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Chapter 1

Number Systems

In this chapter we study the basic arithmetic and algebraic properties of the familiar number systems
the integers, rational numbers, real numbers, and the possibly less familiar complex numbers. We
will consider which algebraic properties these number systems have in common as well as the ways
in which they differ.

We will use the following notation to denote sets of numbers.

N = {1, 2, 3, . . .} = Natural Numbers
Z = {0,±1,±2,±3, . . .} = Integers

Q =
{ a

b

∣∣∣ a, b ∈ Z, b 6= 0
}

= Rational Numbers

R = Real Numbers
C = Complex Numbers

1.1 The Basic Number Systems

The first numbers anyone learns about are the “counting numbers” or natural numbers 1, 2, 3, . . .,
which we will denote by N. We eventually learn about the basic operations of addition and mul-
tiplication of natural numbers. These operations are examples of binary operations, that is,
operations that combine any two natural numbers to obtain another natural number. Addition
and multiplication of natural numbers satisfy some very nice properties, such as commutativity,
associativity, and the distributive law, which we will study more formally in a later section.

The other familiar arithmetic operations of subtraction and division are really just the “in-
verse operations” of addition and multiplication, and will not be considered as basic operations.
(Although multiplication of natural numbers is really just repeated addition, this is a much less
obvious interpretation in other number systems.) If we only wish to consider the natural numbers,
we quickly encounter problems with subtraction and division. These operations can be performed
on pairs of natural numbers only in some cases. For example, 3 − 5 and 3 ÷ 5 are not natural
numbers.

In order to be able to subtract, we introduce the number 0 and the “negatives” of the natural
numbers to obtain the set of integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. The number 0 acts as a

1



2 CHAPTER 1. NUMBER SYSTEMS

neutral element or identity element for addition, because for any integer a, a+0 = a. The negative
of any integer a acts as an inverse for a relative to addition, because a + (−a) = 0.

Of course, thinking of 0 and −a in terms of addition leads to some interesting questions. Why
is 0 times any number equal to 0? Why is the product of two negative numbers a positive number?
More generally, what does multiplication by a negative number really mean? Is it still repeated
addition? We will return to these questions later.

The operations of addition and multiplication in Z still satisfy the same properties as in the set
of natural numbers N, but Z has an identity element and inverses for addition. This allows us to
subtract any integer from any other and obtain another integer.

Division can still only be performed on certain pairs of integers, however. Although the number 1
acts as a neutral element or identity element for multiplication in Z, since 1 · a = a for every
integer a, the set Z does not have inverses relative to multiplication for most of its elements. In
order to be able to divide, we must introduce fractions and obtain the set Q of rational numbers,
with operations defined as follows.

Definition 1.1.1 The set Q of rational numbers is the set of all quotients of integers (i.e.,
fractions),

Q =
{ a

b

∣∣∣ a, b ∈ Z, b 6= 0
}

,

and we define

i.
a

b
=

a′

b′
if and only if ab′ = ba′,

ii.
a

b
+

c

d
=

ad + bc

bd
,

iii.
a

b
· c

d
=

ac

bd
.

Note that since a = a
1 for an integer a, every integer is also a rational number and we have Z ⊆ Q.

The operations of addition and multiplication in Q still satisfy all of the properties as in the set of
integers Z.

If q 6= 0 is a rational number, say q = a
b , then a 6= 0, and r = b

a is also a rational number. Since

q · r =
a

b
· b

a
=

ab

ba
= 1,

the rational number b
a is an inverse for a

b relative to multiplication. That is, if q = a
b 6= 0 is a

rational number, the multiplicative inverse of q is q−1 = b
a , the reciprocal of q.

A proper construction of the set R of real numbers requires tools from analysis beyond the
scope of this text. A less rigorous description of R in terms of decimal expansions will suffice for
our purposes. We will first recall the basics of decimal expansions and discuss decimal expansions
of rational numbers.

A positive integer m can always be written in its decimal form and expressed as a sum of
multiples of non-negative powers of 10:

m = nknk−1 . . . n2n1n0 = nk · 10k + nk−1 · 10k−1 + · · ·+ n2 · 102 + n1 · 101 + n0 · 100.
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Similarly, a positive number r < 1 with a terminating decimal expansion can be written as a sum
of multiples of negative powers of 10:

r = 0.d1d2 . . . dk−1dk = d1 · 10−1 + d2 · 10−2 + · · ·+ dk−1 · 10−(k−1) + dk · 10−k.

If the decimal expansion does not terminate, then r is an “infinite sum” of multiples of negative
powers of 10:

r = 0.d1d2d3 . . . = d1 · 10−1 + d2 · 10−2 + d3 · 10−3 + · · · .
In general, a (real) number can be written as a finite sum of multiples of non-negative powers of 10
plus a (possibly) infinite sum of multiples of negative powers of 10, and the coefficients in this sum
are the digits in the decimal expansion of the number.

You may recall that the set of rational numbers defined in Definition 1.1.1 can also be described
in terms of decimal expansions. The rational numbers are precisely those (real) numbers with ter-
minating or repeating decimal expansions. For example, 3/8 = 0.375 or 9/7 = 1.285714285714 . . . =
1.285714. In order to verify this characterization of rational numbers, we must show that if a

b is
any rational number, then the decimal expansion of a

b either terminates or is a repeating decimal,
and that every terminating or repeating decimal is the decimal expansion of a rational number a

b .
We will first verify that every rational number a

b has either a terminating or repeating decimal
expansion. First note that we may assume a

b is positive and a < b. (Why?) The decimal expansion
of a

b is obtained by performing the long division a÷ b.
In the algorithm for long division, we place a decimal point to the right of a and append just

enough zeros to obtain a number larger than a (without the decimal). We then divide, placing the
quotient above the division sign and obtaining a remainder r with 0 6 r < b. (This is possible by
the Division Algorithm, which we will study formally in §2.3.) The algorithm is then repeated to
divide r by b and so on, as demonstrated for 3÷ 17 in the following example:

0. 1 7 6 4 . . .

17 ) 3. 0
1 7
1 3 0
1 1 9

1 1 0
1 0 2

8 0
. . .

The boldface numbers in the example are the remainders.
If a remainder of 0 is obtained at some stage, then the decimal expansion terminates, as for 3

8 :

0. 3 7 5
8 ) 3. 0

2 4
6 0
5 6

4 0
4 0

0

If the remainder is never zero, then each remainder r satisfies 1 6 r 6 b − 1. Thus there are only
finitely many different possible remainders, and at some point a remainder must repeat. Once a
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remainder repeats, the same sequence of quotients and remainders must repeat forever, and the
decimal expansion is repeating, as for 7

54 :

0. 1 2 9 6 2 9 6 . . .

54 ) 7. 0
5 4
1 6 0
1 0 8

5 2 0
4 8 6

3 4 0
3 2 4

1 6 0
1 0 8

5 2 0
4 8 6

3 4 0
3 2 4

1 6
. . .

Notice that 16 is the first remainder to repeat in this example and the corresponding quotient, 2,
is the start of the repeating decimal.

Exploration: Under what conditions on a fraction a/b in lowest terms will the decimal expansion
be terminating? Investigate this question by searching in number theory texts or Internet sources.

Conversely, we must verify that every terminating or repeating decimal expansion is the decimal
expansion of a rational number. Again, we may assume the decimal number is positive and less
than one. (Why?) A terminating decimal with k decimal places, say .d1d2 . . . dk, can be written as
the fraction

d1d2 . . . dk

10k
.

We say that the period of a repeating decimal is k if the length of the shortest repeating
sequence of digits is k. For example, the period of 0.454545 . . . = 0.45 is 2 and the period of
0.1234563456 . . . = 0.123456 is 4.

A repeating decimal of period k, say

R = 0.d1d2 . . . djr1r2 . . . rk,

can be expressed as a fraction, that is, a rational number, as follows. First, multiply R by 10k to
obtain 10kR. This has the effect of moving the decimal point k places to the right, or equivalently,
shifting the digits of R k places to the left. Because the period of R is k, the digits of R and 10kR
will be the same after some decimal place. Thus the number

10kR−R = (10k − 1)R

will be a terminating decimal, hence equal to some fraction T . Therefore (10k − 1)R = T and

R =
T

10k − 1
is a rational number.
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Example: Write the repeating decimal R = 0.12345345 . . . = 0.12345 as a fraction.

The period of R is 3, so we calculate 103R = 1000R:

R = 0 . 12 345 345
1000R = 123 . 45 345 345,

thus
1000R−R = 999R = 123.33 =

12333
100

and so
R =

12333
999 · 100

=
12333
99900

=
4111
33300

.

¤

The set R of real numbers consists of all possible decimal expansions. We have shown that
the rational numbers are precisely those real numbers with either terminating or repeating dec-
imal expansions. As there are clearly decimal expansions that are not repeating (for example,
0.01011011101111 . . .), not all real numbers are rational. Those real numbers that do not have
terminating or repeating decimal expansions, and therefore are not rational, are called irrational
numbers. Thus R consists of the rational numbers along with the irrational numbers.

The irrational numbers are real numbers that cannot be expressed as a quotient of two integers.
Some well-known examples of irrational numbers are

√
2, e, and π, but there are many others. In

fact, in a sense that can be made precise, most real numbers are irrational.
For computational purposes, we usually approximate irrational numbers by rational numbers.

For example, your calculator probably uses the approximation 3.141592654 (a rational number)
for π in calculations.

This approximation is sufficiently accurate for most purposes, but π, or any other irrational
number, can be approximated to within any desired degree of accuracy by a rational number.
Probably the easiest way to see this is to note that truncating the decimal expansion of the irrational
number results in a terminating decimal, hence a rational number, and the greater the number of
decimal places used, the closer the approximation will be.

In particular, if I is an irrational number and R is the rational number obtained by using the
digits of I to the left of the decimal and the first k digits of I to the right of the decimal, then
0 < I−R < 10−k. Thus R approximates I to within 10−k. For example, if R = 3.141592653589793,
then

0 < π −R < 10−15 = 0.000000000000001.

Finally, we note that it is not possible to determine whether a number is rational or irrational
from any terminating decimal approximation. For example, a calculator with a 10-digit display
will show e ≈ 2.718281828, which certainly appears to be a repeating decimal, although e is in fact
irrational. (The next digit in the decimal expansion of e is 4.) On the other hand, the calculator
shows 1/17 ≈ .0588235294, which shows no evidence of repetition, although 1/17 is clearly rational.
To verify that a given number I is irrational, it is necessary to prove that there cannot be integers a
and b such that I = a/b.
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§1.1 Exercises

1. Use long division to find the repeating decimal expansion of the following rational numbers.
Show your work on the long division.

(a)
5

101

(b)
47
110

(c)
17
135

(d)
5
14

2. Convert the following repeating decimal expansions to fractions in lowest terms.

(a) 0.393939 . . . = 0.39

(b) 4.302302302 . . . = 4.302

(c) 57.13478478478 . . . = 57.13478

(d) 102.102537253725372 . . . = 102.1025372

3. Show that 1 = 0.999999 . . . = 0.9.

4. Explain why the period of a rational number a/b with a repeating decimal is at most b− 1.

5. By Definition 1.1.1, two fractions a
b and a′

b′ are equal if and only if ab′ = ba′. Show that if
a
b = a′

b′ and c
d = c′

d′ , then

(a)
a

b
+

c

d
=

a′

b′
+

c′

d′
, that is,

ad + bc

bd
=

a′d′ + b′c′

b′d′
and

(b)
a

b
· c

d
=

a′

b′
· c′

d′
, that is,

ac

bd
=

a′c′

b′d′
.

(This exercise shows that addition and multiplication of rational numbers are “well-defined,”
so that the sum or product of two rational numbers does not depend on the particular
representation of the numbers as fractions.)

6. Write a paragraph with your explanation to a middle school or high school student as to
why 0 times any number is 0.

7. Write a paragraph with your explanation to a middle school or high school student as to why
the product of two negative numbers is a positive number.



1.2. COMPLEX NUMBERS 7

1.2 Complex Numbers

In this section we introduce the arithmetic and geometry of complex numbers.

Definition 1.2.1 The set C of complex numbers is the set of symbols a + bi, where a and b are
real numbers, and we define:

i. a + bi = c + di if and only if a = c and b = d,

ii. (a + bi) + (c + di) = (a + c) + (b + d)i,

iii. (a + bi) · (c + di) = (ac− bd) + (ad + bc)i.

Note that the definition of multiplication implies (with a = c = 0, b = d = 1) that i2 = −1.
Therefore we think of i as the square root of−1. Of course (−i)2 = −1 as well, so we define i =

√−1,
the principal square root of −1. If c is a positive real number, we also define

√−c =
√

c · i.
With the convention that i2 = −1, multiplication of complex numbers follows the usual rules

for multiplying binomials:

(a + bi) · (c + di) = ac + adi + bci + bdi2 = (ac− bd) + (ad + bc)i.

Example: If w = 3 + 5i and z = 2− 7i, we have

w + z = (3 + 5i) + (2− 7i) = (3 + 2) + (5− 7)i = 5− 2i

and
w · z = (3 + 5i) · (2− 7i) = [3(2)− 5(−7)] + [3(−7) + 5(2)]i = 41− 11i.

If a is a real number, we can write a = a + 0i and consider a to be a complex number as well.
Hence R is a subset of C. In fact, we have the following containments among the sets we have
considered:

N ⊆ Z ⊆ Q ⊆ R ⊆ C.

In particular, the numbers 0 = 0 + 0i and 1 = 1 + 0i are elements of C and are the identity
elements for addition and multiplication, respectively, in C. If z = a + bi then −z = −a− bi is its
additive inverse. It is an easy exercise to verify these statements by direct calculations.

In order to discuss multiplicative inverses and division in C, we require more definitions.

Definition 1.2.2 If z = a + bi is a complex number, we define

i. the real part of z is Re(z) = a,

ii. the imaginary part of z is Im(z) = b.

(Note that the imaginary part of z is b and NOT bi.)
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Examples:

1. Re(3 + 5i) = 3 and Im(3 + 5i) = 5.

2. Re(2− 7i) = 2 and Im(2− 7i) = −7.

3. Re(3i) = 0 and Im(3i) = 3.

4. Re(7) = 7 and Im(7) = 0.

Definition 1.2.3 If z = a+ bi is a complex number, the (complex) conjugate of z is z = a− bi.

Examples:

1. 3 + 5i = 3− 5i.

2. 2− 7i = 2 + 7i.

3. 3i = −3i.

4. 7 = 7.

The following properties of conjugates are easy to verify using the definitions.

Proposition 1.2.4 If z and w are complex numbers, then

i. z + w = z + w

ii. z · w = z · w.

Proof. (i) Let z = a + bi and w = c + di, so that z = a− bi and w = c− di. We have

z + w = (a + bi) + (c + di)
= (a + c) + (b + d)i by Definition 1.2.1 (ii),
= (a + c)− (b + d)i by Definition 1.2.3,
= (a− bi) + (c− di) by Definition 1.2.1 (ii),
= z + w,

and so z + w = z + w as claimed.
(ii) The proof of (ii) is similar and is left as an exercise. (See Exercise 1.2.11.) ¤

Proposition 1.2.5 If z = a + bi is a complex number, then

i. z + z = 2a = 2Re(z)

ii. z − z = 2bi = 2Im(z) · i.
Proof. (i) Let z = a + bi so that z = a− bi and Re(z) = a. We have

z + z = (a + bi) + (a− bi)
= (a + a) + (b− b)i by Definition 1.2.1 (ii),
= 2a + 0i

= 2a,

and so z + z = 2a = 2Re(z) as claimed.
(ii) The proof of (ii) is similar and is left as an exercise. (See Exercise 1.2.12.) ¤
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The proof of the next result is a computation similar to the previous proofs and is left as an
exercise. (See Exercise 1.2.13.)

Proposition 1.2.6 If z = a + bi is a complex number, then z · z = a2 + b2, a non-negative real
number.

We now consider multiplicative inverses and division of complex numbers. If z = a + bi is a
non-zero complex number, then a or b is non-zero, and a2 + b2 is a non-zero real number. By the
proposition above, we have

zz

a2 + b2
= 1,

hence

z · z

a2 + b2
= z ·

(
a

a2 + b2
− b

a2 + b2
i

)
= 1.

We therefore have:

Proposition 1.2.7 If z = a+bi is a non-zero complex number, then there is a complex number z−1

such that zz−1 = 1. In particular,

z−1 =
z

zz
=

z

a2 + b2
=

a

a2 + b2
− b

a2 + b2
i.

A quotient a+bi
c+di of two complex numbers can be written in the standard form by multiplying

the numerator and denominator by the conjugate of the denominator, which leaves a real number
in the denominator. This procedure is similar to “rationalizing” a denominator containing a root.
That is,

a + bi

c + di
=

(a + bi)(c− di)
(c + di)(c− di)

=
(ac + bd) + (bc− ad)i

c2 + d2
=

ac + bd

c2 + d2
+

bc− ad

c2 + d2
i.

It is best to learn the procedure demonstrated here, and not to memorize this final formula.

Examples:

1. If z = 2 + 3i, then the multiplicative inverse or reciprocal of z is

z−1 =
1

2 + 3i
=

1
2 + 3i

· 2− 3i

2− 3i
=

2− 3i

22 + 32
=

2− 3i

13
=

2
13
− 3

13
i.

2. If w = −1 + 3i and z = 2− 5i, the the quotient w/z is

w

z
=
−1 + 3i

2− 5i
=
−1 + 3i

2− 5i
· 2 + 5i

2 + 5i
=

(−2− 15) + (−5 + 6)i
22 + 52

=
−17 + i

29
= −17

29
+

1
29

i.
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Geometry of Complex Numbers

We often represent real numbers geometrically as points on a number line. Similarly, complex
numbers are represented as points in the complex plane. We use the usual coordinate plane
(xy-plane) with the x-axis as the real axis and the y-axis as the imaginary axis. The number
z = a+bi is represented by the point with coordinates (a, b), as in Figure 1.1. Thus the real number
a = a + 0i is represented by the point (a, 0) on the real axis, and the real number line coincides
with the real axis.

6

?

-¾

Im

Re

r 3 + 2i

r 3− 2i

r
2.5

r i

r−4.5i

r
−3

r−2 + 3i

r −4− 3i

Figure 1.1: The Complex Plane

With these conventions, z is the reflection of z in the real axis (x-axis). Also, the distance of
z = a + bi from the origin is

√
a2 + b2. Recall that the absolute value of a real number is the

distance from the number to the origin on the number line. Accordingly, we make the following
definition for complex numbers.

Definition 1.2.8 If z = a + bi is a complex number, the absolute value or modulus of z,
denoted |z|, is the distance from z to the origin in the complex plane. Thus

|z| =
√

a2 + b2 =
√

zz.

Note that this also says zz = |z|2.

Examples:

1. |3 + 2i| = √
32 + 22 =

√
13.

2. |4− 5i| =
√

42 + (−5)2 =
√

16 + 25 =
√

41.

3. | − 7i| =
√

02 + (−7)2 =
√

49 = 7.

4. | − 6| =
√

(−6)2 + 02 =
√

36 = 6.



1.2. COMPLEX NUMBERS 11

We now consider the geometric interpretations of addition and multiplication of complex num-
bers. Let z = a + bi and w = c + di be complex numbers represented by the points P = (a, b)
and Q = (c, d) in the complex plane, and let O = (0, 0) be the origin. Assume that the points P ,
Q, and O are not all on the same line. Then the point S = (a + c, b + d) representing the sum
z +w = (a+c)+(b+d)i is the endpoint of the diagonal of the parallelogram with the line segments
OP and OQ as sides. This is illustrated in the example in Figure 1.2. (The reader who is familiar
with linear algebra should notice that this is the geometric description of vector addition in the
vector space R2.)

6

?

-¾

Im

Rer
r z = 3 + i

rw = 2 + 4i
rz + w = 5 + 5i

³³³³³³
¢
¢
¢
¢
¢
¢
¢¢

¡
¡

¡
¡

¡
¡

¡
¡

¡

¢
¢
¢
¢
¢
¢
¢¢

³³³³³³

Figure 1.2: Addition of Complex Numbers

Exercise: Describe geometrically the sum z + w in the case where the points P , Q, and O lie on
the same line. Experiment with some specific examples and consider separately the cases where P
and Q lie on the same side of the origin and where they lie on opposite sides of the origin.

The additive inverse −z = −a − bi of a complex number z = a + bi is the reflection of z in
the origin. Using the geometric descriptions of addition and additive inverses, along with the fact
that w − z = w + (−z), we obtain a geometric interpretation of subtraction of complex numbers,
as illustrated by the example in Figure 1.3.

6

?

-¾

Im

Req
q z = 3 + i

q
−z = −3− i

qw = 2 + 4i

q
w − z =
−1 + 3i

³³³³³
¢
¢
¢
¢
¢
¢¢

³³³³³

³³³³³

¢
¢
¢
¢
¢
¢¢

B
B

B
B
B

Figure 1.3: Subtraction of Complex Numbers



12 CHAPTER 1. NUMBER SYSTEMS

In order to describe multiplication of complex numbers geometrically, it will be convenient to
use trigonometry and the “polar form” of complex numbers. A point P = (a, b) in the plane can
be uniquely determined by its distance r from the origin O and the angle θ between the positive
x-axis and the segment OP . We call (r, θ) the polar coordinates of the point P .

We can similarly obtain a polar representation of a complex number z = a + bi. As noted
previously, the distance of z from the origin is r = |z| = √

a2 + b2, the modulus of z. We will also
need the following definition.

Definition 1.2.9 The angle θ between the positive real axis and the line segment from the origin
to the complex number z is the argument of z, denoted arg z.

Note that the angle arg z is not unique, adding any integer multiple of 2π will yield another
argument. The polar form of z = a + bi is illustrated in Figure 1.4.

6

?

-¾

Im

Re

q

´
´

´
´

´
´

´́

θ̄ = arg z

a

b

z = a + bi

r = |z|

Figure 1.4: Polar Form of Complex Numbers

The polar and standard representations of z are related by the equations

a = r cos θ, b = r sin θ

and
r = |z| =

√
a2 + b2, tan θ =

b

a
.

Therefore, the complex number z can be written in the polar form

z = r(cos θ + i sin θ).

Note that r = |z| is a non-negative real number and cos θ + i sin θ is a complex number of modulus√
cos2 θ + sin2 θ = 1, hence lies on the unit circle centered at the origin.

Examples:

1. Find the polar form of the complex number z = 3 + 3
√

3 i.

We have r =
√

32 + (3
√

3)2 =
√

9 + 27 =
√

36 = 6 and tan θ = 3
√

3/3 =
√

3. Since z is in

the first quadrant and tan θ =
√

3, we have θ = π/3. Therefore, the polar form of z is

z = 6
(
cos

π

3
+ i sin

π

3

)
.
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2. Find the polar form of the complex number w = −2
√

3 + 2i.

We have r =
√

(−2
√

3)2 + 22 =
√

12 + 4 =
√

16 = 4 and tan θ = 2/(−2
√

3) = −1/
√

3. The

reference angle is θ′ = arctan(1/
√

3) = π/6, and since w is in the second quadrant, we have
θ = π − π/6 = 5π/6. Therefore, the polar form of w is

w = 4
(

cos
5π

6
+ i sin

5π

6

)
.

The next result says that in order to multiply two complex numbers, we multiply their moduli
and add their arguments.

Theorem 1.2.10 If z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2), then

z1z2 = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

Proof. Suppose we have two complex numbers z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2).
Their product is

z1z2 = r1(cos θ1 + i sin θ1) · r2(cos θ2 + i sin θ2)
= r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2)].

By the angle sum formulas for sine and cosine (see Appendix A), we have

cos θ1 cos θ2 − sin θ1 sin θ2 = cos(θ1 + θ2)

and
cos θ1 sin θ2 + sin θ1 cos θ2 = sin(θ1 + θ2).

Substituting yields z1z2 = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)], as claimed. ¤

Using this theorem and mathematical induction (see §2.1), we obtain the following corollary.

Corollary 1.2.11 If z = r(cos θ + i sin θ) and n is a positive integer, then

zn = rn(cosnθ + i sinnθ).

In the case where r = 1, Corollary 1.2.11 becomes

(cos θ + i sin θ)n = cosnθ + i sinnθ

and is known as de Moivre’s Theorem. This says that the nth power of a complex number z of
modulus 1 (i.e., a number on the unit circle) is the number on the unit circle whose argument is n
times the argument of z. See §2.1, Example 3, for the formal proof.
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Examples:

1. Use polar form to calculate z · w for z = 3 + 3
√

3 i and w = −2
√

3 + 2i.

We saw in the examples above that

z = 6
(
cos

π

3
+ i sin

π

3

)

and

w = 4
(

cos
5π

6
+ i sin

5π

6

)
.

Therefore, by Theorem 1.2.10,

z · w = 6 · 4
[
cos

(
π

3
+

5π

6

)
+ i sin

(
π

3
+

5π

6

)]

= 24
(

cos
7π

6
+ i sin

7π

6

)

= 24

(
−
√

3
2
− 1

2
i

)

= −12
√

3− 12i.

2. Use polar form to calculate (1− i)27.

First convert 1− i to polar form. We have r =
√

12 + (−1)2 =
√

2 and tan θ = −1/1 = −1.
The reference angle is then π/4 and and since 1 − i is in the fourth quadrant, we have
θ = 2π − π/4 = 7π/4. Hence the polar form is

1− i =
√

2
(

cos
7π

4
+ i sin

7π

4

)
.

Therefore, by Corollary 1.2.11,

(1− i)27 =
[√

2
(

cos
7π

4
+ i sin

7π

4

)]27

= (
√

2)27

[
cos

(
27 · 7π

4

)
+ i sin

(
27 · 7π

4

)]

= 227/2

(
cos

189π

4
+ i sin

189π

4

)

= 213 · 21/2

[
cos

(
5π

4
+ 23 · 2π

)
+ i sin

(
5π

4
+ 23 · 2π

)]

= 8192
√

2
(

cos
5π

4
+ i sin

5π

4

)

= 8192
√

2

(
−
√

2
2
−
√

2
2

i

)

= −8192(1 + i).
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If z is a complex number, then −z = (−1) · z, and the additive inverse can be interpreted
geometrically in terms of multiplication. We have | − 1| = 1 and arg (−1) = π, hence by Theo-
rem 1.2.10, | − z| = |z| and arg (−z) = π + arg z. It follows that −z is the reflection of z in the
origin, as noted previously.

Both Theorem 1.2.10 and de Moivre’s Theorem may be more easily understood if we consider
the complex exponential function f(z) = ez. Using infinite series (and trigonometric functions), it
is possible to extend the definition of the natural exponential function from the real numbers to
the complex numbers and to obtain Euler’s Formula

eiθ = cos θ + i sin θ,

where θ is a real number. Thus a complex number of modulus 1 and argument θ can be expressed
as eiθ, and a complex number z of modulus r and argument θ can be expressed as

z = r(cos θ + i sin θ) = reiθ.

Theorem 1.2.10 then follows from the usual laws of exponents. If z1 = r1e
iθ1 and z2 = r2e

iθ2 , then

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2)

and if z = reiθ, then
zn = (reiθ)n = rneinθ.

Euler’s Formula also implies a nice relation among the important numbers 0, 1, e, π, and i.
Letting θ = π, Euler’s formula becomes

eiπ = cosπ + i sinπ = −1

or
eiπ + 1 = 0.

§1.2 Exercises

1. Determine the real part, the imaginary part, the complex conjugate, and the modulus of each
of the following.

(a) 3 + 5i

(b) 7− 2i

(c) −4 + i

(d) 5

2. Perform the indicated operations. Write answers in the form a + bi, where a and b are real
numbers.

(a) (2 + 3i) + (−3 + 4i)

(b) (5− 2i)− (3 + 7i)

(c) (4+i)+(3+2i)+(4−5i)

(d) (2+4i)−(1+2i)+(3−2i)

3. Compute the following products and write in the form a+bi, where a and b are real numbers.

(a) (2 + 3i)(−3 + 4i)

(b) (7 + 2i)(3− 2i)

(c) (2 + 3i)(2− 3i)

(d) i(5− 7i)
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4. Find the multiplicative inverse of each of the following complex numbers. Write answers in
the form a + bi, where a and b are real numbers.

(a) 3 + 4i

(b) 7− 2i

(c) 2 + 3i

(d) 7i

5. Compute the following quotients and write in the form a+bi, where a and b are real numbers.

(a)
5 + 4i
3 + 2i

(b) (3 + 2i)/(5 + 4i)
(c) (−3 + 4i)÷ (2− i)

6. Find the modulus and argument of each of the following complex numbers and write the
numbers in polar form.

(a) 1− i

(b) −√3− i

(c) 3− 3
√

3 i

(d) −√2 +
√

2 i

(e) 5i

(f) −7

7. Let z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2). Using Theorem 1.2.10, deduce a
formula for the polar form of the quotient z1/z2.

8. Let z = r(cos θ + i sin θ). Using Theorem 1.2.10, deduce a formula for the polar form of the
reciprocal 1/z.

9. Let z = 1 +
√

3 i, so |z| = 2 and arg z = π
3 , and w = −2

√
2 + 2

√
2 i, so |w| = 4 and

arg w = 3π
4 . Find the modulus and argument of each of the following complex numbers and

write the numbers in polar form.

(a) z · w
(b) w2

(c) z2 · w
(d) z5

(e) z/w

(f) 1/z

10. Use Theorem 1.2.10 to evaluate the following powers. Write your answers in the standard
form a + bi, with a and b exact real numbers and without trigonometric functions.

(a) (1 + i)10

(b)

(√
3

2
+

1
2

i

)14

(c)

(
−1

2
+
√

3
2

i

)17

(d)

(√
2

2
+
√

2
2

i

)8

11. Verify Proposition 1.2.4 (ii).

12. Verify Proposition 1.2.5 (ii).

13. Verify Proposition 1.2.6.

14. Show that if z is a complex number then z = z.

15. Let z be a complex number. Show that z ∈ R if and only if z = z.
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1.3 Algebraic Properties of Number Systems

In this section, we discuss various algebraic properties that our number systems share. Before
reading further, consider the following questions.

Class Preparation Problems:

1. What properties of addition or multiplication of natural numbers are used in the following
equations or calculations? Write out the properties carefully. Why are they true?

(a) 5 + (7 + 9) = 5 + (9 + 7)

(b) 6 + (2 + 3) = (2 + 3) + 6

(c) 5 + (7 + 9) = (5 + 7) + 9

(d) Compute 3 + 4 + 8.

(e) 2 · (3 · 5) = 2 · (5 · 3)

(f) Compute 3 · 4 · 5.

(g) 2 · (3 · 5) = (3 · 2) · 5
(h) 3 · (5 + 7) = 3 · 5 + 3 · 7

2. Besides those demonstrated above, do you know any other “basic” properties of addition or
multiplication of natural numbers?

3. Does subtraction or division make sense in N?

4. Now consider the set of integers Z. Are the properties discussed for N also true for Z?
How could we define 0 and negative numbers in terms of addition? How could we define
subtraction?

5. With 0 and −n defined via addition, use the known properties of addition and multiplication
to show:

(a) 0 · n = 0 for all n ∈ Z.

(b) (−1) · a = −a for all a ∈ Z.

(c) (−1) · (−1) = 1, or more generally, (−a) · (−b) = a · b for all a, b ∈ Z.

6. With the definitions discussed above, we can define subtraction in terms of addition in Z.
Does subtraction satisfy all of the same properties as addition? If not, which ones fail?

7. In order to be able to subtract, we extended from N to Z. What set is needed in order to
allow us to divide?

8. Are all of the properties of addition and multiplication for Z also valid for Q? What additional
properties does Q have that Z does not?

9. How can we define division in Q in terms of multiplication? Does division satisfy all of the
same properties as multiplication? If not, which ones fail?

10. Do addition and multiplication in R and C satisfy the same properties as in Q?

The questions above concern basic properties of addition and multiplication in the number
systems we have discussed. The following list summarizes the properties that may (or may not) be
satisfied by a set S on which addition and multiplication are defined.
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Definition 1.3.1 (Algebraic Properties) Let S be a set on which addition (+) and multiplica-
tion (·) are defined. We define the following (potential) properties.

Properties of Addition:

i. Closure under Addition: a + b is in S for all a and b in S.

ii. Associative Law of Addition: a + (b + c) = (a + b) + c for all a, b, and c in S.

iii. Commutative Law of Addition: a + b = b + a for all a and b in S.

iv. Additive Identity: There is an element 0 in S such that a + 0 = 0 + a = a for all a in S.

v. Additive Inverses: For each element a in S, there is an element −a in S such that
a + (−a) = (−a) + a = 0.

Properties of Multiplication:

vi. Closure under Multiplication: a · b is in S for all a and b in S.

vii. Associative Law of Multiplication: a · (b · c) = (a · b) · c for all a, b, and c in S.

viii. Commutative Law of Multiplication: a · b = b · a for all a and b in S.

ix. Multiplicative Identity: There is an element 1 in S such that a · 1 = 1 · a = a for all a
in S.

x. Multiplicative Inverses: For each element a 6= 0 in S, there is an element a−1 in S such
that a · (a−1) = (a−1) · a = 1.

Property Relating Addition and Multiplication:

xi. Distributive Laws:

c · (a + b) = c · a + c · b for all a, b, and c in S,

(a + b) · c = a · c + b · c for all a, b, and c in S.

The two distributive laws are the left and right distributive laws, respectively. If property (viii)
holds in S, so that multiplication is commutative, only one of the distributive laws is necessary, as
the other follows from commutativity of multiplication.

The set N of natural numbers satisfies all of these properties except (iv), (v), and (x). The set
W = N∪{0} does have an additive identity, since the number 0 satisfies property (iv). However,W
does not contain an additive inverse for any of its elements except 0, hence property (v) is not
satisfied by W.

The set Z of integers contains the natural numbers as well as 0 and the negative integers.
The integers satisfy all properties satisfied by the natural numbers. The number 0 is the additive
identity of Z since a + 0 = 0 + a = a for every integer a. If a is any integer and −a is its negative,
then a + (−a) = (−a) + a = 0, so −a is the additive inverse of a. Thus Z satisfies properties (iv)
and (v). The number 1 is the multiplicative identity of Z since 1 · a = a · 1 = a for every integer a.
Unless a = 1 or a = −1, however, there is no integer b such that a · b = b · a = 1, and therefore
property (x) is not satisfied by Z.



1.3. ALGEBRAIC PROPERTIES OF NUMBER SYSTEMS 19

The set Q of rational numbers contains the integers as well as all quotients of integers, or
fractions. Using Definition 1.1.1 and assuming the known properties of integers, it can be shown
that Q satisfies properties (i)–(ix) and (xi) of Definition 1.3.1 (see examples below). If a

b is a non-
zero rational number, then a 6= 0 so the reciprocal b

a is also a rational number, and a
b · b

a = b
a · a

b = 1.
Hence b

a is the multiplicative inverse of a
b , and Q also satisfies property (x).

Examples:

1. Assuming the known properties of Z, show that multiplication in Q is commutative.

Proof. Let a
b and c

d be any rational numbers, so a, b, c, d ∈ Z. We then use properties of Z in
Definition 1.3.1 to show that a

b · c
d = c

d · a
b . We have

a

b
· c

d
=

ac

bd
by Definition 1.1.1 (iii),

=
ca

db
by 1.3.1 (viii), commutativity of multiplication in Z,

=
c

d
· a

b
by Definition 1.1.1 (iii),

and so multiplication in Q is commutative. ¤

2. Assuming the known properties of Z, show that addition in Q is associative.

Proof. Let a
b , c

d , and e
f be any rational numbers, so a, b, c, d, e, f ∈ Z. By definition of addition

in Q (Definition 1.1.1 (ii)), we have

(a

b
+

c

d

)
+

e

f
=

ad + bc

bd
+

e

f
=

(ad + bc)f + (bd)e
(bd)f

and
a

b
+

(
c

d
+

e

f

)
=

a

b
+

cf + de

df
=

a(df) + b(cf + de)
b(df)

.

We use properties of Z in Definition 1.3.1 to show that these expressions are equal. We have

(a

b
+

c

d

)
+

e

f
=

(ad + bc)f + (bd)e
(bd)f

as above,

=
[(ad)f + (bc)f ] + b(de)

b(df)
by 1.3.1 (xi), (vii) in Z,

=
a(df) + [b(cf) + b(de)]

b(df)
by 1.3.1 (ii), (vii) in Z,

=
a(df) + b(cf + de)

b(df)
by 1.3.1 (xi) in Z,

=
a

b
+

(
c

d
+

e

f

)
as above.

Therefore (a
b + c

d) + e
f = a

b + ( c
d + e

f ) and addition in Q is associative. ¤
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It can be shown that the set R of real numbers also satisfies properties (i)–(xi) of Definition 1.3.1
with the usual addition and multiplication. Using the definitions of addition and multiplication
in C from Definition 1.2.1 and the known properties of the real numbers, it can be shown that C
satisfies properties (i)–(ix) and (xi) of Definition 1.3.1 (see examples below). Proposition 1.2.7 says
that C also satisfies property (x) of Definition 1.3.1. Hence Q, R, and C satisfy all of the properties
in Definition 1.3.1.

Example: Assuming the known properties of R, show that multiplication in C is commutative.

Proof. Let a+ bi and c+di be any complex numbers, so a, b, c, d ∈ R. We use properties of R
in Definition 1.3.1 to show that (a + bi) · (c + di) = (c + di) · (a + bi). We have

(a + bi) · (c + di) = (ac− bd) + (ad + bc)i by Definition 1.2.1 (iii),
= (ca− db) + (da + cb)i by 1.3.1 (viii) in R,

= (ca− db) + (cb + da)i by 1.3.1 (iii) in R,

= (c + di) · (a + bi) by Definition 1.2.1 (iii),

and so multiplication in Q is commutative. ¤

Definition 1.3.2 Let S be a set on which addition (+) and multiplication (·) are defined.

i. If properties (i)–(vii) and (xi) of Definition 1.3.1 are satisfied in S, we say that S is a ring.

ii. If S is a ring and (viii) is also satisfied, we say that S is a commutative ring.

iii. If S is a ring and (ix) is also satisfied, we say that S is a ring with identity or a ring
with 1.

iv. A set S satisfying all of the properties (i)–(xi) of Definition 1.3.1 is called a field.

Thus N is NOT a ring because properties (iv) and (v) are not satisfied. By the discussion above,
we have the following result.

Theorem 1.3.3 The set of integers Z is a commutative ring with 1, and Q, R, and C are fields.

Exercise: Consider other sets you have studied in mathematics on which addition and multipli-
cation are defined (for example, various sets of functions, polynomials, matrices, etc.). Are any of
these sets rings or fields?

We are already familiar with the rings Z, Q, and R and recognize that 0, −a, 1, satisfy properties
(iv), (v), and (ix), respectively, and in Q or R, a−1 = 1/a satisfies property (x). In a general ring S,
these elements are defined by the corresponding properties.

The additive identity element “0” is any element of S that satisfies property (iv), whether it
looks like something we would call zero or not, and the additive inverse “−a” is just the element
we add to a in order to get 0. Thus 0 and −a are defined in terms of addition. In most rings,
including C, there is no concept of a “positive” or “negative” element.

We also define subtraction in a ring S in terms of addition. If a and b are elements of S, we
define a− b to be the element a + (−b) of S, where of course −b is the additive inverse of b.
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Similarly, the multiplicative identity “1” and multiplicative inverse “a−1” are defined in terms
of multiplication by properties (ix) and (x), respectively. If S satisfies property (viii), so that
multiplication in S is commutative, and S satisfies properties (ix) and (x), we can define division
in terms of multiplication as well. For elements a and b of S with b 6= 0, we define a÷ b or a/b to
be the element a · b−1 of S, where b−1 is the multiplicative inverse of b.

In the rational numbers Q, for example, if q = a
b and r = c

d 6= 0, then we have r−1 = d
c , the

reciprocal of r, and q ÷ r = q · r−1, hence

a

b
÷ c

d
=

a

b
·
( c

d

)−1
=

a

b
· d

c
.

This explains the rule for dividing fractions we all learned in school.
Division is not usually defined in a ring that is not commutative. Since the elements b−1 ·a and

a · b−1 may not be equal, the expression a÷ b would be ambiguous.
Note that any results we can derive from properties (i)–(vii) and (xi) of Definition 1.3.1 will

hold in any ring. This is the main advantage of such “abstraction” in algebra. Any results derived
from a common list of properties will hold in any system satisfying those properties, and it is
not necessary to reprove the same results repeatedly for different systems. This is essentially the
same philosophy behind letting x stand for any number, one of the earliest cases of abstraction we
encounter in learning algebra.

For example, the following basic results are familiar properties of the real numbers, but can be
proved in a much more general context.

Proposition 1.3.4 If S is a ring, then the following hold.

i. The additive identity element 0 of S is unique.

ii. If a ∈ S, then the additive inverse of a is unique.

iii. If a ∈ S, then −(−a) = a.

Proof. (i) Suppose 0a and 0b are both identity elements for S, that is, both satisfy property (iv) of
Definition 1.3.1. We have 0a + 0b = 0b since 0a is an additive identity, and 0a + 0b = 0a since 0b

is an additive identity. Hence 0a = 0a + 0b = 0b, and so 0a = 0b. Thus there is only one additive
identity element.

(ii) Let a be an element of S and suppose both b and b′ are additive inverses for a; that is, both
satisfy property (v) of Definition 1.3.1. Thus we have b + a = 0 and a + b′ = 0, and so

b = b + 0 by Definition 1.3.1 (iv),
= b + (a + b′) by Definition 1.3.1 (v),
= (b + a) + b′ by Definition 1.3.1 (ii),
= 0 + b′ by Definition 1.3.1 (v),
= b′ by Definition 1.3.1 (iv).

Hence b = b′ and so there is only one additive inverse for a.
(iii) Let a be an element of S and −a the additive inverse of a. By part (ii) of this proposition

and Definition 1.3.1 (v), −(−a) is the unique element b of S satisfying b+(−a) = (−a)+b = 0. But
also by Definition 1.3.1 (v), we have that a + (−a) = (−a) + a = 0 and by uniqueness of additive
inverses, it follows that −(−a) = a. ¤
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Proposition 1.3.5 If S is a ring with 1, then the following hold.

i. The multiplicative identity element 1 of S is unique.

ii. If a is a non-zero element of S, then the multiplicative inverse of a is unique.

iii. If a is a non-zero element of S, then (a−1)−1 = a.

Proof. The proof is similar to the proof of Proposition 1.3.4 above and is left as an exercise. ¤

The next results are restatements of properties of Zmentioned in the class preparation problems.
They can be proved for more general rings, and then the same properties hold in Z as a special
case.

