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Preface
These are lecture notes written for a course on elementary point set topology given at
Uppsala University during the spring of 2015. The notes are, at the time of writing, not
intended as a full reference for the course. Rather, the course will follow the references
[Mun00] and [Fje14], and these notes serve to show which parts of the main references
we have covered in the lectures.

The notes will be written as the course moves along and may be discontinued at any
moment, depending on time restrictions. As such, they are also likely to contain typos
and errors of other kinds; if you come across any such, feel very free to let me know,
either by email at s@fuglede.dk, or by letting me know in person. Concrete changes can
also be proposed directly at https://github.com/fuglede/basic-topology.
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Terms of use
Whenever applicable, this text is licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License. To view a copy of this license, visit https://
creativecommons.org/licenses/by-sa/4.0/. Some parts of the text will originate from
other sources; in these cases the relevant terms have been included.

Introduction
This course will mainly be concered with the study of topological spaces. Topological
spaces are abstract mathematical concepts whose definition include a sufficient amount
of data for them to be called “spaces”. Familiar spaces would be something like R3

or Rn, but more abstract objects – such as general vector spaces – we also think of as
“spaces”. On the other hand, in algebra one encounters objects such as groups and rings
that one would generally not think of as spaces, and on the extreme side we talk about
sets, which are more general “collections of things” which we may or may not choose to
think of as spaces.

From this point of view, one might think of topological spaces with an added bit
of structure (sv: struktur)1; a term used throughout mathematics but typically with a
rather vague meaning. As such, sets have no interesting structure, but Euclidian space
Rn has plenty: for instance, the usual inner product 〈·, ·〉 on Rn can be used to talk
about angles between vectors. This in turn can be used to define the standard norm ‖·‖
on Rn which allows us to talk about lengths of vectors and distances between points. All
of this is structure that may not be given to us in a general vector space, but without
having this structure on Rn, there would be no such thing as calculus: we wouldn’t be
able to define things like differentiability and continuity.

For topological spaces we discard all of this fine structure, so that in particular it
makes no sense to talk about the distance between two points in a general topological
space. The only piece of structure that we will require is that of “open sets”: given
a subset of a topological space, we want to be able to tell if it is open or not. This
turns out to be the least amount of structure needed to define continuity, so the study
of topological spaces is very much the study of continuous functions.

The study of general topological spaces and continuous functions will be contained
in Sections 2–5. Simply having open sets turns out also to be sufficient to talk about
what it means for a space to be “connected” and “compact” in a way that corresponds
to what one would normally associate with those words. More abstractly, we will also
look at the notion of separating points, which is less familiar in examples like Rn. These
properties of topological spaces will be the basis of Sections 6–8.

The study of general topological spaces and their fundamental properties is often re-
ferred to as point-set topology (sv: punktmängdstopologi) or general topology (sv: allmän
topologi). The less structure a certain space has, the less deep the mathematical results
about it tends to be, and out treatment will involve correspondly few deep mathemati-
cal theorems; rather, for the first part of the course, one should think of the materials

1See https://en.wikipedia.org/wiki/Mathematical_structure for a more precise discussion.
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as developing the necessary tools to deal with topological spaces in other contexts. To-
wards the end of the course, we will remedy this by tying together our theory with
other parts of mathematics. Concretely, in Section 10 we touch upon the mathematical
area of algebraic topology (sv: algebraisk topologi) which is concerned with analyzing
certain natural algebraic structures that can be associated with topological spaces, and
in Section 9, we will study a particular nice family of topological spaces called manifolds
that show up in all of geometry.

Before being able to do any of this, though, we need to firmly settle on what sets
are, and how one deals with them.
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1 Set theory and logic
The theory of sets, typically referred to as set theory (sv: mängdteori), forms the basic
fundament of all of mathematics. As such, it is probably unsurprising that a huge body
of work has been devoted to it. This, however, is not obvious if one simply reads these
notes as we will not at all deal with many of the important ideas that underly the theory.
Moreover, even though set theory plays an essential role in our study, our treatment of
set theory will be rather brief, so the inexperienced reader is also strongly encouraged
to study [Mun00, §1] in detail.

1.1 Basic notions
Whereas everything that we will during the course will be as mathematically precise as
one can get, we will begin by imprecisely considering a set (sv: mängd) as a “collection
of things” (formally, we require a set to satisfy the ZFC axioms but we will not list
those here2). These “things” will be referred to as the elements of the set.

If A is a set, and a is an element of A, we write

a ∈ A.

Synonymously, we will sometimes say that a is contained in A. If on the other hand a
is not an element of A, then we write

a /∈ A.

If B is another set which contains all the elements of A; that is, if a ∈ A implies that
a ∈ B, then we say that A is a subset (sv: delmängd) of B and write

A ⊂ B.

We will also sometimes say that A is contained in B or that B contains A. With this,
we can define two sets A and B to be equal,

A = B,

if the satisfy that A ⊂ B and B ⊂ A. If A ⊂ B but A 6= B, we will write

A ( B

and say that A is a proper subset (sv: äkta delmängd) of B.3 Set-theoretic relationships
are often depicted in so-called Euler diagrams; see Figure 1.

Example 1.1. When a set contains only very few elements, one simply lists them.
For instance, if A contains only the elements a and b, we write A = {a, b}. Then if
B = {a, b, c}, we see for instance that A ⊂ B and since c ∈ B but c /∈ A, we have that
A 6= B, so A ( B.

2The interested reader can find the axioms at https://en.wikipedia.org/wiki/ZFC.
3Notice that it is also common to use the notation A ⊆ B for the relation “A is a subset of B”.
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A
B

Figure 1: The Euler diagram representing the inclusion A ⊂ B.

Often, sets are given by the properties of their elements, and this will be built into
our notation. For instance, the set containing the even numbers will be written

{x | x is an even integer},

which should be read as “x such that x is an even integer”.
We will also often be considering the set which contains no elements at all; this set is

called the empty set (sv: den tomma mängden) and is denoted ∅. This has the property
that ∅ ⊂ X, no matter what X is.

Definition 1.2. Let X be any set. The power set (sv: potensmängd) of X, denoted
P(X) is the set of all subsets of X, that is

P(X) = {U | U ⊂ X}.

Example 1.3. The elements of power sets are themselves sets which in turn may also
have elements. Some examples of power sets are the following:

P({a}) = {∅, {a}},
P({a, b}) = {∅, {a}, {b}, {a, b}}.

In general, if X is a finite set containing n elements, then P(X) contains 2n elements.
The only subset of ∅ is ∅ itself, which means that

P(∅) = {∅}.

Be aware that {∅} consists of a single element, namely ∅, so {∅} is not itself empty, even
though it is tempting to read the notation like that.

Definition 1.4. Given two sets A and B, we define their union (sv: union) A∪B and
intersection (sv: snitt) A ∩B as

A ∪B = {x | x ∈ A or x ∈ B},
A ∩B = {x | x ∈ A and x ∈ B}.
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A B A B A

X

A B

Figure 2: The red sets illustrate A ∪B, A ∩B, A \B, and Ac respectively.

The sets A and B are called disjoint (sv: disjunkt) if A∩B = ∅. We also introduce the
difference (sv: differens) A \B, or sometimes A−B, given by

A \B = {x | x ∈ A and x /∈ B}.

If A ⊂ X for some set X, we introduce the complement (sv: komplement) of A, written
Ac as

Ac = X \A.

Note that X does not feature in the notation for complements but which set it is will
always be clear from the context. See Figure 2 for the corresponding Euler diagrams.

1.2 Set theory and boolean logic
At this point, let us remark that sets and their operations closely mimic logical state-
ments and their boolean logic, and without making this statement too precise, one could
summarize their relationship in the following table:

logic English set theory
P ⇒ Q P implies Q A ⊂ B
P ⇔ Q P is equivalent to Q A = B
P ∨Q P or Q A ∪B
P ∧Q P and Q A ∩B
¬P not P Ac

For convenience, and for those who may not have encountered boolean logic before,
we recall that these logical operations are defined through truth tables. Here, P and
Q are statements that may be either true (T) or false (F), and the values of P ⇒ Q,
P ⇔ Q, etc., are defined accordingly:

P ¬P
T F
F T

P Q P ∧Q P ∨Q
T T T T
T F F T
F T F T
F F F F

3



In these tables, the columns to the left of the vertical bar are the assumptions, and
the columns to the right are the definitions. Armed with these definitions, one simply
defines P ⇒ Q as (¬P ) ∨Q, and similarly P ⇔ Q is defined as (P ⇒ Q) ∧ (Q⇒ P ).

With these, one sees that the correspondence in the first table in this section is
obtained when P is the statement a ∈ A, and Q is the statement a ∈ B.

1.3 Arbitrary unions and intersections
So far, we have considered only operations on pairs of sets, but more often than not we
will be dealing with infinite families of sets. First of all, we introduce the notation ∀
meaning “for all”, and ∃ meaning “there exists”.

Let I be any set. Then a collection {Ai}i∈I of sets Ai is called a family of sets
parametrised by I. For such a family, define the infinite union, and the infinite inter-
section as ⋃

i∈I
Ai = {x | ∃i ∈ I such that x ∈ Ai},⋂

i∈I
Ai = {x | x ∈ Ai ∀i ∈ I}.

It might be helpful to compare these definitions with the definitions of union and inter-
section from above, which is the case where I contains two elements.

Proposition 1.5. For sets A, B, C, and X, for a family {Ai}i∈I with Ai ⊂ X for all
i ∈ I, one has the useful identities,

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),
X \

⋃
i∈I

Ai =
⋂
i∈I

X \Ai,

X \
⋂
i∈I

Ai =
⋃
i∈I

X \Ai.

Various versions of these equalities are known as De Morgan’s laws.

Partial proof. Set theoretical identities like the above are typically shown in the same
way: one starts with an element in the left hand side and proves that it is an element
of the right hand side, which shows “⊂”, and one then proceeds to do the same thing
the other way around. To convince oneself that the identities indeed hold, it may be
helpful to draw the corresponding Euler diagrams.

Let us show for instance that A ∩ (B ∪ C) ⊂ (A ∩ B) ∪ (A ∩ C). To do this, let
a ∈ A ∩ (B ∪ C). This means that a ∈ A and a ∈ B ∪ C. The latter of these means
that a ∈ B or a ∈ C. Together, this says that either a ∈ A and a ∈ B, or a ∈ A and
a ∈ C. Written in set notation, this says that a ∈ (A ∩B) ∪ (A ∩ C).

Let us also show that X \
⋃
i∈I Ai ⊂

⋂
i∈I X \ Ai. That is, let a ∈ X \

⋃
i∈I Ai.

This says that a /∈
⋃
i∈I Ai. From this we conclude that a is not in any of the Ai (since

4



otherwise a would be in their union), or in symbols, ∀i ∈ I, we have x /∈ Ai. That is,
∀i ∈ I, we have x ∈ X \Ai, but this exactly means that x ∈

⋂
i∈I X \Ai.

We leave the remaining six directions for the reader.

1.4 Cartesian product
Another way of constructing new sets from old sets is through the so-called Cartesian
product, often simply called a product. In words, if A and B are two sets, then the
Cartesian product (sv: kartesisk produkt) A×B is the set of all pairs (a, b), where a ∈ A,
or b ∈ B; that is,

A×B = {(a, b) | a ∈ A and b ∈ B}.

Be aware that (a, b) is occasionally used as the notation for intervals of real numbers,
but this is something completely different.

Example 1.6. One way of defining R2 is simply as R2 = R× R.

Just as for unions and intersections, we would like to be able to talk about infinite
products. A little bit of care needs to be taken when defining these. For instance, what
is X × Y × Z? There are two natural definitions: (X × Y ) × Z and X × (Y × Z).
The first set consists of elements of the form ((x, y), z), while the second one consists of
elements of the form (x, (y, z)). Clearly, we should be able to think of any of these as
simply triples (x, y, z).

To make this precise for an infinite number of sets, consider a family {Xi}i∈I . The
infinite product should then consist of tuples (xi)i∈I with xi ∈ Xi for all i. Such a tuple
we can also view as a function x : I →

⋃
i∈I Xi such that x(i) ∈ Xi for all i. This brings

us to the following.

Definition 1.7. The Cartesian product of a family {Xi}i∈I is the set

∏
i∈I

Xi =
{
x : I →

⋃
i∈I

Xi

∣∣∣∣∣ x(i) ∈ Xi ∀i ∈ I
}
.

1.5 Relations
Above, we have talked about various relations between sets; these we will now make
mathematically precise. A binary relation (sv: binär relation) C, often simply called a
relation (sv: relation), on a set A is a subset C ⊂ A × A. When (x, y) ∈ C, we will
often write xCy.

Example 1.8. The subset of R × R given by C = {(x, y) | x ≤ y} is a relation on R,
and xCy if and only if x ≤ y.

Definition 1.9. A relation C ⊆ A×A is called

• reflexive (sv: reflexiv) if xCx for all x ∈ A,

• symmetric (sv: symmetrisk) if xCy implies that yCx for all x, y ∈ A,
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• anti-symmetric (sv: antisymmetrisk) if xCy and yCx implies that x = y for all
x, y ∈ A,

• transitive (sv: transitiv) if xCy and yCz implies that xCz for all x, y, z ∈ A,

• total (sv: total) if either xCy or yCx when x, y ∈ A.

Example 1.10. The relation ≤ from Example 1.8 is reflexive, anti-symmetric, transi-
tive, and total, but it is not symmetric.

Definition 1.11. A relation C on a set A is called a partial order (sv: partiell ordning)
if it is reflexive, anti-symmetric, and transitive. The pair (A,C) is called a poset (sv:
pomängd). If the partial order relation is also total, then it is called a total order , and
(A,C) is called a totally ordered set

We will often denote partial orders by the symbol �.

Definition 1.12. An equivalence relation (sv: ekvivalensrelation) is a relation which is
reflexive, symmetric, and transitive.

When C is an equivalence relation, we will use the notation x ∼ y for xCy and say
that x is equivalent to y.

Example 1.13. Fix a positive integer p ∈ N, and let C ⊂ Z× Z be the subset of pairs
(m,n) such that m − n is a multiple of p, i.e. m − n = dp for some d ∈ Z. This is an
equivalence relation.

Given any equivalence relation on a set A, it is possible to partition A into smaller
sets consisting of elements that are equivalent to each other. More precisely, for x ∈ A,
let

[x] = {y | y ∼ x}

be the so-called equivalence class (sv: ekvivalensklass) of x. Note that x ∼ x by reflex-
ivity so x ∈ [x] for all x ∈ A.

Lemma 1.14. Let ∼ denote an equivalence relation on a set A. For two elements
x, x′ ∈ A, the equivalence classes [x] and [x′] are either disjoint or equal.

Proof. Suppose that [x] and [x′] are not disjoint and let us show that they must then
be equal. That is, let y ∈ [x] be arbitrary, and let us show that y ∈ [x′]. Since [x] and
[x′] are not disjoint, there is a z ∈ A such that both z ∈ [x] and z ∈ [x′]. That is, z ∼ x,
and z ∼ x′. Since y ∈ [x] we have y ∼ x, so by symmetry, x ∼ y, and by transitivity,
z ∼ y. Thus by symmetry, y ∼ z, and by transitivity y ∼ x′, but this says that y ∈ [x′].
This shows that [x] ⊂ [x′]. By the exact same argument one shows that [x′] ⊂ [x] so
that [x] = [x′].

The set of equivalence classes on a set A with respect to an equivalence relation ∼
will be denoted A/∼. That is,

A/∼= {[x] | x ∈ A}.

6



Example 1.15. Consider the relation ∼ from Example 1.13. The equivalence class of
an integer n ∈ Z is the set of integers

[n] = {. . . , n− 2p, n− p, n, n+ p, n+ 2p, . . . },

and we can write Z as the union of p equivalence classes, as

Z = [0] ∪ [1] ∪ [2] ∪ · · · ∪ [p− 1].

Similarly,
Z/∼= {[0], [1], . . . , [p− 1]}.

2 Topological spaces
We now turn to the definition of the objects that will be the most interesting to us:
topological spaces.

2.1 Definitions and first examples
Definition 2.1. Let X be a set, and let T ⊂ P(X) be a collection of subsets of X.
Then T is called a topology (sv: topologi) if

(T1) ∅ ∈ T and X ∈ T ,

(T2) arbitrary unions of elements of T are once again elements of T ; in symbols, if
Ui ∈ T for i ∈ I, then

⋃
i∈I Ui ∈ T , and

(T3) finite intersections of elements of T are again elements of T . That is, if U1, . . . , Un ∈
T , then U1 ∩ U2 ∩ · · · ∩ Un ∈ T .

If T is a topology on X, then the pair (X, T ) is called a topological space (sv: topologiskt
rum). A set U ∈ T is called open (sv: öppen).

Note that we will often say that X is a topological space when we mean that (X, T )
is a topological space. This can be a bit misleading since as the following example
shows, a set X might have many different topologies.

Example 2.2. Let X = {a, b} be a set containing two elements a and b. Then each of
the four following subsets of P(X) define topologies on X:

T1 = {∅, X},
T2 = {∅, {a}, X},
T3 = {∅, {b}, X},
T4 = {∅, {a}, {b}, X}.

That is, X is a topological space in at least four different ways. In fact, there are 12
other ways to pick out subsets of P(X) but it turns out that these four are the only ones
that are topologies. (Rather abstractly, topologies are themselves elements in P(P(X)),
which in this case consists of 222 = 16 elements.)
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Example 2.3. In fact, any set X can be given a topology in at least two natural ways:

• Let T = {∅, X} ⊂ P(X). Then T is a topology, which is refered to as the trivial
topology (sv: den triviala topologin).

• Let T = P(X) itself. Then T is a topology called the discrete topology (sv: den
diskreta topologin).

Definition 2.4. Let X be a set, and let T and T ′ be topologies on X. If T ⊂ T ′ then
we say that T is coarser (sv: grövre) than T ′, and that T ′ is finer (sv: finare) than T .
If T ( T ′, we say that T is strictly coarser than T ′, and that T ′ is strictly finer than
T . If either T ⊂ T ′ or T ′ ⊂ T , we say that T and T ′ are comparable.

Example 2.5. In Example 2.2, T2 is strictly coarser than T4, but T2 and T3 are not
comparable. The trivial topology on a set is always coarser than the discrete topology,
since {∅, X} ⊂ P(X).

Definition 2.6. A subset A ⊂ X of a topological space is called closed (sv: sluten) if
Ac is open.

Proposition 2.7. In a topological space X,

(T1’) ∅ and X are closed,

(T2’) if Ci are closed for i ∈ I, then
⋂
i∈I Ci is closed, and

(T3’) if C1, . . . , Cn are closed, then C1 ∪ · · · ∪ Cn is closed.

Remark 2.8. If one has taken a course on measure theory, the definition of a topological
space will look familiar: the σ-algebras appearing for measurable spaces are defined to
have particular properties under union, complement, and closure, not unlike topological
spaces, but be aware that the two notions are not the same, even though the level of
abstraction required to work with them is. However, one could consider the smallest
σ-algebra such that all open sets are measurable (obtaining the so-called Borel sets)
and thus turn any topological space into a measurable space in a natural manner. This
idea of using some measurable sets to generate a full σ-algebra is what we will mimic
in the following section.

2.2 Basis for a topology
For a given topological space (X, T ) it can often be a bit clumsy to describe all open
sets. What one does instead is to describe a certain collection of sets that one wants
in T , and then includes the sets necessary to obtain a full topology, using the rules
(T1)–(T3). This idea is contained in what is called a basis for a topology.

Definition 2.9. Let X be a set, and let B ⊆ P(X) be any collection of subsets of X.
Then B is called a basis (sv: bas) for a topology on X if

(B1) for each x ∈ X, there is a B ∈ B such that x ∈ B, and
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(B2) if x ∈ B1∩B2 for B1, B2 ∈ B, then there is a B3 ∈ B such that x ∈ B3 ⊂ B1∩B2.

If B is a basis, we define TB, the topology generated by (sv: topologin genererad av)
B by declaring that U ∈ TB if for every x ∈ U , there is a basis element B ∈ B such
that x ∈ B ⊂ U . At first, the condition (B2) might look a little odd but it plays a very
explicit role in the proof of the following lemma.

Lemma 2.10. This collection TB ⊂ P(X) is a topology.

Proof. Let us show that TB satisfies the properties (T1)–(T3) for a topology.
Notice first that ∅ ∈ TB: a set is in TB if all of its elements satisfy a certain condition,

but ∅ contains no elements at all, so the condition is automatically satisfied for all its
elements.

That X ∈ TB is exactly (B1). This shows (T1).
To see (T2), let Ui ∈ TB for i ∈ I and let x ∈

⋃
i∈I Ui. Then there exists an

i ∈ I so that x ∈ Ui, and since Ui ∈ TB we get a basis element B ∈ B so that
x ∈ B ⊂ Ui ⊂

⋃
i∈I Ui. But this says exactly that

⋃
i∈I Ui ∈ TB, so this shows (T2).

Finally, to see (T3), let us first show that U1 ∩ U2 ∈ TB whenever U1, U2 ∈ TB.
To do this, let x ∈ U1 ∩ U2. Then x ∈ U1 and x ∈ U2, so we get sets B1, B2 ∈ B
so that x ∈ B1 ⊆ U1 and x ∈ B2 ⊆ U2. Now, by (B2) we get a set B3 ∈ B so that
x ∈ B3 ⊂ B1 ∩B2. Now clearly, B1 ∩B2 ⊂ U1 ∩ U2 so that we have x ∈ B3 ⊂ U1 ∩ U2,
or, in other words, that U1 ∩ U2 ∈ TB.

Finally, let U1, . . . , Un ∈ TB. Now (T3) follows by induction: if U1∩· · ·∩Un−1 ∈ TB,
then also U1 ∩ · · · ∩ Un ∈ TB since

U1 ∩ · · · ∩ Un = (U1 ∩ · · · ∩ Un−1) ∩ Un

and we now how to handle intersections of only two sets.

The above proof shows very clearly why we need the condition (B2) in the definition
of a basis.

The following result gives what might be an easier way to think about TB.

Lemma 2.11. Let B be the basis for a topology on a set X. Then U ∈ TB if and only if
U =

⋃
i∈I Bi for some sets Bi ∈ B. That is, TB consists of all unions of elements from

B.

Proof. First of all, notice that ∅ is the empty union by convention, so we may assume
that U is non-empty.

There are two things to show. First let U =
⋃
i∈I Bi for Bi ∈ B, and let x ∈ U .

Then there is an i ∈ I so that x ∈ Bi ⊂ U . This shows that U ∈ TB.
On the other hand, let U ∈ TB, and let us see that U is a union of basis elements

Bi. For every x ∈ U , choose a basis element Bx so that x ∈ Bx ⊂ U . This is possible
since U ∈ TB. We now claim that U =

⋃
x∈U Bx which would complete our proof.

To see this, let y ∈ U be arbitrary. Then y ∈ By and By ⊂
⋃
x∈U Bx, so y is an

element of the union. On the other hand, if y ∈
⋃
x∈U Bx, then there exists a z ∈ U

so that y ∈ Bz, but by our choices of the basis elements, we have that Bz ⊂ U , so
y ∈ Bz ⊂ U .
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While bases are interesting because they allow us to define topologies with less data
that we would normally need, we can also go the other way and define a basis that
generates a given topology; a general way of doing so is the following:

Lemma 2.12. Let (X, T ) be a topological space. Let C ⊂ T be a collection of open sets
on X with the following property: for each set U ∈ T and each x ∈ U there is a C ∈ C
so that x ∈ C ⊂ U . Then C is a basis for T .

Proof. We first show that C is a basis by showing that it satisfies (B1) and (B2). To
see (B1), let x ∈ X. Since X ∈ T by (T1) we get a C ∈ C so that x ∈ C ⊂ X by
assumption, so this in particular shows (B1).

Now let x ∈ C1∩C2 for C1, C2 ∈ C. Since the sets C1 and C2 are open by assumption,
so is C1 ∩ C2. Therefore we get a C ∈ C so that x ∈ C ⊂ C1 ∩ C2, which shows (B2).

We now need to show that the topology TC that C generates is actually T . First we
show that T ⊂ TC , so let U ∈ T . Then for any x ∈ T we can find a C ∈ C so that
x ∈ C ⊂ U but this is exactly the condition that U ∈ TC . On the other hand, if U ∈ TC
we know from Lemma 2.11 that U is a union of elements of C. Since C ⊂ T it follows
from (T2), applied to T , that U ∈ T .

