules. The tensor product H*(X;; R) ® g H*(Xs; R) has
natural multiplication defined as

(al ® CLQ) . (bl (%9 bg) = (—1)degb1 deg az (&1[)1 (%9 agbg).

Claim 17.3. The eaternal product H*(X1; R) ®r H*(Xa; R) = H*(Xy x Xy, R) is a ring
homomorphism.

Proof. Indeed, we have:

p((ar @ az) - (b ®@ b)) = p((=1)%" 9% (a1by @ azby))
= (—1)deebr desazpi(a; U by) U ps(az U bs)
= (—1)%sh dazpi(ar) U pi(bi) U ps(as) Ups(bo)
= pi(a1) Ups(az) Upi(b) Ups(be)

= plar ®ax)p(br ®bz). O

There are many important cases when the external product p is an isomorphism, for example
for X; =S¥ and X, = Sk2.
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Theorem 17.3. Let a space Xo be such that H(Xo; R) is finitely generated free R-module
for each q. Then the external product

H*(X1;R) @z H*(X5; R) X5 H*(X; x X5, R)

1S a ring isomomorphism.

Proof. First we notice that it is enough to prove Theorem 17.3 for CW -complexes X; and X,
since for any space X there is a weak homotopy equivalent C'W -complex X’. Next we notice
that if &, [ are given, then the external product H*(X; R)®rH'(Xs; R) - H*(X,x X5; R)
is determined of finite skeletons of X; and X5. Thus it is enough to prove the statement for
finite C'W-complexes X; and X5. We need the following result.

Lemma 17.4. Let (X, A) be a pair spaces, and Y be a space. The following diagram com-
mutes:

HA (X, A) @ H*(Y) ool HA(X) @ H*(Y)
s@1 jol
p H*(A)® H*(Y) p
(85)
H (X xY,AxY) p |0 HA (X xY)
g /
H*(AxY)
where the above homomorphisms are from the exact sequences:
H(X, A) o H(X) H (X XY, AxY) —2 + H*(X xY)
5 J \ J
H*(A) H*(AXY)

Proof. The commutativity follows from the naturality of the external product and the

naturality of the Kiinneth formula. O

We return to the proof of Theorem 17.3. Let X; be a zero-dimensional C'W -complex, then
o H*(Xl) X H*(XQ) — H*(Xl X Xg)

is an isomorphism since HY(X; x X5) & H°(X,) ® HY(X,). Assume Theorem 17.3 holds
for all CW -complexes X; of dimension at most n — 1. Consider the pair (D", S""1). The
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homomorphisms
w: H*(D") @ H*(X,) — H*(D" x X3),
p: H* (S @ H*(X5) — H*(S"! x X3)

are isomorphisms: the first one since D™ ~ %, and the second one by induction. Consider the
diagram

H* (D", 8" 1Y @ H*(Xy) gel H*(D™) @ H*(X>)
1 J®1
w H*(sn—l) ® H*(X2> ©w
(86)
H* (D" x X5, 5" x X3) ny P H* (D" % X5)
5 ;

H (5™ x Xo)

which commutes by Lemma 17.4. Recall that H*(X3) is a finitely generated free R-module.
This implies that tensoring by over R by H*(X,) preserves exactness. In other words, we
have the implication:

H*(Dn, Sn—l) B H*(Dn) H*(Dn, Sn—l) ® H*(XQ) 628;1 H*(Dn) ® H*(Xg)
s J s®1 i®l
—
H*(sn—l) H*(Sn—l ®H*(X2)
exact sequence exact sequence

Now by 5-lemma, applied to the diagram (86), the homomorphism
p: H (D™, 8" @ H*(Xy) — H*(D™ x X5, 8" x X))
is an isomorphism. It follows now that the homomorphism
p:H* (X, A) @ H (X)) — H*(X x X5, A x Xs),

where X = \/ D?, A= \/ S;-L_l C X is an isomorphism as well.
) .

J
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Now we prove the induction step. Consider the pair (X . X ("_1)) . We have the commutative
diagram:
H*(\/ (D}, 877) @ H*(X)
J

1%

H*(X™ XDy @ H* (X)) H*(X™) @ H*(X,)

\/

H (X" Y) @ H*(X,)

1%
=

H(X™ % X5, X0 x X5) pl P H(X™ % X,)
~ 5 j
* n A n—1
H (\/ Dj X Xg, \/SJ X X2) H*(X(n—l) X X2)

J
Now 5-lemma implies that
p HY(X™) @ H*(X,) — H*(X™ x X))

is an isomorphism. 0.

We notice that in fact we proved a relative version of Theorem 17.3:

Theorem 17.5. Let (X, A) be any pair of spaces, and (Y, B) be such a pair that H1(Y, B; R)
15 finitely generated free R-module for each ¢ > 0. Then the external product

w:H (X, A;R)®r H(Y,B;R) — H*(X XY, AxY UX x B;R)
18 an isomorphism.
Remark. Recall that we can define the product in H *(X ) as the composition
oMX) @ H(X) 2 (X x X) 25 gH(X),
where A : X — X x X is the diagonal map. Indeed, we have:
A”p(a x b) = A*(pi(a) Ups(b)) = A% (pi(a)) UA*(p3(b)) = aUb.
Here X &~ X x X 2 X are the projections on the first and the second factors.

Recall that the ezterior algebra Ag(zx1,...x,) over a ring R is given by the relations:

rix; = —x;x;,if 1 # j and 7 =0.
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Corollary 17.6. Let X = S*1+l x ... x S2tl 5 §2k1 5 ... S%s | Then
H*(X, R) = AR(ZL'le_H, e ,[L’ggt_H) X R[l’gkl, e ,l’gks]/xgkl, e ,[L’gks,
where deg xop, 11 = 2l; + 1, deg xox; = 2k;.
Example. Here is an important application of Theorem 17.5. We consider the pairs (X, A) =

(D*, S*=1) and (Y, B) = (D*, S*!). Then clearly the pair (D*, S*°!) satisfies the conditions
of Theorem 17.5. Thus we have a ring isomorphism

H*(D¥, S*"' R) op H*(D', 8" R) = H*(D* x D',8" x D' U (=1)*D* x §'7; R)
& H*(Dk+£’ Sk—i—é—l;R)
since S¥1 x DY U (—1)FDF x §t-1 o2 Ghtt=1
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18. CAP PRODUCT AND THE POINCARE DUALITY.

