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1 Preamble

It is a hazardous task to try to give an introduction to any significant area
of mathematics within the short span of a single lecture. This is particu-
larly so for a subject like algebraic geometry, which has developed over a
period of at least 200 years, and is closely related to almost every branch
of mathematics, to wit, algebra, analysis, geometry, topology and num-
ber theory. In the preface to his book [20], Kunz wrote in 1985 that at
the present state of our knowledge, one could give a 200 semester course
on algebraic geometry (and commutative algebra) without ever repeating
oneself. Talking about elliptic curves, which is one of the topics in alge-
braic geometry, Lang once wrote that “it is possible to write endlessly”
(and followed it up by clarifying that “this is not a threat!”).

It should be clear, therefore, that any brief introduction to algebraic ge-
ometry has to be selective and can at best hope to provide some glimpses
of the subject. This is what we have set out to do. In fact, we will fo-
cus mainly on two basic results in algebraic geometry, known as Bezout’s
Theorem and Hilbert’s Nullstellensatz, each of which can be viewed as a
generalization of the Fundamental Theorem of Algebra. We will review
some background material and try to motivate the two results and state
them precisely. For proofs and further details, we will give a number of
references. In fact, there are suggestions for further reading at the end
of each section and also in the last section. We hope the reader will feel
interested enough to look these up and make an attempt to learn more.

2 Theory of Equations

The theory of equations is concerned with solving polynomial equations.
In high-school, Algebra or Beejganit is almost synonymous with the art of
formulating, manipulating and solving polynomial equations. We learn
some basic techniques and work out a variety of examples, usually re-
stricted to polynomials in one variable of a reasonably small degree. In
college, Algebra appears to be mainly the study of abstract algebraic struc-
tures such as groups, rings, fields, and we learn a number of basic notions
and results concerning these objects. Slowly, the ideas of theory of equa-
tions make a reappearance in the guise of notions such as euclidean do-
mains, principal ideal domains and unique factorization domains. Also,
one revisits the familiar formula for the roots of a quadratic equation in
terms of its coefficients, and investigates if such a thing is possible for
equations of higher degree. This culminates in a remarkable part of al-
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gebra, known as Galois Theory.
For our purpose, it should suffice at the moment to stick to high-school

algebra, and review some basic aspects of the theory of equations. How-
ever, we work in a little more generality by considering not only equations
with rational or real coefficients, but equations with coefficients in a field.
A field is basically a set in which we can add, subtract, multiply and di-
vide. Of course division is only permissible by nonzero elements. Some
examples of fields are: the set Q of all rational numbers, the set R of all
real numbers, the set C of all complex numbers, and the set Fp = Z/pZ of
residue classes of integers modulo a prime number p. If you are uncom-
fortable with the notion of a field, please think of C whenever a field is
being talked about.

Let K be a field and let K[X] denote the set of all polynomials in the
variable X with coefficients in K. Elements of K[X] look like

f(X) = adX
d+ad−1X

d−1+· · ·+a1X+a0 where d ≥ 0 and a0, a1, . . . , ad ∈ K;

if ad 6= 0, we say that the degree of f(X) is d and write deg f(X) = d. In this
case ad is called the leading coefficient of f(X). Polynomials whose leading
coefficient is 1 are said to be monic. If a0 = a1 = · · · = ad = 0, that is, if
all the coefficients are zero, then f(X) is the zero polynomial and we write
f(X) = 0. Note that we have natural and familiar notions of addition,
subtraction and multiplication of polynomials, which make K[X] a ring.
Division for polynomials is not possible, in general. The following result,
which formalizes the process of long division in high-school, tells us the
best that we can do, in general.

Proposition 2.1 (Division Algorithm). Given any f(X), g(X) ∈ K[X] with
g(X) 6= 0, there exist unique polynomials q(X), r(X) ∈ K[X] such that

f(X) = q(X)g(X) + r(X) and either r(X) = 0 or deg r(X) < deg g(X).

Proving the Division Algorithm is not difficult—it suffices to assume
that f(X) 6= 0 and induct on deg f(X) to show the existence of q(X) and
r(X) satisfying the desired properties. The uniqueness follows by noting
if one had another representation f(X) = q̃(X)g(X) + r̃(X), then the dif-
ference r(X) − r̃(X) is divisible by g(X) and has degree < deg g(X). Thus
r(X) − r̃(X) = 0, and as a consequence, q(X) − q̃(X) = 0. With this in
view, one calls q(X) the quotient and r(X) the remainder upon division of
f(X) by g(X). When r(X) = 0, we say that g(X) divides f(X).

Given a polynomial, one can substitute things in it. More precisely,
given any f(X) = adX

d+· · ·+a1X+a0 ∈ K[X] and any α ∈ K, the element
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f(α) := adα
d + · · · + a1α + a0 of K is the result of substituting α in f(X).