Proposition 1.3.6 If S is any ring, then 0 · s = 0 for all s ∈ S.

Proof. The proof is left as an exercise. ¤

Proposition 1.3.7 If S is any ring with 1, then the following hold:

i. (−1) · s = −s for all s ∈ S,

ii. (−1) · (−1) = 1.

Proof. (i) Let s be an element of S. By Proposition 1.3.4, −s is the unique element b ∈ S satisfying
s + b = b + s = 0. It therefore suffices to prove that s + (−1) · s = (−1) · s + s = 0. Since addition
in S is commutative (see Definition 1.3.2), we only need to show that s + (−1) · s = 0. We have

s + (−1) · s = 1 · s + (−1) · s by Definition 1.3.1 (ix),
= (1 + (−1)) · s by Definition 1.3.1 (xi),
= 0 · s by Definition 1.3.1 (v),
= 0 by Proposition 1.3.6,

Hence s + (−1) · s = 0 and so (−1) · s = −s.
(ii) By part (i) of this proposition, (−1) · (−1) = −(−1). By Proposition 1.3.4 (iii), −(−1) = 1.

Therefore (−1) · (−1) = 1, as claimed. ¤

Note that these propositions involve multiplication by 0 or an additive inverse. Both 0 and
additive inverses are defined completely in terms of addition, so the proof of any result concerning
multiplication by these elements must use the distributive laws, the only property relating addition
and multiplication.
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§1.3 Exercises

1. State which properties of addition and/or multiplication of natural numbers are used in the
following equations. (More than one may be necessary.) All variables stand for natural
numbers.

(a) 3x + (4y + z) = 3x + (z + 4y)

(b) 5(x + y) = 5x + 5y

(c) 3(xy) = (3x)y

(d) 2x + (2y + z) = 2(x + y) + z

(e) 5(xy) = (5y)x

2. Using Definition 1.1.1 and the fact that properties (i)–(ix) and (xi) of Definition 1.3.1 hold
in the ring Z of integers, prove that addition in Q is commutative; that is,

a

b
+

c

d
=

c

d
+

a

b
.

3. Using Definition 1.1.1 and the fact that properties (i)–(ix) and (xi) of Definition 1.3.1 hold
in the ring Z of integers, prove that multiplication in Q is associative; that is,

a

b
·
(

c

d
· e

f

)
=

(a

b
· c

d

)
· e

f
.

4. Using Definition 1.1.1 and the fact that properties (i)–(ix) and (xi) of Definition 1.3.1 hold
in the ring Z of integers, prove that

a

c
+

b

c
=

a + b

c
.

5. Using Definition 1.1.1 and the fact that properties (i)–(ix) and (xi) of Definition 1.3.1 hold
in the ring Z of integers, prove that the distributive law holds in Q; that is,

a

b
·
(

c

d
+

e

f

)
=

a

b
· c

d
+

a

b
· e

f
.

6. Using Definition 1.2.1 and the fact that properties (i)–(xi) of Definition 1.3.1 hold in the
field R of real numbers, prove

(a) addition in C is commutative; that is, (a + bi) + (c + di) = (c + di) + (a + bi), and

(b) addition in C is associative; that is,

(a + bi) + ((c + di) + (e + fi)) = ((a + bi) + (c + di)) + (e + fi).

7. Using Definition 1.2.1 and the fact that properties (i)–(xi) of Definition 1.3.1 hold in the
field R of real numbers, prove that the distributive law holds in C; that is,

(a + bi) · ((c + di) + (e + fi)) = (a + bi) · (c + di) + (a + bi) · (e + fi).
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8. Which properties of Definition 1.3.1 are satisfied by the set S = 2Z of even integers? Is 2Z a
ring? If so, is it a ring with 1? Justify your answers.

9. The subset Z[i] = {a + bi | a, b are integers} of C is called the ring of Gaussian integers.
Show that Z[i] is a commutative ring with 1. Is Z[i] a field? Explain.

10. Let F be the set of all functions f from R to R, and define addition and multiplication
“pointwise” as in algebra or calculus. That is, for functions f and g, define f + g and f · g by
(f + g)(x) = f(x) + g(x) and (f · g)(x) = f(x) · g(x) for all real numbers x.

Which properties of Definition 1.3.1 are satisfied by F? Which properties are satisfied by the
subset C of F consisting of all continuous functions from R to R? Justify your answers.

11. Prove Proposition 1.3.5.
[Hint: Imitate the proof of Proposition 1.3.4.]

12. Prove Proposition 1.3.6.
[Hint: Start with the fact that 0 + 0 = 0 (why?) and use the distributive law.]
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1.4 Sets and Equivalence Relations

In order to describe more rigorous constructions of our number systems, we need to introduce the
concept of an equivalence relation on a set. We will first recall some terminology and notation from
set theory. Our approach to set theory will be somewhat informal.

Definition 1.4.1 A set A is a collection of objects. The objects in A are called the elements
of A. If a is an element of A, we write a ∈ A and if b is not an element of A we write b /∈ A.

A set of particular importance is the set containing nothing.

Definition 1.4.2 The empty set is the (unique) set with no elements, denoted ∅.

Definition 1.4.3 Let A and B be sets.

i. We say A and B are equal, denoted A = B, if the elements of A and B are the same.

ii. If each element of A is also an element of B, we say A is a subset of B and write A ⊆ B.

iii. If A ⊆ B but A 6= B, we say A is a proper subset of B, denoted A  B.

Thus for sets A and B, A ⊆ B means that if a ∈ A then a ∈ B, and A  B means that a ∈ B
for every a ∈ A and there is some b ∈ B such that b /∈ A. If A ⊆ B, we also say A is contained
in B, and if A  B, we say A is properly contained in B. Note that ∅ ⊆ A for any set A.

Be careful to distinguish between the symbols ∈ and ⊆. The symbol ∈ is used only with elements
and ⊆ is used only with sets. For example, if A = {1, 2, 3}, then 1 is an element of A, but {1} is
the subset of A consisting of a single element 1. We write 1 ∈ A and {1} ⊆ A, but both of 1 ⊆ A
and {1} ∈ A are incorrect.

The following result provides the most common method for showing that two sets are equal.

Proposition 1.4.4 Two sets A and B are equal if and only if A ⊆ B and B ⊆ A.

The proposition says that we can show A = B by showing that if a ∈ A then a ∈ B and if
b ∈ B then b ∈ A.

We next consider some methods for constructing new sets from old.

Definition 1.4.5 Let A, B, A1, A2, . . . , An be sets.

i. The union of A and B is the set A ∪ B = {x |x ∈ A or x ∈ B}. More generally, the union
of A1, A2, . . . , An is the set

A1 ∪A2 ∪ · · · ∪An =
n⋃

i=1

Ai = {x |x ∈ Ai for some i}.

ii. The intersection of A and B is the set A∩B = {x |x ∈ A and x ∈ B}. More generally, the
intersection of A1, A2, . . . , An is the set

A1 ∩A2 ∩ · · · ∩An =
n⋂

i=1

Ai = {x |x ∈ Ai for all i}.
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The word “or” is used in the inclusive sense. That is, x ∈ A or x ∈ B means that x is an
element of at least one of the sets A, B, and could be an element of both.

Definition 1.4.6 Two sets A, B are disjoint if A ∩ B = ∅. A set A is the disjoint union of
sets A1, A2, . . . , An if A = A1 ∪ A2 ∪ · · · ∪ An and Ai ∩ Aj = ∅ for all i 6= j. In this case, we also
say the sets A1, A2, . . . , An form a partition of A.

Definition 1.4.7 Let A and B be sets. The Cartesian product of A and B is the set

A×B = {(a, b) | a ∈ A, b ∈ B}

consisting of all ordered pairs (a, b), where a ∈ A and b ∈ B.

The elements of A×B are ordered pairs, and two elements (a1, b1) and (a2, b2) are equal if and
only if a1 = a2 and b1 = b2. Thus if A = {1, 2} = B for example, then (1, 2) and (2, 1) are different
elements of A×B.

We are now prepared to define equivalence relations.

Definition 1.4.8 A relation R on a set A is a subset of A×A.

Although it is best to formally define a relation as a set, we often avoid the formality by
thinking of elements of A being “related” to each other. In practice, we usually write aRb and
say a is related to b if (a, b) is an element of the relation R.

Care must be taken, however, not to read too much into the word “related.” There is nothing
in the definition, for example, that says that if a is related to b, then b must be related to a. It is
possible that (a, b) is an element of R but that (b, a) is not.

We will be primarily interested in a particular type of relation called an equivalence relation.

Definition 1.4.9 An equivalence relation on a set A is a relation ∼ satisfying, for all a, b,
and c in A:

i. a ∼ a (reflexive property).

ii. If a ∼ b then b ∼ a (symmetric property).

iii. If a ∼ b and b ∼ c, then a ∼ c (transitive property).

If ∼ is an equivalence relation on A and a ∼ b, we say a and b are equivalent. Equivalence is
a generalization of equality. If a and b are equivalent, they need not be equal, but they are “the
same” relative to some property. Note that equality is an equivalence relation.

Example: We can define a relation ∼ on the set R of real numbers by a ∼ b if |a| = |b|. It is
easily verified that ∼ is an equivalence relation on R (do it!). Under this relation, 3 and −3 are
equivalent although they are not equal. They are “the same” in that they are the same distance
from the origin. ¤

It is often useful to consider all elements of a set that are equivalent to a given element under
an equivalence relation to be the same. We give the set of such elements a name.
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Definition 1.4.10 If ∼ is an equivalence relation on a set A and a is an element of A, the
equivalence class of a is the set [a] = {b ∈ A | a ∼ b}.

The equivalence class of a is just the set of all elements of A that are equivalent to a. In the
example above, [a] = {a,−a}. Thus [3] = {3,−3} = [−3]. The fact that 3 ∼ −3 and [3] = [−3] is
not a coincidence.

Proposition 1.4.11 Let ∼ be an equivalence relation on a set A. For a and b in A, [a] = [b] if
and only if a ∼ b.

The proposition says that if two elements of A are equivalent, then their equivalence classes are
the same. By the defining properties of an equivalence relation, all elements in a given equivalence
class must be equivalent (verify!).

Notice that every element a of A is in some equivalence class, namely [a]. Hence A is the union
of the equivalence classes. The next result says that this is a disjoint union, so the equivalence
classes partition the set A into disjoint subsets.

Proposition 1.4.12 Let ∼ be an equivalence relation on a set A. If a and b are elements of A,
then either [a] = [b] or [a] ∩ [b] = ∅.

§1.4 Exercises

In the following exercises, A, B, and C are sets.

1. Show that if A ⊆ C and B ⊆ C, then A ∪B ⊆ C.

2. Show that if C ⊆ A and C ⊆ B, then C ⊆ A ∩B.

3. Show that if A ⊆ B, then A ∪ C ⊆ B ∪ C.

4. Show that if A ⊆ B, then A ∩ C ⊆ B ∩ C.

5. Show that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

6. Show that A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

7. Verify that the relation ∼ on R, defined by a ∼ b if and only if |a| = |b|, is an equivalence
relation.

8. Verify that the relation ∼ on R, defined by a ∼ b if and only if a − b is rational, is an
equivalence relation.

9. Verify that the relation ∼ on the set of fractions {a
b | a, b ∈ Z, b 6= 0}, defined by a

b ∼ c
d if and

only if ad = bc, is an equivalence relation.

10. Show that if ∼ is an equivalence relation on a set A and a ∼ b, then [a] = [b].

11. Show that if ∼ is an equivalence relation on a set A and a and b are elements of A such that
[a] ∩ [b] is not empty, then a ∼ b. (This proves Proposition 1.4.12.)
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1.5 Formal Constructions of Number Systems

Today, most of us are comfortable with the number systems we have discussed thus far, with the
possible exception of the complex numbers. This has not always been the case, however. Ideas
such as 0, negative numbers, irrational numbers, and complex numbers have historically been much
more difficult to grasp than the natural numbers. In order to believe that these objects exist, it is
useful to have concrete constructions that behave in the expected ways.

In this section we present a more formal and rigorous construction of some of our number
systems. We will begin by giving a construction of the field Q of rational numbers assuming we
have the ring Z of integers. We will then construct the integers Z from the natural numbers N and
then the complex numbers C from the real numbers R.

A model for the natural numbers can be constructed using a set of axioms (the Peano axioms),
but this construction is much more abstract and will not be included here. We also will not include
a construction of the real numbers because such a construction would require tools from analysis
that are beyond the scope of this text.

Construction of the Rational Numbers

Although we should logically construct the integers first and then construct the rational numbers
from them, the ideas behind the construction of the rational numbers are more familiar to us.
The differences between this construction and the usual understanding of the rational numbers as
fractions mainly concern notation and the formalization of the idea of equivalent fractions. We
will therefore first consider the construction of the rational numbers. We will assume all properties
previously discussed for the ring of integers. The rational numbers will be constructed as a set of
equivalence classes of ordered pairs of integers.

The construction given here is a special case of the construction of the “field of fractions of an
integral domain” studied in ring theory. It will also allow us to obtain other fields starting with
rings similar to the integers, such as rings of polynomials.

Definition 1.5.1 Let Q = {(a, b) | a, b ∈ Z, b 6= 0} and define a relation ∼ on Q by (a, b) ∼ (a′, b′)
if and only if ab′ = ba′.

Proposition 1.5.2 The relation ∼ defined on Q is an equivalence relation.

Definition 1.5.3 For (a, b) in Q, let [(a, b)] be the equivalence class of (a, b) under the relation ∼.
Define Q to be the set of equivalence classes of elements of Q, that is,

Q = { [(a, b)] | (a, b) ∈ Q}.

The best way to understand this construction and what follows is to think of the element (a, b)
of Q as the specific fraction a

b . For (a, b) and (a′, b′) in Q, we have (a, b) ∼ (a′, b′) if and only if
ab′ = ba′, hence if and only if a

b = a′
b′ . The equivalence relation ∼ can therefore be viewed as the

usual equivalence of fractions.
The element [(a, b)] of Q then can be viewed as the rational number represented by a

b , or by
any other equivalent fraction. We can consider Z to be a subset of Q by identifying an integer z
with the element [(z, 1)] of Q.
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The issue of equality of fractions is more formally addressed in this construction by taking
the elements of Q to be equivalence classes of elements of Q, or of fractions. Thus the rational
number 0.666 . . . = 0.6 is represented by the single equivalence class [(2, 3)] instead of by the various
equivalent fractions 2

3 , 4
6 , 6

9 , . . .
Keep in mind that the elements of Q are equivalence classes, hence are sets. For example,

[(2, 3)] = {(2, 3), (−2,−3), (4, 6), (−4,−6), (6, 9), . . .}.

For (a, b) in Q, [(a, b)] = [(ac, bc)] for every non-zero integer c, just as a
b = ac

bc .
Next, we must define addition and multiplication on Q so that Q behaves like the rational

numbers Q. Compare the following definition to Definition 1.1.1.

Definition 1.5.4 For x = [(a, b)] and y = [(c, d)] in Q, we define addition x+y and multiplication
x · y as follows:

i. x + y = [(a, b)] + [(c, d)] = [(ad + bc, bd)]

ii. x · y = [(a, b)] · [(c, d)] = [(ac, bd)].

Note that the addition and multiplication of x and y appear to depend on the particular
representatives (a, b) and (c, d) chosen for the equivalence classes. In order for these definitions to
be useful, it is necessary to know that this is not the case.

Proposition 1.5.5 If [(a, b)] = [(a′, b′)] and [(c, d)] = [(c′, d′)] in Q, then

[(a, b)] + [(c, d)] = [(a′, b′)] + [(c′, d′)]

and
[(a, b)] · [(c, d)] = [(a′, b′)] · [(c′, d′)].

That is, addition and multiplication in Q are well-defined.

By the definitions of addition and multiplication in Q and the closure of Z under addition and
multiplication, it is clear that Q is closed under both operations. The next results can be verified
by direct calculations.

Proposition 1.5.6 The following hold in Q.

i. The element 0 = [(0, 1)] is the additive identity element of Q.

ii. If x = [(a, b)] is an element of Q, then the additive inverse of x is −x = [(−a, b)].

We have that [(a, b)] = 0 if and only if (a, b) ∼ (0, 1), hence if and only if a · 1 = b · 0, that is,
a = 0. Hence if [(a, b)] 6= 0, then a 6= 0 and [(b, a)] is also an element of Q. This is used in the next
result.
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Proposition 1.5.7 The following hold in Q.

i. The element 1 = [(1, 1)] is the multiplicative identity element of Q.

ii. If x = [(a, b)] 6= 0 is an element of Q, then the multiplicative inverse of x is x−1 = [(b, a)].

Using the definitions of Q, addition, and multiplication, and the known properties of Z, it can
be shown that both addition and multiplication in Q are commutative and associative, and that
the distributive law holds in Q. The proofs are very similar to those in Exercises 1.3.2–1.3.5. Along
with the results and remarks above, this yields the following theorem.

Theorem 1.5.8 With Q, addition, and multiplication defined as above, Q satisfies properties (i)–
(xi) of Definition 1.3.1. That is, Q is a field.

If we identify the element [(a, b)] of Q with the rational number represented by the fraction a
b

(or any equivalent fraction), Q is “algebraically the same” as Q. In abstract algebra, we would say
that the two fields are isomorphic.

Construction of the Integers

We next consider the construction of the integers from the natural numbers. We will assume
all properties previously discussed for the natural numbers N. The integers will be constructed as
a set of equivalence classes of ordered pairs of natural numbers.

Definition 1.5.9 Let Z = {(a, b) | a, b ∈ N} and define a relation ∼ on Z by (a, b) ∼ (a′, b′) if and
only if a + b′ = b + a′.

Proposition 1.5.10 The relation ∼ defined on Z is an equivalence relation.

Definition 1.5.11 For (a, b) in Z, let [(a, b)] be the equivalence class of (a, b) under the relation ∼.
Define Z to be the set of equivalence classes of elements of Z, that is,

Z = { [(a, b)] | (a, b) ∈ Z }.

Note the similarity in the definitions of Z, ∼, and Z to the definitions of Q, ∼, and Q. The
only difference is that multiplication in the definition of ∼ for Q (i.e., ab′ = ba′) is replaced by
addition in the definition of ∼ for Z (i.e., a + b′ = b + a′). This should not be a surprise. We
constructed Q from Z in order to obtain multiplicative inverses and we are constructing Z from N
in order to obtain additive inverses.

In order to better understand this construction, think of the element [(a, b)] of Z as the integer
a− b. For (a, b) and (a′, b′) in Q, we have (a, b) ∼ (a′, b′) if and only if a + b′ = b + a′, hence if and
only if a− b = a′ − b′. Hence an element of Z corresponds to exactly one integer.

We can consider N to be a subset of Z by identifying a natural number n with the element
[(n+1, 1)] of Z. We thereby identify N with the subset { [(a, b)] | a > b } of Z, identify the integer 0
with the element [(1, 1)] (= [(n, n)] for all n ∈ N), and identify the negative integers with the subset
{ [(a, b)] | a < b } of Z.
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Again, keep in mind that the elements of Z are equivalence classes, hence are sets. For example,

[(3, 5)] = { [(n, n + 2)] |n ∈ N } = {(1, 3), (2, 4), (3, 5), (4, 6), . . .}.

For (a, b) in Z, [(a, b)] = [(a + c, b + c)] for every natural number c.
Next, we define addition and multiplication on Z so that Z behaves like the integers Z.

Definition 1.5.12 For x = [(a, b)] and y = [(c, d)] in Z, we define addition x + y and multiplica-
tion x · y as follows:

i. x + y = [(a, b)] + [(c, d)] = [(a + c, b + d)]

ii. x · y = [(a, b)] · [(c, d)] = [(ac + bd, ad + bc)].

Recalling our interpretation of an element [(m,n)] of Z as the integer m− n, the definitions of
addition and multiplication in Z are inspired by the facts that (a− b) + (c− d) = (a + c)− (b + d)
and (a− b)(c− d) = (ac + bd)− (ad + bc) in Z.

The addition and multiplication of x and y are defined in terms of the particular representatives
(a, b) and (c, d) chosen for the equivalence classes. In order for these definitions to be useful, it is
necessary to know that the definitions do not actually depend on these choices.

Proposition 1.5.13 If [(a, b)] = [(a′, b′)] and [(c, d)] = [(c′, d′)] in Z, then

[(a, b)] + [(c, d)] = [(a′, b′)] + [(c′, d′)]

and
[(a, b)] · [(c, d)] = [(a′, b′)] · [(c′, d′)].

That is, addition and multiplication in Z are well-defined.

By the definitions of addition and multiplication in Z and the closure of N under addition and
multiplication, it is clear that Z is closed under both operations. The next results can be verified
by direct calculations.

Proposition 1.5.14 The following hold in Z.

i. The element 0 = [(1, 1)] is the additive identity element of Z.

ii. If x = [(a, b)] is an element of Z, then the additive inverse of x is −x = [(b, a)].

Proposition 1.5.15 The element 1 = [(2, 1)] is the multiplicative identity element of Z.

Most elements of Z do not have multiplicative inverses. For example, let x = [(3, 1)] (so x
corresponds to the natural number 2). If there were a multiplicative inverse for x, then there would
be natural numbers c and d such that [(3, 1)] · [(c, d)] = 1 = [(2, 1)]. By definition of multiplication
in Z and properties of equivalence classes (Proposition 1.4.11), this implies (3c+d, 3d+ c) ∼ (2, 1).
Note that [(2, 1)] = {(n + 1, n) |n ∈ N} (verify!), hence this implies (3c + d, 3d + c) = (n + 1, n) for
some natural number n. Therefore 3c+d = n+1 and 3d+ c = n. Substituting the second equation
in the first, we obtain 3c + d = 3d + c + 1, or 2c = 2d + 1. But c and d are natural numbers, so 2c
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is even and 2d + 1 is odd, hence 2c cannot equal 2d + 1. Therefore no such natural numbers exist
and x = [(3, 1)] has no multiplicative inverse in Z. In fact, it can be shown that [(2, 1)] and [(1, 2)]
are the only elements of Z that have multiplicative inverses. (What are their inverses?)

Using the definitions of Z, addition, and multiplication, and the known properties of N, it can
be shown that both addition and multiplication in Z are commutative and associative, and that
the distributive law holds in Z. Along with the results and remarks above, this yields the following
theorem.

Theorem 1.5.16 With Z, addition, and multiplication defined as above, Z satisfies properties
(i)–(ix) and (xi) of Definition 1.3.1. That is, Z is a commutative ring with 1.

Identifying the element [(a, b)] of Z with the integer a − b, we see that Z is algebraically the
same as Z. That is, the two rings are isomorphic.

Construction of the Complex Numbers

Our definition of C as the “set of symbols a+bi” (Definition 1.2.1) was somewhat unsatisfactory.
We give here a more rigorous construction of the complex numbers as ordered pairs of real numbers.
Admittedly, the difference is subtle, but this construction avoids the use of formal symbols as
elements of our set. It will not be necessary to use equivalence classes as in the two previous
constructions. We will assume all of the field properties of the real numbers R.

Definition 1.5.17 Let C = R × R and for x = (a, b) and y = (c, d), define addition x + y and
multiplication x · y as follows:

i. x + y = (a, b) + (c, d) = (a + c, b + d)

ii. x · y = (a, b) · (c, d) = (ac− bd, ad + bc).

Compare this to Definition 1.2.1. We will view the element (a, b) of C as the complex number
a + bi. A real number a corresponds to the element (a, 0) of C, and (0, 1) corresponds to the
number i, so (0, 1)2 = (−1, 0) corresponds to −1 as desired.

This algebraic construction of C corresponds precisely to our earlier geometric interpretation
of C as the complex plane. In both cases, the complex number a + bi is interpreted as the ordered
pair (a, b) of real numbers. The definitions of addition and multiplication in the two interpretations
are the same.

Definition 1.5.17 and the closure of R under addition and multiplication imply that C is closed
under both operations. The following results give the additive and multiplicative identities and
inverses, and are easy to verify.

Proposition 1.5.18 The following hold in C.

i. The element 0 = (0, 0) is the additive identity element of C.

ii. If x = (a, b) is an element of C, then the additive inverse of x is −x = (−a,−b).

We have that (a, b) = 0 if and only if a = b = 0. Hence if (a, b) 6= 0, then at least one of a or b
is non-zero, and so a2 + b2 is a non-zero real number. This is used in the next result.
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Proposition 1.5.19 The following hold in C.

i. The element 1 = (1, 0) is the multiplicative identity element of C.

ii. If x = (a, b) 6= 0 is an element of C, then the multiplicative inverse of x is

x−1 =
(

a

a2 + b2
,

−b

a2 + b2

)
.

Using Definition 1.5.17, and the known properties of R, it can be shown that both addition
and multiplication in C are commutative and associative, and that the distributive law holds in C.
The proofs are very similar to those in Exercises 1.3.6–1.3.7. Along with the results and remarks
above, this yields the following theorem.

Theorem 1.5.20 With C, addition, and multiplication defined as above, C satisfies properties
(i)–(xi) of Definition 1.3.1. That is, C is a field.

The fields C and C are seen to be isomorphic by identifying the element (a, b) of C with the
complex number a + bi.

§1.5 Exercises

1. Show that the relation ∼ defined on Q by (a, b) ∼ (a′, b′) if and only if ab′ = ba′ is an
equivalence relation.

2. Prove Proposition 1.5.5, that addition and multiplication in Q are well-defined. This is
equivalent to proving that if (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) in Q, then

(a) (ad + bc, bd) ∼ (a′d′ + b′c′, b′d′) and

(b) (ac, bd) ∼ (a′c′, b′d′).

3. Prove Proposition 1.5.6. That is, show that for all [(a, b)] ∈ Q,

(a) [(0, 1)] + [(a, b)] = [(a, b)] + [(0, 1)] = [(a, b)] and

(b) [(a, b)] + [(−a, b)] = [(−a, b)] + [(a, b)] = [(0, 1)].

4. Prove Proposition 1.5.7. That is, show that

(a) [(1, 1)] · [(a, b)] = [(a, b)] · [(1, 1)] = [(a, b)] for all [(a, b)] ∈ Q and

(b) [(a, b)] · [(b, a)] = [(b, a)] · [(a, b)] = [(1, 1)] for all [(a, b)] ∈ Q with [(a, b)] 6= 0.

5. Show that the relation ∼ defined on Z by (a, b) ∼ (a′, b′) if and only if a + b′ = b + a′ is an
equivalence relation.
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6. Prove Proposition 1.5.13, that addition and multiplication in Z are well-defined. This is
equivalent to proving that if (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) in Z, then

(a) (a + c, b + d) ∼ (a′ + c′, b′ + d′) and

(b) (ac + bd, ad + bc) ∼ (a′c′ + b′d′, a′d′ + b′c′).

7. Prove Proposition 1.5.14. That is, show that for all [(a, b)] ∈ Z,

(a) [(1, 1)] + [(a, b)] = [(a, b)] + [(1, 1)] = [(a, b)] and

(b) [(a, b)] + [(b, a)] = [(b, a)] + [(a, b)] = [(1, 1)].

8. Prove Proposition 1.5.15. That is, show that [(2, 1)] · [(a, b)] = [(a, b)] · [(2, 1)] = [(a, b)] for all
[(a, b)] ∈ Q.

9. Show that no element of Z other than [(2, 1)] or [(1, 2)] has a multiplicative inverse in Z.
Find the inverses of [(2, 1)] and [(1, 2)].

10. Let 0 = [(1, 1)] and x = [(a, b)] in Z. Show that 0 · x = 0. (This shows that zero times any
“integer” is zero.)

11. Let 1 = [(2, 1)], x = [(a, b)], and y = [(c, d)] in Z. Show that (−x) · (−y) = x · y. Deduce
that in particular, (−1) · (−1) = 1 and (−1) · x = −x. (This shows that the product of two
“negative integers” is a “positive integer.”)



Chapter 2

Basic Number Theory

In this chapter, we introduce some basic ideas from Number Theory, the study of properties of the
natural numbers and integers. We will concentrate on properties related to divisibility of integers,
including greatest common divisors, prime numbers, and prime factorizations.

2.1 Principle of Mathematical Induction

Consider the following questions before reading further.

Class Preparation Problems:

1. What is “inductive” reasoning? Can it be used to prove mathematical statements?

2. Verify the following statements for as many cases as you can:

(a) 22n
+ 1 is prime for every integer n > 0.

(b) If n is any even integer greater than 4, then n is the sum of two odd primes.

3. Are the statements above true? How many cases would we need to check in order to prove
they are true? How many cases to prove false?

A mathematical proof involves “deductive” reasoning. New statements are deduced logically
from known definitions or theorems. If the hypotheses are true and the logical argument is sound,
the conclusion must be true.

Inductive reasoning, on the other hand, attempts to make general conclusions based on specific
observations. While this is a good method for constructing conjectures of what might be true, it
cannot be used to prove mathematical statements. After making some specific observations and
making a reasonable conjecture, it is still necessary to use a deductive argument based on known
results in order to prove the conjecture. Many statements are true in a few specific cases but turn
out not to be true in general. It is not possible to prove a general statement with examples.

The numbers Fn = 22n
+ 1, for n > 0 an integer, are called Fermat numbers. In the 1600s,

Fermat observed that the first five of these numbers,

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537,

35
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are prime, and conjectured that Fn is prime for all n > 0, but was unable to prove this conjecture.
The conjecture was not true, as

F5 = 225
+ 1 = 4, 294, 967, 297 = (641)(6, 700, 417)

is not prime. In fact, no other prime Fermat number has yet been found. The complete prime
factorizations of the Fermat numbers Fn for 5 6 n 6 11 are known and the numbers Fn for
5 6 n 6 32 are known to be composite. Thus the observation that Fn is prime for 0 6 n 6 4 is
rather misleading.

One version of the Goldbach Conjecture states that every even integer greater than 4 is the
sum of two odd primes. The conjecture has been verified for all even integers up to 4 · 1014 (J.
Richstein, Math. Comput. 70 (2001), 1745–1750), and there are as yet unpublished claims that
it has been verified up to 3 · 1017. Although the conjecture is believed to be true, it remains a
conjecture because despite this considerable evidence, it has not been proved. It remains possible
that there is some even integer greater than 4 that is not the sum of two odd primes.

The Principle of Mathematical Induction is a method for proving statements about natural
numbers (or integers). It is not inductive reasoning as discussed above. It is based on the following
property of natural numbers that we will assume.

Theorem 2.1.1 (Well-ordering Principle) If S is a non-empty set of natural numbers, then S
has a smallest element.

Note that this is a special property of the natural numbers. It is not true, for example, for the
set of positive real numbers or the set of positive rational numbers. It can be generalized to the set
of integers: any non-empty set of integers that is bounded below has a smallest element.

Theorem 2.1.2 (Principle of Mathematical Induction) Let S be a set of natural numbers.
If

i. 1 is in S, and

ii. whenever k is in S, k + 1 is also in S,

then S is the set of all natural numbers (that is, every natural number n is in S).

Proof. We prove the theorem by contradiction, using the Well-ordering Principle. That is, we
assume the hypotheses of the theorem and suppose the conclusion is false. We then proceed to
reach a contradiction.

Assume (i) and (ii) hold and suppose S is not the entire set N of natural numbers. The set T of
natural numbers not in S is therefore a non-empty set of natural numbers. Hence T has a smallest
element m by the Well-ordering Principle.

Now m is the smallest natural number not in S. Since 1 is in S by (i), it follows that m > 1,
so k = m − 1 is a natural number. Since k < m, we have that k is in S. But then (ii) implies
k + 1 = m is in S, which is a contradiction. Hence our assumption that S is not all of N must be
false, and the theorem is proved. ¤
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We usually do not formally consider a set S of natural numbers when using mathematical
induction. The following is an alternative version.

Theorem 2.1.3 (Principle of Mathematical Induction (alternative version)) Let P (n) be
a statement about natural numbers. If

i. P (1) is true, and

ii. whenever P (k) is true, P (k + 1) is also true,

then P (n) is true for all n > 1.

Notes:

1. It is easy to see that the two versions of the Principle of Mathematical Induction are equivalent
by letting S be the set of all natural numbers n for which P (n) is true.

2. Statement (i) is called the base step of the induction. The assumption in (ii) that k ∈ S, or
P (k) is true, is called the inductive hypothesis, and the proof of (ii) is called the inductive
step.

3. It is not necessary to start the induction at 1. In (i), if we replace 1 ∈ S with n0 ∈ S, then
the conclusion is that n ∈ S for all n > n0. (Or, if we replace “P (1) is true” with “P (n0) is
true,” the conclusion is that P (n) is true for all n > n0.) In fact, S can be a set of integers
or P (n) a statement about integers, and n0 can be any integer. That is, n0 can even be 0 or
negative.

Examples:

1. Use induction to show that 13 + 23 + 33 + · · ·+ n3 =
n2(n + 1)2

4
for n > 1.

Proof. (i) We first show that the statement is true for n = 1. When n = 1, the formula
becomes 13 = 12(1+1)2

4 = 4
4 = 1, and so the statement is true.

(ii) Next, we assume the statement is true for n = k; that is,

13 + 23 + 33 + · · ·+ k3 =
k2(k + 1)2

4
(∗)

and show that this implies the statement is true for n = k + 1; that is,

13 + 23 + 33 + · · ·+ k3 + (k + 1)3 =
(k + 1)2((k + 1) + 1)2

4

=
(k + 1)2(k + 2)2

4
.
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We have

13 + 23 + 33 + · · ·+ k3 + (k + 1)3 =
k2(k + 1)2

4
+ (k + 1)3 by (∗),

=
k2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2[k2 + 4(k + 1)]

4

=
(k + 1)2[k2 + 4k + 4]

4

=
(k + 1)2(k + 2)2

4
.

Hence if the statement is true for n = k, then the statement is true for n = k + 1.

Since (i) and (ii) hold, the statement is true for all n > 1 by the Principle of Mathematical
Induction. ¤

2. Use induction to show that
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · ·+ 1
n(n + 1)

=
n

n + 1
for n > 1.

Proof. (i) We first show that the statement is true for n = 1. When n = 1, the formula
becomes 1

1·2 = 1
1+1 , and so the statement is true.

(ii) Next, we assume the statement is true for n = k; that is,

1
1 · 2 +

1
2 · 3 +

1
3 · 4 + · · ·+ 1

k(k + 1)
=

k

k + 1
(∗)

and show that this implies the statement is true for n = k + 1; that is,

1
1 · 2 +

1
2 · 3 + · · ·+ 1

k(k + 1)
+

1
(k + 1)(k + 2)

=
k + 1

((k + 1) + 1)

=
k + 1
k + 2

.

We have
1

1 · 2 +
1

2 · 3 + · · ·+ 1
k(k + 1)

+
1

(k + 1)(k + 2)
=

k

k + 1
+

1
(k + 1)(k + 2)

by (∗),

=
k(k + 2) + 1

(k + 1)(k + 2)

=
k2 + 2k + 1

(k + 1)(k + 2)

=
(k + 1)2

(k + 1)(k + 2)

=
k + 1
k + 2

.

Hence if the statement is true for n = k, then the statement is true for n = k + 1.

Since (i) and (ii) hold, the statement is true for all n > 1 by the Principle of Mathematical
Induction. ¤
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3. Prove de Moivre’s Theorem (Corollary 1.2.11 with r = 1); i.e., show that

(cos θ + i sin θ)n = cosnθ + i sinnθ

for all n > 1.

Proof. (i) We first show that the statement is true for n = 1. When n = 1, the statement
becomes (cos θ + i sin θ)1 = cos 1θ + i sin 1θ or equivalently, cos θ + i sin θ = cos θ + i sin θ,
which is clearly true.

(ii) Next, we assume the statement is true for n = k; that is,

(cos θ + i sin θ)k = cos kθ + i sin kθ (∗)
and show that this implies the statement is true for n = k + 1; that is,

(cos θ + i sin θ)k+1 = cos[(k + 1)θ] + i sin[(k + 1)θ].

We have

(cos θ + i sin θ)k+1 = (cos θ + i sin θ)k · (cos θ + i sin θ)
= (cos kθ + i sin kθ) · (cos θ + i sin θ) by (∗),
= cos(kθ + θ) + i sin(kθ + θ) by Theorem 1.2.10,
= cos[(k + 1)θ] + i sin[(k + 1)θ],

and therefore (cos θ + i sin θ)k+1 = cos[(k + 1)θ] + i sin[(k + 1)θ]. Hence if the statement is
true for n = k, then the statement is true for n = k + 1.

Since (i) and (ii) hold, the statement is true for all n > 1 by the Principle of Mathematical
Induction. ¤

4. Use induction to show that n! > 2n for n > 4. (Recall that n! = n(n− 1)(n− 2) · · · 3 · 2 · 1.)

Proof. (i) We first show that the statement is true for n = 4. When n = 4, the inequality
becomes 4! > 24, and since 4! = 24 and 24 = 16, the statement is true. (Note that the
statement is actually false for n = 1, 2, 3.)

(ii) Next, we assume the statement is true for n = k > 4; that is,

k! > 2k (∗)
and show that this implies the statement is true for n = k + 1; that is,

(k + 1)! > 2k+1.

We have

(k + 1)! = (k + 1) · k!
> (k + 1) · 2k by (∗),
> 2 · 2k since k > 4,

= 2k+1,
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and therefore (k + 1)! > 2k+1. Hence if the statement is true for n = k, then the statement
is true for n = k + 1.

Since (i) and (ii) hold, the statement is true for all n > 4 by the Principle of Mathematical
Induction. ¤

§2.1 Exercises

Prove the following statements using the Principle of Mathematical Induction.

1. 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
for n > 1.

2. 12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
for n > 1.

3. 1 + 2 + 22 + 23 + · · ·+ 2n−1 = 2n − 1 for n > 1.

4. 1 + 3 + 5 + · · ·+ (2n− 1) = n2 for n > 1.

5. 1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n(n + 1) =
n(n + 1)(n + 2)

3
for n > 1.

6.
1

1 · 3 +
1

3 · 5 +
1

5 · 7 + · · ·+ 1
(2n− 1)(2n + 1)

=
n

2n + 1
for n > 1.

7.
(

1
2

+ 1
)
·
(

1
2

+
1
2

)
·
(

1
2

+
1
3

)
·
(

1
2

+
1
4

)
· · ·

(
1
2

+
1
n

)
=

(n + 1)(n + 2)
2n+1

for n > 1.

8.
d

dx
xn = nxn−1 for n > 1, assuming only

d

dx
x = 1 and the product rule for differentiation.

9. If x is a positive real number, then (1 + x)n > 1 + nx for all natural numbers n > 1.

10. If x and y are real numbers, then (xy)n = xnyn for all natural numbers n > 1.

11. 4n − 1 is divisible by 3 for all n > 0.

12. A set with n elements has exactly 2n subsets for n > 0.

13. 2n > n for all n > 1.

14. n! > n2 for n > 4.
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2.2 Divisibility of Integers

Definition 2.2.1 Let a and b be integers, with a 6= 0. We say a divides b, and write a | b, if
b = na for some integer n. If a does not divide b, we write a - b.

If a divides b, we also say that a is a divisor or factor of b, that b is a multiple of a, or that b
is divisible by a. It is important to note that the notation a | b stands for the statement that a
divides b; it is NOT a number. In particular a | b is not the fraction a/b.

Note that if a | b, then the rational number b
a is an integer, since if b = na for some integer n,

then b
a = n. When working with integers, however, it is usually best to use the operation of

multiplication and not division. It is therefore preferable to use the definition above in order to
prove results about divisibility.

We will need to be able to use several important basic properties of divisibility. These are listed
among the (potential) properties below. Consider the following problems before reading further.

Class Preparation Problems: Determine if each of the following statements is TRUE or FALSE.
For each true statement, give a proof. For each false statement, find an example of integers for
which the statement is false. (Answers appear on the next page.)

1. 0 | 0.

2. If a 6= 0, then a | 0.

3. If a 6= 0, then 0 | a.

4. If a 6= 0, then a | a.

5. If a and b are positive and a | b, then a 6 b.
More generally, if a and b are any non-zero integers and a | b, then |a| 6 |b|.

6. If a is any integer, then 1 | a.

7. If a | 1, then a = ±1.

8. If a | b, then b | a.

9. If a | b and b | a, then b = ±a.

10. If a | b and b | c, then a | c.
11. If a | b and a | c, then a2 | bc.
12. If a | b and d | c, then ad | bc.
13. If a | bc, then a | b or a | c.
14. If a | c and b | c, then ab | c.
15. If a | b and a | c, then a | b + c.

16. If a | b + c, then a | b or a | c.
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Statements 1, 3, 8, 13, 14, and 16 above are FALSE, the other statements are true. Statement 11
is just a special case of statement 12 (let d = a). We restate the remaining true properties in the
following theorem.

Theorem 2.2.2 (Divisibility Properties) If a, b, and c are integers, then the following prop-
erties hold.

i. If a 6= 0, then a | 0.
ii. If a 6= 0, then a | a.
iii. If a is any integer, then 1 | a.
iv. If a and b are non-zero and a | b, then |a| 6 |b|.
v. If a | 1, then a = ±1.

vi. If a | b and b | a, then b = ±a.

vii. If a | b and b | c, then a | c.
viii. If a | b and d | c, then ad | bc.
ix. If a | b and a | c, then a | b + c.

Proof. Property (i) follows from the definition and the fact that 0 = 0 · a. Properties (ii) and (iii)
both follow from a = 1 · a.

For (iv), note that if a | b, then b = na for some integer n, and so |b| = |n| · |a|. Since a and b
are non-zero, n is also non-zero and |n| > 1 because n is an integer. Thus |b| = |n| · |a| > 1 · |a| = |a|
and |b| > |a| as claimed.

For (v), we have by (iv) that if a | 1, then |a| 6 1 and a 6= 0. Since a is an integer, this leaves
only the possibility that |a| = 1 and so a = ±1. Similarly, if a | b and b | a, then |a| 6 |b| and
|b| 6 |a|, hence |a| = |b|. Again, since a and b are integers, this implies b = ±a and (vi) holds.

To prove (vii), we observe that if a | b and b | c, then by definition, b = na and c = mb for some
integers m and n. Substituting, we have

c = m(na) = (mn)a

by associativity of multiplication in Z. Since Z is closed under multiplication, mn is an integer,
and so c = (mn)a implies a | c by definition.

Similarly, if a | b and d | c, then b = na and c = md for integers m and n, and so

bc = (na)(md) = (nm)(ad)

by the associativity and commutativity of multiplication in Z. Again, since Z is closed under
multiplication, nm is an integer and bc = (nm)(ad) implies ad | bc, and so (viii) holds.

Finally, if a | b and a | c, then b = ma and c = na for some integers m and n. Thus

b + c = ma + na = (m + n)a

by the distributive law in Z. Since Z is closed under addition, m+n is an integer and b+c = (m+n)a
implies a | b + c by definition and (ix) holds. ¤
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The following theorem is very useful and important. Its proof is nearly identical to the proof
of Theorem 2.2.2 (ix) above and is left as an exercise (see Exercise 2.2.7).

Theorem 2.2.3 (Combination Theorem) If a | b and a | c, then a | bx + cy for all integers x
and y.

Theorem 2.2.2 (ix) is really just a special case of the Combination Theorem, with x = y = 1.
By setting x = 1 and y = −1 in the Combination Theorem, it follows that if a | b and a | c, then
a | b − c as well. This observation leads to the following useful corollary, whose proof is left as an
exercise (see Exercise 2.2.9).

Corollary 2.2.4 If a | r + s and a | r, then a | s.
In other words, if a divides a sum of two integers and divides one of the two integers, then a

must divide the other.

Remark: It is an easy exercise to show that if a | b, then (−a) | b. Also, a | (−b), and (−a) | (−b).
Thus the sign of an integer has no effect on divisibility, and the divisors of an integer come in pairs
(a positive divisor and its negative). We will therefore usually consider only positive divisors of
non-negative integers. Keep in mind, however, that nearly all of the results we prove are valid for
negative integers as well.

§2.2 Exercises

1. Show that if a | b, then

(a) (−a) | b,
(b) a | (−b),
(c) (−a) | (−b).

2. Use Definition 2.2.1 to prove that if a | b and c is an integer, then a | bc.
3. Use Definition 2.2.1 to prove that if a | c and b | c, then ab | c2.

4. Find integers a, b, and c such that a | bc, but a - b and a - c.

5. Find integers a, b, and c such that a | c and b | c, but ab - c.

6. Show that if c 6= 0 and ac | bc, then a | b.
7. Prove the Combination Theorem (Theorem 2.2.3):

If a | b and a | c, then a | bx + cy for all integers x and y.

8. Find integers a, b, and c such that a | b + c, but a - b and a - c.

9. Prove that if a | r + s and a | r, then a | s.
10. Use induction to prove that 4 | 5n − 1 for all n > 1.

11. Use induction to prove that 5 | 6n − 1 for all n > 1.

12. Show that if a is a fixed positive integer, then a | (a + 1)n − 1 for all n > 1.
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2.3 Division Algorithm and Greatest Common Divisor

The following questions are intended primarily to prompt review of long division and lead to ideas
on the Division Algorithm, greatest common divisors, and the Euclidean Algorithm. Try to answer
them before reading further.

Class Preparation Problems:

1. Use long division to find the quotient and remainder for the following division problems:

1027÷ 8

1737÷ 9

2. How do you know when the long division process is finished?

3. Write an equation relating 1027, 8, and the quotient and remainder from the division 1027÷8.
Do the same for 1737 and 9.

4. Characterize the property a | b in terms of the quotient and remainder in the division b÷ a.

5. Use a calculator to find the quotient and remainder for the following division problems:

5746÷ 90

97635682÷ 8923

6. Explain your method for finding the quotient and remainder in the problems above. Why
does your method work?

7. Devise a method for using subtraction to divide a positive integer b by a positive integer a to
find the quotient and remainder.

8. How would you define the greatest common divisor (GCD) of two integers a and b? Are any
restrictions on a and b necessary?

9. What methods do you know for finding the greatest common divisor of two integers? Make
up some examples using your methods.

10. Methods taught in school for finding the greatest common divisor of integers a and b usually
involve knowing all divisors or the prime factorizations of a and b. Do these methods work
well for finding the GCD of 2145 and 546? What about the GCD of 100980 and 124488?
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Long Division and the Division Algorithm

When we use long division to divide an integer b (the dividend) by an integer a (the divisor),
the process continues until the remainder is less than |a|. (Note that the word “divisor” has a
different meaning here than when we called a a divisor of b if a | b.) This guarantees the uniqueness
of the quotient and remainder — there cannot be two different correct answers to a long division
problem. The following theorem precisely states this property of division of integers. The Division
Algorithm is usually proved by using the long division procedure along with induction. The proof
is omitted here.

Theorem 2.3.1 (Division Algorithm) If a and b are integers with a > 0, then there exist unique
integers q and r satisfying b = qa + r and 0 6 r < a.

Remarks:

1. The integer q is called the quotient and r is the remainder on division of b by a.

2. The uniqueness of the remainder r is guaranteed by the condition that 0 6 r < a. There are
many integers q and r such that b = qa + r, but only one pair q, r also satisfying 0 6 r < a.
This uniqueness will be of great importance to us in our further study of properties of the
integers.

3. In terms of rational numbers, the equation b = qa + r can be rewritten as b
a = q + r

a . The
condition that 0 6 r < a guarantees that 0 6 r

a < 1. Thus q is the integer part of b
a and r

a is
the fractional part.

4. The condition that a | b is equivalent to the condition that the remainder r is 0.

5. It is not necessary to assume that a is positive in the Division Algorithm, if we assume that
a 6= 0 and replace the condition 0 6 r < a with 0 6 r < |a|. We will usually only consider
division of positive integers, however, so assuming a > 0 will cause no serious problems.

The Division Algorithm is an extremely important theorem that will be the basis for much of
what follows.

Greatest Common Divisor

A common divisor of two integers a and b is an integer that divides both a and b (that is,
it is a divisor of both a and b). Naturally, the greatest common divisor of a and b is the largest
among all common divisors. The precise definition is as follows.

Definition 2.3.2 Let a and b be integers, at least one of which is not 0. The greatest common
divisor of a and b is the (positive) integer d satisfying

i. d | a and d | b,
ii. if c | a and c | b, then c 6 d.
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Remarks:

1. We use the notation (a, b) for the greatest common divisor of a and b. We also frequently use
the abbreviation GCD.

2. Since 1 | a and 1 | b, condition (ii) of the definition implies d > 1. It is therefore not really
necessary to specify that the GCD is a positive integer in the definition.

3. Condition (i) of the definition says that d is a common divisor of a and b. Condition (ii) says
that d is larger than any other common divisor.

4. The GCD of two integers a and b is unique. (Exercise: Prove this.)

Finding all divisors of a and b and searching among them for the largest integer dividing both is
not practical for large numbers. It is also not computationally feasible to use methods that require
the prime factorizations of a and b, unless they are known ahead of time. A more computationally
efficient method is the Euclidean Algorithm, demonstrated in the following example.

Example: Find the GCD of 657 and 306.
Start by using the Division Algorithm to find the quotient and remainder when dividing 657 by

306. For each successive step, divide the divisor of the current step by the remainder of the current
step. Continue until the remainder is 0.

657 = 2× 306 + 45 (2.1)
306 = 6× 45 + 36 (2.2)
45 = 1× 36 + 9 (2.3)
36 = 4× 9 + 0 (2.4)

Here 9 is the last non-zero remainder, and we claim that (657, 306) = 9.
We first show condition (i) of the definition holds, that 9 | 657 and 9 | 306. Equation 2.4 above

implies 9 | 36 and by basic properties of divisibility we know 36 | 36. Thus Equation 2.3 and the
Combination Theorem together imply that 9 | 45. We now have 9 | 36 and 9 | 45, so Equation 2.2
and the Combination Theorem imply 9 | 306. Finally, since 9 | 45 and 9 | 306, Equation 2.1 and the
Combination Theorem imply 9 | 657. Hence (i) holds. (Note: We obviously could have shown that
9 divides both 657 and 306 by computation, but the method demonstrated here works to prove the
result in general.)

We next show that condition (ii) of the definition holds, that if c | 657 and c | 306, then c 6 9.
By the equations above, we have:

45 = 657− 2× 306 (2.5)
36 = 306− 6× 45 (2.6)
9 = 45− 1× 36 (2.7)

If c | 657 and c | 306, then Equation 2.5 and the Combination Theorem imply that c | 45. Equa-
tion 2.6 and the Combination Theorem then imply that c | 36, and finally Equation 2.7 and the
Combination Theorem imply c | 9. Hence by Theorem 2.2.2 (iv), we have c 6 9, and condition (ii)
holds.

We have shown that 9 satisfies the definition of the GCD of 657 and 306. Hence (657, 306) = 9
as claimed. ¤
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The general method for finding the greatest common divisor of two integers is the Euclidean
Algorithm, described as follows.

Theorem 2.3.3 (Euclidean Algorithm) Let A and B be positive integers, with B > A. Use the
Division Algorithm to obtain the following system of equations:

B = Q1A + R1, 0 < R1 < A
A = Q2R1 + R2, 0 < R2 < R1

R1 = Q3R2 + R3, 0 < R3 < R2

...
...

...
...

Rn−2 = QnRn−1 + Rn, 0 < Rn < Rn−1

Rn−1 = Qn+1Rn.

The last non-zero remainder, Rn, is the greatest common divisor of A and B.

Remarks:

1. The procedure used in the example above can be used to show that Rn divides both A
and B, and if c | A and c | B then c | Rn, hence in particular c 6 Rn. It then follows from
the definition that Rn = (A,B).

2. If d = (A,B), then by definition d is greater than any other common divisor. In the proof of
the Euclidean Algorithm, we see that in fact d is divisible by any other common divisor. This
stronger result will be stated more formally later.

We will give a more direct proof of the Euclidean Algorithm, using the following lemma and
induction.

Lemma 2.3.4 If a and b are non-zero integers, and q and r are integers such that b = qa+r, then
(b, a) = (a, r).

Proof. If c | a and c | r, then by the Combination Theorem, c | qa + r; that is, c | b. Conversely,
if c | b and c | a, then c | b − qa; that is, c | r. Therefore, the set of common divisors of a and r
is precisely the same as the set of common divisors of b and a. The largest number in this set of
common divisors is then equal to (a, r) and to (b, a), hence (a, r) = (b, a). ¤

Proof of Theorem 2.3.3. We will first show that (B, A) = (Ri, Ri+1) for all i = 1, . . . , n − 1. The
proof is by induction on i.

By Lemma 2.3.4, B = Q1A + R1 implies that (B, A) = (A,R1) and A = Q2R1 + R2 implies
that (A,R1) = (R1, R2). Hence (B, A) = (R1, R2) and the claim holds for i = 1.

Now assume the claim is true for i = k; that is, (B, A) = (Rk, Rk+1). Since

Rk = Qk+2Rk+1 + Rk+2,

Lemma 2.3.4 implies (Rk, Rk+1) = (Rk+1, Rk+2). Thus (B,A) = (Rk+1, Rk+2), and the claim is
true for i = k + 1.
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By the Principle of Mathematical Induction, we therefore have that (B, A) = (Ri, Ri+1) for all
i = 1, . . . , n− 1. In particular, (B,A) = (Rn−1, Rn).

Finally, Rn | Rn and Rn | Rn−1 (as Rn−1 = Qn+1Rn), and if c is any other common divisor,
then c | Rn and so c 6 Rn. Hence (B, A) = (Rn−1, Rn) = Rn and the theorem is proved. ¤

Another important property of the GCD of two integers is that it can be written as a combination
of the integers in a particular way. In general, the remainder in each equation in the Euclidean
Algorithm can be written as a combination of the dividend and divisor of the equation. Working
backwards through the algorithm, we can then always write the GCD of a and b as an integer
combination of a and b, that is, (a, b) = ax + by for some integers x and y. This result will be
stated formally and proved in the next section (see Theorem 2.4.5). The procedure is demonstrated
in the following example.

Example: We used the Euclidean Algorithm to find (657, 306), and had the following equations:

657 = 2× 306 + 45 (2.8)
306 = 6× 45 + 36 (2.9)
45 = 1× 36 + 9 (2.10)
36 = 4× 9 + 0 (2.11)

We begin with Equation 2.10, writing the remainder 9 as a combination of the previous dividend
45 and previous remainder 36. Continue the procedure with each previous equation:

9 = 45− 1(36) by Equation 2.10,
= 45− 1[306− 6(45)] by Equation 2.9,

= (−1)306 + 7(45)
= (−1)306 + 7[657− 2(306)] by Equation 2.8,

= 7(657)− 15(306).

Thus we can write 9 = (657, 306) = 657(7) + 306(−15). ¤
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§2.3 Exercises

1. Use long division to find the quotient and remainder for the following divisions, and write the
equation of the form b = qa + r for each.

(a) 4752÷ 35

(b) 9976÷ 43

2. Use a calculator to find the quotient and remainder for the following divisions, and write the
equation of the form b = qa + r for each.

(a) 2351487÷ 5726

(b) 84637851÷ 7498

3. Show that at least one of any three consecutive integers must be divisible by 3.
[Hint: Let b, b + 1, and b + 2 be the three consecutive integers. By the Division Algorithm
(Theorem 2.3.1), there are three cases to consider: b = 3q, b = 3q + 1, or b = 3q + 2, for some
integer q.]

4. Use the Euclidean Algorithm to find (2145, 546).

5. Use the Euclidean Algorithm to find (3054, 162).

6. Use the Euclidean Algorithm to find (5967, 1540).

7. Use the Euclidean Algorithm to find (272, 119) and then find integers x and y such that
(272, 119) = 272x + 119y.

8. Use the Euclidean Algorithm to find (495, 210) and then find integers x and y such that
(495, 210) = 495x + 210y.

9. Use the Euclidean Algorithm to find (264, 189) and then find integers x and y such that
(264, 189) = 264x + 189y.

10. Use the Euclidean Algorithm to find (510, 414) and then find integers x and y such that
(510, 414) = 510x + 414y.

11. Show that if (a, b) = 1 and c | a, then (c, b) = 1.

12. Show that if a and b are integers, at least one of which is non-zero, then (−a, b) = (a, b).
[Hint: Let d = (−a, b) and show that d satisfies the conditions of Definition 2.3.2 for (a, b).]

13. Show that if a and b are integers with a > 0 and a | b, then (a, b) = a.
[Hint: Show that a satisfies the conditions of Definition 2.3.2.]

14. Use Exercise 13 to show that if a and b are integers with a > 0, then the following hold:

(a) (a, 0) = a,

(b) (1, b) = 1,

(c) (a, a) = a.
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2.4 Properties of the Greatest Common Divisor

The following basic property of the GCD is easily verified using the definition of GCD and properties
of divisibility.

Proposition 2.4.1 Let a and b be integers with a > 0. If a | b, then (a, b) = a.

Proof. We show that parts (i) and (ii) of the definition of GCD (Definition 2.3.2) are satisfied by a.
Since a 6= 0, we know that a | a (Theorem 2.2.2 (ii)), and we are given that a | b. Hence part (i) of
the definition holds with d = a.

Suppose now that c is an integer such that c | a and c | b. Since a > 0 and c | a, we have
c 6 a by Theorem 2.2.2 (iv). Hence part (ii) of the definition holds with d = a, and so (a, b) = a
as claimed. ¤

Applying the proposition to certain special cases, we get an immediate corollary.

Corollary 2.4.2 If a and b are integers with a > 0, then

i. (a, 0) = a,

ii. (1, b) = 1,

iii. (a, a) = a.

Proof. Since a > 0, we have by Theorem 2.2.2 that a | 0, 1 | b, and a | a. Thus (i), (ii), and (iii),
respectively, follow from Proposition 2.4.1. ¤

We noted previously that the divisors of an integer and its negative are the same. Therefore
the signs of the integers a and b do not affect the GCD of a and b, and so the following proposition
holds.

Proposition 2.4.3 If a and b are integers, at least one of which is not 0, then

(a, b) = (a,−b) = (−a, b) = (−a,−b).

In an earlier example, we used the Euclidean Algorithm to show (657, 306) = 9. In the process,
we actually showed that if c | 657 and c | 306, then not only is c 6 9, but in fact c | 9. Moreover, we
showed that (657, 306) could be written as an integer combination of 657 and 306. In particular,
we found that (657, 306) = 9 = 657(7) + 306(−15). Both of these observations are true in general
and can be proved by working through the equations arising in the Euclidean Algorithm (see
Theorem 2.3.3), as demonstrated in the examples.

We will prove both of these properties of the GCD in another way, using the following important
characterization of the GCD.
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Lemma 2.4.4 Let a and b be integers, at least one of which is not 0. The GCD of a and b is the
smallest positive integer that can be written in the form ar + bs for integers r and s.

Proof. Let a and b be integers, at least one of which is not 0, and define the set

S = {ar + bs | r, s ∈ Z and ar + bs > 0}.
Since at least one of a or b is non-zero, at least one of a, −a, b, or −b is positive and is therefore
in S. In particular, S is a non-empty set of natural numbers, hence has a smallest element d by the
Well-ordering Principle (Theorem 2.1.1). Since d ∈ S, we have d = ax + by for some integers x, y.

The conclusion of the theorem is that this positive integer d is the GCD of a and b. We will
show that d satisfies parts (i) and (ii) of Definition 2.3.2, hence d = (a, b).

We first show (i), that d | a and d | b. By the Division Algorithm (Theorem 2.3.1), we can write
a = qd + r for integers q and r with 0 6 r < d. Moreover, we can express r as

r = a− qd = a− q(ax + by) = a(1− qx) + b(−qy).

Since 1 − qx and −qy are integers, if r > 0, then r ∈ S. However, d was chosen as the smallest
element of S and r < d. Hence r is not an element of S, and so r = 0 and a = qd. Therefore d | a.
The proof that d | b is nearly identical and is left as an exercise.

Finally, we show (ii), that if c is an integer such that c | a and c | b, then c 6 d. Suppose c | a
and c | b. Since d = ax + by with x, y ∈ Z, the Combination Theorem (Theorem 2.2.3) says that
c | d. Since c | d and d > 0, it follows from Theorem 2.2.2 (iv) that c 6 d as claimed. ¤

The two properties of the GCD mentioned above now follow easily from this lemma.

Theorem 2.4.5 If a and b are integers, at least one of which is not 0, then there are integers x
and y such that (a, b) = ax + by.

Proof. This follows immediately from Lemma 2.4.4. ¤

This theorem states that the GCD of a and b can be written as an integer combination of a and b.
Note, however, that the GCD is not the only integer that can be written as such a combination.
For example, since 9 = 657(7) + 306(−15), we also have 45 = 657(35) + 306(−75). In fact, any
multiple of 9 can be written as a combination of 657 and 306, as n · 9 = 657(7n) + 306(−15n).

More generally, we have the following characterization of integers that can be written in the
form ar + bs, with r and s integers.

Corollary 2.4.6 Let a and b be integers, at least one of which is not 0. Let d = (a, b) and let m
be an integer. The integer m can be written in the form m = ar + bs, with r and s integers, if and
only if m is a multiple of d (that is, d | m).

Proof. If m = ar+bs for some integers r and s, then since d | a and d | b, the Combination Theorem
implies d | m. Thus m is a multiple of d.

Conversely, suppose m is a multiple of d, so that m = nd for some integer n. Since d = ax + by
for some x, y ∈ Z by Theorem 2.4.5, we have m = nd = a(nx) + b(ny), and nx, ny are integers.
Hence d can be expressed in the form ar + bs, with r = nx and s = ny integers. ¤

In particular, the fact that m = ar+bs for some integers r and s does not imply that m = (a, b).
It only implies m is a multiple of (a, b).
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Theorem 2.4.7 Let a and b be integers, at least one of which is not 0. If c | a and c | b, then
c | (a, b).

Proof. By Theorem 2.4.5, we can write (a, b) = ax + by with x, y ∈ Z. If c | a and c | b, then by the
Combination Theorem, we have c | ax + by, and so c | (a, b) as claimed. ¤

Thus, not only is (a, b) greater than any other common divisor of a and b, (a, b) is also divisible
by any other common divisor. By basic properties of divisibility, we know that if c | (a, b), then
c 6 (a, b) as well (since (a, b) is positive). We could therefore obtain an alternate definition of the
GCD by replacing c 6 d in condition (ii) by c | d. This does not guarantee that d is positive,
however, so d > 0 would also have to be assumed. We state this equivalent characterization of the
GCD as a theorem.

Theorem 2.4.8 Let a and b be integers, at least one of which is not 0, and let d be a positive
integer. Then d = (a, b) if and only if

i. d | a and d | b, and

ii. if c | a and c | b, then c | d.

Relatively Prime Pairs of Integers

To study further properties of divisibility and the GCD, we will consider a special case.

Definition 2.4.9 We say two integers a and b are relatively prime (or coprime) if (a, b) = 1.

Work through the following problems prior to reading further.

Class Preparation Problems:

1. Derive the consequences of Lemma 2.4.4, Theorem 2.4.5, and Corollary 2.4.6 in the case where
a and b are relatively prime.

2. Show that (5, 8) = 1 and find integers x and y so that 5x + 8y = 1.

3. Express 2, −13, and 37 in the form 5r + 8s, with r and s integers. Are there any integers m
that cannot be written in this form? Explain.

4. Suppose you want to put a certain number of gallons of water into a pool, and you only have
an 8 gallon bucket and a 5 gallon bucket (with no markings) to measure the water. How
could you measure 7 gallons of water into the pool? What about 11 gallons? For any positive
integer m, how could you measure m gallons into the pool?

5. Suppose now that you have only a 9 gallon bucket and a 12 gallon bucket. Could you measure
15 gallons of water into the pool? What about 20 gallons? What integer numbers of gallons
of water can be measured?
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6. What relationship between the bucket sizes is necessary in order to guarantee that every
positive integer number of gallons of water can be measured with two buckets? (Given
sufficient water supply, of course.)

7. Note that 6 = 132(8) + 105(−10). Can we conclude that (132, 105) = 6? Why or why not?

8. Now note that 1 = 130(16) + 231(−9). Can we conclude that (130, 231) = 1? Why or why
not?

9. Verify that (6, 10) = 2. Also find the following GCDs:

(12, 20) = (2 · 6, 2 · 10)
(30, 50) = (5 · 6, 5 · 10)
(42, 70) = (7 · 6, 7 · 10)

(60, 100) = (10 · 6, 10 · 10).

Do these calculations suggest a general result?

10. Note again that (6, 10) = 2. What is (6
2 , 10

2 ) = (3, 5)? Observe also that (24, 54) = 6. What
is (24

6 , 54
6 ) = (4, 9)? Do these examples suggest a general result?

We now study further properties of the GCD and derive some consequences of previous theorems
in the case that a and b are relatively prime.

Theorem 2.4.10 If (a, b) = 1, then there are integers x and y such that ax + by = 1.

Proof. This is Theorem 2.4.5 with (a, b) = 1. ¤

Corollary 2.4.11 If (a, b) = 1 and m is any integer, then there are integers r and s such that
m = ar + bs.

Proof. Since (a, b) = 1 and 1 | m for every integer m, this follows from Corollary 2.4.6. ¤

We saw before that in general m = ax+by, with x and y integers, does not imply that m = (a, b).
We were able to describe all integers that can be expressed in this form. If 1 = ax + by for some
integers x and y, however, we can conclude that (a, b) = 1. We get the converse of Theorem 2.4.10
in this special case.

Theorem 2.4.12 If there are integers x and y such that ax + by = 1, then (a, b) = 1.

Proof. Since 1 = ax + by with x, y ∈ Z, it follows from Corollary 2.4.6 that (a, b) | 1. Hence by
Theorem 2.2.2 (v), (a, b) = ±1, and since (a, b) > 0, we have (a, b) = 1. ¤
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The next results are the general theorems suggested by Problems 9 and 10 above.

Theorem 2.4.13 If (a, b) = d and m is any positive integer, then (ma,mb) = md; i.e. (ma,mb) =
m(a, b).

Proof. We are given that (a, b) = d and need to show that (ma,mb) = md. Therefore, by
Theorem 2.4.8, we need to show

i. md | ma and md | mb, and

ii. if c | ma and c | mb, then c | md.

(i) Since (a, b) = d, we have d | a and d | b. Hence a = dr and b = ds for some r, s ∈ Z. Thus
ma = (md)r and mb = (md)s, and so md | ma and md | mb.

(ii) Since (a, b) = d, we have d = ax + by for some x, y ∈ Z, by Theorem 2.4.5. Therefore
md = (ma)x + (mb)y, and so if c | ma ad c | mb, then c | md by the Combination Theorem. ¤

Theorem 2.4.14 If (a, b) = d, then (a
d , b

d) = 1.

Proof. Since (a, b) = d, both a
d and b

d are integers. Therefore, by Theorem 2.4.13,

d = (a, b) =
(

d · a

d
, d · b

d

)
= d ·

(
a

d
,
b

d

)
.

Since d 6= 0, we can divide both sides of the equation by d to obtain 1 = (a
d , b

d). ¤

Note that in general, both a and b must be divided by (a, b) in order to obtain a pair of relatively
prime integers. For example, (12, 10) = 2 and, consistent with the theorem,

(
12
2

,
10
2

)
= (6, 5) = 1.

However, (
12
2

, 10
)

= (6, 10) = 2 6= 1.

On previous exercises, we showed that, in general, (1) a | bc does not imply a | b or a | c, and
that (2) a | c and b | c does not imply ab | c. We do get these implications if we add an appropriate
condition, however.

Theorem 2.4.15 (Euclid’s Lemma) If a | bc and (a, b) = 1, then a | c.

Proof. Since (a, b) = 1, we have 1 = ax + by for some x, y ∈ Z, by Theorem 2.4.10. Thus

c = (ax + by)c
= (ax)c + (by)c
= a(xc) + (bc)y.

Since a | a and a | bc, we have a | a(xc) + (bc)y by the Combination Theorem, and hence a | c. ¤
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Theorem 2.4.16 If a | c and b | c, and (a, b) = 1, then ab | c.
Proof. Since (a, b) = 1, we have 1 = ax + by for some x, y ∈ Z, by Theorem 2.4.10. Since a | c and
b | c, we have c = am and c = bn for some m,n ∈ Z. Thus

c = c(ax + by)
= c(ax) + c(by)
= (ca)x + (cb)y
= (bna)x + (amb)y
= ab(nx + my).

All of m, n, x, and y are integers and Z is closed under addition and multiplication, hence nx+my
is an integer. Thus c = ab(nx + my) implies ab | c. ¤

These results can be generalized as in the following theorems. The proofs are nearly identical to
those of Theorems 2.4.15 and 2.4.16 above, and are left as exercises (see Exercises 2.4.2 and 2.4.3).

Theorem 2.4.17 If a | bc and (a, b) = d, then a | cd.
Theorem 2.4.18 If a | c and b | c, and (a, b) = d, then ab | cd.

§2.4 Exercises

1. Assume that 8 = (56, 72) = 56(4) + 72(−3). Determine which of the following integers can
be expressed in the form 56r + 72s, with r and s integers. For those that can, find r and s,
and for those that cannot, explain why.

(a) −16

(b) −28

(a) 42

(b) 64

(c) 70

(d) −88

2. Show that if a | bc and (a, b) = d, then a | cd; that is, prove Theorem 2.4.17.
[Hint: Adapt the proof of Euclid’s Lemma (Theorem 2.4.15), using the fact that d = ax + by
for some integers x and y.]

3. Show that if a | c and b | c, and (a, b) = d, then ab | cd; that is, prove Theorem 2.4.18.
[Hint: Adapt the proof of Theorem 2.4.16, using the fact that d = ax + by for some integers
x and y.]

4. Explain how you could measure out exactly 13 ounces of water given a 7 ounce cup and a 9
ounce cup. Is there any positive integer m for which it would be impossible to measure m
ounces of water? (Assume an unlimited supply of water.) Explain.

5. Which of the amounts of water below could be measured given a 6 ounce cup and a 9 ounce
cup, and which could not? Fully explain your answer.

(a) 3 ounces

(b) 8 ounces

(c) 11 ounces

(d) 21 ounces
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2.5 Prime Numbers

Work through the following questions prior to reading further.

Class Preparation Problems:

1. What is a prime number?

2. What is a composite number?

3. Is 1 a prime?

4. Are there any even primes? If so, how many?

5. How can we determine if a number is prime or not? That is, given an integer n, how would
you go about deciding whether or not n is prime? Is it necessary to check all positive integers
less than or equal to n as potential divisors?

6. How many primes are there? Finitely many? Infinitely many?

7. Is there a largest prime number?

8. We have seen that in general, if a | bc then a may or may not divide b or c. If p is prime and
p | bc, does p necessarily divide a or b? Why or why not? Can you find an example where p
is prime and p | bc, but p - b and p - c?

9. If p is prime, can
√

p be a rational number?

10. If n is a positive integer, under what conditions is
√

n a rational number? Can
√

n be rational
and not be an integer?

11. What is meant by the prime factorization of a positive integer?

12. Can every positive integer be written as a product of prime numbers?

13. Can a positive integer be written as a product of primes in more than one way (other than
the obvious variation of changing the order of the primes)?

Definition 2.5.1 An integer p > 1 is a prime number (or a prime) if the only positive divisors
of p are 1 and p. If an integer n > 1 is not prime, we say n is a composite number.

Remarks:

1. The first few primes are 2, 3, 5, 7, 11, 13, 17, 19, 23. The only even prime is 2, since every
even number has 2 as a factor.

2. The largest known prime is 243,112,609− 1, with 12, 978, 189 digits, discovered in August 2008.

3. The websites www.mersenne.org and www.utm.edu/research/primes are excellent sources
for information on prime numbers.

4. An integer n > 1 is composite if and only if n = a ·b, for some integers a and b with 1 < a < n
and 1 < b < n.
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Theorem 2.5.2 (Prime Divisor Principle) If n is an integer and n > 1, then there is a prime p
that divides n.

Proof. Let S be the set of all divisors d of n with d > 1. Since n | n and n > 1, we have n ∈ S
and so S is non-empty. By the Well-ordering Principle (Theorem 2.1.1), S has a smallest element,
say p. Thus p is the smallest divisor of n that is greater than 1. We will show that p is a prime.

Suppose p is not prime. Then, since p > 1, we have p = ab, where a and b are integers satisfying
1 < a < p and 1 < b < p. Now p = ab, so a | p, and we chose p to be a divisor of n, so p | n.
Thus by transitivity of divisibility (Theorem 2.2.2 (vii)), we have a | n. But 1 < a < p and p is
the smallest divisor of n greater than 1, a contradiction. Therefore, our assumption that p is not
prime must be false, and so p is prime. ¤

In order to prove that a given positive integer n is prime using the definition, it is necessary to
verify that no integer a with 1 < a < n is a divisor of n. By the Prime Divisor Principle, it is only
necessary to determine whether each prime less than n is a divisor of n. The next results further
reduce the amount of work required.

Lemma 2.5.3 If n > 1 is a composite number, then there is a prime p with p | n and p 6 √
n.

Proof. Since n is composite, we know that n = ab for some a, b ∈ Z with 1 < a < n and 1 < b < n.
We may assume without loss of generality that a 6 b. If a >

√
n, then we have b >

√
n and so

n = ab >
√

n
√

n = n,

a contradiction. Hence a 6 √
n.

By the Prime Divisor Principle, there is a prime p such that p | a. Since p | a and a | n,
Theorem 2.2.2 (vii) implies p | n. Since p | a and a > 0, Theorem 2.2.2 (iv) implies p 6 a. We
showed that a 6 √

n, hence p 6 √
n. ¤

The following theorem is an equivalent restatement of the lemma.

Theorem 2.5.4 (Prime Test) Let n > 1 be an integer. If no prime p with p 6 √
n divides n,

then n is prime.

Proof. Since n > 1, either n is prime or n is composite. If n were composite, then Lemma 2.5.3
implies there would be a prime divisor p of n with p 6 √

n. By hypothesis, this is not the case,
and so n is prime. ¤

An ancient method for listing all primes up to a given number n is the Sieve of Eratosthenes.
First write down all the numbers from 2 up to n. Start by crossing out all multiples of 2. The first
number not crossed out is a prime (in this step, 3). Next cross out all multiples of this next prime.
Again, the next number not crossed out is prime. Continue this process until the next number
remaining is greater than

√
n. All of the numbers not crossed out are then primes.

Unfortunately, this method has several drawbacks. What possible drawbacks to this method
do you see?
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We mentioned above that the largest currently known prime is 243,112,609 − 1. However, there
can be no absolute largest prime, as the following result of Euclid implies.

Theorem 2.5.5 There are infinitely many primes.

Proof. Suppose that there are only finitely many primes, say p1, p2, p3, . . . , pk are all of them. By
Theorem 2.5.2, the integer

n = p1 · p2 · p3 · · · pk + 1

has a prime divisor p, which must be in the given list of primes, say p = pi. Now p | n and
pi | p1 · p2 · p3 · · · pk, hence p | p1 · p2 · p3 · · · pk. The Combination Theorem then implies

p | n− p1 · p2 · p3 · · · pk,

that is, p | 1. But this implies p = ±1, contradicting the fact that p is prime. Hence our assumption
that there are only finitely many primes must be false. ¤

The next theorem is a special case of Euclid’s Lemma where the divisor is prime.

Theorem 2.5.6 (Euclid’s Lemma for Primes) If p is a prime and p | ab, then p | a or p | b.

Proof. Since p is prime and (p, a) is a positive divisor of p, we have that either (p, a) = 1 or
(p, a) = p. If (p, a) = 1, then p | b by Euclid’s Lemma (Theorem 2.4.15). If (p, a) = p, then p | a by
definition of GCD. Hence either p | a or p | b. ¤

Corollary 2.5.7 If p is prime and p | a1a2 · · · an, then p | ai for some i.

Proof. We proceed by induction on the number n of factors. If n = 1, the hypothesis becomes
p | a1 and the conclusion is obvious. Hence the result is true if n = 1.

Assume now that the result holds for n = k; that is,

if p | a1a2 · · · ak then p | ai for some i = 1, 2, . . . , k (*)

and show that the result holds for n = k + 1; that is,

if p | a1a2 · · · akak+1 then p | ai for some i = 1, 2, . . . , k + 1.

Let a = a1a2 · · · ak and b = ak+1. If p | a1a2 · · · akak+1, then p | ab. By Theorem 2.5.6, we have
that p | a or p | b. If p | a, then p | a1a2 · · · ak, and by the inductive hypothesis (*), p | ai for
some i = 1, 2, . . . , k. If p | b, then p | ak+1. Hence, in any case, p | ai for some i = 1, 2, . . . , k + 1.
Therefore, if the statement is true for n = k, then it is true for n = k + 1, hence the result holds
for all n > 1 by the Principle of Mathematical Induction. ¤

Corollary 2.5.8 If p is prime and p | q1q2 · · · qn, where q1, q2, . . . , qn are primes, then p = qi for
some i.

Proof. By the previous corollary, if p | q1q2 · · · qn, then p | qi for some i = 1, 2, . . . , n. Since qi is
prime, its only positive divisors are 1 and qi, and since p > 1, this implies p = qi. ¤
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A nice application of Euclid’s Lemma is one of the proofs of the irrationality of
√

2, or more
generally of the square root of a prime.

Theorem 2.5.9 If p is a prime, then
√

p is irrational.

Proof. Let p be prime and suppose
√

p is rational. We can then write
√

p = a
b , where a and b are

integers and the fraction is in lowest terms, that is, (a, b) = 1. It follows that a2 = pb2.
We have p | a2, or p | a · a, and so p | a by Theorem 2.5.6. Thus a = pm for some integer m,

and substituting in the equation above yields p2m2 = pb2. Since p 6= 0 we can divide both sides of
this equation by p to obtain pm2 = b2. As before, this implies p | b2, and so by Theorem 2.5.6, we
have p | b.

We have shown that the prime p divides both a and b, contradicting the fact that (a, b) = 1.
Hence our assumption that

√
p is rational must be false. ¤

Using properties of the GCD, we can generalize this result to characterize the integers whose
square roots are rational.

Theorem 2.5.10 If n is a positive integer, then either n is a perfect square (that is,
√

n is an
integer) or

√
n is irrational.

Proof. Let n ∈ Z and suppose
√

n is rational. We can then write
√

n = a
b with (a, b) = 1, thus

a = b
√

n. By Theorem 2.4.10, 1 = ax + by for some integers x and y. Multiplying both sides of
this equation by

√
n and substituting using a = b

√
n yields

√
n = a

√
nx + b

√
ny

= (b
√

n)
√

nx + ay

= bnx + ay.

Since a, b, n, x, and y are all integers and Z is closed under multiplication and addition, we have
that bnx + ay =

√
n is an integer. We have shown that if

√
n is rational, then

√
n is an integer,

and the theorem follows. ¤

The next result is an extremely important property of integers (as the name suggests) that we
usually take for granted.

Theorem 2.5.11 (Fundamental Theorem of Arithmetic) Every integer n > 1 is either a
prime or is a product of primes. The expression of n as a product of primes is unique except for
the order in which the factors are written.

Proof. We first show such a factorization exists. By the Well-ordering Principle (Theorem 2.1.1),
if there is an integer greater than 1 that is not a prime or a product of primes, then there is a
smallest such integer, say m. Since m > 1 and m is not prime, m = ab for some integers a and b
with 1 < a < m and 1 < b < m. By the minimality of m, each of a, b is either prime or a product
of primes. Hence ab = m is a product of primes, contradicting the choice of m. Therefore, our
assumption that there is an integer greater than 1 that is neither prime nor a product of primes
must be false.
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To prove uniqueness, suppose n can be written as a product of primes in two ways. Let
p1, p2, . . . , pr be all of the distinct primes that appear in at least one of the two factorizations.
Writing products of repeated prime factors as powers, and recalling that p0

i = 1, we can write the
two factorizations in the form

n = pa1
1 pa2

2 · · · par
r = pb1

1 pb2
2 · · · pbr

r ,

where ai, bi ∈ Z and ai > 0, bi > 0 for all i (and, for each i, at least one of ai, bi is non-zero). We
must show that ai = bi for all i.

Suppose that ai 6= bi for some i. We may assume, without loss of generality, that i = 1 and
b1 < a1. Dividing both factorizations by pb1

1 yields

pa1−b1
1 pa2

2 · · · par
r = pb2

2 · · · pbr
r .

Now b1 < a1, hence a1 − b1 > 0 and so p1 divides the factorization on the left. By equality, we
must also have

p1 | pb2
2 · · · pbr

r .

By Corollary 2.5.8, this implies p1 = pj for some 2 6 j 6 r, contradicting the fact that p1, p2, . . . , pr

are distinct primes. Hence ai = bi for all i and the expression of n as a product of primes is unique,
except for the order of the factors. ¤

By prescribing that the primes in a prime factorization be written in increasing order and
writing repeated products as powers, we obtain an absolutely unique prime factorization for each
integer greater than 1.

Corollary 2.5.12 Every integer n > 1 can be expressed in exactly one way in the form

n = pa1
1 pa2

2 · · · par
r ,

where p1 < p2 < · · · < pr are primes and ai > 1 for all i.

Definition 2.5.13 The expression of n as a product of prime powers satisfying the conditions in
Corollary 2.5.12 is called the canonical prime factorization of n.

Example: If n = 246, 960, then n can be written as a product of primes in various ways:

246, 960 = 2 · 3 · 5 · 7 · 2 · 3 · 7 · 2 · 7 · 2
= 7 · 7 · 7 · 5 · 3 · 3 · 2 · 2 · 2 · 2
= 7 · 5 · 3 · 2 · 7 · 3 · 2 · 7 · 2 · 2
= 2 · 2 · 2 · 2 · 3 · 3 · 5 · 7 · 7 · 7.

The theorem says that although we can rearrange the order of the product any way we like, every
expression of 246, 960 as a product of primes will involve the primes 2, 3, 5, 7, and no others, and
there will be four factors of 2, two factors of 3, one factor of 5, and three factors of 7. Ordering the
primes and writing in terms of powers as in the corollary, we obtain the canonical prime factorization

246, 960 = 24 · 32 · 5 · 73,

which is unique. ¤
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§2.5 Exercises

1. Use the Prime Test (Theorem 2.5.4) to determine which of the following integers are prime.

(a) 157

(b) 239

(c) 513

(d) 667

(e) 2003

2. Show that a 2-digit number n is prime if and only if n is not divisible by 2, 3, 5, or 7.

3. Show that if n is a 3-digit composite number then n has a prime divisor p with p ≤ 31.

4. Use the Sieve of Eratosthenes to find all primes less than 100.

5. Find the canonical prime factorizations of the following integers.

(a) 338

(b) 1547

(c) 2700

6. Prove the following.

(a) If n is a perfect square, then every exponent in the canonical prime factorization of n is
even.

(b) If every exponent in the canonical prime factorization of n is even, then n is a perfect
square.

7. Without doing any calculations, explain why a right triangle cannot have sides with lengths
2, 3, and 3.6. Could there be a right triangle with sides of lengths 2, 3, and 3.605551275?
Explain.

8. Show that if a right triangle has two sides of integer length, then the length of the third side
is either an integer or is irrational.
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2.6 Prime Factorizations and Divisibility

Work through the following problems prior to reading further.

Class Preparation Problems:

1. Find the prime factorizations of all positive divisors of 72 = 23 · 32 (namely, 1, 2, 3, 4, 6, 8,
9, 12, 18, 24, 36, and 72).

2. Find the prime factorizations of some non-divisors of 72. For example, find the prime factor-
izations of 16, 27, 32, and 54, which are all divisible by the same primes as 72, and the prime
factorizations of 15 and 20.

3. Compare the exponents in the prime factorizations of divisors and non-divisors of 72 with
those in the factorization of 72.

4. Suppose a = pa1
1 pa2

2 · · · par
r and b = pb1

1 pb2
2 · · · pbr

r , where p1, p2, . . . , pr are distinct primes. Use
the examples above to make a conjecture about the conditions on the exponents that are
required in order that a | b.

5. How many positive divisors does 72 have? Write down all divisors of 180 with their prime
factorizations. How many are there? Can you use these examples to guess a formula for the
number of divisors of an integer in terms of its prime factorization?

6. What is meant by the least common multiple of two integers a and b?

7. Do you know or can you derive a formula for the greatest common divisor and least common
multiple of a and b in terms of the prime factorizations of a and b? Why does the formula
work?

8. How are the GCD and LCM of a and b related? Why?

In the canonical prime factorization of an integer, we require that all of the exponents be positive,
otherwise the factorization would not be unique. For example, 12 = 22 ·3 = 22 ·3 ·50 = 22 ·3 ·70 ·110.
When comparing two integers, however, it is often useful to allow the exponents to be zero so both
integers can be written as products of powers of the same primes.

Proposition 2.6.1 (Prime Factorizations for Comparison) Let a and b be positive integers
and let p1 < p2 < · · · < pr be all of the primes dividing a, b, or both. We can then write
a = pa1

1 pa2
2 · · · par

r and b = pb1
1 pb2

2 · · · pbr
r , with ai > 0 and bi > 0 for all i.

Example: The canonical prime factorizations of a = 4116 and b = 94864 are

a = 4116 = 22 · 3 · 73 and b = 94864 = 24 · 72 · 112.

Thus the distinct primes dividing a or b are 2, 3, 7, and 11. Notice that a does not have a factor
of 11 and b does not have a factor of 3. The Prime Factorizations for Comparison are then

a = 4116 = 22 · 3 · 73 · 110 and b = 94864 = 24 · 30 · 72 · 112.

¤
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We can use this to characterize divisibility in terms of prime factorizations.

Theorem 2.6.2 Let a = pa1
1 pa2

2 · · · par
r and b = pb1

1 pb2
2 · · · pbr

r , with the pi distinct primes and ai > 0,
bi > 0 for all i. Then a | b if and only if ai 6 bi for all i.

Proof. Suppose first that a | b, so that b = na for some integer n. If p is any prime divisor of n,
then p | n and n | b, hence p | b by Theorem 2.2.2 (vii). Therefore, every prime divisor of n is one
of the pi, and we can write n = pn1

1 pn2
2 · · · pnr

r , where ni > 0 for each i.
Writing b = na in terms of the prime factorizations, we have

pb1
1 pb2

2 · · · pbr
r = (pn1

1 pn2
2 · · · pnr

r )(pa1
1 pa2

2 · · · par
r )

= pn1+a1
1 pn2+a2

2 · · · pnr+ar
r ,

and so bi = ni + ai for each i, by uniqueness of factorization (see Theorem 2.5.11). Since ni > 0
for each i, we have ai 6 ni + ai = bi for each i.

Conversely, suppose ai 6 bi, so that bi − ai > 0, for each i. Thus m = pb1−a1
1 pb2−a2

2 · · · pbr−ar
r is

an integer. We then have

b = pb1
1 pb2

2 · · · pbr
r

= (pb1−a1
1 pb2−a2

2 · · · pbr−ar
r )(pa1

1 pa2
2 · · · par

r )
= ma.

Hence b = ma and m ∈ Z, and so a | b. ¤

By the theorem, the positive divisors of b = pb1
1 pb2

2 · · · pbr
r are all possible integers of the form

a = pa1
1 pa2

2 · · · par
r , where for each i, 0 6 ai 6 bi.

Example: The positive divisors of 540 = 22 · 33 · 5 are the integers of the form 2i · 3j · 5k with
0 6 i 6 2, 0 6 j 6 3, and 0 6 k 6 1. These are as follows:

1 = 20 · 30 · 50 3 = 20 · 31 · 50 9 = 20 · 32 · 50 27 = 20 · 33 · 50

2 = 21 · 30 · 50 6 = 21 · 31 · 50 18 = 21 · 32 · 50 54 = 21 · 33 · 50

4 = 22 · 30 · 50 12 = 22 · 31 · 50 36 = 22 · 32 · 50 108 = 22 · 33 · 50

5 = 20 · 30 · 51 15 = 20 · 31 · 51 45 = 20 · 32 · 51 135 = 20 · 33 · 51

10 = 21 · 30 · 51 30 = 21 · 31 · 51 90 = 21 · 32 · 51 270 = 21 · 33 · 51

20 = 22 · 30 · 51 60 = 22 · 31 · 51 180 = 22 · 32 · 51 540 = 22 · 33 · 51

The total number of positive divisors is obtained by multiplying the number of choices for each of
i, j, and k, hence is 3 · 4 · 2 = 24. ¤

The number of divisors of b depends only on the exponents in the prime factorization of b.
Counting the number of possible combinations of exponents yields the following result.

Theorem 2.6.3 If b = pb1
1 pb2

2 · · · pbr
r is the canonical prime factorization of b, then the number of

positive divisors of b is (b1 + 1)(b2 + 1) · · · (br + 1).
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Proof. By Theorem 2.6.2, the positive divisors of b are all possible integers of the form

a = pa1
1 pa2

2 · · · par
r ,

where for each i, 0 6 ai 6 bi. There are then bi + 1 choices for the exponent ai. The number of
positive divisors is the the total number of possible combinations of exponents, which is the product
of the number of choices for each exponent, i.e., (b1 + 1)(b2 + 1) · · · (br + 1). ¤

Note that this works even with the more general prime factorization above, since if bi = 0 for
some i, then bi + 1 = 1 and multiplying the number of divisors by bi + 1 has no effect.

A concept closely related to the greatest common divisor is the least common multiple.

Definition 2.6.4 Let a and b be non-zero integers. The least common multiple of a and b is
the positive integer m, denoted m = [a, b], satisfying

i. a | m and b | m,

ii. if a | c and b | c with c > 0, then m 6 c.

Because any negative common multiple of a and b will be less than any positive one, we need
to include the condition that m is positive and to include c > 0 in part (ii) of the definition.

Using the characterization of divisibility above, we can express both the GCD and LCM of a
and b in terms of prime factorizations.

Theorem 2.6.5 Let a = pa1
1 pa2

2 · · · par
r and b = pb1

1 pb2
2 · · · pbr

r , with the pi distinct primes and ai > 0,
bi > 0 for all i. Then

a. (a, b) = pd1
1 pd2

2 · · · pdr
r , where di = min{ai, bi} for all i, and

b. [a, b] = pm1
1 pm2

2 · · · pmr
r , where mi = max{ai, bi} for all i.

Proof. GCD: Let d = pd1
1 pd2

2 · · · pdr
r , where di = min{ai, bi} for each i. We show that d = (a, b) by

showing that d satisfies parts (i) and (ii) of the definition of GCD (Definition 2.3.2).
(i) Since di = min{ai, bi}, we have di 6 ai and di 6 bi for all i. Therefore, it follows from

Theorem 2.6.2 that d | a and d | b, and so (i) holds.
(ii) Let c be a positive integer satisfying c | a and c | b. If p is any prime divisor of c, then by

Theorem 2.2.2 (vii), p must be one of the pi. Thus we can write c = pc1
1 pc2

2 · · · pcr
r , where ci > 0 for

each i. Since c | a and c | b, Theorem 2.6.2 implies that ci 6 ai and ci 6 bi for all i. Hence

ci 6 min{ai, bi} = di

for each i, and so c | d, again by Theorem 2.6.2. Thus c 6 d and (ii) holds.

LCM: Let m = pm1
1 pm2

2 · · · pmr
r , where mi = max{ai, bi} for each i. We show that m = [a, b] by

showing that m satisfies parts (i) and (ii) of the definition of LCM (Definition 2.6.4).
(i) Since mi = max{ai, bi}, we have mi > ai and mi > bi for all i. Therefore, it follows from

Theorem 2.6.2 that a | m and b | m, and so (i) holds.
(ii) Let c be a positive integer satisfying a | c and b | c. Each prime divisor of a or b will also

divide c, but c may have other prime divisors as well. Thus we can write c = pc1
1 pc2

2 · · · pcr
r ·k, where

each ci > 0 and k is an integer such that pi - k for each i.
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Since a | c and b | c, Theorem 2.6.2 implies that ai 6 ci and bi 6 ci for all i. Hence

mi = max{ai, bi} 6 ci

for each i. It follows that m | pc1
1 pc2

2 · · · pcr
r , again by Theorem 2.6.2, and therefore that m | c, since

pc1
1 pc2

2 · · · pcr
r | c. Thus m 6 c, as c > 0, and so (ii) holds. ¤

Example: Let a = 1815156 = 22 · 33 · 75 and b = 3600 = 24 · 32 · 52. Writing a and b in terms of
the same primes, we have

a = 22 · 33 · 50 · 75

b = 24 · 32 · 52 · 70

Hence, by the theorem,
(a, b) = 22 · 32 · 50 · 70

[a, b] = 24 · 33 · 52 · 75

and of course the GCD can be rewritten as (a, b) = 22 · 32. Notice also that

(a, b)[a, b] = (22 · 32 · 50 · 70)(24 · 33 · 52 · 75)
= 22+4 · 32+3 · 50+2 · 70+5

= 22+4 · 33+2 · 50+2 · 75+0

= (22 · 33 · 50 · 75)(24 · 32 · 52 · 70)
= a · b,

and so (a, b)[a, b] = a · b. ¤

We showed before that the GCD of two integers is divisible by any common divisor. Similarly,
any common multiple of two integers is a multiple of the LCM.

Corollary 2.6.6 Let a and b be non-zero integers and let m = [a, b]. If c is any integer satisfying
a | c and b | c, then m | c.
Proof. This is shown in part (ii) for the LCM in the proof of Theorem 2.6.5. ¤

The characterization of the GCD and LCM in Theorem 2.6.5 implies a very important relation-
ship between the two numbers, as suggested in the example above.

Corollary 2.6.7 If a and b are positive integers, then (a, b) · [a, b] = a · b.
Proof. We use the notation of Theorem 2.6.5. For each i, di = min{ai, bi} and mi = max{ai, bi}.
Hence di is one of ai or bi and mi is the other. In any case, we have ai + bi = di + mi. Therefore,

(a, b) · [a, b] = (pd1
1 pd2

2 · · · pdr
r )(pm1

1 pm2
2 · · · pmr

r )
= pd1+m1

1 pd2+m2
2 · · · pdr+mr

r

= pa1+b1
1 pa2+b2

2 · · · par+br
r

= (pa1
1 pa2

2 · · · par
r )(pb1

1 pb2
2 · · · pbr

r )
= a · b,

and so (a, b) · [a, b] = a · b. ¤



66 CHAPTER 2. BASIC NUMBER THEORY

Note that the corollary is equivalent to the statement that

[a, b] =
a · b
(a, b)

.

Therefore, it is not necessary to know the prime factorizations of a and b in order to compute
the LCM. The Euclidean algorithm can be used to find (a, b), and then this formula allows us to
calculate [a, b] easily.

§2.6 Exercises

1. Let n = 214 · 323 · 535. Determine whether each of the following integers divides n. Explain
your answers.

(a) a = 28 · 325 · 52

(b) b = 213 · 322 · 534

(c) c = 319 · 52 · 7
2. Write out all positive divisors of 600 = 23 · 3 · 52.

3. Determine the number of positive divisors of the following integers.

(a) 145546856 = 23 · 72 · 135

(b) 5384464553 = 132 · 17 · 374

4. Determine the number of positive divisors of the following integers.

(a) 15125

(b) 33750

5. For the following pairs of integers a, b, find (a, b) and [a, b], and verify that (a, b) · [a, b] = a · b.
(a) a = 25 · 53 · 74 · 138, b = 27 · 34 · 73 · 1117

(b) a = 23 · 32 · 56 · 74 · 11, b = 22 · 33 · 55 · 77 · 17

6. Given that (16191, 8481) = 771, find [16191, 8481]. Do not factor the integers. Explain your
answer.

7. Given that (25193, 46787) = 3599, find [25193, 46787]. Do not factor the integers. Explain
your answer.

8. Use the Euclidean algorithm to find the GCD and LCM of 963 and 657. (Do not factor.)

9. Use the Euclidean algorithm to find the GCD and LCM of 510 and 414. (Do not factor.)
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2.7 Congruence

Recall that the Division Algorithm (Theorem 2.3.1) says that if a and b are integers with a > 0,
then there are unique integers q and r with b = qa + r and 0 6 r < a. This says that if we fix an
integer n > 0, then every integer m can be written in exactly one way in the form m = qn + r,
with r = 0, 1, 2, . . . , n− 1 (and q an integer).

Thus, for a fixed integer n, the remainder on division of m by n is uniquely determined by m.
We can therefore classify all integers according to their remainder on division by n, putting two
integers in the same category if they leave the same remainder on division by n.

For example, let n = 3. Every integer leaves a remainder of 0, 1, or 2 on division by 3. Hence
every integer can be written in exactly one of the forms 3k, 3k + 1, or 3k + 2, with k an integer.

Example: Show that every perfect square is of the form 4k or 4k + 1.
Proof. If n is a perfect square, then n = m2 for some integer m. By the Division Algorithm, m is
of one of the forms 4q, 4q + 1, 4q + 2, or 4q + 3.

If m is of the form 4q, then

n = m2 = (4q)2 = 16q2 = 4(4q2).

Since k = 4q2 is an integer, n is of the form 4k.
If m is of the form 4q + 1, then

n = m2 = (4q + 1)2 = 16q2 + 8q + 1 = 4(4q2 + 2q) + 1.

Since k = 4q2 + 2q is an integer, n is of the form 4k + 1.
If m is of the form 4q + 2, then

n = m2 = (4q + 2)2 = 16q2 + 16q + 4 = 4(4q2 + 4q + 1).

Since k = 4q2 + 4q + 1 is an integer, n is of the form 4k + 1.
If m is of the form 4q + 3, then

n = m2 = (4q + 3)2 = 16q2 + 24q + 9 = (16q2 + 24q + 8) + 1 = 4(4q2 + 6q + 2) + 1.

Since k = 4q2 + 6q + 2 is an integer, n is of the form 4k + 1.
Therefore, in all possible cases, n is of the form 4k or 4k + 1. ¤

Discussing integers “of the form nk + r” or “with remainder r on division by n” becomes
cumbersome very quickly. The following result gives an easier characterization of this idea.

Proposition 2.7.1 Let n be a positive integer. Two integers a and b leave the same remainder on
division by n if and only if n | a− b.

Proof. If a and b leave the same remainder on division by n, then a = q1n + r and b = q2n + r, for
some q1, q2 ∈ Z. Thus

a− b = (q1n + r)− (q2n + r) = q1n + r − q2n− r = (q1 − q2)n,
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and since q1 − q2 is an integer, a− b = (q1 − q2)n implies n | a− b.
Conversely, suppose n | a−b. By the Division Algorithm, we have a = q1n+r1 and b = q2n+r2,

for some q1, r1, q2, r2 ∈ Z with 0 6 r1 < n and 0 6 r2 < n. Hence

a− b = (q1n + r1)− (q2n + r2) = q1n + r1 − q2n− r2 = (q1 − q2)n + (r1 − r2),

and so
r1 − r2 = (a− b)− (q1 − q2)n.

Since n | a − b and n | n, the Combination Theorem implies n | r1 − r2, and so either r1 − r2 = 0
or n 6 |r1 − r2| by Theorem 2.2.2 (iv). However, because 0 6 r1 < n and 0 6 r2 < n, we have
0 6 |r1 − r2| < n, hence r1 − r2 = 0 and r1 = r2 as claimed. ¤

Definition 2.7.2 Let n be a positive integer. We say integers a and b are congruent modulo n,
and write a ≡ b (mod n), if and only if n | a− b.

The integer n in the definition is called the modulus, and will always be a positive integer.
The concept of two numbers being congruent is only of interest if the numbers are integers. Thus
whenever we use the notation a ≡ b (mod n), it will always be assumed that n is a positive integer
and that a and b are integers, even if not explicitly mentioned.

The proposition above says that a ≡ b (mod n) if and only if a and b leave the same remainder
on division by n. Moreover, we have the following equivalent conditions (the first being simply the
definition):

a ≡ b (mod n) ⇐⇒ n | a− b

⇐⇒ a and b have the same remainder on division by n

⇐⇒ a and b have the same “form” qn + r

⇐⇒ a = b + cn for some c ∈ Z
⇐⇒ b = a + dn for some d ∈ Z.

Example: 55 ≡ 29 (mod 13) because 55− 29 = 26 = 2 · 13. Observe also that

55 = 4(13) + 3
29 = 2(13) + 3,

so 55 and 29 have the same remainder, 3, on division by 13. We also have

55 = 29 + 2(13)
29 = 55 + (−2)(13).

Notice that 55 ≡ 3 (mod 13) and 29 ≡ 3 (mod 13); that is, each integer is congruent modulo 13 to
its remainder on division by 13. ¤
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The definition of congruence and the Division Algorithm imply the following basic properties
of congruence suggested in the example above.

Theorem 2.7.3 If n is a positive integer and a is any integer, then the following hold:

i. There is a unique integer r, with 0 6 r 6 n− 1, such that a ≡ r (mod n).

ii. a ≡ 0 (mod n) if and only if n | a.

Proof. (i) By the Division Algorithm, we can write a = qn + r for unique integers q and r with
0 6 r 6 n− 1. Since a− r = qn, we have n | a− r and a ≡ r (mod n).

(ii) By definition, a ≡ 0 (mod n) if and only if n | a− 0, that is, n | a. ¤

Definition 2.7.4 The integer r with 0 6 r 6 n − 1 and a ≡ r (mod n) is called the least (non-
negative) residue of a modulo n.

Note that the least non-negative residue of a modulo n is simply the remainder on division of a
by n. For example, 3 is the least non-negative residue of 55 (and of 29) modulo 13, as seen in the
example above.

The next theorem says that congruence is an equivalence relation on the set of integers (see
Definition 1.4.9).

Theorem 2.7.5 If n is a positive integer and a, b, and c are any integers, then the following hold:

i. a ≡ a (mod n).

ii. If a ≡ b (mod n), then b ≡ a (mod n).

iii. If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

Proof. (i) We have a− a = 0, and since n 6= 0, n divides 0. Hence n | a− a and a ≡ a (mod n).
(ii) If a ≡ b (mod n), then n | a− b. Hence n | −(a− b), that is, n | b− a, and so b ≡ a (mod n).
(iii) If a ≡ b (mod n) and b ≡ c (mod n), then n | a − b and n | b − c. Therefore, by the

Combination Theorem, n | (a− b) + (b− c), and since (a− b) + (b− c) = a− c, we have n | a− c.
Hence a ≡ c (mod n). ¤

Algebraic Properties of Congruence

Most of the manipulations that can be done with (integer) equations can also be done with
congruences. Our next result says that we can add or subtract the same integer on both sides of a
congruence, or multiply both sides of a congruence by the same integer.

Theorem 2.7.6 If a ≡ b (mod n), then for any integer c,

i. a + c ≡ b + c (mod n)

ii. ac ≡ bc (mod n).

Proof. This is an easy exercise using the definitions and also follows from Theorem 2.7.7 below. ¤
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More generally, we can add, subtract, or multiply not just the same integer but also congruent
integers on both sides of a congruence.

Theorem 2.7.7 Let a ≡ b (mod n). If c ≡ d (mod n), then

i. a + c ≡ b + d (mod n)

ii. ac ≡ bd (mod n).

Proof. (i) Since a ≡ b (mod n) and c ≡ d (mod n), we have n | a − b and n | c − d. By the
Combination Theorem, this implies n | (a−b)+(c−d), and since (a−b)+(c−d) = (a+c)−(b+d),
we also have n | (a + c)− (b + d). Hence a + c ≡ b + d (mod n) by definition of congruence.

(ii) Again, we know n | a− b and n | c− d, and we need to show that n | ac− bd. Observe that

ac− bd = ac− bc + bc− bd = c(a− b) + b(c− d).

By the combination Theorem, n | c(a− b) + b(c− d), hence n | ac− bd, and so ac ≡ bd (mod n) by
definition of congruence. ¤

This theorem, along with induction, also implies that we can raise both sides of a congruence
to the same positive integer power.

Corollary 2.7.8 If a ≡ b (mod n), then ak ≡ bk (mod n) for every positive integer k.

Proof. The statement is obviously true if k = 1. Assume the statement is true for k = `; that is, if
a ≡ b (mod n), then a` ≡ b` (mod n). By Theorem 2.7.7 (ii), these two congruences imply

a · a` ≡ b · b` (mod n),

or equvalently a`+1 ≡ b`+1 (mod n). Hence if the statement is true for k = `, then it is true for
k = ` + 1, and therefore it is true for all k > 1 by the Principle of Mathematical Induction. ¤

Combining the results above, we obtain the following.

Corollary 2.7.9 If P (x) = cnxn + cn−1x
n−1 + · · · + c1x + c0 is a polynomial in x with integer

coefficients and a ≡ b (mod n), then P (a) ≡ P (b) (mod n), that is,

cnan + cn−1a
n−1 + · · ·+ c1a + c0 ≡ cnbn + cn−1b

n−1 + · · ·+ c1b + c0 (mod n).

Remarks:

1. We cannot divide both sides of a congruence by the same integer, or cancel an integer from
both sides, in general. For example, 2 · 7 ≡ 2 · 3 (mod 8), but 7 6≡ 3 (mod 8).

2. Similarly, we know that if a · b = 0, then a = 0 or b = 0, but the analogous statement for
congruences is false. For example, 3 · 4 ≡ 0 (mod 6), but 3 6≡ 0 (mod 6) and 4 6≡ 0 (mod 6).

The reason we cannot divide both sides of a congruence by an integer in general is that not
every integer has a multiplicative inverse modulo n. As we noted when discussing the properties of
our various number systems, division is actually multiplication by a multiplicative inverse.
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Definition 2.7.10 Let n be a positive integer. We say that an integer a has a multiplicative
inverse modulo n if there exists an integer r such that ra ≡ 1 (mod n).

Suppose a is an integer with a multiplicative inverse r modulo n. In this case, we could multiply
both sides of a congruence by r in order to “divide” by a. Using the fact that there are integers r
and s such that ar + ns = 1 if and only if (a, n) = 1, we can characterize the integers that have
multiplicative inverses modulo n.

Theorem 2.7.11 Let n be a positive integer. The integer a has a multiplicative inverse modulo n
if and only if (a, n) = 1.

Proof. Suppose first that a has a multiplicative inverse r modulo n. We have ra ≡ 1 (mod n), hence
n | ra − 1. It follows that ra − 1 = dn and a(r) + n(−d) = 1 for some integer d. Theorem 2.4.12
now implies (a, n) = 1.

Conversely, if (a, n) = 1, then Theorem 2.4.10 says there exist integers x and y such that
ax + ny = 1. Hence ax − 1 = (−y)n, and so n | ax − 1. Therefore, ax ≡ 1 (mod n) and x is a
multiplicative inverse modulo n. ¤

Note that the multiplicative inverse of a modulo n, if it exists, is not unique. If r is an inverse
for a and r ≡ r′ (mod n), then r′ is also a multiplicative inverse for a modulo n because, by
Theorem 2.7.7 (ii), r′a ≡ ra ≡ 1 (mod n).

For small values of a and n, an inverse of a can usually be found easily by trial and error. For
larger values, the Euclidean Algorithm can be used to find integers x and y so that ax + ny = 1,
and then x is an inverse of a as in the proof of the theorem.

Example: Since (9, 14) = 1, there is a multiplicative inverse for 9 modulo 14.
We need to find an integer r such that 9r ≡ 1 (mod 14), that is, such that 9r = m · 14 + 1 for

some integer m. The first few integers of the form m · 14 + 1 are 15, 29, 43, 57, 71, 85, and 99,
and we observe that 99 is the first of these divisible by 9. We have 9 · 11 = 99 = 7 · 14 + 1, hence
9 · 11 ≡ 1 (mod 14), and so 11 is a multiplicative inverse for 9 modulo 14. ¤

As noted above, it is the integers with multiplicative inverses modulo n that can be “cancelled”
from both sides of a congruence. This is stated more formally in the next theorem. This theorem
also implies that if r and r′ are both multiplicative inverses for a modulo n, then r ≡ r′ (mod n).
Thus, even though the multiplicative inverse is not unique, all of the inverses must be congruent
modulo n.

Theorem 2.7.12 Let n be a positive integer and let a, b, and c be integers. If ab ≡ ac (mod n)
and (a, n) = 1, then b ≡ c (mod n).

Proof. Let ab ≡ ac (mod n) and let (a, n) = 1. By Theorem 2.7.11, there is a multiplicative
inverse r for a. Hence r(ab) ≡ r(ac) (mod n) by Theorem 2.7.7 (ii), so (ra)b ≡ (ra)c (mod n), and
so 1 · b ≡ 1 · c (mod n). Finally, this says b ≡ c (mod n), as claimed. ¤

The theorem above can also be proved directly using Euclid’s Lemma (Theorem 2.4.15). If
ab ≡ ac (mod n), then n | ab − ac, hence n | a(b − c). By Eulcid’s Lemma, if (a, n) = 1, then this
implies n | b− c, and so b ≡ c (mod n).
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Similarly, the following corollary is simply Euclid’s Lemma stated in the language of congru-
ences, as ab ≡ 0 (mod n) means n | ab and b ≡ 0 (mod n) means n | b.
Corollary 2.7.13 Let n be a positive integer and let a and b be integers. If ab ≡ 0 (mod n) and
(a, n) = 1, then b ≡ 0 (mod n).

The next corollary is the restatement of Euclid’s Lemma for Primes (Theorem 2.5.6) in the
language of congruences. It says that if the modulus is a prime, then the situation in Remark 2
above cannot happen.

Corollary 2.7.14 Let p be a prime number and let a and b be integers. If ab ≡ 0 (mod p), then
a ≡ 0 (mod p) or b ≡ 0 (mod p).

Modular Arithmetic and the Ring Zn

You may be familiar with “modular arithmetic” or “clock arithmetic” modulo n using the set
of integers N = {0, 1, . . . , n − 1}. This set is a complete set of residues mod n by Theorem 2.7.3;
that is, every integer is congruent modulo n to exactly one integer in the set.

In modular arithmetic, we define addition and multiplication on N as follows. For a and b in N ,
a+b is the unique element s of N such that a+b ≡ s (mod n), and ab is the unique element m of N
such that ab ≡ m (mod n). This is sometimes called “clock arithmetic” because addition of times
on a clock is simply addition modulo 12 (but with 12 replacing 0 in N , since 12 ≡ 0 (mod 12)).

It can be shown that that N is a commutative ring with 1 under the operations of addition and
multiplication modulo n. The proof is rather tedious and somewhat tricky, however, due in part to
the requirement that we reduce sums and products modulo n to get an element of N . This is similar
to problems encountered in proving that the set Q of rational numbers is a field, arising from the
existence of many equivalent expressions of a given fraction. As with our formal construction of the
rational numbers in §1.5, we can use equivalence classes to construct a ring algebraically equivalent
(i.e., isomorphic) to N . An advantage of this alternate construction is that the proof that it yields
a ring is much more straightforward.

Recall that Theorem 2.7.5 implies that congruence modulo n is an equivalence relation. The
set of equivalence classes will be the underlying set for our ring construction.

Definition 2.7.15 Let n be a positive integer. The congruence class a of an integer a modulo n
is the equivalence class of a under the equivalence relation ≡, thus

a = {b ∈ Z | a ≡ b (mod n)}.
The set Zn = {a | a ∈ Z} of congruence classes modulo n is called the set of integers mod n.

We must define the operations of addition and multiplication on the set Zn.

Definition 2.7.16 For a and b in Zn we define addition (+) and multiplication (·) by

a + b = a + b

and
a · b = a · b.
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For example, if n = 7, then 4+5 = 9 = 2 and 4 ·5 = 20 = 6. Note, however, that there are many
different representatives for a given congruence class (see Proposition 1.4.11). The definitions of
addition and multiplication seem to depend on the class representative. For n = 7, we have 4 = 11
and 5 = 19. If we use 11 and 19 as class representatives in place of 4 and 5, respectively, we get
11+19 = 30 = 2 and 11 ·19 = 209 = 6. In this case, we get the same sum and product using either
set of representatives.

In fact, this is true in any case. It follows from Theorem 2.7.7 that addition and multiplication
are well-defined in Zn, as stated in the following result.

Proposition 2.7.17 The operations of addition and multiplication in Zn are well-defined. That
is, if a = a′ and b = b′, then a + b = a′ + b′ and a · b = a′ · b′.

Proof. If a = a′ and b = b′, then a ≡ a′ (mod n) and b ≡ b′ (mod n). By Theorem 2.7.7, we have
a + b ≡ a′ + b′ (mod n) and a · b ≡ a′ · b′ (mod n) and therefore

a + b = a + b = a′ + b′ = a′ + b′

and
a · b = a · b = a′ · b′ = a′ · b′,

as claimed. ¤.

Using the definitions of addition and multiplication in Zn and the fact that Z is a commutative
ring with 1, it is straightforward to verify the next theorem.

Theorem 2.7.18 The set Zn under the operations defined in Definition 2.7.16 satisfies properties
(i)–(ix) and (xi) of Definition 1.3.1 and is therefore a commutative ring with 1.

There is an interesting difference between the rings Zn and Z. As you are aware, for a and b
in Z, we have ab = 0 if and only if a = 0 or b = 0. This is not the case in Zn. For example, in Z6,
we have 3 6= 0 and 4 6= 0, but 3 · 4 = 12 = 0.

In particular, this implies Z6 cannot be a field. If 3 had a multiplicative inverse r, then we
would have

0 = r · 0
= r · (3 · 4)
= (r · 3) · 4
= 1 · 4
= 4

so that 4 = 0, a contradiction.
More generally, if n is not a prime, we can write n = ab, where a and b are integers with

1 < a < n and 1 < b < n. Thus a 6= 0 and b 6= 0, but a · b = n = 0. Hence, if n is not a prime,
then Zn is not a field.

This also follows from Theorem 2.7.11, which essentially describes the elements of Zn that have
multiplicative inverses.
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Theorem 2.7.19 Let n be a positive integer. An element a of Zn has a multiplicative inverse (i.e.,
an element r with r · a = 1) if and only if (a, n) = 1.

For example, in Z6 = {0, 1, 2, 3, 4, 5}, the elements with multiplicative inverses are 1 and 5.
(What are their inverses?)

Now Zn is a field if and only if every non-zero element has a multiplicative inverse, so if and
only if every integer not divisible by n is relatively prime to n. This holds if and only if n is prime.
We therefore have the following result.

Theorem 2.7.20 Let n be a positive integer. The ring Zn is a field if and only if n is a prime.

This theorem gives us an infinite family of finite fields Zp, p a prime, in addition to the infinite
fields Q, R, and C.

§2.7 Exercises

1. Find the least non-negative residue of the given integer (that is, find r with 0 6 r 6 n− 1, so
that a ≡ r (mod n)).

(a) 46735, mod 7

(b) 458, mod 37

(c) 56485, mod 4

(d) 11466, mod 21

(e) 65386, mod 19

2. Show that every perfect square is congruent to 0, 1, or 4 modulo 8.

3. Show that if a, b, and c are integers such that a2 + b2 = c2, then at least one of a or b must
be even. [Hint: Use the Example on page 67.]

(Note: This also says that if a right triangle has sides of integer lengths, then at least one of
the legs must be of even length.)

4. Show that if a ≡ b (mod n) and m | n, then a ≡ b (mod m).
[Hint: Use the definition of congruence and basic properties of divisibility.]

5. Show that if a ≡ b (mod n) and c is a positive integer, then ca ≡ cb (mod cn).
[Hint: Use the definitions of congruence and divisibility.]

6. By Corollary 2.7.8, if a ≡ b (mod n), then ak ≡ bk (mod n) for any positive integer k. Show
that the converse is false by finding integers a, b, and n such that a2 ≡ b2 (mod n) but
a 6≡ b (mod n).

7. Use induction to show that 4n ≡ 3n + 1 (mod 9) for all n > 0.

8. Use induction to show that 22n
+ 1 ≡ 5 (mod 12) for all n > 1.

9. Let n be a positive integer, a an integer, and let a be the congruence class of a modulo n.
Show that a = {a + kn | k ∈ Z}.

10. Show that Zn has precisely n elements.

11. Determine which elements of Z10 have multiplicative inverses, and find the inverse of each.
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2.8 Congruence and Divisibility Tests

Any non-negative integer m can be written in the form

m = dkdk−1 . . . d2d1d0,

where d0 is the ones or units digit of m, d1 is the tens digit, d2 is the hundreds digit, and so forth.
In this notation,

m = dkdk−1 . . . d2d1d0 = dk · 10k + dk−1 · 10k−1 + · · ·+ d2 · 102 + d1 · 101 + d0 · 100.

We will refer to dk as the first digit of m and d0 as the last digit of m.

Example: The integer m = 725986 has k = 6 digits,

m = 7 · 105 + 2 · 104 + 5 · 103 + 9 · 102 + 8 · 101 + 6 · 100,

and we have
d5 = 7, d4 = 2, d3 = 5, d2 = 9, d1 = 8, and d0 = 6,

in the notation above. ¤

Notation: In all of the results below, m = dkdk−1 . . . d2d1d0 denotes a positive integer and
dk, dk−1, . . . , d1, d0 are the digits of m.

There are nice shortcuts for finding the least residue of an integer modulo some small integers,
and therefore for determining when an integer is divisible by these small integers. The corollaries
below give tests for divisibility by 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13.

Congruence and Divisibility by Powers of 2, 5, and 10

We first consider congruence and divisibility by powers of 2, 5, and 10. The tests for all of these
are based on the fact that 2, 5, and 10 all divide 10, so that 2n | 10`, 5n | 10`, and 10n | 10` for all
` > n. The idea behind the proofs of the tests is demonstrated in the following examples.

Examples: Let m = 578551 and find the least non-negative residue of m modulo 4, modulo 125,
and modulo 10000.

1. Residue modulo 4 = 22: Observe that 22 | 102, i.e., 4 | 100, so that 100 ≡ 0 (mod 4). Hence

m = (5785)(100) + 51
≡ 5785 · 0 + 51 (mod 4)
≡ 51 (mod 4)
≡ 3 (mod 4),

since 51 = 12 · 4 + 3. Therefore, the least non-negative residue of m modulo 4 is 3.
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2. Residue modulo 125 = 53: Observe that 53 | 103, i.e., 125 | 1000, so that 1000 ≡ 0 (mod 125).
Hence

m = (578)(1000) + 551
≡ 578 · 0 + 551 (mod 125)
≡ 551 (mod 125)
≡ 51 (mod 125),

since 551 = 4 · 125 + 51. Therefore, the least non-negative residue of m modulo 125 is 51.

3. Residue modulo 10000 = 104: Obviously, 104 | 104, so that 10000 ≡ 0 (mod 10000). Hence

m = (57)(10000) + 8551
≡ 57 · 0 + 8551 (mod 10000)
≡ 8551 (mod 10000).

Therefore, the least non-negative residue of m modulo 10000 is 8551. ¤

The first theorem says that m is congruent modulo 2n, 5n, and 10n to the number made up of
the last n digits of m.

Theorem 2.8.1 If m = dkdk−1 . . . d2d1d0 and n is a positive integer, then the following hold:

i. m ≡ dn−1dn−2 . . . d2d1d0 (mod 2n),

ii. m ≡ dn−1dn−2 . . . d2d1d0 (mod 5n),

iii. m ≡ dn−1dn−2 . . . d2d1d0 (mod 10n).

Proof. Observe that since 2 · 5 = 10, we have 2n · 5n = 10n, and moreover for ` > n,

10` = 2` · 5` = (2n · 5n)(2`−n · 5`−n).

Since 2`−n · 5`−n is an integer, this implies 2n, 5n, and 10n all divide 10`, and so 10` is congruent
to 0 modulo each of 2n, 5n, and 10n, for all ` > n. Therefore, if Z is any one of 2n, 5n, or 10n, then

m = dkdk−1 . . . d2d1d0

= dk · 10k + dk−1 · 10k−1 + · · ·+ dn · 10n + dn−1 · 10n−1 + · · ·+ d1 · 101 + d0 · 100

≡ dk · 0 + dk−1 · 0 + · · ·+ dn · 0 + dn−1 · 10n−1 + · · ·+ d1 · 101 + d0 · 100 (mod Z)
≡ 0 + 0 + · · ·+ 0 + dn−1 · 10n−1 + · · ·+ d1 · 101 + d0 · 100 (mod Z)
≡ dn−1 · 10n−1 + · · ·+ d1 · 101 + d0 · 100 (mod Z)
≡ dn−1dn−2 . . . d2d1d0 (mod Z).

Hence m ≡ dn−1dn−2 . . . d2d1d0 (mod Z) for Z = 2n, Z = 5n, or Z = 10n, as claimed. ¤

In particular, notice that since 0 6 dn−1dn−2 . . . d2d1d0 < 10n, this number made up of the
last n digits of m is precisely the least non-negative residue of m modulo 10n.
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Examples: The Theorem says that for m = 578551 we know immediately that

m ≡ 51 (mod 22),
m ≡ 551 (mod 53),
m ≡ 8551 (mod 104),

without having to do the initial computations we did in the examples above. ¤

Recalling that Z | m if and only if m ≡ 0 (mod Z), we have the following corollary.

Corollary 2.8.2 Let m and n be positive integers and let Z be one of 2n, 5n, or 10n. Then Z | m
if and only if Z divides the number made up of the last n digits of m.

We obtain divisibility tests for 2, 5, and 10 by taking n = 1 in the corollary above.

Corollary 2.8.3 (Divisibility Tests for 2, 5, and 10)

If m = dkdk−1 . . . d2d1d0, then the following hold:

i. 2 | m if and only if d0 is even,

ii. 5 | m if and only if d0 = 0 or d0 = 5,

iii. 10 | m if and only if d0 = 0.

Proof. By Corollary 2.8.2, one of 2, 5, or 10 will divide m if and only if it divides the last digit,
d0, of m. Thus 2 | m if and only if d0 is divisible by 2, i.e., is even. Hence (i) holds. Since 0 and 5
are the only one-digit numbers divisible by 5, and 0 is the only one-digit number divisible by 10,
statements (ii) and (iii) hold. ¤

More generally, observe that Corollary 2.8.2 implies 10n divides m if and only if the last n digits
of m are all 0.

Divisibility tests for 4 and 8 follow from Corollary 2.8.2 by taking n = 2 and n = 3, respectively.

Corollary 2.8.4 (Divisibility Tests for 4 and 8)

If m = dkdk−1 . . . d2d1d0, then the following hold:

i. 4 | m if and only if 4 | d1d0,

ii. 8 | m if and only if 8 | d2d1d0.

Examples:

1. Since 4 - 54, we have that 4 - 18756256554.

2. Since 8 | 744 (check!), we have that 8 | 917863265744.

3. Since 625 | 4375 (check!) and 625 = 54, we have that 625 | 174235914375. ¤
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Congruence and Divisibility by 3 and 9

The proofs of the tests for congruence modulo 3 and 9 use the fact that 10 ≡ 1 (mod 3) and
10 ≡ 1 (mod 9), hence 10` ≡ 1 (mod 3) and 10` ≡ 1 (mod 9) for all ` > 1.

Theorem 2.8.5 If m = dkdk−1 . . . d2d1d0, then

m ≡ dk + dk−1 + · · ·+ d2 + d1 + d0 (mod 3)

and
m ≡ dk + dk−1 + · · ·+ d2 + d1 + d0 (mod 9);

that is, m is congruent to the sum of its digits modulo 3 and modulo 9.

Proof. We have 10 ≡ 1 (mod 3) and 10 ≡ 1 (mod 9), hence by Corollary 2.7.8,

10` ≡ 1` ≡ 1 (mod 3) and 10` ≡ 1` ≡ 1 (mod 9)

for every positive integer `. Hence if Z = 3 or Z = 9, then

m = dkdk−1 . . . d2d1d0

= dk · 10k + dk−1 · 10k−1 + · · ·+ d2 · 102 + d1 · 101 + d0 · 100

≡ dk · 1 + dk−1 · 1 + · · ·+ d2 · 1 + d1 · 1 + d0 · 1 (mod Z)
≡ dk + dk−1 + · · ·+ d2 + d1 + d0 (mod Z),

as claimed. ¤

Again recalling that Z | m if and only if m ≡ 0 (mod Z), we have the following corollary.

Corollary 2.8.6 (Divisibility Tests for 3 and 9)

If m = dkdk−1 . . . d2d1d0, then the following hold:

i. 3 | m if and only if 3 | dk + dk−1 + · · ·+ d2 + d1 + d0,

ii. 9 | m if and only if 9 | dk + dk−1 + · · ·+ d2 + d1 + d0.

In other words, 3 divides m if and only if 3 divides the sum of the digits of m, and 9 divides m if
and only if 9 divides the sum of the digits of m.

Examples:

1. If m = 7854623, then

m ≡ 7 + 8 + 5 + 4 + 6 + 2 + 3 ≡ 35 ≡ 2 (mod 3)

and
m ≡ 7 + 8 + 5 + 4 + 6 + 2 + 3 ≡ 35 ≡ 8 (mod 9).

In particular, 3 - 7854623 and 9 - 7854623.
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2. If m = 1748235, then

m ≡ 1 + 7 + 4 + 8 + 2 + 3 + 5 ≡ 30 ≡ 0 (mod 3)

and
m ≡ 1 + 7 + 4 + 8 + 2 + 3 + 5 ≡ 30 ≡ 3 (mod 9).

In particular, 3 | 30, so 3 | 1748235, but 9 - 1748235. ¤

Since (2, 3) = 1 and (4, 3) = 1, we can use Theorem 2.4.16 and combine the divisibility tests for
2 and 3 and for 4 and 3 to obtain divisibility tests for 6 and 12, respectively.

Corollary 2.8.7 (Divisibility Tests for 6 and 12)

If m = dkdk−1 . . . d2d1d0, then the following hold:

i. 6 | m if and only if d0 is even and 3 | dk + dk−1 + · · ·+ d2 + d1 + d0,

ii. 12 | m if and only if 4 | d1d0 and 3 | dk + dk−1 + · · ·+ d2 + d1 + d0.

Proof. Since (2, 3) = 1, Theorem 2.4.16 says that 2 · 3 | m if and only if 2 | m and 3 | m. Similarly,
since (4, 3) = 1, we have 4 · 3 | m if and only if 4 | m and 3 | m. Hence 6 | m if and only if m passes
the divisibility tests for both 2 and 3, and 12 | m if and only if m passes the divisibility tests for
both 4 and 3. ¤

Congruence and Divisibility by 11

The tests for congruence modulo 11 and divisibility by 11 are based on the fact that 10 is
congruent to −1 modulo 11. We will require the following notation. For m = dkdk−1 . . . d2d1d0 a
positive integer, denote

A = d0 − d1 + d2 − d3 + · · ·+ (−1)k−1dk−1 + (−1)kdk =
∑

i even

di −
∑

j odd

dj .

Thus A is the alternating sum of the digits of m. Note that the signs alternate beginning with a
plus for d0 and a minus for d1.

Theorem 2.8.8 If m = dkdk−1 . . . d2d1d0, then m ≡ A (mod 11).

Proof. We have 10 ≡ −1 (mod 11), hence by Corollary 2.7.8, 10` ≡ (−1)` (mod 11) for all ` > 0.
Thus 10` ≡ 1 (mod 11) if ` is even and 10` ≡ −1 (mod 11) if ` is odd. Therefore, we have

m = dkdk−1 . . . d2d1d0

= dk · 10k + dk−1 · 10k−1 + · · ·+ d3 · 103 + d2 · 102 + d1 · 101 + d0 · 100

≡ dk(−1)k + dk−1(−1)k−1 + · · ·+ d3(−1)3 + d2(−1)2 + d1(−1)1 + d0(−1)0 (mod Z)
≡ (−1)kdk + (−1)k−1dk−1 + · · · − d3 + d2 − d1 + d0 (mod Z)
≡ A (mod Z),

as claimed. ¤



80 CHAPTER 2. BASIC NUMBER THEORY

Recalling as before that Z | m if and only if m ≡ 0 (mod Z), we obtain a divisibility test for 11.

Corollary 2.8.9 (Divisibility Test for 11)
If m = dkdk−1 . . . d2d1d0, then 11 | m if and only if 11 | A.

When computing A to test for congruence modulo 11, it is essential to add the digits in the
places corresponding to even powers of 10 and subtract those in the places corresponding to odd
powers of 10. Adding and subtracting in the other order yields −A. While this is not relevant for
the divisibility test (as 11 | −A if and only if 11 | A), it is important in order to correctly determine
the congruence of m modulo 11.

Examples:

1. If m = 2385721634, (with digits corresponding to even powers of 10 underlined), then

A = 4− 3 + 6− 1 + 2− 7 + 5− 8 + 3− 2
= (3 + 5 + 2 + 6 + 4)− (2 + 8 + 7 + 1 + 3)
= 20− 21
= −1.

Hence m ≡ −1 ≡ 10 (mod 11), and so the least non-negative residue of 2385721634 mod 11
is 10. In particular, 11 - 2385721634.

2. If m = 293827644, (again with digits corresponding to even powers of 10 underlined), then

A = 4− 4 + 6− 7 + 2− 8 + 3− 9 + 2
= (2 + 3 + 2 + 6 + 4)− (9 + 8 + 7 + 4)
= 17− 28
= −11.

Hence A = −11 and 11 | A, and so 11 | 293827644. ¤

Congruence and Divisibility by 7 and 13

The essential fact behind the tests for congruence modulo 7 and 13 is that 1001 = 7 · 11 · 13,
hence 103 ≡ −1 (mod 7) and 103 ≡ −1 (mod 13). We will require the following notation. For
m = dkdk−1 . . . d2d1d0 a positive integer, denote

T = (100d2 + 10d1 + d0)− (100d5 + 10d4 + d3) + (100d8 + 10d7 + d6)− · · ·
=

∑

i even

(100d3i+2 + 10d3i+1 + d3i)−
∑

j odd

(100d3j+2 + 10d3j+1 + d3j)

or, writing 100a + 10b + c as the three-digit number abc,

T = (d2d1d0)− (d5d4d3) + (d8d7d6)− · · ·
=

∑

i even

d3i+2d3i+1d3i −
∑

j odd

d3j+2d3j+1d3j

Thus T is the alternating sum of triples of digits of m. Note that d2d1d0, for example, is a three-digit
number and is not equal to d2 + d1 + d0 or d2 · d1 · d0.
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Theorem 2.8.10 If m = dkdk−1 . . . d2d1d0, then m ≡ T (mod 7) and m ≡ T (mod 13).

Proof. Since 103 = 7 · 11 · 13 − 1, we have 103 ≡ −1 (mod 7) and 103 ≡ −1 (mod 13). Hence, by
Corollary 2.7.8, it follows that

103` ≡ (−1)` (mod 7) and 103` ≡ (−1)` (mod 13).

Let Z = 7 or Z = 13. we then have 103` ≡ 1 (mod Z) if ` is even and 103` ≡ −1 (mod Z) if ` is
odd. Notice also that

d3`+2 · 103`+2 + d3`+1 · 103`+1 + d3` · 103` = (100 · d3`+2 + 10 · d3`+1 + d3`) · 103`.

By appending zeros to the left of the number m if necessary, we may assume that k = 3r + 2 for
some non-negative integer r. We then have

m = dkdk−1 . . . d8d7d6d5d4d3d2d1d0

= d3r+2d3r+1d3r . . . d8d7d6d5d4d3d2d1d0

= d3r+2 · 103r+2 + d3r+1 · 103r+1 + d3r · 103r + · · ·+ d8 · 108 + d7 · 107 + d6 · 106

+ d5 · 105 + d4 · 104 + d3 · 103 + d2 · 102 + d1 · 101 + d0 · 100

= (100d3r+2 + 10d3r+1 + d3r)103r + · · ·+ (100d8 + 10d7 + d6)106

+ (100d5 + 10d4 + d3)103 + (100d2 + 10d1 + d0)100

≡ (100d3r+2 + 10d3r+1 + d3r)(−1)r + · · ·+ (100d8 + 10d7 + d6)(−1)2

+ (100d5 + 10d4 + d3)(−1)1 + (100d2 + 10d1 + d0)(−1)0 (mod Z)

≡ (−1)r(d3r+2d3r+1d3r) + · · ·+ (d8d7d6)− (d5d4d3) + (d2d1d0) (mod Z)
≡ T (mod Z),

as claimed. ¤

Recalling as before that Z | m if and only if m ≡ 0 (mod Z), we obtain divisibility tests for 7
and 13.

Corollary 2.8.11 (Divisibility Tests for 7 and 13)

If m = dkdk−1 . . . d2d1d0, then the following hold:

i. 7 | m if and only if 7 | T ,

ii. 13 | m if and only if 13 | T .

As with the computation of the alternating sum A, it is essential to compute T using the correct
signs in order to apply the tests for congruence modulo 7 and 13. Note also that since 11 | 1001,
we also have m ≡ T (mod 11) and 11 | m if and only if 11 | T . This test is much less convenient
than the tests for 11 given in Theorem 2.8.8 and Corollary 2.8.9, however.
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Example: Let m = 23, 587, 614, 934. Since the number of digits is not divisible by 3, we can
append a 0 on the left to obtain m = 023, 587, 614, 934, where the triples of digits that are added
in the alternating sum are underlined. We have

T = 934− 614 + 587− 23
= (587 + 934)− (23 + 614)
= 1521− 637
= 884.

Hence m ≡ 884 ≡ 2 (mod 7), since 884 = 126 · 7 + 2, and therefore the least non-negative residue
of 23, 587, 614, 934 modulo 7 is 2. In particular, 7 - 23, 587, 614, 934.

Also, m ≡ 884 (mod 13). Since 884 = 68 · 13, we have 13 | 884, hence m ≡ 0 (mod 13) and
13 | 23, 587, 614, 934. ¤

It is also possible to combine tests we have derived to obtain divisibility tests for 14 and 15 (see
the exercises), giving us divisibility tests for all positive integers up to 16.

§2.8 Exercises

On Exercises 1–4, use the theorems on congruence modulo 2n, 3, 7, 9, 11, and 13 to find the
least non-negative residues of the given integers. Justify your answers.

1. (a) a = 476532189318, mod 4

(b) b = 23765981235, mod 8

(c) c = 351487629538, mod 16

2. (a) a = 472356734512, mod 3

(b) b = 472356734512, mod 9

(c) c = 324562783713, mod 3

(d) d = 324562783713, mod 9

3. (a) a = 34781526247, mod 11

(b) b = 123456789012, mod 11

(c) c = 632475268196, mod 11

4. (a) a = 347815623107, mod 7

(b) b = 347815623107, mod 13

(c) c = 28473265918, mod 7

(d) d = 28473265918, mod 13
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5. Use the divisibility tests for 2 and 7 to derive a test for divisibility by 14. Prove that the test
is valid.

6. Use the divisibility tests for 3 and 5 to derive a test for divisibility by 15. Prove that the test
is valid.

7. Use the divisibility tests for 2 and 9 to derive a test for divisibility by 18. Prove that the test
is valid.

8. Show that a positive integer m = dkdk−1 . . . d2d1d0 is divisible by 20 if and only if the number
d1d0 made up of the last two digits of m is divisible by 20, or, equivalently, that 20 | m if and
only if d1 is even and d0 = 0.

On Exercises 9–13, determine which, if any, of the given integers a, b, c are divisible by the
indicated integer n. Show your work and justify your answers.

9. Determine if divisible by n = 4.

(a) a = 478563289358

(b) b = 12354456724

(c) c = 352148763376

10. Determine if divisible by n = 3 and if divisible by n = 9.

(a) a = 21437856252

(b) b = 54637281274

(c) c = 42315768543

11. Determine if divisible by n = 6.

(a) a = 47835624312

(b) b = 65348127214

(c) c = 27135248145

12. Determine if divisible by n = 11.

(a) a = 41783526413

(b) b = 615837429152

(c) c = 724356712859

13. Determine if divisible by n = 7 and if divisible by n = 13.

(a) a = 98239072918

(b) b = 199885455861

(c) c = 182443992562



Chapter 3

Polynomials

In this chapter, we study the algebra of polynomials in a variable x with coefficients in a commu-
tative ring S. We can define addition and multiplication of polynomials, and we will see that the
set of polynomials has algebraic properties very similar to those of the integers. We will consider
algebraic properties such as those in Definition 1.3.1, divisibility of polynomials and greatest com-
mon divisors as we did for integers in Chapter 2, as well as roots and factors of polynomials and
irreducible polynomials, which are analogous to prime numbers.

3.1 Algebraic Properties of Polynomials

In this section, we will discuss polynomials with coefficients in some commutative ring S. For our
purposes, the ring S will be one of Z, Q, R, C, or Zp, where p is a prime. Unless otherwise stated,
all definitions and results are valid in all five cases.

Definition 3.1.1 A polynomial in the variable x with coefficients in the commutative ring S is
an algebraic expression of the form

p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0,

where n > 0 is an integer and ai is an element of S for all i.

The set of all polynomials in x with coefficients in S is denoted S[x]. We will need the following
basic terminology.

Definition 3.1.2 Let p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0 be a polynomial in S[x].

i. The elements ai are called the coefficients of p(x).

ii. The monomials aix
i are the terms of p(x). The term with the highest power of x and non-zero

coefficient is the leading term of p(x), and a0 is the constant term.

iii. The leading coefficient of p(x) is the coefficient of the leading term of p(x).

iv. We call p(x) a monic polynomial if the leading coefficient of p(x) is 1.

84
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v. If ai = 0 for all i > 1, so that p(x) = a0, we call p(x) a constant polynomial. By identifying
an element a0 of S with the constant polynomial p(x) = a0, we will consider S to be a subset
of S[x].

vi. If ai = 0 for all i, so that p(x) = 0, we call p(x) the zero polynomial.

vii. If ai is non-zero, we call i the degree of the monomial aix
i. If p(x) is a non-zero polynomial,

the degree of the polynomial p(x) is defined to be the degree of the leading term of p(x). We
define the degree of the zero polynomial to be −∞. We denote the degree of p(x) by deg p(x).

viii. A polynomial of degree 1 is called a linear polynomial, a polynomial of degree 2 is a quadratic
polynomial, and a polynomial of degree 3 is a cubic polynomial.

Example: Let p(x) = 3x5 − 6x4 + 7x2 − 9x + 8.

• The coefficients of p(x) are a5 = 3, a4 = −6, a3 = 0, a2 = 7, a1 = −9, and a0 = 8.

• The leading term of p(x) is 3x5 and the leading coefficient is 3.
(Note that this is the case regardless of the order in which the terms are written. The leading
term is the term with the highest power of x.)

• The degree of p(x) is 5. ¤

Remark: By Definition 3.1.2 (vii), the degree of a non-zero constant polynomial is 0. We have
defined the degree of the zero polynomial to be −∞. Another approach used by some is to simply
say that the zero polynomial has no degree. In any case, the degree of the zero polynomial cannot
be defined to be 0 or any other integer. Otherwise, certain desirable properties of the degree will
not be valid. Also, according to our definition, the zero polynomial has no leading term or leading
coefficient.

In many ways, the set S[x] is algebraically very similar to the set Z of integers. In particular,
we can define addition and multiplication of polynomials and show that these operations satisfy
the same basic algebraic properties in S[x] as they do in Z.

To compare or add two polynomials of different degrees, we can write both using all powers of x
up to the higher degree, using 0 as a coefficient when necessary.

Definition 3.1.3 (Equality) Two polynomials p(x) = anxn + an−1x
n−1 + · · · + a1x + a0 and

q(x) = bnxn + bn−1x
n−1 + · · ·+ b1x + b0 in S[x] are equal if and only if ai = bi for all i.

Definition 3.1.4 (Addition) Let p(x) = anxn + an−1x
n−1 + · · · + a1x + a0 and q(x) = bnxn +

bn−1x
n−1 + · · ·+ b1x + b0 be polynomials in S[x]. We define the sum p(x) + q(x) by

p(x) + q(x) = (an + bn)xn + (an−1 + bn−1)xn−1 + · · ·+ (a1 + b1)x + (a0 + b0).

Definition 3.1.5 (Multiplication) Let p(x) = anxn + an−1x
n−1 + · · · + a1x + a0 and q(x) =

bmxm + bm−1x
m−1 + · · ·+ b1x + b0 be polynomials in S[x]. We define the product p(x) · q(x) by

p(x) · q(x) = crx
r + cr−1x

r−1 + · · ·+ c1x + c0,

where r = n + m and, for each i,

ci = aib0 + ai−1b1 + · · ·+ a1bi−1 + a0bi.
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Examples:

1. If p(x) = 5x3 + 4x2 − 7x + 3 and q(x) = 6x4 + 2x3 + x− 9, then we can write

p(x) = 0x4 + 5x3 + 4x2 − 7x + 3,

q(x) = 6x4 + 2x3 + 0x2 + 1x− 9,

and so

p(x) + q(x) = (0 + 6)x4 + (5 + 2)x3 + (4 + 0)x2 + (−7 + 1)x + (3− 9)
= 6x4 + 7x3 + 4x2 − 6x− 6.

Thus we add polynomials by simply adding corresponding coefficients.

2. For a(x) = 2x3 − 5x2 + 7 and b(x) = 3x2 + 2x − 4, we have deg a(x) = 3 and deg b(x) = 2,
hence deg (a(x)b(x)) = 3 + 2 = 5. The coefficients of a(x) and b(x) are

a0 = 7 b0 = −4
a1 = 0 b1 = 2
a2 = −5 b2 = 3
a3 = 2 b3 = 0
a4 = 0 b4 = 0
a5 = 0 b5 = 0.

The coefficients of the product a(x)b(x) are therefore

c0 = a0b0 = 7 · (−4) = −28
c1 = a1b0 + a0b1 = 0 · (−4) + 7 · 2 = 14
c2 = a2b0 + a1b1 + a0b2 = (−5) · (−4) + 0 · 2 + 7 · 3 = 41
c3 = a3b0 + a2b1 + a1b2 + a0b3 = 2 · (−4) + (−5) · 2 + 0 · 3 + 7 · 0 = −18
c4 = a4b0 + a3b1 + a2b2 + a1b3 + a0b4

= 0 · (−4) + 2 · 2 + (−5) · 3 + 0 · 0 + 7 · 0 = −11
c5 = a5b0 + a4b1 + a3b2 + a2b3 + a1b4 + a0b5

= 0 · (−4) + 0 · 2 + 2 · 3 + (−5) · 0 + 0 · 0 + 7 · 0 = 6,

and so

a(x)b(x) = c5x
5 + c4x

4 + c3x
3 + c2x

2 + c1x + c0 = 6x5 − 11x4 − 18x3 + 41x2 + 14x− 28.

This example is intended to illustrate the notation in the formal definition of multiplication.
In practice, polynomials are multiplied by multiplying every term of the first by every term
of the second (using laws of exponents and multiplying coefficients), and then collecting like
terms. This procedure essentially uses a “distributive law” several times. ¤
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The other algebraic properties of the integers are valid in S[x] as well.

Theorem 3.1.6 (Polynomial Properties) If S = Z, Q, R, C, or Zp, p a prime, then S[x]
satisfies the following:

Properties of Addition:

i. Closure under Addition: p(x) + q(x) is in S[x] for all p(x) and q(x) in S[x].

ii. Associative Law of Addition:

p(x) + [q(x) + r(x)] = [p(x) + q(x)] + r(x)

for all p(x), q(x), and r(x) in S[x].

iii. Commutative Law of Addition: p(x) + q(x) = q(x) + p(x) for all p(x) and q(x) in S[x].

iv. Additive Identity: There is a polynomial Z(x) in S[x] such that

p(x) + Z(x) = Z(x) + p(x) = p(x)

for all p(x) in S[x].

v. Additive Inverses: For each polynomial p(x) in S[x], there is a polynomial −p(x) in S[x] such
that

p(x) + (−p(x)) = (−p(x)) + p(x) = Z(x).

Properties of Multiplication:

vi. Closure under Multiplication: p(x) · q(x) is in S[x] for all p(x) and q(x) in S[x].

vii. Associative Law of Multiplication:

p(x) · [q(x) · r(x)] = [p(x) · q(x)] · r(x)

for all p(x), q(x), and r(x) in S[x].

viii. Commutative Law of Multiplication: p(x) · q(x) = q(x) · p(x) for all p(x) and q(x) in S[x].

ix. Multiplicative Identity: There is a polynomial I(x) in S[x] such that

p(x) · I(x) = I(x) · p(x) = p(x)

for all p(x) in S[x].

Property Relating Addition and Multiplication:

x. Distributive Law:
p(x) · [q(x) + r(x)] = p(x) · q(x) + p(x) · r(x)

for all p(x), q(x), and r(x) in S[x].
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Compare these properties to the properties satisfied by Z in the list in Definition 1.3.1. Note
that Z(x) is the zero polynomial, Z(x) = 0, and I(x) is the constant polynomial 1, I(x) = 1. If
p(x) = anxn + an−1x

n−1 + · · ·+ a1x + a0, then the additive inverse of p(x) is

−p(x) = (−1)p(x) = −anxn − an−1x
n−1 − · · · − a1x− a0.

Theorem 3.1.6 can be proved using the algebraic properties of S and the remarks above.

Example: Show that p(x) + q(x) = q(x) + p(x) for all p(x), q(x) ∈ S[x]; that is, addition of
polynomials is commutative.

Proof. Let p(x) = anxn + · · ·+ a1x + a0 and q(x) = bnxn + · · ·+ b1x + b0. We have

p(x) + q(x) = (anxn + · · ·+ a1x + a0) + (bnxn + · · ·+ b1x + b0)
= (an + bn)xn + · · ·+ (a1 + b1)x + (a0 + b0) by Definition 3.1.4,
= (bn + an)xn + · · ·+ (b1 + a1)x + (b0 + a0) by commutativity of addition in S,

= (bnxn + · · ·+ b1x + b0) + (anxn + · · ·+ a1x + a0) by Definition 3.1.4,
= q(x) + p(x),

and so p(x) + q(x) = q(x) + p(x) as claimed. ¤

Corollary 3.1.7 If S = Z, Q, R, C, or Zp, p a prime, then S[x] is a commutative ring with 1.

Before considering the existence of multiplicative inverses, we prove some useful properties of
the degrees of polynomials.

Theorem 3.1.8 If p(x), q(x) are polynomials in S[x], then deg (p(x)q(x)) = deg p(x) + deg q(x).

Proof. If p(x) = 0 or q(x) = 0, then p(x)q(x) = 0. Thus either deg p(x) = −∞ or deg q(x) = −∞,
and deg (p(x)q(x)) = −∞. We then have

deg (p(x)q(x)) = −∞ = deg p(x) + deg q(x)

and the equation holds.
We may now assume p(x) and q(x) are both non-zero. Let p(x) = anxn + · · ·+ a1x + a0, with

an 6= 0, and let q(x) = bmxm + · · ·+ b1x+ b0, with bm 6= 0, so that deg p(x) = n and deg q(x) = m.
Notice that since S is one of Z, Q, R, C, or Zp, where p is a prime, and an 6= 0, bm 6= 0, we have
anbm 6= 0. Thus, by Definition 3.1.5, the leading term of p(x)q(x) is anbmxn+m, and so

deg (p(x)q(x)) = n + m = deg p(x) + deg q(x)

as claimed. ¤

Notice that this theorem is valid even if one of p(x) or q(x) is the zero polynomial. This would
not be true had we attempted to define the degree of the zero polynomial to be 0 or any other
integer.
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The next results follow easily from the theorem, but can also be proved directly using the
definition of multiplication as in the proof of the theorem.

Corollary 3.1.9 If p(x) and q(x) are non-zero polynomials in S[x], then p(x) · q(x) is non-zero.

Proof. If p(x) and q(x) are non-zero, then deg p(x) = n and deg q(x) = m for some non-negative
integers n and m. Thus deg (p(x)q(x)) = n + m is also a non-negative integer, and so p(x)q(x) is
non-zero. ¤

Note that the corollary also implies that if p(x) · q(x) = 0, then p(x) = 0 or q(x) = 0.

Corollary 3.1.10 Let S be one of Q, R, C, or Zp, where p is a prime. A polynomial p(x) in S[x]
has a multiplicative inverse in S[x] if and only if p(x) is a non-zero constant polynomial.

Proof. If p(x) = a0 is a non-zero constant polynomial, then a0 is in S. By hypothesis, S is a field,
and so a0 has a multiplicative inverse a−1

0 in S. Thus the constant polynomial q(x) = a−1
0 is in

S[x], and p(x)q(x) = a0a
−1
0 = 1. Since I(x) = 1 is the multiplicative identity element of S[x], this

means q(x) is the multiplicative inverse of p(x).
Conversely suppose p(x) ∈ S[x] has a multiplicative inverse. This means p(x)q(x) = 1 for some

q(x) ∈ S[x], and so
0 = deg 1 = deg (p(x)q(x)) = deg p(x) + deg q(x).

In particular, neither deg p(x) nor deg q(x) can be −∞, so both p(x) and q(x) are non-zero poly-
nomials. Hence deg p(x) and deg q(x) are both non-negative integers and their sum is 0. It follows
that deg p(x) = deg q(x) = 0, and so p(x) is a constant polynomial. ¤

The degree of the sum of two polynomials is not as easy to specify as the degree of a product,
in general. We can say the following, however.

Theorem 3.1.11 If p(x), q(x) are polynomials in S[x], then

deg (p(x) + q(x)) 6 max{deg p(x), deg q(x)}.
Proof. Let p(x) = anxn + · · · + a1x + a0 and q(x) = bmxm + · · · + b1x + b0, where an 6= 0 and
bm 6= 0, so that deg p(x) = n and deg q(x) = m. We may assume without loss of generality that
n > m, so that max{deg p(x), deg q(x)} = n (and bn may be 0). By Definition 3.1.4, the leading
term of p(x) + q(x) will be (an + bn)xn, provided an + bn 6= 0, and will be of degree less than n if
an + bn = 0. In any case, we have

deg (p(x) + q(x)) 6 n = max{deg p(x), deg q(x)}
as claimed. ¤

In fact, the degree of the sum is equal to the maximum of the two degrees, unless p(x) and q(x)
have the same degree and the leading coefficients are the negatives of each other.

By Corollary 3.1.10, even if S = Q, R, C, or Zp, non-constant polynomials in S[x] will not
have multiplicative inverses. Hence S[x] is never a field. However, it is possible to construct a field
containing S[x] in much the same way we constructed the field Q containing the integers Z.
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The formal construction is analogous to the construction of Q in §1.5. We start with the set

R = {(a(x), b(x)) | a(x), b(x) ∈ S[x], b(x) 6= 0}

of ordered pairs of polynomials with the second polynomial non-zero. The relation ∼ defined on R
by (a(x), b(x)) ∼ (a′(x), b′(x)) if and only if a(x)b′(x) = b(x)a′(x) is an equivalence relation.

We define
R = { [(a(x), b(x))] | (a(x), b(x)) ∈ R}

to be the set of equivalence classes. For X = [(a(x), b(x))] and Y = [(c(x), d(x))] in R, we define
addition X + Y and multiplication X · Y by

X + Y = [(a(x), b(x))] + [(c(x), d(x))] = [(a(x)d(x) + b(x)c(x), b(x)d(x))]

and
X · Y = [(a(x), b(x))] · [(c(x), d(x))] = [(a(x)c(x), b(x)d(x))].

It is then straightforward, but tedious, to verify that R is a field. Identifying a polynomial p(x)
in S[x] with the equivalence class [(p(x), 1)] in R, we consider S[x] to be be contained in the field R.

Less formally, we can view an ordered pair (a(x), b(x)) in R as the rational expression
a(x)
b(x)

, and

its equivalence class [(a(x), b(x))] as the rational function represented by all equivalent quotients of
polynomials. We then obtain the more familiar field of rational functions, denoted S(x).

Theorem 3.1.12 Let S be one of Z, Q, R, C, or Zp, p a prime, and let

S(x) =
{

a(x)
b(x)

∣∣∣∣ a(x), b(x) ∈ S[x], b(x) 6= 0
}

be the set of rational functions with coefficients in S. Then S(x) is a field with addition and
multiplication defined by

a(x)
b(x)

+
c(x)
d(x)

=
a(x)d(x) + b(x)c(x)

b(x)d(x)

and
a(x)
b(x)

· c(x)
d(x)

=
a(x)c(x)
b(x)d(x)

.

The fields S(x) and R are algebraically equivalent (i.e., isomorphic). By identifying a polyno-

mial p(x) with the rational function
p(x)

1
, we consider S[x] to be contained in S(x), just as Z is

contained in Q.
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§3.1 Exercises

1. Determine the degree and leading coefficient of each of the following polynomials:

(a) p1(x) = 5x3 − 3x2 + 2

(b) p2(x) = 7x2 − 9x5 + 4x3 − 6

(c) p3(x) = 6

(d) p4(x) = 0

(e) p5(x) = x473 − 5

2. Use only Definition 3.1.5 to find the product of the polynomials a(x) = 2x3 + 5x2 + 4x + 7
and b(x) = 3x2 + 6x + 8. That is, identify ai and bi for each i and write the coefficients ci of
the product in the form ci = aib0 + · · ·+ a0bi as in the definition. Include any 0 coefficients
as well.

3. (a) For p(x) = 5x4 − 3x3 + 2x2 + 7x − 4 and q(x) = x5 − 3x4 + 4x2 − 8x, find p(x) + q(x)
and p(x)− q(x).

(b) For p(x) = 2x3 + 3x and q(x) = x2 − 5, find p(x)q(x).

(c) For p(x) = 4x3 − 3x2 + 1 and q(x) = x2 + 2x + 5, find p(x)q(x).

(d) For p(x) = x2 + 3, find p(x)2.

4. Use Definition 3.1.4 and properties of real numbers to show that if a(x) = anxn+· · ·+a1x+a0

and b(x) = bnxn + · · ·+b1x+b0 are polynomials in R[x], then a(x)+ b(x) = b(x)+a(x). That
is, verify the commutative law of polynomial addition. [Note: It will be necessary to use the
commutative law of addition of real numbers. Be sure to indicate where this is used.]

5. Use Definition 3.1.4 and properties of real numbers to show that if a(x) = anxn+· · ·+a1x+a0,
b(x) = bnxn + · · ·+ b1x + b0, and c(x) = cnxn + · · ·+ c1x + c0 are polynomials in R[x], then
a(x) + [b(x) + c(x)] = [a(x) + b(x)] + c(x). That is, verify the associative law of polynomial
addition. [Note: It will be necessary to use the associative law of addition of real numbers.
Be sure to indicate where this is used.]

6. Use Definition 3.1.5 and properties of real numbers to show that if a(x) = amxm+· · ·+a1x+a0

and b(x) = bnxn + · · · + b1x + b0 are polynomials in R[x], then a(x) · b(x) is a polynomial
in R[x]. That is, verify that R[x] is closed under multiplication. [Note: It will be necessary
to use the closure of R under addition and multiplication. Be sure to indicate where this is
used.]

7. Show that if a(x), b(x), and q(x) are non-zero polynomials in S[x] such that b(x) = q(x)a(x),
then deg a(x) 6 deg b(x). [Hint: Use Theorem 3.1.8.]
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3.2 Binomial Coefficients and Binomial Theorem

We will now consider the special polynomial product (1 + x)n in Z[x]. If we were to expand this
product, we would obtain a polynomial in x of degree n with integer coefficients. The coefficients
are the binomial coefficients.

Definition 3.2.1 Let n > 0 be an integer and let r be an integer with 0 6 r 6 n. The binomial
coefficient

(
n
r

)
is defined to be the coefficient of xr in the polynomial (1 + x)n.

That is, if (1 + x)n = c0 + c1x + · · ·+ cn−1x
n−1 + cnxn, then

(
n
r

)
= cr.

Example: By direct computation, we have

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4,

and so (4
0
)

= 1,
(4
1
)

= 4,
(4
2
)

= 6,
(4
3
)

= 4,
(4
4
)

= 1,

by Definition 3.2.1. ¤

Remarks:

1. The binomial coefficient
(
n
r

)
is pronounced “n choose r,” due to the fact that it is also equal

to the number of ways to choose a set of r objects from an n element set. We can relate
this interpretation to the coefficients of (1 + x)n as follows. The polynomial (1 + x)n is a
sum of terms, each of which is a product of either an x or a 1 chosen from each of the n
factors of (1 + x)(1 + x) · · · (1 + x). An xr term arises by choosing an x from r factors and 1
from the rest, and the coefficient of xr is the number of different ways to do this. Hence the
coefficient

(
n
r

)
is the number of ways to choose r factors from the set of n factors.

2. The polynomial 1 + x is in the set Z[x], and by the Polynomial Properties Theorem (Theo-
rem 3.1.6 (vi)), Z[x] is closed under multiplication. It follows that (1+x)n is in Z[x], and the
binomial coefficient

(
n
r

)
is always an integer.

It is easy to check by direct calculation that the leading coefficient and the constant term of
(1 + x)n are both 1, which implies the following result.

Proposition 3.2.2 For every integer n > 0,
(

n
0

)
=

(
n
n

)
= 1.

The proposition above allows us to compute the first and last binomial coefficients for a given
value of n. Those in between can then be calculated inductively using the following very important
theorem.
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Theorem 3.2.3 (Pascal’s Rule) For integers n, r, with 0 < r < n + 1,
(

n + 1
r

)
=

(
n

r − 1

)
+

(
n
r

)
.

Proof. By definition, we must show that if (1 + x)n = c0 + c1x + · · · + cn−1x
n−1 + cnxn, so that(

n
r − 1

)
= cr−1 and

(
n
r

)
= cr, then the coefficient

(
n + 1

r

)
of xr in (1 + x)n+1 is cr−1 + cr.

We can calculate (x + 1)n+1 as follows:

(1 + x)n+1 = (1 + x)(1 + x)n

= (1 + x)n + x(1 + x)n

= (c0 + c1x + · · ·+ cn−1x
n−1 + cnxn) + x(c0 + c1x + · · ·+ cn−1x

n−1 + cnxn)
= c0 + c1x + c2x

2 + · · · + cn−1x
n−1 + cnxn +

c0x + c1x
2 + c2x

3 + · · · + cn−1x
n + cnxn+1

= c0 + (c0 + c1)x + (c1 + c2)x2 + · · ·+ (cn−2 + cn−1)xn−1 + (cn−1 + cn)xn + cnxn+1.

Therefore, if 0 < r < n + 1, the coefficient of xr in (1 + x)n+1 is indeed cr−1 + cr as desired, and so
Pascal’s Rule holds. ¤

Example: We saw in the previous example that
(4
1
)

= 4 and
(4
2
)

= 6, hence Pascal’s Rule, with
n = 4 and r = 2, says that (5

2
)

=
(4
1
)

+
(4
2
)

= 4 + 6 = 10.

This can be verified directly by expanding (1 + x)5. ¤

Using Pascal’s Rule, the binomial coefficients can be calculated and put in a triangular array,
called Pascal’s Triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

. .
.

. .
.

. .
.

. .
. ...

. . .
. . .

. . .
. . .

The binomial coefficient
(
n
r

)
is placed in row n, position r (where the rows and positions are

numbered starting with 0). Thus the “border” entries are 1 by Proposition 3.2.2, and Pascal’s Rule
says that each “interior” entry is the sum of the two entries above it.

Using Pascal’s Rule and induction, we can derive a formula to compute the binomial coefficients
directly. Recall that for a positive integer m, we define m-factorial, denoted m!, as

m! = m(m− 1)(m− 2) · · · (3)(2)(1),

and we define 0! = 1.
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Theorem 3.2.4 If n and r are integers with 0 6 r 6 n, then
(

n
r

)
=

n!
r!(n− r)!

.

Proof. We proceed by induction on n. If n = 0, then r = 0 as well, and we have
(

0
0

)
= 1 =

0!
0!(0− 0)!

.

Therefore, the formula holds with n = 0.
Now assume the formula holds for n = k; that is,

(
k
r

)
=

k!
r!(k − r)!

(∗)

for all 0 6 r 6 k. We must show that, given (∗), the formula holds for n = k + 1; that is,
(

k + 1
r

)
=

(k + 1)!
r!((k + 1)− r)!

for all 0 6 r 6 k + 1.
Using Proposition 3.2.2 and the fact that 0! = 1, we have

(k + 1)!
0!((k + 1)− 0)!

=
(k + 1)!

0!(k + 1)!
=

(k + 1)!
(k + 1)!

= 1 =
(

k + 1
0

)

and
(k + 1)!

(k + 1)!((k + 1)− (k + 1))!
=

(k + 1)!
(k + 1)! 0!

=
(k + 1)!
(k + 1)!

= 1 =
(

k + 1
k + 1

)
,

and so the formula holds for n = k+1 with r = 0 and r = k+1. We may now assume 0 < r < k+1,
so that Pascal’s Rule (Theorem 3.2.3) applies. We have

(
k + 1

r

)
=

(
k

r − 1

)
+

(
k
r

)
by Pascal’s Rule,

=
k!

(r − 1)!(k − (r − 1))!
+

k!
r!(k − r)!

by (∗),

=
k!

(r − 1)!(k − r + 1)(k − r)!
+

k!
r(r − 1)!(k − r)!

=
k!

(r − 1)!(k − r)!

[
1

(k − r + 1)
+

1
r

]

=
k!

(r − 1)!(k − r)!
· r + (k − r + 1)

r(k − r + 1)

=
k!

(r − 1)!(k − r)!
· k + 1
r(k − r + 1)

=
(k + 1)k!

r(r − 1)!(k − r + 1)(k − r)!

=
(k + 1)!

r!(k − r + 1)!
=

(k + 1)!
r!((k + 1)− r)!

,

and so the formula holds for n = k + 1. Therefore, the formula holds for all n > 0 by the Principle
of Mathematical Induction. ¤
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We noted in Proposition 3.2.2 that for n > 0,
(

n
0

)
=

(
n
n

)
= 1.

Using Theorem 3.2.4, it is easy to see that for n > 1,
(

n
1

)
=

(
n

n− 1

)
= n.

More generally, we have the following corollary, whose proof is left as an exercise (see Exercise 3.2.6).

Corollary 3.2.5 If n and r are integers with 0 6 r 6 n, then
(

n
r

)
=

(
n

n− r

)
.

Using the formula above and recalling the definition of binomial coefficients, we have:

Corollary 3.2.6 If n is an integer with n > 0, then

(1 + x)n =
n∑

r=0

(
n
r

)
xr =

n∑

r=0

n!
r!(n− r)!

xr.

More generally, we have the Binomial Theorem, a formula for expanding the product (a + b)n.

Theorem 3.2.7 (Binomial Theorem) If n is an integer with n > 0, then

(a + b)n =
n∑

r=0

(
n
r

)
an−rbr =

n∑

r=0

n!
r!(n− r)!

an−rbr.

Proof. If a = 0, the left side of the equation becomes bn and the right side reduces to
(
n
n

)
bn, and

since
(
n
n

)
= 1, the formula holds. We may therefore assume a 6= 0.

Writing (a + b) = a(1 + b
a) and letting x = b

a in Corollary 3.2.6, we have

(a + b)n = an

(
1 +

b

a

)n

= an
n∑

r=0

(
n
r

)(
b

a

)r

=
n∑

r=0

(
n
r

)
an · br

ar
=

n∑

r=0

(
n
r

)
an−rbr,

and the first equality in the formulas holds. The second equality in the formula follows by replacing
the binomial coefficient by the expression from Theorem 3.2.4. ¤
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Example: We expand (3x− 2)5 using the Binomial Theorem with n = 5, a = 3x, and b = −2:

(3x− 2)5 =
5∑

r=0

(
5
r

)
(3x)5−r(−2)r

=
(

5
0

)
(3x)5 +

(
5
1

)
(3x)4(−2) +

(
5
2

)
(3x)3(−2)2 +

(
5
3

)
(3x)2(−2)3 +

(
5
4

)
(3x)(−2)4 +

(
5
5

)
(−2)5

= (3x)5 + 5(3x)4(−2) + 10(3x)3(−2)2 + 10(3x)2(−2)3 + 5(3x)(−2)4 + (−2)5

= 243x5 + 5 · 81x4 · (−2) + 10 · 27x3 · 4 + 10 · 9x2 · (−8) + 5 · 3x · 16 + (−32)
= 243x5 − 810x4 + 1080x3 − 720x2 + 240x− 32.

Hence (3x− 2)5 = 243x5 − 810x4 + 1080x3 − 720x2 + 240x− 32. ¤

§3.2 Exercises

1. Evaluate the following binomial coefficients. Show your work.

(a)
(

7
3

)

(b)
(

6
4

)
(c)

(
8
2

)

(d)
(

8
6

)
(e)

(
9
5

)

2. Find the coefficient

(a) of x16 in (x + 1)20,

(b) of x9 in (x + 1)15,

(c) of x7 in (x + 1)18.

3. Use the Binomial Theorem to expand the following powers:

(a) (2x + 3)4

(b) (2x + 3)5

(c) (2x + 3)6.

4. Show that if n and r are integers with 0 6 r 6 n, then r!(n− r)! |n!.

5. Show that if n > 1, then
(

n
1

)
=

(
n

n− 1

)
= n.

6. Show that if n and r are integers with 0 6 r 6 n, then
(

n
r

)
=

(
n

n− r

)
.
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On Exercises 7 and 8, prove the statements by using the Binomial Theorem to evaluate (a + b)n

for an appropriate choice of a and b.

7. Show that if n is an integer and n > 1, then
(

n
0

)
+

(
n
1

)
+ · · ·+

(
n

n− 1

)
+

(
n
n

)
= 2n.

8. Show that if n is an integer and n > 1, then
(

n
0

)
−

(
n
1

)
+

(
n
2

)
−

(
n
3

)
+ · · ·+ (−1)n

(
n
n

)
= 0.
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3.3 Divisibility and Polynomials

In this section we consider the divisibility properties of polynomials, including the Division Algo-
rithm and greatest common divisors. Most of the results on divisibility of integers can be translated
almost word for word into analogous results for polynomials. Compare the definitions and results
below to those in §2.2.

Note: So that we can always divide coefficients of polynomials, we will now assume that the ring S
of coefficients is one of Q, R, C, or Zp, p a prime, but not Z. Thus we assume that S is a field.

In all of the results below, a(x), b(x), c(x), etc., will denote polynomials in S[x]. Recall that
constants (elements of S) are considered to be elements of S[x] by identifying them with constant
polynomials.

Definition 3.3.1 Let a(x) and b(x) be polynomials in S[x], with a(x) 6= 0. We say that a(x)
divides b(x), and write a(x) | b(x), if b(x) = q(x)a(x) for some polynomial q(x) in S[x].

As with integers, if a(x) | b(x), we also say a(x) is a divisor or factor of b(x), that b(x) is a
multiple of a(x), or that b(x) is divisible by a(x).

The following basic properties are proved in exactly the same way as the analogous results for
integers.

Theorem 3.3.2 The following properties hold for polynomials a(x), b(x), c(x), and d(x) in S[x].

i. If a(x) 6= 0, then a(x) | 0.
ii. If a(x) 6= 0, then a(x) | a(x).

iii. If a(x) is any polynomial, then 1 | a(x).

iv. If a(x) | b(x) and b(x) | c(x), then a(x) | c(x).

v. If a(x) | b(x) and d(x) | c(x), then a(x)d(x) | b(x)c(x).

vi. (Combination Theorem) If a(x) | b(x) and a(x) | c(x), then a(x) | b(x)f(x)+ c(x)g(x) for
all polynomials f(x), g(x) in S[x].

Proof. Property (i) follows from the definition and the fact that 0 = 0 · a(x). Properties (ii) and
(iii) both follow from a(x) = 1 · a(x) and the fact that 1 ∈ S[x]. The proofs of (iv) and (v) are left
as exercises (see Exercises 3.3.3 and 3.3.4).

For (vi), if a(x) | b(x) and a(x) | c(x), then b(x) = a(x)m(x) and c(x) = a(x)n(x) for some
m(x), n(x) ∈ S[x]. Hence we have

b(x)f(x) + c(x)g(x) = (a(x)m(x))f(x) + (a(x)n(x))g(x) = a(x)[m(x)f(x) + n(x)g(x)].

Since S[x] is closed under multiplication and addition, m(x)f(x) + n(x)g(x) is in S[x], and so this
implies a(x) | b(x)f(x) + c(x)g(x) by definition. ¤
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We noted that for integers, the signs of the integers do not affect divisibility. The analogous
result for polynomials involves constant multiples.

Proposition 3.3.3 If a(x) | b(x) and k 6= 0 is an element of S, then k · a(x) | b(x).

Proof. Let a(x) | b(x) and 0 6= k ∈ S. Then b(x) = a(x)m(x) for some m(x) ∈ S[x], and since S is
a field, k has a multiplicative inverse k−1 in S, hence also in S[x]. We have

b(x) = a(x)m(x) = (k · k−1)a(x)m(x) = k · a(x)(k−1 ·m(x)),

and since S[x] is closed under multiplication, k−1 ·m(x) ∈ S[x] and this implies k · a(x) | b(x) by
definition. ¤

Note that the proof of the proposition depends on the fact that S is a field and thus every
non-zero element k in S has a multiplicative inverse in S (and hence in S[x]). This is also necessary
for the following corollary.

Corollary 3.3.4 If k 6= 0 is an element of S and b(x) is in S[x], then k | b(x).

Proof. Since 1 | b(x) and k · 1 = k, substituting a(x) = 1 in Proposition 3.3.3 implies the result. ¤

We showed that if a and b are positive integers and a | b, then a 6 b. The degree induces a
partial order on the set of polynomials, and we obtain the following analogous result.

Theorem 3.3.5 If a(x) | b(x) and b(x) 6= 0, then deg a(x) 6 deg b(x).

Proof. Since a(x) | b(x) and b(x) 6= 0, there exists a non-zero polynomial m(x) ∈ S[x] such that
b(x) = m(x)a(x). By Theorem 3.1.8, we have

deg b(x) = deg (m(x)a(x)) = deg m(x) + deg a(x).

Since m(x) 6= 0, we know deg m(x) > 0, and so

deg b(x) = deg m(x) + deg a(x) > deg a(x).

Therefore, deg b(x) > deg a(x). ¤

We showed that if two integers a, b divide each other, then b = ±a. The analogue for polynomials
is the following result.

Theorem 3.3.6 If a(x) | b(x) and b(x) | a(x), then b(x) = k · a(x) for some constant k in S.

Proof. Since a(x) | b(x) and b(x) | a(x), we have b(x) = m(x)a(x) and a(x) = n(x)b(x) for some
m(x), n(x) ∈ S[x]. Hence

a(x) = n(x)b(x) = n(x)m(x)a(x),

and so
0 = n(x)m(x)a(x)− a(x) = [n(x)m(x)− 1]a(x).

By hypothesis, we know a(x) 6= 0, hence n(x)m(x)−1 = 0 by Corollary 3.1.9. Thus n(x)m(x) = 1,
and so n(x) and m(x) are non-zero constants by Corollary 3.1.10. In particular, m(x) = k ∈ S and
b(x) = k · a(x). ¤
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Observe that the following corollary is equivalent to Corollary 3.1.10 because b(x) | 1 is equiv-
alent to the existence of a multiplicative inverse for b(x) in S[x].

Corollary 3.3.7 If b(x) | 1, then b(x) is a non-zero constant polynomial.

Proof. Since 1 | b(x), we may substitute a(x) = 1 in Theorem 3.3.6 to obtain b(x) = k · 1 = k for
some non-zero constant k ∈ S. ¤

Analogous to the Division Algorithm for integers, a polynomial in S[x] can be divided by
another polynomial using long division to obtain a quotient and a remainder. In this case, the
process continues until the remainder has lower degree than the divisor. As before, the quotient
and remainder are unique.

Example: We use long division to divide b(x) = 2x3 − 5x2 + 6x − 3 by a(x) = x2 + 4x and find
the quotient q(x) and remainder r(x). The procedure is similar to long division of integers and is
as follows:

1. Divide the leading term of the dividend by the leading term of the divisor. In this case, this
is 2x3/x2 = 2x.

2. Multiply the divisor by the result of Step (1). In this case, we obtain 2x(x2 +4x) = 2x3 +8x2.

3. Subtract the result of Step (2) from the dividend. Here, this yields

(2x3 − 5x2 + 6x− 3)− (2x3 + 8x2) = −13x2 + 6x− 3.

4. Using the result of Step (3) as the new dividend (of lower degree), repeat the steps until the
difference obtained in Step (3) is of strictly lower degree than the degree of the divisor.

The sum of the terms obtained from Step (1) will be the quotient q(x) and the final remainder in
Step (4) will be the remainder r(x). The complete procedure for our example is given below.

2x − 13

x2 + 4x )2x3 − 5x2 + 6x − 3

2x3 + 8x2

− 13x2 + 6x − 3

− 13x2 − 52x

58x − 3

We have q(x) = 2x− 13 and r(x) = 58x− 3. Observe that

deg (58x− 3) = 1 < 2 = deg (x2 + 4x),

so that deg r(x) < deg a(x). It is easy to check by direct calculation that

2x3 − 5x2 + 6x− 3 = (2x− 13)(x2 + 4x) + (58x− 3),

that is, b(x) = q(x)a(x) + r(x). ¤
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The Division Algorithm for polynomials gives a precise statement of the existence and unique-
ness of a quotient and remainder. Again, the proof involves the long division procedure along with
induction, and is omitted here.

Theorem 3.3.8 (Division Algorithm) If a(x) and b(x) are polynomials in S[x] with a(x) 6= 0,
then there exist unique polynomials q(x) and r(x) in S[x] satisfying b(x) = q(x)a(x) + r(x) and
either r(x) = 0 or deg r(x) < deg a(x).

As with integers, b(x) is the dividend, a(x) is the divisor, q(x) is the quotient, and r(x) is
the remainder. The condition that a(x) | b(x) is equivalent to the condition that r(x) = 0. Since
we defined deg 0 = −∞, the case r(x) = 0 is included in the case deg r(x) < deg a(x), but we
include the possibility r(x) = 0 separately in the theorem for emphasis.

Greatest Common Divisor

Definition 3.3.9 Let a(x) and b(x) be polynomials in S[x], at least one of which is not zero. The
greatest common divisor of a(x) and b(x) is the monic polynomial d(x) satisfying

i. d(x) | a(x) and d(x) | b(x),

ii. if c(x) | a(x) and c(x) | b(x), then deg c(x) 6 deg d(x).

We denote the GCD of a(x) and b(x) as d(x) = (a(x), b(x)). The GCD of a(x) and b(x) is the
monic polynomial of highest degree that divides both a(x) and b(x). It is not difficult to see that
a GCD must exist, but it is not obvious from the definition that it must be unique. The GCD is
found using the Euclidean Algorithm. The procedure is nearly identical to that used for integers.

Theorem 3.3.10 (Euclidean Algorithm) Let A(x) and B(x) be non-zero polynomials in S[x].
Use the Division Algorithm to obtain the following system of equations:

B(x) = Q1(x)A(x) + R1(x), 0 6 deg R1(x) < deg A(x)
A(x) = Q2(x)R1(x) + R2(x), 0 6 deg R2(x) < deg R1(x)

R1(x) = Q3(x)R2(x) + R3(x), 0 6 deg R3(x) < deg R2(x)
...

...
...

...
Rn−2(x) = Qn(x)Rn−1(x) + Rn(x), 0 6 deg Rn(x) < deg Rn−1(x)
Rn−1(x) = Qn+1(x)Rn(x).

Let Rn(x) be the last non-zero remainder. If r is the leading coefficient of Rn(x), then
1
r
Rn(x) is

the greatest common divisor of A(x) and B(x).

Remarks: Using the Combination Theorem, it can be shown that

1. Rn(x) | A(x) and Rn(x) | B(x), and

2. if c(x) | A(x) and c(x) | B(x), then c(x) | Rn(x).
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If r is the leading coefficient of Rn(x), then 1
rRn(x) is monic and, by Proposition 3.3.3 and basic

properties of divisibility, also satisfies conditions (1) and (2). If c(x) | 1
rRn(x), then by Theo-

rem 3.3.5 we know deg c(x) 6 deg 1
rRn(x). It follows that 1

rRn(x) is the GCD of A(x) and B(x).

The procedure used for the verification of the Euclidean Algorithm suggested in the remarks
above is the same as that used in the example in §2.3 on page 46. It is notationally rather
cumbersome to do this in general, and we will instead give a proof along the lines of the proof of
Theorem 2.3.3. Before proceeding with the proof, we demonstrate the procedure with an example.

Example: We find the GCD of A(x) = 6x3−10x2−30x+18 and B(x) = 3x4 +x3−23x2−23x+6.
Using long division to find quotients and remainders, we obtain the following equations:

3x4 + x3 − 23x2 − 23x + 6 = ((1/2)x + 1)(6x3 − 10x2 − 30x + 18) + (2x2 − 2x− 12)
6x3 − 10x2 − 30x + 18 = (3x− 2)(2x2 − 2x− 12) + (2x− 6)

2x2 − 2x− 12 = (x + 2)(2x− 6).

The last non-zero remainder is R(x) = 2x− 6. Since the leading coefficient of R(x) is 2, we have

(A(x), B(x)) =
1
2
R(x) =

1
2
(2x− 6),

and so (A(x), B(x)) = x− 3. ¤

The main result we need for the proof of the Euclidean Algorithm is the following lemma,
analogous to Lemma 2.3.4 for integers.

Lemma 3.3.11 If a(x) and b(x) are non-zero polynomials in S[x], and q(x) and r(x) are polyno-
mials in S[x] such that b(x) = q(x)a(x) + r(x), then (b(x), a(x)) = (a(x), r(x)).

Proof. If c(x) | a(x) and c(x) | r(x), then by the Combination Theorem, c(x) | q(x)a(x) + r(x);
that is, c(x) | b(x). Conversely, if c(x) | b(x) and c(x) | a(x), then c(x) | b(x) − q(x)a(x); that is,
c(x) | r(x). Therefore, the set of common divisors of a(x) and r(x) is precisely the same as the set
of common divisors of b(x) and a(x). Thus the monic polynomial of highest degree in this set of
common divisors is equal to (a(x), r(x)) and to (b(x), a(x)), hence (a(x), r(x)) = (b(x), a(x)). ¤

Proof of Theorem 3.3.10. We will first show that

(B(x), A(x)) = (Ri(x), Ri+1(x))

for all i = 1, . . . , n− 1. The proof is by induction on i.
By Lemma 3.3.11, B(x) = Q1(x)A(x) + R1(x) implies

(B(x), A(x)) = (A(x), R1(x))

and A(x) = Q2(x)R1(x) + R2(x) implies

(A(x), R1(x)) = (R1(x), R2(x)).
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Hence
(B(x), A(x)) = (R1(x), R2(x))

and the claim holds for i = 1.
Now assume the claim is true for i = k; that is,

(B(x), A(x)) = (Rk(x), Rk+1(x)).

Since Rk(x) = Qk+2(x)Rk+1(x) + Rk+2(x), Lemma 3.3.11 implies

(Rk(x), Rk+1(x)) = (Rk+1(x), Rk+2(x)).

Thus
(B(x), A(x)) = (Rk+1(x), Rk+2(x)),

and the claim is true for i = k + 1.
By the Principle of Mathematical Induction, we therefore have that

(B(x), A(x)) = (Ri(x), Ri+1(x))

for all i = 1, . . . , n− 1. In particular,

(B(x), A(x)) = (Rn−1(x), Rn(x)).

Finally, 1
rRn(x) is monic and, by Proposition 3.3.3, 1

rRn(x) | Rn(x) and 1
rRn(x) | Rn−1(x) (as

Rn−1(x) = Qn+1(x)Rn(x)). If c(x) is any other common divisor, then c(x) | Rn(x) and so

deg c(x) 6 deg Rn(x) = deg
1
r
Rn(x).

Hence
(B(x), A(x)) = (Rn−1(x), Rn(x)) =

1
r
Rn(x)

and the theorem is proved. ¤

The GCD of two polynomials satisfies the basic properties satisfies by the GCD of integers. In
particular, the GCD can be written as a combination of the two polynomials, and any common di-
visor must also divide the GCD. We first need the following characterization of the GCD, analogous
to Lemma 2.4.4.

Lemma 3.3.12 Let a(x) and b(x) be polynomials in S[x], at least one of which is not zero. The
GCD of a(x) and b(x) is the monic polynomial in S[x] of smallest degree that can be written in the
form a(x)s(x) + b(x)t(x) for s(x), t(x) ∈ S[x].

Proof. Let a(x) and b(x) be polynomials in S[x], at least one of which is not 0, and define the set

P = {a(x)s(x) + b(x)t(x) | s(x), t(x) ∈ S[x] and a(x)s(x) + b(x)t(x) 6= 0}.

Since at least one of a(x) or b(x) is non-zero, at least one of a(x) or b(x) is therefore in P, and
so P is non-empty. In particular, the set of degrees of polynomials in P is a non-empty set of non-
negative integers, hence has a smallest element by the Well-ordering Principle (Theorem 2.1.1).
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Thus there is a polynomial d1(x) ∈ P with smallest possible degree. If a is the leading coefficient
of d1(x), then d(x) = 1

ad1(x) is monic, is an element of P, and is of the same degree as d1(x). Thus
d(x) is a monic polynomial of smallest degree in P, and so d(x) = a(x)m(x) + b(x)n(x) for some
m(x), n(x) ∈ S[x].

The conclusion of the theorem is that this polynomial d(x) is the GCD of a(x) and b(x). We
will show that d(x) satisfies parts (i) and (ii) of Definition 3.3.9, hence d(x) = (a(x), b(x)).

We first show (i), that d(x) | a(x) and d(x) | b(x). By the Division Algorithm (Theorem 3.3.8),
we can write a(x) = q(x)d(x)+r(x) for q(x), r(x) ∈ S[x] with r(x) = 0 or 0 6 deg r(x) < deg d(x).
Moreover, we can express r(x) as

r(x) = a(x)− q(x)d(x)
= a(x)− q(x)(a(x)m(x) + b(x)n(x))
= a(x)(1− q(x)m(x)) + b(x)(−q(x)n(x)).

Since 1 − q(x)m(x) and −q(x)n(x) are in S[x], if r(x) 6= 0, then r(x) ∈ P. However, d(x) was
chosen to have smallest degree among the elements of P and deg r(x) < deg d(x). Hence r(x) is
not an element of P, and so r(x) = 0 and a(x) = q(x)d(x). Therefore d(x) | a(x). The proof that
d(x) | b(x) is nearly identical and is left as an exercise.

Finally, we show (ii), that if c(x) is a polynomial in S[x] such that c(x) | a(x) and c(x) | b(x),
then deg c(x) 6 deg d(x). Suppose c(x) | a(x) and c(x) | b(x). Since d(x) = a(x)m(x) + b(x)n(x)
with m(x), n(x) ∈ S[x], the Combination Theorem (Theorem 3.3.2 (vi)) says that c(x) | d(x). Since
c(x) | d(x) and d(x) 6= 0, it follows from Theorem 3.3.5 that deg c(x) 6 deg d(x) as claimed. ¤

The lemma implies the first of the basic properties of the GCD mentioned above.

Theorem 3.3.13 If a(x) and b(x) are polynomials in S[x], at least one of which is not zero, then
there are polynomials f(x), g(x) in S[x] such that (a(x), b(x)) = a(x)f(x) + b(x)g(x).

Proof. This follows immediately from Lemma 3.3.12. ¤

As was the case for integers, the only polynomials that can be written as a combination of a(x)
and b(x) are the multiples of (a(x), b(x)).

Theorem 3.3.14 Let d(x) = (a(x), b(x)). A polynomial m(x) can be expressed in the form

m(x) = a(x)s(x) + b(x)t(x),

with s(x), t(x) in S[x], if and only if d(x) | m(x).

Proof. If
m(x) = a(x)s(x) + b(x)t(x)

for some polynomials s(x) and t(x) in S[x], then since d(x) | a(x) and d(x) | b(x), the Combination
Theorem implies d(x) | m(x). Thus m(x) is a multiple of d(x).

Conversely, suppose m(x) is a multiple of d(x), so that m(x) = n(x)d(x) for some n(x) ∈ S[x].
Since

d(x) = a(x)u(x) + b(x)v(x)
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for some u(x), v(x) ∈ S[x] by Theorem 3.3.13, we have

m(x) = n(x)d(x) = a(x)(n(x)u(x)) + b(x)(n(x)v(x)),

and n(x)u(x), n(x)v(x) are in S[x]. Hence d(x) can be expressed in the form a(x)s(x) + b(x)t(x),
with s(x) = n(x)u(x) and t(x) = n(x)v(x) in S[x]. ¤

In particular, note that if m(x) = a(x)s(x) + b(x)t(x) for some s(x), t(x) in S[x], it does not
generally follow that m(x) = (a(x), b(x)).

In order to write (a(x), b(x)) as a combination of a(x) and b(x), we work backwards through
the Euclidean Algorithm, writing each remainder as a combination of the two previous remainders.
This is the same procedure that was used for integers.

Example: For A(x) = 6x3 − 10x2 − 30x + 18 and B(x) = 3x4 + x3 − 23x2 − 23x + 6, we find
polynomials f(x), g(x) such that (A(x), B(x)) = A(x)f(x) + B(x)g(x). Recall from the example
on page 102 that (A(x), B(x)) = x−3, and the Euclidean Algorithm yields the following equations:

3x4 + x3 − 23x2 − 23x + 6 = ((1/2)x + 1)(6x3 − 10x2 − 30x + 18) + (2x2 − 2x− 12) (3.1)
6x3 − 10x2 − 30x + 18 = (3x− 2)(2x2 − 2x− 12) + (2x− 6) (3.2)

2x2 − 2x− 12 = (x + 2)(2x− 6). (3.3)

Beginning with Equation 3.2 and solving for the remainder in terms of the dividend and divisor,
we have

2x− 6 = (6x3 − 10x2 − 30x + 18)− (3x− 2)(2x2 − 2x− 12) by Equation 3.2,
= (6x3 − 10x2 − 30x + 18)−

(3x− 2)[(3x4 + x3 − 23x2 − 23x + 6)− ((1/2)x + 1)(6x3 − 10x2 − 30x + 18)]
by Equation 3.1,

= (6x3 − 10x2 − 30x + 18)[1 + (3x− 2)((1/2)x + 1)]−
(3x− 2)(3x4 + x3 − 23x2 − 23x + 6)

= (6x3 − 10x2 − 30x + 18)[(3/2)x2 + 2x− 1)] + (3x4 + x3 − 23x2 − 23x + 6)(−3x + 2).

Recalling that the GCD is x − 3 = (1/2)(2x − 6), we divide both sides of the equation by 2 to
obtain

x− 3 = (6x3 − 10x2 − 30x + 18)
[
3
4

x2 + x− 1
2

]
+ (3x4 + x3 − 23x2 − 23x + 6)

[−3
2

x + 1
]

.

Hence f(x) = (3/4)x2 + x− (1/2) and g(x) = (−3/2)x + 1. ¤

Theorem 3.3.15 Let a(x) and b(x) be polynomials, at least one of which is not zero. If c(x) | a(x)
and c(x) | b(x), then c(x) | (a(x), b(x)).

Proof. By Theorem 3.3.13, we can write (a(x), b(x)) = a(x)s(x)+b(x)t(x) with s(x), t(x) ∈ S[x]. If
c(x) | a(x) and c(x) | b(x), then by the Combination Theorem, we have c(x) | a(x)s(x) + b(x)t(x),
and so c(x) | (a(x), b(x)) as claimed. ¤
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The previous theorem implies an alternate definition of the GCD. We state this equivalent
characterization of the GCD as a theorem.

Theorem 3.3.16 Let a(x) and b(x) be polynomials, at least one of which is not zero, and let d(x)
be a monic polynomial. Then d(x) = (a(x), b(x)) if and only if d(x) satisfies

i. d(x) | a(x) and d(x) | b(x), and

ii. if c(x) | a(x) and c(x) | b(x), then c(x) | d(x).

To justify the use of the phrase “the GCD” in the Euclidean Algorithm and in the remarks
above, we need to know that there is only one polynomial satisfying the definition. This is the
reason the definition requires a monic polynomial. Note that any non-zero constant multiple of
(a(x), b(x)) will satisfy conditions (i) and (ii) of the definition.

Theorem 3.3.17 The greatest common divisor of two polynomials is unique.

Proof. Let a(x), b(x) be polynomials in S[x]. Suppose both d1(x) and d2(x) in S[x] are monic and
satisfy conditions (i) and (ii) of Theorem 3.3.16. In particular, both are common divisors of a(x)
and b(x). We need to show that d1(x) = d2(x).

Since d(x) = d1(x) satisfies condition (ii) and d2(x) is a common divisor of a(x) and b(x), we
have d2(x) | d1(x). Similarly, since d(x) = d2(x) satisfies condition (ii) and d1(x) is a common
divisor of a(x) and b(x), we have d1(x) | d2(x).

Now by Theorem 3.3.6, we have d2(x) = k · d1(x) for some k ∈ S. Since d1(x) is monic, k is the
leading coefficient of k · d1(x), hence also of d2(x). But d2(x) is also monic, and so k = 1 and we
have d2(x) = d1(x). ¤

The other basic properties of the GCD of integers in §2.4 can also be stated and proved for
polynomials, with the appropriate changes in wording. Some of these will appear as exercises.

Relatively Prime Pairs of Polynomials

Definition 3.3.18 Two polynomials a(x), b(x) in S[x] are relatively prime if (a(x), b(x)) = 1.

Remark: Polynomials a(x) and b(x) are relatively prime if they have no non-constant common
factors. For example, the polynomials a(x) = 2x + 2 = 2(x + 1) and b(x) = 4x − 2 = 2(2x − 1)
have the constant 2 as a common factor, but no non-constant common factors. Although 2 satisfies
conditions (i) and (ii) of the definition of GCD, it is not monic, and 1

2 · 2 = 1 is the GCD. Hence
2x + 2 and 4x− 2 are relatively prime.

By Theorem 3.3.13, we know that if a(x) and b(x) are relatively prime, then 1 can be written as
a combination of a(x) and b(x). The converse also holds in the case of relatively prime polynomials.
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Theorem 3.3.19 Let a(x) and b(x) be polynomials in S[x]. There exist polynomials f(x), g(x)
in S[x] such that a(x)f(x) + b(x)g(x) = 1 if and only if (a(x), b(x)) = 1.

Proof. If (a(x), b(x)) = 1, then a(x)f(x) + b(x)g(x) = 1 for some f(x), g(x) ∈ S[x] by Theo-
rem 3.3.13. Conversely, if a(x)f(x) + b(x)g(x) = 1 for some f(x), g(x) ∈ S[x], then by Theo-
rem 3.3.14, (a(x), b(x)) | 1. Hence, by Theorem 3.3.7, (a(x), b(x)) = k for some k ∈ S, and since
(a(x), b(x)) is monic, k = 1. ¤

Finally, we have some related divisibility properties. The proofs of these properties are almost
identical to those of the analogous results for integers.

Theorem 3.3.20 (Euclid’s Lemma for Polynomials) If a(x) | b(x)c(x) and (a(x), b(x)) = 1,
then a(x) | c(x).

Proof. Since (a(x), b(x)) = 1, we have 1 = a(x)s(x) + b(x)t(x) for some s(x), t(x) ∈ S[x], by
Theorem 3.3.13. Thus

c(x) = [a(x)s(x) + b(x)t(x)]c(x)
= [a(x)s(x)]c(x) + [b(x)t(x)]c(x)
= a(x)[s(x)c(x)] + [b(x)c(x)]t(x).

Since a(x) | a(x) and a(x) | b(x)c(x), we have

a(x) | a(x)[s(x)c(x)] + [b(x)c(x)]t(x)

by the Combination Theorem, and hence a(x) | c(x). ¤
Theorem 3.3.21 If a(x) | c(x) and b(x) | c(x), and (a(x), b(x)) = 1, then a(x)b(x) | c(x).

Proof. Since (a(x), b(x)) = 1, we have 1 = a(x)s(x) + b(x)t(x) for some s(x), t(x) ∈ S[x], by
Theorem 3.3.13. Since a(x) | c(x) and b(x) | c(x), we have c(x) = a(x)m(x) and c(x) = b(x)n(x)
for some m(x), n(x) ∈ S[x]. Thus

c(x) = c(x)[a(x)s(x) + b(x)t(x)]
= c(x)[a(x)s(x)] + c(x)[b(x)t(x)]
= [c(x)a(x)]s(x) + [c(x)b(x)]t(x)
= [b(x)n(x)a(x)]s(x) + [a(x)m(x)b(x)]t(x)
= a(x)b(x)[n(x)s(x) + m(x)t(x)].

All of m(x), n(x), s(x), and t(x) are in S[x] and S[x] is closed under addition and multiplication,
hence n(x)s(x) + m(x)t(x) is in S[x]. Thus

c(x) = a(x)b(x)[n(x)s(x) + m(x)t(x)]

implies a(x)b(x) | c(x). ¤

More generally, we have the following results, whose proofs are similar to the proofs of Theo-
rem 3.3.20 and Theorem 3.3.21 and are left to the exercises (see Exercises 3.3.11 and 3.3.12).

Theorem 3.3.22 If a(x) | b(x)c(x) and (a(x), b(x)) = d(x), then a(x) | c(x)d(x).

Theorem 3.3.23 If a(x) | c(x) and b(x) | c(x), and (a(x), b(x)) = d(x), then a(x)b(x) | c(x)d(x).
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§3.3 Exercises

For all exercises, S denotes Q, R, or C, and a(x), b(x), c(x), and d(x) denote polynomials in S[x].

1. Use Definition 3.3.1 to show that if a(x) | c(x) and b(x) | c(x), then a(x)b(x) | (c(x))2.

2. Show that if a(x) | b(x) and c(x) is any polynomial in S[x], then a(x) | b(x)c(x).

3. Show that if a(x) | b(x) and d(x) | c(x), then a(x)d(x) | b(x)c(x).

4. Show that if a(x) | b(x) and b(x) | c(x), then a(x) | c(x).

5. Use long division to find the quotient and remainder when b(x) is divided by a(x). Write
b(x) = q(x)a(x) + r(x), and expand the right hand side to check your answers.

(a) b(x) = 8x4 + 6x2 − 3x + 1
a(x) = 2x2 − x + 2

(b) b(x) = x3 + 3x2 + 4x + 3
a(x) = 3x + 6

For Exercises 6–8, find the greatest common divisor of the polynomials a(x) and b(x), and find
polynomials f(x) and g(x) so that (a(x), b(x)) = a(x)f(x) + b(x)g(x).

6. a(x) = x2 − 1
b(x) = 2x7 − 4x5 + 2

7. a(x) = x + 3
b(x) = x3 − 2x + 4

8. a(x) = x4 − 4x2 − 3x + 6
b(x) = x3 + x2 − x− 10

9. Show that if a(x) is monic and a(x) | b(x), then (a(x), b(x)) = a(x).
[Hint: Show that a(x) satisfies the definition of the GCD of a(x) and b(x).]

10. Show that if k is a non-zero element of S, then (k · a(x), b(x)) = (a(x), b(x)).
[Hint: Let d(x) = (a(x), b(x)) and show that d(x) satisfies the definition of the GCD of k ·a(x)
and b(x). You may need to use Exercise 2 above.]

11. Show that if a(x) | b(x)c(x) and (a(x), b(x)) = d(x), then a(x) | c(x)d(x); that is, prove
Theorem 3.3.22.

12. Show that if a(x) | c(x) and b(x) | c(x), and (a(x), b(x)) = d(x), then a(x)b(x) | c(x)d(x);
that is, prove Theorem 3.3.23.
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3.4 Synthetic Division

Long division of a polynomial p(x) by a monic polynomial x−a of degree 1 can be greatly simplified
by a process called synthetic division. This is essentially just long division with all unnecessary
information deleted. The procedure is described below with an example.

We will use synthetic division to find the quotient and remainder when p(x) = 2x4−10x3+13x2−4
is divided by x− 3.

1. Write the zero of the divisor (in this case, 3) next to an “upside down division sign:”

3

2. Write the coefficients of p(x) (including all 0 coefficients) in descending degree order:

3 2 −10 13 0 −4

3. Under the division sign, draw a line and write the leading coefficient below the line:

3 2 −10 13 0 −4

2

4. Multiply the zero of the divisor (3) by the next coefficient below the line and write the product
above the line in the next column:

3 2 −10 13 0 −4
6

2

5. Add the numbers in the next column and write the sum below the line:

3 2 −10 13 0 −4
6

2 −4

6. Repeat steps 4 and 5 until the last column is reached:

3 2 −10 13 0 −4
6 −12 3 9

2 −4 1 3 5

7. Interpret the result. The number in the last column (5) is the remainder. The other numbers
(2, −4, 1, and 3) are the coefficients of the quotient, in descending degree order. In this
example, the quotient is q(x) = 2x3 − 4x2 + x + 3 and the remainder is r(x) = 5. Hence

2x4 − 10x3 + 13x2 − 4 = (2x3 − 4x2 + x + 3)(x− 3) + 5.
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Remarks:

1. This procedure works only if the divisor is of the form x−a, where a is an element of S (that
is, monic of degree 1). It does not apply, for example, to division of p(x) by x2− 2 or 3x− 5.

2. The number to the left of the “division sign” is the zero of the divisor, that is, the value of x
that would make the divisor zero. Hence for x−3 we write 3 and for x+2 we would write −2.
In general, for x− a we write a. (Note that x + 2 = x− (−2).)

3. A coefficient of 0 must be included for any “missing” terms in p(x). If deg p(x) = n, there
will be n + 1 coefficients. In the example above, deg p(x) = 4 and there are 5 coefficients, for
x4, x3, x2, x, and the constant term.

4. The coefficients must be written in descending degree order. Hence for dividing

p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0 by x− a

we write:
a an an−1 · · · a1 a0

5. The numbers in each column above the line are added to obtain the number below the line,
not subtracted.

6. If deg p(x) = n and p(x) is divided by x − a, of degree 1, then the quotient q(x) will be of
degree n − 1 and the remainder r(x) must have degree less than 1. Hence q(x) has exactly
one less coefficient than p(x), and r(x) will always be a constant.

Example: Divide p(x) = 3x6 +3x5 +2x4 +6x3−x+2 by a(x) = x+1. Since there is no degree 2
term in p(x), the coefficient of x2 in p(x) is 0 and

p(x) = 3x6 + 3x5 + 2x4 + 6x3 + 0x2 − x + 2.

Since a(x) = x + 1 = x− (−1), the zero of a(x) is −1. We therefore start with:

−1 3 3 2 6 0 −1 2

Following the steps described above, we obtain:

−1 3 3 2 6 0 −1 2
−3 0 −2 −4 4 −3

3 0 2 4 −4 3 −1

The quotient q(x) is of degree 6− 1 = 5, with coefficients 3, 0, 2, 4, −4, and 3, hence

q(x) = 3x5 + 0x4 + 2x3 + 4x2 − 4x + 3
= 3x5 + 2x3 + 4x2 − 4x + 3.

The remainder is r(x) = −1. Hence, we have

3x6 + 3x5 + 2x4 + 6x3 − x + 2 = (3x5 + 2x3 + 4x2 − 4x + 3)(x + 1)− 1.
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§3.4 Exercises

Use synthetic division to divide p(x) by a(x) and find the quotient q(x) and remainder r(x).

1. p(x) = 3x3 − 4x2 − 2x + 7,
a(x) = x− 2

2. p(x) = x5 − 2x4 − 5x3 + 3x2 + 4x + 1,
a(x) = x + 3

3. p(x) = 2x4 + 3x3 − 2x2 + 4x− 3,
a(x) = x− 1

2

4. p(x) = 3x3 − 4x2 + 3x− 7,
a(x) = x + 1

3

5. p(x) = 3x3 − 4x− 5,
a(x) = x− 3

6. p(x) = 2x5 − 4x3 + 2x + 3,
a(x) = x− 1

7. p(x) = x7 − x6 + 2x5 − x3 + x2 + 2x + 4,
a(x) = x + 1



112 CHAPTER 3. POLYNOMIALS

3.5 Factors and Roots of Polynomials

Up to this point, we have viewed polynomials essentially as formal algebraic objects and have
studied the algebraic properties of addition, multiplication, and division of polynomials. We now
will also view polynomials as functions from the ring S to itself. Unless stated otherwise, S will
denote one of Q, R, C, or Zp, p a prime, hence S is a field.

Definition 3.5.1 If p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0 is a polynomial in S[x] and b is an

element of S, then p(x) evaluated at b is

p(b) = anbn + an−1b
n−1 + · · ·+ a1b + a0.

If p(b) = 0, we say b is a root of p(x) or a zero of p(x).

Since S is closed under addition and multiplication, p(b) is an element of S. Thus p(x) represents
the function from S to S sending an element b in S to the element p(b) in S. Evaluation of
polynomials is compatible with addition and multiplication of polynomials in the sense of the next
theorem, whose proof is straightforward but tedious.

Theorem 3.5.2 Let f(x) and g(x) be polynomials in S[x], and let s(x) = f(x) + g(x) and p(x) =
f(x)g(x) be their sum and product, respectively. If b is an element of S, then s(b) = f(b) + g(b)
and p(b) = f(b)g(b).

This result is not as vacuous, or as obvious, as it may appear. For the product, it says that if we
multiply the polynomials f(x) and g(x) to obtain the polynomial p(x), and then evaluate p(b), we
get the same result as we would by evaluating f(b) and g(b), and then multiplying the elements f(b)
and g(b) of S. For example, let f(x) = 3x2 + 5x + 2 and g(x) = x2 − 4, and let b = 3. Then

p(x) = f(x)g(x) = 3x4 + 5x3 − 10x2 − 20x− 8.

The theorem says that
p(3) = 3 · 34 + 5 · 33 − 10 · 32 − 20 · 3− 8

is equal to
f(3)g(3) = (3 · 32 + 5 · 3 + 2)(32 − 4).

This very much depends on the fact that multiplication in the ring S of coefficients is commutative.
If multiplication in S were non-commutative, the result would be false. (Can you see why?)

We noted previously that if a polynomial p(x) is divided by x − a, then the remainder, being
of degree less than 1 by the Division Algorithm, must be a constant, that is, an element of S. The
next result specifies what this element of S must be.

Theorem 3.5.3 (Remainder Theorem) Let p(x) be a polynomial in S[x] and let a be an element
of S. The remainder on division of p(x) by x− a is p(a). Hence, p(x) = q(x)(x− a) + p(a).

Proof. By the Division Algorithm, we have p(x) = q(x)(x − a) + r(x) with q(x), r(x) ∈ S[x] and
deg r(x) < deg (x− a) = 1. Thus r(x) is a constant, say r(x) = r ∈ S. By Theorem 3.5.2, we then
have

p(a) = q(a)(a− a) + r = q(a) · 0 + r = r,

and so r = p(a) as claimed. ¤
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This result gives us an often very efficient method for evaluating a polynomial p(x) at an
element a of S. If we use synthetic division to divide p(x) by x− a, then p(a) is the remainder.

Example: Evaluate p(x) = 3x6 + 3x5 + 2x4 + 6x3 − x + 2 at x = 1.
By the Remainder Theorem, p(1) is the remainder on dividing p(x) by x− 1, which we can find

by synthetic division:
1 3 3 2 6 0 −1 2

3 6 8 14 14 13
3 6 8 14 14 13 15

The remainder is 15 and therefore p(1) = 15. We can verify that this method worked in this case
by evaluating p(1) directly:

p(1) = 3 · 16 + 3 · 15 + 2 · 14 + 6 · 13 − 1 + 2 = 3 + 3 + 2 + 6− 1 + 2 = 15,

and so p(1) = 15 as claimed. ¤

Since a polynomial f(x) divides p(x) if and only if the remainder on division of p(x) by f(x)
is 0, the Remainder Theorem implies the following.

Theorem 3.5.4 (Factor Theorem) Let p(x) be a polynomial in S[x] and let a be an element
of S. Then x− a | p(x) if and only if p(a) = 0. That is, x− a is a factor of p(x) if and only if a
is a root of p(x).

Proof. By the Remainder Theorem, p(a) is the remainder on dividing p(x) by x−a. Since x−a | p(x)
if and only if the remainder is 0, this implies x− a | p(x) if and only if p(a) = 0. ¤

Example: Let p(x) = x4 − 3x2 − 5x− 3. We have

p(1) = 14 − 3 · 12 − 5 · 1− 3 = 1− 3− 5− 3 = −10,

hence 1 is not a root and x− 1 is not a factor of p(x). However,

p(−1) = (−1)4 − 3 · (−1)2 − 5 · (−1)− 3 = 1− 3 + 5− 3 = 0,

and so −1 is a root and x− (−1) = x + 1 is a factor of p(x). Note that although these values were
easy to compute directly, we would obtain more information by using synthetic division to evaluate
p(−1). We have

−1 1 0 −3 −5 −3
−1 1 2 3

1 −1 −2 −3 0

which shows that x + 1 is a factor of p(x), but also shows that the other factor is x3 − x2 − 2x− 3.
Hence p(x) = (x + 1)(x3 − x2 − 2x− 3). ¤

Recall that if S = R, and p(x) is a polynomial in R[x], the graph of p(x) is the set of points
(a, p(a)) in the xy-plane. The x-intercepts of p(x) are the x coordinates of the points where the
graph of p(x) intersects the x-axis. Thus the x-intercepts are the numbers x = a such that p(a) = 0.
We therefore have the following corollary.
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Corollary 3.5.5 Let p(x) be a polynomial in R[x] and let a be a real number. The following are
equivalent.

i. x− a is a factor of p(x).

ii. a is a root of p(x).

iii. x = a is an x-intercept of p(x).

If a is a root of p(x), it is possible that (x − a)m is a factor of p(x) for some m > 1. In this
case, we say a is a repeated root of p(x). More specifically, we make the following definition.

Definition 3.5.6 Let p(x) be a polynomial in S[x] and let a be a root of p(x) in S. If (x−a)m is a
factor of p(x) but (x− a)m+1 is not a factor of p(x), we say a is a root of p(x) of multiplicity m.

The correspondence between factors and roots of p(x) allows us to factor p(x) if its roots are
known, or to find the roots of p(x) if the linear factors are known.

Theorem 3.5.7 Let p(x) be a polynomial in S[x] of degree n, with leading coefficient a. If p(x)
has n roots r1, r2, . . . , rn in S (including possibly repeated roots), then

p(x) = a(x− r1)(x− r2) · · · (x− rn).

Sketch of Proof. First write p(x) = a · p1(x), where p1(x) = 1
ap(x) is monic. (Note that p(x) and

p1(x) have the same roots, as p(r) = a ·p1(r) = 0 if and only if p1(r) = 0.) By the Factor Theorem,
since r1 is a root of p1(x), we have

p(x) = a(x− r1)q1(x)

for some q1(x) ∈ S[x]. Then r2 is a root of q1(x) (see Exercise 3.5.9), and so

p(x) = a(x− r1)(x− r2)q2(x)

for some q2(x) ∈ S[x]. Continuing in this way yields the desired factorization. ¤

Corollary 3.5.8 If p(x) is a polynomial in S[x] of degree n, then p(x) has at most n roots in S.

Proof. If r1, r2, . . . , rm are roots of p(x) in S, then

q(x) = (x− r1)(x− r2) · · · (x− rm)

is a factor of p(x) of degree m. Hence by Theorem 3.3.5, we have

m = deg q(x) 6 deg p(x) = n,

and so m 6 n and the number, m, of roots of p(x) is at most n. ¤
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For the remainder of this section, we will assume S is one of Q, R, or C. If p(x) is a quadratic
polynomial (i.e., of degree 2), the roots of p(x) can be found with the Quadratic Formula.

Theorem 3.5.9 (Quadratic Formula) Let p(x) = ax2 + bx + c be a polynomial in S[x], with
a 6= 0. The roots of p(x) are then

x =
−b±√b2 − 4ac

2a
.

Proof. We complete the square to solve the equation ax2 + bx + c = 0. Dividing both sides by the
leading coefficient a and then subtracting c

a from both sides yields

x2 +
b

a
x = − c

a
.

Complete the square on the left side by adding
(

b
2a

)2
to both sides to obtain

x2 +
b

a
x +

(
b

2a

)2

=
(

b

2a

)2

− c

a
.

The left side is now a perfect square and we have
(

x +
b

2a

)2

=
b2

4a2
− c

a
=

b2 − 4ac

4a2
.

Taking square roots of both sides yields

x +
b

2a
= ±

√
b2 − 4ac

4a2
=
±√b2 − 4ac

2a
.

Finally, subtracting b
2a from both sides, we obtain

x = − b

2a
+
±√b2 − 4ac

2a
=
−b±√b2 − 4ac

2a
,

as claimed. ¤

There are similar, but much more complicated, formulas for the roots of cubic (degree 3) and
quartic (degree 4) polynomials in terms of radicals involving the coefficients. It can be proved that
no such general formula can exist for polynomials of degree 5 or higher.

The number b2 − 4ac is called the discriminant of p(x). Note that the roots given by the
formula are in S if and only if b2 − 4ac is the square of an element of S. Hence there are three
possibilities:

1. If b2 − 4ac is not the square of an element of S, then p(x) has no roots in S.

2. If b2 − 4ac 6= 0 and is the square of an element of S, then p(x) has two distinct roots in S.

3. If b2 − 4ac = 0, then p(x) has one root in S of multiplicity 2.

In particular, suppose p(x) = ax2 + bx + c is a quadratic polynomial with integer coefficients.
The roots of p(x) are rational if and only if b2 − 4ac is a perfect square, that is, the square of an
integer. The roots of p(x) are real if and only if b2 − 4ac > 0. In any case, the roots of p(x) are
complex.
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The Quadratic Formula, along with Theorem 3.5.7, allows us to factor any quadratic polynomial
with roots in S. If p(x) = ax2 + bx + c has roots r1 and r2 in S, then

p(x) = a(x− r1)(x− r2).

Thus the problem of factoring a quadratic polynomial or finding its roots is solved by the formula.

Examples:

1. Factor p(x) = 2x2 + x + 5.

Note that the discriminant is 12 − 4(2)(5) = −39 < 0, so there are no real roots. The roots
are

x =
−1±√−39

4
,

that is,

x = −1
4

+
√

39
4

i and x = −1
4
−
√

39
4

i.

Therefore, since the leading coefficient of p(x) is 2, we have

p(x) = 2x2 + x + 5 = 2

[
x−

(
−1

4
+
√

39
4

i

)] [
x−

(
−1

4
−
√

39
4

i

)]
.

2. Factor p(x) = 6x2 − 19x− 36.

In this case, the discriminant is (−19)2−4(6)(−36) = 1225 = 352, hence p(x) has two distinct
rational roots. The roots are

x =
19±√1225

12
=

19± 35
12

,

that is,

x =
54
12

=
9
2

and x = −16
12

= −4
3
.

Therefore, since the leading coefficient of p(x) is 6, we have

p(x) = 6x2 − 19x− 36 = 6
[
x− 9

2

] [
x−

(
−4

3

)]
= 6

(
x− 9

2

)(
x +

4
3

)
.

We will further refine this factorization below. ¤

Polynomials with Integer Coefficients

In general, finding exact values of irrational or complex roots of a polynomial is a difficult
problem. The problem of finding rational roots of a polynomial with integer coefficients, if they
exist, is relatively easy. In this section, we will state some results that are very useful for finding
roots and factors of polynomials with integer coefficients.
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Note that if p(x) has rational coefficients and m is the LCM of the denominators of the co-
efficients of p(x), then m · p(x) has integer coefficients. The polynomials p(x) and m · p(x) have
the same roots (why?), hence these results can also be adapted to find roots of polynomials with
rational coefficients.

We saw above how to factor a quadratic polynomial p(x) = ax2 + bx+ c with roots r1 and r2. If
the coefficients of p(x) are integers and the roots r1 and r2 are rational (not necessarily integers),
then it is actually possible to find integers a1, b1, a2, and b2 such that

p(x) = a(x− r1)(x− r2) = (a1x− b1)(a2x− b2).

Thus a = a1a2, b1 = a1r1, and b2 = a2r2.

Example: In the example above, we obtained

p(x) = 6x2 − 19x− 36 = 6
(

x− 9
2

)(
x +

4
3

)
.

In this case, a = 6, r1 = 9/2 and r2 = −4/3. If we let a1 = 2 and a2 = 3, so that

a = 6 = 2 · 3 = a1a2,

then
b1 = a1r1 = 2(9/2) = 9

and
b2 = a2r2 = 3(−4/3) = −4,

and we have

p(x) = 6
(

x− 9
2

)(
x +

4
3

)
= 2

(
x− 9

2

)
· 3

(
x +

4
3

)
= (2x− 9)(3x + 4).

Thus the polynomial p(x) can be written as a product of factors with integer coefficients. ¤

This says that if a quadratic polynomial with integer coefficients can be factored as a product
of polynomials with rational coefficients, then it can be factored as a product of polynomials with
integer coefficients. This is, in fact, true for polynomials of any degree by the following result,
known as Gauss’s Lemma.

Theorem 3.5.10 (Gauss’s Lemma) Let p(x) be a polynomial with integer coefficients. If p(x) =
A(x)B(x), where A(x) and B(x) are non-constant polynomials with rational coefficients, then there
exist rational numbers r and s such that a(x) = rA(x) and b(x) = sB(x) have integer coefficients,
and p(x) = a(x)b(x).

The proof of Gauss’s Lemma requires some concepts we have not discussed and will be omitted
here. A proof can be found in almost any book on abstract algebra. The following example
illustrates the notation in the theorem.
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Example: Suppose we factor the polynomial p(x) = 6x5 + 11x3 + 12x2 − 10x− 8 as

p(x) = 6x5 + 11x3 + 12x2 − 10x− 8 =
(

15
2

x2 − 5
)(

4
5

x3 + 2x +
8
5

)
,

so that A(x) =
(

15
2 x2 − 5

)
and B(x) =

(
4
5 x3 + 2x + 8

5

)
in the notation of Gauss’s Lemma. Thus

p(x) ∈ Z[x] is factored into a product of polynomials with rational coefficients. If we let r = 2/5
and s = 5/2, then

a(x) = rA(x) =
2
5

(
15
2

x2 − 5
)

= 3x2 − 2

and

b(x) = sB(x) =
5
2

(
4
5

x3 + 2x +
8
5

)
= 2x3 + 5x + 4.

Thus, since rs = (2/5)(5/2) = 1, we have

p(x) = A(x)B(x)

=
(

15
2

x2 − 5
)(

4
5

x3 + 2x +
8
5

)

=
2
5

(
15
2

x2 − 5
)

5
2

(
4
5

x3 + 2x +
8
5

)

= (3x2 − 2)(2x3 + 5x + 4)
= a(x)b(x).

Hence
p(x) = 6x5 + 11x3 + 12x2 − 10x− 8 = (3x2 − 2)(2x3 + 5x + 4)

and we have written p(x) as a product of polynomials with integer coefficients. ¤

According to the Factor Theorem, in order to factor a polynomial completely, we need to find
all of its roots. For a polynomial p(x) with integer coefficients, it is best to try to find all rational
roots first. The next result restricts this search to a relatively small number of potential roots.

Theorem 3.5.11 (Rational Root Test) Let p(x) = anxn + an−1x
n−1 + · · · + a1x + a0 be a

polynomial with integer coefficients. If r/s is a rational root of p(x) with (r, s) = 1, then r | a0

and s | an.

Proof. Let r/s be a rational root of p(x), where r, s ∈ Z and (r, s) = 1. Since r/s is a root of p(x),
we have

0 = p(r/s)

= an

(r

s

)n
+ an−1

(r

s

)n−1
+ · · ·+ a1

(r

s

)
+ a0

= an
rn

sn
+ an−1

rn−1

sn−1
+ · · ·+ a1

r

s
+ a0.
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Multiplying both sides of the equation by sn yields

anrn + an−1r
n−1s + an−2r

n−2s2 + · · ·+ a2r
2sn−2 + a1rs

n−1 + a0s
n = 0. (∗)

Thus we have

anrn = −(an−1r
n−1s + an−2r

n−2s2 + · · ·+ a2r
2sn−2 + a1rs

n−1 + a0s
n)

= −s(an−1r
n−1 + an−2r

n−2s + · · ·+ a2r
2sn−3 + a1rs

n−2 + a0s
n−1),

which implies s | anrn. If any prime divides both s and rn, then it also divides r by Theorem 2.5.6.
Since (s, r) = 1, there is no such prime and it follows that (s, rn) = 1. Now by Euclid’s Lemma
(Theorem 2.4.15), since s | anrn and (s, rn) = 1, we have s | an.

Similarly, Equation (∗) implies

a0s
n = −r(anrn−1 + an−1r

n−2s + an−2r
n−3s2 + · · ·+ a2rs

n−2 + a1s
n−1),

and so r | a0s
n. As before, (r, s) = 1 implies (r, sn) = 1, and Euclid’s Lemma implies r | a0. ¤

Letting an = 1 in the theorem, we have the following important special case of the Rational
Root Test.

Corollary 3.5.12 If p(x) = xn + an−1x
n−1 + · · · + a1x + a0 is a monic polynomial with integer

coefficients, then any rational root d of p(x) is an integer, and d | a0.

Proof. If d = r/s is a rational root of p(x) with (r, s) = 1, then by Theorem 3.5.11, s | 1 and r | a0.
Thus s = ±1 and d = ±r is an integer with d | a0. ¤

The Rational Root Test gives us a procedure to find all rational roots of p(x). Find all positive
divisors r of the constant term a0 and all positive divisors s of the leading coefficient an. The only
potential rational roots are then the numbers ±r/s. Evaluate p(x) at each of these values of x to
determine which are actually roots. (In general, many of these numbers will not be roots.)

Examples:

1. Find all potential rational roots of p(x) = x5 − 5x3 + 2x2 − 7x + 6.

By Corollary 3.5.12, all rational roots are integer divisors of the constant term, 6. Therefore,
the potential rational roots are ±1, ±2, ±3, and ±6.

2. Find all potential rational roots of p(x) = 2x8 + 3x4 + 12.

By the Rational Root Test, the potential rational roots are the numbers ±r/s, where r is a
positive divisor of the constant term, 12, and s is a divisor of the leading coefficient, 2. Thus

r = 1, 2, 3, 4, 6, or 12

and
s = 1 or 2.

Therefore, the potential rational roots are

±r

s
= ±1, ±2, ±3, ±4, ±6, ±12, ±1

2
, ±3

2
.

Of course, not all of the potential rational roots will be actual roots. ¤
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By Corollary 3.5.5, the graph of p(x) may be used to help locate the roots. After finding the
potential rational roots, graph the function y = p(x) on a graphing calculator or computer. The
actual roots are the x-intercepts, so any potential rational roots that are clearly not x-intercepts
can be eliminated from the list of potential roots.

Note that for those numbers a that appear to be x-intercepts on the graph, it is still necessary
to verify computationally that p(a) = 0 or algebraically that x − a is a factor of p(x). The graph
on a calculator is merely an approximation of the graph of the function. It suggests numbers that
may be roots, but it is impossible to determine with certainty which numbers are roots from such a
graph without computational or algebraic verification. Moreover, p(x) could have irrational roots,
and it is generally not possible to guess the exact values of irrational roots from even a very accurate
graph.

The procedure can also be simplified somewhat by factoring after each root is found. If r/s
is a rational root of p(x) with (r, s) = 1, then Gauss’s Lemma implies p(x) can be factored as
p(x) = (sx − r)q(x), where q(x) also has integer coefficients. The roots of p(x) and q(x), other
than possibly r/s, are the same. Since q(x) has lower degree than p(x), it may be easier to factor.
Moreover, the leading coefficient and constant term of q(x) will be divisors of those of p(x), so q(x)
may have fewer potential rational roots than p(x).

Examples:

1. Factor p(x) = 9x3 − 3x2 − 5x + 2 completely.

By the Rational Root Test, the potential rational roots are the numbers ±r/s, where r is a
positive divisor of the constant term, 2, and s is a positive divisor of the leading coefficient, 9.
Thus r = 1 or 2 and s = 1, 3, or 9. Therefore, the potential rational roots are

±r

s
= ±1, ±2, ±1

3
, ±2

3
, ±1

9
, ±2

9
.

Graphing the function p(x) = 9x3− 3x2− 5x+2 on a calculator, it appears that possibly 1/3
and 2/3 may be roots. We use synthetic division to check whether either of these is a root.
First, we check 1/3:

1/3 9 −3 −5 2
3 0 −5/3

9 0 −5 1/3

showing that 1/3 is not a root (as the remainder is not 0).

Next, we check 2/3:
2/3 9 −3 −5 2

6 2 −2
9 3 −3 0

showing that 2/3 is a root and that

p(x) =
(

x− 2
3

)
(9x2 + 3x− 3)

=
(

x− 2
3

)
· 3(3x2 + x− 1)

= (3x− 2)(3x2 + x− 1).
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Finally, we factor the quadratic polynomial q(x) = 3x2 + x − 1. Observe first that the
discriminant of q(x) is 12 − 4(3)(−1) = 13, which is positive but is not the square of an
integer. Therefore, the remaining roots are real but irrational. By the Quadratic Formula,
the roots are

x =
−1 +

√
13

6
and x =

−1−√13
6

.

Therefore, since the leading coefficient of q(x) is 3, we have

q(x) = 3x2 + x− 1 = 3

[
x−

(
−1 +

√
13

6

)][
x−

(
−1−√13

6

)]
,

and we have

p(x) = (3x− 2)(3x2 + x− 1) = 3(3x− 2)

[
x−

(
−1 +

√
13

6

)][
x−

(
−1−√13

6

)]

over the real numbers.

2. Factor p(x) = x4 + 2x3 − 10x2 − 41x− 60 completely.

By Corollary 3.5.12, the potential rational roots of p(x) are the integer divisors of 60, hence
are

±1, ±2, ±3, ±4, ±5, ±6, ±10, ±12, ±15, ±20, ±30, ±60.

Graphing the function p(x) = x4 + 2x3 − 10x2 − 41x − 60 on a calculator, it appears that
possibly −3 and 4 may be roots. We use synthetic division to check whether either of these
is a root. First, we check −3:

−3 1 2 −10 −41 −60
−3 3 21 60

1 −1 −7 −20 0

showing that −3 is a root and p(x) = (x + 3)(x3 − x2 − 7x− 20).

If 4 is a root of p(x), then it is also a root of q(x) = x3 − x2 − 7x− 20. We check whether 4
is a root:

4 1 −1 −7 −20
4 12 20

1 3 5 0

showing that 4 is a root of q(x) and q(x) = (x− 4)(x2 + 3x + 5). Thus

p(x) = (x + 3)(x3 − x2 − 7x− 20) = (x + 3)(x− 4)(x2 + 3x + 5).

Finally, we factor the quadratic polynomial r(x) = x2 + 3x + 5. Observe first that the
discriminant of r(x) is 32 − 4(1)(5) = −11 < 0, and so the remaining roots are complex and
not real. By the Quadratic Formula, the roots are

x =
−3±√−11

2
,
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that is,

x = −3
2

+
√

11
2

i and x = −3
2
−
√

11
2

i.

Therefore, since r(x) is monic, we have

r(x) = x2 + 3x + 5 =

[
x−

(
−3

2
+
√

11
2

i

)][
x−

(
−3

2
−
√

11
2

i

)]
,

and so

p(x) = (x+3)(x−4)(x2+3x+5) = (x+3)(x−4)

[
x−

(
−3

2
+
√

11
2

i

)][
x−

(
−3

2
−
√

11
2

i

)]

over the complex numbers. ¤

§3.5 Exercises

1. Use synthetic division to find the quotient and remainder when p(x) is divided by f(x).

(a) p(x) = 3x3 − 12x2 − 9x + 1, f(x) = x− 5.

(b) p(x) = x5 − 9x3 + 2x2 + x− 11, f(x) = x + 3.

2. Use synthetic division and the Remainder Theorem to evaluate p(a) and determine if x − a
is a factor of p(x).

(a) p(x) = x3 − x2 + x + 5, a = −1.

(b) p(x) = x4 + 3x3 − 16x2 − 27x + 63, a = 3.

3. Use the Quadratic Formula to help in factoring p(x). If the roots are rational, write the
factors with integer coefficients. If the roots are real but not rational, write the factors with
real number coefficients. If the roots are not real, factor over C.

(a) p(x) = 6x2 − 11x− 72

(b) p(x) = 3x2 + 5x− 7

(c) p(x) = 2x2 + 5x + 4

4. Find all potential rational roots of p(x). (You need not determine which are actual roots.)

(a) p(x) = x5 − 4x3 + 18

(b) p(x) = 3x8 + 6x2 − 5x− 10

(c) p(x) = 4x4 + 3x3 + 2x2 + 6
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5. Factor the following polynomials completely (over C, if necessary).

(a) p(x) = 2x3 + 3x2 − 32x + 15

(b) p(x) = x3 + 5x2 + x− 10

6. Factor p(x) = 3x4 + 5x3 − 2x2 − 3x + 1 completely (over C, if necessary).

7. Factor p(x) = 2x4 − 11x3 + 20x2 − 14x + 3 completely (over C, if necessary).

8. Factor p(x) = 2x4 − 17x3 + 43x2 − 37x + 6 completely (over C, if necessary).

9. Let p(x) = (x− r)q(x), where p(x) and q(x) are polynomials in S[x] and r is an element of S.
Show the following.

(a) If a is a root of p(x) with a 6= r, then a is a root of q(x).

(b) If b is any root of q(x), then b is a root of p(x).

[Hint: Use the definition of root, not the Factor Theorem.]

10. Let f(x) and g(x) be polynomials in S[x]. Prove that if (f(x), g(x)) = 1, then f(x) and g(x)
have no root in common.

11. Let p(x) be a polynomial in S[x]. Show that if p(x) has a repeated root r, then r is also a
root of the derivative p′(x) of p(x).
[Hint: Write p(x) = (x − r)2q(x), where q(x) is in S[x]. Use the product rule to find p′(x),
and show r is a root of p′(x).]
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3.6 Irreducible Polynomials

We will now study polynomials that cannot be factored, called irreducible polynomials. The ir-
reducible polynomials will play essentially the same role in our study of polynomials that prime
numbers did in our study of the integers. In this section, we will primarily be concerned with
deriving criteria which will help us to recognize irreducible polynomials.

Definition 3.6.1 Let p(x) be a non-constant polynomial in S[x]. We say p(x) is irreducible
over S (or irreducible in S[x]) if p(x) cannot be factored as p(x) = A(x)B(x) with A(x), B(x)
non-constant polynomials in S[x]. If p(x) has such a factorization, we say p(x) is reducible
over S.

In other words, p(x) is irreducible if the only divisors of p(x) are constants and constant multiples
of p(x). Note that p(x) is reducible over S if and only if there are polynomials A(x) and B(x) in S[x]
such that 1 6 deg A(x) < deg p(x), 1 6 deg B(x) < deg p(x), and p(x) = A(x)B(x).

We should also point out that for polynomials in Z[x], the definition of irreducible polynomial
given here is slightly different than that usually given for an “irreducible element” in a ring. Our
definition would say that the polynomial 2x− 2 is irreducible over Z. The ring theoretic definition
would say that this polynomial is not an irreducible element of Z[x] because 2x − 2 = 2(x − 2),
and the factor 2 does not have a multiplicative inverse in Z[x], hence is a “legitimate” factor.
Our definition does agree with the standard definition in case S is a field, however, and the slight
difference in case S = Z will cause no difficulties.

Note: Whether or not p(x) is irreducible depends very much on the ring S of coefficients. For
example, x2− 2 is irreducible over Q, but x2− 2 = (x−√2)(x+

√
2) over R or C. Similarly, x2 +1

is irreducible over Q and over R, but is reducible over C, as x2 + 1 = (x− i)(x + i).

For now, the ring S of coefficients will be one of Q, R, C, or Zp, p a prime, hence S is always
a field. Although we will consider polynomials with integer coefficients, there will be no loss in
considering such polynomials to be in Q[x]. This is due to the fact that irreducibility over Z and
over Q are equivalent by the next result, which follows from Gauss’s Lemma.

Theorem 3.6.2 A polynomial p(x) with integer coefficients is irreducible over Z if and only if p(x)
is irreducible over Q.

Proof. Let p(x) be a polynomial with integer coefficients. We prove the equivalent statement that
p(x) is reducible over Z if and only if p(x) is reducible over Q.

If p(x) is reducible over Z, then p(x) = a(x)b(x), where a(x) and b(x) are non-constant poly-
nomials in Z[x]. Since Z[x] is contained in Q[x], we have a(x), b(x) ∈ Q[x] as well, and so p(x) is
reducible over Q.

Conversely, if p(x) is reducible over Q, then p(x) = A(x)B(x), where A(x) and B(x) are non-
constant polynomials in Q[x]. By Gauss’s Lemma (Theorem 3.5.10), there exist polynomials a(x)
and b(x) in Z[x] that are constant multiples of A(x) and B(x), respectively, hence are non-constant,
such that p(x) = a(x)b(x). Therefore, p(x) is reducible over Z. ¤
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Recall that since we are assuming S is a field, multiplication by a non-zero constant has no
effect on divisibility of polynomials in S[x]. It follows that multiplication by a non-zero constant
has no effect on irreducibility.

Theorem 3.6.3 Let p(x) be a polynomial in S[x] and let k be a non-zero element of S. Then
k · p(x) is irreducible over S if and only if p(x) is irreducible over S.

We next state some results that are useful in determining whether a given polynomial is irre-
ducible. The first follows immediately from the definition and the fact that the degree of a product
is the sum of the degrees of the factors.

Theorem 3.6.4 Every polynomial in S[x] of degree 1 is irreducible over S.

The Factor Theorem implies the following result.

Theorem 3.6.5 Let p(x) be a polynomial in S[x] with deg p(x) > 1. If p(x) has a root in S
then p(x) is reducible over S.

Proof. By the Factor Theorem (Theorem 3.5.4), if a ∈ S is a root of p(x), then p(x) = (x− a)b(x)
for some b(x) ∈ S[x]. Hence, by Theorem 3.1.8,

1 < deg p(x) = deg (x− a)b(x) = deg (x− a) + deg b(x) = 1 + deg b(x),

and so deg b(x) > 0. Thus both x − a and b(x) are non-constant polynomials in S[x], and hence
p(x) is reducible over S. ¤

The theorem implies that if p(x) is irreducible over S, then p(x) has no root in S. The converse
is false in general, however. If p(x) has no root in S, it is not necessarily true that p(x) is irreducible.
For example, p(x) = x4− 4 = (x2− 2)(x2 + 2) has no roots in Q, but p(x) is clearly not irreducible
over Q. Thus showing that a polynomial does not have a root in S is not sufficient to prove that
the polynomial is irreducible, in general. If the degree of the polynomial is small enough, however,
this will be sufficient to prove irreducibility.

Theorem 3.6.6 A polynomial p(x) in S[x] of degree 2 or 3 is irreducible over S if and only if p(x)
has no root in S.

Proof. Let p(x) be a polynomial in S[x] of degree 2 or 3. We prove the equivalent statement that
p(x) has a root in S if and only if p(x) is reducible over S. If p(x) has a root in S, then, since
deg p(x) > 1, Theorem 3.6.5 implies that p(x) is reducible over S.

Conversely, if p(x) is reducible over S, then p(x) = f(x)g(x) for some f(x), g(x) ∈ S[x] with
deg f(x) > 1 and deg g(x) > 1. Now if both deg f(x) and deg g(x) are greater than 1, hence are
at least 2, then

deg p(x) = deg f(x)g(x) = deg f(x) + deg g(x) > 4.

Therefore, since the degree of p(x) is 2 or 3, at least one of f(x), g(x) is of degree 1.
We may assume without loss of generality that deg f(x) = 1, and so f(x) = ax + b for some

a, b ∈ S with a 6= 0. Since S is a field, −b/a is in S and

p(−b/a) = f(−b/a)g(−b/a) = (a(−b/a) + b)g(−b/a) = (−b + b)g(−b/a) = 0 · g(−b/a) = 0.

Hence −b/a ∈ S is a root of p(x). ¤
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Using this theorem and previous results on the quadratic formula and on rational roots of
polynomials, it is easy to determine if a polynomial of degree 2 or 3 with integer coefficients is
irreducible over Q.

Examples:

1. The polynomial p(x) = 2x3 − 5x2 + 1 is irreducible over Q.

Proof. Since deg p(x) = 3, Theorem 3.6.6 says we need only show that p(x) has no roots
in Q. By the Rational Root Test (Theorem 3.5.11), the only possible rational roots are ±r/s,
where r | 1 and s | 2. Thus r = 1 and s = 1 or 2, and so the possible rational roots are ±1
and ±1/2. It is easy to verify that

p(1) = −2, p(−1) = 4, p(1/2) = −5/4, and p(−1/2) = 13/4.

Hence p(x) has no roots in Q and is therefore irreducible over Q. ¤

2. A quadratic polynomial ax2 + bx + c with integer coefficients and a 6= 0 is irreducible over Q
if and only if the discriminant b2 − 4ac is not a perfect square.

Proof. Since deg p(x) = 2, Theorem 3.6.6 says that p(x) is irreducible over Q if and only if
p(x) has no roots in Q. By the Quadratic Formula, the roots of p(x) are in Q if and only if√

b2 − 4ac is rational. By Theorem 2.5.10,
√

b2 − 4ac is rational if and only if it is an integer.
Thus p(x) has a root in Q if and only if b2− 4ac is a perfect square, and so p(x) has no roots
in Q (hence is irreducible) if and only if b2 − 4ac is not a perfect square. ¤

Determining whether a polynomial of degree greater than 3 is irreducible is a more difficult
problem. In particular, it is not sufficient to simply show that the polynomial has no rational roots.
This is necessary, as it shows that there are no factors of degree 1, but it does not eliminate the
possibility that there may be factors of higher degree.

Examples:

1. Let p(x) = x4 − 2x2 + 3. By the Rational Root Test, the only possible rational roots are ±1
and ±3. It is easily verified that none of these is a root, and so p(x) has no rational roots.
However, since p(x) = (x2 − 3)(x2 + 1), it is clear that p(x) is not irreducible over Q.

2. The polynomial p(x) = x4 + 3x3 + x2 + 4x + 2 is irreducible over Q.

Proof. By the Rational Root Test (Theorem 3.5.11), the only possible rational roots of p(x)
are integer divisors of 2, hence are ±1 and ±2. We have

p(1) = 11, p(−1) = −3, p(2) = 54, and p(−2) = −10,

hence p(x) has no rational roots and therefore no linear factors.

Since deg p(x) = 4, if p(x) is reducible over Q, it must factor as a product of two quadratic
polynomials. By Gauss’s Lemma (Theorem 3.5.10), since the coefficients of p(x) are integers
and p(x) is monic, if p(x) is reducible then

p(x) = (x2 + ax + b)(x2 + cx + d),
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where a, b, c, and d are integers. Hence we have

p(x) = x4 + 3x3 + x2 + 4x + 2 = x4 + (a + c)x3 + (ac + b + d)x2 + (ad + bc)x + bd.

Equating corresponding coefficients yields the system of equations

a + c = 3 (3.4)
ac + b + d = 1 (3.5)

ad + bc = 4 (3.6)
bd = 2. (3.7)

Since bd = 2 by Equation 3.7 and b, d ∈ Z, we have either that one of b or d is 1 and the other
is 2, or one is −1 and the other is −2. Hence, in any case, b + d = ±3. By Equation 3.4,
c = 3− a, and so

ac = a(3− a) = 3a− a2.

If b + d = 3, then substituting ac = 3a− a2 and b + d = 3 in Equation 3.5, we obtain

(3a− a2) + 3 = 1,

or
a2 − 3a− 2 = 0.

The discriminant of this quadratic equation is (−3)2 − 4(1)(−2) = 17, which is not a perfect
square. Hence the solutions are not rational.

If b + d = −3, then substituting ac = 3a− a2 and b + d = −3 in Equation 3.5, we obtain

(3a− a2)− 3 = 1,

or
a2 − 3a + 4 = 0.

The discriminant of this quadratic equation is (−3)2−4(1)(4) = −7, which is negative. Hence
the solutions are not real numbers.

In either case, a is not an integer. Therefore, no integers a, b, c, d can satisfy all of Equations
3.4–3.7, and hence p(x) is irreducible over Q. ¤

The following result can be very helpful in proving that a polynomial with integer coefficients
is irreducible over Q.

Theorem 3.6.7 (Eisenstein’s Criterion) Let a(x) = anxn + an−1x
n−1 + · · · + a1x + a0 be a

polynomial with integer coefficients. If there is a prime number p such that

p | a0, p | a1, . . . , p | an−1

but
p - an and p2 - a0,

then a(x) is irreducible over Q.
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Proof. If deg a(x) = n = 1, then a(x) is irreducible over Q, so we may assume n > 2. We suppose
a(x) is not irreducible and reach a contradiction.

By Gauss’s Lemma (Theorem 3.5.10), if a(x) is not irreducible over Q, then a(x) factors over Z.
Hence there is a factorization

a(x) = (brx
r + br−1x

r−1 + · · ·+ b1x + b0)(csx
s + cs−1x

s−1 + · · ·+ c1x + c0) (∗)

where 1 6 r 6 n− 1 and 1 6 s 6 n− 1; r + s = n; bi, cj ∈ Z for all i, j; br 6= 0 and cs 6= 0.
We have p | a0 and a0 = b0c0, and so p | b0c0. By Euclid’s Lemma for Primes (Theorem 2.5.6),

this implies p | b0 or p | c0. But, since p2 - a0, p cannot divide both b0 and c0. Hence p divides
exactly one of b0, c0. We may therefore assume without loss of generality that p | b0 and p - c0.

Since p - an and an = brcs, we have that p - br. Thus p | b0 and p - br, and so there is a
smallest integer k such that p - bk; that is p - bk for some k with 1 6 k 6 r 6 n − 1, but p | bi for
0 6 i 6 k − 1.

By definition of polynomial multiplication (Definition 3.1.5), we have

ak = bkc0 + bk−1c1 + · · ·+ b1ck−1 + b0ck.

Since k 6 n − 1, we know by hypothesis that p | ak. Also, p | bi for i = 0, 1, . . . , k − 1. Hence by
the Combination Theorem (Theorem 2.2.3), we have

p | ak − (bk−1c1 + · · ·+ b0ck);

that is, p | bkc0. By Euclid’s Lemma for Primes, this implies p | bk or p | c0, a contradiction. Hence
there is no factorization of the form (∗), and so a(x) is irreducible over Q. ¤

We showed previously that the square root of a prime number must be irrational. The next
result, which is an easy consequence of Eisenstein’s Criterion, implies that every root of a prime
number is irrational.

Corollary 3.6.8 If p is a prime number, then xn − p is irreducible over Q for every n > 1.

Proof. The prime p satisfies the hypotheses of Eisenstein’s Criterion. ¤

Corollary 3.6.9 If n is any positive integer, then there is an irreducible polynomial in Q[x] of
degree n.

Proof. By the previous corollary, xn − 2 is irreducible over Q of degree n. ¤

The second corollary says that there are irreducible polynomials over Q of every possible degree.
This differs considerably from the situation for polynomials over R or C. The following very deep
theorem, first proved by Gauss, says that the only irreducible polynomials with complex coefficients
are those of degree 1.

Theorem 3.6.10 (Fundamental Theorem of Algebra) If p(x) is a non-constant polynomial
in C[x], then p(x) has at least one root in C.
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Corollary 3.6.11 No polynomial in C[x] of degree greater than 1 is irreducible over C. Every
non-constant polynomial in C[x] can be factored as a product of linear polynomials in C[x].

The Fundamental Theorem of Algebra says that the field C of complex numbers is algebraically
closed. This means roughly that no larger field can be obtained from C by algebraic operations such
as taking roots. For example, we obtained C from R by “adjoining”

√−1, but any such operation
on complex numbers will just yield complex numbers. There are fields that properly contain C,
such as the field C(x) of rational functions in x with complex coefficients (see Theorem 3.1.12).
Such fields cannot be obtained by adjoining roots of complex polynomials to C, however.

The situation for polynomials in R[x] is only slightly less restrictive. It is easy to show, using
the Intermediate Value Theorem (as studied in Calculus), that every polynomial in R[x] of odd
degree has a root in R. Thus, in particular, there are no irreducible polynomials of odd degree
greater than 1 in R[x]. It is possible, however, for a polynomial in R[x] of even degree to have no
real roots. For example, the polynomial f(x) = x4 + 3x2 + 2 has no real roots. As noted above,
this does not imply f(x) is irreducible, and in fact f(x) = (x2 + 1)(x2 + 2).

A polynomial of degree 2 in R[x] with a negative discriminant has no real roots and is therefore
irreducible over R. Hence there are irreducible polynomials in R[x] of degree 1 and of degree 2. By
the Quadratic Formula, if a quadratic polynomial with real coefficients has complex roots, they are
conjugates of each other. It is true more generally that the complex roots of a polynomial with real
coefficients of any degree must occur in complex conjugate pairs. We can show, using this result
and the Fundamental Theorem of Algebra, that no polynomial in R[x] of degree greater than 2 is
irreducible over R.

Theorem 3.6.12 Let p(x) be a polynomial with real coefficients. If z is a complex root of p(x),
then the complex conjugate z of z is also a root of p(x).

Proof. Let p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0, with ai ∈ R for all i, and let z ∈ C be a root.

Thus we have
p(z) = anzn + an−1z

n−1 + · · ·+ a1z + a0 = 0. (∗)
By the definition of the complex conjugate (Definition 1.2.3), it is clear that the conjugate of any
real number is the number itself. Hence ai = ai for each i. Also, by Theorem 1.2.4, the conjugate of
a sum is the sum of the conjugates and the conjugate of a product is the product of the conjugates.
From this, it also follows that zm = (z)m for any positive integer m. Therefore, we have

p(z) = an(z)n + an−1(z)n−1 + · · ·+ a1z + a0

= an(z)n + an−1(z)n−1 + · · ·+ a1 z + a0 since ai ∈ R for all i,

= an zn + an−1 zn−1 + · · ·+ a1 z + a0 by Theorem 1.2.4 (ii),
= anzn + an−1zn−1 + · · ·+ a1z + a0 by Theorem 1.2.4 (ii),
= anzn + an−1zn−1 + · · ·+ a1z + a0 by Theorem 1.2.4 (i),
= 0 by (∗),
= 0.

Hence p(z) = 0 and z is a root of p(x). ¤
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Theorem 3.6.13 (Fundamental Theorem of Algebra – Real Number Version) Every
non-constant polynomial in R[x] can be factored as a product of linear and irreducible quadratic
polynomials in R[x].

Proof. Let p(x) be a polynomial with coefficients in R. By the Fundamental Theorem of Algebra,
p(x) factors as a product of linear factors over the complex numbers C. By Theorem 3.6.12, the
non-real roots come in complex conjugate pairs. Therefore, if a ∈ R is the leading coefficient of
p(x), then over C, p(x) can be factored as

p(x) = a(x− r1)(x− r2) · · · (x− rm)(x− z1)(x− z1)(x− z2)(x− z2) · · · (x− zn)(x− zn),

where r1, r2, . . . , rm are the real roots of p(x) and z1, z1, z2, z2, . . . , zn, zn are the complex, non-real,
roots of p(x).

For each i = 1, . . . , n, we have

(x− zi)(x− zi) = x2 − (zi + zi)x + zizi.

By Proposition 1.2.5 (i), zi + zi = 2Re(zi) ∈ R and by Proposition 1.2.6 and Definition 1.2.8,
zizi = |zi|2 ∈ R. Therefore, we have

p(x) = a(x− r1) · · · (x− rm)(x2 − 2Re(z1)x + |z1|2) · · · (x2 − 2Re(zn)x + |zn|2),

and the coefficients of each factor are real numbers. Hence this factorization into a product of linear
and quadratic factors is over the real numbers R. ¤

In particular, the theorem implies the following corollary.

Corollary 3.6.14 No polynomial of degree greater than 2 with real coefficients is irreducible over R.
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§3.6 Exercises

1. Find all irreducible polynomials of degree 2 or 3 in Z2[x].

2. Find all monic irreducible polynomials of degree 2 or 3 in Z3[x].

3. Show that the condition that p be a prime in Eisenstein’s Criterion is necessary by finding a
polynomial a(x) = anxn + an−1x

n−1 + · · ·+ a1x + a0 and an integer m such that

m | a0, m | a1, . . . , m | an−1, m - an, and m2 - a0,

but a(x) is NOT irreducible.

4. Show that f(x) = x4 + x3 − 2x− 4 does not have a rational root and show that f(x) is NOT
irreducible over Q.

Show that the following polynomials are irreducible over Q.

5. f(x) = 3x2 + 5x− 4

6. f(x) = x3 + 3x2 + 2

7. f(x) = 2x3 + 4x + 5

8. f(x) = x11 − 3x4 + 12x3 + 36x− 6

9. f(x) = 3x7 − 10x5 + 50x4 − 40x2 + 20

10. f(x) = 5x4 − 7x + 7

11. f(x) = x4 + 2x3 + x + 1

12. f(x) = x4 + 5x2 + 3x + 2

13. f(x) = x4 + 3x3 + x2 + 3x + 5
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3.7 Irreducible Polynomials as Primes

In this section, S will always denote one of Q, R, or C.
As noted previously, the irreducible polynomials are the analogues in S[x] of the prime numbers

in Z. Many of the results we proved about prime numbers can be restated in terms of irreducible
polynomials. Compare the results in this section to those on primes in §2.5 and §2.6. The first
result is analogous to the Prime Divisor Principle (Theorem 2.5.2).

Theorem 3.7.1 (Irreducible Factor Principle) If a(x) is a non-constant polynomial in S[x],
then there is an irreducible polynomial in S[x] that divides a(x).

Proof. Let S be the set of all degrees of non-constant divisors of a(x) in S[x]. Since a(x) | a(x) and
a(x) is non-constant, we have deg a(x) ∈ S and so S is non-empty. By the Well-ordering Principle
(Theorem 2.1.1), S has a smallest element, say m, and so there is a non-constant divisor d(x) of
a(x) in S[x] of degree m > 1. Thus d(x) is a non-constant divisor of a(x) of smallest degree. We
will show that d(x) is irreducible.

Suppose d(x) is not irreducible. Then, since d(x) is non-constant, we have d(x) = f(x)g(x),
where f(x) and g(x) are non-constant polynomials in S[x] satisfying deg f(x) < deg d(x) and
deg g(x) < deg d(x). Now d(x) = f(x)g(x), so f(x) | d(x), and we chose d(x) to be a divisor of a(x),
so d(x) | a(x). Thus by transitivity of divisibility (Theorem 3.3.2 (iv)), we have f(x) | a(x). But
deg f(x) < deg d(x) and d(x) is a non-constant divisor of a(x) of smallest degree, a contradiction.
Therefore, our assumption that d(x) is not irreducible must be false, and so d(x) is an irreducible
divisor of a(x). ¤

The next theorem is a special case of Euclid’s Lemma for Polynomials where the divisor is
irreducible. It is analogous to Euclid’s Lemma for Primes (Theorem 2.5.6).

Theorem 3.7.2 (Euclid’s Lemma for Irreducible Polynomials) If p(x) is an irreducible
polynomial in S[x] and p(x) | a(x)b(x), where a(x), b(x) are in S[x], then p(x) | a(x) or p(x) | b(x).

Proof. Since p(x) is irreducible and (p(x), a(x)) is a divisor of p(x), we have either (p(x), a(x)) = 1
or (p(x), a(x)) = k · p(x) for some non-zero constant k ∈ S. If (p(x), a(x)) = 1, then p(x) | b(x) by
Euclid’s Lemma for Polynomials (Theorem 3.3.20). If (p(x), a(x)) = k · p(x), then k · p(x) | a(x) by
definition of GCD. Since p(x) = 1

k (k · p(x)), it follows that p(x) | a(x) by Proposition 3.3.3. Hence
either p(x) | a(x) or p(x) | b(x). ¤

Corollary 3.7.3 If p(x) is an irreducible polynomial in S[x] and p(x) | a1(x)a2(x) · · · an(x), where
the ai(x) are in S[x], then p(x) | ai(x) for some i.

Proof. We proceed by induction on the number n of factors. If n = 1, the hypothesis becomes
p(x) | a1(x) and the conclusion is obvious. Hence the result is true if n = 1.

Assume now that the result holds for n = k; that is,

if p(x) | a1(x)a2(x) · · · ak(x) then p(x) | ai(x) for some i = 1, 2, . . . , k (*)

and show that the result holds for n = k + 1; that is,

if p(x) | a1(x)a2(x) · · · ak(x)ak+1(x) then p(x) | ai(x) for some i = 1, 2, . . . , k + 1.
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Let a(x) = a1(x)a2(x) · · · ak(x) and b(x) = ak+1(x). If p(x) | a1(x)a2(x) · · · ak(x)ak+1(x), then
p(x) | a(x)b(x). By Theorem 3.7.2, we have that p(x) | a(x) or p(x) | b(x). If p(x) | a(x), then
p(x) | a1(x)a2(x) · · · ak(x), and by the inductive hypothesis (*), p(x) | ai(x) for some i = 1, 2, . . . , k.
If p(x) | b(x), then p(x) | ak+1(x). Hence, in any case, p(x) | ai(x) for some i = 1, 2, . . . , k + 1.
Therefore, if the statement is true for n = k, then it is true for n = k + 1, hence the result holds
for all n > 1 by the Principle of Mathematical Induction. ¤

Corollary 3.7.4 If p(x) is an irreducible polynomial in S[x] and p(x) | q1(x)q2(x) · · · qn(x), where
q1(x), q2(x), . . . , qn(x) are irreducible polynomials in S[x], then p(x) = k ·qi(x) for some i and some
number k in S.

Proof. By Corollary 3.7.3, if p(x) | q1(x)q2(x) · · · qn(x), then p(x) | qi(x) for some i = 1, 2, . . . , n.
Since qi(x) is irreducible, its only non-constant divisors are multiples of qi(x) itself, and since p(x)
is irreducible, hence non-constant, this implies p(x) = k · qi(x) for some k ∈ S. ¤

We also get a polynomial version of the Fundamental Theorem of Arithmetic (Theorem 2.5.11).

Theorem 3.7.5 (Unique Factorization) Let a(x) be a non-constant polynomial in S[x]. Then
either a(x) is irreducible or a(x) is a product of irreducible polynomials in S[x]. In case a(x) is not
irreducible,

a(x) = α · p1(x)a1p2(x)a2 · · · pr(x)ar ,

where α is the leading coefficient of a(x), the pi(x) are distinct, irreducible, monic polynomials
in S[x], and ai > 1 for all i. This factorization is unique except for the order in which the factors
are written.

Proof. We first show such a factorization exists. By the Well-ordering Principle (Theorem 2.1.1), if
there is a non-constant polynomial that is not irreducible or a product of irreducible polynomials,
then there is one of smallest degree, say m(x). Since m(x) is non-constant and is not irreducible,
m(x) = f(x)g(x) for some non-constant polynomials f(x) and g(x) with deg f(x) < deg m(x) and
deg g(x) < deg m(x). By the minimality of deg m(x), each of f(x), g(x) is either irreducible or a
product of irreducible polynomials. Hence f(x)g(x) = m(x) is a product of irreducible polynomials,
contradicting the choice of m(x). Therefore, our assumption that there is a non-constant polynomial
that is neither irreducible nor a product of irreducible polynomials must be false.

To prove uniqueness, suppose a(x) can be written as a product of irreducible polynomials in two
ways. Let p1(x), p2(x), . . . , pr(x) be all of the distinct monic irreducible polynomials that appear
in at least one of the two factorizations. Writing products of repeated irreducible factors as powers
(recalling that pi(x)0 = 1) and denoting by α the leading coefficient of a(x), we can write the two
factorizations in the form

a(x) = α · p1(x)a1p2(x)a2 · · · pr(x)ar = α · p1(x)b1p2(x)b2 · · · pr(x)br ,

where ai, bi ∈ Z and ai > 0, bi > 0 for all i (and, for each i, at least one of ai, bi is non-zero). We
must show that ai = bi for all i.

Suppose ai 6= bi for some i. We may assume, without loss of generality, that i = 1 and b1 < a1.
Dividing both factorizations by p1(x)b1 yields

p1(x)a1−b1p2(x)a2 · · · pr(x)ar = p2(x)b2 · · · pr(x)br .
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Now b1 < a1, hence a1 − b1 > 0 and so p1(x) divides the factorization on the left. By equality, we
must also have

p1(x) | p2(x)b2 · · · pr(x)br .

By Corollary 3.7.4, this implies p1(x) = k · pj(x) for some 2 6 j 6 r and some constant k ∈ S.
Since both p1(x) and pj(x) are monic, k = 1 and p1(x) = pj(x), contradicting the fact that the
polynomials p1(x), p2(x), . . . , pr(x) are distinct. Hence ai = bi for all i and the expression of a(x)
as a product of irreducible polynomials is unique, except for the order of the factors. ¤

This theorem states that every non-constant polynomial in S[x] has a “canonical” factorization
as a product of irreducible polynomials. As we did for integers (Proposition 2.6.1), we can compare
two polynomials by allowing the exponents ai of the irreducible factors to be 0, and then writing
both polynomials as products of powers of the same irreducible polynomials. We can use this to
characterize divisibility in terms of factorizations into products of irreducible polynomials (compare
to Theorem 2.6.2).

Theorem 3.7.6 Let a(x) = αp1(x)a1p2(x)a2 · · · pr(x)ar and b(x) = βp1(x)b1p2(x)b2 · · · pr(x)br ,
with the pi(x) distinct, monic, irreducible polynomials in S[x], α and β non-zero numbers in S,
and ai > 0, bi > 0 for all i. Then a(x) | b(x) if and only if ai 6 bi for all i.

Proof. Suppose first that a(x) | b(x), so that b(x) = f(x)a(x) for some polynomial f(x) ∈ S[x].
If p(x) is any irreducible factor of f(x), then p(x) | f(x) and f(x) | b(x), hence p(x) | b(x) by
Theorem 3.3.2 (iv). Therefore, every monic irreducible factor of f(x) is one of the pi(x), and we
can write

f(x) = γp1(x)n1p2(x)n2 · · · pr(x)nr ,

where ni > 0 for each i and γ ∈ S is a non-zero constant.
Writing b(x) = f(x)a(x) in terms of the irreducible factorizations, we have

βp1(x)b1p2(x)b2 · · · pr(x)br = γ(p1(x)n1p2(x)n2 · · · pr(x)nr) · α(p1(x)a1p2(x)a2 · · · pr(x)ar)
= γαp1(x)n1+a1p2(x)n2+a2 · · · pr(x)nr+ar ,

and so bi = ni + ai for each i, by uniqueness of factorization (see Theorem 3.7.5). Since ni > 0 for
each i, we have ai 6 ni + ai = bi for each i.

Conversely, suppose ai 6 bi, so that bi − ai > 0, for each i. Also, since S is a field and α 6= 0,
we have β/α ∈ S. Thus

g(x) = (β/α)p1(x)b1−a1p2(x)b2−a2 · · · pr(x)br−ar

is a polynomial in S[x]. We then have

b(x) = βp1(x)b1p2(x)b2 · · · pr(x)br

= (β/α)(p1(x)b1−a1p2(x)b2−a2 · · · pr(x)br−ar) · α(p1(x)a1p2(x)a2 · · · pr(x)ar)
= g(x)a(x).

Hence b(x) = g(x)a(x) and g(x) ∈ S[x], and so a(x) | b(x). ¤
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As we did for integers, we can also define the least common multiple of two polynomials and
compute the LCM in terms of the factorizations into products of irreducible polynomials.

Definition 3.7.7 Let a(x) and b(x) be non-zero polynomials in S[x]. The least common multi-
ple of a(x) and b(x) is the monic polynomial m(x) in S[x], denoted m(x) = [a(x), b(x)], satisfying

i. a(x) | m(x) and b(x) | m(x), and

ii. if a(x) | c(x) and b(x) | c(x) for a non-zero polynomial c(x) in S[x], then deg m(x) 6 deg c(x).

Note that any constant multiple of m(x) (including 0) will satisfy conditions (i) and (ii) of the
definition. The LCM is defined to be the monic polynomial satisfying these conditions so that the
LCM will be unique and non-zero.

The next result, analogous to Theorem 2.6.5 for integers, allows us to compute the GCD and
LCM of two polynomials using the factorizations into products of irreducible polynomials.

Theorem 3.7.8 Let a(x) = αp1(x)a1p2(x)a2 · · · pr(x)ar and b(x) = βp1(x)b1p2(x)b2 · · · pr(x)br ,
with the pi(x) distinct, monic, irreducible polynomials in S[x], α and β non-zero numbers in S,
and ai > 0, bi > 0 for all i. Then

a. (a(x), b(x)) = p1(x)d1p2(x)d2 · · · pr(x)dr , where di = min{ai, bi} for all i, and

b. [a(x), b(x)] = p1(x)m1p2(x)m2 · · · pr(x)mr , where mi = max{ai, bi} for all i.

Proof. GCD: Let
d(x) = p1(x)d1p2(x)d2 · · · pr(x)dr ,

where di = min{ai, bi} for each i, so that d(x) ∈ S[x] is monic. We show that d(x) = (a(x), b(x))
by showing that d(x) satisfies parts (i) and (ii) of Theorem 3.3.16 (the “alternate” definition of the
GCD).

(i) Since di = min{ai, bi}, we have di 6 ai and di 6 bi for all i. Therefore, it follows from
Theorem 3.7.6 that d(x) | a(x) and d(x) | b(x), and so (i) holds.

(ii) Let c(x) be a polynomial in S[x] satisfying c(x) | a(x) and c(x) | b(x). If p(x) is any monic
irreducible factor of c(x), then by Theorem 3.3.2 (iv), p(x) must be one of the pi(x). Thus we can
write

c(x) = γp1(x)c1p2(x)c2 · · · pr(x)cr ,

where γ ∈ S and ci > 0 for each i. Since c(x) | a(x) and c(x) | b(x), Theorem 3.7.6 implies that
ci 6 ai and ci 6 bi for all i. Hence

ci 6 min{ai, bi} = di

for each i, and so c(x) | d(x), again by Theorem 3.7.6, and (ii) holds.

LCM: Let
m(x) = p1(x)m1p2(x)m2 · · · pr(x)mr ,

where mi = max{ai, bi} for each i, so that m(x) ∈ S[x] is monic. We show that m(x) = [a(x), b(x)]
by showing that m satisfies parts (i) and (ii) of the definition of LCM (Definition 3.7.7).
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(i) Since mi = max{ai, bi}, we have mi > ai and mi > bi for all i. Therefore, it follows from
Theorem 3.7.6 that a(x) | m(x) and b(x) | m(x), and so (i) holds.

(ii) Let c(x) be a non-zero polynomial in S[x] satisfying a(x) | c(x) and b(x) | c(x). Each
irreducible factor of a(x) or b(x) will also divide c(x), but c(x) may have other irreducible factors
as well. Thus we can write

c(x) = p1(x)c1p2(x)c2 · · · pr(x)cr · k(x),

where each ci > 0 and k(x) ∈ S[x] is a polynomial such that pi(x) - k(x) for each i.
Since a(x) | c(x) and b(x) | c(x), Theorem 3.7.6 implies that ai 6 ci and bi 6 ci for all i. Hence

mi = max{ai, bi} 6 ci

for each i. It follows that
m(x) | p1(x)c1p2(x)c2 · · · pr(x)cr ,

again by Theorem 3.7.6, and therefore that m(x) | c(x), since p1(x)c1p2(x)c2 · · · pr(x)cr | c(x). Thus
deg m(x) 6 deg c(x) by Theorem 3.3.5, as c(x) 6= 0, and so (ii) holds. ¤

Example: Let S = Q and let a(x) = (x−2)2(x5+3)3(x−7)5 and b(x) = (x−2)4(x5+3)2(x17−5)2.
(Note that the non-linear factors are irreducible over Q by Eisenstein’s Criterion, Theorem 3.6.7.)
Writing a(x) and b(x) in terms of the same irreducible factors, we have

a(x) = (x− 2)2(x5 + 3)3(x17 − 5)0(x− 7)5

b(x) = (x− 2)4(x5 + 3)2(x17 − 5)2(x− 7)0

Hence, by the theorem,

(a(x), b(x)) = (x− 2)2(x5 + 3)2(x17 − 5)0(x− 7)0 = (x− 2)2(x5 + 3)2 and
[a(x), b(x)] = (x− 2)4(x5 + 3)3(x17 − 5)2(x− 7)5.

Notice also that

(a(x), b(x))[a(x), b(x)] = [(x− 2)2(x5 + 3)2] · [(x− 2)4(x5 + 3)3(x17 − 5)2(x− 7)5]
= (x− 2)2+4(x5 + 3)2+3(x17 − 5)0+2(x− 7)0+5

= (x− 2)2+4(x5 + 3)3+2(x17 − 5)0+2(x− 7)5+0

= [(x− 2)2(x5 + 3)3(x− 7)5] · [(x− 2)4(x5 + 3)2(x17 − 5)2]
= a(x)b(x),

and so (a(x), b(x))[a(x), b(x)] = a(x)b(x). ¤

We showed that the GCD of two polynomials is divisible by any common divisor. Similarly,
any common multiple of two polynomials is a multiple of the LCM.

Corollary 3.7.9 Let a(x) and b(x) be non-zero polynomials in S[x] and let m(x) = [a(x), b(x)].
If c(x) is a polynomial in S[x] satisfying a(x) | c(x) and b(x) | c(x), then m(x) | c(x).

Proof. This is shown in part (ii) for the LCM in the proof of Theorem 3.7.8. ¤
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The characterization of the GCD and LCM in Theorem 3.7.8 implies a very important relation-
ship between the two polynomials, as suggested in the example above.

Corollary 3.7.10 If a(x) and b(x) are monic polynomials in S[x], then

(a(x), b(x)) · [a(x), b(x)] = a(x) · b(x).

Proof. We use the notation of Theorem 3.7.8. For each i, di = min{ai, bi} and mi = max{ai, bi}.
Hence di is one of ai or bi and mi is the other. In any case, we have ai + bi = di + mi. Therefore,

(a(x), b(x)) · [a(x), b(x)] = (p1(x)d1p2(x)d2 · · · pr(x)dr)(p1(x)m1p2(x)m2 · · · pr(x)mr)
= p1(x)d1+m1p2(x)d2+m2 · · · pr(x)dr+mr

= p1(x)a1+b1p2(x)a2+b2 · · · pr(x)ar+br

= (p1(x)a1p2(x)a2 · · · pr(x)ar)(p1(x)b1p2(x)b2 · · · pr(x)br)
= a(x) · b(x),

and so (a(x), b(x)) · [a(x), b(x)] = a(x) · b(x). ¤

The only reason a(x) and b(x) must be monic in the corollary is that by definition the left
side of the equation is monic. More generally, if a(x) and b(x) are any non-zero polynomials, with
leading coefficients α and β, respectively, then we have

(a(x), b(x)) · [a(x), b(x)] =
1

αβ
· a(x) · b(x).
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§3.7 Exercises

1. Let f(x) = 5(x − 8)7(x2 + 6)9(x3 − 7)4 ∈ Q[x]. Determine whether each of the following
polynomials divides f(x). Explain your answers.

(a) a(x) = (x− 8)6(x2 + 6)5(x3 − 7)4

(b) b(x) = 5(x− 8)(x2 + 6)2(x3 − 7)5

(c) c(x) = 3(x− 8)2(x2 + 6)2

(d) d(x) = (x− 6)3(x2 + 8)4(x3 − 7)

2. Find a formula for the number of monic divisors of a polynomial a(x) in S[x] whose canonical
factorization is a(x) = α · p1(x)a1p2(x)a2 · · · pr(x)ar . Justify your answer.

3. Find the greatest common divisor and least common multiple of each of the following pairs
of polynomials a(x), b(x) in Q[x].

(a) a(x) = 6(x− 2)5(x− 4)7(x2 + 5)2

b(x) = 9(x− 2)3(x2 + 5)8(x3 + 5)4

(b) a(x) = 2(x− 1)2(x− 2)3(x− 3)4(x− 4)5

b(x) = 4(x− 2)6(x− 3)5(x− 4)4(x− 5)3

For Exercises 4–6, use the Euclidean Algorithm to find the greatest common divisor and the least
common multiple of the polynomials a(x) and b(x).

4. a(x) = x2 − 1
b(x) = 2x7 − 4x5 + 2

5. a(x) = x + 3
b(x) = x3 − 2x + 4

6. a(x) = x4 − 4x2 − 3x + 6
b(x) = x3 + x2 − x− 10



Appendix A

Trigonometry Review

The following information is needed for working with the polar form of complex numbers in §1.2.

Definitions:

• π radians = 180◦

• Sine, cosine, and tangent of an acute angle θ in terms of ratios of sides of a right
triangle:

sin θ =
opp
hyp

, cos θ =
adj
hyp

, tan θ =
opp
adj

.

• Sine, cosine, and tangent of an angle θ with initial side on the positive x-axis and
the point (x, y) on its terminal side, with r =

√
x2 + y2:

sin θ =
y

r
, cos θ =

x

r
, tan θ =

y

x
.

Basic Identities:

• tan θ =
sin θ

cos θ

• sin2 θ + cos2 θ = 1

• sin(−θ) = − sin θ
cos(−θ) = cos θ

• sin(θ + 2π) = sin θ
cos(θ + 2π) = cos θ

Angle Sum Formulas:

• sin(x + y) = sinx cos y + cosx sin y

• cos(x + y) = cosx cos y − sinx sin y
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Values: Sine, cosine, and tangent at all special angles; i.e., at all multiples of:

π

6
,

π

4
,

π

3
,

π

2
, π.

These can be memorized or calculated as needed using the right triangles below:

¡
¡

¡
¡

¡
¡

¡
¡¡

1

√
2 1

π
4

π
4

·
·
·
·
·
·
·
··

1

√
32

π
3

π
6

Any answers involving these values should be given as exact values. For example,

sin
(

2π

3

)
=
√

3
2

,

and not 0.8660254038.



Appendix B

Answers to Selected Problems

§1.1

1. (a) 0.0495

(b) 0.427

(c) 0.1259

(d) 0.3571428

2. (a) 13/33

(b) 4298/999

(c) 1141553/19980

(d) 102092327/999900

§1.2

1. Re(z) Im(z) z |z|
(a) 3 5 3− 5i

√
34

(b) 7 −2 7 + 2i
√

53

(c) −4 1 −4− i
√

17

(d) 5 0 5 5

2. (a) −1 + 7i

(b) 2− 9i

(c) 11− 2i

(d) 4

3. (a) −18− i

(b) 25− 8i

(c) 13

(d) 7 + 5i

§1.2, continued.

4. (a)
3
25
− 4

25
i

(b)
7
53

+
2
53

i

(c)
2
13
− 3

13
i

(d) −1
7

i

5. (a)
23
13

+
2
13

i

(b)
23
41
− 2

41
i

(c) −2 + i

6. |z| arg z Polar Form

(a)
√

2 7π
4

√
2 (cos 7π

4 + i sin 7π
4 )

(b) 2 7π
6 2 (cos 7π

6 + i sin 7π
6 )

(c) 6 5π
3 6 (cos 5π

3 + i sin 5π
3 )

(d) 2 3π
4 2 (cos 3π

4 + i sin 3π
4 )

(e) 5 π
2 5 (cos π

2 + i sin π
2 )

(f) 7 π 7 (cosπ + i sinπ)

7. z1
z2

= r1
r2

(cos(θ1 − θ2) + i sin(θ1 − θ2))

8. 1
z = 1

r (cos(−θ) + i sin(−θ))

= 1
r (cos(θ)− i sin(θ))
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§1.2, continued.

9. |c| Arg Polar

(a) 8 13π
12 8 (cos 13π

12 + i sin 13π
12 )

(b) 16 3π
2 16 (cos 3π

2 + i sin 3π
2 )

(c) 16 17π
12 16 (cos 17π

12 + i sin 17π
12 )

(d) 32 5π
3 32 (cos 5π

3 + i sin 5π
3 )

(e) 1
2 −5π

12
1
2(cos(−5π

12 ) + i sin(−5π
12 ))

(f) 1
2 −π

3
1
2(cos(−π

3 ) + i sin(−π
3 ))

10. (a) 32i

(b) 1
2 +

√
3

2 i

(c) −1
2 −

√
3

2 i

(d) 1

§1.3

1. (a) Commutative Law of Addition

(b) Distributive Law

(c) Associative Law of Multiplication

(d) Associative Law of Addition & Dis-
tributive Law

(e) Commutative Law of Multiplication
& Associative Law of Multiplication

8. 2Z satisfies all except (ix) and (x).
2Z is a ring but not a ring with 1.

9. Z[i] is not a field.

10. Both F and C satisfy all except (x).

§2.2

4. If a = 12, b = 4, c = 6, then a = 12 divides
bc = 24, but 12 - 4 and 12 - 6.

5. Both a = 6 and b = 10 divide c = 30, but
ab = 6 · 10 = 60 and 60 - 30.

8. If a = 2, b = 5, c = 7, then a = 2 divides
b + c = 12, but 2 - 5 and 2 - 7.

§2.3

1. (a) q = 135, r = 27, 4752 = 135(35)+27.

(b) q = 232, r = 0, 9976 = 232(43) + 0 or
9976 = 232(43).

2. (a) q = 410, r = 3827,
2351487 = 410(5726) + 3827.

(b) q = 11288, r = 427,
84637851 = 11288(7498) + 427.

4. 39

5. 6

6. 1

7. (272, 119) = 17
17 = 272(−3) + 119(7)

8. (495, 210) = 15
15 = 495(3) + 210(−7)

9. (264, 189) = 3
3 = 264(−5) + 189(7)

10. (510, 414) = 6
6 = 510(13) + 414(−16)

§2.4

1. (a) 56(−8) + 72(6) = −16

(b) −28 cannot be expressed in this form.

(c) 42 cannot be expressed in this form.

(d) 56(32) + 72(−24) = 64

(e) 70 cannot be expressed in this form.

(f) 56(−44) + 72(33) = −88

5. (a) could

(b) could not

(c) could not

(d) could



143

§2.5

1. (a) prime

(b) prime

(c) not prime

(d) not prime

(e) is prime

4. The primes less than 100 are:
2 3 5 7 11

13 17 19 23 29
31 37 41 43 47
53 59 61 67 71
73 79 83 89 97

5. (a) 2 · 132

(b) 7 · 13 · 17

(c) 22 · 33 · 52

§2.6

1. (a) a does not divide n.

(b) b divides n.

(c) c does not divide n.

2. The positive divisors of 600 = 23 ·3 ·52 are:

1 = 20 · 30 · 50 2 = 21 · 30 · 50

5 = 20 · 30 · 51 10 = 21 · 30 · 51

25 = 20 · 30 · 52 50 = 21 · 30 · 52

4 = 22 · 30 · 50 8 = 23 · 30 · 50

20 = 22 · 30 · 51 40 = 23 · 30 · 51

100 = 22 · 30 · 52 200 = 23 · 30 · 52

3 = 20 · 31 · 50 6 = 21 · 31 · 50

15 = 20 · 31 · 51 30 = 21 · 31 · 51

75 = 20 · 31 · 52 150 = 21 · 31 · 52

12 = 22 · 31 · 50 24 = 23 · 31 · 50

60 = 22 · 31 · 51 120 = 23 · 31 · 51

300 = 22 · 31 · 52 600 = 23 · 31 · 52

§2.6, continued.

3. (a) 72

(b) 30

4. (a) 12

(b) 40

5. (a) (a, b) = 25 · 73

[a, b] = 27 · 34 · 53 · 74 · 1117 · 138

(b) (a, b) = 22 · 32 · 55 · 74

[a, b] = 23 · 33 · 56 · 77 · 11 · 17

6. 178101

7. 327509

8. (963, 657) = 9
[963, 657] = 70299

9. (510, 414) = 6
[510, 414] = 35190

§2.7

1. (a) 3

(b) 14

(c) 1

(d) 0

(e) 7

6. If a = 1, b = −1, n = 3, then (−1)2 = 1;
12 ≡ (−1)2(mod 3) but 1 6≡ −1(mod 3).

11. (1)−1 = 1
(3)−1 = 7
(7)−1 = 3
(9)−1 = 9
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§2.8

1. (a) 2

(b) 3

(c) 2

2. (a) 1

(b) 4

(c) 0

(d) 6

3. (a) 6

(b) 7

(c) 2

4. (a) 1

(b) 4

(c) 6

(d) 6

9. (a) 4 - 478563289358

(b) 4 | 12354456724

(c) 4 | 352148763376

10. (a) 3 | 21437856252, 9 | 21437856252

(b) 3 - 54637281274, 9 - 54637281274

(c) 3 | 42315768543, 9 - 42315768543

11. (a) 6 | 47835624312

(b) 6 - 65348127214

(c) 6 - 27135248145

12. (a) 11 - 41783526413

(b) 11 | 615837429152

(c) 11 - 724356712859

13. (a) 7 | 98239072918, 13 - 98239072918

(b) 7 | 199885455861, 13 | 199885455861

(c) 7 - 182443992562, 13 | 182443992562

§3.1

1. Deg. Coeff.
(a) 3 5
(b) 5 −9
(c) 0 6
(d) −∞ none
(e) 473 1

2. Coefficients of a(x), b(x):
a0 = 7, b0 = 8
a1 = 4, b1 = 6
a2 = 5, b2 = 3
a3 = 2, b3 = 0
a4 = 0, b4 = 0
a5 = 0, b5 = 0

Coefficients of a(x)b(x):
c0 = 56
c1 = 74
c2 = 85
c3 = 58
c4 = 27
c5 = 6

Product a(x)b(x):
6x5 + 27x4 + 58x3 + 85x2 + 74x + 56

3. (a) p(x)+q(x) = x5+2x4−3x3+6x2−x−4
p(x)− q(x) =

−x5 + 8x4 − 3x3 − 2x2 + 15x− 4

(b) 2x5 − 7x3 − 15x

(c) 4x5 + 5x4 + 14x3 − 14x2 + 2x + 5

(d) x4 + 6x2 + 9
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§3.2

1. (a) 35

(b) 15

(c) 28

(d) 28

(e) 126

2. (a)
(20
16

)
= 4845

(b)
(15

9
)

= 5005

(c)
(18

7
)

= 31824

3. (a) 16x4 + 96x3 + 216x2 + 216x + 81

(b) 32x5 + 240x4 + 720x3+
1080x2 + 810x + 243

(c) 64x6 + 576x5 + 2160x4 + 4320x3+
4860x2 + 2916x + 729

§3.3

5. (a) q(x) = 4x2 + 2x
r(x) = −7x + 1
b(x) = (4x2 + 2x) · a(x) + (−7x + 1)

(b) q(x) = 1
3x2 + 1

3x + 2
3

r(x) = −1
b(x) =

(
1
3x2 + 1

3x + 2
3

) · a(x) + (−1)

6. (a(x), b(x)) = x− 1
x− 1 = a(x)(x5 − x3 − x) + b(x)(−1

2)

7. (a(x), b(x)) = 1
1 = a(x)( 1

17x2 − 3
17x + 7

17) + b(x)(− 1
17)

8. (a(x), b(x)) = x− 2
x−2 = a(x)( 1

18x+ 2
9 )+ b(x)(− 1

18x2− 3
18x+ 1

3 )

§3.4

1. q(x) = 3x2 + 2x + 2
r(x) = 11

2 3 −4 −2 7
6 4 4

3 2 2 11

2. q(x) = x4 − 5x3 + 10x2 − 27x + 85
r(x) = −254

−3 1 −2 −5 3 4 1
−3 15 −30 81 −255

1 −5 10 −27 85 −254

3. q(x) = 2x3 + 4x2 + 4
r(x) = −1

1
2 2 3 −2 4 −3

1 2 0 2
2 4 0 4 −1

4. q(x) = 3x2 − 5x + (14/3)
r(x) = −77/9

−1
3 3 −4 3 −7

−1 5/3 −14/9
3 −5 14/3 −77/9

5. q(x) = 3x2 + 9x + 23
r(x) = 64

3 3 0 −4 −5
9 27 69

3 9 23 64

6. q(x) = 2x4 + 2x3 − 2x2 − 2x
r(x) = 3

1 2 0 −4 0 2 3
2 2 −2 −2 0

2 2 −2 −2 0 3

7. q(x) = x6− 2x5 + 4x4− 4x3 + 3x2− 2x + 4
r(x) = 0

−1 1 −1 2 0 −1 1 2 4
−1 2 −4 4 −3 2 −4

1 −2 4 −4 3 −2 4 0
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§3.5

1. (a) q(x) = 3x2 + 3x + 6
r(x) = 31

5 3 −12 −9 1
15 15 30

3 3 6 31

(b) q(x) = x4 − 3x3 + 2x− 5
r(x) = 4

−3 1 0 −9 2 1 −11
−3 9 0 −6 15

1 −3 0 2 −5 4

2. (a) p(−1) = 2, x + 1 is not a factor.

−1 1 −1 1 5
−1 2 −3

1 −2 3 2

(b) p(3) = 0, x− 3 is a factor.

3 1 3 −16 −27 63
3 18 6 −63

1 6 2 −21 0

3. (a) (2x− 9)(3x + 8)

(b) 3
[
x−

(
−5+

√
109

6

)] [
x−

(
−5−√109

6

)]

(c) 2
[
x−

(
− 5

4 +
√

7
4 i

)] [
x−

(
− 5

4 −
√

7
4 i

)]

4. (a) ±1, ±2, ±3, ±6, ±9, ±18
(b) ±1, ±2, ±5, ±10, ±1/3, ±2/3, ±5/3,

±10/3
(c) ±1, ±2, ±3, ±6, ±1/2, ±3/2, ±1/4,

±3/4

5. (a) (x− 3)(2x− 1)(x + 5)

(b) (x + 2)
[
x−

(
−3+

√
29

2

)] [
x−

(
−3−√29

2

)]

6. (x+1)(3x−1)
[
x−

(
−1+

√
5

2

)] [
x−

(
−1−√5

2

)]

7. (x−1)(2x−3)
[
x−

(
3+
√

5
2

)] [
x−

(
3−√5

2

)]

8. (x− 2)(2x− 3)
[
x−

(
5+
√

21
2

)] [
x−

(
5−√21

2

)]

§3.6

1. x2 + x + 1, x3 + x + 1, x3 + x2 + 1

2. x2 + 1, x2 + x + 2, x2 + 2x + 2,
x3 + 2x + 1, x3 + 2x2 + 1,
x3 + x2 + 2x + 1, x3 + 2x2 + x + 1,
x3 + 2x + 2, x3 + x2 + 2,
x3 + x2 + x + 2, x3 + 2x2 + 2x + 2

3. x2 +12x+36 with m = 12 is one example.

§3.7

1. (a) a(x) | f(x)

(b) b(x) - f(x)

(c) c(x) | f(x)

(d) d(x) - f(x)

2. (a1 + 1)(a2 + 1) · · · (ar + 1)

3. (a) ((a(x), b(x)) = (x− 2)3(x2 + 5)2

[(a(x), b(x)] =
(x− 2)5(x− 4)7(x2 + 5)8(x3 + 5)4

(b) ((a(x), b(x)) = (x− 2)3(x− 3)4(x− 4)4

[(a(x), b(x)] =
(x−1)2(x−2)6(x−3)5(x−4)5(x−5)3

4. (a(x), b(x)) = x− 1
[a(x), b(x)] = x8 + x7 − 2x6 − 2x5 + x + 1

5. (a(x), b(x)) = 1
[a(x), b(x)] = x4 + 3x3 − 2x2 − 2x + 12

6. (a(x), b(x)) = x− 2
[a(x), b(x)] =

x6 + 3x5 + x4 − 15x3 − 23x2 + 3x + 30



Index

[(a(x), b(x))], 90
[(a, b)], 28
[a(x), b(x)], 135
[a, b], 64
[a], 27
(a(x), b(x)), 101
(a, b), 46
0, 29
1, 30
−a, 18
A ∩B, 25
A ∪B, 25
A ⊆ B, 25
A×B, 26
A  B, 25
a(x)
b(x) , 90
a(x) | b(x), 98
a + bi, 7
aRb, 26
a ≡ b (mod n), 68
a ∼ b, 26
a−1, 18
a | b, 41
a - b, 41
arg z, 12
C, 1
C(x), 129
C, 32
d
dx , 40
deg p(x), 85
∈, 25
/∈, 25
e, 5
ez, 15
Fn, 35
I(x), 87
i, 7

Im(z), 7
N, 1
n!, 39
∅, 25
P (n), 37
π, 5
Q, 1
Q[x], 124
Q, 28
Q, 28
R, 1
R[x], 91
R2, 11
R, 90
R, 90
Re(z), 7
S(x), 90
S[x], 84
W, 18
2Z, 24
Z(x), 87
Z, 1
Z[x], 92
Z2[x], 131
Z3[x], 131
Zn, 72
Z, 30
Z, 30
z, 8
|z|, 10√−1, 7√−c, 7

absolute value
complex number, 10
real number, 10

abstraction, 21
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addition, 1, 2
associative law, 18, 30, 32, 33, 87, 91
closure, 18, 29, 31, 32, 87, 91
commutative law, 18, 30, 32, 33, 87, 91
identity for, 2, 7, 18, 20, 21, 29, 31, 32, 87

uniqueness of, 21
in C, 32
in Q, 29, 30, 33
in R, 90
in Z, 31, 32, 34
in Zn, 72, 73
in S(x), 90
inverse for, 2, 7, 18, 20, 21, 29, 31, 32, 87

uniqueness of, 21
modular, 72
of complex numbers, 7, 15
of functions, 24
of polynomials, 85
of rational numbers, 2
of real numbers, 20

additive identity, see identity
additive inverse, see inverse
algebraic properties, 18, 87

of addition, 18, 87
of congruence, 69–72
of multiplication, 18, 87
of number systems, 17–24
of polynomials, 84–92

algebraically closed, 129
angle, 12
angle sum formulas, 13
argument of complex number, 13, 15, 16

definition, 12
associative law, 1

addition, 18, 30, 32, 33, 87, 91
multiplication, 18, 30, 32, 33, 87

base step, see induction
binary operation, 1
binomial coefficient, 92, 93, 95, 96

definition, 92
Binomial Theorem, 95–97

C, 1
C, 32
calculus, 24, 129

Cartesian product, 26
circular reasoning, see reasoning, circular
clock arithmetic, 72
closure

addition, 18, 29, 31, 32, 87, 91
multiplication, 18, 29, 31, 32, 87, 91

coefficients
binomial, 92, 93, 95, 96

definition, 92
complex, 128
integer, 115–117, 120, 122, 124
leading, 84, 85, 91, 92, 101, 102, 109, 114,

119, 120, 133, 137
of polynomials, 84–86, 92, 96, 98, 109, 110,

112, 115, 117, 124
real, 129
zero, 109, 110

Combination Theorem
for integers, 43, 46
for polynomials, 98, 101

common divisor
of integers, 45–47, 52, 65
of polynomials, 136

common multiple
of integers, 64, 65
of polynomials, 136

commutative law, 1
addition, 18, 30, 32, 33, 87, 91
multiplication, 18, 21, 30, 32, 33, 87

complex numbers, 1, 7–16, 28, 32, 33, 129
addition, 7, 15

associative, 23
commutative, 23
geometric interpretation, 11

additive inverse
geometric interpretation, 11, 15

definition, 7
distributive law, 23
division, 9, 16
equality, 7
geometric representation, 10–15, 32
multiplication, 7, 15

geometric interpretation, 11–13, 15
powers, 13

multiplicative inverse, 9, 16
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polar form, 12, 16
reciprocal, 16
subtraction

geometric interpretation, 11
complex plane, 10, 32
complex root, see root of a polynomial
composite number, 36, 56, 61

definition, 56
congruence, 67–74

algebraic properties, 69–72
and cancellation, 70
as equivalence relation, 69

congruence class, 73, 74
definition, 72
representative, 73

congruence tests, 75–83
mod 10n, 76
mod 11, 79, 82
mod 13, 81, 82
mod 2n, 76, 82
mod 3, 78, 82
mod 5n, 76
mod 7, 81, 82
mod 9, 78, 82

congruent modulo n, 70, 72
definition, 68

conjugate, 9, 15, 129
definition, 8
geometric interpretation, 10

coprime, 52
counting numbers, 1

de Moivre’s Theorem, 13, 39
decimal expansion, 2, 3

non-repeating, 5
non-terminating, 3
of irrational numbers, 5
of rational numbers, 3–6
repeating, 3–6
terminating, 3–6

deductive reasoning, 35
degree, 85, 91, 92, 100, 109, 110, 112, 114, 115,

120
definition, 85
odd, 129

of a monomial, 85
of constant, 85
of product, 88, 89, 125
of sum, 89
of zero, 85, 88, 101
properties, 88

derivative, 123
differentiation, 40
digits, 3–5, 75

alternating sum of, 79
hundreds, 75
ones, 75
tens, 75

discriminant, 115, 129
distributive law, 1, 18, 22, 30, 32, 33, 86, 87

left, 18
right, 18

dividend
integer, 45, 48
polynomial, 101

divides
integer, 43

definition, 41
polynomial, 113, 132

definition, 98
divisibility

of integers, 41–43, 62, 74
and prime factorizations, 62–66
and signs, 43, 99
properties, 42, 46, 50, 52, 74, 98

of polynomials, 98–108
and constant multiples, 99, 125
and irreducible factorization, 134
properties, 98, 102, 107, 108

divisibility tests, 75–83
for 10, 77
for 10n, 77
for 11, 80, 83
for 12, 79
for 13, 81, 83
for 14, 83
for 15, 83
for 18, 83
for 2, 77
for 20, 83
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for 2n, 77, 83
for 3, 78, 83
for 4, 77
for 5, 77
for 5n, 77
for 6, 79, 83
for 7, 81, 83
for 8, 77
for 9, 78, 83

divisible
integer, 41, 52
polynomial, 98, 136

division, 1, 2, 7, 21, 70
of complex numbers, 9, 16
of fractions, 21
of integers, 3

long, 3, 6, 44, 45, 49
of polynomials, 100

long, 100, 102, 108, 109
of rational numbers, 21
synthetic, 109–111, 113, 122

Division Algorithm
for integers, 3, 45–47, 49, 67, 69, 100
for polynomials, 101, 112

divisor
common, see common divisor
greatest common, see greatest common di-

visor
integer, 41, 43, 45, 46, 48, 50, 56, 62, 66,

119, 120
number of, 63, 66

polynomial, 98, 101, 109, 110, 124
number of, 138

prime, 61

e, 5
Eisenstein’s Criterion, 127, 128
element, 25, 26
empty set, 25, 27

definition, 25
equality, 26

of complex numbers, 7
of fractions, 29
of polynomials, 85
of rational numbers, 2

of sets, 25
equivalence class, 27–31, 72, 90

definition, 27
equivalence relation, 26–28, 30, 33, 69, 72, 90

definition, 26
equivalent, 26, 27

fractions, 28, 30
Eratosthenes, Sieve of, see Sieve of Eratosthenes
Euclid, 58
Euclid’s Lemma

for integers, 54, 55, 58
for irreducible polynomials, 132
for polynomials, 107, 132
for primes, 58, 72, 132

Euclidean Algorithm
for integers, 46–50, 66
for polynomials, 101, 102, 105, 106, 138

Euler’s Formula, 15
evaluation of polynomials, 112, 113, 119, 122
exponential function, 15

factor
integer, 41
polynomial, 98, 113, 114, 120, 122–124, 133

linear, 114, 129, 130
quadratic, 130

Factor Theorem, 113, 118, 125
factorial, 39, 93
factorization

canonical, 134, 138
irreducible, 133

and divisibility, 134
Fermat, 35
Fermat numbers, 35, 36
field, 20, 23, 24, 28, 30, 32, 33, 72–74, 89, 90, 98,

124, 125, 129
definition, 20
finite, 74
of fractions, 28

fractions, 2, 4, 6, 19, 28, 29
division, 21
equality, 29
equivalent, 28, 30
lowest terms, 6, 59

functions, 20, 24, 112
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continuous, 24
Fundamental Theorem

of Algebra, 128, 129
Real Number Version, 130

of Arithmetic, 59

Gauss, 128
Gauss’s Lemma, 117, 120, 124
Gaussian integers, 24
GCD, see greatest common divisor
Goldbach Conjecture, 36
graph, 113, 120
greatest common divisor, 46

of integers, 44–50, 59, 62, 64
alternate characterization, 52
and prime factorizations, 64, 66
and signs, 50
as combination, 51, 55
definition, 45
properties, 50–55
relation to LCM, 65, 66
uniqueness of, 46

of polynomials, 101, 102, 106, 108, 138
alternate characterization, 106
and irreducible factorization, 135
as combination, 103, 104, 106, 108
definition, 101
properties, 106, 108
relation to LCM, 137
uniqueness of, 101, 106

i, 7
identity

additive, 2, 7, 18, 20, 21, 29, 31, 32, 87
definition, 18
uniqueness of, 21

multiplicative, 2, 7, 18, 21, 22, 30, 31, 33, 87
definition, 18
uniqueness of, 22

imaginary axis, 10
imaginary part, 15

definition, 7
induction, 13, 43, 47, 74, 93

base step, 37
inductive step, 37
Principle of Mathematical, 35–40

inductive hypothesis, 37
inductive reasoning, 35, 36
infinite series, 15
infinite sum, 3
integers, 1, 2, 5, 18, 19, 23, 28, 30, 32, 35–37, 41,

45, 73, 74, 85, 87, 89, 124
divisibility, 41–43

properties, 42
even, 24, 36
mod n, 72

integral domain, 28
intercepts, 113, 114, 120
Intermediate Value Theorem, 129
intersection, 25
inverse

additive, 2, 7, 18, 20–22, 29, 31, 32, 87
definition, 18
uniqueness of, 21

multiplicative, 2, 7, 9, 18, 19, 21, 22, 30–34,
70, 73, 74, 124

definition, 18
modulo n, 70, 71
uniqueness of, 22

inverse operation, 1
irrational numbers, 5, 28, 59, 128

decimal expansion, 5
rational approximations, 5

irrational root, see root of a polynomial
irreducible element, 124
Irreducible Factor Principle, 132
isomorphic, 30, 32, 33, 72, 90

laws of exponents, 15, 86
LCM, see least common multiple
least common multiple

of integers, 62, 64, 117
and prime factorizations, 64, 66
definition, 64
relation to GCD, 65, 66

of polynomials, 138
and irreducible factorization, 135
definition, 135
relation to GCD, 137
uniqueness of, 135

least residue, see residue
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linear algebra, 11

matrices, 20
modular arithmetic, 72
modulus

of complex number, 12, 13, 15, 16
definition, 10

of congruence, 68, 72
monomial, 84
multiple

common, see common multiple
integer, 41, 51
least common, see least common multiple
polynomial, 98, 104

constant, 99, 106
multiplication, 1, 2

associative law, 18, 30, 32, 33, 87
closure, 18, 29, 31, 32, 87, 91
commutative law, 18, 21, 30, 32, 33, 87
identity for, 2, 7, 18, 21, 22, 30, 31, 33, 87

uniqueness of, 22
in C, 32
in Q, 29, 30, 33
in R, 90
in Z, 31, 32, 34
in Zn, 72, 73
in S(x), 90
inverse for, 2, 7, 9, 18, 19, 21, 22, 30–34, 70,

73, 74, 124
uniqueness of, 22

modular, 72
of complex numbers, 7, 15
of functions, 24
of polynomials, 85, 89, 91, 92
of rational numbers, 2
of real numbers, 20

multiplicative identity, see identity
multiplicative inverse, see inverse
multiplicity, 114

N, 1
n choose r, 92
natural numbers, 1, 2, 18, 23, 28, 30–32, 35–37,

40
negative numbers, 1, 2, 6, 18, 20, 28, 30, 34
number line, 10

Number Theory, 35
numbers

complex, see complex numbers
integer, see integers
irrational, see irrational numbers
natural, see natural numbers
prime, see prime numbers
rational, see rational numbers
real, see real numbers

or, 26
ordered pair, 26, 28, 30, 32
origin, 10

partition, 26, 27
Pascal’s Rule, 93
Pascal’s Triangle, 93
Peano axioms, 28
perfect square, 59, 61, 67, 74, 115
period, 4, 6
π, 5
polar coordinates, 12
polar form, see complex numbers
polynomials, 20, 28, 70, 84, 90, 112, 113

addition, 85, 112
associative law, 87, 91
closure, 87, 112
commutative law, 87, 91
identity for, 87
inverse for, 87, 88

algebraic properties, 84–92
constant, 85, 88, 89, 98–100, 110, 112, 124
cubic, 85

roots of, 115
definition, 84
distributive law, 87
equality, 85
fifth degree

roots of, 115
irreducible, 124–138

definition, 124
over C, 129
over Q, 124–128, 131
over R, 124, 129, 130
over Z, 124
over Z2, 131
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over Z3, 131
linear, 85
monic, 84, 101, 102, 106, 108–110, 119, 133,

135, 137, 138
multiplication, 85, 89, 91, 92, 112

associative law, 87
closure, 87, 91, 92, 112
commutative law, 87
identity for, 87
inverse for, 88, 89

non-constant, 89, 117, 124
non-zero, 89, 91, 100
quadratic, 85, 115–117, 129

factors of, 116, 117
roots of, 115–117

quartic
roots of, 115

reducible, 124, 125
definition, 124

with integer coefficients, 116–122, 126, 127
factors of, 116
roots of, 116

with rational coefficients, 117
roots of, 117

zero, 85, 88
prime, see prime numbers
Prime Divisor Principle, 57, 132
prime factorization, 36

and divisibility, 62–66
and greatest common divisor, 64, 66
and least common multiple, 64, 66
canonical, 61–63

definition, 60
exponents in, 62, 63
for comparison, 62
uniqueness of, 59, 60

prime numbers, 35, 36, 56–61, 72–74, 124, 127,
128, 132

definition, 56
even, 56
infinitely many, 58
largest known, 56, 58
websites, 56

Prime Test, 57, 61
product rule, 40, 123

Q, 1
Q, 28
Q, 28
Quadratic Formula, 115, 116, 122, 126
quotient

of complex numbers, 9, 16
of integers, 2, 3, 5, 19, 44–46, 49
of polynomials, 90, 101, 108–110, 122

R, 1
R, 90
R, 90
radicals, 115
rational expression, 90
rational functions, 90

field of, 90, 129
rational numbers, 1–6, 19, 21, 28–30, 36, 41, 45,

59, 72, 89, 117
addition, 2

commutative, 23
well-defined, 6

decimal expansion, 3–6
definition, 2
distributive law, 23
division, 21
equality, 2
multiplication, 2

associative, 23
well-defined, 6

multiplicative inverse, 2
rational root, see root of a polynomial
Rational Root Test, 118

for monic polynomials, 119
rationalizing, 9
real axis, 10, 12
real numbers, 1, 2, 5, 7, 9, 15, 20, 21, 23, 24, 28,

32, 36, 40, 114
addition, 20
multiplication, 20

real part, 15
definition, 7

real root, see root of a polynomial
reasoning, circular, see circular reasoning
reciprocal, 2, 16, 19, 21
reflexive, 26
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related, 26
relation, 26–28, 30

definition, 26
relatively prime

integers, 53, 74
definition, 52

polynomials, 106, 123
definition, 106

remainder
integer, 3, 44–49, 67, 68

uniqueness of, 45
polynomial, 101, 105, 108–110, 112, 113, 122

Remainder Theorem, 112, 113, 122
residue

complete set, 72
least (non-negative), 74, 75, 82

definition, 69
ring, 20–24, 28, 32, 72, 74, 98, 112, 124

commutative, 20, 24, 32, 72, 73, 84, 88
definition, 20

definition, 20
non-commutative, 21
with identity, 20, 22, 24, 32, 72, 73, 88

definition, 20
root

of a number, 129
of a polynomial, 113–116, 123, 125, 129

complex, 115, 116, 122, 128, 129
definition, 112
distinct, 115
integer, 119
irrational, 116, 120
multiplicity, 114, 115
potential rational, 119, 120, 122
rational, 115–120, 122, 126, 131
real, 115, 129
repeated, 114, 123

of a prime, 128
square

of a prime, 59, 128
of an integer, 59

set, 25–27, 29, 31, 36, 40, 72
containment, 25

proper, 25

definition, 25
disjoint, 26
empty, 25, 27
equality, 25
non-empty, 36

Sieve of Eratosthenes, 57, 61
square, 115
subset, 25, 26, 28, 30, 40, 85

definition, 25
disjoint, 27
proper, 25

subtraction, 1, 2, 20
symmetric, 26
synthetic division, 109–111, 113, 122

terms, 84, 92, 110
constant, 84, 92, 110, 119, 120
leading, 84, 85

transitive, 26
trigonometry, 12

union, 25, 27
disjoint, 26, 27

Unique Factorization Theorem, 133
unit circle, 12, 13

variable, 84
vector addition, 11
vector space, 11

well-defined, 6, 29, 31, 33, 34, 73
Well-ordering Principle, 36, 57, 132

Z, 1
Z, 30
Z, 30
zero of a polynomial, 109, 110

definition, 112




