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Abstract

This course assumes students to have mastered the knowledge of complex
function theory in which the classical analysis is based. Either the

reference book by Brown and Churchill [6] or Bak and Newman [4] can
provide such a background knowledge. In the all-time classic “A Course of

Modern Analysis” written by Whittaker and Watson [23] in 1902, the
authors divded the content of their book into part I “The processes of

analysis” and part II “The transcendental functions”. The main theme of
this course is to study some fundamentals of these classical transcendental

functions which are used extensively in number theory, physics,
engineering and other pure and applied areas.
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Chapter 1

Separation of Variables of
Helmholtz Equations

The Helmholtz equation named after the German physicist Hermann
von Helmholtz refers to second order (elliptic) partial differential equa-
tions of the form:

(∆2 + k2)Φ = 0, (1.1)

where k is a constant. If k = 0, then it reduces to the Laplace equations.
In this discussion, we shall restrict ourselves in the Euclidean space R3.

One of the most powerful theories developed in solving linear PDEs is the
the method of separation of variables. For example, the wave equa-
tion (

∆2 − 1
c2
∂2

∂t2

)
Ψ(r, t) = 0, (1.2)

can be solved by assuming Ψ(r, t) = Φ(r) · T (t) where T (t) = eiωt. This
yields (

∆2 − ω2

c2

)
Φ(r) = 0, (1.3)

which is a Helmholtz equation. The questions now is under what 3−dimensional
coordinate system (u1, u2, u3) do we have a solution that is in the separation
of variables form

Φ(r) = Φ1(u1) · Φ2(u2) · Φ3(u3) ? (1.4)

Eisenhart, L. P. (”Separable Systems of Stäckel.” Ann. Math. 35,
284-305, 1934) determines via a certain Stäckel determinant is fulfilled
(see e.g. Morse, P. M. and Feshbach, H. “Methods of Theoretical Physics,
Part I”. New York: McGraw-Hill, pp. 125–126, 271, and 509–510, 1953).

Theorem 1.1 (Eisenhart 1934). There are a total of eleven curvilinear
coordinate systems in which the Helmholtz equation separates.
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Each of the curvilinear coordinate is characterized by quadrics. That
is, surfaces defined by

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + lz + J = 0. (1.5)

One can visit http://en.wikipedia.org/wiki/Quadric for some of the quadric
surfaces. Curvilinear coordinate systems are formed by putting relevant or-
thogonal quadric surfaces. Wikipedia contains quite a few of these pictures.
We list the eleven coordinate systems here:
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Co-ordinate Systems
Name of system Transformation formulae Degenerate Surfaces
(1) Cartesian x = x, y = y, z = z

(2) Cylindrical
x = ρ cosφ, y = ρ sinφ, z = z
ρ ≥ 0, −π < φ ≤ π

(3) Spherical polar
x = r sin θ cosφ, y = r sin θ sinφ,
z = r cos θ
r ≥ 0, 0 ≤ θ ≤ π, −π ≤ φ ≤ π

(4)
Parabolic
cylinder

x = u2 − v2, y = 2uv,
z = z
u ≥ 0, −∞ < v < +∞

Half-plane

(5)
Elliptic
cylinder

x = f cosh ξ cos η, y = f sinh ξ sin η,
z = z
ξ ≥ 0, −∞ < η < +∞

Infinite strip;
Plane with
straight aperture

(6)
Rotation
paraboloidal

x = 2uv cosφ, 2uv sinφ,
z = u2 − v2

u, v ≥ 0, −π < φ < π
Half-line

(7)
Prolate
spheroidal

x = ` sinhu sin v cosφ,
y = ` sinhu sin v sinφ,
z = ` coshu cos v,
u ≥ 0, 0 ≤ v ≤ π, −π < φ ≤ π

Finite line ;
segment
Two half-lines

(8)
Oblate
spheroidal

x = ` coshu sin v cosφ,
y = ` coshu sin v sinφ,
z = ` sinhu cos v,
u ≥ 0, 0 ≤ v ≤ π, −π < φ ≤ π

Circular plate (disc);
Plane with
circular aperture

(9) Paraboloidal

x = 1
2`(cosh 2α+ 2 cos 2β − cosh 2γ,

y = 2` coshα cosβ sinh γ,
z = 2` sinhα sinβ cosh γ,
α, γ ≥ 0, −π < β ≤ π

Parabolic plate;
Plane with
parabolic aperture

(10) Elliptic conal

x = krsnαsnβ;
y = (ik/k′)rcnαcnβ,
z = (1/k′)rdnαdnβ;
r ≥ 0, −2K < α ≤ 2K,
β = K + iu, 0 ≤ u ≤ 2K ′

Plane sector;
Including quarter
plane

(11) Ellipsoidal

x = k2`snαsnβsn γ,
y = (−K2`/k′)cnαcnβcn γ,
z = (i`/k′)dnαdnβcn γ;
α, β as in (10), γ = iK ′ + w, 0 < w ≤ K

Elliptic plate;
Plane with
elliptic aperture
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Laplace & Helmholtz
Coordinate system Laplace Equation Helmholtz equation

(1) Cartesian (Trivial) (Trivial)

(2) Cylinderical (Trivial) Bessel

(3) Spherical polar Associated Legender Associated Legender

(4) Parabolic cylinder (Trivial) Weber

(5) Elliptic cylinder (Trivial) Mathieu

(6) Rotation-paraboloidal Bessel Confluent hypergeometric

(7) Prolate spheroidal Associated Legender Spheroidal wave

(8) Prolate spheroidal Associated Legender Spheroidal wave

(9) Paraboloidal Mathieu Whittaker-Hill

(10) Elliptic conal Lame Spherical Bessel, Lame

(11) Ellipsoidal Lame Ellipsoidal
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1. Associated Legender:

(1− x2)
d2y

dx2
− 2x

dy

dx
+
{
n(n+ 1)− m2

(1− x2)

}
y = 0 (1.6)

2. Bessel:

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0 (1.7)

3. Spherical Bessel:

x2 d
2y

dx2
+ 2x

dy

dx
+ (x2 − n(n+ 1))y = 0 (1.8)

4. Weber:
d2y

dx2
+ (λ− 1

4
x2)y = 0 (1.9)

5. Confluent hypergeometric:

x
d2y

dx2
+ (γ − x)

dy

dx
− αy = 0 (1.10)

6. Mathieu:
d2y

dx2
+ (λ− 2q cos 2x)y = 0 (1.11)

7. Spheroidal wave:

(1− x2)
d2y

dx2
− 2x

dy

dx
+
{
λ− µ2

(1− x2)
+ γ2(1− x2)

}
y = 0 (1.12)

8. Lame:
d2y

dx2
+ (h− n(n+ 1)k2sn 2x)y = 0 (1.13)

9. Whittaker-Hill:

d2y

dx2
+ (a+ b cos 2x+ c cos 4x)y = 0 (1.14)

10. Ellipsoidal wave:

d2y

dx2
+ (a+ bk2sn 2x+ qk4sn 4x)y = 0 (1.15)

Remark 1.0.1. The spheroidal wave and the Whittaker-Hill do not belong
to the hypergeometric equation regime, but to the Heun equation regime
(which has four regular singular points).
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1.1 What is not known?

It is generally regarded that the Bessel functions, Weber functions, Legendre
functions are better understood, but the remaining equations/functions are
not so well understood.

1. Bessel functions. OK! Still some unknowns.

2. Confluent hypergeometric equations/functions. NOT OK.

3. Spheroidal wave, Mathieu, Lame, Whittaker-Hill, Ellipsoidal wave are
poorly understood. Some of them are relatd to the Heun equation
which has four regular singular points. Its research has barely
started despite the fact that it has been around since 1910.

4. Mathematicans are separating variables of Laplace/Helmholtz equa-
tions, but in more complicated setting (such as in Riemannian spaces,
etc)
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Chapter 2

Infinite Products

We give a brief introduction to infinite products sufficient for our later ap-
plications. The basic theory for infinite products parallels that of infinite
series.

2.1 Definitions

Let {ak} be an infinite sequence of complex numbers. Consider

Pn =
n∏
k=1

(1 + ak) = (1 + a1)(1 + a2) · · · (1 + an).

If limn→∞ Pn exists and is equal to a non-zero P , then we say the infinite
product limn→∞

∏n
k=1(1 + ak) exists and its limit is given by

lim
n→∞

∞∏
n=1

(1 + an) = lim
n→∞

Pn = P.

We may also say that the sequence {Pn} converges to P . If either finitely
or an infinitely many of the factors are equal to zero, and the sequence
with those zero-factors deleted converges to a non-zero limit, then we say
the infinite product converges to zero. An infinite product is said to be
divergent if it is not convergent. We say an infinite product

∏∞
n=0(1 + an)

diverges to zero if it is not due to the failure of the limn→∞ Pn with respect
to the non-zero factors. For example, the infinite product

lim
n→∞

Pn = lim
n→∞

1 · 1
2
· · · 1

n

diverges to 0. In general, unless otherwise stated, we shall not consider
infinite products with zero limit in this course.

Theorem 2.1. If limn→∞
∏n
k=1(1 + ak) converges, then limn→∞ an = 0.
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Proof. If the product converges to P 6= 0, then

1 =
P

P
=

limn→∞
∏n
k=1(1 + ak)

limn→∞
∏n−1
k=1(1 + ak)

= lim
n→∞

(1 + an)

thus showing that limn→∞ an = 0 as required. If the infinite product con-
verges to the zero limit, then the same argument with these zero-factors
deleted still work.

Example 2.1.1. Determine the convergence of (1 + 1)(1− 1
2)(1 + 1

3) · · · .
We define

pn =

{
(1 + 1)(1− 1

2)(1 + 1
3) · · · (1− 1

n), if n even
(1 + 1)(1− 1

2)(1 + 1
3) · · · (1 + 1

n), if n odd

=

{
(1 + 1)(1

2)(4
3)(3

4) · · · ( n
n−1)(n−1

n ) = 1, if n is even
(1 + 1)(1

2)(4
3)(3

4) · · · ( 2
n−1)(n−1

n−2)(n+1
n ) = 1 + 1

n , if n is odd

Hence pn → 1 as n→∞. We conclude that

(1 + 1)(1− 1
2

)(1 +
1
3

) · · · = 1. (2.1)

We also note that
∏∞
n=1

(
1 + (−1)n

n

)
, and an = (−1)n

n → 0 as n→∞.

2.2 Cauchy criterion for infinite products

Theorem 2.2. The infinite product
∏∞
n=1(1 + an) is convergent (to a non-

zero limit) if and only if given ε > 0, there is an integer N > 0 such that∣∣(1 + an+1) · · · (1 + am)− 1
∣∣ < ε (2.2)

for all m > n > N .

Proof. Let
∏∞
n=1(1 + an) = p 6= 0 and let pn be the nth partial product of∏∞

n=1(1 + an). Then {pn} is a Cauchy sequence in C. Given ε > 0 , there is
an integer N > 0 such that |pn| > |p|/2 > 0 and∣∣pn − pm∣∣ < ε

|p|
2

(2.3)

for all m > n ≥ N . Thus∣∣(1 + an+1) · · · (1 + am)− 1
∣∣ = |pn|

∣∣∣pm
pn
− 1
∣∣∣ 1
|pn|

=
∣∣pm − pn∣∣ 1

|pn|

< ε
|p|
2

2
|p|

= ε
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for all m > n ≥ N , as required. The case becomes trivial if p = 0.
Conversely, suppose the inequality (2.8) holds, then given 0 < ε < 1,

there is N such that ∣∣∣∣pmpn − 1
∣∣∣∣ < ε (2.4)

for all m > n ≥ N . Let p′m = pm
pN

for all m > n ≥ N . So for all m > N (= n),
we have

1− ε < |p′m| < 1 + ε < 2.

Notice that (2.4) is equivalent to the inequality∣∣∣∣p′mp′n − 1
∣∣∣∣ < ε

for all m > n ≥ N . That is,∣∣p′m − p′n∣∣ < ε|p′n| < 2ε,

for all m > n ≥ N . This proves that {p′m} is a Cauchy sequence. Hence
{pm} is a Cauchy sequence and so convergent.

2.3 Absolute and uniform convergence

Proposition 2.3.1. Suppose all an are real and non-negative. Then∏∞
n=1(1 + an) converges if and only if

∑∞
n=1 an converges.

Proof. Suppose
∏∞
n=1(1 + an) converges. Then the inequality

a1 + · · · an ≤ (1 + a1) · · · (1 + an) (2.5)

immediately implies that
∑∞

n=1 an converges. Conversely, since 1 + a < ea

for a > 0, so

(1 + a1) · · · (1 + an) < exp
(
a1 + · · ·+ an

)
. (2.6)

This implies that
∏∞
n=1(1 + an) converges.

Exercise 2.3. Suppose an ≤ 0 for all n. Write an = −bn, and consider∏∞
k=1(1− bk). Show that

1. If bn ≥ 0, bn 6= 1 for all n and
∑∞

k=1 bk, then
∏∞
k=1(1− bk) is conver-

gent.
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2. If 0 ≤ bn < 1 for all n, and
∑∞

k=1 bk diverges, then
∏∞
k=1(1 − bk)

diverges to zero. Hence show that if 0 ≤ bn < 1 for all n, then
∑∞

k=1 bk
and

∏∞
k=1(1− bk) converge or diverge together.

We emphasis again that we shall not consider infinite products with
any zero-factor in this section. That is, we shall not consider those infinite
products that would converge to zero here.

Definition 2.3.1. Let {an} be an arbitrary sequence of complex numbers
(including real numbers) not equal to −1. Then we say the infinite product∏∞
n=1(1 + an) converges absolutely if

∏∞
n=1(1 + |an|) converges.

We easily see from the Proposition 2.3.1 that

Theorem 2.4. The necessary and sufficient condition for the infinite prod-
uct

∏∞
n=1(1 + an) to converge absolutely is the absolute convergence of∑∞

k=1 ak.

We recall that the infinite product although convergent(
1 + 1

)(
1− 1

2

)(
1 +

1
3

)
· · · (2.7)

is not absolutely convergent.

Theorem 2.5. If
∏∞
n=1(1 + |an|) is convergent, then

∏∞
n=1(1 + an) is con-

vergent.

Proof. We observe that∣∣(1 + an+1) · · · (1 + am)− 1
∣∣ < (1 + |an+1|) · · · (1 + |am|)− 1, (2.8)

holds trivially. For one can expand the left side in the form:∑
ar +

∑
aras +

∑
arasat + · · ·

+ an+1an+2 · · · am

which is dominated by∑
|ar|+

∑
|aras|+

∑
|arasat|+ · · ·

+ |an+1an+2 · · · am|.
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That is the original inequality that we want to show above. Thus the result
follows from Theorem 2.2.

Alternatively, let

pn =
n∏
k=1

(1 + ak), Pn =
n∏
k=1

(1 + |ak|). (2.9)

Then
pn − pn−1 = (1 + a1) · · · (1 + an−1) an, (2.10)

and
Pn − Pn−1 = (1 + |a1|) · · · (1 + |an−1|) |an|. (2.11)

Hence ∣∣pn − pn−1

∣∣ ≤ Pn − Pn−1. (2.12)

If
∏∞
k=1(1+|ak|) is convergent, then Pn tends to a limit, and so

∑
(Pk−Pk−1)

is convergent. Hence, by the comparison theorem,
∑

(pk− pk−1), and hence
pn also converge.
We can even conclude that the limit cannot be zero. For, since

∑
|ak| is

convergent, so 1 + an → 1. Therefore, the series∑∣∣∣∣ ak
1 + ak

∣∣∣∣
is also convergent. Hence, by what we have just shown above that the
infinite product

n∏
k=1

(
1− ak

1 + ak

)
is convergent. But this product is equal to 1/pn. Hence the lim pn 6= 0.

It was shown in Proposition 2.3.1 that if all an are real and non-negative.
Then

∏∞
n=1(1 + an) converges if and only if

∑∞
n=1 an converges. This no

longer holds when some of the an are negative.

Exercise 2.6. Determine the convergence of the infinite products

1. (
1 + 1

)(
1− 1

2

)(
1 +

1
3

)
· · ·

2. (
1− 1√

2

)(
1 +

1√
3

)(
1− 1√

4

)
· · · .

3.
∏∞
k=1(1 + ak) where a2k−1 = −1√

k
and a2k = 1√

k
+ 1

k for k = 1, 2 3, · · · .

It turns out that the first problem is known to converge and
∑∞

n=1 an
converges, while even though the second example has

∑∞
n=1 an convergent

but the infinite product actually diverges.
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2.4 Associated series of logarithms

We recall that the principal logarithm of a complex number A is defined to
be

logA = log |A|+ i argA, −π ≤ argA < π.

Theorem 2.7. Suppose non of the an = −1. If
∑∞

n=1 log(1+an) converges,
then

∏∞
n=0(1 + an) converges. If

∏∞
n=0(1 + an) converges, then∑∞

n=1 log(1 + an) converges to a branch of log
∏∞
n=0(1 + an).

Proof. Let the partial product and partial sum be denoted, respectively, by

Pn =
n∏
k=1

(1 + ak), Sn =
n∑
k=1

log(1 + ak). (2.13)

Here we assume principal logarithm in the Sn. Then we deduce that expSn =
Pn. We also know that limn→∞ expSn = exp

(
limn→∞ Sn

)
. Therefore if Sn

converges, then Pn also converges. Conversely, if
∏∞
n=0(1 + an) = p has a

limit. Let pn =
∏n
k=1(1 + ak). Then we have log pn/p → 0 as n → ∞. We

then write
log

pn
p

= Sn − log p+ 2πihn, (2.14)

where hn is an integer for each n. Then

log pn+1/p− log pn/p = Sn+1 − Sn + 2πi(hn+1 − hn)
= log(1 + an+1) + 2πi(hn+1 − hn)

It is clear that the left-side of the above equation tends to zero as n → ∞.
We know that the term log(1 + an+1) also tends to zero as n → ∞. Hence
hn+1 − hn = 0 for all n sufficiently large (since they are integers). Let
hn+1 = hn = h for all these large n. Then

Sn − log p+ 2πih = log pn/p→ 0, (2.15)

as n→∞. Hence Sn → S := log p− 2πih.

Theorem 2.8.
∏∞
n=0(1+an) converges absolutely if and only if

∑∞
n=1 log(1+ an)

converges absolutely.
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Proof. The result follows from Theorem 2.4 and the limit

lim
z→0

log(1 + z)
z

= 1. (2.16)

If suffices to show that the two series
∑∞

n=1 |log(1 + an)| and
∑∞

n=1 |an|
converge and diverge together. The details is left as exercise.

Exercise 2.9. 1. Show that if
∑
an and

∑
|an|2 are convergent, then∏

(1 + an) is convergent.

2. If an are real, and
∑
an is convergent, the infinite product

∏
(1 + an)

converges, diverges to zero according to the convergence or divergence
of
∑
a2
n respectively.

2.5 Uniform convergence

Let {pn(z)} be a sequence of complex-valued functions, each defined in a
closed bounded set (region) D. We say that the sequence {pn(z)} converges
to a limit function p(z), or in short notation, limn→∞ pn(z) = p(z) if for every
z in D and given ε > 0, there is an integer N such that

∣∣pn(ξ) − p(ξ)
∣∣ < ε

whenever n ≥ N . Here the integer function N = N(ε, ξ) depends on both
the ε and the point ξ. We say the convergence is uniform if N is independent
of ξ. That is, the sequence {pn(z)} converges uniformly in the region D if
there is a function p(z), such that given ε > 0, there is an integer N and for
each z ∈ D, ∣∣pn(z)− p(z)

∣∣ < ε,

whenever n ≥ N .

We recall the

Theorem 2.10. A necessary and sufficient condition for the uniform con-
vergence of the sequence of functions p1(z), p2(z), · · · in a closed bounded
region D is that, corresponding to any positive number ε, there exists an
integer N(ε), depending on ε alone, such that the inequaltiy∣∣pm(z)− pn(z)

∣∣ < ε, (2.17)

holds at each point z of D whenever m > n ≥ N .
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The proof is left as an exercise. We note that we have not assumed any
additional property on the sequence {pn(z)}. If we assume that each function
in the sequence is continuous in D, then one can show that the limiting
function p(z) of the unformly convergent sequence is also continuous in D.
Moreover, if each function in the sequence {pn(z)} is analytic in D, then the
limiting function p(z) is analytic in D, and that lim p′n(z) = p′(z) for each
z ∈ D. This results follows from

∫
C lim pn dz = lim

∫
C pn dz and Morera’s

theorem when the convergence of {pn(z)} is uniform under any piecewise
contour C lying entirely within D. We refer the details to a complex analysis
reference.

We can easily extend the above discussion to series of functions pn(z) =
u1(z)+u2(z)+ · · ·+un(z), n = 1, 2, 3, · · · where each uk(z) is a function in
D. If pn(z) converges uniformly in D, then the series is said to be uniformly
convergent in D. It is clear that if each pk(z) is continuous, and if the series
converges uniformly in D, then the lim pn(z) is continuous in D. If, in addi-
tion, that each uk(z) is analytic in D, then lim pn(z) = p(z) is analytic in D,
and that p′(z) =

∑
p′k(z). This also implies that p(n)(z) =

∑
p
(n)
k (z). Fi-

nally, let us recall the Weierstrass M−test which gives a sufficient condition
for uniform convergence of series.

Theorem 2.11. The infinite series
∑
pk(z) converges uniformly and ab-

solutely in a closed bounded region D if each pk(z) satisfies |pk(z)| ≤ Mk,
where Mk is independent of z and

∑
Mk is convergent.

Proof. The series evidently converges absolutely in D. To show that it
converges uniformly in D, we notice that, if Sk(z) is the kth-partial sum of
the series, then

∣∣Sm+r(z)− Sm(z)
∣∣ =

∣∣∣m+r∑
m+1

pk(z)
∣∣∣ ≤ m+r∑

m+1

∣∣pk(z)∣∣ < ∞∑
k=m+1

Mk

for every r. Since
∑
Mk is convergent, hence given any positive number ε,

we can find m so that
∑∞

m+1Mk < ε. It follows that∣∣Sm+r(z)− Sm(z)
∣∣ < ε

for any z in D and any positive integer r. The required result follows from
that of Theorem 2.10.

Theorem 2.12. In order for the infinite product
∏∞
k=1

(
1 + pk(z)

)
to con-

verge uniformly and absolutely in a closed bounded region D it is sufficient to
assume that each function pk(z) satisfies an inequality |pk(z)| ≤ Mk, where
Mk is independent of z and

∑
Mk is convergent.
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This is a Weierstrass M−test for the infinite product of functions.

Proof. The absolute convergence of the infinite product is clear from the
assumption that

∑
|pk(z)| ≤

∑
Mk <∞ and Theorem 2.4.

It follows from Proposition 2.3.1 and the assumption that
∑
Mk < ∞

implies the convergence of the product sequence Pn :=
∏n
k=1

(
1 + Mk

)
as

n→∞. One can then obtain a similar inequalty as (2.8) in the form

∣∣pn(z)− pm(z)
∣∣ = |pn(z)|

∣∣ m∏
n+1

{1 + pk(z)} − 1
∣∣

≤ |Mn|
∣∣ m∏
n+1

{1 +Mk} − 1
∣∣

= |Pn − Pm|.

Since {Pk} converges, so given ε > 0 one can find N such that∣∣pn(z)− pm(z)
∣∣ ≤ |Pn − Pm| < ε

wheneverm > n ≥ N . Since theN depends only on ε and not on a particular
z in D, so the convergence is uniform. This completes the proof.

