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1

Preface

This is not intended to be an introductory text in set theory: there
are plenty of those already. It’s designed to do exactly what it says on
the tin: to introduce the reader to the axioms of Set Theory. And by
‘Set theory’ here I mean the axioms of the usual system of Zermelo-
Fraenkel set theory, including at least some of the fancy add-ons that
do not come as standard.1 Its intention is to explain what the axioms
say, why we might want to adopt them (in the light of the uses to which
they can be put) say a bit (but only a bit, for this is not a historical
document) on how we came to adopt them, and explain their mutual
independence. Among the things it does not set out to do is develop
set theory axiomatically: such deductions as are here drawn out from
the axioms are performed solely in the course of an explanation of why
an axiom came to be adopted; it contains no defence of the axiomatic
method; nor is it a book on the history of set theory. I am no historian,
and the historical details of the debates attending their adoption and
who did what and with which and to whom are of concern to me only
to the extent that they might help me in the task explaining what the
axioms say and why one might want to adopt them.

Finally I must cover myself by pointing out in my defence that I
am not an advocate for any foundational rôle for set theory: it is a
sufficient justification for a little book like this merely that there are a
lot of people who think that set theory has a foundational rôle: it’s a
worthwhile exercise even if they are wrong.

Other essays with a brief like the one I have given myself here include

1 There are other systems of axioms, like those of Quine’s New Foundations,
Church’s set theory CUS, and the Positive Set Theory studied by the School
around Roland Hinnion at the Université Libre de Bruxelles, but we will mention
them only to the extent that they can shed light on the mainstream material.
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6 1 Preface

Mycielski [35] and Shoenfield [44]. My effort is both more elementary
and more general than theirs are.2 Whom is it for? Various people
might be interested. People in Theoretical Computer Science, mathe-
maticians, and the gradually growing band of people in Philosophy who
are developing an interest in Philosophy of Mathematics all come to
mind. However one result of my attempts to address simultaneously
the concerns of these different communities (as I discover from referees’
reports) is that every time I put in a silver threepenny bit for one of
them one of the others complains that they have cracked their teeth on
it.

This document was prepared in the first instance for my set theory
students at Cambridge, so it should come as no surprise that the back-
ground it relies on can be found in a home-grown text: [17]. The fact that
[17] is an undergraduate text should calm the fears of readers concerned
that they might not be getting a sufficiently elementary treatment.

It is a pleasure to be able to thank Ben Garling, Akihiro Kanamori,
Adrian Mathias, Robert Black, Douglas Bridges, Imre Leader, Nathan
Bowler, Graham White, Allen Hazen (and others, including some anony-
mous referees) for useful advice, and thanks to my students for invaluable
feedback.

2 Despite the promising-sounding title Lemmon [27] is a technical work.
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The Cumulative Hierarchy

The axioms of set theory of my title are the axioms of Zermelo-Fraenkel
set theory, usually thought of as arising from the endeavour to axiomatise
the cumulative hierarchy concept of set. There are other conceptions
of set, but although they have genuine mathematical interest they are
not our concern here. The cumulative hierarchy of sets is built in an
arena—which is initially empty—of sets, to which new sets are added
by a process (evocatively called lassoing by Kripke) of making new sets
from collections of old, preëxisting sets. No set is ever harmed in the
process of making new sets from old, so the sets accumulate: hence
‘cumulative’.

Formally we can write

Vα =:
⋃

β<α

P(Vβ) (2.1)

. . . where the Greek letters range over ordinals. What this mouthful
of a formula says is that the αth level of the cumulative hierarchy is the
power set of the union of all the lower levels: it contains all the subsets
of the union of all the lower levels.
V (the universe) is then the union of all the Vβ . My only quarrel with

this ‘V ’ notation is that I want to be able to go on using the letter ‘V ’ to
denote the universe of all sets (including possibly some —“illfounded”’—
sets not produced by this process) so I shall sometimes rewrite ‘V ’ as
‘WF ’ to connote ‘W ell Founded’.

This conception of sets is more-or-less explicit in Mirimanoff [33], but
is usually associated with Von Neumann [54]. He noticed that the cu-
mulative hierarchy gives an inner model of set theory.1 Von Neumann

1 For these purposes an inner model is a definable proper class that is a model of
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8 2 The Cumulative Hierarchy

produced the cumulative hierarchy as a possible interpretation of the
axioms of set theory (which by then had more-or-less settled down):
something of which they might be true. The idea that the cumulative
hierarchy might exhaust the universe of sets became the established view
gradually and quietly—almost by stealth.

One very important fact about sets in the cumulative hierarchy is
that every one has a rank—sometimes more graphically described as its
birthday: the rank of x is the least α such that x ⊆ Vα.

While we are about it, we may as well minute a notation for the
cardinalities of these levels of the hierarchy. |Vα|, the cardinality of Vα,
is defined to be iα. Since Vα+1 is the power set of Vα, Cantor’s theorem
tells that that all the Vαs are different sizes. In fact i0 := ℵ0; and
iα+1 := 2iα .

ZF such that every subset of it is a subset of a member of it. The expression is
being subtly recycled by the votaries of large cardinals even as we speak.
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IBE and other Philosophical Odds-and-ends

This is a book (and a small book at that) on set theory, not a book on
Philosophy of Mathematics; so there will be no long discussions about
what it might be for an axiom of set theory to be true, nor will we be
discussing how one establishes the truth or falsity of any of the candidate
axioms. Nevertheless there are a couple of philosophical issues that
cannot be ducked altogether and which we will cover briefly here.

3.1 Inference to the best explanation

Although most of the axioms of ZF became part of the modern consensus
without any struggle, there are two axioms—namely AC and the axiom
(scheme) of replacement—that have been at one time or another under
attack. In both cases a defence was of course mounted, and—although
the points made in favour of the defendants in the two cases were of
course different—there was at least one strategy common to the two de-
fences. It was a strategy of demonstrating that the axiom in question
gave a single explanation for the truth of things already believed to be
true. A single explanation for a lot of hitherto apparently unconnected
phenomena is prima facie more attractive than lots of separate expla-
nations. Unifying-single-explanation arguments are so common and so
natural and so legitimate that it is hardly surprising that this method
has been identified by philosophers as a sensible way of proceeding—
and that there is a nomenclature for it and a literature to boot. It is
probable that this is (at least part of) what Peirce had in mind when he
coined the word abduction; nowadays it is captured by the expression
Inference to the best explanation “IBE”; see Lipton [30] for an excellent
treatment.

The IBE defence was probably more important for Replacement than

9



10 3 Some Philosophical Prolegomena

for Choice. Advocates of the axiom of choice have stoutly maintained
that it is obviously true. (And the IBE case for AC is weak, as we shall
see). In contrast, advocates of the the axiom scheme of replacement do
not claim obviousness for their candidate—even now, after the debate
has been won. It is often said to be plausible, but even that is pushing
it. ‘Believable’ would be more like it: but even ‘believable’ is enough
when you can make as strong an IBE case as we will be making below.

3.2 Intension and Extension

The intension-extension distinction is a device of mediæval philosophy
which was re-imported into the analytic tradition by Church (see [13] p
2) and Carnap [9] in the middle of the last century, probably under the
influence of Brentano. However, in its passage from the mediævals to
the moderns it has undergone some changes and it might be felt that the
modern distinction shares little more than a name with the mediæval
idea.

Perhaps the best approach to the intension/extension distinction is
by means of illustrations. Typically the syntax for this notation is
[wombat]-in-extension contrasted with [wombat]-in-intension, where [wom-
bat] is some suite-or-other of mathematical object. Thus we contrast
function-in-extension with function-in-intension. A function-in-extension
is a function thought of as a tabulation of arguments-with-values, a
lookup table—or a graph. The function-in-extension contains no infor-
mation about how the value comes to be associated with the argument:
it merely records the fact that it is so associated. Function-in-intension
is harder to characterise, since it is a much more informal notion: some-
thing a bit like an algorithm, though perhaps a little coarser: after all
one can have two distinct algorithms that compute the same function.
The analysts of the eighteenth century—Euler, the Bernoullis and so
on—were studying functions from reals to reals, but all the functions
they were studying were functions where there was some reason for each
input to be associated with a particular output. That is to say, they
were studying functions-in-intension. (They were interested in things
like polynomials and trigonometrical functions). They did not have the
concept of an arbitrary function-in-extension, and would not have con-
sidered such things worthy objects of mathematical study.

In its modern guise the intension-extension contrast has proved par-
ticularly useful in computer science (specifically in the theory of com-
putable functions, since the distinction between a program and the graph
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of a function corresponds neatly to the difference between a function-in-
intension and a function-in-extension) but has turned out to be useful
in Logic in general. We need it here because the concept of set that the
axioms are trying to capture is that of an arbitrary object-in-extension
and without that understanding it is not possible to understand why the
axioms have the form they do.

“Arbitrary object-in-extension”? This phrase deserves some exegesis.

3.3 What is a Mathematical Object?

We are not yet finished with philosophical prolegomena, sadly. One
of the skills one needs in order to understand how people evolved the
positions that they did vis-à-vis the various axioms, is an understanding
of how people were thinking of sets a century and a half ago, and how
it differs from how we see sets now.

Much of that evolution is simply what happens to any concept that
becomes swept up into a formal scientific theory. The status of proper
mathematical object includes several features, all of them probably in-
extricably entwined:

(i) They have transparent identity criteria. Quine [37] had a bon

mot which indicates memorably where lies the importance of the
concept being well-defined: “No entity without identity”. For
widgets to be legitimate objects it has to be clear—at least in
principle—when two widgets are the same widget and when they
are distinct. That is not to say that there must be a finite decision
procedure; after all, the criterion of identity for sets is that x and
y are the same set if every member of x is a member of y and
vice versa. If x and y are of infinite rank (see chapter 2) then
this check can take infinitely long. But it is still a check that can
in principle be performed—in the sense that there are no logical

obstacles to its execution. (This is in contrast to the predicament
of the hapless Liza who is trying to mend the hole in her bucket.
She discovers that the endeavour to mend the hole in her bucket
spawns a subtask that required her bucket not to have a hole in
it in the first place. Even infinite time is of no help to her.)

(ii) If widgets are legitimate well-defined objects one can quantify
over them. The literature of philosophical logic contains numer-
ous aftershocks of Quine’s ([36] “On what there is”) observation
that “to be is to be the value of a variable”. This has usually
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been read as an an aperçu about the nature of genuinely exis-
tent things but it is probably better read as an observation about
the nature of mathematical entities.

And if one can quantify over widgets—so that a widget is a
value of a variable—then one can then prove things about all
widgets by universal generalisation: one can say “Let x be an
arbitrary widget . . . ” which is to say that one has the concept of
an arbitrary widget.

(iii) One final thing—whose importance I might be exaggerating—
there is an empty widget. Remember how important was the
discovery that 0 is an integer! But perhaps we mean the concept
of a degenerate widget. My guess is that this will probably turn
out to be the same as (ii) but even if it does it is such an important
aspect of (ii) that it seems worth while making a separate song
and dance about it. Cantor apparently did not accept the empty
set, and there are grumblers even now: [48].

Point (ii) will matter to us because some of the disagreement about
the truth of—for example—the axiom of choice arises from a difference
of opinion about whether there are arbitrary sets-in-extension. (i) is
very important to us because much of the appeal of the Vα picture of
sets (p. 6) derives from the clear account of identity-between-sets that
it provides. We will see more of this in chapter 2.

So how can they acquire this status? Typically they seem to go
through a 3-step process.

(i) At the first stage the objects are not described formally and not
reasoned about formally, though we do recognise them as legit-
imate objects. There are things which are now recognised as
mathematical objects which were clearly at this stage until quite
recently: knots became mathematical objects only in the nine-
teenth century.

(ii) Objects that have reached the second stage can be reasoned about
in a formal way, but they are still only mere objects-in-intension;
they are not first-class objects (as the Computer Scientists say)
and you cannot quantify over them. Examples: functions
IR //IR for the mathematicians of the eighteenth century; proofs
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and formulæ for the average modern mathematician;1 chemical
elements for chemists even today.2

(iii) Objects at stage three are fully-fledged quantifiable arbitrary en-
tities: they are “First class objects” as the Computer Scientists
say.

Further, we do not regard the process as completed unless and
until we are satisfied that the concept we have achieved is some-
how the “correct” formalisation of the prescientific concept from
which it evolved. Or if not the correct formalisation then at any
rate a correct formalisation. There is a concept of multiset which
has the same roots as the concept of set but the (rudimentary)
theory of multisets that we have doesn’t prevent our theory of
sets from being a respectable mathematical theory.

As we noted earlier, it is at this third stage that it becomes possible
to believe there are empty ones. One process that is particularly likely
to bring empty or degenerate objects to our attention is algebrisation:
it directs our attention to units for the relevant operations. We say ♣ is
he unit for an operation * if (∀x)(∗(x,♣) = x). For example: 0 is the
unit for addition; 1 is the unit for multiplication; the empty string is the
unit for concatenation; the identity function is the unit for composition
of functions, and so on. By “it becomes possible” what I mean is that
until you are considering arbitrary widgets and operations on them then
the empty widget is unlikely to attract your attention. How could it,
after all? The fact that it’s a unit for various algebraic operations on
widgets becomes important only once you are considering operations on
widgets and this is more likely once you have arbitrary widgets. 3

4

1 My Doktorvater Adrian Mathias says that a logician is someone who thinks that
a formula is a mathematical object.

2 Sometimes this transformation takes before our eyes. There was a time when
Kuiper belt objects were rare and each had a soul—Pluto (plus possibly a soul
mate—Charon). Now they are a population of arbitrary objects-in-extension with
statistical ensemble properties and soulless nomenclature instead of names. The
same happened to comets and asteroids but that was before I was born.

3 An aversion from this view of mathematics is probably what is behind Mordell’s
gibe (in a letter to Siegel) about how modern mathematics was turning into the
theory of the empty set.

4 As late as 1963 textbooks were being written in which this point of view was set
out with disarming honesty:

“It seems to me that a worthwhile distinction can be drawn between two types
of pure mathematics. The first—which unfortunately is somewhat out of style
at present—centres attention on particular functions and theorems which are
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We need at least some reflection on the difference between prescientific
and fully-fledged scientific objects because without it one cannot fully
understand the motivation for the axioms; the residual disagreement
over some individual axioms (the axiom of choice) too is related to this
difference.

3.4 The Worries about Circularity

Many people come to set theory having been sold a story about its
foundational significance; such people are often worried by apparent
circularities such as the two following.

• The cumulative hierarchy is defined by recursion on the ordinals but
we are told that ordinals are sets!

• Before we even reach set theory we have to have the language of first-
order logic. Now the language of first-order logic is an inductively
defined set and as such is the ⊆-minimal set satisfying certain closure
properties, and wasn’t it in order to clarify things like this (among
others) that we needed set theory . . . ?

There are various points that need to be made in response to such
expressions of concern. One is that we must distinguish two (if not
more) distinct foundationalist claims that are made on Set Theory’s
behalf. The first is that all of Mathematics can be interpreted in set
theory. This appears to be true, and it is a very very striking fact,
particularly in the light of the very parsimonious nature of the syntax
of Set Theory: equality plus one extensional binary relation. This claim
does not invite any ripostes about circularity

Unfortunately it is so striking that we feel that it must mean some-

thing. Something it could be taken to mean is that set theory is meta-
physically prior to the rest of mathematics, or in some other sense pro-

rich in meaning and history, like the gamma function and the prime number
theorem, or on juicy individual facts like Euler’s wonderful formula

1 + 1/4 + 1/9 + · · · = π2/6

The second is concerned primarily with form and structure.”

[46] p ix. Simmons’ preferred version of Mathematics is Mathematics as the study
of interesting intensions. Unfortunately the road to Hell is paved with interesting
intensions. This view of Mathematics is sometimes parodied as Mathematics as
stamp collecting or Mathematics as butterfly collecting; I prefer Mathematics as
egg-stealing.
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vides a foundation for it. This second claim is far from obvious and does

invite points about circularity
Inevitably claims of this kind were made when set theory was new,

and was inspiring high hopes in the way that novelties always do.5

It is for claims of this second sort that the above circularities make
difficulties. Indeed, the difficulties are such that were it not for the par-
allel with religion one would be at a loss to explain why the extravagant
claims for a foundational rôle for Set Theory should ever have retained
the currency they do. The explanation is that—for people who want to
think of foundational issues as resolved—it provides an excuse for them
not to think about foundational issues any longer. It’s a bit like the rôle
of the Church in Mediæval Europe: it keeps a lid on things that really
need lids. Let the masses believe in set theory. To misquote Chester-
ton “If people stop believing in set theory, they won’t believe nothing,
they’ll believe anything!”

The trouble with the policy of accepting any answer as better than
no answer at all is that every now and then thoughtful students appear
who take the answer literally and in consequence get worried by apparent
defects in it. In the case of the set-theory-as-foundations one recurrent
cause for worry is the circularities involved in it.

I think the way to stop worrying about these circularities is to cease to
take seriously the idea that set theory is that branch of Mathematics that
is prior to the other branches. It certainly does have a privileged status
but that privileged status does not solve all foundational problems for
us. If we lower our expectations of finding straightforward foundations
for Mathematics it becomes less likely that we will be disappointed and
alarmed.

The anxious reader who thinks that Mathematics is in need of founda-
tions and who has been looking to set theory to provide them may well
need more than the “chill out” message of the last paragraph to break
their attachment to the idea of set-theory-as-foundations. They might
find it helpful to reflect on the fact that set theory spectacluarly fails
to capture certain features that most mathematicians tend to take for
granted. There is a widespread intuition that Mathematics is strongly
typed. “Is 3 a member of 5?” is a daft question, and it’s daft because

5 Thinking that every problem might be a nail when you have a hammer in your
hand is not crazy at all if you have only just acquired the hammer. In those
circumstances you may well have a backlog of unrecognised nails and it is perfectly
sensible to review lingering unsolved problems to see if any of them are, in fact,
nails.
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numbers aren’t sets and they don’t do membership. A thoroughgoing
foundationalism about sets (of the kind that says that all mathematical
object should be thought of as sets) fails to accommodate this intuition
and seems to offer us no explanation of why this question is daft. This
doesn’t mean that set theory cannot serve as a foundation for Mathe-
matics, but it does make the point that the whole foundation project is
a bit more subtle than one might expect, and that the cirularities which
launched this digression are not really pathologies, but a manifestation
of the fact that life is complicated.

Despite these reflections I don’t want to be too down on Set Theory’s
claims to a central rôle in mathematics; the fact that apparently all of
Mathematics can be interpreted into the language of set theory means
that set theory is available as a theatre in which all mathematical ideas
can play. (Perhaps one would be better off trying to argue that Set
Theory has a unifying rôle rather than a foundational rôle.) This fact
by itself invests our choice of axioms with a (mathematically) universal
significance, and indeed there are set-theoretic assertions with reverber-
ations through the whole of Mathematics: one thinks at once of the
Axiom of Choice, but the Axiom scheme of Replacement has broad gen-
eral implications too, as we shall see. Set theory as a single currency for
mathematics is an easier idea to defend than set theory as a foundation
for mathematics.

Since the advent of category theory noises have been made to the
effect that we should look instead to category theory for foundations.
This does take the heat off the alleged circularities in set theory, but
it doesn’t deal with the fundamental error of attachment. Mathematics
doesn’t need foundations—at least not of the kind that Set Theory was
ever supposed to be providing—and the idea that Set Theory had been
providing them annoyed a lot of people and did Set Theory much harm
politically.
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Some History, the Paradoxes, and the
Boundaries of Ordinary Mathematics

The Axioms of Set Theory go back to an article by Zermelo [57] of
about 100 years ago, and in very nearly their present form. The most
significant difference between Zermelo’s axiomatisation in [57] and the
modern formulations is the absence from the former of the axiom scheme
of replacement. Axioms for set theory were being formulated at about
the same time as the paradoxes of set theory were becoming evident, so
it is natural for later generations to suppose that the first is a response
to the second. The currency of the expression “the crisis in foundations”
encourages this view. So, too, does this famous and poignant passage
from the first volume of Russell’s autobiography, in which he describes
confronting the paradox that now bears his name.

It seemed unworthy of a grown man to spend his time on such trivialities, but
what was I to do? There was something wrong, since such contradictions were
unavoidable on ordinary premisses. . . . Every morning I would sit down before
a blank sheet of paper. Throughout the day, with a brief interval for lunch, I
would stare at the blank sheet. Often when evening came it was still empty.

However—as always—things were more complicated than the narra-
tive we tell. One might think that the paradoxes were clearly a disas-
ter and that the people who lived through those troubled times spent
them running around like headless chickens wondering what to do about
them, but in fact people at the time—the above passage from Russell
notwithstanding—were not particularly perturbed by them, and one can
think of at least two good reasons why this should be so.

