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Chapter 1

January 4

1.1 A Rough Definition of Algebraic Topol-

ogy

Algebraic topology is a formal procedure for encompassing all functorial re-
lationships between the worlds of topology and algebra:

world of topological problems
F−→ world of algebraic problems

Examples:

1. The retraction problem: Suppose X is a topological space and A ⊆ X
is a subspace. Does there exist a continuous map r : X → A such that
r(a) = a for all a ∈ A? r is called a retraction and A is called a retract
of X. If a retraction ∃ then we have a factorization of the identity map

on A : A
i→ X

r→ A, where r ◦ i = idA.

Functoriality of F means that the composite F (A)
F (i)→ F (X)

F (r)→ F (A)

(respectively F (A)
F (r)→ F (X)

F (i)→ F (A)) is the identity on F (A) if F is a

9
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covariant (respectively contravariant) functor. As an example consider
the retraction problem for X the n-disk and A its boundary, n > 1 :

Sn−1 = ∂(Dn)
i→ Dn r→ ∂(Dn) = Sn−1.

Suppose that the functor F is the nth homology group:

Hn−1(∂(Dn))
i∗→ Hn−1(D

n)
r∗→ Hn−1(∂Dn)

|| || ||

Z i∗−→ 0
r∗−→ Z

Such a factorization is clearly not possible, so ∂Dn is not a retract of
Dn

2. When does a self map f : X → X have a fixed point? That is, when
does ∃ x ∈ X such that f(x) = x? For example suppose f : X → X,
where X = Dn. Assume that f(x) 6= x for all x ∈ Dn. Then we can
project f(x) through x onto a point r(x) ∈ ∂Dn, as follows:

Dn

f(x)

x

r(x)

Then r : Dn → ∂Dn is continuous and r(x) = x if x ∈ ∂Dn. Thus r
is a retraction of Dn onto its boundary, a contradiction. Thus f must
have a fixed point.

3. What finite groups G admit fixed point free actions on some sphere
Sn? That is, when does ∃ a map G × Sn → Sn, (g, x) 7→ g · x, such
that h · (g · x) = (hg) · x, id · x = x, and for any g 6= id, g · x 6= x for
all x ∈ Sn.
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This is “still” unsolved (although some of the ideas involved in the
supposed proof of the Poincaré conjecture would do it for dimension
3). However, lots is known about this problem.

For example, any cyclic group G = Zn admits a fixed-point free action
on any odd-dimensional sphere:

S2k−1 = {(z1, . . . , zk) ⊆ Ck|
∑

ziz̄i = 1}.

A generator for G is T : S1 → S1, T (x) = ξx, where ξ = e2πi/n. Then
a fixed point free action of G on S2k−1 is given by

T (z1, . . . , zk) = (ξz1, . . . , ξzk).

There are other actions as well.

Exercise: Construct some other fixed point free actions of G on S2k−1.

4. Suppose Mn is a smooth manifold of dimension n. What is the span of
M , that is what is the largest integer k such that there exists a k-plane
varing continuously with respect to x? This means that at each point
x ∈M we have k linearly independent tangent vectors v1(x), . . . , vk(x)
in TxM , varying continuously with respect to x.

$x$ Tx(M)

Definition: if k = n then we say that M is parallelizable.

In all cases k ≤ n.

In the case of the 2-sphere we can’t find a non-zero tangent vector
which varies continuously over the sphere, so k = 0. This is the famous
“fuzzy ball” theorem. On the other hand S1 is parallelizable.
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S3 is also parallizable. To see this consider R4 with basis the unit
quaternions 1, i, j, k. Thus a typical quaternion is q = q0+q1i+q2j+q3k,
where the qi are real. R4 becomes a division algebra, where we multiply
quaternions using the rules

i2 = j2 = k2 = −1, ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j

and the distributive law. That is

qq′ = (q0 + q1i + q2j + q3k)(q′0 + q′1i + q′2j + q′3k) = r0 + r1i + r2j + r3k

where

r0 = q0q
′
0 − q1q

′
1 − q2q

′
2 − q3q

′
3

r1 = q0q
′
1 + q1q

′
0 + q2q

′
3 − q3q

′
2

r2 = q0q
′
2 − q1q

′
3 + q2q

′
0 + q3q

′
1

r3 = q0q
′
3 + q1q

′
2 − q2q

′
1 + q3q

′
0

The conjugate of a quaternion q = q0 + q1i + q2j + q3k is defined by
q̄ = q0−q1i−q2j−q3. It is routine to show that qq̄ =

∑
n q2

n. We define
the norm of a quaternion by |q| = √qq̄. Then |qq′| = |q|||q′|
The space of unit quaternions

{q0 + q1i + q2j + q3k|
∑

n

q2
n = 1}

is just the 3-sphere, and it is a group. Pick three linearly independent
vectors at some fixed point in S3. Then use the group structure to
translate this frame to all of S3.



1.1. A ROUGH DEFINITION OF ALGEBRAIC TOPOLOGY 13

5. The homeomorphism problem. When is X homeomorphic to Y ?

X
f−−−→ Y

F

y F

y
F (x)

F (f)−−−→ F (Y )

6. The homotopy equivalence problem. When is X homotopically equiv-
alent to Y ?

7. The lifting problem. Given X
f→ B and E

p→ b, can we find a map
f̃ : X → E such that pf̃ ' f?

8. The embedding problem for manifolds. What is the smallest k such
that the n-dimensional manifold M can be embedded into Rn+k?

Let Sn be the unit sphere in Rn+1 and RP n = real projective space of
dimension n:

RP n def
= Sn/x ∼ −x.

Alternatively, RP n is the space of lines through the origin in Rn+1.

Unsolved problem: what is the smallest k such that RP n ⊆ Rn+k?

9. Immersion problem: What is the least k such that RP n immerses into
Rn+k?

$S^1$

R^2

embedding

immersion
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10. The computation of homotopy groups of spheres.

πk(X)
def
= the set of homotopy classes of maps f : Sk → X.

It is known that πk(X) is a group ∀ k ≥ 1 and that πk(X) is abelian
∀k ≥ 2. What is πk(S

n)? The Freudenthal suspension theorem states
that πk(S

n) ≈ πk+1(S
n+1) if k < 2n− 1. For example,

π4(S
3) ≈ π5(S

4) ≈ π6(S
5) ≈ · · · .

We know that these groups are all ≈ Z2 and π3(S
2) = Z.



Chapter 2

January 6

2.1 The Mayer-Vietoris Sequence in Homol-

ogy

Recall the van Kampen Theorem: Suppose X is a space with a base point
x0, and X1 and X2 are path connected subspaces such that x0 ∈ X1 ∩ X2,
X = X1 ∪X2 and X1 ∩X2 is path connected. Consider the diagram

X1 ∩X2
i1−−−→ X1

i2

y j1

y
X2

j2−−−→ X

Apply the fundamental group ‘functor’ π1 to this diagram:

15
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π1(X1 ∩X2)
i1#−−−→ π1(X1)

i2#

y j1#

y
π1(X2)

j2#−−−→ π1(X)

Question: How do we compute π1(X) from this data?

There exists a group homomorphism from the free product π1(X1) ∗ π1(X2)
into π1(X), given by c1 · c2 7→ j1#(c1) · j2#(c2).

Fact: This map is onto π1(X). However, there exists a kernel coming from
π1(X1 ∩X2). In fact, i1#(α) · i2#(α−1), for every α ∈ π1(X1 ∩X2), is in the
kernel because j1#i1# = j2#i2#.

Theorem: (van Kampen): Suppose all the spaces X1, X2, X1 ∩X2 contain
the base point x0 ∈ X = X1 ∪X2, and every space is path connected. Then
π1(X) ≈ π1(X1) ∗ π2(X2)/K where K is the normal subgroup generated by
all elements of the form i1#(α) · i2#(α−1), where α ∈ Π2(X1 ∩X2).

Definition: Let X be a space with a base point x0 ∈ X. The nth homotopoy
group is the set of all homotopy classes of maps f : (In, ∂In)→ (X, x0). Here,

In = {(t1, . . . , tn)|0 ≤ ti ≤ 1};
∂In = the boundary of In

= {(t1, . . . , tn) | 0 ≤ ti ≤ 1, some ti = 0 or 1}

Notation: πn(X, x0) = πn(X) = the nth homotopy group.

Fact: In/∂In ≈ Sn. Therefore, Πn(X) consists of the homotopy classes of
maps f : (Sn, ∗)→ (X, x0).

Question: Is there a van Kampen theorem for Πn?

Answer: NO.

But there is an analogue of the van Kampen Theorem in Homology : it is the
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Meyer–Vietoris sequence. Here is the setup:

X1 ∩X2
i1−−−→ X1

i2

y j1

y
X2

j2−−−→ X = X1 ∪X2

Question: What is the relationship amongst H∗(X1 ∩ X2), H∗(X1), H∗(X2)
and H∗(X)?

Theorem: (Mayer-Vietoris) Assuming some mild hypotheses on X1, X2, X
there exists a long exact sequence:

· · · → Hn(X1 ∩X2)
α∗→ Hn(X1)⊕Hn(X2)

β∗→ Hn(X)
∂→

Hn−1(X1 ∩X2)
α∗→ · · · → H0(X)→ 0.

The maps α∗ and β∗ are defined by

β∗ : Hn(X1)⊕Hn(X2)→ Hn(X), β∗(c1, c2)→ j1∗(c1) + j2∗(c2)

α∗ : Hn(X1 ∩X2)→ Hn(X1)⊕Hn(X2), c→ (i1#(c),−i2#(c))

The minus sign gets included in α∗ for the purpose of making things exact
(so that β∗α∗ = 0). One could have included it in the definition of β∗ instead
and still be correct.

Proof: There exists a short exact sequence of chain complexes

0→ C∗(X1 ∩X0)
α→ C∗(X1)⊕ C∗(X2)

β→ C∗(X1 + X2)→ 0

where Cn(X1 + X2) is the group of chains of the form c1 + c2, where c1

comes from X1 and c2 comes from X2. The ‘mild hypotheses’ imply that the
inclusion C∗(X1 + X2) ⊆ C∗(X) is a chain equivalence.

Lemma: If

0→ C ′′
α→ C ′

β→ C → 0
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is an exact sequence of chain complexes, then there exists a long exact se-
quence

· · · → Hn(C ′′)
α∗→ Hn(C ′)

β∗→ Hn(C)
∂→ Hn−1(C

′′)
α∗→ · · ·

To prove this, one uses the “snake lemma” which may be found in Hatcher,
or probably in most homological algebra references.

Remarks: There exists a Mayer-Vietoris sequence for reduced homology, as
well:

· · · → H̃n(X1 ∩X2)
α∗→ H̃n(X1)⊕ H̃n(X2)

β∗→ H̃n(x)
∂→ H̃n−1(X1 ∩X2)

α∗→ · · ·

The reduced homology groups are defined by H̃n
def
= Hn(X, x0). Therefore

Hn(X) ≈ H̃n(X) for n 6= 0 and H0(X) ≈ H̃0(X)⊕ Z.

Examples. The unreduced suspension of a space X is

SX := X × [0, 1]/(x× 0 = p, x× 1 = q, ∀x ∈ X)

t = 1

I

single point p

single point q

t = 0

We also have the reduced suspension for a space X with a base point x0:

ΣX = SX/(x0 × [0, 1])
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x0

p

q

x0

Fact: Suppose A ⊆ W is a contractible subspace. Then, assuming certain
mild hypotheses, W →W/A is a homotopy equivalence.

Corollary: H̃n(SX)
≈→ H̃n−1(X).

Proof:

cone C+

X(t = 1
2
)

cone C−

SX =

Consider the Mayer-Vietoris sequence for the pair (C+, C−):

· · · → H̃n(X)
α∗→ H̃n(C+)︸ ︷︷ ︸

=0

⊕ H̃n(C−)︸ ︷︷ ︸
=0

β∗→ H̃n(SX)
δ→ H̃n−1(X)

α∗→ · · ·

�
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Corollary H̃n(S
k) ∼ H̃n−1(S

k−1).

Pf. S(Sk−1) = Sk. �

2.2 Example: Two Spaces with Identical Ho-

mology

Recall that real projective n-space is RP n = Sn/(x ∼ −x), the n-sphere with
antipodal points identified. Let us write S2(RP 2) for S(S(RP 2)). Define

X
def
= RP 2 ∨ S2(RP 2)

Y
def
= RP 4,

where A ∨B is the one point union of A, B. Now,

Hi(Y ) = Hi(RP 4) =


Z if i = 0

Z2 if i = 1, 3

0 otherwise.

Exercise Show that H̃i(A ∨ B) ≈ H̃i(A) ⊕ H̃i(B) using an appropriate
Mayer-Vietoris sequence.

So we can compute that

Hi(X) = Hi(RP 2 ∨ S2(RP 2)) =


Z if i = 0

Z2 if i = 1, 3

0 otherwise,

which is the same homology as Y .

Is it the case that X and Y are “the same” in some sense? Perhaps “same”
means “homeomorphic”? But Y = RP 4 is a 4–dimensional manifold, whereas
X = RP 2 ∨ S2(RP 2) is not a manifold. So X is not homeomorphic to Y .
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Can “same” mean “homotopy equivalent?” Still no. The universal covering
space of Y is S4, whereas the universal covering space of X is:

S2 =universal covering space of RP 2

copy of S2(RP 2)

copy of S2(RP 2)

If X and Y were homotopically equivalent then their universal covering spaces
would also be homotopically equivalent. Let X̃ and Ỹ be the universal cov-
ering space. Then H2(X̃) = Z⊕ Z⊕ Z, but H2(Ỹ ) = 0.

Question: Does there exist a map f : X → Y (or g : Y → X) such that f∗
(resp, g∗) is an isomorphism in homology?

Again, the answer is no, and we shall see why next week.
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Chapter 3

January 11

3.1 Hatcher’s Web Page

Hatcher’s web page is: http://www.math.cornell.edu/∼hatcher. There,
you can find an electronic copy of the text.

3.2 CW Complexes

The fundamental construction is attaching an n-cell en to a space A. Suppose
we have a map φ : Sn−1 → A. In general we can’t extend this to a map

Dn Φ→ A, but we can extend it if we enlarge the space A to X, where

X = A tDn/(φ(x) ∼ x ∀x ∈ ∂Dn = Sn−1.

23
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en

Sn−1

Dn

φ

A

We say that X is obtained from A by attaching an n-cell en. The given map
φ : Sn−1 → A is the sattaching map and its extension Φ : Dn → X is called
the characteristic map.

Definition: of a CW complex: X = X0 ∪X1 ∪ · · ·

Start with a discrete set of points X0 = {x1, x2, . . .}. Now attach 1-cells via
maps φα : S0 → X0, where α ∈ A = some index set.