18.1. Definition of the cap product. Let X be a space, and R be a commutative ring.
We define an R-linear cap product map N : Cryo(X; R) x C*(X; R) — Cy(X; R) as follows.
Let f: AF* — X be a generator of Cj1(X; R), and ¢ € C*(X; R). As before, we use the
notation (v, ..., vkse) for f: AF* — X Then

fe = o(vo, ..., 06)(Vk, -, Vkre)-
By linearity we define the cap product o N for any o € Cj(X; R) and ¢ € C*(X; R).

Let us fix a cochain ¢ € C*(X; R), then for any cochain ¢ € C*(X; R), we have the compo-
sition
Crse(X; R) 5 Co(X;R) 5 R,

i.e. the element ¥ (o N ) € R. We notice that in the case when o = (vg,..., V1) IS a
generator f : AF* — X then

viene) = Ylp(vo, - v6)(Vk; - - - s Vipr))

= @(vo,- ., k)Y (k- - ., Vkte)

= (pU¥)o.
We write this as (¢),0 N ) = (¢ U, o). In particular, we use Lemma 17.1 to compute

({0, 0(0ng)) = (Y, 0Np)

= (pUd,0)

= (D"(0(pU),0) — (dp U, 0))

= (-D*({pU,00) — (bp U, 0))

= (=1)"({¥,00 Np) = (¥,0 N dp)).
Since the identity holds for any cochain v, we obtain that
(87) o Ny)= (=1 0o N p—0ondyp)
Exercise 18.1 Prove formula (87) directly from the definition of the cap-product.
We see that the cap product of a cycle o and a cocycle ¢ is a cycle. Furthermore, if do =0
then (o Ny) = +(c Ndp). Thus the cap product of a cycle and coboundary is a boundary.
Similarly if dp = 0, then d(c N ) = +(do N ), so we obtain that the cap product of a

boundary and cocycle is a boundary. These facts imply that there is an induced cap product

Hiy o X5 R) x HY(X; R) — Hy(X; R).
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Using the same formulas one checks that the cap product has the relative form

Hyo(X, A; R) x H¥(X; R) = H(X, A; R),
Hi(X, A; R) x HE(X, A; R) -5 Hy(X; R),

Hio(X, AU B; R) x H*(X, A; R) = H,(X, B; R).

The last cap product is defined provided that A, B are open subsets of X or A, B are
subcomplexes of X (if X is a CW-complex).

Exercise 18.2 Check that the above relative cap products are well-defined.
Claim 18.1. Let f: X — Y be a map, and

foir H(X;R) — H(Y;R), [ :H(Y:R) — H'(X;R)
be the induced homomorphisms. Then

filon fA (@) = fulo) Ny, o€ H(X;R), @€ H(Y;R).
Exercise 18.3. Prove Claim 18.1.

Exercise 18.4. Let M, be the oriented surface of the genus g. Let [M7] € Hy(M};Z) = Z
be a generator. Define the homomorphism D : H'(M?;Z) — Hy(M};Z) by the formula
D:aw— [M}]Na. Compute the homomorphism D.

Exercise 18.5. Let N, 3 be the non-oriented surface of the genus g, i.e.
2 _ 2 2 2
Ny =T - #T°#RP~".
Let [N7] € Hy(N7;Z/2) = Z/2 be a generator. Define the homomorphism
Dy : HY(N}:Z/2) — Hy(N2;Z/2)
by the formula D; : o — [N7] N . Compute the homomorphism D;.

Remark. The above homomorphism is the Poincare duality isomorphism specified for 2-
dimensional manifolds.

18.2. Crash course on manifolds. Here I will be very brief and give only necessary
definitions. A manifold is a second countable Hausdorff space M so that each point
x € M has an open neighborhood U homeomorphic to R™ or a half-space R} =
{(z1,...,2,) € R" | ,, > 0}. Then we say that dim M = n, and those point of M which do
not have an open neighborhood homemorphic to R™, form a boundary dM (which is also
a closed manifold OM of dimension (n — 1)). We have seen some examples of manifolds:
R", S", D" (where D" = S"~1), RP", CP", HP", GLr(n), GLc(n), SO(n), U(n), all
classical Lie groups, Grassmannian, Stiefel manifolds and so on. To work with manifolds, we
should specify what do we mean by a smooth manifold.
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Definition 18.1. An n-dimensional smooth manifold is a second countable Hausdorff space
M together with a collection of charts, i.e. {U,} of neighborhoods and homeomorphisms
0o — R (or ¢, — R ) such that each point x € M s in some chart U, , and if U,NUy # 0,
then the map par 0 031 1 00(Ua NUy) — 0o (Us NUy) from the diagram

oot Pat

Spa(Ua N Ua/) U,NU, QOa/(Ua N Ua/)
open subset open subset
R" R"

1s a diffeomorphism.

All examples mentioned above are smooth manifolds. The following fact is very important in
the manifold theory.

Theorem 18.2. Any smooth manifold M™ is diffeomorphic to a submanifold of R*", i.e.
any manifold M™ can be embedded to a finite-dimensional Euclidian space.

Remark. I strongly recommend to read carefully few sections of Hatcher (Section 3.3-3.4)
and Bredon (Sections I1.1-11.4) to learn some basic facts and technique on smooth topology.

We recall that a subset X C R* is triangulated (by g-simplices) if X is a union of simplices
X =, AY such that

e cach simplex A! is a nondegenerated simplex in R*;
e the intersection AY N A;I- is either empty or consists of is a single joint face of the
simplices A] and Af.

Theorem 18.2 implies the following result we need to prove the Poincaré duality.

Theorem 18.3. Any compact smooth manifold M of dimension n is homeomorphic to a
triangulated (by n-simlpices) subset of a finitely-dimensional Euclidian space.

Remarks. (1) If dim M = n, then the Euclidian space in Theorem 18.3 could be chosen
to be R*". Notice also that a triangulation of a manifold M induces a triangulation (by
corresponding (n — 1)-simplices) on its boundary OM .

(2) Theorem 18.3 holds also in the case when M is not compact. Then the triangulation
should be infinite.

(3) We do not prove Theorems 18.2, 18.3; say, Theorem 18.2 is rather easy to prove, and
its proof could be found in most classical textbooks on Algebraic Topology; Theorem 18.3
is deeper than it seems. First ad hock (and correct!) proof is due to Wittney (end of 30’s).
A transperent version of that proof is given by Munkres in his “Lectures on Differential
Topology”.