Substitution respects addition and multiplication of polynomials, that is
(f +g)(α) = f(α)+g(α) and fg(α) = f(α)g(α) for any f(X), g(X) ∈ K[X].
In other words the map φα : K[X] → K defined by φα(f(X)) = f(α) is a
ring homomorphism. We say that α is a root or a zero of f(X) if f(α) = 0.
A fancy way to say this is that f(X) is in the kernel of the substitution
homomorphism φα.

The Division Algorithm has following useful consequences.

1. [Remainder Theorem] Given any f(X) ∈ K[X] and α ∈ K, the re-
mainder upon the division of f(X) by (X − α) is the effect of substitut-
ing α in f(X). In other words, f(X) = q(X)(X − α) + f(α) for some
q(X) ∈ K[X].

2. [Factor Theorem] Given any f(X) ∈ K[X], an element α of K is a root
of f(X) if and only if (X − α) divides f(X).

3. A nonzero polynomial of degree n in K[X] has at most n roots in K.

It may be noted that the Remainder Theorem is an easy consequence
of the Division Algorithm. The Factor Theorem follows readily from the
Remainder Theorem. Assertion # 3 follows from the Factor Theorem by
induction on deg f(X). It may also be noted that if L is any field con-
taining K as a subfield, then a polynomial in K[X] can be regarded as a
polynomial in L[X] and, in particular, we can substitute elements of L in
it. With this in view, we also see that a nonzero polynomial of degree n
in K[X] has at most n roots in L. For example, a polynomial of degree n
with coefficients in Q not only has at most n roots in Q, but also, at most
n roots in R, and at most n roots in C. On the other hand, a polynomial
in K[X] of degree n may not have n roots in K. This can always happen
for a trivial reason. For example, the polynomial Xn has only one root,
namely X = 0. We better discount this possibility by learning to count
properly! So let us define the multiplicity of α ∈ K as a root of a nonzero
polynomial f(X) ∈ K[X] to be the unique nonnegative integer m such
that f(X) = (X − α)mg(X) for some g(X) ∈ K[X] with g(α) 6= 0. Now
assertion # 3 can be stated in a more precise form as follows.

3′ A nonzero polynomial of degree n in K[X] has at most n roots in K, count-
ing multiplicities. More precisely, if f(X) ∈ K[X] is a nonzero polynomial
of degree n, then it has finitely many roots α1, . . . , αr in K and if ei is the
multiplicity of αi as a root of f(X), for i = 1, . . . , r, then e1 + · · ·+ er ≤ n.
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It is natural to ask when a polynomial of degree n has exactly n roots,
counted properly. Again, this does not happen, in general. For example,
the polynomial X2 − 2 of degree 2 in Q[X] has no roots in Q. It has, how-
ever, 2 roots in the bigger field R. The polynomial X2 + 1 in R[X] has no
roots in R, but has two roots in C that are usually denoted by i and −i. In
fact, C is obtained by adjoining the roots of X2 + 1 to the field R. In other
words, to pass from R to C, we simply arrange that the equation X2+1 = 0
can be solved. But now, a miracle happens. Namely, every equation can
be solved! More precisely, we have the following.

Proposition 2.2 (Fundamental Theorem of Algebra). If f(X) is a nonzero
polynomial of degree n in C[X], then f(X) has exactly n roots in C, counting
multiplicities. In other words, there are distinct complex numbers α1, . . . , αr ∈ C

and positive integers e1, . . . , er such that

f(X) = an(X − α1)
e1 · · · (X − αr)

er with e1 + · · ·+ er = n,

where an denotes the leading coefficient of f(X).

The above version of the Fundamental Theorem of Algebra follows
from the following seemingly simpler result by induction on n. Note here
that by a nonconstant polynomial one means a polynomial of degree ≥ 1.

Proposition 2.3 (Basic Version of the Fundamental Theorem of Algebra).
A nonconstant polynomial in C[X] has at least one root in C.

We will not prove this, but only remark that many different proofs
are known, and almost any postgraduate course in mathematics (complex
analysis, galois theory, real analysis, topology, . . . ) can include a proof
using the ideas developed in that course.

A field K is said to be algebraically closed if every nonconstant poly-
nomial in K[X] has a root in K. This implies that a nonzero polyno-
mial of degree n in K[X] will have n roots, counted with multiplicities.
Thus, the Fundamental Theorem of Algebra says that C is an algebraically
closed field, whereas the earlier examples show that Q and R are not al-
gebraically closed. It is possible to show that every field is a subfield of
an algebraically closed field and the “smallest” algebraically closed field
containing K as a subfield is called the algebraic closure of K.

Let K be any field. We say that f(X) ∈ K[X] is irreducible if f(X)
is a nonconstant polynomial and the only polynomials in K[X] that di-
vide f(X) are constant polynomials or constant multiples of f(X). Now
one has the following weak version of the Fundamental Theorem of Al-
gebra that is valid over any field and is in fact, much easier to prove. It
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shows that if, in addition to allowing multiplicities, we are willing to allow
“roots” of higher degrees, then a polynomial of degree n in K[X] always
has n roots in K.