Example 2.13. If X = {a, b}, then B = {{a}, {b}} is a basis for a topology on X. The
topology TB is exactly the discrete topology, TB = P(X). More generally, let X be any
set, and let B consist of those sets that contain only a single element, that is

B = {{x} | x ∈ X}.

Then B is a basis for a topology, and TB is the discrete topology: clearly, every set U
in X is a union of sets from this collection since U =

⋃
x∈U{x}, so it follows that TB

consists of all subsets of X.

So far, we have been dealing with abstract sets and topological spaces, but at the
end of the day, we will be interested in particular topologies on concrete spaces, so at
this point, let us use the notion of a basis for a topology to show how we can easily
describe a topology on Rn that agrees with the one we know from analysis.

For x ∈ Rn and r > 0, let

B(x, r) = {y ∈ Rn | ‖x− y‖ < r}

be the open ball centered in x with radius r.

Proposition 2.14. The collection

B = {B(x, r) | x ∈ Rn, r > 0}

is the basis for a topology on Rn. The resulting topology TB is called the standard
topology and its open sets are exactly the open sets that one will have encountered in a
course on analysis or calculus.
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This result will follow from the more general Proposition 2.20 below. While the
standard topology is the most interesting one to consider, below we introduce certain
other topologies on R.

The following result allows us to compare the topologies generated by bases if we
know how to compare the bases. Notice that so far, all the proofs are similar in spirit:
the spaces in question are so abstract and have so little structure that one is forced to
use the few things that one actually knows about the spaces.

Lemma 2.15. Let X be a set, and let B and B′ be bases for topologies T and T ′
respectively; both on X. Then the following are equivalent:

(1) The topology T ′ is finer than T .

(2) For every x ∈ X and each basis element B ∈ B satisfying x ∈ B, there is a basis
element B′ ∈ B′ so that x ∈ B′ ⊂ B.

Proof. Assume that T ⊂ T ′, let x in X, and let B ∈ B satisfy x ∈ B. Then since B ∈ T
(notice that basis elements are always themselves in the topology they generate), it
follows that B ∈ T ′. By definition of the topology generated by a basis, this means
that there is a basis element B′ ∈ B′ so that x ∈ B′ ⊂ B, which shows one direction.

Assume for the converse that (2) holds, let U ∈ T , and let x ∈ U be any element.
Then there is a B ∈ B with x ∈ B ⊂ U , and by (2) we get B′ ∈ B′ with x ∈ B′ ⊂ B ⊂ U ,
but by definition of T ′, this says that U ∈ T ′, so T ⊂ T ′, which shows (1).

Example 2.16. We can define a basis for a topology on R by letting Bl consist of all
sets of the form

{x ∈ R | a ≤ x < b},

where a, b ∈ R vary. The topology Tl generated by Bl is called the lower limit topology
(sv: ?) on R, and we write Rl = (R, Tl).

Example 2.17. Let K = {1/n | n ∈ N} ⊂ R and let BK consist of all open intervals
as well as all sets of the form (a, b) \K. Then BK is a basis and the topology TK that
it generates is called the K-topology (sv: K-topologin) on R. We write RK = (R, TK).

So, at this point we have introduced three different topologies on R and we can now
use our results above to compare them.

Lemma 2.18. The topologies Rl and RK are both strictly finer than the standard topol-
ogy but are not comparable with each other.

Proof. We first show that the topology on Rl is strictly finer than the standard topology.
Let x ∈ R. Let (a, b) be an interval containing x – that is, one of the basis elements
for the standard topology. Then [x, b) ⊂ (a, b) and it follows from Lemma 2.15 that
the topology on Rl is finer than the standard topology. It is strictly finer because [x, b)
is open in Rl but not in the standard topology: There is no open interval B so that
x ∈ B ⊂ [x, b).

Similarly for RK : Let x ∈ R and let (a, b) contain x. Then this interval itself belongs
to BK so by Lemma 2.15 we have that the topology on RK is finer than the standard
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topology. To see that it is strictly finer, consider the set U = (−1, 1) \K ∈ TK . Then
0 ∈ U but there is no open interval B so that 0 ∈ B ⊂ U .

Finally, one can show that U ∈ TK but U /∈ Tl, and that [1, 2) ∈ Tl but [1, 2) /∈
TK .

2.3 Metric spaces
Roughly speaking, metric spaces are spaces where one can always measure distances
between two points. This makes them a generalisation of Rn and in this section we will
see that they are special cases of topological spaces. That is, that having a notion of
distance is sufficient to obtain a notion of open sets.

Definition 2.19. A metric space (sv: metriskt rum) (X, d) is a set X together with a
non-negative function d : X ×X → R≥0 satisfying for all x, y, z ∈ X that

(M1) d(x, y) = 0 if and only if x = y,

(M2) d(x, y) = d(y, x), and

(M3) the triangle inequality d(x, z) ≤ d(x, y) + d(y, z).

The function d is called a metric (sv: metrik), and d(x, y) is called the distance (sv:
avstånd) from x to y.

Having a metric is sufficient to mimic the definition of open balls that we know for
Rn. More precisely, for a metric space (X, d) the open ball (sv: boll) Bd(x, r) centered
at x, with radius r > 0, with respect to the metric d is defined as

Bd(x, r) = {y ∈ X | d(x, y) < r}.

We will now show how to use the open balls to define a topology, called the metric
topology (sv: den metriska topologin), on any metric space. As promised, this includes
Proposition 2.14 as a special case.

Proposition 2.20. If (X, d) is a metric space, then the collection

B = {Bd(x, r) | x ∈ X, r > 0}

is a basis for a topology.

Proof. We need to show that B satisfies (B1) and (B2). Firstly, (B1) follows since
x ∈ Bd(x, r) for any r > 0.

To see (B2), let x ∈ Bd(y1, r1) ∩ Bd(y2, r2) and let us show that there is a r > 0 so
that

Bd(x, r) ⊂ Bd(y1, r1) ∩Bd(y2, r2) (1)

Drawing the situation in R2 one sees that the existence of this r is rather reasonable,
and that a good guess would be

r = min(r1 − d(x, y1), r2 − d(x, y2)),
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so let us check that this (1) holds with this choice of r. Let z ∈ Bd(x, r) and let us show
that z ∈ Bd(y1, r1) and z ∈ Bd(y2, r2). This follows from (M3) as

d(z, yi) ≤ d(z, x) + d(x, yi) < r + d(x, yi) < ri

for i = 1, 2.

Remark 2.21. One can show from the definition of the induced topology, that a set U
is open in the metric topology if and only if for every point x ∈ U there is an r > 0 so
that Bd(x, r) ⊂ U , that is, for the case of Rn, we recover the usual condition for a set
to be open.

To see this, suppose that U is open in the metric topology, and let x ∈ U . Since the
topology is induced by the basis of open balls, there exists an open ball Bd(y, ε) so that
x ∈ Bd(y, ε) ⊂ U . By setting r = ε− d(x, y) > 0 we see that

x ∈ Bd(x, r) ⊂ Bd(y, ε) ⊂ U.

Likewise, the other direction follows from the definition of the topology as induced by
the basis of open balls.

Example 2.22. As already alluded to above, Euclidean space Rn is a metric space
with metric d(x, y) = ‖x− y‖.

Example 2.23. Let X be any set. Then we can define a metric on X by

d(x, y) =
{

0, if x = y,
1, if x 6= y.

The topology induced by this metric is the discrete topology. This follows almost
directly from Example 2.13; let us describe the collection of open balls. Let x ∈ X be
arbitrary. If r ≤ 1, then Bd(x, r) = {x} while if r > 1 then Bd(x, r) = X. Thus the
basis of open balls is

B = {{x} | x ∈ X} ∪ {X},

and as previously, any set U ⊂ X is the union of sets that are elements of B.
The metric d is often called the discrete metric (sv: diskreta metriken).

2.4 Continuous functions
As mentioned in the introduction, having the data of open sets turns out to be sufficient
to define continuous functions. Recall that if f : X → Y is a function between two sets,
and A ⊂ Y is a subset, then we define the preimage (sv: urbild) of A to be the set

f−1(A) = {x ∈ X | f(x) ∈ A}.

Be aware that the notation f−1 is often used for the inverse of an invertible function,
but one does not need a function to be invertible to talk about preimages.

13



Proposition 2.24. The preimage behaves nicely with respect to various operations of
sets. In particular, if f : X → Y and {Bi}i∈I is a family of subsets of Y , then

f−1
(⋃
i∈I

Bi

)
=
⋃
i∈I

f−1(Bi), f−1
(⋂
i∈I

Bi

)
=
⋂
i∈I

f−1(Bi).

If B ⊂ Y , then f−1(Bc) = f−1(B)c, and if g : Y → Z is another map and C ⊂ Z, then

(g ◦ f)−1(C) = f−1(g−1(C)).

Definition 2.25. Let (X, TX) and (Y, TY ) be topological spaces. A function f : X → Y
is called continuous (sv: kontinuerlig) if f−1(U) ∈ TX for all U ∈ TY , or in words, if
the preimages of open sets are open.

A function f : X → Y is called continuous at a point x ∈ X if for every U ∈ TY
with f(x) ∈ U there is a V ∈ TX so that x ∈ V and f(V ) ⊂ U .

Example 2.26. Let X be a topological space. Then the identity map id : X → X is
continuous since id−1(U) = U for every subset U ⊂ X.

Example 2.27. Let (X, TX) and (Y, TY ) be topological spaces, and let y ∈ Y . Then
the constant map f : X → Y , f(x) = y for all x, is continuous. To see this, let U ∈ TY
and let us consider two cases: if y ∈ U , then f−1(U) = X which is open, and if y /∈ U ,
then f−1(U) = ∅, which is also open.

Example 2.28. Let X have the discrete topology, and let Y be any topological space.
Then any map f : X → Y is continuous, since f−1(U) ∈ P(X) no matter what U is.

Example 2.29. Let X be any topological space, and let Y have the trivial topology.
Then any map f : X → Y is continuous since f−1(∅) = ∅, which is open in X, and
f−1(Y ) = X, which is also open.

We will soon have a huge family of examples of functions which are not continuous;
thus in particular the last two examples show that the notion of “continuity” depends
heavily on the topologies on the spaces under consideration.

Theorem 2.30. The following properties hold for continuous functions:

(i) If f : X → Y and g : Y → Z are continuous, then so is g ◦ f : X → Z.

(ii) A function f : X → Y is continuous if and only if the preimage of any closed set
is closed.

(iii) A function f : X → Y is continuous if and only if it is continuous at x for all
x ∈ X.

Proof. To see the first part, let U ⊂ Z be open in Z. Then since U ∈ TZ and g is conti-
nous, g−1(U) ∈ TY , and since f is continuous, we have (g◦f)−1(U) = f−1(g−1(U)) ∈ TX .

For the second part, suppose first that f is continuous, and let C ⊂ Y be closed.
Then Cc is open, and f−1(C)c = f−1(Cc) is open. The other direction is similar.
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Finally, suppose that f is continuous, let x ∈ X, and let U ∈ TY with f(x) ∈ U .
Then V = f−1(U) is open in X and f(V ) = U , so f is continuous at x. Suppose on the
other hand that f is continuous at x for all x ∈ X, and let U ∈ TY . Assume without
loss of generality that f−1(U) is non-empty, and let x ∈ f−1(U). Then there exists
Vx ∈ TX so that x ∈ Vx and f(Vx) ⊂ U . Now f−1(U) =

⋃
x∈f−1(U) Vx and thus open by

(T2) since each Vx is.

As the reader will likely have encountered the concept of continuity in other contexts,
let us now show that these notions actually coincide. For convenience, let us recall what
continuity “normally” means.

Definition 2.31. A function f : Rn → R is called continuous at a point x ∈ Rn if for
every ε > 0 there exists is a δ > 0 such that for every y ∈ Rn with ‖x− y‖ < δ, one has
|f(x)− f(y)| < ε. A function is called continuous if it is continuous in every point.

This definition can be mirrored for general metric spaces by replacing the distances
induced by the norms by the metrics.

Theorem 2.32. Let (X, dX) and (Y, dY ) be metric spaces with their induced metric
topologies. Then a function f : X → Y is continuous, in the sense of Definition 2.25 if
and only if

∀x ∈ X,∀ε > 0,∃δ > 0 : dX(x, y) < δ ⇒ dY (f(x), f(y)) < ε.

We will prove this theorem in a second, using the following result.

Lemma 2.33. Let (X, dX), (Y, dY ) be metric spaces with the metric topologies. Then
a function f : X → Y is continuous at a point x ∈ X, in the sense of Definition 2.25,
if and only if

∀ε > 0, ∃δ > 0 : f(BdX (x, δ)) ⊂ BdY (f(x), ε). (2)

Proof. Suppose first that f is continuous at a given point x ∈ X and let ε > 0. Since
f(x) lies in the open set BdY (f(x), ε), there is an open set V in X such that x ∈ V and
f(V ) ⊂ BdY (f(x), ε). By the discussion in Remark 2.21 the openness of V implies that
there is a δ > 0 so that BdX (x, δ) ⊂ V , and then in particular f(BdX (x, δ)) ⊂ f(V ) ⊂
BdY (f(x), ε).

Suppose now that (2) holds for f and let U be an open set in Y containing f(x). Once
again, by Remark 2.21, this implies that there exists an ε > 0 so that BdY (f(x), ε) ⊂ U .
By (2) we then get a δ > 0 with f(BdX (x, δ)) ⊂ BdY (f(x), ε), and since BdX (x, δ) is
open in X and contains x we are done.

Proof of Theorem 2.32. This follows by combining Lemma 2.33 and the last part of
Theorem 2.30.
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3 Constructing topologies
3.1 The subspace topology
Often, we will be dealing with subsets of topological spaces, and we want to be able to
consider these subsets as topological spaces in their own right.

Definition 3.1. Let (X, T ) be a topological space, and let Y ⊂ X be any subset of X.
Then the collection

TY = {Y ∩ U | U ∈ T }

is called the the subspace topology (sv: underrumstopologin).

Lemma 3.2. The collection TY actually defines a topology on Y .

Proof. Obviously ∅ and Y are in TY , so (T1) holds. Let {Ui}i∈I be a family of subsets
Ui ∈ TY . That is, for every i ∈ I there exists a Vi ∈ T so that Ui = Y ∩ Vi. Then by
(an infinite version) of De Morgan’s law (Proposition 1.5),⋃

i∈I
Ui =

⋃
i∈I

Y ∩ Vi = Y ∩
⋃
i∈I

Vi,

and since
⋃
i∈I Vi ∈ T by (T2), applied to T , this shows (T2) for TY .

Finally, (T3) follows by the other of De Morgan’s laws by the exact same logic.

Equipping Y with the subspace topology, we will call Y a subspace of X. If a set U
belongs to TY we will often say that U is open in Y .

Example 3.3. As a word of warning, a subspace might have open sets that would
not be considered open in the full topological space. For instance, let X = R and
Y = [0,∞). Then the half-open interval [0, 1) is open in Y since [0, 1) = Y ∩ (−1, 1),
but [0, 1) is not open in X.

Proposition 3.4. Let (X, T ) be a topological space, and let (Y, TY ) be a subspace. Then

(i) the inclusion map ι : Y → X given by ι(y) = y is continuous,

(ii) if Z is a topological space, and f : X → Z is a continuous map, then the restriction
f |Y : Y → Z is also continuous, and

(iii) a set F ⊂ Y is closed in Y if and only if there is a set G ⊂ X which is closed in
X so that F = Y ∩G.

Proof. To see (i), let U be open in X. Then ι−1(U) = U ∩ Y , which is open in Y by
definition, so ι is continuous.

To see (ii), let U be open in Z. Then f |−1
Y (U) = f−1(U) ∩ Y , which is open in Y

since f−1(U) is open in X.
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Finally, let us show (iii). Let F ⊂ Y be closed in Y . This means that Y \F is open
in Y so there is an set U which is open in X and Y \F = Y ∩U . Let G = X \U . Then
G is closed in X and

F = Y \ (Y \ F ) = Y \ (Y ∩ U) = (Y \ Y ) ∪ (Y \ U) = Y \ U = Y ∩ (X \ U) = Y ∩G.

On the other hand, let G ⊂ X be closed so that X \G is open, and let F = Y ∩G. We
have to show that F is closed in Y . We know that Y ∩ (X \ G) is open in Y and find
that

Y ∩ (X \G) = Y \ (Y ∩G) = Y \ F,
so F is closed in Y .

Example 3.5. The subspace topology on Z ⊂ R is the discrete topology on Z: the set
{n} is open in Z for any integer n.

On the other hand, the subspace on Q ⊂ R is not the discrete topology, essentially
because any non-empty open interval in R contains infinitely many rational numbers.

The following result is often useful for showing that a given function into a subspace
are continuous.

Lemma 3.6. Let X be a topological space and let Y be a subspace with the inclusion
ι : Y → X. Suppose that Z is a topological space and f : Z → Y a map. Then f is
continuous if and only if ι ◦ f is continuous.

Proof. Exercise 1.7.

In metric spaces, all subsets are automatically metric spaces as one can restrict
metrics to subsets. The following result shows that the subspace topology gives the
“right” thing in this case.

Proposition 3.7. If (X, d) is a metric space and Y ⊂ X, then the metric topology
induced by the restricted metric d|Y×Y is exactly the subspace topology on Y .

Proof. Left to the reader.

Finally, let us show the following result, which says that to check that a function is
continuous, it suffices to check it on a collection of open (or closed) sets that together
make up the entire space.

Example 3.8. For the familiar topological spaces, this should not be a big surprise: if
a function f : R → R is continuous on (−∞, 1) and (−1,∞), then it is continuous on
all of (−∞,∞).

Lemma 3.9 (The pasting lemma). Let X and Y be topological spaces, and let U, V ⊂ X
be two open subsets such that X = U∪V . Let f : U → Y and g : V → Y be two functions
so that f |U∩V = g|U∩V . Then f and g are continuous with respect to the the subspace
topologies on U and V if and only if the function h : X → Y given by

h(x) =
{
f(x), if x ∈ U,
g(x), if x ∈ V ,
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is continuous.

Proof. Notice first of all that h is well-defined since f |U∩V = g|U∩V . If h is continuous,
then so are f and g by Proposition 3.4.

Assume that f and g are continuous and let W ⊂ Y be open in Y . Choose open
sets U ′ and V ′ in X so that f−1(W ) = U ∩ U ′ and g−1(W ) = V ∩ V ′. Now

h−1(W ) = {x ∈ X | h(x) ∈W} = {x ∈ U | h(x) ∈W} ∪ {x ∈ V | h(x) ∈W}
= {x ∈ U | f(x) ∈W} ∪ {x ∈ V | g(x) ∈W}
= (f−1(W ) ∩ U) ∪ (g−1(W ) ∩W ) = (U ∩ U ′) ∪ (V ∪ V ′),

which is open in X since we assumed that both U and V were.

Remark 3.10. Notice that the exact same result would hold if we replaced “open” with
“closed” everywhere in the statement and proof.

Notice also that the result would also be true if we replaced U and V with an infinite
collection of open (or closed) sets {Ui}i∈I so that X =

⋃
i∈I Ui.

3.2 The poset and order topologies
Recall from Definition 1.11 the definition of a poset (X,�).

Proposition 3.11. Let (X,�) be a poset and define for every a ∈ X a subset

Pa = {x ∈ X | a � x}.

Then the collection
B = {Pa | a ∈ X}

is the basis for a topology TB called the poset topology (sv: pomängdtopologin) on X.

Proof. For every x ∈ X we have that x � x so x ∈ Px which implies (B1).
Suppose that x ∈ Pa ∩ Pb for a, b ∈ X. We claim that x ∈ Px ⊂ Pa ∩ Pb. This holds

since we know that a � x and b � x so for any y with x � y, transitivity implies that
a � y and b � y so y ∈ Pa ∩ Pb.

For a totally ordered set (X,�), define intervals

[a, b] = {x ∈ X | a � x � b},
[a, b) = {x ∈ X | a � x � b, x 6= b},
(a, b] = {x ∈ X | a � x � b, x 6= a},
(a, b) = {x ∈ X | a � x � b, x 6= a, x 6= b},

(−∞, b] = {x ∈ X | x � b},
(−∞, b) = {x ∈ X | x � b, x 6= b},

[a,∞) = {x ∈ X | a � x},
(a,∞) = {x ∈ X | a � x, x 6= a}.
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We say that an element a0 ∈ X is the smallest element of X if a0 � x for all x ∈ X,
and similarly, we say that b0 is the largest element of X if x � b0 for all x ∈ X. Notice
that the word the is justified since there can be at most one smallest and one largest
element. There need not be any smallest/largest elements at all though, as is evident
from the example of the poset (R,≤).

Proposition 3.12. For a totally ordered (X,�) define a collection B of subsets to
consist of

• all open intervals (a, b), a, b ∈ X,

• all intervals [a0, b), b ∈ X, if X has a smallest element a0, and

• all intervals (a, b0], a ∈ X, if X has a largest element b0.

Then B is the basis for a topological TB on X, called the order topology (sv: ?).

Proof. One needs to check (B1) and (B2) for B. We leave this to the reader.

Example 3.13. Since (R,≤) has no smallest or largest elements, the basis for its order
topology simply consists of all open intervals. That is, the order topology is exactly the
standard topology on R.

3.3 The product topology
Recall from Section 1.4 how to define, for any collection of sets, their Cartesian product.
In this section we will show how to define a topology on a product of topological spaces.

Definition 3.14. Let X be a set. A subbasis (sv: delbas) C for a topology on X is a
collection of subsets that cover X, meaning that their union is all of X. The topology
TC generated by C consists of all unions of all finite intersections of elements in C. It
is the coarsest topology containing C meaning that is has as few open sets as possible
while still including the elements in C as open sets.

Consider now a cartesian product X =
∏
i∈I Xi for a family of sets {Xi}i∈I . For

every i ∈ I, there is a natural map πi : X → Xi, called the projection onto Xi, which
maps πi(x) = x(i), where here we think of x ∈ X as a map I →

⋃
i∈I Xi.

Definition 3.15. Let {Xi}i∈I be a family of topological spaces, and let X =
∏
i∈I Xi.

We then define a topology on X, called the product topology (sv: produkttopologin), to
be the coarsest topology such that πi is continuous for every i.

This definition is rather abstract: rather than describing the actual open sets, we
have described a property that we would like the topology to have, namely that all the
projections be continuous. Spelled out, the topology on the product X is generated by
the subbasis C which consists of all sets of the form π−1

i (U), where U is an open set in
Xi.

To make this more concrete, let us consider the case of a product of just two topo-
logical spaces (X1, TX1) and (X2, TX2), and let U and V be open sets in X1 and X2
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respectively. Then π−1
1 (U) = U ×X2 and π−1

2 (V ) = X1 × V are examples of open sets
in X1 ×X2. Their intersection is the set π−1

1 (U) ∩ π−1
2 (V ) = U × V , and the topology

on X1 ×X2 consists of all unions of this form. In symbols, if we let

B = {U × V | U ∈ TX1 , V ∈ TX2},

then B is a basis for the product topology on X1 × X2. Similarly, open sets in X =∏
i∈I Xi are unions of sets of the form

∏
i∈I Ui, where Ui is open in Xi for each i ∈ I,

and Ui = Xi for all but finitely many i (since we take only finite intersections).

Theorem 3.16. Let X be a topological space, and let {Yi}i∈I be a family of topological
spaces. A function f : X →

∏
i∈I Yi consists of a family of functions {fi}i∈I where

fi : X → Yi for all i ∈ I. Then f is continuous if and only if fi is continuous for every
i.

Proof. Notice first of all that the maps fi are exactly the compositions πi ◦ f .
Suppose that f is continuous. Since each πi is continuous, so is every fi by Theo-

rem 2.30.
Suppose now that all the fi are continuous, and let us show that the preimages of

elements of the subbasis are open. That is, let U be an open set in
∏
i∈I Yi of the form

U = π−1
i (V ) where V is open in Yi. Then f−1(U) = f−1(π−1

i (V )) = f−1
i (V ), which is

open by assumption. A general open set is a union of finite intersections of elements
from the subbasis, so the general case follows from Proposition 2.24.