X1 is the result of attaching 1-cells.

e′α

x1 x2

x3

x4

Suppose we have constructed Xn−1, the (n − 1)-skeleton. Then Xn is the
result of attaching n-cells to Xn−1 by maps φβ : Sn−1 → Xn−1, β ∈ B:

Xn := Xn−1 tβ∈B Dn
β

/
(x ∼ φβ(x), ∀x ∈ ∂Dn

β and β ∈ B)

Examples.
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1. X = Sn = pt∪en = e0∪en. A = pt = e0. φ : Sn−1 → A is the constant
map. Thus, X = AtDn

/
x ∈ ∂Dn, x ∼ e0. Thus X is the n-sphere Sn.

2. Sn = ∂(∆n+1), where ∆n+1 is the standard n+1-simplex. For example,
the surface of the tetrahedron is ∂(∆3) = S2. To describe S2 this way
(as a simplicial complex) we need: 4 vertices, 6 edges and 4 faces. This
is far less efficient than the CW-complex description above.

3. RP n := the space of lines through the origin in Rn+1 = Sn
/
(x ∼ −x).

We can think of a point in RP n as a pair of points {x,−x}, x ∈ Sn.

−x

C+ = Dn
+

C− = Dn
−

x

There is a double covering φ : Sn → RP n−1, where φ(x) = (x,−x),
and RP n = RP n−1 ∪φ en. Therefore RP n has a cell decomposition of
the form RP n = e0 ∪ e1 ∪ · · · ∪ en.

4. CP n, complex projective n-space, is the space of one-dimensional com-
pex subvector spaces of Cn+1. It is homeomorphic to the quotient space

S2n+1
/
(x ∼ ζx, ∀ x ∈ S2n+1 and all unit complex numbers ζ).

Here is another way to describe CP n: there exists an action of S1 on
S2n+1. Let us think of S2n+1 in the following way:

S2n+1 = {(z1, . . . , zn+1) | z1z̄1 + · · ·+ zn+1z̄n+1 = 1}.
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Then S1 acts on S2n+1 by ζ · (z1, . . . , zn+1) = (ζz1, . . . , ζzn+1).

Exercie: Let φ : S2n+1 → S2n+1/S1 = CP n be the quotient map. Verify
that CP n+1 = CP n ∪φ e2n+2. Thus CP n has a cell decomposition of
the form CP n = e0 ∪ e2 ∪ e4 ∪ · · · ∪ e2n.

Remark: Suppose X = A ∪φ en, for some φ : Sn−1 → A. Then there
is an inclusion map i : A ⊆ X and X

/
A = Dn

/
∂Dn = Sn. More

generally, let X be a CW complex with n cells en
α, α ∈ A. Then

Xn
/
Xn−1 =

∨
α∈A

Sn
α.

3.3 Cellular Homology

Let X be a CW complex. We have a commutative diagram:

δ

Hn+1(X
n+1, Xn) Hn(Xn, Xn−1)

Hn(Xn) Hn−1(X
n−1)

δ i∗
i∗

dndn+1

0

Hn − 1(Xn−1, Xn−2) ...

This diagram serves to define the maps dn. Observe that dndn+1 = 0, so we
have a chain complex , the so-called cellular chain complex of X:

C∗(X) = {Cn(X) = Hn(Xn, Xn−1), dn}

.

The homology of this chain complex is called cellular homology.

Definition: H∗(C∗(X)) = HCW
∗ (X).

Theorem: HCW
∗ (X) is naturally isomorphic to H∗(X).

Examples.
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1. Sn = e0 ∪ en X0 = pt, Xn = Sn and X1, X2, · · · , Xn−1 are empty.
Thus

Ci(X) =

{
Z i = 0, n

0 otherwise

If n > 1, then all dk = 0 and

HCW
i (Sn) =

{
Z i = 0, n

0 otherwise

2. CP n = e0 ∪ e2 ∪ · · · ∪ e2n. Therefore, all dk are 0 and so

HCW
i (CP n) =

{
Z i = 0, 2, 4, · · · , 2n
0 otherwise

3. Let X = CP n and Y = S2 ∨ S4 ∨ · · ·S2n, where all attaching maps for
Y are trivial. (i.e. constant). It is easy to check that

Hi(Y ) =

{
Z i = 0, 2, 4, · · · , 2n
0 otherwise

That is, H∗(X) ≈ H∗(Y ). But X is not homeomorphic to Y if n > 1.
X is a compact 2n-dimensional manifold with no boundary; Y is not
even a manifold if n > 1.

Exercie: Show that CP 1 ≈ S2.

Question: if n > 1 is there a map f : X → Y inducing an isomorphism on
H∗?

Answer: No, but one needs cohomology in order to see it.
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3.4 A Preview of the Cohomology Ring

The cohomology groups of a space X (whatever they are) actually form a
graded ring. The cohomology ring structure of X = CP n is:

H∗(X) ≈ Z[x]
/
(xn+1), where x ∈ H2(CP n) ≈ Z is a generator.

Here, we have 1 ∈ H0(X) ≈ Z, x ∈ H2(X) ≈ Z, x2 ∈ H4(X) ≈ Z, . . .,
xn ∈ H2n(X) ≈ Z. Moreover, H i(X) = 0 if i is odd.

The answer for Y is:

H i(Y ) =

{
Z i = 0, 2, . . . , 2n

0 otherwise
.

This is the same information as far as homology is concerned. However, all
“products” turn out to be zero in H∗(Y ). So the cohomology rings of these
two spaces are not isomorphic, and therefore there is no map f : X → Y
inducing an isomorphism on H∗.

3.5 Boundary Operators in Cellular Homol-

ogy

Suppose X a CW-complex and C∗(X) is its cellular chain complex. Then

Cn(X) = Hn(Xn, Xn−1) ≈ Hn(Xn
/
Xn−1, ∗) ≈ H̃n

(∨
α∈A

Sn
α

)
.

Thus Cn(X) is a free abelian group with one generator for each n-cell en
α.

Therefore, we can identify the generators with the n-cells en
α.

The boundary operator dn : Hn(Xn, Xn−1) → Hn−1(X
n−1, Xn−2) will be
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given by an equation of the form

dn(en
α) =

∑
β∈B

dαβen−1
β , where the n− 1-cells are en−1

β for β ∈ B.

Let φα : Sn−1 → Xn−1 be an attaching map for en
α. Consider the composite

fαβ : Sn−1 φα→ Xn−1 c→ Xn−1
/
Xn−2 ≈

∨
β∈B

Sn−1
β

c→ Sn−1
β = Sn−1,

where the maps labelled c are collapsing maps.

Definition: If f : Sm → Sm then f∗ : Hm(Sm) ≈ Z → Hm(Sm) ≈ Z is
multiplication by some integer k. The deg f is defined to be k.

Theorem: The degree of fαβ is dαβ.
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4.1 Homology of RP n

Today’s goal will be to compute H∗(RP n) using cellular homology. Recall
that RP n = e0 ∪ e1︸ ︷︷ ︸

S1

∪e2

︸ ︷︷ ︸
RP 2

∪ · · · ∪ en.

We define RP∞ = limn→∞RP n = S∞/x ∼ −x.

The cellular chain groups of a CW complex X are Cn(X) = Hn(Xn, Xn−1).
Thus Cn(X) is a free abelian group with generators in 1-1 correspondence
with the n-cells in X.

· · · → Cn+1
dn+1−→ Cn

dn−→ Cn−1 → · · · → C0 → 0

In the case of RP n, it turns out that Ck ≈ Z ∀k and the boundary operators
are alternatively multiplication by 0 and multiplication by 2 :

· · · → 0→ Cn → · · ·
×2−→ C5

0−→ C4
×2−→ C3

0−→ C2
×2−→ C1

0−→ C0 → 0

The boundary operator Cn
dn−→ Cn−1 will be 0 if n is odd and multiplication

by 2 otherwise.

31
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Corollary:

Hi(RP n) =


Z i = 0

Z2 i = 1, 3, 5, · · · , 2k − 1 < n

0 i = 2, 4, · · · , 2k < n

and

Hn(RP n) =

{
0 n even

Z n odd

Description of dk : Ck → Ck−1

RP k−1/RP k−2 = Sk−1Sk−1 RP k−1

Note that RP k−2 comes from the equator of the sphere, and is collapsed to
a point:
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Sk−1

Sk−1

collapse equator

Sk−2

id on top sphere
a pm bottom sphere

where a : Sk−1 → Sk−1 is the antipodal map. Therefore, dk : Ck → Ck−1 is

Z
×j−→ Z, where j = deg(id + a). But

deg(id + a) = 1 + (−1)k =

{
2 k even

0 k odd

4.2 A Pair of Adjoint Functors

Y I is the space of mappings I = [0, 1]→ Y , with the compact open topology.
If Y has a base point y0 then we can define the loop space by

ΩY
def
= the space of maps I

ω→ Y such that ω(0) = ω(1) = y0.

We say that the suspension functor Σ and the loop space functor Ω are
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adjoint because there is a natural isomorphism of sets:

Maps(ΣX, Y ) ≈ Maps(X, ΩY ), f(x, t) = f ′(x)(t)

where f : ΣX → Y and f ′ : X → ΩY. This correspondence induces a natural
equivalence on homotopy: [ΣX, Y ] ≈ [X, ΩY ].

ΩY has extra structure: it is an H–space. H probably stands for either
“homotopy” or “Heinz Hopf”, depending on whether you are Heinz Hopf or
not.

ΩY is a group up to homotopy. The group multiplication µ : ΩY ×ΩY → ΩY
is concatenation of paths:

µ(ω, η) =

{
ω(2t), 0 ≤ t ≤ 1

2

η(2t− 1), 1
2
≤ t ≤ 1

We write µ(ω, η) = ω ∗ η.

Exercise: Let ε be the constant map at y0. Then show that ε∗ω ' ω∗ε ' ω.
The inverse of ω is the path ω−1(t) = ω(1−t). That is, ω∗ω−1 ' ε ' ω−1∗ω.
The operation is associative.

Therefore, [X, ΩY ] is an actual group, so [ΣX, Y ] is also a group. Here, the
group operation is defined as follows: if f : ΣX → Y , g : ΣX → Y then

f · g(x, t) =

{
f(x, 2t) 0 ≤ t ≤ 1

2

g(x, 2t− 1) 1
2
≤ t ≤ 1

Examples:

1. Let f : S1 → S1 be f(z) = zk. Then deg f = k.

2. We wish to define a map g : Sn → Sn with deg g = k.

Definition: Suppose f : X → Y is base point preserving. Then we
can define Σf : ΣX → ΣY by Σf(x, t) = (f(x), t).

Now, suspending f : z 7→ zk n− 1 times gives a map Σn−1f : Sn 7→ Sn

of degree k.
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5.1 Assignment 1

p.155 #1,3,5,7,9(ab); p156#12, p.257 #19

Here are some comments:

(1) paraphrased is: show that f : Dn → Dn has a fixed point. This is
the Brouwer Fixed point theorem and we have proved it already. The
question asks us to prove it in a special way: apply degree theory to
the map that sends both northern and southern hemispheres to the
southern hemisphere by f .

(3) No comment.

(5) Let r1, r2 of Sn be reflections through hyperplanes. Show that r1 ' r2

through a homotopy consisting of reflections through hyperplanes.

(7) Let f : Rn → Rn be an invertible linear transformation.Then we have

35
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a commutative diagram

H̃n(Rn, Rn − {0}) f∗−−−→ H̃n(Rn, Rn − {0})
≈
y ≈

y
Z ≈ H̃n(Rn − {0}) f∗−−−→ H̃n(Rn − {0}) ≈ Z

Show that f∗ = id if and only if detf > 0. Use linear algebra, Gaussian
reduction, etc.

(9ab) Compute the homology groups of:

(a) S2
/
(north pole = south pole.)

(b) S1 × (S1 ∨ S2). Cellular homology is probably the best approach.

(12) Show that the map S1 × S1 →
(
S1 × S1

/
S1 ∨ S1

)
≈ S2 is not homo-

topic to a point.

(19) Compute the homology of thetruncated projective space RP n
/
RP m,

m < n.

5.2 Homology with Coefficients

Example: f : X → RP∞ = S∞/x ∼ −x. For a model for S∞ we use the
space of sequences

(x1, x2, x3, . . .)

with xi ∈ R such that
∑∞

i=1 x2
i = 1 and xk = 0 for k � 0 (means: k

sufficiently large).

We will see that ∃ natural equivalences

[X,RP∞] ≈ H1(X; Z2) ≈ Hom (H1(X; Z), Z2).

Thus ∃ a unique element in Hom (H1(X; Z), Z2) corresponding to the homo-
topy class of f. Which leads us to the question: how does one put coefficients
into a homology theory? There is a natural way to do this.
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Let X be some space and C∗(X) one of the chain complexes associated to
X. A typical n-chain is ∑

i

niσi, ni ∈ Z.

Let G be some abelian group, such as Zn,Z,Q,R,C.

Definition: The chain complex C∗(X; G) is defined as follows: the nth chain
group

Cn(X; G) =
{∑

i

niσi | σi ∈ Cn(X), ni ∈ G
}
.

The sum
∑

i niσi is finite. The boundary operators are defined analogously
to the boundary operators for the chain complex C∗(X).

One can describe this in terms of tensor products as follows:

Cn(X; G) ≈ Cn(X)⊗G.

The boundary operators are then just ∂⊗ id. Homology with coefficients in
G is then defined by

H∗(X; G) = H∗(C∗(X; G)).

Essentially everything (excision, Mayer-Vietoris, etc.) goes through verbatim
in this setting. However, one thing that does change is the following:

The dimension axiom: H0(pt, G) ≈ G.

Example: RP n = e0 ∪ e1 ∪ · · · ∪ en. The cellular chain complex is:

· · · ∂→ Ck+1
∂→ Ck

∂→ · · · ∂→ C2
∂→ C1

∂→ C0 → 0
|| || || || ||

· · · → Z → Z → · · · 0→ Z ×2→ Z 0→ Z → 0
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With Z2 coefficients, C∗⊗Z2 = C∗(RP n; Z2), the chain groups become either
0 or Z2, and all boundary maps become 0:

· · · 0→ 0→ Z2
0→ · · · 0→ Z2

0→ Z2
0→ Z2

0→ 0

Therefore,

Hi(RP n;Z2) =

{
Z2 i = 0, 1, . . . , n

0 otherwise.

5.3 Application: Lefschetz Fixed Point The-

orem

Definition: Let A be a finitely generated abelian group and let φ : A→ A
be a group homomorphism. Then A = F ⊕ T, where F is free abelian of
rank r < ∞ and T is a finite group. φ induces a group homomorphism
φ : A/T → A/T, which can be represented by an n × n matrix over Z..
The trace of φ is the trace of this n × n matrix (the sum of the diagonal
entries). The choice of basis is not important, since the trace is invariant
under conjugation. The trace of φ also equals the trace of the induced linear
transformation on the vector space A⊗Q.