Exercise 18.6. Construct an embedding of the projective spaces RP™, CP", HP" into
Euclidian space.
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Exercise 18.7. Let M™ C R be a triangulated (by n-simplices) manifold, M = [JA?,
with possibly non-empty boundary OM . Consider any (n — 1)-face A" of a simplex AZ.
Prove that if A"~ ! does not belong to the induced triangulation of its boundary, then there
exists a unique simplex A, j # i, which also has the simplex A" as a face.

Consider the case when a manifold M™ C RF is a compact closed (i.e. 9M™ = () manifold.
Then we can assume that the triangulation M™ = J; A} is finite. In particular, the trian-
gulation M™ = J; A} gives a CTW -decomposition of the manifold M where n-cells e are
identified with the enterior of the simplex A}, and e} = A?. A triangulated manifold M" is
said to be orientable (over a ring R) if there is a choice of orientations on each simplex A?,
such that the chain

(88) Z el (where the summation is taken over all indices )

is a cycle in the chain complex &,(M). Once we fix an orientations, we call the manifold M
oriented.

Remark. If R =7Z/2, then any closed compact manifold has “orientation”, and its unique.
In that case one can see that the chain (88) is always a cycle.

We state the following result which summarizes our observations.

Theorem 18.4. Let M"™ be a smooth compact manifold. Then

Z, if M s closed and oriented,
H,(M;Z) = {0’ eJ;se

Z/2, if M s closed,
oz = {2501

Remarks. (1) It is easy to see that if a manifold M™ is oriented over Z, then it is oriented
over any ring R. The converse is not true. It is also easy to see that any manifold M" is
oriented over Z/2 (Prove it!). A cohomology class defined by the cycle (88) is denoted by
[M™] € H,(M™; R) and is called the fundamental class of M™

(2) An example of a non-oriented manifold is RP?": H,,(RP?";Z) = 0; however, we have
the fundamental class [RP?"] € Hy,(RP?*";Z/2).

(3) We say that a homology class o € Hy(M™; R) is represented by a submanifold N* ¢ M™
if i,([N*]) = «, where i : N¥ — M"™ is the inclusion map. For example, a generator
ar, € H,(RP") is represented by RP* C RP"; as well as a generator 3; € Hq;(CP™;Z) is
represented by CP/ C CP™. It turns out that not every homology class of a smooth manifold
could be represented by a submanifold: this was discovered by Rene Thom in 1954.

18.3. Poincaré isomorphism. Let M" be a closed manifold. We define a homomorphism
D:HY(M;Z) — H, (M;Z) «aw— [M]Na if M is oriented

D:HIYM;Z)2) — H,_(M;Z/2) a— [M]Na if M is not oriented
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Theorem 18.5. (Poincaré isomorphism Theorem) Let M™ be a closed compact manifold.
Then the homorphism

D:HYM;Z/2) — H,_,(M;Z/2)

1s an isomorphism for each q. If, in addition, M is oriented manifold, then the homomor-
phism

D:HY(M;Z) — H,_,M;Z)

s an isomorphism for each q.

Remark. There are several different ways to prove Theorem 18.5. In particular, nice proof
is given in the book by Hatcher (Sections 3.3-3.4). Here we will present a geometric proof
which is rather close to an original idea due to Poincaré.

Construction. Consider a triangulation 7 = {A?} of an open disk B"(r) C R" of radius .
Here it means that B"(r) C |J; A}, and the intersection A N A” is either empty or consists
of is a single joint face of the simplices A and A”. We assume that the triangulation is fine
enough, say, if A? N B™(r/2) # 0, then A C B"(r). In other words, this triangulation is a
good local model of a neighborhood near a point on a manifold equipped with a triangulation.

Let A9 C A? € T be a subsimplex with barycenter x, at the center of the ball B"(r). Now
let 57 be the barycentric subdivision of our triangultion. We define a barycentric star S(A?)
as the following union (see Fig. 18.1):

S(AY) = U A
ACA"epT
ANAL= {xo}

Notice that all subsimplices A with those properties have dimension (n — ¢), moreover,
S(A?) C B™(r) is homeomorphic to a disk D"~? decomposed into (n — ¢)-simplices, see Fig.
18.2.

Proof of Theorem 18.5. Let 7 be a triangulation of a closed oriented manifold M™. In
particular, the triangulation 7 determines a C'WW-decomposition of M™, where all g-cells are
given by g¢-simplices {A7} of 7. We notice that the stars S(A?) determine an alternative
“dual” CW -structure of M". Let £,(M") be a chain complex determined by the first CW -
decomposition, and &,(M™) the chain complex determined by the dual C'W -structure.

In particular, generators of the chain group &, ,(M") are the stars S(AY). Also, let
E*(M™) = Hom(E,(M™),Z) be the corresponding cochain complex. We define a homomor-

phism D : £4(M") — &,_,(M™) as follows. For a cochain ¢ € E1(M™), ¢ : A — \;, we
define

D(p) := Z NS(AY) € £,_ (M™).
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Fig. 18.1. A barycentric star in R".

It is easy to check that Ddp = £0D¢y (we do not specify the sign here). Thus we have the
following commutative diagram:

= o On—1 02 = N n
E,(M") % &,y (M") & (M) 2 gy(Mm)

D D D D

2 5n72

SO(Mn) i El(Mn) gn_l(Mn)&:lgn(Mn)

Thus we have that D is an isomorphism for each q and, in fact, the above complexes
E*(M™) and E.(M™) are identical via the chain map D. Hence we have that HI(M";Z) =
H, (M"Z).

Exercise 18.9. Show that the duality isomomorphism D induces the map as

D:Hi M z) M0 g (umz).

Hint: replace the cochain complex £*(M™) by the the cochain complex given by the barycentic
subdivision 87 .

This concludes our proof of Theorem 18.5. O
Corollary 18.6. Let M™ be a closed compact manifold of odd dimension n. Then x(M™) =
0.

Exercise 18.10. Prove Corollary 18.6. Notice that M™ is not necessarily an oriented mani-
fold.
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18.4. Some computations. Recall that for the cap-product
Hiyo(X; R) x HY(X; R) = Hi(X;R).
we have the identity (¢, 0 Np) = (p U1, o). For a closed oriented manifold M™ we consider
the pairing
(89) HY(M™; R) x H"(M™ R) — R, (p,¢) :={p U, [M"]).
A bilinear pairing p: A X B — R, (where A and B are R-modules) is nonsingular if the

maps
A — Homg(B, R), aw~ pu(a,-) € Homg(B,R), and

B — Hompg(A, R), b~ u(-,b) € Homg(A, R)
are both isomorphisms.

