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Chapter 0

Preface

THIS IS NOT YET A PREFACE! (IT IS MORE LIKE A SALES PITCH.)
Some distinctive features of our presentation are the following: We

believe in the unity of mathematics. Therefore, connections to order theory (smallest neigh-
borhood spaces vs. preorders, Stone and Priestley duality), algebra (pure and topological),
analysis (real and functional) and (metric) geometry are emphasized rather than downplayed.
The boundaries between (general) topology and analysis and metric geometry are impossible
to define anyway.

believe in lemma extraction (as clearly do some of the authors cited below): Where the same
argument is used repeatedly, it is split off as a lemma. Example: Lemma 7.4.2 is deduced from
Lemma 7.4.1 which also immediately gives that compact Hausdorff spaces are regular.

did our best to let no single proof be longer than a page.
avoid ordinal numbers and topological examples based on them.
(re)state results in categorical language, where appropriate, hopefully without overdoing it.

resist the temptation of including counterexamples for all non-implications. (E.g., we don’t
prove T3 # T35.) But we do provide counterexamples where they seem helpful for avoiding
misconceptions, e.g. the Arens-Fort space proving that a topology on a countable set need not
be first countable.

give four proofs of Tychonov’s and two of Alaoglu’s theorem and discuss various ramifications
(Kelley’s converse, the ultrafilter lemma).

give three approaches to constructing the Stone-Cech compactification: Embedding into cubes,
ultrafilters, characters on Cy(X).

prove Ekeland’s variational principle and Caristi’s fixed point theorem.

discuss the basics of geodesic and length spaces and prove the Hopf-Rinow-Cohn-Vossen theo-
rem.

give a more thorough discussion of the Lebesgue property of metric spaces than is usual. (The
only exception seems to be the recent book [222] of Naimpally and Warrack.)

define proximity spaces, but use them only for the classification of Hausdorff compactifications.

11
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discuss Stone spaces in relation to profinite spaces (and groups) and Stone duality, including
connections to the Stone-Cech compactification.

believe that defining only the fundamental group, but not the fundamental groupoid is quite
outdated and misleading. After all, paths do not need to be loops in order to be composed.
Other textbook authors increasingly seem to think the same, cf. e.g. [188, 15, 281].

give two proofs of van Kampen’s theorem: for the fundamental groupoid by manipulating
paths, and via covering space theory (but only for the fundamental group version, to keep
things simple).

prove the basic results on separation separation axioms and metrizability for topological groups
(rarely found in books) and topological vector spaces.

define the Gromov-Hausdorff metric and study iterated function systems, complementing the
discussion of the Cantor set.

present, deviating from common practice (among the very few exceptions there are [33, 239]),
the most basic results from topological algebra, concerning separation axioms and metrizability
for topological groups and local convexity and normability of topological vector spaces. We also
discuss the standard applications of topological ideas to topological algebra: the uses of Baire’s
theorem, weak compactness (Alaoglu), Schauder’s fixed point theorem. However, this not being
an introduction to abstract harmonic analysis or functional analysis, we do not include results,
even fundamental ones, if they do not relate closely to point-set topology, e.g. the Hahn-Banach
theorem.

give two proofs of the Uniform Boundedness Theorem: The first, very recent, uses only the
axiom of countable choice, while the other, using Baire’s theorem, proves a more precise result
than usual.

While the author is not at all constructively minded, we make a point of making clear which
choice axioms are really needed to prove a result, in particular in the discussions of functional
analysis

already in the purely point set theoretic part, I avoid proving a result using the axiom of choice
or Zorn’s lemma when there is a proof using only the ultrafilter lemma or countable dependent
choice. This can be done with very little extra effort and should be quite useful since few
(textbook) authors do this.

The biggest omission probably is the theory of uniform spaces. Since they have very few uses
outside topology proper, the author is not entirely convinced that they belong to the core that
‘everyone’ should know. Also, there are many good expositions of the subject to which we
would have nothing to add. Cf. [298, 89, , 153], etc.

We include some (relatively) new approaches that we consider real gems:

e Grabiner’s more conceptual treatment of the Tietze-Urysohn theorem, using an approximation

lemma that also applies to the open mapping theorem.

e McMaster’s very short construction (as a quotient of 5X) of the Hausdorff compactification

corresponding to a proximity. This leads to a quick construction of the Freudenthal compacti-
fication.
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e Maehara’s short proof of Jordan’s curve theorem.

e Kulpa’s proof of Brouwer’s fixed point theorem via the Poincaré-Miranda theorem, using a
cubical Sperner lemma. This must surely be the shortest self-contained proof in the literature.
We emphasize the role of higher dimensional connectedness (Theorem 10.1.2) and include a
short deduction of the invariance of dimension for the cubes due to van Mill.

e The beautiful approach of Hanche-Olsen and Holden for proving the theorems of Ascoli-Arzela
and Kolmogorov-Riesz-Fréchet (which we prove only for the sequence spaces ¢7(5)).

e Palais’ new proof of Banach’s contraction principle.

e Penot’s proof of Ekeland’s variational principle and Ekeland’s recent proof of Nash-Moser-
Hamilton style results using the latter.

e A very short proof of Menger’s theorem, improving on the already short one by Goebel and
Kirk.

e The little known proof (found in [78, Chapter 3, §5]) of the fact (used in the standard proof of
algebraic closedness of C) that complex numbers have n-th roots.

e A slick topological proof [26] of the continuous dependence of the roots of a complex polynomial
on the coefficients.

Acknowledgments. 1 thank Arnoud v. Rooij for several very attentive readings of the growing
manuscript and many constructive comments, including several simplifications of proofs. Thanks
are also due to Noud Aldenhoven, Bas Jordans, Nesta van der Schaaf, Carmen van Schoubroeck, So-
hail Sheikh, Marco Stevens, Luuk Verhoeven and Julius Witte for spotting errors. The responsibility
for the remaining mistakes is, of course, entirely mine.
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Chapter 1

Introduction

Virtually everyone writing about topology feels compelled to begin with the statement that “topology
is geometry without distance” or “topology is rubber-sheet geometry”, i.e. the branch of geometry
where there is no difference between a donut and a cup (in the sense that the two can be continuously
deformed into each other without cutting or gluing). While there is some truth' to these ‘definitions’,
they leave much to be desired: On the one hand, the study of metric spaces belongs to topology,
even though they do have a notion of distance. On the other hand, the above definitions are purely
negative and clearly insufficient as a foundation for a rigorous theory.

A preliminary positive definition might be as follows: Topology is concerned with the study of
topological spaces, where a topological space is a set X equipped with some additional structure that
allows to determine whether (i) a sequence (or something more general) with values in X converges
and (ii) whether a function f : X — Y between two topological spaces X,Y is continuous.

The above actually defines ‘General Topology’, also called ‘set-theoretic topology’ or ‘point-set
topology’, which provides the foundations for all branches of topology. It only uses some set theory
and logic, yet proves some non-trivial theorems. Building upon general topology, one has several
other branches:

e Algebraic Topology uses tools from algebra to study and (partially) classify topological spaces.

e Geometric and Differential Topology study spaces that ‘locally look like R™’, the difference
roughly being that differential topology uses tools from analysis, whereas geometric topology
doesn’t.

e Topological Algebra is concerned with algebraic structures that at the same time have a topol-
ogy such that the algebraic operations are continuous. Example: R with the usual topology is
a topological field. (Topological algebra is not considered a branch of topology. Nevertheless
we will look a bit at topological groups and vector spaces.)

Figure 1.1 attempts to illustrate the position of the branches of topology (general, geometric,
differential, algebraic) in the fabric of mathematics. (Arrows show dependencies, dotted lines weaker
connections.) As one sees, even pure algebra uses notions of general topology, e.g. via the Krull
topology in the theory of infinite Galois extensions or the Jacobson topology on the set of ideals of
an associative algebra.

One may certainly say that (general) topology is the language of a very large part of mathematics.
But it is more than a language since it has its share of non-trivial theorems, some of which we

1See http://commons.wikimedia.org/wiki/File:Mug_and_Torus morph.gif
p g g ph.g
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Figure 1.1: The branches of Topology in mathematics

will prove: Tychonov’s theorem, the Nagata-Smirnov metrization theorem, Brouwer’s fixed point
theorem, etc.

General topology is a very young subject which started for real only in the 20th century with the
work of Fréchet? and Hausdorff’. (Of course there were many precursors.) For more on its history
see [212, , , 13].

By comparison, algebraic topology is much older. (While this may seem paradoxical, it parallels
the development of analysis, whose foundations were only understood at a fairly late stage.) Its roots
lie in work of L. Euler and C. F. Gauss®, but it really took off with B. Riemann after 1850. In the
beginning, the subject was called ‘analysis situs’. The modern term ‘topology’ was coined by J. B.
Listing” in 1847. For the history of algebraic topology (which was called combinatorial topology in
the early days) cf. [238, 71].

A serious problem for the teaching of topology is that the division of topology in general and
algebraic topology® has only become more pronounced since the early days, as a look at [135] and

2Maurice Fréchet (1878-1973), French mathematician. Introduced metric spaces in his 1906 PhD thesis [09].

3Felix Hausdorff (1868-1942), German mathematician. One of the founding fathers of general topology. His book
[133] was extremely influential.

4Leonhard Euler (1707-1783), Carl Friedrich Gauss (1777-1855).

5Georg Friedrich Bernhard Riemann (1826-1866), Johann Benedict Listing (1808-1882).

6 Alexandroff-Hopf (Topologie I, 1935): Die and und fiir sich schwierige Aufgabe, eine solche Darstellung eines
immerhin jungen Zweiges der mathematischen Wissenschaft zu geben, wird im Falle der Topologie dadurch besonders
erschwert, dafl die Entwicklung der Topologie in zwei voneinander génzlich getrennten Richtungen vor sich gegangen
ist: In der algebraisch-kombinatorischen und in der mengentheoretischen — von denen jede in mehrere weitere Zweige
zerfallt, welche nur lose miteinander zusammenhéngen.

Alexandroff (Einfachste Grundbegriffe der Topologie, 1932): Die weitere Entwicklung der Topologie steht zunfchst
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[158] shows. Cf. also [160]. Some algebraic topologists consider a short appendix on general topology
sufficient for most purposes (for an exception see [30]), but this does no justice to the needs of anal-
ysis, geometric topology, algebraic geometry and other fields. In the present introduction the focus
therefore is on general topology, but in Part III we gradually switch to more algebraic-topological
matters.

In a sense, General Topology simply is concerned with sets and certain families of subsets of
them and functions between them. (In fact, for a short period no distinction was made between
set theory and general topology, cf. [133], but this is no more the case.) This means that the only
prerequisite is a reasonable knowledge of some basic (naive) set theory and elementary logic. At
least in principle, the subject could therefore be taught and studied in the second semester of a
math programme. But such an approach does not seem very reasonable, and the author is not
aware of any institution where it is pursued. Usually the student encounters metric spaces during
her study of calculus/analysis. Already functions of one real variable motivate the introduction of
(norms and) metrics, namely in the guise of the uniform distance between bounded functions (and
the LP-norms). Analysis in 1 < d < oo dimensions naturally involves various metrics since there
is no really distinguished metric on R%. We will therefore also assume some basic familiarity with
metric spaces, including the concepts of Cauchy sequence and completeness. The material in [252] or
[281] is more than sufficient. Nevertheless, we prove the main results, in particular uniqueness and
existence of completions. No prior exposure to the notion of topological space is assumed.

Sections marked with a star (x) can be omitted on first reading, but their results will be used at
some later point. Two stars (xx) are used to mark optional sections that are not referred to later.

Many exercises are spread throughout the text, and many results proven there are used freely
afterwards.

im Zeichen einer scharfen Trennung der mengentheoretischen und der kombinatorischen Methoden: Die kombina-
torische Topologie wollte sehr bald von keiner geometrischen Realitét, auler der, die sie im kombinatorischen Schema
selbst (und seinen Unterteilungen) zu haben glaubte, etwas wissen, wahrend die mengentheoretische Richtung dersel-
ben Gefahr der vollen Isolation von der iibrigen Mathematik auf dem Wege der Auftiirmung von immer spezielleren
Fragestellungen und immer komplizierteren Beispielen entgegenlief.
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Chapter 2

Basic notions of point-set topology

2.1 Metric spaces: A reminder

2.1.1 Pseudometrics. Metrics. Norms

As mentioned in the introduction, some previous exposure to metric spaces is assumed. Here we
briefly recall the most important facts, including proofs, in order to establish the terminology.

Definition 2.1.1 If X is a set, a pseudometric on X is a map d : X x X — R>¢ such that
(i) d(z,y) = d(y,x) Yx,y. (Symmetry)
(ii) d(z,z) < d(z,y) + d(y, z) Vo,y, z. (Triangle inequality)

(#i) d(z,z) =0 V.

A metric is pseudometric d such that x # y = d(x,y) # 0.

Remark 2.1.2 Obviously every statement that holds for pseudometrics in particular holds for met-
rics. The converse is not at all true. (On the other hand, when we state a result only for metrics,
this should not automatically be interpreted as saying that the generalization to pseudometrics is
false.) O

Pseudometrics are easy to come by:
Exercise 2.1.3 Let f: X — R be a function. Prove:
(i) d(x,y) = |f(x) — f(y)] is a pseudometric.
(i) d is a metric if and only if f is injective.
(Taking f = idg, we recover the well-known fact that d(z,y) = |z — y| is a metric on R.)

Exercise 2.1.4 For a pseudometric d on X prove:

’d(l’,y) - d<x07y0)| < d(I,ZL’(]) + d(%l/o) V$7y,$07?/07 (22)
su);; ld(x,z) —d(y,2)| = d(z,y) Vz,y. (2.3)
zE
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Definition 2.1.5 A (pseudo)metric space is a pair (X,d), where X is a set and d is a (pseudo)
metric on X.

Remark 2.1.6 A set X with #X > 2 admits infinitely many different metrics. (Just consider d’ =
Ad, where A > 0.) Therefore it is important to make clear which metric is being used. Nevertheless,
we occasionally allow ourseleves to write ‘Let X be a metric space’ when there is no risk of confusion.
([

Every pseudometric space has a metric quotient space:
Exercise 2.1.7 Let d be a pseudometric on a set X. Prove:
(i) x ~y < d(x,y) = 0 defines an equivalence relation ~ on X.

(ii) Let p: X — X/~ be the quotient map arising from ~. Show that there is a unique metric d’
on X/~ such that d(z,y) = d'(p(z),p(y)) Yo,y € X.

From now on we will mostly restrict our attention to metrics, but we will occasionally use pseu-
dometrics as a tool. A basic, if rather trivial, example of a metric is given by this:

Example 2.1.8 On any set X, the following defines a metric, the standard discrete metric:

1 ifz
ddisc(xay) _{ 0 1f$7:éz

(This should not be confused with the weaker notion of ‘discrete metric’ encountered later.) O

Example 2.1.9 Let p be a prime number. For 0 # z € Q write z = gpnp(x), where n,(z),r,s € Z
and p divides neither r nor s. This uniquely defines n,(x). Now

—mp(@) if g £ 0
) it x
||93||p—{ 0 ifz=0

is the p-adic norm on Q. It is obvious that ||z||, = 0 < = = 0 and ||zy||, = ||=],||yll,- With a bit
of work one shows ||z + y|, < ||z|l, + |lyll, Vz,y. This implies that d,(z,y) = || — y||, is a metric

on Q. (|| - |l is not to be confused with the norms || - ||, on R™ defined below. In fact, it is not even
quite a norm in the sense of the following definition.) a

Definition 2.1.10 Let V be a wvector space over F € {R,C}. A norm on V is a map V —
[0,00), @+ ||| satisfying

(i) |z|| =0 < x=0. (Faithfulness)

(i) || Ax|| = |Al ||z|| YA €TF, x € V. (Homogeneity)

(1) ||z +y|| < ||zl + |yl Vz,y € V. (Triangle inequality or subadditivity)

A normed space is a pair (V, || - ||), where V is vector space over F € {R,C} and || - || is a norm on
V.

Remark 2.1.11 The generalization of a norm, where one drops the requirement ||z|| =0 = z = 0,
is universally called a seminorm. For the sake of consistency, one should thus speak of ‘semimetrics’
instead of pseudometrics, but only a minority of authors does this. O
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Lemma 2.1.12 IfV is a vector space over F € {R,C} and ||-|| is a norm on'V then d(z,y) = ||z—y/|
defines a metric on V. Thus every normed space is a metric space.

Proof. We have d(z,y) = ||z —y|| = || — (x —y)|| = |ly — z|]| = d(y,x), and d(z,y) = 0 holds if and
only if ||z — y|| = 0, which is equivalent to z = y. Finally, d(z,2) = ||z — z|| = [[(z —y) + (y — 2)|| <
[z =yl + lly = 2l = d(z, y) + d(y, 2). u

Example 2.1.13 Let n € N and p € [1,00). The following are norms on R"™ and C™:

2l = max |z,
ie{l,...,n}
n 1/p
lell, = (E:MM) :
i=1
For n = 1 and any p € [1,00], this reduces to ||z|, = |z|, but for n > 2 all these norms are
different. That || - ||oc and || - ||; are norms is easy to see. || - ||z is the well known Euclidean norm.
For all 1 < p < oo, it is immediate that | - ||, satisfies requirements (i) and (ii), while (iii) is the
inequality of Minkowski
[z +yllp < llzllp + [[Yllp- (2:4)

This is proven using the Holder inequality

n
E ;Y
=1

valid when % + % = 1. This is surely well known for p = ¢ = 2, in which case (2.5) is known as the
Cauchy-Schwarz inequality. For proofs of these inequalities see Appendix F, where we also study the
infinite dimensional generalization ¢7(S,F) is some depth. O

< [l - llylla; (2.5)

2.1.2 Convergence in metric spaces. Closure. Diameter

An important reason for introducing metrics is to be able to define the notions of convergence and
continuity:

Definition 2.1.14 A sequence in a set X is a map N — X, n — x,. We will usually denote the
sequence by {xn }nen or just {z,}.

Definition 2.1.15 A sequence {z,} in a metric space (X,d) converges to z € X, also denoted
x, — z, if for every e > 0 there is N € N such that n > N = d(x,,z) < €.

If {x,} converges to z then z is the limit of {z,,}. We assume as known (but will later reprove in

a more general setting) that a sequence in a metric space has at most one limit, justifying the use of
‘the’.

Lemma 2.1.16 Let (X, d) be a metric space andY C X. Then for a point x € X, the following are
equivalent:

(i) For every e > 0 there isy € Y such that d(x,y) < €.

(i) There is a sequence {y,} in'Y such that y, — x.
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The set of points satisfying these (equivalent) conditions is called the closure Y of Y. It satisfies
Y CY =Y. A subsetY C X is called closed if Y =Y.

Proof. (ii)=-(i) This is obvious since y,, — x is the same as d(y,,z) — 0. (i)=(ii) For every n € N,
use (i) to choose y,, € Y such that d(y,,z) < 1/n. Clearly y, — x. (This of course uses the axiom
AC, of countable choice, cf. Section A.3.2.)

It is clear that Y C Y. Finally, z € Y means that for every € > 0 there is a point y € Y with
d(x,y) < e. Since y € Y, there is a z € Y such that d(y, z) < . By the triangle inequality we have

d(x,z) < 2¢, and since £ was arbitrary we have proven that x € Y. Thus Y =Y. |

Definition 2.1.17 If (X,d) is a metric space then the diameter of a subset Y C X is defined by
diam(Y") = sup, ,cy d(z,y) € [0, 00] with the understanding that diam() = 0.
A subset'Y of a metric space (X, d) is called bounded if diam(Y") < oc.

Exercise 2.1.18 For Y C (X, d), prove diam(Y') = diam(Y).
Definition 2.1.19 If (X,d) is a metric space, A, B C X are non-empty and v € X, define
dist(4, B) = (111€1£ d(a,b),
beB
dist(z, A) = dist({z}, A) = ;IGIE d(z,a).
(If A or B is empty, we leave the distance undefined.)
Exercise 2.1.20 Let (X, d) be a metric space and A, B C X.
(i) Prove that |dist(z, A) — dist(y, A)| < d(zx,y).
(ii) Prove that dist(x, A) = 0 if and only if z € A.

)
)
(iii) Prove that A is closed if and only if dist(z, A) = 0 implies z € A.
(iv) Prove that AN B # 0 = dist(A, B) = 0.

)

(v) For X = R with d(z,y) = |z — y|, give examples of non-empty closed sets A, B C X with
dist(A, B) = 0 but AN B = (. (Thus the converse of (iv) is not true in general!) g%

Remark: With Definition 2.1.22, (i) directly gives that x +— dist(x, A) is continuous.

Exercise 2.1.21 Prove that every convergent sequence in a metric space is bounded.

2.1.3 Continuous functions between metric spaces
Definition 2.1.22 Let (X, d), (X', d") be metric spaces and f : X — X' a function.

o f is called continuous at x € X if for every € > 0 there is 6 > 0 such that d(x,y) < § =

d'(f(x), f(y)) <e.

o f is called continuous if it is continuous at each x € X.

o f is called a homeomorphism if it is a bijection, continuous, and the inverse f~1: X' — X is
continuous.
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o f is called an isometry if d'(f(x), f(y)) = d(z,y) Yx,y € X. BPI

o f is called bounded if f(X) CY is bounded w.r.t. d'. (Equivalently there is an R € [0,00) such
that (1 (x), f(y) < R ¥,y € X.)

(This actually does not refer to d, thus it makes sense for every f: X — (X', d’).)

Remark 2.1.23 1. Obviously, an isometry is both continuous and injective.
2. Since the inverse function of a bijective isometry again is an isometry, and thus continuous,
we have
isometric bijection = homeomorphism = continuous bijection.

As the following examples show, the converse implications are not true!

3. If d(z,y) = |xr — y| then (R,dgs.) — (R,d), x — =z is a continuous bijection, but not a
homeomorphism.

4. If (X,d) is a metric space and d'(z,y) = 2d(x,y) then (X,d) — (X,d'), = — x is a homeo-
morphism, but not an isometry.

5. A less trivial example, used much later: Let X = (—1,1) and d(z,y) = |r — y|. Then
f:(]R,d)—>(X,d),x0—>%‘m| =

is a continuous and has g : y — = 38 continuous inverse map. Thus
f, g are homeomorphisms, but clearly not isometries. O

The connection between the notions of continuity and convergence is provided by:

Lemma 2.1.24 Let (X, d), (X', d') be metric spaces and f : X — X' a function. Then the following
are equivalent (t.f.a.e.):

(i) f is continuous at x € X.

(ii) For every sequence {x,} in X that converges to x, the sequence {f(x,)} in X' converges to
f(z). (‘f is sequentially continuous’.)

Proof. (1)=-(ii) Let {x,} be a sequence such that z,, — x, and let ¢ > 0. Since f is continuous at z,
there is a 0 > 0 such that d(z,y) < § = d(f(z), f(y)) < e. Since x,, — x, there is N € N such that
n > N implies d(z,,z) < . But then d(f(x,), f(x)) < e V¥n > N. This proves f(z,) = f(x).
(ii)=(i) Assume that f is not continuous at x € X. Now, =(Ve3oVy---) = FeVd3dy—---. This
means that there is € > 0 such that for every 6 > 0 there is a y € X with d(z,y) < J such
that d(f(x), f(y)) > . Thus we can choose a sequence {z,} in X such that d(z,z,) < 1/n and
d(f(z), f(z,)) > € for all n € N. Now clearly z,, — x, but f(z,) does not converge to f(z). This
contradicts the assumption that (ii) is true. (Note that we have used the axiom AC, of countable
choice.) [ |

Definition 2.1.25 The set of all bounded / continuous / bounded and continuous functions f :
(X,d) — (X', d) are denoted B((X,d), (X", d)) / C((X,d),(X",d)) / Co((X,d), (X", d')), respec-
tively. (In practice, we may write B(X, X"), C(X, X"), Cy(X, X').)

Proposition 2.1.26 (Spaces of bounded functions) Let (X,d), (Y,d’) be metric spaces. Define

D(f.g) = supd'(f(x), g(x)). (2.6)

zeX
(i) The equation (2.6) defines a metric D on B(X,Y).
(i) Co(X,Y) :=C(X,Y)NB(X,Y) C B(X,Y) is closed w.r.t. D.
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Proof. (i) Let f,g € B(X,Y). For any 2y € X, we have

D(f.9) = itel)gd’(f(x),g(fv» < sup [d'(f (), f(20)) + d'(f(20), g(w0)) + d'(g(w0), 9())]
d'(f(20), 9(wo)) + Sup d'(f(x), f(xo)) + sup d'(g(x), g(xo))
< d'(f(x0), 9(x0)) + diam(f (X)) + diam(g(X)) < o0,

thus D is finite on B(X,Y). It is clear that D is symmetric and that D(f,g) = 0 & f = g.
Furthermore,

IN

D(f,h) = supd(f(z),h(z)) < sup[d(f(x),g(x)) + d'(g(x), h(z))]

S sup d'(f(x),g(x)) + sup d'(g(x), h(z)) = D(f,g) + D(g, h).

Thus D satisfies the triangle inequality and is a metric on B(X,Y).

(ii) Let {f,} € Cb(X,Y) and g € B(X,Y) such that D(f,,g) — 0. Let z € X and £ > 0. Choose
N such that n > N = D(f,,9) < ¢/3. Since fy is continuous, we can choose ¢ > 0 such that
d(z,y) <6 = d'(fn(z), fn(y)) < e/3. Now we have

@(9(x). 9(w)) < @ (9(@), fu (@) + & (Ful@), n(®)) +d (Un() 9W) < 5 + 5+ 5 ==

thus ¢ is continuous at x. Since this works for every z, g is continuous. Since g € B(X,Y)
by assymption, we thus have g € C(X,Y). By Lemma 2.1.16, the elements of B(X,Y) that
are limits w.r.t. D of elements of C,(X,Y’) constitute the closure Cy(X,Y). We thus have shown

Co(X,Y) C Cp(X,Y) and therefore that Cy(X,Y)) € B(X,Y) is closed. |

Definition 2.1.27 If (X,d),(Y,d') are metric spaces and {f,} is a sequence in B(X,Y') or (more
often) in Cy(X,Y) such that D(f,,g) — 0 then f, converges uniformly to g. And D is called the
metric of uniform convergence or simply the uniform metric.

Remark 2.1.28 1. Statement (ii) of the proposition is just a shorter (and more conceptual) for-
mulation of the fact that the limit of a uniformly convergent sequence of continuous functions is
continuous (from which we obtained it). The reader probably knows that pointwise convergence
(i.e. fu(x) — g(z) for each x) of a sequence of continuous functions does not imply continuity of
g. Example: f,(x) = min(1,nz) is in C([0,1],[0, 1]) for each n € N and converges pointwise to the
discontinuous function g, where g(0) = 0 and g(z) = 1 for all z > 0.

2. Part (ii) of the lemma shows that uniformity of the convergence f,, — ¢ is sufficient for
continuity of g. But note that is not necessary. In other words, continuity of g does not imply that
the convergence f, — ¢ is uniform! Example: The function f, : [0,1] — [0, 1] defined by

nx z € [0,1/n]
fo(x) =max(0,1 —nlz —1/n|) =< 1—n(zx—1/n) z€[l/n,2/n]
0 x € [2/n,1]

(draw this) is continuous for each n € N and converges pointwise to ¢ = 0. But the convergence is
not uniform since D(f,,g9) =1 Vn.

3. However, if X is sufficiently nice (countably compact, for example a closed bounded subset of
R™) and {f,} € C(X,R) converges pointwise monotonously, i.e. f,,11(z) > f,(z) forallz € X, n € N,
to a continuous g € C'(X,R) then the convergence is uniform! This is Dini’s theorem, which we will
prove in Section 7.7.4. O
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2.2 From metrics to topologies

2.2.1 The metric topology

Why would anyone want to generalize metric spaces? Here are the most important reasons:

1. (Closure) The category of metric spaces is not closed w.r.t. certain constructions, like direct
products (unless countable) and quotients (except under strong assumptions on the equivalence
relation), nor does the space C((X,d), (Y,d")) of (not necessarily bounded) functions have an
obvious metric (unless X is compact).

2. (Clarity) Most properties of metric spaces (compactness, connectedness,. ..) can be defined in
terms of the topology induced by the metric and therefore depend on the chosen metric only
via its equivalence class. Eliminating irrelevant details from the theory actually simplifies it by
clarifying the important concepts.

3. (Aesthetic) The definition of metric spaces involves the real numbers (which themselves are
a metric space and a rather non-trivial one at that) and therefore is extrinsic. A purely set-
theoretic definition seems preferable.

4. (A posteriori) As soon as one has defined a good generalization, usually many examples appear
that one could not even have imagined beforehand.

In generalizing metric spaces one certainly still wants to be able to talk about convergence and
continuity. Examining Definitions 2.1.15 and 2.1.22, one realizes the centrality of the following two
concepts:

Definition 2.2.1 Let (X,d) be a pseudometric space.

(i) The open ball of radius r around x is defined by B(z,r) = {y € X | d(z,y) <r}. (If necessary,
we write BX (x,r) or BY(z,r) if different spaces or metrics are involved.

(i) We say that Y C X is open if for every x € Y there is an € > 0 such that B(z,e) C Y.
The set of open subsets of X is denoted 14. (Clearly 74 C P(X).)
Consistency of our language requires that open balls are open:

Exercise 2.2.2 Prove that every B(z,¢) with € > 0 is open.

Exercise 2.2.3 Prove that a subset Y C (X, d) is bounded (in the sense of Definition 2.1.17) if and
only if Y C B(x,r) for some x € X and r > 0.

Lemma 2.2.4 The open subsets of a pseudometric space (X, d) satisfy the following:
(i) D €1y, X €14
(ii) If U; € 14 for every i € I then |, U; € 7a.

(iii) If Uy, ..., U, € 14 then (., U; € 4.

In words: The empty and the full set are open, arbitrary unions and finite intersections of open sets
are open.
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Proof. (i) is obvious. (ii) Let U; € 7 Vi € I and U = |J, U;. Then any « € U is contained in some U;.
Now there is a € > 0 such that B(z,e) CU; CU. Thus U € 7. (iii) Let U; € T for all i = 1,...,n
and U = (), U;. If x € U then x € U for every ¢ € {1,...,n}. Thus there are ¢y,...,¢, such that
B(z,e;) C U, for all i. With e = min(ey,...,g,) > 0 we have B(z,e) C U; for all i, thus B(z,e) C U,
implying U € 7. [ |

Remark 2.2.5 We do not require intersections of infinitely many open sets to be open, and in most
topological spaces they are not! Consider, e.g., X = R with d(x,y) = |r—y|. Then U,, = (=1/n,1/n)
is open for each n € N, but ()'_, U,, = {0}, which is not open. (See however Section 2.8.3.) O

We will take this as the starting point of the following generalization:

Definition 2.2.6 If X is a set, a subset 7 C P(X) is called a topology on X if it has the properties
(i)-(iii) of Lemma 2.2.4 (with 14 replaced by 7). A subset U C X ‘s called (1-)open if U € 7. A
topological space is a pair (X, 7), where X is a set and T is a topology on X.

Example 2.2.7 The empty space () has the unique topology 7 = {(}}. (The axioms only require
{0, X} C 7, but not ) # X.) Every one-point space {x} has the unique topology 7 = {0, {x}}. Al-
ready the two-point space {z, y} allows several topologies: 71 = {0, {z,y}}, 2 = {0, {2}, {z,y}}, 3 =

{0, {y} {z, vt} 7 = {0, {z} {v}, {z,y}}. =

Definition 2.2.8 (i) A topology 14 arising from a metric is called metric topology.
(i1) A topological space (X, T) is called metrizable if T = 74 for some metric d on X.

While the metric spaces are our main motivating example for Definition 2.2.6, there are others
that have nothing to do (a priori) with metrics. In fact, we will soon see that not every topological
space is metrizable!

Exercise 2.2.9 (Subspaces) (i) Let (X, d) be a metric space and Y C X. If dy is the restriction
of d to Y, it is clear that (Y, dy) is a metric space. If 7 and 7y denote the topologies on X and
Y induced by d and dy, respectively, prove

v ={UNY |U €1} (2.7)

(ii) Let (X,7) be a topological space and Y C X. Define v C P(Y') by (2.7). Prove that 7y is a
topology on Y.

(iii) If (X, 7) is a topological space and Z CY C X then 74 = (1v) 2.
The topology 7y is called the subspace topology (or induced topology, which we tend to avoid),
and (Y, 7y) is a subspace of (X, 7). (Occasionally it is more convenient to write 7[Y".)

We will have more to say about subspaces in Section 6.2.

Remark 2.2.10 Let (X, 7) be a topological space and Y C X given the subspace topology. By
definition, a set Z C Y is open (in Y) if and only if it is of the form U NY with U € 7. Thus
unless Y C X is open, a subset Z C Y can be open (in Y') without being open in X! Example: If
X =R, Y =][0,1],Z =[0,1) then Z is open in Y since Z =Y N (—1,1), where (—1, 1) is open in
X. O

A natural modification of Definition 2.2.1(i) leads to closed balls in a metric space:

4
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Exercise 2.2.11 Let (X, d) be a metric space. For z € X, r > 0 define closed balls by
B(z,r)={y € X | d(z,y) <r}.

Prove:
(i) B(z,r) is closed (in the sense of Lemma 2.1.16.)
(ii) The inclusion B(x,r) C B(x,r) always holds.

(iii) B(z,r) = B(x,r) holds for all x € X, r > 0 if and only if for all z,y € X with 2 # y and ¢ > 0
there is z € X such that d(z, z) < d(x,y) and d(z,y) < e.

(iv) Give an example of a metric space where B(z,7) = B(x,r) does not hold (for certain z,7).

2.2.2 Equivalence of metrics

Definition 2.2.12 Two metrics di,dy on a set are called equivalent (dy ~ dy) if they give rise to
the same topology, i.e. T4, = Ty,.

It is obvious that equivalence of metrics indeed is an equivalence relation.
Exercise 2.2.13 Let d;,dy be metrics on X. Prove that the following are equivalent:
(i) dy,dy are equivalent, i.e. 74 = Ty,.
(ii) For every x € X and every € > 0 there is a § > 0 such that

B%(z,8) C B%(x,¢), and B¥(z,§) C B2(x,e).

(iii) The map (X,d;) — (X,dz), = — x is a homeomorphism.
(iv) A sequence {x,} converges to = w.r.t. d; if and only if it converges to x w.r.t. ds.
(v) A sequence {z,} converges w.r.t. d; if and only if it converges w.r.t. ds.

Hint: For (v)=-(iv), use the fact that (v) holds for all sequences to show that {z,} cannot have
different limits w.r.t. d; and d».

Exercise 2.2.14 (i) Let (X, d) be a metric space and f : [0,00) — [0, 00) a function satisfying
(o) f(t)=0 < t=0.

(B) limy_o f(t) = 0.

(v) f is non-decreasing, i.e. s <t = f(s) < f(t).

(0) f is subadditive, i.e. f(s+1t) < f(s)+ f(t) Vs, t > 0.

Prove that d'(z,y) = f(d(x,y)) is a metric on X that is equivalent to d.

(ii) Use (i) to prove that
dy(2,y) = min(L, d(z,y)), da(x,y) =

are metrics equivalent to d.
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Definition 2.2.15 Two norms || - ||1,] - |2 on a real or complex vector space V are called equivalent
(-1l = |l - |l2) if there are constants co > ¢ > 0 such that ¢1||z||1 < ||z||2 < collz||y for allz € V.

Exercise 2.2.16 (i) Prove that equivalence of norms is an equivalence relation.

(ii) Prove that for every s € [1,00) there is a constant ¢, > 0 such that the norms on R™ defined
in Example 2.1.13 satisfy

[2lleo < lzlly < comllzllc Vo€ R,
giving the best (i.e. smallest possible) value for ¢, ,.
(iii) Conclude that the norms || - ||,, p € [1, 00] are all equivalent.

(iv) Let || - ||1, || - |]2 be arbitrary norms on V', and define the metrics d;(x,y) := || — yl;,i = 1,2.
Prove that || - || ~ || - |2 & di ~ dy. Hint: For < use axiom (ii) of Definition 2.1.10.

Remark 2.2.17 1. In Section 7.7.5 we will prove that all norms on R™ (n < co) are equivalent.
2. If dy, dy are metrics on X, it is clear that existence of constants ¢y > ¢; > 0 such that

cidi(z,y) < dy(z,y) < cady(w,y) Vz,ye X (2.8)
implies d; ~ dy. And if dy, dy are obtained from norms || - ||;,7 = 1,2 then by the preceding exercise
we have dy ~ dy < || - |1 = || - |l2 & (2.8). But if at least one of the metrics dy, ds does not come

from a norm, equivalence d; ~ dy does not imply (2.8): Consider X = R with d;(z,y) = | — y|
and do(x,y) = max(1l,d;(z,y)). Then dy ~ dy by Exercise 2.2.14, but (2.8) cannot hold since d; is
unbounded and d, is bounded. O

Definition 2.2.18 The topology on R" (and C") defined by the equivalent norms || - ||,, p € [1, 0]
1s called the usual or Euclidean topology.

We see that passing from a metric space (X,d) to the topological space (X, 7,), we may lose
information. This actually is one of the main reasons for working with topological spaces, since
even when all spaces in sight are metrizable, the actual choice of the metrics may be irrelevant and
therefore distracting! Purely topological proofs tend to be cleaner than metric proofs.

2.3 Some standard topologies

It is time to see some topologies that do not come from a metric! Some standard topologies can
actually be defined on any set X:

Definition/Proposition 2.3.1 Let X be a set. Then the following are topologies on X :

e The discrete topology Taise = P(X).

e The indiscrete topology Tindise = {0, X }.

e The cofinite topology Teoin = {X\Y | Y C X finite} U {0}.

e The cocountable topology Teoent = {X\Y | Y C X countable} U {(}}.

A discrete topological space is a space equipped with the discrete topology, etc.
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Proof. That Tgise, Tindise are topologies is obvious. By definition, Tgy, Teofin contain @), X. Let U; € Teofin
for each ¢ € I. The non-empty U; are of the form U; = X\F; with each F; finite. Now (J,U; =
U; X\Fi = X\, Fi. Since an intersection of finite sets is finite, this is in Teofin. Let Uy, Uz € Teofin.
If either of them is empty then U3 N Us = 0 € Teon. Otherwise U; = X\ F; with Fy, F; finite. Then
UiNUy = X\ (F1UF3), which is in Tq, since the union of two finite sets is finite. The same reasoning
works for Teoent- (Since a countable union of countable sets is countable, we actually find that Teoens
is closed under countable intersections. With later language, for 7., all Gs-sets are open.) [

A one-point subset {z} C X is often called a singleton. Nevertheless, we may occasionally allow
ourselves to write ‘points’ when ‘singletons’ is meant.

Definition 2.3.2 If (X, 1) is a topological space, a point x € X is called isolated if {z} € T.

Exercise 2.3.3 (i) Prove that (X, ) is discrete if and only if every x € X is isolated.

(ii) If d is a metric on X, prove that 7, is discrete if and only if for every # € X there is ¢, > 0
such that d(z,y) > e, Yy # x.
Metrics satisfying the equivalent conditions in (ii) are called discrete. Clearly the standard discrete
metric is discrete.

Exercise 2.3.4 Let X be arbitrary. Prove

(a> Tindisc g Tecofin g Tcocnt g Tdisc-

(b> If 2 S #X < oo then Tindisc - Teofin = Tcoent — Tdisc:

=

(c¢) If X is countably infinite then Tingise  Teofin & Teoent = Tdise-

= =

(d) If X is uncountable then Tingise S Teofin & Teoent & Tdisc-

=

The above exercise has provided examples of inclusion relations between different topologies on
a set. This merits a definition:

Definition 2.3.5 Let X be a set and 1,1 topologies on X. If 11 C 1o then we say that 7 is coarser
than T and that T is finer than 1. (Some authors use weaker/stronger instead of coarser/finer.)

Exercise 2.3.6 Let X, I be sets and 7; a topology on X for every i € I. Prove that 7 = (,.,; 7; is a
topology on X.

Clearly, for any set, the indiscrete topology is the coarsest topology and the discrete topology the
finest. And (), 7; is coarser than each 7;.

Definition 2.3.7 A property P that a topological space may or may not have is called hereditary if

every subspace of a space with property P automatically has property P.

Exercise 2.3.8 Prove that the following properties are hereditary: (i) metrizability, (ii) discreteness,
(iii) indiscreteness, (iv) cofiniteness and (v) cocountability.

In order to avoid misconceptions, we emphasize that the properties of discreteness, indiscreteness,
cofiniteness and cocountability are quite exceptional in that they completely determine the topology.
For other properties, like metrizability, this typically is not the case.
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2.4 Closed and clopen subsets. Connectedness

Definition 2.4.1 Let (X, 7) be a topological space. A set’Y C X is called closed if and only if X\Y
1S Open.

The following is obvious:
Lemma 2.4.2 Let (X, 7) be a topological space. Then
(1) O and X are closed.
(ii) If C; is closed for every i € I then (;; C;i is closed.
(iii) If C,...,C, are closed then |J;_, C; is closed.

Thus the family of closed sets is closed under arbitrary intersections and finite unions.

It is clear that we can also specify a topology on X by giving a family of sets satisfying (i)-(iii)
above and calling their complements open. In fact, the cofinite (resp. cocountable) topology on X
is defined more naturally by declaring as closed X and all its finite (resp. countable) subsets. It is
then obvious that (i)-(iii) in Lemma 2.4.2 are satisfied.

Example 2.4.3 Another example where it is more convenient to specify the closed sets is provided
by the definition of the Zariski' topology on an algebraic variety. In the simplest situation this goes
as follows: Let k be a field, n € N and X = k. If P C k[xy,...,2,] is a (possibly infinite) set of
polynomials in n variables xq, ..., z,, we define

Yp={x €k |p(x)=0 Vpe P} C k"

(We say that Yp is the zero-set of P.) A set Y C k™ is algebraic if Y = Yp for some P as above. We
have Yy = k", thus X = k" is algebraic. Letting P contain two contradictory equations (e.g. P =
{1, 21 —1}) we obtain Yp = (), thus () is algebraic. If I is any index set and P; C k[z1,...,2,] Vi € I,
it is easy to see that (,.; Yp, = Yg for Q = {J,; Pi. Thus arbitrary intersections of algebraic sets are
algebraic. Now let Py, P, C k[xq,...,x,] and define Q = {p1p2 | p1 € P, p2 € Py}. It is not hard to
check that Yy = Yp, UYp,, and by induction we see that finite unions of algebraic sets are algebraic.
We have thus proven that the family of algebraic subsets of X = k" satisfies (i)-(iii) of Lemma 2.4.2,
so that they are the closed sets of a topology on X, the Zariski topology. (This can be generalized
considerably, cf. Section C and books like [212, 243, 131].)

It should be noted that infinite unions of algebraic sets need not be algebraic. (In order to adapt
the above argument to infinite unions, we would need to make sense of infinite products, which is
difficult in a purely algebraic context.) Thus we have a non-trivial example for the ‘arbitrary unions,
finite intersection’ situation that is completely different from the metric topologies. (In fact, Zariski
topologies usually are not metrizable.) O

Exercise 2.4.4 (i) Prove that Yp UYp, =Yy for Q = {p1p2 | p1 € P1, p2 € Po}.

(ii) Prove that for n = 1, the Zariski topology is just the cofinite topology on k.

Unfortunately, the terminology open/closed is quite misleading: A set Y C (X, 7) can be neither
open nor closed, e.g.: (0,1] € R. On the other hand, a set Y C (X, 7) can be open and closed at the
same time!

LOscar Zariski (1899-1986) was born in Ukraine (then part of Russia), emigrated first to Italy, then to the US. He
was one of the pioneers of modern algebraic geometry.
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Definition 2.4.5 A subset of a topological space is called clopen if it is closed and open. The set of
clopen subsets of X is called Clop(X).

e In every topological space (X, 7), the subsets () and X are clopen.
o If X is discrete, every Y C X is clopen.

e If C,D C X are clopen then C' U D, C'N D and -C := X\C are clopen. It is easy to show
(provided one knows Definition 11.1.66) that (Clop(X), U, N, =, @, X) is a Boolean algebra. This
Boolean algebra has interesting applications, cf. Section 11.1.11.

Definition 2.4.6 A topological space X is connected if ) and X are the only clopen subsets.

We defer the detailed discussion of the notion of connectedness and its many ramifications (which
touch upon algebraic topology) until Section 9. But we will encounter it every now and then and
prove some small facts. For now, we only note:

e X is connected if and only if it cannot be written as X = U UV with U and V both non-
empty, disjoint and open (equivalently, both closed). (This is often taken as the definition of
connectedness, but we prefer the above one for its conciseness. )

e All indiscrete spaces are connected.

e Discrete spaces with more than one point are not connected.

2.5 The separation axioms 77 and 715

We have seen that a space (X, 7) is discrete if and only if all singletons {z} are open. When are the
singletons closed?

Exercise 2.5.1 Prove that for a topological space (X, 7), the following are equivalent:
(i) For every x € X, the singleton {z} C X is closed.
(ii) For any z,y € X with = # y there is an open set U such that z € U, y ¢ U.
(iii) For every x € X, we have {x} =({U | z € U € 7}.
Definition 2.5.2 A space satisfying the equivalent properties of Exercise 2.5.1 is called a Ty-space.

Many topological spaces actually satisfy the following stronger axiom:

Definition 2.5.3 A topological space (X, 1) is called Hausdorff space or Ty-space if for any x,y € X
with x # y we can find open U,V such thatx € U, y € V and UNV = .
One also says: The open sets separate the points of X.

Lemma 2.5.4 If (X,d) is a metric space then the metric topology 14 is Ty (Hausdorff).

Proof. If x # y thend := d(x,y) > 0. Let U = B(x,d/2),V = B(y,d/2). Thenz e U T, yecV €.
It remains to prove that UNV = . Assume z € UNV. Then d(z, z) < d/2 and d(y, z) < d/2. Thus
d=d(z,y) <d(xz,z)+d(z,y) <d/2+ d/2 = d, which is absurd. |
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Remark 2.5.5 1. The preceding result is false for pseudometric spaces that are not metric!

2. The T1- and T,-properties are called separation axioms. (The T in 77, T3 stands for ‘Trennung’,
German for separation.) We will encounter quite a few more.

3. Hausdorff originally included the T,-axiom in the definition of topological spaces, but this was
dropped when it turned out that also non-7, spaces are important.

4. Discreteness can be understood as the strongest possible separation property: One easily
checks that a space X is discrete if and only if for any two disjoint sets A, B C X there are disjoint
open sets U,V containing A and B, respectively. O

Exercise 2.5.6 Prove:
(i) The T and Ty-properties are hereditary.

(ii) Let 71,72 be topologies on X, where 75 is finer than 1. Prove that if 7, is 77 (resp. T») then 7
is Ty (resp. Ty).

Exercise 2.5.7 Prove the following:

(i) To = 1).

(ii) Every discrete space (X, Tgisc) is To.

(iii) If #X > 2 then (X, Tingisc) 18 not 73 (thus not T5).

(iv) The Zariski topology on k™ is T; for all k and n.

(v) Every cofinite space (X, Tcofin) is 7.

(vi) If (X, 7) is T} then 7 O Teofin. (Thus 7eonn is the coarsest 77 topology on X.)
(vii) Every finite Tj-space is discrete (and thus T3).
(viii) If #X = oo then (X, Teofin) is not Ty, Thus 77 # To.

Corollary 2.5.8 (X, Tingisc) with #X > 2 and (X, Teofin) with #X = oo are not metrizable.

The existence of non-metrizable spaces is the second main reason for studying general topology:
In various situations, topological spaces arise that are not metrizable and therefore simply could not
be discussed in a theory of metric spaces. We will see that quotient spaces of metric spaces may
fail to be metrizable. Other examples of non-metrizable topologies are the Zariski topology from
Example 2.4.3, which is T}, but rarely T3 (it is discrete when k is finite), and the ‘weak topologies’
of functional analysis.

Exercise 2.5.9 Prove:
(i) Every finite subspace of a Tj-space is discrete.
(ii) Deduce that connectedness is not hereditary.

(iii) A connected Tj-space with more than one point has no isolated point.
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2.6 Interior. Closure. Boundary

If (X, 7) is a topological space and Y C X, one may ask whether there is a largest open (or closed)
subset of Y or a smallest open (or closed) subset containing Y. Since the union of any number
of open sets is open, and the intersection of any number of closed sets is closed, two of these four
questions have a positive answer. (The other two in general do not, but see Section 2.8.3.)

Definition 2.6.1 Let Y C (X, 7). Then the interior Y° and closure Y of Y are defined by

Y = | J{U | U open, U CY},
Y = ﬂ{C’ | C closed, C' D Y}.

The points of YO are called interior points of Y, those of Y adherent points of Y.
(Some authors write ‘closure point’, ¢

proximate point’ or ‘limit point’. But the latter term 1is also
used for the different concept of ‘accumulation point’!)

Exercise 2.6.2 Let (X, 7) be a topological space and Y, Z C X. Prove:
(i) Y is open, Y is closed, and YO C Y C Y.
(ii) If Y is open then Y° =Y. If Y is closed then Y =Y.
(iii) 0° =0 = 0 and X° = X = X.
(iv) Y = Y% and Y = Y. (Idempotency)
(v) fY C Z then Y° C Z% and Y C Z. (Monotonicity)
The following simple fact has many uses:

Lemma 2.6.3 I[fUNV = and U is open then UNV = ).

Proof. Since U is open, X\U is closed. And U NV = () is equivalent to V/ C X\U. Thus X\U
appears in the family over which the intersection is taken in the definition of V. Thus V' C X \U,
which is equivalent to VN U = 0. [ |

The connection between the interior and closure operations is provided by complements:
Lemma 2.6.4 For every Y C X we have
X\Y'=X\Y, (X\Y)? = X\Y.
Proof. We only prove the first identity:
X\Y" = X\| {U open | U CY} = {X\U | U open,U C Y}

= ﬂ{C closed | X\C C Y} = ﬂ{C closed | X\Y C C} = X\Y.

The first equality is just the definition of Y, the second is de Morgan, the third results by replacing
the open set U by X\C with C closed, and the last results from the equivalence between X\C CY
and X\Y C C. |
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Exercise 2.6.5 (i) Prove the equivalence used in the last sentence of the proof.

(ii) Prove the second identity of Lemma 2.6.4.

How the interior and closure operations interact with union and intersection is less obvious:

Lemma 2.6.6 Let (X, 1) be a topological space and A, B C X. Then

(i) AUB=AUB.

(ii) (AN B)? = AN BO.

(iii) ANBC ANB.

(iv) A°UB° C (AU B)".
Proof. Combining the trivial inclusions

ACAUB, BCAUB, ANnBCA, ANnBCB

with monotonicity we obtain

ACAUB, BCAUB, ANBCA, ANBCB,

A" C(AuB)Y, B°C(AuB), (AnB)'cCA’ (AnB)"C B,

from which we obtain

AUBCAUB, ANnBCANnB, A°UB°C(AuB)’, (AnB)cCA’nB°

We thus have proven (iii) and (iv) and ‘half of’ (i),(ii). Now, AU B is a closed subset containing
AU B, so that it appears in the family defining AU B. Thus AU B C AU B. Since the converse
inclusion was proven before, we have (i). Similarly, the fact that A° N B? is an open subset of AN B
implies AN BY C (AN B)?, thus (ii). |

Remark 2.6.7 1. It is very important to understand that equality need not hold in (iii) and (iv)!
Thus A N B may be strictly smaller than AN B. (For X = R, A = (0,1), B = (1,2) we have
ANB = {1}, but ANB = (.) Similarly, A°N B® may be strictly smaller than (4 N B)°. (For
X =R, A=[0,1], B=[1,2] we have (AU B)? = (0,2), but AU B" = (0,1) U (1,2).)

2. Induction over n gives the generalization |JI_, Y; = |, Vi of (i), which we will often use.
Similarly, the interior of a finite intersection equals the intersection of the interiors. But these
statements may very well be false for infinite unions/intersections! Example:

U= UJ{e =Q#R=0Q= | J{=z}.

x€Q z€Q z€Q

(This is closely related to the fact that an infinite union of closed sets need not be closed.) O

Exercise 2.6.8 (Topology from closure operation (Kuratowski 1922)) ? Let X be a set and
cl: P(X) — P(X) a map satisfying the properties

2Kazimierz Kuratowski (1896-1980). Polish mathematician and logician.
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() cl(0) =0.
(B) cl(Y) DY forevery Y C X.
(7) cl(AUB) =cl(A) Ucl(B).
Prove:
(i) AC B=cl(A) C cl(B).
(ii) There is a unique topology 7 on X such that Y C X is 7-closed if and only if cl(Y) =Y.
(iif) If 7 is as in (ii) and cl also satisfies (8) cl(cl(Y)) = cl(Y), then cl(Y) =Y for every Y C X.

Remark 2.6.9 1. Combining the preceding exercise with Exercise 2.6.2 and Lemma 2.6.6, we see

that specifying a topology on a set X is equivalent to giving a closure operator satisfying («)-(9).
2. Since the interior operation Y + Y has properties dual to the closure, one could also obtain

a topology from an interior operation having properties dual to (a)-(d). O

Definition 2.6.10 IfY C (X, 7) then the boundary Y of Y is

oy =Y\Y".
(Some authors write ‘frontier’ instead of ‘boundary’, in symbols FrY .)

Lemma 2.6.11 Let Y C (X, 7). Then

(i) Y =Y N(X\Y) =Y NX\Y =9(X\Y).
Thus a subset and its complement have the same boundary.

(ii) OY is closed.
(ii5) Y =Y UJY and Y° =Y\9Y .

(w) Y =0 & Y =Y° & Y is clopen.
(V)Y =X & Y =X and Y° = ).

Proof. (i) The first identity is just Lemma 2.6.4. It is clear that Y N X—\Y is unchanged under the
replacement Y ~» X\Y. (ii) Obvious from Y =Y N X\Y. (iii) We have Y U9Y =Y U (Y\Y?) =
YUY =Y and Y\9Y = Y\(Y\Y?) = Y°. Both computations use Y° C Y C Y. (iv) We first
note that Y = () is equivalent to (*) Y° =Y. If Y is clopen then Y° = Y =Y, thus (x) holds.
Conversely, (*) together with Y? C Y CY implies Y? =Y =Y, thus Y is open and closed. (v) In
view of Y0 C Y it is clear that Y\Y? = X holds if and only if Y = X and Y = 0. n

Exercise 2.6.12 Let X be a topological space. Prove or disprove (by counterexample) the following
statements:

(i) (OY)? =0 for every Y C X. (Le. boundaries have empty interior.)

(i) (9Y)° = 0 holds whenever Y C X is closed.