One reason is that at the time when the paradoxes started to appear
the formalisation of the subject matter had not yet progressed to a stage
where malfunctions and glitches were indications that the project was

17



18 4 Some History

going wrong or was misconceived: it was still at the stage where they
could be taken as reminders that there was a lot of work still to be done.

This is well illustrated by the comparative insouciance which attended
the discovery of the Burali-Forti paradox, which was actually the first
of the paradoxes to appear, and is by far the nastiest of them. Opinion
was divided about what it signified, but it hardly caused a sensation:
it was simply put for the time being into the too-hard basket. They
knew perfectly well that they didn’t understand it and couldn’t expect
to understand it until they had made more progress in making sets into
mathematical objects. Not that any of this is conscious! One reason why
Burali-Forti is not an obvious prima facie problem for an axiomatisation
of set theory is that—unlike the paradoxes of Russell and Mirimanoff—
it is not a purely set-theoretic puzzle. The time to start worrying is if
you have succeeded in formalising set theory but nevertheless still have
paradoxes!

The other reason is that mathematicians—then as now—had a con-
cept of “ordinary mathematics” to which the paradoxical sets palpably
did not belong. The sets with starring rôles in this ordinary mathemat-

ics were the naturals, the reals, the set of open sets of reals, the set of all
infinitely differentiable functions from IR to IR and others of like nature.
(The incompleteness theorem of Gödel was a different matter!)1 Mathe-
maticians would presumably have been perfectly happy with the axioms
of näıve set theory had everything gone smoothly but when it didn’t they
were quite relaxed about it because they’d known perfectly well all along
that the big collections were prima facie suspect: people weren’t inter-
ested in them anyway and shed no tears when told they had to wave
them goodbye. Zermelo’s axiomatisation wasn’t so much an attempt
to avoid paradox as an attempt to codify a consensus: to capture this
idea of ordinary mathematics. (This idea of ordinary mathematics—and
with it the idea that set theory has a record of polluting it by dragging
in dodgy big pseudosets—is one that will give trouble later). Zermelo’s
axiomatisation was thus a start on a project of axiomatising those collec-
tions/sets/classes that were familiar and could plausibly be assumed not

1 Interestingly the incompleteness theorem was not as shocking to contemporary
sensibilities as one might with hindsight have supposed. Clearly this must be in
part because it’s so much harder to grasp than Russell’s paradox, but that cannot
be the whole explanation, since there were people around who understood it. Were
they shocked? By the time I got round to wondering about the contemporary
impact, I knew only one living logician who could remember those days, and that
was Quine. He told me he couldn’t remember where he learned it or who told him,
tho’ he could of course remember where he was when he learned of the murder of
Jack Kennedy. So even the people who understood it weren’t shocked.
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to be harbouring hidden dangers. Quite where the boundary between
safe collections and dodgy collections lies is a matter to be ascertained
as the project evolves. The intention of the project itself was never a
mystery.

And its success was never endangered. The paradoxes should no more
cause us to distrust ordinary mathematics than the occasional hallucina-
tion or optical illusion should cause us to distrust our usual perceptions.
It is of course agreed that there are situations in which any malfunction
will call the whole apparatus into question but—it will be said—this is
not one of those situations.

This account—which I owe to Aki Kanamori—is presumably histor-
ically accurate. My unworthy feeling that it all sounds a little bit too
good to be true. It might be that concepts of set other than the cumu-
lative hierarchy are “not such as even the cleverest logician would have
thought of if he had not known of the contradictions”—to quote Rus-
sell. One could add that had they not known of the contradictions they
perhaps wouldn’t have ever got the idea that the cumulative hierarchy
exhausts the universe of sets. For surely it is a safe bet that even (in-
deed especially) the cleverest logicians would have gleefully forged ahead
with näıve set theory had there been no contradictions to trip them up.
Indeed they would have been failing in their duty had they not done
so. It may be of course that even in this dream scenario there would
have been people who grumbled about how the large sets were nothing
to do with ordinary mathematics–and that therefore we should restrict
ourselves to wellfounded sets. They could have argued that wellfounded
sets are conceptually more secure because we have a secure recursive
concept of identity for them.2 But they would not have been able to
point to the paradoxes as a compelling reason for their position. In any
case set theorists have heard grumbles like this before and know what
to think of them. Here we will deal with these grumbles in chapter 6.

4.1 What are sets anyway?

There is a way of thinking about sets which is perhaps very much a
logician’s way: sets as minimalist mathematical structures. What do we
mean by this? The rationals form an ordered field. Throw away the
ordering, then the rationals are a field. Throw away the multiplicative

2 This point is very rarely made. This isn’t because it is a weak argument, but
because the idea that the cumulative hierarchy exhausts the universe is not under
concerted attack, and no riposte is required.
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structure then they are an abelian group. What are you left with once
you have thrown away all the gadgetry? Do we have a name for the
relict? Yes: it’s a set. That’s what sets are: mathematical structures
stripped of all the gadgetry.

The sets that naturally arise in this fashion are special in two ways.
For one thing they are not arbitrary sets, but always specific motivated
sets-in-intension. But it is the second point that concerns us more at the
moment: they are not typically sets of sets. This approach motivates
the set of rationals, but it does not give us a way as thinking of each
individual rational as a set. From the set’s point of view the rationals
seem to be structureless atoms. They may have internal structure but
that structure is not set-theoretic. Back in the early days of set theory,
before we had methods of finding—for every mathematical object under
the sun—simulacra of those objects within the world of sets, people were
more attracted than they are now to the idea that set theory should
accomodate things that aren’t sets. It is a sign of a later stage in the
mathematician’s love affair with sets that the idea arose that it would be
nice if somehow one could think of the rationals too (to persist with our
example) as sets, rather than merely as atoms, and indeed to somehow
coerce all things too into being sets.

Even now there are some versions of set theory that explicitly leave
the door open to structureless atoms. These atoms come in two flavours.
First there are empty atoms: sets which have no members but which are
nevertheless distinct from each other. These are often called by the ger-
man word urelement (plural urelemente). The other style of atom is the
Quine atom. A Quine atom is a set x = {x}. Although flavour 1 atoms
(but not flavour 2 atoms) contradict extensionality and flavour 2 atoms
(but not flavour 1 atoms) contradict foundation uses can nevertheless
be found for these objects from time to time. The imperialist endeavour
of Set Theory—to express the whole of Mathematics in Set Theory—is
nowadays played out by implementing all the various primitive mathe-
matical entities of interest (reals, rationals, complexes, lines, planes etc.)
as sets in various ways, and there are now industry standards about how
this is to be done. (Ordinals are Von Neumann ordinals, natural num-
bers are finite Von Neumann ordinals, integers are equivalence classes
of ordered pairs of naturals and so on). However—in most cases—there
is no deep mathematical reason for preferring any one successful im-
plementation of these entities to any other. That is because—for most
implementations—the internal set theoretic structure of the reals-as-sets
or the complexes-as-sets has no meaning in terms of the arithmetic of
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reals or complexes. This being the case one might make a point of it by
implementing them as sets with no internal structure at all: that is to
say, as atoms of one of these two flavours.3

However the consensus view nowadays among set theorists is that we
should eschew atoms and think of sets (“pure sets”) as built up from
the empty set iteratively.

4.1.0.1 Ordinals

It has probably by now struck the astute reader that the usual way of
narrating the cumulative hierarchy (as in section 2) makes essential use
of ordinals. Can this be avoided? No. Does this matter? Again, no.
There are two ideas that we must keep separate. One should not allow
the (fairly sensible) idea that set theory can be a foundation for mathe-
matics to bounce one into thinking that one has to start entirely inside
Set Theory and pull oneself up into Mathematics by one’s bootstraps.
That is not sensible. (see the discussion on page 14.) On the contrary: it
is perfectly reasonable—indeed essential—to approach the construction
of the cumulative hierarchy armed with the primitive idea of ordinal.
What is an ordinal anyway?

Ordinals are the kind of number that measure length of (possibly
transfinite) processes. More specifically: transfinite monotone processes.
The reason why one insists on the ‘monotone’ is that the iteration of non-
monotone processes does not make sense transfinitely. This use of the
word ‘monotone’ here might sound funny to some, so let me illustrate
with a couple of examples:

(i) The riddle of Thompson’s lamp [49] concerns a process that is
not monotone. At time t = 0 the lamp is switched on; at time
t = 0.5 it is switched off; then at time t = 0.75 it is switched on
again, and so on. What is its state at time t = 1? Is it on or off?
It can’t be on because on every occasion before t = 1 at which it
is switched on it is turned off again before t = 1. By the same
token it cannot be off either!

(ii) Disjunction and conjunction (∨ and ∧) are commutative and as-
sociative, so one can think of them as operations on finite sets of
propositions. Thought of as functions from sets-of-propositions
to truth values they are monotone in the sense that

3 See Menzel [32] where he implements ordinals as atoms, and even arranges to have
a set of atoms—by weakening replacement
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P ⊆ Q //
∨
P ≥

∨
Q (4.1)

and

P ⊆ Q //
∧
P ≤

∧
Q (4.2)

(setting false ≤ true).
Further, given an infinite family 〈pi : i ∈ IN〉 of propositions,

both the sequences

〈
∧
i<n

pi : n ∈ IN〉 (4.3)

(That is to say: p0, p0 ∧ p1, p0 ∧ p1 ∧ p2 . . . )
and

〈
∨
i<n

pi : n ∈ IN〉 (4.4)

—thought of as their truth-values—are monotone;
This has the effect that a conjunction (or disjunction) of an

infinite set of propositions is well-defined. The limit of 4.3 is
false as long as even one of the pi is false (and true otherwise)—
the point being that if 4.3 ever takes the value false then all
subsequent values are false. Analogously the limit of 4.4 is true
as long as even one of the pi is true (and false otherwise)—
the point being that if 4.4 ever takes the value true then all
subsequent values are true.Get the

XOR for-
mula to
display
the sub-
scripting
properly

Contrast this with exclusive-or (XOR). XOR similarly is associa-
tive and commutative and so can be thought of as a function
from finite-sets-of-propositions to truth-values. However there is
no analogue of 4.1 or 4.2: the sequence

XOR

〈i < npi : n ∈ IN〉

is not monotone and therefore one cannot apply XOR to infinite
sets of propositions:

The class of (monotone) processes has a kind of addition: “Do this
and then do that”. It also has a kind of scalar multiplication: “Do this
α times”. Monotone processes—by supporting these two operations of
addition and scalar multiplication—seem to form a kind of module, and
a module over a new sort of number at that. What sort of number is this
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α? It’s an ordinal. This gives us an operational definition of ordinal:
that’s the sort of thing ordinals are: that’s what they do. This tells us
that 0 is an ordinal (the command: “Do nothing for the moment!”) is
the same as the command: “Do this 0 times”); it also tells us that the
sum of two ordinals is an ordinal; (“Do this α times and then do it β
times”). It even tells us that ordinals have a multiplication: β · α is the
number of times you have performed X if you have performed α times
the task of doing-X-β-times.

In fact these properties of ordinals all follow from the three assump-
tions that (i) 0 is an ordinal and (ii) if α is an ordinal, so is α+ 1; and
(iii) if everything in A is an ordinal, then sup(A) is an ordinal too. This
last is because if I have performed some task at least α times for every
α in A, then I have done it sup(A) times.

This definition is in some sense constitutive of ordinals, and tells us
everything we need to know about them as mathematical objects. For
example it follows from this recursive definition that the class of ordinals
is wellordered by the engendering relation (see page 45). This is by no
means obvious, and not everybody will want to work through the proof.
(Those who do can see the discussion in [17].) Readers from a theoretical
computer science background will be happy with this as an example of
a recursive datatype declaration. Others less blessed might find the
discussion at the end of part Zero of [14] calming.

However, none of this gives us any clue about how to think of ordinals
as sets. I shall not here explain how to do that, since it is one of the
things that is explained in every book on set theory written in the last
80 years so the reader is guaranteed to learn it anyway. In contrast this
is possibly the last time the reader will have made to him or her the
point that one does not need to know how ordinals are implemented as

sets to understand that they are legitimate mathematical objects and to
understand how to reason about them. This point is generally overlooked
by set theory textbooks in their headlong rush into developing ordinal
arithmetic inside set theory. Textbook after textbook will tell the reader
that an ordinal is a transitive set wellordered by ∈. Ordinals are not
transitive sets wellordered by ∈: they are not sets at all. And it’s just
as well that they aren’t, since if they were one would not be able to
sensibly declare the recursive datatype of the cumulative hierarchy in
the way we have just done in formula 2 p. 6 above, and the circularities
worries discussed around page 14 would come back with a vengeance..
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4.1.1 Set Pictures

According to this view, sets are the things represented by accessible
pointed digraphs, or APGs.4 An APG is a digraph with a designated
vertex v such that every vertex has a directed path reaching v. The idea
is that the APG is a picture of a set, specifically the set corresponding
somehow to the designated vertex. The other vertices correspond to sets
in the transitive closure of the depicted set.

How do we get from these things to sets? One could say that sets
are APGs but are APGs equipped with different identity criteria. Two
APGs that are isomorphic are identical-as-sets. Or one could identify
sets somehow with isomorphism classes of APGs, or with entities ab-
stracted somehow from the isomorphism classes. This gives rise to some
fun mathematics, and readers who express an interest in it are usually
directed to Aczel [1]—though the seminal paper is the hard-to-get [21]
and an equally good place to start is the eminently readable [3].

The APG story about what sets are is popularly connected in people’s
minds with an antifoundation axiom, and this antifoundation axiom
comes to mind naturally if we think about how APGs correspond to
sets. It is possible to decorate an APG with sets in the following sense:
a decoration of an APG is a function that labels every vertex of the APG
with a set in such a way that the decoration of a vertex v is the set of
all the decorations of the vertices joined to v by a directed edge. The
sets-as-APGs picture leads one to speculate that every APG must have
a decoration, so that the set corresponding to the APG is the label at
the designated vertex. If this is to be a good story about what sets are,
then every APG had better have a decoration. Better still, every APG
should have a unique decoration. This is the axiom of antifoundation
from [21]:

Every APG has a unique decoration. (APG 1)

Why ‘Antifoundation’? Well, consider the APG that has only one
vertex, and that vertex pointing to itself. We see that any decoration
of it will be a Quine atom. This contradicts the axiom of foundation.
If we do not want to postulate the existence of Quine atoms—or indeed
of any other sets that would not be wellfounded—then we could weaken
the axiom to

Every wellfounded APG has a unique decoration. (APG 2)

4 So they should really be APDs, but the notation is now standard.
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(A wellfounded APG is of course one whose digraph relation is well-
founded).

The two conceptions of sets given us by (APG 1) and (APG 2) will
of differ in that the conception given by (APG 1) includes sets that are
not wellfounded, but that given by (APG 2) does not. One very striking
fact about these two APG ways of conceiving sets is that that is the
only difference between them: all the other axioms suggested by one
conception are also suggested by the other. Equally striking is the fact
(making the same exception) that the axioms arising from the two APG
conceptions are the same as the axioms that arise from the cumulative
hierarchy conception. (The axioms of the second bundle (see below)
correspond to straightforward operations on APGs.) Indeed Marco Forti
has made the point that it is probably a pure historical accident that set
theory came down on the side of the axiom of foundation rather than
the side of the axiom of antifoundation. It is striking how little would
change if set theory were to change horses in midstream and use the
antifoundation axiom instead. See the discussion of Coret’s axiom on
page 30.
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Listing the Axioms

The axioms of Set Theory can be divided into four—or perhaps five—
natural bundles. The first bundle tells us what sort of thing sets are;
the second bundle tells us which operations the universe of sets is closed
under; the third bundle tells us that the second bundle at least has
something to work on. The fourth is a result of bundling the remaining
axioms into a . . . bundle.

5.1 First Bundle: The Axiom of Extensionality

The axiom of extensionality tells us what sort of things sets are. It arises
immediately from the conception of sets as minimalist mathematical ob-
jects, as at the start of section 4.1. Why does this give us extensionality?
One direction is easy. Clearly sets with distinct members must be dis-
tinct sets, by the identity of indiscernibles. For the other direction: if
we discard all the gadgetry from our structures, and for each structure
retain only its members, then clearly it is only the members that remain
to enable us to tell them apart. This is precisely the content of the ax-
iom of extensionality: distinct sets have distinct members. If x 6= y are
two sets then there is something that belongs to one but not the other.

The name is no accident. The axiom arises from the concept of sets as
arbitrary objects-in-extension. Every suite of objects-in-extension has a
kind of extensionality principle. Two ordered pairs with the same first
component and the same second component are the same ordeed pair.
Two lists with the same mebers in the same order are the same list. Two
functions-in-extension that contain the same ordered pairs are the same
function-in-extension. The axiom fo extensionality for sets that we have
just seen is merely the version of this princip[le for sets.

26
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5.2 Second Bundle: The Closure Axioms

Next we list the axioms that tell us what operations the universe is
closed under. This second bundle of axioms contains:

• Pairing. (∀x)(∀y)(∃z)(∀w)(w ∈ z ←→ (w ∈ x ∨ w ∈ y)).
In some ways it might be clearer what is going on if we were to have

an axiom scheme of existence of arbitrary finite sets:

(∀x1 . . . xn)(∃z)(∀w)(w ∈ z ←→
∨

1≤i≤n

w = xi).

It is not hard to see that this scheme can be deduced from the axiom
of pairing and the axiom of sumset. The advantage of thinking in
terms of the whole scheme is that it can be seen as an axiom (scheme)
arising from the insight that finite collections of objects are not going
to be problematic and can be safely assumed to be sets.(The Russell
class is clearly not going to be finite, for example). This will prepare
us for the principle of limitation of size to be seen below.

The axiom of pairing is so basic that hardly anyone ever thinks
about what life would be like without it. See [31]. Without pairing we
cannot construct ordered pairs to order, so we cannot discuss relations
of arity greater than 1.

• Sumset. (∀x)(∃y)(∀z)(z ∈ y ←→ (∃w)(z ∈ w ∧ w ∈ x)).
The y whose existence is alleged is customarily notated ‘

⋃
x’.

• Aussonderung also known as separation. This axiom scheme is
(∀x)(∀~w)(∃y)(∀z)(z ∈ y ←→ (z ∈ x ∧ φ(z, ~w)).

Any subcollection of a set is a set. This axiom appeals to a lim-
itation of size principle which we shall discuss in more detail below,
around p. 35. If safety is to be found in smallness, then any subset of
a safe thing is also safe.

• Power set (∀x)(∃y)(∀z)(z ∈ y ←→ z ⊆ x).
The power set (“P(x)”) of x is bigger than x (that’s Cantor’s the-

orem) but not dangerously bigger. Again this is an axiom that could
arise only once one had the idea of sets as objects-in-extension. The
idea of a collection of all the subsets of a given set is deeply suspect
to those who conceive sets as intensional objects. To collect all the
subsets suggests that there is an idea of arbitrary subset and that way
of thinking is part of the object-in-extension package.

• Axiom scheme of Replacement
If (∀x)(∃!y)(φ(x, y)), then (∀X)(∃Y )(∀z)(z ∈ Y ←→ (∃w ∈ X)φ(w, z))
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(φ represents a function, and replacement says “the image of a set in
a function is a set”).

The discussion of the axiom scheme of replacement will take us a long
time, because it gets its tentacles into many other areas and we will have
to get into each of them far enough to explain why it gets involved: it
will have an entire chapter to itself (chapter 6).

5.3 Third Bundle: The Axioms of infinity

On reflecting upon the axioms of the second bundle we notice an an-
noying fact: if there are no sets at all then vacuously all the axioms
in the first and second bundles are true! We need an axiom to start
the ball rolling: something to say that the universe is nonempty. Since
(by putting a self-contradiction for φ in the axiom scheme of separation
above) we can show that if there are any sets at all there is an empty
set, then the weakest assertion that will start the ball rolling for us is
the assumption that there is an empty set:1

• Empty Set (∃x)(∀y)(y 6∈ x).

However, just as the empty universe is a model for all the axioms up
to (but not including) the axiom of empty set, we find that a universe
in which every set is finite can be a model for all those axioms and the
axiom of empty set. This means that we haven’t yet got all the axioms
we want, since there are at least some sets that are indubitably infinite:
IN and IR for example. If we are to find any simulacra for them in the
world of sets we will have to adopt an axiom that says that there is an
infinite set. We will leave unspecified for the moment the precise form
that this axiom will take.

• Axiom of Infinity: There is an infinite set

Thus one can think of the axiom of empty set and the axiom of infinity
as being two messages of the same kind: “The Universe is nonempty!”;
“The Universe is really really nonempty!”.

