
TOPOLOGY: NOTES AND PROBLEMS

Abstract. These are the notes prepared for the course MTH 304 to
be offered to undergraduate students at IIT Kanpur.
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1. Topology of Metric Spaces

A function d : X ×X → R+ is a metric if for any x, y, z ∈ X,
(1) d(x, y) = 0 iff x = y.
(2) d(x, y) = d(y, x).
(3) d(x, y) ≤ d(x, z) + d(z, y).

We refer to (X, d) as a metric space.

Exercise 1.1 : Give five of your favourite metrics on R2.

Exercise 1.2 : Show that C[0, 1] is a metric space with metric d∞(f, g) :=
‖f − g‖∞.
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2 TOPOLOGY: NOTES AND PROBLEMS

An open ball in a metric space (X, d) is given by

Bd(x,R) := {y ∈ X : d(y, x) < R}.

Exercise 1.3 : Let (X, d) be your favourite metric (X, d). How does open
ball in (X, d) look like ?

Exercise 1.4 : Visualize the open ball B(f,R) in (C[0, 1], d∞), where f is
the identity function.

We say that Y ⊆ X is open in X if for every y ∈ Y, there exists r > 0
such that B(y, r) ⊆ Y, that is,

{z ∈ X : d(z, y) < r} ⊆ Y.

Exercise 1.5 : Give five of your favourite open subsets of R2 endowed with
any of your favourite metrics.

Exercise 1.6 : Give five of your favourite non-open subsets of R2.

Exercise 1.7 : Let B[0, 1] denote the set of all bounded functions f :
[0, 1]→ R endowed with the metric d∞. Show that C[0, 1] can not be open
in B[0, 1].

Hint. Any neighbourhood of 0 inB[0, 1] contains discontinuous functions.

Exercise 1.8 : Show that the open unit ball in (C[0, 1], d∞) can not be
open in (C[0, 1], d1), where d1(f, g) =

∫
[0,1] |f(t)− g(t)|dt.

Hint. Construct a function of maximum equal to 1 + r at 0 with area
covered less than r.

Exercise 1.9 : Show that the open unit ball in (C[0, 1], d1) is open in
(C[0, 1], d∞).

Example 1.10 : Consider the first quadrant of the plane with usual metric.
Note that the open unit disc there is given by

{(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x2 + y2 < 1}.

We say that a sequence {xn} in a metric space X with metric d converges
to x if d(xn, x)→ 0 as n→∞.

Exercise 1.11 : Discuss the convergence of fn(t) = tn in (C[0, 1], d1) and
(C[0, 1], d∞).

Exercise 1.12 : Every metric space (X, d) is Hausdorff: For distinct x, y ∈
X, there exists r > 0 such that Bd(x, r) ∩ Bd(y, r) = ∅. In particular, limit
of a convergent sequence is unique.
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Exercise 1.13 : (Co-finite Topology) We declare that a subset U of R is
open iff either U = ∅ or R \U is finite. Show that R with this “topology” is
not Hausdorff.

A subset U of a metric space X is closed if the complement X \U is open.
By a neighbourhood of a point, we mean an open set containing that point.
A point x ∈ X is a limit point of U if every non-empty neighbourhood of x
contains a point of U. (This definition differs from that given in Munkres).
The set U is the collection of all limit points of U.

Exercise 1.14 : What are the limit points of bidisc in C2 ?

Exercise 1.15 : Let (X, d) be a metric space and let U be a subset of X.
Show that x ∈ U iff for every x ∈ U, there exists a convergent sequence
{xn} ⊆ U such that limn→∞ xn = x.

2. Topological Spaces

Let X be a set with a collection Ω of subsets of X. If Ω contains ∅ and
X, and if Ω is closed under arbitrary union and finite intersection then we
say that Ω is a topology on X. The pair (X,Ω) will be referred to as the
topological space X with topology Ω. An open set is a member of Ω.

Exercise 2.1 : Describe all topologies on a 2-point set. Give five topologies
on a 3-point set.

Exercise 2.2 : Let (X,Ω) be a topological space and let U be a subset of
X. Suppose for every x ∈ U there exists Ux ∈ Ω such that x ∈ Ux ⊆ U.
Show that U belongs to Ω.

Exercise 2.3 : (Co-countable Topology) For a set X, define Ω to be the
collection of subsets U of X such that either U = ∅ or X \ U is countable.
Show that Ω is a topology on X.

Exercise 2.4 : Let Ω be the collection of subsets U of X := R such that
either X \ U = ∅ or X \ U is infinite. Show that Ω is not a topology on X.

Hint. The union of (−∞, 0) and (0,∞) does not belong to Ω.

Let X be a topological space with topologies Ω1 and Ω2. We say that Ω1

is finer than Ω2 if Ω2 ⊆ Ω1. We say that Ω1 and Ω2 are comparable if either
Ω1 is finer than Ω2 or Ω2 is finer than Ω1.

Exercise 2.5 : Show that the usual topology is finer than the co-finite
topology on R.

Exercise 2.6 : Show that the usual topology and co-countable topology on
R are not comparable.
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Remark 2.7 : Note that the co-countable topology is finer than the co-finite
topology.

3. Basis for a Topology

Let X be a set. A basis B for a topology on X is a collection of subsets
of X such that

(1) For each x ∈ X, there exists B ∈ B such that x ∈ B.
(2) If x ∈ B1 ∩ B2 for some B1, B2 ∈ B then there exists B ∈ B such

that x ∈ B ⊆ B1 ∩B2.

Example 3.1 : The collection {(a, b) ⊆ R : a, b ∈ Q} is a basis for a
topology on R.

Exercise 3.2 : Show that collection of balls (with rational radii) in a metric
space forms a basis.

Example 3.3 : (Arithmetic Progression Basis) Let X be the set of positive
integers and consider the collection B of all arithmetic progressions of posi-
tive integers. Then B is a basis. If m ∈ X then B := {m+(n−1)p} contains
m. Next consider two arithmetic progressions B1 = {a1 + (n − 1)p1} and
B2 = {a2 + (n− 1)p2} containing an integer m. Then B := {m+ (n− 1)(p)}
does the job for p := lcm{p1, p2}.

4. Topology Generated by a Basis

Let B be a basis for a topology on X. The topology ΩB generated by B is
defined as

ΩB := {U ⊆ X : For each x ∈ U, there exists B ∈ B such that x ∈ B ⊆ U}.

We will see in the class that ΩB is indeed a topology that contains B.

Exercise 4.1 : Show that the topology ΩB generated by the basis B :=
{(a, b) ⊆ R : a, b ∈ Q} is the usual topology on R.

Example 4.2 : The collection {[a, b) ⊆ R : a, b ∈ R} is a basis for a topology
on R. The topology generated by it is known as lower limit topology on R.

Example 4.3 : Note that B := {p}
⋃
{{p, q} : q ∈ X, q 6= p} is a basis. We

check that the topology ΩB generated by B is the VIP topology on X. Let
U be a subset of X containing p. If x ∈ U then choose B = {p} if x = p,
and B = {p, x} otherwise. Note further that if p /∈ U then there is no B ∈ B
such that B ⊆ U. This shows that ΩB is precisely the VIP topology on X.

Exercise 4.4 : Show that the topology generated by the basis B := {X} ∪
{{q} : q ∈ X, q 6= p} is the outcast topology.
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Exercise 4.5 : Show that the topological space N of positive numbers with
topology generated by arithmetic progression basis is Hausdorff.

Hint. If m1 > m2 then consider open sets {m1 + (n− 1)(m1 +m2 + 1)}
and {m2 + (n− 1)(m1 +m2 + 1)}.

The following observation justifies the terminology basis:

Proposition 4.6. If B is a basis for a topology on X, then ΩB is the col-
lection Ω of all union of elements of B.

Proof. Since B ⊆ ΩB, by the very definition of topology, Ω ⊆ ΩB. Let U ∈
ΩB. Then for each x ∈ U, there exists Bx ∈ B such that x ∈ Bx ⊆ U. It
follows that U = ∪xBx, that is, U ∈ Ω. �

Remark 4.7 : If B1 and B2 are bases for topologies on X such that B2 ⊆ B1

then ΩB1 is finer than ΩB2 .

Proposition 4.8. For i = 1, 2 consider the basis Bi ⊆ X and the topology
ΩBi it generates. TFAE:

(1) ΩB1 is finer than ΩB2.
(2) For each x ∈ X and each basis element B2 ∈ B2 containing x, there

is a basis element B1 ∈ B1 such that x ∈ B1 ⊆ B2.

Exercise 4.9 : Let X := R. Consider the pairs of bases:

(1) B1 := {(a, b) ⊆ R : a, b ∈ R} and B2 := {(a, b) ⊆ R : a, b ∈ Q}.
(2) B1 := {[a, b) ⊆ R : a, b ∈ R} and B2 := {[a, b) ⊆ R : a, b ∈ Q}.
(3) B1 := {[a, b) ⊆ R : a, b ∈ R} and B2 := {(a, b) ⊆ R : a, b ∈ R}.

Do they generate comparable topologies ? If so then do they generate the
same topology ?

Example 4.10 : Consider the subset

(a, b) \K := {x ∈ (a, b) : x 6= 1/n for any integer n ≥ 1}

of the open interval (a, b). The collection

B1 := {(a, b) ⊆ R : a, b ∈ R} ∪ {(a, b) \K ⊆ R : a, b ∈ R}

is a basis for a topology on R. The topology it generates is known as the
K-topology on R. Clearly, K-topology is finer than the usual topology. Note
that there is no neighbourhood of 0 in the usual topology which is contained
in (−1, 1) \ K ∈ B1. This shows that the usual topology is not finer than
K-topology. The same argument shows that the lower limit topology is not
finer than K-topology. Consider next the neighbourhood [2, 3) of 2 in the
lower limit topology. Then there is no neighbourhood of 2 in the K-topology
which is contained in [2, 3). We conclude that the K-topology and the lower
limit topology are not comparable.



6 TOPOLOGY: NOTES AND PROBLEMS

4.1. Infinitude of Prime Numbers. Let (X,Ω) be a topological space
with topology Ω. A subset V of X is said to be closed if X \V belongs to Ω.

Exercise 4.11 : ([1, H. Fürstenberg]) Consider N with the arithmetic pro-
gression topology. Verify the following:

(1) For a prime number p, the basis element {np : n ≥ 1} is closed.
(2) There are infinitely prime numbers.

Hint. For (i), note that {np} = N \ ∪p−1i=1 {i + np}. For (ii), note that
N \ {1} = ∪p{np}, where union is over all prime numbers. Now note that
no finite set is open.

5. Product Topology

Proposition 5.1. Let (X1,Ω1) and (X2,Ω2) be topological spaces with bases
B1 and B2 respectively. Then B := {B1 × B2 : B1 ∈ B1, B2 ∈ B2} forms a
basis for a topology on X1 ×X2.

Proof. We note the following:

(1) Suppose (x1, x2) ∈ X1 ×X2. Then for i = 1, 2, xi ∈ Xi, and hence
there exists Bi ∈ Bi such that xi ∈ Bi. Thus (x1, x2) ∈ B1×B2 ∈ B.

(2) Let (x1, x2) ∈ (B1 ×B2)∩ (B′1 ×B′2) for some Bi, B
′
i ∈ Bi (i = 1, 2).

Note that (B1×B2)∩ (B′1×B′2) = (B1∩B′1)× (B2∩B′2). Then there
exists B′′i ∈ Bi such that xi ∈ B′′i ⊆ Bi∩B′i. Thus B := B′′1 ×B′′2 ∈ B
satisfies (x1, x2) ∈ B ⊆ (B1 ×B2) ∩ (B′1 ×B′2).

This completes the proof. �

The product topology on X1 ×X2 is the topology generated by the basis
B as given above. For example, the product topology on R × R coincides
with usual topology on R2.

Exercise 5.2 : Show that the open unit disc is open in the product topology
on R2. Show further that it is not of form U × V for any open subsets U
and V of R.