Lemma 18.7. Let M™ be an oriented manifold (over R). Then the pairing (89) is nonsin-
gular provided that R is a field. Furthermore, if R =7, then the induced pairing

(90) (HU(M";Z)/Tor) x (H""(M"™ Z)/Tor) = Z, (p,v) = (¢ U, [M"]).

s nonsingular.

Exercise 18.11. Prove Lemma 18.7. Hint: Make use of the universal coefficient Theorem
and Poincaré duality.

Corollary 18.8. Let M™ be an oriented manifold. Then for each element of infinite order
a € HY(M™Z), there exists an element f € H" 9(M";Z) of infinite order such that (o U
B,[M"™]) =1, i.e. the element o U [ is a generator of the group H"(M™;Z).

Exercise 18.12. Prove Corollary 18.8.

Theorem 18.9. Let R be any ring. Then

(1) H*(RP™,Z/2) 2 Z/2[z]/x™"", where x € H'(RP™;Z/2) is a generator;
(2) H*(CP™; R) = Rly|/y"*, where y € H*(CP™; R) is a generator;
(3) H*(HP™ R) = R[2]/2"", where z € H*(HP™; R) is a generator.

Proof. We prove (2). Induction on n. Clearly H*(CP'; R) = R[y]/y*. Induction step. The
inclusion i : CP"! — CP" induces an isomorphism

i*: HY(CP",Z) — HY(CP" 1, Z)
for ¢ <n — 1. In particular, the groups H%(CP""};Z) are generated by ¢’ for j <n —1.

By Corollary 18.7, there exists an integer m such that the element y"~!Umy = my™ generates
the group H*"(CP"~!;Z) = Z. Thus we obtain that m = +1, and H*(CP"; R) = R[y|/y".
O

Corollary 18.10. Let R be any ring. Then
(1) H*(RP>;Z/2) = Z/2[x]|, where x € H'(RP™;Z/2) is a generator;

(2) H*(CP*; R) = R[y], where y € H*(CP™; R) is a generator;
(3) H*(HP>; R) = R|z|, where z € H*(HP™; R) is a generator.
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19. HoPF INVARIANT

19.1. Whitehead product. Here we remind the Whitehead product: for any elements o €
Tm(X), B € m,(X) we construct the element [, 8] € Tpin-1(X).

First we consider the product S™ x S™. The cell structure of S™ x S™ is obvious: we

have cells 0¥, 0™, o™, o™ . A union of the cells ¢°, ™, o™ is the space S™V S™. Let

w: Sl My S™ be an attaching map of the cell o™ i.e.
S™x 8" = (S™v S") U, D™

Now let f:S™ — X, g:S™ — X be representatives of elements o € 7,,(X), 8 € m,(X).
The composition

gmin=l 2, gmy gn V9,
gives an element of m,,.,_1(X). By definition,
[, B] = {the homotopy class of (fV g)ow}.
The construction above does depend on a choice of the attaching map w.

Let 1o, be a generator of the group m,(S5%). We have proved “geometrically” the following
result.

Theorem 19.1. The group m4,_1(S*) is infinite for any n > 1; the element [ton, Lo, €
Tan—1(S*™) has infinite order.

Next, we introduce an invariant, known as Hopf invariant to give another proof of Theorem
19.1.

19.2. Hopf invariant. Before proving the theorem we define the Hopf invariant. Let
¢ € Tyn-1(5?"), and let f: S*"~1 — 52" be a representative of ¢. Let X, = S*" U; D*".
Compute the cohomology groups of X.,:
Z, ¢q=0,2n,4n
q . — ) ) ) )
HY(X,;2) = { 0, otherwise.

Let a € H*(X,;Z), b € H*(X,;Z) be generators. Since a® = aUa € H*(X,;Z), then
= hb, where h € Z. The number h(y¢) = h is the Hopf invariant of the element
@ € 7T4n_1(52n).

Examples. Let h: S® — CP! = S? and H : ST — HP! = S* be the Hopf maps. Notice

that X, = CP? and Xy = HP?. As we have computed,
H*(CP2 Z)="7y ]/y , YE H2(CP2;Z),

H*(HP?% Z) = Z[2]/2*, =€ HY(HP4Z).

Thus h(h) =1 and h(H) = 1. There is one more case when this is true. Let Ca be the
Calley algebra; this is the algebra defined on R®. Furthermore, there exists a projective line
CaP! = S® and a projective plane CaP? with

H*(CaP% Z) = Z[o]/0®, o€ H*(CaP? Z).
The attaching map H : S — S® for the cell !¢ also has h(H) = 1.
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Lemma 19.2. h(p1) + h(p2) = h(pr + ¢2).
Lemma 19.3. The Hopf invariant is not trivial, in particular,

h([bgn, Lgn]) = 2.

Proof of Lemma 19.2. For given elements o1, oy € m4,_1(5?") we choose representatives
fi: 8t — 82 fy o STl — 87" and consider the spaces X, Xgy, Xoitp,- Also we
construct the following space:

YSDMDQ = (S2n Ufl D4n) Ufz D4n = S2n Ufl\/f2 (D4n V D4n>7
where [fi] = ¢1, [f2] = 2. We compute the cohomology groups of Y, ,,:

Z, q=0,2n,
HYY, pp;Z) =3 ZDZL q=4n,
0, otherwise.
Let a' € H*(Yy, 4,: Z), Uy, by € H*™(Y,, 4,; Z) be generators. We have natural maps:
i Xsol - Ysol,sow
iy 1 Xpy — Yo 005

where 71, 7o are cell-inclusion maps:
S2n Ufl D4n _ S2n Uf1\/f2 (D4n V; D4n)7

S2n Ufg D4n _ S2n Uf1\/f2 (D4n V, D4n)
We choose generators
a € H*(X,:Z), b € H™(X,;Z),

P15
as € H*"(X 1 Z), by € H™(X,,;Z)
in such way that
i(a) = ax, (bh) = b1, ii(by) =0,

iz(a’) = ag, 13(by) = by, i7(by) = 0.
Now we construct a map
T Xortps = Yorem
as follows. Recall that
Xoitgs = s Uy D4n’

where f is the composition:
S4n—1 _ S4n—1 v54n—1 fiVifa S2n'

Now we send the sphere S** C X 4y,, S 14, g Y10, identically, and j : D* —
D* v/ D% where we contract the equator disk D"~ 1:

D4n D4n WV, D4n

A restriction of j on the sphere S4~! gives the map
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S4n—1 S4n—1 v S4n—1

Note that the diagram of maps

Jlgan—1

S4n—1 S4n—1 v S4n—1

fitfe  fivfe

S2n

commutes by definition of the addition operation in homotopy groups. In particular, the
following diagram commutes as well:

D4n D4n Vi D4TL

Jlgan—1

S4n—1 S4n—1 v S4n—1

fitfe  fivfe

S2n
The construction above defines the map
j : Xe01+502 - Ysol,sDQ'

Now we compute the homomorphisms ¢}, 5 and j* in cohomology:

Z>1k : Hq(Ysol,s%) - Hq(Xsol)v

iy Hq(YSDLSDQ) - Hq(Xgoz)-

We have that
iT(a,) = Ay, ZT(bll) = blv ZT(bg) = 07

i5(a') = ag, iz(bh) =0, i7(by) = by,
The homomorphism
Jjr o HIUY,

$1,$2

) — HY(Xo44,)
sends

jfa) =a, jT(0y) =0b, j'(by) =0
The element

(d')? € H4n(Yg01,s02)

is equal to (a')* = pub| + pobly. Since #((a’)?) = a? = h(p1)b1, and (V) = by, then
p1 = h(p1). The same reason gives that s = h(pz). Note that a? = h(p; + ¢2)b, and since
J(d') = a, j*(by) = b, j*(by) = b, we conclude that h(e1 + 2) = h(e1) + h(g2). O
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Before we prove Lemma 19.3, we compute the cohomology (together with a product structure)
H(S?™ x S?"). First compute the cohomology groups:

Z, q=0,4n,
HY (S x S*™Z)={ ZDZL, q=2n
0, otherwise.

Let ¢, co € H*(S5?" x S?") be such generators that the homomorphisms

pi s H(SP) — H(S x S),

py: H(SP) — HP(52" x 537,
induced by the projections

St x S5t = Sir, SPx St = S5
send the generators ¢; and ¢, to the generators of the groups H?*"(S7"), H*"(S3"). Let
d € H'™ (5S> x S") be a generator. It follows from Corollary 17.6 that
C1Cy = d.
We also note that ¢ = 0 and 3 = 0 since by naturality pi(c;)? = 0 and pi(c2)? = 0. So
we have that the ring H*(S?" x S2") is generated over Z by the elements 1, ¢;, ¢ with the
relations ¢ = 0, ¢3 = 0. In particular, we have:
(Cl + 02)2 = C% + 20102 + Cg = 2d.
Proof of Lemma 19.3. We consider the factor space
X =8 x5/ ~,

where we identify the points (z,z¢) = (29, ), where x¢ is the base point of S".

Claim 19.1. The space X = S*" x S?"/ ~ is homeomorphic to the space S*" Uy D*" | where
f is the map defining the Whitehead product [tay, Loy .

Proof of Claim 19.1. Recall that S** x §?" = (S?" v §?")U,, D**, where w is the map we
described above. The generator i, is represented by the identical map S?" — S?*. The
composition

S4n—1 & S2n v52n Idvid SZn
represents the element [tg,, to,]. It exatly means that the identification (52", xq) = (g, S*")

we just did in the space S*" x S?" is the same as to attach D" with the attaching map
(IdV Id)ow.

Compute the cohomology of X:

Z, q=0,2n,4n,

q . _
HY(X;Z) = { 0, otherwise.

We note that the projection S?* x §*" — X sends the generator ¢ € H*(X) to ¢; + c.
Besides the generator d maps to a generator of H*"(X;Z) (we denote it also by d). So we
have: ¢® = 2d, or h([tan, ton]) = 2. O

This concludes our proof of Theorem 19.1. O
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Remarks. (1) In fact, it is true that 7y, 1(S*") = Z @ {finite abelian group}, in particular,
as we know, m3(S?) = Z, m(S*) = Z & Z/12, 1,(S®) = Z, m5(S®) = Z & Z/120. More-
over, all homotopy groups of the spheres are finite with the exception of m,(S") = Z and
Tin—1(S?") = Z @ {finite abelian group}.

(2) We proved that the image of the Hopf invariant A : 74, 1(S*") — Z either all group Z
or 27.

Problem: Does there exists an element in 74, 1(S5%") with the Hopf invariant 1?

This problem has several remarkable reformulations. One of them is the following: for which
n does the vector space R"™! admit a structure of real division algebra with a unit. Frank
Adams (1960) proved that there are elements with the Hopf invariant one only in the groups
m3(S?) m6(S1), m5(S®). Thus there are only the following real division algebra with a unit:
R>~C, R*~ H, and R® = Ca.
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20. ELEMENTARY OBSTRUCTION THEORY

20.1. Eilenberg-MacLane spaces and cohomology operations. Let 7 and G be abelian
groups, n, m be nonnegtive integers.

Definition 20.1. A family of maps
Ox : H'(X;7) — H" (X;7)

is called a cohomology operation 0 of the type (w,n;7’',n') if it is determined for every topo-
logical space X and such that for any map f: X — Y the diagram

H™(X; ) o H" (X 7)
f f
H"(Y;7) v HY(Y;7")

commutes, i.e. f*0y = O0x f*. In different terms, we say that the operation 6 is natural. The
set of all cohomological operations of the type (m,n;7’,n’) is denoted by O(w,n;n’,n’).

Example. For each n and any 7 the operation a — a? is a cohomology operation. Notice

that a cohomology operation is not, in general, a homomorphism.

Our next goal is to idendify the set O(m,n; 7', n') with cohomology groups of the Eilenberg-
McLane spaces.

Let X be a space. We recall that there is Hurewicz homomorphism h : 7,(X) — H,(X;Z)
defined as follows. Let ¢, € H,(S?) be a canonical generator. Then for an element ¢ € 7,(X)
and its represenative f: 5% — X, the image h(p) € Hy(X;Z) is given by f.(¢q).

Now assume that X is (n—1)-connected. Then H,(X;Z) = 0 for ¢ < n—1 and the Hurewicz
homomorphism h : 7,(X) — H,(X;Z) is isomorphism. Then the universal coefficient for-
mula

0 — Ext(H,-1(X;Z),7) - H"(X;7) — Hom(H,(X;Z),7) — 0
shows that H"(X;7) = Hom(H,(X;Z),n) since H,_1(X;Z) =0.

Let 7 = 7m,(X). Thus the group Hom(H,(X;Z), ) contains the inverse h~! to the Hurewicz
homomorphism A.

Definition 20.2. For an (n — 1)-connected space X, we denote by ¢y the cohomology class
1x == h™' € Hom(H,(X;Z),7) =< H"(X; ).

Sometimes the class vy is called as fundamental class of (n — 1)-connected space X .