It is a standard observation that once one has the axiom of infinity
then one can prove the existence of the empty set by separation.
1 There is a literature (see for example [48]) whose burden is that it is possible to

believe in the existence of sets while not believing in the empty set. Some people
even repudiate singletons. I shall ignore whatever merits there may be in this
point of view, on the same grounds that I here ignore NF and positive set theory:
it’s not part of the mainstream. In any case, as I argued on p. 11, once one accepts
arbitrary widgets-in-extension one has accepted null widgets.
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Once one thinks of these two axioms as bearing two messages of the
same kind, one might ask if there are other messages of the same kind—
to be obtained by an iteration of the step that took us from the axiom
of empty set to the axiom of infinity. It turns out that there are.

We needed the axiom of empty set because we noticed that without it
the universe might not contain anything. We then needed the axiom of
infinity because we noticed that if we assumed only the axiom of empty
set then there might not be any infinite sets. In both these cases there
is a property φ such that the axioms-so-far do not prove (∃x)(φ(x)), and
the new axiom-to-be asserts (∃x)(φ(x)).

This suggests a strategy for developing a sequence of axioms of infinity.
At each stage one devises the next axiom of infinity by thinking of a
natural property φ such that the axioms-so-far do not prove (∃x)(φ(x)),
so we take (∃x)(φ(x)) to be our new axiom.

But what is this φ to be? We need a sensible way of dreaming up such
a φ. There are of course lots of ways, some more natural than others.
In fact the axiom of infinity itself illustrates one sensible way. From the
perspective of ZF-with-empty-set-but-not-yet-infinity we think that the
universe might consist of Vω, the collection of hereditarily finite sets. It
is true that every set in Vω (and therefore every set in what the universe
might be) is finite, so “being not-finite” is certainly a candidate for φ.
However we can say more than that: Vω itself is not finite: infinitude is
not only a property possessed by none of the things we have axiomatised
so far but is also a property of the collection of them. So, in general,
one way to get the next axiom is to think of an initial segment V? of the
wellfounded universe that is a model of the axioms we have so far, and
find a φ that is true of V? but not of any of its members.

There are various ways of turning this strategy of developing a se-
quence of axioms of infinity into something a bit more formal. Some of
them can be quite recondite, and this is not the place for a treatment
of material of such sophistication. Suffice is to say that any suitably
systematic and formal strategy for developing new axioms of infinity
will itself start to look like a principle that says that the universe is
closed under certain operations—in other words to look like an axiom
(or axiom scheme) of the second bundle.

5.4 Fourth Bundle

So far we have axioms of three kinds (i) extensionality (ii) the closure
axioms (pairing, power set, sumset, separation: all the axioms that tell
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you how to make new sets from old) (iii) axioms of infinity (which some
authors regard as closure axioms). Then there are (iv) axioms like the
axiom of choice and the axiom of foundation. These are different from
the other sporadic axioms in that they are almost universally regarded
as core axioms. The other sporadic axioms are not always pairwise
consistent: they include Gödel’s axiom V = L (which we will discuss
briefly) and Martin’s Axiom and the Axiom of Determinacy (which we
won’t).

Of these axioms, the axiom of foundation deserves a section to itself,
and the axiom of choice merits a whole chapter.

5.5 The Axiom of Foundation

The axiom of foundation is the assertion that every set belongs to the
cumulative hierarchy. Standard textbooks explain how this is equiva-
lent to the principle of ∈-induction and also to the assertion that ∈ is
wellfounded. It is almost universally adopted by people studying set
theory. There are several things going on here. It is certainly the case
that some of the people who adopt it do so because they simply believe
it to be true. They have an iterative conception of set from which the
axiom of foundation follows inescapably.2 There are others who, while
having a more inclusive view of what sets are or might be, nevertheless
feel that there is nothing to be gained by remaining receptive to the pos-
sibility of extra sets violating the axiom of foundation, simply because
the illfounded sets bring us no new Mathematics. This is a much less
straightforward position, but of course also much less contentious. The
idea that illfounded sets bring us no new Mathematics is an important
one, and merits some explanation. There are two relevant results here.
To capture them both we need Coret’s axiom: every set is the same size
as a wellfounded set. See Forster [20].

The first is the folklore observation that the two categories of well-
founded sets and sets-arising-from-AFA are equivalent. In fact all that is
needed is that both foundation and antifoundation imply that every set
is the same size as a wellfounded set, so both categories are equivalent
to the category of sets-according-to-Coret’s-axiom.3

For the second we need to reflect on the idea that Mathematics is
strongly typed: reals are not sets of natural numbers, the real number 1
is not the same as the natural number 1 and so on. If we take this idea
2 Perhaps not inescapably (see Forster [19]) but certainly plausibly.
3 Thanks to Peter Johnstone for reassurance on this point.
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seriously we should expect that if all of Mathematics can be interpreted
into set theory then it should be possible to interpret it into a set theory
in such a way that all the interpretations are strongly typed in some set-
theoretic sense of ‘strongly typed’; the obvious candidate for this kind
of strong typing is Quine’s notion of stratification, which has venerable
roots in Rusell-and-Whitehead [41]

Then one might be receptive to the result that the two extensions
(i) ZF + foundation and
(ii) ZF + AFA
of ZF + Coret’s axiom are both conservative for stratified formulæ. That
is to say, if all of Mathematics is stratified, ZF + foundation and ZF +
AFA capture the same mathematics. So there really is nothing to be
gained by considering illfounded sets.

Against that one can set the observation that among the alternative
conceptions of sets are several that tell us that there will be illfounded
sets. The most important of these are:

(i) the Antifoundation view of Forti and Honsell [21];
(ii) Church’s Universal Set theory [11];
(iii) the NFU conception of illfounded set;
(iv) the positive set theory of Hinnion’s school in Brussels.

All these theories can be interpreted into ZF (or natural enhancements
of ZF). This creates an opening for the rhetorical move that says: all
these things can be interpreted into ZF so they can be seen as mere
epiphenomena. The difficulty for people who wish to adopt this point
of view is that there are interpretations in the other direction as well:
ZF can be interpreted in all these theories (or natural enhancements of
them as before). So which conception is primary? One is reminded of
what philosophers call the “paradox of analysis”4

This interpretation argument (for what it is worth) cannot be mounted
against the illfounded sets of Quine’s NF, since no interpretation of
Quine’s NF into ZF-like theories is known: the consistency question for
NF is open. On the other hand that very fact gives cautious working

4 “Let us call what is to be analyzed the analysandum, and let us call that which
does the analyzing the analysans. The analysis then states an appropriate relation
of equivalence between the analysandum and the analysans. And the paradox of
analysis is to the effect that, if the verbal expression representing the analysandum
has the same meaning as the verbal expression representing the analysans, the
analysis states a bare identity and is trivial; but if the two verbal expressions do
not have the same meaning, the analysis is incorrect.” [26] p 323.
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mathematicians the perfect excuse to ignore NF altogether—though pre-
sumably they will find it prudent not to burn their boats by adopting a
view that would be refuted by a consistency proof for NF should any-
one ever find one. The unavailability of the interpretability argument
against NF is scarcely an argument in favour of NF, but the arguments
in favour of NF are not our brief here anyway.

So one has all these various competing theories which are mutually
interpretable. People who wish to stick with the axiom of foundation can
always invoke the opportunity cost consideration: the other conceptions
of illfounded set are things one simply doesn’t want to explore: our
lifetimes are finite, there are infinitely many things one might study,
to live is to make choices, and to make choices is to abandon certain
projects the better to concentrate on others that we judge to have better
prospects. Let’s stick with the devil we know!

However there is an extra reason for adopting the axiom of foundation,
which is a purely pragmatic one. It enables one to exploit a useful device
known as Scott’s trick, which I will now explain.

Many mathematical objects arise from equivalence classes of things.
For example cardinal numbers arise from the relation of equipollence: x
and y are equipollent iff there is a bjiection between them. Two sets have
the same cardinal iff they are equipollent. If one wants to implement as

sets mathematical objects that arise from an equivalence relation ∼ in
this way then one is looking for a function f from the universe of sets
to itself which satisfies

x ∼ y ←→ f(x) = f(y) (5.1)

Such a function f is an implementation (such as we will consider in
section 6.3.4). What could be more natural than to take f(x) to be [x]∼,
the equivalence class of x under ∼, so that—for example—we think of
the number 5 as the set of all sets with five members? Natural it may be,
but if we have the other axioms of ZF to play with, we get contradiction
fairly promptly. If 5 is the set containing all five-membered sets, then⋃

5 is the universe, and if the universe is a set, so is the Russell class,
by separation.

This prevents us from thinking of cardinals as equivalence classes—
despite the fact that that is where they arise from. There is no special
significance to the equivalence relation of equipollence here: the same
bad thing happens with any other natural equivalence relation of this
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kind. In ZF mathematical objects that arise naturally in this way from
equivalence relations cannot be thought of as equivalence clases.

The axiom of foundation offers us a way out. In general, we want to
implement a mathematical object as the set of all its instances, the things
we are trying to abstract away from. The collection of such instances
might not be a set, as we saw in the case of the number 5. However, there
is nothing to stop us implementing the mathematical object as the set

of all its instances of minimal set-theoretic rank. The object answering
to the italicised description is a set by the axioms of ZF5, since it can be
obtained by separation from the set Vα+1, where α is the minimal rank
of an instance.

It is true that some of the entities we want to implement as sets can be
implemented by special ad hoc tricks without assuming foundation. For
example, the implementation of ordinals as von Neumann ordinals does
not exploit Scott’s trick: to prove that every wellordering is isomorphic
to a von Neumann ordinal one does not need foundation, one needs only
replacement (specifically the consequence of it called Mostowski’s Col-
lapse lemma of section 6.3.6.2). Nevertheless, the smooth and uniform
way in which Scott’s trick enables us to implement arbitrary mathemat-
ical objects (at least those arising from equivalence relations on sets, or
on things already implemented as sets) enables us to make a case for
adopting the axiom of foundation that will be very powerful to people
who just want set theory sorted so they can get on with doing their
mathematics.

Finally we should return briefly to the axiom of choice in this connection—
specifically in connection with equipollence and the implementation of
cardinals. The axiom of choice implies that every set can be wellordered.
One consequence of this is that every set is equinumerous with a von
Neumann ordinal. This means that we can take the cardinal of a set to
be the least ordinal with which it is equinumerous. This implementa-
tion works very well. In fact it works so well that there are people who
think it is the only implementation (so that they think that cardinals
just are special kinds of von Neumann ordinals) and believe that if one
does not assume AC then one cannot implement cardinals in set theory
at all! This is not so, since as long as we have foundation there is al-
ways Scott’s trick. This example serves to underline the importance of
Scott’s trick. Gauntt [23] showed that if we assume neither the axiom

5 And we do really mean ZF here, not Zermelo set theory. It seems that replacement
is need to get the set-theoretic rank function to behave properly.
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of foundation nor the axiom of choice then we can find a model which
has no implementation of cardinals.

5.5.1 The Remaining Axioms

We have postponed detailed discussions of the axiom of choice and the
axiom scheme of replacement. Each of these is a large enough subject
to merit a chapter all to itself. (The axiom scheme of separation has
not had a detailed discussion yet either, but it will be treated as a side
effect of the rôle of the principle of limitation of size in motivating the
axiom scheme of replacement.) We turn first to the axiom scheme of
replacement.



6

The Axiom Schemes of Replacement and
Collection

Important
role played
by replace-
ment in
the study
of L

The Axiom Scheme of Replacement is the scheme that says that
the image of a set in a function is a set. Formally:

(∀x)(∃!y)(φ(x, y)) // (∀X)(∃Y )(∀z)(z ∈ y ←→ (∃w ∈ X)(φ(w, z)))

This is a scheme rather than a single axiom because we have one
instance for each formula φ.

One can think of Replacement as a kind of generalisation of pair-
ing: Pairing (+ sumset) is the economical (finite) axiomatisation of the
scheme that says that any finite collection is a set. This scheme is cer-
tainly a consequence of the idea that any surjective image of a set is
a set—at least once we have an infinite set’ ! The name ‘replacement’
comes from the imagery of a human taking a set and replacing each el-
ement in it by a novel element—namely the value given to that element
by a function that the human has in mind.

The Axiom Scheme of Collection states:
(∀x ∈ X)(∃y)(ψ(x, y)) // (∃Y )(∀x ∈ X)(∃y ∈ Y )(ψ(x, y)), where ψ

is any formula, with or without parameters.
Weaker versions of collection (e.g., for ψ with only one unrestricted

quantifier) are often used in fragments of ZFC engineered for studying
particular phenomena.

THEOREM 1. WF |= Collection and Replacement are equivalent.

Proof: Replacement easily follows from Collection and Separation.
To show that replacement implies collection, assume replacement and

the antecedent of collection, and derive the conclusion. Thus

(∀x ∈ X)(∃y)(ψ(x, y)).

35
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Let φ(x, y) say that y is the set of all z such that ψ(x, z) and z is of
minimal rank. Clearly φ is single-valued, so we can invoke replacement.
The Y we want as witness to the “∃Y ” in collection is the sumset of the
Y given us by replacement.

This proof is very much in the spirit of Scott’s trick, with its ex-
ploitation of the idea of sets of minimal rank. The axiom of founda-
tion really seems to be necessary for the equivalence of collection and
replacement—the existence of a universal set implies the axiom scheme
of collection since a universal set collects everything we might want
to collect! In general, for most natural classes Γ of formulæ, the two
schemes of replacement-for-formulæ-in-Γ and collection-for-formulæ-in-
Γ cannot be relied upon to be equivalent. There are interesting subtleties
in this connection that we have no space for here. At any rate, in the
full version of these schemes as in ZF, Γ is the set of all formulæ and
we’ve established that these two unrestricted schemes are equivalent. So
now we can consider the proposal to adopt them as axioms.

Does the conception of set that we are trying to axiomatise force the
scheme of replacement into our trolley? There are various ways in which
it might.

(i) The weakest of the cases one might make would be one that says
that it’s useful;

(ii) secondly we might be able to persuade ourselves that the axiom
scheme is true in the cumulative hierarchy of sets (and we believe
that the universe of sets is the cumulative hierarchy);

(iii) thirdly–and this would be more difficult—it might be that we
could argue that our concept of set from ordinary mathematics
forces the axiom scheme upon us. Ordinary mathematics was
suspicious of big sets from the outset, so perhaps that insight can
give us an argument for replacement?

6.1 Limitation of Size

Let us take the third of these first, since it will enable us to get out of
the way an overdue discussion of the axiom scheme of separation.

The “Limitation of Size” principle says that

Anything that isn’t too big is a set LOS-1

This version lends immediate plausibility to the axiom scheme of sep-
aration, which says that any subclass of a set is a set. This is really just
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a footnote for us, since this axiom scheme is the characteristic axiom
scheme of the system Z of Zermelo set theory, which lacks the axiom
scheme of replacement—from which separation follows easily. We have
bigger fish to fry. For our present purposes the significance of LOS-
1—and LOS-2 below—is that they seem to underpin Replacement. All
replacement says is that the surjective image of a set is a set, so it
appears not to give us big sets from small.

Sometimes LOS can be spotted in the form:

Anything the same size as a set is a set LOS-2

These two versions are not quite the same, as we shall see. They arise
from the insight that the dodgy big sets that give rise to the paradoxes
all have in common the feature that they are much bigger than anything
that arises in ordinary mathematics. Naturally enough one then explores
the possibility that it is this difference in size that is the key to the
difference between the safe sets of ordinary mathematics and the outsize
sets of the paradoxes.

Limitation of size—in either version—has some plausibility. None
of the paradoxes concern small sets. Historically the motivation for
formalising set theory was to investigate IR and IN (and the other sets
that arise from them in Analysis) more carefully. All these sets are
small. So as long as we adopt only axioms that respect LOS we ought
to be able to help ourselves to as many as we want without getting into
trouble (but see point (3) below.)

However, LOS is not well-regarded nowadays, and for a number of
good reasons, which we will now consider.

6.1.1 Church’s distinction between high and intermediate sets

We have now reached a point at which we need to invoke the distinction
between large sets (as in large cardinals) and big sets which are collec-
tions that in most jurisdictions are not sets at all but proper classes.
Within the big sets we might want to distinguish a subspecies of inter-
mediate classes. Church [11] makes a distinction between low sets (a
low set is a set the same size as a wellfounded set) and co-low1 All other
sets he calls intermediate. Our big sets include his co-low (high) and
intermediate sets. Examples of intermediate classes are things like the

1 Church calls them high but this seems to me to be profligate of notation.
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Russell class and its congenors2, the collection of wellfounded sets, and
the collection of all Von Neumann ordinals.

Church points out that none of the known paradoxical sets are co-low:
they are all intermediate. This is a point worth emphasising, since there
are many people who have not yet taken it, and who believe in particular
that the universal set is a paradoxical object. This belief can be shown
to be false by the exhibition of any of the consistent set theories with
a universal set: NFU, Church’s set theory CUS, Generalised positive
comprehension are all salutory examples. These theories themselves do
not fall within our remit here, but the moral we have just drawn from
their consistency most certainly does. Another way of making the same
point is to observe that the paradoxical nature of the Russell class can be
seen clearly even without adding non-logical axioms to first-order logic:
one can prove the nonexistence of the Russell class entirely in first-order
logic, without using any set-theoretic axioms at all. There is nothing
analogous concerning the universal set.

Church’s wider point—that not only is V not paradoxical but that
only intermediate sets can be paradoxical—seems to be true, and he
seems to have chosen his definition of high with some care. Had he said
that a high set is one that is manifestly the same size as the universe,
then Randall Holmes’ observation that x 7→ {∅, {x}} injects V into the
Russell class would show that the Russell class would be high, rather
than intermediate.

(There is yet a third candidate for a characterisation of the interme-
diate classes: they are those proper classes whose complements are also
proper classes. (Notice that the complement of V is a set; whether or
not the complement of the Russell class is a set will depend in part on
whether or not the axiom of foundation is true). The assertion that all
big classes (the intermediate classes included) are nevertheless the same
size as V has highly nontrivial consequences. Von Neumann took up
this assertion as an axiom: see 9.0.2 in chapter 9.)

The moral that Church points is that the aperçu about paradox and
big sets doesn’t—on reflection—give an argument for an axiom that says
that any class is a set as long as it’s small enough: since the paradoxical
sets are all intermediate rather than co-low, it could actually be an argu-
ment for an axiom of complementation. There are systems of axiomatic
set theory (such as the system in [11]) in which the complement of a
set is a set. This system is known to be consistent relative to ZF so it’s

2 {x : x 6∈2 x}, {x : x 6∈3 x} and so on.
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clear that size is not by itself a problem. (This is a point against LOS-2
rather than LOS-1).

There are people who look askance as such theories, since they don’t
think they are theories of sets but of something else, so that what they
show the consistency of is not a universal set, but a universal something-
else. This is a spat over which community is to own the word ‘set’ and
it is a turf war not a dispute over mathematical substance.

Church’s point can be answered, or at least side-stepped. The para-
doxes certainly do not involve small sets, so a principle (such as LOS-1)
that restricts us to small sets will certainly enable us to steer clear of
the paradoxes.

6.1.2 LOS and some proofs

If we think about how the paradoxical sets come to be paradoxical (that
is to say, we examine the proofs of the paradoxes) we find in every case
that—as Church emphasised—the size of the paradoxical set is not a
contributory factor. In every case the cause of the trouble turns out to
be a logical feature of the definition of the set. rewrite

this
section
completely

The worry is not just that the set concerned is paradoxical, the prob-
lem is that the proof of the contradiction is itself pathological: it is
a pathological proof. For example, the natural deduction proof of the
Russell paradox in näıve set theory has what is known in the trade as a
maximal formula. This doesn’t mean that it isn’t a proof: it’s a proof
all right, but it has some features that one rather it didn’t have. The
significance of this for a discussion about the limitation of size principle
is that there are perfectly respectable theorems about uncontroversially
ordinary sets whose proofs have pathological features that echo (perhaps
a better word is encyst) the pathologies in the proof of the paradoxes.
For example there is a proof (and this was known already to Zermelo)
that for any x there is a y not in x. In particular we can take y to be
{z ∈ x : z 6∈ z}. It seems very hard to develop a proof system for set
theory in which we can give a proof of {z ∈ x : z 6∈ z} 6∈ x that is not in
some sense pathological. Size is clearly not the problem in this case.

6.1.3 Foundation and Replacement

Unless we assume the axiom of foundation ab initio it is perfectly clear
that not everything the same size as a well-founded set is well-founded.
If x = {x}, this x is the same size as any other singleton, but it is
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not well-founded. Thus a whole-hearted embrace of LOS is liable to
contradict foundation. The obvious way to deal with this is to modify
LOS to:

Any wellfounded collection that is not too big is a set.

6.1.4 Replacement not consistent with limitation of size?

Clearly Replacement is—on the face of it—very much in the spirit of
the limitation of size principle: it says only that a surjective image of
a set is a set. However, despite this promising start, it turns out that
Replacement actually has consequences that seem to violate the letter

of LOS, as we shall now illustrate.
Consider the function f that sends n to Pn(IN). Because of Cantor’s

theorem (which tells us that |X| < |P(X)|) we know that f has no
largest value. Now consider the image of IN in f , namely

{Pn(IN) : n ∈ IN}.