Example 5.3 : Consider the space Rl×R with product topology, where Rl
denotes the real line with lower limit topology. The basis for the product
topology consists of {(x, y) ∈ R2 : a ≤ x < b, c < y < d}.

Example 5.4 : LetX1 denote the topological space R with discrete topology
and let X2 be R with usual topology. Then the product topology Ω on R×R
is nothing but the dictionary order topology on R2. Since the basis for the
product topology on R × R is given by {{x1} × (a, b) : x1, a, b ∈ R}, any
open set in the dictionary order topology is union of open sets in the product
topology.

We also note that the product topology Ω is finer than the usual topology
on R2. In fact, any basis element (a, b)× (c, d) of the usual topology can be
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expressed as the union ∪a<x<b{x} × (c, d) of open sets {x} × (c, d) in the
product topology Ω.

6. Subspace Topology

Let (X,Ω) be a topological space and let Y be a subset of X. Then
ΩY := {U ∩ Y : U ∈ Ω} is a topology on Y, called the subspace topology.

Remark 6.1 : If U ∈ Ω and U ⊆ Y then U is open in the subspace topology.

Remark 6.2 : If V ∈ ΩY and Y ∈ Ω then V ∈ Ω.

Example 6.3 : Consider the real numbers R with usual topology and let
Y := [−1, 1]. Then

(1) (1/2, 1) is open in the subspace topology: (1/2, 1) ⊆ Y .
(2) (1/2, 1] is open in the subspace topology: (1/2, 1] = (1/2, 2) ∩ Y.
(3) [1/2, 1) is not open in the subspace topology: If [1/2, 1) = U ∩Y for

some open subset U of R then 1/2 ∈ U. Thus (1/2 − ε, 1/2 + ε) is
contained in U ∩ Y = [1/2, 1) for some ε > 0, which is not possible.

(4) {x ∈ (0, 1) : 1/x 6= 1, 2, · · · } is open in the subspace topology: This
set is open in R. Now apply Remark 6.1.

Remark 6.4 : Let (X,Ω) be a topological space with subsets Y,Z such
that Z ⊆ Y ⊆ X. Then (Y,ΩY ) is a subspace of (X,Ω) and (Z,ΩYZ ) is a
subspace of (Y,ΩY ). Also, (Z,ΩZ) is a subspace of (X,Ω). Then ΩZ = ΩYZ .

Proposition 6.5. If B is basis for the topological space X, and Y is a
subspace of X then the basis BY for the subspace topology on Y is given by

BY = {B ∩ Y : B ∈ B}.

Example 6.6 : Consider the topological space Rl × R and let L denote a
straight line in the plane. Then the basis elements for the subspace topology
on L are of the form

{(x, y) ∈ L : a ≤ x < b, c < y < d} or {(x, y) ∈ L : a < x < b, c < y < d}

provided L is neither X-axis nor Y -axis.

Let X be a simply ordered set with order topology Ωo and let Y be a
subset of X. Then the order relation < on X makes Y into an ordered set.
This makes Y a topological space with order topology ΩY,o. Also, Y has the
subspace topology ΩY . We will see in class an example in which ΩY,o and
ΩY are not same [4, Pg 90, Example 3].

Lemma 6.7. ΩY,o ⊆ ΩY .

Proof. The basis elements for the order topology on Y are of the form B1 :=
{x ∈ Y : a < x < b}, B2 := {x ∈ Y : ã0 ≤ x < b}, B3 := {x ∈ Y : a < x ≤
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b̃0}, where ã0, b̃0 denote the minimal and maximal elements of Y (if exists)

respectively. Clearly, a0 ≤ ã0, b̃0 ≤ b0. Note the following:

(1) Clearly, B1 = (a, b) ∩ Y.
(2) If a0 = ã0 then B2 = [a0, b) ∩ Y.
(3) If a0 < ã0 then B2 = (a0, b) ∩ Y.
(4) If b0 = b̃0 then B3 = (a, b0] ∩ Y.
(5) If b0 < b̃0 then B3 = (a, b0) ∩ Y.

Thus B1, B2, B3 belong to the basis for the subspace topology. That is,
BY,o ⊆ BY , and hence ΩY,o ⊆ ΩY . �

Let X be a simply ordered set and let Y be a subset of X. We say that
Y is convex if for any pair a, b ∈ Y, the interval (a, b) is contained in Y.

Example 6.8 : Any interval (x, y) in a simply ordered set is convex: If
a, b ∈ (x, y) then x < a < b < y and hence (a, b) ⊆ (x, y).

Example 6.9 : Consider the subset [0, 1]×[0, 1] of R2 with dictionary order.
Then 0 × 0, 1 × 1 belong to [0, 1] × [0, 1], however, 1/2 × 2 ∈ (0 × 0, 1 × 1)
does not belong to [0, 1]× [0, 1].

The first quadrant is not a convex subset of R2. However, the right half
plane is convex.

Lemma 6.10. Let Y be a convex subset of topological space X with order
topology. For any open ray R in X, R ∩ Y is open in order topology on Y.

Proof. We prove the lemma only for the ray (a,∞). Consider the cases:

(1) a < y for all y ∈ Y : Then Z = Y.
(2) y < a for all y ∈ Y : Then Z = ∅.
(3) There exists y1, y2 ∈ Y such that y1 < a < y2: Then a ∈ Y . The

convexity of Y implies that a ∈ (y1, y2) ⊆ Y .

If a /∈ Y then Z = Y or Z = ∅. If a ∈ Y then the open set Z := (a,∞) ∩ Y
in the subspace topology is actually an open ray in Y. �

Theorem 6.11. Let Y be a convex subset of the topological space X with
order topology. Then the order topology on Y is same as subspace topology
on Y, that is, ΩY,o = ΩY .

Proof. By the preceding lemma, for any open ray R in X, R ∩ Y is open in
order topology on Y. Note the following:

(1) If a < b then (a, b) ∩ Y = ((−∞, b) ∩ Y ) ∩ ((a,∞) ∩ Y ).
(2) If X has minimal elment a0 then [a0, b) ∩ Y = (−∞, b) ∩ Y .
(3) If X has maximal element b0 then (a, b0] ∩ Y = (a,∞) ∩ Y .

Thus every basis element for the subspace topology is open in order topology
on Y. The fact that every basis element for the order topology is open in the
subspace topology is established in Lemma 6.7. �

Remark 6.12 : If may happen that for a non-convex subset Y of X, ΩY,o =
ΩY . Consider for example X := R and Y := R \ {0}.



TOPOLOGY: NOTES AND PROBLEMS 9

7. Closed Sets, Hausdorff Spaces, and Closure of a Set

A topological space (X,Ω) is Hausdorff if for any pair x, y ∈ X with
x 6= y, there exist neighbourhoods Nx and Ny of x and y respectively such
that Nx ∩Ny = ∅.

Any metric space is Hausdorff. In particular, the real line R with usual
metric topology is Hausdorff.

Exercise 7.1 : If X is Hausdorff then show that the complement of any
finite set is open.

Hint. Let x0 ∈ X then let x ∈ X \ {x0} and apply the definition of
Hausdorff set to the pair x, x0.

Recall that a subset of X is closed if its complement in X is open in X.

Remark 7.2 : Arbitrary intersection of closed sets is closed. Finite union
of closed sets is closed.

Example 7.3 : Consider the real line R with usual topology. Then the set
Q of rationals is not closed. This follows since any neighbourhood of an
irrational number contains rationals. If we enumerate Q as a sequence {rn}
then Q = ∪n{rn}, which shows that countable union of closed sets need not
be closed.

Exercise 7.4 : Show that X is Hausdorff iff the diagonal ∆ := {(x, x) ∈
X ×X} is closed in X ×X.

Hint. Note that x 6= y iff (x, y) belongs to the complement of ∆ in X×X.
Check that X is Hausdorff iff X ×X \∆ is open in X ×X.
Exercise 7.5 : Show that every topological space with order topology is
Hausdorff.

Hint. Given x1 6= x2, choose xi ∈ (ai, bi) possibly (a1, b1) ∩ (a2, b2) 6= ∅.
We may assume that a2 < b1. If there is c ∈ (a1, b1)∩ (a2, b2) then try (a1, c)
and (c, b2). Otherwise try (a1, b1) and (a2, b2).

Exercise 7.6 : What are all closed subsets of R with VIP topology (resp.
outcast topology) ?

Example 7.7 : Consider the subset Y := (−∞, 0)∪ [1,∞) of R. Clearly, Y
is not closed in the usual topology on R as R \ Y = [0, 1) is not open in R.
However, Y is closed in Rl.

Exercise 7.8 : Show that the only non-empty subset of R which is open as
well as closed is R.

Hint. Write R = A ∪ B for open and disjoint sets A and B. If a ∈ A
and b ∈ B with a < b then [a, b] = A0 ∪ B0, where A0 = A ∩ [a, b] and
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B0 = B ∩ [a, b] are disjoint. Let c := supA0 ∈ [a, b]. Then either c ∈ A0 or
c ∈ B0. If c ∈ A0 then either c = a or a < c < b. Since A0 is open in the
subspace topology on [a, b], there is d such that [c, d) ⊆ A0. This contradicts
that c = supA0. Similarly, prove that c can not belong to B0.

Exercise 7.9 : Given an example of a non-empty subset of Y := R \ {0}
which is open as well as closed in the subspace topology on Y .

Exercise 7.10 : Let f : Rn → R be a continuous function in the variables
x1, · · · , xn. Show that the zero set Z(f) := {x ∈ Rn : f(x) = 0} is a closed
subset of Rn.

Exercise 7.11 : Identify Mn(C) with Cn2
with usual topology. Show that

GLn(C) is an open subset of Mn(C).

Let (X,Ω) be a topological space with topology Ω. If A is a subset of X
then the closure Ā of A in X is defined as the intersection of all closed sets
containing A:

Ā =
⋂

closed B⊇A

B.

Remark 7.12 : Clearly, A ⊆ Ā. Also, Ā ⊆ A iff A is closed.

Example 7.13 : The closure of rationals in the usual topology on R is R.
To see this, let B be a closed subset of R such that Q ⊆ B. If B 6= R then
the complement of B in R is non-empty, and hence contains an interval. But
then R \B contains a rational, which is not possible since Q ⊆ B.

Example 7.14 : Let X be an ordered set with order topology. Note that
the complement of [a, b] in X is open. Thus (a, b) ⊆ [a, b].

Example 7.15 : Consider the topological space Rl. Then the closure of
(non-closed set) (0,

√
2) equals [0,

√
2). This follows from the observation

that R \ [0,
√

2) = (−∞, 0) ∪ [
√

2,∞) is open in Rl. If one replaces the
lower limit topology by the topology Ω generated by the basis {[a, b) : a, b ∈
Q} then the closure of (0,

√
2) in Ω equals [0,

√
2]. This provides another

verification of the fact that Ω and the lower limit topology are different.

Example 7.16 : Let X = R with usual topology. Then the closure of (0, 1)
in R equals [0, 1] as [0, 1] is the smallest closed set containing (0, 1). However,
the closure of (0, 1) in the subspace topology on [0, 1) equals [0, 1) as [0, 1)
is the smallest closed in the subspace topology that contains (0, 1).

Theorem 7.17. Let (X,Ω) be a topological space with topology Ω. Let A, Y
be subsets of X such that A ⊆ Y. Then
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(1) A is closed in the subspace topology on Y iff A = B ∩ Y for some
closed subset B of X.

(2) The closure of A in the subspace topology on Y equals Ā ∩ Y.

Proof. (1) If A = B ∩ Y for some closed subset B of X then (X \B) ∩ Y =
Y \ A, and hence A is closed in the subspace topology on Y. If A is closed
in the subspace topology on Y then Y \A = U ∩ Y for some open set U in
X. Then A = Y \ (U ∩ Y ) = B ∩ Y for closed set B := X \ U in X.