Exercise 2.6.13 Let (X, 7) be a topological space, (Y, 7y) C X a subspace, and Z C Y. Prove:
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(i) We have 7 C 7 (interpreting subsets of Y as subsets of X) if and only if Y C X is open.
(ii) The interior of Z in Y, denoted Inty(Z), contains Z° (the interior of Z in X).

(iii) Assume Y is open. Then the interiors of Z in X and in Y coincide (thus Inty(Z) = Z°), and
Z is open in Y if and only if it is open in X.

(iv) Z is closed in Y if and only if Z =Y N C for some closed C' C X.
(v) The closure of Z in (Y, 7y), denoted Cly(Z), equals ZNY. (Z is the closure of Z in X).

(vi) Assume Y is closed. Then the closures of Z in X and Y coincide (thus Cly(Z) = Z), and Z is
closed in Y if and only if it is closed in X.

Exercise 2.6.14 Let (X, 7) be a topological space. An open set U C X is called regular open if
U=0". A closed set C is called regular closed if C' = CO.

(i) Prove that the complement of a regular open set is regular closed, and vice versa.
(ii) Prove that the intersection of two regular open sets is regular open.
(iii) Give examples of open sets in R that are (a) regular, (b) not regular.
(iv) Give two regular open sets in R whose union is not regular open.
(v) Prove that U C U’ for every open U and C° C C for every closed C.

_0 .
(vi) Prove that each Y is regular open, i.e. v =Y

(vii) Show that in every non-discrete 7 space there is a non-regular open set.

Remark 2.6.15 Let U,V be regular open. Then U AV := U NV is regular open by (ii), and

UVV:=UUV and Ut := (X\U)° = X\U are regular open by (v). Now one easily shows that
(A, V, A, L, 0, X), where A is the set of regular open sets, is a Boolean algebra. A clopen set obviously
is regular open. Indeed, one easily checks that the Boolean algebra Clop(X) of clopen subsets is a
Boolean subalgebra of the Boolean algebra of regular open sets. O

The following is not more than an amusing curiosity:

Exercise 2.6.16 (Kuratowski’s closure-complement theorem) Let (X, 7) be a topological space.
To every subset Y C X we can associate to new subsets Y= X\Y and Y.

C JE—

(i) Use Exercise 2.6.14(vi) to prove Y=Y

(ii) Use this to show that beginning from a single subset ¥ C X and applying the operations
closure and complement, one can produce at most 14 different subsets of X.
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2.7 Neighborhoods. Density

2.7.1 Neighborhoods. Topologies from neighborhoods
Definition 2.7.1 Let (X, 1) be a topological space and x € X.

(i) An open neighborhood of x is a U € T such that x € U. The set of open neighborhoods of x is
denoted U,.

(ii) A neighborhood of x is a set N C X that contains an open neighborhood of x. The set of all
neighborhoods of x is denoted N.

Lemma 2.7.2 Let (X, 7) be a topological space.
(i) U, is closed w.r.t. finite intersections.
(ii) N C X is a neighborhood of x € X if and only if x € N°.
(iii) N C X is open if and only if y € N = N € N,,.
(iv) N has the following properties:

— N, #0 and O € N,.
— If N €N, and M DO N then M € N,.
— IfN,M € N, then NN M € N,.

A non-empty family of non-empty sets with these two properties is called a filter. In particular,
N, is the neighborhood filter of x. For more on filters see Sections 5.1.3 and 7.5.5.)

Proof. (i) Obvious. (ii) N° C N is open, thus if z € N° then N is a neighborhood of z. If N € N,
then there is an open U with x € U C N, thus x € U C N° C N. (iii) Every open U clearly is a
neighborhood for each y € U. If N is a neighborhood of each y € N then there are open U, with
y € U, € N. But then N =J,c Uy, thus N is open. (iv) Obvious. |

Lemma 2.7.3 LetY C (X,7). Thenz €Y if and only if NNY # () for every (open) neighborhood
N of x.

Proof. By Lemma 2.6.4, Y = X\(X\Y)?. Thus z € Y is equivalent to z ¢ (X\Y)°, which is
equivalent to: There is no open set U such that z € U C X\Y. But this in turn is equivalent to: every
open set U with z € U satisfies UNY # (. This proves the claim for open neighborhoods. The claim
for arbitrary neighborhoods follows from the facts that (a) open neighborhoods are neighborhoods
and (b) every neighborhood contains an open neighborhood. [

Remark 2.7.4 1. Lemma 2.7.3 gives an alternative proof of Lemma 2.6.3: If x € U, then U is an
open neighborhood of z disjoint from V. Thus Lemma 2.7.3 gives € V, so that UNV = 0.

2. If v € X is an isolated point then {z} is an open neighborhood of z, thusz ¢ Y C X = 2 ¢Y
by Lemma 2.7.3, whence the term ‘isolated’.

3. If (X,d) is a metric space and Y C X, Lemma 2.7.3 implies that the closures of Y in the
metric (Lemma 2.1.16) and the topological sense (Definition 2.4.1) coincide.

4. Y C (X, 7) then x € 9Y if and only if every (open) neighborhood of = contains points of YV’
and of X\Y. (This follows from Y =Y N X\Y.)
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5. Every X C R that is bounded above has a supremum sup(X) € R. If sup(X) ¢ X then the
definition of the supremum implies that (sup(X) — e,sup(X)) N X # () for every ¢ > 0. Thus we
always have sup(X) € X, and similarly for the infimum. O

The following shows that a topology 7 can also be defined in terms of axioms for neighborhoods:

Exercise 2.7.5 (Topology from neighborhood axioms) Let X be a set, and let for every x € X
a non-empty family M, C P(X) be given, such that the following holds:

() z € NVYN € M,.

(B) If N e M, and M DO N then M € M,.

(v) f N,M € M, then NN M € M,.

(0) For every N € M,, there is a U € M, such that U C N and U € M,, for each y € U.
Prove:

(i) 7={UCX |VxreU:U e M,} is a topology on X.

(i) M, equals NV, the set of T-neighborhoods of z.

(iii) 7 is the unique topology 7 on X for which (/) holds.

Remark 2.7.6 1. In view of Lemma 2.7.2 and Exercise 2.7.5, specifying a topology on a set X is
equivalent to specifying a neighborhood system { M, },cx satisfying («)-(9).

2. % Combining this with the bijection between topologies and closure operators satisfying (a)-
(0) in Exercise 2.6.8, we clearly also have a bijection between closure operators and neighborhood
systems. Interestingly, this bijection remains intact if one omits the respective axioms (9) from
the definitions of closure operators and neighborhood systems. This leads to a generalization of
topological spaces, called ‘pre-topological spaces’. O

Exercise 2.7.7 Let 7 be the standard topology on R. Let N = {1,2/3,...}.
(i) Prove that there is a topology 7 on R such that:

— the T-neighborhoods of x # 0 are the same as the 7-neighborhoods of z.

— The T-neighborhoods of x = 0 are the sets that contain

(e {s1nen)

for some € > 0.
(ii) Prove that 7 is finer than 7.

Prove that C' = {% | n e N} is closed w.r.t. 7, but not w.r.t. 7.

)
(iii) Prove that 7 is Hausdorff.
(iv)

)

(v) Prove that there are no U,V € 7 with UNV =0 and 0 € U,C C V.
(Later we will say: (R, 7) is not regular (7%).)
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2.7.2 Dense subsets. Nowhere dense subsets
Definition 2.7.8 A set Y C (X, 7) is called dense (in X) if Y = X.

(Some authors write ‘everywhere dense’, but the ‘everywhere’ is redundant.)

Lemma 2.7.9 Let (X,7) be a topological space with X # (). Then Y C X is dense if and only if
Y NW # () whenever ) #W € 7.

Proof. By definition, Y is dense if and only if # € Y for every € X. By Lemma 2.7.3, this is
equivalent to Y NU # () whenever x € U € 7. Since the only role of z € U here is to guarantee that
U # (), this condition is equivalent to the one in the Lemma.

Alternative argument: If thereis ) # W € 7 with Y N W = (), then Y N W = () by Lemma
2.6.3, thus Y # X. If no such W exists, we have (X\Y)° = ), thus X\Y = §) by Lemma 2.6.4 and
therefore Y = X. [ |

Notice that the intersection of two dense sets need not be dense. It can even be empty, as in the
following example: U; = Q and Uy = Q + V2 are both dense in R, but U; N Uy = (). (Otherwise we
could deduce that v/2 is rational.) But we have:

Lemma 2.7.10 (i) IfY C X is dense and V C X is open then V. CV NY and V =V NY.

(i) If V.Y C X are both dense and V is open then V NY s dense.

Proof. (i) Let x € V. We want to show z € V NY. In view of Lemma 2.7.3 this amounts to showing
WN(VNY) £ for every open W3 z. But WnNn(VNY)=WnNV)NY. Now, WNV is open and
non-empty (since it contains z), thus density of ¥ and Lemma 2.7.9 give (W NV)NY # (), and we
have the first claim. Taking the closure of V' C V NY we obtain VCVNnY CVnNY CV, which
gives the second identity.

(ii) By (i), V C V NY. Now density of V gives X =V CV NY, thus VNY = X. |

Corollary 2.7.11 Any finite intersection of dense open sets is dense.

Remark 2.7.12 For infinitely many dense open sets this is not necessarily true: Consider (X, 7cofin)
for X countably infinite. For every x € X, the set X\{x} is open (by definition of 7.s,) and dense
(since it is not closed and X is the only set that is strictly bigger). But the countable intersection
N, (X\{z}) is empty and thus certainly not dense.

In Section 3.3 we will see that this cannot happen for complete metric spaces. O

With Lemma 2.6.4, we have that Y C X is dense <& X\Y has empty interior. The following
property is stronger than having empty interior:

Definition 2.7.13 If (X, 1) is a topological space, Y C X is nowhere dense if V= 0.

Remark 2.7.14 (i) Every closed set with empty interior is nowhere dense, e.g. Z C R.

(ii) A non-closed example of a nowhere dense set is given by {1/n | n € N} CR.

(iii) While a set can be dense and have empty interior, e.g. Q C R, a dense set clearly cannot be
nowhere dense (unless X = 0). O

Exercise 2.7.15 Let X be a topological space. Prove that Y C X is nowhere dense if and only if
for every non-empty open U C X there is a non-empty open V' C U such that VNY = (.
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2.7.3 x Accumulation points. Perfect sets. Scattered spaces

In this short section we discuss some notions that are related to the closure of a subset and to isolated
points. This material is of lesser importance and may safely be ignored until it is needed.

Definition 2.7.16 A topological space is called dense-in-itself if it has no isolated points. A subset
of a topological space is called perfect if it is closed and dense-in-itself (as a subspace).

By Exercise 2.5.9, a connected T space with more than one point is dense-in-itself.

Definition 2.7.17 If X is a topological space and Y C X, a point x € X is called an accumulation
point of Y if every neighborhood of x contains a point of Y different from x. The set of accumulation
points of Y is called the derived set Y.

Remark 2.7.18 1. Using Lemma 2.7.3 one sees immediately that z € Y/ < z € Y\{z}.

2. A point of Y may or may not be in Y”. In fact, if (X, 7) is discrete then each Y\{z} is closed
for any Y, x, so that 1. implies that Y’ = () for every Y C X.

3. We have x € X' if and only if every neighborhood of X contains a point other than x, which
is true if and only if {z} is not open. Thus the derived set X"’ of the total space is the complement
of the set of isolated points, and X is dense-in-itself if X' = X.

4. The notion of accumulation point played a central role in the early development of set theory
and point set topology. But the simpler notions of open and closed sets have turned out to be more
fundamental. Accumulation points continue to be relevant for certain specialized matters, like the
discussion of (weak) countable compactness. O

Exercise 2.7.19 Let X be a topological space X and Y C X. Prove:
(i) Y\YCY'CY.
(i) Y/ #0 < Y is non-closed or not discrete (as a subspace).
(iii) Y =Y UY’. Thus Y is closed if and only if Y’ C Y.
(iv) Y is dense in itself if and only if Y C Y.
(v) Y is perfect if and only if Y =Y.

Definition 2.7.20 A topological space X is scattered if every subspace has an isolated point. Equiv-
alently, no subset of X 1is dense-in-itself.

Example 2.7.21 1. Obviously every discrete space is scattered.
2. The set {1/n | n € N} U {0} C R with the topology inherited from R is scattered, but not
discrete (since 0 is not isolated). O

Exercise 2.7.22 Let X be a topological space. Prove:
(i) If Y C X is dense-in-itself then the same holds for Y.
(ii) I Y; € X is dense-in-itself for all € I then the same holds for (J, Y.

(iii) There are a perfect subset Y and a scattered subset Z such that X =Y U Z and Y N Z = ).
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The following notions are used only incidentally, cf. e.g. Exercises 4.1.20, 7.2.6 and Proposition
7.7.6:

Definition 2.7.23 Let X be a topological space and Y C X a subset. A point v € X is called

o w-accumulation point of Y if U NY is infinite for every open neighborhood U of x,

e condensation point of Y if UNY is uncountable for every open neighborhood U of x.

e complete accumulation point of Y if #(UNY) =#Y (i.e. Y and UNY have the same cardi-
nalities) for every open neighborhood U of x.

We denote by Y¥ (Y4, YP) the sets of w-accumulation (condensation, complete accumulation)
points of Y.

We obviously have Y4 C Y C Y’ C Y, and for uncountable Y we have YP! C Yd,

Exercise 2.7.24 Prove: If X is a Ti-space then every accumulation point of ¥ C X is an w-
accumulation point, i.e. Y =Y.

Exercise 2.7.25 Let X be a topological space and A, B C X. Prove:
(i) (AUB)® = A*UB* and (AU B)* = A« y B,
(i) A“ and A are closed.

Remark 2.7.26 Let X be the space from Example 2.7.21.2. Then X% = {0} and X! = (). Thus
(X9) = (Xd)d = ), showing that (X“)* = X* need not hold. Here (X°)*d = X<d does hold, if
trivially. For more on this, cf. Exercise 4.1.20. O

2.8 Some more exotic types of spaces

2.8.1 x Irreducible spaces

Exercise 2.8.1 Let X be a topological space. Show that the following are equivalent:
(i) If C,D C X are closed and X = CUD then C =X or D = X.
(i) If U,V C X are non-empty open sets then U NV # ().
(iii) Every non-empty open U C X is dense.

Definition 2.8.2 A space satisfying these equivalent conditions is called irreducible. Otherwise, i.e.
if there are two disjoint non-empty open sets, it is called reducible.

Exercise 2.8.3 Prove:
(i) Every irreducible space is connected.

(ii) An irreducible space with more than one point is never Hausdorff.

(iii) If #X = oo then (X, Teoin) is irreducible.
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(iv) If X is uncountable then (X, Teoent) is irreducible.

Remark 2.8.4 1. Irreducible spaces play an important role in modern algebraic geometry. (In [131],
they appear on page 3. The Zariski topologies are irreducible.)

2. In view of (i), irreducible spaces are also called hyperconnected.

3. R (with the usual topology) is T» and, as we will prove later, connected. Thus: connected %
irreducible.

4. (iii),(iv) show that an irreducible space can be 7. O

2.8.2 Ty-spaces

In Section 2.5 we have defined Ti-spaces as spaces in which every point (more precisely: every
singleton) is closed. So far, the only non-T}-spaces that we have met were the — rather uninteresting
— indiscrete spaces. But there actually are spaces ‘in nature’ (for example in algebraic geometry)
that are not T7:

Example 2.8.5 Consider X = {z,y}, 7= {0, {z}, X}. X is irreducible, thus connected. Since {z}
is open, {y} = X\{z} is closed, but {z} is not closed. In fact {z} = X, so that X is not T7. (Thus
Exercise 2.5.9 does not apply. Indeed z is isolated.) Yet we have {z} # {y}, thus the points = # y
are distinguished by their closures. O

Exercise 2.8.6 Let (X, 7) be a topological space. Prove that the following are equivalent:

(i) Given z,y € X, = # y, there is a U € 7 containing precisely one of the two points. (I.e. all
points are distinguished by 7.)

(ii) If  # y then {z} # {y}.

Definition 2.8.7 A topological space is called Ty-space if it satisfies the equivalent characterizations
i Fxercise 2.5.6.

Obviously, T7 = Ty. The space in Example 2.8.5 is Ty, but not T7. A very important class of
non-trivial Ty-spaces is discussed in Appendix C. The point z in Example 2.8.5 is an example for the
following:

Exercise 2.8.8 Let (X, 7) be a topological space and & € X. Prove that {z} = X holds if and only
if x is contained in every non-empty open set.
A point with these equivalent properties is called generic point.

Exercise 2.8.9 Given a topological space (X, 7), define a relation on X by z <, y & z € @
Prove:

(i) <, is a reflexive and transitive (thus a preorder, called the specialization preorder).

)
(i) 7 is Tp if and only if <, is also antisymmetric (thus a partial order).
(iii) 7 is T} if and only if <, is trivial in the sense of x <, y < x = y.
(iv) 7 is indiscrete if and only if x <, y for all z,y.

Spaces that are not even T can arise from pseudometrics:
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Exercise 2.8.10 Let d be a pseudometric on a set X. Prove:
(i) 74 is the indiscrete topology if and only if d = 0.
(i) 74 is Tp if and only if d is a metric.

(Thus d is a metric = 745 is Ty, = 11 = Ty = d is a metric.)

2.8.3 x*x Alexandrov or Smallest Neighborhood Spaces

As remarked earlier, intersections of infinitely many open subsets need not be open. But there clearly
are spaces where this is true, to wit the discrete spaces (for the trivial reason that every subset is
open). But there are more interesting examples, and this subsection is devoted to a quick look at
them.

Exercise 2.8.11 Let (X, 7) be a topological space. Prove that the following are equivalent:
(i) Every union of closed subsets is closed.
(ii) Every intersection of open subsets is open.

(iii) Every x € X has a smallest open neighborhood, i.e. an open neighborhood U, contained in
every open set that contains x.

Definition 2.8.12 Topological spaces with the equivalent properties from FExercise 2.8.11 are called

smallest neighborhood spaces or Alezandrov® spaces’.

Lemma 2.8.13 (i) Ewvery discrete space is a smallest neighborhood space.
(i) Every smallest neighborhood Ty-space is discrete.

(11i) Every finite topological space is a smallest neighborhood space.

Proof. (i) Follows from Exercise 2.8.11(i) since every subset is closed.
(ii) In a T} space every singleton is closed, thus with Exercise 2.8.11(i) every subset is closed.
(iii) If a set X is a finite then so is every topology 7 on it, thus every intersection of open sets is
open. [ |
Proposition 2.8.14 Let X be a set.

(i) For a preorder < on X, define
<={UCX |zelU yeX, z<y = yeU}.

(I.e. T< is the set of subsets of X that are upward-closed.) Then 1< is a topology on X with
the smallest neighborhood property.

(ii) For x € X, the set M(x) ={y € X |y >z} of (non-strict) majorants of x is in 7<. For every
U € 1< we have U = {J, ., M ().

3Pavel Sergeevich Alexandrov (1896-1982), Russian mathematician. (Also transliterated as Aleksandrov or Alexan-
droff.) We will also encounter the Alexandrov compactification.

4Not to be confused with the Alexandrov spaces in metric geometry (cf. e.g. [19]) introduced by Aleksandr Danilovich
Aleksandrov (1912-1999). For this reason, we prefer to write ‘smallest neighborhood space’.
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(i4i) The specialization preorder (Ezercise 2.58.9) <._ on X arising from 7< coincides with <.

() If (X, 7) is a smallest neighborhood space and <, is the specialization preorder arising from T
then T< = T.

(v) For every X there is a bijection between preorders and smallest neighborhood topologies on X .
For corresponding T, < we have that < is triwial (i.e. {(x,x)}) if and only if T is Ty if and only
if T is discrete. And T is Ty if and only if < is partial order.

Proof. (i) Clearly 0, X € 7<. Let U = U,; U;, where U; € 7< Vi. If z € U,y € X,z < y then
x € U; for some i € I. But then y € U;, thus y € U. Let U = (), U;, where U; € 7< Vi. Assume
xeUye X,z <y. Then z € U; Vi, thus also y € U; Vi and thus y € U. Since this is true for all
intersections, 7< is a smallest neighborhood topology.

(ii) For the first claim it suffices to observe that M () is upward-closed. The second claim follows
from the fact that z € U € 7< implies z € M(x) C U.

(iii) By Lemma 2.7.3, we have x € @ it and only y € U holds for every 7<-open set U > z. Since
M (z) is among the latter, z € {y} implies z <,_ y. Conversely, z € U € 7< implies M (z) C U, thus
y is contained in every open set containing x. This proves that the specialization preorder <,_ of T<
coincides with <. -

(iv) Recall that since (X, 7) is a smallest neighborhood space, each = has a smallest open neigh-
borhood Uy, and for each U € 7 we have U = J,; Us. As for (iii) we use that = € {y} if and only

if € U € 7 implies y € U. This gives that x € {y} is equivalent to y € U,. Combining this with
the definition of <., we have

r<,y & xe{_y} < yelU,.

This implies that U, = M(z), the majorant set (w.r.t. <) of z. Now 7 = 7<_ follows from

Uer © U=JU, & U=|JM@x) & Uer,

zeX zeX

where the last identity is due to (ii).
(v) This is an immediate consequence of (i)4(iii)+(iv), Exercise 2.8.9(ii)-(iii) and our earlier
observation that a smallest neighborhood space is T} if and only if it is discrete. |

It is natural to ask what continuity of a map between smallest neighborhood spaces means in
terms of the corresponding preorders. In this discussion we use the notion of a base (Definition 4.1.1)
and of a continuous function (Definition 5.2.7).

Proposition 2.8.15 Let (X, 7),(Y,7’) be smallest neighborhood spaces and <, <" the associated (spe-
cialization) preorders. Then a function f : X — Y is continuous if and only if it is order-preserving,
ie.x <= f(x) < f(2).

Proof. Continuity of f means U € 7/ = f~}(U) € 7. Since the majorant sets M(y) form a base
for 7/, we only need to check whether f~1(M(y)) € 7 for each y € Y, cf. Exercise 5.2.8(iii). Now,
fY(M(y)) = {x € X | f(x) >" y}. This set is in 7 if and only if it is upward closed. Thus continuity
of f is equivalent to z, 2’ € X,y € Y, f(z) > y,2’ > x = f(a’) >" y. If this is true then taking
y = f(z) we obtain the implication z,2’ € X, 2’ > x = f(a2') >" f(x). Conversely, if the latter true
then we also have 2/ >z, f(z) >y = f(a') >’ f(x) >"y. Thus continuity of f: (X,7) — (Y,7') is
equivalent to f: (X, <) — (Y, <’) being order-preserving. [ |
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Corollary 2.8.16 The category of smallest neighborhood spaces and continuous maps is isomorphic
to the category of preordered sets and order-preserving maps. This restricts to an isomorphism
between the categories of smallest neighborhood Ty-spaces and partially ordered sets.

Thus the study of smallest neighborhood spaces reduces to a branch of order theory! For more on
smallest neighborhood spaces see [0], where also several other characterizations of these spaces are
given, and [271] for the special case of finite spaces. For an important area of application see [135].
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Chapter 3

Metric spaces: Completeness and its
applications

3.1 Completeness

Definition 3.1.1 A sequence {z,,} in a metric space (X, d) is a Cauchy" sequence if for every e > 0
there is an N € N such that n,m > N = d(x,, x,) < €.

Exercise 3.1.2 Prove that every Cauchy sequence in a metric space is bounded.

Lemma 3.1.3 FEvery convergent sequence in a metric space is a Cauchy sequence.
Proof. Assume z,, — z. If ¢ > 0 then there is N € N such that n > N = d(z,,2) < £/2. If now
n,m > N then d(z,, ) < d(x,, z) +d(z,2,) <e/2+c/2 =c¢. [

The converse is not true: If X = (0,1] N Q with d(x,y) = | — y| then {z,, = 1/n} is a Cauchy
sequence, but it does not converge in X. Less trivially, Q is not complete w.r.t. the same metric d
as above (nor w.r.t. the p-adic metrics d,(z,y) = || — y||,). This motivates:

Definition 3.1.4 If d is a metric on X such that every Cauchy sequence converges, both the metric
and the metric space (X, d) are called complete.

Definition 3.1.5 A Banach space’ is a normed space (V.|| - ||) such that the metric space (X, dy) is
complete.
We assume as known from a course on calculus/analysis that (R, d), where d(z,y) = |z — y| is

complete.

Lemma 3.1.6 Let p € [1,00] and dy(z,y) = ||z — yll,- Then (R4, d,) is complete for every d € N.

Proof. Let p € [1,00]. From the definition of || - ||, it is clear that for z = (z1,...,74) € R? and
1 < i <d we have |z;| < ||z||,. Thus if a sequence {z"} is Cauchy we have |z} — z*| < ||z™ — z™||,,
so that the sequence {27}, in R is Cauchy. Since R is complete, we have z' =% y; € R. Since
x|, = ||(z1,...,24)||, depends continuously on z, ..., x4, this implies |[z" — y||, — 0. |

(For a generalization to infinite dimensions, cf. Section F'.)

! Augustin-Louis Cauchy (1789-1857). French mathematician and pioneer of rigorous analysis.
2Stefan Banach (1892-1945). Polish mathematician and pioneer of functional analysis. Also known for B. algebras,
B.’s contraction principle, the B.-Tarski paradox and the Hahn-B. and B.-Steinhaus theorems, etc.
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The main reason for the importance of completeness is the following: Given a sequence {z,} in
a metric space, it is usually much easier to show that it is Cauchy and then invoking completeness
than proving convergence directly, which requires already knowing the limit. This is illustrated by
the following application of completeness of a normed space:

Definition 3.1.7 Let V' be a normed space and {x,}nen C V' a sequence. The series Zzo:l T, 18 said
to be absolutely convergent if Y > | ||z,]| < 0o and to converge to s € V' if the sequence S, = >, _, T
of partial sums converges to s.

Lemma 3.1.8 In a Banach space V', every absolutely convergent series Y. x, in V converges.’
(The converse is also true, cf. Proposition 5.1.15.) The sum satisfies || >, zu|| < >, [|zn]|.

Proof. Assume V' to be complete and >z, to be absolutely convergent. Let S, = > 7 | x, and
T, = 4, llzx]|. For all n > m we have

n n
190 = Smll =1 D wll < D Nawll = T — T
k=m+1 k=m+1

Since the sequence {7} is convergent by assumption, thus Cauchy, the above implies that {5} is
Cauchy, thus convergent by completeness of V. The subadditivity of the norm gives || Y ;_, zx| <
> i_q |lzx] for all n, and since the limit n — oo of both sides exists, we have the inequality. [ ]

Returning to general metric spaces, an example for the use of completeness is the proof of Ba-
nach’s contraction principle (Theorem B.1.2), probably known from a course in analysis. But often
completeness is used indirectly via its consequences that don’t involve Cauchy sequences in their
statements, like Cantor’s intersection theorem (see the exercise below) and Baire’s theorem (cf. The-
orem 3.3.1). In this book, Cantor’s theorem will be used for the extension of continuous functions
between metric spaces (Section 3.4.2) and for the results related to Ekeland’s Variational Principle
and Caristi’s Fixed Point Theorem B.2.2] which in turn are used to prove Menger’s Theorem 12.4.8.
Some applications of Baire’s theorem will be discussed in Section 3.3, others in Appendix G.5.

Exercise 3.1.9 (Cantor’s Intersection Theorem) * Let (X, d) be a metric space. Prove:

(i) If {C)}nen are sets satisfying X O Cy D Cy O --- and lim,_,o diam(C,) = 0 then (), C,
contains at most one point.

(i) If (X,d) is complete and {C),},en are non-empty closed sets satisfying X 2 C; 2 Cy D ---
and lim,,_,, diam(C,,) = 0 then (), C,, is non-empty (thus a singleton by (i)).

(iii) Assume that (), C,, # 0 for every family {C,} as in (ii). Then (X, d) is complete.
(For C,, = (0,1/n) C R we have (), C,, = . Thus closedness of the C), cannot be omitted.)
Lemma 3.1.10 Let (X,d) be a metric space.
(i) If (X,d) is complete and Y C X is closed then (Y, d) is complete.

(i) If Y C X is such that (Y, d) is complete then Y C X is closed.

3Unfortunately, some authors write: “Y" ||@,|| < oo, thus > =, converges” without indictating that something
needs to be proven here.
4Georg Ferdinand Ludwig Philipp Cantor (1845-1918). German mathematician. Founder of modern set theory.
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Proof. (i) Let Y C X be closed. A Cauchy sequence {y,} in Y clearly is a Cauchy sequence in X.
By completeness of X we have y,, — x for some x € X. The closedness of Y implies x € Y. Thus YV
is complete.

(ii) Let € Y. By definition of the closure, there is a sequence {y,} in Y that converges to z.
A convergent sequence is Cauchy, and since {y,} C Y and (Y,d) is complete, there is a y € Y such
that y, — y. By uniqueness of the limit, z = y. Thus Y C Y, and Y is closed. [

In view of the above it is clear that completeness is not hereditary. (One could say it is ‘closed-
hereditary’.) (While non-closed subsets of complete metric spaces are not complete, we will see that
open subsets are ‘completely metrizable’, cf. Proposition 3.4.18.)

Exercise 3.1.11 Let (X, d) be a complete metric space, (Y,d’) a metric space and f : X — Y an
isometry. Prove that f is closed. (L.e. C'C X closed = f(C) CY closed.)

Proposition 3.1.12 Let (X, d),(Y,d') be metric spaces. Let D be as in (2.0). Then:
(Y, d') is complete < (B(X,Y), D) is complete < (Cy(X,Y), D) is complete.

Proof. Assume that (Y,d’) is complete, and let {f, € B(X,Y)} be a Cauchy sequence w.r.t. the
metric D. The definition of D implies that d'(f(z), g(x)) < D(f,g) for every x € X. Thus {f,(z)}
is a Cauchy sequence in Y for every x € X. By completeness of Y, lim,,_, f.(x) exists for every z,
and we define g(z) = lim,, f,(z). By assumption, f,, is Cauchy uniformly in z: For every ¢ > 0 there
is N € N such that n,m > N = d'(f.(z), fm(x)) < e for all x € X. Letting m — oo (for fixed z)
and using continuity of d’ (Exercise 2.1.4), we obtain n > N = d'(f.(z),g(z)) < € for all . This
proves both g € B(X,Y) and D(f,,g) — 0. Thus (B(X,Y), D) is complete.

Assume that (B(X,Y), D) is complete. By Proposition 2.1.26(ii), C,(X,Y) C B(X,Y) is closed,
and therefore complete by Lemma 3.1.10(i).

Finally, assume that (Cy(X,Y"), D) is complete, and let {y,,} be a Cauchy sequence in Y. Consider
the constant functions f, : X — Y, x > y, for all z. Then trivially f, € C,(X,Y) and D(f,, fm) =
d' (Y, Ym), thus {f,} is a Cauchy sequence. By completeness of C,(X,Y), there is g € Cy(X,Y)
such that D(f,,g) — 0. For z,y € X we have d'(g9(x),9(y)) < d'(g(x), fu(x)) + d'(fo(x), fn(y)) +
d(fn(y),9(y)) < 2D(fn,g) since f, is constant. Since D(f,,g) — 0, it follows that g is constant,
thus there is y € Y such that g(z) = y for all x € X. Now d'(y,,y) = D(fn,9) — 0, thus y, — y, so
that (Y, d’) is complete. |

Lemma 3.1.13 (i) If a: (X,d) — (X', d') is a bijective isometry then (X, d) is complete if and
only if (X', d’) is complete.

(ii) The conclusion of (i) is not not true if « is not surjective or only a homeomorphism.

Proof. (i) Obvious. (ii) If (X, d) is complete and Y C X is non-closed then (Y, d) is non-complete by
Lemma 3.1.10(ii). The inclusion map Y < X is a (non-surjective) isometry, showing the first claim.
By Remark 2.1.23.5 there is a homeomorphism between (R,d) and ((—1,1),d), where d(x,y) =
|z — y|. Since (R, d) is complete but ((—1,1),d) is not (since (—1,1) C R is non-closed), we see that
completeness of metric spaces is not preserved under homeomorphisms. [ |

So far we have discussed completeness of a given metric d on a set X. But as we know, different
metrics dy, dy can give rise to the same topology, in which case they are called equivalent. This raises
the question whether completeness of metrics is preserved under equivalence. In some cases, this is
true:
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Exercise 3.1.14 Assume that d is a complete metric on X. Prove that any equivalent metric d’ ~ d
constructed as in Exercise 2.2.14 is complete.

The following example shows that two metrics di,d> on a set X can be equivalent even though
dy is complete and ds is not!

Example 3.1.15 By Remark 2.1.23.5, o : (R,d) — ((—1
metric, is a homeomorphism. It follows that d'(z,y) = d(a(x
to d. (Cf. Exercise 2.2.13.) By construction, a : (R,d') — ((—1,1),d) is an isometry. Since the metric
d on (—1,1) is not complete, it follows that the metric ' on R is not complete, even though d’ is
equivalent to the complete metric d. O

1),d), v — 5 f| T where d is the distance
), a(y)) is a metric on R that is equivalent

1,
on

The example motivates the following definition:

Definition 3.1.16 (i) A topological space (X, 1) is called completely metrizable if there is a com-
plete metric d on X such that T = 14.

(ii) A metric space (X, d) is called completely metrizable if (X, 74) is completely metrizable. (I.e.
there is a complete metric d' on X satisfying T¢ = T4, i.€. equivalent to d.)

Given a topological space (X, 7), it is clear that a priori there are four possibilities:

1. (X, 7) is not metrizable.

2. (X, 1) is metrizable, admitting both complete and non-complete metrics.

(X, 7)

(X,7)
3. (X, 1) is metrizable, but not completely metrizable.
4. ( )

X, 1) is metrizable and every metric d compatible with 7 is complete.

We have seen examples for the first case (e.g. any non-Hausdorff space) and for the second, cf.
Example 3.1.15. Examples for the other two cases will be found in Proposition 3.3.7(iv) and in
Section 7.7.3, where we will show that every compact metrizable space is in the fourth class.

For further results on complete metrizability see Sections 3.4.3 and 8.4.2.

Remark 3.1.17 Completeness is a property that a metric space has or has not. But it is not a
topological notion, i.e. it makes no sense to ask whether a topological space is complete since in a
topological space we have no way of defining a Cauchy sequence. There is, however, the topological
notion of Cech-completeness, with which one proves that a topological space is completely metrizable

if and only if it is metrizable and Cech-complete, cf. Section 8.4.2. O

3.2 Completions

Since completeness is a very desirable property of metric spaces, it is natural to ask whether a metric
space can be ‘made complete’. The precise formulation of this is:

~

Definition 3.2.1 Let (X,d) be a metric space. A completion of (X,d) is a metric space ()/(\', )
together with a map ¢ : X — X such that:

~

(i) ()/f,d) is complete.
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(i) ¢ is an isometry.
(iii) o(X) C X is dense, thus ((X) = X.

We will soon prove that every metric space has a completion. But first we show that completions
are unique, in the sense that between any two completions there is an isometric bijection, in fact a
unique one:

Proposition 3.2.2 (Uniqueness of completions) If (()?1,(/1\1),L1), (()?2,82),42) are completions
of (X,d), then there is a unique isometric bijection f : X1 — Xo such that 13 = f o .

Proof. 1t is clear that we must define f on ¢1(X) by f(t1(x)) = ta(x). We want f to be an isometry,
thus continuous. Thus if y € )A(l\bl(X) and {z,} is a sequence in X such that ¢;(x,) — y, we must
have f(y) = f(lim, ¢1(z,)) = lim, f(u(z,)) = lim, ta(x,). We show that the limit on the r.h.s.
exists: Since the sequence {¢1(z,)} converges, it is a Cauchy-sequence, and since (1 is an isometry,
{z,} is a Cauchy-sequence in X. Since ¢ is an isometry, {t2(z,)} is a Cauchy-sequence in X», and by
completeness it converges to some z € )A(Q. In order to define f(y) = z, one must show that z depends
only on y, but not on the choice of the sequence {z,}. So let {z/,} be another sequence in X such
that ¢;(2/) — y. But this means that C/l\l(Ll(l‘n) t1(x])) — 0, and therefore dQ(Lg(xn) 1a(xl)) — 0,
since (1, 1y are isometries. This implies lim,, t5(2)) = lim, LQ(ZL’n) = 2z and thus f is well-defined.
The above reasoning also shows that this f : )?1A — )?2 is uniquely determined by the requirements
of continuity and f oy = t5. Now let y,y € X; and let {x,}, {2} be sequences in X such that
t(x,) = y,t1(x)) — 3. By the definition of f, we have f(y) = lim, to(z,), f(y') = lim, t2(2},) and

~

di(y,2) = limdi(u1(za), () = lmd(zn, 7)) = limda(us (), () = da(f (1), £(2),

proving that f : X1 — X, is an isometry. It remains to show that f is surjective. This can be done
in two ways: Reversing the roles of Xl,Xg, the above gives an isometry g : X2 — X1 such that
g oty =t1. Now the function fog: XQ — X2 is the identity map on ¢3(X) C XQ, and continuity of
f, g and density of 15(X) C X, imply that fog = idg , so that f is surjective. (In fact, f and g are
inverse functions of each other.)

Alternatively, observe that f : X, — X, is an isometry, thus injective so that f X, — f ()/(\'1)
is an isometric bijection. This implies that the metric subspace (f (X1), dg) of (Xs, do) is complete.
Thus by Lemma 3.1.10(ii), f(X1) € X, is closed. Since f(X;) contains 1(X), which is dense in X,

we have f(X;) = f(X1) 2 2(X) = X5, so that f is surjective. |

Remark 3.2.3 1. Since every metric space can be isometrically embedded into a bigger one, unique-
ness of completions clearly wouldn’t hold without requirement (iii) in Definition 3.2.1.

2. If we drop the requirement 1o = f oy in Proposition 3.2.2, there may be many different
isometries between different completions of a given metric space (X, d).

3. The identity 15 = f oty in the proposition can be stated by saying that “the diagram

L1 S

X X1
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commutes”. This may seem a tremendous waste of space, but in more complicated situations,
involving more sets and functions, commutative diagrams often greatly clarify what is going on. (See

e.g. (6.8).) O

Corollary 3.2.4 Let_(X, d) be a complete metric space andY C X. Then the (unique) completion
of (Y,d) is given by (Y, d).

Proof. By Lemma 3.1.10, (Y, d) is complete if and only if Y is closed. Thus (Y, d) is complete and
clearly is a completion of (Y, d), thus the completion, by uniqueness of the latter. [ |

E.g., if d(x,y) = |z — y| then both ((0,1),d) and ((0, 1],d) have ([0, 1], d) as completion.

Corollary 3.2.4 clearly only helps if we have an isometric embedding of (Y,d) into a complete
metric space. To prove that every metric space has a completion, one needs to work harder. Usually
this is done using the set of Cauchy sequences in X, generalizing the classical completion of R. Since
this construction can be found in any number of references, we follow a different (and perhaps more
elegant) route. (Cf. e.g. [219, 255].)

Theorem 3.2.5 FEvery metric space has a completion.

Proof. Given a metric space (X, d), the idea is to find a complete metric space (Y, D) and an isometry
v (X,d) = (Y, D). Then ((«(X), D),¢) is a completion of (X,d) by Corollary 3.2.4. Since R with
the standard metric is complete, (Cy(X,R), D) is complete by Proposition 3.1.12. Thus if we can
construct an isometry ¢ : X — Cp(X,R) we are done.

Pick zy € X once and for all. For z € X, the function f, : X — R, z — d(z,2) — d(z, x0)
is continuous and bounded by d(z,zy), cf. (2.1). Thus f, € Cy(X,R). This allows us to define
t: X = Gp(X,R), z— f,. With the metric D on Cy(X,R) defined in (2.6) we have

D(u(x), e(y)) = sup |(d(z,x) — d(z,20)) — (d(z,y) — d(z,20))| = sup|d(z, x) — d(z,y)| = d(z,y),

zeX zeX

where the final identity is (2.3). Thus ¢ : X — C,(X,R) is an isometry. |

Remark 3.2.6 1. We briefly sketch another (and somewhat more common) method of constructing
a (thus the) completion: Let X C Fun(N, X) be the set of all Cauchy sequences in (X, d). If
{z;}, {y;} € X, then the inequality |d(z;, y;) — d(z;,y;)| < d(x;,xj) +d(y;, y;) implies that {d(x;,y;)}
is a Cauchy sequence in R. The latter converges since R is complete, and we define c?({x } {yi}) =
lim; d(z;,y;). One checks that this is a pseudometric. As in Exercise 2.1.7, deﬁmng X=X /~ one
obtains a (true) metric d on X. Now a diagonal argument shows that (X d) is complete. (A slight
modification of the above reasoning also produces R as the completion of X = Q, d(z,y) = |z — y|.)

2. The construction of (X, d) via Cy(X,R) surely is more elegant, but has its own drawbacks: It
is less economic in that it begins with Fun(X,R) instead of Fun(N, X). More importantly, since it
assumes the metric space (R, d) as given, it clearly cannot be used to construct R as the completion
of Q. But, at least in the author’s view, the construction of R in terms of Dedekind sections is
preferable anyway. Cf. e.g. [252, App. to Chap. 1].

3. If (V.|| -]]) is a normed space, it is easy to show that the completion of the metric space (V,d)
again comes from a normed space (V, || - ||), which then is a Banach space. O

Now we can give an interesting and useful characterization of complete metric spaces:
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Proposition 3.2.7 A metric space (X,d) is complete if and only if «(X) C Y is closed whenever
(Y, d) is a metric space and ¢ : X — Y is an isometry. (One says (X, d) is universally closed.)

Proof. Assume (X, d) is complete. If ¢ : (X,d) — (Y,d') is an isometry then (+(X),d') C (Y,d') is
isometric to (X, d). Thus (¢(X),d) is complete thus ¢«(X) C Y is closed by Lemma 3.1.10(ii).
Assume (X, d) is not complete, and let ((X ) t) be a completion. Then (X, d) is isometric to
the subspace +(X) C X. If ,(X) C X was closed ((X),d) = (X, d) would be complete by Lemma
3.1.10(i), contradicting the assumption. Thus ¢(X) C X is not closed. |

Remark 3.2.8 There is a class of spaces sitting properly between metric and topological spaces,
called uniform spaces. A uniform space is a pair (X,U) where X is a set and the uniform structure
(or uniformity) U C P(X x X) (as opposed to 7 C P(X) for a topology) satisfies certain axioms.
Now, every metric d on X gives rise to a uniformity U; on X, and every uniformity U defines a
topology 7. (Of course 7, = 74.) In uniform spaces one can define a notion of Cauchy sequence
and therefore also the property of completeness. Every uniform space has a completion. For more
on uniform spaces see e.g. [157, 298, 89].

This being said, it seems that the applications of uniform spaces outside topology proper are quite
few, the most important being to topological groups: Every topological group has two canonical
uniform structures, so one can consider their completeness (in the senses of Weyl and Raikov) and
completions. Cf. [3] and the papers by Comfort in [185] and Tkachenko in [13, Vol.3]. O

3.3 Baire’s theorem for complete metric spaces. G;-sets

3.3.1 Baire’s theorem

Recall that a finite intersection of dense open sets is dense (Corollary 2.7.11) in every topological
space, but that this need not be true for infinitely many dense open sets (Remark 2.7.12).

Theorem 3.3.1 ° Let (X,d) be a complete metric space and {U,}nen a countable family of dense
open subsets. Then (\,—, U, is dense.

Proof. Let ) # W € 7. Since Uj is dense, W N U; # () by Lemma 2.7.9, so we can pick z; € W NU;.
Since W N U; is open, we can choose 1 > 0 such that B(xy,e1) € W NU;. We may also assume
g1 < 1. Since U, is dense, Uy N B(x1,e1) # 0 and we pick x5 € Uy N B(x1,€1). By openness, we can
pick g5 € (0,1/2) such that B(xs,e2) C Uy N B(x1,e1). Continuing this iteratively, we find points
z, and g, € (0,1/n) such that B(x,,e,) C U, N B(zp-1,6n—1) ¥n. If i > n and j > n we have by
construction that z;, z; € B(z,,¢,) and thus d(z;, z;) < 2/n. Thus {z,} is a Cauchy sequence, and
by completeness it converges to some z € X. Since n > k = x,, € B(xy, g ), the limit 2 is contained
in B(xy,ey) for each k, thus

z€()\B(@n,en) SW N[ \Un,

thus W N (), U, is non-empty. Since W was an arbitrary non-empty open set, Lemma 2.7.9 gives
that (1), U, is dense. |

SRené-Louis Baire (1874-1932), French mathematician, proved this for R™ in his 1899 doctoral thesis. The gener-
alization is due to Hausdorff (1914).
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Remark 3.3.2 1. Baire’s Theorem 3.3.1 and its reformulation in Proposition 3.3.5 have countlessly
many applications, cf. the overviews [160, |. Some of the best known are in functional analysis:
The Uniform Boundedness Theorem of Banach and Steinhaus, the Open Mapping Theorem, and
the Closed Graph Theorem. (Proofs of these are given in Appendix G.5, where we also use them
to construct a dense set of periodic continuous functions whose Fourier series diverges at a given
point.) Here we consider several applications, to metric topology (Propositions 3.3.7 and 3.3.13) and
to classical analysis: Osgood’s theorem, Croft’s lemma, cf. Subsection 3.3.4, and to constructing a
dense set of continuous functions that are nowhere differentiable (Theorem 3.3.19).

2. Notice the similarity to the proof of Cantor’s Intersection Theorem (Exercise 3.1.9(ii): We
produce a Cauchy sequence and use completeness to conclude that the latter converges, which im-
mediately proves that a certain set (namely (), C; and W N (), U,, respectively) is non-empty. The
details are a bit more involved in the case of Baire’s theorem, but the only conceptual difference is
that for Cantor’s theorem we need the axiom of countable choice, whereas Baire’s theorem requires
a bit more, cf. Section 3.3.2. In view of this observation, the reputation of Baire’s theorem (and its
applications) of being difficult or deep seems exaggerated.

3. The conclusion of Baire’s theorem makes no reference to a metric and therefore makes sense
for general topological spaces. This motivates the next definition. O

Definition 3.3.3 A topological space is a Baire space if every countable intersection of dense open
sets is dense.

Corollary 3.3.4 Every completely metrizable space is a Baire space.

In Section 8.4.1 we will encounter a large class of not necessarily metrizable Baire spaces, the
Cech-complete spaces, which contains all (locally) compact Hausdorff spaces.
The following equivalent formulations of the Baire property are often used:

Proposition 3.3.5 For a topological space X, the following are equivalent:

(i) X is a Baire space.

(ii) If C, C X is closed with empty interior for each n € N then |J.~, C,, has empty interior.
(iii) Every countable union of nowhere dense subsets of X has empty interior.

Proof. The equivalence (i)<>(ii) is seen by taking complements. Since closed sets with empty interior
are nowhere dense, we have (iii)=(ii). Now assume (ii) and let {C,,} be nowhere dense sets. Then
the sets D,, = C,, are closed and have empty interior, thus (ii) implies that \U,, D has empty interior.
But then clearly also J,, C\, € |J,, D,, has empty interior. [ |

Remark 3.3.6 There is a considerable amount of additional terminology around Baire’s theorem.
E.g., Y C X is called meager if Y is a countable union of nowhere dense sets. The Baire property
then amounts to the statement that a meager set has empty interior. Meager sets are also called sets
‘of first category’, all other sets being called ‘of second category’ (whence the name ‘Baire category
theorem’). In the author’s opinion, the first/second category terminology is a candidate for the most
unimaginative one in mathematics and should be avoided, also since categories now mean something
entirely different. O

Here is a first application of Theorem 3.3.1 and, more generally, the Baire property:
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Proposition 3.3.7 (i) If (X, 7) is non-empty, has no isolated points, is Ty and Baire then X is
uncountable.

(ii) A non-empty complete metric space without isolated points is uncountable.
(7ii) A space that is countably infinite without isolated points is not completely metrizable.

(iv) Q" with the Euclidean topology inherited from R™ is not completely metrizable.

Proof. (i) Since X is T, every {z} is closed, thus U, = X\{z} is open. Since X has no isolated
points, {z} is not open, thus U, is non-closed. The only subset of X properly containing U, is X,
thus U, is dense. Assuming that X is countable, the Baire property implies denseness of (), .y U, =
Neex X\{z} = 0. Thus X = (), contradicting the assumption.

(i) Follows from (i) since complete metric spaces are T} and Baire.

(iii) If d is a complete metric such that 7 = 7, then we have a contradiction with (ii).

(iv) Q™ has no isolated points since a Euclidean ball B(z,¢) contains infinitely many points of
Q™. Now apply (iii). [ |

3.3.2 Baire’s theorem and the choice axioms

It is clear that we used the Axiom of Choice in the proof of Theorem 3.3.1. Since we made only
countably many choices, one might think that we only need the Axiom of Countable Choice (AC,,).
However, this is not true since the choice of x5 must take the preceding choice for x; into account,
the choice for x3 depended on x5, and so on! What is really needed is the Axiom of Countable
Dependent Choice (DC,), cf. Definition A.3.7.

Exercise 3.3.8 Rewrite the proof of Theorem 3.3.1 so as to make clear that the Axiom of Countable
Dependent Choice suffices.

The following surprising result, proven in [28, |, shows that DC, is actually equivalent to
Baire’s theorem:

Theorem 3.3.9 The azioms of set theory (without any choice axiom) together with the Baire prop-
erty of complete metric spaces imply DC,,.

3.3.3 G5 and F, sets

In many applications of Baire’s theorem, e.g. Theorem 3.3.19 below, the individual dense open sets
U, carry little interest, but the fact that the dense set obtained at the end is a countable intersection
of open sets does. This motivates the following definition:

Definition 3.3.10 A countable intersection of open sets in a topological space is called a Gg-set. A
countable union of closed sets is a F,-set.

We will encounter Gs-sets quite often, e.g. in the guise of closed sets in metric spaces (Exercise
3.3.12), sets of continuity of functions (Proposition 3.4.6), in the characterization of completely
metrizable spaces (Theorem 3.4.20) and also in non-metric contexts. One reason is that some results
that are true for open sets generalize to Gs-sets.

Exercise 3.3.11 Prove:
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(i) fYCXisGsand Z CY is Gs in Y, then Z is G5 in X.
(i) UC X isGsand Y C X then UNY is Gs in Y.
(iii) If U CY is Gs, where Y C X | then there is a Gg-set V' C X such that U =V NY.

Obviously open sets are Gs. The subsets (a,b] = () —,(a,b+ 1/n) C R are Gs, but not open. In
metric spaces all closed sets are Gy:

Exercise 3.3.12 Let (X, d) be a metric space. For A C X and ¢ > 0 define

Ao =] B(z,e). (3.1)

z€EA

Since this is open, B = (), A1/, clearly is Gs. Prove that B = A and deduce that closed subsets
of metric spaces are Gj.

Generalizing the proof of Proposition 3.3.7, we can prove that certain sets are not Gjy:

Proposition 3.3.13 Let (X, 7) be non-empty, Ty and Baire. (E.g. a non-empty complete metric
space.) If Y C X is countable, dense and such that no y € Y is isolated in X then Y is not Gs (but
X\Y is dense Gjs).

Proof. Since X is T, every {y} is closed, thus X \{y} open. Since y € Y is not isolated in X, {y} is
not open, X\{y} is non-closed, thus dense (X\{y} € X\{y} C X implies X\{y} = X). Since Y is
countable, X\Y =, o,y X\{y} is Gs, and by the Baire property it is dense.

Assuming that Y is G, we have Y = (", U,, where each U, is open. Then

U N [ X\{g} =Y Nn(X\Y)=0. (3.2)

neN yey

Each U, is dense since it contains Y, which is dense. Thus {U,, | n € N} U{X\{y} |y € Y} isa
countable family of dense open subsets of X. By the Baire property, the intersection of these sets is
dense, thus non-empty since X # (), which contradicts (3.2). Thus Y is not Gs. [ |

Corollary 3.3.14 No countable dense subset of R" is Gs. E.g., Q C R s non-Gs.

Proof. This follows from the Proposition since R” with the Euclidean metric is complete and has no
isolated point. [ |

3.3.4 Applications: Osgood’s Theorem and Croft’s Lemma

The following result is an easy but very typical of the applications of Baire’s theorem:

Theorem 3.3.15 (Osgood) Let X be a complete metric space and Y a metric space. Let F C
C(X,Y) such that the set {f(z) | f € F} C Y is bounded for each x € X (i.e. ‘F is pointwise
bounded’). Then there is a non-empty open set U C X such that {f(z) | f € F,x € U} CY is
bounded (thus ‘F is uniformly bounded on U’).
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Proof. We may assume X # (), so that X has non-empty interior (namely X). Pick an xy € X.
For each n € N, define X,, = {x € X | f(2) € B(x,n) Vf € F}. Each f € F is continuous, thus
f71(B(x0,7)) is closed. Since any intersection of closed sets is closed, X,, = Nier fH(B(zo,7)) is
closed. Since F is pointwise bounded, for each x € X we have that {f(x) | f € F} is contained in
B(zg,n) for some n € N. This implies X = J;_, X,,. Since X has non-empty interior, Proposition
3.3.5 gives that there is an n € N such that X,, has non-empty interior X°. With U = X?, the
definition of X,, implies f(x) € B(xg,n) for all f € F and x € U. |

The Uniform Boundedness Theorem in functional analysis, cf. Theorems G.5.2 and G.5.7, is
closely related.

The following result, often called “Croft’s Lemma”, is proven in [67]. There does not seem to be
an easy proof of this result, but the following one using Baire’s theorem may be the most painless:

Theorem 3.3.16 Let f : (0,00) — R be continuous and satisfying lim, o, f(nx) = 0 for every
x > 0. Then lim, ., f(x) =0.