In particular, the Eilenberg-McLane space K (m,n) has a canonical class
t, € Hom(H, (K (m,n);Z), ).

Below we will prove the following result.
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Theorem 20.3. There is a bijection
X, K (m,n)] > H"(X; 7).
given by the formula [f] — f*i,.

Here [f] means a homotopy class of a map f : X — K(m,n). Before proving Theorem 20.3,
we derive several important corollaries of Theorem 20.3.

Corollary 20.4. Let w, @ be abelian groups. There is a bijection
[K(m,n), K(7',n)] < Hom(m, 7).

Proof. We combine the statement of Theorem 20.3 with the universal coefficient theorem
and Hurewicz isomorphism to see that

K (m,n), K(7',n)] « H"(K(m,n);7") 2 Hom(H, (K (7, n);Z), ") = Hom(r, 7').
This proves Corollary 20.4. O

Corollary 20.5. Let m be an abelian group. The homotopy type of the Filenberg-McLane
space K(m,n) is completely determined by the group m and the integer n.

Proof. According to Corollary 20.4, any isomorphism © — 7 is induced by some map f :
K(m,n) — K(m,n). Since all other groups are trivial, the map f induces isomorphism in all
homotopy groups. Then Whitehead Theorem 14.10 implies that f is homotopy equivalence.
O

Now let 6 be a cohomology operation of the type (m,n;7’,n'). Then we have en element
0(1,) € HY (K (m,n), 7).
Theorem 20.6. There is a bijection
O(r,n;n',n') — HY (K (m,n), )

given by the formula 6 < 0(1,,).
Proof. Let ¢ € H" (K(m,n),n’). We define an operation ¢ € O(m,n; 7', n’) as follows. We
should describe the action

H(X;m) 25 1Y (X )
for any space X. Let u € H"(X;n), then, according to Theorem 20.3, there exists a map
f: X — K(m;n) such that [f] — f*(t,) = u. Then we define

p(u) = f*(p) € H" (X; 7).
Thus we have the maps

O(m,n; 7', n') — H (K(m,n), ), ¢+ o(tn)

HY(K(m,n),7") — O(m,n;7",n), @u) = f*(¢), where f*(1,)=u.

Let X = K(m,n) and u = ¢,,, then f: K(m,n) — K(m,n) is homotopic the identity. Thus
©(tn) = f*(p) = ¢. In the other direction, let ¢ = 0(¢,,). Then

p(u) = (@) = [7(0(en) = O(f(n)) = O(u)

for any v € H"(X;7). O
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Theorems 20.3 and 20.6 imply the following result:

Corollary 20.7. There is a bijection
O(m,n;7’',n') « [K(m,n), K(7',n')].

Now we have to prepare some tools to prove Theorem 20.3.

20.2. Obstruction theory. Let Y be a space with a base point yo € Y. We recall that
the fundamental group 7 (Y, yo) acts on the group m,(Y,yo) for each n. We will say that
a space Y is homotopically simple if this action is trivial. In the case when the space Y is
homotopically simple, we may (and will) ignore a choice of the base point. In particular, any
map f:S" — Y gives well-defined element in the group m,(Y).

Now let B be a CW -complex and A C B be its subcomplex. We denote X" = B U A,
where B™ is the n-th skeleton of B. Let o = e"*! be an (n + 1)-cell of B, which does not
belong to A. We denote by ¢, : S® — X" be the attaching map corresponding to the cell
0. We consider the cells o as generators of the cellular chain group &,41(B, A).

For any map f: X" — Y, where Y is homotopically simple, we define a cochain
c(f) € E"N(B, A; 1, (Y)) = Hom(E,11(B, A), m,(Y))
as follows. The value ¢(f) on the generator o is given by
c(f)(o) = [f ops] € m(Y), where

fogpa:S”&X"LY.
Lemma 20.8. The cochain c(f) is a cocycle, i.e. dc(f) =0.
Proof. We recall that if (K, L) is a CW-pair with m K = m L = 0, and pi,(K,L) = 0 for
qg=0,1,...,n— 1, then the Hurewicz homomomorphism h : 7,(K, L) — H,(K,L;Z) is an

isomorphism. This is the relative version of the Hurewicz Theorem, see Theorem 14.9. We
will use this result below. Consider the following commutative diagram:

Enpa(BLA) — e Hy (X2, XL Z) B (2 X
d
by B0 Tpp1 X"
(91) i
Eni1(B,A) —— Hon(X™ X" Z) —e (X, X7
¢ 0

S

T, X" —— mY
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Here the horizontal homomorphisms are given by the inverses to the Hurewicz isomorphisms.
By definition, the boundary operator

6n+2 : HTL+2(Xn+27Xn+1; Z) - TL+1(Xn+17Xn; Z)

is given by the boundary operator in the long exact sequence of the triple (X2, X"+l X™)
and thus by Hurewicz isomorphism is reduced to the boundary operator in the long exact
sequence in homotopies for the same triple:

9 - 7Tn+2(Xn+2,Xn+1) SN 7Tn+1(Xn+1aXn)

which coincides with the composition:

Toa(XH2 X4 2 X (XX,
by construction. Here 9 is the boundary operator in the long exact sequence in homotopy
groups for the pair (X"2 X"*1). Then we identify the cochain c(f) : £,41(B,A) — 1,Y;
clearly it coinsides with the composition f, oi. Now let o € &,.2(B,A). By definition,
Sn1¢(f)(0) = ¢(f)(0,.50). On the other hand, we can first take o to & € m,4o( X2, XH1)

via the Hurewicz isomorphism and then down the right column of the diagram (91). Then
we have do f, 00(d) =0 since do f, = 0 by exactness. O

Exercise 20.1. Prove the following Lemma 20.9.

Lemma 20.9. The map f: X" — Y can be extended to a map f: X" =Y if and only if
() = 0.

Now let f,g: X™ — Y be two maps which coincide on X" ie. f|xn-1 = g|xn-1. Then
for each mn-cell w, we define a map h, : S — Y as follows. We decompose S™ as union of
the hemispheres: S™ = D% Ugn—1 D" . Then for each n-cell w, we have the attaching map
P, 8" 1 — X" = B U A and characteristic map ¥, : D" — X" = B™ U A. Then
we define h, : 8" = D7} Ugn—1 D" — Y by

holpr = go W, : DL 2 xm 2.,

Y

holpn = foW,: Dr 2o xn Ly,

Clearly hy|gn-1 = (f o U,)|gn-1 = (g 0 ¥,)|gn—1 since f|xn-1 = g|xn-1. This construction
defines the distinguishing cochain d(f,g) in the cochain group E"(B, A;m,(Y)).