(2) Let B denote the closure of A in the subspace topology. Since Ā ∩ Y
is a closed set containing A, and B is the smallest closed set in the subspace
topology that contains A, we have B ⊆ Ā∩Y. Also, since B = C∩Y for some
closed set C in X that contains A, Ā ⊆ C. But then Ā∩Y ⊆ C∩Y = B. �

Corollary 7.18. Let Y be a subspace of X. If A is closed in Y and Y is
closed in X, then A is closed in X.

Proof. Let Ā and ĀY denote the closures of A in X and Y respectively.
By the last theorem, ĀY = Ā ∩ Y. Suppose that A is closed in Y , that is,
ĀY = A. But then A = ĀY = Ā ∩ Y, which is the intersection of closed sets
Ā and Y in X. Hence A is closed in X. �

Example 7.19 : Consider the topological space R×R with dictionary order
topology and consider the unit square [0, 1]× [0, 1] with subspace topology.
Note that A := {(1/n) × 0 : n ∈ N} is closed in R × R, and hence in the
subspace topology on [0, 1]× [0, 1]. Note that the closure of B := {0×(1/n) :
n ∈ N} in R× R equals B ∪ {0× 0}. This also shows that the closure of B
in the subspace topology equals B ∪ {0× 0}.

By a neighbourhood of a point, we mean an open set containing that point.
By a deleted neighbourhood of a point x, we mean U \ {x}, where U is a
neighbourhood of x. If A is a subset of the topological space X and if x ∈ X
then we say that x is a cluster point of A if every deleted neighbourhood of
x intersects A.

Example 7.20 : Consider the subset A := [0, 1) ∪ {2} of the real line with
usual topology. Note that 1 is a cluster point of A but 2 is not a cluster
point of A.

Exercise 7.21 : What are all cluster points of {q} in VIP topology with
base point p on R ?

Lemma 7.22. Every cluster point of A belongs to Ā.

Proof. If possible, suppose that x /∈ Ā. But then U := X \ Ā is a neighbour-
hood of x. Since x is a cluster point of x, the deleted neighbourhood U \{x}
must intersect A. This is not possible since U is contained in X \A. �

Lemma 7.23. If x ∈ Ā ∩ (X \A) then x is a cluster point of A.
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Proof. If x is not a cluster point of A then there is a neighbourhood U of x
such that (U \ {x}) ∩ A = ∅. Since x /∈ A, we have U ∩ A = ∅, and hence
A is contained in the closed set X \ U. By the definition of closure of a set,
Ā ⊆ X \ U. Since x ∈ Ā, we arrive at the contradiction that x /∈ U. �

We combine the preceding two lemmas to get the following:

Theorem 7.24. x ∈ Ā iff either x ∈ A or x is a cluster point of A.

Theorem 7.25. If X is a Hausdorff space then every neighbourhood of a
cluster point of A contains infinitely many points from A.

Proof. Suppose that X is Hausdorff and let x be a cluster point of a subset
A of X. Suppose, if possible, there is a neighbourhood U of x such that
U ∩ A = F is a finite set. Since X is Hausdorff, F is closed in X. But then
the deleted neighbourhood U ∩ (X \ F ) of x does not intersect at all. That
contradicts that x is a cluster point. �

8. Continuous Functions

Let (Xi,Ωi) (i = 1, 2) be two topological spaces and let f : X1 → X2 be
a function. We say that f is continuous if for any V ∈ Ω2, the pre-image
f−1(V ) of V under f belongs to Ω1.

Remark 8.1 : Note that f is continuous iff for any closed set B in X2,
the pre-image f−1(B) of B under f is closed in X1. This follows from the
observation f−1(X2 \B) = X1 \ f−1(B).

Exercise 8.2 : Let (X,Ωi) (i = 1, 2) be two topological spaces and consider
the identity function id from X onto itself. Show that Ω1 is finer than Ω2

iff the identity function id is continuous.

Example 8.3 : Let X1, X2, X3 denote the set R with usual topology, lower
limit topology, K-topology respectively. The identity mapping id from X3

onto X1 is continuous. However, neither the identity mapping id from X2

onto X3 nor the identity mapping id from X3 onto X2 is continuous.

Exercise 8.4 : Let X be a topological space with discrete topology and Y
be any topological space. Show that any function f : X → Y is continuous.

Exercise 8.5 : Let (Xi,Ωi) be two topological spaces with topology Ωi (i =
1, 2) and let x0 ∈ X2. If X2 is Hausdorff then show that for any continuous
function f : X1 → X2, the set C := {x ∈ X1 : f(x) = x0} is closed in X1.

Hint. Note that f−1(X2 \ {x0}) = X1 \ C.

Example 8.6 : Consider the metric space C[0, 1] with sup metric and C
with usual topology. For fixed t0 ∈ [0, 1], consider the evaluation functional
Et0 : C[0, 1] → C given by Et0(f) = f(t0). Since |f(t0) − g(t0)| ≤ d∞(f, g),
the convergence in sup metric implies point-wise convergence. It follows
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that Et0 is continuous. Now {f ∈ C[0, 1] : f(t0) 6= 0} is the complement of
the null-space of Et0 , and hence by the last exercise, it is open in C[0, 1].

Exercise 8.7 : If f : X → Y is continuous and a sequence {xn} in X
converges to x ∈ X, show that the sequence {f(xn)} in Y converges to f(x).

Proposition 8.8. Let (Xi,Ωi) (i = 1, 2) be two topological spaces and let B2

be a basis for Ω2. A function f : X1 → X2 is continuous iff for any B2 ∈ B2,
the pre-image f−1(B2) of V under f belongs to Ω1.

Proof. Suppose that for any B2 ∈ B2, the pre-image f−1(B2) of V under
f belongs to Ω1. Let V be an open subset of Ω2. Then V = ∪αBα. Since
f−1(V ) = ∪αf−1(Bα), f−1(V ) belongs to Ω1. �

Example 8.9 : Consider the topological space X1 := (0,∞) with the sub-
space topology inherited from R. Then the function f(x) = x2 from X1 onto
itself is continuous. In view of the last proposition, we need to check that
the pre-image of any open interval in (0,∞) is open. However, note that for

0 < a < b < ∞, f−1(a, b) = (
√
a,
√
b). If X2 denotes the topological space

(0,∞) with lower limit topology then by the same argument, the function
f : X1 → X2 given by f(x) = x2 is not continuous. Finally, note that the
function f : X2 → X1 given by f(x) = x2 is continuous.

Exercise 8.10 : Let E be a non-empty proper subset of the topological
space X. Consider the characteristic function χE of E. Show that χE is
continuous iff E is a closed and open subset of X.

Exercise 8.11 : Consider topological spaces Xi = (X,Ωi), i=1, 2 such that
Ω1 is finer than Ω2. Show that f : X1 → Y is continuous if so is f : X2 → Y.

The next result says that continuity is a local property.

Proposition 8.12. Let (Xi,Ωi) (i = 1, 2) be two topological spaces. A func-
tion f : X1 → X2 is continuous iff for each x ∈ X and each neighbourhood
Vx of f(x), there is a neighbourhood Ux of x such that f(Ux) ⊆ Vx.

Proof. If f is continuous then Ux := f−1(Vx) satisfies f(Ux) ⊆ Vx.
Conversely, suppose that for each x ∈ X and each neighbourhood Vx of

f(x), there is a neighbourhood Ux of x such that f(Ux) ⊆ Vx. Let V be
an open subset of X2 and let x ∈ f−1(V ). Then f(x) ∈ V, and hence by
hypothesis, there is a neighbourhood Ux of x such that f(Ux) ⊆ V. But then
Ux ⊆ f−1(V ), and hence f−1(V ) is open. �

We say that f : X1 → X2 is continuous at x ∈ X1 if for each neighbour-
hood Vx of f(x), there is a neighbourhood Ux of x such that f(Ux) ⊆ Vx.
By the last result, f is continuous iff f is continuous at every point.

Example 8.13 : Consider the function f : R → R given by f(x) = x if
x ∈ Q and f(x) = −x if x ∈ R \Q. We check that f is continuous only at 0.
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To see that, first note that any neighbourhood V0 of f(0) = 0 contains an
interval (−ε, ε) for some ε > 0. Then U0 := (−ε, ε) satisfies f(U0) ⊆ (−ε, ε) ⊆
V0. Thus f is continuous at 0. If x > 0 then for Vx := (x/2, 3x/2) ⊆ (0,∞),
there is no neighbourhood Ux of x such that f(Ux) ⊆ Vx (since f(Ux) always
contains negative numbers). Similarly, one can see that f is not continuous
at x < 0.

Exercise 8.14 : Let X be a topological space and Y be a topological space
with ordered topology. Let f, g : X → Y be continuous functions. Show
that the set U := {x ∈ X : f(x) > g(x)} is open in X.

Hint. Let x0 ∈ U. If (g(x0), f(x0)) = ∅ then g−1(−∞, f(x0))∩f−1(g(x0),∞)
is a neighbourhood of x0 contained in U.Otherwise, for any y ∈ (g(x0), f(x0)),
g−1(−∞, y) ∩ f−1(y,∞) is a neighbourhood of x0 contained in U.

Exercise 8.15 : Prove: Composition of continuous functions is continuous.

Hint. Use Proposition 8.12.

Corollary 8.16. Let (Xi,Ωi) (i = 1, 2) be topological spaces and let A be a
subspace of X1. If f : X1 → X2 is continuous then so is map f |A : A→ X2.

Proof. We apply the last proposition. Let a ∈ A and let Va be a neigh-
bourhood of f(a) in X2. Since A ⊆ X, a ∈ X. Since the f is continu-
ous, there is a neighbourhood Ua of a such that f(Ua) ⊆ Va. But then
f(A ∩ Ua) ⊆ f(Ua) ⊆ Va, where A ∩ Ua is a neighbourhood of a in the
subspace topology. �

Remark 8.17 : The inclusion map i : A ↪→ X is always continuous.

One may wish to know whether or not the converse of Corollary 8.16
is true: For X = ∪αAα and f : X → A, if each f |Aα is continuous then
whether f is continuous ? (Restriction Problem). The answer is No even if
each Aα is closed.

Example 8.18 : Let X := [0, 1] and A0 := {0}, An := [1/n, 1]. Then the
function f : [0, 1] → R given by f(0) = 1, f(x) = 1/x (0 < x ≤ 1) is
discontinuous at 0. However, f |An is continuous for every n ≥ 0.

The answer to the Restriction Problem is yes if each Aα is open.

Corollary 8.19. For X = ∪αAα with open Aα and f : X → A, if each
f |Aα is continuous then f is continuous.

Proof. We apply Proposition 8.12. Let x ∈ X and let Vx be a neighbourhood
of x. Then x ∈ Aα for some α. Since f |Aα is continuous, there exists a
neighbourhood Ux,α of x such that f(Ux,α∩Aα) ⊆ Vx, where Ux := Ux,α∩Aα
is the desired neighbourhood of x. �

An indexed family {Aα} of subsets of X is locally finite if each x ∈ X
has a neighbourhood that intersects with finitely many Aα’s. The family
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{An} as discussed in Example 8.18 is not locally finite. Any finite family is
trivially locally finite (choose the neighbourhood to be the entire space).

The answer to the Restriction Problem is yes for any locally finite family
of closed sets.

Proposition 8.20. Let {Aα be a locally finite family of closed sets such that
X = ∪αAα and f : X → Y , if each f |Aα is continuous then f is continuous.

Proof. Let x ∈ X and let Ux be a neighbourhood of x such that Ux intersects
only with Aα1 , · · · , Aαk . It suffices to check that g := f |Ux is continuous.
Note that Ux = ∪ki=1Bi, where each Bi := Aαi ∩Ux is closed in the subspace
topology on Ux and each g|Bi is continuous.