Proposition 2.4 (Unique Factorization Theorem). Let K be a field and f(X)
be a nonzero polynomial of degree n in K[X]. Then there are distinct monic ir-
reducible polynomials p1(X), . . . , pr(X) ∈ K[X] and positive integers e1, . . . , er

such that if an denotes the leading coefficient of f(X), then

f(X) = anp1(X)e1 · · · pr(X)er .

In particular, if fi denotes the degree of pi(X) for i = 1, . . . , r, then

e1f1 + · · ·+ erfr = n.

Polynomials in more than one variable can be considered in an analo-
gous manner. For example, X2−Y 2 +XY and Y 2−X3 are polynomials in
2 variables X and Y . In general, a polynomial in two variables is a finite
sum of terms of the form aijX

iY j , where aij ∈ K and i, j are nonnegative
integers; the degree of such a term is i+j provided aij 6= 0. The (total) degree
of a polynomial is the highest among the degrees of the terms appearing
in it. The set of all polynomials in two variables X and Y with coefficients
in a field K is denoted by K[X, Y ]. Polynomials in n variables and the
notion of degree are defined similarly. The set of all polynomials in n vari-
ables X1, . . .Xn with coefficients in a field K is denoted by K[X1, . . . , Xn].
A polynomial in K[X1, . . . , Xn] is said to be homogeneous if each term has
the same degree. For example, X2 − Y 2 + XY is homogeneous (of degree
2), while Y 2 −X3 and Y 3 −XY −X − 1 are not homogeneous. In general,
every polynomial can be uniquely expressed as a sum of homogeneous
polynomials. More precisely, given any f(X, Y ) ∈ K[X, Y ], we can write

f(X, Y ) = f0(X, Y ) + f1(X, Y ) + · · ·+ fn(X, Y )

where either fi(X, Y ) = 0 or fi(X, Y ) is a nonzero homogeneous polyno-
mial of degree i. Moreover fn(X, Y ) is nonzero if and only if the degree
of f(X, Y ) is n. The polynomials fi(X, Y ) are uniquely determined by
f(X, Y ) and are called the homogeneous components of f(X, Y ).

A nonhomogeneous polynomial can be converted to a homogeneous
polynomial (of the same degree) by introducing a new variable and using
it to make every term have the same degree. This process is known as
homogenization. For example, the homogenization of Y 2 −X3 is Y 2Z −X3,
while the homogenization of Y 3 −XY −X − 1 is Y 3 −XY Z −XZ2 − Z3.
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In general, if deg f(X, Y ) = n and fi(X, Y ) for i = 0, 1, . . . , n denote its
homogeneous components, then a homogenization of f(X, Y ) is given by

F (X, Y, Z) = f0(X, Y )Zn + f1(X, Y )Zn−1 + · · ·+ fn−1(X, Y )Z + fn(X, Y ).

We can retrieve the original polynomial f(X, Y ) from F (X, Y, Z) by putting
Z = 1, and this is called dehomogenization with respect to the variable Z.

Using dehomogenization and homogenization, we can see that ho-
mogeneous polynomials in two variables behave like polynomials in one
variable. In particular, we have the following consequence of the Funda-
mental Theorem of Algebra.

Corollary 2.5. Let K be an algebraically closed field and let F (X, Y ) be a homo-
geneous polynomial of degree n in K[X, Y ]. Then there are (α1, β1), . . . , (αr, βr)
in K2 \ {(0, 0)} and positive integers e1, . . . , er such that

F (X, Y ) = (α1X + β1Y )e1 · · · (αrX + βrY )er with e1 + · · · + er = n.

Moreover, (α1, β1), . . . , (αr, βr) can be so chosen that no two are proportional to
each other, that is, (αi, βi) 6= λ(αj, βj) for any λ ∈ K and any i 6= j.

If the field is not algebraically closed, one can still define the notion
of an irreducible polynomial in a similar manner, and show that every
nonzero polynomial in K[X1, . . . , Xn] can be factored as a product of irre-
ducible polynomials, and moreover, the factorization is unique up to mul-
tiplication by nonzero constants and a permutation of the factors. This
is sometimes expressed by saying that the ring K[X1, . . . , Xn] is a unique
factorization domain, or in short, a UFD.

Of course, polynomials in more than one variable do not have finitely
many zeros. For example, the zero set of Y 2−X in K2 consists of all points
of the form (t2, t) as t varies over K. The zero sets, in general, define curves
and in the next section, we will discuss these objects in greater detail.