Proof. Let € > 0. For m € N, define

Co={z>1]|f(nz)| <eVn=m}= () n"'f(~ce).

n>m

For every x > 1 we have f(nxz) — 0, thus there is m, such that n > m, implies |f(nz)| < e.
This means that x € C,,,, so that we have proven | J,,.y Cm = [1,00). Continuity of f implies that
Cr C [1,00) is closed for each m. Since R with the standard metric d(z,y) = |z — y| is complete
and [1,00) C R is closed, ([1,00),d) is a complete metric space. Now Baire’s theorem implies that
one of the sets C},, must have non-empty interior and therefore contain an open interval (a, b) (since
otherwise |, C,, = [1,00) would have empty interior, which is absurd). Now (a,b) C C,, means
that |f(z)| < e for every z € |,5,,(na,nb). Since (n + 1)/n — 1 < b/a, there is ny such that
n > ng = (n+1)/n < b/a. Thus for n > ny we have na < (n + 1)a < nb < (n + 1)b, so
that the intervals (na,nb) and ((n + 1)a, (n + 1)b) overlap. Together with nb — +oo this implies
Uy, (@, mb) = (n9a, 00). Thus with 2o = nga we have x >z = = € U, 5,,,(na,nb) = [f(z)| <e.
Since ¢ was arbitrary, we are done. [

Remark 3.3.17 There are proofs of Croft’s Lemma that avoid using Baire’s theorem, cf. e.g [5, pp.
17, 149] or [240, p. 174], but they are much less transparent. All these proofs also use the Axiom of
Countable Dependent Choice, just as the proof of Baire’s theorem, so that they are not preferable
from a foundational point of view. O

3.3.5 Application: A dense Gs-set of nowhere differentiable functions

It is well known that there are continuous functions f € C'(I,R), where I C R is an interval or all of
R, that are nowhere differentiable. It is not hard to write down candidates:

filz) = Zisin(n%),

n

[\

folx) = Z%ﬂsin(?”x).
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Both functions are obviously continuous, but the problem is to prove nowhere differentiability. In
fact, despite having (supposedly) been discussed by Riemann, f; turned out to be differentiable
precisely at countably many points! (This was completely clarified only more than 100 years after
Riemann’s death, cf. [I07]. The function f; is extremely interesting, cf. e.g. [76].) The function fs
indeed is nowhere differentiable, as was shown by Weierstrass and Hardy. (Cf. e.g. [270].) The proofs
are lengthy. On the other hand, using Baire’s theorem, it is not hard to prove the existence of ‘many’
nowhere differentiable functions.

Let I = [0,1] and consider (Cy(I,R), D), where D is as in (2.6). (It is proven in Analysis courses
(and again in Chapter 7) that Cy(I,R) = C(I,R).) The metric space (Cy(I,R), D) is complete by
Proposition 3.1.12. For n € N, define

fy) = f@)| n} _
y—x

Exercise 3.3.18 Prove that, for each n, U, is (a) open and (b) dense in (Cy(1,R), D).

Un:{fECb(I,R)|‘v’x€]§|y€]:y7éx,

Theorem 3.3.19 The topological space (Cy([0,1],R), 7p) contains a dense Gs-set of nowhere differ-
entiable functions.

Proof. Let G = (1, U,. This obviously is a G-set, and assuming the results of the exercise, it is dense
by Baire’s theorem. We claim that any f € G is nowhere differentiable. To prove this, assume that
to the contrary f is differentiable at some x € I with f'(x) = c¢. By definition of differentiability,

fly) = fl=) _

lim
T T
Thus picking some € > 0, there is § > 0 such that 0 < |z — y| < ¢ implies ‘% —c‘ < e.

is bounded (by |c| + ¢) if y satisfies 0 < |z —y| < §. And if |x —y| > & we
— < % where C is such that |f(z)] < C. (Recall f € Cy(I,R).) Thus the set

{% |y # aﬁ} (where z is fixed) is bounded. On the other hand, f € G = (), U, means that
‘f(y)—f(w)
y—x

Thus ’ fW)~f ()
Yy—x

have ‘ {W)-1@)
Yy—x

for every x there is a y # x such that is as large as desired. This contradiction proves that

f is nowhere differentiable. n

Remark 3.3.20 1. We emphasize that the proof is non-constructive: It does not give us any idea
how to obtain such an f. On the other hand it gives us more than the explicit formulas above,
namely a dense Gg-set of nowhere differentiable functions.

2. Baire’s theorem can also be used to prove that the space {f € C([0,1],C) | f(0) = f(1)} of
continuous periodic functions contains a dense (w.r.t. 7p) Gs-set of functions whose Fourier series
all diverge at some fixed point, cf. Appendix G.5.3. The original way to prove this goes under
the colorful names of the ‘condensation of singularities’ or ‘gliding hump method’. Later this was
streamlined using Baire’s theorem and the ‘principle of uniform boundedness’ (Theorem G.5.7) that
follows from it. O

3.4 « Oscillation. Extending continuous functions. Com-
plete metrizability

3.4.1 Oscillation and sets of continuity
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Definition 3.4.1 Let (X, 7) be a topological space and (Y,d) a metric space. Let A C X and
f: A=Y a function. For x € A, define the oscillation of f at x by

osc(f,z) = inf diam(f(ANU)).

zeU

Remark 3.4.2 1. We required € A since this is equivalent to having AN U # @ for every
neighborhood U of z by Lemma 2.7.3.

2. Note that the oscillation is defined for every point in A. If A is non-closed, this includes some
points where f itself is not defined! This will be put to good use in the next section. O

Lemma 3.4.3 Let (X,7),(Y,d), A, f as in Definition 3.4.1. Then

(i) For x € A we have osc(f,x) =0 if and only if for every e > 0 there is an open neighborhood U
of v such thaty € ANU = d(f(x), f(y)) <e.

(1) The set By = {x € A | osc(f,r) =0} is a Gs-set in A.

Proof. (i) The statement osc(f,xz) = 0 clearly is equivalent to saying that for every € > 0 we can
find an open neighborhood U of z such that diam(f(ANU)) < e. Since x € A, this is equivalent to
d(f(x), f(y)) < e for every y € ANU.

(ii) Defining B. = {x € A | osc(f,x) < e}, where ¢ > 0, we have By = (°2, Bi/,. Now
osc(f,z) < € is equivalent to existence of an open neighborhood U of x with diam(f(ANU)) < e.
Thus

B. = {zcA|FU ecr:xecU, dam(f(ANU)) <&}
= An{reX | er:2cU, diam(f(ANU)) <e}
— ZQU{UET | diam(f(ANU)) < e},

which is open in A. (In the second and third line one may worry about U’s such that U N A = 0,
but they don’t matter since they also satisfy U N A = (.) Thus By is Gs in A. |

Remark 3.4.4 We cannot hope to prove that By always is G5 in X. If this was true, then taking
A C X closed and a continuous f: A — Y (e.g. f constant), we would conclude that A = By is Gs.
But in general topological spaces it is not true that every closed set is Gy. O

Definition 3.4.5 If the equivalent conditions in (i) are satisfied, we say f is continuous at x, and
x is called a point of continuity of f. (This notion will later be generalized to the case where also'Y
is a topological space, cf. Ezxercise 5.2.1.)

Proposition 3.4.6 Let (X, 7) be a topological space, (Y, d) a metric space and f : X — Y a function.
Then the set of points of continuity of f is a Gs-set.

Proof. Considering Lemma 3.4.3 with A = X, we have By C A = A, so that by (i) By coincides with
the set of continuity points of f, and by (ii) By is Gs in A = X. [

Combining this with Corollary 3.3.14, we see that there is no function f : R — R that has Q as
its set of continuity points. But () and R\Q are G5, and indeed:

Exercise 3.4.7 (i) Let fi : R — R be given by f; = xo (i.e. f(z) = 1for x € Q and = 0
otherwise). Prove that f; is nowhere continuous.
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(ii) Define fo : R — R by fo(z) = 0 for x € R\Q. For z € Q, put fy(z) = 1/n, where z = m/n
with n € N and m, n relatively prime. Prove that the set of continuity points of fy is R\Q.

One may ask whether the converse of Proposition 3.4.6 is true, in the sense that for every Gs-set
Z C X there is a function f : X — Y having Z as its set of continuity points. In this generality
this is not true: If {z} C X is clopen then every f : X — Y that is continuous on X\{z} actually is
continuous on X. Thus X\{z} is not the continuity set of any function.

Proposition 3.4.8 If X is a topological space containing two disjoint dense subsets S,T" then for
every Gs-set Z C X there is a function f: X — R whose set of continuity equals Z .

Proof. Let Z C X be Gy, thus Z = (_, U, with U; open. For x € Z, put f(z) =0. If v & Z, let
n(z) =min{n | x ¢ U,} and define f(z) = 1/n(x) if z € S and f(x) = —1/n(z) if z &€ S. Now it is
not hard to check that f is continuous precisely on Z. |

3.4.2 Extending continuous functions between metric spaces

Definition 3.4.9 Let X,Y be metric spaces, A C X and f: A —Y a continuous function. If
ACBCX, feC(B)Y) and flA=f

then f 15 called an extension of f.

(Once we define continuous functions between topological spaces, the above definition will obvi-
ously generalize.) In this section we construct extensions of f : X O A — Y under the assumption
that X,Y are metric spaces with Y complete.

Proposition 3.4.10 Let (X,d), (Y,d') be metric spaces with (Y,d) complete, AC X and f : A=Y
continuous. Then

(i) By defined as in Lemma 3.4.5(ii) satisfies A C By C A and is Gs in X.

(ii) Forx € By the set( ;o f(AN B(x,6)) CY contains exactly one point. This defines a function
f(z) By =Y.

(iii) f1A=F.

(iv) J?(:E) : By =Y is continuous.
Proof. (i) By C A holds by definition, and A C B ¢ follows from continuity of f on A and Lemma
3.4.3(1). By Lemma 3.4.3(ii) By is G in A, thus also in X since A is G5 by Exercise 3.3.12.

(ii) Let « € By. The sets C,, = f(AN B(z,1/n)) C Y are non-empty, closed and decreasing
(Y D C; D Cy D ---). The assumption x € By, i.e. osc(f,z) = 0, implies diam(C,,) — 0. Since
(Y, d') is complete, Cantor’s Intersection Theorem (Exercise 3.1.9) applies.

(iii) If z € A then f(z) € ;oo S(AN B(x,0)), implying f(z) = f().

(iv) Now let x € By and € > 0. As noted before, there is a 6 > 0 such that diam(f(A N
B(z,9))) <e. For y € B(z,9), let ¢ =6 —d(z,y) > 0. Then B(x,d") U B(y,d") C B(z,d), implying
f(ANB(z,0") U f(AN B(y,d")) C f(AN B(x,6)). By definition of ]/”\, f(a:) and f(y) are contained
in the two sets on the left hand side. Thus d’(f(:v),f(y)) < diam(f(AN B(x,6))) < e, proving
continuity of f |
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Remark 3.4.11 If A is closed then By = A, so that the Proposition becomes empty. But if A C X
is not G5 (and thus also not closed by Exercise 3.3.12) we necessarily have By 2 A, implying that
every f € C(A,Y) has a proper extension! Proposition 3.3.13 provides such sets, e.g. any countable
dense subset of R”. O

Definition 3.4.12 If (X,d), (Y,d') are metric spaces, then f : X — Y is uniformly continuous if
for every € > 0 there is 6 > 0 such that d(z,y) < 6 = d'(f(x), f(y)) < e.

The following corollary (which could also be proven directly) will have many uses:

Corollary 3.4.13 Let (X,d),(Y,d") be metric spaces with Y complete, let A C X and f: (A, d) —
(Y, d") uniformly continuous. Then f has a uniformly continuous extension f A=Y,

Proof. Uniform continuity of f implies osc(f,z) = 0 for all x € A, thus By = A. Now apply

Proposition 3.4.10. Reviewing the proof of continuity given there, we also see that also f A=Y
is uniformly continuous. [ |

Remark 3.4.14 In particular, every uniformly continuous f : (X,d) — (Y,d'), where (Y,d') is
complete, has a unique extension f to the completion (X d) of (X,d). (One can show that the
completion is characterized by this fact.) O

Theorem 3.4.15 (Lavrentiev) © Let (X,d), (X', d’) be complete metric spaces, A C X, A" C X'
and f: A— A a homeomorphism. Then there are Gs-sets B, B’ such that AC BC A, A CB CA
and a homeomorphism f : B — B’ extending f.

Exercise 3.4.16 Prove Lavrentiev’s theorem. Hint: Use Proposition 3.4.10 to obtain Gs-sets C, C’
such that A C C C A, A’CC’CA’andmapsf C =Y, f- 1'C’—>Xextend1ngff . Then

put B=CnN f on, B=0'nf- F1 (C) and prove that f | B and ]7*\1 | B" are mutually inverse.

3.4.3 More on complete metrizability

The following proposition is usually derived from Lavrentiev’s Theorem 3.4.15, but doing so obscures
the simplicity of the underlying idea. We prefer to give a direct proof.

Proposition 3.4.17 If (X,d) is a metric space and Y C X admits a complete metric d' such that
d ~dlY (i.e. (Y,d) is completely metrizable) then Y C X is Gs.

Proof. Let d’ be a complete metric on Y such that d ~ d [ Y. By Exercise 2.2.13(i)<(iii), the
maps [ =idy : (Y,d) — (YV,d') and g = idy : (Y,d') — (Y, d) are continuous and mutually inverse,
in particular g o f = idy. Since (Y, d’) is complete, applying Proposition 3.4.10 to the situation
[ (X,d) 2 (Y,d) EN (Y,d') gives us a Gs-set B such that Y C B C Y (where the closure is in
X w.r.t. the metric d) and a continuous extension f : (B,d) — (Y,d’) of f. The composite map
(B,d) EN (Y,d') % (Y,d) is continuous and its restriction to Y C B is the identity map of Y. Since
Y is d-dense in B, it follows by continuity that g o f is the identity map of B. This implies that

f : B — Y is injective, but since f : Y — Y already was surjective and f extends f to B D Y, it
follows that B =Y. By construction, B C X is Gy, thus the claim follows. [ |

6Mikhail Alekseevich Lavrent(i)ev (1900-1980), Russian mathematician.
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Proposition 3.4.18 If (X,d) is a complete metric space andY C X is Gg, then (Y, d) is completely
metrizable.

Proof. Let {Us}sen be open sets such that Y = [, U,. In view of Exercise 2.1.20, each of the functions
y — dist(y, X\Us) is continuous and vanishes if and only if y is in the closed set X\Us, which is
impossible for y € Y. For y1,4, € Y = (), Us define

To see that this is a metric on Y it suffices to note that d is a metric, that each summand on
the right is a pseudometric and that the sum converges for all y1,y2 € Y. If {y,} is a sequence
in Y and d(y,,y) — 0 where y € Y, then each of the functions (dist(y;, X\Us))™' converges to
(dist(y, X\Us)) ™!, thus d'(y,,y) — 0. Now assume that the sequence {y,} in Y is Cauchy w.r.t. .
In view of d < d' it is Cauchy with respect to d, which is complete, thus {y,} converges to some
x € X. If we can show that x € Y, we have proven that the metric d’ on Y is complete and equivalent
tod|Y.

Let ¢ > 0 and s € N. Then there is N € N such that i, j > N implies d'(z;, z;) < 27%¢ and thus

1 1
dist(yy, X\U,)  dist(ys, X\U,)

d'(y1,y2) = d(y1,v2) + Z 27° min <1,

s=1

1 1

dist(ys, X\U,) _ dist(y;, X\Oy)| =

Thus in particular for ¢ > N we have
dist(y;, X\Us) ™ € [dist(yn, X\Us) ™" — ¢, dist(yn, X\Us) " + €.
If we choose € small enough, this implies
dist(y;, X\Us) > (dist(yn, X\Us) ™t —2)™' > 0.

With § = dist(yn, X\Us) ™' — & > 0 we find y; € C, = {y € X | dist(x, X\Uy) > §} C U,. Note that
Cs C X is closed. Thus for each s we find a closed Cs C U such that the sequence {z;} eventually
lives in Cy. Together with the fact that {y,} converges to z € X, this implies z € C; for all s. Thus
re(),Cs €N,Us =Y, and we are done. [ |

Remark 3.4.19 Alternatively, one can prove this result for open Y C X so that the index s disap-
pears, and then deduce the result for Gs-sets using Exercise 6.5.23 and Corollary 6.5.36. However,
we prefer the above proof since it is technically simpler. O

Theorem 3.4.20 For a metric space (X,d) the following are equivalent:

(i) (X) C X" is Gs for every isometry v : (X,d) — (X', d').

(i) u(X) C X' is Gs for every isometry v : (X,d) — (X', d') with (X', d’) complete.
(iii) X is a Gg-subset in its completion ()?, c/l\)

(i) «(X) C X" is Gs for some isometry ¢ : (X,d) — (X', d") with (X', d") complete.

(v) (X,d) is completely metrizable.



3.4. x OSCILLATION. EXTENDING CONTINUOUS FUNCTIONS. COMPLETE METRIZABILITY63

Proof. (1)=(ii)=(iii)=-(iv) is trivial. (iv)=-(v) is Proposition 3.4.18. (v)=-(i) is Proposition 3.4.17,
cf. also Remark 3.1.17.1. [ |

Compare this with Proposition 3.2.7: A metric space (X, d) is complete (resp. completely metriz-
able) if and only if it is universally closed (resp. universally Gy), i.e. (X,d) is closed (resp. Gs) in
every metric space isometrically containing it. (Recall that every closed set in a metric space is Gs.)
We will return to this subject in Section 8.4.2.
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Chapter 4

More basic topology

4.1 Bases. Second countability. Separability

4.1.1 Bases

For (X, d) a metric space, it is easy to see that Y C X is open if and only if Y is a union of open
balls B(z,r). This motivates the following:

Definition 4.1.1 Let (X, 7) be a topological space. A subset B C 7 is called a base for T if every
U € 1 can be expressed as a union of elements of B.
FEquivalently, B is a base if whenever x € U € 1, there is V € B such that x € V C U.

Example 4.1.2 Thus if (X, d) is metric then B = {B(x,r) | v € X,r > 0} is a base for 7,.
Specializing to (R, 74), where d(z,y) = |x — y|, we find that the open intervals

B ={(a,b) | a < b}

form a base for the standard topology 74 of R. O

Example 4.1.3 If (X, 7) is discrete, B = {{z} | # € X'} is a base for 7. Actually this is the unique
smallest base for the discrete topology.

Warning: It is very rare for a topology to have a unique smallest base! But if (X,7) is a
smallest neighborhood space, cf. Section 2.8.3, and each z € X has smallest neighborhood U,, then
{U, | € X} clearly is the unique smallest base for 7. O

If (X,d) is metric, one can find proper subsets of B = {B(z,r) | x € X,r > 0} that are still
bases, e.g. B' = {B(z,1/n) | v € X,n € N}. (Here we use the Archimedian property of R: For every
r > 0 there exists n € N such that L < r.)

This raises the question how small, in terms of cardinality, a base can be. It is clear that a finite
base exists if and only if 7 is finite. The example of the indiscrete topology shows that this can happen
even if the underlying space is infinite. But if X is infinite and 7 is 7} then {X\{z} | v € X} C 7,
thus 7 is infinite and therefore also any base for 7.

Remark 4.1.4 While we will not use it, it should be mentioned that there is a notion dual to that
of a base (for the open sets): If X is a topological space, a family C C P(X) is called a base for the
closed sets if C' = ({D | C C D € C} for each closed set C. One easily checks that D is a base for
the closed sets if and only if {X\D | D € C} is a base for the open sets. O
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4.1.2 Second countability and separability

We will now focus on the countable case, but see Remark 4.1.7.2.

Definition 4.1.5 A space (X, 1) satisfies the second aziom of countability (= is second countable)
if it admits a countable base.

Example 4.1.6 Let 7 be the usual topology on R. Then also
B ={(a,b) | a,b€Q, a < b}

is a base for 7 since for real numbers a < x < b we can find o/, 0/, € Q such that a < a' <z < b < b,
thus x € (a’,V'). We conclude that (R, 7) is second countable, despite the uncountability of R. That
the the same holds for (R", 7.uq) could be proven directly, but it is convenient to introduce some
more formalism. O

Remark 4.1.7 1. Later we will prove that if X is second countable, i.e. admits a countable base,
and V is any base, there is a countable base V, C V. Cf. Proposition 7.1.10.

2. In the serious literature on general topology, e.g. [89], second countability is generalized as
follows: If x is a cardinal number, a topological space (X, 7) is said to have weight w(X) < y if there
is a base for 7 having cardinality < y. One can then study how the weight behaves under various
constructions. We will almost exclusively consider the case y = Ny = #N, which is sufficient for
many applications (like Proposition 8.1.16 and Theorems 8.2.33). O

Exercise 4.1.8 (i) Prove that second countability is hereditary.
(ii) Prove that a discrete subset of a second countable space is (at most) countable.

Exercise 4.1.9 Let (X, 7) be a Ti-space and B a base for 7. Prove:
(i) #X <2#5 =4#P(B).
(ii) If X is second countable then #X < ¢ (where ¢ = 2% = #P(N) = #R).
(iii) (BONUS) Reprove (i) assuming only Tj.
Definition 4.1.10 A space is called separable if it has a countable dense subset.

Unfortunately, some authors (mainly in topological group theory) write ‘separable’ when they
mean second countable, which can create confusion.

Lemma 4.1.11 Let (X, 7) be a topological space.
(i) If B is a base for T then there is a dense subset S C X such that #S < #B.

(i1) If (X, 7) is second countable then it is separable.

Proof. (i) Using the axiom of choice, we choose a point zy € U for each U € B, U # () and define
S={xy |0 #U € B}. Let W C X be open and non-empty. By definition of a base, there is a
non-empty U € B such that U C W. Now zy € U C W, and 2y € S, thus W NS # (). Now Lemma
2.7.9 gives that S C X is dense. By construction we have #S < #B.

(ii) Second countable means that there is a countable base B. Now by (i) there is a countable
dense subset, thus X is separable. [ |

The converse of (ii) is not true in general: For uncountable X, the space (X, Teoin) is separable,
but not second countable, cf. Exercise 4.1.17(iv),(vi).

4



4.1. BASES. SECOND COUNTABILITY. SEPARABILITY 67

Lemma 4.1.12 (i) If a metric space (X,d) is separable, it is second countable.

(ii) Thus for metric spaces, separability < second countability.

Proof. (i) Let Y C X be countable and dense. Let
B={B(y,1/n) |y €Y, neN}

Now #B = #(Y x N) < #(N x N) = #N, thus B is countable. It remains to prove that B is a
base for 745. So let U € 7 be non-empty and x € U. Since U is open, there is an n € N such that
B(z,1/n) C U. Since Y is dense, there is y € Y such that d(z,y) < 1/2n (& = € B(y,1/2n)). If
now z € B(y,1/2n) then d(z, z) < d(z,y)+d(y, z) < 5=+ 5= = . This proves that V := B(y,1/2n),
which clearly is an element of B, is contained in B(z,1/n) and therefore in U. Thus z € V C U,
proving that B is a base for 74. (ii) is now obvious. [

Corollary 4.1.13 R™ with the usual topology is second countable for any n € N.

Proof. Q™ C R™ is dense w.r.t. Toucl, thus R™ is separable. Now apply Lemma 4.1.12. [ |

Many properties considered so far have been hereditary: discreteness, indiscreteness, cofiniteness,
cocountability, metrizability, T}, T and second countability. But connectedness and (the metric
property of) completeness are not hereditary, and the same holds for separability:

Exercise 4.1.14 (i) Given any topological space (X, 7), put X’ = X U {p} (where p & X). Give
a topology 7" on X’ such that 7/ [ X = 7 and {p} C X’ is dense.

(ii) Conclude that separability is not hereditary.

The spaces produced by the above construction are not very nice (irreducible and non-77). A
Hausdorff example will be given in Lemma 6.5.16.
The existence of non-hereditary properties motivates the following:

subspaces have property P. (Obviously, the property of being hereditarily P is hereditary.)

Definition 4.1.15 If a property P is not hereditary, a space is called hereditarily P if it and all its

Exercise 4.1.16 Prove:
(i) Open subspaces of separable spaces are separable. (L.e. separability is ‘open-hereditary’.)
(ii) Second countable spaces are hereditarily separable.
(iii) Separable metric spaces are hereditarily separable.
Exercise 4.1.17 Prove:
(i) Every countable topological space is separable.
(ii) Every countable metric space is second countable.

)

)
(iii) If X is countable then (X, Teofin) and (X, Teoens) are separable.
(iv) If X is uncountable then (X, 7eof,) is separable, but (X, Teoent) is not.
)

(v) If X is countable then (X, 7eon) is second countable.
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(vi) If X is uncountable then (X, Teofin) and (X, Tcoent) are not second countable.

Hint: Let X be uncountable and F a family of finite subsets of X such that every finite subset
of X is contained in some F' € F. Prove that F is uncountable.

Warning: There are topologies (necessarily non-metrizable) on countable sets that are not second
countable! Cf. Exercise 4.3.14.

Besides second countability and separability, there is a third countability property (somewhat
less important):

Definition 4.1.18 A topological space X has the Souslin property" or the countable chain con- dition
(c.c.c.) if every family of mutually disjoint non-empty open subsets of X is countable.

Exercise 4.1.19 Prove:
(i) An uncountable discrete space is not Souslin (thus neither separable nor second countable.)

(ii) If U is a family of mutually disjoint non-empty open subsets of X and S C X is dense then
#U < #S. In particular, every separable space has the Souslin property.

(Thus: second countable = separable = Souslin.)
(iii) Every irreducible space is Souslin.

(iv) The cocountable topology on any set has the Souslin property. (Thus Souslin # separable,
since on an uncountable set Teoent is nOt separable (Exercise 4.1.17(iv)).)

(v) A metrizable space with the Souslin property is separable (thus also second countable).

We summarize the most important properties of the cofinite and cocountable topologies (in the
non-discrete cases):

Space 2nd cnt. | separable | Souslin
Teofin fOr countably infinite X Yes Yes Yes
Teofin fOr uncountable X No Yes Yes
Teoent fOT uncountable X No No Yes

The example of a non-separable space with the Souslin property provided by (iv) is unsatisfactory
since it is irreducible, thus not Hausdorff. See Example 6.5.28 for a better result.

The following exercise continues Exercise 2.7.25:

Exercise 4.1.20 (Cantor-Bendixson Theorem) Let X be a topological space and Y C X. Re-
calling that Y°¢ denotes the condensation points of Y, prove:

(i) If X is second countable then Y\Y* is countable, (Y°¢d)d = Y4 and Y is perfect.
(ii) Every second countable space has a perfect subspace whose complement is countable.

(iii) A second countable scattered space is countable.

Mikhail Yakovlevich Souslin (1894-1919), Russian mathematician. Made important contributions to general topol-
ogy and descriptive set theory, then died from typhus at age 24. (The French transliteration is due to the fact that
S.’s few publications were in French.)
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4.1.3 Spaces from bases

So far, we used bases to study given topological spaces. But bases can also be used to construct
topologies: Given a set X and B C P(X), thus a family of subsets of X, the question arises whether
there is a topology 7 on X such that B is a base for 7. Since 7 must contain B, be closed under
arbitrary unions and we want every U € 7 to be a union of elements of B, we must put

T:{UUi|Iaset, U, eB Viel}. (4.1)

il
In words: 7 C P(X) consists of all unions of sets in 8. Now one has:

Proposition 4.1.21 Let X be a set, B C P(X) and 7 defined as in (4.1). Then 7 is a topology if
and only if

(a) UB = X. (Le. every x € X is contained in some U € B.)
(b) For every U,V € B we have

uvnv=J{weB|wcunv}. (4.2)

(Equivalently, if U,V € B and x € UNV then there is a W € B such that t e W CUNV.)
If this is the case then B is a base for T.

Proof. Tt is clear that () € 7 and that 7, defined by (4.1), is closed under arbitrary unions. Further-
more, X € 7 is equivalent to (a). Thus assume (a) holds. It remains to show that (b) is equivalent to
7 being a topology. Assume the latter is the case, and let U,V € B. Then U,V € 7, thus UNV € 7,
thus U NV is a union of elements of B, thus also (4.2) holds.

As to the converse, assume (4.2) holds for all U,V € B. Assume U,V € 7, thus U = J,U;,V =
U; V; with certain U;, V; € B. Now

vnv=Juyn(Jv) =Juinvy)=UJweB| W cu,nV;},
i j irj ij
thus U NV is a union of elements of B, and therefore in 7. Thus U,V € 7 = U NV € 7, proving
that 7 is a topology. [ |

The following is a first example of the use of the lemma to construct exotic topologies. For others,
see the exercises below.

Example 4.1.22 Let X = R and B = {[a,b) | a < b}. (Notice that this is NOT a base for the
metric topology 74 since [a,b) is not in 74.) It is clear that the union over B equals R. Now, if
e = max(a, c) and f = min(b,d) then

woniea={ 3y 127}

which either empty or in B. Thus B is the base of a topology 7y, called the Sorgenfrey topology?,
whose elements clearly are of the form [ J,[a;, ;). Now (IR, 7s) is called the Sorgenfrey line. O

2 A much more efficient way of stating this is 7 = {{J F | F C B}, cf. Defininition/Proposition A.1.1, but for unclear
reasons this notation seems to be unpopular.
3Robert Sorgenfrey (1915-1995), American mathematician.
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Exercise 4.1.23 Prove that the Sorgenfrey topology 7g is finer than the Euclidean topology Teua
on R and deduce that 7¢ is Hausdorff.

Example 4.1.24 Let (X, 7) be a topological space. Let B, C 7 be the family of regular open sets,
cf. Exercise 2.6.14. Since X is regular open (being clopen) and the intersection of two regular open
sets is regular, by Proposition 4.1.21 there is a topology 7, having B, as a base. It is clear that
7, C 7, thus 7, is coarser than 7. The space (X, 7,) is called the semiregularization of (X, 7). And
(X, 1) is called semiregular if 7, = 7, i.e. every open set is a union of regular open sets. O

Exercise 4.1.25 (Infinitude of primes) Let N = {1,2,3,...} (thus 0 ¢ N !l). Fora € Z, b € N
we define

Nyp=a+bZ={a+bn|neZ} CZL.
(i) Prove: Nyp={c€Z|c—a=0 (modb)} ={ceZ]|bdivides c — a}.
(ii) Prove: If ¢ € N, then N.jp = Ngp.
(iii) Prove that B = {N,; | a € Z, b € N} is a base for a topology 7 on Z.
(iv) Prove that each U € 7 with U # () is infinite.
(v) Prove that each N, is clopen.

(vi) Let P ={2,3,5,...} be the set of prime numbers. Prove that

Z\{1,-1} = No.

peP

(vii) Prove that P is infinite, using only the facts proven above.’

The topology constructed in the preceding exercise is not Hausdorff. A slight modification gives
a Hausdorff topology:

Exercise 4.1.26 Let N = {1,2,3,...} and Ny = NU {0}. Let B the family of subsets of N of the
form U, = {a +nb | n € Ny}, where a,b € N are relatively prime (thus (a,b) = ged(a,b) = 1).
Prove:

(i) B is a base for a topology 7 on N.

(ii) 7 is Hausdorff.

(iii) 7 is connected.

Remark: We thus have a countably infinite space whose topology is Hausdorff and connected! (Recall
that finite 77 spaces are discrete, thus non-connected.)

4While this exercise really gives a proof of the infinitude of P (due to H. Fiirstenberg, 1955), it seems rather
mystifying. See [50, ] for topology-free elucidations of what ‘really’ is behind the proof.
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4.2 Subbases and order topologies

4.2.1 Subbases. Topologies generated by families of subsets

Condition (b) in Proposition 4.1.21 is not always convenient. This motivates the following

Definition 4.2.1 Let (X, 7) be a topological space. A subset S C 7 is called a subbase for T if taking
all finite intersections of elements of S one obtains a base B for 7. (The intersection (0 over an
empty family of subsets of X is interpreted as the ambient space X .)°

Lemma 4.2.2 Let X be a set and S C P(X). Then there is a unique topology T such that S is a
subbase for T.

Proof. Let B C P(X) be the set of all finite intersections of elements of S. Since the empty intersection
(0 is interpreted as X, we have X € B. Clearly B is closed w.r.t. finite intersections. Thus B satisfies
(a) and (b) in Proposition 4.1.21. |

Here is a different perspective at the topology obtained from &:

Definition 4.2.3 Let X be a set and U C P(X) arbitrary. The topology 1, on X generated by U is
the intersection of all topologies on X that contain U, i.e. iy = ({T 2 U a topology on X}.

Remark 4.2.4 1. By Exercise 2.3.6, any intersection of topologies on X is a topology on X. Clearly,
the above 7, is the smallest topology on X that contains ¢4. (But one should not take this as the
definition of 7, without proving that a smallest topology containing U exists, which is what we have
done above.) Furthermore, the topology generated by & C P(X) precisely consists of all unions
of finite intersections of elements of &. Thus every § C P(X) is a subbase for the topology on X
generated by S.

2. If X is a set and F is an infinite family of subsets of X (thus X is infinite) then the family F’
of all finite intersections of elements of F has the same cardinality as F. Thus the spaces admitting
a countable subbase are precisely the second countable ones. O

4.2.2 Order topologies
Definition 4.2.5 Let (X, <) be a totally ordered set with #X > 2. Forx € X, let

Lz)={ye X |y<z}, R@)={yeX|y>a}

and
S={L(z) | v € X} U{R(z) | x € X}. (4.3)

S is a subbase for a topology < on X, called the order topology, and (X, 7<) is called a (totally)
ordered topological space.

Remark 4.2.6 1. For R with the usual ordering, 7< is the usual (metric) topology since the latter
has the above § as a subbase.

SIf F is the empty family of sets then [F should in principle denote the ‘all-set’ that contains “everything”.
Such a set does not exist since its existence, together with the Axiom of Separation, would lead to Russel’s paradox.
Thus () makes sense only in the context of some ambient set. Speaking formally, for every set X there is a map
Ix:P(P(X)) > PX), F»{zxeX|SeF=2zecS5} Now we have Ix()) = X, and all is well.
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2. Since L(x) N L(y) = L(min(z,y)) and similarly for R,, every finite intersection of elements of
S is of one of the following forms: 0, L(x), R(x), L(b) N R(a). The last one is also denoted (a, b).

3. If (X, <) has a largest or smallest element, the open intervals alone will fail to be the base for
a topology on X. But even B’ = {X} U {(a,b) | a,b € X,a < b}, which is a base, will not produce
7<. (Why?)

4. If (X1, <4), (X3, <2) are totally ordered sets then an order-preserving bijection o : X; — Xo
is called an order isomorphism. It is then clear that the order topologies 71, 5 are related by 7 =
a(r) ={a(U) | U € 71}. Once we define homeomorphisms for topological spaces (Definition 5.2.19,
it will be evident that « is one. O

Exercise 4.2.7 Let (X, <) be a totally ordered set with #X > 2. Prove that the order topology
7<, cf. Definition 4.2.5, is Hausdorff (73).
Hint: For z < y, proceed differently according to {z | z < z <y} = 0 or # 0.

Definition 4.2.8 Let (X, <), (Y, <) be totally ordered sets. Then the lexicographic ordering on X XY
is giwen by (z,y) < (/,y) cr<2'V(e=2 Ny <y).

Exercise 4.2.9 Consider the lexicographic order on L = Z x [0,1) (where Z and [0,1) have the
natural orders). Prove that the map f : L — R,(n,7) — n + r is an order-preserving bijection.
Deduce that the order topology 7< on L and the usual topology 7 on R satisfy 7 = {f(U) | U € 7<}.
(‘An order isomorphism induces a homeomorphism.”) This makes rigorous the idea that gluing
countably many copies of [0, 1) next to each other gives the real line R.

It is quite natural to ask whether we can replace Z in the above construction by an uncountable
totally ordered set and in this way obtain a ‘line’ that is ‘longer’ than R. Let (X, <) be totally
ordered with X uncountable, and equip L = X x [0, 1) with the lexicographic order. Like all ordered
spaces, (L, 7<) is Hausdorff. The open intervals {((z,0), (x,1)) | € X} give an uncountable family
of mutually disjoint non-empty open sets. Thus (L, 7<) is not Souslin, thus also neither second-
countable nor separable, whereas [0, 00) has all these properties. But in order to interpret L as a
‘line’, we would want (a,b) to be order isomorphic to an open interval in R for any a,b € L,a < b.
There is no reason for this to be true unless we put restrictions on (X, <).

It turns out to advantageous to first construct a ‘long’ version of the ray [0,00). Adapting the
above exercise, [0, 00) is seen to be order isomorphic, thus homeomorphic, to Ny x [0, 1) equipped with
the lexicographic ordering. The crucial observation is that the natural numbers Ny are well-ordered.

Definition 4.2.10 Let (X, <) be a well-ordered set such that X is uncountable but L(x) = {y €
X | y <z} is countable for each x. (Existence of such a set and uniqueness up to order isomorphism
are proven in Proposition A.3.52.) We call its smallest element 0. Now the long ray is LR = X x[0,1)
equipped with the lexicographic order, [0,1) having the usual order. We may also write 0 for the
smallest element (0,0) of LR. The open long ray is LR\{0}.

Proposition 4.2.11 (i) For every 0 < a € LR there is an order isomorphism [0,a) — [0,1) C R.
(ii) For every a,b € LR,a < b, there is an order isomorphism (a,b) — (0,1) ¥ R

Proof. Deducing (ii) from (i) is immediate: If @ = 0 then (i) gives an order isomorphism 3 : [0,b) —
[0,1). Restricting 8 to (0,b) gives an order isomorphism (0,b) = (0,1). If @ > 0, then o’ = fB(a) €
(0,1), and the restriction of 5 to (a,b) C LR is an order isomorphism to (a’,1), which in turn is
order isomorphic to (0, 1).
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(i) Define Y = {y € X | L(y) is order isomorphic to [0,1) C R} C X. The Transfinite Induction
Lemma A.3.28 will imply ¥ = X\{(0,0)}, thus our claim, once we prove that L(y) C Y implies
y € Y. Let thus y = (x,t) > (0,0) be such that L(y) C Y. If t > 0 then (z,0) < (x,t), thus
(x,0) € Y, so that L((x,0)) is order-isomorphic to [0,1). Then there also is an order isomorphism
a : L((z,0)) — [0,1/2). Combining this with an order isomorphism f : [(z,0), (z,t)) — [1/2,1),
whose existence is obvious, we have an order isomorphism L((z,t)) = [0,1), so that (z,t) € Y.

We now turn to the case t = 0, thus x # 0. Assume first that x has an immediate predecessor,
i.e. the set L(z) C X has a largest element z’. Since (2/,0) < (z,0), by assumption we have an
order isomorphism [(0,0), (z/,0)) — [0,1). Since x is the successor 2’ + 1 of 2/, we have an order
isomorphism [(2,0), (x,0)) — [0,1). Pasting these order isomorphisms after each other, we obtain
an order isomorphism [(0,0), (z,0)) — [0, 1), thus (z,0) € Y.

It remains to consider those z € X without immediate predecessor. Then L(x) must be infinite,
thus there exist strictly increasing sequences {x,} C L(z). Given such a sequence, we clearly have
sup{z, | n € N} <z, and also 2" = supy,, , sup{z,} < x, where the first sup is over the set of strictly
increasing sequences in L(z). Now 2’ < x would mean that |2/, x) is infinite (otherwise = would have
an immediate predecessor), allowing us to construct a new strictly increasing sequence {z, } in [2/, x),
contradicting the definition of 2. Thus supy, ,sup{z,} = z. Since L(r) is countable, a diagonal
argument allows us to construct a strictly increasing sequence {z,} C L(x) such that sup{z,} = x.

Clearly we have z, < =z, thus (z,,0) < (x,0), for all n. Thus there is an order isomor-
phism [(0,0), (z1,0)) — [0,1/2), and as in the proof of (ii)=(i), there is an order isomorphism
[(21,0), (22,0)) — [1/2,3/4). Continuing in this way we construct a sequence of order isomorphisms
[(2,,0), (Tps1,0)) = [1 =27 1 —2-"+)) for all n € N. Since the definition of the sequence {z,}
gives (7 o[%n, Tnt1) = [0,2) (xo = 0), placing these order isomorphisms after each other we obtain
an order isomorphism [(0,0), (x,0)) — [0, 1), so that once again (z,0) € Y. |

Note that it does not at all follow that the (open) long ray is order isomorphic to [0,1) C R (resp.
(0,1)), for the simple reason that R and all its subspaces are second countable, while the (open) long
ray is not.

Exercise 4.2.12 (i) If (X, <) is an ordered set and Y C X, prove 1<, C (7<)}y-
(ii) Find an example where 7<, # (7<)}y-
(iii) Prove that (7<)y is not an order topology when it is different from 7 .
Remark 4.2.13 Let (X, <) be totally ordered. Defining R, = {y € X | y > 2} and
S={L,| e X}U{R, |z e X},

S is a subbase for a topology 7, which for X = R just is the Sorgenfrey topology 75. The latter
clearly is an example for the following definition. O

Definition 4.2.14 Let (X, <) be totally ordered. A subset Y C X is called
e upward closed if y € Y implies R(y) C Y.

o downward closed if y € Y implies L(y) C Y.

o convex if x,y € Y implies z € Y whenever x < z <y, equivalently R(x) N L(y) C Y.
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Theorem 4.2.15 Let (X, <) be a totally ordered set and T a topology on X. Then the following are
equivalent:

(i) T has a base consisting of convez sets.
(ii) T has a subbase whose elements are upwards or downwards closed.

(iii) There is a set X DO X and a total order § on X that restricts to < on X and such that
(2) 1 X = 7. (Thus (X, <,T) embeds into an ordered topological space.)

Under these (equivalent) conditions, (X, <,T) is called a generalized ordered space.

Proof. (iii)=-(i) The elements of the subbase S (4.3) definining the order topology on X are clearly
convex. We know that {SN X | S € S} is a subbase for the induced topology (72) [ X on X. It

remains to show that these sets are convex in X. Let S € §, and let x <y < zwith z,y € SNX
and z € X. Then convexity of S (in X) implies z € S, thus z € SN X. Thus S is convex.
(i)=-(ii) Let B be a base for 7 consisting of convex sets. For B € B define

L(B)=BU|JL(z), R(B)=BU|]JR(@).

zeB zeB

Then L(B) (resp. R(B)) is manifestly downwards (resp. upwards) closed. We now claim that S =
Uges{L(B), R(B)} is a subbase for the topology 7. We first claim that {L(B) |B € B} is totally
ordered under inclusion and similarly for the R(B). Assume L(B’) ¢ L(B), thus there is z €
L(B")\L(B). Since x ¢ L(B), and L(B) is downward closed, this implies that no y € L(B) satisfies
y > z. In other words, L(B) C L(x) C L(B’), proving the claim. This implies that the set B’ of
finite intersections of elements of S equals |y z{L(B), R(B)} U{L(B)N R(B') | B, B" € V}.

Kokoskook ok sk sk ok ok kokokokokk

4.3 Neighborhood bases. First countability

Definition 4.3.1 Let (X, 7) be a topological space and x € X. A family N C P(X) is called a
(open) neighborhood base of x if

(i) Every N € N is a (open) neighborhood of x. (I.e. N C N, resp. N CU,.)
(ii) For every neighborhood M € N, of z there is an N € N such that N C M.

Exercise 4.3.2 Let (X, 7) be a topological space. For every z € X, let V, be an open neighborhood
base for x. Prove that B =], V, is a base for 7.

Lemma 4.3.3 For a topological space (X, 1), the following are equivalent:
(i) Every x € X has a countable neighborhood base N .

(i) Every x € X has a countable open neighborhood base U.

(iii) Every x € X has an open neighborhood base V = {V;}ien such that Vi D Vo D -+ -
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Proof. 1t is obvious that (iii)=(ii)=-(i).

(i)=-(ii) For every N € N there exists, by definition of a neighborhood, an open Uy such that
r €Uy CN. Nowld ={Uy | N € N'} is a countable open neighborhood base for z.

(ii)=-(iii) Let U be a countable open neighborhood base for x. Choose a bijection N — U, i — U,
and define V; = m2:1 Uk. Then clearly V; D V4, D --- and V; C U; Vi implies that V = {V; };en is an
open neighborhood base for z. (It should be clear how to modify this should ¢/ happen to be finite.)
|

Definition 4.3.4 A topological space satisfying the equivalent statements in Lemma 4.3.3 is first
countable or satisfies the first axiom of countability.

Exercise 4.3.5 Prove that first countability is hereditary.

Lemma 4.3.6 FEvery metric space has the first countability property.

Proof. If U is open and = € X, there is an n € N such that x € B(z,1/n) C U. Thus for every
re X,

N ={B(z,1/n) | n € N}
is a countable open neighborhood base of x. [
Many results that are true for metric spaces actually only use the first countability. We will soon

see this in Propositions 5.1.7 and 5.1.13. But see Remark 5.2.28.

Lemma 4.3.7 The second countability property implies the first.

Proof. Let B be a countable base for the topology and let x € X. We claim that
N={UeB|xzeU}

which clearly is countable, is a neighborhood base for z. To see this, let x € V € 7. By definition of
a base, there is a U € B such that x € U C V. With the definition of N, we have U € N, thus NV is

an open neighborhood base for x. [ |

For Hausdorff spaces, the following is an improvement of Exercise 4.1.9 (since second countability
implies both first countability and separability, but not conversely):

Exercise 4.3.8 Let X be a separable and first countable Hausdorff space. Prove that #X < .

Remark 4.3.9 Exercises 4.1.9 and 4.3.8 are just the beginning of the theory of ‘cardinal functions’,
on which much research has been done in recent decades. Cf. [130, Sections a03, a04] and [185,
Chapters 1,2]. a

Remark 4.3.10 Figure 4.1 summarizes the implications proven so far.

It is straightforward to check that these implications rule out 9 of the 2* = 16 conceivable
combinations of the first and second countability properties, separability and metrizability. All
others are actually possible, as the following table shows:
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2nd countable ™ separable
Ist countable | metrizable

Figure 4.1: Implications between countability axioms

1st cnt. | 2nd cnt. | separable | metrizable | Example
0 0 0 0 ({0, 1}, Taise)™ with #£N > ¢ = #R
0 0 1 0 (X, Teofin) With X uncountable
1 0 0 0 [0, 1]? with lexicogr. order topology
1 0 0 1 (X, Taise) or £2(X) for X uncountable
1 0 1 0 Sorgenfrey line
1 1 1 0 (X, Tindisc) with #X 2 2
1 1 1 1 finite discrete space

Most of these examples will be discussed below. (The first example uses the product topology, in
particular Exercises 6.5.15, 6.5.24 and Corollary 6.5.36. The proof of non-metrizability of [0, 1] with
the lexicographical order topology will only be given in Remark 7.7.28.) O

Exercise 4.3.11 Consider X = [0,1] x [0, 1] equipped with the order topology coming from the
lexicographic order. Prove that X is first countable, but does not have the Souslin property (and
thus is neither second countable nor separable).

Exercise 4.3.12 Prove that the Sorgenfrey line (R, 7g) is

(i) separable,

(i) first countable,

(iii) not second countable,
)

(iv) not metrizable.

Exercise 4.3.13 Prove that the cofinite and cocountable topologies on an uncountable set are not
first countable.

In the preceding exercise, the underlying space was uncountable. But there are also topologies
on countable sets that not first countable, thus also not second countable! An example is provided
in the next exercise:

Exercise 4.3.14 (Arens-Fort space) ° Let X = Ny x Ny, where Ny = {0,1,2,...}. Define 7 C
P(X) as follows: U C X is in 7 if and only if U satisfies one of the following conditions:

o (0,0) ¢ U.

e (0,0) € U and U, :== {n € Ny | (m,n) ¢ U} is infinite for at most finitely many m € N.
(Thus: At most finitely many columns of U lack infinitely many elements of X.)

6Richard Friederich Arens (1919-2000): German-American topologist and functional analyst. Marion Kirkland
Fort, Jr. (1921-1964): American general topologist.
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(i) Prove that 7 is a topology.
(ii) Prove that 7 is Hausdorff (75).

(iii) Prove that (0,0) € X cannot have a countable neighborhood base. Hint: Given open neigh-
borhoods {U;};en of (0,0), construct an open V' 3 (0,0) that contains none of the U;.

(iv) Conclude that (X, 7) has neither the first nor the second countability property.

(v) Conclude that countability of X does not imply that (X, 7) is first countable, nor vice versa.

Exercise 4.3.15 (The Niemytzki plane) " Let B,(x,y) C R? be the open ball around (z,y) with
radius r. Define

L = {(#,0)| > €eR},

Y = {(x,y) €eR* | y >0},

X = YUL={(z,y) €eR* |y >0}
For (z,y) € X, r > 0 define

I B B, (z,y)NY if y>0
wnr =By r) U{(5,0)) i y=0

(4.4)
(i) Make a drawing where L,Y, X and U, ), (with y > 0 and y = 0) can be understood.
ii) Show that B = {U., | (x,y) € X, r > 0} is a base for a topology 7 on X.

(z.y),

)
)
(iii) Show that 7Y is the standard topology, whereas the subspace (L, 7 [ L) is discrete.
(iv) Show that (X, 7) is first countable, but not second countable.

)

(v) With (iii) it follows that A = {(z,0) | z € R\Q} and B = {(x,0) | z € Q} are disjoint closed
subsets of (X,7). Show that there are no U,V € 7 such that A C U, BCV, UNV = 0.
(Later we will say: (X, 7) is not normal (7}).) Hint: Baire’s theorem.

"Viktor Vladimirovich Nemytskii (1900-1967). Russian mathematician.
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Chapter 5

Convergence and continuity

In general topology it is easy to forget that the initial aim of (general) topology was to provide a
general framework for the study of convergence and continuity. The author is aware of a book in
which these subjects appear on pages 254 and 175, respectively! (Admittedly, there are situations,
mostly in algebra, where one studies certain topologies without being interested in convergence or
continuity: The Krull topology on Galois groups, the Zariski topology on algebraic varieties, etc.)
We therefore now turn to the first of these subjects, convergence.

5.1 Convergence in topological spaces: Sequences, nets, fil-
ters

5.1.1 Sequences

The Definition 2.1.14 of sequences obviously applies to topological spaces. But we need a new notion
of convergence:

Definition 5.1.1 Let (X, 7) be a topological space, {x,}nen a sequence in X and z € X. We say
that x,, converges to z or z is a limit of x, if for every (open) neighborhood U of z there is an N € N
such thatn > N = z, € U. In this case we write x,, — z.

Remark 5.1.2 1. z,, — 2z is equivalent to: For every neighborhood U of z, x,, € U for all but
finitely many n.

2. It does not matter whether we include ‘open’ in the definition.

3. In order to show z, — z it suffices to verify the condition in Definition 5.1.1 for the elements
of any neighborhood base for z.

4. If (X, d) is a metric space and 7 = 7,4 then convergence z,, — z in the metric (Definition 2.1.15)
and topological (Definition 5.1.1) senses are equivalent since { B(z,¢) | € > 0} is a neighborhood base
for z w.r.t. 74.

5. The notation z = lim,,_, &, suggests that there is a unique limit, which however is not always
true! We will therefore only use this notation when uniqueness is known to hold, cf. Proposition
5.1.4, and write x,, — z otherwise. O

Exercise 5.1.3 Prove:

(i) If (X, 7) is indiscrete then any sequence {z,} in X converges to any z € X.

79
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(i) If (X, 7) is discrete then a sequence {z,} in X converges to z € X if and only if there is N € N
such that n > N = z,, = z. (Le. {x,} is ‘eventually constant’.)

Proposition 5.1.4 If (X, 7) is a Hausdorff space then every sequence has at most one limit. (Ie.,
if xt, =y and x, — z then y = z.)

Proof. Assume xz,, — y and z,, — z, where y # z. Since X is Ty we can find U,V € 7 such that
y € Uze€ Vand UNV = (. Now, there are N,M € N such that n > N = z, € U and
n>M = x, €V. Thus if n > max(N, M) then x, € U NV, but this contradicts U NV = (). [ |

Lemma 5.1.5 If {y),}nen €Y C X such that y, — x then z €Y.

Proof. As noted above, 3, — x means that every neighborhood U of x contains y,, for infinitely many
n. This obviously implies U NY # () for every neighborhood U of z, and by Lemma 2.7.3 this is
equivalent to x € Y. [ |

Question: Is every z € Y a limit of a sequence {y,} in Y? If X is metrizable, the answer is yes
by Lemma 2.1.16 and Remark 2.7.4.2. But in general it is NO!

Example 5.1.6 Let X be uncountable and 7 the cocountable topology on X. Let Y C X be
uncountable but Y # X. By definition of the cocountable topology, we have Y = X (since the only
closed uncountable subset is X). But if {y;} is a sequence in Y then {y;,99,...} C X is countable,
thus closed. Thus if y; — z then z € {y1,99,...} = {y1,%2,...} CY. Thus no point z € X\Y can be
obtained as limit of a sequence in Y! As the next result shows, this phenomenon is closely related
to the lack of first countability proven in Exercise 4.3.13. (But cf. Remark 5.1.9.2.) O

Proposition 5.1.7 Let (X, 7) satisfy the first countability axiom. Then:
(i) If Vi D Vo D -+ is a shrinking neighborhood base for z € X and x; € V; Yi then z; — z.
(ii) The closure of any Y C X coincides with the set of limits of sequences taking values in Y .

Proof. (i) Let W be any neighborhood of z. Since {V;} is a neighborhood base for z, there is i € N
such that V; C W, thus also V; C W Vj > i due to the shrinking character of the V's. By our choice
of the sequence {x;} we then have j > i = z; € V; CW. Thus z; — z.

(ii) Let z € Y. By Lemma 4.3.3 there is a shrinking open neighborhood base V; D V4 D --- for
z. Lemma 2.7.3 implies V; NY # () for all i € N. Thus for each i, we can choose x; € V; NY (by
countable choice). Thus x; € V; Vi, so that (i) gives z, — z. |

Corollary 5.1.8 A subset Y C X of a first countable space X is closed if and only if {x,}nen C Y
and x, — y implies y € Y.

Remark 5.1.9 1. Since metric spaces are first countable, the proposition shows that Definition
2.4.1 is consistent with the definition of closedness in Lemma 2.1.16.

2. In the literature, e.g. [89], one finds notions of topological spaces that are slightly more
general than the first countable ones: Spaces satisfying the conclusion of Proposition 5.1.7(ii) are
called ‘Fréchet spaces’ (unrelated to the Fréchet spaces of functional analysis), and spaces with the
property in Corollary 5.1.8) are ‘sequential spaces’. Clearly: metrizable = first countable = Fréchet
= sequential. Some of the results that we will prove for first countable spaces hold more generally
for Fréchet or even sequential spaces. But it turns out that even the largest of these classes, that of
sequential spaces, is still very close to metric spaces, cf. Remark 6.4.6. O



5.1. CONVERGENCE IN TOPOLOGICAL SPACES: SEQUENCES, NETS, FILTERS 81

Definition 5.1.10 If{z,} is a sequence in a topological space (X, T), then z € X is called accumula-
tion point of {x,} if for every open neighborhood U of z there are infinitely many n € N such that
x, € U. (Equivalently, there are arbitrarily large n such that z,, € U.)

Every limit of a sequence is an accumulation point, but the converse need not hold: The sequence
{z, = (—=1)"} has £1 as accumulation points, but no limit.

Definition 5.1.11 A subsequence of a sequence {x,} is a sequence of the form {x,, }men, where
1 <ny <ng <---1is a strictly increasing sequence in N.

One easily proves by induction that n; > k for all k.

Lemma 5.1.12 Let {z,} be a sequence in the topological space (X, T). If it has a subsequence {x,, }
converging to z € X then z is an accumulation point of {x,}.

Proof. Let U be an open neighborhood of z. Since the subsequence {z,, } converges to z, there is
an N € N such that m > N = x,, € U. But this implies that there are infinitely many n such that
x, € U, thus z is an accumulation point. [ |

Without further assumptions, it is not true that every accumulation point of a sequence is the
limit of a subsequence! (Cf. Example 7.7.13.) In metric spaces there is no problem, but again first
countability is sufficient:

Proposition 5.1.13 If (X, 1) is first countable then for every accumulation point z of a sequence
{x,} in X there is a subsequence {x,, } converging to z.

Proof. Let z be an accumulation point of the sequence. Let Vi D V5 O --- be a shrinking open
neighborhood base of z as in Lemma 4.3.3(iii). Since z is an accumulation point of {z,}, there
clearly is an mny such that z,, € V;. Since there are infinitely many n such that z,, € V5, we can

find ny > ny such that z,, € V5. Continuing like this, we can obtain n; < ny < ng < --- such that
Ty, € Vi, Ym. Now Proposition 5.1.7(i) gives that z,, oy [ |

Exercise 5.1.14 Let (X, d) be a metric space and {z,} a Cauchy sequence. Assuming that there
is a subsequence {x,, } such that limy_,o z,, = = € X, prove that lim,, . z, = .

Proposition 5.1.15 A normed space V' is complete (Banach) if and only if every absolutely con-
vergent series 220:1 Ty 1V converges.

Proof. = was proven in Lemma 3.1.8.

< Assume that every absolutely convergent series in V' converges, and let {y, }nen be a Cauchy
sequence. We can find (why?) a subsequence {2 }ren = {yn, } such that ||z — 21| < 27% Vk > 2.
Now put zy = 0 and define z, = 2z, — z,_1 for £ > 1. Now

o0 o0 [e.e]
Do llarll =D Nz =zl <l + ) 27F < 0.
k=1 k=1 k=2

Thus ), | x is absolutely convergent, and therefore convergent by the hypothesis. To wit, lim,,_,, Sy,
exists, where S,, = > 7 xp = Y o (2x — 25-1) = 2n. Thus z = limg_o 2 = limy_,o0 Yp, exists,
so that the Cauchy sequence {y,} has a convergent subsequence {y,, }. Now Exercise 5.1.14 gives
lim,, o0 Y = 2. [ |
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5.1.2 Nets

Is there a way to repair the failure of Proposition 5.1.7 in the non-first countable situation? The most
straightforward (but not always the best) solution is provided by nets. The idea is to replace the
index set N by some other set that is allowed to depend on the situation. We also need a substitute
for the ordering of N. It turns out that instead of a total order, the following requirement is sufficient:

Definition 5.1.16 A directed set is a pair (I,<), where I is a set and < is a binary relation on I
that is reflexive and transitive (i.e. a preorder, cf. Definition A.1.8) and satisfies directedness, i.e.
for any 11,10 € I there is a 13 € I such that 13 > 11, t3 > ta.

Definition 5.1.17 A net' in a space X consists of a directed set (I, <) and a map I — X, 1+ z,.
(Usually we will denote the net as {z,},er or just {z,}.)

Remark 5.1.18 1. We follow the common practice of using lower case Greek letters for the elements
of a directed set, but there are exceptions (as in the proof of Proposition 5.1.21).

2. In many situations, the relation < of a directed set will also satisfy antisymmetry and thus be
a partial order. But not being part of the definition, this property will never be used in proofs.

3. Every totally ordered set (I, <) is directed: Given ¢y, € I, put t3 = max(e1, t9). In particular
(N, <) is a directed set, thus every sequence is a net (with I = N).

4. But not every partially ordered set is directed: If X is a set with #X > 2, take [ = P(X)\{X}
and < the inclusion order on I.) O

Definition 5.1.19 (i) If {x,},c; in a net in X and Y C X, we say x, is eventually in' Y if there
exists a tg € I such that > 19 = x, €Y.

(i1) If X is a topological space and y € X, a net {x,},c; converges toy € X if it eventually is in
every (open) neighborhood of y. We then write x, — y.

Remark 5.1.20 There is no point in writing ¢« — oo: The notation x, — y is unambiguous, the
direction being built into the definition of a directed set. O

The next two results shows that nets not only do not share the defect of sequences encountered
in Example 5.1.6, they are also sufficient to test whether a space is Hausdorft:

Proposition 5.1.21 Let (X, 1) be a topological space and Y C X. Then
(i) The closure Y coincides with the set of limits of nets taking values in'Y .
(1) Y is closed if and only if given any net {y,} CY that converges to x € X we have z € Y.

Proof. (i) If {y,}.es is a net with values in Y C X and y, — x, one proves exactly as for sequences
that + € Y. Now let z € Y. We want to construct a net {y,} in Y such that y, — z. Let
I =U,={U €71 |zeU} (the set of open neighborhoods of z). We define a partial order on I by
‘reverse inclusion’; i.e. U <V :& U D V. (Thus the ‘larger’ elements of I w.r.t. < are the smaller
neighborhoods of #!) This clearly is a partial order, and it is directed: If U,V € I then W =U NV
is an open neighborhood of z, thusin I and W CU W CV thus W > U W > V.

INets were introduced in 1922 by the American mathematicians Eliakim H. Moore (1862-1932) and Herman L.
Smith (1892-1950). For this reason, in the older literature one finds the term ‘Moore-Smith convergence’, but this
name has now gone out of fashion.
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Since z € Y, every neighborhood U 3 x satisfies UNY # () by Lemma 2.7.3. Thus we can define
a map I — Y by assigning to each U € I a point yy € U NY. This defines a net in Y indexed by
(1,<). In order to prove that it converges to x, let V' be any (open) neighborhood of . Thus V' € I,
and for every U € I such that U > V| we have U C V and thus zpy € U C V. Thus yy — x.

(ii) By (i), the set Z = {z € X | 3{y,} CY,y, — «} coincides with Y. Thus the second condition
in (ii) is equivalent to Y = Z =Y, thus closedness of Y. |

Proposition 5.1.22 A topological space (X,7) is Hausdorff if and only if no net in X has two
different limits.

Proof. The proof of the implication = is essentially the same as for sequences: If z # y are limits
with disjoint open neighborhoods U, V' provided by Hausdorffness, let ¢y, 15 such that ¢ > 1, = z, € U
and ¢ > 15 = x, € V. Using directedness we find ¢3 such that ¢35 > 11, 13 > 5. Now ¢ > 13 implies
x, € UNV = 0, which is absurd.

Now assume that (X, 7) is not Hausdorff. Thus there are points x # y such that whenever
UV €71 withz € Uy €V we have UNV # . We will construct a net {x,} such that z, — x
and ©, - y. Let I = N, x N,. If (P,Q),(R,S) € I, we say (P,Q) > (R,S) if P C R and
Q@ C S. It is easy to see that this defines a directed partial order. Now define a map I — X as
follows. To every (U, V) € I associate an arbitrary point ) € UNV. This can be done since any
neighborhoods U € N,V € N, satisfy U NV # 0. Now we claim that the net {z (1)} converges
to z and to y. Namely, let A, B be neighborhoods of z and y, respectively. Thus A € N, B € N,
and therefore (A, B) € I. Now whenever (A, B') > (A, B) we have A’ C A and B’ C B and thus
ra.py € AN B C AN B. Thus the net converges to both z and y. [ |

Remark 5.1.23 1. Thus in a Hausdorff space, the notation lim, x, = z is justified. In non-Hausdorff
spaces it should be avoided since it misleadingly suggests uniqueness of limits.

2. If (X, 7) is non-Hausdorff, but first countable, one can combine the ideas of the proofs of
Propositions 5.1.7 and 5.1.22 and construct a sequence that has two different limits.

3. The above proof shows clearly why the condition that (I, <) be directed was imposed. This
property is essential for most proofs involving nets. (Proposition 5.1.21 was an exception).

4. Nets are a straightforward generalization of sequences and easy to use (after getting used
to them). For this reason they are popular with many analysts. Proofs involving convergence of
nets have a somewhat ‘dynamic’ flair if one interprets the index ¢ € I as ‘time’, which is consistent
with the terms ‘eventually’ and ‘frequently’. But some proofs involving nets look quite tautological,
compare Propositions 5.1.21, 5.1.22, 5.2.5. In many situations one might prefer proofs that are more
‘static’ or set-theoretic and therefore avoid nets. One way to do this is using the notion of filters,
briefly touched in the next section. (Most set-theoretic topologists seem to prefer filters over nets.)
But often one can find proofs that avoid both filters and nets, as in our first proof of Tychonov’s
theorem in Section 7.5.2. (But we will also give a proof using filters and two that use nets!) O

Exercise 5.1.24 Show by example that the analogue of Exercise 2.1.21 is false for nets.

Exercise 5.1.25 Let 71, 75 be topologies on the set X. Prove that 7y is finer than 75 if and only if
for every net {z,} in X and every x € X with x, — 2 we have r, — z.
Hint: For < use Proposition 5.1.21.

Example 5.1.26 (Unordered sums) Let f : S — C be a function where S is an arbitrary set.
We want to make sense of ¢ f(s). Let F be the family of finite subsets of S. Partially ordered
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by (ordinary!) inclusion of sets, F clearly is a directed set. Thus the map F — C defined by
Fi ) cpf(s)isanet. If limp) . f(s) = A exists (in the sense of Definition 5.1.19) we write

2ses [s) = A.

Exercise 5.1.27 Prove the following statements:

(i) If f(s) > 0 Vs then suppcr Y. p f(5) always exists in [0, 00], and Y ¢ f(s) exists if and only
if the supremum is finite, in which case sum and supremum coincide.

(ii) If f(s) > 0 Vs and suppcr D cp f(5) < 00 then {s € S| f(s) # 0} is at most countable.

(i) TF Y5 17 (5)] < 00 then 32, f(s) exists and | 3,5 ()] < Yoes | £(5)].

It may be surprising (at first sight) that the converse of (iii) also holds:

Proposition 5.1.28 If >~ . f(s) exists then Y _¢|f(s)] < oo.

Proof. Put f(s) = ay = by +ics and A=) a, = B+iC. Then ) b, converges to B and ) _¢cs
converges to C. If we prove ) __«[bs| < ocoand ) g |cs| < oothen Y ¢ las| < oo follows. We may
thus assume {a,} C R now. Let ) a, =X € R. Then there is a finite F* C S such that

X =Y a] <1 forall finite F'DF. (5.1)

F'CS

Put
Tt ={se S\F | as > 0}, T ={se S\F |as <0}

Now for every finite G C T'*, (5.1) implies > _p  as < X + 1. Equivalently,

Zas<X—|—1—Zas.
seG seF
Since this holds for all finite G C T and since a, > 0 for s € T, this implies
A1:Za::Zas§X+1—Zas<oo. (5.2)

seT+ seT+ scF

Analogously, for each finite G C T~ we have ) as > X —1, which implies Y . as— .y agy >
X —1lor

A2:Za;§—X+1+Zas<oo. (5.3)
s€T— seF
Now obviously > ¢ las| = A1 + Ay + > o |as| < oo. |

If this seems to contradict what you know about convergence of series (indexed by N), consider
(a) that no order is given on the set S and (b) Riemann’s theorem saying that the sum of a series is
invariant under permutation of the terms if and only if the series is absolutely convergent!

Example 5.1.29 (Riemann integral) Let f : [a,b] — C. A partition of [a,b] is a finite set
P C [a,b] such that {a,b} C P. The set P of partitions of [a,b], ordered by inclusion, clearly is a
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directed set. Given a partition P, we can order its elements like a = 2o < 21 < --- < &y = b, where
P ={xg,...,xx}, and define

N
V(P = D =) swp  f(@)
z;l ’
L(f,P) = Z(:ci—xi,l) inf  f(x).

x€[wi 1,2

=1

Now, P +— U(f,P), P+~ L(f,P) are nets in C indexed by P, and by Darboux’ characterization of
Riemann integrability (which in many books is taken as the definition of Riemann integrability, cf.
(252, 280]), f is Riemann integrable on [a, b] if and only if imp(U(f, P) — L(f, P)) = 0. In that case
we have fab f(z)dz :==limp U(f, P) =limp L(f, P).

It is easy to prove that every f € C([a,b],C) is Riemann integrable. With more effort one
proves that f : [a,b] — C is Riemann integrable if and only if it is bounded and almost everywhere

continuous (i.e. the set of points where f is not continuous has measure zero in the sense of Definition
11.2.11). O

Remark 5.1.30 On the basis of the foregoing examples, a topological imperialist would have a point
in claiming that much of classical analysis, at least as long as no measure theory is involved, can be
construed as a part of topology. (This actually seems to be the view of various analysts, e.g. [24].)
At least it shows that any attempt at drawing a dividing line between topology and analysis is futile.
(I

Definition 5.1.31 (i) A net {z,},e; in X is frequently in' Y C X if for every vy € I there exists
L >ty such that x, €Y.

(ii) A point x € X is an accumulation point of {x,} if it is frequently in every (open) neighborhood
U>ux.

Remark 5.1.32 1. Clearly every limit of a net is an accumulation point, but not conversely.
2. For a net defined on I = N with the usual order <, the above definition of accumulation point
is equivalent to the one in Definition 5.1.10. O

Exercise 5.1.33 Prove that a net is frequently in Y C X if and only if it is not eventually in X'\Y.

We would like to have a notion of subnets of a net {x,}, such that z € X is a limit of a subnet if
and only if z is an accumulation point (without assuming first countability of course). Such a notion
exists, but it is not entirely obvious. (There even is some controversy as to what the ‘right’ definition
is, cf. Remarks 5.1.38 and 7.5.33.)

Definition 5.1.34 Let (1,<),(J, <) be directed sets. A map o : J — I is called cofinal if for every
1o € I there is a N\g € J such that A > Ng = a(X) > .

Definition 5.1.35 Let (I,<) be a directed set and {x,},e; a net in X. If (J,<) is another directed
set, a net J — X, X\ yy is called a subnet of {x,} if there is a cofinal map o : J — I such that

Yx = Ta(n)-

Proposition 5.1.36 A point z € X is an accumulation point of the net {x,} if and only if {x,} has
a subnet that converges to z.
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Proof. Assume that {z,} has a subnet converging to z. L.e., there is a directed set (J, <) and a cofinal
map « : J — I such that x,(,) — z. Let U be an open neighborhood of z and let ¢y € I. Since « is
cofinal, there is Ag € J such that A > Xy = a(X) > ¢, and since X\ — x4\ converges to z, there is
A1 € Jsuch that A > Ay = x40y € U. Thus if A > Ay and A > A; then ¢ = a(A) > ¢p and z, € U.
Thus z, frequently is in U, i.e. z is an accumulation point.

If, conversely, z is an accumulation point of {z,} then applying the lemma below to F = N, (or
U,), we obtain a subnet that eventually is in every N € N, i.e. converges to z. [

Lemma 5.1.37 Let {z,} be a net in X and F C P(X) a family of subsets such that (i) x, is
frequently in every F € F and (ii) given Fy, Fy € F, there is F3 € F with F3 C Fy N F,. Then there
is a subnet J — X, A x40 that is eventually in every F' € F.

Proof. We follow [231]: Let J = {(¢, F) € I x F | x, € F'} and define
(t1,F1) > (12, F2) © 11 > 1o and Fy C F.

Let (t1, F1), (12, F») € J. Pick F3 € F with F3 C F; N Fy. Since z, frequently is in F3, there is ¢3 such
that 13 > t1,t3 > 19 and z,, € F3. Thus (u3, F3) € J and (u3, F3) > (g, Fg) for k= 1,2. Thus (J, <)
is directed. Define av: J — I by (¢, F') + ¢. This map is cofinal: Given ¢y € I, take A\g = (9, X),
which clearly is in J. Now A = (¢, F') > Ao means ¢ > v, thus a(¢, F') = ¢ > 1.

It remains to show that A — z,()) satisfies the last claim. So let F' € F. Since z, frequently
is in F, we can find ¢y € I such that z,, € F. Then A\ := (1o, F') is in J. Now it is clear that

A= (¢, F") > Ao implies F' C F' and 24,1y =, € F' C F. Thus X\ — x4y is eventually in F. W

Remark 5.1.38 1. Since every sequence is a net, we see that an accumulation point of a sequence
always is the limit of a subnet, whether or not the space is first countable.

2. As mentioned above, there are variants of the definition of subnets. Some authors, e.g. [298],
require the map « : J — I to be increasing, i.e. A\ > A\; = «(\2) > «(A1). (In the presence of
this requirement, the cofinality can be simplified to: Ve € I IX € J : a(A) > ¢.) This definition is
more restrictive than Definition 5.1.35. But since the subnets produced in the proof of Lemma 5.1.37
clearly satisfies the stronger condition, the Lemma and the Proposition are true for both definitions
of subnets. O

Exercise 5.1.39 Let {z,},c; be a net in the space X. Prove:
(i) If x, — = then every subnet of {z,} converges to z.

(ii) If z € X and every subnet of {x,} has a subnet converging to « then z, — z.

Note: We do not require that every subnet of {x,} converge to x !

5.1.3 « Filters

In this section we briefly look at the notion of filters, which are an alternative to nets. At first
encounter, filters may be less intuitive, but they have some advantages, like less redundancy in the
proofs and fewer invocations of the axiom of choice. Here we limit ourselves to the basics. For more
on filters, cf. Section 7.5.5. (It turns out that some of the deeper questions about nets can only be
answered with the help of filters!)
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Definition 5.1.40 If X is a set, a M on X is a family F C P(X) of subsets satisfying:
(i) If F,G € F then FNG € F.
(is) If F € F and G 2O F then G € F.

(iii) O & F.

(iv) F # 0.

(Some authors omit condition (iii) so that also P(X) would be filter. Filters not containing () are
then called proper filters.) If X = ) then P(X) = {0}, thus there are no filters on X. Otherwise
(ii), (iv) imply X € F. Since the intersection of any two elements of a filter again is in the filter,
thus non-empty, every filter has the following important property:

Definition 5.1.41 A family F of subsets of a set X has the finite intersection property if any in-
tersection of finitely many elements of F is non-empty.

In view of Lemma 2.7.2, the family NV, of not-necessarily-open neighborhoods of a point is a filter,
the neighborhood filter of x.

Definition 5.1.42 A filter F on a topological space X is said to converge to x € X if it contains
the neighborhood filter of x, i.e. Ny C F. (We also say that x is a limit of F.)

Exercise 5.1.43 Prove that a space is Hausdorff if and only if every filter in it converges to at most
one point.

There is a notion of a base for a filter, somewhat analogous to that of a base for a topology:
Definition 5.1.44 Let F C P(X) be a filter in X.

o A subset B C F is a filter base for F if every F € F contains some B € B. FEquivalently,
F={YCX|3IBeB:BCY}.

o A subset S C F is a filter subbase for F if the set of all finite intersections of elements of S is
a base for F.

In analogy to bases for a topology we can ask which subsets of P(X) can be filter bases:

Lemma 5.1.45 Let X be a non-empty set and B,S C P(X). Then

(i) B is filter base for a filter F if and only if if and only if B # 0, O & B, and for any By, By € B
there is By € B such that B3 C By N By. Under this condition, F s unique and given by
F={YCX|3dBeB:BCY}.

(i) S is a filter subbase for a filter F if and only if it is non-empty and it has the finite intersection
property. Under this condition, F is unique and given by F = {Y C X | 35,...,5, :
SiNn---NS, CY}.

2Filters were invented in 1937 by the French mathematician Henri Cartan (1904-2008), an important member of
the Bourbaki group. Unsurprisingly, the best reference on filters is [33]. Preference for nets or filters is sometimes
put as a question of American vs. European (in particular French) tastes, but this is simplistic. Most contemporary
research in general topology is actually done in terms of filters, not nets.
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Proof. (i) Let F be a filter on X and B C F a filter base for F,ie. F={Y C X |dB€B:BCY}.
Then () € B (otherwise §) € F) and B # () (otherwise F = @). If By, By € B then By, By € F,
thus By N By € F, so that by the relationship between B and F there must be B3y € B such that
B3 g Bl N BQ.

For the converse assume B satisfies the three conditions and define F ={Y C X |dBe€ B: B C
Y}. Then F # ) (since F 2 B) and () ¢ F. Clearly Y € F implies Z € F whenever Z D Y. If
Y1,Y, € F then there are By, B, € B such that By C Y;, By C Y;. Now there is By € B such that
Bs C BN By, CY;NY,, thus Y1 NY; € F. Thus F is a filter.

(ii) If S is the filter base for some filter F then clearly S C F, which implies that S has the
finite intersection property (since F has it). If S was empty then so would be the set B of all finite
intersections of elements of B. But by (i), B = () cannot be a filter base.

If § C P(X) is non-empty and has the finite intersection property, let B be the set of all finite
intersections of elements of S. Then B D S # ) and ) € B. And if By, By € B then B; N B, is a
finite intersection of elements of S, thus also in B. |

Corollary 5.1.46 If F is filter on X # 0 and f : X =Y a function then

B=A{f(F)| FeF}CPY)
is the filter base of a unique filter G on' Y. We write G = f(F).
Proof. We have B # ) since F # (), and () ¢ F implies @ ¢ B. If B, By € B then there are Fy, F, € F
such that Bl = f(Fl)a BQ = f(BQ) Now Bl N BQ = f(Fl) N f(FQ) 2 f(Fl N FQ) Now Fl N FQ # @,
and with By = f(Fy N Fy) € B we clearly have By C By N By. Thus by Lemma 5.1.45(i) there is a
unique filter G having B as filter base. [ |

As for nets, there is a notion of accumulation points of a filter:

Lemma 5.1.47 A let (X, 7) be a topological space, F a filter on X and x € X. Then the following
are equivalent:

(@) @ € Npesr F
(3) For every N e N, = X\N ¢ F.

(v) There is a filter F D F that converges to x.
If these equivalent conditions hold we say that x is an accumulation point of F.

Proof. (o) = (B) Assume there is N € N, such that X\N € F. By definition of N,, there is an
open U with z € U C N, thus X\U 2 X\N, so that X\U € F. It is clear that = ¢ X\U = X\U.

(B) = (v) We claim that NN F # () for any N € N, F € F: If there were N € N, F € F
with NN F = (), we would have ' C X\N. Since F is a filter, this would imply that X\N € F,
contrary to the assumption. Since any F, F’ € F meet, as do any N, N’ € N, (since both contain
x), it follows that F U N, has the finite intersection property. Now by Lemma 5.1.45(ii) there is a
filter F containing F U N, thus F, which by construction converges to x.

(v) = (@) If F € F then F € F, so that () is equivalent to € ((p_p.r F. Thus if (a) is false
then there is a closed F' € F not containing z. But then X\F is an open nelghborhood of x and

must be in F since that filter converges to . Thus both F' and X\ F are in ]—" which is not possible.
[

Anticipating the result of Exercise 5.2.1(iii), we can give a characterization of continuity of a
function at a point in terms of the neighborhood filters:
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Lemma 5.1.48 Let X,Y be topological spaces and f: X — Y. Then the following are equivalent:
(i) f is continuous at x € X.

(ii) {f(N) | N € N;} is a filter base for the filter Ny inY.

(i1i) Whenever F is a filter on X that converges to x, the filter f(F) converges to f(z).

Proof. Statement (ii) is equivalent to saying that for every M € Ny, there is an N € N, such that
f(N) C M. This clearly is equivalent to statement (iii) in Exercise 5.2.1, and therefore to continuity
of f at x, i.e. (i). Since convergence of F to x by definition means N, C F, we have (ii)<(iii). N

5.1.4 % From nets to filters and back

We briefly consider the connection between filters and nets.

Exercise 5.1.49 Let {z,} be a net in (X, 7). Prove:
(i) The family F ={F C X | z, is eventually in F'} is a filter, the eventual filter of {z,}.

(ii) The filter F converges to x if and only if the net {x,} does so.

(i) € X is an accumulation point of F if and only if x is an accumulation point of {x,}.

Two nets are called equivalent if their eventual filters coincide. By the above (iii), equivalent nets
have the same sets of limits and accumulation points.
Conversely, one can associate a net to a filter:

Proposition 5.1.50 Let F be a filter on X. Define I = {(F,y) € F x X | y € F}, a relation
(Foy) < (F",y) & FFCFandamap I = X, (F,y) = 2y =y. Then

(i) (I,<) is a directed set. Thus {x(py)} is a net in X, the canonical net associated with F.

(ii) The eventual filter of the net {x gy} coincides with F. Thus F and {x(py)} have the same
limits and accumulation points.

Proof. (i) Reflexivity and transitivity of < are obvious. Let (F,x), (F',2') € I. Putting F” = FNF’,
the filter axioms give () # F” € F. For any " € F" we have (F” 2") > (F,z) and (F",2") > (F',z'),
which is the directedness.

(ii) Let F € F. Since F # 0 we can pick y € F. If (F',y) > (F,y) then F' C F, thus
T(pryy € F' C F by definition of the net, so that it eventually is in /. Now assume Y C X, Y ¢ F.
If there is an F' € F such that Y N F = () then FF C X\Y. Since F is a filter, X\Y € F. As already
proven, this implies that x (g, eventually is in X'\Y’, thus certainly not eventually in Y. This leaves
us with the case where Y N F # () for all F € F. We cannot have FF C Y for any F € F since that
would imply Y € F contrary to the assumption. Thus for every F' € F we have F\Y # (). If now
y € F\Y then (F,y) € I and y = x(p,) € Y. This shows that (g, frequently is not in ¥ and thus
not eventually in Y. The second statement now is immediate by (ii),(iii) of the Exercise. |

Remark 5.1.51 Note that the two constructions are not strict inverses of each other: While the
eventual filter of the canonical net associated with a filter F coincides with F, the converse is not
true since not every net in X is the canonical net of a filter on X. This already follows from the
fact that the index set of a the canonical net of F has cardinality < #(F x X) < #(P(P(X)) x X),
whereas there are no restrictions on the index set I of an arbitrary net {x,},c; in X. Nevertheless,
every net is equivalent to the canonical net associated with its eventual filter, so that the two nets
have the same limits and accumulation points. O
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5.2 Continuous, open, closed functions. Homeomorphisms

Having discussed the basics of the notion of convergence, we now turn to continuity. In (general)
topology, the notion of continuous functions is much more important than convergence, since it
provides the morphisms in the category of topological spaces, cf. Definition 5.2.14.

5.2.1 Continuity at a point

Exercise 5.2.1 Let (X, 7),(Y,0) be topological spaces, f : X — Y a function and x € X. Prove
that the following are equivalent:

(i) For every open neighborhood V' of f(x) there exists an open neighborhood U of x such that
fuycv.

(ii) For every open neighborhood V of f(x) we have that f~!(V) C X is a neighborhood of z (not
necessarily open). (Le.: U € Uy = fHU) € N,.)

(iii) For every N € Ny(,) we have f~1(N) € N,.

Remark 5.2.2 1. Note that in (i) we did not require that f~'(U) C X be open for every open
neighborhood U of f(x), which potentially is a stronger statement!
2. Continuity of f at z implies (o, f(U) C mveuf< V= NUj@). Y is Ty then the r.hs.

equals {f(x)} (Exercise 2.5.1), thus (o, f(U) = {f(2)}. (Deducing continuity of f at z from
Nvew, f(U) ={f(x)} is much harder and works only under restrictive additional assumptions. O

Definition 5.2.3 Let (X,7),(Y,0) be topological spaces, f : X — Y a function and x € X.
If the equivalent statements in Exercise 5.2.1 hold, then f s called continuous at x and x is a
continuity point of f.

Exercise 5.2.4 Let (X,d), (Y, d) be metric spaces and equip them with the metric topologies. For
a function f : X — Y, prove that the following are equivalent:

(i) f is continuous at € X in the above (topological) sense.
(ii) f is continuous at x € X in the (metric) sense of Definition 2.1.22.
(iii) f(z,) — f(x) for every sequence {x,} such that =, — =.

As recalled in Exercise 5.2.4, for metric spaces (X, d), (Y, d') we have continuity of f: X — Y at
z € X if and only if f(z,) — f(z) for every sequence {x,} such that x,, — x. As we have seen, for
general topological spaces, sequences are not good enough to probe closedness, and the same is true
for continuity. Nets do not have this defect, and indeed they can be used to characterize continuity
of functions:

Proposition 5.2.5 Let (X, 7),(Y,0) be topological spaces and f : X — Y a function. Then f is
continuous at x € X if and only if f(x,) — f(x) for every net {x,},cr in X such that x, — x.

Proof. (=) Let f be continuous at x and let x, — . We want to prove that f(z,) — f(x). Let V be
an open neighborhood of f(z). By continuity of f at x, there is an open neighborhood U of x such
that f(U) CV, cf. Exercise 5.2.1. Since x, — x, there is ¢y € I such that ¢t > 1y = =, € U. But by
construction, f(U) C V, thus ¢t >y = f(z,) € V. Thus f(z,) = f(x).
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(<) Assume that f is not continuous at x. Then by (ii) of Exercise 5.2.1, there exists an open
neighborhood V' of f(x) such that f(U) € V for every open neighborhood U of x. Thus, for every
U € U, we can choose a point xy € U such that f(xy) ¢ V. Taking I = U, and <=D as in the
proof of Proposition 5.1.21, (I, <) is a directed set and the net {xy}ye; converges to x. But since
for every U we have f(zy) € V, the net {f(xy)}ues is not eventually in the neighborhood V' of f(z),
thus does not converge to f(x). [

Remark 5.2.6 1. In order to conclude that f is continuous at x € X it is enough to prove that
f(z,) = f(x) for every net {x,} in X\{z} such that z, — x. This is because the net constructed in
the proof of <= automatically satisfies xy; # x for all U.

2. Let X,Y be topological spaces, where X is first countable, and f : X — Y is not continuous
at x € X. Let V be as in the proof of Proposition 5.2.5 <, and let U; O Uy O --- a decreasing
countable open neighborhood base at x. Then for every n € N we can choose z,, € U, such that
f(z,) € V ¥n. Then {x,} is a sequence such that x, — x and f(x,) /4 f(x).

3. If f: X = Y is function and zg € X, yo € Y, one shows (similarly to Proposition 5.2.5) that
the following are equivalent:

(i) For every net {x,} in X\{zo} that converges to xg, the net {f(x,)} converges to yp.

(ii) For every open neighborhood V' of yg, there is an open neighborhood U of zy such that
f(U\{zo}) C V.

(iii) The function f defined by f(z0) = yo and f(z) = f(x) for x # x is continuous at zo. (Thus
f at worst has a discontinuity at xy that can be removed by changing f(z).)

If these (equivalent) conditions (for which the value f(z) is irrelevant!) are satisfied one says
f(z) converges to yog as x — xp, in symbols lim, ., f(z) = yo. In particular, f is continuous at z if
and only if lim,_,,, f(z) = f(zo). In this sense, the notion of convergence at a point generalizes that
of continuity at a point. It should be noted that this concept is more popular with analysts than
with topologists. O

5.2.2 Continuous functions. The category 7T OP

Definition 5.2.7 Let (X, 1), (Y, o) be topological spaces and f : X — Y. Then f is called continuous
if f7YU) € 7 for every U € . The set of continuous functions X —'Y is usually denoted C(X,Y),
suppressing the topologies. (We may occasionally write C(X) instead of C(X,R).)

Exercise 5.2.8 Let (X, 7), (Y, 0) be topological spaces and f : X — Y a function. Prove that the
following are equivalent:

(i) f is continuous (in the sense of Definition 5.2.7).
(i) f~4(C) C X is closed for every closed C' C Y.
(iii) f~*(U) is open for every U in a base (or subbase) of o.

(iv) f is continuous at every z € X.

v) f(Z) C f(Z) for every Z C X.
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Hint: The implications involving (v) are somewhat more difficult, but very instructive. For (i)=(v)
assume x € Z and use Lemma 2.7.3 twice to prove f(z) € f(Z). To obtain (v)=-(ii), assume C' C Y
is closed and apply (v) to Z = f~1(C) to prove that f~!(C) is closed.

Exercise 5.2.9 Prove the equivalence (i)<(v) of Exercise 5.2.8 using nets.

Exercise 5.2.10 Let (X, 7),(Y,0) be topological spaces. Prove:
(i) If X is discrete or Y is indiscrete then every function f: X — Y is continuous.

(ii) If X is connected and Y is discrete then every continuous f : X — Y is constant. (This will
be generalized later.)

(iii) If X is irreducible and Y Hausdorff, then every continuous f : X — Y is constant.

Exercise 5.2.11 Prove:
(i) If f: X — Y is continuous and surjective and A C X is dense then f(A) C Y is dense.

(ii) If X is separable and f: X — Y is continuous and surjective then Y is separable.

Remark 5.2.12 If X| Y are metric spaces, (2.6) defines a metric D on the space B(X,Y") of bounded
functions from X to Y, and Cp(X,Y) = C(X,Y) N B(X,Y) C B(X,Y) is a closed subspace, cf.
Proposition 2.1.26. Now that we have the notion of continuity between topological spaces, we can
generalize this to the case where (X, 7) only is a topological space. Reexamining the proofs of
Propositions 2.1.26 and 3.1.12, one finds that they easily generalize. (Essentially the only thing one
needs to change is to replace the ¢ > 0 in the proof of Proposition 2.1.26(ii) by an open neighborhood
U > x such that y € U = d'(fn(x), fn(y)) <e/3.) O

Exercise 5.2.13 Let f: X — Y and g: Y — Z be continuous. Prove that g o f is continuous.

Given the preceding result, it is natural to start using some categorical language, cf. Appendix
A.5:

Definition 5.2.14 Topological spaces and continuous maps form a category TOP. Its objects are
topological spaces, and for topological spaces X, Y we have Homrop(X,Y) = C(X,Y). Composition
of morphisms is given by composition of maps (cf. the preceding exercise), and the identity morphism
idx of every space X just is the identity map x — x.

The full subcategory consisting of Hausdorff spaces is denoted T OPr,.

Exercise 5.2.15 Prove: If Y is T;, where i € {1,2}, and f : X — Y is continuous and injective
then X is T;.

Exercise 5.2.16 For Y Hausdorff and f,¢g: X — Y continuous, prove:

(i) The coincidence set C' = {x € X | f(x) = g(x)} € X of f and ¢ is closed. Hint: Prove that
X\C is open.

(ii) If f and g coincide on a dense subset of X then f = g.

(iii) f AC BC AC X and f € C(A,Y), then f has at most one extension fto B. (Le. a function
feC(B,Y) such that f[A=f.)
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Remark 5.2.17 1. The uniqueness result in (iii) will be extremely useful. Assume that f € C(X,Y)
has dense image and that g,h € C(Y, Z), where Z is Hausdorff, satisfy go f = ho f. Then f and
g coincide on the dense subset f(X) C Y, so that Exercise 5.2.16(ii) implies ¢ = h. In categorical
language this means: ‘In the category T OPr, of Hausdorff spaces, every continuous map with dense
image is an epimorphism’, cf. Definition A.5.5. The converse is also true: Every epimorphism in the
category T OPr, has dense image, cf. Remark 6.6.6. (But: In the category T OP of all topological
spaces, epimorphisms coincide with surjective maps.)

2. Proving existence of extensions is more difficult and requires further assumptions. Given a
continuous function f: X D A — Y, where Y is Hausdorff, one can try to extend it to A as follows:
For x € A and a net {x,} in A converging to x, the net {f(z,)} in Y has at most one limit 2. If this
limit exists and is independent of the chosen net {x,}, this defines f(m) In practice, one prefers a
more set (in fact filter) theoretic approach over the use of nets. Cf. Proposition 3.4.10 in a metric
setting (using completeness) and Theorem 7.4.20 for topological spaces (using compactness).

3. If A C X is closed the above strategy for extending f : A — Y to some B 2 A does not work.
Yet, there are some existence results, cf. Theorem 8.2.20 and 8.5.37, but little on uniqueness. O

By Proposition 5.2.5, continuity of a function f : X — Y (at a point € X) can be interpreted
in terms of convergence of nets (or sequences, in favorable cases). But from a categorical point of
view one can argue that the concept of continuity (of functions) is more fundamental than that
of convergence (of sequences/nets), since continuous functions are the morphisms in the category
T OP, whereas the conceptual meaning of (convergent) sequences/nets is less clear. It therefore is
interesting that convergence can be considered as a special case of continuity:

Exercise 5.2.18 (i) Write N, = NU {oo} and define
Too = P(N) U{N\F | F C N finite}.
Prove that 7., is a topology on N.

(i) If (X, 7) is a topological space, {x, },en a sequence in X, and z € X, define f : N, — X by
f(n) =z, Vn € N and f(co) = z. Prove that the following are equivalent:
(@) f: (N, 7o) — (X, 7T) is continuous.
(B) f is continuous at oo.

(v) lim z, = z.

(The space (N, 7) has natural interpretations, cf. Exercise 5.2.22 and Remark 7.8.16.3.)

(iii) (Bonus) Can you generalize (i), (ii) to nets?

5.2.3 Homeomorphisms. Open and closed functions

Definition 5.2.19 A function f : (X,7) — (Y,0) is called a homeomorphism if it is bijective,
continuous, and the inverse function f~1:Y — X is continuous.

Two spaces (X, 7),(Y,0) are called homeomorphic (X =Y ) if and only if there exists a homeo-
morphism f: X =Y.

Exercise 5.2.20 Prove:
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(i) All open intervals (a,b) C R are mutually homeomorphic, and the same holds with ‘open’
replaced by ‘closed’ or by ‘half-open’, meaning (a, b] and [a, b).

Remark: Later we will prove that (a,b), [a, b], [a, b) are mutually non-homeomorphic.
(ii) The functions from (—1,1) to R given by
T T

_— : H—
1_|x|7 f2 x /—1—1'2’

are homeomorphisms. Give the inverse functions.

xm
fiix— fg:x|—>tan7

(iii) Prove [0,1) = [0, 00).
(iv) Prove R = (0,00) in two ways: Using (i)-(iii), and using x > e”.

Remark 5.2.21 1. A continuous function f : (X,7) — (Y, o) is a homeomorphism if and only if
there is a continuous function g : (Y,0) — (X, 7) such that go f = idx and f o g = idy. Thus
homeomorphisms are the isomorphisms in the category T OP.

2. Just as groups (rings, fields, vector spaces) that are isomorphic in their respective categories are
the “same” for all purposes of algebra, homeomorphic topological spaces are the “indistinguishable”
for the purposes of topology. The best one could hope for in topology would be classification of
topological spaces up to homeomorphism. (This is still completely hopeless.)

3. A property P that a topological space may have or not (like 77,75, metrizability, first or
second countability) is called topological if a space Y homeomorphic to X has property P if and
only if X has it. Some authors make a big point out of pointing out for every property that they
define that it is topological (or giving the proofs as exercises). This seems rather pointless, since
it is utterly obvious for all properties defined purely in terms of the topology 7. (After all, every
bijection f : X — Y gives rise to a canonical bijection f': P(X) — P(Y), and f : (X,7) — (Y, 0)
is a homeomorphism if and only if f restricts to a bijection 7 — ¢.) The property “42 € X” clearly
is not topological, and the author is not aware of less artificial examples. (Completeness of metric
spaces is not preserved under homeomorphisms, thus it is not a topological property. But it is not
even a property of topological spaces!)

4. Recall the Bernstein-Schroder theorem from set theory: If there are injective maps X — Y
and Y — X then there is a bijection X S5Y. In topology this is not true! On can find topological
spaces (X, 7),(Y,0) and continuous bijections X — Y and ¥ — X such that X and Y are non-
homeomorphic! Cf. [71, p.112].

5. Isometric bijections between metric spaces are the isomorphisms in the category of metric
spaces and isometric maps. O

Exercise 5.2.22 Prove that the space (N, 7) from Exercise 5.2.18 is homeomorphic to the subspace
X ={1/n|neN}u{0} of (R,74) (74 is the Euclidean topology).

Definition 5.2.23 A function f : (X,7) — (Y, 0) is called open (resp. closed) if f(Z) CY is open
(resp. closed) whenever Z C X is open (resp. closed).

Remark 5.2.24 If f: (X,7) — (Y, 0), where B is a base for 7, then f is open if and only f(U) € o
for each U € B. (The analogous statement for subbases need not be true!) O

The following is an immediate consequence of the definitions:
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Lemma 5.2.25 Let X be a set and 1,7 topologies on X. Let idx : x — x be the identical function
on X. Then:

(i) idx : (X, 1) = (X, ) is open < 7 C 7.
(i) idx : (X, 71) — (X, ) is continuous < 15 C 7.
(i) idx : (X, 1) — (X, 72) is @ homeomorphism < 71 = To.
Generalizing from identity maps to bijections, we have:

Lemma 5.2.26 Let (X, 7),(Y,0) be topological spaces.

(i) If f: X — Y is a bijection with inverse g : Y — X then g is continuous < f is open < f
15 closed.

(ii) A function f: X — Y is a homeomorphism < f is bijective, continuous and open < f is
bijective, continuous and closed.

Proof. (i) If f: X — Y and g : Y — X are mutually inverse functions then for every Z C X we have
g Y (Z) = f(Z), which gives that g is continuous if and only if f is open. Since f is a bijection, it
satisfies f(X\Z) = Y\ f(Z) for every Z C X. From this it is immediate that openness and closedness
of f are equivalent (for bijections!).

(ii) is an obvious consequence of (i). |

We will have many occasions to see that openness and closedness are useful properties even for
functions that are not-bijective. Here is a first example:

Exercise 5.2.27 If (X, 7) is first (respectively second) countable and f : X — Y is continuous,
open and surjective, prove that (Y, o) is first (respectively second) countable.

Remark 5.2.28 1. The analogous statement for separability (Exercise 5.2.11(ii)) was true without
the openness assumption, but for second countability of f(X) this is not the case! Cf. Proposition
7.4.17 for a result on second countability of images under closed maps.

2. For every topological space Y there is a continuous open surjection f : X — Y with X
Hausdorff, cf. [298, 13H].

3. Every metric space is first countable. Thus if M is metric and f : M — X is continuous,
open and surjective then X is first countable by Exercise 5.2.27. Actually every first countable space
arises in this way! For Ti-spaces the proof is not difficult, cf. e.g. [282, p. 179-180]. Now the result
under 2. can be used to remove the 77 assumption.) a

Exercise 5.2.29 Given a function f: X — Y prove that the following are equivalent:
(i) f is closed.
(ii) f(A) C f(A) holds for every A C X.

(iii) For every y € Y and every open U C X such that f~!(y) C U there is an open V C Y such
that y € V and f~1(V) C U.

Corollary 5.2.30 The identity f(A) = f(A) holds for all A C X if and only if f is continuous and
closed.
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5.2.4 % Semicontinuous R-valued functions

Recall the usual topology o of R has a subbase S = {(a,00) | a € R} U{(—00,a) | a € R}. By
Exercise 5.2.8(iii), this implies that f : (X,7) — (R,0) is continuous if and only if f~((a,0)) and
/7Y ((—o0,a)) are in T for every a € R. This motivates the following definition:

Definition 5.2.31 Let (X, 7) be a topological space. A function f: X — R is called

e lower semicontinuous (resp. upper semicontinuous) at x € X if for every e > 0 there is an
open neighborhood U > x such that f(U) C (f(x) —e,00) (resp. f(U) C (—o0, f(z) +¢)).

e lower semicontinuous (resp. upper semicontinuous) if f~'((a,00)) (resp. f~1((—00,a))) is open
for every a € R.

Exercise 5.2.32 Let f: (X,7) — R be a function. Prove:

(i) f is lower (resp. upper) semicontinuous at x € X < for every € > 0 and every net {z,},c; such
that x, — =, there is a ¢y € I such that ¢ > vy = f(z,) > f(x) — e (resp. f(z,) < f(x) +¢).

(ii) f is upper (lower) semicontinuous if and only if f is upper (lower) semicontinuous at every
r e X.

(iii) f is continuous (at x) if and only if it is upper and lower semicontinuous (at z).
(iv) f is upper semicontinuous if and only if —f is lower semicontinuous.

(v) If F is a family of lower semicontinuous functions then g(z) = sup{f(z) | f € F} is lower
semicontinuous.

(vi) A finite sum of lower semicontinuous functions is lower semicontinuous.

(vii) If F is a family of non-negative lower semicontinuous functions such that for all z € X,
g(x) = > scr f(x) < oo (in the sense of unordered summation, cf. Example 5.1.26) then g is
lower semicontinuous.

(viii) If F is as in (vii) with g continuous, then z +— >, f(z) is continuous for every 7' C F. In
particular, every f € F is continuous.

Another way of testing semicontinuity is using the lower and upper limits (liminf and lim sup)
which can be defined as for sequences. For a net {y,} in R indexed by the directed set (I, <) and
Lo € I, define

U, = Sup{yL | L2 LO}? L, = inf{yb ‘ L2 LO}v

both taking values in the extended reals R = RU{—00, +0o0}. It is clear that t; > 15 implies U,, < U,,
and L,, > L,,, thus the limits

limsupy, :=limU,, liminfy, :=lim L,

always exist in R.
Exercise 5.2.33 Consider a function f: X — R and = € X. Prove that f is ...
(i) lower semicontinuous at x if and only if f(x) <liminf f(x,) for every net {z,} with x, — x,

(ii) upper semicontinuous at x if and only if f(z) > limsup f(z,) for every net {x,} with x, — x.

For results involving semicontinuous functions see Theorem 8.5.34 and Theorem B.2.2.



Chapter 6

New spaces from old

6.1 Initial and final topologies

It often happens that a family of maps f; from a set to certain topological spaces is given (or the
other way round) and we want to find the “best” topology on the set making all f; continuous. What
“best” means depends on whether we consider maps f; : X — (Y;,0;) or f; : (X;, 1) = Y.

6.1.1 The final topology

We begin with the (slightly nicer) case, where maps f; : (X;, ;) — Y are given. This is relevant for
direct sums and quotients of topological spaces.

Definition 6.1.1 Let (X;,7;) be a topological space for each i € I, and letY be a set. Let functions
fi 1 Xi = Y, i €1 be given. The final topology on Y induced by the maps f; is the finest topology
ogn such that all maps f; : (X;, 1) = (Y,064), @ € I are continuous.

Lemma 6.1.2 The final topology ogn always exists, is unique and is given by
o ={UCY | f(U)en Viel} (6.1)

Proof. For the purpose of this proof, denote the r.h.s. of (6.1) by ¢’. We claim that ¢’ is a topology.
It should be obvious that 0, Y € ¢’. And if each U, C Y satisfies fi_l(Uk) € 7; for all 2 € I then by
basic set theory (cf. Appendix A.1) we have f; ' (U, Ur) = U, f; ' (Ux) € 7; and (for finitely many k)
f7H N Uk) = N /7' (Ux) € 7 for all 4. Thus o’ is a topology.

Now, the very definition of continuity implies that every topology ¢ on Y for which all maps
fi + (Xi, 1) = (Y,0) are continuous is contained in ¢’. Thus ¢’ is the finest (=largest) topology on
Y making all f; : X; — Y continuous, thus og, = o’. [

Exercise 6.1.3 Prove that a subset Z C Y is og,-closed if and only if f;'(Z) C X; is closed for all
1€ 1.

Proposition 6.1.4 Let (X;,7;),Y, fi be as in Definition 6.1.1, and let o, be the corresponding final
topology on Y. Then a map h : (Y,o04,) — (Z,7) is continuous if and only if the composition
ho fi: (X,7) = (Z,7) is continuous for everyi € I.

Proof. By definition of the final topology og,, all f; : (X;,7) — (Y, 06,) are continuous. Thus if
h:(Y,o6,) — (Z,7) is continuous, so are h o f;.

97
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Now assume that ho f; : (X;,7;) — (Z,~) is continuous for every i € I. Le., for every U € v we
have f; ' (h~Y(U)) = (ho f;)~Y(U) € ;. Thus if we write V = h~3(U) C Y, we have f; (V) € 7; Vi.
But in view of Lemma 6.1.2, this is equivalent to V' € og,. Thus A is continuous. [ |

6.1.2 The initial topology

We now turn to the case, where maps f; : X — (Y}, 0;) are given. This applies to subspaces and
products of topological spaces.

Definition 6.1.5 Let X be a set and let (Y;,0;) a topological space for each i € I. Let functions
fi: X =Y, 1 €1 be given. The initial topology induced by the maps f; is the coarsest topology Tin;
on X such that all maps f; : (X, Tmi) = (Yi,0:), i € I are continuous.

Lemma 6.1.6 (i) The initial topology always exists and is unique.
(ii) A subbase for the initial topology Tini is given by
S={f'U)|iel, Uecoa}. (6.2)

Proof. Define S C P(X) as in (6.2). If 7 is a topology on X then continuity of all maps f; : (X,7) —
(Y;,0;) is equivalent to S C 7. We know from Lemma 4.2.2 that there is a unique weakest topology
7 on X containing S, obtained either as the intersection of all topologies that contain & or as the
family of all sets that can be written as arbitrary unions of finite intersections of elements of S.
(These two descriptions are different only at first sight.) This topology clearly is 7, and it has S
as subbase by construction. [

Remark 6.1.7 The conclusion of Lemma 6.1.6 is not quite as nice as that of Lemma 6.1.2: While
we could write down 75, explicitly, 7,; could only be defined by writing down a subbase. This is due
to the fact that inverse images of functions have better algebraic properties than images, cf. Lemma
A.1.7. This is also the reason why there is no nice analogue of Exercise 6.1.3 for the initial topology.
(I

The following is entirely analogous to Proposition 6.1.4:

Proposition 6.1.8 Let X, (Y}, 0;), f; be as in Definition 6.1.5, and let Ty,,; be the corresponding initial
topology on X. Then a map h : (Z,7) — (X, Ti) is continuous if and only if the composition
fioh:(Z,v) — (Y,0;) is continuous for every i € I.

Proof. By definition of the initial topology Ty, all f; : (X, 7)) — (Yi,0;) are continuous. Thus if
h:(Z,v) = (X, Tini) is continuous, so are the composites f; o h.

Now assume that f;oh: (Z,v) — (Y, 0;) is continuous for every i € I. Thus for every i € I and
U € oy, we have (f; o h)"}(U) € ~. But this is the same as h='(f;*(U)) € 7. By Lemma 6.1.6(ii),
{f7Y(U) | i€ I, UE€ o;}is asubbase S for 7. Thus h=1(V) € v for every V € S, and continuity
of h follows from Exercise 5.2.8(iii). [

The following has no analogue for the final topology:
Proposition 6.1.9 Let X, (Y;, 0;), fi be as in Definition 6.1.5, and let Ty,; be the corresponding initial

topology on X. Then a net {x,} in X converges to z € (X, 1) if and only if fi(x,) converges to
fi(2) in (Y;,04) for eachi € I.
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Proof. If x, converges in (X, 7iy;) then by Proposition 5.2.5, f;(z,) converges in (X;, 0;) for each i € I,
since f; is continuous by definition of 7i,;. Now let z € X and assume that f;(x,) converges to
zi = fi(z) € X; for each i, and let z € U € 7. The S of Lemma 6.1.6 is a subbase for 7, thus
there are 7y, ...,4, € I and Uy € o;, such that

z€ fi (Uyn---n fzzl(Uk) cvU.

This clearly implies that z;, € Uy for all k = 1,...,n. Since all nets {f;(z,)} converge, we can find
iy € I such that ¢« > 1, = f;,(x,) € Ug. Since (I, <) is directed, we can find ¢y € I such that
o>t Vk=1,...,n. Now, if « > 1y we have f; (z,) € Uy Vk =1,...,n, and therefore z, € U. This
proves x, — 2. [

Remark 6.1.10 1. Notice that we do NOT assert that f;(z,) — 2z; € X; Vi € I implies the existence
of z € X such that f;(z) = z; and z, — z. The existence of z € X must be given!

2.0 Z={z€ X | fi(z) =2 Vi eI} and fi(z,) = z Vi, then the above shows that z, converges
to every z € Z! Thus by Proposition 5.1.22, the initial topology 7,; will fail to be Hausdorff if the
map f : X — [[, Yk defined by f(x); = fi(z) is not injective. (If f is injective, we say that the
family f; : X — Y] separates the points of X.) O

6.2 Subspaces

We have encountered subspaces very early (Exercise 2.2.9). Now we study those aspects of subspaces
that involve continuous functions.

Lemma 6.2.1 Let (X, 7) be a topological space and Y C X. Then the subspace topology v, cf.
(2.7), coincides with the initial topology Tin; on'Y induced by the inclusion map v :Y — X.

Proof. By Lemma 6.1.6(ii), S = {¢+"*(U) | U € 7} is a subbase for the initial topology Ti,;. But
N U) =UNY, from which it is clear that S is already closed under unions and finite intersections,
so that 7y =S = 7v. [ |

Corollary 6.2.2 Let Y C (X, 7) and let v be the subspace topology. Then [ : (Z,n) — (Y, 7v) is
continuous if and only if f is continuous as a map (Z,n) — (X, 7). (Strictly speaking, we should
write to f 1 Z — X, where v : Y — X is the inclusion map.)

Proof. In view of Lemma 6.2.1, this is immediate by Proposition 6.1.8.

Also the direct proof is very simple. Assume f : Z — Y is continuous as a map to X. Let V € 7y.
Then there is a U € 7 such that V =Y NU. Now f~1(V) = f~1(U), which is open by continuity of
f:Z — X. The converse is clear since ¢ is continuous. |

Remark 6.2.3 1. If this corollary was not true, then clearly something would be wrong with our
definition of subspaces.

2. If this was the only application of initial topologies, it would hardly justify introducing the
notion. The initial topology will come into its own in the discussion of the product topology, cf.
Section 6.5, where it really provides the right perspective. (The corollary can, of course, be proven
without the formalism of initial topologies, but that proof would just be a restatement of that of
Proposition 6.1.8 in the special case at hand.)



100 CHAPTER 6. NEW SPACES FROM OLD

3. In the discussion of subspaces, we consider maps f : Y — (X, o) that are injective. Without
this assumption, the initial topology 7, on Y induced by f can be quite badly behaved. (Cf. also
Remark 6.1.10.) E.g. in the extreme case where f =const= z € X, we find that f~'(U) equals
either Y if x € U C X or () if z ¢ U. Thus 7 is the indiscrete topology. d

Exercise 6.2.4 Let Y C (X, 1) be a subspace. Then the inclusion map ¢ : Y < X is open (resp.
closed) if and only if Y C X is open (resp. closed).

Exercise 6.2.5 Let (X, 7), (Y, 0) be topological spaces and f : X — Y a function. Prove:
(i) If f is continuous and A C X then f]A: (A, 74) — (Y, 0) is continuous.
(ii) Continuity of f [ A for each A € A together with | J.A = X does not imply continuity of f.

(iii) If U is a family of open subsets of X such that f [ U is continuous for every U € U and
Uvey = X then f is continuous.

(iv) A statement analogous to (ii) holds for finite families of closed subsets. Explain why this does
not generalize to infinite families.

The following immediate consequence is used very often:

Corollary 6.2.6 (Gluing of functions) Let X,Y be topological spaces. Let A be a family of sub-
sets of X such that |J,c 4 A = X. Assume that all elements of A are open, or A is finite and all
elements are closed. Let {fa: A — Y }aca be continuous functions such that fa| ANA" = faJANA

whenever A, A" € A and AN A" # (). Then the function f: X =Y defined by f(x) = fa(x), where
we choose any A € A with x € A, is continuous.

The following notion involving subspaces will have many uses:

Definition 6.2.7 A map f : (X,7) — (Y, 0) is called an embedding if f : X — f(X) is a homeo-
morphism w.r.t. the subspace (=induced) topology on f(X) C Y.

Example 6.2.8 Let (X, 7) be a topological space and Y C X. Then the inclusion map (Y, 7y) —
(X, 7) is an embedding, quite trivially. O

Given f : X — Y, it is clear that f : X — f(X) is automatically surjective, and injective
if and only if f : X — Y is injective. Giving f(X) C Y the subspace topology, continuity of
[ (X, 1) = (f(X),o] f(X)) is equivalent to continuity of f : (X,7) — (Y,0) by Corollary 6.2.2.
Thus in order for f : X — Y to be an embedding, it must be continuous and injective.

Lemma 6.2.9 Let f: (X,7) = (Y, 0) be continuous and injective.
(i) The following are equivalent:

() f is an embedding

(B) [ is open as a map X — f(X).
(v) f is closed as a map X — f(X).
(5) f(x) & f(C) whenever C C X is closed and x € X\C.

(i) If f: X — Y is open or closed then f: X — f(X) is open (closed), thus an embedding.
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Proof. (i) By Lemma 5.2.26, f is an embedding if and only if f: X — f(X) is injective, surjective,
continuous and open (or, equivalently, closed). Since our assumptions imply that f: X — f(X) is
a continuous bijection, we thus have (o) < (8) < (7).

To conclude, we prove () < (0). Let C' C X be closed. By Exercise 2.6.13(iii), closedness of f(C)
is equivalent to f(C') =Clyx)(f(C)) = F(C)N f(X). The inclusion f(C) C f(C) N f(X) is trivially
true. The converse inclusion f(C) N f(X) C f(C) is just the statement that if y = f(z) € f(C) for
some x € X, then y € f(C). Since f is injective, this implies x € C. Thus f is an embedding if and
only if (C' C X closed, z € X, f(x) € f(C) = x € (). This is just the contraposition of (¢).

(ii) Assume that f : X — Y is open (resp. closed). If now Z C X is open (resp. closed) then
f(Z) is open (resp. closed) in Y. But then f(Z) = f(Z) N f(X) is open (resp. closed) in f(X) with
its subspace topology. Now apply (i). [ |

Later we will use (local) compactness to prove that certain continuous injections automatically
are embeddings, cf. Propositions 7.4.11(iii) and 7.8.69.

6.3 Direct sums

The direct sum (or coproduct) operation on topological spaces is not terribly interesting in itself (and
therefore omitted by some authors). But it plays an important role in algebraic topology, where it
is combined with the quotient operation to ‘attach’ a space to another, cf. Definition 6.6.7. On the
other hand it helps to better understand the notion of connectedness, cf. Proposition 6.3.7.

The direct sum of topological spaces is defined in terms of the disjoint union of sets, which is
defined and studied in Section A.2.

Definition 6.3.1 Let (X;,7;) be a topological space for each i € I. Let @, Xy be the disjoint
union. The direct sum topology on €, Xi is the final topology T induced by the inclusion maps
v Xy = B, Xy, v — (4,2).

The topological space (B, X, T) is denoted by @, (X, ), the direct sum of the (X;, ;).

Remark 6.3.2 1. Some authors call the direct sum the coproduct and write [[, (X, 7%) instead.
From a categorical perspective, this perfectly justified since the coproduct (direct sum) behaves dual
to the (direct) product. But we find the symbols @&, @ more immediately recognizable and less prone
to confusion with [].

2. If I is finite we will usually take I = {1,...,n} and also denote @, X; by X; & --- & X,,. But
notice that this raises some issues: The total ordering of written text forces us to put a total order
on the index set I, which is absent from Definition A.2.6. This however is spurious, and we should
either read something like (z,y) € X x Y as a function from a two-element set to X UY or ‘identify’
(x,y) € X x Y with (y,z) € Y x X. One way to do this is to consider topological spaces with direct
sum operation as a ‘symmetric monoidal category’. To further complicate the matter we note that,
according to many authors, (co)products should not be defined in terms of an explicit construction
but rather in terms of their universal property, but doing so makes them uniquely defined only up
to isomorphism. . . O

Applying Lemma 6.1.2 to the present situation, we immediately have:

Lemma 6.3.3 The direct sum topology on @, Xy, is given by

T:{Ug@kal(zf)en Vie[}.
k
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Remark 6.3.4 If X;NX; = 0 whenever i # j, then the map @, Xy > (z,1) — = € |J, Xj clearly is
a bijection. In that case, we can identify each X; with the corresponding subset of | J, X} and write
U N X; instead of ¢; (V). O

The universal property of the disjoint union, cf. Proposition A.2.5 has a topological version:

Proposition 6.3.5 Let (X;,7;), i € I and (Y,0) be topological spaces. Then there is a bijection
between continuous maps f : @, (Xi, ) = (Y,0) and families of continuous maps {f; - (X;, ;) —
(Y, 0) bier-

Proof. By Proposition A.2.5, there is a bijection between maps f : @, (X, 7) — (¥, 0) and families
of maps {f; : (X;,7;) = (Y,0)}icr. Now Proposition 6.1.4 implies that f is continuous if and only if
all f; are continuous. |

The inclusion maps ¢; : X; — @, X are continuous by definition of the direct sum topology as
final topology. But we have more:

Lemma 6.3.6 Let (X;,7;) be a topological space for each i € I. Then
(i) Y C P, X; is closed if and only if 17 (Y) C X; is closed for everyi € I.
(i) The maps t; are open and closed.
(tii) Each 1;(X;) is a clopen subset of @, Xy.
(iv) Each t; : (Xi,7;) = @, (Xk, ) is an embedding.

Proof. (i) This is a special case of Exercise 6.1.3.

(ii) Let U € 7;. By Lemma 6.3.3, we must check that Lj_l(Li(U)) € 7; for all j. But this is the
empty set if j # ¢ and U otherwise. This gives openness, and the proof of closedness is analogous,
using the result of (i).

(iii) Each X; is open and closed as subset of itself. Now the claim follows from (ii).

(iv) The maps ¢; are injective, continuous and open, thus the claim follows from Lemma 6.2.9(ii).
(Alternatively, just observe that restricting the direct sum topology to ¢;(X;) C @, X gives the
topology 7; back.) [

Proposition 6.3.7 A topological space (X, T) is connected if and only if it is not homeomorphic to
a direct sum (X1,71) @ (Xa, 72) with X1 # 0 # Xs.

Proof. If X7 # 0 # X, then X = (X1,71) @ (Xo,72) is not connected, since 11(X;) C X is clopen
and neither ) not X. Thus also a space that is homeomorphic to a non-trivial direct sum is not
connected.

Now assume that (X, 7) is non-connected, i.e. there is a clopen Y C X with () # Y # X. Since
Y is clopen, we have Y, X\Y € 7. Thus v = {UNY | U € 7} C 7, and also 7x\y C 7. We
claim that (X, 7) is homeomorphic to the direct sum of the subspaces (Y, 7y) and (X\Y,7x\y). It
is clear that (as sets) we can identify X with the disjoint union Y & (X\Y'). Proving that this is a
homeomorphism amounts to showing for every U C X that U € 7 if and only if UNY € 7y and
Un((X\Y) e Tx\y. The direction = is obvious by definition of 7y and 7x\y. For the converse,
assume U NY € 7y and U N (X\Y) € 7x\y. In view of v C 7, 7x\y C 7, this implies U NY € 7
and UN (X\Y) €7, thusalso U =(UNY)U(UN(X\Y)) €. |
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Remark 6.3.8 Since non-connected spaces decompose into non-trivial direct sums, one might think
that by iterating this decomposition one will arrive at (X, 7) = @, (X;, 7;) with all (X;, 7;) connected.
In Section 9.1, we will see that this is false in general, even for compact spaces! (This is related to @
the fact that there are spaces that are non-discrete, but in which singletons are the only connected
subspaces.) O
Exercise 6.3.9 Let {X;},c; be topological spaces. Prove that the direct sum X = P, X; is
(i) Hausdorff if and only if each X; is Hausdorff.
(ii) metrizable if and only each X; is metrizable.
(ili) first countable if and only if each X; is first countable.
)

(iv) second countable if and only if each X; is second countable and X; # () for at most countably
many ¢ € .

6.4 Quotient spaces

6.4.1 Quotient topologies. Quotient maps

In this section, we study the following situation: We are given a topological space (X, 7) and a
surjective map f: X — Y, and want to put a natural topology on Y.

Definition 6.4.1 Let (X, 7) be a topological space, Y a set and p: X — 'Y a surjective map. Then
the quotient topology on Y is the final topology induced by the map p.

On the other hand, a continuous surjection f : (X, 7) — (Y, 0) is called a (topological) quotient map
if o coincides with the quotient topology induced by T and f.

Thus by Lemma 6.1.2, the quotient topology is given by
c={VCY|f'(V)er}. (6.3)

In analogy to Exercise 2.2.9(iii), we have a result on iterated quotient constructions:

Exercise 6.4.2 Let (X, 1) Ly % 7 e surjective maps. Let o be the quotient topology on Y.
Then the quotient topologies on Z arising from the quotients g : (Y,0) - Z and go f : (X,7) = Z
coincide.

What can be said about the final topology when f : X — Y is not surjective?

Exercise 6.4.3 Let f: (X,7) — Y be arbitrary and o the final topology on Y induced by f. Prove
that (Y,o0) = (f(X),0") & (Y\f(X), Taisc), where ¢’ is the final topology induced by the (surjective)
map f: X — f(X).

Remark 6.4.4 Just as not every continuous injective map is an embedding, not every continuous
surjective map f : (X,7) — (Y,0) is a quotient map! [If & = {U C Y | f~'(U) € 7} is the final
topology on Y induced by f, the continuity of f w.r.t. ¢ means that ¢ C ¢. This in turn means that
f factorizes as (X,7) — (Y,0) — (Y, 0), where the first map is a quotient map and the second is
the identity map of Y, equipped with two a priori different topologies.] It therefore is useful to have
criteria implying that a continuous surjective map is a quotient map. O
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Lemma 6.4.5 Let f: (X,7) — (Y, 0) be continuous and surjective.

(i) f is a quotient map (i.e. o is the final topology on Y induced by f) if and only if V C Y and
fYV)er implyV €o.

(i) If f is open or closed then it is a quotient map. (This is sufficient, but not necessary!)

Proof. (i) Continuity gives V € o = f~!1(V) € 7. If the converse implication also holds, then (6.3)
is true, thus o is the quotient topology.

(ii) Assume f is open. Let V C Y. If f~1(V) € 7 then f(f~*(V)) € o by openness of f. Since
f is surjective, we have f(f~1(V)) = V, cf. Lemma A.1.6, thus V is open. Now assume that f is
closed, D CY and f~1(D) C X is closed. By the same reasoning as above, but using closedness of
f, we obtain that D is closed. If now f~1(V) € 7 then f~1(Y\V) = X\ f~}(V) is closed, thus Y\V
is closed, so that V is open. Thus in both cases we have f~1(V) € 7 = V € 0, so that o is the
quotient topology. [

Remark 6.4.6 Later, we will use the above lemma to prove that a continuous surjection f : X — Y
automatically is a quotient map when X is compact and Y Hausdorff, cf. Proposition 7.4.11(iii).

2. In Remark 5.2.28 we have noted that the first countable spaces are precisely the images of
metric spaces under continuous surjective open maps. By Lemma 6.4.5, every such map is a quotient
map, but not conversely. Thus the class of quotient spaces of metric spaces is potentially larger than
that of first countable spaces, and indeed one finds that it precisely is the class of sequential spaces
(cf. Remark 5.1.9)! Between first countable spaces and sequential spaces one has the Fréchet-spaces.
It turns out that the latter precisely are the images of metric spaces under maps f : M — X that
are ‘hereditarily quotient’; i.e. f~%(Z) — Z is a quotient map for every Z C X. This is equivalent
to f being continuous, surjective and ‘pseudo-open’ in the sense that for any x € X and any open
U C M such that f~'(z) C U we have x € f(U)".

These results (for proofs cf. e.g. [282, p. 180-183]) show that first countable, Fréchet and sequential
spaces, while being more general than metric spaces, still are quite close to metric spaces. This shows
that in topology one cannot hope to get very far using only sequences. O

6.4.2 Quotients by equivalence relations

Surjective maps f : X — Y most often arise as quotient maps X — X/~ where ~ is an equivalence
relation on X. (We assume as known the basics of equivalence relations and related constructions,
cf. Section A.1.3.)

We therefore now focus on this situation. Thus whenever (X, 7) is a topological space and ~
is an equivalence relation on X, the quotient X/~ is understood to be equipped with the quotient
topology coming from the quotient map p : X/ — X/~. We need a further definition:

Definition 6.4.7 Let ~ be an equivalence relation on a set X. A subset Y C X is (~-)saturated if
x ~y €Y wmmpliesx € Y. FEquivalently, Y is a union of ~-equivalence classes. The saturation of
Y C X is given by

Y ={zreX|yeY z~y}

The importance of this definition is due to the following obvious facts:
o If 7 C X/~ then p~(Z) is ~-saturated.

o If Y C X then p~!(p(Y)) =Y.
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Elevating Lemma A.1.11 to a topological statement, we obtain the universal property of the
quotient space construction:

Proposition 6.4.8 Let X,Y be topological spaces and ~ an equivalence relation on X.

(i) There is a bijection between continuous maps g : X/~ —Y and continuous maps f : X —Y
that are constant on equivalence classes such that f = g o p.

(ii) The function g : X/~— Y corresponding to f : X — Y is open if and only if f(U) C Y is
open for every ~-saturated open U C X. In particular, this holds if f is open.

(iii) g : X/~—Y is a homeomorphism if and only if f is surjective, f(x) = f(y) = z ~vy, and
f(U) CY is open for every ~-saturated open U C X.

Proof. (i) The bijection f <> g between functions (disregarding continuity) was shown in Lemma
A.1.11. Thus every f: X — Y constant on equivalence classes is of the form f = g o p for a unique
map ¢ : X/~ — Y. Since the quotient topology on X/~ is a final topology for the map p : X — X/~
Proposition 6.1.4 immediately gives that f : X — Y is continuous if and only if g : X/ ~— Y is
continuous.

(ii) By definition, the map g is open if g(U) C Y is open for every open U C X /~. By definition
of the quotient topology, U C X/~ is open if and only if V = p~1(U) C X (which is ~-saturated)
is open. Now the first claim follows from g(U) = f(V'). The last claim follows, since openness of
f X — Y means that f(U) CY is open for every open U C X, whether ~-saturated or not.

(iii) By Lemma 5.2.26, g is a homeomorphism if and only if it is injective, surjective, continuous,
and open. Continuity is automatic by (i). The equivalence of the three remaining conditions to those
stated under (iii) follows from (ii) and from (ii),(iii) of Lemma A.1.11. |

Remark 6.4.9 1. In the situation of (i) one says ‘ f factors through the quotient map p : X — X/~
or ‘f € C(X,Y) descends to g € C(X/~,Y).

2. The above result is the main reason why we are interested in quotient spaces. It will be used
quite often in the sequel, beginning in Section 6.4.3. O

Equipping X/~ with the quotient topology, the quotient map p : X — X/~ is automatically
continuous. But is it open? closed?

Lemma 6.4.10 The map p: X — X/~ is open (resp. closed) if and only if U™ is open (resp. closed)
for every open (resp. closed) U C X.

is open (closed) for every open (closed)
- X / ~ is open (closed) if and only if
pr— .

Proof. By definition, p is open (closed) if and only if p(U) i
U C X. But by definition of the quotient topology, p(U)
p~1(p(U)) is open (closed). As mentioned above, p~(p(U))

Definition 6.4.11 An equivalence relation ~ on X is called open (resp. closed) if p: X — X/~ is
open (resp. closed). (Cf. the equivalent conditions above.)

As far as separation axioms are concerned, the quotient space construction can be very badly
behaved. In view of the definition of the quotient topology, one obviously has:

Lemma 6.4.12 Let X be a topological space and ~ an equivalence relation on X. Then the quotient
space X/~ is ...
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(i) indiscrete if and only if the only ~-saturated open subsets of X are ) and X ;
(i) discrete if and only if each equivalence class [x] C X is open;
(11i) Ty if and only if each equivalence class [x] C X is closed.

Proof. (i) A set Z C X/~ is open if and only if its preimage p~!(Z), which is ~-saturated, is open.
Thus X/~ is indiscrete if and only if the only ~-saturated open sets in X are (), X.

(ii) X/~ is discrete if and only if each singleton in X/~ is open. This is equivalent to each
~-equivalence class in X being open.

(iii) X/~ is Ty if and only if each singleton in X/~ is closed. By Exercise 6.1.3, {z} € X/~ is
closed if and only if p~!(z) € X is closed. (Recall that the quotient topology is a final topology.)
Since p~1(x) is a ~-equivalence class, the above is equivalent to each ~-equivalence class in X being
closed. [ |

Exercise 6.4.13 For X = R with the usual topology, define ~ by z ~ y < . —y € Q. Show that
X/~ is indiscrete.

Lemma 6.4.14 Let (X, 7) be a topological space and ~ an equivalence relation on X. Then the
quotient topology on X/~ is Hausdorff if and only if given two different equivalence classes [x] # [y]
there are U,V € 7 such that [x] CU,[y] CV,UNV =0 and U,V are ~-saturated.

Proof. X/~ is Hausdorff if and only if for any [z],[y] € X/~, [x] # [y] there are disjoint open
neighborhoods U’ V' C X /~. If this is true then U = p~*(U’),V = p~ (V') are disjoint saturated
open sets in X containing [x] and [y], respectively. Clearly this is necessary and sufficient. [ |

Definition 6.4.15 For a topological space (X,7) and Y C X, let ~y be the smallest equivalence
relation on X that identifies all points of Y with each other. We then write X/Y = X /~y.

On the positive side, we have the following:

Exercise 6.4.16 Prove:

(i) f Y C X is open (resp. closed) the equivalence relation ~y from Definition 6.4.15 is open
(resp. closed).

(i) If (X, 7) is Hausdorff and Y C X is finite, then X/Y is Hausdorff. (Using Lemma 6.4.14 saves
work!)

For infinite Y C X, however, X/Y may fail to be Hausdorft! (But see Exercise 8.1.20.)

Example 6.4.17 Let X = R x {0,1} C R? (union of two parallel lines). Let ~ be the equivalence
relation that (besides containing the diagonal) identifies (z,0) and (z, 1) whenever = # 0, but (0,0) 7
(0,1). The equivalence classes are closed, thus X/~ is T}. But if U,V are open neighborhoods of
(0,0) and (0, 1), respectively, there is € > 0 such that U D (—¢,4¢) x {0} and V D (—¢,+¢) x {1}.
Now it is clear that U~ NV™ # (). Thus the requirement of the lemma cannot be satisfied, and X/~
is not Hausdorff. O

Exercise 6.4.18 Show that the equivalence relation in Example 6.4.17 is open, but not closed.

4
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Example 6.4.19 In Example 6.4.17 we saw a nice space (even metrizable) and an open equivalence
relation, where the quotient fails to be Hausdorff. We will see later that images under closed maps, in
particular quotients by closed equivalence relations, tend to be better behaved. Nevertheless, even if
X is Hausdorff and f : X — Y is continuous, closed and surjective, it does not follow that Y = f(X)
is Hausdorff! One can find Hausdorff spaces (even T3 5-spaces) containing disjoint closed sets A, B
that cannot be separated by disjoint open neighborhoods. (For an example, cf. Proposition 8.1.39.)
Given such a space, define an equivalence relation ~ on X by

x~y = =y V {r,y} CA V {z,y} CB.

Le., ~ identifies all points of A with each other and all points of B with each other (but not with
those of A). The ~-saturation of C' C X can be C,C UA,C U B,CUAU B, each of which is closed
for closed C. Thus the equivalence relation ~ and the quotient map p are closed. But X/~ cannot
be Hausdorff: The images a,b € X/~ of A and B, respectively, have no disjoint open neighborhoods
U,V since otherwise p~1(U) 2 p~'(a) = A, p7 (V) D p~}(b) = B would be disjoint open sets,
contradicting our assumption on X. O

Remark 6.4.20 In Proposition 7.8.71 we will see that if X is Hausdorff and f : X — Y is surjective,
continuous, closed and proper then Y is Hausdorff.

We will also encounter a separation axiom stronger than 75 (normality=T}) that is preserved
under quotients by closed equivalence relations and therefore gives Tp quotients. (The space in
Example 6.4.17 actually is normal, but this does not help since ~ is not closed.) O

In view of Exercise 2.8.10, the following is a generalization to topological spaces of Exercise 2.1.7:

Exercise 6.4.21 (The Kolmogorov quotient) Let (X, 7) be a topological space. For x,y € X
define x ~y by VU € 7:x € U &< y € U'. Prove:

(i) ~ is an equivalence relation.
(ii) Prove that (X, 7)is Ty if and only if z ~y = = = y.
(iii) The quotient space X/~ is Tj.
Exercise 6.4.22 Let X be a topological space, ~ an equivalence relation on X, and ¥ C X. Let
~y be the restriction of ~ to Y (i.e. ~y=~ N(Y xY)). Let p: X — X/~ be the quotient map.

(i) Prove that there is a natural continuous bijection « : Y/~y— p(Y) C X /~.
(ii) Prove that « is a homeomorphism if Y C X is ~-saturated and open (or closed).

(iii) Give an example where « is not a homeomorphism.

6.4.3 A few geometric applications

According to the popular slogans mentioned in the introduction, topology is “rubber-sheet geometry”
or “what remains of geometry when we forget about coordinates and distances”. It therefore is high
time that we make some contact with geometric intuition. Indeed, the quotient space construction is
a method for making rigorous certain intuitive constructions of non-trivial spaces from simpler ones.
It also plays an important role in algebraic topology.

When studying a quotient space X/~, we often have a suspicion that X/~ is homeomorphic to
some given space Y. The examples below will illustrate that Proposition 6.4.8 provides a systematic
way of proving this. We begin with examples in one dimension.

4
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Exercise 6.4.23 Let X be the direct sum of two copies of the closed ray [0,00) with the usual
topology. Let ~ be the equivalence relation on X that identifies the endpoints 0 of the two half-lines,
but nothing else. Prove that X/~ is homeomorphic to R.

Definition 6.4.24 The long line LL is the space obtained from the direct sum of two long rays
(Definition /.2.10) by identifying their zero elements. The image of the latter in LL is called 0. The
images i LL of the non-zero points in the first ray are called positive and those of the second ray
negative. There is a natural and obvious way of totally ordering LL such that the map from the first
ray to LL is order preserving, while the second is order-reversing.

Exercise 6.4.25 Prove:

(i) The quotient topology on the long line coming from the order topologies on the two rays
coincides with the order topology coming from the total order on LL.

(ii) The long line is Hausdorff and given any a,b € LL with a < b, there is a homeomorphism from
(a,b) to an open interval in R (or to R if you prefer).

(iii) Prove that the long line is not homeomorphic to the open long ray.

We now turn to higher dimensions.
Definition 6.4.26 e The (closed) unit n-disk is D™ = {x € R" | ||zl < 1} C R".

o The unit n-sphere is S™ = {x € R"™ | ||z||s = 1}. Thus OD™ = S"~'. For n = 1 we also use
the representation S* = {z € C | |z| = 1} which results from the identification C = R2.

Lemma 6.4.27 The n-sphere can be considered as quotient of R"\{0}:
S™ = (R™N\{0})/(x ~ Az YA > 0).

Proof. The map f : R"1\{0} — R"™!, 2 — - takes values in " and as a map R"*\{0} — S" it
is surjective. It is obviously continuous and easily seen to be open. Finally, f(z) = f(y) holds if and
only if 2- = which is the case if and only z = Ay with A > 0. Thus f(z) = f(y) & x ~y.

Y
lzfla — Tyll2”
Now Proposition 6.4.8(iii) implies that g : R"*\{0} /~— S™ is a homeomorphism. |

The following result is the precise formulation of the statement “identifying the two ends on an
interval, we obtain a circle”:

Lemma 6.4.28 Lel ~ be the equivalence relation on I = [0, 1] which only identifies O and 1. (For-
mally: ~= {(x,z) | z € 1} U{(0,1),(1,0)}.) Then the quotient space I/~ (which we may simply
denote [0,1]/(0 ~ 1)) is homeomorphic to S*.

Proof. The map f : [ — S', z — ¢*™@ is continuous and surjective. The only way for f(z) = f(y)
to happen with x # y is © = 0,y = 1 or «». This is exactly the equivalence relation defined in the
statement. Now, let U C [0,1] be open and ~-saturated. This means that if U contains 0 then it
must contain 1 and vice versa. If an open U C [0, 1] contains neither 0 nor 1 then it is ~-saturated
and it is easy to see that f(U) C S! is open. The other alternative is that {0,1} C U. But then
there is an € > 0 such that [0,) U (1 — ¢, 1] C U, and using the fact that f is periodic with period 1
we have f(U) = f(UN(0,1))U f((—e,¢)), which again is open. Now apply Proposition 6.4.8(iii). H
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Remark 6.4.29 1. Note that while f satisfies condition (ii) of Proposition 6.4.8, it is not an open
map since, e.g., [0,1/2) is open in [0, 1] but f([0,1/2)) C S! is not open!

2. The preceding result has the following generalization to all dimensions: For each n € N, there
is a homeomorphism S™ = ["/~, where ~ identifies all points of 01" with each other and leaves
the interior of I"™ alone. (This is very useful in higher homotopy theory, cf. Exercise 13.4.23.) We
defer the proof (Exercise 7.8.21) until we have the tools to do it easily. We now focus on some other
quotients of I x I. O

In the same way one shows (with I? =T x I.")

I

C= 12/((1},0) ~ (ZL‘, 1))
T =1/((x,0) ~ (,1),(0,9) ~ (L,y))

I xS (hollow cylinder)
St x St (2 — torus).

I

Figure 6.1: Cylinder, Mobius band, torus, Klein bottle

Figure 6.2: Another Klein bottle and two projective planes (Boy surface)

More interestingly, M = I?/((0,y) ~ (1,1 — y)) is the well-known MGobius strip?, obtained by
applying a 180° twist to a ribbon before glueing two opposite ends. (Notice that while the boundary

'We have not yet defined the product space I x I. This is no problem since we can consider it as the subspace
{(z,y) | #,y € [0,1]} of R? equipped with the usual (Euclidean) topology.
2 August Ferdinand Mobius (1790-1868). German mathematician and theoretical astronomer.
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of the cylinder consists of two circles, the boundary of the Mdbius strip is a single circle!) The 2-torus
T can be obtained from the square in two steps

[P~ C =1/ ((2,0) ~ (2,1)) ~ I*/((2,0) ~ (2,1), (0,5) ~ (1,y)),

the second of which consists in gluing the cylinder I x S* along its two boundary circles in the natural
way. But the cylinder has another quotient

KB =C/((0,y) ~ (1,1 —y)) = I*/((,0) ~ (z,1),(0,y) ~ (1,1 = y)),

which is known as the Klein bottle?, cf. Figure 6.2. Reversing the order of the quotient operations,
we obtain the Klein bottle as a quotient of the Mébius strip: KB = M/((z,0) ~ (x,1)). (Since M
has only one boundary circle M, this second quotient operation consists in pairwise identification of
points of M, which is harder to visualize.) Like the cylinder, also the Mobius strip has two natural
quotients, the second being

M/((JI,O) ~ (1 -, 1))) = ]2/((an) ~ (17 1 - y)7 (ZL’,O) ~ (1 - T, 1)) (64)

Before we try to understand the nature of this space, we show in Figure 6.3 a very convenient way
of representing the identifications made in the above quotient space constructions. In each of the
diagrams, two parallel lines marked with a arrows are identified, where the orientation is preserved
if the arrows point in the same direction or reversed otherwise. (In more complicated situations, one
should mark the arrows in some way to make clear which sides are identified.)

fo P P P .
o o o o ——

» - - — ¥
L —g —— — —~g—

cylinder Moebius band torus Klein bottle projective plane

Figure 6.3: Quotient spaces of a square

Returning to the quotient space defined by (6.4), we notice that under the homeomorphism
0,1 = [-1,1%, (z,y) = (22 — 1,2y — 1), the identifications ((x,0) ~ (1 —z,1),(0,y) ~ (1,1 —y))
correspond to the identification x ~ —x of antipodal points in d[—1,1]?>. For a subset X C R?
such that 0X is stable under x — —x, we denote by ~g the equivalence relation that identifies
antipodal points (z and —x) of X and does nothing else. Thus we see that (6.4) is homeomorphic
to [—1,1]%/~p, which is more convenient to work with. This quotient (and its higher dimensional
analogues) has another, somewhat simpler interpretation as a quotient space (unfortunately equally
challenging to visualize), known as the (real) projective plane RP?. The latter just is the first
(interesting) of the following infinite family of spaces, studied in projective geometry, a subject with
a long and venerable history:

Definition 6.4.30 The real projective space RP™ is the quotient space S™/(x ~ —x) obtained by
identifying antipodal pairs {z,—x} of points of S™.
In view of Lemma 6.4.27 and Ezercise 6.4.2, this is equivalent to

RP" 2 (R™1\{0})/(z ~ A VA £ 0),

which has the advantage of working (purely algebraically) for any field k instead of R. RP™ can be
interpreted as the “space of lines through 0 in R™™” suitably topologized.

3Christian Felix Klein (1849-1925), German mathematician.
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Lemma 6.4.31 (i) Let ~g be the equivalence relation on [—1,1]" that identifies each x € 0]—1,1]"
with —x. For all n € N, we have homeomorphisms
D" Sn

[—}Vv;]” e (6.5)

>~

(1) RP' = S'. (Remark: We will later prove RP" % S™ forn > 2.)

Proof. (i) K = [—1,1]" C R™ is compact convex with non-empty interior and —K = K. Proposition
7.7.61, proven later, provides a homeomorphism ¢ : D™ — [—1, 1]" that satisfies g(—z) = —g(x) Vz.
From this one deduces a homeomorphism [—1,1]"/~s— D™/~s between the quotient spaces, which
is the first half of (6.5). We now wish to relate this to the projective space RP" = S™/(x ~
—x). Defining S} = {z € S | £ 2,41 > 0}, we have S = S7 U S”. Now the maps D" —
St x=(x1,...,2n) = (21,...,2,,£+/1 — ||x]|2) are continuous bijections with continuous inverses
(x1,...,Tpy1) — (x1,...,2,), thus homeomorphisms. Thus we can interpret S as two discs D"
glued together at their boundaries. The map x +— —x clearly is a homeomorphism S7 — S™. Thus
if p: S"™ — S"/(x ~ —x) is the quotient map, we have p(S7) = S™/(x ~ —x). Restricted to the
interior of S, the map p is injective, but it identifies (z1,...,2,,0) with (—a1,..., —2,,0). Thus
set-theoretically we have S™/(x ~ —x) = D"/~y, and as in the proof of Lemma 6.4.28 one applies
Proposition 6.4.8 to prove that this is a homeomorphism. (Or use Proposition 7.4.11(iv).) This is
the second half of (6.5).

(ii) This follows from the instance RP! & D!/~ of (i), together with D! = [~1,1] and Lemma
6.4.28. |

Remark 6.4.32 The above constructions of quotient spaces are ‘purely topological” in that they do
not take place in some ambient space R" into which everything is embedded. Cylinder and 2-torus
can be embedded into R?, but the Klein bottle cannot. It can be ‘immersed’ into R?, but only at
the price of self-intersections. It is easy to see that it can be embedded into R*. For the projective
plane RP?, the same is true. A nice immersion into R3 was found by W. Boy in 1901, having been
instructed by his supervisor D. Hilbert to prove that such an immersion does not exist! Cf. [55,
Section 2.2] for a thorough explanation. O

Exercise 6.4.33 Use Lemma 6.4.14 to prove that the quotient spaces C, T, KB, M, RP? considered
in this subsection are Hausdorff. (Do not use the homeomorphisms with known spaces proven here!)

6.5 Direct products

6.5.1 Basics

Given any family {X;}ier of sets, we can define the direct product [],.; X, cf. Appendix A.2.2. In
this section we will study topologies on [, X;, assuming that each X is a topological space.

Definition 6.5.1 Let (X;,7;),i € I be topological spaces. The product topology T on [[, X is the
initial topology defined by the projection maps p; = [, Xi — Xi, f +— f(i). The topological space
(11, Xk, ) is also denoted by ][, (X, 7k).

As for sums, if I is finite we will usually take I = {1,...,n} and also denote [[, X; by X1 x--- X
X,. (Remark 6.3.2 applies also here.)
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What does Definition 6.5.1 mean in more concrete terms? By Lemma 6.1.6(ii), a subbase for
is given by
Sn={p;'(U)|iel, Uem}. (6.6)

Thus a base B for 711 is obtained by considering all finite intersections of elements of Sy:
Bu = {p;,"(Uy)N--0p; " (U;,) |in,....in €1, Uy, €73, Yk =1,...,n}. (6.7)

Since we defined the product topology on [[.(X;,7;) as an initial topology, the general results
from Section 6.1 apply. Our first result, which is just the specialization of Proposition 6.1.8 to the
product, shows that the universal property of the product of sets, cf. Proposition A.2.7, lifts to
topological spaces and continuous maps:

Proposition 6.5.2 Given topological spaces (X, 7T) and (Y;,0;),1 € I, there is a bijection between
continuous maps f : X — [, Yi (with the product topology) and families of continuous maps {f; :
X = Yitier, given by f = {pio f}icr.

Lemma 6.5.3 A net {x,} in a product space [[,(X;, 7;) converges if and only if the net {p;(z,)} in
X; converges for each i € I. (“The net converges coordinatewise”.)

Proof. This is just an application of Proposition 6.1.9, modulo one observation: If p;(z) — z; € X,
for all ¢ € I, there is a unique point x in [[, X}, such that py(x) = x;, Vk. (This is not true in the
generality of Proposition 6.1.9.) |

Remark 6.5.4 If I = (J,x Ir is a partition of the index set I, i.e. I; N 1; = ) for i # j, then there

is a canonical homeomorphism
[Ix=1] (H Xj> .

iel keK \jcIy
We omit the trivial but tedious details. |

Remark 6.5.5 If (X, 7) is a topological space and I is a set, we write (X,7)" for [[,.;(X,7). In
view of Lemma 6.5.3, this is just the set of all functions f : I — X, equipped with the topology of
pointwise convergence. (When there is no risk of confusion about the topology 7, we may simply write
XT.) Since X! depends only on the cardinality of I, this also defines (X, 7)" for a cardinal number
N. Notice that when X is a topological space, Y often denotes the set C(X,Y) of continuous
functions (which can also be topologized). When X is discrete, C(X,Y) coincides with Y¥ as just
defined, which hopefully will limit the risk of confusion. O

Proposition 6.5.2 and Lemma 6.5.3 clearly show that our definition of the product topology is
‘the right one’, even though it is not very intuitive. In order to obtain better insight, and to preempt
misconceptions about the product topology, it is very instructive to consider another, probably more
intuitive, topology on [[, X;:

Exercise 6.5.6 Let (X;,7;) be a topological space for each i € I, and let X =[], X.

(i) Prove that
el

satisfies the conditions of Proposition 4.1.21 and therefore is a base for a topology 7{; on X.
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(ii) Prove that Bj; equals Bp from (6.7), thus 7{; equals the product topology 7.
(iii) If ) # U € 7, prove that {i € I | p;(U) # X;} is finite.

(iv) Defining

BD:{HUZ|U16TZ VZEI},

icl
prove that B is the base for a topology 75 on [], Xk, the box topology.
(v) Prove 70 O 1y1. (Thus 74 is finer than the product topology 7i1.)

(vi) Prove that 7o = 77 when #1 < oc.

(vii) Prove that 7o # 1 when {i € I | 7; # Tinaisc} is infinite. (Le. infinitely many of the X;’s have
an open subset that is different from () and X;.)

Remark 6.5.7 By (vi) above, there is no harm in thinking in terms of the more intuitive box
topology 7 when dealing with finite products. But (except certain trivial cases), the box topology
on an infinite product of non-trivial spaces differs from the product topology. This clearly means
that it cannot have the same properties as the latter. In fact: If we replace the product topology 7
by the box topology 7o, Proposition 6.5.2 and Lemma 6.5.3 are false for infinite products! (Since the
base Bn of 75 can be written as {[[, U; = (N, p; '(U:), Ui € 7; Vi}, adapting the proof of Lemma 6.5.3,
we would then need to find a ¢y bigger than an infinite number of ¢;’s, and there is no guarantee that
this exists.) Also the facts that arbitrary products of connected (or compact) spaces are connected
(respectively compact), which we will prove later, are false for the box topology! O

We know by construction that the projections p; : [[, Xx — X; are continuous. Furthermore:

Proposition 6.5.8 Let (X;,7;), i € I be topological spaces. Then for each i € I the projection
pi - [, Xk = Xi is open, and therefore a quotient map.

Proof. If one of the X} is empty, so is the product, and the claim is true. Thus we may assume
X # 0 Vk. In view of Remark 5.2.24 it suffices to show that p;(U) C X; is open for the elements
U of the base By in (6.7). In view of Exercise 6.5.6(i), every U € B is of the form [[,.; U; where
U; € 7; and all but finitely many U; are equal to X;. From this it is obvious that p;(U) = U;, which
is open. Thus the map p; is open and thus a quotient map by Lemma 6.4.5. [ |

It will follow from Exercise 6.5.35 below that the product topology on the n-fold product Rx- - - xR
coincides with the standard topology on R™ arising from any of the norms discussed in Example 2.1.13
(which are all equivalent, cf. Exercise 2.2.16(iii) and Theorem 7.7.51). For the purpose of the next

@ exercise, this may be assumed.

While in certain situations one can prove projection maps to be closed, cf. Exercise 7.5.5, in

general they are not:

Exercise 6.5.9 Prove that the projection p; : R x R — R is not closed.

If ) # U; € 7; Yi € I then [], Uy is in the box topology 70, but it is in 737 only if all but finitely
many U; are X;. On the other hand, products of closed subsets behave nicely:

Exercise 6.5.10 Let (X;,7;), ¢ € I be topological spaces and C; C X;, i € I closed subsets. Prove
that [, C; C ], X, is closed.
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Exercise 6.5.11 For A C X, B C Y, compute (A x B)?, Ax B and 9(A x B) in terms of
A% A, B° B.

Exercise 6.5.12 Let X; be a topological space for each i € I.
(i) Let A; C X; for alli € I. Prove [[, A; = [[, 4;.
(ii) If A; C X, is dense for all ¢ € I, prove that [], A; is dense in [[, X;.
(iii) If Xy,..., X, are separable, prove that [[;_, X; is separable.

(iv) Redo (iii), now for countable I. (You need a new approach, but may of course use (iii).)

Lemma 6.5.13 Let (X;,7;), ¢ € I be topological spaces. Let z € [, Xx. (Thus in particular
X; # 0 Vi.) For each i € I, define a map v,; : X; — [, Xy by saying that v, ;(z) is the unique point
y defined by

. 2k if k’#l
pk(y)—{ v if k=i

Then t,; is an embedding, thus each (X;,7;) is homeomorphic to a subspace of [],(Xy, 7). This
subspace is closed if all X; are T7.

Proof. Injectivity of ¢,; is clear, thus ¢,; : X; — ¢,;(X;) is a bijection. The image of ¢,; is
N i p;l(zj) C [I; Xk, and the subspace topology on this coming from the product topology on

[1, Xk is is exactly 7;. Thus ¢,; is an embedding. If all X; are 77 then {z;} C X is closed for each
i, thus X; % [[,.;{#;} €[], Xi is closed by Exercise 6.5.10. |

Corollary 6.5.14 Let P be a hereditary property of topological spaces. If X; # 0 Vi € I and [[, X;
has property P then every X; has property P.

Recall that first and second countability, the separation axioms 7} and 7, and metrizability are
hereditary. This already gives part of the following:

Exercise 6.5.15 Let (X;, 7;) be topological spaces with X; # () Vi € I. Prove that
(i) TL/(Xi,7) is T} if and only if and only if each (X;, ;) is T7.
(ii) TI[;(X;,m) is Ty if and only if and only if each (X;,7;) is 5.

(iii) J[,(X;, 1) is first (resp. second) countable if and only if each (X;,7;) is first (resp. second)
countable and at most countably many X; are not indiscrete.

Using products, we can improve on Exercise 4.1.14:

Lemma 6.5.16 (i) The Sorgenfrey plane (R, 7s)? has a closed discrete subspace that has the car-
dinality ¢ of the continuum.

(i) There exists a Hausdorff space that is separable, but not hereditarily separable.
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Proof. (i) Let X = (R, 75) X (R, 7¢) and Y = {(z, —z) | z € R} C X. Now Y is closed w.r.t. the usual
topology and therefore closed w.r.t. the topology (7s)? since Tg is finer than the standard topology
on R. Now [z,00) X [—x,00) € 72 and it intersects Y only in (z, —z). Thus {(z,—z)} € Y is open,
so that the subspace topology on Y is discrete. Since there is an obvious bijection ¥ = R, Y has
cardinality c.

(ii) By Exercises 4.1.23 and 6.5.15(ii), the Sorgenfrey plane is Hausdorff. By Exercise 4.3.12, the
Sorgenfrey line is separable, thus also the Sorgenfrey plane is separable by Exercise 6.5.12. But by
(i), (R, 7s)? has a closed discrete subspace that has cardinality ¢ and thus is not separable. n

Exercise 6.5.17 Prove that R™\{0} = S"~! x (0,00) by giving mutually inverse continuous maps
both ways.

The following exercises show that Hausdorffness of spaces and continuity of functions can be
characterized in terms of closedness of certain subsets in direct products:

Exercise 6.5.18 Prove the following statements:
(i) A space X is Hausdorff if and only if the diagonal Ay = {(z,z) | x € X} C X x X is closed.
(ii) Use (i) to give a new proof of Exercise 5.2.16(ii).

Definition 6.5.19 Let f : X — Y a function. Then the graph of f is the subset G(f) = {(z, f(z)) | z €
X}CXxY. —

Remark 6.5.20 1. For idy : X — X we find G(idyx) = Ax.

2. Since a function f: X — Y is defined as a relation R C X x Y satisfying some assumptions,
G(f) in principle just equals f, but the perspective is somewhat different. O

Exercise 6.5.21 (i) For f: X — Y, prove G(f) = (idx x f)(Ax) = (f x idy) "} (Ay).

(ii) Prove: If Y is Hausdorff and f: X — Y is continuous then G(f) C X x Y is closed.

Remark 6.5.22 For the converse implication of (ii), we need stronger assumptions. Cf. Exercise
7.5.7. O

Exercise 6.5.23 Let X be a topological space and X; C X Vi € I. Define Y = (), X; and

f:Y—>HXi, yr—>Hy,

iel iel
which makes sense since Y C X, Vi.
(i) Prove that f:Y — ][, X; is an embedding.

(ii) If X is Hausdorff, prove that f(Y) C [], X; is closed.
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6.5.2 xx More on separability and the Souslin property for products

This section is somewhat more difficult than what we have done so far and may be skipped since it
is not essential for what follows.
Remarkably, one can do better than Exercise 6.5.12(iv):

Exercise 6.5.24 Prove:
(i) If #1 < ¢ = #R and X, is separable for each i € I then [[, X; is separable.
(ii) If [[,c; X is separable and each X; reducible then #I < #R.

(For reducibility see Definition 2.8.2. Every Hausdorff space with > 2 points is reducible.)

Remark 6.5.25 1. There also is a necessary and sufficient condition for separability of [ [, X;.

2. More general (but not stronger in the case #I = ¢) is the Hewitt-Marczewski-Pondiczery*
theorem: Let y be an infinite cardinal number, X; a space admitting a dense subset of cardinality
< x for each i € I, where #I < 2X. Then [[, X; has a dense subset of cardinality < x. Cf. e.g. [9,
Theorem 2.3.15]. O

Exercise 6.5.15(iii) and Exercise 6.5.24 show that separability, which is weaker than second count-
ability, is better behaved under products than the latter.

This leads to the question how the Souslin property, which is even weaker than separability,
behaves under products. It turns out that the innocent-looking question whether the product
of any two spaces with the Souslin propery is Souslin cannot be answered based on the @
usual ZFC axioms of set theory (including the axiom of choice)!

The problem turns out to be related to the Continuum Hypothesis (CH), which is the statement
that every uncountable subset of R has the same cardinality as R. It was shown by Godel® (1940) and
Cohen® (1963/4), respectively, that there are models of ZFC set theory where CH is true, respectively
false. One can prove that the the product of two Souslin spaces always is Souslin when Martin’s’
axiom M A(R;) holds. CH implies that M A(X,) is false, but there are models of set theory in which
MA(X;) A—=CH holds, and in such a set theory, products of Souslin spaces are Souslin. On the other
hand, under the set theoretic ‘diamond axiom’ ¢ (which is somewhat stronger than CH), one can
construct Souslin spaces X, Y such that X x Y is not Souslin. For more on this see [181, 62].

This is perhaps the simplest instance of a question in general topology that can be answered
definitely only making set-theoretic assumptions beyond ZFC. There are many others, and a consid-
erable part of research in general topology since Cohen has been predicated on stronger set-theoretic
hypotheses.®

However, one can prove the following:

4Edwin Hewitt (1920-1999), American mathematician who mostly worked in topology and analysis. Edward Mar-
czewski (1907-1976), Polish mathematician (until 1940 Edward Szpilrajn). E. S. Pondiczery actually was a pseudonym
of the American mathematician Ralph P. Boas, Jr. (1912-1992).

SKurt Friedrich Gédel (1906-1978). Austrian (later American) mathematician and logician.

6Paul Joseph Cohen (1934-2007). American mathematician. He received the Fields medal for this work.

"Donald A. Martin (1940-). American set theorist and philosopher of mathematics

8The reader should not think that this surprising state of affairs arises only in topology. See e.g. [35] for a similar
situation in algebra involving just discrete abelian groups (Whitehead’s problem). [An abelian group A is called a
Whitehead group if for every surjective homomorphism « : B — A, where B is an abelian group and ker(a) 2 Z, there
is a homomorphism S : A — B such that a o =id4. (Thus B 2 A® Z.) It is easy to show that every free abelian
group is Whitehead, and with more effort one proves that every countable Whitehead group is free. Whitehead’s
problem is to prove that uncountable Whitehead groups are free. This was done by S. Shelah (Israeli mathematician
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Proposition 6.5.26 (i) If f : X — Y is continuous and X has the Souslin property then so does
f(X).

(ii) Let X; # O Vi. Then [],.; X; has the Souslin property if and only if T]
property for each finite subset J C 1.

X, has the Souslin

jeJ

Since separability implies the Souslin property and is preserved under finite products, one has
the following remarkable consequence:

Corollary 6.5.27 If X; is separable for every i € I then X = [[..; X; has the Souslin property.

Example 6.5.28 The cube [0, 1]X is Hausdorff and has the Souslin property for all x, but for #y >
¢ = #R it is not separable. O

The proof of Proposition 6.5.26 requires the following lemma from infinitary combinatorics, proven
in Section A.3.6 using transfinite recursion:

Lemma 6.5.29 (A-system lemma) If A is an uncountable family of finite sets then there exist
an uncountable subfamily Ay C A and a finite set A such that X NY = A for all X,Y € Ay with
X#£Y.

Proof of Proposition 6.5.26. (i) Let f : X — Y be continuous and surjective, where X has the Souslin
property. Let U be a family of mutually disjoint non-empty open sets in Y. Then {f~}(U) | U € U}
is a family of disjoint open sets in X that are non-empty due to the surjectivity of f. Since X is
Souslin, & must be countable. Thus the continuous image of a space with the Souslin property also
has that property.

(i) = If X; # 0 Vi and X = [[, X; has the Souslin property, then X; = p;(X) has the Souslin
property by (i).

< Assume {U,};es is an uncountable family of mutually disjoint non-empty open sets in X =
[Lc; Xi. Each Uj contains a (non-empty) basic open set of the form V; = [[..; Wi, where each
Wii € X, is open and A; = {i € I | W;,; # X;} is finite. For j,j' € J, j # j' we cannot have
A; N Ay = 0 since that would imply V; NV # 0, contradicting the assumption that the U; are
mutually disjoint. Now, A = {A4; | j € J} is an uncountable family of finite sets, and the A-system
lemma provides an uncountable subfamily Ay = {4; | j € Jo} € A and a finite A C I such that
3.7 € Jo, 7 #7 = AjN Ay = A. Since any two A; have non-empty intersection, we have A # ().
The projection 7 from X = [[,.; Xi to the finite product [],., X; is an open map. [It suffices to
prove that 7(U) is open for basic open sets in [ [, X;. This is quite obvious since the latter are of the
form [[, Vi, where each V; is open in X; and U; = X for all but finitely many .| If j,5' € Jy, j # j'
then A;NA; = A # 0, which implies 7(U;) Nw(Uj ) = 0 since V;NV; = (), this disjointness being due
to the coordinates in A = A; N Aj,. Thus {n(U;)};es is an uncountable family of mutually disjoint
non-empty open sets in the finite product [[,. 4 X;, contradicting the assumption that the latter has
the Souslin property. [ |

An alternative (but related) proof of Corollary 6.5.27 uses the Knaster property:

Definition 6.5.30 A topological space X has the Knaster property if every uncountable family U of
non-empty open subsets has an uncountable subfamily U’ C U such that U,V e U = U NV # (.

and logician, born 1945) assuming Gdodel’s axiom V' = L of constructibility (which implies ¢ and CH). On the other
hand, assuming M A(R;) A =CH one can construct Whitehead groups that are not free. (Shelah later showed that
existence of non-free Whitehead groups is possible even assuming GCH.) Thus M A(X;) A =C' H implies a simple state
of affairs in topology but not so in algebra, while V' = L implies a nice statement in algebra, but not in topology!]
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Exercise 6.5.31 Prove:
(i) The following implications hold: Separability = Knaster property = Souslin property.
(ii) If X; has the Knaster property for each ¢ € I then [[, X; has the Knaster property.

Hint: (i) is easy. The proof of (ii) has much in common with that of Proposition 6.5.26(ii).

6.5.3 Products of metric spaces

Definition 6.5.32 Let (X;,d;) be a metric space for each i € I. A product metric on the product
X = Hiel X; 18 a metric D such that the metric topology Tp equals the product T = Hiel T4, of the
metric topologies.

Exercise 6.5.33 Let (X;,d;) be metric spaces for ¢ = 1,...,n. Defining

Doo(xuy> = 'L'E?ilaxn} dz(xwyz))

n 1/s
Dy(r,y) = (Z di(xiuyi)s> (1<s<00),

prove:
(i) Dy is a metric on X for each s € [1,00]. Hint: For s < oo, use Minkowski’s inequality (2.4).

(ii) A sequence {z*} in ], X; converges w.r.t. D if and only if it converges coordinatewise, i.e.
{2¥} converges in (X;,d;) for each i.

(iii) D is a product metric.

Corollary 6.5.34 For all n € N, R" equipped with the Fuclidean topology is homeomorphic to the
direct product of n copies of R (with the Fuclidean topology).

If I is uncountable and (X;, d;) satisfies #X; > 2 for each ¢ then [[,(X;, 74,) is not first countable
by Exercise 6.5.15 and therefore is not metrizable. On the other hand:

Exercise 6.5.35 Let (X,,,d,),n € N be non-empty metric spaces such that all d,, are bounded by
1. For z,y € X =[], X, (i.e. x = (z1,22,...)) we define

D(]J, y) = Z 2_ndn($n7 yn)
n=1

(i) Prove that D is a metric on [, X,.

(ii) Prove that a sequence {z*} in X converges to z € X w.r.t. D if and only if it converges
coordinatewise, i.e. limy xfl = z,, for each n.

(iii) Prove that (X, D) is complete if and only if each (X,,,d,,) is complete.

(iv) Give a direct proof of 7p = 71 := [[,, 74, (A less direct proof follows from (ii) and the proof
of Exercise 6.5.33(iii).)

Corollary 6.5.36 Countable products of (completely) metrizable spaces are (completely) metrizable.
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Proof. Choose (complete) metrics on the spaces inducing the given topologies. By Exercises 2.2.14
and 3.1.14 we may assume that the metrics are bounded by 1. Now apply Exercise 6.5.35. |

Remark 6.5.37 For a product of metric spaces there is a third topology besides 7 and 7:
Let {(X;,d;)}ier be any number of metric spaces. For z,y € X =[], X, define

D(z,y) = supd;j(x;,y;) where di(z;,y;) = min(1, dy(z:, y:)).
iel
This clearly is a metric on X, the metric of uniform convergence. Convergence w.r.t. 7p implies
pointwise convergence (x; — y; Vi € I), thus 7p is finer than the product topology . Since 7p is a
metric topology, it has Bp = {BP(z,r) = [[, B%(xi,7) | # € X, v > 0} as base. Thus 7y C 7p C .
(The three topologies coincide for finite I.) O

6.5.4 Joint versus separate continuity

The universal property of the product, as given by Proposition 6.5.2, tells us that a map into a
product of topological spaces is well-behaved if and only if it is well-behaved component-wise. It is
essential to understand that this is not at all true for maps out of a product-space! The slogan is:
Separate continuity does not imply joint continuity!

Definition 6.5.38 Given topological spaces (X;,7;), 1 € I and a function f : [[, Xi — (Y,0), we
say that f is separately continuous if the map fou,,; : X; =Y is continuous for each z € [, Xy and
each i € I (where v,; is as in Lemma 6.5.13). Less formally: f is continuous w.r.t. x; € X; when
the other xj,j # i are kept fized.

Occasionally, continuity of f : [[,. Xx — Y in the usual sense, namely w.r.t. the topologies Ty
and o, is called joint continuity in order to distinguish it from separate continuity.

That separate continuity of f : [[, Xy — Y does not imply continuity of f, not even in the case
[0,1] x [0,1] — R is shown by the following simple example which should be known from Analysis
courses. (Cf. e.g. [281, Exercise 13.2.11].) Unfortunately, experience tells that it isn’t (or has already
been forgotten).

Consider f: [0, 1] x [0,1] — R defined by

It is easy to check that the maps [0,1] — R given by x — f(x,y) and y — f(z,y) are continuous
for all xg, yo € [0,1]. But f is NOT jointly continuous: f vanishes on the axes z =0 and y = 0 (and
therefore is continuous restricted to them), but f(z,x) = 1/2 for x # 0. Thus f is not continuous at
(0,0).

Another way to look at f is using polar coordinates (z,y) = r(cosg,sing). Then f(r,¢) =
cos ¢ sinp = 222 This function is independent of r but not of ¢. It assumes all values in [0, 1/2]
in any neighborhood of (z,y) = (0,0) and therefore clearly is not continuous.