In view of Remark 8.1, it suffices to check that g−1(C) is closed for any
closed subset C of Y. Note however that g−1(C) = ∪ki=1(g|Bi)−1(C), where
(g|Bi)−1(C) is closed in Bi and hence in Ux. �

We immediately obtain the following:

Corollary 8.21. (Pasting Lemma) Let X = A ∪ B, where A and B are
closed subsets of X. Let f : A→ Y and g : B → Y be continuous. If f and
g agree on A ∩B then the function h : X → Y defined by

h(x) = f(x) if x ∈ A
= g(x) if x ∈ B

is continuous.

Example 8.22 : Let X be a topological space and Y be a topological
space with ordered topology. Let f, g : X → Y be continuous functions.
Consider the function mf,g(x) := max{f(x), g(x)} from X into Y. Then mf,g

is continuous. To see that, consider the subsets A1 := {x ∈ X : f(x) ≤ g(x)}
and A2 := {x ∈ X : g(x) ≤ f(x)} of X, and note that mf,g|A1 = g|A1 and
mf,g|A2 = f |A2 are continuous. Also, A1 and A2 are closed subsets of X
(Exercise 8.14). Since f and g agree on A1 ∩ A2, the desired conclusion
follows from the Pasting Lemma.

8.1. A Theorem of Volterra Vito.

Exercise 8.23 : Show that the function g : (0, 1) → R given below is
continuous on irrationals and discontinuous on rationals:

g(x) =
1

q
if x ∈ Q ∩ (0, 1) and x =

p

q
in reduced form

= 0 otherwise.

We say that a set is a Gδ set if it is countable intersection of open sets.

Remark 8.24 : The irrationals R\Q form a Gδ set for R\Q =
⋂
r∈QR\{r}.

Exercise 8.25 : The rationals do not form a Gδ set.
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Hint. Recall the Baire Category Theorem: A countable intersection of
open dense sets in R is again dense.

Exercise 8.26 : Let f be a function defined on an open subset U. The set
of points in U where a function f : U → R is continuous is a Gδ set.

Hint. For positive integer n, consider the set An given by

{x0 ∈ U : ∃ an open nbhd Vn of x0 such that |f(x)− f(y)| < 1/n ∀ x, y ∈ Vn}.

Theorem 8.27. (Volterra Vito) There is no function g : (0, 1) → R which
is continuous on rationals and discontinuous on irrationals.

9. Homeomorphisms

A function f : X → Y is a homeomorphism if f is continuous, one-one,
and onto with continuous inverse. We say that X and Y are homeomorphic
if there exists a homeomorphism f : X → Y .

Remark 9.1 : Let f : X → Y be a homeomorphism. Here are some key
observations to decide whether or not a given function is homeomorphism.

(1) If f is a homeomorphism then so is f−1.
(2) If U is open in X then f(U) is open in Y.
(3) If A is a subset of X then A and f(A) are homeomorphic.
(4) Composition of homeomorphisms is again a homeomorphism. In

particular, if X is homeomorphic to Y , and Y is homeomorphic to
Z then X is homeomorphic to Z.

Exercise 9.2 : Show that a bijective continuous map from a compact metric
space into a metric space sends closed sets to closed sets, and hence it is a
homeomorphism.

Example 9.3 : Define f : R→ [0, 1] by f(x) = x if |x| ≤ 1, and f(x) = 1/|x|
if |x| ≥ 1. Then f is continuous on R. Note that f is onto but not one-one.

Exercise 9.4 : Show that the interval (a, b) ⊆ R is homeomorphic to any
other interval (c, d) ⊆ R.

Hint. Try α(t− b) + β(t− a) for appropriate scalars α and β.

Exercise 9.5 : Show that e−x is a homeomorphism from (0,∞) onto (0, 1).

Example 9.6 : We check that X = R with VIP topology and Y = R with
outcast topology (with base point 0) are not homeomorphic. In fact, if there
exists a homeomorphism φ between X and Y, then φ([−n, n]) is an open set
in the outcast topology, and hence 0 /∈ φ([−n, n]) for any n ≥ 1. However,
∪nφ([−n, n]) = φ(X) = Y, which is impossible.

A relatively simpler argument I learnt from one of the students. Suppose
0 is mapped to y. Consider an open set V in the outcast topology which
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excludes y. Then inverse image U of V can not contain 0, and hence U is
not open in the VIP topology, a contradiction.

Exercise 9.7 : Which of spaces X and Y are homeomorphic:

(1) X = R and Y = [0, 1)
(2) X = R and Y = [0, 1]
(3) X = [1,∞) and Y = (0, 1]
(4) X = R and Y = (0, 1)
(5) X = Q and Y = Z
(6) X = {(x, y, z) ∈ R3 : x2 + y2 = z, r < z < R} and Y = A(0, r, R)
(7) X = {x ∈ Rn+1 : xn+1 = 0} and Y = Rn

Hint. Use Remark 9.1 to prove that two spaces are not homeomorphic.
For (1), (2), use Intermediate Value Theorem while for (5), choose a neigh-
bourhood of an integer which contains finitely many elements, and analyze
its image in Q. For (4), write X = (−∞, 1) ∪ [1,∞), and note that by (3),
[1,∞) ∼= (0, 1]. Also, (−∞, 1) ∼= (−∞,−1) ∼= (−1, 0).

Exercise 9.8 : Verify that φ(t) = eit is a homeomorphism between (0, 2π)
and T\{1}, where T denotes the unit circle in the complex plane. Conclude
that unit circle minus a point is homeomorphic to the real line.

Proposition 9.9. Rn is homeomorphic to R iff n = 1.

Proof. Suppose that for n > 1, there is a continuous bijection f : Rn → R.
By Remark 9.1, g = f |X is a homeomorphism from X := Rn \ {0} onto
Y := R \ {y0} for some y0 ∈ R. Choose y1, y2 ∈ Y such that y1 < y0 < y2
and let x1, x2 ∈ X be such that f(x1) = y1 and f(x2) = y2.

Let L denote the line segment connecting x1 and x2. If L does not pass
through 0 then let γ(t) = (1− t)x1 + tx2. If L passes through 0 then choose
any point x3 /∈ L and let γ(t) be given by

γ(t) = (1− 2t)x1 + 2tx3 if 0 ≤ t ≤ 1/2

= 2(1− t)x3 + tx2 if 1/2 ≤ t ≤ 1.

Thus γ : [0, 1] → R is a continuous function such that γ(0) = x1 and
γ(1) = x2. We consider the continuous function h : [0, 1] → [y1, y2] by
h(t) = g(γ(t)). By the Intermediate Value Theorem, there exists t0 ∈ [0, 1]
such that h(t0) = y0, which then implies that y0 belongs to the range of g,
a contradiction. �

Remark 9.10 : It is highly non-trivial fact that Rn is homeomorphic to Rm
iff m = n.

Exercise 9.11 : Show that X = A(0, r, R) (open annulus) and Y = T (unit
circle) are not homeomorphic.
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Hint. If X and Y are homeomorphic with homeomorphism φ : X → Y
then X \ {x1} is homeomorphic to T \ {φ(x1)} ∼= R. Now argue as in the
preceding proposition.

Exercise 9.12 : Let X = Sn \{(0, · · · , 1)} ⊆ Rn+1 and Y = Rn, and define
f : X → Y and g : Y → X by

f(x1, · · · , xn+1) =

(
x1

1− xn+1
, · · · , xn

1− xn+1

)
,

g(x1, · · · , xn) =

(
2x1

‖x‖22 + 1
, · · · , 2xn

‖x‖22 + 1
,
‖x‖22 − 1

‖x‖22 + 1

)
Verify that f and g are homeomorphisms such that f−1 = g.

Exercise 9.13 : Show that the graph G of a continuous function f : X → Y
(with the subspace topology inherited from X × Y ) is homeomorphic to X.

Hint. Define φ : G → X by φ(x, f(x)) = x. Note that if U is an open
subset of X then φ−1(U) = {(x, f(x)) : x ∈ U} = (U × Y ) ∩G.

Example 9.14 : Consider the continuous function f : R \ {0} → R by
f(x) = 1/x. The graph of f is the hyperbola xy = 1. One may conclude
from the last exercise that R \ {0} is homeomorphic to xy = 1.

10. Product, Box, and Uniform Topologies

By
∏m
i=1Xi, we mean the cartesian product X1 × · · ·Xm of X1, · · · , Xm.

Example 10.1 : Consider the metric spaces (Xi, di), i = 1, · · · ,m. Check
that d(x, y) = maxi di(xi, yi) defined on X =

∏m
i=1Xi is a metric. The met-

ric topology coincides with the product topology on X. This may be con-
cluded from the fact that for x = (x1, · · · , xm), Bd(x, r) =

∏m
i=1 Bdi(xi, r).

Exercise 10.2 : Show that projections πj :
∏m
i=1Xi → Xj is continuous.

Hint. (πj)
−1(U) = X1 ×Xj−1 × U ×Xj+1 ×Xm.

Proposition 10.3. Let f : A→
∏m
i=1Xi be given by f(a) = (f1(a), · · · , fm(a)),

where the functions fi : A→ Xi (i = 1, ·,m) are given. Then f is continuous
iff each fi is continuous.

Proof. If each f is continuous then so is Pi ◦ f = fi. If each fi is continuous
then f is continuous since f−1(

∏m
i=1 Ui) = ∩mi=1(fi)

−1(Ui). �

We wish to have an analog of the last result for arbitrary family {Xα}
of topological spaces. For that, it is necessary to understand the topology
on
∏
α∈I Xα. We expect that such a topology should be consistent with the

product topology on finite products, and also it should yield the continuity
of projections. There are however two natural candidates for a topology on∏
α∈I Xα.
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Exercise 10.4 : Verify that Bb and Bp are basis for a topology on
∏m
α Xα:

(1) Bb := {
∏
α∈I Uα : Uα is open in Xα}.

(2) Bp := {
∏
α∈I Uα ∈ Bb : Uα = Xα for finitely many values of α}.

Definition 10.5 : The box topology is the topology generated by the basis
Bb, and the product topology is the topology generated by the basis Bp.

Remark 10.6 : Since Bp ⊆ Bb, we have ΩBp ⊆ ΩBb , that is, the box topology
is finer than the product topology.

Exercise 10.7 : Suppose that each Xα contains a non-empty proper open
subset Uα. Show that ΩBp = ΩBb iff I has finite cardinality.

Hint. If |I| is infinite then
∏
α∈I Uα does not belong to ΩBp .

Remark 10.8 : The projection πα(xα) = xα is continuous in box and prod-
uct topologies.

Exercise 10.9 : Show that the product topology is the smallest topology
which makes all projections πα continuous.

Exercise 10.10 : Let f : A→
∏
αXα be given by f(a) = (fα(a)), where the

functions fα : A → Xα are given. Suppose
∏
αXα has either box topology

or product topology. Show that if f is continuous then each fα is continuous.

Example 2 on page 117 of [4] shows that it may happen that each fα is
continuous but (fα) is discontinuous at a point in case the product space∏
α∈I Xα carries box topology. This is not possible if the product space∏
α∈I Xα carries product topology.

Proposition 10.11. Let f : A→
∏
αXα be given by f(a) = (fα(a)), where

the functions fα : A→ Xα are given. Suppose
∏
αXα has product topology.

Show that f is continuous iff each fα is continuous.

Proof. Suppose Uα = Xα for finitely many values of α, say α1, · · · , αm. Then

f−1(
∏
α∈I

Uα) = {a ∈ A : f(a) ∈
∏
α∈I

Uα}

= {a ∈ A : fαi(a) ∈ Uα for i = 1, · · · ,m} = ∩mi=1(fα)−1(Uαi).

The desired conclusion follows from Proposition 8.8. �

Recall that if any continuous function sends convergent sequences to con-
vergent sequences. In particular, if {xn = (xnα)} is a convergent sequence
in
∏
αXα then {πα(xn) = xnα} is also convergent in Xα. The converse is

not true if
∏
α∈I Xα carries box topology.