NOTES AND SUGGESTIONS FOR FURTHER READING: Older books on al-
gebra such as Chrystal [7] or Burnside and Panton [6] contain a wealth of
information about the theory of equations, and it may still be profitable to
study them. For a more modern, but friendly and elementary introduc-
tion, see Stillwell [30] and Childs [10]. For a more comprehensive account
of algebra, one may consult the books of Lang [21] and Abhyankar [4]. For
a beautiful generalization of the

∑

eifi = n formula in the Unique Factor-
ization Theorem, see Chapter V of Zariski-Samuel [31] or the Kiel notes
[15]. To gain a perspective on classical and modern algebra, see the EMS
volume edited by Kostrikin and written by Shafarevich [19]; this is a book
filled with deep insights and could serve as an excellent bedtime reading
for anyone interested in algebra.
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Figure 1: The circle X2 + Y 2 − 1 = 0 and the parabola Y − X2 = 0

3 Analytic Geometry

Analytic geometry, often studied as a precursor to or in conjunction with
calculus, consists of studying geometric configurations by means of alge-
braic equations. For example, we study the circle by means of an equation
such as X2 +Y 2 − 1 = 0. In general, we study conic sections that are given
by a general equation of degree 2, that is, an equation of the form

aX2 + hXY + bY 2 + gX + fY + c = 0,

where a, b, c, f, g, h are constants (say in R) and (a, h, b) 6= (0, 0, 0). We learn
to classify conics. Thus, we show that every conic is one of the following:
circle, ellipse, parabola, hyperbola or a pair of lines. Here we allow the
possibility that the pair of lines may be parallel or may consist of a single
coincidental line. To say that a conic is given by a pair of lines effectively
means that the defining polynomial is factors into two linear factors. Oth-
erwise, the conic is given by an irreducible polynomial of degree 2.

It may be remarked that the irreducible conics themselves can be clas-
sified in two broad categories. The first consisting of circles, ellipses and
hyperbolas, and the second consisting of parabolas. If one is working over
C, there isn’t much difference within the conics in the first category. To see
the distinguishing features of the two categories, note that that a circles,
ellipses and hyperbolas can be parametrized by rational functions. For
example, the circle X2 + Y 2 − 1 = 0 and the hyperbola XY − 1 = 0 are
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Figure 2: The nodal cubic Y 2 − X2 − X3 = 0 and the cusp Y 2 − X3 = 0

parametrized by



















X =
1 − t2

1 + t2

Y =
2t

1 + t2

and











X = t

Y =
1

t
,

respectively. In the case of parabolas, for example, the parabola Y − X2 = 0,
there is not only a rational parametrization, but, in fact, a polynomial
parametrization, given by X = t and Y = t2.

Having studied conics, one can go on to study cubic curves, such as
the nodal cubic (the “alpha curve”) defined by Y 2 − X2 − X3 = 0 or the
cuspidal cubic defined by Y 2 − X3 = 0 or the cubic Y 2 − X3 + 1 = 0.
[See Figure 3.] In this case it may be noted that the nodal cubic as well as
the cuspidal cubic admit a rational parametrization, in fact, a polynomial
parametrization, given by







X = (t2 − 1)

Y = t(t2 − 1)
and







X = t2

Y = t3,

respectively. For the cubic curve given by Y 2−X3 +1 = 0, it can be shown
that there is no rational parametrization. [Try to prove this!]

More generally, one can study plane curves such as those given by
f(X, Y ) = 0, where f(X, Y ) is a polynomial in two variables. If f(X, Y )
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is an irreducible polynomial, then the corresponding plane curve is said
to be irreducible or devoid of multiple components. In general, the irre-
ducible factors of f(X, Y ) give rise to the irreducible components of the
plane curve given by f(X, Y ) = 0. The degree of the plane curve defined
by f(X, Y ) is simply the total degree of the polynomial f(X, Y ).

One of the things studied in analytic geometry is the notion of tangents
at a point of a plane curve. For example, let us determine the tangent of the
parabola Y −X2 = 0 at the point (1, 1). Most of us would want to compute
dy

dx
, evaluate it at (1, 1) to get the slope m and say that the tangent is given

by Y − 1 = m(X − 1). Now what about a tangent to Y − X17 + 27X13 −
151X11 + 71X2 − 27X = 0 at the origin or a tangent to Y 2 − X + 2 = 0 at
the point (2, 0). In the first example, computing dy

dx
is complicated but can

be done. In the second, dy

dx
can’t be computed at y = 0, but one can still

determine the tangent by looking at dx
dy

. However, what if we consider the

curve Y 2−X2−X3 = 0 at the origin. Now, calculus fails to give any result.
Indeed, those familiar with calculus will say that the tangent to f(x, y) = 0
at (x0, y0) is given by

(x − x0)fx(x0, y0) + (y − y0)fy(x0, y0) = 0.

This is fine as long as at fx(x0, y0) 6= 0 or fy(x0, y0) 6= 0. Indeed, in the
former case, dx

dy
exists and is given by −fy/fx, whereas in the latter case, dy

dx

exists and is given by −fx/fy. [Remember the Implicit Function Theorem!]
But when fx(x0, y0) = fy(x0, y0) = 0, the above equation is not helpful.
This is what happens in the case of Y 2 − X2 − X3 = 0 at the origin.