Lemma 20.10. There are the following properties of the cochain d(f,g):

1) Let - X" =Y be two maps which coincide on X" 1, then
(1) .9 D ,

od(f, g) = c(g) — c(f).
(2) Let f,g,h: X™ —Y be three maps which coincide on X" ', then

d(f,g) +d(g,h) = d(f,h).
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Proof. We prove (1) leaving (2) as an exercise. For simplicity, we assume that the maps
f,g: X™ — Y are different only on a single n-cell w of X™. Let ¢ be any (n + 1)-cell of
X"t Then, by definition,

0d(f,9)(0) = d(f, 9)(0,410),
where 0,1 : Eup1(B, A) — &,(B, A) is the boundary operator in the cellular chain complex.

Let ®, a characteristic map and ¢, be an attaching map coresponding to the cell o:
o

Dn+1 Xn+1
qn Po X"
We consider the following diagram:
qn $o bl pr Xn/Xn—l

s /S
J

Here S is the sphere corresponding to the cell e and p. the projection on S”. Since f and
g are the same on all cells but e, we obtain

8d(f,9)(o) = d(f,9)(0,s10) = [0 : €ld(f, g)(e),

where [0 : e] = deg (, where  : S" — S” is the map from the above diagram. Now we recall

P e
o

o 1 (D)
FIGURE 30

that a map ¢ : S™ — SI' of degree [0 : €] is homotopic to a map (p : S™ — SI' which satisfies
the following properties:
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(1) there are disjoint disks D7,..., D C S™ such that
(a) Colpp : D} — S¢ is a map of degree +1;
(b) go\sn\(D{LumuD?) 2 S"\ (D U...UD?) — S is a constant map;
(2) the degree [0 : €] is the algebraic number of such disks counting +1’s.

Now we can take a close look at the cell e” C X", see Fig. 30. It shows that

(e(f) = clg))(o) = [o : eld(f, g)(e)
This proves the result. O
It turns out that any cochain in £"(B, A; 1,(Y")) could be realized as a distinguishing cochain:

Lemma 20.11. For any map f: X™ — Y and a cochain d € E"(B, A;m,(Y')) there ezists a
map g: X" —Y such that f|xn—1 = g|xn— and d(f,g) =d.

Exercise 20.2. Prove Lemma 20.11.

We denote by [c(f)] € H" (B, A;m,Y) the cohomology class of ¢(f).

Theorem 20.12. Let Y be a homotopy simple space, (B, A) a CW -pair and X" = B™WUA
forn=0,1,.... Assume f: X" — Y is a map. Then there exists a map g : X"*! — Y
such that glxn-1 = f|xn—1 if and only if [c(f)] =0 in H"™ (B, A;7m,Y).

Proof. Let 6d = ¢(f). Then we find g : X" — Y such that g|xn-1 = f|x»-1 and d(f, g) =

—d. Since
c(f) =0d = —dd(f,g) = c(f) — c(9),

we obtain that ¢(g) = 0. Thus there exists an extension of g to X", O
Let K be a CW-complex. Then we let B = K x I, A = K x {0,1}. To illustrate the
technique, we give another proof of the following simple fact.

Lemma 20.13. Let Y be n-connected space and K be a CW -complex of dimension n. Then
[K,Y] = x.

Proof. Let h: K — Y be a map. We define amap f: K x{0,1} =Y as

flexioy =h,  flexqpy = *

We choose a C'W -structure of K x I to be a product-structure. In particular, all zero cells
of K x I are located inside of K x {0,1}. Thus the map

fOX'=(KxDNOUK x{0,1} - Y
is already defined. Assume that its exension
fOxF=(Kx MUK x{0,1} =Y

to the space X* = (K x ™ UK x {0,1} for k =0,...,¢—1 is defined, where ¢ < n. Then
the obstruction c(f) € E4K x I, K x {0,1};m,(Y)) vanishes since 7,(Y) = 0. This shows

that a homotopy between h and the constant map extends to K x I, i.e. we have proved
that [K,Y] = x. O

Next, we would like to prove a result concerning exension of a homotopy in more general
setting.
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Theorem 20.14. Let f,g : K — Y be two maps, where K is a CW -complex and Y
is homotopy-simple space. Assume that f|xm-1 = glgm-v. Then the cohomology class
d(f,9)] € H"(K,m,Y) vanishes if and only if there exists a homotopy between the maps
flge and glgw relative to the skeleton K™2),

Proof. We have that f|xm-1 = g|gmn-1. We would like to construct a homotopy between
flgm and g|gm relative to the skeleton K ("=2) " 'We consider the pair
(B,A)= (K x I,K x {0,1}).

Here again we choose a standard CTV -structure on the interval I: two zero cells €}, €} and
one 1-cell €. Then we denote X* = (K x I)®) U (K x {0,1}). Since f|xw-1 = g|gm-1v, and
an n-cell of K x I is a product "1 x €}, where e"~! is an (n — 1)-cell of K, we have a map

H:(KxI)™U(K x{0,1})
such that H|kxy = f, H|kx1y = g, and
H‘K(nfl)xl = f|K(n—1) x Id = g|K(n—1) x Id.

Consider the obstruction cocycle ¢(H). Again, we notice that every (n + 1)-cell ¢! of
(K xI)\ (K x{0,1}) has a form e" x €!. Then we can easily identify the obstruction cocycle
c(H) € E"YK x I, K x {0,1};7,Y) with the distinguishing cochain

d(f,g) € E"(K;m,Y).
Indeed, each n-cell e” of K gives a map
h:S"=D"x{0}uS"!'xITuD"x {1} »Y

where h|pny oy is given by f and h|pny 1) is given by g. A homotopy class of h gives nothing
but the value of d(f,g) on the same cell e™.

In this case, we have that ¢(f|xwm) =0 and ¢(g|gm) = 0 since f and g both are defined on
all K. Thus we have

dd(f, g) = c(g) = e(f) = 0.
Thus 0d(f,g) = 0 and determines an element in cohomology [d(f,g)] € H"(K,m,Y). Now
Theorem 20.12 implies the result. O

Exercise 20.3. Show details that Theorem 20.12 indeed implies the result at the end of the
above proof.