Definition: Suppose X is a finite complex, and f : X → X is a map.
Then f induces a homomorphism f∗ : Hn(X)→ Hn(X) of finitely generated
abelian groups. The Lefschetz Number

λ(f)
def
=
∑

n

(−1)ntrace(f∗(Hn(X;Q)→ (Hn(X;Q)).

The reason for taking coefficients in Q is to kill off the torsion part of H∗(X)..

Theorem: (Lefschetz) If f is fixed point free, then λ(f) = 0.

Example: If f ' id, then we are computing the traces of identity matrices,
and λ(f) = χ(X), the Euler characteristic of the space X.
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Let βn be the rank of the finite dimensional vector space Hn(X;Q). βn is
called the nth Betti number. Then the Euler characteristic of X was defined
to be

χ(X) =
∑

n

(−1)nβn.

Let γn be the the number of n-dimensional cells in X.

Theorem: (essentially using only algebra) χ(X) =
∑

(−1)nγn.

Example: Let X = S2n. Then χ(X) = 2, since

Hi(X) =

{
Z i = 0, 2n

0 otherwise

Suppose that X has a nonvanishing vector field V

V (x)x

So x ∈ R2n+1 is a vector with norm 1 and V (x) ∈ R2n+1 is perpendicular to
x (x · V (x) = 0).

Now V : x→ V (X) is continuous in x, V (x) 6= 0 for all x, and x · V (x) = 0
for all x. Without loss of generality, assume that |V (x)| = 1 for all x.
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There exists a unique geodesic on S2n going through x in the direction of
V (x). Let f : S2n → S2n be the map that takes x to that point f(x) whose
distance from x along this geodesic is 1.

V (x)x

f(x)

f is clearly homotopic to the identity map. Therefore

λ(f) = λ(id) = χ(S2n) = 2.

But f has no fixed points and therefore λ(f) = 0. This is a contradiction.
Thus S2n does not have a non-vanishing vector field.

We can generalize this example to any smooth manifold.

Theorem: If Mn is a compact n-manifold with non-zero Euler characteristic,
then M does not have a nonzero vector field.

Example CP n = e0∪ e2∪ · · ·∪ e2n has Euler characteristic χ(CP n) = n+1.
therefore, CP n does not have a nonzero vector field.

Example: Any odd dimensional sphere, S2n+1, has a nonzero vector field.
Let x = (x1, . . . , x2n+2) ∈ S2n+1,

∑
x2

i = 1. Then

V (x) = (−x2, x1,−x4, x3, · · · ,−x2n+2, x2n+1)

defines such a vector field.
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Example: Let G be a topological group which is also a smooth manifold.
For example: S1, S3 or SO(n) = n× n orthogonal matrices. Then the Euler
characteristic of G is zero. To see this we construct a nonvanishing vector
field.

Let e ∈ G be the identity element. Take v ∈ Te(G), v 6= 0. Then we
construct a nonzero vector field V by V (g) = (dRg)(v) where Rg : G→ G is
right multiplication by g, and d is differentiation.

dRg
e

v

g
Rg
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6.1 Tensor Products

Suppose A, B are abelian groups. We define their tensor product as follows:

Definition: A ⊗ B = F (A × B)/N , where F (A × B) is the free abelian
group on pairs (a, b) ∈ A×B and N is the subgroup which is generated by all
elements of the form (a1+a2, b)−(a1, b)−(a2, b) or (a, b1+b2)−(a, b1)−(a, b2).

Thus we are forcing linear relations in both coordinates. Notation: a ⊗ b
denotes the class of (a, b) in A⊗B. A⊗ B is an abelian group.

Zero element: a⊗ 0 = 0⊗ a = 0

Inverses: −(a⊗ b) = (−a)⊗ b = a⊗ (−b).

Properties:

• A⊗ Z ≈ A. The isomorphism is given by a⊗ n→ na, and the inverse
isomorphism is A→ A⊗ Z, a→ a⊗ 1.

• A ⊗ Zn ≈ A/nA. The homomorphism φ : A → A ⊗ Zn, φ(a) = a ⊗ 1

43
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induces an isomorphism A/nA→ A⊗Zn. To see this note that φ(na) =
na⊗ 1 = a⊗ n = 0.

• A⊗ B ≈ B ⊗A.

• ⊗ is associative, that is (A⊗B)⊗ C ≈ A⊗ (B ⊗ C).

• Suppose A is finite. Then A⊗Q = 0 since

a⊗ r/s = ra⊗ 1/s = nra⊗ 1/ns = 0 for some n

.

• A⊗ (B ⊕ C) = (A⊗B)⊕ (A⊗ C)

• Zm ⊗ Zn ≈ Zd, where d = gcd(m, n).

• A ⊗ B is functorial in both A and B. For example, if φ : A → A′

is a group homomorphism, then there exists a group homomorphism
φ⊗ 1 : A⊗B → A′ ⊗ B.

Question: What is the relationship between Hn(X; G) and Hn(X) ⊗ G?
Recall that C∗(X; G) = C∗(X)⊗G, and H∗(X; G) = H∗(C∗(X)⊗G).

Take c ∈ Cn(X), and suppose that c is a cycle. Let [c] be the homology class,
[c] ∈ Hn(X). Now, c⊗ g ∈ Cn(X)⊗G is a cycle, since ∂(c⊗ g) = ∂(c)⊗ g.
Therefore, [c⊗ g] is a homology class in Hn(X; G).

Definition: µ : Hn(x)⊗G→ Hn(X; G) is the map µ : [c]⊗ g → [c⊗ g]

µ is not an isomorphism, in general. However, we have the following theorem:

Theorem: (Universal Coefficient theorem for Homology): There exists a
natural short exact sequence

0 −−−→ Hn(X)⊗G
µ−−−→ Hn(X; G) −−−→ Tor(Hn−1(X), G) −−−→ 0

The definition of the Tor functor and the proof will be given later.
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6.2 Lefschetz Fixed Point Theorem

Definition: Suppose φ : A → A is an endomorphism of the finitely gener-
ated abelian group A. By the fundamental theorem of abelian group theory
A ≈ T ⊕ F , where T is a finite group and F is a free abelian group of finite
rank. Then φ induces an endomorphism φ̄ : F → F. The trace of φ is defined
by Trφ = Trφ̄.

Lemma: Suppose we have a commutative diagram with exact rows:

0 −−−→ A −−−→ A′ −−−→ A′′ −−−→ 0y φ

y φ′
y φ′′

y
0 −−−→ A −−−→ A′ −−−→ A′′ −−−→ 0

where A, A′, A′′ are finitely generated abelian groups. Then

Trφ′ = Trφ + Trφ′′

Lemma: (Hopf Trace Formula) Suppose C∗ is a chain complex of abelian
groups such that:

• Each Cn is a finitely generated abelian group.

• Cn 6= 0 for only finitely many n.

Suppose that φ : C∗ → C∗ is a chain map. Then∑
n

(−1)nTr(φ : Cn → Cn) =
∑

n

(−1)nTr(φ∗ : Hn(C)→ Hn(C))

Proof:

· · · −−−→ Cn+1
∂n+1−−−→ Cn

∂n−−−→ Cn−1 −−−→ · · ·
Let Zn := ker ∂n, Bn := ∂n+1(Cn+1), so Hn := Zn/Bn.
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Consider
0 −−−→ Bn −−−→ Zn −−−→ Hn −−−→ 0y φ

y φ′
y φ∗

y
0 −−−→ Bn −−−→ Zn −−−→ Hn −−−→ 0

and

0 −−−→ Zn −−−→ Cn
∂n−−−→ Bn−1 −−−→ 0y φ′

y φ

y φ

y
0 −−−→ Zn −−−→ Cn

∂n−−−→ Bn−1 −−−→ 0

Now,

Tr(φ∗ : Hn → Hn) = Tr(φ′ : Zn → Zn)− Tr(φ′′ : Bn → Bn)

Tr(φ : Cn → Cn) = Tr(φ′ : Zn → Zn) + Tr(φ′′ : Bn−1 → Bn−1)

Therefore
∑

n(−1)nTr(φ∗ : Hn → Hn) =
∑

n(−1)nTr(φ : Cn → Cn) �

Proof: of the Lefschetz fixed point formula: For the sake of simplicity assume
that X is a finite simplicial complex and f is a simplicial map. Suppose
f(x) 6= x for all x ∈ X.

It is not necessarily true that f(σ) ∩ σ = for all simplices σ in X, but it
is true if we asubdivide sufficiently many times.

σ

Repeat until the simplices are small enough so that f(σ) ∩ σ = ∅. We can
do this due to compactnes.

Then
∑

(−1)nTr(f : Cn → Cn) = 0 and so λ = 0. �
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Example: f : RP 2k+1 → RP 2k+1, λ(f) = 1− deg f .

H2k+1(RP 2k+1)
f∗−−−→ H2k+1(RP 2k+1)

≈
y ≈

y
Z ×deg f−−−−→ Z

If f is fixed point free, then deg f = 1 (e.g. a homoemorphism that preserves
orientation).

f(x1, x2, . . . , x2k+1, x2k+2) = (x2,−x1, . . . , x2k+2,−x2k+1)

f is a homeomorphism. Moreover, f preserves orientation, because as a linear
map, f has matrix 

0 1
−1 0

. . .

0 1
−1 0



6.3 Cohomology

Start with a chain complex C∗(x).

0← C0
∂1← C1

∂2← C2
∂3← · · · ∂n← Cn

∂n+1← Cn+1 ← · · ·

and dualize to get the cochain complex : C∗ := Hom(C∗(X), G)

0→ C0 δ0

→ C1 δ1

→ C2 δ3

→ · · · δn−1

→ Cn δn→ Cn+1→· · ·
where δn : Hom(Cn(X), G) → Hom(Cn+1(X), G) maps α : Cn(X) → G to
α ◦ δn+1:

δn(α) : Cn+1
∂n+1→ Cn

α→ G

H∗(X; G) =the homology of this chain complex.

Cohomology is contravariant – i.e. if f : X → Y , f ∗ : Hn(Y )→ Hn(X).
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Question: What is the relationship between H∗(X; G) and Hom(Hn(X), G)?

Cohomology has more structure than homology. There exists a product

Hp(X)×Hq(X)→ Hp+q(X ×X).

Let d : X → X × X be the diagonal: d(x) = (x, x). Thereforeore, there
exists a product, called the cup product :

Hp(X)⊗Hq(X)→ Hp+q(X)

u⊗ v 7→ u ∪ v

H∗(X) is a graded ring.

Examples:

• H∗(CP n;Z) is a polynomial algebra; it is isomorphic to Z[x]/(xn+1),
x ∈ H2(CP n; Z).

• H∗(RP n;Z2) ≈ Z2[x]/(xn+1), x ∈ H1(RP n;Z2) ≈ Z2; x2 = x∪x ∈ H2.
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7.1 Examples: Lefschetz Fixed Point Formula

Basic notion: A is a finitely generated abelian group, and φ : A → A is
an endomorphism. The fundamental theorem of finitely generated abelian
groups says that

A ≈ F ⊕ T ; F ≈ Zr, T finite group.

To get a trace for φ we do one of the following:

• Take the trace of the linear transformation φ⊗ 1 :

A⊗Q
φ⊗ 1- A⊗Q

Qr

≈

?

linear
- Qr

≈

?

49
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• Take the trace of φ̄ :

A/T
φ̄ - A/T

Zr

≈

? φ̄ - Zr

≈

?

Lefschetz Fixed Point Theorem. If X is finite and f : X → X is a map wiht
no fixed points, then λ(f) = 0. Recall:

λ(f) =
∑
−1nTr(f∗ : Hn(X;Q)→ Hn(X;Q))

Question. Is the converse of the Lefschetz Fixed Point Theorem true?

Answer: NO.

Remark: The Lefschetz Fixed Point Theorem is true for coeffecients in any
field F .

Example. f : X → X, for a finite complex X. Consider the suspension:

Sf : SX → SX.
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Q

P

Note that Sf has two fixed points: P and Q. Similarily, the k-fold suspension
Skf : SkX → SkX has a sphere of fixed points.

Recall:

H̃i(X)
≈- H̃i+k(X)

H̃i(X)

f∗

? ≈- H̃i+k(X)

(Skf)∗

?

Therefore, we can relate λ(f) to λ(Skf):

i 0 1 2 . . . k k + 1 . . .
Hi(X) Z H1 H2 . . . Hk Hk+1 . . .

Hi(S
kX) Z 0 0 0 0 H1 . . .
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Assume that X is connected. Then λ(f) − 1 = (−1)k(λ(Skf) − 1) ( f∗ :
H0(X)→ H0(X) is identity on Z)

The converse of the Lefschetz Fixed Point Theorem would say that λ(g) =

0
?⇒ g has no fixed points. We shall choos f and k such that λ(Skf) = 0 but

Skf has lots of fixed points.

For example, start with a map f : X → X such that λ(f) = 0 and assume
that k is even. Then λ(Skf) = 0.

This suggests the question: let f : X → X, where X is a finite complex.
What are the possible sequences of integeres k0, k1, k2, . . . that realize the
traces f∗ : Hi → Hi? Assume that X is connected, so that l0 = 1. Recall:
there exists a map of degree l, φ : S1 → S1 such that z 7→ zl, where z ∈
C, |z| = 1. This map has a fixed point (the complex number 1) so it is base
point preserving.

The (k − 1)fold suspension of φ, Skφ : Sk → Sk has degree l, and it is also
base point preserving.

Suppose that X = Sn1 ∨X = Sn2 ∨ · · ·∨X = Snr where n1 ≤ n2 ≤ · · · ≤ nr.
On each sphere Snk , choose a self map of degree kj. Therefore, we can realize
any sequence (1, k1, k2, . . .) by choosing a one point union of spheres. This is
a kind of “cheap” example, since all of the attaching maps are trivial.

Now choose

X = S2 ∨ S4 ∨ S6 ∨ · · · ∨ S2nY = CP n

= e2 ∨ e4 ∨ e6 ∨ · · · ∨ e2n

Here, H∗(X,Z) ≈ H∗(Y ; Q). We can realize any sequence (1, k1, k2, . . . , kn)
for traces of self maps f : X → X. This is not the case in Y .

i 0 1 2 3 4 . . . 2n− 1 2n
Hi(Y ) Z 0 Z 0 Z . . . 0 Z
Trf∗ 1 0 k1 0 k2 0 kn

The values of k are determined completely by k1: k2 = k2
1, k3 = k3

1, and so
forth. To prove this, we need to use cohomology: we need a ring structure.
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7.2 Applying Cohomology

For any space W and a ring R, we can put a natural graded ring structure
on the cohomology groups H∗(W ; R). That is, if u ∈ Hp(W ; R) and v ∈
Hq(W ; R), the their product, u ∪ v ∈ Hp+q(W ; R). If f : W → Z is a map,
then the (contravariantly) induced map

f ∗ : H∗(Z, R)→ H∗(W ; R)

is a ring homomorphism, then there exists an identity 1 ∈ H0(X; R).