The problem with f is that its limit as we approach (0,0) depends on the direction of approach, a
fact that we do not see if we move only horizontally and vertically in the plane. In view of Proposition
5.2.5, we must (at least a priori) consider all ways of approaching a point in the product space in
order to test whether f is continuous there.

Under certain assumptions on the spaces, there are simpler ways to check joint continuity:
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Theorem 6.5.39 If f : X xY — Z is jointly continuous and h : X — Y 1is continuous then
frn: X = Z, x— f(x,h(x)) is continuous.

If X =Y =10,1] and Z = R, then continuity of fy for all h € C(X,Y) implies joint continuity
of f.

More generally, this holds under the following assumptions: X,Y, Z are first countable, X is T35
and dense-in-itself, Y is locally path-connected, and Z is Ts. (Those properties that have not yet been
defined soon will be. First countability, Tz and T35 follow from metrizability.)

Proof. The map X — X XY, x + (x,h(x)) is continuous (by Proposition 6.5.2!), so if f is (jointly!)
continuous then f, is continuous. The special case X =Y = [0,1] and Z = R of the converse was
proven by Luzin in 1948, and the generalization can be found in [068]. [ |

An often more convenient approach to proving joint continuity is the following:

Exercise 6.5.40 (i) Recall that if A, B are sets we write Fun(A, B) for the set of all functions
f A — B. State the obvious map

A Fun(X x Y, Z) — Fun(X, Fun(Y, 2)),
and prove that it is a bijection by giving the inverse map.

(ii) Let X,Y be topological spaces and (Z, d) a metric space. Prove: If f € Fun(X x Y, Z) is such
that A(f) € C(X,Cy(Y, %)), where Cy(Y, Z) has the topology coming the metric D(g,h) =
sup, d(g(y), h(y)), then f € C(X xY, 7).
Thus: If f is continuous and bounded in y for every x and continuous in z uniformly in y then f
is jointly continuous. (For a converse result, cf. Exercise 7.7.45(1i).)

6.6 x Pushouts and Pullback (fiber product)

The four constructions in the preceding sections — subspaces, quotient spaces, direct sums and direct
products — can be combined in many ways to produce more complicated spaces. Here we briefly look
at two of the more important ones, even if their main use lies in algebraic topology.

Definition 6.6.1 Let Xy, X1, Xs be sets and f; : Xog — X;, @ = 1,2 functions. Consider the
canonical inclusion maps t; : X; — X1 Xo. Let ~ be the smallest equivalence relation on X1 & Xs
identifying v1(f1(x)) with wa(fo(x)) for each v € Xy. Then X1 ®x, Xo := (X1 & Xa)/~ is called the
pushout for the ‘diagram’ X, & Xo R X,

The pushout comes with canonical maps g; : X; — Xy ©x, Xo, @ = 1,2 (defined as g; = p o ;,
where p : X1 ® Xy — X1 ©x, Xs is the quotient map). There also is a map f : Xo — X1 ©x, Xo,
defined as f = g; o f; (which is independent of i € {1,2} by construction).

If X1, X5 are topological spaces, X1 ®x, Xo is given the quotient topology coming from the direct
sum topology on X; & Xs.

Also this construction has a universal property:
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Proposition 6.6.2 Let X; <f—1 X, fi Xy be as in Definition 6.6.1. Let Y be a set and h; : X; —
Y, 1+ =1,2 functions such that hy o f; = hy o f5.

N

XI@XQ_'XI@XOXQ ----’Y (68)

N

Then there is a unique function h : Xy ®&x, Xo = Y such that hog, =h;, i =1,2.
If Y, Xy, X5 have topologies and hy, he are continuous then h : X1 @x, Xo — Y s continuous. If
in addition the f; : Xo — X; are continuous then so is f : Xog = X7 ®x, Xo.

Proof. By the universal property of direct sums of sets (Proposition A.2.5) there is a unique function
ho : X1 @& X5 — Y such that hgot; = h;, © = 1,2. The only non-trivial equivalences w.r.t. ~ are
11(f1(z)) ~ wa(fa(x)) for each € Xy. The assumption hjo f; = hyo fy implies that hg : X1 Xe — Y
is constant on the ~-equivalence classes, so that the universal property of the quotient operation
(Lemma A.1.11) implies the existence of a unique map h : X; ®x, Xo = (X5 & X3)/~— Y such
that hop = hg. If Y, X7, X5 are topological spaces and the h; continuous, Proposition 6.3.5 gives
continuity of hg, and Proposition 6.4.8 gives the continuity of h. If furthermore f; : Xo — X, for
i € {1,2} is continuous then also f =poy; o fi: Xg = X3 ®x, X» is continuous. |

Remark 6.6.3 1. If X is a fixed topological space, a space below X is a topological space X
equipped with a continuous map tx : Xo — X. If (X,tx),(Y,ty) are spaces below X, a map
f X — Y is a map of spaces below X if fo,, = ty. Spaces and maps below X, form a category
TOPXo. If (X4, f1), (Xa, f2) are objects in TOPXe then (X; ®x, Xa, f), as defined above, is an
object in TOPXe. If now (Y, k) € TOPX® and h; : X; — Y are maps of spaces below X then it
follows that k = h; o f; for ¢ = 1,2. This implies f; o hy = f5 0 hs, so that by the proposition there is
a unique h : X; @x, Xo = Y. Now also ho f =k, thus h is a map of spaces below X,. This proves
that (X; @x, Xo, f) is the coproduct of (X1, f1), (Xs, f2) in the category TOPXo.

2. The construction of the pushout, as well as its universal property, generalize easily to any

family {f; : Xo — X }ier of (continuous) maps, giving rise to @XOXi. O
i€l

We now consider some applications of the pushout:

Exercise 6.6.4 Let X be a topological space and A, B C X open subsets such that X = AUB. Give
A, B the subspace topologies. Prove that the pushout A & 4n5 B for the diagram A« ANB — B,
where the arrows are the inclusion maps, is homeomorphic to X.

Exercise 6.6.5 Let X be a Hausdorff space and A C X a closed subset. Prove that the pushout
X @4 X for the diagram X <— A — X, where the arrows are the obvious inclusion maps, is Hausdorff.
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Remark 6.6.6 Let XY be Hausdorff spaces and f € C'(X,Y). Assume that f is ‘an epimorphism
in the category of Hausdorff spaces’, meaning that if also Z is Hausdorff and g, h € C(Y, Z) satisfy
gof=hofthen g=h. Let A= f(X)CY and define Z =Y @, Y, which is T, by Exercise 6.6.5.
Ifp:Y@®Y =Y ®,Y is the quotient map, let 11/ =poryp: Y =Y @Y. By construction,
and 15 coincide on A, thus z; 0 f =730 f. Since f is epi, we have 11 = 15. This clearly implies A =Y,
to wit f(X) =Y.

Thus epimorphisms in the category of Hausdorff spaces have dense image, which is the promised
converse of Remark 5.2.17(ii). O

Definition 6.6.7 Let X, Z be topological spaces, Y C X a subspace and f :Y — Z a continuous

map. Then we write X @7 Z (instead of X @y Z) for the pushout for the diagram X <Y EN Z,
where the first arrow is just the inclusion map. This construction is called ‘attaching X to Z along
f:Yy—=2.

Remark 6.6.8 Note that this construction identifies each y € Y C X with f(y) € Z. Thus if f is
not injective, certain points of Y become identified in X ®; Z. The attachment construction plays

an important role in algebraic topology, where it is often used to ‘attach an m-cell’. In this case
X=D"={xeR"||z|]s <1} and Y =9D" = S~ 1. O

Dualizing the construction of the pushout as a quotient of a direct sum, one obtains the ‘pullback’
as a subspace of the direct product.

Definition 6.6.9 Let Xy, X1, Xy be sets and f; : X; — Xo, ¢ = 1,2 functions. The pullback or
fiber product Xy X x, Xo is defined as

X1 Xxo Xo = {(21,22) € X1 x Xo | fi(z1) = folw2)}.

It comes with canonical maps q; : X1 Xx, Xo = X, ¢ : (v1,22) = x;, © = 1,2. There also is a
function p : X1 X x, Xo = Xo, given by p = f; o q;, which is independent of i € {1,2}.

If X1, Xy are topological spaces, also X1 X x, Xo 15 given the subspace topology arising from the
product topology on X1 X Xs.

Lemma 6.6.10 Let X, «f—l Xy fi Xs as in Definition 6.6.9. Let h; - Y — X;, 1 = 1,2 be functions
such that fi o hy = fy0 hy.

Y---->X1 XXUX2—>X1><X2 XO (69)

Then there is a unique function h 1Y — Xy X x, Xo such that ¢goh =hy, 1 =1,2.

If Y, X1, X5 have topologies and hi,hy ' Y — X, are continuous then h :' Y — X; Xx, Xo2 i
continuous. If in addition f; - X; — Xq is continuous for i € {i,2} then also p = f;oq; is continuous
(since q; is continuous by construction).
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Proof. Since ¢; is just the restriction of p; to X; xx, Xo € X5 x Xo, amap h : Y — X; xXx, Xo
satisfies ¢; o h = h; for ¢+ = 1,2 if and only if it satisfies p; o h = h; for ¢ = 1,2. But this forces
the definition h : Y — X; x Xy, y — (h1(y), ha(y)). (Compare Proposition A.2.7.) In view of
f1(h1(y)) = fa(ha(y)), we indeed have h(y) € X x x, Xo.

If the h; are continuous then h : Y — X; x X5,y +— (h1(y), ha(y)) is continuous by Proposition
6.5.2. Now Corollary 6.2.2 gives that h is continuous as a map ¥ — X; X x, Xs. [ |

Remark 6.6.11 1. If X is a fixed topological space, a space above X is a topological space X
equipped with a continuous map px : X — Xo. If (X,px),(Y,py) are spaces above Xj, a map
f: X — Y is a map of spaces above Xy if py o f = px. Spaces and maps above X, form a category
T OPx,. Arguing as for the pushout, one finds that the pullback (X7 X x, X2, p) is the direct product
of (X1,p1), (X2, p2) in the category TOPx,.

2. Given any number of spaces X; equipped with maps f; : X; — Xy, the above construction
generalizes straightforwardly to a fiber product [ x, Xi- O




124 CHAPTER 6. NEW SPACES FROM OLD

Part 1I:

Covering and Separation axioms (beyond 75) °

9This author agrees with Ioan James [157]: “Most accounts of the theory go on to discuss separation axioms, [...].
But in my view compactness should come first, because it is of fundamental importance.”



Chapter 7

Compactness and related notions

By well-known classical results from basic analysis, every continuous function f : [a,b] — R is uni-
formly continuous (Heine) and bounded, and it assumes its infimum and supremum. In introductory
textbooks like [280], these results are deduced from the Bolzano-Weierstrass theorem according to
which every bounded sequence in R has a convergent subsequence. Later we will say ‘[a, b] is se-
quentially compact’. As we know, sequences are insufficient for studying general topological spaces,
which is why sequential compactness is not the best notion and we will focus on the ‘better’ notion
of compactness. Compactness actually is the most important property that a space can have. It has
many applications to analysis and functional analysis, cf. [I11]. But also many topologies arising in
purely algebraic contexts are compact, like the Krull topology on Galois groups, the Zariski topolo-
gies (cf. Appendix C) and the topology on the Stone dual (Section 11.1.11) of a Boolean algebra.
For this reason, compactness and its many relatives and generalizations merit a very thorough study,
which is why this is the longest chapter in this text.

7.1 Covers. Subcovers. Lindelof and compact spaces
Definition 7.1.1 Let (X, 7) be a topological space.
o A cover of X is a family U C P(X) of subsets of X such that JU = Uy, U = X.
o A cover is called open (resp. closed) if every U € U is open (resp. closed).

o A subcover of a cover U is a subfamily V C U such that still | JV = X.

Remark 7.1.2 More explicitly (and tediously) a cover is a family U4 = {U; | i € I} such that
Uie; Ui = X, and if J C I is such that (J,., U; = X, then V = {U; | i € J} is a subcover. (Indexing

ieJ Vi
by a set I gives the additional liberty of having U; = U; for some 7 # j, but this is never needed.) O

Definition 7.1.3 A topological space is called
e compact if every open cover has a finite subcover.

o Lindelof if every open cover has a countable subcover.

'The impatient reader might want to look at Proposition 7.4.11 for an important application of compactness and
at Theorems 7.7.51, 7.7.63 or Exercise 7.8.77 for examples of results whose statements do not involve compactness but

whose proofs do.
2Ernst Leonard Lindelf (1870-1946), Finnish mathematician. He actually proved that R is ‘Lindelof’.

125
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Remark 7.1.4 1. Obviously, every compact space is Lindelof.

2. Compactness does, of course, not just mean that (X, 7) admits a finite open cover. This would
be trivial since every space (X, 7) has the finite open cover {X}.

3. Like second countability and separability, the Lindelof property can be generalized by replacing
the cardinal number Xy = #N by any other (infinite) cardinal R, but we stick to N,.

4. Some authors include the Hausdorff property in the definition of compact spaces and call
our compact spaces ‘quasi-compact’. Other authors, in particular in the older literature, call our
compact Hausdorff spaces ‘bicompact’ (and use ‘compact’ for our ‘countably compact’). Similarly,
some authors include the T or Ts-axiom in the definition of Lindelof spaces. O

We begin with some very easy results and examples of compact and Lindelof spaces:

Exercise 7.1.5 Let (X, 7) be a topological space and U an open cover of X. Prove:
(i) There is a subcover ¥V C U such that #V < #X.

(ii) There is a subcover V C U such that #V < #B, where B is any base for 7.

Exercise 7.1.6 Let (X, 7) be a topological space. Prove:
(i) Every indiscrete space is compact.
(ii) If 7 is finite (resp. countable) then it is compact (resp. Lindeldf).

(iii) If X is finite (resp. countable) then 7 is compact (resp. Lindelof).

(v) A discrete space is compact (resp. Lindelof) if and only if it is finite (resp. countable).

)

)

)
(iv) A second countable space is hereditarily Lindel6f.

)
(vi) The cofinite (resp. cocountable) topology on any set is compact (resp. Lindelof).
)

(vii) The Euclidean and Sorgenfrey topologies on R are non-compact.

Remark 7.1.7 1. The discrete topology on a countably infinite set provides an example of space
that is Lindelof, but not compact.

2. By Exercise 7.1.6(iv), the Lindel6f property is weaker than second countability, and much of
its usefulness derives from the fact that many (but not all!) results that hold for second countable
spaces generalize to Lindelof spaces. It will also play a role in the discussion of compactness of metric
spaces.

3. There are many spaces that are Lindelof, but not second countable! Examples are provided
by: (a) The cocountable topology on an uncountable set is Lindel6f by Exercise 7.1.6(vi), but not
second countable by Exercise 4.1.17(vi). (b) Countable spaces are Lindel6f by Exercise 7.1.6(ii))
but can fail to be second countable, cf. Exercise 4.3.14. (¢) Cubes [0, 1]X, where x is an uncountable
cardinal number, are not second countable by Exercise 6.5.15(iii). But as a consequence of Tychonov’s
theorem, proven later, such a space is even compact, thus a fortiori Lindeldf. (d) The Sorgenfrey line
is another example, cf. Exercise 7.1.8.

4. When x > ¢, the space in the above example (c) is also non-separable, proving Lindel6f #
separable. That separable % Lindelof is demonstrated by the Sorgenfrey plane (R, 75)?, which clearly
is separable but not Lindel6f by Corollary 8.1.41. O

Exercise 7.1.8 Goal: The Sorgenfrey line (R, 7g) is Lindeldf.

4
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(i) Show that for proving the Lindel6f property it is sufficient to consider covers by open sets of
the form [a, b), where a < b.

(i) Given an open cover U = {[a;, b;) }ier, let Y = |J,(a;, b;). Prove that R\Y is at most countable.
(iii) Show that every subset of R with the usual topology is Lindeldf.
(iv) Combine this to obtain a countable subcover of Y. (Thus (R, 7¢) is Lindeldf.)

As we have seen above and in Section 4.1.2, we have the implications
compact = Lindelof < second countable = separable = Souslin,

none of which is invertible in general. For metrizable spaces, however, the situation simplifies since
the last four properties become equivalent (but compactness remains stronger):

Exercise 7.1.9 Prove that a metrizable Lindelof space is separable and second countable.

The following result beautifully applies the Lindelof property without even having it in its state-
ment:

Proposition 7.1.10 If a space (X, 7) is second countable, i.e. T admits a countable base B, then
every base V for 7 has a countable subfamily Vo C V that still is a base.

Proof. Let U = {U;,Us, ...} be a countable base and V any base. For i € N, define B; = {V €
V|V CU} CV. Since V is a base, we have | JB; = U;. Now, the subspaces U; C X are second
countable, thus Lindelof. Thus the open cover B; of U; has a countable subcover B C B;. Now
define Vo = [J;2, BY. As a countable union of countable sets, this is a countable subfamily of V. If

W C X is open, it is a union of the U; contained in W, and each such U; is a union over a subfamily
of BY CV,. Thus V, CV is a base for 7. [ |

7.2 Compact spaces: Equivalent characterizations

The Lindelof property essentially just is another countability property like second countability, sep-
arability and the Souslin property (all of which are equivalent for metric spaces, as we have seen).
We will see that compactness has a very different character.

The property of compactness has a long and complicated history, cf. [241] or the historical notes in
[298, 89]. Before the ‘right’ (i.e. most useful and best behaved) definition was arrived at, mathemati-
cians studied various other notions, like ‘sequential compactness’ or ‘(weak) countable compactness’.
We will have a quick look at these alternative notions in Section 7.7, where in particular we will
see that they are all equivalent to compactness for metric spaces. But for more general spaces,
this is not the case, and compactness clearly is the most important notion. (Later we will meet
quite a few generalizations of compactness: local compactness, compact generation, o-compactness,
hemicompactness, paracompactness, . ..)

In this subsection, we consider two important equivalent characterizations of compactness in
terms of closed sets and nets.

Lemma 7.2.1 For a topological space (X, T), the following are equivalent:

(i) (X,T) is compact.
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(ii)) Whenever F C P(X) is a family of closed subsets of X such that (\F = 0 then there are
Cy,...,C, € F such that C, N ---NC, = 0.

(iii) Whenever F C P(X) consists of closed subsets of X and has the finite intersection property
then F # 0.

Proof. (i) and (ii) are dualizations of each other, using de Morgan’s formulas, and (iii) is the contra-
position of (ii). |

(Similar equivalences can be given for the Lindel6f property, but we will not need them.)

The reader probably knows from analysis courses that a metric space (X,d) is compact if and
only if every sequence in X has an accumulation point or, equivalently, a convergent subsequence.
A similar result holds for topological spaces, but we must replace sequences by nets:

Proposition 7.2.2 A topological space (X, T) is compact if and only if every net in X has an accu-
mulation point (equivalently, a convergent subnet).

Proof. =: Assume that X is compact, but {z,},c; has no accumulation point. Put
U={0#U e |z, isnot frequently in U}.

Since {x,} has no accumulation point, every = € X has an open neighborhood U in which z, is not
frequently, so that U is an open cover of X. By compactness, there is a finite subcover {Uy, ..., U,}.
For each kK = 1,...,n, x, is not frequently in Uy, thus by Exercise 5.1.33 it is eventually not in Uy.
Thus there exists ¢, € I such that ¢+ > 1, = x & Uy. By the directedness axiom, we can find A €
such that A > ¢ for all k = 1,...,n. Now ¢ > X implies z, ¢ |J;_, Uy = X, which is absurd. Thus
{z,} does have an accumulation point. [Note that this argument has used no choice axiom.]

< [AC]: Assume X is not compact, thus there is an open cover U = {U, };c; admitting no finite
subcover. The set J = {J C I | J finite} is partially ordered by inclusion and upward directed. By
assumption, X; = X\ U, U; # 0 VJ € J, thus (invoking AC) we can choose points z; € X.
Now (J,<) — X, J +— x; is a net. By assumption, the net {z;} has an accumulation point z.
Since U is a cover, there is ¢ € I such that x € U;. Clearly {i} € J, and if J > {i} then z; € U; by
construction. Thus, whenever K > {i}, we have z;, ¢ X VL > K. Thus z is not frequently in Uj,
contradicting the fact that x is an accumulation point. [ |

Whether a space is compact can be checked by looking only at covers consisting of base elements:

Exercise 7.2.3 Let (X, 7) be a topological space and B C 7 a base for the topology. Prove that X
is compact if and only if every cover of X by elements of B has a finite subcover.

The result of the above exercise is not very useful, but the following result definitely is:

Lemma 7.2.4 (Alexander’s Subbase Lemma) ° Let (X, 7) be a topological space and S C 7 a
subbase for T. If every cover of X by elements of S has a finite subcover, then X is compact.

Proof. Assuming that X is non-compact, the family § of open covers V that have no finite subcover
is non-empty. Partially ordering § by inclusion, let & be a totally ordered subset of §. Then
W =& = e V clearly is an open cover of X. If Uy, ..., U, € W then each U; comes from some
Vi € &. Since & is totally ordered, we have {U;,...,U,} € max(V;,...,V,) =V € &. Since V has
no finite subcover, the same holds for W. Thus W € §, and it is an upper bound for the chain &.

3James Waddell Alexander I (1888-1971), American topologist (general and algebraic).
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Thus the assumptions of Zorn’s Lemma are satisfied, so that § has a maximal element M. Thus M
is an open cover without finite subcover, and maximality of M implies that M U {V'} does have a
finite subcover for every non-empty open V' & M.

Defining &' = M NS, no finite subfamily of S’ covers X, since this is true for M € &. Thus if
we prove that &’ covers X, we have arrived at a contradiction with the hypothesis.

To this end, assume x € X\ |JS&'. Since M is a cover, there is a U € M such that = € U. Since
S is a subbase, there are V,...,V, € S such that z € (_, V; C U. In view of = ¢ |JS', we have
Vi & S’ for each i = 1,...,n. Thus for each i the open cover M U {V;} has a finite subcover, so that
X =Y, UV, where Y; is a finite union of elements of M. In view of [, V; C U we have

X:mumumUHWQMUmunuU

i=1

Since U € M and each Y; is a finite union of elements of M, we find that X is a finite union of
elements of M. But this contradicts the fact that M by construction has no finite subcover. This
contradiction proves | JS’ = X, and therefore the lemma. |

Remark 7.2.5 1. The subbase lemma is often useful when topologies are defined in terms of sub-
bases, as is the case with initial topologies, cf. Section 6.1, in particular Lemma 6.1.6. The most
important classes of examples are given by product spaces and spaces with the order topology,
discussed in Section 7.6. Lemma 7.2.4 will be used to prove Tychonov’s Theorem 7.5.9 on the com-
pactness of product spaces and a criterion for compactness of spaces with order topology, cf. Theorem
7.6.2.

2. The above proof of the subbase lemma used Zorn’s lemma, but in Section 7.5.5 we will give
an alternative proof using only the ultrafilter lemma, which is strictly weaker than Zorn’s lemma. O

Exercise 7.2.6 Prove: A topological space (X, 7) is compact if and only if every infinite subset
Y C X has a complete accumulation point. (The = direction requires some easy cardinal number
arithmetic. The < direction is harder and usually done using ordinal numbers.)

In the next section we will study in the behavior of compactness and the Lindelof property under
various constructions to the extent that the two properties behave similarly, before we turn to results
for compact spaces that have no analogue for Lindelof spaces. On the way, we will encounter many
useful applications of compactness. The usefulness of compactness raises the question whether a non-
compact space can be compactified, in analogy to completion of a metric space. They can, though
not uniquely in contrast to completions (Proposition 3.2.2). Compactifications will be considered in
Sections 7.8 and 8.3.3.

7.3 Behavior of compactness and Lindelof property under
constructions

We now study the behavior of Lindelof property and compactness under passage to subspaces, direct
sums and under continuous functions. (Products will be considered later.)
The following construction is similar to that of Exercise 4.1.14 (but different!):

Exercise 7.3.1 Let (X, 7) be any topological space. Let X’ = X U {p} (where p ¢ X) and 7" =
7 U{X'}. (Thus the open sets of (X', 7’) are the open U C X, considered as subsets of X', and the
total space X'.) Prove:
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(i) 7’ is a topology, and it is compact (thus Lindelof).

)

(i) 7'

(iii) Conclude that neither compactness nor the Lindel6f property are hereditary.
(

As to a Hausdorff example, we will see that [0, 1] is compact, but (0,1) = R is not.)

Given a subset Y C (X, 7), equipped with the subspace topology 7y, the question whether (Y, 7y )
is compact or Lindelof can be formulated without reference to 7y

Lemma 7.3.2 Let (X, 1) be a topological space and Y C X. Then the subspace (Y, 7y) C (X, T) is
compact (resp. Lindeldf) if and only if every family {U; € T}ier such that |J,U; 2'Y has a finite
(resp. countable) subfamily whose union still contains Y .

Proof. If {U; € T}ier is a family of open sets such that |J,U; D Y, then {V; =U;NY € 7y }ic; is an
open cover of Y. Conversely, every open cover {V;} of Y arises in this way (usually non-uniquely).
IfU; C X and V; CY are related as above and J C [ then it is clear that U]EJ U; 2Y holds if and
only if {V;},e; is a subcover of {V;}. ]

Remark 7.3.3 This result has a dual version which is occasionally useful:
If U C X is open such that X\U is compact, and {F;},c; is a family of closed sets such that
Mier Fi € U, then there is a finite subset .JJ C I such that ﬂjeJFj cU. O

Lemma 7.3.4 If (X, 7) is compact (resp. Lindeldf) and Y C X is closed then (Y, 7y) is compact
(resp. Lindeldf).

Proof. Let {U; € 7}ier be such that |J,U; O Y. Since Y is closed, Uy = X\Y is open, and
{Up} U{U; | i € I} is an open cover of X. Since X is compact (resp. Lindelof), there is a finite
(resp. countable) subset J C I such that {Up} U{U, | j € J} still covers X. But this means that
Ui, U; 2 Y, thus Y is compact (resp. Lindeldf) by Lemma 7.3.2. [

Lemma 7.3.5 If (X, 1) is compact (resp. Lindeldf) and f : (X,7) — (Y,0) is continuous then the
subspace f(X) CY is compact (resp. Lindeldf).

Proof. Thus let {U; };er be open sets in Y such that | J, U; 2 f(X). By continuity, each f~*(U;) C X
is open. Since the U; cover f(X), the family {f~!(U;)} is an open cover of X. By compactness (resp.
the Lindelof property) of X there is a finite (resp. countable) set J C I such that {f~(U;)};e, still
covers X. This is equivalent to | et Ui 2 f (X), thus the subspace f(X) C Y is compact (resp.
Lindel6f) by Lemma 7.3.2. |

Corollary 7.3.6 (i) If X is compact (resp. Lindeldf) and f: X — Y is continuous and surjective
then Y is compact (resp. Lindeldf).

(i) Quotient spaces of compact (resp. Lindeldf) spaces are compact (resp. Lindeldf).

Actually, surjective continuous images of compact spaces have a tendency to be quotient spaces!
Cf. Proposition 7.4.11(iii).

In Section 7.5 we will see that products of arbitrarily many compact spaces are compact.

On the other hand, in Corollary 8.1.41(iii) we will find that the square (R, 7¢)? of the Sorgenfrey
line is not Lindelof, thus not even products of two Lindel6f spaces need to be Lindelof.
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Exercise 7.3.7 Let {x,},en be a sequence in a topological space X such that z,, — = € X. Prove
that Y = {z, 21, 29,...} C X is compact.

Exercise 7.3.8 Prove that a direct sum @, ;(X;, 7;) of topological spaces is
(i) compact if and only if each X; is compact and the set {i € I | X; # 0} is finite.
(ii) Lindelof if and only if each X; is Lindelof and the set {i € I | X; # (0} is countable.

Note: The two proofs are very similar, thus it suffices to write down one and indicate how the other
differs.

Exercise 7.3.9 (An alternative topology on @, X;) Let {(X;,7;)}icsr be a family of topological
spaces, and let X = P,.; X; be the disjoint union. We identify X; with its image ¢;(X;) in X.

(i) Show that the following defines a topology 7/ on X: The open sets are () and the U C X for
which U N X; C X; is open for eachi € T and #{i € [ | X; Z U} < 0.

(ii) Prove: If all (X, 7;) are compact then (X, 7') is compact.

7.4 More on compactness

In the rest of this Section we focus on results that really require compactness (not just Lindel6f).

7.4.1 More on compactness and subspaces

Lemma 7.4.1 If (X,7) is Hausdorff, Y C X is a compact subspace and x € X\Y then there are
open U,V such thatY CU, z €V and UNV = 0.

Proof. For every y € Y we have y # z, thus using the Hausdorff property we can find U,,V, € 7
such that y € Uy, z € V, and U, NV, = (. In view of y € U,, we have Uy U, 2 Y. By compactness
of Y and Lemma 7.3.2 there is a finite subset {y1,...,y,} C Y such that U :=U,, U---UU,, D Y.
Now V :=V, N---NV,, is an open neighborhood of x, and

VﬂU:(‘/;/1m"'mv;/n)m(Uy1U"'UUyn):U(V;hﬂ"'m‘/;/nﬂUyk):@

k=1

due to U, NV, = 0. [ ]

We have already proven that closed subspaces of compact spaces are compact (and similarly for
Lindel6f spaces). For Hausdorff spaces and compactness, there is a converse:

Lemma 7.4.2 If (X, 7) is Hausdorff andY C X is compact (with the relative topology) then Y C X
15 closed.

Proof. By Lemma 7.4.1, every x € X\Y has an open neighborhood V' contained in X\Y. Thus X\Y
is open, thus Y is closed. [ |

Corollary 7.4.3 A subspace of a compact Hausdorff space is compact if and only if it is closed.
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Remark 7.4.4 1. If X has the indiscrete topology, then every subspace Y C X is indiscrete, thus
compact, but Y = X whenever Y # (). Thus the T, assumption in Lemma 7.4.2 is necessary.

2. Lemmas 7.3.4 and 7.4.2 should be compared to Lemma 3.1.10 concerning completeness of
subspaces. For a (less perfect) analogue of Proposition 3.2.7 see Corollary 8.3.23.

3. A subset of a topological space is called relatively compact if its closure is compact.

4. Lemma 7.4.2 and the needs of algebraic topology motivate the definition of several closely
related notions of weak Hausdorff spaces:

(WH1) Every compact subspace Y C X is closed.

(WHY’) If Y is compact and f : Y — X is continuous then f(Y) C X is closed.

(WH2) If Y is compact Hausdorff and f : Y — X is continuous then f(Y) C X is closed.
We then have the following implications: 7o, = WHI1 < WH1’ = WH2 = T;. (The first two =
follow from Lemmas 7.4.2 and 7.3.5, respectively. For WH1'=WH1, consider the embedding map
f:Y < X.) For more on these notions and their relevance in algebraic topology see [201, . O

Exercise 7.4.5 Prove that disjoint compact subsets C, D in a Hausdorff space have disjoint open
neighborhoods U O C, V O D. Hint: Combine the result of Lemma 7.4.1 with the method of its
proof.

Remark 7.4.6 Later we will call a T1-space X regular or T3 if for every closed C' C X and x € X\C
then there are disjoint open U,V C X such that Y C U, z € V. And a T}-space will be called normal
or Ty if given disjoint closed C, D there are disjoint open U, V such that C' C U, D C V. Since closed
subsets of a compact space are compact by Lemma 7.3.4, Lemma 7.4.1 and Exercise 7.4.5 have as
corollaries that every compact Hausdorff space is regular and normal. In Section 8 we will study
such stronger separation axioms quite extensively. O

Exercise 7.4.7 Let X be a topological space, not necessarily compact.
(i) Prove that any finite union of compact subsets of X is compact.

)
(i) Let K,C C X where K is compact and C is closed. Prove that K N C' is compact.
(iii) Prove that in a Hausdorff space, every intersection of compact sets is compact.

)

(iv) Give an example of two compact sets in a non-Hausdorff space whose intersection is not com-
pact.

In view of the meta-Definition 2.3.7, a space X is called hereditarily compact if all subspaces
Y C X are compact. Obviously every indiscrete space is hereditarily compact. There are not many
hereditarily compact Hausdorff spaces, but more hereditarily compact T spaces:

Exercise 7.4.8 (i) Prove that a Hausdorff space (X, 7) is hereditarily compact if and only if X
is finite and 7 is the discrete topology.

(ii) Prove that the property of being cofinite is hereditary. Deduce that cofinite spaces (X, Teofin)
are hereditarily compact.

Exercise 7.4.9 Let (X, 7) be a topological space. Prove that the following are equivalent:

(i) X is hereditarily compact.
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(ii) For every family {U; € 7}er there is a finite subset J C I such that (J,c; U; = U,¢; Us.
(iii) Every strictly increasing chain Uy C Uy C --- of open sets in X is finite.
(iv) Every strictly decreasing chain C7 2 Cy 2 - - of closed sets in X is finite.

Remark 7.4.10 Because of the statements (iii) and (iv), hereditarily compact spaces are also called
Noetherian. In Section 2.8 we will see that this is more than an analogy with Noetherian rings. For
more on hereditarily compact spaces see [273]. O

7.4.2 More on compactness and continuity. Quotients and embeddings

We know that continuous images of compact spaces are compact, and similarly for Lindelof spaces.
For compact spaces, we have more, thanks to Lemma 7.4.2. The following has countless applications:

Proposition 7.4.11 Let (X, 1) be compact, (Y,o) Hausdorff and f : X —Y continuous. Then:
(i) f is closed. (In particular f(X) CY is closed.)
(i) If f is a bijection then it is a homeomorphism.

(iii) If f is injective then it is an embedding.

(i) If f is surjective then it is a quotient map. (o is the final topology on Y induced by f.)

Note that (ii) and (iii) imply that (X, 1) is Hausdorff, which was not assumed!

Proof. (i) If C' C X is closed then it is compact by Lemma 7.3.4. Thus by Lemma 7.3.5, f(C) CY
is compact, and thus closed by Lemma 7.4.2.

(ii) If f is bijective then (i) with Lemma 5.2.26 implies that it is a homeomorphism.

(iii) It is clear that f : X — f(X) is a continuous bijection. Since f(X) C Y inherits the
Hausdorff property, (ii) implies that f : X — f(X) is a homeomorphism.

(iv) f is continuous, surjective, and closed by (i). Now Lemma 6.4.5 gives that o is the quotient
topology, thus f is a quotient map. (For another proof, independent of Lemma 6.4.5, cf. Remark
7.4.15. |

Corollary 7.4.12 If X is a compact space, and ~ is an equivalence relation on X such that X/~
1s Hausdorff then ~ is closed.

Remark 7.4.13 In Section 8.1 we will prove a converse of this: If X is compact Hausdorff and ~
is a closed equivalence relation, then the quotient space X/~ is Hausdorff. Thus: If X is compact
Hausdorff then X/~ is Hausdorff if and only if ~ is closed! a

Corollary 7.4.14 Let X be a set and 1,7 topologies on X. If 11 is compact, 7o s Hausdorff and
T 2 Ty (i.e. Ty 1S finer than m3) then 71 = To.

In particular: If two compact Hausdorff topologies on the same set are comparable (i.e. 71 C Ty
or 7o C 11) then they coincide!

Proof. By Lemma 5.2.25, the map idx : (X,7) — (X, ) is continuous. Thus by Proposition
7.4.11(ii) it is a homeomorphism, thus 7 = 7. The second statement obviously follows. [ |
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Remark 7.4.15 The statements (ii)-(iv) of Proposition 7.4.11 can also be interpreted in terms
of Corollary 7.4.14. E.g. for (iv) proceed like this: Consider the the quotient (=final) topology
o={UCY | fYU) € 7} onY induced by f. Continuity of f implies & 2 o. Since (X,7) is
compact, ¢ is compact by Lemma 7.3.5. Since ¢ is Hausdorff, Corollary 7.4.14 now gives ¢ = o.
Thus o is the quotient topology and f is a quotient map. O

Exercise 7.4.16 Let (X, 7) be compact Hausdorff and 7" another topology on X. Prove:
(i) If 77 2 7 then 7’ is Hausdorff, but not compact.
(ii) If 7/ € 7 then 7’ is compact, but not Hausdorff.

The next two subsections give two more advanced applications of compactness and may be skipped
until needed.

7.4.3 * Second countability for images under closed maps

In Exercise 5.2.27 we have seen that the image of a second countable space under a continuous open
map is second countable. For non-open maps, such results are much harder to come by. Here is a
result for closed maps of compact spaces:

Proposition 7.4.17 If (X,7) is compact and second countable, (Y,o) is Ty and f : X — Y s
continuous, closed and surjective, then o is second countable.

Proof. Let U be a countable base for 7. Let & be the family of finite subsets of U. Defining for each
Ses,
we = v\fx\(J ),
seS

we have Wy € o since f is closed. Since S is countable, our claim will follow once we prove that
{Ws, S € S} is a base for o.

Let y € W € 0. Then f~(y) C f~1(W) C X. Since Y is Ty, {y} is closed, and continuity of f
gives that f~'(WW) is open and f~!(y) is closed, thus compact by Lemma 7.3.4. Since U is a base for
7, we have [~ (W) =J{U e U | U C f~'(W)}. The U’s appearing on the right hand side cover
f~Y(z), and by compactness of the latter and Lemma 7.3.2, there is a finite family S € S such that

Ty clJu.crtw).
seS

This implies
NSV € AN\ U € FNFH W),

ses
and using the surjectivity of f and the definition of Wy this becomes Y\W C Y\Ws C Y\{y}, or
just y € Wg C W. This means that {Wg, S € S} is a base for o, and we are done. |

Remark 7.4.18 1. The result remains true if we replace compactness of X by compactness of
f~Y(y) for each y € Y, i.e. properness, which will be defined in Section 7.8.5. Clearly, if f is the
quotient map arising from an equivalence relation ~, this holds if and only if each equivalence class
[z] € X is compact.

2. Since the family of finite subsets of some infinite set X has the same cardinality as X, essentially
the same proof gives the following more general result: If X is compact, Y is T} and f: X — Y is
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continuous, closed and surjective then w(Y) < w(X), where w(X) is the weight of X mentioned in
Remark 4.1.7.

3. Preview: We will show later that if (X, 7) is compact Hausdorff then it is ‘normal’, which
is better than T,, and that normality is preserved under quotients by closed equivalence relations
(Proposition 8.1.18). If (X, 7) is also second countable, the above result applies and gives second
countability of X /~. We will also show (Corollary 8.2.36) that a compact Hausdorff space is metriz-
able if and only if it is second countable. Putting all this together we obtain: If X is compact
metrizable and ~ is a closed equivalence relation on X, then X/~ is compact metrizable! O

7.4.4 * Extending continuous maps into compact Hausdorff spaces

Given a continuous function f : A — Y, where A C X is dense and Y is Hausdorff, we proved in
Exercise 6.5.18(iii) that f has at most one continuous extension to X. Concerning the more difficult
question of existence, so far we only have Proposition 3.4.10 in the context of metric spaces. But a
complete answer exists when the target space Y is compact Hausdorff.

Lemma 7.4.19 If (X, 1) is compact Hausdorff then:
(i) If v € U € 7 there is an open V such thatx € V CV C U.
(ii) If x,y € X, & # y then there are open U > x, V 3y such that UNV = ().

Proof. (i) Let x € U’ € 7. Then Y = X\U’ is closed, thus compact. Now by Lemma 7.4.1 there are
disjoint open sets U,V such that t € U and Y/ C V. Now U NV =0, thus U C U".

(ii) Since X is Hausdorff, there are disjoint open sets U’ 5 =, V' > y. Now use the preceding
argument to find open U,V such that t e U CU CU' andy eV CV C V', [ |

Theorem 7.4.20 Let A C X be dense and f : A —'Y continuous, with’ Y compact Hausdorff. Then
there is a continuous extension f: X —Y (i.e. f[|A= f)if and only if

C,DCY closed, CND=0 = fYC)nfYD)=0. (7.1)

(In X, not in A!) If an extension f exists, it is unique.

Proof. Uniqueness of ]?follows from Exercise 6.5.18(iii). Assume that fexists, and let C,D CY be
disjoint closed sets. Then f~1(C), f~'(D) C X are closed and disjoint. Now,

fHC) = FHCe)nAC FHO),
C

by closedness of f_l( C). Similarly, f~1(D) J?

Now assume (7.1). For z € X define F(x)

(D), and therefore (7.1) holds.
{f(NNA) | NeN,} CP(Y). If Ny,...,N, €N,

then
f(NinA)Nn---NfIN,NA) D f(NiNA)N---Nf(N,NA) D f(NyN---NN,NA) £0, (7.2)
since N = NyN---NN, € N, thus NN A # ) since A C X is dense. Thus the family F(z)

has the finite intersection property, and by compactness of ¥ and Lemma 7.2.1, we have () F(x)

MNyen, FINNA) #0.
We claim that this intersection contains precisely one point. Assume y, # ya, {y1, %2} € () F(z) C

Y. By Lemma 7.4.19 we can find open neighborhoods Vi, Vs of y1, ya, respectively, such that V;NV, =
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0. By (7.1), we have FIVe)NF1(Va) € F1 (V)N /" (V5) = 0, thus obviously = ¢ FI(Vi)NF1(V5).
Thus there is k € {1,2} such that y ¢ f~1(V). This means that X\ f~(V}) is an open neighborhood

of x. By definition of F(x) this implies {y1,y2} C F(z) C f(A\f~'(Vk)) C Y\ Vi, which contradicts

~

Yk € Vi. Thus y; = yo, and () F(x) is a singleton for every = € X. This allows us to define f(x) by
{f(z)} =N F(z). For € A we obviously have f(z) € (F(z), implying f[A = f.
It remains to show that f is continuous. Let U C Y be an open neighborhood of f(z). Since

S — ~

Nyen, F(INNA) = {f(z)} €U and X\U is closed, thus compact, Remark 7.3.3 implies that there

are Nq,..., N, € N, such that f(NyNA)N---N f(N,NA) CU. We may and will assume that
the N; are open. Thus N = N; N --- N N, is an open neighborhood of z, and by (7.2) we have
fINNA) C f(NNNA)N---N f(N,NA) C U. Now, for every 2’ € N, we have N € N/, thus

f(2")e f(NNA)CU. Thus f(N) C U, and f is continuous. |

Remark 7.4.21 1. Notice the conceptual similarity of this proof to that of Theorem 3.4.10. The
main difference is that we replace completeness by compactness as the main tool.
2. For an important application of the above result, see Proposition 7.8.9. O

7.5 Compactness of products. Tychonov’s theorem

7.5.1 The slice lemma. Compactness of finite products

The following lemma is extraordinarily important since it is behind most results involving products
of two spaces at least one of which is compact (Exercises 7.5.3(ii), 7.5.5 and 7.7.45, Lemma 7.9.5,
Proposition 8.5.24).

Lemma 7.5.1 (Slice lemma) For X arbitrary and Y compact, let xg € X and U C X XY open
such that {xo} x Y CU. Then there is an open V C X such that xo € V and V xY CU.

X

Remark 7.5.2 For non-compact Y, the conclusion of the lemma fails: For X =Y = R, consider
U = {(z,y) | |ry] < 1}. Then U C R? is open and contains {0} x R. But since (£/2,4/¢) has
arbitrarily small z-coordinate but is not in U, there is no € > 0 such that (—e,e) x R C U. O

Exercise 7.5.3 (i) Prove Lemma 7.5.1. Hint: Use the proof of Lemma 7.4.1 as inspiration.
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(ii) Use (i) to prove: If X and Y are compact then X x Y is compact.

Corollary 7.5.4 Any finite direct product of compact spaces is compact.

We will soon prove that this result is also true without the finiteness assumption.
Another application of the slice lemma concerns projection maps from a product space to its
direct factors, which as we saw in Exercise 6.5.9 are not always closed:

Exercise 7.5.5 Let X be arbitrary and Y compact. Prove that the projection map p; : X XY — X
is closed. Hint: Use Lemma 7.5.1.

Remark 7.5.6 The converse is also true: If p; : X xY — X is closed for every X then Y is compact.
(In fact, it suffices if this holds for all normal X.) Cf. [89, Theorem 3.1.16]. O

Now we can prove a converse of the implication in Exercise 6.5.21:

Exercise 7.5.7 Let X,Y be topological spaces with Y compact and f : X — Y such that the graph
G(f) € X x Y is closed. Prove that f is continuous.

Hint: This can be proven using Exercise 7.5.5 or, alternatively, using nets, Exercise 5.1.39 and
Propositions 5.2.5, 7.2.2.

Exercise 7.5.8 Let X,Y be topological spaces, A C X, B C Y compact subspaces and U C X XY
open such that Ax B C U. Prove that there are open V' C X, W C Y such that Ax B C VxW CU.

7.5.2 Tychonov’s theorem

Corollary 7.5.4 result can be improved considerably:

Theorem 7.5.9 (Tychonov 1929) * Let X; # 0 Vi € I. Then [[,(X;,7;) is compact if and only
if (X, ) is compact for everyi € 1.

Proof. = If X; # 0 Vi € I and X = [[, X} is compact then compactness of each X; follows from
X; = p;(X) and Corollary 7.3.6.
< Let (X;,7;) be compact for each I. As we know, S = {p;*(V) | i € I, V € 7;} is a subbase
for the product topology 7 on X = [[, X;. By Alexander’s Subbase Lemma 7.2.4, compactness of
X follows if we show that every cover Y C S of X by subbasic sets has a finite subcover. To do
this, proceeding by contradiction, assume that & C S covers X, but no finite U’ C U does. For each
i € I, define
Vi={Vern|p(V)eUu}Cr. (7.3)

For every U € U C 8 there are i € I,V € 7; such that U = p; (V). But then (7.3) gives V € V;,
and in view of (JU = X we have:

For every x € X there are ¢ € I, V € V; such that p;(x) € V. (7.4)

We now claim that V; cannot be an open cover of X; for any ¢ € I. Otherwise compactness of X;
would allow us to find a finite subcover {Vi,...,V,} C V;. But then U’ = {p;*(V1),...,p;*(V,)}
(which is contained in U by the definition (7.3) of V;) would be a finite subcover of U, contradicting

4 Andrey Nikolayevich Tikhonov (1906-1993). Born in Russia before the revolution and died after the demise of the
Soviet Union. It has been said that “Tychonov’s theorem is due to Cech, while Tychonov discovered the Stone-Cech
compactification”. The real truth is even more complicated, cf. [96].
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our assumption. This means that X;\(JV; # 0 for each i € I. Thus by the product form of AC,
B =1L, (Xi\UVi) # 0. Now (7.4) is false for any « € B, which is the desired contradiction. =~ W

Remark 7.5.10 1. In the view of this author, a nice feature of the above proof is that it reduces
the unavoidable complexity by sourcing out a large part of the latter to Alexander’s subbase lemma,
which is very general, has little a priori to do with products, and has other uses. While we used
Zorn’s lemma to prove the subbase lemma, it is known to be strictly weaker than Zorn’s lemma and
the equivalent axiom of choice (AC). This is not a contradiction since the above proof also involved
a direct use of AC.

2. Tychonov’s theorem is one of the most important results of general topology and has countless
applications, from abstract algebra and logic to functional analysis, several of which we will meet
later. For this reason, we will give several other proofs using both nets and (ultra)filters.”. In
principle, it is not necessary to know them all, but each of them introduces new tools that have other
applications. O

As we have seen in Exercise 6.5.6(vi), the box topology on an infinite product of spaces differs
from the product topology (if we exclude trivial exceptions). The next result is the main reason why
the product topology is ‘better’:

Exercise 7.5.11 Consider [0,1] with its standard (Euclidean) topology and prove that the box
topology on [0, 1] is non-compact.

7.5.3 *x Second proof of Tychonov, using nets

Before turning to more sophisticated approaches, we give a nice alternative proof of Tychonov’s the-
orem based on Zorn’s lemma and Proposition 7.2.2; characterizing compactness in terms of existence
of accumulation points of all nets.

Second Proof of Tychonov’s Theorem. We begin with some terminology: We write X = [[,.; X; and
Xy =1le; X;if J C I. A partial point in X is a pair (J,x), where J C [ and z € X;. If (J,7) is a
partial point and K C J, then z [ K € Xk is the obvious restriction. A partial point (J, z) is called
partial accumulation point of a net {x,} in X if z € X; is an accumulation point of x, [ J. The set
P of partial accumulation points of x, is partially ordered by

(J,x) <(K,y) & JCK and y|J=uz. (7.5)

P is not empty since the nets p;(z,) in X; have accumulation points x; € X; by the compactness of
X, thus ({i},2;) € P Vi € I. Now let C C P be a totally ordered subset. Define M = |J{J | (J,y) €
C} C I and define x € Xy by z; = y;, where i € M and (J,y) € C with J > i. This is well-defined
since C is totally ordered w.r.t. (7.5). We must prove that (M, x) is a partial accumulation point of
x,. If U C X}, is an open neighborhood of x € X, then U contains a neighborhood V' of the form

V=p (U)N--Np; (Uy),

where i1,...,i, € M and Uy, € 7;,. Now each i, is contained in some Jj, where (J, z) € C. Since C
is totally ordered, we can find (J,z) € C such that J D {iy,...,4,}. Since (J,z[J) € C is a partial

5Whoever finds this excessive should look at Titchmarsh’s marvelous book The theory of the Riemann zeta function,
where seven proofs of the functional equation of the {-function are given, plus several variants. Sir Michael Atiyah
(Fields medal): “If you have only one proof of a theorem then you cannot say that you understand it very well.”
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accumulation point, z, [ M is frequently in V. Thus (M, z) is a partial accumulation point of z,, and
(M, x) is an upper bound for C.

Now Zorn’s lemma applies and provides a maximal element (J,z) € P. If we can show that
J = I, we have that x € X is an accumulation point for x, and we are done. So assume J C I. Since
x € X, is an accumulation point of z, [ J, by Proposition 5.1.36 there is a subnet of z/, of x, such
that z!, [ J converges to x € X;. If now i’ € I\J, compactness of X; and Proposition 7.2.2 imply
that there is a subnet {x3} of a7, such that p;(x3) converges to z € Xy. But this means that taking
K = JU{i} and defining y € X, by y [ J = z and yy = z, (K, y) is a partial accumulation point
and (K,y) > (J, z), contradicting maximality of (J,z). Thus J = I. We have now proven that every
net in X has an accumulation point, so that X is compact by Proposition 7.2.2. [

Remark 7.5.12 This proof is due to P. R. Chernoff, 1992 [59]. Cf. also [255]. O

7.5.4 Complements

The two proofs of Tychonov’s theorem given above used Zorn’s lemma, which is equivalent to the
axiom of choice, and the same is true of the other proofs given below. The following observation
shows that this cannot be avoided:

Theorem 7.5.13 (Kelley 1950) ° The statement that all products of compact Ti-spaces are com-
pact implies the Aziom of Choice.

Proof. Let X; # () Vi € I. We equip each X; with the cofinite topology, which is T; by Exercise
2.5.7(iv) and compact by Exercise 7.1.6(vi). Obviously, the one-point space ({oco},7), where 7 is
the unique topology, is compact and 7;. Thus the direct sums (Y;, 7;) = (Xi, Teofin) ® ({00}, 7) are
compact and 77. Now our assumption gives that ¥ = [[.(Y;,7;) is compact. For each i € I let
Ci={y €Y |y € X;} = p;*(X;), which is closed since X; C Y; is closed. Now let J C I be finite
and consider the finite intersection [, ; C; of closed sets. This is the set {y € Y | p;(y) € X; Vj € J}.
Since each X; is non-empty we can choose z; € X; for every j € J. (Since J is finite, this requires
only the finite axiom of choice!) Now let y € Y be the point whose j-th coordinate is z; if j € J and
oo otherwise. Clearly y € ics Cj» so that we have proven that every finite intersection of the closed
sets C; is non-empty. Since Y is compact, Lemma 7.2.1 implies (,.; C; # 0. But by definition of C;
we have (,.; C; = [[,c; Xi, so that we have proven [[..,; X; # 0, which is the Axiom of Choice! W

Remark 7.5.14 1. With Kelley’s result proven above, our list of equivalent” statements (some of
them discussed only in Appendix A.3) has become

1. The Axiom of choice (we gave three versions: non-emptyness of cartesian products, selection
functions, sections of surjective maps).

2. Zorn’s Lemma.

6John L. Kelley (1916-1999), American topologist and author of the classic textbook [172].

"Here, as well as on later occasions like the discussion of Brouwer’s fixed point theorem, ‘equivalence’ of a number
of statements means that the truth of any of them provably implies the truth all others, irrespectively of whether one
actually can prove one (thus all) of them. (E.g. the Riemann hypothesis, whose truth status is open, is known to be
equivalent to dozens of very different looking statements.) Calling statements equivalent makes perfect sense even if
one believes to know the truth status of one (thus all) of them. On the one hand, proving one of the (equivalent)
statements usually is much more involved than the equivalence proofs. And on the other hand, this truth status may
depend on the existential axioms that one is willing to accept, as is the case here. This even holds for Brouwer’s
theorem, which is rejected by some on account of its ‘insufficiently constructive’ proof.
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The Well Ordering Principle.

Hausdorft’s Maximality Principle.

All vector spaces have bases.

Every commutative unital ring has a maximal ideal.

Tychonov’s theorem.

S T A

Tychonov’s theorem restricted to Ti-spaces.

There are unimaginably many other statements equivalent to those above, cf. e.g. [164, , .
However, the restriction of Tychonov’s theorem to Ts-spaces is strictly weaker than AC! The
following statements actually turn out to be equivalent (in ZF):

1. The ultrafilter lemma (UF): Every filter embeds into an ultrafilter. (Section 7.5.5)
2. The ultranet lemma: Every net has a universal subnet. (Section 7.5.6)

If every net in X has an accumulation point then X is compact. (Proposition 7.2.2)
If every filter on X has an accumulation point then X is compact. (Section 7.5.5)
If every universal net in X converges then X is compact. (Section 7.5.6)

If every ultrafilter on X converges then X is compact. (Section 7.5.5)

Alexander’s Subbase Lemma 7.2.4.

Tychonov’s Theorem 7.5.9 restricted to Th-spaces.

R AT

[0, 1]V is compact for every cardinal number N.

10. {0,1}" is compact for every cardinal number N.

11. Alaoglu’s theorem in functional analysis. (Appendix G.6)

12. Existence and uniqueness of the Stone-Cech compactification. (Section 8.3)

13. Stone duality between Stone spaces and Boolean algebras. (Section 11.1.11)

14. The Boolean Prime Ideal Theorem (BPI): Every Boolean algebra has a prime ideal.

15. Every commutative unital ring has a prime ideal. (Maximal ideals are prime, but not vice
versa. Thus this is weaker than the existence of maximal ideals, which is equivalent to AC.)

16. Several Completeness and Compactness Theorems in mathematical logic, see e.g. [210].

Most of the equivalences in the above lists are proven in [259] except those involving algebraic
statements. For these see [29, 117, 20].
The statements in the second list (the first two are pure set theory, while 3-11 assert compactness

of certain spaces, the converses of 3-6 being true unconditionally) are provably [126] weaker than
those in the first list: There exists a model of ZF-set theory in which the ultrafilter lemma holds,
but not the Axiom of Choice. (Not even UF and DC,, together imply AC! [237].)

2. The fact that [0, 1] is compact can be proven within Zermelo-Frenkel set theory without any
choice axiom, cf. e.g. [139, Theorem 3.13]. O
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7.5.5 « Ultrafilters. New proofs using Ultrafilter Lemma instead of AC

In this section we will introduce ultrafilters and prove the Ultrafilter Lemma (UF) using Zorn’s
lemma. Since the converse implication is not true — which we cannot prove here — it will be an
improvement to reprove certain results using only UF instead of AC. We will do this for Proposition
7.2.2, Alexander’s Subbase Lemma 7.2.4, and for the restriction to Hausdorft spaces of Tychonov’s
theorem.

We notice that filters on X are (partially) ordered by inclusion (as subsets of P(X)).

Definition 7.5.15 An ultrafilter (or mazimal filter) on some set is a filter that is not properly con-
tained in another filter.

Ultrafilters are characterized by a quite remarkable property:

Lemma 7.5.16 A filter F on X is an ultrafilter if and only if for every Y C X exactly one of the
alternatives Y € F, X\Y € F holds.

Proof. We begin by noting that we cannot have both Y € F and X\Y € F since (i) would imply
) =YN(X\Y) € F, which is forbidden by (iii). Assume F contains Y or X\Y for every Y C X. This
means that F cannot be enlarged by adding Y C X since either already Y € F or else X\Y € F,
which excludes Y € F. Thus F is an ultrafilter.

Now assume that F is an ultrafilter and Y C X. If there is an F' € F such that F NY = () then
F C X\Y, and property (ii) implies X\Y € F. If, on the other hand, Y N F # () VF' € F then there

is a filter F containing F and Y. Since F is maximal, we must have Y € F. [ |

Corollary 7.5.17 Let F be an ultrafilter on a set X.
(i) Every accumulation point of F is a limit.
(i) If Y € F then Fy ={FNY | F € F} is an ultrafilter on Y.
(iii) If f : X — Y is a function then the filter f(F) on'Y defined in Corollary 5.1./6 is an ultrafilter.

Proof. (i) If x is an accumulation point of F, then by Lemma 5.1.47(i)(53), for every N € N, we have
X\N ¢ F. Now Lemma 7.5.16 gives N € F. Thus N, C F, to wit F converges to .

(ii) It is quite obvious that Fy is a filter. Now let Z C Y C X. By Lemma 7.5.16, we have
either Z € F of X\Z € F. In the first case, we directly have Z € Fy. In the second, we have
Y\Z = (X\Z)NY € Fy. Thus one of Z,Y\Z is in Fy, and applying Lemma 7.5.16 again we have
that Fy is an ultrafilter.

(iii) Given Z C Y, Lemma 7.5.16 gives that either f~!(Z) or X\ f7'(Z) is in F. In the first case,
we have f(f~1(Z)) € f(F), and since f(F) is a filter, it also contains Z 2 f(f~'(Z)). Analogously,
X\fYZ) € F implies Y\Z € f(F). Thus f(F) contains either Z or Y\Z and therefore is an
ultrafilter. |

The following result is crucial:

Lemma 7.5.18 (Ultrafilter Lemma, via AC) FEvery filter is contained in an ultrafilter.

Proof. Let X be a set and F a filter on X. The family § of all filters on X that contain F is a
partially ordered set w.r.t. inclusion. If C C § is a totally ordered subset of §, we claim that the
union |JC of all elements of C is a filter (obviously containing F). That the union of any non-zero
number of filters has the properties (ii), (iii) and (iv) in Definition 5.1.40 is obvious, so that only (i)
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remains. Let [, Fy € JC. By the total order of C, there is a F € C such that L F, € F and thus
FinF, e F CJC. This proves requirement (i), thus |JC is in § and is an upper bound for the
chain C. Therefore Zorn’s lemma applies and gives a maximal filter F containing F. [

One can construct models of ZF set theory in which the Ultrafilter Lemma holds, but not Zorn’s
lemma and the equivalent axiom of choice. This is way beyond our scope, but it shows that the
Ultrafilter Lemma can be considered as a weak replacement for Zorn’s Lemma.

The Ultrafilter Lemma is often used via the following immediate consequence:

Lemma 7.5.19 [UF] If X is a non-empty set and S C P(X) is a family with the finite intersection
property then there is an ultrafilter F on X containing S.

Proof. If S # () then by Lemma 5.1.45(ii), there is a filter Fy containing S as a filter subbase. If S = ()
then pick any filter Fy. By the Ultrafilter Lemma there is an ultrafilter F such that F 2 F;, 2 S. i

Lemma 7.5.20 [UF] A topological space on which every ultrafilter converges is compact.

Proof. If X is a topological space and U = {U, };c; is an open cover of X admitting no finite subcover
then clearly X # () and I is infinite. And for every finite J C I, the set Y; = X\ UjeJ U; is non-
empty. The definition of the Y; implies Y; NY; = Y, . Thus B = {Y; | J C [ finite} has the
finite intersection property, so that by Lemma 7.5.19 there is an ultrafilter F containing B. By the
assumption on the space, F converges, thus there is an z € X such that N, C F. Since U covers X,
there is an 7 € I such that x € U;. But then U; € N, C F. On the other hand, by construction of
B we have X\U; = Y3 € B € F. This is a contradiction since F is a filter and therefore does not
contain two disjoint sets. Thus every open cover must admit a finite subcover, and X is compact. i

Lemma 7.5.21 Let (X, 1) be a topological space and S C T a subbase. If every coverd C S of X
has a finite subcover then every ultrafilter on X converges.

Proof. Let F be an ultrafilter on X that does not converge. We claim that &Y = S\F C S is an
open cover of X. If this was false, there would be an x € X that is contained in no S € S\F. But
since F does not converge, there is an open U such that x € U € F. Since S is a subbase, there are
S1,...,5, € Ssuch that U =5, N---NS,. If all these S; were in F, so would be their intersection
U (since F is closed under finite intersections). In view of U ¢ F, we must have S; ¢ F for some i.
But then x € S; € S\ F, contradicting our choice of .

By assumption, U has a finite subcover, thus there are Sy, ..., S, € S\F such that |J;_, S; = X,
which is equivalent to (;_,;(X\S;) = 0. Since S; ¢ F for all i, we have X\S; € F by Lemma 7.5.16.
But this gives the contradiction (;_,(X\S;) # 0. Thus every ultrafilter on X converges. [

Corollary 7.5.22 [UF] A topological space is compact if and only if every ultrafilter on it converges.

Proof. The ‘if” direction is Lemma 7.5.20. If X is a compact space then Lemma 7.5.21 with § = 7
gives that every ultrafilter on X converges. |

After these preparations, we can provide the new proofs promised at the beginning of the section:

Corollary 7.5.23 The Ultrafilter Lemma implies Alexander’s Subbase Lemma.
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Proof. Let (X, 7) be a topological space and S a subbase for 7 such that every cover Y C S of X has
a finite subcover. Then every ultrafilter on X converges by Lemma 7.5.21, so that X is compact by
Lemma 7.5.20. ]

The following is the analogue for filters of Lemma 6.5.3:

Lemma 7.5.24 Let X =[], ; X; be a product space and p; : X — X; the projections. Then a filter
F on X converges to x € X if and only if the filters p;(F) on X; converge to p;(x) € X; for alli € I.

Proof. = If F converges to x then Lemma 5.1.48 and the continuity of the p; give that p;(F) converges
to p;i(z) = x; for each i € I.

< We must show that N, C F. By definition of the product topology, every neighborhood of x
in X contains a basic set pi_ll(Ul) AREE ﬂpi_nl(Un), where 41,...,%, € I and each U, C X;,_ is open.
Since F is a filter, thus closed under finite intersections, it suffices to prove p; Y(Uy) € F for each
k=1,...,n. Since F;, converges to x;,, it contains the open Uy, C X;, . Recalling that F;, = p;, (F)
is the closure of {p; (F) | F' € F} C P(X;,) w.r.t. upper sets, this means that F contains a set
Ny with p;, (N) € Uy. This implies Ny, € p; ' (pi, (Nx)) € p;,'(Ux), and since F is a filter, thus
upward-closed, we have p; Y(U,) € F for all k, as wanted. [ |

Theorem 7.5.25 The Ultrafilter Lemma implies Tychonov’s theorem for Hausdorff spaces.

Proof. Let {X;}icr be a family of compact Hausdorff spaces and X = [],.; X; with the product
topology. Let F be an ultrafilter on X. Applying Corollary 7.5.17(iii) to the projection maps
pi : X — X; gives ultrafilters F; = p;(F) on the X;. Since each X; is compact Hausdorff, these filters
converge to unique z; € X; by Corollary 7.5.22 and Exercise 5.1.43. Now we have a unique point
z € X with p;(z) = x; (without invoking any choice axiom), and the preceding lemma gives that F
converges to z. We have thus proven that every ultrafilter on X converges, so that X is compact by
Lemma 7.5.20. (The Ultrafilter Lemma is used in this last step, and only there.) |

Also the general version of Tychonov’s theorem can be proven as above, except that one needs
to invoke AC to choose a point z; € X; among the limits of p;(F) for each i € I.

The characterization of compactness of X in terms of convergence of all ultrafilters on X is
technically convenient, but the next one is certainly more natural:

Proposition 7.5.26 [UF] For a topological space (X, T), the following are equivalent:
(i) X is compact.
(i) Every filter on X has an accumulation point (w.r.t. 7).

(iii) Every net in X has an accumulation point (equivalently, a convergent subnet) w.r.t. T.

Proof. (i)=(ii) If F is a filter on X then by UF there exists an ultrafilter F containing . Since X
is compact, F converges by Lemma 7.5.21 (with § = 7). Now every limit of F is an accumulation
point of F by Lemma 5.1.47(7).

(ii)=-(i) If every filter has an accumulation point then this in particular holds for every ultrafilter.
But every accumulation point of an ultrafilter is a limit by Corollary 7.5.17(i). Thus every ultrafilter
on X converges, and X is compact by Lemma 7.5.20.

(ii)=(iii) If every filter on X has an accumulation point, this in particular holds for the eventual
filter F of every net. By Exercise 5.1.49(iii), such an accumulation point of F also is an accumulation

point of the net.
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(iii)=(ii) If F is a filter, the canonical net {z,} of F by construction has F as eventual filter. By
assumption, the net has an accumulation point, thus the same holds for F. Therefore, every filter
on X has an accumulation point. [ |

The equivalence (i)<(iii) was known from Proposition 7.2.2, but the previous proof needed AC
for one direction, whereas we now only use UF!

Proposition 7.5.27 (i) The Subbase Lemma implies compactness of the space 21 for each set I.

(ii) Compactness of all spaces 21 implies the Ultrafilter Lemma.

Proof. (i) The product topology on X = 2! is defined in terms of the subbase S = {p;*(U) | i €
I,U € 7;}. In view of X; = {0, 1} with discrete topology, this reduces S = {p; '(t) | i € I,t € {0,1}}.
If U/ C S is an open cover of 2! then clearly U # (), thus there are i, such that p; '(t) € U. If there is
an i € I such that U contains {p; *(0), p; *(1)} then clearly {p; '(0), p; *(1)} C U is a finite subcover.
If this is not the case then & must be of the form & = {p;'(t;) | j € J} for some § # J C I and
some map ¢ : J — {0,1}, which implies S = {z € 2’ | 3j € J : z; = t;}. But then any point
x € 2! whose coordinates satisfy z; = 1 —¢; for all j € J is not in |[J S, contradicting the assumption
that & covers X. Thus every cover of X by elements of S has a subcover consisting of two elements.
Now the subbase lemma implies that X is compact.

(i))=(i) Let F be a filter on the set X. Identify P(X) with 2% as usual by sending A € P(X)
to the characteristic function x4 : X — {0,1}. And every subset ¥ C P(X) defines a function
xs : P(X) — {0,1}.

Kokook ok ok ok sk ok ok Kok okokokok ok

Exercise 7.5.28 (UF = ACF) Prove that the Ultrafilter Lemma implies the Axiom of choice for
finite sets: Given any family {X;}ic; of non-empty finite sets, we have [[,., X; # 0.

From now on, UF (and DC,) will be assumed true (unless specified otherwise), and
(most) uses of AC will be pointed out explicitly.

7.5.6 *x Universal nets. Fourth proof of Tychonov

The definition of universal nets is inspired by Lemma 7.5.16:

Definition 7.5.29 A net {z,},cr in a set X is universal (or an ultranet) if for every Y C X the net
eventually lives in'Y or in X\Y.

Lemma 7.5.30 (i) A net {z,} is universal if and only if its eventual filter is an ultrafilter.
(ii) If {x,} is a universal net in X and f: X =Y a function then {f(z,)} is a universal net in'Y.

(iii) If a universal net in a topological space has an accumulation point, it converges to that point.

Proof. (i) Obvious in view of the definitions and Lemma 7.5.16.

(i) If D CY then the net eventually lives in f~!(D) or in X\ f~!(D), thus f(x,) is eventually in
D or in Y\D.

(iii) Let 2 € X be an accumulation point of z, and U an open neighborhood of . Then the net
frequently is in U, so that it cannot be eventually in X\U and therefore it is eventually in U. Thus
it converges to . [ |
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Proposition 7.5.31 The following statements are equivalent over ZF:
(i) Ultrafilter Lemma: Every filter is contained in an ultrafilter.
(i1) Ultranet Lemma: Every net has a universal subnet.

Proof. Assume UF holds. Let {z, } be a net in X and F its eventual filter. By UF, there is an
ultrafilter F containing F. If F' € F then z, is frequently in every F' € F: If this was not true, z,
would eventually be in X\ F, thus X\F € F C F, but that is not compatible with F' € F. Now we
can apply Lemma 5.1.37 (which does not use AC, contrary to what one might suspect!) to {z,} and
]-" obtaining a subnet of {z,} that eventually lives in each F' € F. Thus its eventual filter contains F
and therefore is equal to it (since F is maximal). Thus the subnet is universal by Lemma 7.5.30(i).
Now assume the Ultranet Lemma holds. Let F be a filter on X, and let {z,},t € I C F x X
be the associated canonical net. By UL, the latter has a universal subnet. The eventual filter of
the latter is an ultrafilter F and it contains F (since the subnet by the very definition of subnets
eventually is in every set that the net ultimately is in). [

The following is the universal net analogue of Corollary 7.5.22:

Proposition 7.5.32 [UF] A space X is compact if and only if every universal net in X converges.

Proof. Let X be compact and {x,} C X a universal net. By Proposition 7.5.26 (or Proposition 7.2.2),
{z,} has an accumulation point. Then by Lemma 7.5.30(iii), the whole net {z,} converges to that
accumulation point (which need not be unique!). Thus every universal net in X converges.

Now assume that every universal net in X converges. If F is an ultrafilter on X, the canonical
net associated with F is universal, thus convergent by assumption. Thus F converges, so that X is
compact by Lemma 7.5.20.

Alternatively, the implication <= can also proven as follows: Let {z,} be any net in X. By the
Ultranet Lemma, it has a universal subnet. The latter converges by assumption, thus every net in
X has a convergent subnet and thus X is compact by Proposition 7.5.26. (This is just a reshuffling
of the preceding argument.) [ |

Fourth Proof of Tychonov’s Theorem [AC]. Let {z,} be a universal net in [], X;. By Lemma
7.5.30(ii), p;(x,) is a universal net in X; for each i € I, and therefore convergent by compactness
of X; and Proposition 7.5.32. Thus for each i € I the set L; C X; of limits of the net {p;(x,)} is
non-empty. Then by the cartesian product form of AC, L = [],.; L; is non empty.® If now z € L then
pi(z,) — pi(x) Vi, and Lemma 6.5.3 implies , — x. Thus every universal net in [[, X} converges,
and therefore [], X} is compact by Proposition 7.5.32. [ |

Remark 7.5.33 1. If all spaces X; are Hausdorff, the limits lim, p;(x,) € X; are unique, so that we
have identified a unique point z € [[, X;, obviating the use of AC. Thus we have another proof of
Tychonov’s theorem for Th-spaces, valid over ZF+UF since that is true for all its ingredients.

2. The above approach is due to Kelley (1950, [171]). While the actual proof of Tychonov’s
theorem is short and pretty, the reader will have noticed that the fourth proof just is a restatement
of the third proof (using ultrafilters) in terms of (universal) nets. Rather more seriously, the whole
approach using universal nets is marred by its dependence on the theory of (ultra)filters. The latter
is essentially inevitable: While the filters on a given set X form a bona fide set (namely a subset of
P(P(X))), the subnets of a given net do not form a set but rather a proper class, so that we cannot

8Beware of the expositions of this proof that do not point out the use of AC at this stage!
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directly obtain a universal subnet. This reliance on filters (at least under the hood) somewhat offsets
the liberty of being able to index a net by an arbitrary set and the (disputabe) impression that proofs
using nets often are prettier and more natural than the alternative ones using filters.

3. In [l], a more appealing proof of the ultranet lemma is given, which proceeds by applying
Zorn’s lemma directly to the family of subnets of {x,}, obtaining a universal subnet. However, [!]
adopts a definition of subnets different from the one used above (due to Moore). A nice aspect of
this definition is that a net is universal in the sense of Definition 7.5.29 if and only if it has no proper
subnet in the sense of [1]. (For Moore-subnets, there is no meaningful notion of properness.) But the
[1]-definition of subnets involves the filters associated to the nets in question! It seems that there is
no way to work with nets that is self-contained in that it does not invoke filters. For much more on
subnets, including a third definition, see [259, Chapter 5]. O

Proposition 7.5.34 The statements 1-10 in the second list in Remark 7.5.14 are all equivalent over
ZF.

Proof. The equivalence 1 < 2 was proven in Proposition 7.5.31, and in the same way one proves
3 <> 4 and 5 <+ 6. This uses only the close correspondence between nets and filters established in
Section 5.1.4 and Lemma 7.5.30. Statement 6 is Lemma 7.5.20, proven from 1 (UF). The proof of
4 in Proposition 7.5.26 uses only 6. Conversely, assume 4 holds and F is an ultrafilter. Then F
has an accumulation point and therefore converges, thus 6 holds. The proofs of 7 (subbase lemma)
and 8 (Tychonov for Ty-spaces) only used 6. The implications 8 = 9 = 10 are trivial, and since
7 =10 = 1 is the content of Proposition 7.5.27, we are done. [ |

The equivalence 1 < 11 will be proven in Appendix G.6 and 1 < 12 in Proposition 8.3.35.
Statements 13 and 14 will be discussed together with Stone duality. For 15 and 16 we refer to [20]
and [259], respectively.

7.5.7 % Principal ultrafilters. A quick look at ultraproducts

So far, we used ultrafilters as a method of proof without asking for examples. In fact, the only ones
that we can produce constructively are quite boring:

Exercise 7.5.35 Let X be aset, z € X and F, ={Y C X | z € Y}. Prove:

(i) F, is an ultrafilter on X. Such ultrafilters are called principal, all others non-principal (or
free).

(ii) If X is finite then every ultrafilter on X is principal, F = F,, for a unique z € X.
(iii) An ultrafilter F that contains a finite set is principal.

(iv) [UF] If X is infinite then there exist non-principal ultrafilters on X.

Proposition 7.5.36 Let F be a (ultra)filter on N.

(i) Let X be a set. For f,g € XN, define C(f,g9) = {n € N| f(n) = g(n)}. Then f ~r g &
C(f,g) € F defines equivalence relation and X* = (XN)/~x is called the (ultra)power of X
induced by F.

i) If F is a principal ultrafilter then X7 = X.
(ii) If princip
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(iii) Let R be a commutative ring. Equip RY with the pointwise ring operations and let 0 € RN be
the constant zero function. Then I = {f € RN | f ~ 0} is an ideal in RN and R = RY/I,
thus R is a commutative ring.

(iv) If R is a field and F is an ultrafilter then R” is a field.

We interpret the elements of F as ‘large’. Thus f ~ g if the coincidence set C(f, g) is large.

Proof. (i) Symmetry of ~ is evident, and reflexivity follows from N € F. If f ~ g ~ h then
C(f,h) 2 C(f,g) N C(g,h). Since C(f,g),C(g,h) are in F, so is C(f, h) by the filter axioms, thus
~ 1s transitive.

(ii) If {n} € F then F = {N C N | n € N}, thus f ~ g is equivalent to f(n) = g(n). Now it is
clear the map n : XN — X, f+ f(n) factors through the quotient map X~ — X7 and induces a
bijection X7 — X.

(iii) It is clear that RN with pointwise operations is a ring. If f,g € I then f ~ 0 ~ g, so
that C(f + g,0) 2 C(f,0) N C(g,0), thus C(f +¢,0) € Fand f+g € I. If f € RN, g € I then
C(fg,0) D C(g,0), thus fg € I. It is evident that f ~ g if and only f — g ~ 0. Thus R” = RN/I,
so that R” is a ring.

(iv) In view of (iii) we only need to show that every non-zero element of R’ is invertible (the
zero-element clearly being [0]). Let f € RY, f 2 0. Thus f~*(0) = {n € N | f(n) = 0} € F. Since
F is an ultrafilter, Lemma 7.5.16 gives N/f~(0) € F. Define g € R" by g(n) = 1/f(n) if f(n) #0
and g(n) = 1 otherwise. Now (fg)(n) =1 for all n € N\ f71(0) € F, so that fg ~ 1. Thus in the
quotient ring RF = (RY)/~ we have [f][g] = 1. Since the non-zero elements of R’ are precisely the
[f] for f € RN, f £ 0, every non-zero element of R is invertible. [ |

In view of (ii), the above construction is uninteresting if F is a principal ultrafilter. The existence
of non-principal ultrafilters on N is strictly weaker than the general UF and therefore called Weak
Ultrafilter Lemma (WUF). Applying the above construction to R = R and a non-principal ultrafilter
on N gives the field *R of hyperreals, the foundation of non-standard analysis, see e.g. [111]. (Note
that *R depends on the chosen F!)

7.6 x Compactness of ordered topological spaces. Super-
compact spaces

In this section, we give an application of Alexander’s subbase lemma to the question when an ordered
topological space, cf. Remark 4.2.5, is compact. This discussion is almost literally lifted from [35].

Definition 7.6.1 Let (X, <) be a totally ordered set and Y C X. A supremum (or least upper
bound) for'Y is an x € X such that (i) x is an upper bound for Y and (ii) no z < x is an upper
bound for'Y .

Theorem 7.6.2 An ordered topological space is compact < every subset (including () !) has a supre-
mum < every subset (including ) !) has an infimum.

Proof. Assume every Y C X has a supremum, and let / be an open cover of X by elements of the
subbase (4.3). In particular X has a supremum, which is an upper bound M for X. Being maximal,
M is not contained in any L,, thus & must contain R, for some z € X. Clearly every = € X is
an upper bound for the empty set (), so that existence of a supremum for () amounts to existence
of a smallest element m of X. Being minimal, m is not contained in any R,, so U must contain
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L, for some v € X. Thus Y = {x € X | L, € U} is not empty, and by assumption there exists
sup(Y) =: y. This y is not contained in any L, € U (otherwise x > y, contradicting the definition of
y), thus y € R, for some R, € U, meaning = < y. Since y is a least upper bound for Y, z cannot be
an upper bound for Y. We therefore must have y > x for some y € Y. By definition of y, we have
L, € Y. Summing up, we have found = < y such that {L,, R,} C U. Since L, U R, = X, we have
found a finite subcover of U. Now Alexander’s Subbase Lemma 7.2.4 implies that X is compact.

Now assume that the order topology on X is compact, and suppose that thereis a Y C X without
a supremum. If Y = (), this means that X has no minimum. In that case, Y = {R, | z € X} is
an open cover (since Vr € X Jdy € X with y < x) admitting no finite subcover. (If there was a
finite subcover {R,,, ..., R,,} then, defining z = min(z4,...,z,) we would have X = R,. But this
is impossible since z € X, but z € R,.)

This leaves us with Y # (). Begin by assuming that Y has no upper bound, thus Y contains
arbitrarily large elements. Arguing as before, Y = {L, | y € Y} covers X, so that by compactness
there is a finite subcover {L,,,..., L, }. Defining z = max(yi,...,y,) we find that X = L,, which
is impossible since z & L,.

Thus Y must have an upper bound, but no least one. Let Z be the set of upper bounds of Y.
Now {L, |y € Y}U{R, | z€ Z} covers X: If x € X isnot in (J{L, |y € Y} thenz >y Vy €Y,
thus z is an upper bound for Y. Since Y admits no least upper bound, there is an upper bound z € Z
such that z < z. But then z € |J{R. | z € Z}. Therefore, by compactness, there is a finite subcover
{Ly,,...,Ly,,R.,,..., R, } CU. Defining a = max(yy,...,y,) €Y, b = min(z1,...,2,) € Z, we
have X = L, U R,. Since b is an upper bound for Y and a € Y, we have a < b. Actually a < b since
a = b would be a least upper bound for Y. Now, since a ¢ L,, we must have a € Ry, but this is
impossible since because of a < b. 4

We have now proven the equivalence of the first two statements. The equivalence of the second
and third follows from the observation that these two properties are interchanged if we reverse the
ordering, while this has no impact on the order topology. |

Remark 7.6.3 The set X = (0,1) C R has supremum 1 in the ambient space R, but none in X,
consistent with the non-compactness. X = (0, 1] has a supremum (in X), but the empty subset
() € X has no supremum, thus again X is non-compact. O

Exercise 7.6.4 Prove that the order topology of a well-ordered set (X, <) is compact if and only if
(X, <) has a largest element.

Exercise 7.6.5 Prove that the order topology arising from the lexicographic order on [0, 1] x [0, 1]
is compact.

The proof of Theorem 7.6.2 motivates some further developments:

Definition 7.6.6 A topological space (X, 1) is supercompact if admits a subbase S C 7 such that
every open cover by elements of S has a subcover with at most two elements.

In the proof of Proposition 7.5.27(i) we have already seen that all spaces 2! are supercompact.

Corollary 7.6.7 Compact ordered = supercompact = compact.

Proof. The first implication is contained in the first half of the proof of Theorem 7.6.2, and the second
is immediate by Alexander’s subbase lemma. |
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Remark 7.6.8 While ordered topological spaces are the most ‘natural’ examples of supercompact
spaces, there are others: If X is a compact Hausdorff space, sufficient conditions for X being su-
percompact are: (i) X is second countable (=metrizable), (ii) X is a topological group. There
are examples of compact Hausdorff spaces that are not supercompact. It is not hard to show that
arbitrary products of supercompact spaces are supercompact. We leave the subject here. O

7.7 Compactness: Variations, metric spaces and subsets of
RTL

Before the notion of compactness was established as the ‘right one’, mathematicians experimented
with various related definitions. We will have a quick look at countable and sequential compactness
and then turn to metric spaces. (For much more information, cf. [$9].)

7.7.1 Countable compactness. Weak countable compactness

The definition of compactness (every open cover U has a finite subcover V) can be weakened by
limiting the cardinality of the cover U or by allowing certain infinite subcovers V. The latter leads
to the Lindelof property, which we have already studied. On the other hand:

Definition 7.7.1 A topological space is called countably compact if every countable open cover has
a finite subcover.

The following should be obvious:

Exercise 7.7.2 (i) Compact < (countably compact & Lindelof).
(ii) Countably compact & second countable = compact.
In analogy to compactness and the Lindel6f property, one finds:
Exercise 7.7.3 For countably compact X, prove:
(i) If Y C X is closed then Y is countably compact.

(ii) If f: X — Y is continuous then f(X) is countably compact.

Remark 7.7.4 1. Exercise 7.3.1 also shows that countable compactness is not hereditary. A Haus-
dorff example: The countable open cover {(n,n+2) | n € Z} of R has no countable subcover. Thus
R is not countably compact, and the same holds for (0,1) =2 R. But [0, 1] is compact, thus countably
compact.

2. With respect to products, countable compactness behaves equally bad as the Lindel6f property:
One can find countably compact spaces X,Y such that X x Y is not countably compact. (But if
X,Y are countably compact and Lindel6f then the same holds for X x Y.) O

Exercise 7.7.5 Prove that for a topological space X, the following are equivalent:
(i) X is countably compact.

(il) (F # 0 for every countable family F of closed sets having the finite intersection property.
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(iii) N, Cn # 0 for every sequence {C), }en of non-empty closed sets such that C,1 C C,, Vn.

In the rest of this section we will need the notion of w-accumulation points (Definition 2.7.23).
It is easy to see that every infinite subset Y of a compact space X has an w-accumulation point: If
this was false then every x € X would have an open neighborhood U, such that U, NY is finite. The
U, cover X, and by compactness there is a finite subcover. Now a finite union of sets U, has finite
intersection with Y, producing a contradiction. But we can do better, cf. the implication (i)=-(ii) in
the following:

Proposition 7.7.6 For a topological space (X, T), the following are equivalent:

(i) X is countably compact.

(i1) Every infinite subset Y C X has an w-accumulation point. (Compare Exercise 7.2.0.)
(iii) Every sequence in X has an accumulation point.

Proof. (i)=(ii) It clearly is enough to prove this for countably infinite subsets Y C X. Thuslet Y C X
be a countable subset without w-accumulation point. Then every x € X has an open neighborhood
U, such that U,NY is finite. Now for every finite subset F' C Y, we define Ur = | J{U, | U,NY = F'}
and note that we either have UpNY = () (if there is no z such that U,NY = F) or UrNY = F. Thus
in any case, UpNY C F. Since Y is countable, the family 7 = {F C Y | F finite} is countable, and
since every U, is contained in some Up (namely for F' = U, NY'), we see that {Ur} pcr is a countable
open cover of X. By countable compactness, there is a finite subcover {Ug,, ..., Uf,}. Thus

Y =UpU--UUp)NY =(UpNY)U-UUp, NY)C FU---UFE,,

which is finite, contradicting the assumption that Y is infinite.

(il)=(iii) Let Y = {x1, 2z, ...} be the set of values of the sequence. If Y is finite, there must be
a y € Y such that z,, = y for infinitely many n € N. This y obviously is an accumulation point of
the sequence {z,}. If, on the other hand, Y is infinite, then by (ii) there exists an x € X such that
Y N U is infinite for every neighborhood U of x. But this precisely means that x is an accumulation
point of the sequence {z,}.

(iii)=(i). Let {U,}nen be a countable open cover of X that does not admit a finite subcover.
This means that (J;_, Uy # X for all n, thus we can choose z, € X\ J;_, Uy for all n € N. Our
construction of {z,} implies that z} & U,, if kK > m. But this means that no point of U,, can be
an accumulation point of {z,}. Since |J,, U, = X, the sequence has no accumulation point. This
contradiction proves (i). |

The next result will not be needed later, but it nicely complements Proposition 7.2.2 and the
discussion of sequential compactness in the next subsection:

Corollary 7.7.7 A topological space (X, T) is countably compact if and only if every sequence in X
has a convergent subnet.

Proof. By Proposition 7.7.6, X is countably compact if and only if every sequence {z,} in X has an
accumulation point. By Proposition 5.1.36, this is equivalent to every sequence having a convergent
subnet. u

The point of this result is that not every accumulation point of a sequence is the limit of a
subsequence. Cf. the next subsection.
The next exercise explores what happens if we drop the ‘w-’ in Proposition 7.7.6(ii):
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Exercise 7.7.8 Let X be a topological space and Y C X. Consider the statements
(i) X is countably compact.
(ii) Every infinite Y C X has an accumulation point.
(iii) Every closed discrete subspace of X is finite.
Prove that (i)=(ii)<(iii), and if X is 77 then (ii)=(i).

Definition 7.7.9 A space with the equivalent properties (ii) and (i1i) in Ezercise 7.7.8 is called
weakly countably compact (or limit point compact or Fréchet compact).

There are non-717 spaces that are weakly countably compact but not countably compact!

7.7.2 Sequential compactness

Definition 7.7.10 A topological space is called sequentially compact if every sequence in it has a
convergent subsequence.

Proposition 7.7.11 Sequentially compact = countably compact.

Proof. By Lemma 5.1.12, limits of convergent subsequences are accumulation points. Thus sequential
compactness of X implies (iii) in Proposition 7.7.6, and therefore countable compactness. |

Remark 7.7.12 While the properties of compactness and countable compactness were defined in
terms of covers, i.e. ‘statically’, we have proven ‘dynamical’ characterizations: X is compact (resp.
countably compact) if and only if every net (resp. sequence) has a convergent subnet. Together with
the above definition of sequential compactness, this gives another perspective of the implications
compact = countably compact < sequentially compact. O

For all other implications there are counterexamples. There are even compact Hausdorff spaces
that are not sequentially compact:

Example 7.7.13 Let I = [0,1] and consider X = I’ = [[,,[0,1]. As a product of compact
Hausdorff spaces, X is compact Hausdorff by Exercise 6.5.15(ii) and Tychonov’s theorem. An element
of X is a function f : [ — I. Forn € N and z € I, let f,(z) be the n-th digit of x in its binary
expansion. (The latter is unique if we forbid infinite chains of 1s.) Assume that the sequence { f,,} has
a convergent subsequence m — f,, . Choose x € [0, 1] such that its n,,-th digit is 0 or 1 according to
whether m is even or odd. Now the sequence m +— f, (z)is {0,1,0,1,...}, which does not converge
as n — oo. This contradicts the convergence of f, in I!, which would have to be pointwise for all
z € [0,1].

X it is compact, thus countably compact, so that by Proposition 7.7.6 every sequence in X — in
particular the one constructed above — has an accumulation point. Therefore we have an example
of a sequence with an accumulation point that is not the limit of a subsequence, as promised before
Proposition 5.1.13. O

Example 7.7.13 of a space that is compact, thus countable compact, but not sequentially compact
shows that the converse of Proposition 7.7.11 is not true unconditionally. But in view of Proposition
5.1.13 we have:
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Proposition 7.7.14 (i) Countably compact & first countable = sequentially compact.
(i) If X is first countable then: countably compact < sequentially compact.

(1i1) If X is second countable then: compact < countably compact < sequentially compact.

Proof. (i) The implication (i)=-(iii) of Proposition 7.7.6 implies that every sequence in X has an
accumulation point and by Proposition 5.1.13 the latter is the limit of a subsequence. Thus X is
sequentially compact.

(ii) This follows from (i) and Proposition 7.7.11.

(iii) Second countability implies first countability (Lemma 4.3.7) and the Lindeldf property (Exer-
cise 7.1.5(iii)). The latter makes compactness and countable compactness equivalent (Exercise 7.7.2),
so that the claim follows from (ii). [

Exercise 7.7.15 Prove:
(i) Closed subspaces of sequentially compact spaces are sequentially compact.

(ii) Products of finitely or countably many sequentially compact spaces are sequentially compact.
Hint: Diagonal argument.

Remark 7.7.16 1. In Section 5.1.1 we have seen that sequences tend to be quite defective in spaces
without the first countablility property. But for first countable spaces, sequential and countable
compactness are equivalent.

2. There actually are spaces that are first countable and countably compact (thus sequentially
compact), but not compact, e.g. space #42 in [269]!

3. Exercise 7.7.15(ii) shows that sequential compactness is better behaved w.r.t. products than
countable compactness (cf. Remark 7.7.4.2), but not as well as compactness. (Given the inherently
countable nature of sequences, it would be unreasonable to expect more.) The fact that compactness
leads to the strongest result on products (to wit Tychonov’s theorem) is one of the main reasons why
compactness won out over countable and sequential compactness. O

7.7.3 Compactness of metric spaces I: Equivalences

We now turn to metric spaces, which besides the topological properties discussed above also admit
metric notions like completeness and some others to be introduced now.

Combining Lemma 2.5.4 and Lemma 7.4.2 we find that compact subsets of metric spaces are
closed. But there is a simple direct proof:

Exercise 7.7.17 Prove directly, using only the definition of countable compactness:
(i) Countably compact metric spaces are bounded.
(ii) Countably compact subsets of metric spaces are closed.

The following property is stronger than boundedness:

Definition 7.7.18 A metric space (X, d) is called totally bounded if for every r > 0 there are finitely
many points Ty, . .., T, such that B(xy,r)U---U B(x,,r) = X.

Subsets (not necessarily closed) and closures of bounded sets are bounded. Similarly:
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Exercise 7.7.19 Let (X,d) be a metric space. Prove:
(i) If (X,d) is totally bounded and Y C X then (Y, d) is totally bounded.

(ii) If (Y, d) is totally bounded and Y C X is dense then (X, d) is totally bounded.

Lemma 7.7.20 A metric space is totally bounded if and only if every sequence has a Cauchy subse-
quence.

Proof. <= If X is not totally bounded, there is an ¢ > 0 so that X cannot be covered by finitely
many e-balls. Then we can find a sequence {z,,} such that z,, € X\ !~ B(z;,¢) for all n, implying
d(z;,x;) > ¢ for all ¢ > j. But this gives i # j = d(x;,x;) > € > 0, so that no subsequence of {z,}
can be Cauchy.

= Let {x,} be a sequence in X. Since X is totally bounded, it can be covered by a finite number
of balls of radius 1. One of these, call it By, must contain z,, for infinitely many n. Now B; can be
covered by finitely many balls of radius 1/2. Again, one of those balls, call it By, has the property
that By N By contains x,, for infinitely many n. Going on in this way, we find a sequence B; of open
balls of radius 1/i such that By N---N By contains z,, for infinitely many n, for any k. Thus we can
choose a subsequence {x,, } such that z,, € By N---N B; for each i. Now if j > 4, both x,, and z,
are contained in B;, thus d(zn,, 7,,) < 2/i. This implies that i — x,, is a Cauchy sequence. [ |

Definition 7.7.21 Let (X,d) be a metric space.

(i) If U is an open cover of X, a real number X\ > 0 is called a Lebesque number’ for the cover U
if for every Y C X with diam(Y') < A there is a U € U such that Y C U.

(i) (X,d) has the Lebesque property if every open cover admits a positive Lebesque number.

Proposition 7.7.22 In the following diagram, solid (respectively, dashed) arrows indicate impli-
cations that are true for all topological (respectively metric) metric spaces. A “+’ indicates that a
combination of two statements implies the third. Dotted arrows indicate implications that hold under
additional assumptions that are weaker than metrizability (11, Ty or first countability).

Proof. We begin with the known implications: 1. Exercise 7.7.2(i). 2.4-3. Exercise 7.7.8 (one direction
needs 77, which holds for metric spaces). Pseudocompactness will only be discussed in Section 7.7.4.
4. Proposition 7.7.11. 5. Proposition 7.7.14 (needs first countability, which holds for metric spaces
by Lemma 4.3.6). 6. Exercise 7.1.5(iii). 7. Lemma 4.1.11. 8. Lemma 4.1.12. 9. Exercise 7.1.9. Now
we prove the remaining implications.

10. If {x,} is a Cauchy sequence, sequential compactness gives us a convergent subsequence. But
a Cauchy sequence with a convergent subsequence is convergent, cf. Exercise 5.1.14. Thus (X, d) is
complete.

11. For every r > 0, the family {B(x,r)},ex is an open cover of X. Now compactness gives
existence of a finite subcover, thus total boundedness.

12. If (X,d) is totally bounded, there are w1,...,z, such that X = (J, B(;,1). With D =
max; j d(x;, x;), the triangle inequality gives diam(X) < D + 2 < oo, thus X is bounded.

13. By total boundedness, for every m € N, there are finitely many points @, 1, ..., ZTpn,, such
that ., B(xmx,1/m) = X. Then S = {x,,,, | m € N, k =1,...,n,} is countable. Given x € X
and € > 0, pick 7' < m € N. Then there is a k such that d(x,z,,x) < 1/m < e. Thus S is dense

9Henri Leon Lebesgue (1875-1941). Particularly known for his integration theory.



154 CHAPTER 7. COMPACTNESS AND RELATED NOTIONS

9
- -7 7 T~ N
Lindeloef = p 2nd countable | ___ _ | separable
o T8 13t
11 TTe-l
e compact [T T M hogally | 12
~ ) \1"\19 bounded bounded
S N ™1
1 1 18 \\xLebesgue 16 15
property - -»= complete | 3 |
—~ ; o 14
v g 7T 10y
countably sequentially
compact | > compact
A A\
2y 3 \
weakly pseudocompact
countably
compact

Figure 7.1: Implications of properties of metric spaces

and (X, 7,) is separable. Now second countability follows from Lemma 4.1.12, but one sees more
directly that B = {B(zmx,1/m) | m e N, k=1,...,n,} is a base for 7,.

14. By sequential compactness, every sequence has a convergent subsequence, thus a Cauchy
subsequence. Now Lemma 7.7.20 gives total boundedness.

15. By Lemma 7.7.20 every sequence has a Cauchy subsequence. By completeness, the latter
converges. Thus the space is sequentially compact.

16. Let {x;} be a Cauchy sequence in X that does not converge. Then for every z € X there
is an e, > 0 such that z; frequently is not in B(z,e,). Now U = {B(x,&,)zex I8 an open cover
of X, which by assumption has a Lebesgue number A > 0. Thus for every y € X there is an
x € X such that B(y,\) C B(z,e,). This implies that z; frequently is not in B(y,\). On the
other hand, by Cauchyness there is N € N such that ¢,7 > N implies d(z;,z;) < A. In particular,
j > N = z; € B(zy, \), contradicting the fact that x; frequently is not in B(y, \), for every y.

17. Assume there is an open cover U not admitting a Lebesgue number A > 0. Then there
are open sets of arbitrarily small diameter that are contained in no U € U. In particular, for
each n € N there is an z, such that B(z,,1/n) € U for all U € U. By sequential compactness,
the sequence {z,} has an accumulation point x. Since U is a cover, we have z € U for some a
U € U. Since U is open, there is r > 0 such that B(z,r) C U. Since z is an accumulation
point of {z,}, we can choose n such that d(z,z,) < r/2 and 1/n < r/4. If now y € B(z,,1/n)
then d(y,z) < d(y,z,) + d(z,, ) < 14+ %5 <2+ 1 =3 <y Thus B(z,,1/n) C U, which is a
contradiction with the choice of {x,}.

18. For every x € X, choose a U, € U such that x € U,. Since U, is open, there is A, > 0 such
that B(z,2);) C U,. Now {B(x, \;)}sex is an open cover of X, so that by compactness there are
T1,..., T, € X such that | J;_; B(xg, As,) = X. Let A :=min(A,,, ..., A;,) > 0. Assuming now that
Y C X satisfies diam(Y) < A, pick any y € Y and a k € {1,...,n} such that y € B(zg, \;,). We
claim the following inclusions

Y C B(y,\) C B(xg, 2\,,) C Uy,
The first inclusion simply follows from y € Y and diam(Y) < A and the third holds by the choice of
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Az. For the middle inclusion, note that z € B(y, A) implies
d(z,zr) < d(z,y) +d(y, xr) < A4+ Ay < Ay + Ap, = 22X,

Since U,, € U, we are done.

19. Let U be an open cover of X. By assumption it has a Lebesgue number A > 0. By total
boundedness, the open cover {B(z, A\/3)}.cx has a finite subcover {B(z1,A/3),..., B(z,,A/3)}. In
view of diam(B(z, A/3)) < 2X and the definition of a Lebesgue number there is, for each i = 1,...,n,
a U; € U such that B(z;,\/3) C U;. Now {U;}!, C U is a finite subcover, thus X is compact. W

In view of the implications proven above, the following is immediate:

Theorem 7.7.23 For a metric space (X,d), the following are equivalent:

(1)

15 compact.

15 totally bounded and complete.

,d)
,d) is totally bounded and has the Lebesgue property.

Remark 7.7.24 1. Note that we have two ways of deducing compactness from the other statements,
namely either from the combination of the Lebesgue property and total boundedness or from the
combination of countable compactness and the Lindel6f property (deduced via separability from total
boundedness). The first path is shorter, but apparently less well known.

2. In the above, the metric d was fixed. But as we know compactness is a topological notion,
whereas a topology 7 can be induced by different metrics (which then are called equivalent). In
the light of this, the above means: If (X,7) is a compact space then every compatible metric d is
complete, totally bounded and Lebesgue. And if there is some compatible metric d that is totally
bounded and complete then (X, 7) is compact.

3. The following table gives examples for spaces with all those combinatinations of properties
that are not ruled out by the above results:

compact | tot.bdd. | Lebesgue | complete | 2nd cnt. | Example
1 1 1 1 1 [0, 1] or finite discrete
0 1 0 0 1 0,1]NQ
0 0 1 1 1 (N, dgisc)
0 0 1 1 0 X uncountable, dg
0 0 0 1 1 R with Eucl. metr.
0 0 0 1 0 (*(X), X uncountable
0 0 0 0 1 Q with Eucl. metr.
0 0 0 0 0 (*(X,Q), X uncountable

(We will have more to say about the Lebesgue property in Section 7.7.4. For the Lebesgue property
of (X, dgisc) cf. Remark 7.7.40.3.) O

The theorem has a number of corollaries that are immediate, but worth stating nevertheless:
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Corollary 7.7.25 Let (X,d) be a complete metric space.
(i) If Y C X then (Y,d) is compact if and only if it is closed and totally bounded.
(i) Y C X is relatively compact if and only it is totally bounded.

Proof. (i) If Y C X is compact then it is closed (since metric spaces are Hausdorff) and totally
bounded (by Theorem 7.7.23). Assume Y is closed and totally bounded. By Lemma 3.1.10(i), Y is
complete. Thus it is compact by Theorem 7.7.23.

(ii) Since Y C Y is dense, Exercise 7.7.19 gives that Y is totally bounded if and only if Y is
totally bounded. Now apply (i). [

~

Corollary 7.7.26 A metric space (X,d) is totally bounded if and only if its completion ()A(,d) is
compact.

Proof. By definition, X is complete and X C X is dense. If X is compact, it is totally bounded, and
so is X. If X is totally bounded then Corollary 7.7.25(ii) gives that X = X is compact. |

Note that in view of the above, completion of a totally bounded metric space also is a compacti-
fication! For the purpose of later reference, we record the following fact used above:

Corollary 7.7.27 Compact metrizable spaces are second countable, separable and Lindelof.

Remark 7.7.28 1. Now we can prove that [0,1]> with the lexicographic order topology is not
metrizable: By Exercise 7.6.5 this space is compact, but by Exercise 4.3.11 it is not second countable.

2. Later we will prove the following converse of Corollary 7.7.27: If X is compact, Hausdorff and
second countable then X is metrizable. O

We note that completeness can be characterized without invoking Cauchy sequences, in a way
that is very similar to the characterization of countable compactness in Exercise 7.7.5:

Lemma 7.7.29 A metric space (X,d) is complete if and only if (\F # 0 for every countable family
F of closed sets having the finite intersection property and satisfying infoer diam(C) = 0.

Proof. Given a countable family F, we choose a bijection N — F, n — (). Then the sets
D,, = (,_, C» are closed, decreasing, non-empty (by the finite intersection property) and satisfy
diam(D,,) — 0. The rest follows from Exercise 3.1.9. |

7.7.4 Compactness of metric spaces II: Applications

In this section, we consider several applications of compactness in the context of metric spaces. Recall
from Remark 5.2.12 that the results of Propositions 2.1.26, 3.1.12 adapt to the case where only (Y, d)
is metric, but (X, 7) is a topological space. Thus we still have a natural topology 7p on the set
Cp(X,Y), induced by the complete metric D of uniform convergence.

The first is result is straight-forward:

Corollary 7.7.30 Let X be a compact topological space. Then:

(i) Every continuous function f : X — Y with Y metric is bounded. Thus C(X,Y) = Co(X,Y),
and (C(X,Y), D) is a metric space.

(i) Every continuous function f: X — R is bounded and assumes its infimum and supremum.
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Proof. (i) By Lemma 7.3.5, f(X) C Y is compact, thus closed and bounded by Corollary 7.7.25. The
rest was already proven in Proposition 3.1.12.

(ii) For a bounded R-valued function, we have inf f,sup f € f(X). Now the claim follows from
the closedness of f(X) given by (i). |

Definition 7.7.31 A topological space X is called pseudocompact if every f € C(X,R) is bounded.

Thus compact = pseudocompact. In fact, there is a better result:

Exercise 7.7.32 (i) Prove that every continuous function from a countably compact space to a
metric space is bounded.

(ii) Deduce that countably compact = pseudocompact.

Proposition 7.7.33 For a topological space X, consider the following statements:

(i) For every countable family F of open sets with the finite intersection property, (VU | U €
F} # 0 holds.

(ii) For every sequence {Uy }nen of non-empty open sets satisfying U,11 C U, Yn we have (N, U, #
0.

(iii) X is pseudocompact.
Then (i)& (ii)= (iii). For completely regular spaces, also (iii)=(ii).
Exercise 7.7.34 Prove the implications (i)<(ii)=-(iii) in Proposition 7.7.33.

Remark 7.7.35 1. The implication (iii)=-(ii) in Proposition 7.7.33 will will be proven in Proposition
8.2.52, together with a few more equivalent statements. Since the proof proceeds by by contradiction,
one must produce an unbounded continuous function from the given information. This requires the
theory concerning the existence of continuous real-valued functions discussed in Sections 8.2 and
8.3.1. In view of this, one could argue that complete regularity should be included in the definition
of pseudocompactness, but I don’t like such combined definitions.

2. We will see that every pseudocompact Ty-space is countably compact, cf. Lemma 8.2.28.
Since metric spaces are T35 and Ty, we can add pseudocompactness with its various equivalent
characterizations to the list of equivalent properties of metric spaces given in Theorem 7.7.23. O

Corollary 7.7.30 has a generalization to semicontinuous functions:

Exercise 7.7.36 Let X be countably compact. Prove:
(i) If f: X — R is lower semicontinuous then it is bounded below and assumes its infimum.
(i) If f: X — R is upper semicontinuous then it is bounded above and assumes its supremum.

Other applications of compactness include proofs of uniform continuity in various guises and
uniform convergence. The following generalizes a classical result of Dini'’ for functions on a bounded
interval:

10Ulisse Dini (1845-1918), Italian mathematician. Also known for a criterion for the convergence of Fourier series.
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Proposition 7.7.37 (Dini’s theorem) Let X be countably compact, {fn}nen € C(X,R) and g €
C(X,R) such that f,(z) / g(x) Yz (pointwise monotone convergence). Then the convergence f, — g

is uniform, i.e. || fo = gll = sup,ex | fu(x) — g(x)| = 0.
Proof. For ¢ > 0 and n € N, define U,(¢) = {x € X | g(z) — fu(x)| < €}, which is open by

continuity of g — f,,. Let ¢ > 0. Pointwise convergence implies that every z € X is contained in
some Uy(¢), thus |, .y Un(e) = X. Countable compactness implies the existence of a finite subcover

{Un,(€),...,U,, (¢)}. Since the convergence f,, — ¢ is monotone, the U, (¢) are increasing with n.
Thus with N = max(ny,...,n,) we have Uy(e) = X, which is equivalent to ||g — fn|| < &. Since
€ > 0 was arbitrary, we have uniform convergence. [

It should be known that a continuous function f : [a,b] — R is uniformly continuous (Definition
3.4.12), cf. e.g. [280, Theorem 9.9.16]. (This was first proven in 1852 by Peter Gustav Lejeune
Dirichlet (1805-1859).) Using the Lebesgue property, this can be generalized considerably:

Proposition 7.7.38 Let (X,d), (Y,d') be metric spaces, where (X, d) has the Lebesque property (e.g.
due to compactness). Then every continuous f: X — Y is uniformly continuous.

Proof. Let € > 0. Since f is continuous, for every x € X there is d, > 0 such that d(z,y) < J, implies
d(f(x), f(y) < /2. Now U = {B(x,0,)}zex is an open cover of X. Let A > 0 be a Lebesgue
number of this cover. If now d(y, z) < A then diam({y, z}) < A, so that {y, z} C B(z,d,) for some
xr € X. With the triangle inequality we have

(f). F(2) < AU ), f@) +d (@), () < 5+ 5 =<

where we used the fact that y and z are in B(z,d,), and the definition of d,. |

The converse of Proposition 7.7.38 is also true, thus if every continuous f : (X,d) — (Y,d')
is uniformly continuous then (X, d) has the Lebesgue property. Remarkably, these two equivalent
properties are equivalent to many others. We need the following definition, which should be compared
to that of discreteness of a metric (Exercise 2.3.3):

Definition 7.7.39 A metric d on a set X is called uniformly discrete if there is € > 0 such that
d(x,y) > ¢ whenever x # y.

Remark 7.7.40 1. The standard discrete metric of Example 2.1.8 is uniformly discrete.
2. There are discrete metrics that are not uniformly discrete. E.g. d(n,m) = |2 — 1| on X =N,
3. If d is a uniformly discrete metric on X, then A = ¢ is a Lebesgue number for every open cover
U since diam(Y") < ¢ implies that Y is a singleton. Thus (X, d) has the Lebesgue property. One also
sees directly that every function f : (X,d) — (Y,d') is uniformly continuous for the trivial reason
that d(z,y) < € implies x = y, thus d'(f(x), f(y)) = 0. O

Theorem 7.7.41 For a metric space (X,d), the following are equivalent:
(i) X has the Lebesgue property.
(ii) Every continuous f : X — (Y,d) with (Y,d) metric is uniformly continuous.
(iii) Every continuous f : X — R is uniformly continuous (w.r.t. the standard metric on R ).

(iv) Every cover of X by two open sets has positive Lebesque number.
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(v) If AC U C X with A closed and U open, there is € > 0 such that A C U.
(vi) If A, B C X are non-empty closed subsets with AN B = () then dist(A, B) > 0.
(vii) Every closed discrete subset Y C X is uniformly discrete.

(viii) The derived set X' (i.e. set of non-isolated points) is compact and X \(X"). is uniformly discrete
for every e > 0.

Metric spaces satisfying these conditions are complete and have been called Lebesgue-spaces,
UC-spaces or Atsuji-spaces.

Exercise 7.7.42 Prove the equivalence of statements (iv), (v), (vi) in Theorem 7.7.41.

Remark 7.7.43 1. Statement (vi) shows that the metric spaces with the Lebesgue property are
precisely those where we cannot have the phenomenon encountered in Exercise 2.1.20(v), namely
non-empty closed subsets A, B such that dist(A, B) =0 and AN B = (.

2. That the Lebesgue property implies completeness was 16. in Proposition 7.7.22. We only give
the simpler of the remaining proofs.

The implicaton (i)=-(ii) was Proposition 7.7.38, and (ii)=-(iii) is obvious, as is (i)=(iv).

(iii)=(vi) Define f: X — [0,1] by f(z) = dist(x, A)/(dist(x, A) + dist(z, B)). One checks easily
that f is continuous and f [ A =0, f [ B = 1. By (iii), f is uniformly continuous, thus there is
e > 0 such that d(z,y) < € implies |f(z) — f(y)| < 1/2. Combined with f [ A = 0, this implies that
f(z) <1/2 Vx € A., which together with f B = 1 gives dist(A, B) > e.