Example 10.12 : Consider the product space Rω (that is, countably in-
finite product of R with itself) with box topology. Consider the sequence
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{xn = (1/(n+ 1), 1/(n+ 2), · · · , )} in Rω. Note that for any integer m ≥ 1,
{πm(xn) = 1/(n + m)} converges to 0. However, the sequence {xn} does
not converge to (0, 0, · · · , ) in the box topology. Indeed, if we consider the
neighbourhood N0 :=

∏
n(−1/n2, 1/n2) of (0, 0, · · · , ) then there is no posi-

tive integer N such that xN ∈ N0.

Proposition 10.13. Let {xn = (xn1, xn2, · · · , )} be a sequence in the prod-
uct space

∏
α∈I Xα with product topology. Then the sequence {xn} converges

to x = (x1, x2, · · · , ) ∈
∏
αXα iff for every positive integer m, {πm(xn) =

xnm} converges to xm.

Proof. Suppose that for every positive integer m, {πm(xn) = xnm} converges
to xm. Let

∏
α∈I Uα be an open neighbourhood of x in the product topology.

Thus there exist α1, · · · , αk ∈ I such that Uα = Xα for every α 6= α1, · · · , αk.
Fix i = 1, · · · , k. Since {πi(xn) = xni} converges to xi, there exists positive
integer Ni such that xni ∈ Uαi for all n ≥ Ni. Check that xn ∈

∏
α∈I Uα for

all n ≥ max{N1, · · · , Nk}. �

Exercise 10.14 : Show that d : R×R→ R given by d(x, y) = min{|x−y|, 1}
defines a metric on R. Verify further that the metric topology induced by d
coincide with the usual topology on R.

Given a non-empty index set I, consider the product space RI :=
∏
α∈I R

of the product of |I| number of copies of R. Define du : RI × RI → R by

du((xα), (yα)) = sup{min{|xα − yα|, 1} : α ∈ I}.

It is easy to see that du defines a metric on RI . Check that Bu := {Bdu(x, r) :
x ∈ RI , r > 0} forms a basis for a topology on RI . Let ΩBu be the metric
topology generated by Bu.

Theorem 10.15. ΩBp ⊆ ΩBu ⊆ ΩBb with strict inclusions if I is infinite.

Proof. We first note that any open subset of R in the usual topology is open
in the metric topology induced by d(x, y) = min{|x − y|, 1} (If d(x, y) < 1
then |x− y| < 1). In particular, if

∏
α∈I Uα is open in the product topology

then it is open in the uniform topology. Also,
∏
α∈I(xα − r/2, xα + r/2) ⊆

Bdu(x, r) for any positive real number r < 1, so the box topology is finer
than the uniform topology.

Suppose that I is infinite. Let us see that both the inclusions are strict.
Let x0 = (0, 0, · · · , ). Since I is infinite, there exists a sequence {ik} con-
tained in I. Consider U :=

∏
α∈I Uα, where Uα = (−1/k, 1/k) if α = ik, and

Uα = R otherwise. Note that there is no 0 < r < 1 such that Bdu(x0, r) ⊆
U ∈ ΩBb . In fact, (r/2, r/2, · · · , ) ∈ Bdu(x0, r) but it does not belong to U.
This shows that U /∈ ΩBu . Also, since Bdu(x0, 1) ⊆

∏
n(−1, 1), there is no

open set U in the product topology which is contained in Bdu(x0, 1). That
is, Bdu(x0, 1) ∈ ΩBu but Bdu(x0, 1) /∈ ΩBp . �
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A topological space (X,Ω) is said to be metrizable if there exists a metric
d : X × X → R such that Ω coincides with the topology generated by the
basis {Bd(x, r) : x ∈ X, r > 0}.

Example 10.16 : Define d : R2 × R2 → R by

d((x1, y1), (x2, y2)) = max{1, |y1 − y2|} if x1 6= x2

= |y1 − y2| otherwise.

Check that d is a metric. Moreover, for r ≤ 1,

Bd((x1, y1), r) = {(x1, y) ∈ R2 : |y − y1| < r},
and for r > 1, Bd((x1, y1), r) = R2. We note that the metric topology coin-
cides with the dictionary order topology on the plane. Hence the plane R2

with dictionary order topology is metrizable.

Theorem 10.17. The product space Rω with box topology is not metrizable.

Proof. We use the following property of metric spaces. If (X, d) is a metric
space then for any cluster point x of A ⊆ X, there exists a sequence {xn} ⊆ A
such that d(xn, x)→ 0. Indeed, for n ≥ 1, let xn ∈ (Bd(x, 1/n) \ {x}) ∩A.

We claim that there is no sequence in Rω which converges to the cluster
point x0 := (0, 0, · · · , ) in the box topology of A :=

∏
nR \ {0}. Contrary

to this, suppose there exists a sequence {xm := (xnm)n≥1} ⊆ A such that
xn converges to x0. Consider the neighbourhood

∏
nR \ {xnn} of x0, and

note that there is no positive integer N ≥ 1 such that xm ∈
∏
nR \ {xnn}

for every m ≥ N. Hence we arrive at a contradiction to the assumption that
{xm} converges to x0. �

Exercise 10.18 : Show that D : Rω × Rω → R given by

D((xn), (yn)) := sup
n

min{|xn − yn|, 1}
n

defines a metric on Rω. Verify further that D ≤ du, where du is the uniform
metric.

Remark 10.19 : Note that Bdu(x, r) ⊆ BD(x, r). Thus uniform topology
ΩBu is finer than the topology generated by the metric D.

We refer the reader to [4] for the proof of the following:

Theorem 10.20. The product space Rω with product topology is metrizable
with metric D.

11. Compact Spaces

Let X be a topological space X with topology Ω. By open cover {Uα}
of X, we mean a collection {Uα} ⊆ Ω such that X ⊆ ∪αUα. By a finite
subcover of {Uα}, we mean finite subset {Uα1 , · · · , Uαk} of {Uα} such that
X ⊆ Uα1 ∪ · · · ∪ Uαk .
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We say that X is compact if any open cover of X admits a finite subcover.

Exercise 11.1 : Show that any finite set is compact.

A subspace Y of X is said to be compact in X if Y is compact in the
subspace topology.

Example 11.2 : The real line with usual topology is not compact: The
open cover {(−n, n)} has no finite subcover.

The set of rationals with subspace topology is not compact: The open
cover {(−n, n) ∩Q} has no finite subcover.

The set of integers with discrete topology is not compact: The open cover
{{n}} has no finite subcover.

The open ball Bd(x, r) in Rn is not compact: If N > 1/r then the open
cover {Bd(x, r − 1/n}n≥N has no finite subcover.

The set {1/n}n≥1 ∪ {0} is compact.

Exercise 11.3 : Let K ⊆ Y ⊆ X. Show that K is compact in X iff K is
compact in Y.

We invoke a classical result from Analysis, which characterizes all compact
subsets of Rn.

Theorem 11.4. A subset A of Rn is compact iff it is closed and A is
contained some ball of finite radius.

Example 11.5 : Let p be a polynomial in the real variables x, y. Then
the zero set Z(p) of p is always closed. However, Z(p) may or may not be
compact. For instance, if p(x, y) = x2 + y2 − 1 then Z(p) being the unit
circle is compact. If p(x, y) = x then Z(p) is the Y -axis, which is certainly
non-compact.

Exercise 11.6 : Let p be a non-constant polynomial in the complex vari-
ables z1, · · · , zm. Show that the zero set Z(p) of p is compact iff m = 1.

Hint. Suppose m = 2. We check that Z(p) is unbounded. To see that,

fix a positive integer n. Write p(z, w) =
∑d

i=0 pi(z)w
i for some polynomials

p0, p1, · · · , pd in the complex variable z. One may now choose zn such that
|zn| ≥ n and zn ∈ C\Z(p1). But then p(zn, w) is a non-constant polynomial
in the complex variable w. By the Fundamental Theorem of Algebra, there
exists wn such that p(zn, wn) = 0. We thus obtain (zn, wn) ∈ Z(p) with
‖(zn, wn)‖ ≥ n, that is, Z(p) is unbounded.

Exercise 11.7 : Show that every subset of R with co-finite topology is
compact.

Theorem 11.8. Let X be a compact topological space and let Y be a sub-
space of X. Then the following are true:
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(1) If Y is closed then Y is compact.
(2) If X is Hausdorff then Y is closed iff Y is compact.

Proof. (1) If {Uα ∩ Y } is an open covering of Y (with open subsets Uα of
X) then {Uα} ∪ {X \ Y } is an open cover of X. Now use compactness of X.

(2) We check that X\Y is open. Let x0 ∈ X\Y. Since X is Hausdorff, one
can choose neighbourhoods Uy and Vy of x0 and y such that Uy ∩ Vy = ∅.
Now Y ⊆ ∪y∈Y Vy and Y is compact. So there exists a finite subcover
{Vy1 , · · · , Vyk} of Y . But then Uy1 ∩ · · · ∩ Uyk is a neighbourhood of x0
which is disjoint from Y. �

Remark 11.9 : The above result is not true in case the condition that X is
Hausdorff is relaxed. In fact, every subset (closed or non-closed) of R with
co-finite topology is compact.

Exercise 11.10 : Show that the continuous image of a compact space is
again compact.

Hint. If f is continuous then {Vα} is an open cover of f(X) iff {f−1(Vα)}
is an open cover of X.

Remark 11.11 : Compactness is a topological property: If two spaces X
and Y are homeomorphic then X is compact iff Y is compact.

Theorem 11.12. Let f : X → Y be a continuous bijection. If X is compact
and Y is Hausdorff then f is a homeomorphism.

Proof. To see that f−1 is continuous, it suffices to check that f(U) is open
in Y for any open subset U of X. Note that X \ U being closed in X is
actually compact. By the last exercise, f(X \ U) is compact, and since Y
is Hausdorff, f(X \ U) is closed in Y. But Y \ f(U) = f(X \ U), so f(U) is
open in Y as desired. �

12. Quotient Topology

Let X be a set with an equivalence relation ∼ . Given x ∈ X, let [x] :=
{y ∈ X : y ∼ x} be an equivalence class containing x. Let X/ ∼ denote the
set of all equivalence classes of elements in X.

Example 12.1 : Let X := [0, 1] and define an equivalence relation ∼ on X
as follows: If x, y ∈ (0, 1) then x ∼ y iff x = y. If x, y ∈ {0, 1} then x ∼ y.
Note that X/ ∼= {[x] = {x} : 0 < x < 1} ∪ {[0] = {0, 1}}.

Our primary aim in this section is to introduce a “best possible” topology
(of course inherited from X) on X/ ∼, which will make X/ ∼ a topological
space. To do that, suppose (X,Ω) is a topological space, and consider the
quotient map q : X → X/ ∼ given by q(x) = [x]. Since q is surjective, we
endow with X/ ∼, the quotient topology Ωq:

Ωq := {U ⊆ X/ ∼: q−1(U) ∈ Ω}.



24 TOPOLOGY: NOTES AND PROBLEMS

Let us check that Ωq is indeed a topology. Clearly, q−1(∅) = ∅ ∈ Ω and
q−1(X/ ∼) = X ∈ Ω, so that ∅, X/ ∼ belong to Ωq. If {Uα} ⊆ Ωq then
q−1(Uα) ∈ Ω, and hence q−1(∪αUα) = ∪αq−1(Uα) ∈ Ω. It follows that Ωq is
closed under arbitrary union. Along similar lines, we may check that Ωq is
closed under finite intersection.

Remark 12.2 : Note that the quotient map q : (X,Ω) → (X/ ∼,Ωq) is a
continuous surjection. In particular, if X is compact then so is X/ ∼ .

Example 12.3 : Let X and ∼ be as in Example 12.1. Let us understand q
and Ωq in this case. Note that q(x) = {x} for 0 < x < 1, and q(0) = {0, 1} =
q(1). Let U ∈ Ωq. Then there are two possibilities: either U ⊆ q((0, 1)), or
U contains q(0) = q(1). Consequently, q−1(U) is an open subset of (0, 1)
(containing precisely those points x for which {x} ∈ U) or q−1(U) is an open
subset, which contains two open sets V1 and V2 in the subspace topology
containing points 0 and 1 respectively. Note that {[x] : x ∈ (1/2, 1]} is not
open in the quotient topology on X/ ∼ . However, {[x] : 0 ≤ x < 1/2}∪{[x] :
1/2 < x ≤ 1} belongs to Ωq.