20.3. Proof of Theorem 20.3. Let ¢, € H"(K(m, n);7) be the fundamental class. We
would like to prove that the map [f] — f*i, gives a bijection
X, K (m,m)] = H(X;7)

for a CW-complex X . Let a € H"(X; m), we have to find a map f : X — K(m,n) such that
f*tn, = . We choose a cocycle a : £,(X) — 7 which represents a € H"(X; 7). In particular,
a assigns an element a(o}) € 7, K (m,n) = m. We choose representatives h; : SI" — K(m,n)
of the elements a(o?) € 7, K (m,n). Now we define a map f™ : X — K(m,n) as follows.
We let f™|ywm-1) to be a constant map. Then we define f(™ as the composition

FOU X X0 XD —\ [ 57 Vil ().
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We notice that by construction, a coincides with the distinguishing cochain d(x, f™). Since
a is a cocycle, we have:

0= da = dd(x, f™) = c(f") = c(x) = e(f™).
Thus ¢(f™) = 0 and there exists an extension of the map f™ : X™ — K(7,n) to a map

fO+D) . X+ K(7,n). Then we notice that the further obstructions to extend the map
fo+D) s X+ K(7,n) to the skeletons X (™9 live in the corresponding groups

E XMy K(m,n)) =0 for ¢ > 2.
This proves that the map [f] — f*u, is surjective.

Now we assume that f,g: X — K(m,n) are such that f*., = ¢g*t,, in the cohomology group
H™(X;m). By Cellular aproximation Theorem, we may assume that f|xm-1n = g|xm-1 =
x. Then as we have seen, the element f*i, coincides with the cohomology class of the
distiguishing cocycle d(x, f). Thus f*u, = [d(*, f)] and g*t, = [d(*, g)]. Then

[d(f, 9)] = [d(f, %)l + (%, 9)] = = f"tn + g"tn = 0.
Thus by Theorem 20.14, there exists a homotopy f|xm ~ ¢|xm relative to the skeleton

X ®=2) " Clearly all obstructions to extend this homotopy to the skeletons X9 vanish. If
X is a C'W-complex of infinite dimension, then we should use the intervals

I At = (1 g1 - ]
to construct a homotopy between f|ym+x and g|ymix . This proves Theorem 20.3. O
Theorem 20.15. (Hopf) Let X be an n-dimensional CW -complex. Then there is a bijection:
H"(X;Z)=[X,S"].
Exercise 20.4. Prove Theorem 20.15.
Consider a k-torus T*. We identify T* with the quotient space R*/ ~, where two vectors
7 ~ 3 if and only if all coordinates of the vector Z — ¢ are integers. It is easy to see that a

linear map f : R*¥ — R’ given by an k x ¢-matrix A with integral entries descends to a map
f:T* — T* In that case a map f:T% — T* is called linear.

Exercise 20.5. Prove that any map f : TF — T* is homotopic to a linear map.
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20.4. Stable Cohomology operations and Steenrod algebra. We would like to conclude
this sections by brief description of the Steenrod algebra. Let m = 7' = Z/2. Then

O(Z/2,n;Z/2,n) = [K(Z/2,n), K(Z/2,n)] = H" (K(Z/2,n): Z/2).
Since the group H™ (K (Z/2,n);Z/2) = 0 for n’ < n, all corresponding operations are trivial.

Definition 20.16. A sequence of operations 6 = {6, }, where 0,, € O(Z/2,n;Z/2,n+ q), is
called a stable operation if the following diagrams commute for each n:

H™(X;2/2) —2 v H"9(X.Z/2)

€n+1

H™Y(SX,2Z/2) —e grtit(xX: 7/2)
Here ¥ : H*(X;Z/2) — H*T(XX;Z/2) is the suspension isomorphism.



180 BORIS BOTVINNIK

21. COHOMOLOGY OF SOME LIE GROUPS AND STIEFEL MANIFOLDS

21.1. Stiefel manifolds. The Stiefel manifold V;(R") is the manifold of orthonormal k-
frames (vy,...,vx) in the Euclidian space R™. We note that there are canonical projection
maps pi; : Vi(R") — V;(R") for j < k. To describe its topology and CW -structure, we
identify Vi(R") with the coset O(n)/O(n — k) as follows.

We recall that O(n) acts R". We would like to be specific: one can identify R" the space of
column vectors with the standard basis {e,...,ex,...,e,}, then O(n) acts on R™ from the
left by matrix multiplication. Then we consider an embedding O(n) C O(n+ 1) given by the

formula
011
A {JFA ! ]
Then for each orthonormal k-frame (vy, ..., vg), there is a matrix A € O(n) such that Ae; =
vy, ..., Aep = v,. Then the transformation A is defined up to an orthogonal transformation

B € O(n — k). This identifies Vi(R"™) with the coset O(n)/O(n — k) and gives particular
topology to the Stiefel manifold.

Exercise 21.1. Show that V,(R™) is indeed a smooth manifold of dimension 1k(2n—k—1).
In particular, we identify V3(R™) = O(n)/O(n — 1) = S"1. It is convenient to denote by
P, the projective space RP""!. There is a map ¢, : P, — O(n) which takes a line L € P,

to the reflection through the hyperplane L*. Let x be a unit direction vector for L. Then
©(L) € O(n) is given by the formula:

oL):y—y—2(y,z)r € R".

Moreover, if m < n, we have a commutative diagram of maps

P, o O(m)
o imn
P, o O(n)
pr pr
P/ Py, . O(n)/O(m)

We denote by P, , = P,/P,—, the truncated projective space. In particular, we have identified
P, 1 with the sphere S"!.

Lemma 21.1. The above map ¢ : P,1 — O(n)/O(n — 1) is a homeomorphism.

Proof. We identify P, = RP"! with the hemisphere
S:L__l = { (l‘l,...,l‘n) GSn_l ‘ Tn >0 },
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where the opposite equator points (xi,...,2,-1,0) and (—z1,...,—z,_1,0) are identified.
Then P,; = RP"'/RP"2 is identified with the hemisphere S" ' where all equator points
(1,...,Tn-1,0) are identified to one point.

(S7, ho)

FIGURE 31. The space P,; = RP"!/RP"?

Now the map ¢ : P,; — O(n)/O(n — 1) is easy to describe: for each vector x € S?™', ¢(x)
is the image of the vector e, under the reflection through the hyperplane z*. In particular,
if x =e,, e- is the hyperplane given by the equation z,, = 0, and hence p(e,) = —e,. Also
notice that if x € Sﬁ‘l is in the equator (i.e. x, = 0, then the hyperplane x contains the
vector e, , which means that ¢(z)(e,) = e,.

Let x € Sﬁ_l, and = = (x1,...,%y_1,%,), where z,, = a. All such vectors give the sphere
Sp? =5t n{w, = a}