Fact: H∗(CP n;Z) ≈ Z[x]/(xn+1), where x ∈ H2(CP n;Z) ≈ Z is a generator.
Take any self map f : Z → X. Then we can compute the traces using
cohomology. Consider the map f∗:

H2(CP n)
f ∗- H2(CP n)

Z

≈

?
- Z

≈

?

x - kx

Here, f ∗(xl) = f ∗(x)l = (kx)l = klxl, since f ∗ is a ring homomorphism.
Therefore, the sequence of trances is (1, k, k2, . . . , kn). Moreover, we can
realize any k.

7.3 History: The Hopf Invariant 1 Problem

Suppose f : S3 → S2. Then f∗ : H̃∗(S
3)

0→ H̃∗(S
2). Question: Does f induce

the 0 map in homotopy? Here, Πn(X) := the group of homotopy classes of
maps Sn → X. f : S3 → S2 induces f# : Πn(S3)→ Πn(S2), [g] 7→ [f ◦ g].
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In the 1930s, Heinz Hopf constructed the following map f : S3 → S2:

(z1, z2) 7→
z1

z2

where z1, z2 ∈ C, z1z̄1 + z2z̄2 = 1 and the image lies in the one point com-
pactification C ∪∞ of C.

Pick x, y ∈ S2, x 6= y. Then f−1(x), f−1(y) are both circles.

Facts:

1. f# is an isomorphism for n > 3.

2. π3S
2 ≈ Z.

Let f : S2n−1 → Sn (n ≥ 2). Then X = Sn ∪f e2n. Then

Hi(X) ≈
{

Z i = 0, n, 2n

0 otherwise

Let y ∈ H2n(X) ≈ Z be a generator. Then x2 = x ∪ x = ky. What is k? In
particular, when is there a map f : S2n−1 → Sn with k = 1? k is called the
Hopf invariant of f
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7.4 Axiomatic Description of Cohomology

Definition: A cohomology theory is a sequence of contravariant functors
from the category of CW complexes to the category of abelian groups (say

h̃n, n ∈ Z) together with natural transformations h̃n(A)
∂→ h̃n+1(X/Z) for

every CW pair (X, A) satisfying the following axioms:

1. (homotopy axiom) If f ' g : X → y then f ∗ = g∗ : h̃n(Y )→ h̃n(X).

2. The following is a long exact sequence:

. . . - h̃n(X/A)
c∗- h̃n(X)

i∗- h̃n(A)
∂- h̃n+1(X/A) . . .

The transformations ∂ are natural. This means that if f : (X, A) →
(Y, B) is a map of CW complexes, then the following diagram is com-
mutative:

. . . - h̃n(X/A)
c∗- h̃n(X)

i∗- h̃n(A)
∂- h̃n+1(X/A) - . . .

. . . - h̃n(Y/B)

f ∗

6

c∗- h̃n(Y )

f ∗

6

i∗- h̃n(B)

f ∗

6

∂- h̃n+1(Y/B)

f ∗

6

- . . .

3. Suppose X =
∨

α∈A Xα, where A is the same index set. Let iα : Xα →
X be the inclusion maps. Therefore, i∗α : h̃n(X) → h̃n(Xα), α ∈ A.

These maps induce an isomorphism h̃n(X)
≈→
∏

α∈A h̃n(Xα).

The first axiomatization of cohomology was done by Eilenberg and Steenrod,
in the book “Algebraic Topology”.

7.5 My Project

Start to read Milnor’s book: Characteristic Classes.
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Chapter 8

January 27

8.1 A Difference Between Homology and Co-

homology

Example. Let G be a free abelian groups on generators eα, α ∈ A.

Elements of G:
∑

a∈A nαeα, where nα ∈ Zi and the nα are finitely nonzero.

Let G ≈ ⊕a∈AZα. Then G∗ = Hom (G,Z). f : G → Z, xα = f(eα), for
α ∈ A.

Hom (G,Z) =
∏

α∈A Zα. A typical element in πα∈AZα is a sequence (xα)α∈A,
not necessarily finitely nonzero.

8.2 Axioms for Unreduced Cohomology

Last time we gave axioms for reduced cohomology: a sequence of contravari-
ant functors h̃n.

57
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Unreduced cohomology: hn contravariant functors.

hn(X, A) = h̃n(X/A)

hn(X) = hn(X, ∅)
= h̃n(X/∅)

where X/∅ = X+ = X] point.

Then there are axioms for the unreduced cohomology theory. See text.

8.3 Eilenberg-Steenrod Axioms

Eilenberg-Steenrod (c. 1950) in Foundations of Algebraic Topology, gave the
first axiomatic treatment, including the following:

Dimension Axiom: hn(pt) =

{
Z n = 0

0 otherwise
.

The above axioms and the dimension axiom give a unique theory.

Remark: there exist homology (cohomology) theories which do not satisfy
the dimension axiom. (for a trivial example, homology with coefficients)

An uninteresting example: Suppose h∗ is a cohomology theory satisfying the
dimension axiom. Define another cohomology theory by kn = hn−m for a
fixed integer m.

1960s: Atiyah, Bott, Hirzebruch constructed another cohomology theory
(complex K-theory) which does not satisfy the dimension axiom:

Kn(pt) =

{
Z n = 0,±2,±4, . . .

0 otherwise

This is a very powerful theory and is part of the reason that Atiyah got a
fields medal.
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Definition: The coefficients of a cohomology theory are h∗(pt).

Another example of a sophisticated theory is stable cohomotopy theory; the
groups are stable cohomotopy groups of spheres.

8.4 Construction of a Cohomology Theory

Remark: We can develop cohomology from the axioms. But we need a
construction of a cohomology theory.

Start with a chain complex C∗.

Definition: the cochain group C∗ := Hom (C∗, G) where G is an abelian
group, called the coefficients.

A typical element in Cn := Hom (Cn, G) is a group homomorphism α : Cn →
G.

· · · - Cn+1

∂n+1 - Cn

∂n - Cn−1
- · · ·

G

α

?

α ◦
∂
n+

1 -

Therefore, there exists a coboundary map δn : Cn → Cn+1, δn(α) := α◦∂n+1.

It is an elementary fact that δ ◦ δ = 0.

Definition: Hn(C; G) = ker δ/imageδ.

Example: H∗(X; G) = H∗(Hom (C∗(X), G)))
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We can do it for a pair also:

H∗(X, A; G) := H∗
(

Hom

(
C(X)

C(A)
, G

))

Then the axioms follow algebraically (although there is some work to be done
in order to check that this is so!)

Example: Long exact sequence in homology. Suppose E is the short exact
sequence of abelian groups.

0 - A
i - B

j - C - 0

Let G be an abelian group. Then there exists an exact sequence

Hom (A, G) �
i∗

Hom (B, G) �
j∗

Hom (C, G) � 0

with i∗(β) = β ◦ i for a homomorphism β : B → G.

0 - A
i - B

j - C - 0

G

β

?

i ∗
(β) =

β ◦
i
-

Moreover, if E is a split exact seqnece, then i∗ : Hom (B, G)→ Hom (A, G)
is an epimorphism, i.e.

0 � Hom (A, G) �
i∗

Hom (B, G) �
j∗

Hom (C, G) � 0

is exact.
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Proof: Exactness at Hom (C, G) : j∗ is 1-1: Let γ : C → G be in ker j∗, i.e.
γ ◦ j = 0. But j : B → C is an epimorphism, so γ = 0.

The following is clear: imj∗ ⊆ ker i∗.

Next, we show that ker i∗ ⊆ im j∗. Take an element β ∈ ker i∗:

0 - A
i - B

j - C - 0

G

β

?�

γ

β ◦
i =

0 -

Define γ : C → G by γ(c) = β(b), where b is any element such that j(b) = c.

Now assume that E is split exact:

0 - A
i - B

j - C - 0

That is, there exists p : C → B such that j ◦ p = idC , or equivalently, there
exists q : B → A such that q ◦ i = idA. Exercise: In this case, B ≈ A⊕ C.

Then

0 � Hom (A, G) �
i∗

Hom (B, G)

is exact:

0 - A �
q

i
- B - . . .

G

α

?�

β
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Comments.

1. If C is a free abelian group, then E is split exact.

2. Consider the short exact sequence of chain complexes:

0 - C∗(A) - C∗(X) - C∗(C, A) - 0

These chain groups are free, and therefore the sequence is split. There-
fore, we have a short exact sequence of cochain complexes,

0 ← C∗(A) ← C∗(X) ← C∗(X, A) ← 0

0 ←Hom (C∗(A), G)

wwwwwwwww
←Hom (C∗(X), G)

wwwwwwwww
←Hom (C∗(X, A), G)

wwwwwwwww
← 0

By general nonsense, this gives the long exact sequencne in cohomology.

8.5 Universal Coefficient Theorem in Coho-

mology

Question: what is the relationship between H∗(X, G) and Hom (H∗(X), G)?
In the first group, we dualize the chain complex and then apply homology; in
the second, we apply homology to the chain complex first, and then dualize.

The two groups are not isomorphic; however, There exists a group homomor-
phism

H∗(X; G)
h- Hom (H∗(X), G)

which is onto.
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Definition: of h: let h ∈ Hn(X; G) be a cohomology class, represented by
α : Cn(X)→ G:

. . . - Cn+1(X) - Cn(X) - Cn−1(X) - . . .

G

α

?�

β

α ◦
δ
n+

1 =
0
-

h(u) is to be a homomorphism Hn(X) → G. α is not unique, α + β∂n will
also do.

Restrict α to α′ : ker ∂n = Zn(X)→ G.

But α′(Bn) = 0 and therefore there exists a homomorphism Hn(X) → G.
Define h(u) to be this homomorphism.

Exercise: h is onto.

h is not always an isomorphism. Example:

0 - ker h - H∗(RP n)
h- Hom (H∗(RP n),Z) - 0

We will compute H∗(RP n) cellularly:

. . . - C3
- C2

- C1
- C0

- 0

. . .
×2 - Z

wwwwwwwwww
0 - Z

wwwwwwwwww
×2 - Z

wwwwwwwwww
0 - Z

wwwwwwwwww
and therefore

Hi(RP n) =



Z if i = 0

Z2 if i is odd; 1 ≤ i ≤ n

0 if i is even; 2 ≤ i ≤ n

0 if i = n is even

Z if i = n is odd
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Dualize the chain complex C∗ to get C∗ = Hom (C∗,Z) :

0 ← Cn ← · · · ← C2 ← C1 ← C0 ← 0
|| || || ||
Z Z Z Z

Therefore,

H i(RP n) =


Z if i = 0

0 if i odd, 1 ≤ i ≤ n

Z2 if i even, 1 ≤ i ≤ n

Note that these are very different from the homology groups! So,

H i(RP n)
h- Hom (Hi(RP n),Z) - 0

is the zero map for 0 ≤ i ≤ n. Therefore H i(RP n) ≈ ker h in these dimen-
sions. �



Chapter 9

February 1

9.1 Comments on the Assignment

.

#2 p.184:

Use the Lefschetz Fixed Point Theorem to show that a map f : §n → §n
has a fixed point unless deg f = the degree of the antipodal map.
Fairly elementary: just look at what the LFP number for f is λ(f) =
1 + (−1)n deg f , and the theorem relates this to fixed points.

#4 p.184: Suppose that X is a finite simplicial complex, f : X → X
is a simplicial homeo. Let F = {x ∈ X|f(x) = x). Show that λ(f) =
X(F ). We may assume that F is a subcomplex of X (if not, one can
subdivide).

#13 p.206: 〈X, Y 〉 is the set of base point preserving homotopy classes
of maps f : X → Y . We are to show that there exists an isomorphism
〈X, K(G, 1)〉 → H1(X, G), where G is some abelian group. A space
W is a K(G, 1) if π1(W ) = G and the universal covering space W̃ is
contractible (⇐⇒ πn(W̃ ) = 1 for all n ≥ 2.)

65



66 CHAPTER 9. FEBRUARY 1

The map 〈X, K(G, 1)〉 → H1(X; G) is defined as follows: f : X →
K(G, 1) induces f∗ : H1(X) → H1(K(G, 1)) ≈ G. Note that H1(Y ) ≈
π1(Y )/[π1(Y ), π1(Y )] for any space Y . Since G is abelian this gives us
a map

〈X, K(G, 1)〉 → Hom (H1(X), G) ≈ H1(X; G)

The isomorphism Hom (H1(X), G) ≈ H1(X; G) comes from the UCT
in cohomology, which says that ∃ a short exact sequence:

0→ ker h→ Hn(Y ; G)
h→ Hom (Hn(Y ), G)→ 0.

Moreover, ker h = 0 if n = 1.

#3(a,b), p.229 Use cup products to show that there is no map f :
RP n → RP m, if n > m, inducing a nontrivial map f ∗ : H1(RP m,Z2)→
H1(RP n,Z2)where. Here, H∗(RP k;Z2) = Z2[x]/(xk+1) where x ∈
H1(RP k;Z2). (If this were to exist, f ∗ : HI(RP m;Z2)→ H∗(RP n;Z2)
is a ring homomorphism...) What is the corresponding results for map
CP n → CP m? (would have to be H2... (b) says: Prove the Borsuk-
Ulam theorem: if f : §n → Rn then f(−x) = f(x) for some x. Suppose
not. Then f(−x) 6= f(x). Define g : Sn → §n−1,

g(x) =
f(x)− f(−x)

|f(x)− f(−x)|

. Then g(−x) = −g(x),so g induces a map RP n → RP n−1. Can we
find a lift h̃ in the diagram below?

Sn g - Sn−1

RP n

p

? h-

h̃

-

RP n−1

p

?

#4 p.229 f : CP n → CP n. Compute λ(f) using H∗.

#5 p.229 H∗(RP∞;Zm) ≈ Zm[α, β]/(2α, 2β, α2) where α ∈ H1, β ∈
H2 and m > 2. There is a corresponding statement in the book for
m = 2.
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#12 p.229 X = S1 × CP∞/S1 × pt. Y = S3 × CP∞. Show that
H∗(X;Z) ≈ H∗(Y ;Z). actually true for any coefficients. One can
detect the difference between these using the Steenrod algebra. This
problem will require some reading; should use the Kunneth formula.

9.2 Proof of the UCT in Cohomology

There exists a short exact sequence

0 → ker h → Hn(X; G)
h→ Hom(Hn(X), G)) → 0

||
Ext(Hn−1(X), G)

Today’s order of business: define Ext, and identify it with the kernel.