4 Topological spaces up close
4.1 Interior, closure, boundary, and limit points
Definition 4.1. Let (X, T ) be a topological space, and let Y ⊂ X be a subset. Then

(i) the interior (sv: inre) of Y , denoted Y̊ or IntY , is the union of all open subsets
in Y ,

(ii) the closure (sv: slutna höljet) of Y , denoted Y , is the intersection of all closed
subsets containing Y .

(iii) The subset Y is called dense (sv: tät) in X if Y = X.

Notice that IntY is open, since it is a union of open sets. Likewise, Y is closed by
Proposition 2.7, and we have

IntY ⊂ Y ⊂ Y .

It also follows directly from the definition that Y is open if and only Y = IntY and that
Y is closed if and only if Y = Y . The definition also implies that IntY is the largest
open subset contained in Y , and that Y is the smallest closed subset containing Y .

20



Furthermore, it is useful to note that the complement of an open set contained in
Y is a closed set containing Y c and on the other hand, the complement of a closed set
containing Y is an open set contained in Y c. This implies that

IntY = X \ (X \ Y ), Y = X \ Int(X \ Y ), (3)

which can also be shown more precisely by using De Morgan’s laws.

Proposition 4.2. Let Y and Z be subsets of a topological space X. Then

(i) Y ∪ Z = Y ∪ Z,

(ii) Y ∩ Z ⊂ Y ∩ Z,

(iii) IntY ∪ IntZ ⊂ Int(Y ∪ Z), and

(iv) IntY ∩ IntZ = Int(Y ∩ Z).

Proof. Let us show (i) and (ii); (iii) and (iv) follow by the same logic. First, note that
since Y ⊂ Y and Z ⊂ Z we get that Y ∪ Z ⊂ Y ∪ Z. This says that Y ∪ Z is a closed
subset containing Y ∪ Z; since Y ∪ Z is the smallest closed subset containing Y ∪ Z,
this tells us that Y ∪ Z ⊂ Y ∪ Z.

On the other hand Y ⊂ Y ∪ Z ⊂ Y ∪ Z and the latter set is closed so Y ⊂ Y ∪ Z.
For the same reason Z ⊂ Y ∪ Z, and this implies that Y ∪ Z ⊂ Y ∪ Z.

Since Y ⊂ Y and Z ⊂ Z we have Y ∩ Z ⊂ Y ∩ Z. The latter set is closed so
Y ∩ Z ⊂ Y ∩ Z.

For any topological space X, we say that U is a neighbourhood (sv: omgivning) of a
point x if U is open and x ∈ U .

Definition 4.3. Let Y be a subset of a topological space X. Then

(i) the boundary (sv: rand) of Y , denoted ∂Y is the set

∂Y = {x ∈ X | U ∩ Y 6= ∅ and U ∩ Y c 6= ∅ for all neighbourhoods U of x}.

That is, x ∈ ∂Y if and only if all neighbourhoods of x intersect both Y and Y c.

(ii) A limit point (sv: gränspunkt) of Y is a point x ∈ X with the property that all
its neighbourhoods intersect Y in a point which is not x itself. Let

Y ′ = {x ∈ X | x is a limit point of Y }.

Example 4.4. Let Y = [0, 1) ∪ {2} ⊂ R with the standard topology on R. Then
IntY = (0, 1), Y = [0, 1] ∪ {2}, ∂Y = {0, 1, 2}, and Y ′ = [0, 1].

Theorem 4.5. Let X be a topological space and Y ⊂ X a subset. Then

(i) ∂Y = X \ (IntY ∪ Int(X \ Y )) = Y ∩X \ Y ,

(ii) Y = Y ∪ ∂Y , and
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(iii) Y = Y ∪ Y ′.

Proof. The second equality in (i) is obtained directly from (3), so it suffices to show the
first equality. Taking complements, this becomes

X \ ∂Y = IntY ∪ Int(X \ Y ).

Let x ∈ X \ ∂Y . This means that there is a neighbourhood U of x so that x ∈ U ⊂ Y
or x ∈ U ⊂ X \ Y . This means that either x ∈ IntY or x ∈ Int(X \ Y ).

Suppose that either x ∈ IntY or x ∈ Int(X \ Y ). If x ∈ IntY then there is an open
set U such that x ∈ U ⊂ Y , and so U ∩Y c = ∅, so x /∈ ∂Y . Similarly, if x ∈ Int(X \Y ),
one gets an open neighbourhood U of x with U ∩ Y = ∅, so once again x /∈ ∂Y . This
shows (i).

From (i) and (3) it follows that

Y ∪ ∂Y = Y ∪ (Y ∩X \ Y ) = (Y ∪ Y ) ∩ (Y ∪X \ Y ) = Y ∩X = Y ,

which is (ii).
Finally, we use (ii) and show that Y ∪ ∂Y = Y ∪ Y ′. To see this, it suffices to

show that ∂Y \ Y = Y ′ \ Y as one can then take the union with Y on both sides. So,
let x ∈ ∂Y \ Y . Then any neighbourhood U of x intersects Y , and since x /∈ Y , this
necessarily means that U intersects Y in a point which is not x itself, so x ∈ Y ′, and
since x /∈ Y , we have x ∈ Y ′ \ Y .

On the other hand, if x ∈ Y ′ \ Y , any neighborhood U of x will intersect Y ; it will
also intersect X \ Y , since x belongs to that set. This implies that x ∈ ∂Y , and as
before, x ∈ ∂Y \ Y . This completes the proof.

The above theorem provides us with the following useful characterisation of the
closure: we see that x ∈ Y if and only if every neighbourhood of x intersects Y .

Example 4.6. We claim that Q is dense in R, i.e. that Q = R. By the above theorem,
it suffices to show that ∂Q ∪ Q = R. To see this, let x ∈ R be arbitrary, and let U be
any neighbourhood of x. Now, an open set like U is the union of a number of intervals,
any interval contains (an infinite number of) both rational and irrational numbers, that
is, U ∩Q 6= ∅, and U ∩ (R \Q) 6= ∅. This is exactly the condition that x ∈ ∂Q. Notice,
not only did we show that ∂Q ∪Q = R; we actually see that ∂Q = R.

Proposition 4.7. Let {Xi}i∈I be a family of topological spaces, and let Ai ⊂ Xi be
subsets of each of them. Then ∏

i∈I
Ai =

∏
i∈I

Ai.

Proof. Let x = (xi)i∈I ∈
∏
i∈I Ai. Let U =

∏
i∈I Ui be any of the basis elements for

the product topology x ∈ U , i.e. such that xi ∈ Ui and such that Ui is open in Xi

for every i ∈ I. Since also xi ∈ Ai for all i, we can choose a yi ∈ Ui ∩ Ai for all i, so
y = (yi)i∈I ∈ U ∩

∏
i∈I Ai. In other words, any neighbourhood U of x contains points

from
∏
i∈I Ai so x ∈

∏
i∈I Ai.
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For the converse, suppose that x ∈
∏
i∈I Ai. Let i ∈ I be given, and let Vi be any

open set that contains xi. Then by definition of the product topology, π−1
i (Vi) ⊂ X is

a neighbourhood of x and so contains a point y ∈
∏
i∈I Ai. This says that yi ∈ Ai ∩ Vi

so that xi ∈ Ai and since i was arbitrary, x ∈
∏
i∈I Ai.

4.2 Separation axioms and Hausdorff spaces
In Rn we have a very good idea of what it means for two points to be separated: if
they’re different, they’re separated. We now ask ourselves the question if its possible to
separate points in general topological spaces, using only the data of open sets. Consider
for instance the topological spaceX = {a, b, c} with the topology T = {∅, {a}, {b, c}, X}.
From the viewpoint of topology, there is no way to tell the points b and c apart using
only open sets; we consider the points inseparable.

Now for general topological spaces, it turns out that there are plenty of meaningful
ways – called separation axioms – to then actually separate points, some of which lead
to more interesting mathematics than others. In this section, we give the first few of
these, including the immensely important Hausdorff axiom.

Definition 4.8. A topological space (X, T ) is called

(i) T0 if for every pair x, y ∈ X, x 6= y, there exists a neighbourhood of x that does
not contain y, or there exists a neighbourhood of y that does not contain x.

(ii) T1 if for every pair x, y ∈ X, x 6= y, x has a neighborhood not containing y, and
y has a neighbourhood not containing x.

(iii) T2 or Hausdorff if for every pair x, y ∈ X, x 6= y, there exists neighbourhoods Ux
and Uy of x and y respectively so that Ux ∩ Uy 6= ∅.

Note that clearly, a T2-space is T1, and a T1-space is T0.

Proposition 4.9. A topological space X is T1 if and only if {x} is closed for all x ∈ X.

Proof. Suppose first that {x} is closed for all x ∈ X, and let x, y ∈ X, x 6= y. Then
X \{x} is a neighbourhood of y that does not contain x, and X \{y} is a neighbourhood
of x not containing y, so X is T1.

For the converse, suppose that X is T1, and let x ∈ X. Now every y ∈ X has a
neighbourhood Uy that does not contain x, and so⋃

y 6=x
Uy = X \ {x}

is open, and {x} is closed.

Example 4.10. Let X contain at least two points, and endow X with the trivial
topology. Then X is not T0 (or T1 or T2), since the only neighborhood of a point x is
X.

Example 4.11. If X has the discrete topology, then X is Hausdorff (and T1 and T0).

23



Example 4.12. Any poset (X,�) with the poset topology (Proposition 3.11) is T0:
let x, y ∈ X, x 6= y, and suppose that x � y. Then Py = {z ∈ X | y � z} is a
neighbourhood of y which does not contain x.

Example 4.13. Let X = {a, b, c} with the topology

T = {∅, {b}, {c}, {b, c}, X}.

Then X is T0 but not T1.

Example 4.14. All metric spaces (with the metric topology) are Hausdorff (Exer-
cise 1.10).

4.3 Sequences and convergence
When one first encounters sequences in calculus and analysis, their convergence is typ-
ically worded in an ε-δ-fashion where one considers a sequence as convergent if it gets
arbitrarily close to a given limit. Now, in topological spaces we do not have a concept of
“distance” to guide our intuition but just as we were able to recover a natural concept
of continuity, so are we still able to discuss convergence.

Definition 4.15. Let X be a topological space. A sequence (sv: följd) in X is a family
{xn}n∈N of points in X. We say that a sequence {xn}n∈N converges (sv: konvergera) to
a point x ∈ X, if for any neighbourhood U of x, there is an N ∈ N so that xn ∈ U for
all n > N , and in this case, we write xn → x. A subsequence (sv: delföljd) {yn}n∈N is
a sequence such that yi = xni for some n1 < n2 < . . . .

From the definition, one immediately obtains the following result.

Proposition 4.16. If {yn} is a subsequence of {xn} and xn → x, then yn → x.

The next example shows that the concept of convergence depends on the topology
of the underlying topological space.

Example 4.17. In the trivial topology, all sequences converge to any given point. In the
discrete topology, for a sequence {xn} to converge to a point x, it has to be constantly
equal to x for all large enough n.

Example 4.18. The constant sequence is convergent, regardless of the topology on the
space.

Let us show that we recover the possibly well-known definition of convergence for
metric spaces and in particular for Rn.

Proposition 4.19. Let (X, d) be a metric space with the metric topology. Then a
sequence {xn} in X converges to x ∈ X if and only if

∀ε > 0,∃N > 0 : n > N ⇒ d(xn, x) < ε.
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Proof. Suppose that xn → x and let ε > 0 be given. Let U = Bd(x, ε). Then by
definition of convergence, there exists an N > 0 so that xn ∈ U for all n > N , but this
says that d(xn, x) < ε for all n > N .

For the converse, let U be a neighbourhood of x. As we saw in Remark 2.21, this
implies that there exists an ε > 0 so that Bd(x, ε) ⊂ U . Now by assumption there is an
N > 0 so that xn ∈ Bd(x, ε) ⊂ U for all n > N .

In spaces like Rn we are used to convergent sequences only having a single limit,
but Example 4.17 above shows that this need not be the case in general. It is, however,
true for Hausdorff spaces.

Proposition 4.20. Let X be Hausdorff. If xn → x and xn → y in X, then x = y.

Proof. Suppose that x 6= y and assume that xn → y and xn → y. Choose U and
V disjoint neighbourhoods of x and y respectively. By definition of convergence, we
get NU , NV > 0 so that xn ∈ U for all n > NU and xn ∈ V for all n > NV . For
n > max(NU , NV ) we therefore have xn ∈ U ∩ V = ∅ which is a contradiction.

In analysis, one might have encountered the important characterization of continuity
in Rn that a function f is continuous if and only xn → x implies that f(xn) → f(x).
It turns out that this is not quite true for general continuous maps between topological
spaces without further assumptions.

Definition 4.21. We say that a topological space X has a countable basis at x ∈ X if
there is a collection of neighbourhoods {Bn}n∈N of x so that if U is any neighbourhood
of x there exists an n ∈ N so that Bn ⊂ U . The space X is called first-countable (sv:
?) if it has a countable basis at x for all x ∈ X.

Example 4.22. All metric spaces are first-countable by Exercise 1.14.

Lemma 4.23 (The sequence lemma). Let X be a topological space and let A ⊂ X. If
there is a sequence in A that converges to x then x ∈ A. The converse holds if X is
first-countable.

Proof. Suppose that xn → x and that xn ∈ A for all n. If x ∈ A we are done, so suppose
that x ∈ X \A. Let U be a neighbourhood of x; then there is an N > 0 so that xn ∈ U
for all n > N . This implies that U ∩A 6= ∅ and U ∩X \A 6= ∅, so x ∈ ∂A, and so x ∈ A
by Theorem 4.5.

Suppose that X is first-countable. Let x ∈ A and let us show that there is a sequence
{xn} in A with xn → x. Let {Bn} be a countable basis at x and define for every n ∈ N
an open neighbourhood Un =

⋂n
k=1Bk of x. Since x ∈ A or x ∈ ∂A by Theorem 4.5 it

follows that Un ∩ A 6= ∅ for every n, and we can choose xn ∈ Un ∩ A for every n. We
claim that xn → x. To see this, let U be any neighbourhood of x. Then by definition
of first-countability there is an N ∈ N so that BN ⊂ U . Now clearly, Un ⊂ UN ⊂ BN
for all n > N so xn ∈ BN ⊂ U for all n > N which means that xn → x.
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Theorem 4.24. Let X and Y be topological spaces. If f : X → Y be continuous,
then xn → x in X implies that f(xn) → f(x) in Y . The converse holds if X is first
countable; that is, if if xn → x implies that f(xn) → f(x) for all convergent sequences
{xn}, then f is continuous.

Proof. Suppose that f is continuous, let {xn} be a sequence with xn → x, and let
us show that f(xn) → f(x). Let U be a neighborhood of f(x). Then f−1(U) is a
neighbourhood of x, and we can choose an N > 0 so that xn ∈ f−1(U) for all n > N .
Thus f(xn) ∈ U for all n > N so f(xn)→ f(x).

Suppose that X is first-countable and that f(xn)→ x whenever xn → x. Let B ⊂ Y
be a closed set, let A = f−1(B), and let us show that A = A, so that A is closed, which
means that f is continuous. Let x ∈ A be arbitrary. Then by Lemma 4.23, there is a
sequence {xn} with xn ∈ A so that xn → x. This means that f(xn) ∈ B, and since
f(xn)→ f(x), Lemma 4.23 tells us that f(x) ∈ B = B, so x ∈ A.

5 Homeomorphisms and distinguishability
Often in mathematics, when talking about objects as certains things coming with certain
structures, we want to be able to say when two objects are “the same”. Consider for
instance the two topological spaces X = {1, 2, 3} and Y = {4, 5, 6} with the topologies

TX = {∅, {1}, {2}, {1, 2}, {1, 2, 3}},
TY = {∅, {4}, {5}, {4, 5}, {4, 5, 6}}.

These spaces are not particularly different for if we identify 1 ↔ 4, 2 ↔ 5, 3 ↔ 6, we
have no way to tell them apart. This notion of being the same is made precise in the
definition of a “homeomorphism” below.

The well-educated mathematics student will have likely come across this general
idea before: we consider two vector spaces the same if there is a linear isomorphism
from one to the other, we consider algebraic objects such as groups and rings the same
if they are isomorphic, and if all we know about two given sets is that they are in
bijection, we may as well treat them as the same. This language of “objects” being “the
same” is unified in the branch of mathematics called category theory (sv: kategoriteori),
sometimes referred to as abstract nonsense. We will not be discussing category theory
in any detail in these notes, but it is useful to be aware of its existence.

5.1 Homeomorphisms
In the example above, we notice that crucial property of two topological spaces that
“are the same” is that they are in bijection and have the same open sets. This leads to
the following definition.

Definition 5.1. A bijection f : X → Y between two topological spaces is called a
homeomorphism (sv: homeomorfi) if f and its inverse f−1 are continuous. In this case,
we say that X and Y are homeomorphic (sv: homeomorfa) and we write X ' Y .
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Equivalently, since a bijection f always satisfies f = (f−1)−1, one could define a
homeomorphism to be a continuous bijection such that f(U) is open whenever U is.
Notice also that ' satisfies the property of an equivalence relation.

Example 5.2. In the example in the beginning of this section, the bijection f : X → Y
given by f(1) = 4, f(2) = 5, f(3) = 6 is a homeomorphism.

Example 5.3. Let f : (−1, 1)→ R be the bijective map

f(x) = tan
(
πx

2

)
whose inverse is f−1(x) = 2

π arctan x. Then both f and f−1 are continuous so (−1, 1)
and R are isomorphic.

From the above example we conclude that two spaces that we are otherwise familiar
with and think of as different may turn out to be the same from the viewpoint of
topology. Roughly, since we don’t care about the scale of (−1, 1) but only its open sets,
we are able to stretch it as much as we please, and end up with something like R

Bad joke 5.4. Let A be a typical topologist. Then A is not able to tell the difference
between her coffee mug and her donut.

Proof. The surfaces of the coffee mug and the donut are homeomorphic. See https:
//upload.wikimedia.org/wikipedia/commons/2/26/Mug_and_Torus_morph.gif.

Example 5.5. Let Bn := B(0, 1) be the unit ball in Rn. Then Bn ' Rn. This can be
seen because the map f : Bn → Rn given by

f(x) = x

1− ‖x‖

is a continuous bijection with inverse

f−1(x) = x

1 + ‖x‖ .

The graph of f in the case n = 1 is shown in Figure 3. The case n = 2 is illustrated in
Figures 15-16.

We will often be interested in functions that would be homeomorphisms if we were
allowed to shrink the codomain appropriately.

Definition 5.6. Let X and Y be topological spaces. A function f : X → Y is called an
embedding (sv: ?) if f : X → f(X) is a homeomorphism; here f(X) has the subspace
topology from Y .

Example 5.7. If X is a topological space and Y ⊂ X a subspace, then the inclusion
ι : Y → X given by ι(x) = x is an embedding.

27

https://upload.wikimedia.org/wikipedia/commons/2/26/Mug_and_Torus_morph.gif
https://upload.wikimedia.org/wikipedia/commons/2/26/Mug_and_Torus_morph.gif


Figure 3: The graph of f(x) = x/(1− |x|).

5.2 Topological invariants
Above, we have talked about what it means for two topological spaces to be the same.
Often, one will be interested in the converse question of telling two topological spaces
apart. As such, we consider topological spaces different if they are non-homeomorphic;
for instance, if X = {a, b} then we obtain two different topological spaces by equipping
it with the trivial and the discrete topology.

Definition 5.8. Let Top denote the collection of all topological spaces. A topological
invariant, sometimes called a topological property, is a function f defined on Top so
that if X ' Y , then f(X) = f(Y ).

The important thing to note is that if f is a topological invariant and f(X) 6= f(Y ),
then X and Y are not homeomorphic. Thus we are lucky enough, we can use topological
invariants to tell topological spaces apart.

Example 5.9. Let f : Top→ {yes, no} be the function given by answering the question
“is X Hausdorff?” That is

f(X) =
{
yes, if X is Hausdorff,
no, if X is not Hausdorff.

Then f is a topological invariant: if X ' Y and X is Hausdorff, then so is Y . For this
reason, the property of being Hausdorff is often called a topological property. Again,
one can turn this around and say that if X is Hausdorff but Y is not, then X and Y
are not homeomorphic. Similarly, being T0 or T1 are topological properties. As is being
first-countable and so is any other property that is defined using only in terms of open
sets.

We will encounter many other topological properties later on, one of the most im-
portant ones being the fundamental group, which is to be introduced in Section 10. The
reader is encouraged to try to discover these topological properties as we move along.
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S0 S1 S2

R R2 R3

Figure 4: The spheres S0, S1, and S2 in R, R2, and R3.

p

x

(Π(x), 0)

Figure 5: Stereographic projection of S1.

5.3 The n-dimensional sphere
Definition 5.10. The n-sphere is the set

Sn = {x ∈ Rn+1 | ‖x‖ = 1} ⊂ Rn+1

with the subspace topology from Rn+1 (see Figure 4).

Proposition 5.11. Let p = (0, 0, . . . , 0, 1) ∈ Sn be the “north pole”. Then Sn \ {p} '
Rn.

Proof. We will construct a homeomorphism explicitly, leaving some of the details to
the reader. Let x = (x1, . . . , xn+1) ∈ Sn \ {p} so that xn+1 6= 1. We then define the
stereographic projection (sv: stereografisk projektion) of x by

Π(x) = Π(x1, . . . , xn, xn+1) = 1
1− xn+1

(x1, . . . , xn) ∈ Rn.
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Geometrically, if one draws a straight line through x and p, then its intersection with
Rn × {0} will be the point (Π(x), 0) (see Figure 5 for the case n = 1, and the front
page for the case n = 2). Now Π is continuous because each of its components are (use
Proposition 3.4), and one can check that it has an inverse g : Rn → Sn \ {p} given by

g(y1, . . . , yn) = (t(y)y1, . . . , t(y)yn, 1− t(y)),

where t(y) = 2/(1 + ‖y‖2).

Remark 5.12. If q = (0, . . . , 0,−1) ∈ Sn is the south pole, then the bijective reflection
map r : (x1, . . . , xn, xn+1) 7→ (x1, . . . , xn,−xn+1) is a homeomorphism from Sn \ {p} to
Sn \ {q}, so we also have that Sn \ {q} is homeomorphic with Rn.

Let us show that r : Sn \ {p} → Sn \ {q} is continuous in detail. First, define
r̃ : Rn+1 → Rn+1 by

r̃(x1, . . . , xn, xn+1) = (x1, . . . , xn,−xn+1),

which is clearly continuous. Let ι : Sn \ {q} → Rn+1 denote the inclusion map. Then
we have the equality of maps Sn \ {p} → Rn+1,

r̃|Sn\{p} = ι ◦ r.

Now r̃|Sn\{p} is continuous by Proposition 3.4 and therefore r is continuous by Lemma 3.6.
The same logic applies to show that r−1 is continuous so that r is indeed a homeomor-
phism.

More generally, one can show that Sn \ {x} ' Rn for all x ∈ Sn.

Example 5.13. Let f : [0, 1)→ S1 be the map f(x) = (cos(2πx), sin(2πx)). Then f is
a bijection and moreover, just as in the remark above, f is continuous by Proposition 3.4
and Lemma 3.6: consider the map f̃ : R → R2 given by f̃(x) = (cos(2πx), sin(2πx)).
This is clearly continuous, so its restriction f̃ |[0,1) : [0, 1) → R2 is continuous. If ι :
S1 → R2 denotes the inclusion map, then f̃ |[0,1) = ι ◦ f , so f is continuous.

Now U = [0, 1
2) is open in [0, 1) (recall Example 3.3) but f(U) is not open in S1

(this is intuitively clear but of course requires a formal proof – try to cook one up!).
Thus f is not a homeomorphism, even though it is a continuous bijection.

5.4 The quotient topology
The quotient topology provides us with yet another way of making new topological
spaces out of existing ones.

Definition 5.14. Let X and Y be topological spaces, and let p : X → Y be a surjective
map. Then p is called a quotient map (sv: kvotavbildning) if it has the property that
U ⊂ Y is open if and only if p−1(U) ⊂ X is open.

Notice that a quotient map is automatically continuous, but it need not be a ho-
meomorphism since it is not necessarily injective; indeed we will be mostly interested
in the cases where it’s not.
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One motivation for studying quotient maps is that they allow us to glue topologi-
cal spaces together to obtain new ones. In practice, one does this by introducing an
equivalence relation whose equivalence classes correspond to the points that we want to
glue. An equivalent description is given in terms of general quotient a bit later in this
section.

Definition 5.15. Let X be a topological space with an equivalence relation ∼. Let
p : X → X/ ∼ be the map p(x) = [x]. The quotient topology (sv: kvottopologin) on
X/∼ is the topology defined by saying that U ⊂ X/∼ is open if p−1(U) ⊂ X is open.
In other words, it is the unique topology that forces p to be a quotient map.

Example 5.16. We can use the quotient topology to collapse parts of a topological
space to a point. Let U ⊂ X be any subset in a topological space and define an
equivalence relation ∼U on X by x ∼ y if x = y or x, y ∈ U . The equivalence class of a
point x is

[x]U =
{
{x}, if x /∈ U ,
U, if x ∈ U .

Intuitively speaking, in X/∼U we have collapsed the set U to consist of a single point
while we have left the rest of the space unchanged.

We will use the notation X/U = X/∼U for the space obtained using the equivalence
relation of Example 5.16.

Example 5.17. Let us see what the above construction means for the topology of the
space. Let X = [−1, 1] and let U = {−1, 1} be the endpoints of the interval. One can
then show that X/U ' S1: that is, we can tie together the ends of the interval to obtain
a circle. We will consider this example again in Example 5.21.

More generally, if X = Dn ⊂ Rn is the closed unit ball,

Dn = {x ∈ Rn | ‖x‖ ≤ 1},

then the (n − 1)-sphere Sn−1 ⊂ Dn forms the boundary of Dn in Rn. Now one can
show that Dn/Sn−1 ' Sn; in fact, we will do so explicitly in Proposition 7.30 below.
Picturing the case n = 2 is probably helpful.

The following result allows us to determine continuity of functions defined on quo-
tient spaces in terms of the spaces they originate from.

Lemma 5.18. Let X and Y be a topological spaces, and let ∼ be an equivalence relation
on X. Suppose that f : X → Y is a map with the property that x ∼ y implies that
f(x) = f(y). There then exists a unique map g : X/∼→ Y so that f = g ◦ p, where
p : X → X/∼ is the canonical surjection p(x) = [x]. Moreover, g is continuous if and
only if f is.

Proof. Let us first define a g that works: let [x] ∈ X/∼ for x ∈ X. We then define
g([x]) = f(x) ∈ Y . The condition on f ensures that g is well-defined, i.e. that if
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[x] = [y], then g([x]) = g([y]). Now by construction f = g ◦ p. We will show that g is
continuous if and only if f is, and that g is the only map that satisfies f = g ◦ p.

Let us start with the latter; assume that there is a map g′ : X/∼→ Y with f = g′◦p.
We then have

g([x]) = f(x) = (g′ ◦ p)(x) = g′(p(x)) = g′([x])

for all x ∈ X so in particular g([x]) = g′([x]) for all [x] ∈ X/∼.
Now if g is continuous, so is f since it is a composition of continuous maps.
Assume that f is continuous and let V ⊂ Y be open. Then f−1(V ) = p−1(g−1(V ))

is open, which implies that g−1(V ) is open by definition of the quotient topology, so g
is continuous.

Above we have seen how equivalence relations can be used to define interesting
quotient spaces. We will now turn to a result which says that all such quotient spaces
may be described in terms of quotient maps.

More precisely, let f : X → Y be a surjective map. Then we define an equivalence
relation ∼f on X by requiring that x ∼f x′ if and only if f(x) = f(x′).

With this relation, the equivalence classes are exactly the sets in X of the form
f−1({y}) for y ∈ Y , and as before, there is a bijection g : X/ ∼f→ Y given by
g(f−1({y})) = y; that is, f = g ◦ p where p : X → X/ ∼f is as before. Notice
that we need f to be surjective for this construction to work.

Proposition 5.19. Let X and Y be topological spaces, let f : X → Y be a surjective
map, and let g : X/∼f→ Y be the bijection defined by f−1({y}) 7→ y. If f is a quotient
map, then g is a homeomorphism.

Proof. It follows from Lemma 5.18 that g is continuous, since f is. Let V ⊂ X/∼f be
an open set, and let U = g(V ) ⊂ Y . Then we can write V = g−1(U), and

p−1(V ) = p−1(g−1(U)) = f−1(U)

is open since p is continuous. Since f is a quotient map, this implies that U = g(V ) is
open, so g is a homeomorphism.

Remark 5.20. In general, if f : X → Y is a surjection, and (X, TX) is a topological
space, it is customary to define the quotient topology TY on Y by

TY = {U ⊂ Y | f−1(U) ∈ TX}.

Then Y , with its quotient topology TY , is homeomorphic to X/∼f with its quotient
topology (from Definition 5.15).

Example 5.21. Let us show that [0, 1]/{0, 1}, with the quotient topology, is home-
omorphic to S1. Let f : [0, 1] → S1 be the map f(x) = (cos(2πx), sin(2πx)). Then
f(x) = f(y) if and only if x = y or either x = 1, y = 0 or x = 0, y = 1. This implies that
[0, 1]/∼f = [0, 1]/{0, 1}. As before, f is continuous, and f is clearly surjective, so the
induced map g : [0, 1]/∼f→ S1 is a homeomorphism by Proposition 5.19; we only need
to argue that if f−1(U) is open, then so is U ; then f is a quotient map. Now one can

32



BB

A
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Figure 6: Illustration of X = [0, 1] ×
[0, 1]/ ∼.

Figure 7: The resulting space S1 × S1.

see this by simply examining the open sets in [0, 1]; these are unions of open intervals,
which are allowed to be half-open at 0 and 1. In the sphere these correspond to unions
circular intervals which are clearly open. The main point being that the construction
ensures that 0 ∈ f−1(U) if and only if 1 ∈ f−1(U) so that we do not run into the
same problem as in Example 5.13. While intuitively clear, this is a bit annoying to
prove with the tools at hand, and as mentioned, a more precise proof can be found in
Proposition 7.30.

Example 5.22. Another way of viewing the same example is as follows: let ∼ be
the equivalence relation on R given by x ∼ y if x − y ∈ Z. Define f : R → S1 by
f(x) = (cos(2πx), sin(2πx)) just like above. Then f(x) = f(y) if and only if x ∼ y, so
∼=∼f . This implies that R/ ∼ is homeomorphic to S1.

Be aware that the space R/∼ is often denoted R/Z, but that this notation does not
agree with the one from Example 5.16. This somewhat unfortunate coincidence comes
from the fact that both R and Z are groups of which one can form a group quotient. One
can combine the study of groups and topological spaces into the study of topological
groups. We will not be dealing with those, but the interested reader should check out
the end of [Mun00, §22].

Example 5.23. Another important example is the so-called 2-torus T 2, which should
be familiar to those that are old enough to know the 1979 arcade shooter Asteroids. It
is obtained by gluing together opposing sides of a rectangle X = [0, 1]× [0, 1]. That is,
define an equivalence relation ∼ on X by x ∼ y of x = y, or x = (p, 0), y = (p, 1), or
x = (0, p), y = (1, p), see Figure 6. Just like [0, 1]/{0, 1} ' S1, one can show that X/∼
is homeomorphic to a circle of circles, S1 × S1; we refer to [Mun00, §22] where this is
done by examining the open sets in both spaces. See Figure 7 for an illustration of the
resulting space.

More generally, we will also be considering the n-torus Tn, which we will simply
define to be the product Tn = S1 × · · · × S1 of n copies of S1.

Example 5.24. Consider again theX = [0, 1]×[0, 1]. One could have chosen to identify
the opposite sides in various other ways to obtain important spaces. In Figure 8 and
Figure 9 two such spaces are shown. The former is the so-called real projective plane
(sv: reella projektiva planet) and the latter is the Klein bottle (sv: Kleinflaska). The
glued-together Klein bottle can be pictured as in Figure 10.
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Figure 8: Gluing the real projective
plane.
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Figure 9: Gluing the Klein bottle.

Figure 10: The Klein bottle.

Example 5.25. Finally, an important example is the following generalisation of Ex-
ample 5.23: notice that we can describe the gluing pattern for the torus by starting at
a corner of the square and taking note of the edges that we meet, together with their
orientation. For instance, if we begin in the upper left corner of Figure 6 and move
clockwise, we encounter the edges ABA−1B−1, where we use inverses to denote the
orientations of the edges. Similarly, the gluings for the projective plane and the Klein
bottle could be described as ABAB and ABAB−1 respectively.

Now, consider a 4g-gon Xg, g > 0, and glue together pairs of edges of the boundary
according to the rule

A1B1A
−1
1 B−1

1 A2B2A
−1
2 B−1

2 · · ·AgBgA
−1
g B−1

g ,

so that for instance, for g = 1 we recover the torus example. The resulting space Xg/∼
is called a “surface with g handles”, or a “genus g surface”. See Figures 11–13 for
the examples g = 1, 2, 3. How to obtain these pictures is described nicely in [Fje14,
Sect. 3.3].

6 Connectedness
In Rn, we have a good intuition about what it means for subsets to be connected or
not. For example, the subset [−2,−1] ∪ [1, 2] does seem very connected: how would
we connect −1 and 1? On the other hand, a set (−2, 2) should probably deserve to be
called connected.
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Figure 11: A genus 1 surface.

Figure 12: A genus 2 surface.

Figure 13: A genus 3 surface.

It turns out that having open sets is sufficient to define a notion of connectedness
that agrees with out intuition in the intuitive examples; this is the subject of this
sections.

6.1 Connectedness
Definition 6.1. Let X be a topological space. A separation (sv: separation) of X is a
pair U , V of disjoint non-empty open subsets of X so that X = U ∪ V . We say that X
is connected (sv: sammanhängande) if it has no separation.

In the following we will often be dealing with connectedness of subspaces. Keep
in mind that when doing so, the subspace will always be equipped with the subspace
topology.

Example 6.2. The subspace (−2,−1) ∪ (1, 2) ⊂ R has a separation.

Notice that if X = U ∪ V is a separation, then U = X \ V and V = X \ U . This
means that both U and V are both open and closed.

Lemma 6.3. A topological space X is connected if and only if ∅ and X are the only
subsets of X that are both open and closed.

Proof. Suppose that U ⊂ X is both open and closed. Then V = X \ U is open, and
X = U ∪ V is a separation. If X is connected one of U and V must be empty, since
otherwise we would have a separation of X.

Example 6.4. The rational numbers Q ⊂ R are not connected: choose any irrational
number a ∈ R. Then

Q = ((−∞, a) ∪ (a,∞)) ∩Q = ((−∞, a) ∩Q) ∪ (Q ∩ (a,∞)),

which is a separation by definition of the subspace topology on Q.

Example 6.5. If X has the discrete topology and consists of more than two points,
then X = {x} ∪ (X \ {x}) is a separation of X, so X is not connected.
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Example 6.6. Let I ⊂ R be any interval (bounded, unbounded, open, closed, or half-
open). We claim that I is connected. We will use the (hopefully) well-known fact that
any subset A ⊂ R satisfies supA ∈ A (since, for instance, supA is a limit of a sequence
in A so that we can use Lemma 4.23).

Now to see the claim, assume that I = U ∪ V is a separation of I, let x ∈ U ,
y ∈ V , and assume without loss of generality that x < y. Then we have [x, y] ⊂ I. Let
U0 = [x, y]∩U , V0 = [x, y]∩V so that [x, y] = U0∪V0 is a separation of [x, y], and define
z = supU0 ∈ [x, y]. Now as noticed above, U0 is both open and closed in [x, y] so in
particular U0 is also closed in R, so z ∈ U0 = U0. If z = y ∈ V0, we have a contradiction,
so assume that z 6= y. Since U0 is open in [x, y] we can find u ∈ U0 so that z < u, which
contradicts the fact that z = supU0 (to be completely precise about this last point,
U0 = [x, y] ∩ U1 for an open set U1 ⊂ R, and we can find a neighbourhood B(z, r) of
z ∈ U1 so small that B(z, r) ⊂ U0; we now just take u = z + r/2).

On the other hand, one can show that if I ⊂ R is connected, then I is an interval
(this is Exercise 2.4).

Lemma 6.7. Let X = U ∪ V for disjoint open sets U and V , and let Y ⊂ X be a
subspace. If Y is connected, then Y ⊂ U or Y ⊂ V .

Proof. We will show the contrapositive of the statement, so assume that Y ∩U 6= ∅ and
Y ∩ V 6= ∅. Then

Y = Y ∩X = Y ∩ (U ∪ V ) = (Y ∩ U) ∪ (Y ∩ V )

is a separation of Y , since Y ∩ U and Y ∩ V are disjoint, non-empty and open in the
subspace topology. Thus Y is not connected.

Theorem 6.8. Let {Ai}i∈I be a collection of connected subspaces of a topological space
X with a common point x ∈ X; i.e. x ∈ Ai for all i ∈ I. Then

⋃
i∈I Ai is connected.

Proof. Suppose that
⋃
i∈I Ai = U ∪ V for disjoint subsets U and V that are open in⋃

i∈I Ai and let us show that either U or V must be empty. Assume without loss of
generality that x ∈ U . By Lemma 6.7 we have for each i that either Ai ⊂ U or Ai ⊂ V .
Since x ∈ Ai we must have Ai ⊂ U for all i ∈ I. This implies that

⋃
i∈I Ai ⊂ U , so V

must be empty.

Theorem 6.9. Let A ⊂ X be connected. If a subset B ⊂ X satisfies A ⊂ B ⊂ A, then
B is also connected. In particular, A is connected when A is.

Proof. Suppose that B = U ∪V for disjoint subsets U and V that are open in B. Then
by Lemma 6.7 we must have that A ⊂ U or A ⊂ V , so assume without loss of generality
that A ⊂ U . Then B ⊂ A ⊂ U (where all closures are in the bigger space X).

By definition of the subspace topology, there are open sets U ′ and V ′ in X so that
U = B ∩ U ′, V = B ∩ V ′, and

U = B \ V = B \ (B ∩ V ′) ⊂ X \ V ′.

The latter space is closed so U ⊂ X \ V ′ ⊂ X \ V . Putting this together, B ⊂ X \ V
which means that B ∩ V = ∅, so V = ∅, and so B is connected.
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Theorem 6.10. Let f : X → Y be a continuous map between two topological spaces.
If X is connected, then f(X) is also connected.

Proof. Suppose that f(X) = U ∪V for disjoint subsets U and V that are open in f(X).
Then f−1(U) and f−1(V ) are disjoint open subsets of X with X = f−1(U) ∪ f−1(V ).
This means that either f−1(U) or f−1(V ) is empty. Suppose that f−1(U) is empty.
Then since U ⊂ f(X) we must have U = ∅.

Corollary 6.11. Let X be a connected topological space, and let Y be any set. Suppose
that f : X → Y is a locally constant map, meaning that every point x ∈ X has a
neighbourhood U so that f |U is constant. Then f is constant.

Proof. Give Y the discrete topology. Then the condition that f is locally constant
implies that f is continuous at every point, so f is continuous. Thus f(X) is connected
by Theorem 6.10, but f(X) also has the discrete topology, so by Example 6.5 it consists
of a single point which is the same as saying that f is constant.

Corollary 6.12 (Intermediate value theorem). Let f : X → R be continuous and
assume that X is connected. If there is an r ∈ R and x, y ∈ X so that f(x) < r < f(y),
then there is a z ∈ X with f(z) = r.

Proof. By Theorem 6.10, f(X) is connected, thus an interval by Exercise 2.4. Since
f(x), f(y) ∈ f(X), we therefore have r ∈ [f(x), f(y)] ⊂ f(X).

Remark 6.13. Being connected is a topological property which can be used to define
a simple topological invariant: if X is connected any Y is not, then X and Y are not
homeomorphic.

Theorem 6.14. If {Xi}i∈I is a family of topological spaces, then their product
∏
i∈I Xi

is connected if and only if every Xi is.

Proof. Suppose that the product is connected. Recall that the projection πj :
∏
i∈I Xi →

Xj is continuous for every j, so every Xj is connected by Theorem 6.10.
Let us show the converse in the case where I is finite. The infinite case is left

as Exercise 2.15. Moreover, we can reduce to the case |I| = 2 by induction since
(X1 × · · ·Xn−1)×Xn ' X1 × · · ·Xn, which is not difficult to show.

Thus, we are left to show that X×Y is connected when X and Y are. We will write
X × Y as a union of connected spaces with a common point and use Theorem 6.8. For
any point x ∈ X, we let Ax = {x} × Y . Then Ax is the image of the map Y → X × Y
given by y 7→ (x, y), so Ax is connected by Theorem 6.10. Similarly one shows that
By = X ×{y} is connected for all y ∈ Y . By Theorem 6.8, Ax ∪By is connected for all
y ∈ Y since (x, y) is contained in both Ax and By. Now clearly,

X × Y =
⋃
y∈Y

Ax ∪By,

and all the sets on the right hand side have the common point (x, y′) ∈ Ax, where y′ ∈ Y
can be taken to be anything. Therefore, their union is connected by Theorem 6.8.
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Since we have seen that R is connected, we obtain the following.

Corollary 6.15. Euclidian space Rn is connected for any n ∈ N.

Proof. It follows from Theorem 6.14 that Rn = R× · · · ×R is connected in the product
topology, so it suffices to check that the product topology and the standard topology
on Rn are the same; this may be done by applying Lemma 2.15 twice. The case n = 2
is Exercise 1.9.

Proposition 6.16. The n-sphere Sn and the n-torus Tn are connected for all n ∈ N.

Proof. If we can show that S1 is connected, then so is Tn = S1× · · · ×S1 for all n ≥ 1.
Let us show that Sn is connected. Recall from Proposition 5.11 that Sn \ {p} ' Rn,

where p is the north pole. It follows that Sn \ {p} is connected. Now one can show that
Sn \ {p} = Sn and so the result follows from Theorem 6.9.

Alternatively, one can show that Rn+1 \{0} is connected when n ≥ 1 (Exercise 2.5);
then the connectedness of Sn follows because Sn is the image of the continuous map
f : Rn+1 \ {0} → Rn+1 given by f(x) = x/‖x‖.

The following is an example of how to use connectedness as a topological invariant:

Proposition 6.17. For any n ∈ N, we have Sn 6' R.

Proof. Suppose that we had a homeomorphism f : Sn → R. Then f would restrict to a
homeomorphism if we removed the north pole p from Sn; that is, f |Sn\{p} : Sn \ {p} →
R \ {f(p)} is a homeomorphism. This implies that Rn ' Sn \ {p} ' R \ {f(p)}, but Rn
is connected while R \ {f(p)} is not connected, so they can not be homeomorphic, and
we obtain a contradiction.

Along the same lines, we mention the following result.

Theorem 6.18 (Brouwer’s invariance of dimension). Consider two non-empty open
sets U ⊂ Rn and V ⊂ Rm. If U ' V , then n = m.

The proof uses methods from algebraic topology and will not be covered here; see
e.g. [Hat02, Thm. 2.26]. A special case is contained in Exercise 2.6.

6.2 Paths and path-connectedness
Another natural notion of connectedness is obtained by requiring that all points in a
space can be connected to each other; what exactly to mean by this is contained in the
following definition.

Definition 6.19. Given two points x and y in a topological space X, a path (sv: väg)
from x to y is a continuous map γ : [0, 1] → X so that γ(0) = x, γ(1) = y. If for any
pair x, y in X there is a path from x to y, we say that X is path-connected (sv: bågvis
sammanhängande).

Proposition 6.20. A path-connected space is connected.
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Figure 14: The topologist’s sine curve.

Proof. We will prove the contrapositive, so let X = U∪V be a separation of X. Suppose
that γ : [0, 1] → X is any path. Then by Example 6.6 and Theorem 6.10 we see that
γ([0, 1]) is connected and by Lemma 6.7, γ([0, 1]) is contained entirely in U or in V .
This means that it is not possible to find paths from points in U to points in V .

Example 6.21. For x, y ∈ Rn, the path γ : [0, 1]→ Rn defined by

γ(t) = (1− t)x+ ty

is a path from x to y, so Rn is path-connected.

Example 6.22. A subset A of Rn is called convex if for any x, y ∈ A, the image of the
straight line γ(t) = (1 − t)x + ty belongs to A. As in the previous example, it follows
that convex subsets are path-connected and thus also connected.

Some examples of convex subsets are the upper half-plane

{(x1, . . . , xn) ∈ Rn | xn > 0}

and any ball B(x, r), x ∈ Rn, r > 0.

Example 6.23. A connected space does not need to be path-connected. A counter-
example is the so-called topologist’s sine curve

S = {(x, y) ∈ R2 | y = sin(1/x), x > 0} ∪ {(0, y) | −1 ≤ y ≤ 1},

that is, the closure of the graph of x 7→ sin(1/x) for x > 0; see Figure 14. For details,
see [Mun00, §24].

On the other hand, the following result provides a sufficient condition for a connected
space to be path-connected.

Definition 6.24. A topological space X is called locally (path-)connected at x ∈ X
if every neighbourhood of x contains a (path-)connected neighbourhood of x. If X is
locally (path-)connected at each point x ∈ X, we say that X is locally (path-)connected
(sv: lokalt (bågvis) sammanhängande).
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Theorem 6.25. If a topological space is connected and locally path-connected, then it
is path-connected.

To show this, it will be useful to have at our disposal the notion of connected
components.

6.3 Connected components and path-connected components
Recall that the subset (−2,−1) ∪ (1, 2) ⊂ R was not connected. It does however have
two natural subspaces, (−2,−1) and (1, 2) which are connected. We will now see how
to split every topological space into connected parts.

Proposition 6.26. Let X be a topological space. Define a relation ∼ on X by declaring
that x ∼ y if and only if there is a connected set A ⊂ X so that x, y ∈ A. Then ∼ is an
equivalence relation. The equivalence classes of ∼ are called the connected components
(sv: sammanhängande komponenter) of X.

Proof. We see that x ∼ x for every x, since {x} is connected.
If x ∼ y there exists a connected set A with x, y ∈ A. Then clearly y, x ∈ A so

y ∼ x.
If x ∼ y and y ∼ z we get connected sets A, B so that x, y ∈ A and y, z ∈ B. Let

C = A ∪B. Then x, z ∈ C, and C is connected by Theorem 6.8, so x ∼ z.

Proposition 6.27. Let {Ci}i∈I be the set of connected components of a topological
space X. Then

(i) X =
⋃
i∈I Ci and the Ci are pairwise disjoint,

(ii) if Y ⊂ X is connected, then Y ⊂ Ci for some i ∈ I,

(iii) Ci ⊂ X is connected for each i ∈ I, and

(iv) Ci is closed for all i ∈ I.

Proof. The first part is trivial since it it always true for equivalence classes of an equiv-
alence relation. Let Y ⊂ X be connected, and let x ∈ Y . Then y ∈ [x] for all other
y ∈ Y since Y is a connected set containing both x and y, so Y ⊂ [x], and [x] is one of
the Ci by definition.

Similarly, fix x ∈ Ci. Then for every other y ∈ Ci there a connected subset Ay so
that x, y ∈ Ay. Then Ay ⊂ Ci by (ii), and we now use our usual trick and find that
Ci =

⋃
y∈Ci Ay. Since all of the Ay contain x, we use Theorem 6.8 to conclude that Ci

is connected.
Finally, we will show that Ci is closed by showing that Ci = Ci. Once more, write

Ci = [x] for any x ∈ Ci. Let y ∈ Ci. Then Ci is a subset containing both x and y, and
Ci is connected by Theorem 6.9, so y ∈ [x] = Ci.
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Example 6.28. It follows from Proposition 6.27 that connected components are open
if there are only finitely many of them. This need not be the case though: we claim
that the connected components of Q are the singleton sets {x}. Indeed, let X be any
subset of Q containing at least two points, and suppose that x, y ∈ X, x 6= y. There
there is an irrational number r, x < r < y, and

X = (X ∩ (−∞, r)) ∪ (X ∩ (r,∞))

is a separation of X. We have already seen that the topology on Q is not the discrete
one, so the connected component {x} is not open for any x.

Remark 6.29. The number of connected components is a topological invariant Top →
Z ∪ {∞}. That is, if two topological spaces have a different number of connected
components, then they can not be homeomorphic.

We now turn back to our study of path-connected spaces, creating an analogous
construction of path-connected components. For this, it will first be useful to introduce
the following two operations on paths. For any path γ : [0, 1]→ X in a topological space
X, define the reverse of γ, denoted γrev, by γrev(t) = γ(1− t). Then γrev is continuous,
and if γ is a path from x to y, then γrev is a path from y to x. Let γ1, γ2 : [0, 1] → X
be two paths so that γ1(1) = γ2(0), so that γ1 is a path from x to y, and γ2 is a path
from y to z. We then form a path from x to z as follows: define the concatenation (sv:
konkatenering) γ1 ? γ2 : [0, 1]→ X by

γ1 ? γ2(t) =
{
γ1(2t), t ∈ [0, 1

2 ],
γ2(2t− 1), t ∈ [1

2 , 1].

We need to check that γ1 ? γ2 is actually continuous. This, however follows directly
from the closed-set version of the pasting lemma, see Remark 3.10, applied to the two
intervals [0, 1

2 ] and [1
2 , 1].

With this, we can define a relation on X by saying that x ∼path y if there is a path
from x to y.

Lemma 6.30. The relation ∼path is an equivalence relation. The equivalence classes
of ∼path are called the path-connected components (sv: bågvis sammanhängande kom-
ponenter) of X.

Proof. The constant path γ : [0, 1] → X, γ(t) = x, is continuous for any given x ∈ X,
so x ∼path x. The other conditions for an equivalence relation are obtained by using
the operations on paths introduced above.

We have the following analogue of Proposition 6.27 for path-connected components;
its proof is similar and omitted.

Proposition 6.31. The path-connected components are path-connected disjoint sub-
spaces of X whose union is X. If a subspace is path-connected, it is contained in a
path-connected component.
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Theorem 6.32. If a topological space X is locally path-connected, then its connected
components and path-connected components are the same.

The special case where X consists of a single path-connected component is exactly
Theorem 6.25.

Proof. Let C be a connected component of X, let x ∈ C, and let P be the path-
connected component containing x. Since P is also connected by Proposition 6.20,
Proposition 6.27 implies that P ⊂ C. We want to show that P = C; assume that
P 6= C, and let Q denote the union of all the path-connected components of X that
intersect C but are not equal to P . By the same argument, each of these path-connected
components will necessarily be contained in C, so we can write C = P ∪Q. Since P and
Q are disjoint non-empty sets, this would contradict the connectedness of C, if we can
show that both P and Q are open. This is where we need the locally path-connectedness
as X and we word the result as a lemma below.

Lemma 6.33. If X is locally (path-)connected, then all its (path-)connected components
are open.

Proof. Let us only show the result for locally path-connected spaces and leave the other
part of the claim as Exercise 2.10. Let P be a path-connected component, and let us
show that P = IntP , so let x ∈ P . Since X is locally path-connected, we can choose a
path-connected neighbourhood U of x. By Proposition 6.31, U ⊂ P , so x ∈ IntP .

Example 6.34. Any open subset of Rn is locally path-connected. Thus in particular,
connectedness and path-connectedness are equivalent for open subsets in Rn.

Remark 6.35. Let X be a topological space. Denote by π0(X) the set of path-connected
components of X. We remark that the cardinality of π0(X) is a topological invariant:
that is, if two topological spaces X and Y have different numbers of path-connected
components, then they are not homeomorphic.

7 Compactness and sequential compactness
7.1 Compactness
Definition 7.1. Let (X, T ) be a topological space.

(i) A collection U ⊂ T of open sets of called an open cover (sv: öppen övertäckning)
of X if X =

⋃
U∈U U .

(ii) The space X is called compact (sv: kompakt) if every open cover U of X has a
finite subcover, meaning that one can find finitely many open sets U1, . . . , Un ∈ U
so that X =

⋃n
i=1 Ui.
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We will often be concerned with compactness of subspaces of topological spaces.
In each such case, the subspace in question is called compact if it is compact in the
subspace topology.

For first-timers, the condition of being compact if often incorrectly read as “X has
a finite open cover”; this, however, is always trivially true, since X has the finite open
cover U = {X}, and so has nothing to do with compactness. To show that something
is compact, it is therefore essential that we consider any open cover U and show that
we can find a finite subcover of that.

Example 7.2. Every finite topological space is compact, since there are only finitely
many open sets. Thus, given any open cover U , the open cover U is itself a finite
subcover.

Example 7.3. The real line R is not compact: consider the open cover U consisting
of the open sets Un = (−n, n), n ∈ N. Clearly, it is impossible to choose finitely many
such Un and still have something that covers all of R.

Example 7.4. The subspace A = {1/n | n ∈ N} ⊂ R is not compact. One can see
that Un = {1/n} is an open set in the subspace topology, so letting U = {Un | n ∈ N},
we get an open cover of A. Clearly, we can not find a finite subcover, since any finite
subcover would cover only finitely many points of the infinite set A.

Example 7.5. Let X = A ∪ {0}, where A is the set from the previous example. We
claim that X is compact. Let U be an arbitrary open cover of X. Then there is an open
set U ∈ U so that 0 ∈ U . By definition of the topology on R, U will contain the points
1/n for all large enough n, say all n > N for some N . Since U is an open cover, we can
also find open sets U1, . . . , UN ∈ U so that 1/k ∈ Uk for all k = 1, . . . , N . We now see
that the collection U,U1, . . . , UN together form a finite subcover of X.

Example 7.6. The half-open interval (0, 1] ⊂ R is not compact since the open cover
U consisting of open sets Un = ( 1

n , 1], n ∈ N, does not have a finite subcover, by more
or less the same argument as in Example 7.3. Similarly, (0, 1) is not compact, since the
sets ( 1

n , 1−
1
n) form an open cover with no finite subcover.

Example 7.7. The closed interval [0, 1] ⊂ R is compact. This is a special case of the
Heine–Borel theorem, Theorem 7.25, which we show below.

In the following theorems, we will collect a number of properties of compact sets
that we will use over and over again.

Theorem 7.8. A closed subspace of a compact space is compact.

Proof. Let A ⊂ X be closed, and assume thatX is compact. To show that A is compact,
let U = {Ui}i∈I be an open cover of A. That is, every Ui is open in A in the subspace
topology. By definition, we can find for every i ∈ I open subsets Vi of X so that
Ui = A ∩ Vi. Since the Ui cover A, it follows that the family V = {Vi}i∈I ∪ {Ac} is an
open cover of X; open because A was assumed to be closed. Since X is compact, there is
a finite subcover Vi1 , . . . , Vin ∈ V of X. Going back, we see that Vi1 ∩A, . . . , Vin ∩A ∈ U
form a finite subcover of A, which is what we wanted to prove.
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Theorem 7.9. A compact subspace of a Hausdorff space is closed.

Proof. Assume that X is a Hausdorff space, and let A ⊂ X be compact. We want to
show that Ac is open, and we will use the usual trick of showing that every point in Ac
has an open neighbourhood contained entirely in Ac, so that Ac = IntAc.

Let x ∈ Ac be a fixed point (and notice that if Ac = ∅, there is little to prove). For
every point y ∈ A, we can find disjoint neighbourhoods Uy and Vy of x and y respectively,
since X is Hausdorff. Now the collection {A ∩ Vy}y∈A is an open cover of A, and since
A is compact, we can choose finitely many y1, . . . , yn so that {A∩ Vyi}i=1,...,n is a finite
subcover. In particular, A ⊂ Vy1 ∪ · · · ∪ Vyn .

Let Ux = Uy1 ∩ · · · ∩ Uyn . Now Ux is open by (T3), and Ux ⊂ Ac: if z ∈ Ux, then
z ∈ V c

yi for every i = 1, . . . , n, so z ∈ (Vy1 ∪ · · · ∪ Vyn)c ⊂ Ac.

Theorem 7.10. Let X and Y be topological spaces, assume that X is compact, and let
f : X → Y be a continuous map. Then the image f(X) ⊂ Y is compact. If furthermore
Y is Hausdorff, and f is a bijection, then f is a homeomorphism.

Proof. Let U = {Ui}i∈I be an open cover of f(X) and let us find a finite subcover.
Define Vi = f−1(Ui) for every i. Then {Vi}i∈I is an open cover of X which has a finite
subcover {Vi1 , . . . , Vin} since X is compact. Now clearly, the corresponding collection
{Ui1 , . . . , Uin} is a finite subcover of f(X).

Assume now that Y is Hausdorff and f is bijective. We have to show that f−1 is
continuous, so let U ⊂ X be open, and let us show that f(U) is also open. To do
so, note that U c is closed and thus compact by Theorem 7.8. By the first part of the
theorem, f(U)c = f(U c) is also compact. By Theorem 7.9, this means that f(U)c is
closed, so f(U) is open.

Corollary 7.11. If f : X → Y is continuous and injective, X is compact, and Y is
Hausdorff, then f : X → f(X) is a homeomorphism.

Proof. This follows from the theorem above since f(X) is Hausdorff by Exercise 1.11
and f : X → f(X) is a bijection.

Corollary 7.12. If p : X → Y is a quotient map, and X is compact, then so is Y .

Proof. Quotient maps are continuous and surjective, so the claim follows from Theo-
rem 7.10.

Example 7.13. If we trust Example 7.7 which says that [0, 1] is compact, it follows
that S1 is compact, since the map f : [0, 1]→ S1 given by f(x) = (cos(2πx), sin(2πx))
is continuous and surjective. Alternatively, one could combine Example 5.21 and Corol-
lary 7.12.

Example 7.14. A simple closed curve (sv: enkel sluten kurva) in a topological space
X is a continuous injective map f : S1 → X. If X is Hausdorff, then f : S1 → f(S1) is
a homeomorphism by Corollary 7.11.

Our next goal will be to see that any products of compact spaces are compact. To
do so, the following result will be useful.
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Lemma 7.15 (The tube lemma). Let X and Y be topological spaces where Y is compact.
If N is an open set of X×Y which contains {x0}×Y for some x0 ∈ X, then N contains
a “tube” W × Y , where W ⊂ X is a neighbourhood of x0.

Proof. Since N is open we can choose, by the definition of the product topology, for
any y ∈ Y an open neighbourhood Uy × Vy ⊂ N of (x0, y). Since the map Y → X × Y
given by y 7→ (x0, y) is continuous, its image {x0} × Y is compact by Theorem 7.10.
Therefore, since {Uy × Vy}y∈Y is an open cover of {x0}× Y , we can find y1, . . . , yn ∈ Y
so that {Uy1 × Vy1 , . . . , Uyn × Vyn} is a subcover of {x0} × Y . Now, let W =

⋂n
i=1 Uyi .

Then W is open by (T3), and is a non-empty neighbourhood of x0. By construction,
W × Y = W × (Vy1 ∪ · · · ∪ Vyn) ⊂ N .

Theorem 7.16. Let X1, . . . , Xn be topological spaces. Then
∏n
i=1Xi is compact if and

only if Xi is compact for all i = 1, . . . , n.

Proof. If the product is compact, then so is every Xi, since Xi is the image of a contin-
uous map; the projection.

For the converse, by induction it suffices to show that a product X × Y of two
compact spaces is compact. Let U be an open cover of X × Y . As in the proof of the
tube lemma, for every x ∈ X the space {x} × Y is compact. Therefore, its open cover
{({x} × Y ) ∩ U | U ∈ U} has a finite subcover by sets

({x} × Y ) ∩ Uxi ,

where i = 1, . . . , n, and all Uxi are in U . Let Nx =
⋃n
i=1 U

x
i . Then by the tube

lemma, there is a neighbourhood Wx of x so that Wx × Y ⊂ Nx. Now the collection
{Wx | x ∈ X} is an open cover of X, and since X is compact, we can find finitely many
elements x1, . . . , xm ∈ X so that {Wx1 , . . . ,Wxm} is a finite subcover. We claim that
the finite collection

{Uxji | i = 1, . . . , n, j = 1, . . . ,m} ⊂ U

covers X. To see this, let (x, y) ∈ X×Y be arbitrary. Then there is a j ∈ {1, . . . ,m} so
that x ∈Wxj , and (x, y) ∈ Nxj , and then by definition of Nxj , there is an i ∈ {1, . . . , n}
so that (x, y) ∈ Uxji .

Remark 7.17. The same result holds true even if one allows infinite products; this general
statement is known as Tikhonov’s theorem. We refer to [Mun00, §37] for the details.

Example 7.18. If we trust Example 7.13 which said that S1 is compact, it follows from
Theorem 7.16 that the n-torus Tn = S1 × · · · × S1 is also compact.

Before moving on, let us remark that one can also characterize compactness in terms
of closed sets rather than open sets:

Definition 7.19. A collection of subsets C ⊂ P(X) of a set X is said to have the finite
intersection property (sv: ?) if for every finite subcollection {C1, . . . , Cn} ⊂ C, one has⋂n
i=1Ci 6= ∅.
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Proposition 7.20. A topological space X is compact if and only if any collection C of
closed subsets of X with the finite intersection property satisfies

⋂
C∈C C 6= ∅.

Proof. Exercise.

7.2 Sequential compactness
In this section, we introduce a different notion of compactness that might look more
familiar.

Definition 7.21. A topological space is called sequentially compact (sv: följdkompakt)
if every sequence in it has a convergent subsequence.

Theorem 7.22. Let X be a topological space.

(i) If X is first countable, then compactness of X implies sequential compactness.

(ii) If X is a metric space with the metric topology, then compactness and sequential
compactness of X are equivalent.

Proof. Assume that X is first countable and compact. Let {xn} be any sequence and
let us show that it has a convergent subsequence. Assume first that there is a point
x ∈ X with the property that for any neighbourhood U of x, there are infinitely many
n so that xn ∈ U . Let {Bi} be a countable basis at x and let Uk =

⋂k
i=1Bi, which is a

neighbourhood of x. Then xn ∈ Uk for infinitely many n, so in particular we can choose
xnk ∈ Uk for some increasing sequence nk; we claim that {xnk} converges to x. For any
neighbourhood U there exists an N ∈ N so that BN ⊂ U . It follows that for all k with
nk > N ,

xnk ∈ Unk ⊂ UN ⊂ BN ⊂ U,

which says that xnk → x.
Suppose now that no x has the property we used above; that is, suppose that for

every x ∈ X there is a neighbourhood Ux of x so that only finitely many xn are in Ux.
We will use compactness of X to arrive at a contradiction. The collection {Ux | x ∈ X}
is a cover of X, so by compactness we get finitely many points y1, . . . , yn ∈ X so that
Uy1 , . . . , Uyn cover X. This is impossible though since then, at least one of the Uyi must
contain infinitely many of the xn.

Next we turn our attention to the metric case. First of all, recall that metric
spaces are first-countable, so we only need to show that sequential compactness implies
compactness. So, assume that (X, d) is a sequentially compact metric space.

Take any real number r > 0. Then the collection {Bd(x, r) | x ∈ X} is an open
cover which we claim has a finite subcover: if it didn’t, we could define a sequence {xn}
with the property that

xn+1 /∈
n⋃
i=1

Bd(xi, r).

This sequence has the property that d(xn, xm) > r for all n,m ∈ N, n 6= m, so it can
have no convergent subsequence (recall the characterization of convergence in metric
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spaces from Proposition 4.19), which is our contradiction, so there is a finite subcover
{Bd(xi, r)}i=1,...,n.

Now let U = {Ui}i∈I be an arbitrary open cover of X. We claim that there is a
real number r > 0 such that for every x ∈ X, Bd(x, r) ⊂ Ui for some i ∈ I. This will
complete the proof since then we could consider our finite subcover {Bd(xα, r)} from
before, and let iα be so that Bd(xα, r) ⊂ Uiα . Then clearly, the finitely many Uiα will
cover X.

So suppose once more for a contradiction that no such real number r > 0 exists.
That is, suppose that for every r > 0 there exists an x ∈ X so that Bd(x, r) is not
a subset of Ui for any i ∈ I. In particular, for each n ∈ N we can choose xn so that
Bd(xn, 1/n) is not a subset of any Ui. Choose a convergent subsequence {xnk} of {xn},
i.e. xnk → x for some x.

Then x ∈ Uj for some j ∈ I, and since Uj is open, we have Bd(x, 1/N) ⊂ Uj for
some N ∈ N. Now choose a K so large that d(xnk , x) < 1

2N for all k > K. Let moreover
k > K be large enough that nk > 2N . Then for every y ∈ Bd(xnk , 1/nk), we have

d(y, x) ≤ d(y, xnk) + d(xnk , x) < 1
nk

+ 1
2N <

1
2N + 1

2N = 1
N
,

so Bd(xnk , 1/nk) ⊂ Bd(x, 1/N) ⊂ Uj which is a contradiction.

7.3 Compactness in Rn

We will now turn to the promised characterisation of (sequentially) compact subsets in
Rn.

Theorem 7.23. A closed bounded interval [a, b] ⊂ R is compact.

Proof. Let {Ui}i∈I be an open cover of [a, b], and consider the set

M = {x ∈ [a, b] | [a, x] is covered by finitely many Ui}.

We are done if we can show that M = [a, b]. Clearly, a ∈ M . Let m = supM > a.
Clearly M is an interval, and we claim that m = b. Assume that m < b.

Since m ∈ [a, b), there is a j ∈ I with m ∈ Uj . Since Uj is open (in the subspace
topology of the standard topology on R), we get that (m−ε,m+ε) ⊂ Uj andm−ε ∈M
for some small enough ε > 0. This says that [a,m − ε] is covered by finitely many Ui,
so by adding Uj to this collection, we see that also [a,m + ε/2] is covered by finitely
many Ui. That is, m+ ε/2 ∈M , which contradicts the fact that m = supM .

Definition 7.24. A subset A ⊂ Rn is called bounded (sv: begränsad) if A ⊂ [−K,K]n
for some K > 0.

Theorem 7.25 (Heine–Borel). A set A ⊂ Rn is compact if and only if it is closed and
bounded.
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Proof. If A is compact, then A is closed by Theorem 7.9. If A were not bounded,
we could choose xk ∈ A with d(xk, 0) > k for all k ∈ N. Now clearly, the collection
Uk = A ∩ B(0, k), k ∈ N, is an open cover of A but for all k ∈ N we see that xk /∈ Uk,
so {Uk} has no finite subcover, contradicting compactness, so A is bounded.

If A is closed and bounded, A ⊂ [−K,K]n for some K > 0. Now [−K,K] is compact
by Theorem 7.23, so [−K,K]n is compact by Theorem 7.16. Thus A is compact by
Theorem 7.8 (notice that A is closed in the subspace topology on [−K,K]n).

Corollary 7.26. If X is compact and f : X → R is continuous, then there are points
x1 and x2 with f(x1) = sup f(X), f(x2) = inf f(X).

Proof. By Theorem 7.10, f(X) is compact, so by the Heine–Borel theorem, f(X) is
closed and bounded. Thus sup f(X) < ∞ and sup f(X) ∈ f(X), and similarly for
inf.

Corollary 7.27. The n-sphere Sn is compact.

Proof. Clearly, the n-sphere is bounded. Notice that we can describe the sphere as
Sn = (‖·‖)−1({1}), the pre-image of a closed set {1} under the norm map ‖·‖ : Rn+1 →
R, which is continuous. Thus Sn is closed, and therefore compact by the Heine–Borel
theorem.

Example 7.28. The genus n surface from Example 5.25 is compact for every n, since
the 4n-gon Xn is closed and bounded, thus compact, and quotients of compact spaces
are compact by Corollary 7.12.

Theorem 7.29 (Bolzano–Weierstrass). A set A ⊂ Rn is sequentially compact if and
only if it is closed and bounded.

Proof. This follows immediately by combining Theorem 7.22 and the Heine–Borel the-
orem.

We also now have the necessary tools to prove a claim we gave in Example 5.17.
Recall that we write Dn for the closed unit ball in Rn.

Proposition 7.30. The quotient Dn/∂Dn is homeomorphic to Sn.

Proof. The strategy will be to construct a map ψ̂ : Dn/∂Dn → Sn explicitly and then
apply the last part of Theorem 7.10.

First of all, notice that Dn is closed and bounded, thus compact by the Heine–Borel
theorem. Therefore Dn/∂Dn is compact since quotients of compact spaces are compact.
On the other hand, Sn is Hausdorff because it is a subspace of a Hausdorff space. It
therefore suffices to construct ψ̂, and show that it is a continuous bijection.

Recall from Example 5.5 that there exists a homeomorphism ϕ : Bn → Rn from the
open ball Bn = B(0, 1) to Rn and from the proof of Proposition 5.11 that the inverse
of the stereographic projection provides a homeomorphism g : Rn → Sn \ {p}, where p
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is the north pole. Then also g ◦ ϕ : Bn → Sn \ {p} is a homeomorphism. Now define
ψ : Dn → Sn by

ψ(x) =
{

(g ◦ ϕ)(x), if x ∈ Bn,
p, if x ∈ ∂Dn.

See Figures 15–17 for an illustration of the map ψ. We claim that ψ is continuous,
which will then complete the proof: since ψ is constant on ∂Dn, Lemma 5.18 provides
us with a continuous map ψ̂ : Dn/∂Dn → Sn, which is continuous if ψ is, and which is
bijective by construction.

To show that ψ is continuous, we will show that it is continuous at each point. It is
continuous on each point in Bn, since its restriction to Bn is continuous, so it suffices
to show that it is continuous at every point in ∂Dn, so let x ∈ ∂Dn, so let U ⊂ Sn be a
neighbourhood of f(x) = p, and let us find a neighbourhood V of x so that ψ(V ) ⊂ U .
Since U is open, there is a k, 0 < k < 1 so close to 1 that

{y ∈ Sn | k < yn+1 ≤ 1} ⊂ U.

Notice that for z ∈ Bn, by the proof of Proposition 5.11, the (n+ 1)’st coordinate of

y = g ◦ ϕ(z) = g

(
z

1− ‖z‖

)
is exactly

yn+1 = 1− t
(

z

1− ‖z‖

)
= 1− 2

1 + (‖z‖/(1− ‖z‖))2 = 2‖z‖ − 1
2‖z‖2 − 2‖z‖+ 1 .

It follows that there is K, 0 < K < 1 so close to 1 so that all z ∈ Dn with ‖z‖ > K
satisfy yn+1 > k. Therefore, if we let V = {z | ‖z‖ > K}, we have

ψ(V ) ⊂ {y ∈ Sn | k < yn+1 ≤ 1} ⊂ U.

7.4 Local compactness and one-point compactification
In this section we will see how we can turn a Hausdorff space into a compact space by
adding one more point, in a way that the open sets of the original space are still open.
We will also see that the new space is Hausdorff itself, as long as it looks sufficiently
much like a compact space close to points.

Definition 7.31. Let (X, T ) be a Hausdorff space. The one-point compactification (sv:
enpunktskompaktifiering) of X is the space X̂ = X ∪ {?} obtained from X by adding a
single point, called ?, equipped with the topology

T̂ = T ∪ {(X \K) ∪ {?} | K ⊂ X compact}.

The point ? is often called the point at infinity.
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Figure 15: The closed unit ball D2 and
a number of contours in B2 ⊂ D2.

Figure 16: The result of applying ϕ :
B2 → R2.

Figure 17: The contours in S2 obtained by
the map g ◦ ϕ.
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Proposition 7.32. The collection T̂ is actually a topology on X̂.

Proof. Exercise 3.1.

Proposition 7.33. The one-point compactification is compact.

Proof. Let U = {Ui}i∈I be an open cover of X̂ and let us show that it has a finite
subcover. There is a j ∈ I so that ? ∈ Uj . Clearly, Uj ∈ T̂ \ T , so we see that
Uj = (X \K) ∪ {?} for a compact set K ⊂ X.

Now clearly, {Ui∩K}i∈I is an open cover ofK, so by compactness there are i1, . . . , in
so that {Ui1∩K, . . . , Uin∩K} coverK by compactness. In particular, K ⊂ Ui1∪· · ·∪Uin .
Now

X̂ = X \K ∪ {?} ∪K = Uj ∪K ⊂ Uj ∪ Ui1 ∪ · · · ∪ Uin ,

so we have found a finite subcover.

Definition 7.34. A topological space is called locally compact (sv: lokalt kompakt) if
every point x ∈ X has a neighbourhood contained in a compact subspace. I.e. if there
exists a neighbourhood U of x and a compact set K ⊂ X so that x ∈ U ⊂ K ⊂ X.

Proposition 7.35. If X is a locally compact Hausdorff space, then its one-point com-
pactification is Hausdorff.

Proof. Let x, y ∈ X̂ be given, and assume that x 6= y. If x, y ∈ X, then we are done
since X is Hausdorff and the open sets in X̂ include those that are open in X.

So, assume that x ∈ X and y = ?. Using the definition of locally compactness, let
U ⊂ X be a neighbourhood at x, and let K ⊂ X be compact, so that x ∈ U ⊂ K ⊂ X.
It follows that U ∩ ((X \K) ∪ {?}) = ∅, and since (X \K) ∪ {?} is a neighbourhood of
?, we are done.

Before going into details on what the one-point compactification looks like, let us
provide some examples of locally compact spaces.

Example 7.36. All compact spaces are locally compact.

Example 7.37. Euclidean space Rn is locally compact. For instance, for any x, B(x, 1)
is compact (by the Heine–Borel theorem) and contains B(x, 1).

Now as the inquisitive reader will have noticed, the word “locally” used in our
definition of “locally compact” does not quite match up with how we used the word
when talking about locally connected and locally path-connected spaces. The next
result says that for Hausdorff spaces, the use of the word “local” will agree in these
various cases.

Theorem 7.38. Let X be a Hausdorff space. Then X is locally compact if and only if
for every x ∈ X and every neighbourhood U of x, there is a neighbourhood V of x so
that V is compact and V ⊂ U .

Proof. Exercise 3.4.
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We can use this to create a ton of locally compact spaces as subspaces of locally
compact spaces. As for compact spaces, whenever we say that a subset of a topological
space is locally compact, we mean that it is locally compact in the subspace topology.

Proposition 7.39. If X is a locally compact space, and let A ⊂ X be a subspace. Then
A is locally compact if A is closed. If furthermore X is Hausdorff, then A is locally
compact if A is open.

Proof. Suppose that A is closed, and let x ∈ A. Let K and U be a compact subspace
and neighbourhood of x respectively, with x ∈ U ⊂ K ⊂ X. Now A ∩ K is closed
and thus compact by Theorem 7.8. Also, U ∩ A is a neighbourhood of x in A, and
x ∈ U ∩A ⊂ K ∩A ⊂ A, so A is locally compact.

Assume now that X is Hausdorff, let A be open, and let x ∈ A. Then A is a
neighbourhood of x, and by Theorem 7.38 we obtain a neighbourhood V of x so that
V is compact, and V ⊂ A, so A is locally compact.

Equipped with a number of examples, we now look at concrete examples of one-point
compactifications. First we show that one-point compactifications are in a certain sense
unique.

Proposition 7.40. Let X be a locally compact Hausdorff space. Suppose that Y has
the properties that

1. X is a subspace of Y ,

2. Y \X consists of a single point, and

3. Y is compact and Hausdorff.

If Y ′ is another space with the same properties, then Y ' Y ′.

Proof. Exercise 3.5.

Proposition 7.41. If Y is a compact Hausdorff space, then Ŷ \ {x} ' Y for any x ∈ Y .

Proof. This follows from Proposition 7.40 since both Ŷ \ {x} and Y have the listed
properties, where, in the notation of the proposition, X = Y \ {x}.

Proposition 7.42. We have R̂n ' Sn.

Proof. This follows immediately from Proposition 7.41 and Proposition 5.11.

One way to picture this result is shown in Figure 18, which also illustrates why we
call ? a “point at infinity”.

Our next result says that under certain conditions, continuous maps between Haus-
dorff spaces extend to the one-point compactifications.

Definition 7.43. A continuous map f : X → Y is called proper (sv: ?)proper map? if
f−1(K) is compact, whenever K ⊂ Y is compact.
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Figure 18: Illustration of R̂ ' S1: we add a point at infinity and tie up the entire real
line so it connects at this point.

Proposition 7.44. Let X and Y be Hausdorff spaces, let f : X → Y be a proper map,
and let X̂ = X ∪{?X} and Ŷ = Y ∪{?Y } denote the one-point compactifications. Then
the map f̂ : X̂ → Ŷ given by

f̂(x) =
{
f(x), if x ∈ X,
?Y , if x = ?X ,

is continuous.

Proof. Let U ⊂ Ŷ be open. If U ⊂ Y , then f̂−1(U) = f−1(U) is open since f is
continuous. On the other hand, if ?Y ∈ U , we know that U = (Y \K) ∪ {?Y } for some
compact set K in Y . Then

f̂−1(U) = f−1(Y \K) ∪ {?X} = (X \ f−1(K)) ∪ {?X}.

Since f is proper, f−1(K) is compact in X, so this says that f̂−1(U) is open.

We end this section with a discussion of an example of a space that is not locally
compact. Consider the vector space

R∞ = {x : N→ R} = {{xn}n∈N | xn ∈ R}

of all sequences of real numbers. For any p ∈ [1,∞) and x ∈ R∞, define the p-norm of
x by

‖x‖p =
( ∞∑
n=1
|xn|p

)1/p

,

and the ∞-norm by
‖x‖∞ = sup

n∈N
{|xn|}.

Now for any p, 1 ≤ p ≤ ∞, notice that ‖·‖p actually defines a norm, meaning that
‖x‖p ≥ 0 for all x ∈ R∞, that ‖x‖p = 0 only if x is the constant sequence xn = 0,
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that ‖rx‖p = |r|‖x‖p for all r ∈ R, x ∈ R∞, and that ‖x + y‖p ≤ ‖x‖p + ‖y‖p for all
x, y ∈ R∞. Put

`p = {x ∈ R∞ | ‖x‖p <∞}.

The norm can be used to define a metric on `p by dp(x, y) = ‖x − y‖p, which in turn
can be used to give `p the metric topology.

Proposition 7.45. The topological space `p is not locally compact for any 1 ≤ p ≤ ∞.

Proof. Let U be any neighbourhood of the constant sequence 0 ∈ `p. We claim that
there is no compact subspace containing U . Since U is open, there is an ε > 0 so that
Bdp(0, ε) ⊂ U . For each n ∈ N, define a sequence δn = {xm}m∈N by

xm = δm,n =
{

1, if m = n,

0, otherwise.

Then for any n ∈ N, we have ‖δn‖p = 1 for all p, 1 ≤ p ≤ ∞, so δn ∈ `p.
Put yn = ε

2δn. Then for all n and p, ‖yn‖p = ε
2 , so yn ∈ Bdp(0, ε). We claim

that the sequence of sequences {yn} has no convergent subsequence; this then means
that Bdp(0, ε) is not contained in any sequentially compact space, and we obtain the
proposition from Theorem 7.22.

To see that {yn} has no convergent subsequence, notice that for n,m ∈ N, n 6= m,
we have

dp(yn, ym) = ε

2dp(δn, δm) = ε

2‖δn − δm‖p =
{
ε
221/p, p ∈ [1,∞),
ε
2 , p =∞.

In either case, dp(yn, ym) ≥ ε
2 , so {yn} has no convergent subsequence.

8 Separation and countability axioms
We encountered the first separation axioms in Section 4.2; in this section we introduce
further notions of separations. We have already seen how the property of being T2 allows
for many useful results, and in the same spirit we will see how having more fine-grained
separation allows for further characterisation of topological spaces.

8.1 Separation – part 2
Definition 8.1. A topological space is called regular (sv: reguljärt) if for every closed
set F ⊂ X and any point x ∈ X \ F there exist open sets Ux, UF ⊂ X so that x ∈ Ux,
F ⊂ UF , and Ux ∩ UF = ∅.

A regular T1-space is called T3.

Notice that T3-spaces are Hausdorff by Proposition 4.9.

Proposition 8.2. Metric spaces are regular.
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Proof. Let (X, d) be a metric space, let F ⊂ X be closed, and let x ∈ X \ F . Since
X \ F is open, there is an ε > 0 so that Bd(x, ε) ⊂ X \ F . Now let

V =
⋃
y∈F

B(y, ε/2).

Then V is open and F ⊂ V . We claim that V ∩ B(x, ε/2) = ∅ which completes the
proof. Assume that z ∈ V ∩B(x, ε/2). Then there is a y ∈ F with d(z, y) < ε/2. Since
also d(x, z) < ε/2, the triangle inequality implies that

d(x, y) ≤ d(x, z) + d(y, z) < ε,

which is impossible by definition of ε.

Example 8.3. Consider the set RK from Example 2.17. Then RK is Hausdorff since R
is Hausdorff, and since the topology on RK is finer than the standard topology. Now K
is closed in RK by definition of the K-topology but it is impossible to separate 0 and K
with disjoint open sets: assume that we could, and let U and V be the corresponding
neighbourhoods of 0 and K respectively. Choose a basis element B with 0 ∈ B ⊂ U .
NowB must be of the form (a, b)\K since all intervals around 0 contain elements fromK.
Now take n so large that 1/n ∈ (a, b) and choose a basis element B′ with 1/n ∈ B ⊂ V .
Then B must be an interval, and clearly this interval intersects (a, b) \K, so U and V
intersect.

At this point it is worth mentioning the existence of [SS70], the standard reference
for answers to questions of the form “What topological space has property A but not
property B?”.

Definition 8.4. A topological space X is called normal (sv: normalt) if for all disjoint
closed sets F,G ⊂ X there are open sets UF , UG with F ⊂ UF , G ⊂ UG and UF∩UG = ∅.
A T1-space which is normal is called T4.

Proposition 8.5. Metric spaces are normal.

Proof. Exercise.

Proposition 8.6. Compact Hausdorff spaces are normal.

Proof. Exercise 3.3.

Example 8.7. As before, Proposition 4.9 implies that T4-spaces are T3, but just as we
saw above that a T2-space need not be T3, a T3-space need not be T4: an example of a
T3-space which is not T4 is the so-called Sorgenfrey plane Rl×Rl, where Rl was defined
in Example 2.16. For details, see [Mun00, §31, Example 3].

Lemma 8.8. Let X be T1. Then

(i) X is T3 if and only if for each x ∈ X and every neighbourhood U of x, there is a
neighbourhood V of x with x ∈ V ⊂ U , and
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(ii) X is T4 if and only if for every closed set F ⊂ X and every open U ⊂ X with
F ⊂ U there is an open set V ⊂ X with F ⊂ V ⊂ V ⊂ U .

Proof. Assume that X is T3, let x ∈ X, and let U be a neighbourhood of x. Then
F = X \U is closed and we can find open disjoint subsets V,W ⊂ X so that x ∈ V and
F ⊂W . We claim that V ∩F = ∅ from which it follows that V ⊂ U . If y ∈ F , then W
is a neighbourhood of y which does not intersect V so y /∈ ∂V , and y /∈ V so y /∈ V .

For the converse, let x ∈ X and let F ⊂ X be closed with x /∈ F . Then X \ F is a
neighbourhood of x, so we can find a neighbourhood V of x with x ∈ V ⊂ V ⊂ X \ F .
That is, X \ V is open, contains F , and is disjoint from V .

For the second part of the theorem, one uses the same argument with x replaced by
a general closed set.

Theorem 8.9. A subspace of a Hausdorff-space is Hausdorff, and a product of Haus-
dorff spaces is Hausdorff. A subspace of a T3-space is T3, and a product of T3-spaces is
T3.

Proof. The first part of the Theorem was Exercise 1.11.
Likewise, in Exercise 1.12 it is claimed that the product of two Hausdorff spaces is

Hausdorff. Let us include a proof of the general case here: Let {Xi}i∈I be Hausdorff
spaces, and let x, y ∈

∏
i∈I Xi, x 6= y. Now for some i ∈ I, xi 6= yi, so choose U and V ,

neighbourhoods of xi and yi respectively with U ∩ V = ∅. Then π−1
i (U) and π−1

i (V )
are disjoint neighbourhoods of x and y respectively.

Let Y ⊂ X be a subset of a T3-space X. By the first part, Y is Hausdorff so in
particular Y is T1. Let y ∈ Y be a point, and let F ⊂ Y be closed in Y . Let F be the
closure of F in X. Then F ∩ Y = F so y /∈ F . By the T3-property for X, we get open
sets Uy, UF with y ∈ Uy, F ⊂ UF and Uy ∩ UF = ∅. Now the sets Y ∩ Uy and Y ∩ UF
do the job; they are open in Y , disjoint, y ∈ Y ∩ Uy and F ⊂ Y ∩ UF .

Let {Xi}i∈I be T3-spaces and let X =
∏
i∈I Xi. As before, X is T1 since X is T2.

Let x = (xi)i∈I ∈ X be a point. We will use Lemma 8.8 to show that X is T3, so let
U be any neighbourhood of x. By definition of the product topology we can find open
sets Ui in Xi so that x ∈

∏
i∈I Ui ⊂ U , and so that Ui = Xi for all but finitely many

i ∈ I. Since each Xi is T3, Lemma 8.8 provides us with neighbourhoods Vi of xi so
that xi ∈ Vi ⊂ Vi ⊂ Ui; if Ui = Xi we simply take Vi = Xi. That is, Vi = Xi for all
but finitely many i so that V =

∏
i∈I Vi is open in X, and by Proposition 4.7, we have

V =
∏
i∈I Vi. Altogether we see that x ∈ V ⊂ V ⊂ U , so X is T3.

8.2 Second countability
Definition 8.10. A topological space X is called second-countable (sv: ?) if the topol-
ogy on X has a countable basis.

Notice that a second-countable space is always first-countable.

Example 8.11. Euclidean space Rn is second-countable (Exercise 3.7).

Theorem 8.12. Let X be second-countable. Then
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(i) every open cover of X has a countable subcover, and

(ii) there is a countable dense subset of X.

A general space which has the property in (i) is called Lindelöf , and a space with
the property in (ii) is called separable (sv: separabelt). The theorem then says that a
second-countable space is Lindelöf and separable.

Proof. Let {Bn}n∈N be a countable basis for the topology on X.
Let U be an open cover of X, and construct a countable cover as follows: for every

n ∈ N, we put Un = ∅ if Bn is not contained in any U ∈ U , and otherwise we let Un = U
for some U with Bn ⊂ U . We need to show that {Un} cover X. So, let x ∈ X. Then
there is a U ∈ U so that x ∈ U , and since U is open, there is a basis element Bn with
x ∈ Bn ⊂ U . Now x ∈ Bn ⊂ Un, so x ∈

⋃
n∈N Un, which means that the {Un} cover X.

For the second part, choose xn ∈ Bn for every n ∈ N. For each x ∈ X \ {xn}n∈N,
and for any neighbourhood U of x, there is an n with x ∈ Bn ⊂ U . this implies that
x ∈ {xn}n∈N, and since x was arbitrary, {xn}n∈N = X.

Example 8.13. Let X be an uncountable set with the discrete topology. Then {{x} |
x ∈ X} is an open cover of X which has no countable subcover, so X is not second-
countable.

Theorem 8.14. A second-countable T3-space is normal (and thus T4).

Proof. Let X be a T3-space with a countable basis {Bn}n∈N, and let F and G be closed
in X. Since X is T3, every x ∈ F has a neighbourhood Ux which is disjoint from G.
By Lemma 8.8, we can also find a neighbourhood Vx of x with Vx ⊂ Ux, and finally
we can find a basis element Bn so that x ∈ Bn ⊂ Vx. Carrying out this procedure for
every x ∈ F , we obtain a countable family of basis elements {BF

k }k∈N that covers F
and whose closures do not intersect G. Now, let ŨF =

⋃
k∈NB

F
k .

By doing the same for all points in G, we find a countable family {BG
k }k∈N that

covers G and such that the closure of each basis element does not intersect F , and we
let ŨG =

⋃
k∈NB

G
k . Now ŨF and ŨG are open and contain F and G respectively, but

they need not be disjoint.
What we do instead is essentially remove all the problematic points from ŨF and

ŨG as follows: for every given n ∈ N, define

B̂F
n = BF

n \
n⋃
k=1

BG
k , B̂G

n = BG
n \

n⋃
k=1

BF
k

Then B̂F
n and B̂G

n are open for all n since we remove from an open set something closed
(and in general, such a difference can be written as the intersection of two open sets).
Let

UF =
⋃
n∈N

B̂F
n , UG =

⋃
n∈N

B̂G
n .

Then the sets UF and UG are open, and we claim that F ⊂ UF , G ⊂ UG, and UF ∩UG =
∅.
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If x ∈ F , then x ∈ BF
n for some n. Since none of the BG

k intersect F , we know that
x does not belong to any of these, so it follows that x ∈ B̂F

n ⊂ UF . Now G ⊂ UG by the
same logic.

To see that UF and UG are disjoint, let x ∈ UF ∩ UG. Then x ∈ B̂F
n ∩ B̂G

m for some
n and m. We see that this is impossible by definition of B̂F

n and B̂G
m by considering the

two cases n ≤ m and m ≤ n.

8.3 Urysohn’s lemma
By definition, a T4-space is a space where disjoint closed sets can be separated by
disjoint open sets containing the closed sets. In this section, we mention Urysohn’s
lemma, which says that disjoint closed sets can be separated by continuous functions,
in a very concrete sense.

Lemma 8.15 (Urysohn’s lemma). Let X be a T4-space, let F and G be closed disjoint
subsets, and let a, b ∈ R be real numbers with a ≤ b. Then there is a continuous function
f : X → [a, b] so that f(F ) = {a}, f(G) = {b}.

The proof is rather involved and unlike all other results that we have encountered so
far, it is not sufficient to simply juggle definitions. Instead of giving a proof, which can
be found in [Mun00, §33], we will provide an example of its power in the next section.

Let us end this section with a different application of Urysohn’s lemma. Notice that
so far, most of the concrete examples of topological spaces that we have considered
have all been metric spaces. Likewise we know that any given set can be given both a
topology and a metric, so there is a natural question: given a topological space (X, T ),
is there a metric d on X so that T is the metric topology? If so, we say that X is
metrisable (sv: metriserbart).

Example 8.16. All metric spaces are metrisable.

Example 8.17. All products of metrisable spaces are metrisable by Exercise 1.16.

Example 8.18. Any discrete topological space is metrisable by Example 2.23.

If a topological space X is metrisable, it has all the topological properties that
general metric spaces have. For instance, all metrisable spaces are normal by Proposi-
tion 8.5. Therefore a space which is not normal is also not metrisable, and such spaces
exist.

Now Urysohn’s metrisation theorem provide a sufficient condition for a topological
space to be metrisable. A proof can be found in [Mun00, §34].

Theorem 8.19 (Urysohn’s metrisation theorem). All second-countable T3-spaces are
metrisable.

Notice that the converse is not true: an uncountable metric space with the discrete
metric (Example 2.23) is not second-countable (Example 8.13).
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9 Manifolds
The concept of a manifold is central in all of differential geometry and mathematical
physics; roughly, a manifold is a topological space which locally looks like Rn. Another
way of viewing it is that a manifold is something which is obtained by gluing together
copies of Rn. As such, its usefulness in for instance geometry comes from the fact that we
can transfer everything we know about calculus on Rn to this much more general family
of topological spaces, as long as one ensures that the gluing is sufficiently compatible
with calculus. Now, we will not be discussing calculus here but rather take a look at
manifolds from a purely topological point of view.

9.1 Topological manifolds
Definition 9.1. A topological spaceX is called locally Euclidean (sv: lokalt euklidisk) if
there is an n ∈ N so that every point in X has a neighbourhood which is homeomorphic
to Rn.

Definition 9.2. An n-dimensional manifold (sv: mångfald) or simply an n-manifold
is a locally Euclidean second-countable Hausdorff space. The n refers to the n of Defi-
nition 9.1.

Really what we have defined above is a topological manifold; since this is the only
kind of manifold we will encounter, we will simply call them “manifolds”.

Example 9.3. Euclidean space Rn is an n-manifold since Rn itself is a neighbourhood
of all of its points.

Example 9.4. The n-sphere Sn is an n-manifold. We know by now that a subspace
of a Hausdorff space is Hausdorff, and it is not difficult to see that a subspace of a
second-countable space is itself second-countable, so we only need to see that Sn is
locally Euclidean.

If x ∈ Sn is a point different from the north pole p = (0, . . . , 0, 1), then Sn \ {p} is a
neighbourhood of x which is homeomorphic to Rn by Proposition 5.11. If x = p, let q
denote the south pole. Then Sn \ {q} is a neighbourhood of x which is homeomorphic
to Rn by Remark 5.12.

Lemma 9.5. The product of an n-manifold and an m-manifold is an (n+m)-manifold.

Proof. Exercise 4.1.

Example 9.6. The n-torus Tn is an n-manifold by Lemma 9.5 and Example 9.4.

Example 9.7. The genus g surfaces Σg from Example 5.25 are 2-manifolds. Our
definition of Σg is unprecise enough that this is slightly painful to prove; it should,
however, be a very reasonable claim, given Figures 11-13.

59



9.2 Embeddings of manifolds
Notice that by definition, Sn can be embedded in Rn+1. Similarly, Tn can be embedded
in R2n, and Figures 11-13 suggest that Σg can be embedded in R3.

In this section we will see how to use Urysohn’s lemma to show the following result.

Theorem 9.8. Any compact m-manifold can be embedded in RN for some N ∈ N.

Definition 9.9. Let X be a topological space and f : X → R a function. The support
(sv: stöd) of f is the set

supp(f) = {x | f(x) 6= 0}.

Definition 9.10. Let X be a topological space, and let {U1, . . . , Un} be an open cover
of X. A family {ϕ1, . . . , ϕn} of continuous functions ϕi : X → [0, 1] is called a partition
of unity (sv: partition av enheten) dominated by {Ui} if

• supp(ϕi) ⊂ Ui for i = 1, . . . , n, and

•
∑n
i=1 ϕi(x) = 1 for all x ∈ X.

Theorem 9.11. Let X be a T4-space, and let {U1, . . . , Un} be a finite open cover. Then
there exists a partition of unity dominated by {U1, . . . , Un}.

Proof. We first show that we can find an open cover {V1, . . . , Vn} so that Vi ⊂ Ui for
all i. Consider the set A1 = X \ (U2 ∪ · · · ∪ Un). This is clearly closed, and A1 ⊂ U1
since {Ui} is a cover. Since X is T4, by Theorem 8.8 we obtain an open set V1 so
that A1 ⊂ V1 ⊂ V1 ⊂ U1, and in particular {V1, U2, . . . , Un} is still an open cover. We
proceed now by finite induction: suppose that we have constructed open sets Vi, i < k,
so that Vi ⊂ Ui, and so that {V1, . . . , Vk−1, Uk, . . . , Un} covers X. Then let

Ak = X \ (V1 ∪ · · · ∪ Vk−1 ∪ Uk+1 ∪ · · · ∪ Un).

Then Ak ⊂ Uk, and we find as above an open set Vk with Ak ⊂ Vk ⊂ Vk ⊂ Uk so that
{V1, . . . , Vk, Uk+1, . . . , Un} covers X.

Now go through the same procedure again to obtain an open cover {W1, . . . ,Wn}
with Wi ⊂ Vi for all i. Applying Urysohn’s lemma for each i = 1, . . . , n, we find
continuous functions ψi : X → [0, 1] so that f(X \ Vi) = {0} and f(Wi) = {1}. It
follows that

supp(ψi) ⊂ Vi ⊂ Ui.

Since {Wi} is a cover of X, it follows that ψ(x) =
∑n
i=1 ψi(x) > 0 for all x. Now define

ϕi : X → [0, 1] by

ϕi(x) = ψi(x)
ψ(x) .

We then have supp(ϕi) = supp(ψi) ⊂ Ui, and for every x ∈ X, we have
n∑
i=1

ϕi(x) = 1
ψ(x)

n∑
i=1

ψi(x) = 1,

so {ϕi} is a partition of unity dominated by {U1, . . . , Un}.
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Proof of Theorem 9.8. Let X be a compact m-manifold, and choose for every x ∈ X a
neighbourhood Ux of x so that Ux ' Rm. These will cover X, so since X is compact, we
obtain a finite open cover {U1, . . . , Un} together with homeomorphisms gi : Ui → Rm
for every i. Since X is compact and Hausdorff, X is T4 by Proposition 8.6, so by
Theorem 9.11 we can find a partition of unity {ϕi} dominated by {Ui}. Let Ai =
supp(ϕi), note that X = Ui ∪ (X \ Ai), and define for each i = 1, . . . , n a function
hi : X → Rm by

hi(x) =
{
ϕi(x)gi(x), for x ∈ Ui
0, for x ∈ X \Ai.

Notice that hi is well-defined since ϕi(x)gi(x) = 0 for x ∈ X \ Ai, and hi is continuous
by Lemma 3.9; here one has to check that x 7→ ϕi(x)gi(x) is continuous on Ui which
can be seen by Theorem 4.24. The desired embedding will be the map

F : X → R× · · · × R︸ ︷︷ ︸
n factors

×Rm × · · · × Rm︸ ︷︷ ︸
n factors

' R(m+1)n

given by
F (x) = (ϕ1(x), . . . , ϕn(x), h1(x), . . . , hn(x))

Now F is continuous since the ϕi and hi are, so since X is compact, it follows from
Corollary 7.11 that F is an embedding if we can show that F is injective.

Suppose that F (x) = F (y). Then ϕi(x) = ϕi(y) and hi(x) = hi(y) for all i. Since∑n
i=1 ϕi(x) = 1, there is an i with ϕi(x) > 0, so ϕi(y) > 0 as well, which implies that

x, y ∈ supp(ϕi) ⊂ Ui. Now

ϕi(x)gi(x) = hi(x) = hi(y) = ϕi(y)gi(y),

so we must also have gi(x) = gi(y). Since each gi was a homeomorphism, this implies
that x = y.

In fact, it turns out that the condition of Theorem 9.8 that the manifold is compact
is not necessary. Moreover, one could ask how small it is possible to choose N in the
theorem; in the proof we saw that anm-manifold X can be embedded in R(m+1)n, where
n is the cardinality of an open cover of X whose constituent open sets are homeomorphic
to Rm. As the examples in the beginning of this section illustrate however, we should
be able to do better: Sm is an m-manifold which can be covered by 2 such open sets,
so the theorem provides us with an embedding Sm → R2(m+1), but we also know that
there is also an embedding Sm → Rm+1.

The following result extends Theorem 9.8 to the non-compact case and provides an
explicit bound on the required dimension. We do not include a proof and refer instead
to [Mun00, §50, Exercises 6–7].

Theorem 9.12. Any m-manifold can be embedded in R2m+1.

Recall that manifolds are assumed to be both Hausdorff and second-countable. Since
we argued that manifolds are natural objects in geometry, we should provide some
motivation for these requirements. Now as we have seen plenty of times, the property
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of being Hausdorff is necessary to do any kind of calculus – for instance, without this
condition, one would have manifolds with convergent sequences but no unique limit
(compare with Proposition 4.20).

It is less clear though, why we require manifolds to be second-countable, but it
turns out that if we did not add this condition, Theorem 9.12 would be false; a counter-
example is the so-called long line – see [Mun00, §24, Exercise 12]. Thus insofar that
one considers embedding into Euclidean space to be a sufficient amount of motivation,
second-countability is sufficient.

9.3 Paracompactness
As it turns out, one of the most useful tools for studying manifolds are the partitions
of unity that we encountered in the previous section. In the proof of Theorem 9.8 –
where they played an essential role – we saw that these exist for compact manifolds
but many interesting manifolds are not compact; second-countability provides us with
something almost as good. Here, we will illustrate how, referring to [Mun00] for most
of the proofs.

Definition 9.13. Let X be a topological space. A collection U of subsets of X is called
locally finite (sv: lokalt ändlig) if every point of X has a neighbourhood that intersects
only finitely many elements of U .

Definition 9.14. A topological space X is called paracompact (sv: parakompakt) if
every open cover has a locally finite subcover.

Notice that a finite cover is always locally finite. Thus in particular, all compact
spaces are paracompact. The next result says that for paracompact Hausdorff spaces,
we always have a locally finite version of partitions of unity. It turns out that such
spaces are normal [Mun00, Thm. 41.1] and so the proof is almost identical to that of
Theorem 9.11; see [Mun00, Thm. 41.7].

Theorem 9.15. Let X be a paracompact Hausdorff space, and let {Ui}i∈I be an open
cover of X. Then there exists a partition of unity dominated by {Ui}i∈I ; that is, there
exists a family {ϕi}i∈I of continuous functions ϕi : X → [0, 1] so that

(i) supp(ϕi) ⊂ Ui for all i ∈ I,

(ii) {supp(ϕi)}i∈I is locally finite, and

(iii)
∑
i∈I ϕi(x) = 1 for every x ∈ X.

Notice here that the sum appearing in (iii) makes sense because of the locally finite-
ness from (ii). We end our discussion by noting that in the context of manifolds,
paracompactness and second-countability is almost the same thing.

Theorem 9.16. Let X be a locally Euclidean Hausdorff space. Then X is second-
countable if and only if X is paracompact and has countably many connected compo-
nents.
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10 Introduction to homotopy theory
In this final section of this note, we will introduce a powerful topological invariant. In
doing so, we tread slightly into the realm of algebraic topology.

10.1 Homotopy
Definition 10.1. Let X and Y be topological spaces, and let f, g : X → Y be contin-
uous maps. We say that f is homotopic (sv: homotop) to g if there exists a continuous
map F : X × [0, 1]→ Y so that

F (x, 0) = f(x) and F (x, 1) = g(x)

for all x ∈ X. The map F is called a homotopy (sv: homotopi) from f to g, and we
write f ∼ g. If f ∼ g where g is a constant map, we say that f is null-homotopic (sv:
nollhomotop)

We will primarily be interested in the special case where the maps f and g are paths
that start and end at the same point. In this case, we will furthermore require that the
homotopy fixes the two end-points of the paths:

Definition 10.2. Two γ, γ′ : [0, 1]→ X be two paths from x to y in a topological space
X. We say that γ is path homotopic (sv: väghomotop) to γ′ if there is a homotopy
F : [0, 1]× [0, 1]→ X from γ to γ′ so that

F (0, t) = x, F (1, t) = y

for all t ∈ [0, 1]. The map F is called a path homotopy (sv: väghomotopi), and we write
γ ∼p γ′. See Figure 19.

Lemma 10.3. Homotopy ∼ and path homotopy ∼p are equivalence relations.

Proof. Let f, g, h : X → Y be continuous maps.
To see reflexivity, define F : X× [0, 1]→ Y by F (x, t) = f(x). Then F is continuous

and F (x, 1) = F (x, 0) = f(x) for all x, so F is a homotopy from f to f , and f ∼ f . If
f is a path, then F is a path homotopy, so f ∼p f .

For symmetry, suppose that f ∼ g. Then there is a homotopy F : X × [0, 1] → Y
from f to g. Define G(x, t) = F (x, 1− t). Then G is continuous since it is a composition
of continuous functions, and G is a homotopy from g to f , so g ∼ f . If f and g are
paths, then G is a path homotopy, so f ∼p g implies that g ∼p f .

Finally, for transitivity, if f ∼ g and g ∼ h, let F be a homotopy from f to g, and
let G be a homotopy from g to h. Define a function H : X × [0, 1]→ Y by

H(x, t) =
{
F (x, 2t), if t ∈ [0, 1

2 ],
G(x, 2t− 1), if t ∈ [1

2 , 1].

Then H is continuous by Remark 3.10, and H is a homotopy from f to h, so f ∼ h. If
F and G are path homotopies, then so is H.
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γ

γ′

Figure 19: Two homotopic paths γ and γ′ in R2 as well as a path homotopy F
between them. That is, we picture F (s, 0) = γ(s), F (s, 1) = γ′(s), the paths
F (s, 1

10), F (s, 2
10), . . . , F (s, 9

10) (in red) and the paths F ( 1
10 , t), F ( 2

10 , t), . . . , F ( 9
10 , t) (in

blue).

Example 10.4. Let f, g : X → Rn be two continuous functions. Then the map
F : X × [0, 1]→ Rn given by

F (x, t) = (1− t)f(x) + tg(x)

is a homotopy from f to g. That is, all functions into Rn are homotopic. In other
words, there is only one homotopy equivalence class.

Likewise, if γ and γ′ are paths from x to y in Rn, then γ and γ′ are homotopic:
there is only a single equivalence class of path homotopy. Indeed, the path homotopy
illustrated in Figure 19 is obtained in exactly this way.

In the special case where x = y, this means that all paths are null-homotopic.

Example 10.5. Let γ and γ′ be the paths from (0, 1) to (0,−1) given by

γ(t) = (cos(πt), sin(πt)), γ′(t) = (cos(πt),− sin(πt)).

Then γ and γ′ are path homotopic as paths in R2 by the previous example, but they
are not path homotopic as paths in R2 \ {(0, 0)}. This is a non-trivial fact though (and
can be seen as a consequence of Exercise 4.9), but for instance, the homotopy from the
previous example does not work since

F (1
2 ,

1
2) = 1

2(γ(1
2) + γ′(1

2)) = (0, 0).

If γ is a path, denote by [γ] its path homotopy equivalence class or in short, its homo-
topy class (sv: homotopiklass). Recall from Section 6.3 the definitions of concatenation
of paths and the reverse of a path.

Proposition 10.6. Let γ be a path from x to y in some space X, and let γ′ be a path
from y to z. Then the operation

[γ] ? [γ′] = [γ ? γ′]

is well-defined.
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Proof. Suppose that F is a path homotopy from γ to some other curve γ̃ and that G
is a path homotopy from γ′ to γ̃′. The claim that the operation is well-defined is then
the claim that γ ? γ′ ∼p γ̃ ? γ̃′. Define H : [0, 1]× [0, 1]→ X by

H(s, t) =
{
F (2s, t), if s ∈ [0, 1

2 ],
G(2s− 1, t), if s ∈ [1

2 , 1].

Then H is continuous by Remark 3.10 and it is easy to check that H is a path homotopy
from γ ? γ′ to γ̃ ? γ̃′.

For a point x ∈ X in a topological space, let ex : [0, 1] → X denote the constant
path ex(t) = x, for t ∈ [0, 1].

Theorem 10.7. The operation ? has the following properties for all paths γ, γ′, and
γ′′ in a topological space X:

(i) [γ] ? ([γ′] ? [γ′′]) = ([γ] ? [γ′]) ? [γ′′] when one (and thus both) are defined,

(ii) [γ] ? [ey] = [ex] ? [γ] = [γ], if γ is a path from x to y, and

(iii) [γ] ? [γrev] = [ex], [γrev] ? [γ] = [ey], if γ is a path from x to y.

Proof. We begin by showing that the homotopy class of a curve γ from x to y does not
depend on its parametrisation. To be precise, let ϕ : [0, 1] → [0, 1] be any continuous
map with ϕ(0) = 0, ϕ(1) = 1. Then γ ◦ ϕ is a path from x to y, and we claim that
γ ∼p γ ◦ ϕ. To see this, let F : [0, 1]× [0, 1]→ X be the map

F (s, t) = γ(tϕ(s) + (1− t)s).

Then F is continuous, F (s, 0) = γ(s), F (s, 1) = γ ◦ ϕ(s), F (0, t) = γ(0) = x, and
F (1, t) = γ(1) = y, so F is a homotopy from γ to γ ◦ ϕ.

Now we can show each of the first two cases of the theorem by picking ϕ appropri-
ately. Let us begin, for instance, by showing (ii). We have to show that γ ? ey ∼p γ,
and that ex ? γ ∼p γ. By definition,

(γ ? ey)(s) =
{
γ(2s), s ∈ [0, 1

2 ],
ey(2s− 1), s ∈ [1

2 , 1],
=
{
γ(2s), s ∈ [0, 1

2 ],
y, s ∈ [1

2 , 1],
=
{
γ(2s), s ∈ [0, 1

2 ],
γ(1), s ∈ [1

2 , 1].

That is, (γ ? ey)(s) = γ(ϕ1(s)), where ϕ1 : [0, 1] → [0, 1] is first map illustrated in
Figure 20. Thus γ ? ey = γ ◦ ϕ1 ∼p γ.

Similarly, ex ? γ = γ ◦ ϕ2, which completes the proof of (ii). For (i), one finds that
γ ? (γ′ ? γ′′) = ((γ ? γ′) ? γ′′) ◦ ϕ3.

For (iii) we give a homotopy explicitly. Let us show that γ?γrev ∼p ex. For t ∈ [0, 1],
define a path γt : [0, 1]→ X by γ(s) = γ(ts), and define G : [0, 1]× [0, 1]→ X by

G(s, t) = (γt ? γrev
t )(s).
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Figure 20: Graphs of the functions ϕ1, ϕ2, and ϕ3 respectively.

That G is continuous follows once again from an argument using Remark 3.10, and we
see that G is a homotopy from ex to γ ? γrev since

G(s, 0) = (γ0 ? γ
rev
0 )(s) = γ(0) = x = ex(s),

G(s, 1) = (γ1 ? γ
rev
1 )(s) = (γ ? γrev)(s),

G(0, t) = γt(0) = γ(0) = x,

G(1, t) = γrev
t (1) = γ(0) = x,

for every s and t. That γrev ? γ ∼p ey follows by an analogous argument.

10.2 The fundamental group
The idea in this section will be to use the operation ? on path homotopy classes to
associate an algebraic structure to any pair (X,x) for X a topological space and x ∈ X.
Moreover, when X is path-connected, this structure will form a powerful topological
invariant.

If γ is a path from x to x, we say that γ is a loop (sv: ögla) based at x.

Definition 10.8. Let X be a topological space, and let x ∈ X. Then the fundamental
group (sv: fundamentalgrupp) π1(X,x) is the set of all path homotopy classes of loops
based at x.

To make sense of the terminology, let us recall a few basic notions from abstract
algebra.

Definition 10.9. A group (sv: grupp) is a set G with an operation G×G→ G, denoted
(g, h) 7→ g · h, an element e ∈ G called a unit, and a bijection G→ G denoted x 7→ x−1

called the inverse, so that

• g · (h · k) = (g · h) · k for all g, h, k ∈ G,

• e · g = g = g · e for all g ∈ G, and

• g · g−1 = g−1 · g = e for all g ∈ G.

If G and H are groups, then a map ϕ : G → H is called a homomorphism (sv: homo-
morfi) if ϕ(g · h) = ϕ(g) · ϕ(h) for all g, h ∈ G. A bijective group homomorphism is
called an isomorphism (sv: isomorfi).
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Example 10.10. The one-point set {e} is a group under the operation (e, e) 7→ e. This
group is called the trivial group.

Example 10.11. The integers form a group under the operation (g, h) 7→ g + h. The
unit is 0 ∈ Z, and if n ∈ Z, then the inverse of n is −n.

Example 10.12. The set R \ {0} is a group with operation (g, h) 7→ gh. The unit is 1,
and the inverse of x ∈ R \ {0} is 1/x.

Example 10.13. The set GL(n,R) of invertible (n×n)-matrices with entries in R is a
group under matrix multiplication. The unit is the unit matrix.

Proposition 10.14. The fundamental group π1(X,x) is a group under the operation ?
on homotopy classes of loops for any topological space X and any x ∈ X.

Proof. This follows immediately from Theorem 10.7.

Example 10.15. In Example 10.4 we saw that any two given paths in Rn between the
same points were homotopic. This in particular implies that any loop based at a point
x ∈ Rn is null-homotopic; that is, homotopic to ex. In other words,

π1(Rn, x) = {[ex]},

the trivial group, for all x ∈ Rn.

As the next thing, let us see how π1(X,x) depends on x.

Theorem 10.16. Let X be a topological space, and let α be a path from x to y in X.
Define a map α̂ : π1(X,x)→ π1(X, y) by

α̂([γ]) = [αrev] ? [γ] ? [α].

Then α̂ is well-defined and an isomorphism.

Proof. That α̂ is well-defined means that α̂([γ]) = α̂([γ′]) whenever [γ] = [γ′], i.e.
whenever γ ∼p γ′. And indeed, if F : [0, 1]× [0, 1] → X is a path homotopy from γ to
γ′, then G : [0, 1]× [0, 1]→ X, defined by

G(s, t) = (αrev ? F (·, t) ? α)(s)

is a path homotopy from αrev ? γ ? α to αrev ? γ′ ? α, so α̂ is well-defined.
To see that α̂ is an homomorphism, notice that for any [γ], [γ′] ∈ π1(X,x), we have

α̂([γ]) ? α̂([γ′]) = [αrev] ? [γ] ? [α] ? [αrev] ? [γ′] ? [α]
= [αrev] ? ([γ] ? [γ′]) ? [α] = α̂([γ] ? [γ′]).

To see that α̂ is a bijection, notice that α̂rev ◦ α̂ is the identity on π1(X,x) since for any
[γ] ∈ π1(X,x), we have

(α̂rev ◦ α̂)[γ] = α̂rev([αrev] ? [γ] ? [α]) = [α] ? [αrev] ? [γ] ? [α] ? [αrev] = [γ],

and α̂ ◦ α̂rev is the identity on π1(X, y) by the same reasoning, so α̂ is a bijection and
thus a group isomorphism.
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Corollary 10.17. If X is a path-connected topological space, then π1(X,x) is indepen-
dent of x ∈ X up to isomorphism.

Because of this result, one often writes π1(X) = π1(X,x) for any x ∈ X when X is
path-connected. It is then understood that the equality is really up to isomorphism.

Definition 10.18. A topological space X is called simply-connected (sv: enkelt sam-
manhängande) if it is path-connected and π1(X) consists of a single element.

Example 10.19. By Example 10.15, Rn is simply-connected.

The next result says that for path-connected spaces, π1 is a topological invariant.
Even when the spaces in question are not path-connected, one obtains a topological
invariant by considering the collection of groups π1(X,xi) up to isomorphism, where
each of the xi belongs to a different path-component of X.

As preparation, suppose that f : X → Y is a continuous map, and let x ∈ X. Define
a map

f∗ : π1(X,x)→ π1(Y, f(x))
by

f∗([γ]) = [f ◦ γ].

Theorem 10.20. Let f : X → Y and g : Y → Z be continuous maps, and let x ∈ X.
Then

(i) f∗ : π1(X,x)→ π1(Y, f(x)) is a well-defined homomorphism,

(ii) (g ◦ f)∗ = g∗ ◦ f∗, and if id : X → X denotes the identity, then id∗ : π1(X,x) →
π1(X,x) is the identity on π1(X,x).

(iii) Finally, if f is a homeomorphism, then f∗ is an isomorphism.

Proof. That f∗ is well-defined means that f ◦ γ ∼p f ◦ γ′ whenever γ ∼p γ′. This is the
case since if F is a homotopy from γ to γ′, then f ◦F is a homotopy from f ◦γ to f ◦γ′.

To see that f∗ is a homomorphism, let [γ], [γ′] ∈ π1(X,x) be arbitrary homotopy
classes. We first notice that by definition of concatenation, we have

f ◦ (γ ? γ′) = (f ◦ γ) ? (f ◦ γ′),

from which it follows that

f∗([γ] ? [γ′]) = f∗([γ ? γ′]) = [f ◦ (γ ? γ′)] = [(f ◦ γ) ? (f ◦ γ′)]
= [f ◦ γ] ? [f ◦ γ′] = f∗([γ]) ? f∗([γ′]),

so f∗ is a homomorphism, which shows (i).
Similarly,

(g∗ ◦ f∗)([γ]) = g∗([f ◦ γ]) = [g ◦ f ◦ γ] = (g ◦ f)∗([γ]),

which shows the first part of (ii). The last part of (ii) is obvious.
Finally, (iii) follows from (ii) as it follows that (f−1)∗ satisfies that both f∗ ◦ (f−1)∗

and (f−1)∗ ◦ f∗ are the identity homomorphisms. Thus f∗ is a bijection and therefore
an isomorphism.
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If G and H are two groups, then their Cartesian product G×H is a group with the
group operation

(g, h) · (g′, h′) = (g · g′, h · h′).

Proposition 10.21. Let X and Y be topological spaces, and let x ∈ X, y ∈ Y . Then
π1(X × Y, (x, y)) is isomorphic to π1(X,x)× π1(Y, y).

Proof. Exercise 4.8.

10.3 Covering spaces and fundamental groups of spheres
The main result of this section is a calculation of π1(Sn) for all n ≥ 1.

Theorem 10.22. We have π1(S1) = Z, but Sn is simply-connected for n ≥ 2.

To prove the case n = 1, it will be convenient to have at our disposal some basic
results about covering spaces. Before going into any detail about these, let us consider
the “easy” part of the claim.

Proof of Theorem 10.22 for n ≥ 2. Let γ be a loop in Sn, based at some point γ(0),
and let us show that γ is null-homotopic. If there is a point p not in the image of γ,
we can view γ as a loop in Sn \ {p}, which is homeomorphic to Rn by Remark 5.12.
Since Rn is simply-connected, this tells us that γ is null-homotopic as a loop in Sn \{p}
through some homotopy [0, 1] × [0, 1] → Sn \ {p}. By composition with the inclusion,
this gives us a homotopy [0, 1]× [0, 1]→ Sn, so γ is also null-homotopic as a loop in Sn.

This shows the claim in the case where γ([0, 1]) 6= Sn. Now, let p be a point in Sn
distinct from γ(0). We will show how to make a path homotopy from γ to some other
loop, denoted γk below, whose image does not contain p. This other loop will then be
null-homotopic by the first part of the proof, so γ will be as well.

Let U be any neighbourhood of p which does not contain γ(0). After possibly having
to pass to a smaller neighbourhood we can assume that U is homeomorphic to an open
ball in Rn. Now γ−1(U) ⊂ (0, 1) ⊂ [0, 1] is an open set and therefore a union of open
disjoint intervals (ai, bi), i ∈ I. Since {p} is closed in Sn, γ−1({p}) is closed in [0, 1], and
since [0, 1] is compact, so is γ−1({p}). Since {(ai, bi)}i∈I is an open cover of γ−1({p}),
this compactness implies that we can find finitely many intervals (a1, b1), . . . , (ak, bk)
that cover γ−1({p}). We will now cook up the desired homotopy for each of these finitely
many intervals.

Since (a1, b1) ⊂ γ−1(U) with a1, b1 /∈ γ−1(U), we get that γ([a1, b1]) ⊂ U and
γ(a1), γ(b1) ∈ ∂U . Now take any path γ̃1 in U from γ(a1) to γ(b1) which does not
go through p. Since U was assumed to be homeomorphic to a ball, γ|[a1,b1] is path
homotopic to γ̃1 (ignoring the minor detail that the paths in question have to be defined
on [0, 1]) and this path homotopy extends to a path homotopy from γ to some loop γ1
with the property that p /∈ γ1([a1, b1]) and so that γ1 agrees with γ on the complement
of [a1, b1] in [0, 1]. We now iterate this procedure to obtain for each j = 1, . . . , k a loop
γj so that γ ∼p γj and p /∈ γj([a1, b1]∪ · · · ∪ [aj , bj ]). Then p /∈ γk([0, 1]) and γ ∼ γk, so
we are done.
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Before moving on to the case n = 1, let us notice the following non-trivial corollary
of the theorem.

Corollary 10.23. We have Sn ' Tm if and only if n = m = 1.

Proof. By Proposition 10.21 and Theorem 10.22, π1(Tm) = π1(S1 × · · · × S1) is the
product of m copies of Z. Since Zm is not isomorphic to Z if m > 1, π1(Tm) can only
be isomorphic to π1(Sn) if n = m = 1.

Definition 10.24. Let B be a topological space. A covering space (sv: ?) of B is a
topological space E and a continuous surjective map p : E → B, called a covering map
(sv: ?), so that each point b ∈ B has an open neighbourhood U with the property that
p−1(U) is a disjoint union of open sets in E, each of which is mapped homeomorphically
to U by p. See Figure 21.

Example 10.25. The real line R is a covering space of S1 with covering map p : R→ S1

given by p(x) = (cos(2πx), sin(2πx)).

Definition 10.26. Let p : E → B be a covering map, and let f : X → B be a
continuous map. A map f̃ : X → E is called a lifting (sv: löft) of f if f = p ◦ f̃ .

E

B

p

U

p−1(U)

Figure 21: A covering
map p : E → B.

The two following lemmas will be proven in Section 10.4
below.

Lemma 10.27 (Path lifting lemma). Let p : E → B be a
covering map, let b ∈ B, and let e ∈ E with p(e) = b. Then
any path γ : [0, 1] → B with γ(0) = b has a unique lifting
γ̃ : [0, 1]→ E so that γ̃(0) = e.

Lemma 10.28 (Homotopy lifting lemma). Let p : E → B
be a covering map, and let p(e) = b as above. Let F : [0, 1]×
[0, 1]→ B be a homotopy with F (0, 0) = b. Then there is a
unique lifting F̃ : [0, 1] × [0, 1] → E so that F̃ (0, 0) = e. If
F is a path homotopy then so is F̃ .

Now as above, let p : E → B be a covering map, let
b ∈ B, and choose e ∈ E with p(e) = b. Let [γ] ∈ π1(B, b)
be a homotopy class of a path γ, and let γ̃ be the unique
lifting from Lemma 10.27, with γ̃(0) = e. Define a map,
called the lifting correspondence (sv: ?),

ϕe : π1(B, b)→ p−1({b})

by ϕe([γ]) = γ̃(1). To see that this is well-defined, assume
that γ ∼p γ′, and let F denote a path homotopy from γ to
γ′. Then the unique lifting F̃ from Lemma 10.28 is a path
homotopy between the unique lifts γ̃ and γ̃′, so in particular
γ̃(1) = γ̃′(1).
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Proposition 10.29. Let p : E → B, p(e) = b, be as above.
If E is path-connected then ϕe is surjective. If E is simply-connected, then ϕe is bijective.

Proof. Assume first that E is path-connected and let q ∈ p−1({b}). Choose any path γ̃
from e to q, and let γ = p ◦ γ̃. Then γ̃ is a lift of γ by construction, and ϕe([γ]) = q, so
ϕe is surjective.

Assume now that E is simply-connected, suppose that ϕe([γ]) = ϕe([γ′]) for two
homotopy classes [γ], [γ′] ∈ π1(B, b), and let us show that [γ] = [γ′]. Let γ̃ and γ̃′

denote the corresponding lifts, so that γ̃(1) = γ̃′(1) by assumption. Then γ̃ ? γ̃′
rev is

a loop based at e and thus path homotopic to the constant map since E is simply-
connected. This implies that

[γ̃] = [γ̃] ? [γ̃′rev] ? [γ̃′] = [γ̃ ? γ̃′rev] ? [γ̃′] = [γ̃′],

so there is a path homotopy F̃ from γ̃ to γ̃′. Then p ◦ F̃ is a path homotopy from
p ◦ γ̃ = γ to p ◦ γ̃′ = γ′, or in other words, [γ] = [γ′].

We are now in a position to prove our main result.

Proof of Theorem 10.22 for n = 1. Let p : R → S1 be the covering map from Exam-
ple 10.25, let b = (1, 0) ∈ S1, and let e = 0. In this case, since p−1({b}) = Z, and since
R is simply-connected, Proposition 10.29 implies that ϕe : π1(S1, b) → Z is bijective,
and we claim that it is a homomorphism.

Let m ∈ Z, and let γm : [0, 1]→ S1 be the loop given by

γm(t) = (cos(2πmt), sin(2πmt)).

This loop lifts to γ̃m : [0, 1]→ R given by γ̃m(t) = mt. This tells us that ϕe([γm]) = m.
Since ϕe was a projection, each loop γ based at b will belong to [γm] for some m ∈ Z,
so to show that ϕe is a homomorphism, it suffices to show that

ϕe([γm ? γn]) = m+ n = ϕe([γm]) + ϕe([γn]),

for all m,n ∈ Z. Let γ̃mn = m + γ̃n be the lifting of γn starting at m and ending at
m + n. Then γ̃m ? γ̃mn is a path from 0 to m + n and p ◦ (γ̃m ? γ̃mn ) = γm ? γn, so by
definition of ϕe, this tells us that ϕe([γm ? γn]) = m+ n.

Up until this point, it is not clear how useful π1 actually is as an invariant: indeed,
most of the calculations of fundamental groups that we have done turned out to yield
trivial groups, and, for instance, we can not use the fundamental group to tell apart
the spaces Rn and Sn for n ≥ 2, even though one can show by elementary means that
these spaces are non-homeomorphic.

Restricting to the class of manifolds considered in Section 9 one can say quite a
bit more. It is not too difficult to prove, for instance, that if a 2-manifold is compact
and simply-connected, then it is homeomorphic to S2. That is, the fundamental group
can detect S2 among all compact 2-manifolds. The same statement holds true for
3-manifolds, although it is currently significantly harder to prove.
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Theorem 10.30 (The Poincaré conjecture). If X is a simply-connected compact 3-
manifold, then X ' S3.

Conjectured by Henri Poincaré in 1904, and first proven by Grigori Perelman in
2003, at the time of writing this is the only solved out of the seven so-called Millennium
Prize Problems4.

10.4 Proofs of lifting lemmas
We now turn to the proofs of Lemmas 10.27 and 10.28 where we will need a technical
result on subdivisions of [0, 1] and [0, 1] × [0, 1]. We word it here for general compact
metric spaces.

Let (X, d) be a metric space, and let A be a non-empty subset. Then for every
x ∈ X, we define the distance from x to A by

d(x,A) = inf{d(x, a) | a ∈ A}.

It is easy to see that for fixed A, the function x 7→ d(x,A) is continuous. If moreover A
is bounded in the sense that the set {d(a1, a2) | a1, a2 ∈ A} ⊂ R is bounded, we define
the diameter (sv: diameter) of A to be

diam(A) = sup{d(a1, a2) | a1, a2 ∈ A} ∈ R.

Lemma 10.31 (Lebesgue’s number lemma). Let U be an open cover of a compact
metric space (X, d). Then there is a δ > 0, called a Lebesgue number, so that for every
subset A of diameter less than δ, there is a U ∈ U with A ⊂ U .

Proof. First of all, if X ∈ U , we are done since any δ > 0 does the job, so assume that
X /∈ U .

Now use the compactness of X to take an finite subcover {U1, . . . , Un} ⊂ U . Let
Ci = X \ Ui 6= ∅ for i = 1, . . . , n, and define a function f : X → R by

f(x) = 1
n

n∑
i=1

d(x,Ci).

We claim that f(x) > 0 for all x ∈ X. To see this, let x ∈ X and choose an i so that
x ∈ Ui. Since Ui is open, we can find an ε > 0 so that B(x, ε) ⊂ Ui. Then d(x,Ci) ≥ ε,
so f(x) ≥ ε/n > 0. Since f is continuous, it follows from Corollary 7.26 that f(X) has
a minimum δ > 0, and we now claim that this number is our desired Lebesgue number.

Let A ⊂ X have diameter less than δ, and let a ∈ A. Then A ⊂ Bd(a, δ), and by
taking m ∈ {1, . . . , n} so that d(a,Cm) is maximal, we have

δ ≤ f(a) ≤ d(a,Cm),

so A ⊂ Bd(a, δ) ⊂ X \ Cm = Um.
4See https://en.wikipedia.org/wiki/Millennium_Prize_Problems.
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We can now prove the two lemmas.

Proof of Lemma 10.27. Choose an open cover U of B by sets U ∈ U with the property
that p−1(U) is a disjoint union of open sets in E, each of which is mapped homeomor-
phically to U by p.

Now {γ−1(U) | U ∈ U} is an open cover of the compact set [0, 1]. By Lemma 10.31,
there is a subdivision 0 = s0 < s1 < · · · < sn = 1 of [0, 1] so that for every i = 1, . . . , n,
we have [si−1, si] ⊂ γ−1(U) for some U ∈ U . That is, γ([si−1, si]) ⊂ U . We will now
construct the lifting γ̃ on each of these smaller intervals through a finite induction.

Let γ̃(0) = e and assume that the lifting γ̃ has been defined on [0, si]. We then define
γ̃ on [si, si+1] as follows: let U ∈ U be the open set so that γ([si, si+1]) ⊂ U . Then
γ̃(si) ∈ p−1(U), so we can choose V ⊂ E so that p|V : V → U is a homeomorphism and
γ̃(si) ∈ V . Now, for any s ∈ [si, si+1], we can define

γ̃(s) = (p|V )−1(γ(s)).

Then γ̃ is continuous on [si, si+1], agrees with γ̃ on the one-point set {si}, and so defines
a function γ̃ : [0, si+1] → E which is continuous by the pasting lemma, Remark 3.10.
Moreover, γ̃ is constructed to satisfy γ = p ◦ γ̃ where it is defined, so repeating this
procedure n times we obtain our desired lift.

It remains to prove that γ̃ is unique. Suppose that γ̃′ is another lifting of γ with
γ̃′(0) = e, and suppose that γ̃ = γ̃′ on [0, si] (which we know is true for i = 0). We then
claim that the lifts agree on [0, si+1] as well, and therefore γ̃ = γ̃′ on all of [0, 1], so let
s ∈ [si, si+1], and let V be as above so that γ̃(si), γ̃′(si) ∈ V .

Since [si, si+1] is connected, so is the set γ̃′([si, si+1]) by Theorem 6.10, and therefore
it must be contained in a single connected component by Proposition 6.27. Now, since
the open sets making up p−1(U) are disjoint, this implies that γ̃′([si, si+1]) ⊂ V , so in
particular γ̃′(s) ∈ V . Now, since p|V : V → U is bijective, there is only one point in
V that is mapped to γ(s) under p, namely (p|V )−1(γ(s)), so since γ̃′ is a lifting of γ, it
follows that

γ̃′(s) = (p|V )−1(γ(s)) = γ̃(s).

Proof of Lemma 10.28. As in the proof above, we will define a lift F̃ in a step-by-step
fashion, so let U denote an open cover of B as above. Begin by letting F̃ (0, 0) = e, and
use Lemma 10.27 to uniquely define F̃ on [0, 1]×{0} and {0}× [0, 1], lifting F on these
subsets.

As above, we can now consider {F−1(U) | U ∈ U} and conclude by Lemma 10.31
that there exist subdivisions 0 = s0 < s1 < · · · < sm = 1 and 0 = t0 < t1 < · · · < tn = 1
so that for each rectangle

Ri,j = [si−1, si]× [tj−1, tj ] ⊂ [0, 1]× [0, 1]

there is a U ∈ U with F (Ri,j) ⊂ U . We now define F̃ on the rectangles Ri,j in the order

R1,1, R2,1, . . . , Rm,1, R1,2, R2,2, . . . , Rm,2, . . . , R1,n, R2,n, . . . , Rm,n.
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R3,3A

Figure 22: The sets involved in the proof of Lemma 10.28. The red part indicates where
F̃ has been defined, and the blue part where we are in the process of defining F̃ .

Assume that the lifting F̃ has been defined on all rectangles up to a certain point, and
let us define F̃ on the next rectangle, Ri,j , say. In particular, F̃ has been defined on A:
the union of the left and bottom edge of Ri,j , which is a connected set (see Figure 22).
By the exact same logic as in the previous proof, this implies that F̃ (A) ⊂ V , where
V ⊂ E is so that p|V : V → U is a homeomorphism, and where U ∈ U is so that
F (Ri,j) ⊂ U . This means that we can extend F̃ to Ri,j by letting

F̃ (x) = (p|V )−1(F (x)).

Proceeding like this for all rectangles, we define F̃ on all of [0, 1] × [0, 1]. Then F̃ is
continuous by the pasting lemma and a lifting of F by construction. That F̃ is the
unique lifting with F̃ (0, 0) = e follows by the same logic as in the proof of Lemma 10.27
above.

It remains to show that if F is a path homotopy, then so is F̃ . So, assume that
F ({0}× [0, 1]) = {b}. Then F̃ ({0}× [0, 1]) ⊂ p−1({b}). Now {0} < ×[0, 1] is connected,
so its image under F̃ is connected, and on the other hand, p−1({b}) is discrete so
its connected components are points, which means that F̃ is constant on {0} × [0, 1].
Similarly, if F is constant on {1} × [0, 1], one uses connectedness to argue that F̃ is as
well.
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Exercises
The exercises are split into four sets, corresponding to the four exercise sessions held
as part of the course. Many of the exercises are collected from previous iterations of
the course, and these in turn may originate from [Mun00]. A few have been inspired by
exercises in [DM07] and [Hat02].

A solution manual is available upon request.

Set #1
1.1 Define a relation on R by

C = {(x, y) | x− y ∈ Z}.

Show that C is an equivalence relation and describe the set of equivalence classes
of C.

1.2 Describe all possible topologies on the set X = {a, b, c}.

1.3 Let X be a set, and let T1 and T2 be two different topologies on X. When is the
identity map id : X → X given by id(x) = x a continuous map from (X, T1) to
(X, T2)?

1.4 Show that the subspace topology TY is the smallest (meaning coarsest) topology
on Y ⊂ X for which the inclusion ι : Y → X is a continuous map.

1.5 Let Y ⊂ X be an open (closed) subset of a topological space X. Show that a set
U ⊂ Y is open (closed) in the subspace topology on Y if and only if U is open
(closed) in X.

1.6 Let X be a topological space, and let A and B be subspaces so that A ⊂ B ⊂ X.
Then A can be endowed with the subspace topology TA from X, or the subspace
topology (TB)A from B (which in turn has the subspace topology coming from
X). Show that TA = (TB)A.

1.7 Prove Lemma 3.6.

1.8 (a) Describe the open sets in the poset topology on {a, b, c, d} defined by the
relations a � b � c and a � d.

(b) Describe the open sets in the poset topology on (R,≤).

1.9 The Euclidean space R2 can be identified with the Cartesian product R × R.
Use Lemma 2.15 to show that the standard topology on R2 equals the product
topology on R× R (where each R has the standard topology).

1.10 Show that metric spaces are always Hausdorff.

1.11 Show that if X is Hausdorff, then so is any subset Y ⊂ X with the subspace
topology.
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1.12 Show that the product of two Hausdorff spaces is Hausdorff.

1.13 Show that a topological space X is Hausdorff if and only if the diagonal

∆ = {(x, x) ∈ X ×X | x ∈ X} ⊂ X ×X

is closed in the product topology on X ×X.

1.14 Let (X, d) be a metric space, and let

B = {Bd(x, 1/n) | x ∈ X,n ∈ N}.

Show that B is a basis for the metric topology on X.

1.15 Let (Y,�) be a totally ordered set made into a topological space with the order
topology.

(a) Show that for any two distinct points x, y ∈ Y , x < y, there are disjoint
neighbourhoods, U and V , of x and y respectively, so that u < v for all
u ∈ U, v ∈ V . Conclude that Y is Hausdorff.

(b) Let X be any topological space, and let f, g : X → Y be two continuous
functions. Show that the set {x | f(x) � g(x)} is closed in X.

1.16 Let (X1, d1) and (X2, d2) be metric spaces. Define a metric on X1 ×X2 by

d((x1, x2), (y1, y2)) = max(d1(x1, y1), d2(x2, y2)).

Show that the metric topology on X1 ×X2 induced by d is the product topology,
where X1 and X2 have the metric topologies from d1 and d2 respectively.

1.17 Let X,Y, Z be topological spaces and consider a function F : X×Y → Z. We say
that F is continuous in each variable if for each y0 ∈ Y the function h : X → Z
defined by h(x) = F (x, y0) is continuous, and if for each x0 ∈ X the function
g : Y → Z defined by g(y) = F (x0, y) is continuous. Show that if F is continuous,
then F is continuous in each variable.

1.18 (a) A poset topology is T0. When is it T1?

(b) If X is a T0-space with finitely many elements. Then we can define a relation

x � y ⇔ y ∈
⋂

U⊂X open, x∈U
U.

Show that � is a partial order. What is the poset topology on (X,�)?
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Set #2
2.1 Show that a topological space X is connected if and only if the following condition

holds: if X = C ∪D where C and D are disjoint closed subsets of X, then either
C = ∅ or D = ∅.

2.2 Let X = {a, b, c} have the topology {∅, {a, b}, {c}, {a, b, c}}. Is X connected?
Path-connected?

2.3 Consider the topology on R generated by the basis {(a,∞) | a ∈ R}, and let
x0 ∈ R.

(a) What is {x0}′, the set of limit points of {x0}?

(b) What is the closure {x0}?

(c) Is R Hausdorff in this topology?

2.4 Show that the connected subsets of R are exactly the intervals.

2.5 Show that Rn \ {0} is connected when n ≥ 2.

2.6 Show that Rn 6' R when n ≥ 1.

2.7 Show that the concatenation γ1 ? γ2 is continuous by using Theorem 4.24 instead
of the pasting lemma.

2.8 Show that Sn is path-connected for every n > 0.

2.9 Let p : X → Y be a quotient map. Show that if X is locally connected then so is
Y .

2.10 Show that the connected components of a locally connected space are open.

2.11 Let {An}n∈N be a family of connected subspaces of a topological space X so that
An ∩An+1 6= ∅ for every n ∈ N. Show that

⋃
n∈NAn is connected.

2.12 A space is called totally disconnected if its only non-empty connected subspaces
are one-point sets. Show that if X has the discrete topology, then X is totally
disconnected. Does the converse hold?

2.13 Let f : S1 → R be continuous. Show that there is a point x ∈ S1 so that
f(x) = f(−x).

2.14 Let f : [0, 1]→ [0, 1] be continuous. Show that f has a fixed point, i.e. that there
is a point x ∈ [0, 1] so that f(x) = x.

2.15 Show Theorem 6.14 in the case where I is infinite. Inspiration can be found in
[Mun00, Ex. 23.7].
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Set #3
3.1 Let X be a topological space.

(a) Show that if K1, . . . ,Kn are compact subspaces of X, then K1 ∪ · · · ∪Kn is
compact.

(b) Suppose that X is Hausdorff. Show that if {Ki}i∈I is a family of compact
subspaces of X, then

⋂
i∈I Ki is compact.

(c) Prove Proposition 7.32.

3.2 Let A ⊂ X be a subspace of a topological space (X, T ). Show that the following
are equivalent:

• A is compact (in the subspace topology)
• For every collection of open sets U ⊂ T so that A ⊂

⋃
U∈U U there exists a

finite subcollection U1, . . . , Un ∈ U so that A ⊂ U1 ∪ · · · ∪ Un.

3.3 Show that compact Hausdorff spaces are normal.

3.4 Prove Theorem 7.38 (Hint: Use the one-point compactification.)

3.5 Prove Proposition 7.40.

3.6 Show that if X is T3 and C ⊂ X a closed subset, then the quotient space X/C is
Hausdorff.

3.7 Show that {B(x, r) | x ∈ Qn, r ∈ Q>0} is a basis, and that it generates the
standard topology on Rn. Conclude that Rn is second-countable.

3.8 Let Y be a compact space, and let X be any topological space.

(a) Show the canonical projection map π : X×Y → X is closed, i.e. that images
of closed sets are closed.

(b) Suppose moreover that Y is Hausdorff, and let f : X → Y be a map. Show
that f is continuous if and only if its graph

Gf = {(x, f(x)) | x ∈ X} ⊂ X × Y

is closed.

3.9 Let (X,�) be a totally ordered set with the order topology, and assume that every
closed interval [a, b] is compact. Show that X has the least-upper-bound property;
that is, show that every non-empty subset of X which is bounded from above has
a least upper bound in X.

3.10 Let X be a locally compact Hausdorff space, and let U1, U2, U3, . . . be open dense
subsets of X. Show that

⋂
n∈N Un is dense; a result known as the Baire category

theorem. Hints:
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(a) Let B0 be any non-empty open subset of X. Construct open sets B1, B2, . . .
so that

Bn ⊂ Un ∩Bn−1

for n ≥ 1 and so that Bn is compact for all n.
(b) Let K1,K2, . . . be non-empty compact subsets of a topological space. Show

that if we have inclusions K1 ⊃ K2 ⊃ · · · , then⋂
n∈N

Kn 6= ∅.

This result is known as Cantor’s intersection theorem.

What happens if we replace the countable family {Un}n∈N with an arbitrary family
of open dense subsets?

3.11 Let X be a locally compact Hausdorff space, and let {Fn}n∈N be a countable
family of closed subsets of X. Show that if Int(Fm) = ∅ for every m ∈ N, then
Int (

⋃
n∈N Fn) = ∅. (Hint: use Exercise 3.10.)

Set #4
4.1 Prove Lemma 9.5.

4.2 Use Theorem 6.18 to show that if X is both an n-manifold and an m-manifold,
then m = n.

4.3 A subspace A ⊂ Rn is called star-shaped if there exists an element a ∈ A so
that for any x ∈ A, the line segment from a to x is contained in A. Show that
star-shaped sets are simply-connected.

4.4 Let x ∈ Q. Find π1(Q, x). Is Q simply-connected?

4.5 Let α be a path from x to y, and let β be a path from y to z in some topological
space. Show that α̂ ? β = β̂ ◦ α̂, where ·̂ is as in Theorem 10.16.

4.6 Show that if α and β are path homotopic, then α̂ = β̂.

4.7 Let f : X → Y be a continuous map, and let α be a path in X. Show that
f∗ ◦ α̂ = f̂ ◦ α ◦ f∗.

4.8 Prove Proposition 10.21.

4.9 Let n ≥ 2. Show that Rn \ {0} is homeomorphic to Sn−1 × (0,∞). Is Rn \ {0}
simply-connected?

4.10 Define an equivalence relation ∼ on Sn by saying that x ∼ y if x = ±y. Let
RPn = Sn/ ∼ denote the quotient space, called the real projective space (sv: reella
projektiva rummet). Show that for n ≥ 2, we have π1(RPn) = Z2, the (only) group
containing two elements. (Hint: show that the projection map p : Sn → RPn is a
covering map.)
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4.11 Let A ⊂ X be a subspace of a topological space, and let r : X → A be a continuous
map so that r|A = idA (such an r is called a retraction). Let a ∈ A.

(a) Show that r∗ : π1(X, a)→ π1(A, a) is surjective.
(b) Suppose moreover that there is a homotopy F : X × [0, 1] → X from idX

to r with the property that F (x, t) = x for all x ∈ A (such an F is called a
deformation retraction). Show that r∗ is an isomorphism.

(c) Recall that D2 denotes the unit disk in R3. Show that any continuous map
h : D2 → D2 has a fixed point, i.e. a point x ∈ D2 so that h(x) = x.
(Hint: assume that h has no fixed points, and use h to construct a retraction
r : D2 → S1 to arrive at a contradiction with (a) above.)
This is a special case of Brouwer’s fixed-point theorem which says that in
general, any continuous map A→ A, where A ⊂ Rn is compact and convex,
has a fixed point. The case A = [0, 1] was covered in Exercise 2.14.5

5See https://en.wikipedia.org/wiki/Brouwer_fixed-point_theorem#Illustrations for a couple of curious
“real world applications” of this theorem.
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subspace topology, the, 16
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totally disconnected, 77
totally ordered set, 6
transitive, 6
trivial group, 67
trivial topology, the, 8
tube lemma, 45

union, 2
Urysohn’s lemma, 58
Urysohn’s metrisation theorem, 58
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Dictionary

English Swedish

algebraic topology algebraisk topologi
anti-symmetric antisymmetrisk
ball boll
basis bas
binary relation binär relation
boundary rand
bounded begränsad
Cartesian product kartesisk produkt
category theory kategoriteori
closed sluten
closure slutet hölje
coarse grov
compact kompakt
complement komplement
concatenation konkatenering
connected component sammanhängande komponent
connected sammanhängande
continuous kontinuerlig
convergent konvergent
cover övertäckning
dense tät
diameter diameter
difference differens
discrete metric den diskreta metriken
discrete topology den diskreta topologin
disjoint disjunkt
distance avstånd
equivalence class ekvivalensklass
equivalence relation ekvivalensrelation
fine fin
finite intersection property ?
first-countable ?
fundamental group fundamentalgrupp
general topology allmän topologi
group grupp
homeomorphic homeomorfa
homeomorphism homeomorfi
homomorphism homomorfi
homotopic homotop
homotopy class homotopiklass
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homotopy homotopi
interior inre
intersection snitt
isomorphism isomorfi
Klein bottle Kleinflaska
lifting correspondence ?
lifting löft
limit point gränspunkt
locally (path-)connected lokalt (bågvis) sammanhängande
locally compact lokalt kompakt
locally Euclidean lokalt euklidisk
locally finite lokalt ändlig
loop ögla
manifold mångfald
metric metrik
metric space metriskt rum
metrisable metriserbart
neighbourhood omgivning
normal normalt
null-homotopic nollhomotop
one-point compactification enpunktskompaktifiering
open öppen
order topology ?
paracompact parakompakt
partial order partiell ordning
partition of unity partition av enheten
path-connected bågvis sammanhängande
path-connected component bågvis sammanhängande komponent
path homotopic väghomotop
path homotopy väghomotopi
path väg
point-set topology punktmängdstopologi
poset pomängd
preimage urbild
product topology produkttopologin
proper map ?
proper subset äkta delmängd
quotient map kvotavbildning
quotient topology kvottopologin
real projective plane reella projektiva planet
reflexive reflexiv
regular reguljärt
relation relation
relative topology relativ topologi
second-countable ?
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separable separabelt
separation separation
sequence följd
sequentially compact följdkompakt
set mängd
set theory mängdteori
simple closed curve enkel sluten kurva
structure struktur
subbasis delbas
subsequence delföljd
subset delmängd
subspace topology underrumstopologi
support stöd
symmetric symmetrisk
topological space topologiskt rum
topology generated by topologin genererad av
topology topologi
total total
transitive transitiv
trivial topology den triviala toplogin
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