One easily obtain

Theorem 2.13. If the infinite product
∏∞
k=1{1+pk(z)} converges uniformly

to f(z) in every closed region lying entirely in a closed contour C, and if
each function pk(z) is analytic, then f(z) is also analytic within C.

Proof. The proof essentially follows from the discussion on last page about∫
C lim pn dz = lim

∫
C pn dz and Morera’s theorem when the convergence of

{pn(z)} is uniform under any piecewise contour C lying entirely withinD

Exercise 2.14. Discuss the convergence of the following infinite products

1.
(

1− z2

12

)(
1− z2

22

)(
1− z2

32

)
· · · ;

2.
(

1− z

1

)(
1 +

z

1

)(
1− z

2

)(
1 +

z

2

)
· · · ;

3.
{(

1− z

1

)
ez
}{(

1 +
z

1

)
e−z
}{(

1− z

2

)
ez/2

}{(
1 +

z

2

)
e−z/2

}
· · · .
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We now discuss the above examples in any closed bounded domain D
which does not contain any of the zeros (±1, ±2, ±3, · · · ). Since D is
bounded so there exists a R > 0 such that the D lies entirely inside |z| ≤ R.

1. Let n denote an arbitrary zero of the first function above. Then∣∣z2/n2
∣∣ ≤ R2/n2. Clearly the series

∑
R2/n2 is convergent. Thus,

the M−test implies that the infinite product
∏(

1− z2/k2
)

converges
absolutely and uniformly in D. In fact, it is well-known that the prod-
uct equals to sinπz/(πz), and so is analytic.

2. In the second example above the M−test does not apply for the series
2R
∑

1/k does not converge. So the infinite product in (2) above does
not converge uniformly. Let

Fn(z) =
n∏
k=1

(
1− z2

k2

)
, fn(z) = nth-partial product of (2).

Then

f2n(z) = Fn(z), f2n+1(z) =
(

1− z

n+ 1

)
Fn(z).

This shows that both f1(z), f3(z), f5(z), · · · and f2(z), f4(z), f6(z), · · ·
converge uniformly to F (z) = limFn(z). So the infinite product (2)
converges to F (z) uniformly.

3. In the third example, we write(
1− z

n

)
ez/n =

∞∑
k=0

(
1
k!
− 1

(k − 1)!

)
zk

nk

=
∞∑
k=0

(
1− k
k!

)
zk

nk

= 1−
∞∑
k=2

(
k − 1
k!

)
zk

nk

:= 1− un(z).

Hence

|un(z)| ≤
∞∑
k=2

1
(k − 2)!

Rk

nk
=
(
R

n

)2

eR/n ≤ e
(
R

n

)2

,

when R < n. A similar formulation exists for the factor(
1 +

z

n

)
ez/n = 1− vn(z),
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and hence |vn(z)| ≤ e(R/n)2 when z ∈ D and n > R. The M−test
shows that the product (3) converges uniformly and absolutely in D.
Notice that since the partial product of order 2n equals to Fn(z) in
(1), so the third product also converges to F (z) = sinπz/(πz).
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Chapter 3

Gamma Function

In a letter from the German mathematician Christian Goldbach (1690–1746)
to the Swiss mathematician Leonhard Euler (1707–1783) in the year 1729,
Goldbach posed an interpolation problem of finding a function f(x) that
equals to n! when x = n. Euler gave a solution in a paper to this problem in
October 1729, and later another paper that addressed a related integration
problem in January 1730. Both problems are related to what we now call
(Euler) Gamma function. These problems defeated prominent mathemati-
cians such as Daneil Bernoulli and James Stirling at that time, while Euler
was only at the age of twenty two. The gamma function turns out to be
obiquity in mathematics. Interested reader could consult P. Davis’s article
[??].

3.1 Infinite product definition

Euler observed that[(2
1

)n 1
1 + n

][(3
2

)n 2
2 + n

][(4
3

)n 3
3 + n

]
· · · = n!

holds. We notice that the first n terms of the above ”infinite product” can
be written in the form

Π(x, n) :=
n!nx

(x+ 1)(x+ 2) · · · (x+ n)
, n = 1, 2, 3, · · · . (3.1)

Hence Euler’s original definition of Gamma function is given in the form

Π(x) = lim
n→∞

Π(x, n) := lim
n→∞

n!nx

(x+ 1)(x+ 2) · · · (x+ n)
, n = 1, 2, 3, · · · .

(3.2)
Of course, modern convergence idea were not available during Euler’s time.
Nevertheless, we shall show later that Euler’s intuition is actually correct.
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That is, Π(m) = limn→∞Π(m, n) = m!. People later adopted the more
popular notation Γ(m+ 1) = Π(m) introduced by Legendre1. It is perhaps
not immediately clear that the infinite product (3.1) converges. To see this,
let us write

lim
n→∞

Π(x, n) =
n!nx

(x+ 1)(x+ 2) · · · (x+ n)

= lim
n→∞

n! (n+ 1)x

(x+ 1)(x+ 2) · · · (x+ n)

= lim
n→∞

n!
(x+ 1)(x+ 2) · · · (x+ n)

· 2x

1x
· 3x

2x
· 4x

3x
· · · (n+ 1)x

nx

= lim
n→∞

Πn
k=1

[
k

k + x
· (k + 1)x

kx

]
= lim

n→∞
Πn
k=1

[(
1 +

x

k

)−1(
1 +

1
k

)x]
. (3.3)

The last infinite product is convergent for all real and even complex x = z
not equal to a negative integer, as shown in Homework 1, Q. 3. In fact,
the convergence is uniform in suitable closed bounded set. So the infinite
product is well-defined. What Euler observed was that the function Γ(z)
not only defined for positive integer m but also for, at least, non-integer.

We next write the infinite product in a different form.

3.2 The Euler (Mascheroni) constant γ

Let

Hn =
n∑
k=1

1
k
.

Theorem 3.1. Let Hn be as defined above. Then the limit

γ = lim
n→∞

(Hn − log n) (3.4)

exists which is called the Euler constant. It is not known if the Euler
constant is a rational or an irrational number.

The Euler constant is known to be approximately γ ≈ 0.5772. We shall
prove that 0 ≤ γ < 1.

11752-1833, French mathematician
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Proof. Let An = Hn − log n. Then

An+1 −An = Hn+1 −Hn − log(n+ 1) + log n

=
1

n+ 1
+ log

n

n+ 1

=
1

n+ 1
+ log

(
1− 1

n+ 1
)

= −
∞∑
k=2

1
k(n+ 1)k

< 0.

Thus the {An} is a decreasing sequence. We next show that {An} has a
lower bound. We first notice the straightforward inequalities

1
k
<

∫ k

k−1

dt

t
<

1
k − 1

holds for each integer k ≥ 2. Thus

Hn − 1 <
∫ 2

1

dt

t
+
∫ 3

2

dt

t
+ · · ·+

∫ n

n−1

dt

t
< Hn−1.

That is
Hn − 1 < log n < Hn−1.

Therefore
−1 < −Hn + log n < − 1

n
,

or
1
n
< An < 1,

for each n. Since {An} is decreasing and bounded below by 0, so this
completes the proof. We also easily see that Hn = log n + γ + εn and
εn ↘ 0.

3.3 Weierstrass’s definition

We now give an alternative infinite product definition of the gamma function
due to Weierstrass.

1
Γ(z)

= zeγz
∞∏
n=1

[(
1 +

z

n

)
e−z/n

]
, (3.5)

and γ is again the gamma constant given in (3.4). We need to establish a
number of facts before we could do so. In particular, we observe that the
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zeros of 1/Γ(z) are at the negative integers and each zero being a simple
zero.

Since the infinite product converges uniformly in any compact set in the
plane (see Theorem ??), so it is an analytic function in C. As long as we
stay away from the zeros we could take logarithm and differentiation on
both sides of (3.5) to obtain

−Γ′(z)
Γ(z)

=
1
z

+ γ +
∞∑
n=1

(
1

z + n
− 1
n

)

=
1
z

+ γ −
∞∑
n=1

z

n(z + n)
,

where the infinite series on the right converges absolutely and uniformly in
any closed subset of C.

We first compute Γ′(1). Substituting z = 1 into Weierstrass’s infinite
product gives

1
Γ(1)

= eγΠ∞n=1

[(
1 +

1
n

)
e−1/n

]
,

= eγ lim
n→∞

Πn
k=1

[
k + 1
k

e−1/k

]
= eγ lim

n→∞
(n+ 1) exp(−Hn)

= eγ lim
n→∞

(n+ 1) exp(−γ − log n− εn) (3.6)

for which εn → 0 as n→∞. It follows that

1
Γ(1)

= eγ lim
n→∞

(n+ 1)
n

e−γ = 1.

Hence Γ(1) = 1. On the other hand, we have

−Γ′(1)
Γ(1)

= 1 + γ −
∞∑
n=1

1
n(1 + n)

.

That is,

Γ′(1) = −1− γ +
∞∑
n=1

1
n(1 + n)

= −1− γ + lim
n→∞

(
1− 1

(1 + n)

)
= −γ.
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We next show that the Weierstrass product is Euler’s infinite product
definition Recall that

γ = lim
n→∞

(Hn − log n) = lim
n→∞

(Hn − log(n+ 1))

= lim
n→∞

(
Hn −

n∑
k=1

log
k + 1
k

)
. (3.7)

Hence

exp(−γz) = lim
n→∞

exp

[
−z
(
Hn −

n∑
k=1

log
k + 1
k

)]

= lim
n→∞

Πn
k=1

[(
k + 1
k

)z
exp

(
− z

k

)]
.

Thus

zΓ(z) = e−γz lim
n→∞

Πn
k=1

[(
1 +

1
k

)−1

exp
(z
k

)]

= lim
n→∞

Πn
k=1

[(
k + 1
k

)z
exp

(
− z

k

)(
1 +

1
k

)−1

exp
(z
k

)]
.

That is,

Γ(z) =
1
z

Π∞n=1

[(
1 +

1
n

)z (
1 +

z

n

)−1
]
. (3.8)

The above product has the following relation with (3.3)

Γ(z) = lim
n→∞

n!nz

z(z + 1)(z + 2) · · · (z + n)

=
1
z

lim
n→∞

n!nz

(z + 1)(z + 2) · · · (z + n)

=
1
z
·Π(z) =

1
z
· Γ(z + 1)

by Legendre’s convention. That is, the z is shifted by one. Hence the two
seemingly different infinite product representations are in fact the same.

In particular, we notice that Γ(x) > 0 when x is real and positive.

24



3.4 A first order difference equation

Applying Euler’s product representation yields

Γ(z + 1)
Γ(z)

=
z

z + 1

1
zΠ∞n=1

[(
1 + 1

n

)z (1 + z
n

)−1
]

1
zΠ∞n=1

[(
1 + 1

n

)z+1 (1 + z+1
n

)−1
]

=
z

z + 1
Π∞n=1

[(
1 +

1
n

)(
1 +

z

n

) (
1 +

z + 1
n

)−1
]

=
z

z + 1
lim
n→∞

Πn
n=1

(
k + 1
k
· k + z

k + z + 1

)
=

z

z + 1
lim
n→∞

n+ 1
1
· 1 + z

n+ z + 1
= z.

Therefore
Γ(z + 1) = zΓ(z) (3.9)

for all finite z that are not the poles of Γ(z). Starting with z = m + 1 and
iterating the (3.9) m times yields

Γ(m+ 1) = m · Γ(m) = · · · = m · · · 2 · Γ(2) = m · · · 2 · 1 · Γ(1) = m!

since we have already computed Γ(1) = 1. Thus Euler’s infinite product is
a complex-valued function generalization for the factorial.

Exercise 3.2. Solve the equation y(x+ 1) =
(x2 − x− 2
x2 + x− 2

)
y(x).

For the most updated research on generalizations on gamma functions
we refer to the 1997 paper of S. Ruijsenaars [?]

3.5 Integral representation definition

Euler noticed that there is another way to obtain the above partial product
(3.1) by considering the integral∫ 1

0
(1− s)n−1sx ds.
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Integrate this integral by parts yields:∫ 1

0
(1− s)n−1sx ds =

n− 1
x+ 1

∫ 1

0
(1− s)n−2sx+1 ds

=
(n− 1)(n− 2)
(x+ 1)(x+ 2)

∫ 1

0
(1− s)n−3sx+2 ds

· · ·
· · ·

=
(n− 1)(n− 2) · · ·

(
n− (n− 1)

)
(x+ 1)(x+ 2) · · · (x+ n− 1)

∫ 1

0
(1− s)n−nsx+n−1 ds

=
n!x!

(x+ n)!n

=
Π(x; n)
nx+1

.

Substituting t = ns in the above integral yields∫ n

0

(
1− t

n

)n−1( t
n

)x dt
n

=
1

nx+1

∫ n

0

(
1− t

n

)n−1
tx dt =

Π(x; n)
nx+1

.

Letting n→∞ yields

Π(x; ∞) =
∫ ∞

0
e−ttx dt,

or
Γ(x) =

∫ ∞
0

e−ttx−1 dt.

Definition 3.5.1. Let <z > 0. The complex function

Γ(z) =
∫ ∞

0
e−ttz−1 dt, <z > 0 (3.10)

is called the Euler-Gamma function.

The first question for us is whether this function is well-defined. To do
so, we need to establish some basic theory to deal with infinite integrals in
the next section.
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3.6 Uniform convergence

Let us first review some basic integration theory. If f(x) to be discussed
below is a complex-valued function, then we could always write it as a com-
bination two real functions: f(x) = u(x)+iv(x) so that the discussion applies
to both real or complex-valued function. Besides, we only require Riemann
integration below. Recall that the infinite integral

∫∞
a f(t) dt converges

(exists) if the limit

lim
x→∞

∫ x

a
f(t) dt = `

exists. We say that
∫∞
a f(t) dt converges absolutely if the integral

∫∞
a |f(t)| dt

converges. Then an absolutely convergent integral is convergent. This is be-
cause the integrals ∫ ∞

a
φ(t) dt, and

∫ ∞
a

ψ(t) dt

both converge, where φ(t) = |f(t)|+ f(t) and ψ(t) = |f(t)| − f(t). One can
see this by noting that both functions are positive. Then apply the com-
parison test. But we could then write f(t) = 1

2(φ(t)− ψ(t)). So
∫∞
a f(t) dt

converges. An integral is said to be conditional convergent if it is not
absolutely convergent. It is easy to see that a necessary and sufficient con-
dition for the convergent of the integal∫ ∞

a
f(t) dt

is that, given ε > 0, we can find x0 such that∣∣∣∣∫ x2

x1

f(t) dt
∣∣∣∣ < ε,

whenever x2 > x1 ≥ x0.

Definition 3.6.1. Let f(x, y) be an integrable function with respect to x
over the interval a ≤ x ≤ b, for α ≤ y ≤ β and for all values of b. Suppose
that the integral

φ(y) =
∫ ∞
a

f(x, y) dx (3.11)

converges for all values of y in (α, β). Then the integral is said to be uni-
formly convergent if, any given ε > 0, we can find an x0, depending on
ε, but not on y, such that∣∣∣∣φ(y)−

∫ x

a
f(t, y) dt

∣∣∣∣ < ε

whenever x ≥ x0.

27



We state a simple uniform convergence criterion which can be regarded
as a kind of Weierstrass M−test for the convergence of infinite integrals.

Lemma 3.6.1. The integral (3.11) converges uniformly if there is a positive
function g(x), such that |f(x, y)| ≤ g(x) over the interval a ≤ x ≤ b, for
α ≤ y ≤ β and for all values of b, and such that∫ ∞

a
g(x) dx

is convergent.

Proof. We notice that∣∣∣∣φ(y)−
∫ x

a
f(t, y) dt

∣∣∣∣ =
∣∣∣∣∫ ∞
x

f(t, y) dt
∣∣∣∣ ≤ ∫ ∞

x
g(t) dt.

Since
∫∞
a g(x) dx is convergent, so there exists an x0 ≥ a such that

∫∞
x g(x) dx < ε

for x > x0. This completes the proof.

Theorem 3.3. Let f(z, t) be a continuous function of z and t, where z lies
within the closed bounded region D and a ≤ t ≤ b. Suppose that f is an
analytic function of z, for every choice of t. Then the function

F (z) =
∫ b

a
f(z, t) dt

is an analytic function of z, and

F ′(z) =
∫ b

a

∂f

∂z
dt.

Proof. We divide [a, b] into n equal parts by the points

a = t0 < t1 < · · · < tn−1 < tn = b.

We define

Fn(z) =
n∑
k=1

f(z, tk)(tk − tk−1).

Since f(z, t) is a continuous function of t, so

Fn(z)→
∫ b

a
f(z, t) dt
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as n→∞ for each z. We next show that the convergence is uniform. Since
f(z, t) is uniformly continuous, so given any ε > 0, we can find an integer
m such that ∣∣f(z, t)− f(z, t′)

∣∣ < ε,

whenever z ∈ D and |t− t′| < (b− a)/m. Notice that

∣∣Fn(z)− F (z)
∣∣ =

∣∣ n∑
k=1

∫ tk

tk−1

f(z, tk)− f(z, t) dt
∣∣

≤
n∑
k=1

∫ tk

tk−1

∣∣f(z, tk)− f(z, t)
∣∣ dt

< (b− a)ε

whenever n ≥ m. This shows that the covergence is uniform. Hence F (z) is
analytic in D. Moreover, since

F ′n(z) =
n∑
k=1

∂f(z, tk)
∂z

(tk − tk−1),

so that

F ′(z) =
∫ b

a

∂f

∂z
dt,

as required.

Example 3.6.1. Consider

F (z) =
∫ b

a
cos zt f(t) dt

where f(t) is continuous on [a, b]. Then F ′(z) = −
∫ b
a t sin zt f(t) dt.

The above result can be further extended.

Theorem 3.4. Suppose in addition to Theorem 3.3 that the integration
extends to infinity, and that the infinite integral

F (z) =
∫ ∞
a

f(z, t) dt

is uniformly convergent. The F (z) is analytic in D and that

F ′(z) =
∫ ∞
a

∂f

∂z
dt.
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Proof. Let us consider the sequence of functions

Fn(z) :=
∫ n

a
f(z, t) dt,

and let n→∞. The last theorem asserts that each of the Fn(z) is analytic
within D, and since the limit function F (z) converges uniformly, so it must
be analytic in D. Moreover, since

F ′n(z) =
d

dz

∫ n

a
f(z, t) dt =

∫ n

a

∂f(z, t)
∂z

dt,

and so
F ′(z) =

∫ ∞
a

∂f(z, t)
∂z

dt

as required.

3.7 Analytic properties of Γ(z)

To do so, we write
Γ(z) = Φ(z) + Ψ(z), (3.12)

where

Φ(z) =
∫ 1

0
e−ttz−1 dt, Ψ(z) =

∫ ∞
1

e−ttz−1 dt.

Proposition 3.7.1. The function Ψ(z) defined in (3.12) is an entire func-
tion.

Proof. Let z lies in a closed, bounded but otherwise arbitrary domain. So
there exists a η such that <z ≤ η. Hence the integrand of the integral
satisfies the following inequality

|tz−1| =
∣∣ exp[(z − 1) log t]

∣∣ =
∣∣ exp[<{(z − 1)} log t]

∣∣
≤
∣∣ exp[(η − 1) log t]

∣∣ = tη−1.

holds throughout the bounded region whenever t ≥ 1. On the other hand,
e−

1
2
ttη−1 → 0 as t→∞, so one can find a constant C, depending on η, such

that tη−1 ≤ Ce
1
2
t for all t ≥ 1. In particular,∣∣e−ttz−1

∣∣ ≤ e−tCe 1
2
t ≤ Ce−

1
2
t

whenever z lies in the region and t ≥ 1. Since
∫∞
1 Ce

1
2
t dt is convergent,

so Lemma 3.6.1 implies that the infinite integral Ψ(z) converges uniformly,
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and hence is an analytic function of z by Theorem 3.4. The above argument
works for any closed bounded region. So Ψ(z) is an entire function (i.e.,
analytic in C).

It remains to consider the Φ(z).

Proposition 3.7.2. The function Φ(z) is analytic in the right half-plane.

Proof. Let us change the variable in the integration to t = 1/u. That is,

Φ(z) =
∫ 1

0
e−ttz−1 dt =

∫ ∞
1

e−1/uu−z−1 du.

Since |e−1/uu−z−1| ≤ |u−z−1| = u−<z−1. Clearly,∣∣∣∣∫ ∞
1

e−1/uu−z−1 du

∣∣∣∣ ≤ ∫ ∞
1

u−<z−1 du

converges when <z ≥ δ > 0. So the infinite integral is uniformly convergent
by Lemma 3.6.1. Hence Φ(z) is analytic by Theorem 3.4.

This shows that the integral (3.10) is well-defined in the right half-plane.

Let us now consider

Φ(z) =
∫ 1

0
e−ttz−1 dt

=
∫ 1

0

∞∑
k=0

(−1)ktk+z−1

k!
dt

=
∞∑
k=0

(−1)k

(k + z)k!
, (3.13)

where the integration term-by-term is justified for <z > 0. But the series
in (3.13) is uniformly convergent in any closed domain kept away from the
negative integers including 0. Thus the infinite series (3.13) provides an
analytic continuation formula for the gamma function to C. We have
proved

Theorem 3.5. The Gamma function Γ(z) is analytic in C except at
{0, −1, −2, −3, · · · }. That is, Γ(z) is a meromorphic function in C and

Γ(z) = Ψ(z) +
∞∑
k=0

(−1)k

(k + z)k!
,

with simple poles at 0, −1, −2, −3, · · · , with residue being (−1)k/k! at z =
−k.
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3.8 Tannery’s theorem

We shall need this theorem to establish the equivalence of the two definitions
of the gamma function.

Theorem 3.6 (Tannery’s theorem). Suppose the function f(t, n) converges
to g(t) uniformly as n→∞ for any fixed interval of t, |f(t, n)| ≤M(t) for
all n and t for some positive function M(t) such that

∫∞
a M(t) dt converges.

If there exists a sequence λn such that λn →∞, then

lim
n→∞

∫ λn

a
f(t, n) dt =

∫ ∞
a

g(t) dt.

Proof. We choose K so large so that K ≥ a and to choose n such that
λn > K. Then∣∣∣ ∫ λn

a
f(t, n) dt−

∫ ∞
a

g(t) dt
∣∣∣ =

∣∣∣ ∫ K

a
(f − g) dt+

∫ λn

K
f dt−

∫ ∞
K

g dt
∣∣∣

≤
∣∣∣ ∫ K

a
(f − g) dt

∣∣∣+
∫ λn

K
|f(t, n)| dt+

∫ ∞
K
|g(t)| dt.

But since |f(t, n)| ≤M(t) for all n and f(t, n) converges g(t), so we also
deduce |g(t)| ≤M(t). This gives∣∣∣ ∫ λn

a
f(t, n) dt−

∫ ∞
a

g(t) dt
∣∣∣

≤
∣∣∣ ∫ K

a
(f − g) dt

∣∣∣+ 2
∫ ∞
K

M(t) dt.

Thus

lim sup
n→∞

∣∣∣ ∫ λn

a
f(t, n) dt−

∫ ∞
a

g(t) dt
∣∣∣ ≤ 2

∫ ∞
K

M(t) dt.

Since the right side is independent of K. It follows that the above limit is
zero.