Definition: (the functor Ext) Let A,G be abelian groups. Choose free
abelian groups F1, F0 such that there exists a presentation

0→ F1
∂→ F0

ε→ A→ 0

This is an exact sequence, called a free presentation of A. We apply the
functor Hom (·, G) to this presentation and then define Ext(A, G) to be the
cokernel of ∂∗: Ext(A, G) := coker ∂∗.

0 ← coker ∂∗ ← Hom (F1, G)
∂∗← Hom (F0, G)

ε← Hom (A, G)← 0
||def

Ext(A, G)

Remark: This defninition of Ext(A, G) suggests that it does not depend on
the choice of the resolution. One needs the following lemma to se this:
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Lemma: Consider 2 resolutions and a group homomorphism φ : A→ A′:

0 → F1
∂→ F0

ε→ A → 0
↓ φ

0 → F ′1
∂′→ F ′0

ε′→ A → 0

Then there exists a chain map α : F∗ → F ′∗ and moreover, any two such are
chain homotopic.

Proof: : Diagram chasing:

0 - F1

∂ - F0

ε - A - 0

0 - F ′1

α1

? ∂′ - F ′0

α0

? ε′ - A

φ

?
- 0

We must find α0, α1 making this diagram commute. To define α0, pick a
generator x0 ∈ F0. Look at φε(X0). There exits x′0 ∈ F ′0 (not necessarily
unique) such that

φε(x0) = ε′(x′0).

Define α(x0) = x′0. Extend linearly to a map α : F0 → F ′0.

Now choose a generator x1 ∈ F1. ε′α0∂(x1) = 0 (since ε′α0∂ = φε∂ = 0).
Thus α0∂(x1) ∈ ker ε′, so there exists a unique x′1 ∈ F ′1 such that ∂′(x′1) =
α0∂(x1). Define α1(x1) = x′1, and extend linearly.

Now, suppose that α, β : F∗ → F ′∗ are chain maps; we would like to say that
α, β are chain homotopic.

0 - F1

∂ - F0

ε - A - 0

0 - F ′1

α1 − β1

? ∂′ -
�

D 0

F ′0

α0 − β0

? ε′ - A

φ

?
- 0
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Diagram chasing (exercise): There exists D0 : F0 → F ′1 such that

∂′D0 = α0 − β0, D0∂ = α1 − β1.

D0 is the chain homotopy from α to β. This implies that α∗ = β∗ on
homology. �

Exercise: Ext(A, G) is well defined.

Universal Coefficient Theorem: There exists a short exact sequece

0 - Ext(Hn−1(X), G) - Hn(X; G)
h- Hom(Hn(X), G)) - 0

Moreover, this exact sequence is functorial in X and G, and is split (but the
splitting is not functorial in X).

Thus Hn(X; G) ≈ Hom (Hn(X), G)⊕ Ext(Hn(X), G). This tells us how to
compute cohomology.

9.3 Properties of Ext(A, G)

• If A is free abelian then Ext(A, G) = 0. to see this choose a resolution

0→ F1
∂→ F0

ε→ A→ 0

such that F0 = A, ε = idA, F1 = 0.

• Ext(A1 ⊕ A2, G) = Ext(A1, G)⊕ Ext(A1, G) (splice 2 resolutions).

• Ext(Zn, G) ≈ G/nG. Consider the free resolution

0 → Z ×n→ Z → Zn → 0
|| ||
F1 F1

Therefore, Ext(Zn, G) is determined from the diagram

0← Ext(Zn, G) ← Hom (Z, G)
×n← Hom (Z, G)

↓≈ ↓≈ ↓≈
G/nG ← G

×n← G
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• If A = Zn⊕ T , where T is a finite group then Ext(A, G) ≈ Ext(T, G).
This follows directly from the properties above.

Therefore, Ext(A, G) ≈ G/n1G⊕ · · · ⊕G/nkG.

Example: By the Universal Coefficient Theorem we get:

Hn(X; Z) ≈ Hom(Hn(X),Z)⊕ Ext(Hn−1(X),Z)

≈ free part of Hn(X)⊕ torsion part of Hn−1(X)



Chapter 10

February 3

10.1 Naturality in the UCT

The Universal Coefficient Theorem is natural for maps f : X → Y , that is
the following diagram commutes:

0 - Ext(Hi−1(X), G)→ H i(X; G)
h→Hom (Hi(X), G) - 0

0 - Ext(Hi−1(Y ), G)

Ext(f∗, id)

6

→ H i(Y ; G)

f ∗

6

h→Hom (Hi(Y ), G)

Hom (f∗, id)

6

- 0

There also exist splittings

sX : Hom (Hi(X), G)→ H i(X; G) sX : Hom (Hi(X), G)→ H i(X; G),

but we can’t choose them to be natural with respect to f : X → Y .

Example: #11, p.205. Let X be the Moore space M(Zm, n), i.e. X =
Sn ∪f en+1, where f : Sn → Sn is a map of degree m. We will assume m 6= 0.
Then the cellular chain complex of X is:

71
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0→ Cn+1 −→ Cn → 0→ . . .→ 0→ C0 → 0
|| || ||

0→ Z ×m−→ Z → 0→ . . .→ 0→ Z → 0

So

H̃i(X) =

{
Zm i = n

0 otherwise

In cohomology we have the cochain complex

0← Cn+1 ←− Cn ← 0← . . .←0← C0 ← 0

Z

ww
×m←− Z

ww
Z

ww
and therefore

H̃ i(X) =

{
Z i = n + 1

0 otherwise

Let c : X → Sn+1 be the map that collapses the n-skeleton. Then c∗ :
H̃i(X)→ H̃i(S

n+1) is always 0, but c∗ : H̃ i(Sn+1)→ H̃ i(X) is not 0.

Put X = M(Zm, n) in the diagram, Y = Sn+1, f = c, i = n + 1.

10.2 Proof of the UCT

Consider the short exact sequence of chain complexes:

0 - Z∗ - C∗ - B̄∗ - 0

where in degree n this is

0→ Zn
i→ Cn

∂→ B̄n−1 → 0
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• The short exact sequence of chain complexes is split, because all groups
are free abelian.

• The boundary operators in Z∗ and B̄∗ are 0.

Now take Hom (·, G):

0→ Hom (Z∗, G)→ Hom (C∗, G)→ Hom (B̄∗, G)→ 0

This is a short exact sequence of cochain complexes, so we get the long exact
sequence of cochain complexes:

· · · → Hom (Zn−1, G)
δ→ Hom (Bn−1, G)→ Hn(C; G)→

Hom (Zn, G)
δ→ Hom (Bn, G)→ · · ·

image (Hn(C; G)→ Hom (Zn, G)) = {α : Zn → G : α|Bn = 0}
= Hom (Hn(C), G).

Now let us find Coker Hom (Zn−1, G)→ Hom (Bn−1, G). Consider the exact
sequence

0→ Bn−1 → Zn−1 → Hn−1(C)→ 0

Apply Hom (·, G):

0←Ext(Hn−1(C), G)← Hom (Bn−1, G)←Hom (Zn−1, G)← · · ·

coker

w
Exercises: Check the details.

10.3 Some Homological Algebra

Let R be a ring with 1, not necessarily commutative.
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Definition: A left R–module is an abelian group M together with a scalar
multiplication R ×M → M , (r, m) 7→ rm, satisfying the following axioms
∀ r1, r2 ∈ R, m1, m2 ∈M :

(1) (r1 + r2)m = r1m + r2m and r(m1 + m2) = rm1 + rm2.

(2) (r1r2)m = r1(r2m)) and 1m = m.

There is a similar definition for right R-modules.

Definition: Suppose A, B are left R modules. Then an R module homo-
morphism φ : A → B is an abelian group homomorphism commuting with
scalar multiplication: φ(ra) = rφ(a).

Examples:

(1) If M is a left R-module, then it becomes a right R-module by the
defnition mr = r−1m. There is no difference between left and right
modules if R is commutative.

(2) If R = Z then a left R-module is merely an abelian group.

(3) If R = F is a field then modules are vector spaces over F .

(4) The integral group ring Z[G] of a group G is defined to be the set of
all finite integral linear combinations of elements of G:

Z[G] := {n1g1 + n2g2 + · · ·+ nrgr

∣∣ ni ∈ Z, gi ∈ G}

Z[G] is a ring with 1 with respect to the obvious definitions of addition
and multiplication. In a similar way we can define other group rings
R[G] or group algebras k[G], where k is a field.

(5) The ring of integers Z is a trivial Z[G] module for any group G: define
g × n = n for all g ∈ G, n ∈ Z and extend linearly. There is an
augmentation homomorphism ε : Z[G]→ Z defined by ε(n1g1 + n2g2 +
· · ·+ nrgr) = n1 + n2 + · · ·+ nr. The kernel of this homomorphism is
a Z[G] module, the augmentation ideal I[G].
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(6) Given left R-modules A, B consider the abelian group Hom R(A, B) of
R module homomorphisms φ : A → B. Exercise: Is HomR(A, B) an
R-module? (it turns out not to be)

(7) Let A be a left R-module, and B be a right R module. Then B ⊗R A
is the free abelian group on pairs (b, a) ( ∀b ∈ B, a ∈ A), modulo the
relations:

• (b1 + b2, a) = (b1, a) + (b2, a)

• (b, a1 + a2) = (b, a1) + (b, a2) (so far, this is the tensor product
over the integers)

• (br, a) = (b, ra).

Notation: b⊗ a is the class of (b, a) in B ⊗R A.

Remark: B ⊗R A = B ⊗Z A/(relations br ⊗Z a = b⊗Z ra).

10.4 Group Homology and Cohomology

Let A be a left R-module and B be a right R module, where R = Z[G]. We
will define the cohomology of G with coefficients in A and the homology of
G with coefficients in B, denoted by H∗(G; A) and H∗(G; B) respectively.

Definition: A free R-resolution of Z is a sequence free R-modules Fi (i ≥ 0)
and an exact sequence of R module homomorphisms:

· · · ∂3→ F2
∂2→ F1

∂1→ F0
η→ Z→ 0.

Remark: The kernel of η may not be a free R-module, but we can choose
some free R module F1 and an R module homomorphism ∂1 : F1 → F0 whose
image is ker η. We then repeat this procedure for ker∂1, that is we choose
some free R module F2 and an R module homomorphism ∂2 : F2 → F1 whose
image is ker ∂1. We repeat this construction over and over. The resolution
may well be infinite.
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The homology of the chain complex F∗ is not interesting:

Hi(F∗) =

{
0 if i > 0
ker(η) if i = 0

To get something interesting consider the chain complex B ⊗R F∗ and the
cochain complex Hom R(F∗, A).

Definition: H∗(G; B) := H∗(B⊗R F∗) and H∗(G; A) := H∗(Hom R(F∗, A)).

Exercise: Show that this definition does not depend on the choice of free
resolution F∗. The proof will involve constructing chain maps and homotopies
from one resolution into another.

Example. Suppose that p : X̃ → X is a regular covering such that X̃ is
contractible and π1(X) = G. X is called a K(G, 1) space. It is unique
up to homotopy. We will relate C∗(X̃) to a free Z[G] resolution of Z. For
argument’s sake let’s assume X is a simplicial complex. Let C∗(X) denote
the simplicial chain complex of X.

Let σ be an n-simplex (i.e. a generator of Cn(X)). We consider σ as a
mapping σ : ∆n → X, where ∆n is the standard n-simplex. Then there
exists a lift σ̃ : ∆n → X̃ making the following diagram commute:

X̃

∆n

σ
-

σ

-

X

p

?

Now G acts on X̃ by covering transformations and the set of all lifts of σ is
exactly {g ◦ σ̃|g ∈ G}.

Let σ1, . . . , σk be the n-simplices in X. Make a fixed choice of a lift σ̃i for
each σi. Then a typical element of CnX̃ is an integral linear combination of
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the generators gσ̃i, 1 ≤ i ≤ r, g ∈ G. Therefore Cn(X̃) is a free Z[G]-module
of rank k on the generators σ̃1, . . . , σ̃k.

Since X̃ is contractible we have a free Z[G]-resolution of Z:

· · · → C3(X̃)
∂3→ C2(X̃)

∂2→ C1(X̃)
∂1→ C0(X̃)

η→ Z→ 0

Therefore the homology and cohomology of the group G are just the ho-
mology and cohomology of the space X̃ with the appropriate coefficents:
H∗(G; B) = H∗(X̃; B) and H∗(G; A) = H∗(Hom (C∗(X̃), A)). In particular,
taking A and B to both be the trivial Z[G] module Z we see that

H∗(G;Z) = H∗(X̃;Z) = H∗(X), H∗(G;Z) = H∗(Hom (C∗(X̃),Z)) = H∗(X).

Exercise: Show that the chain complex Z ⊗Z[G] C∗(X̃) ≈ C∗(X) and the

cochain complex Hom Z[G](C
∗(X̃),Z) ≈ Hom (C∗(X),Z).

10.5 The Milnor Construction

In this section we show how to construct a particular model of a space of
type K(G, 1), where G is a discrete group. Recall the definition of the join
of 2 spaces:

Definition: The join of two spaces X, Y is the quotient space

X ∗ Y ∗ I

/
(x, y, 0) = (x′, y, 0)
(x, y′, 1) = (x, y′, 1)
∀x, x′ ∈ x, y, y′ ∈ Y


Imagine X, Y ⊂ RN , N >> 0, so that any 2 distinct line segments tx + (1−
t)y, tx′ + (1 − t)y′, 0 ≤ t ≤ 1, x, x′ ∈ X, y, y′ ∈ Y meet only at a common
endpoint. Then the picture is
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line tx + (1− t)y

X

y

x

y y′

We can iterate this construction, taking the join of 3 spaces: X ∗ Y ∗ Z :=
(X ∗ Y ) ∗Z. This operation is associative (X ∗Y ) ∗Z ≈ X ∗ (Y ∗Z). We can
also think of the 3-fold join X ∗ Y ∗ Z as the space of all 2 simplexes joining
arbitrary points x ∈ X, y ∈ Y, z ∈ Z, with the only intersections coming from
common boundaries. Then we can represent a point in X ∗Y ∗Z as a convex
linear combination t1x + t2y + t3z. It is then clear how to define interated
joins X1 ∗X2 ∗ · · · ∗Xn.

Definition: If G is a group then En(G) := G ∗ G ∗ · · · ∗ G (n copies). A
typical point in En(G) is written as

t1g1 + t2g2 + · · ·+ tngn, where ti ≥ 0, gi ∈ G, 0 ≤ i ≤ n and t1 + · · · tn = 1.

The group G acts on itself by left multiplication and therefore there exists a
diagonal action of G on En(G) obtained by linear extension to n simplices:

g × (t1g1 + t2g2 + · · ·+ tngn) = t1gg1 + t2gg2 + · · ·+ cnggn.