Remark 12.4 : It’s clear that the quotient space X/ ∼ above is obtained
by identifying the points 0 and 1 in [0, 1] without disturbing the points in
(0, 1). This suggests one to believe that the topological space X/ ∼ could
be identified with the unit circle.

The assertion in the last remark can be made precise.

Theorem 12.5. Let X and Y be compact spaces. Assume further that Y is
Hausdorff. Let f : X → Y be a continuous surjection. Define the equivalence
relation ∼ on X by x1 ∼ x2 iff f(x1) = f(x2). Then g : X/ ∼→ Y given by
g([x]) = f(x) is a well-defined homeomorphism.

Proof. By Remark 12.2, q(X) = X/ ∼ is compact. In view of Theorem
11.12, it suffices to check that g : X/ ∼→ Y is a continuous bijection.
g is a bijection: Note that g◦q = f. Since f is a surjection, so is g. Also, if

g([x1]) = g([x2]) then f(x1) = f(x2), and hence x1 ∼ x2, so that [x1] = [x2].
Thus g is injective.
g is continuous: We know that g ◦ q = f is continuous. For an open set

V in Y, note that f−1(V ) = (g ◦ q)−1(V ) = q−1(g−1(V )) is an open subset
of X. By the definition of quotient topology, g−1(V ) is open in X/ ∼ . �

Remark 12.6 : Note that the level sets {x ∈ X : f(x) = λ} of f are
precisely the equivalence classes in X/ ∼

Let T denote the unit circle in the plane. Consider the function f :
[0, 1] → T given by f(t) = e2πit. Then f is a continuous surjection. Also,
for x1 < x2, f(x1) = f(x2) iff x1 = 0, x2 = 1. By the preceding theorem,
g([t]) = e2πit is a homeomorphism from [0, 1]/ ∼ onto the unit circle T.
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Exercise 12.7 : Let X := {(u, v) ∈ R2 : −π ≤ u ≤ π,−1 ≤ v ≤ 1}
(Rectangle) and let Y := {(x, y, z) ∈ R3 : x2 + y2 = 1, |z| ≤ 1} (Cylinder).
Verify the following:

(1) If u − u′ = ±2π then define (u, v) ∼ (u′, v′) iff v = v′. Otherwise,
define (u, v) ∼ (u′, v′) iff (u, v) = (u′, v′). Then ∼ defines an equiva-
lence relation on X.

(2) f : X → Y , f(u, v) = (cosu, sinu, v) is a continuous surjection.

Conclude that X/ ∼ and Y are homeomorphic.

Exercise 12.8 : Let X := [0, 1] × [0, 1] (Unit Square) and let Y := T × T
(Torus). Verify the following:

(1) If s1−s2 = ±1 then define (s1, t1) ∼ (s2, t2) iff t1 = t2. If t1−t2 = ±1
then define (s1, t1) ∼ (s2, t2) iff s1 = s2. If (s1, t1), (s2, t2) ∈ [0, 1] ×
[0, 1] then (s1, t1) ∼ (s2, t2) provided s1 = s2 and t1 = t2. Then ∼
defines an equivalence relation on X.

(2) f : X → Y given by f(s, t) = (e2πis, e2πit) is a continuous surjection.

Conclude that X/ ∼ and Y are homeomorphic.

Example 12.9 : Let X := [0, 1]× [0, 1]. Define the equivalence relation ∼
on X as follows: (x, y) ∼ (x′, y′) iff either (x = 0, x′ = 1 and y = 1− y′) or
(x = x′ and y = y′). The quotient space is known as the Möbius strip.

Define the equivalence relation ∼ on X as follows: (x, y) ∼ (x′, y′) iff
either (x = 0, x′ = 1) or (x = 1− x′, y = 0, y′ = 1) or (x = x′ and y = y′).
The quotient space is known as the Klein’s bottle.

Exercise 12.10 : LetX := D ⊆ R2 (Closed Unit Disc) and let Y := S2 ⊆ R3

(Unit Sphere). Verify the following:

(1) If z, w ∈ T then set z ∼ w. If z, w ∈ D then z ∼ w provided z = w.
Then ∼ defines an equivalence relation on X.

(2) f : X → Y , f(tx, ty) = (cosπ(1− t), x sinπ(1− t), y sinπ(1− t)) for
0 ≤ t ≤ 1, (x, y) ∈ T is a continuous surjection.

Conclude that X/ ∼ and Y are homeomorphic.

Let X be a compact Hausdorff space and let A be a closed subset of X.
Consider the topological space Y := (X \A) ∪ {∞} with the topology ΩY

ΩY := {U ⊆ X \A : U is open} ∪ {Y \ C : C is compact in X \A}.
It is easy to see that ΩY defines a topology on Y.

Lemma 12.11. If X is compact Hausdorff then so is Y.

Proof. Y is compact: Let {Uα} ∪ {Vβ} be an open cover of Y, where Uα ⊆
X \A is open is X, and Vβ = Y \Cβ for some compact set Cβ in X \A. Fix
β0. Note that the compact set Cβ0 has the open cover {Uα}∪{Vβ∩(X \A)},
and hence there exists finite subcover {Uαi} ∪ {Vβj ∩ (X \ A)} of Cβ0 . It
follows that Y has the finite subcover {Uαi} ∪ {Vβj} ∪ {Vβ0}.
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Y is Hausdorff: Let x, y ∈ Y be two distinct points. Since X is Hausdorff,
we may assume without loss of generality that x ∈ X \ A and y = ∞. One
may choose a neighbourhood U of x such that U ⊆ X \A (see the proof of
Theorem 11.8(2)). Since U is a subset of X \A and since it is compact in X,
it is also compact in X \A. Then U and Y \U are disjoint neighbourhoods
of x and y. �

Although, X \A may not be compact, we see that Y is always compact.
Any space homeomorphic to Y is known as the one-point compactification
of X \A.

Corollary 12.12. (One-point Compactification) Let X be a compact Haus-
dorff space and let A be a closed subset of X. Let ∼ be the equivalence relation
defined on X as follows: If x1, x2 ∈ A then x1 ∼ x2. If x1, x2 ∈ X \ A then
x1 ∼ x2 iff x1 = x2. Consider the topological space Y := (X \A)∪{∞} with
topology ΩY as discussed above. Then Y is homeomorphic to X/ ∼ .

Proof. Define f : X → Y by f(x) = x if x ∈ X \A, and f(a) =∞ if a ∈ A.
Clearly, f is a surjection with level sets precisely the equivalence classes in
X/ ∼ . We check that f is continuous. Let U ∈ ΩY . If U ⊆ X \ A then
f−1(U) = U, which is open in X. If U = Y \C for some compact C in X \A
then f−1(U) = f−1(Y ) \ f−1(C) = X \C, which is open since C is closed in
X. By Theorem 12.5, the space X/ ∼ is homeomorphic to Y. �

Example 12.13 : One may apply Exercise 12.10 to the last theorem with
X := D and A := T to conclude that the one-point compactification of the
open unit disc is the sphere S2 in R3.

Exercise 12.14 : Find one-point compactifications of R and R2.

Hint. Note that R is homeomorphic to T \ {1}. By the last corollary, the
one-point compactification of T \ {1} equals (T \ {1}) ∪ {∞} ∼= T.

A map f : X → Y is said to be open if f sends open sets in X to open
sets in Y, that is, f(U) is open in Y for every open set U in X.

Remark 12.15 : Note that composition of open maps is open.

Exercise 12.16 : Let Rn+1 \ {0} be the punctured Euclidean space and
let Sn denote the unit sphere in Rn+1. Define g : Rn+1 \ {0} → Sn by
g(x) = x/‖x‖2. Show that g is an open map.

Hint. It suffices to check that g maps open unit ball in Rn+1 \ {0}
to an open set in the unit sphere. This follows from B(g(x), δ/‖x‖) ∩ Sn ⊆
g(B(x, δ)): Suppose ‖y−x/‖x‖‖ < δ/‖x‖ and ‖y‖ = 1. Then ‖y‖x‖−x‖ < δ,
and hence y = y/‖y‖ = z/‖z‖ = g(z) with z = ‖x‖y ∈ B(x, δ).

The following variant of Theorem 12.5 is useful in instances in which X
is non-compact.
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Theorem 12.17. Let f : X → Y be an open continuous surjection. Define
the equivalence relation ∼ on X by x1 ∼ x2 iff f(x1) = f(x2). Then g :
X/ ∼→ Y given by g([x]) = f(x) is a well-defined homeomorphism.

Proof. As in the proof of Theorem 12.5, one may check that g is a continuous
bijection. We check that g−1 is continuous. Let q : X → X/ ∼ be the
quotient map. For an open set U in X/ ∼, note that g(U) = g◦q(q−1(U)) =
f(q−1(U)), which is open since q−1(U) is open in X and f sends open sets
to open sets. �

Example 12.18 : Consider the real line R with the usual topology. Define
the equivalence relation ∼ on R by x ∼ y if x − y is an integer. Let us
determine the quotient space R/ ∼ . Consider f : R → T by f(x) = e2πix,
and note that f is a continuous surjection such that x1 ∼ x2 iff f(x1) =
f(x2). Since f maps open intervals in R to open arcs in T, f is open. By
the last theorem, R/ ∼ is homeomorphic to T. The space R/ ∼ is usually
denoted by R/Z.

Example 12.19 : Let X := Rn+1 \ {0}. Consider the equivalence relation
∼ on X given by x ∼ y iff x = ty for some non-zero t ∈ R. The quotient
space X/ ∼ is known as the n-dimensional projective space Pn(R) over R.

Let Y := Sn/ ∼ with equivalence relation given by x ∼ y iff x = ±y.
Consider the continuous surjection f : X → Y given by f(x) = [x/‖x‖2].
Note that f = q ◦ g with g(x) = x/‖x‖2 is continuous and q(x) = [x] is the
quotient map. It follows that f is continuous. We claim that f is open. In
view of Exercise 12.16, it suffices to check that q is an open map from Sn onto
Y. To see that, let U be an open subset of Sn in the subspace topology. We
must check that q(U) is open in the quotient topology. By the definition of
quotient topology, q(U) is open provided q−1(q(U)) is open in Sn. However,
if V := {x ∈ Sn : −x ∈ U} then q−1(q(U)) = U ∪ V, which is open in Sn.

By the last theorem, Pn(R) is homeomorphic to Y. In particular, Pn(R)
is always compact.

Exercise 12.20 : Show that P1(R) is homeomorphic to the unit circle T.

13. Connected and Path-connected Spaces

Let (X,Ω) be a topological space. We say that X is connected if the only
subsets of X, which are both open and closed are ∅ and X.

Example 13.1 : We already recorded that R is connected (see Exercise
7.8). Along similar lines, one can prove that any interval is connected.

Example 13.2 : The space Q is not connected. In fact, for any irrational
x ∈ R, the set [−x, x] ∩ Q = (−x, x) ∩ Q is both open and closed in the
subspace topology on Q.

Exercise 13.3 : Show that GLn(R) is not connected.
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Example 13.4 : If X is an infinite set with co-finite topology then X can
not contain a proper set which is both closed and open, and hence X is
connected.

The following proposition gives a way to generate connected spaces out
of known ones.

Proposition 13.5. The continuous image of a connected space is connected.

Proof. Let f : X → Y is a continuous surjection. Suppose Y has a proper
simultaneously open and closed subset. Then f−1(U) is a proper simul-
tanously open and closed subset of X. Thus disconnectedness of Y implies
disconnectedness of X. �

Remark 13.6 : Connectedness is a topological property.

Corollary 13.7. Any path is connected.

Proof. Any path connecting points x, y is a continuous function f on [0, 1]
such that f(0) = x and f(1) = y. Since [0, 1] is connected, so is f([0, 1]). �

Example 13.8 : Let us see that Rn \{0} is connected. Suppose there exists
a proper set U which is both open and closed in Rn \ {0}. Let x ∈ U and
y ∈ (Rn \ {0}) \U. It is easy to see that x and y can be connected by union
L of line segments. But then L contains simultaneously open and closed
proper subset L∩U. However, L being path is connected, which is contrary
to our assumption.

The unit sphere Sn in Rn is connected since Rn \ {0} is connected and
g : Rn \ {0} → Sn given by g(x) = x/‖x‖2 is a continuous surjection.

Exercise 13.9 : If A is connected and B is a set such that A ⊆ B ⊆ A then
B is also connected.

Example 13.10 : (Topologist’s Sine Curve) Consider the graph S of the
function s : (0, 1] → [0, 1], s(x) = sin(1/x). Note that S = f((0, 1]), where
f(x) = (x, sin(1/x)) is a continuous function. It follows that S is connnected.
By Exercise 13.9, S is also connnected. The topological space S is commonly
known as the topologist’s sine curve.

Let (X,Ω) be a topological space. We say that X is path-connected if for
any two points x, y ∈ X, there exists a continuous function f : [0, 1] → X
such that f(0) = x and f(1) = y.

Remark 13.11 : Every path-connected space is connected. In fact, if U is
path-connected then for open sets V,W of U such that U = V ∪W and for
any path f in U, the range of f being the continuous image of the connected
set [0, 1] is connected, and hence lies entirely either in V or W. This shows
that one of V,W must be empty, that is, U is connected.
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Sometimes, the path-connectedness can be checked more easily than the
connectedness.

Exercise 13.12 : Show that the complement of any countable subset C in
R2 is path-connected.

Hint. Given p, q ∈ R2 \ C, consider

F := {f : f is a path connecting p and q}.

Note that F consists of uncountable disjoint paths. Thus the countable set
C can intersect only countable paths from F . Thus there exists f ∈ F such
that f [0, 1] ⊆ R2 \ C, and f path-connects p and q.

Example 13.13 : (Comb Space) Let K denote the set {1/n : n ≥ 1} and
consider E := ([0, 1] × {0})

⋃
(K × [0, 1]). It is easy to see that E is path-

connected. The comb space C is defined to be the space E ∪ ({0} × [0, 1]).
Then C is also connected since E is connected and E = C. The deleted comb
space C0 is defined as E ∪ {0 × 1}. Since E ⊆ C0 ⊆ E, by Exercise 13.9, C0
is connected. However, C0 is not path-connected as there is no path which
connects the points p = 0× 1 and q = 1× 0.

Proposition 13.14. The deleted comb space is not path-connected.

Proof. Suppose, contrary to this, that there is a path γ : [0, 1] → C0 such
that γ(0) = p and γ(1) = q. Then the set γ−1({p}) is a closed subset of
[0, 1], and hence it has a maximum t0 in [0, 1]. Consider the projection P1

of R2 onto the X-axis. We claim that there exists t1 ∈ (t0, 1] such that
(P1 ◦ γ)(t0, t1) ⊆ K. Assume that the claim is false and let {tn} ⊆ (t0, 1] be
a sequence converging to t0. By assumption, there exists sn ∈ (t0, tn) such
that γ(sn) = xn× 0 for some xn ∈ [0, 1] \K. Note that {sn} converges to t0.
By continuity, xn × 0 = γ(sn) → γ(t0) = p = (0, 1), which is absurd. Thus
the claim stands verified.

Thus there exists t1 ∈ (t0, 1] such that 1 ∈ (P1 ◦ γ)(t0, t1) is a connected
subset of K. It follows that (P1 ◦ γ)(t0, t1) = {1}. Again, by continuity,
(P1 ◦ γ)[t0, t1) = {1}, which is impossible since (P1 ◦ γ)(t0) = 0. �

Exercise 13.15 : Show that the continuous image of a path-connected space
is path-connected.

Proposition 13.16. Let p denote an analytic polynomial in the complex
variables z1, · · · , zn, and let Z(p) denote the zero set of p. Then Cn \ Z(p)
is path-connected.

Proof. Let z, w ∈ Cn \ Z(p). Consider the straight-line path

γ(t) = (1− t)z + tw (t ∈ C).

Note that {t ∈ C : γ(t) ∈ Z(p)} is precisely the zero set Z(p ◦ γ) := Z. Since
p ◦ γ is a polynomial in one variable, Z is a finite subset of C. Thus γ maps
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the path-connected set C \ Z continuously into Cn \ Z(p). In particular, z
and w belong to the path-connected subset γ(C \ Z) of Cn \ Z(p). �

Example 13.17 : The general linear group GLn(C) is path-connected. In
fact, if one identifies in a natural way the space of complex n × n matrices

with Cn2
then GLn(C) can be seen as Cn2 \ Z(det), where det is the ana-

lytic polynomial which sends a matrix to its determinant. Now the desired
conclusion is immediate from the last proposition.

Exercise 13.18 : For open subset U of Rn, show that U is connected if and
only if U is path-connected.

Hint. It suffices to check that for any p ∈ U, the set S of points in U
which can be path-connected to p is the whole of U. This can be obtained
by simply showing that the set S above is non-empty, closed, and open.

Finally, we record that the topologist’s sine curve S is connected but not
path-connected (for details, refer to [4]).

14. Compactness Revisited

Exercise 14.1 : Let X be a compact space with a nested sequence {Cn}
of non-empty closed subsets: C1 ⊇ C2 ⊇ C3 · · · . Show that the intersection
∩nCn is non-empty.

Hint. Suppose that ∩nCn = ∅. Note that X = ∪n(X \Cn), and then use
compactness of X.

Remark 14.2 : The conclusion of the last exercise is no more true for non-
compact spaces. In fact, for X = R and Cn = [n,∞) then C1 ⊇ C2 ⊇ C3 · · · .
However, ∩nCn is empty.

A point x0 ∈ X is said to be isolated if {x0} is open in X.
Every point in Z is isolated point. No point of Q is isolated. The space

R with co-finite topology has no isolated points. The space [0, 1] ∪ {2} has
2 as the only isolated point.

Lemma 14.3. Let X be a Hausdorff space without an isolated point. Let
U be a non-empty open subset of X and let x ∈ X. Then there exists a
non-empty open set V contained in U such that x /∈ V .
Proof. Since U is open and X has no isolated points, there exists a point
y ∈ U \ {x}. Since X is Hausdorff, there exist open disjoint neighbourhoods
Ux and Uy of x and y respectively. Note that V := Uy∩U is a neighbourhood

of y. Clearly, V ⊆ Uy. Since x ∈ Ux and Ux ∩ Uy = ∅, x /∈ V . �

Theorem 14.4. Let X be a non-empty compact Hausdorff space without
any isolated points. Then no function f : N→ X can be surjective.

Proof. We show that there exists x ∈ X \ f(N). Apply the last lemma to
U1 := X and x1 := f(1) to find a non-empty open set V1 ⊆ X such that
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x1 /∈ V1. Apply again the last lemma to U2 := V1 and x2 := f(2) to find
a non-empty open set V2 ⊆ V1 such that x2 /∈ V2. By induction, we get a
non-empty open set Vn ⊆ Vn−1 such that xn /∈ Vn. Thus we have nested
sequence Cn := V n of closed sets: C1 ⊇ C2 ⊇ C3 · · · . Since X is compact,
∩nCn is non-empty. Let x ∈ ∩nCn and note that x 6= f(n) for any n. �

One may use the last theorem to give a topological proof of the set-
theoretic fact that [0, 1] is uncountable. The conclusion of last theorem may
fail for compact Hausdorff spaces: {1/n}∪{0} is compact Hausdorff but not
uncountable.

We now discuss a property of compact spaces, which willl be required in
the proof of Tychonoff Theorem. For that, we need some terminology.

A collection C of closed subsets of X is said to have finite intersection
property if for every finite subcollection {C1, · · · , Cn} of C, C1 ∩ · · · ∩ Cn is
non-empty.

Exercise 14.5 : A topological space X is compact if and only if for every
collection C with finite intersection property, ∩C∈CC is non-empty.

Hint. Suppose ∩C∈CC = ∅. Then X = ∪C∈CX \ C, and hence by com-
pactness of X, there exists C1, · · · , Cn such that X = ∪ni=1X \ Ci, which
violates finite intersection property of C.

15. Countability Axioms

Let (X,Ω) be a topological space and let x ∈ X. We say that X has
countable basis at x if there exists a countable collection {Un} of neighbour-
hoods of x such that for each neighbourhood U of x there exists n0 such
that Un0 ⊆ U. A space X that has a countable basis at each of its points
is said to satisfy the first countability axiom. Sometimes, we say that X is
first countable.

Example 15.1 : Consider the metric space (X, d). Given x ∈ X, the col-
lection {Bd(x, 1/n)} forms a countable basis at x. Thus any metric space
satisfies the first countability axiom.

Example 15.2 : The real line with co-finite topology does not satisfy the
first countability axiom: If {Un} is a countable collection of neighbourhoods
of 0 then there is no n0 such that Un0 ⊆ R \ {x0}, where x0 is a non-zero
real number in the complement of the countable subset ∪n(R \ Un) of R.

Theorem 15.3. Let X be a first countable space and let A be a subset of
X. Then the following are true:

(1) (Sequence Lemma) A point x ∈ A if and only if there is a sequence
of points of A converging to x.

(2) (Continuity Versus Sequential Continuity) Let f : X → Y . Then f
is continuous if and only if f is sequentially continuous.



32 TOPOLOGY: NOTES AND PROBLEMS

Proof. Suppose x is a cluster point of A. Let {Un} be a countable basis at x.
Since x is a cluster point, for each n, the deleted neighbourhood ∩nk=1Uk\{x}
of x intersects with A. Let an ∈ (∩nk=1Uk \ {x}) ∩ A, and note that {an}
converges to x. The converse is true without the first countability axiom.

Again, continuity always implies sequential continuity. Suppose f is se-
quentially continuous. Let B be a closed subset of Y and let a be a clus-
ter point of f−1(B). By the previous part, there exists a sequence {an}
in f−1(B) such that an converges to a. Thus f(an) ∈ B. By sequentially
continuity, f(an) converges to f(a). Since B is closed, f(a) ∈ B, that is,
a ∈ f−1(B). This shows that f−1(B) is closed in X. �

Remark 15.4 : It is observed in the proof of Theorem 10.17 that the con-
clusion of Sequence Lemma does not hold for the product space Rω with
box topology, and hence we may conclude that it is not first countable.

We now discuss a special class of first countable spaces. A space X is said
to be second countable if it has countable basis.

Remark 15.5 : Let B be a countable basis {Bn} for X, and let xn ∈ Bn be
given. If x ∈ X then any neighbourhood of x contains some basis element,
and hence it intersects with {xn}. This shows that {xn} = X, that is, {xn}
is dense in X.

Example 15.6 : Consider the space Rl with lower limit topology. Given
x ∈ R, the collection {[x, x + 1/n)} forms a countable basis at x. Thus Rl
is first countable. We claim that Rl is not second countable. Let B be
any basis for Rl. For each x ∈ R, there exists a basis element such that
x ∈ Bx ⊆ [x, x+1). If x 6= y then inf Bx = x 6= y = inf By, so that Bx 6= By.
Thus B is uncountable, and hence the claim stands verified.

Proposition 15.7. A metric space (X, d) is second countable if any one of
the following holds true:

(1) X has a countable dense subset,
(2) X is compact.

Proof. (1) Let {xn} be a countable dense subset of X. We check that the
countable collection {Bd(xn, 1/m) : n ≥ 1,m ≥ 1} forms a basis:

(1) Let x ∈ X. Then there exists an integer n ≥ 1 such that xn ∈
Bd(x, 1/2). Then x ∈ Bd(xn, 1/2).

(2) If x ∈ U := Bd(xn1 , 1/m1) ∩ Bd(xn2 , 1/m2) then there exists integer
r ≥ 1 such that Bd(x, 1/r) ⊆ U . By density of {xn}, there exists
xl ∈ Bd(x, 1/4r). Then x ∈ Bd(xl, 1/2r) ⊆ Bd(x, 1/r) ⊆ U.

(2) Suppose X is compact. For each integer n ≥ 1, consider the open cover
{B(x, 1/n)} of X. Since X is compact, X has a finite subcover {B(xni , 1/n) :
i = 1, · · · , kn} of X. Check that ∪∞n=1{B(xni , 1/n) : i = 1, · · · , kn} forms a
countable basis for X. �
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Exercise 15.8 : Show that Rl is not metrizable.

Hint. Q is dense in Rl.

Theorem 15.9. If X is second countable then every open covering of X
contains a countable subcover.

Proof. Let B be a countable basis {Bn} for X, and let {Uα} be an open cover
of X. Let J denote the set of positive integers n for which it is possible to
find some Uαn which contains Bn. We check that the countable collection
{Uαn : n ∈ J} covers X (there may be many such Uα’s; we pick up only one
such set denoted by Uαn). In fact, if x ∈ X then x ∈ Uα for some α, and
hence there exists n ≥ 1 such that x ∈ Bn ⊆ Uα. But then n ∈ J, and hence
x ∈ Bn ⊆ Uαn . That is, {Uαn : n ∈ J} covers X. �

A deep theorem of Urysohn ensures that any second countable space which
separates a point and a closed set by open neighbourhoods is necesarily
metrizable.

16. Separation Axioms

Exercise 16.1 : Let (X, d) be a metric space with metric. Let A be a subset
of X, and for x ∈ X, let d(x,A) := inf{d(x, a) : a ∈ A}. Show that d(x,A)
is a continuous function of x.

Hint. For x, y ∈ X and a, b ∈ A, d(x, a) ≤ d(x, y) + d(y, b) + d(b, a).

Let (X, d) be a metric space with metric d. Let A and B be disjoint
non-empty closed subsets of X. For x ∈ X, define

f(x) =
d(x,A)

d(x,A) + d(x,B)
.

Clearly, f : X → [0, 1] is a continuous function. Note that f(a) = 0 and
f(b) = 1 for every a ∈ A and b ∈ B. In particular, the disjoint non-empty
closed subsets A and B of X are separated by the continuous function f .

Exercise 16.2 : (Functional Separation implies Topological Separation) Let
(X,Ω) be a topological space with the property that any two disjoint non-
empty closed subsets of X can be separated by a continuous function. Show
that for any disjoint non-empty closed subsets A and B of X, there exist
disjoint open sets U and V such that A ⊆ U and B ⊆ V.

Let (X,Ω) be a topological space with the property that for any disjoint
non-empty open subsets A and B of X, there exist disjoint open sets U and
V such that A ⊆ U and B ⊆ V. Such a space is known as normal space.

Remark 16.3 : Clearly, a normal space is Hausdorff. By the last exercise,
every metric space is normal.
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Exercise 16.4 : Consider the topological space RK . Show that there are
no disjoint open sets U and V of RK such that {0} ⊆ U and K ⊆ V. In
particular, RK is Hausdorff but not normal.

Hint. Note that U must contain a basis element of the form (−a, a) \K.
Thus for large n, any deleted neighbourhood of 1/n (and hence, in particular,
V \{1/n}) intersects with (−a, a)\K. It follows that U and V are not disjoint.

Remark 16.5 : The topological space RK is not metrizable.

Proposition 16.6. Every compact Hausdorff space is normal.

Proof. Let A andB be two closed subsets of a compact Hausdorff spaceX. It
is observed in the proof of Theorem 11.8(2) that any closed set and a point in
X can be separated by open sets. For each a ∈ A, there exists disjoint open
sets Ua and Va such that a ∈ Ua and B ⊆ Va. Clearly, A ⊆ ∪a∈AUa. Since A
is compact, there exist a1, · · · , ak ∈ A such that U := Ua1 ∩ · · · ∩ Uak is an
open set containing A. Then V := Va1 ∩ · · · ∩ Vak is an open set containing
B, and U ∩ V = ∅. �

Problem 16.7. Whether or not any two disjoint non-empty closed subsets
of a normal space X can be separated by a continuous function ?

The question has affirmative answer, and a solution is provided by so-
called Urysohn’s Lemma. This result ensures that normal Hausdorff spaces
admit enormous number of continuous functions.

We find it convenient to introduce the following definition:
Let (X,Ω) be a topological space and let A,B be closed subsets of X. We

say that X admits a family {Ur}r∈Q of nested neighbourhoods if

(1) A ⊆ U0 and U1 = X \B,
(2) U r ⊆ Us for any r < s,
(3) Ur = ∅ for r < 0, and Ur = X for r > 1.

Remark 16.8 : Given a point x ∈ X, define

Q(x) := {r ∈ Q : x ∈ Ur}.
For r < 0, Ur = ∅, so that inf Q(x) ≥ 0. For r > 1, Ur = X, so that
inf Q(x) ≤ 1. Thus 0 ≤ inf Q(x) ≤ 1.

Exercise 16.9 : Suppose X admits a family {Ur}r∈Q of nested neighbour-
hoods. Define f : X → [0, 1] by f(x) = inf Q(x). Verify the following:

(1) f(a) = 0 for every a ∈ A.
(2) f(b) = 1 for every b ∈ B.
(3) f(x) ≤ r for any x ∈ U r,
(4) f(x) ≥ r for any x /∈ Ur.

Hint. If x ∈ U r then x ∈ Us for any s > r. Thus r+1/n ∈ Q(x) for every
integer n ≥ 1. Thus f(x) ≤ r + 1/n for all n ≥ 1, and hence f(x) ≤ r.
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Lemma 16.10. Suppose X admits a family {Ur}r∈Q of nested neighbour-
hoods. Then f : X → [0, 1] given by f(x) = inf Q(x) is continuous.

Proof. Let x0 ∈ X and let (c, d) be an open interval containing f(x0). Choose
rational numbers p and q such that c < p < f(x0) < q < d. By the preceding
exercise, x0 belongs to Uq since f(x0) < q and x0 /∈ Up since f(x0) > p. Thus

x0 ∈ U := Uq \ Up ⊆ Uq \ Up. We check that f(U) ⊆ [p, q] ⊆ (c, d). In fact,

if x ∈ U then x ∈ U q, so that f(x) ≤ q, and x /∈ Up, so that f(x) ≥ p. �

Exercise 16.11 : Let X be a normal space and let A be a closed subset of
X contained in some open subset U of X. Show that there exists an open
set V such that A ⊆ V ⊆ V ⊆ U.

Hint. Apply the definition of normal spaces to closed sets A and X \U1.

Theorem 16.12. (Urysohn’s Lemma) Given closed non-empty disjoint sub-
sets A and B of a normal space X, there exists a continuous function
f : X → [0, 1] such that f |A = 0 and f |B = 1.

Proof. In view of the preceding observations, it suffices to check that any
normal space admits a family {Ur}r∈Q of nested neighbourhoods. Rewrite
the countable set P := Q ∩ [0, 1] as {r0, r1, · · · , }, where r0 = 1 and r1 = 0.
Let Pn = {r0, r1, · · · , rn−1}. We will use induction on n ≥ 2 to prove that
there exists a family {Ur}r∈P of nested neighbourhoods.

Let U1 = X\B, and note that A ⊆ U1. By the last exercise, there exists an
open set U0 such that A ⊆ U0 ⊆ U0 ⊆ U1. Thus we have a family {Ur}r∈P1

of nested neighbourhoods.
Now suppose that we have a family {Ur}r∈Pn of nested neighbourhoods

for some n ≥ 2. Note that Pn+1 = Pn ∪ {rn}. Let p, q ∈ Pn such that
p < rn < q and Pn+1∩ (p, q) = {rn}. By induction hypothesis, we have open
sets Up and Uq such that Up ⊆ Uq. Again by the preceding exercise, there

exists an open set Urn such that Up ⊆ Urn ⊆ U rn ⊆ Uq. It is easy to see
that {Ur}r∈Pn ∪ {Urn} is a family of nested neighbourhoods.

If r ∈ Q then define Ur = ∅ for r < 0, and Ur = X for r > 1. Note that
{Ur}r∈Q is the desired family of nested neighbourhoods. �

Here is an immediate application of the Urysohn’s Lemma.

Corollary 16.13. Let X be a connected normal space, which is also Haus-
dorff and which contains at least two points. Then there exists a continuous
surjection f : X → [0, 1]. In particular, X is uncountable.

Proof. Fix distinct points a, b in X. By Urysohn’s Lemma, there exists a
continuous function f : X → [0, 1] such that f(a) = 0 and f(b) = 1. Suppose
there is r ∈ [0, 1] such that r has no preimage. Then 0 ∈ f(X)∩ [0, r) is open
and closed subset of f(X), which does not contain 1. This is not possible
since f(X) is a connected set containing 1, so that f is surjective. �

A particular case of the last corollary is worth-notable: Any connected
metric space with at least two points contains uncountably many points.
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Exercise 16.14 : Let X be a compact Hausdorff space without any isolated
points. Consider the vector space C(X) of continuous functions f : X → R.
Show that C(X) is infinite-dimensional.

Hint. X is uncountable, so that X contains infinitely many single-ton
disjoint closed subsets. Now apply Urysohn’s Lemma.

17. Tychonoff’s Theorem

Exercise 17.1 : Let X =
∏∞
n=1{0, 1}. Show that X is not compact in the

box topology. Whether X is compact in the product topology ?

Theorem 17.2. (Tychonoff’s Theorem) An arbitrary product of compact
spaces is compact in the product topology.

Let X =
∏
α∈J Xα be a product space, where the index set J is non-

empty. If each Xα is non-empty then by axiom of choice, we may pick up
some xα from Xα, and hence it follows that (xα) ∈ X, so that X is non-
empty. We use the following criterion to prove Tychonoff’s Theorem: Recall
that a space is compact iff for every collection C of closed sets with finite
intersection property, ∩C∈CC is non-empty.

Let C be a family of closed sets in X with the finite intersection property.
We must check that ∩C∈CC is non-empty. The first step is to get a maximal
family F ⊇ C with finite intersection property. This is achieved by an
application of Zorn’s Lemma:

Lemma 17.3. There exists a maximal family F ⊇ C with the finite inter-
section property.

Proof. Consider the collection F of families F ⊇ C of subsets of X with
the finite intersection property with strictly partial order given by F1 < F2

iff F1 ( F2. Let F0 be a simply ordered subcollection of F (in particular,
if F1 6= F2 ∈ F0 then either F1 ⊆ F2 or F2 ⊆ F1). Then F0 has the
upper bound U = ∪F∈F0F in F. To see this, we must check that U belongs
to F , that is, U has finite intersection property. If A1, · · · , An ∈ U then
Ai ∈ Fi for some i, and hence A1, · · · , An ∈ Fj for some j (since F0 is
simply ordered). Since Fj has finite intersection property, A1 ∩ · · · ∩ An
is non-empty. Thus Zorn’s lemma is applicable, which ensures existence of
maximal family F ⊇ C with the finite intersection property. �

For each α ∈ J, consider the projection πα : X → Xα from the product
space X onto Xα.

Exercise 17.4 : If a family F of subsets of X has finite intersection property
then for each α ∈ J, ∩A∈Fπα(A) is non-empty.

Hint. {πα(A) : A ∈ F} has finite intersection property for each α ∈ J.
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By the preceding exercise, there exists xα ∈ ∩A∈Fπα(A). If x = (xα) then
it can be seen that x belongs to ∩A∈FA. Here we need the definition of
product topology.

Lemma 17.5. x belongs to ∩A∈FA.

Since ∩A∈FA ⊆ ∩C∈CC, we obtain ∩C∈CC is also non-empty. For details,
the reader is referred to [4].
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