For proofs of the remaining implications (vi)=-(vii) =-(viii) =-(i) (and many others) see [183],
where about 30 equivalent conditions are discussed! O

Corollary 7.7.44 A metric space having at most finitely many isolated points has the (equivalent)
properties listed in Theorem 7.7.41 if and only if it is compact.

Proof. Every compact metric space has the Lebesgue property. Conversely, the Lebesgue property
implies compactness of X’. If the set Y of isolated points is finite then it is not only open but also
closed. Thus X & X' @Y, implying compactness of X. |

We now consider a converse of the result in Exercise 6.5.40:

Exercise 7.7.45 Let X be arbitrary, Y compact and (Z,d) metric. Topologize C(Y, Z) using the
metric D(f, g) = sup, d(f(y), g(y))-

(i) For f € C(X xY,Z), let ' = A(f) € Fun(X,Fun(Y, Z)). Prove F € C(X,C(Y, Z)). (Thus if
x — x then sup, d(f(x,y), f(wo,y)) — 0, i.e. f(z,y) is continuous in x uniformly in y.) Hint:
Use the Slice Lemma 7.5.1.

(ii) Combining (i) with Exercise 6.5.40(ii), conclude that A gives a bijection C(X x Y, Z) —
C(X,CY, 7))

(iii) Assuming in addition that X is compact with metric dx, combine (ii) with Proposition 7.7.38
to show for every f € C(X x Y, Z) that

Ve>030>0: dyx(z,2)<d=VYy eV :d(f(z,y), f(2',y)) <e.

(iv) Assuming again that X is compact and equipping C(X x Y, Z) and C(X,C(Y, Z)) with the
natural metrics, prove that A is an isometry. (This is independent of (iii).)
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The following will be useful later:

Lemma 7.7.46 Let (X,d) be a metric space and {K; C X };,c; compact subsets. Let {Sy C X }ren
such that diam(S) "2 0 and forallk € N, i € I one has Sy N K; # 0. Then (), K; # 0.

Proof. 1t is sufficient to prove the claim in the case where [ is finite. In the general case, this
then implies that the family {K;};c; has the finite intersection property and another invocation of
compactness gives (), K; # 0. Thuslet {K1, ..., K, } be given and consider K = [, K; equipped with
the metric di (z,y) = >, d(z;,y;). For every k € N and i € {1,...,n}, choose an z;,; € Sy N K; and
define zy, = (zp1, ..., Tk,) € K. By compactness of K there exists a point z = (21,...,2,) € K every
neighborhood of which contains x for infinitely many k. Now, d(z;, z;) < d(2;, k) + d(@k4, Tk j) +
d(zkj, 2j) < 2dk(z,x) + diam(Sg). Since by construction every neighborhood of z contains points
xp with arbitrarily large k, we can make both terms on the r.h.s. arbitrarily small and conclude that
z=(z,...,z) for some x € X. Since z; € K; for all i, we have z € [, K;, and are done. [ |

7.7.5 Subsets of R"” I: Compactness

By gorollary 7.7.25, for a complete metric space (X,d) and Y C X we have: Y totally bounded
= Y compact = Y totally bounded = Y bounded. For X = R" we have more:

Lemma 7.7.47 Let n € N. Every bounded subset X C R"™ is totally bounded.

Proof. It X C R™ is bounded, it is contained in some cube C' = [—a,a]™. Now, for every € > 0, the
ball B(x,¢) contains a closed cube of some edge M > 0. Now it is clear that C' can be covered by
[2a/M ™ such balls. Thus C' is totally bounded, thus also X by Exercise 7.7.19(i). (Alternatively,
use this argument to show that [—a, a] is totally bounded, thus compact and deduce compactness of
C' from Tychonov’s theorem.) |

Theorem 7.7.48 (Heine-Borel) "' A subspace of K C R™ is compact if and only if it is closed
and bounded.

Proof. Taking Lemma 7.7.47 into account, this follows from Corollary 7.7.25. [

Remark 7.7.49 It is important to understand that the Heine-Borel theorem does not generalize to
most metric spaces! To see this it suffices to take any non-compact metric space (X, d) like R™ and
replace the metric d by an equivalent bounded metric d’. Now X is obviously closed and bounded
with respect to d’, but it still is non-compact. Metric spaces to which the Heine-Borel result does
generalize are considered in Section 7.8.9. O

Exercise 7.7.50 Use Theorem 7.7.48 to prove that the sphere S™ is compact for every n € N.

In Exercise 2.2.16, we proved that the norms || - ||s on R™ defined in Example 2.1.13 are equivalent
for all s € [1, 00]. Using the Heine-Borel theorem we can improve this considerably:

Theorem 7.7.51 All norms on a finite dimensional vector space over R or C are equivalent.

UHeinrich Eduard Heine (1821-1881), Emile Borel (1871-1956). This was proven by Borel for countable covers and
by Lebesgue in generality. Heine had little to do with it! The equivalent (since R™ is metric) statement that one
obtains replacing compactness by sequential compactness is known as the Bolzano-Weierstrass theorem.
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Proof. Let F € {R,C}. Let B ={ey,...,eq} be a basis for V, and define the Euclidean norm || - || of
=" cie; by ||z]l2 = (3, |ei|?)Y2. Tt clearly is sufficient to show that any norm || - || is equivalent
to || - ||2. Using |¢;| < ||z||2 Vi and the properties of any norm, we have

d d d
Y el <D il el < (Z ||€z‘||> [[]]2- (7.6)
i=1 =1

i=1
This implies that x — ||z is continuous w.r.t. the topology on V' defined by || - ||2. Since the sphere
S ={x €F"||x|s =1} is compact by Exercise 7.7.50, Corollary 7.7.30 implies that there is z € S

] =

such that A :=inf,eg ||z|| = ||z||- Since z € S implies z # 0 and || - || is a norm, we have A\ = ||z|| > 0.
Now, for z # 0 we have m € S, and thus
x
2]l = llzlla || 7= || = lzll2A. (7.7)
]l

Combining (7.6, 7.7), we have ¢||z|ls < ||z|| < eoflz]lz with 0 < ¢1 = infes||z]] < D, |leil] = ca.
(Note that e; € S Vi, so that ¢o > dey, showing again that V' must be finite dimensional.) [ |

Corollary 7.7.52 Let (V.|| - ||) be a normed vector space over F € {R,C} and V' C V a finite
dimensional subspace. Then the restriction of || - || to V' is equivalent to any other norm on V' and
is complete, and V' C 'V s closed.

Proof. The first claim is immediate by Theorem 7.7.51. The second follows, since every norm on
a finite dimensional vector space is equivalent to the Euclidean one, thus complete. The last claim
results from the fact that complete subspaces of metric spaces are closed. |

Remark 7.7.53 On a purely topological level, one can prove that a finite dimensional vector space
over R or C has precisely one topology making it a topological vector space (meaning that the abelian
group structure of (V,+,0) and the action of the ground field are continuous). O

Lemma 7.7.54 (F. Riesz) '* Let (V|| -||) be a normed space and W C 'V a closed proper subspace.
Then for each ¢ € (0,1) there is an x5 € V' such that ||xs]| = 1 and dist(zs, W) > 9, d.e. ||xs — x| >
doVreW.

Proof. If xy € VAW then A\ = dist(xzo, W) > 0 by Exercise 2.1.20(iii). In view of § € (0,1), we have
2> X. Thus we can choose yo € W with [Jzg — yo|| < 4. Putting

Yo — To
Ts= 57—
[0 — o]

we have ||zs|| = 1. If x € W then

Yo — o
[0 — o]

[ — 5] = ||=

‘ _ My = wolle = g0 + zoll  dist(xo, W) Ay
50 — o] lyo —xoll — 2

where the first > is due to |lyo — 20|z — yo € W and the second > is due to ||z — yo < 3. Since
x € W was arbitrary, we are done. [

2Frigyes Riesz (1880-1956), Hungarian mathematician.
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Theorem 7.7.55 If (V.|| -||) is an infinite dimensional normed space then:
(i) Each closed ball B(x,r) (with r > 0) is non-compact.
(ii) Every subset Y C V. with non-empty interior Y° is non-compact.

Proof. (i) Choose z; € V with ||z;|| = 1. Then Cz; is a closed proper subspace, thus there exists

zy € V with ||zs|| = 1 and |21 —z| > 1. Since V is infinite dimensional, V5 = span{z, z»} is a closed
proper subspace, thus there exists x3 € V with dist(z3, V2) > %, thus in particular ||z3 — ;|| > %
for i = 1,2. Continuing in this way we can construct a sequence of z; € V with ||a;]] = 1 and

|z; — x;]| > & Vi # j. The sequence {z;} clearly cannot have a convergent subsequence, thus the
closed unit ball B(0, 1) is non-compact. Since x — Az + x¢ is a homeomorphism, all closed balls are
non-compact.

(ii) If Y C V and Y° # ) then Y contains some open ball B(z,7), thus also B(z,r/2), which is
non-compact. Thus neither Y nor Y are compact. [ |

Remark 7.7.56 1. With the notion of local compactness that we will encounter in Section 7.8, the
above results can be simply stated thus: A normed vector space is locally compact if and only if it
is finite dimensional.

2. The above negative result means that compact sets in infinite dimensional normed spaces
must have empty interior. In Sections 7.7.7-F.5 we will characterize the compact subsets of certain
function spaces.

3. While closed balls in infinite dimensional normed spaces are non-compact w.r.t. the norm
topology, they actually are compact w.r.t. the weak topology. This is the content of Alaoglu’s
theorem, cf. Section G.6. O

The following is probably the simplest proof of the algebraic closedness of the field of complex
numbers. The proof will take for granted that every complex number w has an n-th root w'/™ for
every n. (Thus equations of the form 2" —w = 0 always have solutions, which is a special case of the
result to be proven here. This fact will be proven in Corollary 9.2.21, using the intermediate value
theorem.)

Theorem 7.7.57 (Fundamental Theorem of Algebra) '* Let P € C[z] be complex polynomial
of degree n > 1, i.e. P(z) = a,2" + -+ 4+ a1z + ag, where a,, # 0. Then there is a z € C such that
P(z) =0.

Proof. We may assume that a, = 1. Then P(z) = z"(1 + a,_12"' + -+ + apz™") implies that
|P(z)] — oo as |z] — oo. Thus there is a C' > 0 such that |z| > C implies P(z) # 0. Since
z +— |P(z)| is continuous and {z € C | |z| < C} is compact by Theorem 7.7.48, Corollary 7.7.30
implies that there is a zg € C where |P| assumes its infimum. If the latter is zero, we are done. Thus
assume | P(zo)| = inf |P(2)| > 0. Putting Q(z) = P(2+20)/P(z), we have Q(z) = 14b,2P+- - -+b, 2",
where p = min{m > 1 | a,, # 0}. Since b, = a,/P(z) # 0, by existence of n-th roots there is an
z € C such that 2 = —1/b,. With 0 < r < 1 we have

Q(rz) = 1+1rP2"b, + Tp+lzp+1bp+1 + - 12",

= (1—7P) PP p 4 42",

13This is a misnomer in two respects: On the one hand, the complex numbers do not have a very central place in
modern algebra. On the other hand, all proofs make essential use of some continuity considerations and therefore are
not purely algebraic.
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thus
|Q(rz)] <1 — 1P+ rPH Py ) 2P P2h, 0 + o P71,

For r > 0 small enough, the term with 7P is smaller than r?, so that |Q(rz)] < 1. But this
contradicts the fact that by construction |@| has its absolute minimum 1 at z = 0. |

For more on roots of complex polynomials see Exercise 7.8.77.

7.7.6 Subsets of R"” II: Convexity

Definition 7.7.58 Let V' be an R-vector space. A subset X CV is called convex if v,y € X, \ €
[0,1] = Az + (1 = Ny € X. (Le., the straight line segment Ty is contained in X.)

Clearly the Euclidean balls B™, D™ C R"™ are convex. This can be generalized:

Lemma 7.7.59 If||-|| is any norm on a vector space V' then the balls B(z,7) ={y € V | |lz—y| <r}
and B(x,r) ={y eV | ||z —y| <r} are convez.

Proof. Since the metric d(z,y) = ||z — y|| is translation invariant, we have B(x,r) = x+ B(0,r), thus
it suffices to prove the claim for z = 0. If x,y € B(0,7) and ¢ € [0, 1] then

[t + (1 =yl < ltzl + 11 =yl = tlzl + A =Dyl <tr+ A =t)r =,

thus tx + (1 — t)y € B(0,r) Vt € [0,1]. Similarly for B(z,r). |

Lemma 7.7.60 Let K C R™ be compact and convex with non-empty interior K°. Assume 0 € K°
(as can be achieved by translation, if necessary). Then the map

f:0K — S™1, xr—>i,
[z

where || - || is the Euclidean norm, is a homeomorphism.

Proof. The map R"\{0} — S" ! z+ Ta7 is continuous, thus its restriction f to 0K C R™\{0} is
continuous. We claim that f : 9K — S™"! is a bijection. Assuming this for a moment, Proposition
7.4.11 implies that f is a homeomorphism since JK is compact (as a closed subset of the compact
space K) and S"~! is Hausdorff.

To prove surjectivity, let 2 € S"~!. Since K is compact, thus bounded, we have y = sup{\ >
0] Az € K} <oo. Now 0 € KY implies 1 > 0, closedness of K implies uz € K, and by construction
every neighborhood of pz contains points in R*\K. Thus pz € 0K. Since f(uz) = z, we have
surjectivity of f : 0K — S~ 1.

It remains to prove injectivity of f, which clearly is equivalent to the statement that every ray
beginning at 0 intersects 0K in at most one point. Let R be such a ray and let p,q € K N R with
0 < |lpll < llg||. Since 0 € K, there is some closed ball B with center 0 contained in K°. Consider
the union of all line segments from ¢ to a point in B. Since K is convex, this set is contained in K
and it contains p in its interior. Thus p € K and therefore p ¢ K. Thus R intersects 0K in at
most one point, which is equivalent to injectivity of f : 0K — S™7L. |

It seems likely that one could also show the openness of f using the information about the
geometry of K, but invoking compactness surely is less painful.

The following result was already used in the discussion of the real projective spaces. In stating
it, we appeal to the Heine-Borel Theorem 7.7.48 to write ‘closed bounded’ instead of ‘compact’, in
order to make the geometric assumptions more explicit:



164 CHAPTER 7. COMPACTNESS AND RELATED NOTIONS

Proposition 7.7.61 Let K C R" be convez, closed and bounded with non-empty interior. Then:
(i) There is a homeomorphism g : D™ — K restricting to S"~' = 9D" =, 0K.
(ii) If zo € K° then the homeomorphism g : D™ — K can be chosen such that g(0) = .

(ii) If —K = K then we can choose g such that g(—x) = —g(x) VY, i.e. g is Zs-equivariant.

Proof. (i) We may assume 0 € K°. Let f: 0K — S™ ! be the homeomorphism constructed in the

lemma. Defining
g0k e | WS () e A0
0 z=0

it should be clear that ¢ is a bijection from D" to K. At x # 0, g clearly is continuous. Since K
is compact, there is M > 0 such that ||z|| < M Vz € K. Thus ||f~'(y)]] < M Vy € S*! and
llg(z)]] < M||x||. This tends to zero as x — 0, so ¢ is continuous at zero. As a continuous bijection
between compact Hausdorff spaces, g is a homeomorphism by Proposition 7.4.11.

(ii) If zo € K° then defining K’ = K — 2 we have 0 € K”°. Thus (i) gives us a homeomorphism
go: D" — K’ sending 0 € D™ to 0 € K'. Now g := go + 7o is a homeomorphism D" — K sending 0
to xg.

(iii) The assumption K = —K together with convexity implies 0 € K, so that we do not need
to shift K. It is obvious that the map f : x — /| z| in Lemma 7.7.60 is equivariant, and then the
same holds for g. [ |

This result is very useful since it automatically provides us with homeomorphisms between all
compact convex subsets of R” that have non-empty interior, e.g. D™ = [" = P, where P C R" is any
(full) convex polyhedron. E.g., a tetrahedron 7' C R3 is homeomorphic to the cube 3. Constructing
such homeomorphisms directly would be quite painful.

What about dropping the assumption on the interior?

Proposition 7.7.62 For a compact convex subset K C R™, the following are equivalent:
(i) K has non-empty interior.

(i1) K is not contained in a proper hyperplane (i.e. a set xo+V of K, where V- C R™ is a subspace
of dimension < n).
(i1i) spang{r —y | z,y € K} = R".

Proof. The equivalence (ii)<>(iii) is obvious. Assume (i). If 2o € K® and € > 0 is such that
B.(x9)) C K, it is clear that the vectors x — xg where ||z — x| = € span R". Thus (iii) holds. Now
assume (ii) and choose xy € K. Now choose 1 € K\{zo}, and then x5 € K but not in the line
determined by zy and z;. Going on like this we obtain xy, z1, ... in K such that no point lies in the
hyperplane defined by the others. In view of (ii), this process continues until we have found z,. By
convexity of K it is clear that the n-simplex

=0 %

is contained in K. It is easy to see that

50: {i)\ll'z ’ A >O, Z)\Zzl},
=0 %




7.7. COMPACTNESS: VARIATIONS, METRIC SPACES AND SUBSETS OF RY 165

and since this is contained in K°, K has non-empty interior. |

Theorem 7.7.63 Let K C R"™ be non-empty, convex, closed and bounded. Then there is m < n
such that K is homeomorphic to D™.

Proof. We may assume 0 € K, replacing K by K — g, where xq € K, if necessary. Define Y =
spang (K). Now K is a convex subset of the subspace Y C R™ and by construction it is not contained
in a proper hyperplane of Y. By Proposition 7.7.62, it has non-empty interior, considered as a
subspace of Y. Now Proposition 7.7.61 applies, and with m = dimY we have K = D™. [

Remark 7.7.64 Later (Corollary 10.5.7) we will prove that D" and D* are non-homeomorphic when
r # s. Thus the m in the theorem is uniquely determined by K. In particular, m = n holds if and
only if K has non-empty interior. O

7.7.7 x Compactness in function spaces I: Ascoli-Arzela theorems

If (X, 7) is a topological space and (Y, d) metric, the set Cy(X,Y) is topologized by the metric D
from (2.6), cf. Remark 5.2.12. It is therefore natural to ask whether the (relative) compactness of a
set F C Cy(X,Y) can be characterized in terms of the elements of F, which after all are functions

f: X — Y. This will be the subject of this section, but we will restrict ourselves to compact X, for
which C(X,Y) = C(X,Y) by Corollary 7.7.30.

Definition 7.7.65 Let (X, 7) be a topological space and (Y,d) a metric space. A family F C
Fun(X,Y) is called equicontinuous if for every x € X and ¢ > 0 there is an open neighborhood
U > x such that f € F, 2/ € U = d(f(x), f(2')) <e.

This clearly implies F C C'(X,Y’), but the point is that the choice of U depends only on x and
e, but works for every f € F.

The following lemma is from [128]. Note that the ¢ — ¢ condition appearing there could be called
‘uniform metric properness’ of f since it says that preimages of bounded sets are bounded in a
uniform way:.

Lemma 7.7.66 Let (X,d) be a metric space. Assume that for each € > 0 there are a § > 0, a
metric space (Y,d') and a continuous h : X — Y such that (h(X),d') is totally bounded and such
that d'(h(x),h(x")) < § implies d(z,x") < e. Then (X,d) is totally bounded.

Proof. For € > 0, pick 0, (Y,d'), h as asserted. Since h(X) is totally bounded, there are yi,...,y, €
h(X) such that h(X) C |, B(yi,6) C Y*". Then X = J, "' (B(y;,0)). Choose z; such that h(z;) =
y;. Now x € h™'(B(y;,8)) = d'(h(x),y;) < 6 = d(x,z;) < €, so that h=*(B(y;,0)) C B(z;,¢). Thus
X =, B(z;,¢), and (X, d) is totally bounded. [ |

Theorem 7.7.67 (Ascoli-Arzeld) ' Let (X,7) be a compact topological space and (Y,d) a com-
plete metric space. Then F C C(X,Y) is (relatively) compact (w.r.t. the uniform topology Tp) if and

only if
o {f(x)| feF}CY is (relatively) compact for every x € X,

1 Giulio Ascoli (1843-1896), Cesare Arzela (1847-1912), Italian mathematicians. They proved special cases of this
result, of which there also exist more general versions.
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o F is equicontinuous.

Proof. = 1f f,g € C(X,Y) then d(f(z),g(x)) < D(f,g) for every x € X. This implies that the
evaluation map e, : C(X,Y) — Y, f ~ f(z) is continuous for every x. Thus compactness of F
implies that e,(F) = {f(z) | f € F} is compact, thus closed. Since e,(F) contains e,(F), also
e(F) C e,(F) is compact.

To prove equicontinuity, let z € X and € > 0. Since F is totally bounded, there are ¢y, ..., 9, € F
such that F C |, BP(g;,€). By continuity of the g;, there are open U; > z, i = 1,...,n, such that
€U = d(gi(2),0:(2))) <e. Put U=, U;. If now f € F, there is an i such that f € B"(g;,¢),
to wit D(f, ¢;) < e. Now for 2’ € U C U; we have

d(f(x), f() < d'(f(2), gi(x)) + d'(g:(x), 9:(2")) + d'(g:(2"), f () < 3e,

proving equicontinuity of F (at z, but x was arbitrary).
< Let € > 0. Since F is equicontinuous, for every x € X there is an open neighborhood U, such
that f € F, o' € U = d'(f(z), f(2')) < e. Since X is compact, there are z1,...,x, € X such that

X =, Uy Nowdefine h: F = Y>": f s (f(z1),..., f(x,)). Now (?((yl, e Un)s (YY) =
> d'(yi,y;) is a product metric on Y *". By assumption {f(z) | f € F} is compact for each z € X,
thus A(F) C [[,{f(z:) | f € F} C Y*" is compact, thus (h(F),d) is totally bounded. If now
f,g € F satisfy d(h(f),h(g)) < ¢ then d'(f(x;),g(z;)) < € Vi by definition of d. With z € U,,, we

have

d'(f(x),9(x)) < d'(f(@), f(x:) +d'(f(x:), g(x:)) + d'(g(x:), g(x)) < 3e.

Since the U,, cover X, this implies D(f, g) < 3. Thus the assumptions of Lemma 7.7.66 are satisfied,
and we obtain total boundedness of F. |

If Y = R” then in view of Theorem 7.7.48 the requirement of compactness of {f(z) | f € F} for
each x reduces to that of boundedness of { f(z) | f € F} for each z, i.e. pointwise boundedness of F.
With the equivalence of compactness and sequential compactness for the metric space (C(X,R"), D)
the following is equivalent to Theorem 7.7.67 (for Y = R"):

Corollary 7.7.68 If (X, 1) is compact and { fn}neny € C(X,R") is pointwise bounded and equicon-
tinuous then the sequence {f,} has a uniformly convergent subsequence.

Theorem 7.7.67 and its corollary will be used for the proof of the Hopf-Rinow Theorem 12.4.27.

Ascoli-Arzela type theorems are often stated with the (superfluous) additional assumption that
X is metric. Given two metric spaces (X, d), (Y, d'), one can formulate the notion of uniform equicon-
tinuity, which often (imprecisely) is called equicontinuity:

Definition 7.7.69 Let (X,d), (Y,d) be metric spaces. A family F C Fun(X,Y") is called uniformly
equicontinuous if for every € > 0 there is a 6 > 0 such that

fer, ryeX, dxy <o = d(f(x),fly) <e.

(This clearly implies equicontinuity of F and uniform continuity of every f € F.)

We know that continuous functions from a compact metric space to any metric space are uniformly
continuous. This generalizes to equicontinuous families, making it pointless (but also harmless) to
require uniform equicontinuity instead of equicontinuity:

Lemma 7.7.70 If (X,d), (Y,d') are metric spaces with X compact then every equicontinuous family
F C Fun(X,Y) is uniformly equicontinuous.
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Proof. Given € > 0, equicontinuity allows us to find for every x € X a d, > 0 such that f €
F, d(z,y) < 9, implies d'(f(z), f(y)) < e. The rest of the proof is identical to that of Proposition
7.7.38 except of course that now f is any element of F. [ |

7.8 One-point compactification. Local compactness

7.8.1 Compactifications: Definition and Examples

Since compact spaces have very nice properties, in particular in combination with the Hausdorff
property, it is natural to ask whether a non-compact space can be ‘compactified” by embedding it
into a compact space. In analogy to completions of metric spaces (Definition 3.2.1) we define:

~

Definition 7.8.1 A (Hausdorff) compactification of a topological space (X,T) is a space (X,T)

together with a continuous map ¢ : X — X such that
o (X,7) is compact (Hausdorff).
o ¢ is an embedding. (Le. v: X — «(X) C X is a homeomorphism.)
o ((X) is dense in X.

The points in )A(\L(X) are the infinite points of X.

Remark 7.8.2 We will occasionally suppress the embedding map ¢ from the notation, considering
X as a subset of X (but not when we consider different compactifications). a

Exercise 7.8.3 Let (X, 7) be a topological space, and let X, = X U{oo}. (Here and in the sequel,
it is understood that co € X.) Define 7" as in Exercise 7.3.1. (We now write oo instead of p.)
Assuming X # (), prove:

(i) X is dense in X', but 7/ is not Hausdorff.
(ii) Conclude that (X’,7') is a (non-T3) compactification of (X, 7).
(iii) How do the above statements change if X = ()7

The next example is better since it provides Hausdorff compactifications of R™ and shows that
compactifications in general are not unique:

Example 7.8.4 1. (0,1) has [0,1] and S! as compactifications (among many others!).

2. More generally, there is a homeomorphism ¢, from R” to the open unit ball in R™. (Why?)
In view of D" = ¢,(R") it is immediate that (D", ,) is a Hausdorff compactification of R™. If ~
is any equivalence relation on S"~! = 9D", extend it to D" in the minimal way, ie. x ~y = z =
yV{x,y} C S" 1. One checks that this equivalence relation on D" is closed if and only if it is closed on
Sl As we will see later, this is equivalent to D™/~ being Hausdorff. Now R” = D"/~ is compact.
If p: D" — R” is the quotient map and ¢, = p o, one finds that (R”,¢.) is a compactification
of R™. Thus every closed equivalence relation on S"! gives rise to a Hausdorff compactification of
R"™! Examples: (i) the trivial equivalence relation, i.e. R” = D" (ii) the radical equivalence relation
that identifies all points. We will see that it leads to R?” = S™. And (iii) the equivalence relation
that identifies only pairs (z, —x) of antipodal points, which leads to R? = RP", as shown in Lemma
6.4.31. Thus R™ has D™, S™, RP™ as Hausdorff compactifications, but clearly there are many others.
(]
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Remark 7.8.5 1. Exercise 7.8.3 shows that every space admits a compactification, in analogy to
the existence of completions for all metric spaces. However, the compactification given there is not
very useful since it is never Hausdorff.

2. A non-Hausdorff space admits no Hausdorff compactification (since T5 is hereditary).

3. If X is compact then every Hausdorff compactification X is homeomorphic to X. (Since X is
compact, also ¢(X) is compact, thus ¢(X) C X is closed by the Hausdorffness of X. We thus have
X = (X) = o(X) = X, by density of «(X).)

4. Hausdorffness of X is not sufficient for X to have a Hausdorff compactification! Later (Theorem
8.3.21) we will identify a necessary and sufficient condition, but for the time being we have no need
for that. (And in Section 7.8.3 we construct a Hausdorff compactification whose existence follows
from a simpler but stronger condition.)

5. In contradistinction to completions, there is no uniqueness for compactifications. But if a
space has a Hausdorff compactification at all, it has a unique ‘largest’ one, cf. Corollary 8.3.31(ii).
Under the stronger assumption mentioned above, it also has a unique ‘smallest’ compactifications,
cf. Corollary 7.8.60. O

7.8.2 * Compactifications: Some general theory

The fact that there are multiple compactifications of a given space X makes it natural to study all
compactifications of X and the maps between them. Categorical language is best suited for this:

Definition 7.8.6 If X is a Hausdorff space, the category C(X) of Hausdorff compactifications of X
is defined as follows: ObjC(X) = {(X,1)}, where X is compact Hausdorff and 1 : X — X is an
embedding with dense image. If (X1,t1),(Xa,12) € C(X) then

HomC(X)(()A(hLl), ()?Q,LQ)) ={fe C()?l,)?g) | fou =1to}.

Since compactifications are not unique, we have no complete analogue of Proposition 3.2.2. The
next result is the next best we can hope for:

Proposition 7.8.7 Let X be non-compact.

1) 1 )/(\'1,“ , )?Q,LQ are objects in C(X) then Home(x )?hbl , )/(\'2,@ contains at most ele-
(X)
ment.

(’I,’L) [f HOmc(X)(()?l, [,1), ()?2, LQ)) 7é (Z) 7& HOmc(X)<()?2, LQ), ()?1, Ll)) then ()?1, L1> = ()?2, LQ).

(1ii) If the Homc(x)(()?l, 1), (Xa,12)) is non-empty empty then its unique element f is surjective, a
quotient map and satisfies

FX\u(X)) = X\ea(X).
Thus f maps the infinite points of X to (in fact onto) the infinite points of Xo.

(iv) The isomorphism classes of compactifications of X form a partially ordered set C(X)/=, where
(X1, 01)] > [(Xa,2)] if and only if Home(x)((X1, t1), (X2, t2)) # 0.

(v) A compactification (X, 1) € C(X) is an initial (resp. terminal) object if and only if [(X,1)] is a
greatest (resp. smallest) element of the partially ordered set (C(X)/ =, <).
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Proof. (i) Any two morphisms (X, ¢1) ELN (X5, 12) coincide on the dense subset 11(X). Since Xs is
Hausdorff, Exercise 5.2.16(ii) gives f = g.

(ii) Let f: ()?bal) — ()A(Q,LQ) and g : ()A(g,bg) — ()A(l,Ll). Then g o f coincides with idg on the
dense subset ¢1(X), thus go f =idg . Similarly fog=1idg .

(iii) If f € Home(x )(()?1, 1), (X3, 12)) then f ol = Ly 1mp11es that f(Xl) contains t5(X), which
is dense since Xg is a compactlﬁcatlon Since X 1 is compact, so is f (Xl) and since X2 is Hausdorff
f (Xl) is closed, thus equal to Xo. Now f is a quotient map by Proposition 7.4.11(iv). The remaining
claim f(X;\t1(X)) = X5\ta(X) follows from Lemma 7.8.8 below since ¢1(X) C X; is dense and
f1t(X) =107 is a homeomorphism with image ¢5(X).

(iv) The above results suggest that the isomorphism classes of compactifications of a space X
form a partially ordered set. Indeed, defining < as stated, reflexivity and transity of < are trivial,
whereas antisymmetry follows from (ii). The problem is that the compactifications of X definitely
do not form a set, but a proper class. So the question is whether at least the isomorphism classes of
compactifications of X form a set. This is indeed the case and can be proven in different ways. We
will later see that whenever X has a Hausdorff compactification, it has compactification SX such
that for any other compactification X there is a morphism X — XinC (X) (thus X is an initial
object in C(X)), thus X is (isomorphic to) a quotient of SX. But the isomorphism classes of quotient
spaces of a fixed topological space X are in bijective correspondence to the equivalence relations on
X, and the latter form a set since an equivalence relation is a subset of X x X. (Alternatively, one
can use the fact that if X is a Hausdorff compactification of X, the cardinality of X is bounded by
#)A( < #R(Q#X). Also this is proven using $X.)

(v) By (i), all hom-sets in C(X) contain at most one element. Thus an object (X,¢) in C(X) is
initial if and only if Hom((X, 1), (X’,¢)) # 0 for all (X’,//). Thus if and only if [(X,.)] > [(X’, /)]
for all [(X”, /)], which is the definition of a greatest element. Similarly, (X,:) is terminal if and only
if [(X,0)] is smallest. |

Lemma 7.8.8 Let f : X — Y be continuous, where X is Hausdorff. Let A C X be a dense subset
such that f[A is a homeomorphism A — f(A). Then f(X\A) CY\f(A).

Proof. Assume the claim is false. Then there are a € A, b € X\A such that f(a) = f(b). Since X
is Hausdorff, there are disjoint open U > a,V 3 b. Then U N A is an open neighborhood in A of a.
Since f [ A is a homeomorphism, f(U N A) C f(A) is an open neighborhood in f(A) of f(a). Thus
there is an open W C Y such that f(UNA) = W N f(A). Clearly W is an open neighborhood in
Y of f(a) = f(b). Let V' C X be open such that b € V' C V. Since A C X is dense, V' N A # 0.
In view of V' C V C X\U and the injectivity of f [ A, the non-empty set f(V' N A) is disjoint from
fUNA)=Wn f(A). Thus f(V' N A) C W cannot hold, clearly implying f(V’) € W. Since this
is the case whenever b € V' C V| we have a contradiction with the continuity of f at b. |

The next result provides a criterion for determining when two Hausdorff compactifications of a
space X (assuming there are any) are isomorphic in C(X):

Proposition 7.8.9 Let ()?1, t1), ()?2, t2) be Hausdorff compactifications of the space X. Then ()?1, t1)
and (X, 12) are isomorphic as objects of C(X) if and only if for any two disjoint closed sets A, B C X
we have

u(A)NuB)=0 & nA)nnuB)=0. (7.8)

Proof. We have continuous maps fi : to0¢7 " : 11(X) — )?2 and fy 110050 1 1p(X) — )?1 defined
on the dense subspaces ¢1(X) C X, t2(X) C X, respectively. In order to obtain an isomorphism
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)?1 — )?2 in C(X), we must construct continuous extensions fl, f2 of these maps to Xl,X2 The
extensions will then automatically be mutually inverse since f2 o f1 X1 — XQ will be the identity
on the dense subset ¢1(X;) C Xl, and similarly for f1 o f2

By Theorem 7.4.20, f; extends if and only if given disjoint closed sets A, B € )A(Q, we have
(17 (A)) N a7 Y(B)) = 0, and similarly for fo. But every closed A € X, is of the form ¢1(Ag)
for some closed Ay C X, namely Ay = 17 '(A), and similarly for B. Thus f; extends continuously
if and only if given closed Ag, By € X such that ¢;(A) N ¢ (B) = 0, we have 15(A) N1y (B) = 0.
In the condition for extendability of fs, 11 and ¢y are exchanged. Thus the condition (7.8) implies
X, 2 X,inC (X). Conversely, this isomorphism implies that f; and fy continuously extend (to
mutually inverse maps), so that (7.8) is satisfied. [

In Section 8.4.3 this result will be used to give a fairly intrinsic classification of Hausdorff com-
pactifications.

7.8.3 The one-point compactification X

In Exercise 7.8.3 we have seen that for every topological space (X, 7) there is a topology 7' on
Xoo = X U{oo} making (X, 7") a compactification of (X, 7). This is conceptually interesting, but
7/ was not Hausdorff, whereas we are mostly interested in Hausdorff compactifications. The following
mainly serves to motivate Theorem 7.8.14 (but also provides a converse):

Lemma 7.8.10 Let (X, 7) be a topological space, Xoo = X U{oc}, and assume that 7' is a topology
on Xoo such that (X, ') is a Hausdorff compactification of (X, 7). Then

(i) X is Hausdorff and non-compact.
(i) Every x € X has a compact neighborhood (i.e. x € U C K for some open U, compact K ).

(i) 7 = T U{X\K | K C X compact}. (We interpret subsets of X as subsets of X in the
obvious way.)

Proof. (i) Hausdorffness of (X, 7) follows from hereditarity of this property and the fact that 7/ |
X =7. If X was compact then X C X, would be closed since X, is Hausdorff, contradicting the
requirement X = X.

(ii) If x € X then by the Hausdorff property of 7" there are U,V € 7/ such that UNV = 0,
r € Uoo e V. With K = X \V we have v € U C K C X, where K is closed in X, and thus
compact. Thus K is a compact neighborhood of .

(iii) By assumption 7’ is Ty, thus T3, thus {oo} is 7'-closed, so that X = X \{oco} € 7’. By
assumption, (X, 7) < (X, 7') is an embedding, i.e. 7 =7 X = {UN X | U € 7'}. This means for
every U € 7 that U € 7" or UU{oo} € 7. In the latter case, X € 7/ implies U = (UU{oc})NX € 7.
Thus 7 C 7. It is obvious that if U € 7/ and U C X then U = U N X, thus U € 7. This shows that
the 7/-open sets not containing oo are precisely the elements of 7.

If oo € U € 7/ then X \U C X is closed in X, thus compact. Conversely, if K C X is compact
then K is closed as a subset of X, since the latter is Hausdorff, thus X.,\K € 7’. This proves that
the 7/-open subsets containing oo are precisely the complements (in X,) of the compact subsets of
X. |

Since we are mainly interested in Hausdorff compactifications, the condition in (ii) merits a name.
Spaces satisfying it are called locally compact.
Since we will meet many similar conditions later on, we consider the generalization right away:
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Definition 7.8.11 Let P be a property that a topological space can either have or not have, and let
(X, 1) be a topological space. Then we say that

o X s weakly locally P if every x € X has a neighborhood that has property P.

o X s strongly locally P if given x € U € 7 there is a neighborhood N of x such that N has
property P and N C U. (Thus every x € X has a neighborhood base consisting of sets with
property P.)

In these notes, ‘locally P’ always means ‘weakly locally P’ unless specified otherwise.

Remark 7.8.12 We obviously have the implication ‘X is strongly locally P’ = ‘X is weakly locally
P’ but also ‘X is P’ = ‘X is weakly locally P’ (since X is a neighborhood of every x € X). In
general, no other implications hold. (But for local compactness see Lemma 7.8.25.) O

Example 7.8.13 Here are some examples of locally compact spaces:
1. Compact spaces. (Trivial.)
2. Discrete spaces. (A compact neighborhood for z € X is {z}.)
3. R™ for any n € N. Finite dimensional normed spaces. (By Theorems 7.7.48 and 7.7.51.)

4. In view of 3., topological spaces where every point has a neighborhood homeomorphic to R",
are locally compact. Such spaces are called locally Euclidean. (Much of modern mathemat-
ics revolves around manifolds, which are locally Euclidean spaces satisfying some additional
axioms.) O

Lemma 7.8.10 does not imply that taking the 7/ appearing in (iii) as the definition of a topology
will work, but this surely is not unreasonable to hope. While we are mainly interested in the case
where X is Hausdorff, we do not assume this to begin with. This forces us to include the requirement
‘closed’ in the following definition. It can be omitted when X is Hausdorff.

Theorem 7.8.14 Let (X, 7) be a topological space. Put X, = X U{occ} (where oo ¢ X ) and define
Too C€ P(Xw) by
Too = TU{X\K | K C X closed and compact}. (7.9)

Then

(1) (Xoo, Too) s a topological space.

(11) Too | X =7, thus X — X is an embedding.
(111) (Xoo, Too) @S compact.

(iv) X C X, is open and {00} C X, is closed. Furthermore,
X C X is closed < {00} C X is open <& Xoo = X @ {0} < X is compact.

(v) X is a compactification of X if and only if X is non-compact.

(vi) Too is Hausdorff if and only if T is Hausdorff and locally compact.
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Proof. (i) We have ) € 7 C 7. And K = () is closed and compact, thus X, € 7. Any family
U C 7 is of the form Uy Uy, where Uy C 7 and Uy = { X oo\ K }ier with K; C X closed and compact.
Clearly JU; € 7 and YUy = X\, K;. The intersection of any number of closed compact sets
is closed and compact by Exercise 7.4.7, thus | JUs € Too. If Uy € 7 and Uy = X \K with K C X
closed compact, then Uy U Uy = X \K', where K’ = K N (X\U;). Since the intersection of the
closed compact set K with the closed X\U; is closed compact, we have U; U Us € 7.

Finally, consider U; N Uy. The case Uy, Us € 7 is clear. Furthermore, (Xoo\K7) N (Xoo\K2) =
Xoo\ (K7 U K3), which is in 74, since the union of two closed compact sets is closed and compact
(Exercise 7.4.7). Finally, if U € 7 and K C X is closed and compact then UN (X \K) = UN(X\K),
which is in 7 C 7, since X\K € 7.

(ii) By construction, 7 C 7, thus 7., [ X D 7. Let K C X be closed and compact. Then
X N (X\K) = X\K, which is in 7. Thus intersected with X, the ‘new’ open sets Xoo\K in 7
become ‘old’ ones, so that 7., [ X = 7.

(iii) Let U C 7o be an open cover of X,. Since U must cover oo, it contains at least one set of
the form Uy = X \K with K C X closed and compact. Now by (ii), {X NU | U € U} is a cover
of K by elements of 7, and by compactness of K there is a finite subfamily Uy C U still covering K.
Now Uy U {Uy} is a finite subcover of U, thus 7, is compact.

(iv) Since X € 7, we have X € 7, thus {oo} = X\ X is closed. By definition of 7, we have
{0} € 7 if and only if X is compact. This in turn is equivalent to {oo} being clopen and thus a
direct summand, cf. Proposition 6.3.7.

(v) Statement (ii) means that the inclusion map (o, : X < X is an embedding, and by (iv)
X C X is non-closed, and thus dense, if and only if X is non-compact.

(vi) Assume X, is Hausdorff. Then the subspace X C X, is Hausdorff since this property is
hereditary. Furthermore oo can be separated from any = € X by open sets. By definition of 7, this
means that there are U € 7 containing z and K C X closed and compact such that UN (X, \K) = 0.
This is equivalent to x € U C K, thus K is a compact neighborhood of x. Since the argument also
works the other way round, if X is Hausdorff and every x € X has a compact neighborhood then
X is Hausdorff. [

Definition 7.8.15 (X, 7s) is called the one-point or Alexandrov compactification of (X, T).

Remark 7.8.16 1. Strictly speaking, it is incorrect to call (X, 7o) the one-point compactification
when X is already compact since then oo is an isolated point of X and X = X # X... This slight
inconsistency will cause no harm.

2. In the context of the one-point compactification X, we will often suppress the embedding
map Lo, from the notation and identify X with its image in X.

3. It should be clear that the space (N, 7) considered in Exercise 5.2.18 (cf. also Exercise 5.2.22)
is nothing but the one-point compactification of (N, 74isc)- O

Combining Lemma 7.8.10 and Theorem 7.8.14, we have:
Corollary 7.8.17 Given a topological space (X, T), there exists a topology 7" on Xo = X U {o0}
making (X, ') a Hausdorff compactification of (X, ) if and only if (X, 1) is Hausdorff, locally

compact and non-compact. In this case, T = T is the unique such topology.

Exercise 7.8.18 Let (X, 7o) be the one-point compactification of (X, 7). Prove:

(i) If A C X then A is closed in X if and only if A C X is closed and compact.
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(ii) If A C X is closed then AU {oo} C X is closed.
(iii) The closure A C X, of A C X is given by
i Clx(A) if Clx(A) is compact
| Clx(A)U{oco} if Clx(A) is non — compact

Exercise 7.8.19 Let X be compact Hausdorff, € X, and let Y = X'\{z}. Prove that Y is locally
compact Hausdorff and Y., = X.

Exercise 7.8.20 (i) Prove that S"\{z} = R". (Use stereographic projection.)
(ii) Prove that (R")s = S™ for all n > 1.

(iii) Describe (by proving homeomorphisms to known spaces) the 1-point compactifications of
(0,1),10,1),10,1].

Exercise 7.8.21 For I =[0,1], n € N, let 9I" ={z € I" | Ji : x; € {0,1}} be the boundary of I",
and let ~ be the equivalence relation on I" defined by x ~ y if x = y or {z,y} C 0I". Call z € I"/~
the image of O™ under the quotient map p : I — I"/~. Prove:

(i) I"™/~ is compact Hausdorff.
(i) (I"/~)\{z} = (0,1)" =R".
(iii) 1"/~ = (R")s = S™. (Use Exercise 7.8.19.)

Exercise 7.8.22 Determine the one-point compactifications of the long ray, the open long ray and
of the long line. Prove that the three spaces are pairwise non-homeomorphic.

Exercise 7.8.23 (i) Given a topological space X # (), prove that X, is connected if and only if
X has no compact direct summand.

(ii) Give an example of a non-connected space X # () such that X, is connected.

(iii) Give an example of a non-connected space X # () such that X, is non-connected.

7.8.4 Locally compact spaces

In this section we will devote some attention to the property of local compactness. It should be
emphasized that the existence of a Hausdorff one-point compactification is neither the only nor the
most important reason to study locally compact spaces. Actually more important are topologized
algebraic structures:

Definition 7.8.24 o A topological group is a group G equipped with a topology such that the
algebraic operations (g, h) — gh and g — g~ are continuous.

e Topological fields are defined analogously.

o [fF is a topological field, a topological vector space over F is a vector space V' equipped with a
topology, such that 'V is a topological abelian group and the action of F on V is continuous (as
amap FxV —=V).
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Some aspects of topological groups and topological vector spaces will be discussed in the Appendices
D and G, respectively.
Local compactness of the above structures has many uses:

e Every locally compact group G carries a canonical positive measure p, allowing to integrate
reasonable functions defined on G. (G is compact if and only if ©(G) < co.) This area is called
abstract harmonic analysis. Cf. e.g. [112].

e Every locally compact abelian group A has a dual group A\, which is again locally compact

abelian. A is compact (discrete) if and only if A is discrete (compact). For every A, one has

an isomorphism A=A of topological groups, called Pontrjagin duality, cf. [112, Vol.1]. The

—

examples (R, +) = (R, +), (Z,+) = (S, ) are the basis of classical Fourier analysis.

e The fields R and C are locally compact, but not compact. More generally, a local field is a
topological field whose topology is locally compact and non-discrete. Local fields are quite
well understood, cf. [291]. Those of characteristic zero (i.e. containing Q) are precisely the
finite field extensions of R and of the p-adic fields Q, for p prime. (While the only finite field
extension of R is C, the Q,’s have many.) The local fields of prime characteristic p are the
finite extensions of IF,,((x)), the field of formal Laurent series with coefficients in the prime field
F,. (F,((x)) is the quotient field of the formal power series ring I, [[z]].)

e Associated with every commutative Banach algebra B comes a certain locally compact Haus-
dorff space, the Gelfand spectrum of B. (The Gelfand spectrum of B is compact if and only if
the algebra B has a unit.) Cf. e.g. [220].

Some authors define local compactness by the strong form. Clearly this implies our definition.

On the other hand:

Lemma 7.8.25 If (X, 1) is (weakly) locally compact and Hausdorff then every point has a neighbor-
hood base of compact sets. (lLe., X is strongly locally compact.)

Proof. Since (X, 7) is locally compact Hausdorff, (X, 7 ) is compact Hausdorff. Now let x € W € 7.
In view of 7 C 7, C := X \W is closed, thus compact in X,. Applying Lemma 7.4.1 to X, =
and C, we obtain disjoint U,V € 7., containing C' and x, respectively. Since co € C' C U, we have
oo €V, thus V € 7. On the other hand, oo € U € 7., thus K := X \U C X is compact. Thus
reV C K CW,sothat K is a compact neighborhood K of x contained in W. [

In Exercise 7.4.5 we saw that disjoint compact subsets of a Hausdorff space X have disjoint open
neighborhoods. Statement (ii) below shows that the assumptions on the subsets can be weakened
when X is locally compact Hausdorft:

Proposition 7.8.26 Let X be locally compact Hausdorff.

(i) If K CU C X with K compact and U open then there is an open V' such that V is compact
and K CV CV CU.

(i) If K C X is compact, C C X is closed and C N K = () then there are open U,V such that
KCU CCVandUNV =0.
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Proof. (i) By Lemma 7.8.25, for every € K, we can find an open V, such that V, is compact and
reV,CV,CU. Now {Vi}zex covers K, thus by compactness we find z1,...,x, € K such that
KCV,U---UV, =V.Now, V=V, U---UV, =V, U---UV,, , which is compact (as a finite
union of compacts) and contained in U.

(ii) is equivalent to (i), as is seen taking C' = X\U. |

How does local compactness behave w.r.t. the four ways of constructing new spaces out of old
defined in Section 67 We begin with subspaces.

Definition 7.8.27 A subset Y C (X, 1) is called locally closed if it is of the form'Y = U N C where
U is open and C' s closed.

Remark 7.8.28 The definition of local closedness may seem a strange, but it has its roles outside
topology: In algebraic geometry, the subsets of projective space that are locally closed w.r.t. the
Zariski topology are precisely the quasi-projective varieties. O

Exercise 7.8.29 Prove that Y C X is locally closed if and only if Y is an open subset of Y.

Exercise 7.8.30 Let X be locally compact Hausdorff. Prove:
(i) f Y C X is closed then Y is locally compact. (This does not need Hausdorffness of X.)
(ii) If Y € X is open then Y is locally compact.

(iii) If Y C X is locally closed then Y is locally compact.

Corollary 7.8.31 A topological space is locally compact Hausdorff if and only if it is homeomorphic
to an open subspace of a compact Hausdorff space.

Proof. Open subspaces of compact Hausdorff spaces are locally compact by Exercise 7.8.30(ii). Con-
versely, by Theorem 7.8.14(iv), every locally compact Hausdorff space X is (homeomorphic to) an
open subspace of its one-point compactification X, which is compact Hausdorff. |

Now we have nice analogues of Lemma 7.4.2 and Corollary 7.4.3:

Proposition 7.8.32 If X is Hausdorff and Y C X is locally compact then' Y C X is locally closed.

Proof. (i) By Exercise 7.8.29, Y C X being locally closed is equivalent to Y being open in Y.
Replacing X by Y, we thus reduce the problem to proving that a dense locally compact subspace
Y C X of a Hausdorff space is open. Let y € Y. Since (Y, 7y) is locally compact, there is an open
neighborhood U € 7y of y whose closure Cly (U) (in Y') is compact. In view of the definition of 7y
there is an open V' C X such that U =Y NV. Using Exercise 2.6.13(v), we have

Cly(U)=UNnY =YNVNY.

Since Cly (U) is compact and X Hausdorff, it follows that Cly (U) =Y NV NY is closed in X. This
closedness together with the trivial inclusion Y NV CY NV NY impliess Y NV CY NV NY and
therefore Y NV C Y. Now Lemma 2.7.10(i) gives V' C Y NV, so that we have V. C Y. Since V C X
is open, this means that y is an interior point of Y. Since y € Y was arbitrary, we conclude that Y
is open. H

Combining this with Exercise 7.8.30(iii) we have:
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Corollary 7.8.33 If (X, 7) is locally compact Hausdorff then a subspace Y C X s locally compact
if and only if Y C X is locally closed.

Theorem 7.8.34 A locally compact metric space (X,d) is completely metrizable.

Proof. Embed X into its completion X. By Proposition 7.8.32, X is locally closed, thus open in its
closure X = X by Exercise 7.8.29. Now Proposition 3.4.18 gives that X is completely metrizable.

Remark 7.8.35 1. Of course this does not mean that every locally compact metric space (X, d) is
already complete: The space (0,1) with Euclidean metric d(z,y) = |z — y| is locally compact, but
the metric d is not complete.

2. The converse of Theorem 7.8.34 is false: By Theorem 7.7.55 no infinite dimensional normed
space is locally compact, but there are many complete ones, e.g. £2(S) for infinite S. O

Exercise 7.8.36 A direct sum €, X; is locally compact if and only if each X is locally compact.

The question whether local compactness is preserved by continuous maps is complicated in gen-
eral, but for open continuous maps it is staightforward:

Lemma 7.8.37 If X is locally compact and f: X — Y 1is continuous and open then f(X) CY is
locally compact.

Proof. If + € U C K C X with U open and K compact then f(x) € f(U) C f(K). Now f(U) is
open (since f is open) and f(K) is compact (by continuity of f and Lemma 7.3.5). Thus f(K) is a
compact neighborhood of f(x), and f(X) is locally compact. |

Proposition 7.8.38 Let X; # (0 Yi. Then [[,(Xi,7:) is locally compact if and only if each (X;, ;)
18 locally compact and at most finitely many X; are non-compact.

Proof. Let X,Y be locally compact and x € X, y € Y. Let N C X, M CY be compact neighbor-
hoods of z,y respectively. Then N x M is a compact neighborhood of x x y. Thus a finite product
of locally compact spaces is locally compact. In particular, the product of a locally compact space
with a compact space is locally compact, and since the product of any number of compact spaces is
compact by Tychonov’s theorem, the ‘if” direction is proven.

Now assume X = [], X, is locally compact. The projections p; : [, X) — X; are continuous and
open (Proposition 6.5.8). Thus each X is locally compact by Lemma 7.8.37. Nowletx € U C K C X
with U open and K compact. By definition of the product topology, we have x € V C U, where
V =p;'(Ui)N---Np; " (Uy,) with Uy € 7. Thus

Kgp;l1<U1)ﬂ...ﬂp;L1(Un): H Xj X HUk'

jé{i1,...,in} k=1
Thus for j & {i1,...,1,} we have p;(K) D p;(U) = X; and thus p;(K) = Xj. Since K is compact
and p; continuous, X; is compact. Thus with the (possible) exception of X;,,...,X;, all factors are
compact. [

Remark 7.8.39 Thus with [ = [0, 1], the space I"™ x R™ is locally compact if and only if m < oo,
whereas n can be any cardinal number n. It is therefore not quite correct to think of locally compact
spaces as ‘finite dimensional’. At best they are ‘finite dimensional modulo compact factors’, but
this is difficult to make precise. (But a Banach space is locally compact if and only if it is finite
dimensional. Cf. e.g. [255, Appendix BJ.) O
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Remark 7.8.40 1. We now have clarified completely the behavior of local compactness w.r.t. sums,
products, subspaces (the latter only in the Hausdorff case) and under open maps. In particular,
quotients of locally compact spaces by open equivalence relations are locally compact. When f is
not open, f(X) need not be locally compact. In particular, images under closed maps need not be
locally compact. But in Theorem 7.8.72; that the image f(X) of a locally compact Hausdorff space
X is locally compact Hausdorff when f is continuous, closed and proper. (Properness will be defined
very soon.)

2. The above implies that quotients of locally compact spaces by arbitrary equivalence relations
are a proper generalization of locally compact spaces, called ‘k-spaces’ or ‘compactly generated
spaces’. Cf. Section 7.9, in particular Proposition 7.9.14. O

Exercise 7.8.41 Let X,Y be Hausdorff spaces, where X is compact and Y locally compact. Let ~
be the equivalence relation on X X Y., that identifies all points (z, 00) with each other, doing nothing
else.

(i) Give examples for X and Y with these properties such that (X x Y)., the 1-point compacti-
fication of X x Y is not homeomorphic to X x Y.

(ii) Prove that (X x Y )/~ is homeomorphic to (X X Y).

)
(iii) Prove that R?\{(0,0)} is homeomorphic to S* x R.
(iv) Use (i) and (ii) to 