Definition: The quotient space by the action of G on En(G) is denoted
Bn(G) := En(G)/G.

There are natural inclusions En(G) ⊂ En+1(G), compatible with the G
action, and therefore there are also natural inclusions inclusions Bn(G) ⊂
Bn+1(G).

Definition: E(G) :=
⋃

n≥1 En(G) and BG :=
⋃

n≥1 Bn(G) = EG/G.

Example: G = Z2.
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E2G = S1 E3G = S1 ∗G = S2

More generally, EnG = Sn−1 for all n. Moreover, EG = S∞ is contractible
and BG = RP∞.

Theorem: EG is contractible.
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Chapter 11

February 8

11.1 A Seminar by Joseph Maher

Questions:

1. Which finite groups G admit a fixed-point free action on S3? This is
still an openproblem.

2. Which finite groups G admit a fixed-point free linear action on S3? In
other words which finite groups admit representations ρ : G → O(4)
such that ρ(g) does not have +1 as an eigenvalue for g ∈ G, g 6= e?

Recall that O(4) is the group of 4 × 4 orthogonal matrices. It is the
group of rigid motions of the 3 sphere. Eigenvalue +1 means that
ρ(g) · v = v for some eigenvector v. This question has been answered,
60 years ago.

3. Suppose that G admits a fixed-point free linear action on S3 (e.g. G ≈
Zn). Suppose there exists some topological action of G on S3, without
fixed points. Is the topological action conjugate to a linear one?

81
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S3 linear - S3

S3

h ≈

6

top. action - S3

h−1 ≈
?

Livesay: circa 1950. Yes, for G = Z2.

Maher: Yes for G = Z3.

Perelman: Announced a proof of the Thurston Geometrization Conjec-
ture. If the proof is correct it would imply the Poincaré conjecture. It
would also follow that if a group acted fixed point freely on S3 then it
would act fixed point freely and linearly, and moreover, the topological
action would be conjugate to a linear one.

11.2 Products

Let R be a ring with 1. There are three types of products.

1. The cup product: H i(X; R)×Hj(X; R)→ H i+j(X; R), (u, v) 7→ u∪v.

2. The cross product: H i(X; R)×Hj(Y ; R)→ H i+j(X×Y ; R), (u, v)→
u× v.

3. The cap product: Hi(X; R)×Hj(X; R)→ Hi−j(X; R), (u, v) 7→ u∩v.

All 3 products are bilinear in u, v and so induce products on the appropriate
tensor products.

Motivation: Suppose we try to find a “cup product” in homology:

Hi(X; R)×Hj(X; R)→ Hi+j(X; R).
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Indeed, there exists a cross product in homology, Hi(X; R) × Hj(y; R) →
Hi+j(X × Y ; R). Let ei

α be an i-cell in X and ej
β b e a j-cell in Y . Then

ei
α × ej

β is an i + j cell in X × Y . The theory says that this passes to a cross
product in homology.

Now specialize to X = Y : Hi(X; R) × Hj(X; R) → H i+j(X × X; R)
?→

Hi+j(X; R). The first map is the cross product in homology, but there’s no
really good map from X ×X to X which would yield a reasonable notion of
a product.

In cohomology the situation is different:

H i(X; R)×Hj(X; R)
×→ H i+j(X ×X; R)

∆∗→ H i+j(X; R),

where ∆ : X → X ×X is the diagonal. this yields a reasonable definition of
a product. However, we will adopt a different definition.

Definition of the cup product: H i(X; R) ⊗ Hj(X; R) → H i+j(X; R).
Take cohomology classes u ∈ H i(X; R), v ∈ Hj(X; R) in singular cohomology
and represent them by cocycle maps: α : Ci(X) → R and β : Cj(X) → R
respectively.

Then α ∪ β will be the homomorphism α ∪ β : Ci+j(X) → R defined as
follows: choose a generator σ : ∆i+j → X for the singular chain group
Ci+j(X), where ∆i+j is a standard i+ j simplex with vertices v0, v1, . . . , vi+j.
Then α ∪ β(σ) := α(σ|∆i) · β(σ|∆j), where ∆i and ∆j are the standard
simplexes spanned by [v0, . . . , vi] and [vi, . . . , vi+j] respectively. The product
α(σ|∆i) ·β(σ|∆j) is just the ring product in R. Finally we extend this linearly
to a homomorphism α ∪ β : Ci+j(X)→ R.

Exercise: Let δ denote any of the coboundary operators δ : Cn → Cn−1.
Then

δ(α ∪ β) = δ(α) ∪ β + (−1)iα ∪ δ(β).

From this it follows easily that the cup product of cochains yields a cup
product in cohomology,

H i(X; R)⊗Hj(X; R)→ H i+j(X; R), (u, v) 7→ u ∪ v.
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Definition: The total cohomology of X with coefficients in R is H∗(X; R) :=
⊕i≥0H

i(X; R).

Properties of the cup product:

1. H∗(X; R) becomes a ring with respect to the cup product. In particular
u ∪ v is bilinear in u and v. Moreover ∃ an identity 1 ∈ H0(X; R),
namely the class that takes the value idR on every point x ∈ X. Recall
that C0(X) is the free abelian group on the points of X, and C0(X) =
Hom (C0(X), R).

2. If f : Y → X, then f ∗ : H ∗ (Y ; R) → H ∗ (X; R) is a ring homo-
morphism: that is f ∗(u ∪ v) = f ∗(u) ∪ f ∗(v), where u ∈ H i(Y ; R) and
v ∈ Hj(Y ; R).

3. The cup product is graded commutative: u ∪ v = (−1)ijv ∪ u if u ∈
H i(X; R), v ∈ Hj(X; R).

4. ∃ a relative form of the cup product: H i(X, A; R) ⊗ Hj(X, B; R) →
H i+j(X, A ∪B; R).

Example (The Hopf invariant one problem): Suppose f : S2n−1 → Sn

is some map and X = Sn ∪f e2n, n > 1. Then

H i(X;Z) =

{
Z i = 0, n, 2n

0 otherwise

Let u ∈ Hn(X;Z), v ∈ H2n(X; Z) be generators. Then u ∪ u ∈ H2n(X;Z)
and therefore, u∪u = kv, for some integer k, called the Hopf invariant H(f)
of f . H(f) is unique up to sign; it depends on v but not u.

Theorem: H(f) = 0 if n is odd.

Proof: By graded commutativity of the cup product we have u ∪ u =
(−1)n·nu ∪ u = −u ∪ u, so u ∪ u = 0 (Z has no 2-torsion).

Remark: Hopf proved that ∃ elements of Hopf invariant 1 for n = 2, 4, 8.
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Next time we will use the mod 2 Steenrod algebra to show that if f : S2n−1 →
Sn has Hopf Invariant one then n must be a power of 2.

Theorem: If f : S2n−1 → Sn has odd Hopf invariant, then n is a power of
2.

Definition of the cross product: H i(X; R) ⊗ Hj(Y ; R)
×→ H i+j(X ×

Y ; R), u⊗ v → u× v.

Let p1 : X × Y → X and p2 : X × Y → Y be the projections onto X and Y
respectively. Then the cross product is defined by

u× v := p∗1(u) ∪ p∗2(v), where u ∈ H i(X; R), v ∈ Hj(Y ; R).

Properties of the cross product then follow from corresponding properties of
the cup product.

Definition of the cap product: Hi(X; R)⊗Hj(X; R)
∩→ Hi−j(X; R).

Let σ be a generator of the singular chain group Ci(X). Thus σ is a continuous
mapping σ : ∆i → X, where ∆i is a standard i simplex. Let the vertices of
∆ be v0, . . . , vi. If α is a singular cochain α : Cj(X) → R then σ ∩ α is the
chain in Ci−j(X) defined by

σ ∩ α = α(σ|∆j) · σ|∆i−j ,

where ∆i is the standard i simplex spanned by the vertices v0, . . . , vi and
∆i−j is the standard i− j simplex spanned by the vertices vj, . . . , vi.

Remarks: α(σ|∆j) ∈ R and σ|∆i−j ∈ Ci−j(X). Thus σ ∩ α ∈ Ci−j(X; R).

From the definition it follows that the cap product is bilinear. The next
Lemma shows that the cap product defined on the chain/cochain level passes
to a cap product on the homology/cohomology level:

Hi(X; R)⊗Hj(X; R)
∩→ Hi−j(X; R), u⊗ v → u ∩ v.

.

Lemma: ∂(σ∩α) = (−1)j(∂(σ)∩α−σ ∩ δ(α)), where ∂ and δ are boundary
or coboundary operators.
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Chapter 12

February 23

12.1 Assignment 2

Assignment 2 is on the web. There is a typo in #5, p.229 of this week’s
homework, and thus the due date is extended to next Tuesday. Change to

H∗(RP∞;Z2k) ≈ Z2k[α, β]/(2α, 2β, α2− kβ)

where α ∈ H1(RP∞; Z2k), β ∈ H2(RP∞;Z2k).

#12, p.229: X = S1 × CP∞/X1 × pt, Y = S3 × CP∞.

One needs to use the relative cross product. See Theorem 3.21. There exist
isomorphisms

H∗(X1)⊗H∗(CP∞, pt)
×→ H∗(S1 ×CP∞, S1 × pt) ≈ H̃∗(X)

H∗(S3)⊗H∗(CP∞)
×−→ H∗(S3 × CP∞) ≈ H∗(Y )

Let 1 ∈ H0(S1) denote the identity, x ∈ H1(S1) ≈ Z be a generator and
y ∈ H2(CP∞, pt) ≈ Z a generator.

87
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The generators of H∗(S1)⊗H∗(CP∞, pt) are 1⊗yk ∈ H0(S1)⊗H2k(CP∞, pt)
for k ≥ 1 and x⊗ yk ∈ H1(S1)⊗H2k(CP∞, pt) for k ≥ 1.

Corresponding to these classes we have

1× yk ∈ H2k(X) ≈ Z, k ≥ 1, and x× yk ∈ H2k+1(X) ≈ Z, k ≥ 1.

Therefore

H̃ i(X) =

{
Z i = 2, 3, 4, . . .

0 otherwise.

Next we determine the generators of H∗(S3) ⊗ H∗(CP∞). Let 1 ∈ H0(S3)
denote the identity, u ∈ H3(S3) be a generator and v ∈ H2(CP∞) a genera-
tor.

So we get a generator 1 ⊗ v2k ∈ H0(S3) ⊗ H2k(CP∞) ≈ Z and a generator
u ⊗ v2k ∈ H3(S3) ⊗ H2k(CP∞) ≈ Z. Then 1 × v2k ∈ H2k(S3 × CP∞) is a
generator ≈ Z, and u× v2k ∈ H3+2k(S3 × CP∞) ≈ Z is a generator.

We must show that H∗(Y ) ≈ H∗(X) as rings. We know that

H i(X) ≈ H i(Y ) ≈
{

Z i = 0, 2, 3, 4, . . .

0 otherwise

Moreover, we know what the generators are. Therefore, we define a group
homomorphism θ : H∗(X) → H∗(Y ) by mapping generators to generators.
Now, check that there is a ring map.

12.2 Examples of computing cohomology rings

#1 p.228 Consider a genus g surface Mg. Map it into a one-point union of
tori T ∨ T ∨ · · · ∨ T , by collapsing part of Mg to a point via a map c. Use
this to compute H∗(Mg). We know what the homology group structure is,
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via a CW complex decomposition:

Hi(Mg) =


Z i = 0, 2

Z2g i = 1

0 otherwise

Because all of these are free, we can read off the cohomology structure using
the UCT.

H i(Mg) =


Z i = 0, 2

Z2g i = 1

0 otherwise

Now pick generators for homology: a1, b1, . . . , ag, bg.

b1

a1

Now let us compute H∗(T ). There are generators a, b ∈ H1(T ) = Z⊗ Z and
dual gereators α, β ∈ H1(T ) ≈ Z⊗Z: α(a) = 1, α(b) = 0, β(a) = 0, β(b) = 1.

Let Xα be a space for each α ∈ A and let iα : Xα →
⊔

α∈A Xα denote the
inclusion, where A is some index set. Then there is an isomorphism

H∗(
⊔
α∈A

Xα; R)
≈→
∏
α∈A

H∗(Xα; R), u→ (i∗α(u))α∈A
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The left hand side is a ring with respect to cup product. Moreover the map
i∗α : H∗(

⊔
α∈A Xa; R)→ H∗(Xα; R) is a ring map for all α ∈ A.

Therefore, H∗(
⊔

α∈A Xα; R)
≈→
∏

α∈A H∗(Xα; R) is a ring isomorphism. The
ring structure on the right hand side is given by coordinate-wise multiplica-
tion.

In reduced cohomology the inclusions iα induce a ring isomorphism

H̃∗(
∨
α∈A

Xα; R)
≈→
∏
α∈A

H̃∗(Xα; R)

If |A| = 2 then H̃∗(X ∨ Y ; R) ≈ H̃∗(X; R) ⊕ H̃∗(Y ; R) are isomorphic as
rings.

u ∈ H i(X), v ∈ Hj(Y ). We have projections X ∨ Y
p→ X, X ∨ Y

p→ Y ,
where p∗(u) ∈ H̃ i(X ∨ Y ), q∗(v) ∈ H̃j(X ∨ Y ). Here, p∗(u) → (u, 0−) and
q∗(v)→ (0, v), so therefore, p∗(u) ∪ p∗(v)→ (u, 0) · (0, v) = (0, 0).

In particular, this means that αi ∪ αj = αi ∪ βj = 0 when i 6= j.

Also, αi ∪ αi = 0 in the torus, so it is true here as well. Also αi ∪ βi = ±1,
for the same reason.

Example: H∗(T ; Z). a and b are generators for H1(T ) ≈ Z⊗ Z.

b

a a

b

α, β are the dual classes in H1(T ) ≈ Hom (H1(T ),Z).
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Now, let us make a ∆-complex structure:

σ4
a a

b

b

α

β

σ3

σ2

σ1

α is represented by the cocycle φ taking the value +1 on those edges which
meet α, and 0 on the other edges. (Exercise: δ(φ) = 0)

β is represented by the cocycle ψ taking the value +1 on those edges meeting
α and 0 on all others. Exercise: δ(ψ) = 0.

Therefore, φ∪ ψ is a cocycle representing α∪ β. A generator for H2(T ) ≈ Z
is the sum σ1 + σ2 + σ3 + σ4. Exercise: φ ∪ ψ(this generator) = ±1.

So

φ ∪ ψ(σi) =

{
0 i = 1, 2, 3

±1 i = 4

12.3 Cohomology Operations

There is a lovely book called “Cohomology Operations” (Norman Steenrod),
annals of Math. Studies. Its moral is that one can study the Steenrod algebra
axiomatically.