Exercise 3.7. Let F (n) =
∑p

k=0 vk(n), where p → ∞ as n → ∞. Then if
vk(n)→ wk as n→∞ for each fixed k, show that

lim
n→∞

F (n) =
∞∑
k=0

wk,

provided that |vk(n)| ≤ Mk, where Mk is independent of n and
∑
Mk con-

verges.
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3.9 Integral representation

Let
Γ(z; n) :=

n!nz

z(z + 1)(z + 2) · · · (z + n)
, n = 1, 2, 3, · · · .

Note that zΓ(z; n) = Π(z; n).
As in the case of Π(z; n), we have

Γ(z; n) = nz
∫ 1

0
(1− s)nsz−1 ds =

∫ n

0

(
1− t

n

)n
tz−1 dt.

We shall show that

Γ(z; n) −→
∫ ∞

0
e−ttz−1 dt = Γ(z).

We first establish some inequalities

Lemma 3.9.1. If 0 ≤ α < 1, then 1 + α ≤ exp(α) ≤ (1− α)−1.

Proof. Omitted.

Lemma 3.9.2. If 0 ≤ α < 1, then 1− nα ≤ (1− α)n for n ∈ N.

Proof. By induction.

Lemma 3.9.3. Let 0 ≤ t < n where n is a positive integer. Then

0 ≤ e−t −
(

1− t

n

)n
≤ t2e−t

n
.

Proof. We let α = t/n in Lemma 3.9.1 to obtain

1 +
t

n
≤ exp

( t
n

)
≤
(

1− t

n

)−1

from which we get (
1 +

t

n

)n
≤ et ≤

(
1− t

n

)−n
or (

1 +
t

n

)−n
≥ e−t ≥

(
1− t

n

)n
,
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so that
e−t −

(
1− t

n

)n
≥ 0.

Thus

e−t −
(

1− t

n

)n
= e−t

[
1− et

(
1− t

n

)n]
≤ e−t

[
1−

(
1− t2

n2

)n]
≤ e−t

[
1−

(
1− n t

2

n2

)]
by Lemma 3.9.2. Hence

e−t −
(

1− t

n

)n
≤ e−t

[
1− 1 +

t2

n

]
=
e−tt2

n
.

Theorem 3.8. Let <z > 0. Then we have

Γ(z) =
∫ ∞

0
e−ttz−1 dt = lim

n→∞

∫ n

0

(
1− t

n

)n
tz−1 dt

= lim
n→∞

Γ(z; n) = lim
n→∞

n!nz

z(z + 1)(z + 2) · · · (z + n)
.

Proof. We already know that the limit relations from the second and third
equalities. So it remains to consider the first equality.

Let x = <z. Then the Lemma 3.9.3 implies that∣∣∣e−ttz−1 −
(

1− t

n

)n
tz−1

∣∣∣ ≤ tx−1
{
e−t −

(
1− t

n

)n}
≤ tx+1e−t

n

for every positive integer n. Hence the convergence of f(t, n) :=
(

1− t

n

)n
tz−1

to e−ttz−1 is uniform for any t in a fixed interval as n tends to infinity. Be-
sides, we have

|f(t, n)| =
∣∣∣(1− t

n

)n
tz−1

∣∣∣ =
(

1− t

n

)n
tx−1 ≤ e−ttx−1 := M(t)

and
∫∞
0 e−ttx−1 < ∞ provided x = <z > 1. Hence the hypothesis of

Tannery’s theorem are satisfied, and we conclude the limit holds when <z =
x > 1. The case when <z = x > 0 follows from Γ(z) being an analytic
function already known from Theorem 3.5 and the principle of analytic
continuation.

Remark 3.9.1. We note that one could also apply the Lebesgue dominated
convergence theorem directly in the above proof.
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3.10 The Eulerian integral of the first kind

Definition 3.10.1. The beta integral is a function of two complex vari-
ables defined by

B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt, <x > 0, <y > 0. (3.14)

We note that the beta integral is often called the Eulerian integral of
the first kind while the gamma function Γ(z) =

∫∞
0 e−ttz−1 dt is called the

Eulerian integral of the second kind

We observe that the beta integral is symmetric in x and y: a change
of variables by u = 1 − t clearly illustrates this. The complex exponent is
understood to be

tx−1 = exp[(x− 1) log t], (1− t)y−1 = exp[(y − 1) log(1− t)]

where the logarithms have their principal values (i.e., log z = log r + iθ
where z = reiθ and −π < arg z = θ ≤ π. Clearly the two functions are well
defined.

Exercise 3.9. Prove that the beta integral is an analytic function in x (with
<x > 0 and y held fixed) and y (with <y > 0 and x held fixed).

Definition 3.10.2. We write, for integer n and any complex number x

(x)n = x(x+ 1)(x+ 1) · · · (x+ n− 1).

Exercise 3.10. Show for any x not equal to a negative integer

Γ(x) = lim
k→∞

k!kx−1

(x)k
.

Theorem 3.11. If <x > 0 and <y > 0, then

B(x, y) =
Γ(x)Γ(y)
Γ(x+ y)

. (3.15)
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Proof. For <x > 0 and <y > 0, we have

B(x, y + 1) =
∫ 1

0
tx−1(1− t)(1− t)y−1 dt

= B(x, y)−B(x+ 1, y).

On the other hand, an integration by parts yields

B(x, y + 1) =
1
x
tx(1− t)y−1

∣∣∣1
0

+
y

x

∫ 1

0
tx(1− t)y−1 dt

=
y

x
B(x+ 1, y).

Combining the above two expressions for B(x, y + 1) yields the iterative
formula for the beta function:

B(x, y) =
x+ y

y
B(x, y + 1). (3.16)

So iterating this formula several times yields:

B(x, y) =
(x+ y)(x+ y + 1)

y(y + 1)
B(x, y + 1) = · · · = (x+ y)n

(y)n
B(x, y + n).

(3.17)
Rewrite this relation as

B(x, y) =
(x+ y)n

n!
n!

(y)n
B(x, y + n)

=
(x+ y)n

n!
n!

(y)n

∫ 1

0
sx−1(1− s)y+n−1 ds

=
(x+ y)n

n!
n!

(y)n

∫ n

0

( t
n

)x−1(
1− t

n

)y+n−1 dt

n

=
(x+ y)n
n!nx+y−1

n!ny−1

(y)n

∫ n

0

( t
n

)x−1(
1− t

n

)y+n−1
dt.

Letting n→∞ in the above relation yields

B(x, y) =
Γ(y)

Γ(x+ y)

∫ ∞
0

tx−1e−t dt

where we have applied the Tannery theorem or Lebesgue’s dominated con-
vergence theorem.

Exercise 3.12. Apply t = sin2 θ to (3.15) to show∫ π/2

0
sin2x−1 θ cos2y−1 θ dθ =

Γ(x)Γ(y)
2Γ(x+ y)

.

Hence show that
Γ
(1

2

)
=
√
π.
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Exercise 3.13. Apply t = s/(s+ 1) to (3.15) to show∫ ∞
0

sx−1

(1 + s)x+y
ds =

Γ(x)Γ(y)
Γ(x+ y)

. (3.18)

3.11 The Euler reflection formula

If x+ y = 1, thenΓ(x+ y) = Γ(1) = 1. We show a beautiful formula about
gamma function of this sort due to Euler and some of its consequences. We
shall use complex variable proof.

Theorem 3.14. We have when z 6= {0, −1, −2, −3, · · · },

Γ(z)Γ(1− z) =
π

sinπz
. (3.19)

Proof. Suppose that z is chosen to lie in the strip 0 < <z < 1. Then both z
and 1−z have positive real part. So the Theorem 3.11 applies and we could
write

Γ(z)Γ(1− z) = B(z, 1− z) =
∫ 1

0
tz−1(1− t)−z dt

=
∫ 1

0

( t

1− t

)z dt
t
.

Putting s = t/(1− t) this time yields

Γ(z)Γ(1− z) =
∫ ∞

0

sz−1

1 + s
ds, 0 < <z < 1.

Let us write <Z = s and

Γ(z)Γ(1− z) =
∫ ∞

0

(<Z)z−1

1 + <Z
d<Z, 0 < <z < 1.

So we could consider an contour integral in variable Z such that <Z = s
and whose integrand is given above:∫

C

Zz−1

1 + Z
dZ,

where the contour C consists of two circles with radii R and r respectively
and R > 1 > r, connected by a line segment [r, R] lying on the positive
real axis. The circle of radius R is around the anti-clockwise direction while
that on radius r around the clockwise direction. There are two straight line
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segments of the contour on opposite direction lying on the segment [r, R]
connecting the two circles.

The function in the integrand has a simple pole at Z = −1. Thus the
Residue theorem from basic complex function theory yields∫

C

Zz−1

1 + Z
dZ = 2πiResZ=−1

Zz−1

1 + Z

= 2πi lim
Z→−1

(Z − (−1))
Zz−1

1 + Z

= 2πi(−1)z−1

= 2πi exp
(
πi(z − 1)

)
.

On the other hand, applying the contour integration along C splits the
integration into four parts in the form

2πi exp
(
πi(z − 1)

)
=
∫
C

Zz−1

1 + Z
dZ

=
∫ 2π

0

(Reiθ)z−1 d(Reiθ)
1 +Reiθ

+
∫ r

R

(se2πi)z−1 d(se2πi)
1 + se2πi

+
∫ 0

2π

(reiθ)z−1 d(reiθ)
1 + reiθ

+
∫ R

r

(se0πi)z−1 d(se0πi)
1 + se2πi

=
∫ 2π

0

iRzeiθz dθ

1 +Reiθ
+
∫ r

R

sz−1e2πiz ds

1 + s

+
∫ 0

2π

irz−1eiθz dθ

1 + reiθ
+
∫ R

r

sz−1e0iz ds

1 + s
.

The assumption that 0 < <z < 1 implies that the first and the third integral
tend to zero respectively, as R→∞ and r → 0. Thus we are left with

e2πiz
∫ 0

∞

sz−1 ds

1 + s
+
∫ ∞

0

sz−1 ds

1 + s
= −2πieπiz.

We deduce that∫ ∞
0

sz−1 ds

1 + s
=

2πieiπz

e2πiz − 1
=

2πi
eiπz − e−iπz

=
π

sinπz
.

This proves the formula

Γ(z)Γ(1− z) =
π

sinπz

when 0 < <z < 1. On the other hand, each term of this formula is valid
on the C except at 0 and negative integers. The formula must therefore valid
throughout C except at 0 and negative integers by the analytic continuation
principle.
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Exercise 3.15. Use Euler’s reflection formula to prove Γ(1
2) =

√
π.

We deduce from the Euler reflection formula the following identities (as
listed in Andrews, Askey and Roy [?, ]

Theorem 3.16. 1.

sinπx = πx
∞∏
n=1

(
1− x2

n2

)
, (3.20)

2.

π cotπx =
1
x

+
∞∑
n=1

( 1
x+ n

+
1

x− n

)
= lim

n→∞

n∑
k=−n

1
x− k

, (3.21)

3.
π

sinπx
=

1
x

+ 2x
∞∑
n=1

(−1)n

x2 − n2
= lim

n→∞

n∑
k=−n

(−1)k

x− k
, (3.22)

4.

π tanπx = lim
n→∞

n∑
k=−n

1
k + 1

2 − x
, (3.23)

5.

π secπx = lim
n→∞

n∑
k=−n

(−1)k

k + x+ 1
2

, (3.24)

6.
π2

sin2 πx
=

∞∑
n=−∞

1
(x+ n)2

. (3.25)

Proof. We recall the Weierstrass factorization of the gamma function is given
by

1
Γ(x)

= xeγx
∞∏
n=1

[(
1 +

x

n

)
e−x/n

]
,

and γ is the gamma constant. The first identity follows from the factoriza-
tion of the product (which converges uniformly) and the reflection formula
in the form

sinπx
π

= Γ(x)−1Γ(1− x)−1 = (−x)−1Γ(x)−1Γ(−x)−1

=
1
−x

xeγx
∞∏
n=1

[(
1 +

x

n

)
e−x/n

]
· (−x) e−γx

∞∏
n=1

[(
1− x

n

)
ex/n

]
= x

∞∏
n=1

(
1− x2

n2

)
,
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as required.
The (3.21) is the logarithmic derivative of (3.20) and the convergence

is uniform in any compact subset of complex plane with the corresponding
simple poles removed. The formula (3.22) follows from the identity

1
sinx

= cosecx = cot
x

2
− cotx.

The remaining three identities are left as exercises.

Exercise 3.17. Prove the identities (3.23), (3.24) and (3.25) by applying
the previous three identities and appropriate trigonometric identities.

3.12 Stirling’s asymptotic formula

According to certain historical record, De Moivre noticed that n! behaves like
n! ≈ Cnn+1/2e−n when n is large (1730), where C is an unknown constant.
Stirling observed that C =

√
2π, and de Moivre later proved Stirling’s claim.

The treatment here mainly follows that of Andrews, Askey and Roy []

Theorem 3.18.

Γ(x) ≈
√

2πxx−1/2e−x, <x→∞. (3.26)

Proof. Let

log Γ(x+ n) := cn =
n−1∑
k=1

log(k + x) + log Γ(x+ 1).

So
cn+1 − cn = log(x+ n). (3.27)

The idea is that we think of the above summation as certain approximation
of an integral representing an area, so that the right side of the equation
(3.27) can be interpreted as a derivative and cn the integral of log(x + n).
Thus integrating log t from 1 to n+ x gives approximately

(n+ x) log(x+ n)− (n+ x)

when n→∞. So we set an error term dn to be

cn = (n+ x) log(n+ x)− (n+ x) + dn,
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and substitute it into (3.27) to yield

dn+1 − dn = (n+ x+ 1) log(n+ 1 + x)− (n+ x) log(n+ x)− (n+ x) + 1.

Thus

dn+1 − dn = 1 + (1 + n+ x)
[

log(n+ x)− log(n+ 1 + x)
]

= 1− (n+ x+ 1)
[
1 +

1
n+ x

]
= 1− (n+ x+ 1)

[ 1
n+ x

− 1
2(n+ x)2

+
1

3(n+ x)3
− · · ·

]
= 1−

[(
1 +

1
n+ x

)
− n+ x+ 1

2(n+ x)2
+
n+ x+ 1
3(n+ x)3

− · · ·
]

=
−1
n+ x

+
n+ x+ 1
2(n+ x)2

− n+ x+ 1
3(n+ x)3

+
n+ x+ 1
4(n+ x)4

· · ·
]

= − 1
2(n+ x)

+
1

6(n+ x)2
− 1

12(n+ x)3
+ · · · .

We may similarly think of the dn in

dn+1 − dn = − 1
2(n+ x)

+
1

6(n+ x)2
− 1

12(n+ x)3
+ · · · (3.28)

as the integral of the leading term of the right side. The area approimation
represented by this integral is given in the following exercise.

Exercise 3.19. Explain why the area representing dn is approximately

dn ≈ −
1
2

log(n+ x).

Thus we define
en = dn −

(
− 1

2
log(n+ x)

)
,

and substitute into (3.28) to yield

en+1 − en =
1
2

log
(

1 +
1

n+ x

)
− 1

2(n+ x)
+

1
6(n+ x)2

− 1
12(n+ x)3

+ · · ·

= − 1
12(n+ x)2

+O
( 1

(n+ x)3
)
.

Thus

en − e0 =
n−1∑
k=0

(ek+1 − ek) =
n−1∑
k=0

[
− 1

12(k + x)2
+O

( 1
(k + x)3

)]
.
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We conclude that limn→∞(en−e0) := K1(x) must exist. On the other hand,
each infinite sum on the right side of the above equation converges too. So
we have, provided n is sufficiently large, that

en = K(x) +
1

12(n+ x)
+O

( 1
(n+ x)2

)
,

where K(x) = K1(x) + e0. So we can write

cn = (n+ x) log(n+ x)− (n+ x)− 1
2

log(n+ x) +K(x)

+
1

12(n+ x)
+O

( 1
(n+ x)2

)
. (3.29)

On the other hand, the Euler product representation yields

lim
n→∞

Γ(n+ x)ny

Γ(n+ y)nx
=

Γ(x)
Γ(y)

lim
n→∞

(x)n/nx

(y)n/ny
=

Γ(x)
Γ(y)

Γ(y)
Γ(x)

= 1

Choosing y = 0 in the above limit and together with (3.29) yields

1 = lim
n→∞

n−x
Γ(n+ x)

Γ(x)

= lim
n→∞

n−xeK(x)(n+ x)n+x−1/2 exp
[
− (n+ x) +

1
12(n+ x)

+O
(
1/(n+ x)2

)]
eK(0)nn−1/2 exp

[
− n+

1
12n

+O
(
1/n2

)]
= lim

n→∞
eK(x)−K(0)

(
1 +

x

n

)n(
1 +

x

n

)x−1/2
e−x+O(1/n)

= eK(x)−K(0).

Thus proving that K(x) = K(0) = C is a constant function. Hence we
deduce

Γ(x) ≈ Cxx−
1
2 e−x, <x→∞.

We now quote a classical product of Wallis from 1656 which gives

lim
n→∞

[
2 · 4 · 6 · · · 2n

1 · 3 · 5 · · · (2n− 1)
· 1√

n

]2

= π.

See Andrews, Askey and Roy [] for the details. Hence we have

√
π = lim

n→∞

22n (n!)2

(2n)!
· 1√

n

= lim
n→∞

22nC2n2n+1e−2n+O( 1
n

)

C(2n)2n+ 1
2 e−2n+O( 1

n
)
· 1√

n

=
C√

2
,

thus giving C =
√

2π as required.
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One can obtain a more accurate asymptotic formula. Let us first intro-
duce a new term.

Definition 3.12.1. The Bernoulli numbers Bn are defined by the power
series expansion

x

ex − 1
=
∞∑
n=0

Bn
xn

n!
= 1− x

2
+
∞∑
k=1

B2k
x2k

(2k)!
.

The first few Bernouilli numbers are

B1 = −1
2
,

B2 =
1
6
,

B4 = − 1
30
,

B6 =
1
42
,

· · · = · · · .

Then we have

Theorem 3.20. For each positive integer k,

∞∑
n=1

1
n2k

=
(−1)k+122k−1

(2k)!
B2kπ

2k.

Proof. We deduce from the definition of the Bernoulli numbers that

x cotx = ix
eix + e−ix

eix − e−ix
= ix+

2ix
e2ix − 1

= 1−
∞∑
k=1

(−1)k+122k

(2k)!
B2kx

2k.

On the other hand, the identity (3.21) gives us

x cotx = 1 + 2
∞∑
n=1

x2

x2 − n2π2
= 1− 2

∞∑
n=1

∞∑
k=1

x2k

n2kπ2k

= 1− 2
∞∑
k=1

( ∞∑
n=1

1
n2k

)x2k

π2k
.

Equating the coefficient of x2k for each k in the above two infinite sums
completes the proof.
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Consider
text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
,

where Bn(0) = Bn for all n ≥ 1 are the Bernoulli numbers. The Bn(x) are
called the Bernoulli polynomials.

Theorem 3.21. Let x be a non-zero and non-negative complex number.
Then

log Γ(x) =
1
2

log(2π) +
(
x− 1

2

)
log x− x+

∞∑
j=1

B2j

(2j − 1)2j
1

x2j−1

− 1
2m

∫ ∞
0

B2m(t− [t])
(x+ t)2m

dt.

The branch of log x is chosen so that log 1 = 0.

We shall not prove this theorem. You are advised to consult either Hardy
[14, XIII], Andrews, Askey and Roy [1] or Rainville [18] for a proof.

But we could deduce the Stirling asymptotic formula (3.18) immediately.

Corollary 3.1. Let δ > 0 and | arg x| ≤ π − δ. Then

Γ(x) ≈
√

2πxx−1/2e−x, |x| → ∞. (3.30)

Exercise 3.22. Apply the Euler reflection formula for the gamma function
to show that ∣∣∣∣Γ(1

2
+ ib

)∣∣∣∣ ≈ √2πe−π|b|/2, b→ ±∞.

3.13 Gauss’s Multiplication Formula

We first note that

(z)2n = 22n
(z

2

)
n

(
z + 1

2

)
n

.

This can be easily verified.

Exercise 3.23. Prove that

(z)kn = kkn
(z
k

)
n

(
z + 1
k

)
n

· · ·
(
z + k − 1

k

)
n

. (3.31)
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Thus we deduce

Theorem 3.24 (Legendre’s duplication formula).

√
π Γ(2a) = 22a−1Γ(a)Γ(a+

1
2

),

provided that none of the three functions above will encounter a pole.

In fact, it is a special case of Gauss’s multiplication theorem below. But
first we need the following simple fact.

Lemma 3.13.1. Let k ≥ 2 be an integer. Then
k−1∏
s=1

sin
πs

k
=

k

2k−1
.

Proof. Let α = e2πi/k. Then

xk − 1 = (x− 1)Πk−1
s=1(x− αs).

Differentiating both sides yields

kxk−1 = Πk−1
s=1(x− αs) + (x− 1)g(x),

in which g(x) is a polynomial in x. Put x = 1 into both sides of the above
formula gives us the identity

k = Πk−1
s=1(1− αs).

But

1− αs = 1− e2sπi/k = −eπis/k
(
eπis/k − e−πis/k

)
= −2ieπis/k sin

πs

k
.

Hence
k = (−2πi)k−1 exp

[1
2
πi(k − 1)

]
Πk−1
s=1 sin

πs

k
,

thus giving the required result.

Theorem 3.25 (Gauss’s multiplication theorem).

(2π)
k−1
2 k

1
2
−kaΓ(ka) = Γ(a)Γ

(
a+

1
k

)
· · ·Γ

(
a+

k − 1
k

)
. (3.32)
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Proof. We deduce from (3.31) and (α)n = Γ(α+n)/Γ(α), that the following
identity

Γ(z + nk)
Γ(z)

= knk
k∏
s=1

Γ
(z + s− 1

k
+ n

)
Γ
(z + s− 1

k

) .

Subsitiuting z = ka into the above identity yields

Γ(ka+ nk)
Γ(z)

= knk
k∏
s=1

Γ
(
a+ n+

s− 1
k

)
Γ
(
a+

s− 1
k

) .

Rearranging the terms in the above equation such that the left-side is inde-
pendent of n. This yields

Γ(ka)∏k
s=1 Γ

(
a+

s− 1
k

) =
Γ(ka+ nk)

knk
∏k
s=1 Γ

(
a+ n+

s− 1
k

)
= lim

n→∞

Γ(ka+ nk)

knk
∏k
s=1 Γ

(
a+ n+

s− 1
k

)
= lim

n→∞

Γ(ka+ nk)
(kn− 1)!(nk)ka

· (kn− 1)!(nk)ka

knk

·
k∏
s=1

[
(n− 1)!na+

s−1
k

Γ
(
a+ n+

s− 1
k

) · 1

(n− 1)!na+
s−1
k

]

= 1 · lim
n→∞

(kn− 1)!(nk)ka

knk
·
k∏
s=1

(1) · 1

(n− 1)!na+
s−1
k

= lim
n→∞

(kn− 1)!(nk)ka

knk[(n− 1)!]knka+
1
2
(k−1)

,

is a function of a only, since

lim
n→∞

(n− 1)!na+
s−1
k

Γ
(
a+ n+

s− 1
k

) = 1,

and

lim
n→∞

(kn− 1)!(nk)ka

Γ(ka+ nk)
= 1

hold. Thus, the limit

lim
n→∞

Γ(ka)

kka
∏k
s=1 Γ

(
a+

s− 1
k

) = c
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must be a certain constant c to be determined. Let us put a = 1/k and
notice that Γ(1) = 1. Then we have

1
kc

=
k−1∏
s=1

Γ
( s
k

)
=

k−1∏
s=1

Γ
(k − s

k

)
.

But then, we deduce from the Gauss reflection formula, that

1
k2c2

=
k−1∏
s=1

Γ
( s
k

)
· Γ
(k − s

k

)
=

k−1∏
s=1

π

sin πs
k

,

or symplifying as

k2c2πk−1 =
k−1∏
s=1

sin
πs

k
.

But then the Lemma 3.13.1 gives
∏k−1
s=1 sin πs

k = k
2k−1 and hence

c = (2π)−
1
2
(k−1)k−

1
2

as required.

Exercise 3.26. Prove Legendre’s duplication formula

√
π Γ(2a) = 22a−1Γ(a)Γ(a+

1
2

),

by imitating the proof for the Gauss’s multiplication theorem.
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Chapter 4

Linear Differential Equations

Before we turn to hypergeometric equations, let us first examine differential
equations of the form

dnw

dzn
+ pn−1(z)

dn−1w

dzn−1
+ · · ·+ p1(z)

dw

dz
+ p0(z)w = 0

where the coefficients pj(z), j = 0, 1, · · · , n− 1 are meromorphic functions
in a domain (i.e., some open connected set), that is they are analytic ex-
cept at the isolated poles, and w(z) is a solution of the equation. We will
be interested in knowing when will such a solution exist, and how do the
properties of the coefficients affect those of the solutions, etc.

The simplest equation of this type is first order equation

dw

dz
+ p(z)w = 0.

We can integrate this equation to obtain

w = A exp
(
−
∫
p(z) dz

)
,

where A is an arbitrary non-zero constant. So relation between the coef-
ficient p(z) and the solution w(z) is explicit. On the other hand, no such
explicit fomulation for the above higher order equation is known. We shall
restrice ourselves to second order linear differential equations of the form

d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0, (4.1)

where p(z) and q(z) are meromorphic in a domain. This is because the the-
ory of second order equations can easily be extended to higher order equa-
tions, and also because many important functions that we shall encounter
later satisfy second order equations.
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Definition 4.0.1. A point z0 is said to be an ordinary point of the equa-
tion (4.1) if the functions p(z) and q(z) are both analytic at z0 (i.e., they
are differentiable in a neighbourhood of z0). Points that are not ordinary
points are called singular points.

It turns out that the properties of solution at z0 of (??) are influenced
by how (or no) “singular” of the coefficients p(z), q(z) there. In general,
if the point z0 is an ordinary point for p(z), q(z), then one can solve any
reasonable initial value problem at z0. But it turns out that the most in-
teresting second order differential equations that people often encounter in
all kinds of problems, as we shall see later, have certain “degrees” of singu-
larity at z0. The most “mild” singularity is called regular singularity which
will be defined later. Our knowledge about how singularities that are worse
than regular singularities is still limited, and yet there are a large number of
important second order differential equations fall in this category. We refer
to Ince [] and Slavyanov [] for more indepth discussions.

4.1 Ordinary Points

Theorem 4.1 (L. I. Fuchs 1866). Let z0 be an ordinary point of the equa-
tion (4.1) and let a0 and a1 be two arbitrary constants. Then the equation
(4.1) has a unique analytic solution w(z) that satisfies the initial condition
w(z0) = a0 and w′(z0) = a1.

Proof. Without loss of generality, we may assume that z0 in order to simplify
the argument. For one can consider z′ = z − z0 to recover the general
case. Since both p(z), q(z) are analytic at z0, so let us write their Taylor
expansions in the forms

p(z) =
∞∑
k=0

pkz
k, q(z) =

∞∑
k=0

qkz
k,

and both converge in |z| < R. We substitute formally our “solution”

w(z) =
∞∑
k=0

akz
k = a0 + a1z + a2z

2 + · · ·

into the (4.1)

d2w

dz2
+
( ∞∑
k=0

pkz
k
) dw
dz

+ q(z)
( ∞∑
k=0

qkz
k
)
w = 0,
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and equating the coefficients. This yields

−2a2 = a1p0 + a0q0,

−2 · 3a3 = 2a2p0 + a1p1 + a1q0 + a0q1,

· · ·
· · ·

−(n− 1)kak = (k − 1)ak−1p0 + (k − 2)ak−2p1 + · · · a1pk−2+
ak−2q0 + ak−3q1 + · · ·+ a1qk−3 + a0qk−2

for all n ≥ 2. The above equations show that one can express any an,
successively, as linear combination of a0 and a1. Notice that the above
recurrence on an is only formal. That is, we still need to justify if the sum
w(z) =

∑∞
k=0 akz

k really converges.
Let

M = Mr = max
|z|=r
|p(z)|, N = Nr = max

|z|=r
|q(z)|

for r < R. Then the Cauchy inequality gives

|pk| ≤
M

rk
, |qk| ≤

N

rk

and we may write

|pk| ≤
K

rk
, |qk| ≤

K

rk+1
,

where K = max{M, Nr}. Writing b0 = |a0| and b1 = |a1|. Then we have

2|a2| ≤ b1|p0|+ b0|q0| ≤ b1K + b0K/r ≤ 2b1K + b0K/r.

We define 2b2 = 2b1K + b0K/r. Hence |a2| ≤ b2. Similarly, we have

2 · 3|a3| ≤ 2|a2||p0|+ |a1||p1|+ |a1||q0|+ |a0||q1|
≤ 2b2K + b1K/r + b1K/r + b0K/r

2

= 3b2K + b1K/r + b1K/r + b0K/r
2.

We define

2 · 3b3 : = 3b2K + b1K/r + b1K/r + b0K/r
2

= 3b2K + 2b1K/r + b0K/r
2

Hence |a3| ≤ b3.
Continuing this process yields |an| ≤ bn where

(k − 1)kbk := kbk−1K + (k − 1)bk−2K/r + · · · b0K/rk−1.
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Replacing the k by k − 1 in the above equation and multiplying both sides
of the resulting equation by 1

r yield

(k − 2)(k − 1)bk−1/r = (k − 1)bk−2K/r + (k − 2)bk−3K/r
2 + · · · b0K/rk−1.

Combining these two equations yields the recurrence relation

(k − 1)kbk = kbk−1K + (k − 2)(k − 1)bk−1/r,

or
bk
bk−1

=
K

k − 1
+
k − 2
kr

→ 1
r

as k → ∞. This shows that the radius of convergence of
∑
bkr

k is r.
However, since, |ak| ≤ bk, so it follows that the radius of convergence of
w(z) =

∑
akz

k cannot be less than r. But r < R is arbitrary, this implies
that w(z) =

∑
akz

k has radius of convergence at least R. It follows that
w(z) =

∑
akz

k is analytic function at the origin. Since the power series
w(z) =

∑
akz

k converges uniformly and absolutely in |z| < R, so one may
differentiate it term by term and series multiplication and rearrangements
are all valid. So one can substitute the series into the equation (4.1) to verify
that the series w(z) =

∑
akz

k is indeed a unique analytic solution in the
neighbourhood of the origin. In particular, w(0) = a0 and w′(0) = a1.

It is known that two vectors v1, v2 in a vector space are linearly indepen-
dent if a1v1 + a2v2 = 0 necessary implies that a1 = a2 = 0. This condition
is also sufficient. When translated into two functions f(z), g(z), say, defned
in a neighbourhood of z0, it becomes a necessary and sufficient condition for
the non-vanishing of

W (f, g)(z) =
∣∣∣∣ f(z) g(z)
f ′(z) g′(z)

∣∣∣∣
throughtout the neighbourhood of z0. The W (f, g)(z) is called the Wron-
skian of the two functions.

Exercise 4.2 (Copson). Let f(z) and g(z) be two linearly independent so-
lutions of (4.1) in a neighbourhood of z0. Show that

W (f, g)′(z) + p(z)W (f, g)(z) = 0.

Suppose the p(z) in (4.1) has a pole at z0, and that f1(z) and g1(z) are two
linearly independent solutions of (4.1) obtained after the original pair f(z)
and g(z) being analytically continued around z0 in a single anti-clockwise
revolution. Deduce that

W (f1, g1)′(z) = e−2πiRW (f, g)(z)

where R is the residue of p(z) at z0.
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Exercise 4.3 (Whittaker & Watson). Show that the equation

(1− z2)u′′ − 2zu′ +
3
4
u = 0,

has the origin as an ordinary point and that both the series

u1 = 1− 3
8
z2 − 21

128
z4 − · · · ,

and
u2 = z +

5
24
z3 +

15
128

z5 + · · · ,

are two linearly independent solutions of the above equation. Find the gen-
eral coefficient in each series and show that their radii of convergence are
both 1.

Exercise 4.4.

Find two solutions of the equation

d2w

dz2
− zw = 0

about z = 0 such that w1 = z+ 1
12z

4 + · and w2 = 1+ 1
6z

3 + · · · . You need to
obtain the general coefficients for the expansions. What kind of singularity
does the origin of the differential equation has? Investigate the region of
convergence of the series solutions.

4.2 Regular Singular Points

Definition 4.2.1. A point z0 is said to be a regular singular point of the
equation (4.1) if the functions (z−z0)p(z) and (z−z0)2q(z) are both analytic
at z0 . Points that are not regular singular points are called irregular
singular points.

Again without loss of generality, we may assume that z0 = 0. That is,
zp(z) and z2q(z) have Taylor expansions

zp(z) =
∞∑
k=0

pkz
k, z2q(z) =

∞∑
k=0

qkz
k, (4.2)

where the coefficients p0, q0 and q1 are not all zero.
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Suppose we write the solution of (4.1) in the form

f(z) =
∞∑
k=0

akz
α+k, (4.3)

where α is a constant to be determined. Multiply z2 on both sides of the
equation (4.1) and substitute this expansion f(z) into (4.1) yields

∞∑
k=0

(α+ k)(α+ k − 1)akzα+k +
( ∞∑
k=0

pkz
k
)( ∞∑

k=0

(α+ k)akzα+k
)

+
( ∞∑
k=0

qkz
k
)( ∞∑

k=0

akz
α+k
)

= 0.

Collecting the coefficients of zk+α yields:

(α+ k)(α+ k − 1)ak +
k∑
j=0

(α+ k − j)pk−jaj

+
k∑
j=0

qk−jaj = 0, (4.4)

or

F (α+ k)ak +
k−1∑
j=0

aj
(
(α+ j)pk−j + qk−j

)
= 0, k ≥ 1, (4.5)

where we have set

F (α+ k) = (α+ k)(α+ k − 1) + p0(α+ k) + q0 (4.6)

and
F (α) = α(α− 1) + p0α+ q0 (4.7)

when k = 0. The equation F (α) = 0 is called the indicial equation
and its roots the (characteristic) exponents of the regular singularity
z0. We see that if we choose α to be one of the two roots of the equation
α(α−1)+p0α+q0 = 0, then a0 above can be arbitrarily chosen. If we assume
that this quadratic equation has two distinct roots which do not differ by
an integer, then the coefficient F (α + k) from (4.6) is non zero for any
k ≥ 1, implying that one can determine the coefficient ak in terms of as for
0 ≤ s ≤ k−1, and hence in terms of a0 after applying the recurrence relation
(4.5) successively. We will then obtain two different formal expansions with
respect to two different exponents. Thus we have

Proposition 4.2.1. Suppose that z0 is a regular singular point for the equa-
tion (4.1) and that the indicial equation has two distinct roots. Then the
equation (4.1) has two different formal power series expansions solutions.
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If we havea double root, then it is clear that we will find only one formal
series expansion solution for (4.1). If the two roots are differed by an integer
instead, then the coefficient F (α + k) will vanish at k = n, say (assuming
that α is the smaller root). This means that the coefficient an and indeed
the subsequent ak could be arbitrarily chosen. So we do not obtain a formal
series expansion in both these cases discussed. We shall discuss the cases
when the indicial equation has double root or two roots that are differed by
an integer at a later stage.

Theorem 4.5. Let the equation (4.1) to have a regular singular point at
z = 0, and that zp(z) and z2q(z) are analytic in |z| < R. Suppose that
the indicial equation of (4.1) at the regular singular point z = 0 to have two
distinct roots α, α′ such that their difference is not zero or an integer. Then
the radius of convergence of the solution (4.3) w(z) =

∑∞
k=0 akz

α+k at z = 0
is at least R.

Proof. We may assume without loss of generality that the series for w(z)
does not terminate. Let α, α′ be two distinct roots of (4.1) that are not
equal and also do not differ by an integer. Substituting the formal solution
w(z) into the equation (4.1), then it is easy to show that the recurrence
formula (E:recurrence-0) can be written in the form

k(k + α− α′)ak = −
k−1∑
j=0

aj [(α+ j)pk−j + qk−j ].

Let bk = |ak|, 0 ≤ k < δ = |α− α′|. Let m = [δ] + 1 and |α| = τ . Then

m(m− δ)|am| ≤ |m(m+ α− α′)am|

=
∣∣∣m−1∑
j=0

aj [(α+ j)pm−j + qm−j ]
∣∣∣

≤
m−1∑
j=0

bj [(τ + j)|pm−j |+ |qm−j |],

where bj = |aj |. Let M, N be the maximum values of |zp(z)| and |z2q(z)|
respectively, on |z| = r = |α|. Then

|pk| ≤
M

rn
, |qk| ≤

N

rn

for r < R and so
|pk| ≤

K

rn
, |qk| ≤

K

rn
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where K = max{M, N}. Substituting these bounds for |pk| and |qk| implies
that

|am| ≤ bm,

where

m(m− δ)bm :=
m−1∑
j=0

Kbj [(τ + j + 1)/rm−j ].

Similarly, we can show that |ak| ≤ bk when k ≥ m, where

k(k − δ)bk :=
k−1∑
j=0

Kbj [(τ + j + 1)/rk−j ].

Combining this and a similar one with k replaced by k − 1 show that bk
satisfies a recurrence formula given by

k(k − δ)bk − (k − 1)(k − 1− δ)bk−1/r = K(k + τ)bk−1/r.

Thus, we have

bk
bk−1

=
(k − 1)(k − 1− δ)

k(k − δ)r
+
K(k + τ)
k(k − δ)r

,

and so
lim
k→∞

bk
bk−1

=
1
r
,

proving that the series
∑
bkz

k has the radius of convergence r. Since |ak| ≤
bk so the comparison test implies that

∑
akz

k has a radius of convergence at
least r. But r is arbitrary but less than R, so the series must be convergent
in |z| < R. Hence the series zα

∑
akz

k converges uniformly and absolutely
in |z| ≤ R. Similar argument can be applied to zα

′∑
akz

k to show this is
the second linearly independent solution of (4.1).

We note that at least one of the two linearly independent solutions con-
sidered above has the origin to be a branch point.

We now discuss when the regular singular for the equation (4.1) is at
infinity. We have

Proposition 4.2.2. The differential equation

d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0

has a regular singular point at ∞ if and only if zp(z) and z2q(z) are analytic
at ∞.
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Proof. Let w(z) be a solution of the differential equation. Then the be-
haviour of w(1/t) near t = 0 is equivalent to that of w(z) at ∞. The same
applies to p(z), q(z). Without loss of generality, we may write w̃(t) = w

(
1
t

)
.

Then one can easily verify that w̃(t) satisfies the differential equation

Exercise 4.6.

d2w̃

dt2
+
(2
t
− 1
t2
p
(1
t

))dw̃
dt

+
1
t4
q
(1
t

)
w̃(t) = 0. (4.8)

Thus (4.8) has a regular singular point at t = 0 if and only if

t
(2
t
− 1
t2
p
(1
t

))
= 2− 1

t
p
(1
t

)
, t2 · 1

t4
q
(1
t

)
=

1
t2
q
(1
t

)
,

are analytic at t = 0. That is, if and only if zp(z) and z2q(z) are analytic
at ∞.

This shows that

p(z) =
p0

z
+
p1

z2
+
p3

z3
+ · · · , q(z) =

q0
z2

+
q1
z3

+
q4
z3

+ · · · .

We note in this case, and assuming that the difference of the two roots of
the indicial equation do not differ by an integer or 0, that the two solutions
can be written as

w(z) = z−α
∞∑
k=0

akz
−k, w(z) = z−α

′
∞∑
k=0

a′kz
−k,

where α, α′ are solutions of

α2 − (p0 − 1)α+ q0 = 0.

Exercise 4.7. Show that the equation

zw′′ + w′ + zw = 0

has a regular singular point at z = 0 and an irregular singular point at ∞.
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4.3 Reduction of Order

We shall deal with the cases when the difference of the two roots of the in-
dicial equation is an integer (including zero). If the two roots are identical,
then we see from the last section that we could obtain at most one series
expansion. If, however, that the roots differ by an integer, then the recur-
rence relation (4.5) will not give useful information of any second linearly
independent solution. The main idea for getting a second solution is by the
well-known method of reduction of order as explained below.

Theorem 4.8 (L. I. Fuchs (1866)). Let z0 be a regular singular point of the
differential equation

d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0.

Suppose the exponents of the indicial equation, denoted by α and α′, are
such that α− α′ = s ∈ N ∪ {0}. Then the equation possesses a fundamental
set of solutions in the form

w1(z) =
∞∑
k=0

akz
k+α, (4.9)

and

w2(z) = g0w0(z) log z + zα+1
∞∑
k=0

bkz
k (4.10)

if s = 0, and

w2(z) = gsw0(z) log z + zα
′
∞∑
k=0

ckz
k, (4.11)

if s 6= 0.

Proof. Let w0(z) be the first solution (4.9) of the differential equation. The
idea of reduction of order works as follows. First we introduce a new de-
pendent variable v by setting w = w0(z)v. Then it is easy to verify that v
satisfies the differential equation

d2v

dz2
+
(2w′0
w0

+ p(z)
)dv
dz

= 0.

Simple integrations of this equation give

v(z) = A+B

∫ z 1
w0(z)2

exp
(
−
∫ z

p(z) dz
)
dz,
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where A, B are arbitrary constants for which B 6= 0. This shows that a
second solution around z = 0 is given by

w(z) = w0(z)v = w0(z)
∫ z 1

w0(z)2
exp

(
−
∫ z

p(z) dz
)
dz.

Since α and α′ = α− s are roots of the indicial equation

α2 + (p0 − 1)α+ q0 = 0,

so that p0 = 1 + s− 2α. Hence

1
w0(z)2

exp
(
−
∫ z

p(z) dz
)

=

1

z2α
(∑∞

k=0 akz
k
)2 exp

{∫ z (2α− 1− s
z

− p1 − p2z − · · ·
)
dz
}

=
z−s−1(∑∞
k=0 akz

k
)2 exp

{
−
∫ z

(p1 + p2z + · · · ) dz
}

= z−s−1g(z),

where g(0) = 1/a2
0. Since a0 6= 0, so

(∑∞
k=0 akz

k
)−2 is also analytic at

z = 0. Thus, we may write g(z) =
∑∞

k=0 gkz
k. Substituting this series of

z−s−1g(z) into w(z) yields

w(z) = w0(z)
∫ z

z−s−1
∞∑
k=0

gkz
k dz

= w0(z)
( s−1∑
k=0

gkz
k−s

k − s
+ gs log z +

∞∑
k=s+1

gkz
k−s

k − s

)
.

Thus, we see that if s = 0 (double root α), then we have

w(z) = g0w0(z) log z + zα+1
∞∑
k=0

bkz
k,

where g0 6= 0. The solution has a logarithmic branch point. If, however,
s 6= 0, then we have

w(z) = gsw0(z) log z + zα−s
( s−1∑
k=0

gkz
k

k − s
+

∞∑
k=s+1

gkz
k

k − s

)
= gsw0(z) log z + zα

′
∞∑
k=0

ckz
k,

where gs may be zero. If that is the case then the second solution has no
logarithmic term.
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Frobenius later simplified Fuchs’s method by introducing his Frobenius
method in 1873 [11] when he was at the age of 24, even before he presented
his Habilitationsschrift ( thesis). We shall return to its discussion when time
permits later.

Exercise 4.9 (Whittaker and Watson).

Show that the equation

w′′ +
1
z
w′ −m2w = 0

has power series solutions about z = 0 given by

w1(z) =
∞∑
k=0

m2kz2k

22k(k!)2
,

and

w2 = w1(z) log z −
∞∑
k=1

m2kz2k

22k(k!)2
(1

1
+

1
2

+ · · ·+ 1
k

)
,

and that these series converge for all z.

Exercise 4.10. Prove that the equation

z2w′′ + (z + 1)w′ + w = 0,

has an irregular singularity at z = 0, and show that one can find only one
series solution about z = 0 with the method discussed int this chapter.

Exercise 4.11. Show that the equation

z3w′′ + z2w′ + w = 0,

has an irregular singularity at z = 0, and that it is impossible to find a series
solution there.
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Chapter 5

Hypergeometric Equations

Here comes next to consider second order differential equations with more
than one regular singular points in the complex plane C. When all singu-
lar points of the differential equation are regular singular, then we call the
equation of Fuchsian- type equation. Those equations with three regu-
lar singular points are particularly interesting and are very classical. The
canonical form of the equation is called Gauss hypergeometric equa-
tion which includes almost all the special functions that we usually en-
counter such as Legendre equation, Laguerre equation and Hermite
equation, etc and their associated orthogonal polynomials. The canoni-
cal form of the equations with four regular singular points is called Heun
equation, which includes important special cases such as Lamé equation,
Mathieu equation, Prolate/Oblate Spheroidal equation, Ellipsoidal
equations, etc, are still poorly understood.

5.1 Fuchsian-type Differential Equations

Theorem 5.1. Let a1, a2, · · · an and ∞ be the regular singular points of

d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0. (5.1)

Then we have

p(z) =
n∑
k=1

Ak
z − ak

, q(z) =
n∑
k=1

( Bk
(z − ak)2

+
Ck

z − ak

)
, (5.2)

and the indicial equation at each ak is given by

α2 + (Ak − 1)α+Bk = 0.

Suppose {αk, α′k} and {α∞, α′∞} denote, respectively, the exponents of the
corresponding indicial equations at a1, a2, · · · an and ∞. Then we have

(α∞ + α′∞) +
n∑
k=1

(αk + α′k) = n− 1,
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Proof. Since p(z) has at most a first order pole at each of the points a1, a2, · · · an,
so the function φ(z) defind in

p(z) =
n∑
k=1

Ak
z − ak

+ ϕ(z)

where ϕ(z) is an entire function in C, and where the Ak is the residue of p(z)
at ak (k = 1, 2, · · ·n). On the other hand, the ∞ is also a regular singular
point of p(z), it follows from Proposition 4.2.2 that zp(z) is analytic at ∞.
That is, p(z) = O(1/z). So ϕ(z) → 0 and hence must be the constant zero
by applying Liouville’s theorem from complex analysis. Hence

p(z) =
n∑
k=1

Ak
z − ak

.

Similarly, we have

q(z) =
n∑
k=1

( Bk
(z − ak)2

+
Ck

z − ak

)
+ ψ(z),

where ψ(z) is entire function. But z2q(z) is analytic at∞, so q(z) = O(1/z2)
as z → ∞. This shows that ψ(z) ≡ 0. The Proposition 4.2.2 again implies
that

n∑
k=1

Ck = 0.

Considering the Taylor expansions around the regular singular point ak

(z − ak)p(z) =
∞∑
j=0

pj · (z − ak)j , (z − ak)2q(z) =
∞∑
j=0

qj · (z − ak)j

and

w(z) =
∞∑
j=0

aj(z − ak)α+j

yields
α2 + (Ak − 1)α+Bk = 0.

for k = 1, 2, · · · , n. We now deal with the indicial equation at z =∞. Since
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the ∞ is also a regular singular point, so the Proposition 4.2.2 implies that

lim
t→0

t
(2
t
− 1
t2
p
(1
t

))
= 2− lim

z→∞
zp(z)

= 2− lim
z→∞

z


n∑
k=1

∏n
j=1
j 6=k

Ak(z − aj)∏n
j=1(z − aj)


= 2− lim

z→∞

(∑n
k=1Ak

)
zn +O(zn−1)

zn +O(zn−1)

= 2−
n∑
k=1

Ak. (5.3)

Similarly, we have

lim
t→0

t2 · 1
t4
q
(1
t

)
= lim

z→∞
z2q(z)

= lim
z→∞

z2
n∑
k=1

( Bk
(z − ak)2

+
Ck

z − ak

)
=

n∑
k=1

Bk + lim
z→∞

z
n∑
k=1

Ck
1− ak/z

=
n∑
k=1

Bk + lim
z→∞

z
n∑
k=1

Ck
[
1 +

ak
z

+O
( 1
z2

)]
=

n∑
k=1

Bk + 0 +
n∑
k=1

akCk, (5.4)

because
∑n

k=1Ck = 0. The indicial equation for the point z = 0 is of the
form

α2 + (p0 − 1)α+ q0 = 0,

where p0 = limz→0 zp(z) and q0 = limz→0 z
2q(z). Thus, the point at infinity

is given by

α2 +
(

1−
n∑
k=1

Ak

)
α+

n∑
k=1

(Bk + akCk) = 0.

Let αk, α′k be the exponents of the indicial equation α2 +(Ak−1)α+Bk = 0
for k = 1, 2, · · · , n, and α∞, α

′
∞ be the exponents of the indicial equation

at ∞. Thus we deduce
n∑
k=1

(αk + α′k) = −
n∑
k=1

(Ak − 1) =
n∑
k=1

(1−Ak) = n−
n∑
k=1

Ak,

and α∞ + α′∞ = 1−
∑n

k=1Ak. Hence we deduce
n∑
k=1

(αk + α′k) + (α∞ + α′∞) = n− 1,
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as required.

Exercise 5.2 (Kline). We note that if ∞ is an ordinary point, then show
that

p(z) =
2
z

+
p2

z2
+ · · · ,

and
q(z) =

q4
z4

+
q5
z5

+ · · · .

Suppose the ∞ in Theorem 5.1 is an ordinary point. Then show that the
following identities hold.

n∑
k=1

Ak = 2,

n∑
k=1

Ck = 0,

n∑
k=1

(Bk + akCk) = 0,

n∑
k=1

(2akBk + a2
kCk) = 0.

5.2 Differential Equations with Three Regular Sin-
gular Points

We again consider differential equation in the form

d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0. (5.5)

The following statement was first written down by Papperitz in 1885.

Theorem 5.3. Let the differential equation (5.5) has regular singular points
at ξ, η and ζ in C. Suppose the α, α′; β, β′; γ, γ′ are, respectively, the
exponents at the regular singular points ξ, η and ζ. Then the differential
equation must assume the form

d2w

dz2
+
{1− α− α′

z − ξ
+

1− β − β′

z − η
+

1− γ − γ′

z − ζ

}dw
dz
−

−
{ αα′

(z − ξ)(η − ζ)
+

ββ′

(z − η)(ζ − ξ)
+

γγ′

(z − ζ)(ξ − η)

}
×

× (ξ − η)(η − ζ)(ζ − ξ)
(z − ξ)(z − η)(z − ζ)

w = 0. (5.6)
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Proof. The equation has regular singular points at ξ, η and ζ in C. Thus
the functions

P (z) = (z − ξ)(z − η)(z − ζ) p(z),

and
Q(z) = (z − ξ)2(z − η)2(z − ζ)2 q(z)

are both entire functions (complex differentiable everywhere). Besides, since
the point at “∞” is an analytic point for both p(z) and q(z), so we deduce
from the Exercise 5.2 that the functions that P (z) and Q(z) have degree
two. That is,

p(z) =
P (z)

(z − ξ)(z − η)(z − ζ)
=

A

z − ξ
+

B

z − η
+

C

z − ζ
,

where A+B + C = 2 (by Exercise 5.2 again). Similarly,

(z − ξ)(z − η)(z − ζ)q(z) =
Q(z)

(z − ξ)(z − η)(z − ζ)

=
D

z − ξ
+

E

z − η
+

F

z − ζ
.

Substitute w(z) =
∑∞

k=0wk(z− ξ)α+k into the differential equation and and
note the coefficient q takes the form

q(z) =
D

(z − ξ)(z − ζ)
+

E(z − ξ)2

(z − η)2(x− ζ)
+

F (z − ξ)2

(z − η)(z − ζ)2
.

So q0 = D
(ξ−η)(ξ−ζ) . Thus the indicial equation at z = ξ is given by

α(α− 1) +Aα+
D

(ξ − η)(ξ − ζ)
= 0,

where α+ α′ = −(A− 1) = 1−A or A = 1− α− α′, and

αα′ =
D

(ξ − η)(ξ − ζ)
,

or D = (ξ− η)(ξ− ζ)αα′. Similarly, we have , at the regular singular points
η, ζ that B = 1− β − β′ and C = 1− γ − γ′, and hence

E = (η − ξ)(η − ζ)ββ′, F = (ζ − ξ)(ζ − η)γγ′.

This yields the differential equation of the required form.

Remark 5.2.1. We note that the constraint A + B + C = 2 implies that
α+ α′ + β + β′ + γ + γ′ = 1.
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Example 5.2.1. Suppose that a second order linear differential equation has
only one regular singular point at z = 0 and infinity is an ordinary point.
Show that the equation is of the form zw′′ + 2w′ = 0.

Proof. Let the equation be in the form w′′+p(z)w′+q(z)w = 0. Since z = 0
is a regular singular point. So P (z) = zp(z) is an entire function. But z =∞
is an ordinary point, so P (z) = zp(z) = z

(
A
z + p2

z2
+ · · ·

)
= A+ p2

z + · · · as
z →∞ by Exercise 5.2. We conclude that P is the constant A by Liouville’s
theorem. We also deduce that A = 2 since p(z) = 2

z + p2
z2

+ · · · . Similarly,
we have Q(z) = z2q(z) to be an entire function. But z = ∞ is an ordinary
point, so Q(z) = z2q(z) = z2

( q4
z4

+ q5
z5

+ · · ·
)

= q4
z2

+ q4
z3

+ · · · → 0 as z →∞
by Exercise 5.2 again. Thus Q(z) ≡ 0 by Liouville’s theorem again. Hence
q(z) ≡ 0. We conclude that w′′ + 2

zw
′ + 0 = 0.

Exercise 5.4. Suppose a second order linear differential equation has both
the origin and the infinity to be regular singular points, and that their re-
spective exponents are {α, α′} and {α∞, α′∞}. Derive the exact form of the
differential equation and show that α+α′+α∞+α′∞ = 0 and α·α′ = α∞ ·α′∞
hold.

If we now choose η =∞ in the differential equation in Theorem 5.3, then
we easily obtain

d2w

dz2
+
{1− α− α′

z − ξ
+

1− γ − γ′

z − ζ

}dw
dz
−
{αα′(ξ − ζ)

z − ξ
+ ββ′ +

γγ′(ζ − ξ)
z − ζ

}
×

× w

(z − ξ)(z − ζ)
= 0. (5.7)

For convenience we could set ξ = 0 and γ = 1. So this differential equation
will be further reduced to the form

d2w

dz2
+
{1− α− α′

z
+

1− γ − γ′

z − 1

}dw
dz
−
{αα′(−1)

z
+ ββ′ +

γγ′(1− 0)
z − 1

}
×

× w

z(z − 1)
= 0. (5.8)

We note that the exponent pair at each of the singularities is exactly the
same as before. Before we embark on more structural results, we need the
following result.

Proposition 5.2.1. Let

d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0 (5.9)
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to have a regular singular point at z0 = 0 with exponent {α, α′}. Then the
function f(z) defined by w(z) = zλf(z) satisfies the differential equation

d2f

dz2
+
(
p(z) +

2λ
z

)df
dz

+
(
q(z) +

λp(z)
z

+
λ(λ− 1)

z2

)
f = 0, (5.10)

with regular singular point also at z = 0 but the exponent pair is {α−λ, α′−
λ}. If z = ∞, then the equation (5.10) has exponent pair {α + λ, α′ + λ}
instead.

Proof. Let w(z) = zλf(z). We leave the verification of the equation (5.10)
as an exercise. Substitute the series

zp(z) =
∞∑
k=0

pkz
k, z2q(z) =

∞∑
k=0

qkz
k, f(z) =

∞∑
k=0

akz
α+k

into the differential equation (5.10) and consider the indicial equation:

α(α− 1) +
(
p0 + 2λ

)
α+ q0 + λp0 + λ(λ− 1) = 0,

or
α2 +

(
p0 − 1 + 2λ

)
α+ q0 + λp0 + λ(λ− 1) = 0.

Let {α̃, α̃′} be the exponent pair for the equation (5.10) at z = 0. But then
α+ α′ = 1− p0 − 2λ = α+ α′ − 2λ, and

α̃α̃′ = q0 + λp0 + λ(λ− 1)
= αα′ − λ(α+ α′) + λ

= (α− λ)(α′ − λ).

Solving the above two algebraic equations proves the first part of the propo-
sition.

Exercise 5.5. Complete the proof of the above Proposition of the transfor-
mation to ∞ and the change of the exponent pair.

Remark 5.2.2. If we apply the transformation w(z) = (z − 1)λf(z) to the
differential equation (5.9), then the resulting equation (5.10) would still have
{0, 1, ∞} as regular singular points, but the exponent pair at z = 1 is now
{β+λ, β′+λ} instead. The idea could be apply to a more general situation.
Suppose the differential equation (5.9) has z = ξ as a regular singular point
with exponent pair {α, α′}, then the resulting differential equation after the
transformation w(z) = (z−ξ)λf(z) would still has z = ξ as a regular singular
point but now the corresponding exponent pair is{α+ λ, α′ + λ}.
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5.3 Riemann’s P−Scheme

The following fomulation of solution of Gauss hypergeometric equation ap-
peared to be first put forward by B. Riemann (1826–1866) in 1857 [19].

Definition 5.3.1. Following Riemann, we write the solution w of the equa-
tion (5.6) in Riemann’s P−symbol:

w(z) = P


ξ η ζ
α β γ ; z
α′ β′ γ′

 .

Thus a solution of equation (5.7) can be denoted by

w(z) = P


ξ ∞ ζ
α β γ ; z
α′ β′ γ′

 ,

while that of (5.8) can be denoted by

w(z) = P


0 ∞ 1
α β γ ; z
α′ β′ γ′

 .

It follows from Proposition (5.2.1) that

Exercise 5.6.

zp(z − 1)qP


0 ∞ 1
α β γ ; z
α′ β′ γ′

 = P


0 ∞ 1

α+ p β − p− q γ + q ; z
α′ + p β′ − p− q γ′ + q

 .

Similarly,

Exercise 5.7.

z−p(z−1)−qP


0 ∞ 1
α β γ ; z
α′ β′ γ′

 = P


0 ∞ 1

α− p β + p+ q γ − q ; z
α′ − p β′ + p+ q γ′ − q

 .

Exercise 5.8. Prove by transforming the differential equation that

P


0 ∞ 1
α β γ ; z
α′ β′ γ′

 = P


1 0 ∞
α β γ ;

1
1− z

α′ β′ γ′
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In general, we have

Exercise 5.9.

(z − ξ
z − η

)p(z − ζ
z − η

)q
P


ξ η ζ
α β γ ; z
α′ β′ γ′

 = P


ξ η ζ

α+ p β − p− q γ + q ; z
α′ + p β′ − p− q γ′ + q

 .

Exercise 5.10. Let M(z) = az+b
cz+d , where ad− bc 6= 0, be a Möbius transfor-

mation. Let M(ξ) = ξ1, M(η) = η1, M(ζ) = ζ1. Show that

P


ξ η ζ
α β γ ; z
α′ β′ γ′

 = P


ξ1 η1 ζ1
α β γ ; z1
α′ β′ γ′


where z1 = M(z).

5.4 Gauss Hypergeometric Equation

Let
t = M(z) =

(z − ξ)(η − ζ)
(z − η)(ξ − ζ)

be a Möbius transformation. We deduce from Exercise 5.10 that

P


ξ η ζ
α β γ ; z
α′ β′ γ′

 = P


0 ∞ 1
α β γ ; t
α′ β′ γ′


= tα(1− t)γP


0 ∞ 1

α− α α+ β + γ γ − γ ; t
α′ − α α+ β′ + γ γ′ − γ


= tα(1− t)γP


0 ∞ 1
0 α+ β + γ 0 ; t

α′ − α α+ β′ + γ γ′ − γ

 .

It is customary to denote α+β+γ = a, α+β′+γ = b and 1−c = α′−α.
Note that c− a− b = 1− γ − γ′ − β − β′ − 2γ = γ + γ′ − 2γ = γ′ − γ. Then
the last Riemann-Scheme becomes

P


0 ∞ 1
0 a 0 ; t

1− c b c− a− b


satisfies the differential equation

t(1− t)w′′ + {c− (a+ b+ 1)t}w′ − abw = 0,
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which is called the Gauss hypergeometric equation, where we have as-
sumed that none of the exponent pair {0, 1 − c}, {0, c − a − b} and {a, b}
is an integer.

The important associated Legendre’s differential equation

(1− z2)
d2w

dz2
− 2z

dw

dz
+
{
ν(ν + 1)− µ2

1− z2

}
w = 0

is a Gauss hypergeometric differential equation, where ν, µ are arbitrary
complex constants, with singularities at ±1, ∞. In terms of Riemann’s P
notation, we have

w(z) = P


−1 ∞ 1
µ
2 ν + 1 µ

2 ; t
−µ

2 ν −µ
2

 .

The equation is called Legendre’s differential equation if m = 0. Its
solutions are called spherical harmonics. This equation is important be-
cause it is often encountered in solving boundary value problems of potential
theory for spherical region, and hence the name of spherical harmonics.

5.5 Gauss Hypergeometric series

Let us consider power series solutions of the Gauss Hypergeometric equation

z(1− z)w′′ + {c− (a+ b+ 1)z}w′ − abw = 0, (5.11)

at the regulary singular point z = 0. Substitute the power series w =∑∞
k=0 akz

k+α into the equation (5.11) yields the indicial equation

α(α+ c− 1) = 0,

so that the coefficient ak satisfies the recurrence relation

(α+ k)(α+ c+ k − 1)ak = (α+ a+ k − 1)(α+ b+ k − 1)ak−1,

or

(α+ 1 + k − 1)(α+ c+ k − 1)ak = (α+ a+ k − 1)(α+ b+ k − 1)ak−1.
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This gives

ak =
(α+ a+ k − 1)(α+ b+ k − 1)
(α+ 1 + k − 1)(α+ c+ k − 1)

ak−1

=
(α+ a+ k − 1)(α+ b+ k − 1)
(α+ 1 + k − 1)(α+ c+ k − 1)

(α+ a+ k − 2)(α+ b+ k − 2)
(α+ 1 + k − 2)(α+ c+ k − 2)

ak−2

· · · · · ·

=
(α+ a+ k − 1)(α+ b+ k − 1)
(α+ 1 + k − 1)(α+ c+ k − 1)

· · · (α+ a+ 0)(α+ b+ 0)
(α+ 1 + 0)(α+ c+ 0)

a0

=
(α+ a)k(α+ b)k
(α+ 1)k(α+ c)k

a0,

where a0 is an arbitrarily chosen constant and we recall that

(α)0 = 1, (α)n = α(α+ 1)(α+ 2) · · · (α+ k − 1),

for each integer k. So we have obtained, assuming that 1−c is not an integer,
two linearly independent power series solutions

w1(z) =
∞∑
k=0

(a)k(b)k
k!(c)k

zk, w2(z) = z1−c
∞∑
k=0

(a− c+ 1)k(b− c+ 1)k
(2− c)kk!

zk.

Definition 5.5.1. A hypergeometric series is a power series given in the
form

F (a, b; c; z) = 2F1

( a, b
c

∣∣∣∣ z) =
∞∑
k=0

ckz
k =

∞∑
k=0

(a)k(b)k
(c)k k!

zk

= 1 +
ab

c
z +

a(a+ 1)b(b+ 1)
c(c+ 1) 1!

z2+

+
a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

c(c+ 1)(c+ 2) 2!
z3 + · · · (5.12)

The series has its name because the ratio between two consecutive terms,
that is ak+1

ak
is a rational function of k.

Theorem 5.11. The series 2F1(a, b; c; z)

1. converges absolutely in |z| < 1;

2. converges absolutely if <(c− a− b) > 0 if |z| = 1;

3. converges conditionally if 0 ≥ <(c− a− b) > −1 if |z| = 1 and z 6= 1;

4. diverges if <(c− a− b) ≤ −1.
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Proof. 1. This first part is easy. For let uk = (a)k(b)k
(c)kk!

zk. Then∣∣∣∣uk+1

uk

∣∣∣∣ =
∣∣∣∣(a+ k)(b+ k)
(c+ k)(1 + k)

z

∣∣∣∣→ |z|
as k → ∞. Thus the hypergeometric series converges (uniformly)
within the unit disc, and it diverges in |z| > 1 by the ratio test.

2. Recall that Γ(z) = limk→∞ k!kz−1/(z)k. But then the k−th coefficient
of the power series behaves asymptotically like

(a)k(b)k
(c)kk!

≈ Γ(c)
Γ(a)Γ(b)

k!ka−1 · k!kb−1

k!kc−1 · k!
=

Γ(c)
Γ(a)Γ(b)

ka+b−c−1

=
Γ(c)

Γ(a)Γ(b)
1

kc+1−a−b ,

for all n ≥ N say. But then∣∣∣∣∣
∞∑
N

(a)k(b)k
(c)kk!

zk

∣∣∣∣∣ ≤
∣∣∣∣ Γ(c)
Γ(a)Γ(b)

∣∣∣∣ ∞∑
N

1
|kc+1−a−b|

=
∣∣∣∣ Γ(c)
Γ(a)Γ(b)

∣∣∣∣ ∞∑
N

1
k<(c+1−a−b)

which is known to be convergent when <(c− a− b) > 0 since
∑ 1

k1+δ

converges when <δ > 0.

3. This follows easily from (2).

4. This follows easily from (2).

In any case, the series will never converge on |z| > 1. We will see how
one can “continue” the solution outside the unit disc.

Exercise 5.12. Give an alternative proof of the second part of the Theorem
5.11 based directly on the Theorem 3.18 or the Theorem 3.1.

Definition 5.5.2. Let a1, a2, · · · ap and b1, b2, · · · bq be given complex con-
stants. We define generalized Hypergeometric function by

pFq

( a1, . . . , ap
b1, . . . , bq

∣∣∣∣ z) =
∞∑
−∞

(a1)k · · · (ap)k
(b1)k · · · (bq)kk!

zk. (5.13)

Exercise 5.13. Prove that the generalized hypergeometric series (5.13)

1. conveges absolutely for all z if p ≤ q and for |z| < 1 if p = q + 1;

2. diverges for all x 6= 0 if p > q + 1.
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Exercise 5.14. Prove that the generalized hypergeometric series (5.13) q+1Fq
with |z| = 1,

1. converges absolutely if <(
∑
bj −

∑
aj) > 0;

2. converges conditionally if z 6= 1 and 0 ≥ <(
∑
bj −

∑
aj) > −1;

3. the diverges for all z 6= 1 if <(
∑
bj −

∑
aj) ≤ −1.

We note that the hypergeometric function includes many important func-
tions that we have encountered. For examples, we have

(1− z)−a = 1F0

( a
−

∣∣∣∣ − z);

ez = z 0F0

( −
−

∣∣∣∣ z);

log(1 + z) = z 2F1

( 1, 1
2

∣∣∣∣ − z);

sin z = z 0F1

( −
3
2

∣∣∣∣ − z2

4

)
;

cos z = z 0F1

( −
1
2

∣∣∣∣ − z2

4

)
;

sin−1 z = z 2F1

( 1
2 ,

1
2

3
2

∣∣∣∣ z2
)

5.6 Uniform Convergence II

We also need to extend the idea of uniform convergence for infinite integrals,
discussed in Section 3.6, to include integrals of finite intervals. Recall that
f(z) = u(z) + iv(z) where u(z), v(z) are real-valued functions. So it suffices
to consider real-valued functions.

Definition 5.6.1. Let a < b be extended numbers, that is R∗ = R ∪ {±∞},
and I ∈ R. Let f(x, y) be a real-valued integrable function with respect to x
over the interval a < x < b, and for y ∈ I. Suppose that the integral

φ(y) =
∫ b

a
f(x, y) dx (5.14)

converges for all values of y in I. Then the integral is said to be uniformly
convergent on I if, for any given ε > 0, we can find real numbers ã, b̃ ∈
(a, b), depending on ε, but not on y, such that∣∣∣∣∣φ(y)−

∫ b̂

â
f(x, y) dx

∣∣∣∣∣ < ε,
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whenever a < â < ã, b̃ < b̂ < b.

Then we obviously have an analogue of Lemma 3.6.1, a M−test, for this
new definition.

Lemma 5.6.1. Suppose that f(a, b)× I → R, where f , (a, b), I are defined
as in the above definition, such that f is integrable in any subinterval of
(a, b) for each y ∈ I. If there is a real function g that is absolutely integable
on (a, b) such that |f(x, y)| ≤ g(x) for (x, y) ∈ (a, b)× I, then∫ b

a
f(x, y) dx

converges uniformly on I.

Proof. Given ε > 0, there exist ã, b̃ ∈ (a, b) such that(∫ ã

a
+
∫ b

b̃

)
g(x) dx < ε.

Thus for each a < â < ã and b̃ < b̂ < b, and y ∈ I∣∣∣∣∣
∫ b

a
f(x, y) dx−

∫ b̂

â
f(x, y) dx

∣∣∣∣∣ ≤
∫ â

a
|f(x, y)| dx+

∫ b

b̂
|f(x, y)| dx

≤
∫ â

a
g(x) dx+

∫ b

b̂
g(x) dx < ε.

It can be shown that if the integral
∫ b
a f(x, y) dx converges uniformly

on I, then limy→y0
∫ b
a f(x, y) dx =

∫ b
a limy→y0 f(x, y) dx. One has “com-

plex analogues” of the above definition and M − test. If, in addition,
we assume that f(t, z) is analytic function of z in certain compact sub-
set D of C, and that the integral φ(z) =

∫ b
a f(t, z) dt converges uniformly

for all z ∈ D (extending the “real” definition in an obvious sense), then
limz→z0

∫ b
a f(t, z) dt =

∫ b
a limz→z0 f(t, z) dt and φ(z) is analytic in D. We

shall omit the detailed description of their proofs.
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5.7 Euler’s Integral Representation

Next we introduce an integral representation of the hypergeomertric func-
tion due to Euler [10, Vol. 12, pp. 221-230] in this section, which is very
important for the understanding of many classical special functions which
are special cases of it.

Theorem 5.15. Let <c > <b > 0. Then

2F1

( a, b
c

∣∣∣∣ z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−a dt, (5.15)

where z lies in the C cut along the infinite ray [1, +∞). We assume that
(1− zt)−a in its principal branch and arg t = 0 = arg(1− t).

Proof. We recall from Theorem 3.11 since <(c− b) > 0, so that

Γ(c)
Γ(b)Γ(c− b)

∫ 1

0
tb+k−1(1− t)c−b−1 dt

=
Γ(c)

Γ(b)Γ(c− b)
B(b+ k, c− b)

=
Γ(c)

Γ(b)Γ(c− b)
Γ(b+ k)Γ(c− b)

Γ(c+ k)

=
(b)k
(c)k

.

Substitute this equation into (5.12) gives

2F1

( a, b
c

∣∣∣∣ z) =
Γ(c)

Γ(b)Γ(c− b)

∞∑
k=0

(a)k
k!

zk
∫ 1

0
tb+k−1(1− t)c−b−1 dt

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1 dt

∞∑
k=0

(a)k
k!

(zt)k,

where we have interchanged the summation and integration signs because
of uniform convergence of the summation. In fact, we have∣∣∣∣∣
∞∑
k=0

(a)k
k!

zk
∫ 1

0
tb+k−1(1− t)c−b−1 dt

∣∣∣∣∣ ≤
∞∑
k=0

|(a)k|
k!
|z|k

∫ 1

0
|tb+k−1(1− t)c−b−1| dt

≤
∞∑
k=0

|(a)k|
k!
|z|k

∫ 1

0
t<(b)+1−k(1− t)<(c−b)−1 dt

=
∞∑
k=0

|(a)k|
k!

B(<b+ k, <(c− b))|z|k

=
Γ(<b)Γ(<(c− b))

Γ(<c)

∞∑
k=0

|(a)k|(<b)k
(<c)kk!

|z|k.
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Besides, we have

∞∑
k=0

(a)k
k!

(zt)k = (1− zt)−a,

for 0 ≤ t ≤ 1 and |z| < 1. Hence we have proved

2F1

( a, b
c

∣∣∣∣ z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−a dt

under the assumption that <c > <b > 0 and |z| < 1. The next step is to
extend the above integral to C\[1 +∞) and is still analytic there.

Let us consider the bounded region

ρ ≤ |1− z| ≤ R, | arg(1− z)| ≤ π − δ, (5.16)

where ρ > 0, δ > 0 are arbitrarily small and R > 0 is arbitrarily large. Then
for t in 0 ≤ t ≤ 1, the integrand

tb−1(1− t)c−b−1(1− zt)−a

is continuous in t and z. Besides, the integrand is analytic in z. In order to
show that (5.15) is analytic, we let M = maxz∈(5.16) |(1− zt)−a|, then∣∣∣∣∫ 1

0
tb−1(1− t)c−b−1(1− zt)−a dt

∣∣∣∣ ≤M ∫ 1

0
t<b−1(1− t)<(c−b)−1 dt

for all z lies in (5.16). But the last integral is a beta integral which is
convergent since <c > <b > 0. This shows that the integral (5.15) is uniform
convergence in the region (5.16). Hence the integral is analytic in (5.16) by
the last section. But both ρ, R and δ are arbitrary. So the integral represents
an analytic function in C\[1, ∞). It follows that the earlier assumption that
|z| < 1 can be dropped by the principal of analytic continuation.

Lemma 5.7.1 (Abel’s lemma). Let m ≤ M be two positive numbers. Sup-
pose that

b1 ≥ b2 ≥ · · · ≥ bn ≥ 0,

and that
m ≤ a1 + a2 + · · ·+ an ≤M,

for all n. Then

b1m ≤ a1b1 + a2b2 + · · ·+ anbn ≤ b1M

holds for all values of n.
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Proof. Let sn = a1 + a2 + · · ·+ an. Then

a1b1 + a2b2 + a3b3 + · · ·+ anbn

= b1s1 + b2(s2 − s1) + b3(s3 − s2) + · · ·+ bn(sn − sn−1)
= s1(b1 − b2) + s2(b2 − b3) + · · ·+ sn−1(bn−1 − bn) + bnsn

≤M(b1 − b2) +M(b2 − b3) + · · ·+M(bn−1 − bn) + bnM

= Mb1.

This yields the required upper bound. The lower bound can be established
similarly.

Exercise 5.16. Complete the proof of the Abel lemma for the lower bound.

We recall that if a power series
∑∞

k=0 akzk has a radius of convergence
R > 0, then it converges uniformly on any |z| ≤ r < R. Let r < ρ < R. On
the other hand, we have |anzn| = |an|ρn < K to hold for all n. But then for
|z| ≤ r

|anzn| =
∣∣∣∣anρn(zρ)n

∣∣∣∣ < K
(z
ρ

)n
.

The series
∑∞

k=0 akzk therefore converges uniformly in |z| ≤ r. The question
is if we can extend the uniform convergence to the boundary |z| = R.

Theorem 5.17 (Abel’s theorem). Suppose the series
∑∞

k=0 ak = s exists
and that the power series

∑∞
k=0 akzk has a radius of convergence equal to

unity. Then the series converges uniformly on 0 ≤ x ≤ 1, and

lim
x→1

∞∑
k=0

akx
k = s.

Example 5.7.1. A simple example illustrating Able’s theorem is the power
series log(1 + x) = x− 1

2x
2 + 1

3x
3 − · · · in |x| < 1. Abel’s theorem yields

log 2 = 1− 1
2

+
1
3
− · · · .

Proof. Let
sn, p = an + an+1 + · · ·+ ap.

Since
∑
ak converges, so given ε > 0, we choose an integer N such that

|sn, p| < ε whenever p > n > N . But the sequence {xn} is non-increasing
for 0 ≤ x ≤ 1, so Abel’s lemma implies that

|anxn + an+1x
n+1 + · · ·+ apx

p| < εxn ≤ ε

which implies uniform convergence on [0, 1].
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We remark that one can “extend” the region of uniform convergence from
[0, 1] to a compact set near z = 1. But the analysis is more complicated. See
Copson [8, pp. 100-101]. Conversely, one can ask if f(x) =

∑∞
k=0 akx

k = s
as x → 1, then does

∑∞
k=0 ak also converge (to s?). But this is not true

in general. If one imposes the extra assumption that ak = o(1/k), then∑∞
k=0 ak does converge. This is called a Tauberian-type theorem. See [21, p.

10].

We are ready for

Theorem 5.18 (Gauss 1812). Suppose <(c− a− b) > 0. Then

∞∑
k=0

(a)k(b)k
(c)k k!

= 2F1

( a, b
c

∣∣∣∣ 1
)

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

holds.

Proof. Suppose that <(c − a − b) > 0. Then Theorem 5.11 implies that
F (a, b; c; 1) converges. Abel’s theorem asserts that

F (a, b; c; 1) = lim
x→1−

F (a, b; c; x).

Let us assume in addition that <c > <b > 0. Then we can make use of the
Euler integral representation. Then Euler’s representation gives

∞∑
k=0

(a)k(b)k
(c)k k!

= 2F1

( a, b
c

∣∣∣∣ 1
)

= lim
x→1− 2F1

( a, b
c

∣∣∣∣ x)
=

Γ(c)
Γ(b)Γ(c− b)

lim
x→1−

∫ 1

0
tb−1(1− t)c−b−1(1− xt)−a dt

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1−a dt

=
Γ(c)

Γ(b)Γ(c− b)
B(b, c− a− b)

=
Γ(c)

Γ(b)Γ(c− b)
Γ(b)Γ(c− a− b)

Γ(c− a)

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

,

where we have taken the limit sign into the integral. This can be justified if
we can show that the Euler integral converges uniformly for z = x ∈ [0, 1].
Notice that

1− t ≤ |1− xt| ≤ 1,
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for 0 ≤ t, x ≤ 1. In particular, we have

|tb−1(1− t)c−b−1(1− xt)−a| ≤ t<b−1(1− t)λ−1,

where

λ =

{
<(c− a− b), if <a > 0;
<(c− b), if <a < 0.

(5.17)

But the integral ∫ 1

0
t<b−1(1− t)λ−1 dt

is convergent. This shows that the Euler integral converges uniformly for
0 ≤ x ≤ 1, and hence justifying the interchange of limit and integral signs
by the last section. Hence this Gauss’s formula has been verified when both
inequalities

<(c− b− a) > 0, and <c > <b > 0

hold. Although one can apply the principal of analytic continuation to
remove the second inequality above, we prefer to give a direct proof below.
Let us write,

F (a, b; c; z) =
∞∑
k=0

Akz
k, F (a, b; c+ 1; z) =

∞∑
k=0

Bkz
k.

Then it is routine to check that

c(c− a− b)Ak − (c− a)(c− b)Bk =
(a)k(b)k

k!(c+ 1)k−1

[
c− a− b− (c− a)(c− b)

c+ k

]
and

c(kAk − (k + 1)Ak+1) =
(a)k(b)k

k!(c+ 1)k−1

[
k − (a+ k)(b+ k)

c+ k

]
hold and that the right-hand sides of the above identities are equal. Thus,
we deduce

c(c− a− b)Ak = (c− a)(c− b)Bk + ckAk − c(k + 1)Ak+1.

Hence

c(c− a− b)
n∑
k=0

Ak = (c− a)(c− b)
n∑
k=0

Bk − c(n+ 1)An+1.

Now let n→∞ to establish

F (a, b; c; 1) =
(c− a)(c− b)
c(c− a− b)

F (a, b; c+ 1; 1)
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since
(n+ 1)An+1 ≈

Γ(c)
Γ(a)Γ(b)

1
(n+ 1)a−b−c

→ 0

and <(c− b− a) > 0. Thus

Γ(c− a)Γ(c− b)
Γ(c)Γ(c− a− b)

F (a, b; c; 1) =
Γ(c+ k − a)Γ(c+ k − b)
Γ(c+ k)Γ(c+ k − a− b)

F (a, b; c+k; 1)→ 1

(5.18)
as k → ∞, as can be verified (see later). This completes the proof under
the assumption that <(c− b− a) > 0.

Exercise 5.19. Complete the proof for (5.18).

Corollary 5.1 (Chu (1303)-Vandermonde (1770)). Let n be a positive in-
teger. Then

2F1

( −n, b
c

∣∣∣∣ 1
)

=
(c− b)n

(c)n
. (5.19)

Remark 5.7.1. According to Askey’s account [3], the Chinese mathemati-
cian S.-S. Chu [7] had already discovered the essential form of the identity.
Askey described Chu’s result was “absolutely incredible” as even before ade-
quate notation had been developed [3, p. 60].

5.8 Kummer’s 24 Solutions

We now consider an internal symmetry of the hypergeometric equation/function.
Recall that the standard hypergeometric equation (5.11) has two power se-
ries solutions whose characteristic exponents 0 and 1− c are recorded in the
Riemann-Scheme

P


0 ∞ 1
0 a 0 ; z

1− c b c− a− b


We have the following observation

P


0 ∞ 1
0 a 0 ; z

1− c b c− a− b

 = z1−cP


0 ∞ 1

c− 1 a− c+ 1 0 ; z
0 b− c+ 1 c− a− b


= z1−cP


0 ∞ 1

1− c′ a′ 0 ; z
0 b′ c− a− b

 ,
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where a′ = a− c+1, b′ = b− c+1 and c′ = 2− c. The above transformation
indicates that that one of the original power series solution of equation
(5.11) with characteristic exponent 1 − c can be written in terms of the
characteristic exponent 0 power series solution F (a′, b′; c′; z) represented
by the above last Riemann-Scheme. Thus we have two solutions

w1(z) = 2F1

( a, b
1− c

∣∣∣∣ z) =
∞∑
k=0

(a)k(b)k
k!(c)k

zk,

w2(z) = z1−c
2F1

( a− c+ 1, b− c+ 1
2− c

∣∣∣∣ z) = z1−c
∞∑
k=0

(a− c+ 1)k(b− c+ 1)k
(2− c)kk!

zk,

which are precisely two linearly independent solutions found in Section 5.5.
We recall that we have assumed that 1 − c is not an integer. Otherwise,
there will be a logarithm term in the solution (see later). This gives two
series solutions around the regular singular point z = 0.

We now consider the regular singular point z = 1. Just as seen from
question 2 of Worksheet 07 that 1/(1 − z) preserves the hypergeometric
equation but permuted the singularities, we now consider the transformation
z = 1− t. This will transform the hypergeometric equation to the form

t(1− t)d
2w(t)
dt2

+ [(1 + a+ b− c)− (a+ b+ 1)t]
dw(t)
dt
− abw(t) = 0,

where w(t) = y(z) where t = 1−z. That is, we have shown that the relation

P


0 ∞ 1
0 a 0 ; z

1− c b c− a− b

 = P


0 ∞ 1
0 a 0 ; 1− z

c− a− b b 1− c


(5.20)

holds. Observe that

P


0 ∞ 1
0 a 0 ; z

1− c b c− a− b

 = P


0 ∞ 1
0 a 0 ; 1− z

c− a− b b 1− c


= P


0 ∞ 1
0 a′ 0 ; 1− z

1− c′ b′ c′ − a′ − b′


where a′ = a, b′ = b and c′ = 1 + a+ b− c. We obtain

w3(z) = 2F1

( a, b
1 + a+ b− c

∣∣∣∣ 1− z
)
.

Applying the transformation from w1 to w2 above to w3 and identifying
t = 1− z and the parameters a′, b′ and c′ yields the fourth solution

w4(z) = z1−c′
2F1

( a′ − c′ + 1, b′ − c′ + 1
2− c′

∣∣∣∣ t) = zc−a−b2F1

( c− b, c− a
1 + c− a− b

∣∣∣∣ 1−z
)
.
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Similarly, one can obtain two solutions around the regular singular point
∞:

Exercise 5.20.

w5(z) = (−z)−a2F1

( a, a− c+ 1
a− b+ 1

∣∣∣∣ 1
z

)
,

where c− a− b is not an integer, and

w6(z) = (−z)−b2F1

( b, b− c+ 1
b− a+ 1

∣∣∣∣ 1
z

)
,

where a − b is not an integer. The negative signs are introduced for convi-
nence sake (see later).

Hence we have obtained six solutions w1(z), · · · , w6(z). Let us now take
w1(z), that is the standard solution, as an example on how to generate more
solutions (where we have used underline on the appropriate exponent to
indicate on which solution that we are considering):

w1(z) = 2F1

( a, b
c

∣∣∣∣ z)
= P


0 ∞ 1
0 a 0 ; z

1− c b c− a− b


= (1− z)c−a−bP


0 ∞ 1
0 c− b a+ b− c ; z

1− c c− a 0

 .

Thus

2F1

( a, b
c

∣∣∣∣ z) = C(1− z)c−a−b2F1

( c− a, c− b
c

∣∣∣∣ z),
for some constant C. If we choose the branch of (1 − z)c−a−b such that it
equals 1 when z = 0, then C = 1 since both sides of the equation are equal
to 1. Thus, we have

w1(z) = 2F1

( a, b
c

∣∣∣∣ z) = (1− z)c−a−b2F1

( c− a, c− b
c

∣∣∣∣ z),
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where | arg(1− z)| < π. On the other hand, we have

P


0 ∞ 1
0 a 0 ; z

1− c b c− a− b

 = P


0 ∞ 1
0 0 a ;

z

z − 1
1− c c− a− b b


=
(

1− z

z − 1

)a
P


0 ∞ 1
0 a 0 ;

z

z − 1
1− c c− b b− a


= (1− z)−aP


0 ∞ 1
0 a 0 ;

z

z − 1
1− c c− b b− a

 .

Thus, we have

2F1

( a, b
c

∣∣∣∣ z) = (1− z)−a2F1

( a, c− b
c

∣∣∣∣ z

z − 1

)
,

provided that | arg(1 − z)| < π. Interchanging the a and b in the above
analysis yields another format:

2F1

( a, b
c

∣∣∣∣ z) = (1− z)−b2F1

( b, c− a
c

∣∣∣∣ z

z − 1

)
,

provided that | arg(1− z)| < π. Putting these cases together, we have

w1(z) = 2F1

( a, b
c

∣∣∣∣ z)
= (1− z)c−a−b2F1

( c− a, c− b
c

∣∣∣∣ z) = (1− z)−b2F1

( b, c− a
c

∣∣∣∣ z

z − 1

)
= (1− z)−a2F1

( a, c− b
c

∣∣∣∣ z

z − 1

)
= (1− z)−b2F1

( b, c− a
c

∣∣∣∣ z

z − 1

)
.

Similar formulae exist for the remaining w2(z), · · · , w6(z), where each
solution has three additional variartions, thus forming a total of twenty four
solutions, which are called Kummer’s 24 solutions. We list two sets of
these formulae below.

Exercise 5.21.

w2(z) = z1−c
2F1(a+ 1− c, b+ 1− c; 2− c; z)

= z1−c(1− z)c−a−b2F1(1− a, 1− b; 2− c; z)
= z1−c(1− z)c−a−1

2F1(a+ 1− c, 1− b; 2− c; z/(z − 1))

= z1−c(1− z)c−b−1
2F1(b+ 1− c, 1− a; 2− c; z/(z − 1))
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and

Exercise 5.22.

w5(z) = (−z)−a2F1(a+ 1− c, a+ 1− b; 1− b; 1/z)

= (−z)−a(1− z)c−a−b2F1(1− b, c− b; a+ 1− b; 1/z)
= (1− z)−a2F1(a, c− b; a+ 1− b; 1/(1− z))
= (−z)1−c(1− z)c−a−1

2F1(a+ c− 1, 1− b; a+ 1− b; 1/(1− z))

One can also interpret the above twenty four solutions by considering
that there are six Möbius transformations that permute the three regular
singular points {0, 1, ∞}:

z, 1− z, z

z − 1
,

1
z
,

1
z − 1

, 1− 1
z
.

This list gives all the possible permutations of the regular singularities. No-
tice the function

zρ(1− z)σ2F1(a∗, b∗; c∗; z∗),

where ρ and σ can be chosen so that exactly one of the exponents at z = 0
and z = 1 becomes zero. But we have two choices of exponents at either of
the points (0 or 1) so that there are a total of 6× 2× 2 = 24 combinations.
We refer to Bateman’s project Vol. I [9] for a complete list of these twenty
four solutions.

5.9 Analytic Continuation

The Kummer 24 solutions, when viewed as power series solutions, will have
different regions of convergence. For example, the formula

2F1

( a, b
c

∣∣∣∣ z) = (1− z)−b2F1

( b, c− a
c

∣∣∣∣ z

z − 1

)
,

indicates that although the left-side will converge for |z| < 1, the right-side,
requires ∣∣∣∣ z

z − 1

∣∣∣∣ < 1

instead, which is equivalent to having <z < 1
2 . That is, the right-side con-

verges for all z in <z < 1
2 . One can also view the power series 2F1(a, b; c; z)

being analytically continued into the <z < 1
2 . Of course, this is not quite

the same as the analytical continuation provided by the Euler integral rep-
resentation. However, one can use this as a trick to obtain use identities,
such as one shown here.
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We note that

w1(z) = 2F1

( a, b
1− c

∣∣∣∣ z) =
∞∑
k=0

(a)k(b)k
k!(c)k

zk,

w2(z) = z1−c
2F1

( a− c+ 1, b− c+ 1
2− c

∣∣∣∣ z) = z1−c
∞∑
k=0

(a− c+ 1)k(b− c+ 1)k
(2− c)kk!

zk

are two linearly independent solutions (why?) of the hypergeometric equa-
tion. A third solution given by

w3(z) = 2F1

( a, b
1 + a+ b− c

∣∣∣∣ 1− z
)
,

when considered as a power series, has its radius of convergence |1− z| < 1.
The regions of convergence of w1, w2 and w3 has an overlap region. The
{w1, w2} being a fundamdental set, so that the w3 can be written as a
linear combination of w1, w2 in this overlap region. We have

Theorem 5.23.

2F1

( a, b
1 + a+ b− c

∣∣∣∣ 1− z
)

= A 2F1

( a, b
1− c

∣∣∣∣ z)+B z1−c
2F1

( a− c+ 1, b− c+ 1
2− c

∣∣∣∣ z), (5.21)

where

A =
Γ(a+ b+ 1− c)Γ(1− c)
Γ(a+ 1− c)Γ(b+ 1− c)

, and B =
Γ(c− 1)Γ(a+ b+ 1− c)

Γ(a)Γ(b)
.

(5.22)

Proof. It remains to evaluate the constants A, B in (5.21). To do so, we
suppose z = 0 and <c < 1. Then the (5.21) becomes

2F1

( a, b
1 + a+ b− c

∣∣∣∣ 1
)

= A 2F1

( a, b
1− c

∣∣∣∣ 0
)

= A.

Now Gauss’s summation formula (Theorem 5.18) yields

A =
Γ(a+ b+ 1− c)Γ(1− c)
Γ(a+ 1− c)Γ(b+ 1− c)

.

We further assume that <(c− a− b) > 0 and set z = 1 in (5.21). This gives

1 = A
Γ(c− a− b)Γ(c)
Γ(c− a)Γ(b− a)

+B
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b)
.
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Applying Gauss’s reflection on Gamma function to the last equation yields

B
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b)

= 1− Γ(a+ b+ 1− c)Γ(1− c)
Γ(a+ 1− c)Γ(b+ 1− c)

· Γ(c− a− b)Γ(c)
Γ(c− a)Γ(b− a)

= 1− π/ sinπc · π/ sinπ(c− a− b)
π/ sinπ(c− a) · π/ sinπ(c− b)

=
sinπc · sinπ(c− a− b)− sinπ(c− a) · sinπ(c− b)

sinπc · sinπ(c− a− b)

= − sinπa · sinπb
sinπc · sinπ(c− a− b).

Thus,

B = − sinπa · sinπb
sinπc · sinπ(c− a− b)

· Γ(1− a)Γ(1− b)
Γ(2− c)Γ(c− a− b)

= −Γ(c)Γ(1− c)Γ(1 + a+ b− c)
(1− c)Γ(1− c)Γ(a)Γ(b)

=
Γ(c− 1)Γ(a+ b+ 1− c)

Γ(a)Γ(b)
,

as required.

Exercise 5.24. Show that

2F1

( a, b
c

∣∣∣∣ z)
= C (−z)−a2F1

( a, a− c+ 1
a− b+ 1

∣∣∣∣ 1
z

)
+D(̇− z)−b2F1

( b, b− c+ 1
b− a+ 1

∣∣∣∣ 1
z

)
,

where
C =

Γ(c)Γ(b− a)
Γ(c− a)Γ(b)

and D =
Γ(c)Γ(a− b)
Γ(c− b)Γ(a)

.

We again refer to Bateman’s project Vol. I for a complete list of these
twenty four solutions.
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Chapter 6

Barnes’s Integral

6.1 Introduction

Our discussion below is in fact a special case of an integral transform called
Mellin transform1. Roughly speaking, if

F (s) =
∫ ∞

0
xs−1f(x) dx,

provided the integral exists of course, then

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sF (s) ds

holds for a certain class of functions. This second transform serves as a kind
of inversion of the original transform. Since we shall only deal with special
cases of it, so we will not further discuss it here. Interested reader should
consult [15].

Barnes (1904–1910)2 published a series of papers that further developed
Mellin’s method. It is said that integral of Barnes-type have been little used
before Barnes’s time. He showed in [5] that one can represent 2F1(a, b; c; z)
in terms of an inverse Mellin’s integral. This allows an alternative develop-
ment of the theory of many classial special functions which are special cases
of 2F1 in terms of Barnes’s integrals. This and other related integrals are
called Mellin-Barnes integrals or simply Barnes integrals.

Example 6.1.1. Recall that the integral representation of the Gamma func-
tion is defined by

Γ(s) =
∫ ∞

0
xs−1e−x dx, <s > 0.

1R. H. Mellin (1854–1933) was a Finnish mathematician. He served on the editorial
board of Acta Mathematica for the period 1908–1933.

2E. W. Barnes (1874–1953) was an English mathematician and Bishopric of Birming-
ham (1924–1952).
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Then

e−x =
1

2πi

∫ c+i∞

c−i∞
x−sΓ(s) ds, c > 0, <z > 0.

Proof. We consider a rectangular contour LN formed by the vertices

c± iR, c−
(
N +

1
2
)
± iR, N ∈ N.

It is easy to see that the Gamma function has poles {0, −1, −2, · · · ,−N}
lie inside the contour L. Recall form Theorem 3.5 that

Γ(z) = Ψ(z) +
∞∑
k=0

(−1)k

(k + z)k!
,

where Ψ is an entire function. So the residue at z = −k is (−1)k/k!. Hence
the corresponding residues of the integrand x−sΓ(s) are (see Theorem 3.5))

(−1)jxj

j!
, j = 0, 1, 2, · · · , N.

Cauchy’s residue theorem yields

1
2πi

∫
LR

x−sΓ(s) ds− 1
2πi

∫ c+iR

c−iR
x−sΓ(s) ds

=
1

2πi

∫
LR\[c−iR, c+iR]

x−sΓ(s) ds

→ 0

as R→∞, after letting t in s = c− (N + 1/2) + iR in

|Γ(c− (N + 1/2) + iR)| =
√

2π|R|c−
1
2 e−π|R|/2

[
1 +O(1/|R|)

]
as |R| → ∞, where c− (N1 + 1/2) ≤ c− (N + 1/2) ≤ c− (N2 + 1/2) (see [1,
Cor. 1.4.4]) and letting N →∞ with Corollary 3.1.

Exercise 6.1. Complete the proof of the above example.

6.2 Barnes’s Integral

It can be shown (exercise) that∫ ∞
0

xs−1
2F1

( a, b
c

∣∣∣∣ − x) dx =
Γ(a)Γ(b)

Γ(c)
Γ(a+ s)Γ(b+ s)Γ(−s)

Γ(c+ s)
,

provided that min(<a, <b) > <s > 0 (the additional condition <c > <b can
be removed). This the Mellin transform at the formal level. This gives a
possible form for a contour integral form of 2F1.
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Exercise 6.2. Justify the above Mellin transform of 2F1.

Theorem 6.3 (Barnes (1908)). Let |z| < 1 and | arg(−z)| < π. Then

Γ(a)Γ(b)
Γ(c) 2F1

( a, b
c

∣∣∣∣ z) =
1

2πi

∫ ∞i
−∞i

Γ(a+ s)Γ(b+ s)Γ(−s)
Γ(c+ s)

(−z)s ds, (6.1)

provided none of the a and b is zero or a negative integer and none of the
c−1, a−b, a+b−c is an integer or zero, and where the path of integration is
along the imaginary axis, modified, if necessary, by loops to make the poles
of Γ(−s) lie to the right of the path, and those of Γ(a+ s)Γ(b+ s) to its left.
Moreover, the integral represents an analytic function in | arg(−z)| < π,
thus providing an analytic continuation of the 2F1 outside |z| < 1.

Proof. Let Rn denote the closed contour formed by the four sides of the
rectangle with vertices

±iN, N +
1
2
± iN,

where N is a postive integer greater than max(|=a|, |=b|), so that no pole
of the integrand lie on RN . We then have

1
2πi

∫
RN

Γ(a+ s)Γ(b+ s)Γ(−s)
Γ(c+ s)

(−z)s ds

=
∑{

residues of
Γ(a+ s)Γ(b+ s)Γ(−s)

Γ(c+ s)
(−z)s at the poles within RN

}
= −

N∑
k=0

Γ(a+ k)Γ(b+ k)
Γ(c+ k)Γ(k + 1)

zk,

since

Res z=k((−z)sΓ(−s)) = lim
z→k

(z−k)((−z)sΓ(−s)) = −(−z)k (−1)k

k!
= − zk

Γ(k + 1)
.

Hence

1
2πi

∫ iN

−iN

Γ(a+ s)Γ(b+ s)Γ(−s)
Γ(c+ s)

(−z)s ds =
N∑
k=0

Γ(a+ k)Γ(b+ k)
Γ(c+ k)Γ(k + 1)

zk+
1

2πi
LR,

where

LR =
∫ −iN+N+ 1

2

−iN
+
∫ N+ 1

2
+iN

N+ 1
2
−iN

−
∫ N+ 1

2
+iN

iN
:= L1 + L2 − L3,
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say. Let us assume that |s| is large and | arg z| < π. Then

Γ(a+ s)Γ(b+ s)
Γ(c+ s)Γ(s+ 1)

≈ sα+iβ
(
1 + o(1)

)
,

where α+ iβ = a+ b− c− 1, and so∣∣∣∣Γ(a+ s)Γ(b+ s)
Γ(c+ s)Γ(s+ 1)

∣∣∣∣ ≈ |s|α|siβ|(1 + o(1)
)

= |s|αe−β arg s
(
1 + o(1)

)
,

by applying the estimate (3.1) (Γ(x) ≈
√

2πxx−1/2e−x, |x| → ∞ in
| arg x| ≤ π − δ). It follows from this estimate that the estimate on L1 +
L2 + L3 is given by ∣∣∣∣Γ(a+ s)Γ(b+ s)

Γ(c+ s)Γ(s+ 1)

∣∣∣∣ < ANα, (6.2)

where the constant A is independent of N . We deduce from this estimate
that for s lies on L1, that is s = T − iN, 0 ≤ T ≤ N + 1

2 . Applying Euler’s
reflection formula for large N yield

|Γ(−s)Γ(1 + s)| =
∣∣∣∣ π

sin(−πs)

∣∣∣∣ =
2π

|eπ(N+iT ) − e−π(N+iT )|
< 4πe−πN ,

and
|(−z)s| = |z|T eN arg(−z) < |z|T e(π−ε)N .

Substituting the above estimates into L1 yields

|L1| =

∣∣∣∣∣
∫ −iN+N+ 1

2

−iN

Γ(a+ s)Γ(b+ s)Γ(−s)
Γ(c+ s)

(−z)s ds

∣∣∣∣∣
<

∣∣∣∣∣
∫ −iN+N+ 1

2

−iN

Γ(a+ s)Γ(b+ s)
Γ(c+ s)Γ(s+ 1)

Γ(−s)Γ(s+ 1) (−z)s ds

∣∣∣∣∣
< 4πANαe−εN

∫ N+ 1
2

0
|z|T dT

< 2(2N + 1)πANαe−εN

since |z| < 1 by assumption, thus proving L1 → 0 as N → ∞. Similar
argument can be applied to L3 to show L3 → 0 as N → ∞. We omit the
details.

It remains to consider L2. Let s lie on L2. That is, s = N+ 1
2 + it, where

−N ≤ t ≤ N . We have

|Γ(−s)Γ(1 + s)| = π

| sinπ(N + 1
2 + it)|

=
π

| coshπt|
< 2πe−π|t|,
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and
|(−z)s| = |z|N+ 1

2 e−t arg(−z).

It follows that

|L2| =

∣∣∣∣∣
∫ N+ 1

2
+iN

N+ 1
2
−iN

Γ(a+ s)Γ(b+ s)Γ(−s)
Γ(c+ s)

(−z)s ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ N+ 1

2
+iN

N+ 1
2
−iN

Γ(a+ s)Γ(b+ s)
Γ(c+ s)Γ(s+ 1)

Γ(−s)Γ(s+ 1) (−z)s ds

∣∣∣∣∣
≤ 2π(ANα)|z|N+ 1

2

∫ N

−N
e−t arg(−z)e−π|t| dt

≤ 2π(ANα)|z|N+ 1
2

∫ N

−N
e−ε|t| dt

< 4πANα|z|N+ 1
2 /ε,

which tends to zero for each ε > 0 as N →∞ since |z| < 1.
We have thus shown that

1
2πi

∫ iN

−iN

Γ(a+ s)Γ(b+ s)Γ(−s)
Γ(c+ s)

(−z)s ds−
N∑
k=0

Γ(a+ k)Γ(b+ k)
Γ(c+ k)Γ(k + 1)

zk =
1

2πi
LR → 0,

as R(N) → ∞ when |z| < 1 and | arg(−z)| < π. Thus the infinite contour
integral formula (6.1) holds.

Let us now consider D be any closed region of the cut plane | arg(−z)| <
π. Thus, D must lie in | arg(−z)| ≤ π− ε for some ε > 0. Let us re-examine
the integrand

Ψ(z, s) =
Γ(a+ s)Γ(b+ s)Γ(−s)

Γ(c+ s)
(−z)s

where s = it, and t is real and |t| ≥ t0. Then one can follow the previous
technique to show that

|Ψ(z, s)| < K|t|αe−ε|t|,

where K is independent of z. holds as |t| → ∞. This shows that the
integral

∫ i∞
−i∞ ψ(z, s), ds converges uniformly on any closed region D that

lies in | arg(−z)| ≤ π − ε, and hence is analytic there. This completes the
proof.
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Chapter 7

Frobenius’s Method

We continue our invertigation stated in Chapter 4 on how to construct so-
lutions of differential equations of the type

L[w] :=
d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0 (7.1)

with a regular singular point at the origin. We recall that Fuchs [12] devel-
oped a definitive theory of solutions on such equations1 with finite number
of regular singular points in the Ĉ. There is, however, a shortcoming that
Fuchs’s method is “long and more difficult than they need be”, as quoted
from Gray’s historical account on Fuchs’s theory [13, p. 56]. A young stu-
dent George Frobenius (1849–1917) from University of Berlin proposed an
effective method in 1873 to simplify Fuchs’s method. This new method has
since been called Frobenius’s method taught in most elementary differen-
tial equation courses. The method is particularly effective for dealing with
the situation when the indicial equation of the second order ordinary dif-
ferential equation possesses a double root or two distinct roots but differs
by an integer. The method also works for higer order differential equations.
Interested reader should consult Poole [16] for more background information
about the method.

7.1 Double roots case

Let us recall that we write

zp(z) =
∞∑
k=0

pkz
k, z2q(z) =

∞∑
k=0

qkz
k,

1Fuchs’s original theory allows him to deal with higher order linear differential equation
of regular singular type.
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where the coefficients p0, q0 and q1 are not all zero. Let

w(z) =
∞∑
k=0

akz
α+k,

where α is a constant to be determined. Multiply z2 on both sides of the dif-
ferential equation (7.1) and substitute this expansion w(z) into (7.1) yields,
after simplification,

L[w] = zα
∞∑
k=0

[
F (α+ k)ak +

k−1∑
j=0

aj
(
(α+ j)pk−j + qk−j

)]
zk, (7.2)

where we have demanded that

F (α+ k)ak +
k−1∑
j=0

aj
(
(α+ j)pk−j + qk−j

)
= 0, k ≥ 1 (7.3)

holds, and where we have set

F (α+ k) = (α+ k)(α+ k − 1) + p0(α+ k) + q0 (7.4)

and
F (α) = α(α− 1) + p0α+ q0 = (α− α1)(α− α2) (7.5)

when k = 0. The equation F (α) = 0 gives the two (characteristic) exponents
α1, α2 of the indicial equation. Thus, the expression (7.2) becomes

L[w] = a0z
α(α− α1)(α− α2),

so that L[w] = 0 when α = α1 or α = α2. Hence we have obtained two
linearly independent solutions. Suppose that α = α1 is a double root. Then
we have

L[w] = a0z
α(α− α1)2, (7.6)

and one could only find one solution of the form w(z) = zα
∑∞

k=0 akz
k. In

order to find a second solution, let us consider

L
[∂w
∂α

]
= a0 log z(α− α1)2 + a0z

α · 2(α− α1), (7.7)

which equals zero when α = α1. Then both w(z) = zα
∑∞

k=0 akz
k and

w2(z) =
(∂w
∂α

)
α=α1

= w(z) log z + zα1

∞∑
k=1

(∂ak
∂α

)
α=α1

zk, (7.8)

are solutions to L[·] = 0 when α = α1. This is precisely the first case
described in Theorem 4.8.

92



7.2 Roots differ by an integer

Suppose that α1 = α2 + s for some positive integer s. Then the previous
method no longer holds. Note that the coefficient a0 is a free parameter.
We define

a0 = a′0(α− α2),

where a′0 is now arbitrary. Then we deduce, as before, that

L[w] = L[w] = a′0 z
α(α− α1)(α− α2)2

holds instead. Similarly, we have

L
[∂w
∂α

]
= a′0 z

α(α− α1)(α− α2)2 log z + a′0z
α(α− α2)2

+ a′0z
α(α− α1) · 2(α− α2). (7.9)

Then it follows that in addition to (w)α=α1 and (w)α=α2 , the
(
∂w
∂α

)
α=α2

is
also a solution to the original differential equation. We first observe that
the two power series solutions obtained for α = α1 and α = α2 differs
only by a constant multiple. To see this, we note that a0 = a′0(α − α2) by
the above construction, so the recurrence relation (7.3) implies that each
of a1, a2, · · · , as−1 has a common factor (α − α2), and thus vanish when
α = α2. That is, (

a1

)
α=α2

,
(
a2

)
α=α2

, · · · ,
(
as−1

)
α=α2

= 0.

When k = s in (7.3), then F (α2 + s) = F (α1) = 0. So as is arbitrary
(as discussed in Chapter 4). For the ak when k > s, we write k = k′ + s,
a′j = aj+s are determined by

F (α2 + k)ak +
k−1∑
j=0

aj
[
(α2 + j)pk−j + qk−j

]
= F (α2 + s+ k′)as+k′ +

( s−1∑
j=0

+
s+k′−1∑
j=s

)
aj
[
(α2 + j)pk−j + qk−j

]
= F (α1 + k′)as+k′ +

k′−1∑
j=0

as+j
[
(α1 + j)pk−(j+s) + qk−(j+s)

]
= F (α1 + k′)as+k′ +

k′−1∑
j=0

as+j
[
(α1 + j)pk′−j + qk′−j

]
= F (α1 + k′)a′k′ +

k′−1∑
j=0

a′j
[
(α1 + j)pk′−j + qk′−j

]
,
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for k′ ≥ 1, which is identical to the recurence relation (7.3). So we have
essentially shown that

(w)α=α2 = zα2zs
∞∑
k=0

(ak)α=α1z
k = zα1

∞∑
k=0

(ak)α=α1z
k

holds, where (a0)α=α1 , thus proving that (w)α=α2 is a constant multiple of
(w)α=α1 .

Thus a second linearly independent solution is given by

w2(z) =
(∂w
∂α

)
α=α2

= log z · zα2

∞∑
k=s

(ak)α=α2z
k + zα2

∞∑
k=0

(∂ak
∂α

)
α=α2

zk

= w1(z) log z + zα2

∞∑
k=0

(∂ak
∂α

)
α=α2

zk

=
(
zα1

∞∑
k=0

(ak)α=α1z
k
)

log z + zα2

∞∑
k=0

(∂ak
∂α

)
α=α2

zk

=
(
zα2

∞∑
k=0

(ak)α=α1z
k+s
)

log z + zα2

∞∑
k=0

(∂ak
∂α

)
α=α2

zk,

which is precisely the second case described in Theorem 4.8.

7.3 Hypergeometric Functions: degenerate cases

It suffices to consider the case when c is an integer and around z = 0, for
the other cases can be covered by applying Riemann’s P−scheme. We first
consider the c = 1. Then the two exponents at z = 0 are double root
α1 = α2 = 0. The first solution is w1(z) = 2F1(a, b; c; z). The second
solution follows from (7.8) that

w2(z) = w1(z) log z +
∞∑
k=1

(∂ak
∂α

)
α=0

zk.

Recall that the coefficients satisfies the recurrence relation:

ak =
(α+ a+ k − 1)(α+ b+ k − 1)
(α+ 1 + k − 1)(α+ c+ k − 1)

ak−1 =
(α+ a)k(α+ b)k
(α+ 1)k(α+ c)k

a0

=
Γ(α+ 1)Γ(α+ c)
Γ(α+ a)Γ(α+ b)

· Γ(α+ a+ k)Γ(α+ b+ k)
Γ(α+ 1 + k)Γ(α+ c+ k)

,

where we have chosen a0 = 1. Thus,

w2(z) = 2F1(a, b; c; z) log z +
∞∑
k=1

(a)k(b)k
k!(c)k

zk
{
ψ(a+ k) + ψ(b+ k)− ψ(c+ k)

− ψ(1 + k)− ψ(a)− ψ(b) + ψ(c) + ψ(1)
}
,

(7.10)
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where ψ(z) = Γ′(z)/Γ(z).
Putting c = 1 and consider the case when both a and b are not

negative integers. Then one can further write the above solution in the
form

w2(z) = 2F1(a, b; 1; z) log z (7.11)

+
∞∑
k=0

(a)k(b)k
(k!)2

zk
{
ψ(a+ k) + ψ(b+ k)− ψ(c+ k)− ψ(1 + k)

}
,

where we have subtracted a multiple −ψ(a)−ψ(b) + 2ψ(1) of 2F1(a, b; c; z)
from the above solution.

If, however, one of a and b is an negative integer, a = −n say, then
one of the terms from ψ(a+ k) will have a pole for k = n, so that the above
solution is undefined. But it is still possible to rewrite the (7.10) by making
use of the identity

ψ(1− z) = ψ(z) + π cotπz

into a form that is manageable. For we can write

lim
a→−n

{(ψ(a+k)−ψ(a)} = lim
a→−n

{(ψ(1−a−k)−ψ(1−a)} = ψ(1+n−k)−ψ(1+n),

which is finite, provided k ≤ n. Substituting this expression back into (7.11)
and take away a constant multiple of the first solution yield

w2(z) = 2F1(−n, b; 1; z) log z

+
n∑
k=1

(−n)k(b)k
(k!)2

zk
{
ψ(1 + n− k)− ψ(1 + n) + ψ(b+ k)− 2ψ(1 + k)

}
.

(7.12)

The case when both a, b are negative can be handled in a similar fashion.

If c ≥ 2, then we have α2 = 1− c is a negative integer. That is, we have
s = c − 1. The situtation becomes more tedious to describe. We merely
quote the results here.

If both a and b are not negative integers, then

w2(z) = 2F1(a, b; s+ 1; z) log z

+
s!

Γ(a)Γ(b)

s∑
k=1

(−1)k−1(k − 1)!
Γ(a− k)Γ(b− k)

(s− k)!
z−k

+
∞∑
k=0

(a)k(b)k
(s+ 1)kk!

zk
{
ψ(a+ k) + ψ(b+ k)− ψ(s+ 1 + k)− ψ(1 + k)

}
.
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If, however, one of a or b is a negative integer (a say), the

w2(z) = 2F1(−n, b; s+ 1; z) log z

− s!
Γ(b)

s∑
k=1

(k − 1)!Γ(b− k)
(s− k)!(n+ 1)k

z−k

+
n∑
k=0

(−n)k(b)k
(s+ 1)kk!

zk
{
ψ(1 + n− k) + ψ(b+ k)− ψ(s+ 1 + k)− ψ(1 + k)

}
.
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Chapter 8

Confluent Hypergeometric
Functions

We shall discuss the confluent hypergeometric equations or the Kummer
equations and their solutions in this section. Each of these equations has
two free parameters, which can be transformed to a Whittaker equation,
or a Coulomb-Wave equation. Each confluent hypergeometric equation can
also be transformed to a Bessel equation after a suitable choice its two free
parameters. These equations have extensive applications.

8.1 The derivation of the equation

Let us recall that the Gauss hypergeometric equation is given by

z(1− z)d
2y

dz2
+ [c− (a+ b+ 1)z]

dy

dz
− ab y = 0 (8.1)

which has regular singular points at 0, 1, ∞ in the extended complex plane
Ĉ.

This equation has the hypergeometric series

y(z) = 2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
(8.2)

which has a radius of convergence equals to unity as one of its solutions
provided b 6= 0, −1, −2, · · · . A transformation of Y (x) = y(x/b) in the (8.2)
yields

z(1− z/b)d
2Y

dz2
+ [c− (a+ b+ 1)z/b]

dY

dx
− a Y = 0 (8.3)

which clearly has regular singular points at 0, b, ∞. Letting b → ∞ in the
equation (8.3) results in the

x
d2y

dx2
+ (c− x)

dy

dx
− a y = 0, (8.4)
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which is called the confluent hypergeometric equation. Clearly the
same transformation z/b applied to (8.1) and letting b → ∞ results in a
series

y1(z) = Φ(a, c; z) := 1F1 [a; c; z] =
∞∑
k=0

(a)k
(c)k

xk

k!
. (8.5)

This solution is called Kummer function or Kummer series. We note
that the hypergeometric series has radius of convergence 1, and after the
above substitution of z/b results in a series that has radius of convergence
equal to |b|. So the Kummer series has an infinite radius of convergence.
Thus, the Kummer function (8.5) is an entire function. It is readily checked
that the equation (8.4) has a regular singular point at 0 and an irregular
singular point at ∞. The original Bateman project adopted [9, p. 248] the
notation Φ(a, c; x) the authors attributed the credit to Humbert. Another
popular notation for the Φ(a, c; x) is M(a, c; x). We note that the Φ is
undefined when c is a negative integer. We will not discuss a modification
of the function. See [9].

8.2 Tricomi Functions

A second linearly independent solution of (8.4) can be obtained from a
second solution of (8.1), namely

x1−c
2F1(1 + a− c, 1 + b− c; 2− c; x) (8.6)

by making the change of variable z = x/b in this 2F1 and let b → ∞ as in
the earlier case. This yields

y2 = x1−c
1F1(1 + a− c; 2− c; x), (8.7)

provided that c 6= −1, 0, 1, · · · . However, a more important second linearly
independent solution to Φ(a; c; x) is defined by

Ψ(a; c; x) :=
Γ(1− c)

Γ(a− c+ 1)
Φ(a; c; x) +

Γ(c− 1)
Γ(a)

x1−cΦ(a− c+ 1; 2− c; x).

(8.8)
According to [9, Vol. 1, section 6.6, (7)], the function Ψ is defined by Tricomi
(1927) with the notation G. The notation U(a; c; x) [2, section 13.3], [20,
section 1.3] is also commonly used. We refer the readers to Slater [20, section
1.3] for the list of notations for Ψ that were used in the older literature.
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8.3 Relation with Bessel functions

We define the Bessel function of first kind of order ν to be the complex
function represented by the power series

Jν(z) =
+∞∑
k=0

(−1)k(1
2z)

ν+2k

Γ(ν + k + 1) k!
= zν

+∞∑
k=0

(−1)k(1
2)ν+2k

Γ(ν + k + 1) k!
z2k. (8.9)

Here ν is an arbitrary complex constant.

Let us set a = ν + 1
2 , c = 2ν + 1 and replace z by 2iz in the Kummer

series.
That is,

Φ(ν + 1/2, 2ν + 1; 2iz) =
∞∑
k=0

(ν + 1
2)k

(2ν + 1)k k!
(2iz)k

= 1F2

(
ν + 1

2
2ν + 1

∣∣∣∣ 2iz)
= eiz0F1

(
−

ν + 1

∣∣∣∣− (z2)2
)

= eiz
∞∑
k=0

(−1)k

(ν + 1)k k!
z2k

22k

= eiz
∞∑
k=0

(−1)kΓ(ν + 1)
Γ(ν + k + 1) k!

(z
2
)2k

= eizΓ(ν + 1)
(z

2
)−ν · (z

2
)ν ∞∑

k=0

(−1)k

Γ(ν + k + 1) k!
(z

2
)2k

= eizΓ(ν + 1)
(z

2
)−ν · Jν(z),

where we have applied Kummer’s second transformation

1F1

(
a
2a

∣∣∣∣ 4x) = e2x 0F1

(
−

a+ 1
2

∣∣∣∣x2

)
(8.10)

in the third step above, and the identity (ν)k = Γ(ν + k)/Γ(ν) in the fourth
step.

Since the confluent hypergeometric function Φ(ν + 1/2, 2ν + 1; 2iz) sat-
isfies the hypergeometric equation

z
d2y

dz2
+ (c− z)dy

dz
− a y = 0 (8.11)
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with a = ν + 1/2 and c = 2ν + 1. Substituting eizΓ(ν + 1)
(
z
2

)−ν · Jν(z) into
the (8.11) and simplfying lead to the equation

z2d
2y

dz2
+ x

dy

dz
+ (z2 − ν2)y = 0. (8.12)

This is called the Bessel equation with parameter ν. It is clearly seen
that z = 0 is a regular singular point and that Z = 1

z has an irregular singular
point at Z = 1

0 =∞ for the transformed equation with Y (z) = y(1/z).

The above derivation shows that the Bessel function of the first kind
with order ν is a special case of the confluent hypergeometric functions with
specifically chosen parameters.

8.4 Relation with Whittaker equation

The transformation y = x−c/2ex/2W , a = 1
2 − κ + µ and c = 1 + 2µ will

transform the confluent hypergeometic equation to the so-called Whittaker
equation

d2W

dx2
+
(
− 1

4
+
κ

x
+

1
4 − µ

2

x2

)
W = 0.

8.5 Relation with Coulomb Wave equation

The transformation y = eixx−L−1FL(η, x)/CL(η), and with a = L+ 1− iη,
b = 2L+ 2 and z = 2ix transforms the M(a, b; z) to the Coulomb Wave
equation

d2w

dx2
+
(

1− 2η
x
− L(L+ 1)

x2

)
w = 0,

where w = c1FL(η, x)+c2GL(η, x) are the regular and irregular Coulomb
wave functions.

8.6 Differential Contiguous Relations of Kummer
Functions

The relation
Φ (a; c; x) = ex Φ (c− a; c; −x) (8.13)

thus obtained is called Kummer’s first transformation.

x1−cΦ (1 + a− c; 2− c; x) = x1−cex Φ (1− a; 2− c; −x). (8.14)
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Two Φ functions are said to be contiguous if any one of their corre-
sponding parameters differs by one. If we adopt the Gauss notation for hy-
pergeometric functions that Φ(a±) denotes Φ(a±1; c; x), and Φ(c±) denotes
Φ(a; c±1; x), then the Φ(a±) or the Φ(c±) are contiguous to Φ(a; c; x). We
assume that c is not an integer because Φ(a; c; x) will be undefined then.
The following relations can be deduced from Gauss’s differential contigu-
ous relations. But they can be verified directly. We differentiate the series
expansion of Φ (since it is absolutely convergent)

d

dx
Φ(a; c; x) =

a

c
Φ(a+ 1; c+ 1; x) =

a

c
Φ(a+; c+) (8.15)

and similarly,

dk

dxk
Φ(a; c; x) =

(a)k
(c)k

Φ(a+ k; c+ k; x), (8.16)

for any positive integer k. In addition, the following differential relations
are readily verified. Thus,

d

dx
xaΦ(a; c; x) = axa−1 Φ(a+ 1; c; x), (8.17)

d

dx
xc−1Φ(a; c; x) = (c− 1)xc−2 Φ(a; c− 1; x) (8.18)

and more generally,

dk

dxk
xa+k−1Φ(a; c; x) = (a)kxa−1 Φ(a+ k; c; x), (8.19)

dk

dxk
xc−1Φ(a; c; x) = (−1)k(1− c)kxc−1−k Φ(a; c− k; x), (8.20)

for every positive integer k. Applying Kummer’s first theorem (8.13) to
(8.16) yields

dk

dxk
e−xΦ(a; c; x) =

dk

dxk
Φ(c− a; c; −x)

=
(−1)k(c− a)k

(c)k
Φ(c− a+ k; c+ k; −x)

=
(−1)k(c− a)k

(c)k
e−xΦ(a; c+ k; x). (8.21)

Similarly, the application of Kummer’s first theorem (8.13) to (8.19) and
(8.20) yield, respectively,

dk

dxk
e−xxc−a+k−1Φ(a; c; x) =

dk

dxk
xc−a+k−1Φ(c− a; c; −x)

= (c− a)k xc−a−1Φ(c− a+ k; c; −x)

= (c− a)k xc−a−1e−xΦ(a− k; c; x), (8.22)
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and

dk

dxk
e−xxc−1Φ(a; c; x) =

dk

dxk
xc−1Φ(a− c; c; −x)

= (−1)k(1− c)k xc−k−1Φ(a− c; c− k; −x)

= (−1)ke−x(1− c)k xc−k−1Φ(a− k; c− k; x).
(8.23)

The (8.17) can be written in the form

Φ(a+ 1; c; x) = Φ(a; c; x) +
x

a
Φ′(a; c; x), (8.24)

and that of (8.18) is

Φ(a; c− 1; x) = Φ(a; c; x) +
x

c− 1
Φ′(a; c; x). (8.25)

The special cases of (8.21), (8.22) and (8.23) when k = 1 are, respectively,

Φ(a; c+ 1; x) =
c

c− a
Φ(a; c; x)− c

c− a
Φ′(a; c; x), (8.26)

Φ(a− 1; c; x) =
(

1− x

c− a

)
Φ(a; c; x) +

x

c− a
Φ′(a; c; x), (8.27)

and

Φ(a− 1; c− 1; x) =
(

1− x

c− 1

)
Φ(a; c; x) +

x

c− 1
Φ′(a; c; x), (8.28)

8.7 Contiguous Relations of Kummer Functions Φ

One can deduce from the fifteen contiguous relations exist for the hyperge-
ometric functions that there are six contiguous relatoins for the Kummer
functions. One can also use power series expansions to derive the relations.
Alternatively they can also be derived from the differential contiguous rela-
tions (8.15), (8.25)–(8.28) by eliminating the Φ′ below. They are

(c− a) Φ(a− 1; c; x) + (2a− c+ x) Φ(a; c; x)− aΦ(a+ 1; c; x) = 0, (8.29)

c(c− 1) Φ(a; c− 1; x)− c(c− 1 + x) Φ(a; c; x) + (c− a)xΦ(a; c+ 1; x) = 0,
(8.30)

(1 + a− c) Φ(a; c; x)− aΦ(a+ 1; c; x) + (c− 1) Φ(a; c− 1; x) = 0, (8.31)

cΦ(a; c; x)− cΦ(a− 1; c; x)− xΦ(a; c+ 1; x) = 0, (8.32)

c(a+ x) Φ(a; c; x)− (c− a)xΦ(a; c+ 1; x)− acΦ(a+ 1; c; x) = 0, (8.33)

(a−1+x) Φ(a; c; x)+(c−a) Φ(a−1; c; x)−(c−1) Φ(a; c−1; x) = 0. (8.34)
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Each function Φ(a ± n; c ± m), n, m = 0, 1, 2, · · · , is said to be as-
sociated with Φ(a; c; x). Because of the (8.15), thus the derivative Φ′ is
always contiguous with Φ. In fact, any three associated Kummer functions
satisfies a homogeneous functional equation with polynomial coefficients in
x by repeated applications of the contiguous relations above. For example,
the continguous relations (8.31) and (8.32) yields

c(1− c−x) Φ(a; c; x) + c(c−1) Φ(a−1; c−1; x)−axΦ(a+ 1; c+ 1; x) = 0.
(8.35)
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Chapter 9

Bessel Equations

It can be shown that the Wronskian of Jν and J−ν is given by (G. N. Watson
“A Treatise On The Theory Of Bessel Functions”, pp. 42–43):

W (Jν , J−ν) = −2 sin νπ
πz

. (9.1)

This shows that the Jν and J−ν forms a fundamental set of solutions
when ν is not equal to an integer. In fact, when ν = n is an integer, then
we can easily check that

J−n(z) = (−1)nJn(z). (9.2)

Thus it requires an extra effort to find another linearly independent
solution. It turns out a second linearly independent solution is given by

Yν(z) =
Jν(z) cos νπ − J−ν(z)

sin νπ
(9.3)

when ν is not an integer. The case when ν is an integer n is defined by

Yn(z) = lim
ν→n

Jν(z) cos νπ − J−ν(z)
sin νπ

. (9.4)

The Yν so defined is linearly independent with Jν for all values of ν.

In particular, we obtain

Yn(z) =
−1
π

n−1∑
k=0

(n− k − 1)!
k!

(z
2

)2k−n
(9.5)

+
1
π

∞∑
k=0

(−1)k(z/2)n+2k

k!(n+ k)!

[
2 log

z

2
− ψ(k + 1)− ψ(k + n+ 1)

]
(9.6)

for | arg z| < π and n = 0, 1, 2, · · · with the understanding that we set the
sum to be 0 when n = 0. Here the ψ(z) = Γ′(z)/Γ(z). We note that the
function is unbounded when z = 0.
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9.1 Fourier-Bessel Series

Theorem 9.1. Suppose the real function f(r) is piecewise continuous in
(0, a) and of bounded variation in every subset [r1, r2] ⊂ (0, a). If∫ a

0

√
r|f(r)| dr <∞, (9.7)

then the Fouier-Bessel series

∞∑
k=1

ckJν
(
xνk

r

a

)
(9.8)

converges to f(r) at every continuity point of f(r) and to

1
2

[f(r + 0) + f(r − 0)] (9.9)

at every discontinuity point of f(r).

The xνk are the zero of Jν k = 0, 1, · · · . Orthogonality of the bessel
functions omitted.

9.2 Physical Applications of Bessel Functions

We consider radial vibration of circular membrane. We assume that an
elastic circular membrane (radius `) can vibrate and that the material has
a uniform density. Let u(x, y, t) denote the displacement of the membrane
at time t from its equilibrium position. We use polar coordinate in the
xy−plane by the change of variables:

x = r cos θ, y = r sin θ. (9.10)

Then the corresponding equation

∂2u

∂t2
= c2

(∂2u

∂x2
+
∂2u

∂y2

)
(9.11)

can be transformed to the form:

∂2u

∂t2
= c2

(∂2u

∂r2
+

1
r

∂2u

∂r
+

1
r2
∂2u

∂θ2

)
. (9.12)

Since the membrane has uniform density, so u = u(r, t) that is, it is inde-
pendent of the θ. Thus we have

∂2u

∂t2
= c2

(∂2u

∂r2
+

1
r

∂2u

∂r

)
. (9.13)
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The boundary condition is u(`, t) = 0, and the initial conditions take the
form

u(r, t) = f(r),
∂u(r, 0)
∂t

= g(r). (9.14)

Separation of variables method yields

u(r, t) = R(r)T (t), (9.15)

which satisfies the boundary condition u(`, t) = 0. Thus

RT ′′ = c2
(
R′′T +

1
r
R′T

)
. (9.16)

Hence
R′′ + (1/r)R′

R
+

T ′′

c2T
; = −λ2, (9.17)

where the λ is a constant. Thus

R′′ +
1
r
R′ + λ2R = 0 (9.18)

T ′′ + c2λ2T = 0. (9.19)

We notice that the first equation is Bessel equation with ν = 0. Thus its
general solution is given by

R(r) = C1J0(λr) + C2Y0(λr). (9.20)

. Since Y0 is unbounded when r = 0, so C2 = 0. Thus the boundary
condition implies that

J0(λ`) = 0, (9.21)

implying that µ = λ` is a zero of J0(µ). Setting C1 = 1, we obtain for each
integer n = 1, 2, 3, · · · ,

Rn(r) = J0(λnr) = J0(
µn
`
r), (9.22)

where µn = λn` is the n−th zero of J0(µ). Thus we have

un(r, t) = (An cos cλnt+Bn sin cλnt) · J0(λnr), (9.23)

for n = 1, 2, 3, · · · . Thus the general solution is given by

∞∑
n=1

un(r, t) =
∞∑
n=1

(An cos cλnt+Bn sin cλnt) · J0(λnr), (9.24)

and by

f(r) = u(r, 0) =
∞∑
n=1

An · J0(λnr), (9.25)

106



and

g(r) =
∂u(r, 0)
∂t

∣∣∣
t=0

=
∞∑
n=1

Bncλn · J0(λnr). (9.26)

Fourier-Bessel Series theory implies that

An =
2

`2J2
1 (µn)

∫ `

0
rf(r)J0(λnr) dr, (9.27)

Bn =
2

cλn`2J2
1 (µn)

∫ `

0
rg(r)J0(λnr) dr. (9.28)

9.3 Basic Properties of Bessel Functions

The general reference for Bessel functions is G. N. Watson’s classic: “A Trea-
tise on the Theory of Bessel Functions”, published by Cambridge University
Press in 1922 [22].

9.3.1 Zeros of Bessel Functions

See A. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions
with formulas, graphs and mathematical tables”, 10th Edt., National Bureau
of Standards, 1964.

9.3.2 Recurrence Formulae for Jν

We consider arbitrary complex ν.

d

dz
zνJν(z) =

d

dz

(−1)kz2ν+2k

2ν+2k k!Γ(ν + k + 1)

=
d

dz

(−1)kz2ν−1+2k

2ν−1+2k k!Γ(ν + k)
= zνJν−1(z).

But the left side can be expanded and this yields

zJ ′ν(z) + νJν(z) = zJν−1(z). (9.29)

Similarly,
d

dz
z−nuJν(z) = −z−νJν+1(z). (9.30)

and this yields
zJ ′ν(z)− νJν(z) = −zJν+1(z). (9.31)

Substracting and adding the above recurrence formulae yield

Jν−1(z) + Jν+1(z) =
2ν
z
Jν(z) (9.32)

Jν−1(z)− Jν+1(z) = 2J ′ν(z). (9.33)
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9.3.3 Generating Function for Jn

Jacobi in 1836 gave

e
1
2
z(t− 1

t
) =

+∞∑
k=−∞

tkJk(z). (9.34)

Many of the forumulae derived above can be obtained from this expression.

e
1
2
z(t− 1

t
) =

+∞∑
k=−∞

ck(z)tk (9.35)

for 0 < |t| <∞. We multiply the power series

e
zt
2 = 1 +

(z/2)
1!

t+
(z/2)2

1!
t2 + · · · (9.36)

and

e−
zt
2 = 1− (z/2)

1!
t+

(z/2)2

1!
t2 − · · · (9.37)

Multiplying the two series and comparing the coefficients of tk yield

cn(z) = Jn(z), n = 0, 1, · · · (9.38)
cn(z) = (−1)nJ−n(z), n = −1, −2, · · · . (9.39)

Thus

e
1
2
z(t− 1

t
) = J0(z) +

+∞∑
k=1

Jk[tk + (−1)kt−k]. (9.40)

9.3.4 Lommel’s Polynomials

Iterating the recurrence formula

Jν+1(z) =
2ν
z
Jν(z)− Jν−1 (9.41)

with respect to ν a number of times give

Jν+k(z) = P (1/z)Jν(z)−Q(1/z)Jν−1. (9.42)

Lommel (1871) [See Watson, pp. 294–295] found that

Jν+k(z) = Rk,ν(z)Jν(z)−Rk−1,ν+1Jν−1. (9.43)
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9.3.5 Bessel Functions of half-integer Orders

One can check that

J− 1
2
(z) =

( 2
πz

) 1
2 cos z, J 1

2
(z) =

( 2
πz

) 1
2 sin z. (9.44)

Moreover,

Jn+ 1
2
(z) = (−1)n

√
2
π
zn+ 1

2

( d

z dz

)n sin z
z

, n = 0, 1, 2, · · · .

Thus applying a recurrence formula and using the Lommel polynomials
yield

Jn+ 1
2
(z) = Rn,ν(z)J 1

2
(z)−Rn−1,ν+1J− 1

2
(z) (9.45)

That is, we have

Jn+ 1
2
(z) = Rn,ν(z)

( 2
πz

) 1
2 sin z −Rn−1,ν+1

( 2
πz

) 1
2 sin z. (9.46)

9.3.6 Formulae for Lommel’s polynomials

For each fixed ν, the Lommel polynomials are given by

Rn ν(z) =
[n/2]∑
k=0

(−1)k(n− k)!(ν)n−k
k!(n− 2k)!(ν)k

(
2
z

)n−2k

(9.47)

where the [x] means the largest integer not exceeding x. These Lommel
polynomials have remarkable properties. Since

J− 1
2
(z) =

( 2
πz

) 1
2 cos z, J 1

2
(z) =

( 2
πz

) 1
2 sin z (9.48)

and sin2 x+ cos2 x = 1; we now have

J2
n+ 1

2

(z) + J2
−n− 1

2

(z) = 2(−1)n
R2n, 1

2
−n(z)

πz
. (9.49)

That is, we have

J2
n+ 1

2

(z) + J2
−n− 1

2

(z) =
2
πz

n∑
k=0

(2z)2n−2k(2n− k)!(2n− 2k)!
[(n− k)!]2k!

. (9.50)

A few special cases are

1. J2
1
2

(z) + J2
− 1

2

(z) =
2
πz

;
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2. J2
3
2

(z) + J2
− 3

2

(z) =
2
πz

(
1 +

1
z2

)
;

3. J2
5
2

(z) + J2
− 5

2

(z) =
2
πz

(
1 +

3
z2

+
9
z4

)
;

4. J2
7
2

(z) + J2
− 7

2

(z) =
2
πz

(
1 +

6
z2

+
45
z4

+
225
z6

)

9.3.7 Orthogonality of the Lommel Polynomials

Let us set

hn, ν(z) = Rn, ν(1/z) =
[n/2]∑
k=0

(−1)k(n− k)!(ν)n−k
k!(n− 2k)!(ν)k

(z
2

)n−2k
, (9.51)

then the set {hn ν(z) is called the modified Lommel polynomials. Since the
Bessel functions Jν(z) satisfies a three-term recurrence relation, so the Lom-
mel polynomials inherit this property:

2z(n+ ν)hn ν(z) = hn+1, ν(z) + hn−1, ν(z) (9.52)

with initial conditions

h0, ν(z) = 1, h1, ν(z) = 2νz. (9.53)

If one start with a different set of initial conditions

h∗0, ν(z) = 0, h∗1, ν(z) = 2ν, (9.54)

then the sequence {h∗n, ν(z)} generated by the (9.52) is called the associated
Lommel polynomials. It is known that a three-term recurrence relation for
polynomials with the coefficients of as in (9.52) will generate a set of orthog-
onal polynomials on (−∞, +∞). That is, there is a probability measure α
onb (−∞, +∞) with

∫ +∞
−∞ dα = 1

Theorem 9.2 (A. A. Markov, 1895). Suppose the set of {pn(z)}of orthog-
onal polynomials with its measure α supported on a bounded internal [a, b],
then

lim
n→∞

p∗n ν(z)
pn ν(z)

=
∫ b

a

dα(t)
z − t

(9.55)

holds uniformly for z 6∈ [a, b].

Since we know
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Theorem 9.3 (Hurwitz). The limit

lim
n→∞

(z/2)ν+nRn, ν+1(z)
Γ(n+ ν + 1)

= Jν(z), (9.56)

holds uniformly on compact subsets of C.

So we have

Theorem 9.4. For ν > 0, the polynomials {hn ν(z) are orthogonal with
respect to a discrete measure αν normalized to have

∫ +∞
−∞ dα(t) = 1, and∫

R

dα(t)
z − t

= 2ν
Jν(1/z)
Jν−1(1/z)

. (9.57)

One can use this formula to recover the measure α(t). Thus the Lommel
“polynomials” was found to have very distinct properties to be complete in
L2(−1,+1).

9.4 Integral formaulae

Jν(z) =
(z/2)ν

Γ(1
2)Γ(ν + 1

2)

∫ 1

−1
(1−t2)ν−1/2 cos zt dt, <(ν) > −1/2, | arg z| < π.

(9.58)
Or equivalently,

Jν(z) =
(z/2)ν

Γ(1
2)Γ(ν + 1

2)

∫ π

0
cos(z cos θ) sin2ν θ dθ, <(ν) > −1/2, | arg z| < π,

(9.59)
where t = cos θ.

Writing H(1)
ν (z) = Jν(z) + iYν(z). Then

Theorem 9.5 (Hankel 1869).

H(1)
ν (z) =

( 2
πz

) 1
2 ei[z−νπ/2−π/4]

Γ(ν + 1/2)

∫ ∞·exp(iβ)

0
e−uuν−

1
2

(
1+

iu

2z

)ν− 1
2
du, (9.60)

where |β| < π/2.

9.5 Asymptotic Behaviours of Bessel Functions

Expanding the integrand of Henkel’s contour integral by binomial expansion
and after some careful analysis, we have
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Theorem 9.6. For −π < arg z < 2π,

H(1)
ν (x) =

(
2
πx

) 1
2

ei(x−
1
2
νπ− 1

4
π)

[ p−1∑
m=0

(1
2 − ν)m(1

2 + ν)m
(2ix)mm!

+R(1)
p (x)

]
, (9.61)

and for −2π < arg x < π,

H(2)
ν (x) =

(
2
πx

) 1
2

e−i(x−
1
2
νπ− 1

4
π)

[ p−1∑
m=0

(1
2 − ν)m(1

2 + ν)m
(2ix)mm!

+R(2)
p (x)

]
,

(9.62)
where

R(1)
p (x) = O(x−p) and R(2)

p (x) = O(x−p), (9.63)

as x→ +∞, uniformly in −π + δ < arg x < 2π − δ and −2π + δ < arg x <
π − δ respectively.

The two expansions are valid simultaneously in −π < arg x < π.
We thus have Jν(z) = 1

2(H(1)
ν (z) +H

(2)
ν (z)). So

Theorem 9.7. For | arg z| < π, we have

Jν(z) ∼
(

2
πz

) 1
2 [

cos
(
z − 1

2
νπ − 1

4
π
) ∞∑
k=0

(−1)k(ν, 2k)
(2z)2k

− sin
(
z − 1

2
νπ − 1

4
π
) ∞∑
k=0

(−1)k(ν, 2k + 1)
(2z)2k+1

]

9.5.1 Addition formulae

Schläfli (1871) derived

Jν(z + t) =
∞∑

k=−∞
Jν−k(t)Jk(z). (9.64)

Theorem 9.8 (Neumann (1867)). Let z, Z, R forms a triangle and let φ be
the angle opposite to the side R, then

J0

{√
(Z2 + z2 − 2Zz cosφ)

}
=
∞∑
k=0

εkJk(Z)Jk(z) cos kφ, (9.65)

where ε0 = 1, εk = 2 for k ≥ 1.

We note that Z, z can assume complex values. There are generalizations
to ν 6= 0.
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veräanderlichen Coefficienten”, J. Reine Angew. Math. 66 (1866),
121-160.

113



[13] Gray, J. J., “Linear Differential Equations and Group Theory from
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