Replacement tells us this object will be a set. Therefore its sumset⋃
{Pn(IN) : n ∈ IN}

will be a set too3. The trouble now is that this is a set bigger than
any of the Pn(IN). Of course this doesn’t actually contradict LOS but
it does sit ill with it. This does make it look as though LOS is not a
sensible fundamental principle. A sensible fundamental principle should
not, one feels, be formalisable in such a way as to have consequences
that are untrue to its spirit. It might be of course, that Limitation of
size is a sensible fundamental principle but that replacment is not a a
formalisation of it, but nobody seems to draw this moral.

The fact that replacement enables us to prove the existence of sets
vastly larger than IN not only makes it difficult for us to defend it on the
grounds that it is a formal version of the limitation of size principle, it’s
not immediately clear whether the manufacture of supersized sets like⋃
{Pn(IN) : n ∈ IN} is a point in its favour (to be exploited in an IBE

argument) or a point against it. Are these sets part of the consensus that
we are trying to capture? Or are they part of the same quagmire as the
Russell class? If your view of set theory is of something that arose from
the study of the continuum you might feel that sets of such excessive size
3 It has to be admitted that we here make essential use of the axiom of sumset, but

that axiom, at least, is not controversial.
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are so remote from your motivations as to not be legitimated by them,
and accordingly—prima facie at least—to belong to the quagmire rather
than to Mathematics. However, that appears not to have been the view
of Russell and Whitehead or Skolem, at any rate. Russell and Whitehead
([41] volume III p 173) certainly had the concept of sets of that size, and
it is clear that they understood that their system provided no method
evident to them of proving the existence of such sets.4 Skolem ([47] p
297.) took the view that sets of this kind should be accommodated, and
used the fact that replacement proved their existence as an argument for
adopting it. Cantor ([6] page 495) claims that there are sets of size ℵω

but gives no explanation for this claim. We will take this up in section
6.3.1.

6.2 Is Replacement perhaps true in the Cumulative
hierarchy?

Could one perhaps persuade oneself that replacement is true in the cu-
mulative hierarchy? Attempts have been made, but all those known to
me look very post hoc. I suspect that all these attempts are in fact
exercises in bad faith, since the real reason why set theorists adopt the
scheme of replacement is that it enables them to do the things they
want to do. “Man is a moralising animal” wrote Philip Toynbee, and
for many of us it is not enough merely to have our own way, we feel we
have to be right as well. Thus they feel that some further justification
beyond has to be provided, and one such justification would be a claim
that replacement is true in the cumulative hierarchy.

There is a literature on this, but I find it very difficult to give it a
sympathetic presentation. The argument seems to be something like:
every set-indexed process can be completed. Given your set I, for each
i ∈ I you have to find some thing that is related to it by R. You are
told that you can do this for each i ∈ I, so the composite process is a
set-indexed composite of things we know we can do. This is more-or-
less the argument on p 239 of Shoenfield [45]. This sounds to me like
replacement under another name . . . a bit circular. Readers more patient
than me might wish to consult that reference and also Shoenfield [44]
on page 324 of the Barwise Handbook [2].
4 “Propositions concerning ℵ2 and ω2 and generally ℵν and ων , where ν is an induc-

tive cardinal, are proved precisely as the above propositions are proved. There is
not, however, so far as we know, any proof of the existence of Alephs and Omegas
with infinite suffixes, owing to the fact that the type increases with each successive
existence-theorem, and that infinite types appear to be meaningless.”
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Randall Holmes [25] has considered this question, and argues that the
full axiom scheme of replacement does not arise from the cumulative
hierarchy conception, but only the instances that are Σ2.

But in any case there is not very much at stake in this section, since—
as we shall see—the IBE case for adopting the axiom scheme of replace-
ment is so strong that no other is needed.

6.3 Reasons for adopting the Axiom Scheme of Replacement

We saw in section 3.1 how it can be legitimate to argue for the adop-
tion of an axiom by pointing to desirable consequences of it not easily
inferrable by other means. This is what we will do for replacement in
the next few sections.

6.3.1 Facts about Vω+ω

It is becoming ever clearer with the passing of the years that Skolem
was right: the large sets like Vω+ω did indeed have a shining future
awaiting them in Mathematics, so the fact that we seem to need the
axiom scheme of replacement if we are to prove their existence is an IBE
point in favour of the scheme.

How did we discover that Skolem was right? Well, it is an obscure
consequence of the second incompleteness theorem of Gödel that we keep
getting new theorems of arithmetic as we move higher up the cumula-
tive hierarchy. There are theorems about IN which can be proved only
by reasoning about sets of naturals; there are theorems about IN which
can be proved only by reasoning about sets of sets of rational numbers;
indeed there are theorems about IN which can be proved only by rea-
soning about sets of transfinite rank (sets that are beyond being setsn

of natural numbers for any finite n). Although Gödel’s theorem predicts
the eventual appearance of such theorems, it doesn’t supply any natural
examples, and none turned up until the 1970’s. Now we know lots. Let
us remember that the sets in Vω+ω are accepted by all parties to the
debate. They coincide roughly with the naturals and the reals and the
setsn of sets of reals. If we are to wholeheartedly accept sets in Vω+ω

then we will have to be similarly welcoming to any sets about which we
have to reason if we are to prove facts about sets in Vω+ω. The chain of
reasoning now is:
(i) we accept the sets in Vω+ω;
(ii) there are facts about these sets that can be proved only by reasoning
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about sets of higher rank;
(iii) we need replacement to prove the existence of these sets of higher
rank. (iii) is standard (see section 8.1). (i) is agreed. So a natural ex-
ample of facts about sets in Vω+ω that can be proved only by reasoning
about big sets beyond Vω+ω would be a clincher. Probably the best-
known natural example (and one of the earliest) is Borel Determinacy.
In recent years Harvey Friedman has produced many more.5

There are people who deny the significance of these theorems, but it
is hard to find good grounds for doing so. The need for sets of rank
> ω + ω in the proof of things like Borel Determinacy is presumably
not in dispute. The only option left is to deny that Borel determinacy
(and the Friedmanesque combinatorics) belong to ordinary mathemat-
ics. The clinching argument against this view is surely the following
point. Since what mathematicians actually do will change from time to
time, the answer to a question of whether or not some topic belongs to
“ordinary mathematics” will be determined by the date at which the
question is asked, and not by the nature of the topic it is being asked
about. Mathematics is time-invariant, so objections on the basis that
something is not part of ordinary mathematics are simply not mathe-
matically substantial.

In any case, this is not where the real debate should lie. A lot of
attention has been paid to, and ink spilled over, the question of whether
or not these strong set-existence consequences of the axiom scheme of
replacement are points in its favour, and much less has been made of the
other reasons for adopting replacement. This is partly because the other
compelling reasons for adopting replacement are quite logical and tech-
nical in flavour and quite recondite—in sharp contrast to points like the
deducibility of Borel determinacy from replacement, which are points of
striking simplicity whose significance can be understood even by peo-
ple who cannot follow the proofs of the theorems. Appreciation of the
significance of implementation-sensitivity arguments, the normal form
arguments, the omnibus inductively-defined-set argument and so on (to
be seen later in this chapter) require much more logical sophistication,
and those considerations are therefore less likely to be useful in a debate
where some of the participants lack that sophistication and are therefore
unlikely to be impressed by them. The kind of weapons brought to bear
in a public debate inevitably depend on the nature of the public. To
the extent that the opponents of replacement are people who are nei-
5 A good place to start looking is the foundations of mathematics mailist list run

by Martin Davis
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ther interested in logic nor sensitive to its claims the logical arguments
available to the proponents will not be useful and will not be brought
to bear. Despite that, I shall spell them out in the rest of this chapter.
After all, if you have as many pearls at your disposal as we have, you
should not be grudging when it comes to casting them before swine.

6.3.2 Gödel’s Argument

In the näıve, hand-wavy picture of the genesis of the cumulative hierar-
chy as in chapter 2 one tends to describe the Vαs as being defined by a
recursion over the ordinals. One doesn’t enquire too closely where the
ordinals came from, and—as I argued in section 4.1.0.1—one shouldn’t
so enquire: after all, ordinals are numbers not sets, so a creation-myth
for sets is not to be accused of inconsistency or absurdity merely on the
grounds that it presupposes ordinals.

Thee is another reason for not worrying about ordinals here: any
sequence that can be constructed by recursion over one wellordered se-
quence can equally be constructed by recursion over any other. Once we
take seriously the idea that the cumulative hierarchy is constructed by
recursion, and that wellorderings and ordered pairs etc. can be imple-
mented in set theory—and therefore within the cumulative hierarchy—
one then notices that one can describe the construction of the cumulative
hierarchy within itself.

Let us take a specific example. Vω+ω is an initial segment of the cu-
mulative hierarchy. It contains, for example, a wellordering of length
ω+ω+ω. This sounds as if we ought to be able to describe inside Vω+ω

the construction of Vαs with α < ω + ω + ω. Of course we can’t, be-
cause Vω+ω+3 cannot be a member of Vω+ω (foundation forbids it). This
means that, were we to perform the thought-experiment of pretending
that Vω+ω were the whole universe, we would find that the universe con-
tains wellorderings of lengths such as ω + ω + ω but does not contain
the Vαs that correspond to them. If set theory is to be a satisfactory
foundation for all our mathematical activity, then we ought to be able to
describe within it the mathematical activity of constructing the cumu-
lative hierarchy. That is, whenever we find a wellordering of length α,
then we want to be able to construct all Vβ with β < α. The argument
that the universe should be closed under α 7→ Vα is in [59].

Clearly what we are demanding here is that if the universe contains a
wellordering 〈X,<X〉 then it also contain the image of X in the function
that sends the minimal element of X to ∅, sends the <X -successor of x
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to P(Y ) whenever it sends x to Y and is ⊆-continuous at limit points.
And this of course is an instance of the axiom scheme of replacement.

6.3.2.1 Set pictures again

The same point can be made by reference to set pictures. For example,
at stage ω + 1 we can produce an APG which is a picture of the Von
Neumann ordinal ω + ω. This of course does not come unto existence
until level ω + ω. Recall now the two conceptions APG 1 and APG 2
from page 23.

Every set picture is a picture of a set; (APG 1)

Every wellfounded set picture is a picture of a wellfounded set (APG 2)

The first of these is contentious; after all, not everybody believes
Forti-Honsell antifoundation. In contrast APG 2 is much more widely
accepted. What axiom does it give rise to? If every (wellfounded) set pic-
ture is to correspond to an actual set we need something like Mostowski’s
collapse lemma (section 6.3.6.2) to prove it, and that will need the axiom
scheme of replacement.

6.3.3 The Argument from the Normal Form Theorem for Re-
stricted Quantifiers

Another reason for adopting replacement is that it enables us to prove
a normal form theorem for restricted quantification. This is actually an
argument for the axiom scheme of collection but—as we saw at the start
of this chapter—in the presence of the axiom of foundation the two are
equivalent.

In [17] we encountered restricted quantifiers in set theory (see pages
127, 169, 184-5, 188) and we saw a hierarchy of classes of formulæ,
which we will now review. A ∆0-formula in the language of set theory
is a formula built up from atomics by means of boolean connectives
and restricted quantifiers. A restricted quantifier in the language of set
theory is ‘(∀x)(x ∈ y // . . .)’ or ‘(∃x)(x ∈ y ∧ . . .)’. Thereafter a
Σn+1 (respectively Πn+1) formula is the result of binding variables in
a Πn (repectively Σn) formula with existential (respectively universal)
quantifiers. We immediately extend the Σn and Πn classes by closing
them under interdeducibility-in-a-theory-T , and signal this by having
‘T ’ as a superscript so our classes are ΣT

n and ΠT
n .

This linear hierarchy of complexity for formulæ will be very useful to
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us in understanding T if we can be sure that every formula belongs to one
of these classes6: it is standard that we can give a Πn+1 truth-definition
for Σn formulæ. That is to say, we desire a normal form theorem for T .

It is easy to check that if T is not ludicrously weak we can show that
ΠT

n and ΣT
n are closed under conjunction and disjunction. To complete

the proof of the normal form theorem we would need to show that these
classes are closed under restricted quantification. After all, if φ is a ΠT

n

formula what kind of a formula is (∃x ∈ y)φ? It would be very simple
if it, too, were ΠT

n . It’s plausible that it should be ΠT
n (it has the same

number of blocks of unrestricted quantifiers after all) but it is not at
all obvious. Nevertheless there are sound philosophical reasons why we
might expect it to be—at least if V = WF . The point is that WF

is a recursive datatype, and recursive datatypes always have a sensible
notion of restricted quantifier, and typically one can prove results of this
kind for the notion of restricted quantifier that is in play. Any recur-
sive datatype has what one might call an engendering relation between
its members: it is the relation that holds between a member x of the
datatype and the members of the datatype that went into the making of
x. (For example, with the recursive datatype IN the appropriate notion
of restricted quantifier is (∀x < n)(. . .).) In general, when dealing with
a recursive datatype, we can define ∆0 formulæ—as above—as those
with no unrestricted quantifiers, where we take restricted quantifiers to
be ‘(∃x)(R(x, y) ∧ . . .)’ and ‘(∀x)(R(x, y) // . . .)’, and R is the en-
gendering relation. We find that ∆0 formulæ behave in many ways as
if they contained no quantifiers at all. An unrestricted quantifier is an
injunction to scour the whole universe in a search for a witness or a
counterexample; a restricted quantifier invites us only to scour that part
of the universe that lies in some sense “inside” something already given.
The search is therefore “local” and should behave quite differently: that
is to say, restricted universal quantification ought to behave like a finite
conjunction and ought to distribute over disjunction in the approved de
Morgan way. (And restricted existential quantification too, of course).

The study of the various naturally occurring recursive dataypes of
interest have evolved in their own ways, and sometimes the binary rela-
tion in the restricted quantifier isn’t literally the engendering relation.
It is in the case of arithmetic of IN—the quantifiers are (∀n < m) and
(∃m < n)—but not in set theory where the relation is membership rather
than the transitive closure ∈∗ of membership, but the effect is the same.

6 well, lots of these classes: after all if φ is in ΣT
n it is also in ΠT

n+1.
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What we will now see is that, if we have the axiom scheme of collection,
then we can prove an analogue of the prenex normal form theorem:

THEOREM 2. Given a theory T , which proves collection, for every
expression φ of the language of set theory there is an expression φ′ s.t.
T ` φ ←→ φ′ and every restricted quantifier and every atomic formula
occurs within the scope of all the unrestricted quantifiers.

Proof: It is simple to check that (∀x)(∀y ∈ z)φ is the same as (∀y ∈
z)(∀x)φ (and similarly ∃), so the only hard work involved in the proof
is in showing that

(∀y ∈ z)(∃x)φ

is equivalent to something that has its existential quantifier out at the
front. (This case is known in logicians’ slang as “quantifier pushing”.)
By collection we now infer

(∃X)(∀y ∈ z)(∃x ∈ X)φ,

and the implication in the other direction is immediate.
This shows that Σn is closed under restricted universal quantification.

Dually we infer that Πn is closed under restricted existential quantifi-
cation. It is of course immediate that Σn is closed under restricted ex-
istental quantification and that Πn is closed under restricted universal
quantification.

Now have the analogue of the prenex normal form theorem we can
complete the proof that every formula belongs to one of the classes ΠT

n

or ΣT
n .

So the argument for replacement is that it enables us to prove the
Prenex Normal Form theorem for the theory of well-founded sets, which
ought to be provable, and which we do not seem to be able to prove
otherwise.

6.3.4 The Argument from Implementation-invariance

Very little of what passes for set theory is in fact pure set theory. Most of
it involves defined terms that implement ideas from elsewhere in math-
ematics, such as integer, real, ordered pair and so on. This is not an
unwelcome complication but a welcome one: it is a consequence of the
fact that set theory is a sort of protean universal language for math-
ematics, and this is delight not a pain. The implementations of these
mathematical (extra-set-theoretical) ideas have bedded down over time
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and people have got used to them and become set in their ways. You
will even hear people loosely saying that 〈x, y〉 (the ordered pair of x
and y) is {{x}, {x, y}} when of course it is nothing of the sort. Ordered
pairs can be implemented in lots of different ways and although in prac-
tice it generally doesn’t matter there is a point of principle: it ought
not to make much difference how we implement things like numbers and
ordered pairs in our set theory. Interestingly it turns out that if we wish
to be loftily indifferent about how we choose implementations then we
have to adopt the axiom scheme of replacement. (See Forster [18]). Let
us look at a couple of cases.

6.3.4.1 Existence of Cartesian Products

A pairing function is a dyadic function pair equipped with two unpair-

ing functions fst and snd such that

pair(x, y) =pair(x′, y′) // x = x′ ∧ y = y′,
fst(pair(x, y)) = x and
snd(pair(x, y)) = y.

Clearly we need pairing and unpairing functions if we are to code
relations and functions as sets, since their graphs are sets of ordered
pairs: the binary relation R will be coded as {pair(x, y) : R(x, y)}
and functions similarly. Equally clearly there is no prima facie reason
for preferring one kit of pairing-with-unpairing functions to any other.
There may conceivably be technical difficulties if the pairing or unpairing
functions are sufficiently perverse and the set theory we are using is
sufficiently weak but there are no mathematical reasons to prefer any
one suite of pairing-and-unpairing functions to any other. How could
there be?

One thing in particular that we are certainly going to want is that,
whatever pairing-and-unpairing kit we choose, X × Y should be a set,
for all X and Y . If we use Wiener-Kuratowski ordered pairs, then it
is possible to show—using only the axioms of power set, pairing and
separation—that X×Y does indeed exist for all X and Y . However this
demonstration relies on particular features of the Wiener-Kuratowski
ordered pair and does not work in general. If we want a proof that
doesn’t depend on any particular features of the pairing-and-unpairing
kit we use but is completely general then we have to use replacement. To
obtain X × Y , procede as follows. For each y ∈ Y consider the function
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Iy : x 7→ 〈x, y〉. By replacement the set Iy“X is a set7 for each y ∈ Y .
So consider the function IX : y 7→ Iy“X.

⋃
(IX“Y ) is now X × Y .

Interestingly, as Adrian Mathias has pointed out to me, we really do
need replacement for this: replacement follows from the assumption that
x × y exists for all x and y and every implementation of ordered pair.
Here is his proof:

Let F be any function class and consider the pairing function

x, y 7→ 〈F (x), 〈x, y〉〉

where the angle brackets denote (say) the Wiener-Kuratowski ordered
pair. This is clearly an ordered pair function.

Then if Y = X × {∅} exists for this new kind of ordered pair we can
recover F“X, since it is the set of things that are the first component
of a Wiener-Kuratowski ordered pair in Y , and that operation can be
defined using only separation and no replacement.

6.3.4.2 Cardinal Numbers

There is a widespread and fairly uncontroversial understanding of cardi-
nal arithmetic as an abstraction from set theory: facts about cardinals
and operations on cardinals are just facts (or can be interpreted as facts)
about sets and operations on sets. Thus, to see that cardinal multipli-
cation is commutative—that a · b = b · a—it is sufficient to observe that
A×B is naturally the same size as B×A. One does not have to imple-
ment cardinal numbers as sets to see this.

However not all of cardinal arithmetic can be interpreted back into
set theory in this implementation-free way. Consider Euler’s totient
function φ(n)8. φ(n) is the cardinal of a set of numbers, so quite which
actual set φ(n) will be the cardinal of will depend on how cardinals
are implemented. However it is not hard to see that all the sets of
which it might be the cardinal are the same size, so it doesn’t make
any difference what the implementation is. As the following diagram
illustrates, two implementations I1 and I2 of cardinals will generate a
bijection π between two subclasses of the universe (the ranges of I1 and
I2), and by replacement the restriction of π to any sets will be a set, so
that π will be a bijection between the two candidates for the job of being
the set of units mod n. Thus it comes about that facts about Euler’s
totient function turn out to be implementation-insensitive too.

7 f“x is {f(y) : y ∈ x}.
8 which is of course |{m : (m < n) ∧ (m and n are coprime)}|
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Sadly there are assertions about cardinals which are not implementation-
insensitive in this way: an example is ‘3 ∈ 5’.

To make sense of ‘3 ∈ 5’ not only do we have to implement numbers
as sets (5 clearly has to be a set if there is to be any hope of 3 being
a member of it) but the truth value it finally receives will depend with
exquisite sensitivity on the implementation of naturals that we use. ‘3 ∈
5’ is true for von Neumann naturals but not for Zermelo naturals or
Scott’s trick naturals.9 Although assertions like ‘3 ∈ 5’ can be plausibly
argued not to belong to cardinal arithmetic, we do have to come to
some sort of decision about what to do about them: even is it is to
ignore them. And the decision must be reasoned and defensible.