Definition: Let m, n be fixed integers and let G, H be fixed abelian groups.
A cohomology operation is a family of mappings θX : Hm(X; G)→ Hn(X; H),
natural in X.
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Example: θ is the cup square.

Hm(X; R) - H2m(X; R)

u - u ∪ u

Example: Let φ : G → H be a group homomorphism. Then there exists an
induced map φ∗ : Hm(X; G)→ Hm(X; H).

12.4 Axioms for the mod 2 Steenrod Algebra

There exists a sequence of cohomology operations

Sqi : Hn(X;Z2)→ Hn+i(X;Z2)

defined for i = 0, 1, 2, . . . , and all n, satisfying the following axioms (not all
independent, but we don’t know this yet)

1. Sq0 is the identity.

2. Sqi is natural in X (part of the definition of cohomology operation,
really)

3. Sqi(α + β) = Sqi(α) + Sqi(β). (Therefore, Sqi is a group homomor-
phism). Note that the cup square is quadratic, not linear, except in
mod 2.

4.

Sqi(α) =

{
α ∪ α |α| = i

0 i > α

5.

Sqi(α ∪ β) =

i∑
k=0

Sqk(α) ∪ Sqi−k(β)
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. This is called the Cartan formula. One way to think of this is to think
of the graded ring H∗(X;Z2) =

⊕
i≥0 H i(X;Z2). Then the Cartan

formula says that total Steenrod square Sq is a ring homomorphism.

6. Sqi is stable: that is, it commutes with suspension:

Hn(X;Z2)
Sqi
- Hn+i(X;Z2)

Hn(ΣX;Z2)

≈ σ

? Sqi
- Hn+1+i(ΣX;Z2)

≈ σ

?

7. The Adem Relations (Jose Adem). If a < 2b then

Sqa · Sqb =
∑

j

(
b− 1− j

a− 2j

)
Sqa+b−jSqj

8. Sq1 is the Bockstein (next time)
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Chapter 13

February 25

13.1 Axiomatic development of Steenrod

Algebra

• One of the axioms for the Steenrod Algebra was the Adem Rela-
tions: If a < 2b then

Sqa ◦ Sqb =
∑

j

(
b− j − 1

a− 2j

)
Sqa+b−jSqj

Sqj raises the degree by j, so this rule addresses the situation
where we are composing two squares:

Hp(X;Z2)
Sqb
- Hp+b(X;Z2)

Sqa
- Hp+a+b(X;Z2)

• We take the binomeal coefficient
(

b−j−1
a−2j

)
mod 2.

• Sq1 is the Bockstein associated to the shorte exact sequence

0 - Z2
- Z4

- Z2
- 0

gen - gen

The Bockstein asdsociated to a short exact sequecne of abelian
groups

0 - K
α - E

β - Q - 0

95
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Then there exists a long exaqct sequence in cohomology

. . . - H i(X; K)
α∗- H i(X; E)

β∗- H i(X; Q)
δ- H i+1(X; K) - . . .

The Bockstein is the connecting homomorphism δ. Let us see why
this is so.

Claim: There exists a short exact sequence of cochain complexes:

0 - C∗(X, K)
α∗- C∗(X, E)

β∗- C∗(X, Q) - 0

ker β∗ = Imα∗:

Cn(X)

0 - K
α -

�

ψ

E

φ

? β - Q -

β ◦
φ
=

0
-

0

Cn(X) free abelian, so there exists a φ : Cn(X) → K such that
α ◦ ψ = φ. By general theore, there exists a long exact sequence
in cohomology.

Lemma: If n is not a power of 2, then there exists a factorization

Sqn =

n−1∑
j=1

ajSqn−j ◦ Sqj .

Proof: Set n = a + b, a < 2b. Suppose the 2-adic expansion of n is
n = i0 + i1 · 2 + i2 · 22 + · · ·+ ik · 2k. Write b = 2k, a = n− 2k.

We need the coefficient of Sqn in the right hand side to be nonzero.
Write b− 1 = 1 + 2 + · · ·+ 2k−1. Is

(
b−1
a

)
≡ 1 (mod 2)?
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A theorem from number theory. Given k adic exapansions

k = k0 + k1 · 2 + k2 · 22 + · · ·
l = l0 + l1 · 2 + l2 · 22 + · · ·

=⇒
(

k

l

)
=

(
k0

l0

)(
k1

l1

)
· · · (mod 2)

This is nonzero if and only if every ki ≥ li. Therefore, with these
choices, the Adem relations imply Sqn =

∑n−1
j=1 ajSqn−jSqj. �

13.2 Application: Hopf invariant 1 prob-

lem

Application. If f : S2n−1 → Sn has H(f) = 1, then n is a power of 2.

Proof: Definition of the Hopf invariant of f : S2n−1 → Sn: let

X = Sn ∪f e2n

. Then

H i(X;Z) =

{
Z i = 0, n, 2n

0 otherwise

Then u ∈ Hn(X; Z) is a generator, v ∈ H2n(X;Z) is a generator. Then
u2 = k · v. Then k is the Hopf invariant H(f) .

ū ∈ Hn(X;Z2) ≈ Z2, v̄ ∈ H2n(X;Z2) ≈ Z2 By one of the axioms of
the Steenrod algebra, in mod 2 cohomology,

ū ∪ ū = Sqn(ū)
lemma
=

n−1∑
j=1

ajSqn−jSqj.

All of the composites Sqn−jSqj factor through zero groups. �.

Of course, we would need to demonstrate that there actually is a Steen-
rod algebra!
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13.3 Poincaré Duality

The statement is: If Mn is a closed, connected and orientable manifold,
then of dimension n, then

H i(M ;Z)
≈- Hn−i(M ; Z)

for all i.

Definition: A manifold of dimension n is a paracompact Hausdorff
space Mn , together with an open covering U = {Ui|i ∈ I} and home-
omorphisms φi : Ii → Rn.

(a) Each Ui is an open, nonempty subset of M .

(b)
⋃

i∈I Ui = M .

Definition: A topological space X is Hausdorff if, given any two
distinct points x, y ∈ X, there exist open sets U, V ⊆ X such that
x ∈ U, y ∈ V, U ∩ V = ∅.
Example: X = the real line, with the origin doubled.

0−

0+

Topology on X the neighbourhoods of x ∈ X, x 6= 0± are as usual, so
that X − {0±} is homeomorphic to R− {0}.
A neighbourhood of 0± is {x ∈ R|x 6= 0,−ε < x < ε} ∪ {0±}.
This is not Hausdorff.

Example of something which is not paracompact: (the long line) Let Ω
be the first uncountable ordinal. Write down all the ordinals before it:
0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , 2ω, . . . , Ω, and join each one to the next
with line segments. Put the ordinary topology on this space.

A major problem in topology: Classify manifolds in low dimensions.

In dimension 0, manifolds are collections of points with the discrete
topology.
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Dimension 1: manifolds are disjoint unions of S1 and R. If ∂M 6= 0
(M is a manifold with boundary) then we also have various types of
intervals.

Dimension 2: The orientable closed connected ones are the sphere, the
torus, and the genus g surface (g-holed doughnut). The nonorientable
ones are RP 2, K2, and so forth.

13.4 Orientability

Mn will be a closed, connected manifold of dimension n. Closed means
M is compact and has no boundary.

A local orientation on M : take x ∈ M . Then x has a neighbourhood
B0 be an n-ball with x ∈ int(B0).

x
B0

M − B̄0

Here, B0 is homeomorphic to {x ∈ Rn : |x| ≤ 1}. Now,

Hn(M, M −X) ≈ Hn(Rn, Rn −X) Excision – cut out M − B0

≈ Hn − 1(Rn −X)

≈ Z

Therefore, there exists a generator µX ∈ Hn(M, M − {x}) ≈ Z.

Let B be any ball in X (so that B ≈ {x ∈ Rn : |x| ≤ 1}). Then
Hn(M, M −B) ≈ Z Choose a generator µB ∈ Hn(M, M −B). Choose
a genorator µB ∈ Hn(M, M − B). If x, y ∈ int B0 we can choose the
generators µx, µy, µB compatibly, so that

Hn(M, M − {x}) �i∗
≈

Hn(M, M −B)
j∗

≈
- Hn(M, M − {y}

µx
� µB

- µy
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This is similar to the situation of “analytic continuation”:

Bn

x

y

γ is a path x→ y

B0

B1

B2

Choose an orientation µB0 for Hn(M, M −B0). Then choose an orien-
tation µB1 for Hn(M, M −B1) which is compatible with µB0 . Continue
in this way to get a local orientation at y.

Comments:

(a) The choices of the Bi (for a fixed path γ) do not matter.

(b) But the local orientation at y may depend on γ. Definition: Mn

is orientable if all local orentations are compatible.

(c) Suppose γ0, γ1 are paths from x to y, and γ0 is homotopic to γ1

through paths from x to y.

y

x

γ1

γ0

Then “analytic continuation” of µX to µY has the same answer
for all paths in the homotopy. This uses compactness, and the
proof is the same as the complex analytic one.

Corollary: if M is simply connected, then M is orientable.



Chapter 14

March 1

14.1 Last time

Mn is a closed, connected n-manifold, i.e. compact and without boundary.

Local orientations:

x ∈M : Hn(M, M − x;Z) ≈ Hn(B, B − x;Z)

≈ Hn(Rn,Rn − x;Z)

≈ H̃n−1(R
n −X;Z)

≈ Z

Here, B is an n-ball, and x ∈ int B. Therefore, we get a generator µx ∈
Hn(M, M −X;Z).

Remarks:

1. We can do this for coefficients in R.

2. If B0 is an n-ball, then there exists a generator µB0 ∈ Hn(M, M −
B0;Z) ≈ Z

101
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The generators µx, µy can be chosen compatibly throughout B0: we have

Hn(M, M −X;Z) �
i∗

≈
Hn(M, M −B0;Z)

j∗

≈
- Hn(M, M − y;Z)

Z Z Z
µX
� µB0

- µy

Remark: We can continue a choice of a generator µx ∈ Hn(M, M − x) along
a path γ from x to y. This process of continuation does not depend on either
the discs chosen or on the homotopy class of γ.

Definition: M is orientable if continuation of local orientation always gives
compatible answer at y, for all y in M . (⇐⇒ every loop γ at x gives the
same local orientation after continuing)

14.2 Orientable coverings

Definition: Define a (possibly zero) group homomorphism θ : Π1(M, x) →
Z2 by

θ(γ) =

{
0 if continuing along γ preserves local orientation

1 if continuing along γ reverses local orientation

Note that continuing along γ gives either µXor − µX as a local orientation
at x.

Remarks: θ is the zero homomorphism if M is orientable.

Assume that M is not orientable. Then θ(Π1(M, x)) = Z2. There exists a
kernel:

1 - G - π1(M, X)
θ - Z2

- 1
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Then, from covering space theory, there exists a covering p : M̃
2:1- M

orientable covering of M . It is connected, and π1(M̃, x̃) ≈ G.

The orientable double covering is:

M̃ = {(x,±µx) | x ∈M, µx ∈ Hn(M, M − x) ≈ Z is a generator}

Put a topology on M̃ by p : M̃ - M ,

p(x,±µx) = x, p−1(B) = B × {−µB} ] B × {µB}︸ ︷︷ ︸
2 open discs

Theorem: M̃ is connected if and only if M is not orientable.

Proof: Suppose M is orientable. Then there exists a section s : M - M̃
of the double covering p : M̃ - M : s(x) = (x, µx) where µx is a consistent
choice of orientations throughout M . �

Corollary: M is orientable if there does not exist an epimorphism π1(M)→
Z2.

The converse is false. Example: M = S1 × S1 is orientable, yet there exists
an epimorphism π1(M) ≈ Z⊕ Z -- Z2.

14.3 Other ways of defining orientability

Recall the definition of a manifold Mn: a paracompact Hausdorff space ...etc
... {(Ui, Vi, φi)}i∈I , Ui ⊆ M open. If Vi ⊆ Rn open, then φi : Ui → Vi is a
homeomorphism.

Definition: The manifold is smooth if

φj ◦ φ−1
i : φi(Ui ∩ Uj) - φj(Ui ∩ Uj)

is C∞.
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For a smooth manifold Mn we have a tangent bundle TM
p- M , where

p : Tx(M) - x ∈ M . Tx(M) is the tangent space of X at M , and
T (M) =

⋃
x∈M Tx(M).

Definition: Mn is orientable if all of the transition functions φj◦φ−1
i preserve

orientation, i.e. the Jacobian determinant is always positive.

Locally: choose an ordered basis for Tx(M), e1(x), . . . , en(x). If B ⊆ M is a
disc ≈ Rn, then T (B) ≈ B × Rn.

Definition: Two ordered bases e1(x), en(x) and e′1(x), . . . , e′n(x) of TxM ≈
Rn are equivalent if det L > 0, where L ∈ Gln(R) taking the e-basis to the
e′−basis

Remark: Since T (B) ≈ B ×Rn, we can choose equivalence classes of bases
throughout B. That is, the bundle map p : B × Rn - B has n linearly
independent sections.

Remark: Now we can “analytically continue” an equivalence class of ordered
bases at x ∈M along a path γ from x to y.

Theorem: Suppose Mn is a closed, connected n-manifold. Then

Hn(M ;Z) ≈
{
Z if M orientable

0 otherwise

Proof: Assume that M is a simplicial complex. Let ∆1, ∆2, . . . , ∆k be the
set of all n-simplexes in M . M = ∆1 ∪∆2 ∪ · · · ∪∆k.
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n = 3

glued

∆i

∆j

For argument’s sake, suppose i = 1, j = 2, so that ∆1 ∩ ∆2 is some n − 1-
dimensional simplex. Assume that M is orientable.

Then there exists local orientations µ∆ for each n-simplex ∆. Then the
local orientations µ∆1, µ∆2 are compatible if and only if the common n − 1-
dimensional faces cancels in ∂(∆1 + ∆2) in the nth chain group.

Etc.

Therefore, a cycle in Cn(M) is ∆1 + · · ·+ ∆n.

Moreover, it then follows that a chain c = n1∆1 + · · ·+ nk∆k will be a cycle
if n1 = n2 = · · · = nk. I.e. Hn(M ;Z) is generated by [M ] = ∆1 + . . .+∆k, so
Hn(M) ≈ Z. Here, M is called a fundamental class (the other one is −M).

Exercise: if M is not orientable, then the group of cycles in the nth chain
group is zero (it is not possible to achieve cancellation as above). �

Remark: Take coefficients in R = Z2. If ∆1, ∆2 have a common n − 1-
dimensional face ∆, then ∂(∆1 + ∆2) = 2∆︸︷︷︸

=0

+ some other n− 1-simplexes.

Therefore, every closed, connected n-manifold is orientable with coefficients
in R = Z2.
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14.4 Poincaré Duality

Theorem: (Poincare Duality) Suppose that Mn is a closed, connected,
orientable over R n-manifold. Let [M ] be a fundamental class. Then the
homomorphism

H i(M ; R) - Hn−i(M ; R)

u - [M ] ∩ u

is an isomorphism for all i.