Calculus notwithstanding, tangents to any plane curve can be easily
computed at any point on the curve. This can be simply done as follows.
Given a point (x0, y0) on the plane curve f(X, Y ) = 0, make a simple
change of coordinates to translate (x0, y0) to the origin. In other words,
consider f(X + x0, Y + y0) and write this as a sum of homogeneous poly-
nomials in X and Y :

f(X + x0, Y + y0) = fm(X, Y ) + fm+1(X, Y ) + · · ·+ fn(X, Y ),

where fi(X, Y ) is either the zero polynomial or a nonzero homogeneous
polyomial of degree i. Moreover, m, n are positive integers so chosen that
fm and fn are nonzero. If we can factor the initial form fm(X, Y ) as a prod-
uct of non-proportional homogeneous linear factors as

fm(X, Y ) = (α1X + β1Y )e1 · · · (αrX + βrY )er with e1 + · · ·+ er = m,

then the lines given by αiX + βiY = 0, for i = 1, . . . , r, are the tangents
to the curve f(X, Y ) = 0 at (x0, y0). For example, using this recipe, we
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quickly see that the tangent to Y −X17 +27X13−151X11 +71X2−27X = 0
at the origin is the line Y − 27X = 0 and the tangent to Y 2 − X + 2 = 0
at the point (2, 0) is the line X = 0. The curve Y 2 − X2 − X3 = 0 has
two tangents at the origin given by the two factors of Y 2 −X2, namely, the
lines given by Y − X = 0 and Y + X = 0. A factorization of the initial
form into powers of homogeneous linear factors is always possible if K is
algbraically closed, thanks to Corollary 2.5. Otherwise, one may have to
consider tangents of “higher degrees”.

NOTES AND SUGGESTIONS FOR FURTHER READING: Some of the classical
texts on the material in this section are Askwith [5], Coolidge [8], Semple
and Roth [28], and Salmon [24, 25, 26]. For more on tangents from the
point of view of calculus, see [17], and for more on the algebraic viewpoint
adopted here, see the “Engineering book” of Abhyankar [3]. A nice and
readable analysis of the differences betweeen hyperobolas and parabolas
is given in the Intelligencer article of Abhyankar [2]. A proof that the cubic
Y 2 − X3 + 1 = 0 does not admit a rational paramterization can be found,
for example, in the book of Reid [23].

4 Affine Varieties and Hilbert’s Nullstellensatz

We have already made a headstart in trying to explain what algebraic ge-
ometry is. Indeed, as Abhyankar [3] says, algebraic geometry, at least in
its classical form, is an amalgamation of analytic geometry and the theory
of equations. The basic objects of study in algebraic geometry are plane
curves and more generally, geometric configurations given by the zero-
sets of polynomial equations in two or more variables. To make this sound
a little more formal, let us introduce some terminology.

Let K be a field. The space Kn = {(α1, . . . , αn) : α1, . . . , αn ∈ K} of all
n-tuples of elements of K is called the affine n-space over K and denoted by
An

K or simply, An when the reference to K is understood from the context.
Given any subset S of K[X1, . . . , Xn], the set

V (S) := {(α1, . . . , αn) ∈ An : f(α1, . . . , αn) = 0 for all f(X1, . . . , Xn) ∈ S}

of common zeros in An of polynomials in S is called the affine variety de-
fined by S. In general, a subset V of An is called an affine variety if V = V (S)
for some S ⊆ K[X1, . . . , Xn]. An affine variety can be defined by several
different subsets of K[X1, . . . , Xn]. For example, if f, g ∈ K[X1, . . . , Xn],
then V ({f, g}) = V ({f + g, f − g}) = V ({uf + vg : u, v ∈ K[X1, . . . , Xn]}).

12



In general, for any S ⊆ K[X1, . . . , Xn], if I = 〈S〉 denotes the ideal gen-
erated by S in K[X1, . . . , Xn], that is, if I denotes the set of all polyno-
mials of the form u1f1 + · · · + urfr, where f1, . . . , fr vary over finite col-
lections of elements of S and u1, . . . , ur vary over K[X1, . . . , Xn], then we
have V (S) = V (I). With this in view, one may define an affine varieties in
An

K as subsets of An
K of the form V (I) where I is an ideal of K[X1, . . . , Xn].

By passing to ideals, we easily see that any affine variety (except the
one defined by the zero ideal) can be realized as the set of common zeros of
infinitely many polynomials. On the other hand, it is more natural to ask
whether any affine variety can be defined by common zeros of finitely many
polynomials. In algebraic setting this corresponds to asking whether every
ideal I of K[X1, . . . , Xn] is finitely generated. Remarkably, the answer is
yes, thanks to the following basic result of Hilbert.

Proposition 4.1 (Hilbert Basis Theorem). Let K be any field and V be any
affine variety in An

K . Then there are finitely many polynomials f1, . . . , fr in
K[X1, . . . , Xn] such that V = V ({f1, . . . , fr}).

Now let us consider another natural question. To begin with, note that
if I is the unit ideal, that is, if I = K[X1, . . . , Xn], then V (I) is clearly the
empty set. But what about the converse? In other words, if I is not the
unit ideal, then does V (I) have at least one point? Equivalently, if {fi}
is a set of polynomials in K[X1, . . . , Xn] such that 1 can not be written as
a finite linear combination of the fi’s (with coefficients in K[X1, . . . , Xn]),
then do the fi’s have a common zero. In a special case, we have already
considered this question. Indeed, suppose n = 1 and write X1 = X . Con-
sider an ideal I of K[X] generated by a single polynomial f(X), that is,
I = {u(X)f(X) : u(X) ∈ K[X]}. [It can be shown that every ideal of
K[X] is of this form. Check!] Now I is the unit ideal if and only if f(X)
is a nonzero constant polynomial. We have seen that if K = C or in gen-
eral, if K is algebraically closed, then a nonconstant polynomial in K[X]
has a root in K. This shows that if I is a nonunit ideal of K[X] and K
is algebraically closed, then the polynomials in I have a common zero in
A1

K . Thus, the following result, known as Hilbert’s Nullstellensatz (which
means Hilbert’s Zero Point Theorem), may be viewed as a multidimensional
generalization of the Fundamental Theorem of Algebra.

Proposition 4.2 (Hilbert’s Nullstellensatz). Let K be an algebraically closed
field. If I is a nonunit ideal of K[X1, . . . , Xn], then V (I) is nonempty.

We have seen that an ideal of K[X1, . . . , Xn] gives rise to an affine vari-
ety in An

K . We may ask whether an affine variety V in An
K determines the
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corresponding ideal in K[X1, . . . , Xn]. It is clear that in its simplest form,
the answer to this question is No, even when K is algebraically closed.
For example, if I1 and I2 are ideals in K[X, Y ] generated by X2 − Y and
X4−2X2Y +Y 2 respectively, then it is clear that I1 6= I2, but V (I1) = V (I2),
where the latter follows by noting that X4−2X2Y +Y 2 = (X2−Y )2. How-
ever, Hilbert’s Nullstellensatz shows that this is essentially the only way
in which the two ideals can differ. More precisely, we have the following.

Proposition 4.3. Let K be an algebraically closed field, and let I1, I2 be ideals of
K[X1, . . . , Xn] such that V (I1) = V (I2), then for every f ∈ I1, there is r ≥ 1
such that f r ∈ I2. Likewise, for every g ∈ I2, there is s ≥ 1 such that gs ∈ I1.

The above result can be stated in a succinct form using the notion of
the radical of an ideal. If I is an ideal of K[X1, . . . , Xn], then the set

√
I := {f ∈ K[X1, . . . , Xn] : fm ∈ I for some m ≥ 1}

is easily seen to be an ideal of K[X1, . . . , Xn] and it is called the radical of I .

Clearly,
√

I contains I . One says that I is a radical ideal if
√

I = I .

Proposition 4.4. Let K be an algebraically closed field. If I1, I2 are ideals of
K[X1, . . . , Xn] such that V (I1) = V (I2), then

√
I1 =

√
I2. As a consequence,

there is a one-to-one correspondence between the affine varieties in An
K and the

radical ideals in K[X1, . . . , Xn].

The above result may be used to reduce the study of affine algebraic
varieties over algebraically closed fields to that of radical ideals in poly-
nomial rings. One may also pass to quotients of polynomial rings by such
ideals, which give rise to a class of rings called finitely generated reduced
K-algebras. Such rings are studied in courses on commutative algebra.

NOTES AND SUGGESTIONS FOR FURTHER READING: Proofs of the Hilbert
basis theorem and Hilbert’s Nullstellensatz can be found in any book on
commutative algebra. For a quick introduction, see the AFS notes [16]. For
more on affine varieties (and also for a proof of Hilbert’s Nullstellensatz),
one may consult the books of Kunz [20] or Reid [23].

5 Projective Varieties and Bezout’s Theorem

Now, let us go back to analytic geometry and consider intersections of
plane curves. Let us first note that the Fundamental Theorem of Algebra
solves completely the problem of intersecting the X-axis (given by Y =
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0) with curves of the form Y − f(X) = 0, where f(X) is a nonconstant
polynomial in one variable X with coefficients in C (or more generally,
in an algebraically closed field K). The points of intersection are of the
form (α, 0), where α is a root of f(X). Moreover, if the degree of f(X) is
n or equivalently, if the degree of the plane curve given by Y − f(X) is n,
then there are exactly n points of intersection provided we count (α, 0) m
times if the multiplicity of α as a root of f(X) is m. We can do the same
thing in a little more general case. Suppose C is any plane curve given by
f(X, Y ) = 0 and L is a line given parametrically by

{

X = c1 + d1t
Y = c2 + d2t

where c1, d1, c2, d2 ∈ K with (d1, d2) 6= (0, 0). The points of intersection of C
with L correspond to the roots of the polynomial φ(t) := f(c1+d1t, c2+d2t)
in one variable t with coefficients in K. If deg f(X, Y ) = n and f0, f1, . . . , fn

denote the homogeneous components of f(X, Y ), then

φ(t) = f(c1 + d1t, c2 + d2t) = fn(d1, d2)t
n + terms of lower degree in t.

By Corollary 2.5, fn(X, Y ) has at most finitely many non-proportional roots,
and thus most values of (d1, d2) will satisfy fn(d1, d2) 6= 0. In this case, by
the Fundamental Theorem of Algebra, φ(t) has roots t1, . . . , tr ∈ K with
respective multiplicities e1, . . . , er satisfying e1 + · · · + er = n. Hence if
Pi := (c1 + d1ti, c2 + d2ti) for i = 1, . . . , r, then P1, . . . , Pr are in C ∩ L and
moreover if we define the intersection multiplicity of C and L at Pi to be

I(C, L; Pi) := ei = the multiplicity of ti as a root of φ(t) = f(c1+d1t, c2+d2t),

then we have
r

∑

i=1

I(C, L; Pi) = n = (deg C)(deg L).

In other words, the curve C of degree n and the line L of degree 1 meet in
exactly n points, counted properly. But what happens in the special case
when fn(d1, d2) = 0? To understand this, let us consider a very simple
example. Suppose f(X, Y ) = X − Y + 1 and the line L is given paramet-
rically by X = t and Y = t. Now φ(t) = f(t, t) = 1 and this clearly has
no roots. Basically, C and L are two parallel lines and they have no point
in common in the affine plane A2. It would be nice if we can somehow
count properly so that such exceptional cases do not arise, and we are able
to say that a two lines always meet in a point. Intuition comes to rescue
here. If we think of two parallel lines as railway tracks, then we “see” that
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they seem to meet at “infinity”. So it would be nice if we can postulate a
point at infinity in each parallel direction and regard that any two parallel
lines meet in the corresponding point at infinity. This leads to an extension
of the affine plane A2

K to the projective plane P2
K , which may be defined as

follows.
Consider the set K3 \ {(0, 0, 0)} of all triples of elements of K, except

the zero triple. Define an equivalence relation ∼ on this set as follows.

(x, y, z) ∼ (x′, y′, z′) ⇐⇒ x′ = λx, y′ = λy and z′ = λz for some λ ∈ K.

In other words, two triples are equivalent if they are proportional to each
other. Define P2

K as the set of all equivalence classes. Elements of P2
K may

be written as [x : y : z] where x, y, z ∈ K and not all x, y, z are zero, and it
should be understood that [x : y : z] = [λx : λy : λz] for any λ ∈ K with
λ 6= 0. Clearly, the points of P2

K fall in two categories: those [x : y : z] for
which z 6= 0 and those for which z = 0. The former can be represented by
[a : b : 1] for a uniquely determined (a, b) ∈ A2

K , while the latter are of the
form [α : β : 0] for some α, β ∈ K, not both zero. Thus

P2

K = A2

K ∪ L∞ where L∞ = {[α : β : 0] : (α, β) ∈ K2 \ {(0, 0)}}.
The elements of L∞ may be thought of as the points at infinity that are
added to the affine plane A2

K to obtain the projective plane P2
K ; indeed,

[α : β : 0] corresponds to the point at infinity in the direction of the line
αX + βY = 0 (or for that matter, the line αX + βY = γ for any γ ∈ K).

Now, how does one think of a curve in the projective plane? That’s
easy. While an affine plane curve is given by an equation of the form
f(X, Y ) = 0, where f(X, Y ) is a polynomial in K[X, Y ], a projective plane
curve is given by an equation of the form F (X, Y, Z) = 0, where F (X, Y, Z)
is a homogeneous polynomial in K[X, Y, Z]. Notice that if F (X, Y, Z) ∈
K[X, Y, Z] is homogeneous of degree n, then for any x, y, z ∈ K and any
λ ∈ K, we have F (λx, λy, λz) = λnF (x, y, z). Thus, F (x, y, z) = 0 if and
only if F (λx, λy, λz) = 0 for all λ ∈ K. Hence it makes sense to talk about
the zeros of F (X, Y, Z) in P2

K . In case F (X, Y, Z) is obtained from homog-
enizing f(X, Y ) ∈ K[X, Y ], then the zero-set of F (X, Y, Z) in P2

K consist of
the zero-set of f(X, Y ) in A2

K (identified as a subset of P2
K as given above)

together with a finite number of points in L∞; these are the points at infinity
of the curve C given by f(X, Y ) = 0. To see this, note that if

f(X, Y ) = f0(X, Y ) + f1(X, Y ) + · · ·+ fn(X, Y ) where fn(X, Y ) 6= 0,

is the decomposition of f(X, Y ) into homogeneous components, then the
homogenization F (X, Y, Z) is given by

F (X, Y, Z) = f0(X, Y )Zn + f1(X, Y )Zn−1 + · · ·+ fn−1(X, Y )Z + fn(X, Y ).
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Clearly, F (a, b, 1) = f(a, b), while F (a, b, 0) = fn(a, b). By Corollary 2.5,
fn(X, Y ) has at most n non-proportional homogeneous linear factors (and
exactly n if we count properly). Thus, a curve of degree n has at most n
points at infinity and these are given by the “zeros” of the degree form
fn(X, Y ). One can think of the projective plane P2

K as the geometric comple-
tion of the affine plane A2

K and the projective plane curve F (X, Y, Z) = 0
as geometric completion of the affine plane curve f(X, Y ) = 0.

Now, just as solving a single quadratic equation (X2 + 1 = 0) yielded
a miracle in the form of the Fundamental Theorem of Algebra, arrang-
ing that any two lines always meet in a point yields a miracle known
as Bezout’s Theorem. Before stating this, we note that if two projective
plane curves over an algebraically closed field have a common compo-
nent, that is, if the corresponding homogeneous polynomials F (X, Y, Z)
and G(X, Y, Z) have a nonconstant homogeneous common factor, then
they clearly meet in infinitely many points.

Proposition 5.1 (Bezout’s Theorem). Let K be an algebraically closed field. If
C and D are projective plane curves of degrees m and n respectively and if C and
D do not have a common component, then C and D meet in exactly mn points,
counted properly. More precisely, C ∩ D is a finite subset of P2

K containing most
mn points, and moreover,

∑

P∈C∩D

I(C, D; P ) = mn = (deg C)(deg D),

where I(C, D; P ) denotes the “intersection multiplicity” of C and D at P .

To be sure, we have not given a precise definition of the intersection
multiplicity of two curves at a point of their intersection. We have of
course done this when one of the curves is a line. It is not difficult to
see that a similar definition can be given for the intersection of a projec-
tive plane curve with a line in P2

K or more generally, a curve given by nice
parametric equations. Here is one of the several possible definitions for
those who know some algebra. It may be noted that since the intersection
multiplicity is a local notion, one may assume that the point is at “finite
distance” by making a suitable change of coordinates, if necessary. Thus,
suppose C and D are affine plane curves given by polynomials f(X, Y )
and g(X, Y ) in K[X, Y ]. Let P = (a, b) ∈ A2

K be a point of intersection.
Consider the quotient field K(X, Y ) of K[X, Y ] (which consists of rational
functions of the form u(X, Y )/v(X, Y ), where u(X, Y ), v(X, Y ) ∈ K[X, Y ]
with v(X, Y ) 6= 0) and the subring OP of K(X, Y ) consisting of those quo-
tients u(X, Y )/v(X, Y ) for which v(a, b) 6= 0. Look at the ideal I = 〈f, g〉OP
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generated by f(X, Y ) and g(X, Y ) in the ring OP . If C and D have no com-
mon components, that is if f(X, Y ) and g(X, Y ) have no nonconstant com-
mon factor, then it can be shown that OP /I is a finite-dimensional vector
space over the field K. One defines I(C, D : P ) = dimK OP /I .

NOTES AND SUGGESTIONS FOR FURTHER READING: For a more detailed
introduction, filled with examples, heuristics and applications, to the pro-
jective plane, projective plane curves and Bezout’s Theorem, see the “En-
gineering book” of Abhyankar [4] and also his Chauvnet prize winning
article [1] in the MONTHLY. The latter also contains several different defi-
nitions of intersection multiplicity. A complete proof of Bezout’s Theorem
using the definition given at the end of this section can be found, for exam-
ple, in the appendix to Silverman and Tate [29] or in Fulton’s book [14].

6 Epilogue

These notes (which, in fact, contain a little more material than what was ac-
tually covered in the lecture) barely scratch the surface of algebraic geom-
etry. There are important strands that we have left untouched. One such is
the connection between algebraic curves and compact Riemann surfaces.
This is a line of development that starts from the problem of determination
of the arc-length of an ellipse and goes on to a host of interesting and im-
portant topics. We refer to the first few pages of Abhyankar’s MONTHLY

article [1] followed by the China lectures of Griffits [18] for an introduction
to this topic. For a different viewpoint, see Chevalley [9]. Number theo-
retic aspects can be found, for example in the book of Silverman and Tate
[29]. For a wholesome and substantive introduction to algebraic geometry,
the books of Mumford [22] and Shafarevich [27] are recommended. The
latter contains an appendix outlining the historical development of alge-
braic geometry. See also the Final Comments in the book of Reid [23] for
a view of the history and sociology of algebraic geometry. A number of
applications of algebraic geometry, both within and outside mathematics,
can be found in the book of Cox, Little and O’Shea [11].

The reader may have noticed that although these notes were once meant
for the participants of a course on Advances in Control Theory, there has
been no mention thus far of Control Theory. The reason is obvious. Namely,
the author has no expertise on Control Theory. However, the two volumes
of Falb [12] may be useful for anyone wishing to understand the relation
between Algebraic Geometry and Control Theory.
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