Thus it seems that there are three kinds of assertions about cardinals.

(i) those which do not require an implementation;
(ii) those which require an implementation but which are not

implementation-sensitive; and
(iii) those which are implementation-sensitive.

It turns out that the difference between (iii) on the one hand and (i)
and (ii) on the other can be captured by a typing discipline, which we
will now explain. There are two types: set and cardinal, and every
variable must have precisely one of them. We also have a cardinal-of
function, written with two vertical lines. The typing rules are

(i) In “y = |x|”, ‘y’ is of type cardinal and ‘x’ is of type set;
(ii) In “x ∈ y”, ‘y’ is of type set.

The formulæ that are well-typed according to this scheme turn out
to be precisely those whose truth-values are insensitive to choice of im-
plementation. The proof that well-typed formulæ are invariant uses the
axiom scheme of replacement. Let us sketch an instance of this, using
Euler’s totient function as above. As we observed there, quite which
9 Purists about the strong typing of mathematics might feel that “3 ∈ 5” lacks

a truth-value and that therefore a proper implementation of cardinal arithmetic
should capture this fact. They will not find this illustration as helpful as the
argument of the previous section.
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set φ(n) turns out to be the cardinal of will depend on what our im-
plementation of cardinal is, but all the candidate sets should at least
be the same size. That is to say, given any two candidates, we want
the graph of the obvious bijection between them (“send cardinal-first-
style of x to cardinal-second-style of x”) to be a set, and the obvious
way to do it is to use on the set of cardinals-first-style the function
that sends cardinal-first-style of x to the ordered pair 〈 cardinal-first-
style(x), cardinal-second-style(x)〉; the set of such ordered pairs is the
desired graph of the obvious bijection.

As far as I know no-one has bothered to prove the converse (which
would complete the analogy with the result of Mathias of the previous
section).

Notice that nothing has been said here about the availability of im-
plementations. It is actually a non-trivial task to implement arbitrary
mathematical objects in set theory. We saw this in section 5.5.

The considerations about implementations raised in this section make
a very powerful argument for Replacement. It is, as we all know, deeply
unimportant that we should opt for one ordered pair function rather
than another, or for one implementation of cardinal rather than an-
other. However, the fact that these choices are unimportant it itself an
important mathematical fact. If we do not adopt replacement as an ax-
iom scheme then this important mathematical fact goes uncaptured in
our set theory. Given the serious foundational aspirations of Set Theory
this would be a glaring shortcoming.

6.3.5 Existence of Inductively defined sets

As some writers in a modern computer science tradition have emphasised—
see e.g. [51]—part of the significance of the axiom scheme of replacement
is that it is a kind of omnibus existence theorem for recursive datatypes.
Here is an illustration. Let X be a set and f a k-ary operation on sets.
We want the closure of X under f to be a set. We define a sequence of
sets by
X0 =: X;

Xn+1 = Xn ∪ f“(Xk
n)

(That is to say, Xn contains those things which can be made from
things in X by at most n applications of f). Then

{Xi : i ∈ IN}



52 6 Replacement and Collection

is a set by replacement, since it is the result of replacing each i in IN by
Xi. Then ⋃

{Xi : i ∈ IN}

is a set by the axiom of sumset and it is the closure of X under f that
we desired.

This reassures us that any collection that is defined as the closure
of a set under a finitary operation will be a set. What about closure
under infinitary operations? This depends sensitively on the nature of
the operation. If the operation is frankly second order we should expect
paradox. The collection WF of all wellfounded sets is paradoxical, as
is the collection of hereditarily transitive sets (it’s the proper class of
all von Neumann ordinals). In general, whenever f is monotone and
injective then the ⊆-least set X such that P(f(X)) ⊆ X is a member of
itself if and only if it isn’t. Try it!

Collections inductively defined by closure under operations of charac-
ter that is at least bounded even though not actually finite can typically
be proved to be sets by means of replacement. For example the collec-
tion of sets hereditarily of size less than κ can be obtained by iterating
as follows:
X0 = ∅
Xα =: Pκ(

⋃
β<α

Xβ)

Establishing that eventually we reach a fixed point requires more work
than would be proper here; for us the point is merely that we can con-
struct the sequence of “approximations from below” by means of re-
placement applied to the ordinals.

We really do need replacement for this sort of thing: Hℵ1 , the class of
all hereditarily countable sets, cannot be proved to be a set in Zermelo
set theory Z, even though it is only of size 2ℵ0 and Z proves the existence
of much bigger sets than that. See page 78.

The existence of inductively defined sets is important in lots of differ-
ent ways, as we will see in the remaining sections of this chapter.

6.3.5.1 Reflection

If φ←→ (φVγ ), we say γ reflects φ.
Unless φ is ∆0, there is no reason to expect that there are any γ

that reflect φ. The reflection principle says that there is nevertheless
always such a γ. In fact one can prove the following.∆0 not

defined yet
. . .
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THEOREM 3. For every φ, ZF proves
φ←→ (∃ a closed unbounded class of α)φVα .

Proof. See Lévy [28], [29].
The principle of reflection tells us that if the universe satisfies (∀x)(∃y)φ

(so that the universe is, so to speak, closed under φ) then there is a Vα

that is closed under φ. Roughly this tells us that (modulo a certain
amount of small print) the closure of any set under any suite of opera-
tions is a set. Reflection is an omnibus existence theorem for recursive
datatypes. See [51].

6.3.5.2 The Argument from Categoricity

Categoricity is an idea from model theory: a theory is categorical if it
has precisely one model (up to isomorphism). Nowadays people tend
to consider only first-order theories in this connection, the model the-
ory of higher-order theories being a conceptual nightmare10. There are
second-order theories that can be seen to be in some sense categorical.
The theory of complete ordered fields, for example, has only one model,
namely the reals. The second-order theory of the naturals is categorical
(see below). This example is more important for us than the example
of the reals, for it is a special case of a general phenomenon. A recur-
sive datatype is a family of sets built up from some founder objects
by means of the application of constructors. The natural numbers is the
simplest example of such a family, being built up from the single founder
object 0 by means of the single unary operation S (successor, addition of
1). The intuition to which all the second-order-talk appeals is this. Sup-
pose I construct a recursive datatype (as it might be IN) starting with
my founder objects and applying the constructors (which are after all
entirely deterministic). Suppose when I have finished I wipe my black-
board clean and go away and have a cup of tea. Then, when I come back
and repeat the performance, I must obtain the same result as I did the

first time. Indeed, to sharpen the point, let us consider the gedanken-

experiment of you and me simultaneously constructing this datatype
(whichever it was) at two separate blackboards. The moves available to
you are the same as the moves available to me, so as we procede with
our two constructions we build an isomorphism between them.11

10 Open Question number 24 (the last in the list) at the end of Appendix B of [10]
(p 514) is “Develop the model theory of second- and higher-order logic”!

11 Second-order arithmetic has an obvious model, the standard model that axiomatic
arithmetic was intended, all along, to describe. Let us call this model M. Second-
order arithmetic includes as one of its axioms the following:
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This is why people think that the second order theory of arithmetic is
categorical. However our concern here is with the recursive datatype of
wellfounded sets in the cumulative hierarchy. The second-order theory
of this structure is going to be categorical for the same reasons as before.

That is to say, if we think of the axioms of ZF as second-order and in-
clude the axiom of foundation (so that we know that what we are trying
to axiomatise is the cumulative hierarchy) we should find that the the-
ory generated by the axioms is second-order categorical, and describes
precisely the cumulative hierarchy of wellfounded sets.

It’s not quite as straightforward as that, since there are various ax-
ioms of infinity that tell us how long the construction of the cumulative
hierarchy has to be pursued, so the idea is that a model of second-order
ZF is uniquely determined by values of two parameters: (i) the num-
ber of urelemente and (ii) the height of the model. (This is in Zermelo
[59].) So whenever M and M′ are two models that agree on these two
parameters there is an isomorphism between them. The obvious way to
construct this bijection is by transfinite recursion. You need replacement

to construct the bijection.
This is really just another illustration of the way in which replacement

is the omnibus existence axiom for recursively defined sets. Except here
the thing we are defining (the bijection) is a proper class, and replace-
ment is being used to prove that all its initial segments are sets.

6.3.6 Existence of Transitive ClosuresWe have
already
used this
idea in
the section
of ∆0

formulae

Inconveniently, the expression ‘transitive closure’ has two meanings, and
we must not confuse them. (See the glossary p. 90). On the one hand
the transitive closure of a relation R is the least transitive relation
extending R. Since the transitive closure of the parent relation is the
ancestor relation Russell and Whitehead called this operation the an-
cestral and some writers (Quine, for example) perpetuated this usage.
Despite this catchy menomonic (and pædagogically useful) character of
this terminology it has almost completely passed out of use and every-
body nowadays writes of transitive closures instead.

(∀F )(F (0) ∧ (∀n)(F (n) // F (n + 1)) // (∀n)(F (n)))

This axiom enables us to prove that every natural number is standard—simply
take ‘F (n)’ to be ‘n is a standard natural number’—which is to say “x is in M”.
Therefore M is the only model of second-order arithmetic.
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On the other hand the transitive closure TC(x) of a set x is the set of
all those things that are members of x, or members of members of x, or
members of members of members of x and so on. Since in order to give
you a set I have to give you all its members (and all their members and
so on) the transitive closure of x contains all those things that I have to
give you when giving you x. It’s very tempting to think that this means
that TC(x) contains all the sets that are ontologically prior to x,
particularly if—like most set theorists—you think that the cumulative
hierarchy exhausts the universe of sets. In the cumulative hierarchy
setting it is clear that ∈ (or rather its transitive closure—in the other

(ancestral) sense!) is the relation of ontological priority between sets.
Clearly, for any object x whatever, the collection of things on-which-x-
relies-for-its-existence is a natural collection to consider, so it is not at
all unreasonable to desire an axiom that tells us that it is always a set.
TC(x) is certainly a set for some x. If there is to be a special underclass
of sets x for which TC(x) does not exist it would be nice to have an
explanation of who its members are and why. Deciding that TC(x) is
always a set spares us the need to dream up such an explanation.

That is a rather philosophical reason for being attracted to the axiom
that TC(x) is always a set. There are also technical reasons which
we have no need to go into here, beyond saying that if one wishes to
infer the axiom scheme of ∈-induction from an axiom of foundation (in
any of its forms) one will need the existence of transitive closures. I
refer the reader to [17] for the details, since we are trying here to keep
technicalities to a minimum.

The significance of this for us is that the axiom scheme of replacement
gives us an easy proof of the existence of TC(x) for all x. Let x be any
set, and consider the recursively defined function f that sends 0 to x,
and sends n + 1 to

⋃
(f(n)). This is defined on everything in IN. By

replacement its range is a set. We then use the axiom of sumset to get
the sumset of the range, which is of course TC(x).

Finally the set picture view of sets compels us to take seriously the
idea of the transitive closure of a set: for any set x the APG picture
of x has a vertex for every element of TC(x). Further, the APG of the
transitive closure of x can be obtained by a fairly trivial modification of
the APG of x. Again, the edge set for the APG of the transitive closure
of x is the (graph of) the transitive closure of the edge relation of the
APG of x.
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6.3.6.1 Versions of the axiom of infinity

There are various expressions that can serve the rôle of an axiom of
infinity. Here are three that we can usefully consider:

(i) There is a Dedekind-infinite set;

(ii) Vω exists;

(iii) (∃x)(∅ ∈ x ∧ (∀y ∈ x)(y ∪ {y} ∈ x)).

The first two formulæ are perfectly intelligible given the discussion
around page 27. It is the third that needs some explanation. It says
that there is a set that contains the empty set and is closed under the
operation y 7→ y ∪ {y}. It’s pretty clear that any x satisfying (iii) will
be Dedekind-infinite, but why all the extra information?

The real significance of the extra information is that, of the two clauses
of (iii), the first is related to the fact that, in the Von Neumann imple-
mentation of IN, 0 is implemented as the empty set; the second is related
to the fact that the function concerned—y 7→ y ∪ {y}—is the successor
function on natural numbers in the Von Neuman implementation. What
(iii) is trying to tell us is that there is a set that contains all Von Neu-
mann naturals. The set of Von Neumann naturals itself is the ⊆-least
set witnessing (iii).

Are (i)–(iii) all equivalent? Not unless one has replacement! If one has
the axiom scheme of separation then as long as Vω exists one can obtain
from it the set of all Von Neumann naturals. So (ii) // (iii). Evidently
(iii) // (i) since the Von Neumann IN is manifestly Dedekind-infinite.
It’s the other direction ((i) // (ii)) that is problematic.

What can we do? It is standard that if there is a Dedekind-infinite
set X then the quotient of P(X) under equinumerosity contains (an
implementation of) IN. This is because every dedekind-infinite set has
subsets of all inductively finite sizes. How is one to obtain Vω or the
Von Neumann IN from this? The obvious way to obtain Vω is to take
the sumset of the collection {Vn : n ∈ IN} which of course one obtains
by replacement in a way reminiscent of the way we have just obtained
TC(x). Interestingly it turns out that this use of replacement is neces-
sary: there are models of Zermelo set theory in which (iii) is true but
(ii) is not. See Mathias [31]. (Also Boffa [4]; and [16] p 178; and [53] p.
296.)

Thus by adopting the axiom scheme of replacement we erase all need
for concern about which form of the axiom of infinity we are using.
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Finally—in situations where extreme rigour is called for—there is the
consideration that (iii) cannot even be stated unless one has already
established the existence and uniqueness of the empty set, since (iii)
contains a defined term that denotes it. This will matter if one wishes
to claim that the axiom of empty set follows from the axiom of infinity.

6.3.6.2 Mostowski

It is standard that if we have the axiom scheme of replacement we can
prove the lemma of Mostowski that tells us that every wellfounded ex-
tensional structure is isomorphic to the membership relation on a tran-
sitive set. In other words: every wellfounded extensional structure has
an ∈-copy.

This sounds recondite, but it matters. If we are to use the Von Neu-
mann implementation of ordinals—which everyone in fact does, despite
the availability of Scott’s trick—then we need to know that the func-
tion that sends wellorderings to their ordinals is well-defined and total.
This requires us to prove that every wellordering is isomorphic to a
Von Neumann ordinal. We cannot prove this without at least some use
of replacement. This is one of the reasons why Zermelo set theory is
unsatisfactory. A much more widely-used system—by those who want
something weaker than ZF—is the system KP of Kripke-Platek, which
has replacement for some Π1 formulæ only. KP is strong enough to
prove Mostowski’s lemma.

I think we should close these discussions with a reflection that puts
it all in perspective. Whatever the philosophical points that philoso-
phers of Mathematics make about the axiom scheme of replacement, it
remains the case that for the mathematician who actually studies the
cumulative hierarchy, the question of whether or not the axiom scheme
of replacement is true in the cumulative hierarchy has long since got
lost in the dust visible in the rear-view mirror: for better or worse, the
debate is over.
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The Axiom of Choice

Without any doubt the most problematic axiom of set theory is the
axiom of choice. It has generated more bad arguments (both for it and
against it) and more ill-tempered discussions than all the other axioms
put together. There is no space here to even pretend to do justice to
those discussions: entire books have been devoted to them. See Moore
[34]. There is room here for no more than a brief outline of the issues
and some pointers into the literature.

There are many, many versions of the axiom of choice, and they are
spread across many branches of mathematics. So many, in fact, that
Rubin and Rubin [39] could fill a whole book listing equivalent forms
and detailing proofs of equivalence between many of them. The fact
that the axiom of choice has all these different manifestations all over
the place shows that it is a deep mathematical principle, and that fact is
by itself enough to force it upon our attention. It doesn’t mean that it
is true, of course (since the negation of the axiom of choice has exactly
as many versions and in the same places!) but it does mean that it is
highly significant, and is something that we have to take seriously one
way or another.

We shall start with a form of it that is particularly simple, to make
it easier for the reader to see what is being claimed, and perhaps see
whether or not they want to believe it.

The version we consider is the axiom that Russell [40] called the mul-

tiplicative axiom.1

1 Russell wanted to define the product α ·β of two cardinals as the size of a set that
was the union of α sets each of size β. (For some reason he didn’t define it as the
size of the cartesian product of a set of size α with a set of size β.) However, as
the socks example in section 7.2.1 makes clear, we need a certain amount of AC
to ensure that all sets that are unions of α sets each of size β are the same size.
Interested readers can consult [18] or [40]).

58
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One pleasing feature of this version of the axiom is that is purely
set-theoretical and doesn’t need any extra notation.

Let X be a nonempty family of disjoint nonempty sets, so
that (∀y, z ∈ X)(y ∩ z = ∅). Then there is a set Y such
that, for all y ∈ X, Y ∩ y is a singleton. (M)

Y is said to be a transversal set.
I can remember thinking—when I first encountered this axiom—that

this must be a consequence of the axiom scheme of separation that says
that any subcollection of a set is a set. The Y that we are after (once
we are given X) is obviously a subcollection of

⋃
X, and that’s a set

all right. This is true, but it doesn’t help, since there is no obvious way
of finding a property φ so that Y is {w ∈

⋃
X : φ(w)}. Contrast with

the existence of a bijection between A × B and B × A: we can specify
such a bijection without knowing anything about A and B—just flip
the ordered pairs round. To find such a Y , given X, it seems that we
need to be given a lot of information about X. For an arbitrary X we
do not have that kind of information; accordingly we cannot prove (M)
above for arbitrary2 X; this leads us to the conclusion that if we want
to incorporate M and its logical consequences in our theory then we will
have to adopt it as an axiom.

The problem seems to be that in order to obtain Y we have to select
an element from every member of X and we need information about X
(and its members) to guide us in making our choice. At this point I shall
revert to a more usual version of the axiom:

if X is a set of nonempty sets then there is a function
f : X // S

X such that (∀x ∈ X)(f(x) ∈ x). (AC)

f is said to be a choice function for X. It’s not hard to see that
(AC) is equivalent to (M).

M acquires a certain plausibility if one considers cases where X has,
say, two members: x1 and x2. For in that case we just take any ordered
pair 〈u, v〉 from x1×x2 and form the pair {u, v}, and this pair is obviously
a transversal. A slightly more complicated argument will work if X has
three, or four members. Indeed, we can prove by induction on n that
M—and AC—hold for all finite X. The proof is simple—very simple in
fact—and provides a useful test-bed for people’s intuitions about choice.

2 The sudden appearance of the word ‘arbitrary’ at this juncture is an indication
that the stage at which we need to make the axiom of choice explicit at precisely
the stage where we acquire the concept of an arbitrary set. . . in-extension!
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THEOREM 4. For every n ∈ IN if X is a set of nonempty sets with
|X| = n then X has a choice function.

Proof:

The base case is n = 0. The empty function is a choice function for
any empty set of nonempty sets.

Now for the induction step. Suppose X has a choice function. How
do we find a choice function for X ∪ {x}? If x ∈ X then any choice
function for X will do. The other case is when x is nonempty and is
not already a member of X. If x is nonempty then it has a member, y
say. But then if f is a choice function for X then f ∪{〈x, y〉} is a choice
function for X ∪ {x}.

There are several subtleties in this proof.
(i) The first point to note is that although we have assumed X to be

a finite set we have made no assumptions about the cardinalities of the
members of X. Every finite set has a choice function: X can be a finite
set of sets-as-big-as-you-please.

(ii) Secondly, classroom experience has taught me that many people
think we have used the axiom of choice in this proof, by picking y from
x. But we haven’t. All we have said is that, if f is a choice function
for X and y is a member of x, then f ∪ {〈y, x〉} is a choice function for
X ∪{x}; and that much is true. We are appealing to nothing more than
the validity of the inference

(∀x)(F (x) // p) (∃x)(F (x)

p

in the case where F (x) says that x is the ordered pair 〈f, y〉 where f is a
choice function for X and y is a member of x, and p says that there is a
choice function for X ∪{x}. We haven’t claimed that there is a uniform
construction of choice functions for all finite sets; we have claimed merely
that each finite set has a choice function. A finite set will typically have
lots,3 and without knowing much more about the internal structure of
the set there is no reliable uniform way of identifying one in advance.
Indeed it is important that we can perform the induction without having
a uniform construction of choice functions for all finite sets: if there were
somehow a way of canonically extending choice functions for finite sets
then we would be able to prove the axiom of choice for countable sets.

3 The number of choice functions X has is simply the product of the cardinalities
of the members of X.
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For let {Xi : i ∈ IN} be a countable family of nonempty sets. If there
were a canonical way of assigning uniformly, for each i ∈ IN, a choice
function fi that picks a member from all Xj with j < i and fi extends fj

with j < i then the function
⋃
{fi : i ∈ IN} would be a choice function for

the family {Xi : i ∈ IN}. But this last assertion is the countable axiom of
choice, and that axiom is known to be independent of the other axioms.
(See p. 60.)

(iii) Thirdly, a point to ponder. This fact revealed by this proof is
often expressed by some formulation like “We can always make finitely
many choices: to make infinitely many choices we need AC”. How do
you count choices? Well, you have to count them in such a way that
in the proof by induction for theorem 4 that we have just sat through
there are only finitely many choices. Presumably exactly one. And let
us remind ourselves again that what matters is the number of times one
makes a choice, not (this is point (i) again) the number of elements in
the set from which one is choosing. Even choosing from a pair can be
hard, as the example of the socks (section 7.2.1) shows. Buridan’s Ass
points the same moral. How happy could I be with either, were t’other

dear charmer away.

There are various weak versions of the axiom of choice that the reader
will probably need to know about. The axiom of countable choice
(“ACω”) says that every countable set of (nonempty) sets has a choice
function. The axiom of dependent choices (DC) says that for any
set X with a binary relation R satisfying (∀x ∈ X)(∃y ∈ X)(R(x, y))
there is a sequence 〈x1, x2 . . . nn . . .〉 where, for all i, R(xi, xi+1).

Both these versions are strictly weaker than full AC. DC seems to
encapsulate as much of the axiom of choice as we need if we are to
do Real Analysis—well, the minimal amount needed to do it sensibly.
DC does not imply the various headline-grabbing pathologies like Vi-
tali’s construction of a nonmeasurable set of reals nor the Banach-Tasrki
paradoxical decomposition of the sphere. There are also other weakened
versions of AC, but these two are the only weak versions that get fre-
quently adopted as axioms in their own right.

In this connection one might mention that people have advocated
adopting as an axiom the negation of Vitali’s result, so that we assume
that every set of reals is measurable. Since this is consistent with DC
we can adopt DC as well, and continue to do much of Real Analysis
as before, but without some of the pathologies. Indeed one might even
consider adopting as axioms broader principles that imply the negation
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of Vitali’s result—such is the Axiom of Determinacy, However that is a
topic far too advanced for an introductory text like this.

In the rest of this chapter we will consider briefly the various positions
people have adopted in relation to the Axiom of Choice and how one
might come to hold those positions. First we consider the prospects for
an IBE argument that adopting the axiom of choice might be a sensible
unifying thing to do.

7.1 IBE and some counterexamples

Can we argue for AC by IBE? There is a prima facie problem in that
there are some consequences of AC that people have objected to at
one time or another. We have already mentioned Vitali’s theorem that
there is a non-measurable set of reals, and the more recent and striking
Banach-Tarski paradox4 on the decompositions of spheres. Nor should
we forget that when Zermelo [58] in 1904 derived the wellordering theo-
rem from AC the reaction was not entirely favourable: the wellordering
of the reals was then felt, initially, to be as pathological as Banach-Tarski
was later.

However, one can tell a consistent and unified story about why these
aren’t really problems for AC. There is, granted, a concept of set which
finds these results unwelcome, but that concept is not the one that mod-
ern axiomatic set theory is trying to capture. The view of set theory
that objects to the three results mentioned in the last paragraph is one
that does not regard sets as fully extensional and arbitrary. How might
it come about that one does not like the idea of a non-measurable set
of reals, or a Banach-Tarski–style decomposition of the sphere, or a
wellordering of the reals? What is it that is unsatisfactory about the set
whose existence is being alleged in a case such as this?5 It’s fairly clear
that the problem is that the alleged sets are not in any obvious sense
definable.6 If you think that a set is not a mere naked extensional object
but an extensional-object-with-a-description then you will find some of
the consequences of AC distasteful. But this means that in terms of the
historical process described in section 3.3 you are trapped at stage (2).

4 Q: What is a good anagram of ‘Banach-Tarski’?
A: ‘Banach-Tarski Banach-Tarski’.

5 The (graph of the) wellordering of the reals and the (collection of pieces in the)
decomposition of the sphere are of course sets too.

6 There is a very good reason for this, namely that there is no definable relation on
IR which provably wellorders IR. This theorem wasn’t known in 1904 but people
in 1904 could still realise that they didn’t know of any wellorderings of IR.
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Once you have achieved the enlightenment of stage (3) these concerns
evaporate. Nowadays mathematicians are happy about arbitrary sets in
the same way that they are happy about arbitrary reals.

7.1.1 Constructive Mathematicians do not like AC

There are communities that do not accept the axiom of choice, or who
at the very least regard some of the alternatives to it as not completely
beyond the pale, and the reasons that have been found are diverse.

One such community is the community of constructive mathematics.
If one gets properly inside the constructive world view one can see that it
requires us to repudiate the axiom of choice. However, getting properly
inside the constructive world-view is not an undertaking for fainthearts,
nor by any to be taken in hand lightly or unadvisedly, and it is not
given to us all to succeed. Fortunately for unbelievers there is a short-
cut: it is possible to understand why constructivists do not like the law of
excluded middle or the axiom of choice, and to understand this without
taking the whole ideology of constructive mathematics on board. It
comes in two steps.

7.1.1.1 First we deny excluded middle

First we illustrate why constructivists repudiate the law of excluded
middle. Some readers may already know the standard horror story about
√

2
√

2
. For those of you that don’t—yet—here it is.

Suppose you are given the challenge of finding two irrational number
α and β auch that αβ is rational. It is in fact the case that both e

and loge(2) are transcendental but this is not easy to prove. Is there
an easier way in? Well, one thing every schoolchild knows is that

√
2

is irrational, so how about taking both α and β to be
√

2? This will

work if
√

2
√

2
is rational. Is it? As it happens, it isn’t (but that, too, is

hard to prove). If it isn’t, then we take α to be
√

2
√

2
(which we now

believe to be irrational—had it been rational we would have taken the
first horn) and take β to be

√
2.

αβ is now

(
√

2
√

2
)
√

2 =
√

2
√

2·
√

2
=
√

2
2

= 2

which is rational, as desired. However, we haven’t met the challenge.
We were asked to find a pair 〈α, β〉 of irrationals such that αβ is rational,
and we haven’t found such a pair. We’ve proved that there is such a
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pair, and we have even narrowed the candidates down to a short list of
two, but we haven’t completed the job.7

What does this prove? It certainly doesn’t straightforwardly show
that the law of excluded middle is false; it does show that there are
situations where you don’t want to reason with it. There is a difference
between proving that there is a widget, and actually getting your hands
on the widget. Sometimes it matters, and if you happen to be in the kind
of pickle where it matters, then you want to be careful about reasoning
with excluded middle.

7.1.1.2 The Axiom of Choice implies Excluded Middle

In proving this we must play fair: the classical concept of nonempty set

multifurcates into lots of constructively distinct properties. Construc-
tively x is nonempty if ¬(∀y)(y 6∈ x); x is inhabited if (∃y)(y ∈ x),
and these two properties are distinct constructively: the implication
(¬∀φ // ∃¬φ) is not good in general.

Clearly if every family of nonempty sets is to have a choice function
then if x is nonempty we can find something in it, This would imply that
every nonempty set is inhabited. We shall not resort to such smuggling.
If we are to eschew smuggling we will have to adopt AC in the form that
every set of inhabited sets has a choice function.

Let us assume AC in this form, and deduce excluded middle. Let p be
an arbitrary expression; we will deduce p ∨ ¬p. Consider the set {0, 1},
and the equivalence relation ∼ defined by x ∼ y iff p. Next consider the
quotient {0, 1}/ ∼. (The suspicious might wish to be told that this set
is {x : (∃y)((y = 0 ∨ y = 1) ∧ (∀z)(z ∈ x ←→ z ∼ y))}). This is an
inhabited set of inhabited sets. Its members are the equivalence classes
[0] and [1]—which admittedly may or may not be the same thing—but
they are at any rate inhabited. Since the quotient is an inhabited set of
inhabited sets, it has a selection function f . We know that [0] ⊆ {0, 1}
so certainly (∀x)(x ∈ [0] //x = 0∨x = 1). Analogously we know that
[1] ⊆ {0, 1} so certainly (∀x)(x ∈ [1] // x = 0 ∨ x = 1). So certainly
f([0]) = 0 ∨ f([0]) = 1 and f([1]) = 0 ∨ f([1]) = 1. This gives us four
possible combinations. f([0]) = 1 and f([1]) = 0 both imply 1 ∼ 0
and therefore p. That takes care of three possibilities; the remaining

7 We can actually exhibit such a pair, and using only elementary methods, at the cost
of a little bit more work. log2(3) is obviously irrational: 2p 6= 3q for any naturals

p, q. log√2(3) is also irrational, being 2 · log2(3). Clearly (
√

2)
log√2(3)

= 3.
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possibility is f([0]) = 0 ∧ f([1]) = 1. Since f is a function this tells us
that [0] 6= [1] so in this case ¬p. So we conclude p ∨ ¬p.8

There is a moral to be drawn from this: whether or not you want to
include AC (or excluded middle) among your axioms depends at least
in part on the use you are planning to put those axioms to. (This is of
course a completely separate question from the question of whether or
not AC (or excluded middle) is true).

Uplifting though this moral is, it is beside the point that I was making.
The fact that AC implies excluded middle and that there are principled
reasons sometimes to eschew excluded middle means that there are prin-
cipled reasons for (sometimes) wishing to eschew the axiom of choice.

7.2 IBE and a Fallacy of Equivocation

If you are going to get involved in set theory you will find yourself
working with people who think the axiom of choice is true, simpliciter.
The purpose of this next section is not to argue that the axiom of choice
is false—whatever that means—but to make the point that at least some
of the reasons for its widespread public acceptance are bad.

It is common practice in the teaching of mathematics at university
level to gloss over applications of the axiom of choice, and proclaim such
standard propositions as—for example—“A countable union of count-
able sets is countable” with some sketchy argument which does not ren-
der explicit the use of the axiom, and indeed might not even mention
it by name at all. The students in consequence do not form a mental
image of the axiom, and tend subsequently not to recognise when it is
being used. Not surprisingly, they end up defending the axiom by IBE:
since by then they believe all its consequences, they see in it a single
reason for believing them. Typically when confronted with it later on in
their education they either deny that it is being used at all, or—if they
acknowledge that it is being used—will go on to say there is no problem,
since the axiom is obviously true.

Let us consider some of these apparently obvious truths.

7.2.1 Socks

In [40] (p 126) we find the sutra of the millionaire whose wardrobe
contains a countable infinity of pairs of shoes and a countable infinity of
8 Thanks to Douglas Bridges for the right steer on this exercise! The theorem is

due to Diaconescu [15].
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pairs of socks. It is usually felt to be obvious that there are countably
many shoes and countably many socks in his attic. Most people will
claim that it is obvious that there is a bijection between the shoes and
the natural numbers, and obvious too that there is a bijection between
the socks and the natural numbers. Obviousness is all very well but it
does not reliably signpost a path to understanding. Fortunately with a
bit of prodding most students can be persuaded to say that the left shoe
from the nth pair can be sent to 2n and the right shoe from the nth pair
can be sent to 2n+1. This indeed shows that there are countably many
shoes. “And the socks?” one then asks. With any luck the student will
reply that the same technique will work, at which point the victim can
be ribbed for being a sad mathmo with odd socks. Old jokes are the
best. In fact this joke is so good that it even survives being explained.

If we have succeeded in finding a bijection between the set of socks
and the natural numbers then we have given each sock a number. This
means, at the very least, that we now have a uniform way of choosing one
sock from each pair, namely the one with smaller number. Conversely,
if we have a uniform way of choosing one sock from each pair, then we
can send the chosen sock from the nth pair to 2n, and the rejected sock
to 2n+1. These two observations show that the set of socks is countable
iff there is a choice function on the pairs of socks. Analogously the set
of shoes is countable iff there is a choice function on the pairs of shoes.
Clearly there is a way of choosing one shoe from each pair, because we
can uniformly distinguish left shoes from right. But socks? Clearly there
is no uniform way of telling socks apart. So we need the axiom of choice
to tell us that the set of socks is countable nevertheless.

7.2.2 A union of countably many countable sets is countable

Let {Xi : i ∈ IN} be a family of countable sets. Is its sumset,
⋃
{Xi : i ∈

IN}, countable? The usual answer is: yes. Draw the Xi out in a doubly
infinite array, and then count them by zigzagging. What could be more
obvious? The picture below illustrates how we do it. Let xi,j be the jth
member of Xi. Put the members of Xi in order in row i, so that xi,j is
the jth thing in the ith row. Then we can count them by zigzagging.
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5 15 . . .
... . . .

↘
4 10 16 . . . . . .

↘ ↘
...

3 6 11 17 . . .

↘ ↘ ↘
...

2 3 7 12 18 . . . . . .

↘ ↘ ↘ ↘
...

1 1 4 8 13 19 . . .

↘ ↘ ↘ ↘ ↘
...

0 0 2 5 9 14 20
0 1 2 3 4 5

A Counted Union of Counted Sets is Counted

What could be simpler?! If—as they tell us—we need the axiom of
choice to prove this, then we’d better assume it.

7.2.3 Every perfect binary tree has an infinite path

A perfect binary tree is a tree with one root, wherein every node has
precisely two children. If one has a blackboard to hand when telling this
story, one is tempted to start off drawing a perfect binary tree:

*

/ \

/ \

* *

/ \ / \

* * * *

/
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. . . which makes it obvious that this perfect binary tree at least (the
one you have started drawing) has an infinite path. Always choose the
leftmost branch. What could be easier!? Again we are told that this
needs the axiom of choice. Very well, let us therefore adopt the axiom
of choice.

7.3 The Fallacy of Equivocation

However, in all three cases we have a fallacy of equivocation. Let us take
the binary tree case first, since it is fresh in our minds.

7.3.1 Perfect binary trees

The fact that is obvious is not the fact that

A perfect binary tree has an infinite path; (i)

but the fact that

A perfect binary tree with an injection
into the plane has an infinite path; (ii)

since we cannot follow the rule “take the leftmost child in each case”
unless we can tell what the leftmost child is, and this information is
provided for us not by the tree itself but by its injection into the plane.
It is true that to make sense of “leftmost” we have to pick an injection
into the plane but this is a single choice not infinitely many. (see (iii) p.
60.)

Are not (i) and (ii) the same? They certainly will be if any two
perfect binary trees are isomorphic. And aren’t any two perfect binary
trees isomorphic? Isn’t that obvious?

No, it isn’t: what is obvious is not

Any two perfect binary trees are isomorphic; (iii)

but

Any two perfect binary trees equipped with
injections into the plane are isomorphic; (iv)

and (iii) and (iv) are not the same. We are back where we were before.
We should not fall into a petitio principii.
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7.3.2 The Countable Union of Countable Sets

The most illuminating discussion of this known to me is one I learned
from John Conway (oral tradition). Conway distinguishes between a
counted set, which is a structure 〈X, f〉 consisting of a set X with a
bijection f onto IN, and a countable set, which is a naked set that just
happens to be the same size as IN, but which does not come equipped
with any particular bijection. As Conway says, elliptically but memo-
rably:

A counted union of counted sets is counted; (v)

A countable union of counted sets is countable; (vi)

but a counted union of countable sets, and a fortiori a countable union
of countable sets could–on the face of it–be anything under the sun.

In other words, that which is obvious is not

A union of countably many counted sets is countable; (vii)

(v) is of course a shorthand for the claim that a counted set of counted
sets has a union with an obvious counting: indeed a counting that can be
recovered—in the way displayed by the diagram on page 66—by combin-
ing the counting of the set and the countings of its members. Although
(v) and (vi) are provable without choice—and the diagram gives a visual
proof of (vi)—(vii) is not. The fallacy of equivocation is to mistake (vii)
for one of (v) and (vi).

7.3.3 Socks

There are at least two lines of thought that might lead one to think that
there are countably many socks.

7.3.3.1 All countable sets of pairs look the same

“Surely to goodness”, one might think, “All sets that are unions of count-
ably many pairs must be the same size! Just replace the members of the
nth pair of socks by the members of the nth pair of shoes, successively
. . . ”. In particular there must be the same number of socks in the attic
as there are shoes. We know we can count the shoes (left shoes go to
evens, right shoes go to odds) so we must be able to count the socks too.

But why should we believe that all sets that are the union of countably
many pairs are the same size?

If I want to show that the union of countably many pairs of blue socks
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is the same size as the union of countably many pairs of pink socks I
want to pair off the blue socks in the nth pair of blue socks with the
pink socks in the nth pair of pink socks, and—sadly—I can do this in
two ways at each stage. Therefore we will need AC-for-pairs to pick one
of the two ways, and we have made no progress.

This does make one useful point. In order to know whether a countable
set of pairs has a countable sumset or not one needs to know what the
pairs are pairs of: one needs to be able to look inside the members of
the pairs. This does seem odd. Adopting the axiom of choice banishes
this oddity.

7.3.3.2 Intuitions of space

There is another line of thought that leads us to believe that the set of
socks is countable. The very physical nature of the setting of the parable
has smuggled in a lot of useful information. It cues us to set up mental
pictures of infinitely many shoes (and socks) scattered through space.
The shoes and socks are—all of them—extended regions of space and so
they all have nonempty interior. Every nonempty open set contains a
rational, and the rationals are wellordered. This degree of asymmetry
is enough to enable us to choose one sock from each pair, as follows. In
any pair of socks, the two socks have disjoint interiors9 and both those
interiors contain rational numbers. Consider, for each sock, that rational
number in its interior which is the first in some standard wellorder of
the rationals. This will distinguish between the socks. The physical
intuitions underlying this last argument make it very clear to us that
we can pick one sock from each pair—as indeed we can. Space is just
sufficiently asymmetrical for us to be able to explicitly enumerate the
socks in countably many pairs scattered through it.

So we have another example of a fallacy of equivocation, this time
between:

Every countable set of pairs has a choice function (viii)

and

Every countable set of pairs of open subsets of E3

has a choice function (ix)

9 All right! Your pair of socks might be folded into each other the way your mother
used to do it, so their interiors are not disjoint. However even in these circum-
stances their interiors S1 and S2 are at least distinct, .The least rational in the
symmetric difference S1∆S2 will belong to one of the two sock, and pick that sock!
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As before, it is the first member of the pair that needs the axiom of
choice, but it is the second member of the pair that is obvious.

From a pedagogical point of view it may be worth making the following
observation, even though it may initially seem to have no direct bearing
on the above argument. When we reflect how straightforward is the
construction that matches left shoes with evens and right shoes with
odds, one is struck by how difficult it is to induce students to come
out with it—or with anything like it. This suggests that the reason why
students think the set of shoes is countable is because they think they can
count it directly, in exactly the way they think they can count the socks
directly—namely by illegitimately exploiting the physical intuitions cued
by the background information in the parable. A kind of

supertask

in fact.
Perhaps this does have direct bearing on the argument of this sec-

tion after all, for—by drawing attention to the importance of physical
intuitions in lending plausibility to mathematical claims—it underlines
how easy it is to commit the fallacy of equivocation that got us into this
mess.

7.4 Isn’t it simplest just to believe it?

There are people who do not have a philosophical position on the nature
of sets and mathematical entities but who just want to get on with their
mathematics. They need a reason to jump one way or the other on
the question of the axiom of choice. One suggestion that might carry
some weight with such people is that the axiom of choice is a good thing
because it keeps things simple. If AC fails there are these annoying
objects around: infinite sets without countable subsets, countable sets
of pairs of socks without a counting of the socks, and so on. Who needs
them? Aren’t they just a pain?? Why not adopt the axiom of choice
and be shot of them all?

Widespread though this view is, and appealing though it undoubtedly
is, it really is entirely without merit. The choiceless family of pairs of
socks is a pain, no doubt, and it seems we would be better off without
it. But then the paradoxical decomposition of the sphere is a pain too,
and you get that if you adopt AC. Not only is it a pain, but it is a
pain of a very similar stamp: the pathological sock collection and the
paradoxical decomposition of the sphere alike have the twin features of
not only being initially counterintuitive but also—even on inspection—
lacking any motivation in what one might tempt fate by calling ordinary

mathematics. However the point is not so much the tit-for-tat point
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that the Axiom of choice has some pathologies that are as gross as
the pathologies associated with its negation: the point is that it is a
mistake to try to anticipate what mathematics will throw at us. We can’t
simply ignore things we don’t like. Perhaps there just are bad families
of pairs of socks, in the way that (at least according to AC) there just
are paradoxical decompositions of the sphere. Granted the paradoxical
decomposition of the sphere no longer looks paradoxical, but that only
serves to remind us that something that looks pathological now might
look a lot less pathological in fifty or a hundred years’ time.

It may well be that the wisest course in relation to the axiom of choice

is the same course as the
√

2
√

2
story leads us to in relation to the law

of excluded middle. Use it sometimes, but bear in mind that there may
be other times when the news it brings you is useless to you.

The current situation with AC is that the contestants have agreed to
differ. People who are fully signed up to the modern consensus real-
ist view of sets as arbitrary extensional object believe—almost without
exception—that the axiom of choice is true. There is a smaller party—
consisting largely of constructivists of various flavours—who have a sub-
tly different—and more intensional—concept of set and who in conse-
quence do not accept the axiom of choice.

As well as the agreement to disagree there appears to be agreement
within each camp. The emergence of the axiom of determinacy (which
contradicts AC) caused a few flutters among the platonists: the axiom
couldn’t simply be ignored: it was far too interesting for that. And to
accept it would be to reject AC. They found instead a way of domes-
ticating it: certain large cardinal hypotheses imply that it is true in a
natural substructure of the universe. That way they get the best of both
worlds.

7.5 Are there Principled Reasons for Believing AC to be
true?

We don’t seem to be getting very far with making AC look plausible by
deducing obvious truths from it. So can one argue for it directly? Are
there principled reasons for believing AC to be true?

As we have just noted, it seems to be the case that most of the people
who believe that the Axiom of Choice has a truth-value at all tend to
believe that that truth-value is ‘true’. I think this is a common-cause
phenomenon: the forces that lead people to believe that the axiom of
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choice has a truth value tend also to make them think that that truth-
value is ‘true’. The forces at work here are various kinds of belief in the
ultimate reality of mathematical objects, and ways of thinking about
those objects. If a set is real, then you can crawl all over it and get into
all its nooks and crannies. And by doing that, you perforce wellorder it.
After all, if—having time on your hands as one does when one is trying
to fall asleep by counting sheep—you count members of your set then
you will wellorder it. You never run out of ordinals to count the sheep
with (that is Hartogs’ theorem) so your endeavour to wellorder the set
cannot fail. And if you didn’t count Tweedledum before you counted
Tweedledee that can only be because you counted Tweedledee before
you counted Tweedledum. supertask

On this view the axiom of choice is just plain true, and the intuitive
argument for it is that one can boldly go and straightforwardly just
wellorder the universe by hand as it were. To be more precise, the
axiom of choice (on this story) follows from realism about mathematical
objects. The force of this story derives from the plausibilty of the idea
that we can just go on picking up one thing after another until we have
picked up everything. We can do it with material objects and so—being
realists about sets as we are—we expect to be able to do it to sets.

If you are platonist you believe that every set is out there, somewhere,
to be pawed and pored over. If you paw it long enough you can probably
wellorder it. If you examine the set of pairs of socks long enough, you will
be able to pick one sock from each pair. At least that’s what it looks like
to most platonists. If you are a platonist you believe that it is possible
(at least for a suitably superior intelligence) to know everything there is
to know about a mathematical object such as a set, so you know how
to wellorder any set. Why should you be able to wellorder it? Nobody
seems to know. It’s probably something to do with an ill-formulated
intuition about the ultimately deterministic nature of mathematical en-
tities. This intuition may have the same roots as the intuition behind
what philosophers call bivalence, and it may be a mistake of course.
There just might be mathematical objects that are of their essence suf-
ficiently nondeterministic for us not to be able to wellorder them but
we don’t seem to be able to imagine any at the moment. Indeed we
might not be able to imagine any—ever. If we could imagine them, one
feels, one would be able to wellorder them. (Might this be something to
do with the fact that ‘imagine’ seems to mean ‘visualise’ and once we
visualise something we can wellorder it? In this connection see the dis-
cussion on the significance of our intuitions of space on page 69.) There
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is an echo here of the phenomenon of self-refutation as in “It is raining
and I don’t believe it”; “I can’t say ‘breakfast”’ and perhaps Berkeley’s
master argument for idealism.

This way of thinking about sets is nevertheless entirely consonant with
the way in which the sutra of the socks is recounted. To the mathemat-
ical realist it seems perfectly clear that the set of socks is countable,
even at the same time as it is clear to the realist that lesser mortals
might be unable to count them and might well come to believe that
they form an uncountable or Dedekind-finite collection. The Bounded
Being remains unconvinced that the set of socks is countable but that
is only because the Bounded Being has incomplete information. Should
the Bounded Being ever be given the full story about the socks (s)he
will see immediately that the socks are wellordered. Sets are like that;
“being wellordered is part of our conception of set”; “If you can con-
ceive it you can wellorder it”; “if you can’t wellorder it then it’s a not a
completed totality”.

There are two things wrong with this story. The first is that the im-
agery of picking things out of a set in time is restricted to sequences of
choices whose length can be embedded in whatever it is that measures
time, presumably IR. We cannot embed into IR any wellorderings of un-
countable length so this story never tells us how to wellorder uncountable
sets.10

The other problem is this. For it to be plausible that we can wellorder
the universe by brute force we have to be sure that as long as we can
pick α things for every α < λ then we can pick λ things. This is all
right if λ is a successor ordinal: as long as there is something left after
we have picked α things then we can pick an α+ 1th thing. That’s just
straightforwardly true, and it’s the argument we saw at the beginning of
this chapter. Our realist intuitions get us this far, and this far they are
correct. The problem is that this is not enough: we still have to consider
the case when λ is limit, and then we need something that says that all
the possible ways of picking α things for α < λ can be somehow stitched
together. And for that one needs the axiom of choice. The point is
that, at each successor stage the assertion “I can pick something” is just
syntactic sugar for “there is still stuff left”; the difference between the
two sounds substantial but it isn’t. If one makes the successor step look
more significant than it really is (by using syntactic sugar) one can make

10 An embedding of an uncountable wellordering into IR would partition IR into
uncountably many half-open intervals, each of which would have to contain a
rational. There aren’t enough rationals to go round.
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the difference between the successor stage and the limit stage seem less
significant than it really is.

We are in exactly the situation we saw earlier in this chapter (page
59). Realism doesn’t get you the axiom of choice: what it gets you is
the right to tell the story on page 59 in beguiling concrete terms.

The argument for the axiom of choice derives all its plausibility by
artfully concealing the assumption that the infinite resembles the finite
in the way required. This assumption turns out to be precisely the axiom
of choice. This is not to say that the platonists are wrong when they
claim that AC holds for their conception of set, merely that this story
isn’t an argument for it.

7.5.1 The Consistency of the Axiom of Choice?

Let us return to the idea that, if we have perfect information about
sets, we can well-order them. This may be wrong-headed, but it does
give rise to an idea for a consistency proof for the axiom of choice.
Recall the recursive datatype WF: its sole constructor adds at each stage
arbitrary sets of what has been constructed at earlier stages. If we
modify the construction so that at each stage we add only those sets-of-
what-has-been-constructed-so-far about which we have a great deal of
information, then with luck we will end up with a model in which every
set has a description of some sort, and in which we can distinguish socks
ad libitum, and in which therefore the axiom of choice is true. This
even gives rise to an axiom for set theory, due to Gödel and known as
“V = L”. V = L is the axiom that asserts that every set is constructible

in a sense to be made clear. No-one seriously advocates this as an
axiom for set theory: none of the people who think that formulæ of set
theory have truth-values believe that V = L is true; it is taken rather as
characterising an interesting subclass of the family of all models of set
theory.
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Independence Proofs

The independence of the various axioms of set theory from their com-
rades is a matter of rather more moment than one might expect. Typ-
ically, in the construction of the model that demonstrates the indepen-
dence of a particular axiom, one exploits that very axiom. Thus in the
very act of demonstrating the independence of an assertion one provides
an IBE argument that one should adopt that very assertion as an axiom!
Also the ease with which one can find set models of—for example—ZF-
minus-power-set is an argument for the axiom being proved independent.
“After all,” one can say to oneself, “if it weren’t true, one would be able
to pretend that everything was hereditarily countable, and that is clearly
not true”.

The various systems of axiomatic set theory available to us nowadays
have evolved in accordance with a principle one might call Graceful

downward compatibility. Each axiomatic set theory is geared to a par-
ticular aspect of Mathematics, and one axiomatises it in terms of the
principles it is trying to capture, rather than in terms of the incremental
differences between it and the others. Naturally this non-incremental
way of devising axiomatic systems makes for a great deal of redundancy.
For example we retain the axiom of pairing as one of the axioms of ZF
(even though it follows from replacement and power set) because we
want to be able to say that Zermelo set theory is ZF minus replacement.
By the time one reaches strong set theories one has accumulated in this
way quite a stock of what one might call legacy axioms.

However, although clearly some instances of the axiom schemes of
separation and replacement can be derived from others, it is standard
that the remaining axioms of ZF are independent from each other. For
all other axioms A we can show that A cannot be deduced from ZF -
minus-A. And for the scheme of replacement we can show that ZF -

76
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minus-replacement does not imply all instances of replacement, though
it does prove some.

An independence proof is of course just a kind of consistency proof:
A is independent of T if T + ¬A is consistent1. Our consistency proofs
below will be of two kinds. The first is generally called a relative con-
sistency proof. If T is consistent then so too is T + ¬A. (“T + ¬A
is consistent relative to T”.) Typically in these cases—and certainly
in all the cases below—the inference from the consistency of T to the
consistency of T + ¬A is proved in a very very weak system indeed.

One hesitates to call the other absolute but one has to call it some-
thing to contrast it with ‘relative’. Suppose one wishes to prove the
independence of axiom A from a theory T . If T + A proves the consis-
tency of T outright then we know that T cannot prove A, for then T +A
would prove its own consistency, contradicting Gödel’s incompleteness
theorem.

Hereditarily this and that

A device that turns up in many of these independence proofs is the idea
of the set of things that are hereditarily φ, where φ is a one-place predi-
cate. The intuition is that x is hereditarily φ if everything in TC(x) is φ.
(The reader may be familiar with this adverb ‘hereditarily’ from Topol-
ogy: a space is hereditarily Lindelöf iff all its subspaces are Lindelöf.
This is not the same usage!)

Annoyingly there are three ways of defining Hφ, the class of things
that are hereditarily φ and it is easy for the beginner to become confused.
I am going to start with my favourite definition:

DEFINITION 5.

Pκ(x) := {y ⊆ x : |y| < κ}; Hκ :=
⋂
{y : Pκ(y) ⊆ y};

Pφ(x) := {y ⊆ x : φ(y)}; Hφ :=
⋂
{y : Pφ(y) ⊆ y}.

In this I am following the notation of Boffa [4].
The first thing to notice with this definition is that everything inside

Hφ under this definition will be wellfounded. This is because Hφ is a
recursive datatype and comes equipped with a principle of wellfounded

1 Some writers prefer to say that A is independent of T only if T + ¬A and T + A
are both consistent.
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induction. We can use this induction to argue that everything in Hφ is
wellfounded.

A word is in order on the definition and the notation involved. The
two uses of the set-forming bracket in ‘Hκ’ and ‘Hφ’ are naughty: in
general there is no reason to suppose that the collection of all y such
that Pφ(y) ⊆ y is a set. If there is even one x such that Pφ(x) ⊆ x, then
{y ⊆ x : Pφ(y) ⊆ y} will have the same intersection as {y : Pφ(y) ⊆ y},
and so no harm is done. But this depends on there being such an x.

Of course Hφ genuinely might not be a set, in which case we shouldn’t
be trying to prove that it is. For example Hx=x is just WF (or V if
you prefer): the universe of wellfounded sets. In those circumstances
one cannot define Hφ as the intersection of all sets x such that Pφ(x) ⊆
x, since there are none; the interesection of the empty set is V , and
that isn’t what we want. In those circumstances one wants the second
definition, to which we now turn.

The second way of defining Hφ is as the collection of those x such that
φ(y) for all y ∈ TC(x). It would be nice if this were to give the same
result as the first definition in cases where both deliver a set not a proper
class, but this is not reliably true. Quine atoms are hereditarily finite
under the second definition, even though their failure of wellfoundedness
prevents them from being hereditarily finite under the first definition.
However it is fairly straightforward to check that if one is assuming the
axiom of foundation then the two definitions are equivalent. Since—
most of the time—we will be working with the axiom of foundation, the
difference between these two definitions is not significant.

There is another tradition that regards the set of things that are hered-
itarily φ as the set of things x s.t. TC(x) is φ. This is a bad notation
for various reasons. For one thing it makes sense only when φ is a
property which is preserved under subsets (like being smaller than κ)
and it prevents us from making sense of expressions like “The collec-
tion of hereditarily transitive sets”. For another, even in cases where
it does make sense, it can result in subtle confusions. Let us consider
two cases—both of them sets we will need later in our independence
proofs—the first of which is unproblematic and the second not. (And
we will assume foundation to keep things simple.)

If we consider ‘Hℵ1 ’—the notation for the set of hereditarily countably
sets—we get the same collection under both readings (as long as we
assume the axiom of countable choice). If TC(x) is countable then
clearly all its subsets are, and so all its members (which are all subsets)



8.1 Replacement 79

will be countable too. (We need a union of countably many countable
sets to be countable to secure the converse).

However if we consider ‘Hiω ’ then we find that {Vω+n : n ∈ IN}
belongs to the denotation of this expression under one reading but not
under the other. Every set in the transitive closure of {Vω+n : n ∈ IN}
is of size less than iω, so {Vω+n : n ∈ IN} belongs to Hiω

according to
our definition. However TC({Vω+n : n ∈ IN}) is not of size less than iω;
it is in fact of size precisely iω and therefore {Vω+n : n ∈ IN} does not
belong to Hiω

according to the other definition.
The moral is, when reading an article that exploits sets that are hered-

itarily something-or-other, look very carefully at the definition being
used.

8.1 Replacement

Vω+ω is a model for all the axioms except replacement. It contains well-
orderings of length ω but cannot contain {Vω+n : n ∈ IN} because we
can use the axiom of sumset (and Vω+ω is clearly a model for the axiom
of sumset!) to get Vω+ω.

Readers are encouraged to check the details for themselves to gain
familiarity with the techniques involved.

8.2 Power set

Hℵ1 is a model of all the axioms of ZFC except power set.
The obvious way of proving that Hℵ1 is a set is to use transfinite

iteration of the function x 7→ Pℵ1(x), taking unions at limits, so that
(as on page 51) we define:

X0 = ∅;

Xα = Pℵ1(
⋃

β<α

Xβ)

ω-cts??
This function—x 7→ Pℵ1(x)—is not ω-continuous, since new countable

subsets might appear at ω-limits: Xω could have countable subsets that
are not subsets of any Xn with n finite. This means we will have to
iterate the construction of theXβ up to a stage α such that any countable
subset that is present at stage α was created at some earlier stage. By
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use of countable choice we can show that the first such α is ω1. So we
iterate ω1 times and then use replacement to conclude that Xω1 is a set.
Hℵ1 gives us a model of ZF minus the power set axiom. The axiom of

infinity will hold because there are genuinely infinite sets in Hℵ1 . This
is not sufficient by itself since “is infinite” is not ∆0, but whenever X is
such a set there will be a bijection from X onto a proper subset of itself,
and this bijection (at least if our ordered pairs are Wiener-Kuratowski)
will be a hereditarily countable set. So any actually infinite member
of Hℵ1 will be believed by Hℵ1 to be actually infinite. We have been
assuming the axiom of choice, so the union of countable many elements
of Hℵ1 is also an element of Hℵ1 , so it is a model of the axiom of sumset.

Everything in Hℵ1 is countable and therefore well-ordered, and, un-
der most implementations of pairing functions—in particular the Winer-
Kuratowski pairing function which is the one most commonly used—the
well-orderings will be in Hℵ1 , too, so Hℵ1 is a model of AC, even if AC
was not true in the model in which we start.

This last paragraph might arouse in the breasts of suspicious readers
memories of section 6.3.4 where much is made of the different avail-
able implementations. AC follows here not from an implementation of
ordered pairs as Wiener-Kuratowski but from the possibility of imple-
menting ordered pairs as Wiener-Kuratowski

8.3 Infinity

Hℵ0 provides a model for all the axioms of ZF except infinity and thereby
proves the independence of the axiom of infinity.

The status of AC in Hℵ0 is like its status in Hℵ1 . Everything in Hℵ0

is finite and therefore well-ordered, and under most implementations of
pairing functions the well-orderings will be in Hℵ0 too, so Hℵ0 is a model
of AC, even if AC was not true in the model in which we start. This is
in contrast to the situation obtaining with the countermodels to sumset
and foundation: the truth-value of AC in those models is the same as
its truth-value in the model in which we start.

8.4 Sumset

Recall the definition of beth numbers from chapter 2. Then Hiω proves
the independence of the axiom of sumset. A surjective image of a set
of size strictly less than iω is also of size strictly less than iω. This
ensures that Hiω

is a model of replacement. Next we notice that there
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are well-orderings of length ω+ω inside Hiω , and that every Vω+n is in
Hiω

. Therefore by replacement {Vα : α < ω + ω} is a set. Indeed it is
hereditarily of size less than iω. However, its sumset

⋃
{Vα : α < ω+ω}

is Vω+ω which is of course of size iω and is not in Hiω
. I omit the details

of the proof that the other axioms are satisfied.

8.5 Foundation

For the independence of the axiom of foundation and the axiom of choice
we need Rieger-Bernays models.

If 〈V,R〉 is a structure for the language of set theory, and π is any
permutation of V , then we say x Rπ y iff x R π(y). 〈V,Rπ〉 is a permu-
tation model of 〈V,R〉. We call it V π. Alternatively, we could define Φπ

as the result of replacing every atomic wff x ∈ y in Φ by x ∈ π(y). We
do not rewrite equations in this operation: = is a logical constant, not
a predicate letter. The result of our definitions is that 〈V,R〉 |= Φπ iff
〈V,Rπ〉 |= Φ. Although it is possible to give a more general treatment,
we will keep things simple by using only permutations whose graphs are
sets.

It turns out that if Φ is a stratified formula then 〈V,R〉 |= Φ iff
〈V,Rπ〉 |= Φ. Not all the axioms are stratified, but it is quite easy
to verify the unstratified instances of replacement, and the first version
of the axiom of infinity on page 55 is stratified. Foundation fortunately
is not stratified! The π we need is the transposition (∅, {∅}). InMπ the
old empty set has become a Quine atom: an object identical to its own
singleton: x ∈π ∅ ←→ x ∈ π(∅) = {∅}. So x ∈π ∅ ←→ x = ∅. So Mπ is
a model for all the axioms of ZF except foundation.

8.5.1 Antifoundation

There is another way of proving the independence of the axiom of foun-
dation and that is to prove the consistency of an axiom of antifoundation.
To this end let us return to the ideas of section 4.1.1. If we work in ZF
with foundation then we can use Scott’s trick to implement abstract
APGs. There is a binary relation between these abstract APGs which
corresponds to the membership relation between the sets corresponding
to the APGs. We now have a model of ZF + Antifoundation: the ele-
ments of the model are the abstract APGs given us by Scott’s trick, and
the membership relation is the binary relation just alluded to.

The best-known exposition of this material is the eminently readable
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Aczel [1]. I shall not treat it further here, since–although attractive–it is
recondite, and the proof of independence of foundation that it gives does
not naturally give rise to a proof of the independence of the axiom of
choice. This is in contrast to the previous independence proof for foun-
dation, which will naturally give rise to the proof of the independence
of choice which we will see in section 8.7.rewrite,

and allude
to the sec-
tion early
where
set pic-
tures are
introduced

8.6 Extensionality

First, some slang. If T is a name for a system of axiomatic set theory
(with extensionality of course), then TU is the name for the result of
weakening extensionality to the assertion that nonempty sets with the
same elements are identical. ‘U’ is for ‘Urelemente’—German for ‘atoms’
(see p. 19).2

We start with a model 〈V,∈〉 of ZF. The traditional method is to
define a new membership relation by taking everything that wasn’t a
singleton to be empty, and then set y IN z iff z = {x} for some x such
that y ∈ x: it turns out that the structure 〈V, IN〉 is a model of ZFU.
However there is nothing special about the singleton function here. Any
injection from the universe into itself will do. So let’s explore this. We
start with a model 〈V,∈〉 of ZF, and an injection f : V // V which is
not a surjection (such as ι).

We then say x ∈f y is false unless y is a value of f and x ∈ f−1(y).
(So that everything that is not an (as it might be) singleton has become
an empty set (an urelement) in the sense of ∈f ).

This gives us a new structure: its domain is the same universe as
before, but the membership relation is the new ∈f that we have just
defined.

Now we must prove that the structure 〈V,∈f 〉 is a model of ZF with
extensionality weakened to the assertion that nonempty sets with the
same elements are identical.

What is true in 〈V,∈f 〉? Try pairing, for example: what is the pair of
x and y in the sense of ∈f? A moment’s reflection shows that it must be
f{x, y}: if you are a member of f{x, y} in the sense of ∈f then you are a
member of f−1 ·f{x, y}, so you are obviously x or y. The other sporadic
axioms yield individually to hand-calculations of this kind. Replacement
yields to an analysis like that on page 80.

2 A point-scoring opportunity here for syntax buffs: the letter ‘T ’ is of course not
being used as a name for a theory but as a letter ranging over such names . . . .
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8.6.1 More about Extensionality

In the light of this result and the discussion on page 20 the reader might
reasonably suppose that atoms are the sort of things one can take or
leave: it shouldn’t make any difference whether we allow them or not.
We have just proved the independence of extensionality from the other
axioms, and we can prove its consistency too: just consider the class
of sets that are hereditarily atom-free. This wraps up the situation
if you believe in the axiom of foundation. Interestingly in the Quine
systems matters are not so straightforward. It is not known whether
or not Quine’s NF is consistent, though it is known to be consistent if
extensionality is weakened to allow atoms—but only flavour 1 atoms;
the consistency proof doesn’t work with Quine atoms! There may be
more to this atom business than meets the eye.

The relative strength of extensionality and its negation is quite sen-
sitive to other considerations too. Does the language contain an ab-
straction operator? See Scott [42] where he shows that a version of ZF
without extensionality can be interpreted in Zermelo set theory! See
also [22].

8.7 Choice

We start with a model of ZF with urelemente. In the original treatment
these urelemente are taken to be empty. For technical reasons it’s easier
to take them to be Quine atoms. The effect is that one drops foundation
rather than extensionality, but the two constructions have the same feel.

We start with a model of ZF + foundation, and use Rieger-Bernays
model methods to obtain a permutation model with a countable set A
of Quine atoms. The permutation we use to achieve this is the product
of all transpositions (n, {n}) for n ∈ IN+. A will be a basis for the ill-
founded sets in the sense that any class X lacking an ∈-minimal element
contains a member of A. Since the elements of A are Quine atoms every
permutation of A is an ∈-automorphism of A, and since they form a ba-
sis we can extend any permutation σ of A to a unique ∈-automorphism
of V in the obvious way: declare σ(x) := σ“x. Notice that the collection
of sets that this definition does not reach has no ∈-minimal member if
nonempty, and so it must contain a Quine atom. But σ by hypothesis
is defined on Quine atoms. (a, b) is of course the transposition swap-
ping a and b, and we will write ‘τ(a,b)’ also for the unique automorphism
to which the transposition (a, b) extends. Every set x gives rise to an
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equivalence relation on atoms. Say a ∼x b if (a, b) fixes x. We say x is
of (or has) finite support if ∼x has a cofinite equivalence class. (At
most one equivalence class can be cofinite)

The union of the (finitely many) remaining (finite) equivalence classes
is the support of x. Does that mean that x is of finite support iff the
transitive closure TC(x) contains finitely many atoms? Well, if TC(x)
contains only finitely many atoms then x is of finite support (x clearly
can’t tell apart the cofinitely many atoms not in TC(x)) but the converse
is not true: x can be of finite support if TC(x) contains cofinitely many
atoms. (Though that isn’t a sufficient condition for x to be of finite
support!!)3

It would be nice if the class of sets of finite support gave us a model
of something sensible, but extensionality fails: if X is of finite support
then P(X) and the set {Y ⊆ X : Y is of finite support} are both of
finite support and have the same members with finite support. We have
to consider the class of elements hereditarily of finite support. Let’s call
it HF . This time we do get a model of ZF.

LEMMA 6. The class of sets of finite support is closed under all the
definable operations that the universe is closed under.

Proof:

When x is of finite support let us write ‘A(x)’ for the cofinite equiva-
lence class of atoms under ∼x. For any two atoms a and b the transpo-
sition (a, b) induces an ∈-automorphism which for the moment we will
write τ(a,b).

Now suppose that x1 . . .xn are all of finite support, and that f is a de-
finable function of n arguments. x1 . . .xn are of finite support, and any
intersection of finitely many cofinite sets is cofinite, so the intersection
A(x1) ∩ . . . A(xn) is cofinite. For any a, b we have

τ(a,b)(f(x1 . . . xn)) = f(τ(a,b)(x1) . . . τ(a,b)(xn))

since τ(a,b) is an automorphism. In particular, if a, b ∈ A(x1)∩ . . . A(xn)
we know in addition that τ(a,b) fixes all the x1 . . . xn so

τ(a,b)(f(x1 . . . xn)) = f(x1 . . . xn).

So the equivalence relation∼f(x1...xn) induced on atoms by f(x1 . . . xn)
has an equivalence class which is a superset of the intersection A(x1) ∩
. . . A(xn), which is cofinite, so f(x1 . . . xn) is of finite support.
3 A counterexample: wellorder cofinitely many atoms. The graph of the wellorder

has cofinitely many atoms in its transitive closure, but they are all inequivalent.
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This takes care of the axioms of empty set, pairing, sumset and power
set. To verify the axiom scheme of replacement we have to check that
the image of a set hereditarily of finite support in a definable function
(with parameters among the sets hereditarily of finite support and all
its internal variables restricted to sets hereditarily of finite support) is
hereditarily of finite support too. The operation of translating a set un-
der a definable function (with parameters among the sets hereditarily of
finite support and all its internal variables restricted to sets hereditarily
of finite support) is definable and will (by lemma 6) take sets of finite
support to sets of finite support.

So if X is in HF and f is a definable operation as above, f“X is of
finite support. And since we are interpreting this in HF , all members
of f“X are in HF , so f“X is in HF too, as desired.

To verify the axiom of infinity we reason as follows. Every wellfounded
set x is fixed under all automorphisms, and is therefore of finite support.
Since all members of x are wellfounded they will all be of finite support
as well, so x is hereditarily of finite support. So HF will contain all
wellfounded sets that were present in the model we started with. In
particular it will contain the von Neumann ω.

It remains only to show that AC fails in HF . Consider the set of
(unordered) pairs of atoms. This set is in HF . However no selection
function for it can be. Suppose f is a selection function. It picks a (say)
from {a, b}. Then f is not fixed by τ(a,b). Since f picks one element
from every pair {a, b} of atoms, it must be able to tell all atoms apart;
so the equivalence classes of ∼f are going to be singletons, ∼f is going
to be of infinite index, and f is not of finite support.

So the axiom of choice for countable sets of pairs fails. Since this
axiom is about the weakest version of AC known to man, this is pretty
good. The slight drawback is that we have had to drop foundation to
achieve it. On the other hand the failure of foundation is not terribly
grave: the only illfounded sets are those with a Quine atom in their
transitive closures, so there are no sets that are gratuitously illfounded:
there is a basis of countably many Quine atoms. On the other hand it
is only the illfounded sets that violate choice!

8.8 Pairing

Pairing is not independent of the other other axioms of ZFC, since it fol-
lows from the axioms of empty set, power set and replacement. (P2(∅)
(the power set of the power set of the empty set) has two elements, ∅
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and {∅}, and every other pair can be obtained as a surjective image
of it.) However pairing is independent of the other axioms of Zermelo.
Roughly, let M and N be two supertransitive models of Zermelo such
that neither is a subset of the other. (M is supertransitive if it is tran-
sitive and every subset of a member of M is also in M). Then M∪N is
a supertransitive model of all of Zermelo except pairing. See section 13
of Mathias [31] for details. The way in which the derivability of pairing
from the other axioms relies on the presence of the axiom scheme of
replacement reminds us of the way in which replacement can be thought
of as a generalisation of pairing. see p 26.

This is another example of graceful downward compatibility: we retain
the axiom of pairing in ZF (despite its derivability from empty set, power
set and replacement).



9

ZF with Classes

Nowadays set theorists get by without having axioms for proper classes:
none of the modern strong axioms need variables ranging over classes.
So a chapter on axioms for proper classes is a bit of a side-show and is
included really only for the sake of completeness

It is sometimes convenient to accord a kind of shadowy existence to
collections that are not sets, particularly if there are obvious intensions of
which they would be the extensions were they to exist. One thinks of the
collection of all singletons, or the collection of all things that are equal
to themselves (the corresponding intensions are pretty straightforward
after all!). We call these things classes or (since some people want to
call all collections “classes”–so that sets are a kind of class) proper
classes. In the earliest set-theoretical literature (at least that part of it
that is in English) collections were always routinely called classes, and
the use of the word ‘set’ to denote particularly well-behaved classes in
this way is a later development.

If we allow classes, we can reformulate ZF as follows. Add to the
language of set theory a suite of uppercase Roman variables to range
over classes as well as sets. Lowercase variables will continue to range
solely over sets, as before. Since sets are defined to be classes that are
members of something we can express “X is a set” in this language as
‘(∃Y )(X ∈ Y )’ and we do not need a new predicate letter to capture
sethood.

Next we add an axiom scheme of class existence: for any expression
φ(x, ~y) whatever, we have a class of all x such that φ(x, ~y):

(∀X1 . . . Xn)(∃Y )(∀z)(z ∈ Y ←→ φ(z,X1 . . . Xn)) (9.1)

We rewrite all the axioms of ZF except replacement and separation by
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resticting all quantifiers to range over sets and not classes. We can now
reduce these two schemes to single axioms that say “the image of a set in
a class is a set” and “the intersection of a set and a class is a set”. Does
this make for a finite set of axioms? This depends on whether the axiom
scheme of class existence can be deduced from finitely many instances of
itself. The version of this scheme asserted in the last paragraph cannot
be reduced to finitely many instances. This system is commonly known
as Morse-Kelley set theory.1 However, if we restrict the scheme 9.1 to
those instances where φ does not contain any bound class variables, then
it can be reduced to finitely many axioms, and this system is usually
known as ‘GB’ (Gödel-Bernays). GB is exactly as strong as ZF, in
the sense that—for some sensible proof systems at least—there is an
algorithm that transforms GB proofs of assertions about sets into ZF

proofs of those same assertions. Indeed, for a suitable Gödel numbering
of proofs, the transformation is primitive recursive. See [43].

So GB is finitely axiomatised even though ZF isn’t. One might think
that having finitely many axioms instead of infinitely many axioms
should make life easier for the poor logician struggling to reason about
the axiom system, but in fact it makes no difference at all. Unless the
axiom system has a decidable set of axioms (so that one can recognise
an axiom when one sees one) nothing sensible can be done anyway, and
if one does have a finite procedure that correctly detects axioms and re-
jects non-axioms (we say of such a system that it has a decidable set of
axioms)2 then the axiom system in some sense has finite character and it
will be fully as tractable as a system that is genuinely finitely axiomati-
sable. (Notice that the famous incompleteness theorem of Gödel applies
to systems of arithmetic with decidable sets of axioms and not just to
those with finitely many axioms.) It is also true that it will turn out to
be mutually interpretable with a finitely axiomatisable theory that can
be obtained from it in a fairly straightforward way. Indeed GB arises
from ZF in precisely this manner. However nothing is gained thereby.
It is because of this that set theorists now tend to work with ZF rather
than GB.

In this context it might be worth noting the result of W. Craig that
any theory with a semi-decidable set of axioms has a decidable set of
axioms.

Morse-Kelley is actually stronger than GB, and although the details

1 It was actually first spelled out by Wang [56], who called the system ‘NQ’.
2 The old terminology—still very much alive in this area—speaks of recursively

axiomatisable theories.
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are hard, it is not hard to see why this might be true. Since a set
is a class that is a member of something we can represent variables
over sets as variables over classes and ensure that the version of the
scheme 9.1 where all variables must range over sets only is a subscheme
of 9.1. This means that the more inclusive version of the scheme proves
the existence of more classes, and therefore—through the rôle the class
existence scheme plays in the set existence axioms of separation and
replacement—proves the existence of more sets.

9.0.1 Global Choice

One version of the axiom of choice says that every set can be wellordered.
If this can be done sufficiently uniformly then there might be a wellorder-
ing of the entire universe, a global wellordering. This of course is an
axiom asserting the existence of a particular kind of class and so is not
an axiom of set theory. A strong form of Global choice, which we will
see below, states that there is a proper class that wellorders the universe
in such a way that every proper initial segment is a set.

9.0.2 Von Neumann’s axiom

The introduction of the device of proper classes into Set Theory is usually
credited to Von Neumann [54]. One of the axioms to be found there is:

A class is a set iff it is not the same size as V .

This axiom is equivalent to the conjunction of Coret’s axiom, the axiom
scheme of replacement, and the strong form of Global choice that we
have just mentioned. (We will use separation and power set)

L // R
The collection of Von Neumann ordinals has a wellordering of a rather

special kind: every initial segment of the graph is a set. Since this
collection is a proper class this axiom tells us that it must be the same
size as V . So V has a wellordering of this special kind too.

Armed now with AC, we can infer the axiom scheme of replacement:
if X is a surjective image of a set Y , then there is an injection X ↪→ Y

by AC. Now if X were the same size as V there would be an injection
V ↪→ Y and therefore an injection P(Y ) ↪→ V ↪→ Y and the graph
of this injection would be a set by separation, contradicting Cantor’s
theorem. So X is not the same size as V ; so it is a set.
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Finally we infer Coret’s axiom. The collection WF of wellfounded sets
is a paradoxical object (this was Mirimanoff’s paradox) and is therefore
a proper class, and is accordingly the same size as V , by means of a class
bijection which we will write π. So every subset x of V is the same size
as a subset π“x of WF , which is a set by replacement. But π“x, being
a set of wellfounded sets, is wellfounded itself, so x is the same size as a
wellfounded set.

R // L
By Coret’s axiom every set is the same size as a wellfounded set

so every isomorphism class of wellorderings contains a wellfounded set.
Therefore we can use Scott’s trick3, and we can define the proper class
On of (Scott’s trick) ordinals.
On has a wellordering every proper initial segment of which is a set.

By the assumption of strong Global choice, so does V . Now we build a
bijection between V and On by recursion in the obvious (“zip it up!”)
way. The map we construct will be a bijection because (i) were it to map
an initial segment of V onto On then On would be a set by replacement
and (ii) were it to map an initial segment of On onto V then V would
be a set by replacement.

Now let X be a proper class. Then for any set x there is y ∈ (X \ x),
and by AC there is a function f that to each set x assigns such a y.
Define F : On ↪→ X by setting F (α) = f({F (β) : β < α}). This injects
On into X. In the last paragraph we injected V into On so X is as large
as V .

One might think that this axiom implies some form of antifoundation:
after all any Quine atom is strictly smaller than the universe. However
there is a missing step. All it shows is that any class x such that x = {x}
is a set; it doesn’t tell us that there is such a class!

3 Coret’s axiom implies that if ∼ is an equivalence relation defined by a stratified
formula then every ∼-equivalence class contains a wellfounded set.
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Banach-Tarski Paradox

Assuming the axiom of choice we can partition a solid sphere into several
pieces, which can be reassembled to make two spheres the same size as
the original sphere. As well as wikipædia, consult Wagon [55].

Borel Determinacy

For A ⊆ IR, Players I and II play the game GA by everlastingly al-
ternately picking natural numbers, and thereby build an ω-sequence of
naturals, which is to say a real. If this real is in A then I wins, otherwise
II wins. Borel Determinacy is the assertion that if A is a Borel set of
reals, then one of the two players has a winning strategy.

Burali-Forti Paradox

Rosser’s axiom of counting asserts that there are n natural numbers
less than n. The generalisation to ordinals asserts that the set of ordinals
below α is naturally a wellordering of length α. So the length of any
initial segment X of the ordinals is the least ordinal not in X. So what
is the length of the set of all ordinals?

Digraph

A digraph is a set V equipped with a binary relation, usually written
‘E’. The ‘V ’ connotes ‘vertex’ and the ‘e’ connotes ‘edge’. If the ordered
pair 〈x, y〉 is in E we say there is an edge from x to y.

Dedekind-infinite

A set X is Dedekind-infinite iff there is a bijection between X and some
proper subset of itself. Equivalently X is Dedekind-infinite iff it has a
subset the same size as IN, the set of natural numbers.
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Maximal formula

A maximal formula in a proof is one that is both the output of an intro-
duction rule and an input to an elimination rule for the same connective.
For example:

[A]
...
B →-int

A //B A →-elim
B

(9.2)

where the ‘A //B’ is the result of an // -introduction and at the
same time the major premiss of a // -elimination

and

A B ∧-int
A ∧B ∧-elim
A

(9.3)

where the ‘A ∧ B’ is the conclusion of an ∧-introduction and the
premiss of a ∧-elimination.

One feels that the first proof should simplify to

A
...
B

(9.4)

and the second to

A

Mirimanoff’s paradox

This is the paradox of the set of all wellfounded sets. Every set of
wellfounded sets is wellfounded (see definition below) so the collection
of all wellfounded sets is wellfounded, and therefore a member of itself—
so it isn’t wellfounded. But that makes it a set all of whose members
are wellfounded that is nevertheless not wellfounded itself. This is a
contradiction.

Module

A field is a set with two constants 0 and 1, two operations + and ×, and
axioms to say 0 6= 1, x× (y+z) = x×y+x×z, x+(y+z) = (x+y)+z,
x× (y × z) = (x× y)× z, x+ y = y + x, x× y = y × x, and that every
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element has an additive inverse, and that every element other than 0
has a multiplicative inverse. If we drop this last condition then we do
not have a field but merely a ring.

A vector space consists of vectors, which admit a commutative ad-
dition; associated with the family of vectors is a field (whose elements
are called scalars) there is an associative operation of scalar multipli-
cation of vectors by scalars, giving vectors. It distributes over vector
addition.

Prenex Normal Form Theorem

Every formula of first-order logic is logically equivalent to a formula with
all its quantifiers at the front and all connectives within the scope of all
quantifiers. Such a formula is said to be in Prenex Normal Form.

Primitive Recursive

The primitive recursive functions are a family of particularly simple
computable functions. They take tuples of natural numbers as inputs
and give individual natural numbers as outputs. The successor function
n 7→ n+1 is primitive recursive, as is the zero function n 7→ 0. The result
of composing two primitive recursive functions is primitive recursive, and
if f and g are primitive recursive so is the function h defined as follows:

h(0, x1 . . . xn) =: f(x1 . . . xn);

h(y + 1, x1 . . . xn) =: g(h(y, x1 . . . xn), y, x1 . . . xn)

Quine atom

A Quine atom is a set identical to its own singleton: x = {x}.

Stratified Formula

A formula in the language of set theory is stratified if every variable in
it can be given a label such that in every subformula ‘x ∈ y’ the label
given to ‘x’ is one lower then the label given to ‘y’ and in any subformula
‘x = y’ the two variables receive the same label.

Transitive Set

A set x is transitive if x ⊆ P(x) (x is included in the power set of x) or
equivalently if

⋃
x ⊆ x (the sumset of x is included in x). Notice that
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these two formulæ that say that x is transitive are not stratified in the
sense of the last paragraph.

Transitive Closure

This expression has two distinct but related meanings.
In Set Theory TC(x), the transitive closure of the set x, is the ⊆-least

transitive set y such that x ⊆ y. Another way to think of it is as the
collection of those things that are members of x, or members of members
of x, or member of members of members of x and so on.

The other meaning is related. If R is a (binary) relation, the transitive
closure of R is the ⊆-least transitive relation S such that R ⊆ S. It is
often written ‘R∗’. Russell and Whitehead referred toR∗ as the ancestral

of R, since the transitive closure of the parent-of relation is the ancestor-
of relation.

Wellfounded

A binary relation R is wellfounded iff there is no ω-sequence 〈xn : n ∈ IN〉
with R(xn+1, xn) for all n ∈ IN.

A set x is wellfounded iff the restriction of ∈, the membership rela-
tion, to TC(x) is wellfounded. That is to say, there is no ω-sequence
〈xn : n ∈ IN〉 with x0 = x and xn+1 ∈ xn for all n ∈ IN.

(These definitions are not strictly correct, but are equivalent to the
correct definitions as long as countable choice (p. 60) holds.)



Bibliography

Aczel, P. [1988] Non-well-founded sets. CSLI lecture notes, Stanford University
(distributed by Chicago University Press).

Barwise, Jon (ed) Handbook of Mathematical Logic. Studies in Logic and the
foundations of Mathematics 90 1977.

J. Barwise and L. Moss: Vicious Circles
Boffa, M. Sur L’ensemble des ensembles héréditairement de puissance
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Further Reading

A quick glance at the bibliography will show that there are several vol-
umes alluded to more than once. The Van Heijenoort collection is es-
sential to anyone interested in the history of Logic; The Barwise volume
contains a lot of useful material too. The volume in which the Gauntt ar-
ticle appeared is full of treasures. The fullest historical treatment of the
Axiom of Choice that is readily available is the Moore volume. Although
the book by Hallett and the book by Tiles are not alluded to in the body
of the text, they are still definitely worth a read. The Väänänen article
could be profitable consulted by those interested in pursuing second-
order categoricity. Quine’s Set theory and its Logic [38] is eccentric
but valuable. Although modern readers will find Quine’s notation an
obstacle—and may not share his interest in set theories with a universal
set—they will probably still find the book useful. Quine was an instinc-
tive scholar as well as a working logician and the book is well-supplied
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with references that will enable the reader to trace the emergence of the
ideas he describes. Quine was born in 1909 and lived through much of
this evolution and his account of it has the vividness and authority of
an eyewitness report.