We do this locally, changing cohomology to cohomology with compact sup-
port. Then, write M as a union of contractible charts, and piece them
together with the Meyer-Vietoris sequence. Proof omitted.

14.5 Reading: Chapter 4, Higher homotopy

groups

Let X be a space with a base point x0. Then we define the nth homotopy
group of X at x0 by πn(X; x0) = [(In, ∂In), (X, x0)], where In is the n-cube,
In = {(t1, . . . , tn) | 0 ≤ ti ≤ 1}.

If n = 1, then π1(X, x0) is the fundamental group.

If n = 0 then I0 is a point and ∂I0 = ∅. Therefore Thus π0(X) is the set of
path components of X. This isn’t a group.

Remark:

1. πn(X, x0) is functorial for maps f : (X, x0)→ (Y, y0).

2. The suspension functor Σ and the loop space functor Ω are adjoint, i.e.
[ΣX, Y ] ≈ [X, ΩY ]. The mappings f : ΣX → Y and g : X → ΩY
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correspond if, and only if, f(x, t) = g(x)(t). [X, ΩY ] is a group and
therefore so is [ΣX, Y ].

3. πn(X, x0) = [(Sn, s0), (X, x0)] since In/∂In = Sn.

4. πn(X, x0) is abelian for n ≥ 2:

f

f g f g

const. map

const. map

f
g g
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Chapter 15

March 3

15.1 The path-loop fibration

Recall that ΩX the space of loops based at x0 ∈ X, i.e. the space of all
continuous maps ω : (I, ∂I)→ (X, x0).

There is a canonical way to topologize a mapping space: it is the compact
open topology. We give ΩX this topology.

Definition: The path space based at x0, denoted PX, is the space of con-
tinuous functions ω : (I, 0)→ (X, x0).

There exists a natural map p : PX → X defined by p(ω) = ω(1). Then
Ω = p−1(x0) and there is an inclusion i : ΩX → PX.

x0

ω(1) = p(ω)

109
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Comments:

• ΩX is an H-space – i.e. a group up to homotopy.

• PX is contractible.

Exercise: Find a homotopy PX × I → PX that contracts PX.

ΩX is a topological group up to homotopy. That is, there exists a topological
group GX and a homotopy equivalence ΩX ' GX. This idea is due to John
Milnor: 1956 Annals of Math., Universal bundles I and II.

Assume X is a countable simplicial complex (i.e. there are at most countably
many simplices in each dimension). Then define Sn(X) to be the space of all
sequences (xn, . . . , x0), where xi ∈ X, such that any two consecutive points
xi, xi+1 belong to a common simplex.

We can consider such a sequence as a rectilinear path from x0 to xn.

We give Sn the topology induced from the inclusion Sn(X) ⊆ Xn+1. Let
S(X) =

⋃
n≥0 Sn(X) and then define E(X) = S(X)/ ∼, where the equiva-

lence relation is defined by

(xn, . . . , xi, . . . , x0) ∼ (xn, x̂i, x0) if either xi+1 = xi or xi+1 = xi−1.

In terms of rectilinear paths this means we delete paths that are stationary
at some xi or paths that double back. Let [xn, . . . , x0] denote the equivalence
class of (xn, . . . , x0). Then define a map p : E(X)→ X by p[xn, . . . , x0] = xn.
This map is continuous.

Let G(X) = p−1(x0), the space of equivalence classes of rectilinear paths
[x0, xn−1, . . . , x0]. GX is a topological group, where group multiplication is
just concatenation of paths:

[x0, xn−1, x0] · [x0, x
′
m−1, . . . , x

′
1, x0] = [x0, xn−1, x0, x0, x

′
m−1, . . . , x

′
1, x0]

= [x0, xn−1, x0, x
′
m−1, . . . , x

′
1, x0]
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The identity is [x0] = [x0, x0] = [x0, x0, · · · , x0], and inverses are given by
going backwards along a rectilinear path,

[x0, xn−1, . . . , x0]
−1 = [x0, x1, . . . , xn−1, x0].

Comments:

1. EX is contractible.

2. There exists a commutative diagram

GX → ΩX
↓ ↓

EX → PX
↓ ↓

X = X

where the maps GX → ΩX and EX → PX are the natural inclusions.

3. GX acts on the right of EX by concatenation and EX/GX ≈ X. In
fact, GX → EX → X is a principal universal GX-bundle. Therefore,
the inclusion GX → ΩX is a homotopy equivalence.

15.2 The James Reduced Product Construc-

tion JX

The James reduced product of a space X is JX =
⊔

k≥0 Xk/ ∼, where the
equivalence relation is

(x1, . . . , xj , . . . , xn) ∼ (x1, . . . , x̂j , . . . , xn), if xj = e is the base point.

Here, Xk is the k-fold cartesian power of X.
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Let Jm(X) be the subspace of J(X) consisting of equivalence classes [x1, . . . , xn],
n ≤ m. For example, J1X = X, J2(X) = X × X/(x, e) ∼ (e, x). So
J1X ⊂ J2X ⊂ J3X · · · ⊂ JX.

JX has a multiplication µ : JX × JX → JX defined by concatenation, of
equivalence classes. There is an identity, namely [e], but there are no inverses.

Remark: JX is the free, associative H-space generated by X, taking e to
be the identity. Think of the equivalence class [x1, . . . , xn] as the product
x1x2 · · ·xn.

Theorem: JX ' ΩΣX, where Σ is reduced suspension.

If x ∈ X, then x corresponds to a loop in the reduced suspension ΣX, defined
by the following picture:

x e

Therefore, we have a map γ : J1X → ΩΣX. The idea behind the proof of
the theorem is to extend γ multiplicatively by: γ[x1, . . . , xn] = γ[x1] · · · γ[xn].
This extension is not continuous, but can be amended to work properly.

15.3 The Infinite Symmetric Product SP∞(X)

First we define the nth symmetric product: SP n(X) := Xn/Sn, where the
action of the symmetric group Sn on Xn is by permuting coordinates. Thus
SP n(X) is the space of unordered sequences of length n.
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There are natural inclusions

SP n(X) ⊂ SP n+1(X), {x1, . . . , xn} → {x1, . . . , xn, e}

Then we define the infinite symmetric product by

Definition: SP∞(X) = limn→∞ SP n(X) =
⋃

n≥0 SP n(X).

Concatenation gives a commutative multiplication on SP∞(X), with identity
the base point e. SP∞(X) is the free abelian associative H-space generated
by X. We can think of {x1, . . . , xn} as the sum x1 + · · ·+ xn.

Theorem: (Dold-Thom) πi(SP∞(X) ≈ Hi(X) if i ≥ 1.

Proof: The idea behing the proof is to show that the functor X → {πi(SP∞X)}i≥1

satisfies the axioms for a reduced homology theory.

15.4 Higher Homotopy Groups

πn(X, x0) := [(In, ∂In), (X, x0)] ≈ [(Sn, s0), (X, x0)].

The most oustanding problem in algebraic topology in Algebraic Topology is
to compute πn(X). This is an open, and very difficult, problem for πn(Sk).

Comment:

• Homology has “good” calculation tools. In particular, it has excision
and Mayer-Vietoris sequence. Homotopy does not.

• If X is a CW complex of dimension n then Hi(X) = 0 when i > n, but
this is not generally true for πi(X).

One of the calculation tools for higher homotopy is the following theorem.
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Theorem: Suppose p : X̃ → X is a covering of path connected spaces. Pick
base points x0 ∈ X, x̃0 ∈ p−1(x0). Then p∗ : πn(X̃, x̃0)

≈→ (X, x0) for n ≥ 2

Proof:

(X̃, x̃0)

(Sn, x0)
f-

f̃

-

(X, x0)

p

?

Given any f : (Sn, x0) → (X, x0), there exists a unique lift f̃ : (Sn, x0) →
(X̃, x̃0). This follows from the unique path lifting property and the fact that
π1(S

n) = 0 if n ≥ 2. �

Examples.

πi(RP n) =


Z2 if i = 1

0 if 1 < i < n

Z if i = n

? otherwise

Proof: The universal covering space of RP n is Sn if n ≥ 2. Now use the
theorem and the fact that πn(Sn) = Z. �

Another fact is: if f : Si → Sn and i < n, then ∃ a map g : Si → Sn such
that f ' g : Si → Sn and Im g is contained in an i dimensional subcomplex
of Sn. It follows that any such map is null homotopic.

Example: Let Mg be a surface of genus g ≥ 1. Then a presentation for
π1(Mg) is

π1(Mg) = 〈a1, b1, a2, b2, . . . , ag, bg | [a1, b1][a2, b2] · · · [ag, bg] = 1 〉

where [a, b] denotes the commutator aba−1b−1.
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March 8

16.1 More on the Milnor Simplicial Path Loop

Spaces

Recall the construction of EX and GX from the last chapter.

1. GX → EX → X is a principal fiber bundle with group GX. There
exists an action EX×GX → EX which is concatenation of equivalence
classes. The orbit space of this action is EX/GX = X.

2. ΩX → PX → X is a fibration (to be defined soon)

3. PX is contractible, and so is EX.

4. Any fibration (fiber bundle) F
i→ E

p→ B has a long exact sequence in
homotopy,

· · · → πn(F, ∗) i∗→ πn(E, ∗) p∗→ πn(B, ∗) ∂→ πn−1(F, ∗)→ · · ·

115
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5. The long exact sequence is natural for maps between fibrations:

0 0

πn(EX, ∗)

wwwww
p∗- πn(X, ∗) ∂

≈
- πn−1(GX, ∗) - πn−1(EX, ∗)

wwwww

πn(PX, ∗)
? q∗- πn(X, ∗)

? ∂

≈
- ın−1(ΩX, ∗)

?
- πn−1(EX, ∗)

?

0

wwww
0

wwww

Therefore, πn−1(GX, ∗)→ πn−1(ΩX, ∗) is an isomorphism for all n.

Theorem: (Whitehead theorem) Suppose that X, Y are CW com-
plexes, and f : X → Y is a base point preserving map such that
f∗ : πn(X, ∗) → πn(Y, ∗) is an isomorphism for all n. Then f is a
homotopy equivalence.

Therefore, GX ' ΩX.

Question: How does πn(X, x0) depend on the base point x0?

Remark: Suppose X is path connected. If γ is a path from x0 to x1

then there exists an isomorphism h[γ] : π1(X, x1)
≈→ π1(X, x0), defined

by

h[γ][ω] := [γ ∗ ω ∗ γ−1].

If γ is a loop (i.e. x0 = x1 then h[γ] is conjugation by [γ].

Remark: All of this applies to the higher homotopy groups πn(X, ∗).
That is, if γ is a path from x0 to x1 then there exists an isomorphism
h[γ] : πn(X, x1)→ πn(X, x0) for all n.
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γ
γ ω γ

n = 1
n = 2

ω

To put this another way, we have

Theorem: Suppose X is connected. Then πn(X, x0) is a module over
the group ring Z(π1(X, x0)).

16.2 Relative Homotopy Groups

Suppose x0 ∈ A ⊆ X. Then the relative homotopy groups πn(X, A, x0)
are defined by

πn(X, A, x0) := [(In, ∂In, Jn−1), (X, A, x0)], where

In−1 = {(t1, . . . , tn) ∈ In | tn = 0}
Jn−1 = ∂In − In−1

This is defined for n ≥ 1. It is a group for n ≥ 2, and is abelian if
n ≥ 3.

maps f : (I2, ∂I2, J1) - (X, A, x0)

f

maps to x0

maps to x0maps to x0

maps to A
I1

J1

J1

J1
I2

n = 2

Example: π2(X, A, x0) is a group. To see this suppose we are given
maps f, g : (I2, ∂I2, J1)→ (X, A, x0). The following diagram indicates
how to multiply the homotopy classes:
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(X, A, x0)

cx0

cx0 cx0 cx0

cx0

in Ain A

This also indicates how to define a group structure on πn(X, A, x0).

Comments:

(a) πn does not satisfy excision. That is, πn(X, A) is in general not
isomorphic to πn(X − B, A− B).

(b) πn does not have a Mayer-Vietoris sequence.

Therefore, the computation of the higher homotopy groups is “hard”.
However, we do have one computational tool:

Theorem: There exists a long exact sequence in homotopy.

· · · → πn(A, x0)
i∗→ πn(X, x0)

j∗→ πn(X, A, x0)
∂→ πn−1(A, x0)→ · · · → π0(X, x0)

Definition of the maps:

• i∗ : πn(A, x0) → πn(X, x0) is the homomorphism induced by the
inclusion i : (A, x0)→ (X, x0).

• j∗ : πn(X, x0) → πn(X, A, x0) is the homomorphism induced by
the inclusion j : (X, x0, x0) → (X, A, x0). Note that ∃ a natural
isomorphism πn(X, x0, x0) ≈ πn(X, x0).

• Let f : (Dn, Sn−1, s0)→ (X, A, x0) represent a homotopy class in
πn(X, A, x0). Then ∂[f ] = [f |Sn−1].

Example: πn(CX, X, x0) ≈ πn−1(X, x0), where CX is the cone of X.

Proof: Consider part of the long exact sequence in homotopy for the
pair (CX, X) :

πn(CX, x0) → πn(CX, X, x0)
∂→ πn−1(X, x0) → πn−1(CX, x0)

|| ||

0 0
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Therefore ∂ : πn(CX, X, x0)
≈→ πn−1(X, x0).

Definition: A map p : E → B has the homotopy lifting property with
respect to a space Y if given any commutative diagram

Y × {0} h̃ - E

Y × I
?

∩

H - B

p

?

there exists a homotpy H̃ : Y × I → E lifting H.

Y × {0} h̃ - E

Y × I
?

∩

H -

H̃

-

B

p

?

Remark: Suppose h0 ' h1 : Y → B are homotopic maps. If we can lift
h0 to E, then we can also lift h1. In fact we can lift the entire homotopy.

Definition: A mapping p : E → B is a fibration if it has the lifting
property for all spaces Y .

Definition: A mapping p : E → B is a Serre fibration if it has the
lifting property for all discs Dn.

Theorem: Let p : E → B be a fibration. Choose base points b0 ∈ B
and e0 ∈ p−1(b0) ⊂ E, and let F = p−1(b0) be the full image of the base

point. Then p induces an isomorphism p∗ : πn(E, F, b0)
≈→ πn(B, b0).

Corollary: We have a long exact sequence

· · · → πn(F, ∗) i∗→ πn(E, ∗) p∗→ πn(B, ∗) ∂→ πn−1(F, ∗)→ . . .→ π0(B)

Proof: Apply the above Theorem to the long exact sequence in homotopy
for the pair (F, E). �


