
HIGHER ALGEBRA I (MATH 570)

COURSE NOTES

EYAL Z. GOREN

MCGILL UNIVERSITY



Contents

1. Groups 1
1.1. Our starting point 1
1.2. Group actions 1
1.3. The class equation 3
1.4. p-groups 3
1.5. Examples of p groups 4
1.5.1. Groups of order p 4
1.5.2. Groups of order p2 4
1.5.3. Groups of order p3 4
1.6. The coset representation 4
1.7. The Sylow theorems 5
1.7.1. Examples and applications 7
1.8. Semi-direct product 8
1.8.1. Application to groups of order pq. 9
1.8.2. Cases where two semi-direct products are isomorphic. 10
1.8.3. Groups of small order 11
1.9. The Cauchy-Frobenius formula and applications to

combinatorics 12
1.9.1. Applications to combinatorics 13
1.10. Simplicity of PSLn(Fq) 16
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1. Groups

1.1. Our starting point. We assume the following notions and results: group, subgroup, normal

subgroup, coset, quotient group, homomorphism, Lagrange theorem, familiarity with the symmetric

group Sn, cycles, unique factorization into cycles of a permutation, even and odd permutations, the

alternating group An. The centre of a group, the commutator subgroup.

We also assume the four isomorphism theorems for groups, that we recall for convenience.

Let G be a group:

(1) Let f : G → H be a homomorphism of groups with kernel K and let K1 be a normal subgroup

of G contained in K. There is a unique factorization giving a commutative diagram

G
f //

π

""EEEEEEEE H

G/K1

F

<<yyyyyyyy

,

where π is the canonical homomorphism g 7→ gK1. The kernel of F is K/K1CG/K1. In

particular, if f is surjective, there is an induced isomorphism F : G/K → H.

(2) Let HCG and K < G. Then HK is a subgroup of G, H ∩K a normal subgroup of K, and

HK/H ∼= K/(H ∩K).

(3) Let HCG, KCG, such that K ⊂ H. Then H/K is a normal subgroup of G/K and

(G/K)/(H/K) ∼= G/H.

(4) Let f : G → H be a surjective homomorphism of groups. There is a 1 : 1 correspondence

between subgroups of H and subgroups of G that contain K := Ker(f ). It preserves inclusion

and the notion of being a normal subgroup. The correspondence is

H0 ⊆ H 7→ K0 := f −1(H0).

1.2. Group actions. Let G be a group and S a non-empty set. An action of G on S is a function

G × S → S, (g, s) 7→ g ∗ s,

(although we mostly write gs) such that for all s ∈ S, g1, g2 ∈ G:

(1) 1 ∗ s = s;

(2) g1 ∗ (g2 ∗ s) = (g1g2) ∗ s.

In particular, every g ∈ G defines a function σg : S → S by s 7→ g ∗ s. This function has an inverse,

which is the function associated to g−1 (use the two axioms) and so is a permutation. Further,

axiom (2) tells us that

σg2 ◦ σg1 = σg1g2 .

And so we get the following lemma.

Lemma 1.2.1. Let S be a non-empty set, G a group and ΣS the group of permutations of S.

There is a natural correspondence between (i) group actions of G on S; (ii) group homomorphisms

G → ΣS.

The following definitions are basic to this theory:
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Definition 1.2.2. (Orbit) Let s ∈ S. The orbit of s, denoted Orb(s) is the subset of S given by

Orb(s) = {g ∗ s : g ∈ G}.

Being in the same orbit is an equivalence relation and so S is a disjoint union of orbits.

Definition 1.2.3. (Stabilizer) Let s ∈ S. The stabilizer of s in G is the following subgroup of G,

Stab(s) = {g ∈ G : g ∗ s = s}.

There is a natural bijection

G/Stab(s)→ Orb(s), g · Stab(s) 7→ g ∗ s.

In particular, if the orbit is a finite set then Stab(s) is of finite index (and vice-versa) and

] Orb(s) = [G : Stab(s)].

Example 1.2.4. Let G be a group and H a subgroup of G. Then, H acts on G by

(h, g) 7→ hg

where hg is the product of h and g in the group G. Then, Orb(s) = Hs is a right coset of H. The

stabilizer of any s is trivial and so every coset has [H : {1}] = ]H number of elements. Finally, G is

divided into disjoint orbits, namely, disjoint cosets of H, each having the same size ] H and so,

Lagrange Theorem: Let G be a finite group and H a subgroup of G then ]H|]G. In fact,

]G = [G : H] · ]H.

Example 1.2.5. The Orbit-Stabilizer relationship can be used to understand structures of groups

very effectively. Here is an example1: Consider the group of rotational symmetries G of the cube.

The cube has 6 faces and one easily sees that G acts transitively on the set of faces. This is a

transitive action of G on a set of 6 elements. The stabilizer of a face is the group of order 4 of

rotations around an axes passing through the centre of the face. It has order 4. We conclude

that ]G = 4 × 6 = 24. We also conclude the existence of cyclic subgroups of order 4. Let H be

such a subgroup. A face and its opposite have the same stabilizer, but this is the only case when

stabilizers are equal. Thus, H is normalized by an element taking a face to its opposite and, in fact,

[NG(H) : H] = 2.

Similarly, G acts transitively on the set of vertices, and there are 8 of which. The stabilizer J

of a vertex has thus order 3. Indeed, it’s generated by a rotation fixing the vertex and rotating

cyclically the 3 faces with that vertex. It must then permutes cyclically the remaining 3 faces as well

(as the remaining 3 faces are a union of orbits of a cyclic group of order 3 and it is easy to see it

cannot fix the 3 faces). It follows that J is also the stabilizer of one more vertex. We conclude that

[NG(J) : J] = 2 and that there are at least 4 subgroups of order 3. (In fact, an easy application

of Sylow’s theorem (to be proven later) shows that there are precisely 4 subgroups of order 3.)

Furthermore, by consider the action on the set of 12 edges, we find that G has a subgroup K of

order 2 such that K ∩H = {1}.

1I learned of this nice example from the blog of Gowers.
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1.3. The class equation. Now we take both the group and the set to be the same. Every group

G acts on itself by conjugation:

G × G → G, (g, h) 7→ gh := ghg−1.

An element s of G has orbit of size 1, namely, an orbit consisting just of itself, if and only if for all

g ∈ G we have gsg−1 = s. That is, if and only if s ∈ Z(G), the centre of G. The stabilizer of a

general element s is written in this case as CG(s), the centralizer of G in S and

CG(s) = {g ∈ G : gs = sg}.

The orbit of s is called its conjugacy class conj(s) = {gsg−1 : g ∈ G}. The group G is divided

into disjoint conjugacy classes and for a finite group G we have

(1) ]G = ]Z(G) +
∑
s

]conj(s),

where the sum extends over representatives for the conjugacy classes of size greater than 1. Note,

once more, that ]conj(s) = [G : CG(s)]. We thus can also write the class equation (1) as

(2) ]G = ]Z(G) +
∑

reps.s 6∈Z(G)

]G

]CG(s)
.

1.4. p-groups. Let p be a prime number. A finite group G is called a p-group if ]G = pr , for some

r ≥ 0. It is called a non-trivial p-group if r > 0.

Theorem 1.4.1. Let G be a nontrivial p-group then the centre of G is nontrivial.

Proof. Suppose that ]G = pr , r > 0. If Z(G) is trivial, then ]Z(G) = 1. The class equation then

gives

pr = 1 +
∑

reps.s 6∈Z(G)

]G

]CG(s)
.

But, each summand under the summation sign is a positive power of p. This is a contradiction since

then p divides the left hand side, but not the right hand side. �

We can strengthen this theorem as follows (but we leave the proof as an exercise).

Theorem 1.4.2. 2Let G be a non-trivial p group and HCG a non-trivial normal subgroup. Then,

H ∩ Z(G) is a non-trivial subgroup.

Corollary 1.4.3. Let G be a p-group and HCG a subgroup of order p. Then H ⊆ Z(G).

Theorem 1.4.4. Let G be a finite p group, |G| = pn.

(1) For every normal subgroup HCG, H 6= G, there is a subgroup KCG such that H < K < G

and [K : H] = p.

(2) There is a chain of subgroups H0 = {1} < H1 < · · · < Hn = G, such that each HiCG and

|Hi | = pi .

Proof. (1) The group G/H is a p-group and hence its center is a non-trivial group. Take an

element e 6= x ∈ Z(G/H); its order is pr for some r . Then y = xp
r−1

has exact order

p. Let K′ =< y >. It is a normal subgroup of G/H of order p (y commutes with any

other element). Let K = π−1
H (K′). Then K is a normal subgroup of G, and K/H ∼= K′ so

[K : H] = p.

2Taking H = G gives the theorem.
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(2) The proof just given shows that every p-group has a normal subgroup of p elements. Now

apply repeatedly the first part.

�

END OF LECTURE 1 (September 5)

1.5. Examples of p groups.

1.5.1. Groups of order p. Every such group is cyclic, thus isomorphic to Z/pZ.

1.5.2. Groups of order p2. Every such group G is commutative. Indeed, let x be an element of

order p contained in the centre of G. Let y be an element of G such that its image in the group

G/〈x〉 of order p is a generator (any y 6∈ 〈x〉 would do). Then, every element of G is of the form

y axb. Because x is in the centre, y axby cxd = y a+cxb+d = y cxdy axb and G is commutative. If G

has an element of order p2 then G is cyclic, isomorphic to Z/p2Z. Else, every element of G is of

order p and G is commutative. It follows that we can view G is a vector space (with p2 vectors)

over the finite field Z/pZ, where for a ∈ Z/pZ, g ∈ G we let ag = g + · · ·+ g, a-times. From the

theory of vector spaces we conclude that G ∼= Z/pZ× Z/pZ.

1.5.3. Groups of order p3. First, there are the abelian groups Z/p3Z, Z/p2Z×Z/pZ and (Z/pZ)3.

An argument similar to the one used for groups of order p2 shows that if G is not abelian then

G/Z(G) cannot be cyclic. It follows that Z(G) ∼= Z/pZ and G/Z(G) ∼= (Z/pZ)2. One example of

such a group is provided by the matrices 1 a b

0 1 c

0 0 1

 ,
where a, b, c ∈ Fp. The centre consists of the matrices with a = c = 0. Note that if p ≥ 3 then

every element in this group is of order p (use (I + N)p = I + Np), yet the group is non-abelian.

(This group, using a terminology to be introduced later, is a semi-direct product (Z/pZ)2nZ/pZ.)

More generally the upper unipotent matrices in GLn(Fp) are a group of order pn(n−1)/2 in which

every element has order p if p ≥ n. Notice that these groups are non-abelian.

Getting back to the issue of non-abelian groups of order p3, one can prove that there is precisely

one additional non-abelian group of order p3. It is generated by two elements x, y satisfying:

xp = yp
2

= 1, xyx−1 = y1+p. (This group is a semi-direct product (Z/p2Z)oZ/pZ. We will return

to this example in §1.8)

Example 1.5.1. Let p = 2. The two non-isomorphic non-abelian groups of order 8 are: (i) D4,

the dihedral group of order 8 - the symmetries of the square; (ii) the quaternion group Q8 of order

8, consisting of the elements {±1,±i ,±j,±k} with −1 a central element such that −12 = 1,

i2 = j2 = k2 = −1, i j = k, jk = i , ki = j (and so i j = −j i and so on).

1.6. The coset representation. This is one of the most important examples of a group action.

Let G be a group and H a subgroup of G. Consider the set S of left cosets gH of H. Then, G acts

on S by left multiplication:

G × S → S, (a, gH) 7→ agH.

This is a transitive action and this action, or the corresponding homomorphism G → ΣS, are called

the coset representation. We leave it as an exercise to show that to give a subgroup of G of

index n is the same thing as to give a pointed set (S, s0) (namely, a set S with an element s0 ∈ S)
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of n elements, together with an action of G. In one direction - from subgroups to actions - this

is the coset representation. As a consequence, one easily concludes that if G is finitely generated,

it has finitely many subgroups of index n for a given n (and, in fact, a bound on the number of

subgroups of index n).

The kernel of this homomorphism f : G → Σ{gH} is {a ∈ G : agH = gH,∀g ∈ G} = {a ∈ G :

a ∈ gHg−1,∀g ∈ G}, that is

Ker(f ) = ∩g∈GgHg−1.

We conclude the following:

Proposition 1.6.1. Let G be a group and H a subgroup of index n of G. Then H contains a

subgroup K, such that KCG and [G : K] ≤ n!.

Proof. Let K = Ker(f ), where f : G → Σ{gH} is the coset representation. Then K ⊆ H and K,

being a kernel of a homomorphism, is a normal subgroup. Further,

G/K ↪→ Σ{gH} ∼= Sn.

Since the order of Sn is n!, we have [G : K] ≤ n! (in fact [G : K]|n!). �

Using these techniques, one can draw some beautiful consequences (left as exercises).

Proposition 1.6.2. Let G be a finite group, p the smallest prime dividing the order of G (it is allowed

that p2|]G). Let H be a subgroup of G of index p, then H is normal.

The case p = 2 of this proposition is worth special attention: a subgroup of index 2 is always

normal.

Proposition 1.6.3. Let G be a finite simple group. If G has a subgroup of index n > 1 then ]G < n!.

For example, A5 is a simple group of order 60. It therefore doesn’t have subgroups of index 2, 3

or 4. Is it easy to prove directly?

1.7. The Sylow theorems. We shall prove the Sylow theorems by making use of various group

actions.

Theorem 1.7.1. (Sylow) Let p be a prime and G a finite group of order prm, where p - m and

r > 0.

(1) Every maximal p-subgroup of G has order pr (such a subgroup is called a p-Sylow subgroup)

and such a subgroup exists.

(2) All Sylow p-subgroups are conjugate to each other.

(3) The number np of Sylow p-subgroups satisfies: (i) np|m; (ii) np ≡ 1 (mod p).

Remark 1.7.2. To say that a subgroup P is conjugate to a subgroup Q means that there is a g ∈ G
such that gPg−1 = Q. Recall that the map x 7→ gxg−1 is an automorphism of G. This implies

that P and Q are isomorphic as groups.

Another consequence is that to say there is a unique p-Sylow subgroup is the same as saying that

a p-Sylow is normal. This is often used this way: given a finite group G the first check in ascertaining

whether it is simple or not is to check whether the p-Sylow subgroup is unique for some p dividing

the order of G. Often one engages in combinatorics of counting how many p-Sylow subgroups can

be, trying to conclude there can be only one for a given p, and hence getting a normal subgroup

and concluding the G is not simple. The converse is not true; G is not simple does not imply that

one of the p-Sylow subgroups is normal. Take for example S4. It has 4 3-Sylow subgroups and 3

2-Sylow subgroups.
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Note that a consequence of Sylow’s theorem is that if p|]G then G has an element of order p.

Indeed, pick any element different from the identity in some p-Sylow subgroup of G and, if needed,

raise it to some power so that it’s order becomes exactly p. This holds whether G is abelian or not.

The proof of Sylow’s theorems starts by establishing this conclusion for abelian groups.

Lemma 1.7.3. Let A be a finite abelian group, let p be a prime dividing the order of A. Then A

has an element of order p.

Proof. We prove the result by induction on |A|. Let N be a maximal proper subgroup of A. If p

divides the order of N we are done by induction. Otherwise, let x 6∈ N and let B =< x >. By

maximality the subgroup BN is equal to A. On the other hand |BN| = |B| · |N|/|B ∩ N|. Thus, p

divides the order of B. That is the order of x is pa for some a and so the order of xa is precisely p. �

Proposition 1.7.4. There is a p-subgroup of G of order pr .

Proof. We prove the result by induction on the order of G. Assume first that p divides the order of

the centre Z(G). Let x be an element of Z(G) of order p and let N =< x >, a normal subgroup.

The order of G/N is pr−1m and by induction it has a p-subgroup H′ of order pr−1. Let H be the

preimage of H′. It is a subgroup of G such that H/N ∼= H′ and thus H has order |H′| · |N| = pr .

Consider now the case where p does not divide the order of Z(G). Consider which summands

are divisible by p in the class equation

|G| = |Z(G)|+
∑

reps.x 6∈Z(G)

|G|
|CG(x)| .

We see that for some x 6∈ Z(G) we have that p does not divide |G|
|CG(x)| . Thus, pr divides CG(x).

The subgroup CG(x) is a proper subgroup of G because x 6∈ Z(G). Thus, by induction, CG(x), and

hence G, has a p-subgroup of order pr . �

Lemma 1.7.5. Let P be a maximal p-subgroup and Q any p-subgroup then

Q ∩ P = Q ∩ NG(P ).

Proof. Since P ⊂ NG(P ) also Q ∩ P ⊂ Q ∩ NG(P ). Let H = Q ∩ NG(P ). Then, since PCNG(P )

we have that HP is a subgroup of NG(P ). Its order is |H| · |P |/|H ∩ P | and so a power of p. Since

P is a maximal p-subgroup we must have HP = P and thus H ⊂ P . �

Proof. (Of Theorem) Let P be a Sylow subgroup of G. Such exists by Proposition 1.7.4. Let

S = {P1, . . . , Pa}

be the set of conjugates of P = P1. That is, the subgroups gPg−1 one gets by letting g vary over

G. Note that for a fixed g the map P → gPg−1, x 7→ gxg−1 is a group isomorphism. Thus, every

Pi is a Sylow p-subgroup. Our task is to show that every maximal p-subgroup is an element of S

and find out properties of a.

Let Q be any p-subgroup of G. The subgroup Q acts by conjugation on S. The size of Orb(Pi) is

|Q|/|StabQ(Pi)|. Now StabQ(Pi) = Q∩NG(Pi) = Q∩Pi by Lemma 1.7.5. Thus, the orbit consists

of one element if Q ⊂ Pi and is a proper power of p otherwise.

Take first Q to be P1. Then, the orbit of P1 has size 1. Since P1 is a maximal p-subgroup it is

not contained in any other p-subgroup, thus the size of every other orbit is a power of p. It follows,

using that S is a disjoint union of orbits, that a = 1+tp for some t. Note also that a = |G|/|NG(P )|
and thus divides |G|.

We now show that all maximal p-subgroups are conjugate. Suppose, to the contrary, that Q is a

maximal p-subgroup which is not conjugate to P . Thus, for all i , Q 6= Pi and so Q ∩ Pi is a proper
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subgroup of Q. It follows then that S is a union of disjoint orbit all having size a proper power of

p. Thus, p|a. This is a contradiction. �

1.7.1. Examples and applications.

Example 1.7.6. p-groups. Every finite p-group is of course the only p-Sylow subgroup (trivial case).

Example 1.7.7. Z/6Z. In every abelian group the p-Sylow subgroups are normal and unique. The

2-Sylow subgroup is < 3 > and the 3-Sylow subgroup is < 2 >.

Example 1.7.8. S3. Consider the symmetric group S3. Its 2-Sylow subgroups are given by {1, (12)},
{1, (13)}, {1, (23)}. Note that indeed 3|3 = 3!/2 and 3 ≡ 1 (mod 2). It has a unique 3-Sylow

subgroup {1, (123), (132)}. This is expected since n3|2 = 3!/3 and n3 ≡ 1 (mod 3) implies n3 = 1.

Example 1.7.9. S4. We want to find the 2-Sylow subgroups. Their number n2|3 = 24/8 and is

congruent to 1 modulo 2. It is thus either 1 or 3. Note that every element of S4 has order 1, 2, 3, 4.

The number of elements of order 3 is 8 (the 3-cycles). Thus, we cannot have a unique subgroup of

order 8 (it will contain any element of order 2 or 4). We conclude that n2 = 3. One such subgroup

is D8 ⊂ S4; the rest are conjugates of it.

Further, n3|24/3 and n3 ≡ 1 (mod 3). If n3 = 1 then that unique 3-Sylow would need to contain

all 8 element of order 3 but is itself of order 3. Thus, n3 = 4.

Remark 1.7.10. A group of order 24 is never simple, though it does not mean that one of the Sylow

subgroups is normal, as the example of S4 shows. However, consider the representation of a group

G of order 24 on the cosets of P , where P is its 2-Sylow subgroup. It gives us, as we have seen in

the past, a normal subgroup of G, contained in P , whose index divides 6 = [G : P ]! and hence is

non-trivial.

Call this subgroup K. Then, we see that |K| = 4; it is preserved under conjugation hence is a

subgroup of all three 2-Sylow subgroups, say P, P ′, P ′′. We have the following picture

S4

{{{{
EEEE

P

CCCCC P ′ P ′′

yyyyy

K

{e}

Example 1.7.11. Groups of order pq. Let p < q be primes. Let G be a group of order pq. Then

nq|p, nq ≡ 1 (mod q). Since p < q we have nq = 1 and the q-Sylow subgroup is normal (in

particular, G is never simple). Also, np|q, np ≡ 1 (mod p). Thus, either np = 1, or np = q and the

last possibility can happen only for q ≡ 1 (mod p).

We conclude that if p 6 |(q − 1) then both the p-Sylow P subgroup and the q-Sylow subgroup Q

are normal. Note that the order of P ∩Q divides both p and q and so is equal to 1. Let x ∈ P, y ∈ Q
then [x, y ] = (xyx−1)y−1 = x(yx−1y−1) ∈ P ∩Q = {1}. Thus, PQ, which is equal to G, is abelian.

We shall later see that whenever p|(q − 1) there is a non-abelian group of order pq (in fact,

unique up to isomorphism). The case of S3 falls under this.

Example 1.7.12. Groups of order p2q. Let G be a group of order p2q, where p and q are distinct

primes. We prove that G is not simple:

If q < p then np ≡ 1 (mod p) and np|q < p, which implies that np = 1 and the p-Sylow subgroup

is normal.
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Suppose that p < q, then nq ≡ 1 (mod q) and nq|p2, which implies that nq = 1 or p2. If

nq = 1 then the q-Sylow subgroup is normal. Assume that nq = p2. Each pair of the p2 q-Sylow

subgroups intersect only at the identity (since q is prime). Hence they account for 1 + p2(q − 1)

elements. Suppose that there were 2 p-Sylow subgroups. They intersect at most at a subgroup

of order p. Thus, they contribute at least 2p2 − p new elements. All together we got at least

1 + p2(q− 1) + 2p2− p = p2q+ p2− p+ 1 > p2q elements. That’s a contradiction and so np = 1;

the p-Sylow subgroup is normal.

Remark 1.7.13. A theorem of Burnside states that a group of order paqb with a + b > 1 is not

simple. We leave it as an exercise to show that groups of order pqr (p < q < r primes) are not

simple. Note that |A5| = 60 = 22 · 3 · 5 and A5 is simple. A theorem of Feit and Tompson says that

a finite simple group is either of prime order, or of even order.

END OF LECTURE 2 (September 10)

1.8. Semi-direct product. Given two groups B,N we can construct their direct product G = N×B.

Identifying B,N with their images {1} × B,N × {1} in G, we find that:

(1) G = NB;

(2) N ∩ B = {1};
(3) NCG,BCG.

Conversely, one can easily prove that if G is a group with subgroups B,N such that: (i) G = NB,

(ii) NCG,BCG, (iii) N ∩B = {1}, then G ∼= N×B. The definition of a semi-direct product relaxes

the conditions a little.

Definition 1.8.1. Let G be a group and let B,N be subgroups of G such that:

(1) G = NB;

(2) N ∩ B = {1};
(3) NCG.

Then we say that G is a semi-direct product of N and B.

Let N be any group. Let Aut(N) be the set of automorphisms of the group N. It is a group in its

own right under composition of functions. Let B be another group and φ : B → Aut(N), b 7→ φb
be a homomorphism (so φb1b2

= φb1
◦ φb2

). Define a group

G = N oφ B

as follows: as a set G = N × B, but the group law is defined as

(n1, b1)(n2, b2) = (n1 · φb1
(n2), b1b2).

We check associativity:

[(n1, b1)(n2, b2)](n3, b3) = (n1 · φb1
(n2), b1b2)(n3, b3)

= (n1 · φb1
(n2) · φb1b2

(n3), b1b2b3)

= (n1 · φb1
(n2 · φb2

(n3)), b1b2b3)

= (n1, b1)(n2 · φb2
(n3), b2b3)

= (n1, b1)[(n2, b2)(n3, b3)].

The identity is clearly (1N , 1B). The inverse of (n2, b2) is (φb−1
2

(n−1
2 ), b−1

2 ). Thus G is a group.

The two bijections

N → G, n 7→ (n, 1); B → G, b 7→ (1, b),
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are group homomorphisms. We identify N and B with their images in G. We claim that G is a

semi-direct product of N and B.

Indeed, clearly the first two properties of the definition hold. It remains to check that N is normal

and it’s enough to verify that B ⊂ NG(N). According to the calculation above:

(1, b)(n, 1)(1, b−1) = (φb(n), 1).

We now claim that every semi-direct product is obtained this way: Let G be a semi-direct product

of N and B. Let φb : N → N be the map n 7→ bnb−1. This is an automorphism of N and the map

φ : B → Aut(N)

is a group homomorphism. We claim that N oφ B ∼= G. Indeed, define a map

(n, b) 7→ nb.

It follows from the definition that the map is surjective. It is also bijective since nb = 1 implies

that n = b−1 ∈ N ∩ B hence n = 1. It remains to check that this is a group homomorphism, but

(n1 · φb1
(n2), b1b2) 7→ n1φb1

(n2)b1b2 = n1b1n2b
−1
1 b1b2 = (n1b1)(n2b2).

Proposition 1.8.2. A semi-direct product N oφ B is the direct product N × B if and only if φ :

B → Aut(N) is the trivial homomorphism.

Proof. Indeed, that happens iff for all (n1, b1), (n2, b2) we have (n1φb1
(n2), b1b2) = (n1n2, b1b2).

That is, iff for all b1, n2 we have φb1
(n2) = n2, which implies φb1

= id for all b1. That is, φ is the

trivial homomorphism. �

Example 1.8.3. The Dihedral group D2n is a semi-direct product. Take N =< x >∼= Z/nZ and

B =< y >∼= Z/2Z. Then D2n
∼= Z/nZ oφ Z/2Z with φ1 = −1.

1.8.1. Application to groups of order pq. We have seen in § 1.7.11 that if p < q and p 6 |(q − 1)

then every group of order pq is abelian. Assume therefore that p|(q − 1).

Proposition 1.8.4. If p|(q−1) there is a unique non-abelian group, up to isomorphism, of order pq.

Proof. Let G be a non-abelian group of order pq. We have seen that in every such group G the

q-Sylow subgroup Q is normal. Let P be any p-Sylow subgroup. Then P ∩Q = {1} and G = QP .

Thus, G is a semi-direct product of Q and P .

It is thus enough to show that there is a non-abelian semi-direct product and that any two such

products are isomorphic. We may consider the case Q = Z/qZ, P = Z/pZ.

Lemma 1.8.5. Aut(Q) = (Z/qZ)×. In fact, for any positive integer N, Aut(Z/NZ) ∼= (Z/NZ)×,

the group of units of the ring Z/NZ.

Proof. Since Z/NZ is cyclic any group homomorphism f : Z/NZ→ H to a group H is determined

by its value on a generator of Z/NZ, say 1. Conversely, if h ∈ H is of order dividing N then there

is such a group homomorphism with f (1) = h. Now take H = Z/NZ. The image of f is the

cyclic subgroup < h > and thus f is surjective (equivalently, an isomorphism) iff h is a generator.

Thus, any element h ∈ (Z/NZ)× determines an automorphism fh of Z/NZ by a 7→ ah. Note

that fh(fg)(a) = fh(ag) = agh = fhg(a) and so the association h ↔ fh is a group isomorphism

(Z/NZ)× ∼= Aut(Z/NZ). �

Since (Z/qZ)× is a cyclic group of order q − 1 (because it is the group of non-zero elements of

a finite field), and since p|(q− 1), there is an element h of exact order p in (Z/qZ)×. Let φ be the

homomorphism determined by φ1 = fh and let G = Qoφ P . G is not abelian by Proposition 1.8.2
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We now show that G is unique up to isomorphism. If H is another such semi-direct product then

H = Z/qZ oψ Z/pZ, where ψ1 is an element of order p (if it is the identity H is abelian) and thus

ψ1 = φr1 = φr for some r prime to p.

Define a map

Z/qZ oψ Z/pZ→ Z/qZ oφ Z/pZ, (n, b) 7→ (n, rb).

This function is easily checked to be injective, hence bijective. We check it is a group homomorphism:

In G we have (n1, rb1)(n2, rb2) = (n1 + φrb1
(n2), r(b1 + b2)) = (n1 +ψb1

(n2), r(b1 + b2)) which

is the image of (n1 + ψb1
(n2), b1 + b2), the product (n1, b1)(n2, b2) in H. �

Example 1.8.6. Is there a non-abelian group of order 165 containing Z/55Z?

In such a group G, the subgroup Z/55Z must be normal (its index is the minimal prime dividing

the order of G). Since there is always a 3-Sylow, we conclude that G is a semi-direct product

Z/55Z o Z/3Z. This is determined by a homomorphism Z/3Z → Aut(Z/55Z) ∼= (Z/55Z)×. The

right hand side has order ϕ(55) = 4 · 10. Thus, the homomorphism is trivial and G is a direct

product. It follows that G must be commutative.

1.8.2. Cases where two semi-direct products are isomorphic. It is useful to generalize the last ar-

gument. Consider a map φ : B → Aut(N) be a homomorphism and consider the group

G = N oφ B.

Consider two automorphisms f : N → N, g : B → B. Let S be G considered as a set and consider

the self map

S → S, (n, b) 7→ (f (n), g(b)).

We may define a new group law on S by

(n1, b1) ? (n2, b2) = f ◦ g
[
(f −1(n1), g−1(b1))(f −1(n2), g−1(b2))

]
= f ◦ g

[
(f −1(n1) · [φ(g−1(b1))](f −1(n2)), g−1(b1)g−1(b2))

]
= (n1 · f ([φ(g−1(b1))](f −1(n2))), b1b2)

Clearly, S with the new group law is isomorphic as groups to G. This suggests the following, define

an action of Aut(B)×Aut(N) on Hom(B,Aut(N)) via the embedding Aut(B)×Aut(N)→ Aut(B)×
Aut(Aut(N)). That is, g ∈ Aut(B) acts by φ 7→ φ ◦g and f ∈ Aut(N) acts by φ 7→ cf ◦φ, where cf
is conjugation by f . That is, (cf ◦ φ)(b) = f φ(b)f −1. Then, we see that every orbit for this action

gives isomorphic groups N oφ B. Note that the action of Aut(B) × Aut(N) on Hom(B,Aut(N))

factors through Aut(B)× Aut(N)/Z(Aut(N)).

Example 1.8.7. As we have seen, this action shows that there is a unique non-abelian group of order

pq, where p < q, p|(q−1), up to isomorphism. Indeed, first we showed that such a group is a semi-

direct product Z/qZ o Z/pZ relative to θ : Z/pZ→ Aut(Z/qZ) ∼= Z/qZ×. The homomorphism θ

is determined by θ(1) which is an element of order p. Now, Aut(Z/pZ) = (Z/pZ)× and an element

b acts on θ by θ 7→ θ◦b. As θ◦b(1) = θ(b) = θ(1)b, which is another element of order p of Z/qZ×.

In fact, any element of order p is of the form θ(1)b for some b (the cyclic subgroup Z/qZ× of order

(q− 1) has a unique cyclic subgroup of order p; every element of order p of Z/qZ× thus belongs to

it, and thus there are p − 1 elements of order p which are all powers of each other). This already

shows that all the non-abelian semi-direct products Z/qZoZ/pZ are isomorphic. The other action,

Aut(Z/qZ) acting on itself by conjugation is trivial because Aut(Z/qZ) is an abelian group.

Example 1.8.8. We consider non-abelian semi-direct products

Z/p2Z o Z/pZ.
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Z/p2Z× is a cyclic group of order p(p − 1), a fact left as an exercise. It thus has precisely p − 1

elements of order p, comprising the non-trivial elements of the unique subgroup of p elements.

They are each powers of each other. Again, a nontrivial homomorphism θ : Z/pZ→ Aut(Z/p2Z) is

determined by θ(1), which is an element of exact order p. An argument as above shows that any two

non abelian semidirect products are isomorphic Z/p2Z o Z/pZ. The group we get has an element

of order p2. In fact, for p > 2, any non-abelian group of order p3 having an element of order p2 is

isomorphic to this group. To prove that one only needs to show that such a group is a semi-direct

product Z/p2Z o Z/pZ. This is not that easy, and a guided proof appears in the exercises.

END OF LECTURE 3 (September 12)

1.8.3. Groups of small order. Using our results thus far, we can get a pretty good idea of the groups

of small order.

order abelian non-abelian

2 Z/2Z –

3 Z/3Z –

4 Z/2Z× Z/2Z
Z/4Z

–

5 Z/5Z –

6 Z/6Z S3
∼= D3

∼= Z/3Z o Z/2Z
7 Z/7Z –

8 (Z/2Z)3

Z/2Z× Z/4Z
Z/8Z

Q = {±1,±i ,±j,±k}
D4
∼= Z/4Z o Z/2Z

9 (Z/3Z)2

Z/9Z
–

10 Z/10Z D5
∼= Z/5Z o Z/2Z

11 Z/11Z –

12 (Z/2Z)2 × Z/3Z
Z/4Z× Z/3Z

A4
∼= (Z/2Z)2 o Z/3Z

D6
∼= Z/6Z o Z/2Z ∼= Z/3Z o (Z/2Z)2

T ∼= Z/3Z o Z/4Z
13 Z/13Z –

14 Z/14Z D7
∼= Z/7Z o Z/2Z

15 Z/15Z –

In the following table we list for every n the number G(n) of subgroups of order n (this is taken

from J. Rotman/An introduction to the theory of groups):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

G(n) 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1 5 1

n 20 21 22 23 24 25 26 27 28 29 30 31 32

G(n) 5 2 2 1 15 2 2 5 4 1 4 1 51

There are 2328 isomorphism classes of groups of order 128.3

3James, Newman and O’Brien, Journal of Algebra 129, Issue 1, 1990, 136 -158.
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1.9. The Cauchy-Frobenius formula and applications to combinatorics.

Theorem 1.9.1. (CFF) Let G be a finite group acting on a finite set non-empty S. Let N be the

number of orbits of G in S. Define

Fix(g) = |{s ∈ S : g ? s = s}|

(the number of elements of S fixed by the action of g). Then

(3) N =
1

|G|
∑
g∈G

Fix(g).

Remark 1.9.2. If N = 1 we say that G acts transitively on S. It means exactly that: For every

s1, s2 ∈ S there exists g ∈ G such that g ? s1 = s2.

Proof. We define a function

T : G × S → {0, 1}, T (g, s) =

{
1 g ? s = s

0 g ? s 6= s
.

Note that for a fixed g ∈ G we have

Fix(g) =
∑
s∈S

T (g, s),

and that for a fixed s ∈ S we have

|Stab(s)| =
∑
g∈G

T (g, s).
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Let us fix representatives s1, . . . , sN for the N disjoint orbits of G in S. Now,∑
g∈G

Fix(g) =
∑
g∈G

(∑
s∈S

T (g, s)

)

=
∑
s∈S

∑
g∈G

T (g, s)


=
∑
s∈S
|Stab(s)|

=
∑
s∈S

|G|
|Orb(s)|

=

N∑
i=1

∑
s∈Orb(si )

|G|
|Orb(s)|

=

N∑
i=1

∑
s∈Orb(si )

|G|
|Orb(si)|

=

N∑
i=1

|G|
|Orb(si)|

· |Orb(si)|

=

N∑
i=1

|G|

= N · |G|.

�

Corollary 1.9.3. Let G be a finite group acting transitively on a finite non-empty set S. Suppose

that |S| > 1. Then there exists g ∈ G without fixed points.

Proof. By contradiction. Suppose that every g ∈ G has a fixed point in S. That is, suppose that

for every g ∈ G we have

Fix(g) ≥ 1.

Since Fix(e) = |S| > 1 we have that ∑
g∈G

Fix(g) > |G|.

By Cauchy-Frobenius formula, the number of orbits N is greater than 1. Contradiction. �

1.9.1. Applications to combinatorics.

Example 1.9.4. How many roulettes with 11 wedges painted 2 blue, 2 green and 7 red are there

when we allow rotations?

Let S be the set of painted roulettes. Let us enumerate the sectors of a roulette by the numbers

1, . . . , 11. The set S is a set of

(
11

2

)(
9

2

)
= 1980 elements (choose which 2 are blue, and then

choose out of the nine left which 2 are green).
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Let G be the group Z/11Z. It acts on S by rotations. The element 1 rotates a painted roulette

by angle 2π/11 anti-clockwise. The element n rotates a painted roulette by angle 2nπ/11 anti-

clockwise. We are interested in N – the number of orbits for this action. We use CFF.

The identity element always fixes the whole set. Thus Fix(0) = 1980. We claim that if 1 ≤ i ≤ 10

then i doesn’t fix any element of S. Indeed, suppose that 1 ≤ i ≤ 10 and i fixes s. Then so does

〈i〉 = Z/11Z (the stabilizer is a subgroup). But any coloring fixed under rotation by 1 must be

single colored! Contradiction.

Applying CFF we get

N =
1

11

10∑
n=0

Fix(n) =
1

11
· 1980 = 180.

Example 1.9.5. How many roulettes with 12 wedges painted 2 blue, 2 green and 8 red are there

when we allow rotations?

Let S be the set of painted roulettes. Let us enumerate the sectors of a roulette by the numbers

1, . . . , 12. The set S is a set of

(
12

2

)(
10

2

)
= 2970 elements (choose which 2 are blue, and then

choose out of the ten left which 2 are green).

Let G be the group Z/12Z. It acts on S by rotations. The element 1 rotates a painted roulette

by angle 2π/12 anti-clockwise. The element n rotates a painted roulette by angle 2nπ/12 anti-

clockwise. We are interested in N – the number of orbits for this action. We use CFF.

The identity element always fixes the whole set. Thus Fix(0) = 2970. We claim that if 1 ≤ i ≤ 11

and i 6= 6 then i doesn’t fix any element of S. Indeed, suppose that i fixes a painted roulette. Say

in that roulette the r -th sector is blue. Then so must be the i + r sector (because the r -th sector

goes under the action of i to the r + i-th sector). Therefore so must be the r + 2i sector. But there

are only 2 blue sectors! The only possibility is that the r + 2i sector is the same as the r sector,

namely, i = 6.

If i is equal to 6 and we enumerate the sectors of a roulette by the numbers 1, . . . , 12 we may

write i as the permutation

(1 7)(2 8)(3 9)(4 10)(5 11)(6 12).

In any coloring fixed by i = 6 the colors of the pairs (1 7), (2 8), (3 9), (4 10), (5 11) and (6 12)

must be the same. We may choose one pair for blue, one pair for green. The rest would be red.

Thus there are 30 = 6 · 5 possible choices. We summarize:

element g Fix(g)

0 2970

i 6= 6 0

i = 6 30

Applying CFF we get that there are

N =
1

12
(2970 + 30) = 250

different roulettes.

Example 1.9.6. In this example S is the set of necklaces made of four rubies and four sapphires

laid on the table. We ask how many necklaces there are when we allow rotations and flipping-over.

We may talk of S as the colorings of a regular octagon, four vertices are green and four are red.

The group G = D16 acts on S and we are interested in the number of orbits for the group G.

The results are the following



COURSE NOTES - MATH 570 15

element g Fix(g)

e 70

x, x3, x5, x7 0

x2, x6 2

x4 6

yx i for i = 0, . . . , 7 6

We explain how the entries in the table are obtained:

The identity always fixes the whole set S. The number of elements in S is

(
8

4

)
= 70 (chossing

which 4 would be green).

The element x cannot fix any coloring, because any coloring fixed by x must have all sections

of the same color (because x = (1 2 3 4 5 6 7 8)). If x r fixes a coloring s0 so does (x r )r = x (r2)

because the stabilizer is a subgroup. Apply that for r = 3, 5, 7 to see that if x r fixes a coloring so

does x , which is impossible. 4

Now, x2 written as a permutation is (1 3 5 7)(2 4 6 8). We see that if, say 1 is green so are

3, 5, 7 and the rest must be red. That is, all the freedom we have is to choose whether the cycle

(1 3 5 7) is green or red. This gives us two colorings fixed by x2. The same rational applies to

x6 = (8 6 4 2)(7 5 3 1).

Consider now x4. It may written in permutation notation as (1 5)(2 6)(3 7)(4 8). In any coloring

fixed by x4 each of the cycles (1 5)(2 6)(3 7) and (4 8) must be single colored. There are thus(
4

2

)
= 6 possibilities (Choosing which 2 out of the four cycles would be green).

It remains to deal with the elements yx i . We recall that these are all reflections. There are two

kinds of reflections. One may be written using permutation notation as

(i1 i2)(i3 i4)(i5 i6)

(with the other two vertices being fixed. For example y = (2 8)(3 7)(4 6) is of this form). The

other kind is of the form

(i1 i2)(i3 i4)(i5 i6)(i7 i8).

(For example yx = (1 8)(2 7)(3 6)(4 5) is of this sort). Whatever is the case, one uses similar

reasoning to deduce that there are 6 colorings preserved by a reflection.

One needs only apply CFF to get that there are

N =
1

16
(70 + 2 · 2 + 6 + 8 · 6) = 8

distinct necklaces.

Example 1.9.7. Suppose we have n-colours and we want to count the number of distinct colour-

ings of a tetrahedron under rotational symmetries (we colour the faces). Number the vertices as

{1, 2, 3, 4} to represent the symmetries as a subgroup of S4, that clearly contains all 3-cycles. It

must then be isomorphic to either A4, S4. But the symmetry (12) is not rotational (it doesn’t

preserve orientation). Thus, the group of symmetries we are interested in is A4. It has the

identity elements, 8 elements that are 3-cycles, and 3 elements that form the Klein four group

{(12)(34), (13)(24), (14)(23)}.
The number of possible colourings is n4. Each colouring is preserved by the identity. A 3-cycle

leaves on face stable, and permutes cyclically the other 3. Thus, a 3-cycle preserves n2 colourings (n

4x (32) = x9 = x because x8 = e, etc.
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choices for the fixed face, n choices for the colour of the 3 faces permuted cyclically). A permutation

such as (12)(34) switches the faces in pairs and so again fixed n2 colourings. Applying the CFF

formula, we find that there are
1

12
(n4 + 11n2)

distinct colourings of the tetrahedron using n colours. It is a healthy instinct to check at this point

that this number is always an integer (it is!).

1.10. Simplicity of PSLn(Fq). You have seen in the first course on group theory that the alternating

groups An are simple for n ≥ 5. Here we provide another infinite family of finite simple groups. This

family is constructed from algebraic groups. The construction applies to other algebraic groups and

by the classification theorem of finite simple groups - one of the monumental achievements of the

20th century - this list, together with the cyclic groups of prime order, covers all finite simple groups

except for a very short list of exceptional groups, called the sporadic groups.

Let F be a finite field with q = pr elements, where p is a prime. The group SLn(F) is the

group of n × n matrices with entries in F and determinant 1. The set of scalar matrices in SLn is

a normal subgroup, consisting of the matrices {diag(µ, µ, . . . , µ) : µ ∈ F, µn = 1}, and has order

d = gcd(n, q − 1). In fact, it is the centre of SLn(F). Denote it by K. We wish to prove that for

n > 1,

PSLn(F) := SLn(F)/K,

is a simple group, except in the two cases n = 2 and q ≤ 3.

We say that a group acts faithfully on a set S if the homomorphism G → ΣS is injective. That is,

if g ∈ G is not the identity element then there is an s ∈ S such that gs 6= s. We say that G acts

doubly-transitively on S if for each a 6= b in S and c 6= d in S there is an element g ∈ G such that

ga = c, gb = d .

We say that G acts primitively on a set S if G acts transitively, |S| > 1, and there is no partition

of S preserved by the action of G besides the trivial partitions (S = S and S =
∐
s∈S{s}). For

example, if the action is 2-transitive, it’s primitive. If |S| > 2 there is no need to require that the

action of G is transitive in the definition of primitive action; it is so automatically.

Lemma 1.10.1. Let G act transitively on a set S. Then, G acts primitively if and only if the point

stabilizer of a point of S is a proper maximal subgroup of G.

Proof. We prove the direction needed in the sequel. Suppose that G acts primitively and let s ∈ S
with stabilizer H. We may assume without loss of generality that the action is the action of G on

the cosets space G/H. Suppose that there is a proper subgroup J that strictly contains H. G acts

on the coset space G/J. Each coset of J is a disjoint union of cosets of H and that produces a

non-trivial partition of G/H, which is preserved by the action of G. �

Lemma 1.10.2 (Iwasawa). Let G be a finite perfect group, i.e., G = G′, acting faithfully and

primitively on a set S, such that the stabilizer H of some point in S has a normal abelian subgroup

A whose conjugates generate G, then G is simple.

Proof. Suppose not. Let K be a non-trivial normal subgroup of G. K doesn’t fix every element of

S, because of the faithfulness assumption. Remark that the conditions of the lemma hold for every

point s ∈ S if they hold for one point in S. Therefore, we may choose a point stabilizer H such that

K 6⊂ H. Say H is the stabilizer of s0.
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Since K is normal, HK is a subgroup of G and it strictly contains H. The action being primitive

implies that H is a maximal subgroup of G. Therefore,

HK = G.

It follows that every element of G is of the form hk with h ∈ H and k ∈ K. If a ∈ A then

k−1h−1ahk = k−1a′k ∈ AK. Therefore, all the conjugates of A lie in the subgroup AK and thus,

G = AK. But then

G/K = AK/K ∼= A/A ∩K,

is a non-trivial abelian group, contradicting the assumption that G is perfect. �

END of lecture 4 (September 17)

It remains to examine when does PSLn(F) satisfy the assumptions of the Lemma. We first

explain the set on which PSLn(F) acts. This set S is the set of lines in the vector space Fn; it is

called the projective space of dimension n − 1 over F and denoted Pn−1
F (and in many other ways

too). The natural action of SLn(F) factors through PSLn(F). Moreover, the action is 2-transitive,

hence primitive. The stabilizer of a line H is the matrices in PSLn(F) of the form

(
t ∗
0 M

)
, where

t · det(M) = 1. As our subgroup A we take the matrices of the form

(
1 vn−1

0 In−1

)
, where vn−1 is

any vector of length n. It is an abelian subgroup which is normal in H, being the kernel of the

homomorphism to GLn−1(F),

(
t ∗
0 M

)
7→ M.

We note that every element of H is a transvection: a transformation T such that T − In has rank

1 and (T − In)2 = 0. We claim that every transvection of SLn(F) is conjugate within SLn(F) to a

transvection in A. Indeed, the minimal polynomial of a transvection is (x−1)2. The Jordan canonical

form together with the rank condition supply us with a basis u1, . . . , un for which (T − In)(ui) = 0,

except for (T−In)(u2) = u1. This being true for every transvection proves that they are all conjugate

in GLn(F). Thus, given two transvections S, T there is matrix M such that MSM−1 = T , where we

suppose T is represented by

1 1 0 . . . 0

1 0 . . . 0

In−2

. To make M have determinant 1 we replace

it by M × diag(d, 1, . . . , 1) at the cost of arriving at

diag(d, 1, . . . , 1)

1 1 0 . . . 0

1 0 . . . 0

In−2

 diag(d−1, 1, . . . , 1) =

1 d 0 . . . 0

1 0 . . . 0

In−2

 .
Lemma 1.10.3. The group SLn(F) is generated by transvections.

Proof. We leave the proof as an exercise. It amounts to the statement that every matrix of de-

terminant 1 can be reduced to the identity matrix using column and row operations of the form

ci 7→ ci + λcj and ri 7→ ri + λrj , noting that we can use any transvection. �

At this point, we have our group, our set and the subgroup A. The only thing missing is the

following.

Lemma 1.10.4. The group SLn(F), and hence PSLn(F), is perfect, except for the case SL2(F2)

and SL2(F3).
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Proof. Since the derived group is normal, it is enough to show that every transvection of the form(
1 t 0 . . . 0

0 In−1

)
is a commutator. One checks that1 −x 0

0 1 0

0 0 1

 ,
1 0 0

0 1 −1

0 0 1

 =

1 0 x

0 1 0

0 0 1

 ,
which, by the calculation above (taking M to be the permutation matrix of the transposition (23)

and d = −1) is conjugate to

1 −x 0

0 1 0

0 0 1

. That shows that all transvections belong to the

commutator subgroup if n ≥ 3.

For n = 2 we check that [(
x 0

0 x−1

)
,

(
1 y

0 1

)]
=

(
1 y(x2 − 1)

0 1

)
.

For q > 3 this is an arbitrary element of A. �
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2. The Jordan-Hölder theorem and solvable groups

2.1. Composition series and composition factors. Let G be a group. A normal series for G is a

series of subgroups

G = G0 B G1 B · · · B Gn = {1}.
A composition series for G is a series of subgroups

G = G0 B G1 B · · · B Gn = {1},

such that Gi−1/Gi is a nontrivial simple group for all i = 1, . . . , n. The composition factors are the

quotients {Gi−1/Gi : i = 1, 2, . . . , n}. The quotients are considered up to isomorphism, where the

order of the quotients doesn’t matter, but we do take the quotients with multiplicity. For example,

the group D4 has a composition series

D4 B 〈y〉 B 〈y2〉 B {1}.

The composition factors are {Z/2Z,Z/2Z,Z/2Z}.
A group G is called solvable if it has a normal series in which all the composition factors are

abelian groups. If G is finite then G is solvable if and only if it has a composition series whose

composition factors are cyclic groups of prime order.

2.2. Jordan-Hölder Theorem. The Jordan-Holder theorem clarifies greatly the yoga behind the

concept of composition series.

Theorem 2.2.1. Let G be a finite group. Any two composition series for G have the same compo-

sition factors (considered with multiplicity).

Note that a consequence of the theorem is that any two composition series have the same length,

since the length determines the number of composition factors.

The proof of the theorem is quite technical, unfortunately. It rests on the following lemma.5

Lemma 2.2.2. (Zassenhaus) Let ACA∗, BCB∗ be subgroups of a group G. Then

A(A∗ ∩ B)CA(A∗ ∩ B∗), B(B∗ ∩ A)CB(B∗ ∩ A∗),

and
A(A∗ ∩ B∗)
A(A∗ ∩ B)

∼=
B(B∗ ∩ A∗)
B(B∗ ∩ A)

.

Before the proof, recall some easy to prove facts: (i) Let SCG, T < G be subgroups of a group G.

Then ST is a subgroup of G (and ST = TS). (ii) If also TCG then STCG.

Proof. Let D be the following set:

D = (A∗ ∩ B)(A ∩ B∗).

We show that D is a normal subgroup of A∗ ∩ B∗, D = (A ∩ B∗)(A∗ ∩ B) and

B(B∗ ∩ A∗)
B(B∗ ∩ A)

∼=
A∗ ∩ B∗

D
.

The lemma then follows from the symmetry of the roles of A and B.

It is easy to check directly from the definitions that (A∗∩B)CA∗∩B∗ and, similarly, (A∩B∗)CA∗∩
B∗. It follows that DCA∗ ∩ B∗ and that D = (A ∩ B∗)(A∗ ∩ B). The subtle point of the proof is

to construct a homomorphism

f : B(B∗ ∩ A∗)→
A∗ ∩ B∗

D
.

5Our proof follows Rotman’s in An introduction to the theory of groups.
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Let x ∈ B(B∗ ∩ A∗), say x = bc for b ∈ B, c ∈ (B∗ ∩ A∗). Let

f (x) = cD

(which is an element of A∗∩B∗
D .)

First, f is well defined. If x = b1c1 then c1c
−1 = b−1

1 b ∈ (B∗ ∩ A∗) ∩ B ⊂ D. As DC(B∗ ∩ A∗)
and c1 ∈ (B∗ ∩A∗) also c−1c1 ∈ D, and so cD = c1D. Next, f is a homomorphism. Suppose that

x = bc, y = b1c1 and so xy = bcb1c1. Note that cb1c
−1 ∈ B (as B is normal in B∗ and c ∈ B∗)

and so xy = bb′cc1 for some b′ ∈ B. It now follows that f (xy) = f (x)f (y).

It is clear from the definition that f is a surjective homomorphism. When is x = bc ∈ Ker(f )?

This happens if and only if c ∈ D, that is x ∈ B(A∗ ∩ B)(A ∩ B∗) = B(A ∩ B∗). This shows that

B(A ∩ B∗)CB(A∗ ∩ B∗) and the desired isomorphism. �

END of lecture 5 (September 19)

Theorem 2.2.3. Let G be a group. Any two finite composition series for G are equivalent; namely,

have the same composition factors.

Proof. More generally, we prove that any two normal series for G have refinements that are equiv-

alent; namely, have the same composition factors (with the same multiplicities). This holds also

for infinite groups that may not have composition series, and so is useful in other situations. In the

case of composition series, since they cannot be refined in a non-trivial, as the quotients are simple

groups, we get that any two composition series for G (if they exist at all) are equivalent.

Thus, let

G = G0 B G1 B · · · B Gn = {1},
and

G = H0 B H1 B · · · B Hm = {1}.
First, use the second series to refine the first. Define:

Gi j = Gi+1(Gi ∩Hj).

For fixed i , this is a descending series of sets, beginning at Gi0 = Gi and ending at Gim = Gi+1.

Taking in the Zassenhaus lemma A = Gi+1, A
∗ = Gi , B = Hj+1, B

∗ = Hj gives us that Gi ,j+1 =

A(A∗B)CGi j = A(A∗ ∩ B∗) (and, in particular, that these are subgroups).

Similarly, now use the first series to refine the second by defining

Hi j = Hj+1(Hj ∩ Gi).

As above, the series Hj = H0j ⊃ H1j ⊃ · · · ⊃ Hnj = Hj+1 is a series of subgroups, each normal in the

former. Finally, applying the Zassenhaus lemma again to A = Gi+1, A
∗ = Gi , B = Hj+1, B

∗ = Hj ,

we find that
Gi j
Gi ,j+1

=
A(A∗ ∩ B∗)
A(A∗ ∩ B)

∼=
B(B∗ ∩ A∗)
B(B∗ ∩ A)

=
Hi j
Hi+1,j

.

This gives a precise matching of the factors. �

Note that every finite group G has a composition series. While the composition series itself is

not unique, the composition factors are. So, in a sense, the Jordan-Hölder theorem is a unique

factorization theorem for groups. From this point of view, the simplest groups are the solvable

groups. These are the groups with the simplest factors - cyclic groups of prime order. We therefore

now focus our attention on solvable groups for a while. Their study is further motivated by Galois

theory and we shall return to this point later in §??.
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2.3. Solvable groups. Recall that a group G is called solvable if there is a finite normal series for

G,

G = G0 B G1 B · · · B Gn = {1},
with abelian quotients. Every abelian group is solvable. Any group of order pq, where p < q are

primes is solvable as the q-Sylow is always normal and the quotient is a group of order p, hence

cyclic. Similarly, we have seen that groups of order p2q and pqr , where p, q, r are distinct primes,

are solvable. A theorem of Burnside states that groups of order paqb are solvable.

Of course, not every group is solvable. Any non-abelian simple group (such as An for n ≥ 5, and

PSLn(Fq) for n ≥ 2 and (n, q) 6= (2, 2) or (2, 3)) is non solvable.

The class of solvable groups is closed under basic operations. More precisely.

Proposition 2.3.1. A subgroup of a solvable group is solvable. A homomorphic image of a solvable

group is solvable.

Proof. Let G be a solvable group with a finite normal series,

G = G0 B G1 B · · · B Gn = {1},
with abelian quotients. Let H be a subgroup of G. One checks that

H = G0 ∩H B G1 ∩H B · · · B Gn ∩H = {1}
is a normal series for H with abelian quotients.

Let f : G → K be a surjective homomorphism. One checks that

K = f (G0) B f (G1) B · · · B f (Gn) = {1}
is a normal series for K with abelian quotients. �

Proposition 2.3.2. Let

0→ G1 → G → G2 → 0

be an exact sequence of groups. Then G is solvable if and only if both G1 and G2 are solvable.

This too is left as an exercise. Note that we had already shown one direction: if G is solvable so

are G1 and G2.
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3. Free groups and free products

3.1. Categories: Definition of a category. A category C consists in two things: objects and

morphisms. Thus, a category C is a collection of objects Ob(C) and for any two objects X, Y of

C a set Mor(X, Y ), called the morphisms from X to Y . If we need to specify the category in our

notation, we shall write MorC(X, Y ). Further, for any three objects X, Y, Z there is a composition

function

Mor(Y, Z)×Mor(X, Y )→ Mor(X,Z), (g, f ) 7→ g ◦ f ,
such that composition is associative: h ◦ (g ◦ f ) = (h ◦ g) ◦ f . In addition, for every object X there

is a morphism 1X ∈ Mor(X,X) such that g ◦ 1X = g for all g ∈ Mor(X, Y ) and 1X ◦ f = f for all

f ∈ Mor(Y,X).

It should be stressed that there is no assumption that objects are sets, or that morphisms are

actually functions. The notation g ◦ f is formal. Nonetheless, the notation is suggestive and

by-and-large categories behave as if their objects were sets and their morphisms functions.

3.1.1. Example: Sets. The category of sets Sets is the category whose objects are sets and whose

morphisms are functions.

3.1.2. Example: Gp. The category of groups Gp is the category whose objects are groups and for

any two groups G,H, the morphisms Mor(G,H) are the group homomorphisms f : G → H.

3.1.3. Example: AbGp. The category of abelian groups AbGp is the category whose objects are

abelian groups and for any two abelian groups G,H, the morphisms Mor(G,H) are the group ho-

momorphisms f : G → H.

In general a category D is called a subcategory of a category C if Ob(D) ⊆ Ob(C) and for

any X, Y objects of D, MorD(X, Y ) ⊆ MorC(X, Y ). If, in fact, for every X, Y objects of D,

MorD(X, Y ) = MorC(X, Y ), one calls D a full subcategory. For example, AbGp is a full subcategory

of Gp.

Here is an artificial example of a subcategory E of Gp that is not a full subcategory. The

objects of E are groups of order, say, 32 and the morphisms are defined as Mor(G,G) = {1G} and

Mor(G,H) = ∅ if G 6= H. (In the same vain, we could have taken as the objects of E the same

objects of Gp. )

3.1.4. Example: VSpk . Let k be a field and let VSpk be the category of k-vector spaces. The

morphisms are k-linear maps.

3.1.5. Example: 2S. Let S be a set and let 2S be the category whose objects are subsets of S.

Further, Mor(X, Y ) = {IXY } (a formal symbol) if X ⊂ Y and, whenever defined, IY Z ◦ IXY = IXZ .

Note that IXX serves as 1X in the definition of a category.

3.2. Categories: initial and final objects. An initial object in a category C is an object A such

that for every object X of C the set Mor(A,X) has a single element. A final object in a category

C is an object Z such that for every object X of C the set Mor(X,Z) has a single element.

Two objects X, Y in a category are called isomorphic if there are morphisms f ∈ Mor(X, Y ), g ∈
Mor(Y,X) such that f ◦ g = 1Y and g ◦ f = 1X . We denote this by X ∼= Y . An initial object, if it

exists, is unique up to unique isomorphism. The same holds for a final object. To see that, let A

and A′ be initial objects of a category C. There is a unique morphism f ∈ Mor(A,A′), because A is

initial, and there is a unique morphism g ∈ Mor(A′, A), because A′ is initial. Then g◦f ∈ Mor(A,A).

But, since A is initial Mor(A,A) has a single element and so we must have g ◦ f = 1A. Similarly,

f ◦ g = 1A′ . This shows that A and A′ are isomorphic. Further, since Mor(A,A′) has a single

element, this isomorphism is unique.
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Example 3.2.1. The category Sets has an initial object - the empty set ∅. Any set of one element

is a final object. The category Gp has an initial object - the group of one element. This element is

also a final object. One calls an object which is both initial and final a zero object. The same holds

for AbGp and VSpk . The category 2S has an initial object ∅ and a final object S. The category

of fields doesn’t have initial and final objects. The category of fields of characteristic zero has an

initial object Q but doesn’t have a final object. The category of fields of characteristic p, p a prime,

has an initial object the field Z/pZ but doesn’t have a final object.

3.2.1. The opposite category. Let C be a category. Define the opposite category Cop as a category

with the same objects and with MorCop (X, Y ) = MorC(Y,X). In the category Cop we define

g ◦op f = f ◦ g, g ∈ MorCop (Y, Z), f ∈ MorCop (X, Y ).

This is indeed a category and (Cop)op = C. One can prove that if A is an initial (final) object of C

then A is a final (reps., initial) object for Cop.

Exercise 3.2.2. Let G be a group. We can define a group Gop as the same underlying set but with

x ∗ y = yx , where x ∗ y denotes the product in Gop. Prove that this is a group, which is, in fact,

isomorphic to G. At the same time, we can associate to G a category G. It has a single object,

say e and Mor(e, e) := G, where x ◦ y = xy (the product in G). Show that there is a natural

identification (G)op with Gop.

3.3. Free groups. Let X be a set. Consider the category with objects being a function f : X → G

from X into any group G. Morphisms in this category are commutative diagrams

X
f1 // G1

g

��
X

f2 // G2,

where g is a group homomorphism. A group G is called a free group on the set X if it is an initial

object in this category. Since initial objects are unique up to unique isomorphism - if they exist at

all - a free group is unique up to unique isomorphism (but be careful what morphisms we are talking

about!).

Let f : X → G be a free group. We also say that G has the universal property: given any function

f1 : X → G1 there is a unique group homomorphism g : G → G1 such that

g(f (x)) = f1(x), ∀x ∈ X.
One often uses the language of universal property, but, in fact, in all cases this amounts to saying

that some related object is an initial object in an appropriate category. We shall see plenty of

examples in the sequel.

Theorem 3.3.1. Given a set X there is a free group G on X, i.e. an initial object f : X → G.

Before the proof, we develop some terminology. A word ω in the alphabet X is a finite string

ω = ω1ω2 . . . ωn, where each ωi is equal to either x ∈ X or x−1 for x ∈ X. Here x−1 is a formal

symbol. So, for example, if X = {x} then words in X are x, xxx−1x, ∅, etc. If X = {x, y} we have

as examples x, y , x−1yyxy , x−1y−1y , and so on. We say that two words ω, σ are equivalent if one

can get from one word to the other performing the following basic operations:

Replace ω1 . . . ωixx
−1ωi+1 . . . ωn and ω1 . . . ωix

−1xωi+1 . . . ωn by ω1 . . . ωiωi+1 . . . ωn, and the

opposite of those operations (i.e., inserting xx−1 or x−1x at some point in the word).

We denote this equivalence relation by ω ∼ σ. For example, for X = {x, y} we have

x ∼ xyy−1 ∼ xyxx−1y−1 ∼ xyy−1yxx−1y−1.
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A word is called reduced if it doesn’t contain a string of the form xx−1 or x−1x for some x ∈ X.

One can show that every equivalence class contains a unique reduced word and that word is the

string of minimal length in the equivalence class. This is not needed for the proof of the present

theorem, and we shall come back to this point after proving the Theorem.

Proof. (Theorem 3.3.1) The elements of the group G are equivalence classes

[ω] = {σ|σ ∼ ω}
of words in the alphabet X. Multiplication is defined using representatives:

[σ][τ ] = στ

(the two words are simply written one after the other). It is easy to see that this is well-defined

on equivalence classes: the operations performed on σ to arrive at an equivalent word σ′ can be

performed on the initial part of στ to arrive at σ′τ , etc. The identity element is the empty word; we

also denote it 1, for convenience. The inverse of [ω] where ω = ω1 . . . ωn is the equivalence class

of ω−1
n . . . ω−1

1 (where we define (x−1)−1 = x for x ∈ X). Finally, the associative law is clear.

We have constructed a group. The function f : X → G is just x 7→ [x ], where now x is considered

as a word of length 1 in G and we take its equivalence class [x ]. Given a function f2 : X → G2 we

define a function

g : G → G2, g([ω]) = f2(ω1) · · · f2(ωn),

where ω = ω1 · · ·ωn, ω = x±1 where x ∈ X and by f2(x−1) we mean (f2(x))−1 which is a well

defined element of G2. We leave the verification that g is well-defined as an exercise. It is clear

that this is the only possibility and that g is a group homomorphism. �

END of lecture 6 (September 24)

Theorem 3.3.2. Any word is equivalent to a unique reduced word.

Proof. We need to show that two reduced words that are equivalent are in fact equal. Let ω and τ

be equivalent reduced words. Then, there is a sequence

ω = σ0 ∼ σ1 ∼ · · · ∼ σn = τ,

where at each step we either insert, or delete, one couple of the form xx−1 or x−1x , x ∈ X. Let us

look at the lengths of the words. The length function, evaluated along the chain, receives a relative

minimum at ω and τ . Suppose it receives another relative minimum first at σr (so the length of

σr−1 is bigger than that of σr and the length of σr is smaller than that of σr+1. We can take σr
and reduce it be erasing repeatedly pairs of the form xx−1, or x−1x , until we cannot do that any

more. We get a chain of equivalences σr = α0 ∼ α1 ∼ αs , where αs is a reduced word. We now

modify our original chain to the following chain

ω = σ0 ∼ σ1 ∼ · · · ∼ σr = α0 ∼ · · · ∼ αs−1 ∼ αs ∼ αs−1 ∼ · · · ∼ α0 = σr ∼ σr+1 . . . σn = τ.

A moment reflection shows that by this device, we can reduce the original claim to the following.

Let σ and τ be two reduced words that are equivalent as follows

ω = σ0 ∼ σ1 ∼ · · · ∼ σn = τ

where the length increases at every step from σ0 to σa and decreases from σa to σn = τ . Then

σ = τ .

We view σ and τ as two reduced words obtained by cancellation only from the word σa. We

argue by induction on the length of σa.

If σa is reduced, there’s nothing to prove because then necessarily 0 = a = n and we are

considering a tautology. Else, there is a pair of the form dd−1 or d−1d in σa. We allow ourselves
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here (d−1)−1 = d and then we may that there is a pair dd−1 where d or d−1 are in X. Let us

highlight that pair using a yellow marker and keep track of it. If in the two cancellations processes

(one leading to σ, the other to τ) the first step is to delete the highlighted pair, then using induction

for the word σa with the highlighted pair deleted, we may conclude that σ = τ . If in the cancellation

process leading to σ at some point the highlighted pair is deleted, then we may change the order of

the cancellations so that the highlighted pair is deleted first. Similarly concerning the reduction to

τ . And so, in those cases we return to the previous case. Thus, we may assume that in either the

reduction to σ, or the reduction to τ , the highlighted pair is not deleted. Say, in the reduction to σ.

How then can σ be reduced? The only possibility is that at some point in the reduction process (not

necessarily the first point at which it occurs) we arrive at a word of the form · · · d−1 dd−1 · · · or

· · · dd−1 d · · · and then it is reduced to · · · d−1 dd−1 · · · or · · · dd−1 d · · · . But note that the end

result is the same as if we strike out the highlighted pair. So we reduce to the previous case. �

Note that as a consequence, if ω ∈ [ω] is a word whose length is the minimum of the lengths of

all words in [ω] then ω is the unique reduced word in the equivalence class [ω].

Corollary 3.3.3. Let f : X → G be a free group on X then f is an injective map.

Proof. We may assume that G is the group we have constructed. The map f : X → G is of course

just the map

f (x) = [x ]

(the equivalence class of the word x). If x 6= y are in X, the two words x and y are reduced and

different, so are not equivalent. �

3.4. Categories: universal objects. As we have already discussed above, a universal object in a

category is an object defined by the fact that it has a universal property and that determines it up

to a unique isomorphism. Having a universal property just means being an initial object in a related

category, depending on the situation. We discussed that for free groups. Let us give a few more

examples.

(1) Free abelian groups. Let X be a set. We consider the category of functions f : X → A,

where A is an abelian group and morphisms are diagrams

X
f1 // A1

g

��
X

f2 // A2,

where g is a group homomorphism. Then f : X → A is a free abelian group on X if it is

an initial object for this category. We can prove directly that if we take for A the vectors

{(nx)x∈X : nx ∈ Z, all but finitely many nx = 0}

then this is a free abelian group on X. For example, if X = {1, 2, . . . , n} the group we

construct is just Zn. The function f : X → A is y 7→ δ(y) = (δ(y)x)x∈X , where

δ(y)x =

{
1 x = y

0 otherwise.

It is an exercise to check that this is a free abelian group on X.
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(2) Let G be a fixed group. Consider the category whose objects are homomorphisms f : G → A

from G to abelian groups A. The morphisms are commutative diagrams

G
f1 // A1

g

��
G

f2 // A2.

There is an initial object in this category. It is the object

π : G → G/G′,

where G′ is the commutator subgroup of G and π the canonical map. The quotient G/G′

is called the abelianization of G and denoted also Gab.

3.5. Free groups: further properties.

Lemma 3.5.1. Let X be a set and G a free group on X, f : X → G. Let A = Gab and consider

the composition fa : X → G → A, where G → A is the canonical map. Then fa : X → A is a free

abelian group.

Note this gives an alternative construction of a free abelian group.

Proof. We show fa : X → A is an initial object in the respective category. Let f2 : X → A2 be a

function into an abelian group A2. Then, since f : X → G is universal for groups and A2 is a group,

there is a unique homomorphism g : G → A2 making the diagram commutative:

X
f // G

g

��
X

f2 // A2.

Since A2 is abelian, we have unique factorization

X

fa

��

f // G
π

!!CCCCCCCC

g

��

Gab

gab}}{{{{{{{{

X
f2 // A2

It remains to show that any homomorphism h : Gab → A2 such that h ◦ fa = f2 is necessarily grmab.

But this too follows from the universal property of G, because (h ◦π) : G → A2 is a homomorphism

such that (h ◦ π) ◦ f = f2 and so (h ◦ π) = g and that implies h = gab. �

Corollary 3.5.2. Let f : X → G and g : Y → H be free groups on X and Y , respectively. Then

G ∼= H if and only if |X| = |Y |.

Proof. If |X| = |Y | then it is easy to see that G ∼= H, for example from the explicit construction.

Conversely, suppose that G ∼= H the also Gab ∼= Hab; say h : Gab → Hab is an isomorphism. Consider

the subgroups 2Gab, 2Hab. That is 2Gab = {g + g : g ∈ Gab}. Then h induces an isomorphism

2Gab ∼= 2Hab and Gab/2Gab ∼= Hab/2Hab. Using the specific model for a free abelian group we have

constructed above, we see that Gab/2Gab is isomorphic to a vector space over Z/2Z of dimension |X|
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(for example, {δ(x) : x ∈ X} form a basis). Similarly for Hab/2Hab. Using that two vector spaces

over a field k are isomorphic if and only if they have the same dimension, conclude |X| = |Y |. �

3.5.1. Generators and relations. Let X be a set. Denote by F (X) “the” free group on X. Let

R = {rα} a collection of words in the alphabet X. We define the group G generated by X, subject

to the relations R as follows. Let N be the minimal normal subgroup of F (X) containing [r ] for

all r ∈ R. Define G as F (X)/R. Note that in G any word r becomes trivial. Note also that G is

a universal object for this property. Namely, it is an initial object for the category whose objects

are f : X → H, H a group, f a function such that f (r) = 1H for all r ∈ R, where if r = ω1 . . . ωn,

ωi = x±1 for x ∈ X, then f (r) := f (ω1) · · · f (ωn) (with f (x−1) := f (x)−1). We denote G also by

〈X|R〉.

A presentation of a group H is an isomorphism

H ∼= 〈X|R〉

for some X and R. A group can have many presentations. There is always the tautological presen-

tation. Take X = {g : g ∈ G}, so that we can distinguish between g as an element of the group G

and g an element of X, and take

R = {r = ω1 . . . ωn : in the group G we have that the product ω1 · · ·ωn = 1G}.

But usually there are more interesting, and certainly more economical presentations.

(1) Let F (X)′ be the commutator subgroup of F (X) then 〈X : F (X)′〉 is a presentation of the

free abelian group on X. But, for example, for X = {x, y}, we have the more economical

presentation

〈{x, y} : xyx−1y−1〉.
Lets prove it. First, from the universal property, since in Z2 all commutators are trivial,

there is a unique homomorpism

〈{x, y} : xyx−1y−1〉 → Z2, x 7→ (1, 0), y 7→ (0, 1).

Clearly this is a surjective homomorphism. Define now a homomorphism

Z2 → 〈{x, y} : xyx−1y−1〉, f (m, n) = xmyn.

We need to show that f is a homomorphism. Namely, that in the group 〈{x, y} : xyx−1y−1〉
we have

xaybxcyd = xa+cyb+d .

It’s enough to show that xy = yx because then we may pass the powers of x through those

of y one at the time. But we have the equality yx = (xyx−1y−1)(yx) = xy . It is easy to

check that f is an inverse to the previous homomorphism.

(2) Sn is generated by the permutations (12) and (12 · · · n) and so it follows that it has a

presentation 〈{x, y} : R〉 for some set of relations R; for example, R could be the kernel of

the surjective homomorphism F ({x, y})→ Sn that takes x to (12) and y to (12 · · · n). As

such, R is an infinite set. But, can we replace R be a finite list of relations. The answer is

yes. It follows from the following two theorems, that we will not prove in the course, one

reason being that the best proofs use the theory of covering spaces and fundamental groups

that we do not assume as prerequisites.

Theorem 3.5.3. (Nielsen-Schreier) A subgroup of a free group is free.

Theorem 3.5.4. Let F be a free group of rank r and let H be a subgroup of F of finite

index h. The H is free of rank h(r − 1) + 1.
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It follows that we can determine all the relations in Sn as a consequence of certain n! + 1

relations. However, this is far from optimal. For example, S3 has the presentation

〈{x, y} : x2, y3, xyxy〉

The explanation for this particular saving is that we take the minimal normal subgroup

generated by the relations and not the minimal subgroup generated by the relations. In this

example, the minimal normal subgroup has rank 7 = 3! + 1, while the minimal subgroup has

rank at most 3. We leave it as an exercise to prove that this is indeed a presentation for S3

and to find a similar presentation for S4.

(3) After experimenting a little with examples, one easily concludes that it is in general difficult

to decide whether a finitely presented group is isomorphic to a given one. In fact, a theorem

(which is essentially “the word problem” for groups) says that there is no algorithm that given

a finite presentation 〈X|R〉, X and R finite, will decide in finite time (that is independent

of the presentation) whether this is a presentation of the finite group or not.

End of lecture 7 (October 1)

3.6. Free products. Let G1, G2 be groups. The free product of G1 and G2, denoted G1 ∗ G2 is

the initial object in the following category: the objects are diagrams

G1

g1

  @@@@@@@@ G2

g2

~~~~~~~~~~

G ,

where G is a group and the gi group homomorphisms. A morphism in this category is

G1

g1

  AAAAAAA

h1

��0
00000000000000 G2

g2

~~}}}}}}}

h2

�����������������

G

h
��
H ,

where h is a homomorphism making the diagram commutative. By taking H = G1, h1 the identity

homomorphism and h2 the trivial homomorphism. We see that G1 ∗ G2 contains G1, and also G2.

Thus, in a sense, it is the minimal group containing G1 and G2 such that no further relationship

between the images is assumed. The problem is to show it exists.

Let 〈Xi |Ri〉 be a presentation of Gi and, without loss of generality, X1 ∩X2 = ∅. We claim that

〈X1 ∪X2|R1 ∪ R2〉

is the free product G1∗G2. The proof is straightforward and is left as an exercise. Note, for example,

the following examples:

(1) For disjoint sets X1, X2 we have F (X1) ∗ F (X2) ∼= F (X1 ∪X2).

(2) Z/2Z ∗Z/2Z is an infinite group (exercise; for example, find a suitable homomorphism into

a group of 2× 2 matrices).

3.7. Category theory: functors and adjoint functors. We take this opportunity to discuss some

key concepts in category theory and illustrate them using some of the material developed above. The

first notion is a notion of a functor. There are two variants - the covariant and the contravariant

functors. Both arise when one wants to define a notion of a morphism between categories. Let
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C,D be categories. What should a morphism F : C→ D be? In some sense it should transform the

category C into part of the category D. Thus, it is natural to require:

(1) For every object c of C there is given an object F (c) of D.

Equally important is that morphisms should be transformed. F is called a covariant functor if

(2) For a morphism f ∈ MorC(c, d) there is a morphism F (f ) ∈ Mor(F (c), F (d)). This respects

composition, F (f ◦ g) = F (f ) ◦ F (g), and F (1c) = 1F (c).

F is called a contravariant functor if

(2) For a morphism f ∈ MorC(c, d) there is a morphism F (f ) ∈ Mor(F (d), F (c)). This respects

composition, F (f ◦ g) = F (g) ◦ F (g), and F (1c) = 1F (c).

3.7.1. Examples of functors.

1. The forgetful functor. Let C be a category whose objects are, in particular, sets and whose

morphisms are, in particular, functions between sets. For example, C could be the category of

groups, the category of abelian groups, the category of topological spaces, the category of vector

spaces over a field k . The forgetful functor

Φ : C→ Sets,

is the functor sending each object of C to its underlying set and the morphisms of C are viewed as

functions. This is a covariant functor.

A covariant functor F : C→ D is called full if for every objects c, d of C and any morphism

g ∈ MorD(F (c), F (d)), there is a morphism f ∈ MorC(c, d) such that F (f ) = g. Otherwise

said, MorC(c, d)→ MorD(F (c), F (d)) is surjective. Typically Φ is not full, because typically in

categories morphisms are functions with additional properties. For example, Φ : Gps→ Sets is not

full. Take c = d to be the group Z/nZ. Then MorSets(Z/nZ,Z/nZ) is a set of cardinality nn, while

MorGps(Z/nZ,Z/nZ) is a set of n elements. A similar definition is made for contravariant functors.

A covariant functor F : C→ D is called faithful if MorC(c, d)→ MorD(F (c), F (d)) is injective.

Usually Φ : C→ Sets is faithful, because very often morphisms are determined by the map they

induce on the underlying sets. This holds for groups, abelian groups, topological spaces and k-

vector spaces, for instance. A similar definition is made for contravariant functors. Finally, a

morphism is fully faithful if it is both full and faithful. That is, for any two objects in c, the map

MorC(c, d)→ MorD(F (c), F (d)) is bijective (MorC(c, d)→ MorD(F (d), F (c)), for contravariant

functors). An example of a fully faithful functor are subcategories. For example, the functor

AbGps→ Gps is fully faithful. For another example, let k = Z/pZ, p prime. The functor from the

category of k-vector spaces to the category of abelian groups is fully-faithfull.

2. Free construction. Let X be a set and F (X) the free group on X. Any function f : X → Y

between sets induces a homomorhism F (f ) : F (X)→ F (Y ). This is evident from our construction

of free groups. Another way to see that is that we have a diagram

X

f

��

i //

j◦f

!!CCCCCCCCC F (X)

��
Y

j // F (Y )

The homomorphism F (X)→ F (Y ), denoted F (f ), exists by the universal property of F (X). In

fact, it not hard to show that

X 7→ F (X), f 7→ F (f ),

gives a functor

F : Sets→ Gps.
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This is the free construction functor. There are many variants of this functor, as the category of

groups is replaced by other categories (modules, for example) and one uses the same terminology.

3.7.2. Adjoint functors. A pair of covariant functors (F,G)

F : C→ D, G : D→ C,

are called an adjoint pair if one is given a bijection

αc,d : MorD(F (c), d)→ MorC(c, G(d))

for every pair of objects c of C and d of D, such that for any morphism f : c → c1 the diagram

MorD(F (c), d)
αc,d // MorC(c, G(d))

MorD(F (c1), d)

( )◦F (f )

OO

αc1,d // MorC(c1, G(d))

( )◦f

OO

is commutative, and for every morphism f : d → d1 the diagram

MorD(F (c), d)

f ◦( )

��

αc,d // MorC(c, G(d))

G(f )◦( )

��
MorD(F (c), d1)

αc,d1 // MorC(c, G(d1))

is commutative as well. One says that F is left-adjoint to G and G is right-adjoint to F . A similar

definition is made for contravariant functors.

Here are some examples.

(1) Let Φ : Gps→ Sets be the forgetful functor and let F : Sets→ Gps be the free construction

functor. Then the pair (F,Φ) is an adjoint pair. Namely, there are natural bijections

MorGps(F (X), G) ∼= MorSets(X,Φ(G)).

We leave it as an exercise to supply the details.

(2) In a similar vein one constructs a free construction functor

G : Sets→ AbGps.

The pair (G,Φ) is an adjoint pair.

(3) Let Top be the category of topological spaces. Let Φ : Top→ Sets be the forgetful functor

and define two functors G1, G2 : Sets→ Top. The first gives a set X the trivial topology

whose open sets are only ∅ and X. The second gives a set X the discrete topology - every

subset of X is open. Then each of the Gi forms an adjoint pair with Φ, but one is left-adjoint

to Φ and the other is right-adjoint. We leave it as an exercise to check that Gi are functors

and to find which is the left-adjoint and which is the right-adjoint.
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4. Modules

4.1. Recall. Let R be a ring. For us, rings are always associative, with 1, and a ring homomorphism

must take 1 to 1. A module R over a ring R is an abelian group M together with a function

R ×M → M, (r,m) 7→ r ∗m

(although often we just write rm) such that the following holds for all r1, r2 ∈ R,m,m′ ∈ M:

(1) r1 ∗ (r2 ∗m) = (r1r2) ∗m.

(2) (r1 + r2) ∗m = r1 ∗m + r2 ∗m.

(3) 1R ∗m = m

(4) r1 ∗ (m +m′) = r1 ∗m + r1 ∗m′.
Otherwise said, since M is an abelian group End(M) is a ring under addition and composition of

functions and to say that M is a module over R is the same thing as to give a homomorphism of

rings R→ End(M). (Given an action define a homomorphism by r 7→ fr where fr (m) := r ∗ m,

etc. )

The notions of a submodule, a module homomorphism, quotient module, direct sum and product

of modules and isomorphism are entirely as expected. The analogues of the 4 isomorphism theorems

for groups hold for modules. An R-module M is called finitely generated if there is a finite set

m1, . . . , mn of elements of M such that M = Rm1 + · · ·+Rmn. Equivalently, if there is a surjective

R-module homomorphism Rn → M.

For a module M we definite Tor(M) to be the torsion elements of M,

Tor(M) = {m ∈ M : ∃r ∈ R, r 6= 0, rm = 0}.

If R is an integral domain then this is a submodule of M. It consists, in fact, of all finite sums

i1m1 + · · ·+ i1ma, where ij ∈ I,mj ∈ M.

If I is a left ideal of R and M is an R-module then IM denotes the submodule generated by the

elements {im : i ∈ I,m ∈ M}.

4.2. Localization of rings and modules. Let R be a commutative ring and S ⊆ R a subset. S is

called multiplicative if:

(1) 1 ∈ S, and

(2) x, y ∈ S ⇒ xy ∈ S.

Example 4.2.1. Here are some key examples of multiplicative sets.

(1) Let f ∈ R. Then S = {1, f , f 2, f 3, . . . } is a multiplicative set.

(2) Let pCR be a prime ideal. Then S = R − p is a multiplicative set.

(3) Suppose that R is an integral domain. Then S = R − {0} is a multiplicative set.

End of lecture 8 (October 3)

Our goal is to construct a ring R[S−1] with a ring homomorphism R→ R[S−1] (that will satisfy a

universal property) and to construct a functor RMod→ R[S−1]Mod.

Let M be an R-module and S ⊆ R a multiplicative set. Consider formal fractions m
s , where

m ∈ M and s ∈ S. Define a relation by

m1

s1
∼
m2

s2
if for some s ∈ S, s(s2m1 − s1m2) = 0.

It is not hard to verify that this is an equivalence relation. We denote the equivalence classes by

M[S−1] and call it the localization of M by S. Abuse notation and write m
s also for the equivalence
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class of m
s . Define addition by

m1

s1
+
m2

s2
=
s2m1 + s1m2

s1s2
.

One checks that this is well-defined and provides M[S−1] with a structure of an abelian group. The

zero element is the equivalence class of 0
1 . In the particular case M = R we also define multiplication

by
m1

s2
�
m2

s2
=
m1m2

s1s2
.

And one checks that this gives R[S−1] a commutative ring structure. The identity element is the

equivalence class of 1
1 . Further M[S−1] become an R[S−1]-module where we define

r1
s1
�
m

s
=
r1m

s1s
,

r1
s1
∈ R[S−1],

m

s
∈ M[S−1].

4.2.1. On localization of rings. There is a natural ring homomorphism

i : R→ R[S−1], r 7→
r

1
.

One should be careful that this is not an injection in general. Indeed the kernel of i is the elements

r such that r
1 ∼

0
1 . That is,

Ker(i) = {r ∈ R : ∃s ∈ S, sr = 0}.

And so, in general there could be a kernel, but if R is an integral domain and 0 6∈ S then i is injective.

The ring R[S−1] has the property that all the elements s
1 are invertible in it. In fact, this is the

universal property that characterizes it.

Proposition 4.2.2. Let K be a commutative ring and let f : R→ K be a ring homomorphism

such that f (s) is invertible in K for all s ∈ S. Then there exists a unique ring homomorphism

g : R[S−1]→ K such that the following diagram is commutative:

R
i //

f

�

""FFFFFFFFFF R[S−1]

g

��
K

.

Proof. The definion of g is straight-forward. Define

g(
r

s
) = f (r)f (s)−1.

First, f (s) is invertible in K so the formula makes sense. Next, g is well-defined. Suppose that
r
s ∼

r1
s1

so for some s2 ∈ S we have s2(s1r−sr1) = 0. Thus, f (s2)(f (s1)f (r)−f (s)f (r1)) = 0. Since

f (s2) is invertible, we conclude that f (s1)f (r)− f (s)f (r1) = 0 and so f (r)f (s)−1 = f (r1)f (s1)−1.

The verification that g is a ring homomorphism and that g ◦ i = f is automatic. �

4.2.2. The field of fractions. Let R be an integral domain and S = R−{0}, which is a multiplicative

set. The localization R[S−1] is a commutative ring which is in fact a field. First, R ↪→ R[S−1] as

follows from our calculation of the kernel in general and using that R is an integral domain. So,

in particular, 0 6= 1 in R[S−1]. Finally, if r/s ∈ R[S−1] is a non-zero element then r ∈ S and

(s/r) · (r/s) = 1/1 is the unit element of R[S−1]. Thus, every non-zero element is invertible and so

R[S−1] is a field. By the universal property, it is the minimal field into which R embeds. We denote

this localization by Frac(R), or Quot(R) and refer to it as the field of fractions of R.

For example, it is quite visible that Frac(Z) = Q and, for a field k , Frac(k [x ]) = k(x).
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4.2.3. On localization of modules. The next point we want to make is that in fact M → M[S−1]

can be made into a functor

RMod→ R[S−1]Mod.

Given an R-module homomorphism f : M1 → M2 define a map

f [S−1] : M1[S−1]→ M2[S−1],
m

s
7→
f (m)

s
.

The verification that this is a well-defined homomorphism of R[S−1]-modules is straightforward and

would not be done here. Let us also remark that the localization of the zero module of R is the

zero module of R[S−1] and both are denoted 0.

Theorem 4.2.3. The localization functor is exact. That is, if

0 // M1
f // M2

g // M3
// 0

is an exact sequence of R-modules and S is a multiplicative set in R, then the sequence

0 // M1[S−1]
f [S−1] // M2[S−1]

g[S−1]// M3[S−1] // 0

is an exact sequence of R[S−1]-modules.

Proof. To simplify notation and write f for f [S−1], etc. Let m1/s ∈ M1 such that f (m1/s) =

f (m1)/s = 0. Then, for some s ′ ∈ S we have s ′f (m1) = 0. But, s ′f (m1) = f (s ′m1) = 0. Since f

is injective s ′m1 = 0 and so m1/s = 0.

Since g(f (m1/s)) = g(f (m1))/s = 0/s = 0, Ker(g) ⊇ Im(f ). Let m2/s ∈ Ker(g). Then, for

some s ′ ∈ S we have s ′g(m2) = 0. That is, g(s ′m2) = 0. Let m1 ∈ M1 be such that f (m1) = s ′m2.

Then, f (m1/ss
′) = m2/s and so Im(f ) ⊇ Ker(g).

Finally, given m3/s ∈ M3[S−1] choose m2 ∈ M2 such that g(m2) = m3. Then g(m2/s) = m3/s

and so g : M2[S−1]→ M3[S−1] is surjective. �

4.2.4. Ideals under localization.

Theorem 4.2.4. Let S be a multiplicative set in R and let f : R→ R[S−1] be the canonical homo-

morphism of rings.

(1) Let JCR[S−1] be an ideal and let Jc := f −1(I). Then Jc is an ideal of R. If J is prime

then Jc is prime.

(2) Let I be an ideal of R. Then I[S−1] can be identified with f (I)R[S−1] and is an ideal of

R[S−1], denoted Ie . If I is prime and I ∩ S = ∅ then Ie is prime.

(3) Let J be an ideal of R[S−1]. Then Jce = J.

(4) Let I be a prime ideal of R such that I ∩ S = ∅ then Iec = I.

(5) The functions I 7→ Ie , ICR, J 7→ Jc , JCR[S−1], give a bijection between prime ideals of R

that are disjoint from S and prime ideals of R[S−1].

(6) Let p be a prime ideal of R and S = R− p. The ring R[S−1], which is denoted in this case

Rp, is a local ring with a maximal ideal pRp.

Proof. To prove (1) we first recall that the pre-image of an ideal J under a ring homomorphism

f : R→ T is always an ideal. Since R/f −1(J) ↪→ T/J and the latter is an integral domain, also

R/f −1(J) is an integral domain. That is, f −1(J) is a prime ideal of R.

The exact sequence of R modules, 0→ I → R, gives an exact sequence of R[S−1]-modules,

0→ I[S−1]→ R[S−1].
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That is, I[S−1] can be viewed as a submodule of R[S−1], that is to say, an ideal. It is clear from

the definitions that I[S−1] is the ideal generated by f (I) in R[S−1]. Thus, (2) follows (we check

that Ie is prime below).

To show (3) we first note that from the definitions Jce ⊆ J. Let j/s ∈ J. Then also j/1 =

s/1 · j/s ∈ J and so j ∈ Jc and hence j/1 ∈ Jce . Thus, also 1/s · j/1 = j/s ∈ Jce and we have

proven J ⊆ Jce .

We now prove (4). Let ICR be a prime ideal disjoint from S. Then Ie = {i/e : i ∈ I} and so

Iec are the elements t ∈ R such that t/1 = i/s for some i ∈ I, s ∈ S. Equivalently, the elements t

such that for some s ′ ∈ S, s ′st = s ′i . We see that if t ∈ I this is always satisfied (take s = s ′ = 1).

Conversely, for such t, we have (s ′s)t ∈ I. Since S is multiplicative s ′s ∈ S. Since I is prime, either

s ′s ∈ I or t ∈ I. But, S ∩ I = ∅ and so t ∈ I. We also check that Ie is prime. Suppose that

r1/s1 · r2/s2 ∈ Ie . Thus, for some i ∈ I and s ∈ S, (r1r2)/(s1s2) = i/s. So, for some s3 ∈ S we

have equality s3sr1r2 = s3s1s2i ∈ I. Once more, using that I is prime and s3s ∈ S, S ∩ I = ∅, we

find that either r1 or r2 belong to I. Then, either r1/s1 = 1/s1 · r1/1, or r2/s2 = 1/s2 · r2/1 belong

to Ie , and we are done.

Part (5) is a direct consequence of the results we have just proven. For (6), note that the set

of prime ideals ICR that are disjoint from S has a maximal ideal, i.e., p. Since I 7→ Ie preserves

inclusion, we conclude that Rp has a unique maximal ideal, which is pRp. �

End of lecture 9 (October 10)

4.3. Free modules and rank. Let R be a ring. We may as well assume R is not the zero ring

(equivalently, 0 6= 1 in R) because every module over the zero ring is the zero module and there is

nothing of interest there. Let X be a set. A free module on X is an R-module M together with a

function f : X → M that has the following universal property. For every R-module N and a function

j : X → N there is a unique R-module homomorphism g : M → N such that the following diagram

commutes:

X
f //

j

�

  AAAAAAA M

g

��
N.

At this point, it should not be hard to prove that M exists, for example by defining M as the module

of all vectors

{(rx)x∈X : rx ∈ R, rx = 0 for all but finitely many x}.

(The operations are of course (rx)x∈X + (r ′x)x∈X = (rx + r ′x)x∈X and r · (rx)x∈X = (r rx)x∈X .) The

map f : X → M takes t ∈ X to the vector et all whose coordinates are zero, except for the t

coordinate which is 1. This module is also denoted ⊕x∈XR
If we let Φ: RMod→ Sets be the forgetful functor from the category of left R-modules to the

category of sets and we let F : Sets→ RMod be the free-construction functor associating to a set

X the free module on X, then (F,Φ) is an adjoint pair.

Lemma 4.3.1. A module M is isomorphic to a free module on a set X if and only if there are

elements {mx : x ∈ X} of M such that every element in M can be written as a unique linear

combination of the elements {mx}. Namely, given m ∈ M there are unique elements rx ∈ R, all but

finitely many of which are zero, such that m =
∑
x∈X rxmx . We shall also say that M is free on

the elements {mx : x ∈ X}.
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Proof. Indeed, if f : X → M is a free module then M ∼= ⊕x∈XR and the set {mx : x ∈ X} can be

taken to be the set {ex : x ∈ X} appearing above. Conversely, given such a set of elements, we find

that the map

⊕x∈XR→ M, (rx)x∈X 7→
∑
x∈X

rx ·mx ,

is an isomorphism. �

Assume henceforth that R be a commutative ring.

Lemma 4.3.2. Let X, Y be sets and M,N free modules on X, Y . Then M ∼= N (as an R-module)

if and only if |X| ∼= |Y | (as sets).

Proof. We may assume M = ⊕x∈XR and N = ⊕y∈Y R. Clearly a bijection ϕ : X → Y induces an

isomorphism M ∼= N by (rx)x∈X 7→ (cy )y∈Y , where cy = rϕ−1(y). Conversely, if M ∼= N, choose a

maximal ideal p of R, which exists by Zorn’s lemma. Let k = R/p, which is a field. Since M ∼= N,

pM ∼= pN and so M/pM ∼= N/pN. But M/pM is a module over R/p; that is, a k-vector space and

it is easy to see that {ex : x ∈ X} is a basis. Similarly {ey : y ∈ Y } is a basis for N/pN. Thus,

|X| = |Y |. �

In general, a subset {mα : α ∈ A} of a module M is called linearly independent if a finite linear

combination
∑
rαmα = 0 (rα ∈ R, all but finitely many are zero) implies all rα = 0. It is a spanning

set or a generating set if every element of M is of the form
∑
rαmα for some rα ∈ R, all but

finitely many are zero. It is a basis if every element of M is of the form
∑
rαmα for unique rα ∈ R,

all but finitely many are zero. A set is a basis if and only if it is spanning and linearly independent.

But, unlike in the situation of vector spaces (that is, modules over a field) a maximal independent

set is not necessarily a basis. For example, for R = Z = M, the set {2} is maximal independent

but is not a basis. We define the rank of a module M to be the maximal cardinality of a linearly

independent subset of M.

From this point on we assume R is an integral domain

Proposition 4.3.3. Let M be a free module on {mα : α ∈ A}. Then the rank of M is |A|. In

particular, the rank of Rn is n.

Proof. Let F = Frac(R) be the quotient field. We have M = ⊕α∈AR ⊆ ⊕α∈AF , a vector space of

dimension |A|. The set {eα : α ∈ A} clearly becomes a basis of ⊕α∈AF . If {nβ : β ∈ B} is any other

linearly independent set in M then viewed in ⊕α∈AF it is still linearly independent. Indeed, given a

finite linear combination
∑n
i=1

ri
si

mαi
1 = 0, by passing to a common denominator s = s1 · · · sn and

r ′i = s1···ŝi ···snri
s we get

∑n
i=1

r ′i
s

mαi
1 = 0. Therefore,

∑n
i=1 r

′
i ·mαi = 0 and, since {mα} is independent,

all r ′i = 0 and also all ri = 0. Therefore |B| ≤ |A|. �

The proof suggests that a stronger statement is true:

Proposition 4.3.4. Let R be an integral domain and let S = R − {0}. M is of rank α if and only

if M[S−1] has dimension α over F = Frac(R).

Proof. As above (but without needing to assume M is free), let {nβ : β ∈ B} be a linearly inde-

pendent set in M then {nβ1 : β ∈ B} viewed in M[S−1] is still linearly independent. Indeed, give a

finite linear combination
∑n
i=1

ri
si
· mαi1 = 0, by passing to a common denominator s = s1 · · · sn and

r ′i = s1···ŝi ···snri
s we get

∑n
i=1

r ′i
s

mαi
1 = 0. Therefore,

∑n
i=1

r ′i
s ·mαi = and, since {mα} is independent,

all r ′i = 0 and also all ri = 0.
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Now, suppose that {nβ : β ∈ B} is a maximal linearly independent set in M. Let m
s ∈ M[S−1].

The set {m}∪{nβ : β ∈ B} is a subset of M that must be linearly dependent and a non-trivial linear

dependence involving m must exist, say, rm +
∑n
i=1 rimαi = 0. Then also r

1
m
s +

∑n
i=1

ri
s

mαi
1 = 0.

That is, {nβ1 : β ∈ B} is a maximal linearly independent set in M[S−1] and so |B| is the dimension

of M[S−1]. �

Corollary 4.3.5. Let R be an integral domain. Let

0→ M1 → M2 → M3 → 0

be an exact sequence of R-modules. Then

rk(M2) = rk(M1) + rk(M3).

Proof. Indeed, rk(Mi) = dimF (Mi [S
−1]) and the sequence

0→ M1[S−1]→ M2[S−1]→ M3[S−1]→ 0

is an exact sequence of vector spaces. The theorem of the kernel and image in linear algebra says

exactly that

dimF (M2[S−1]) = dimF (M1[S−1]) + dimF (M3[S−1]),

and we are done. �

Since R is an integral domain, tor(M) is a submodule of M. One checks that tor(M/tor(M)) = 0.

Corollary 4.3.6. Let R be an integral domain. rk(M) = rk(M/tor(M)). In particular, a module has

rank 0 if and only if it is torsion.

Proof. We have an exact sequence

0→ tor(M)→ M → M/tor(M)→ 0.

Since rk(M) = rk(tor(M)) + rk(M/tor(M)), it is enough to show that rk(tor(M)) = 0. Given

m ∈ tor(M) there is s ∈ R, s 6= 0 such that sm = 0. This shows that the m
1 of M[S−1] is equal to

0. Therefore, any element m
s of M[S−1] is equal to zero. That is, if M is a torsion module then

M[S−1] = 0 and so of dimension 0.

If a module M is torsion then rk(M) = rk(M/tor(M) = rk(0) = 0. If a module M has rank 0

then M[S−1] has dimension 0 and so is 0. If M[S−1] = 0 then for every m ∈ M, m
1 = 0 and so

there is some s 6= 0 such that sm = 0. This shows that M is torsion. �

Consider a multiplicative set S in a ring R and an R-module M. There is a map

M → M[S−1], m 7→
m

1
.

This map is a homomorphism of R-modules (when we view M[S−1] as an R-module via i :

R→ R[S−1]). The map is injective if sm = 0 for s ∈ S and m ∈ M implies m = 0. For ex-

ample, if R is an integral domain, this is so when tor(M) = 0. The map is surjective if M is divisible

by s. Namely, if given s ∈ S and m ∈ M there is an m1 ∈ M such that sm1 = m. Then we get the

following consequence.

Proposition 4.3.7. Let R be an integral domain and F = Frac(R). Let M ⊂ V be an R-module

contained in an F -vector space V of finite dimension d . Then rk(R) ≤ d , with equality if and only

if R contains a basis for V .

Proof. Indeed, we have an exact sequence 0→ M → V of R-modules that yields an exact sequence

0→ M[S−1]→ V [S−1], where S = R − {0}. Since V is divisible by S and is torsion-free, we have

V [S−1] = V and so M[S−1] ⊂ V , with equality if and only if M contains a basis for V . Since

rk(M) = dimF (M[S−1]), we are done. �
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Finally, the following property of free modules (that one proves directly from the definition) is left

as an exercise.

Proposition 4.3.8. Let 0→ M1 → M2 → M3 → 0 be an exact sequence of R-modules. Then, if

M1 and M3 are free also M2 is free.

4.4. Local properties. As previously, let R be a commutative ring. A property of modules is called a

local property if an R-module M has that property if and only if the Rp-modules Mp := M[(R−p)−1]

have that property for all prime ideals p of R.

Proposition 4.4.1. “Being zero” is a local property.

Proof. Certainly, if M is the zero R-module, then Mp is the zero Rp-module for any prime ideal p.

Conversely, suppose that M 6= 0. Let m ∈ M be a non-zero element and consider

Ann(m) = {r ∈ R : rm = 0}.

This is an ideal of R, which is proper as 1 6∈ Ann(m). Let p be a maximal ideal containing Ann(m).

It is a prime ideal too. Consider m
1 ∈ Mp. If m

1 = 0
1 then for some s ∈ R − p, sm = 0. But then

s ∈ Ann(m) and that is a contradiction. �

The following would appear on the exercise list.

Proposition 4.4.2. “Being equal” is a local property. Suppose that A,B are two submodules of a

module M then A = B if and only if for all p prime Ap = Bp.

Proposition 4.4.3. A morphism f : M → N of R-modules is the zero morphism if and only if

fp : Mp → Np is the zero morphism for all prime ideals p.

End of lecture 10 (October 17)

4.5. Equivalence of categories.

4.5.1. Definition of a natural transformation. Let F,G : C→ D be two covariant functors from the

category C to the category D (similar definitions are made for a pair of contravariant functors; this

is left to the reader). A natural transformation or a morphism of functors α from F to G is a

map associating to every object A of C a morphism αA : F (A)→ G(A), such that for every arrow

f : A→ B in C we have a commutative diagram:

A

f
��
B

F (A)
αA //

F (f )

��

G(A)

G(f )

��
F (B)

αB // G(B).

If each αA is an isomorphism, we say that F and G are naturally equivalent, or isomorphic. Note

that in that case, we get isomorphisms

Mor(F (A), F (B)) ∼= Mor(G(A), G(B)), h 7→ αB ◦ h ◦ α−1
A .

We only give a few examples at this point. Given a set S there are two trivial topologies on it:

the topology Tdisc consisting of all subsets of S, and the topology Ttriv consisting of the empty set

and the total space alone. We get two functors F,G : Sets→ TopSp:

F (S) = (S,Tdisc), F (f ) = f ,

and

G(S) = (S,Ttriv), G(f ) = f .
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There is natural transformation α : F → G given by αA = 1A. Note, though, that there is no

natural transformation G → F .

Here is a another example. Consider the abelianization functor Γ 7→ Γ/Γ ′, now as a functor

from the category of groups Gps to itself (and not to the category AbGps of abelian groups). The

natural homomorphism αΓ : Γ → Γ/Γ ′ defines a natural transformation from the identity functor

to the abelianization functor. There is a natural transformation in the other direction, but it is not

really interesting. It assigns the trivial homomorphism Γ/Γ ′ → Γ (taking every element of Γ/Γ ′ to

1Γ ).

As a final example, consider the double-dual functor on the category of k-vector spaces V 7→ V ∗∗.

The natural map V → V ∗∗, mapping a vector v to the function sending a functional φ on V to φ(v),

defines a natural transformation of the identity functor to the functor (·)∗∗.

4.5.2. Definition of equivalence. Using the concept of a natural transformation between functors

we can define the notion of equivalence of categories. It is a relaxation of the natural impulse to

define two categories C and D as equivalent if there are functors F : C→ D, G : D→ C such that

F ◦ G and G ◦ F are the identity functors. Indeed, what we want to capture in the definition to

be given is that a category C “much smaller” than a category D may still capture “everything that

is going on in D” and so should be considered as equivalent to it. For example, the whole theory

of finite dimensional k-vector spaces can be captured through the category whose objects are just

{0}, k, k2, k3, . . . with linear transformations between them, while the objects of the category of

finite dimensional k-vector spaces are so numerous that they can’t even be assigned a cardinality.

Let C and D be categories. We say that they are equivalent if there are functors F : C→ D and

G : D→ C such that the compositions satisfy GF ∼= 1C (the identity functor of C) and FG ∼= 1D

(the identity functor of D).

We have similarly the notion of antiequivalence. The definition is the same, only that both

F and G are assumed to be contravariant (note that the compositions are still covariant, so the

requirements GF ∼= 1C, FG ∼= 1D make sense).

4.5.3. Some examples. Here are some important examples.

(1) The categories of subfields of a Galois extension and subgroups of the Galois group, cf.

§ ?? are antiequivalent.

(2) The functor ∗ on the category of k-vector spaces kMod is not an antiequivalence; in general,

we only have a natural transformation 1 7→ ∗∗ which is not an equivalence. The problem

being that for infinite dimensional vector spaces the map V → V ∗∗ is only an inclusion.

Let D be a category. Recall that a subcategory C of D is a category whose objects are

a subcollection of those of D and such that for every A,B ∈ Ob C we have MorC(A,B) ⊆
MorD(A,B). For example, the category of finite sets is a subcategory of the category of

sets. A subcategory is called full if in fact we have MorC(A,B) = MorD(A,B) for any

A,B ∈ Ob C. Thus, the category of finite sets is a full subcategory of the category of sets.

The category of abelian groups is a full subcategory of the category of groups. The category

of finite dimensional vector spaces over k , fVSpk is a full subcategory of the category of

vector spaces over k , VSpk = kMod. On the category fVSpk the duality functor ∗ is an

anti-equivalence.

Consider now another category, say B. The objects of B are the vector spaces

k0, k, k2, k3, . . . ,

one for each non-negative integer. The morphisms are just linear maps. There is an obvious

functor F : B→ fVSpk , realizing B as a full subcategory. Define a functor G : fVSpk → B.

Given an object A in fVSpk , choose an isomorphism ηA : A→ kdim(A); if A = kn then we
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may choose ηA to be the identity. Define now G(A) = kdim(A) and for f ∈ Mor(A,B) the

map G(f ) = ηBf η
−1
A .

4.5.4. A criterion for equivalence. There is a general criteria for a functor F to be a natural equiv-

alence of categories.

Theorem 4.5.1. Let F : C→ D be a covariant (respectively, contravariant) functor. There exists a

covariant (respectively, contravariant) functor G : D→ C such that (F,G) is an (respectively, anti-)

equivalence of categories if and only if:

(1) F is full and faithful;

(2) F is essentially surjective, namely, for every object D of D there is an object C of C such

that F (C) is isomorphic to D.

Proof. We consider the covariant case. The argument in the contravariant case is the same.

Suppose that there exists such a functor G and let

γ : GF → 1C, δ : FG → 1D,

be isomorphisms. Consider MorC(A,B) and MorD(F (A), F (B)). It is easy to check that the

isomorphism γ : GF → 1C induces an isomorphism

MorC(GF (A), GF (B))
'−→ MorC(A,B),

for every A,B ∈ Ob C.

Since the inverse of this map, namely the isomorphism

MorC(A,B)→ MorC(GF (A), GF (B))

factors through the map MorC(A,B)→ MorD(F (A), F (B)) induced by the functor F , this map too

is injective. That is, F is faithful. There is a little point to worry about in this argument. For the

argument to work, we need that the isomorphism MorC(GF (A), GF (B)) ∼= MorC(A,B), or rather

its inverse MorC(A,B)→ MorC(GF (A), GF (B)), agrees with the composition of the functor maps

MorC(A,B)
F→ MorD(F (A), F (B))

G→ MorC(GF (A), GF (B)).

Well, the isomorphisms γA : GF (A)→ A, γB : GF (B)→ B satisfy, by definition, GF (h) = γ−1
B hγA,

for h ∈ MorC(A,B), and that is exactly the compatibility we are looking for.

Likewise, the isomorphism,

FG : MorD(F (A), F (B))→ MorD(FGF (A), FG(B)),

factors through F : MorC(GF (A), GF (B))→ MorD(FGF (A), FGF (B)) and so this map F is sur-

jective too. Since GF
∼→ 1C we get

MorC(A,B) ∼= MorC(GF (A), GF (B))→ MorD(FGF (A), FGF (B)) ∼= MorD(F (A), F (B))

is surjective, too. This shows that F is full. Furthermore, let D be an object of D then C = G(D)

is an object of C and we have an isomorphism δFG(D) : FG(D)→ D, and so the last condition is

also satisfied.

We now prove the converse. Let F be a functor that is fully-faithful and essentially surjective. To

define G first choose in an arbitrary fashion an isomorphism

δD : D → F (cD),

for every object D in D , where cD is a suitable object of C. Such exists by the “essentially surjective”

property. Define G on objects by

G(D) = cD
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and on morphisms as follows. Given a morphism g ∈ MorD(D,E) we get a morphism g′ = δEgδ
−1
D ∈

Mor(F (CD), F (CE)). There is a unique morphism f ∈ Mor(CD, CE) = Mor(G(D), G(E)) such that

F (f ) = g′. We let

G(g) = f .

We denote this f also by fg. To rephrase, for a morphism g ∈ MorD(D,E), G(g) is the unique

morphism fg ∈ Mor(CD, CE) such that the diagram

D

g

��

δD // F (CD)

F (fg)

��
E

δE // F (CE)

is a commutative diagram.

The following diagram shows that δ : 1D → FG is an isomorphism.

D

δD

))

g

��

G(D) = CD

fg

��

F (CD)

F (fg)

��

� G // � F //

E

δE

55G(E) = CE F (CE)

To construct an isomorphism α : 1C → GF we proceed as follows. Given an object A of C we

have an isomorphism δF (A) : F (A)→ F (CF (A)) = F (G(A)). Since F is fully faithful, there is an

isomorphism

αA : A→ G(A), F (αA) = δF (A).

We now find the diagram

A

αA

))

g

��

F (A)

F (g)

��

GF (A) = CF (A)

fF (g)

��

� F // � G //

B

αB

55
F (B) GF (B) = CF (B)
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To check that the outer square commutes (and hence that α : 1C → GF is an isomorphism), it is

enough to check that after apply F , because F is faithful. That is, we need to check that

F (A)

F (g)

��

F (αA)=δF (A) // F (CF (A))

F (fF (g))

��
F (B)

F (αB)=δF (B) // F (CF (B)

�

End of lecture 11 (October 22)

4.6. Modules over a PID. Let R be a PID (principal ideal domain). That is, R is an integral

domain and every ideal of R is principal, meaning of the form Rr for some r ∈ R. Two of the main

examples are Z - the ring of integers - and k [x ] - the ring of polynomials in one variable over a field

k . The structure theorem for finitely generated modules over R has two spectacular applications:

the classification of finitely generated abelian groups and the Jordan canonical form (and a more

general structure theorem for linear transformations). We recall that theorem, but do not prove it

here. It was proven in the previous course MATH 370 and a proof can also be found in Dummit &

Foote, and in many algebra books. It rests of the following extremely useful theorem.

Theorem 4.6.1. (Elementary divisors theorem) Let M be a free module of rank n over a PID

R. Let N < M be a submodule. There exists a basis {x1, . . . , xn} of M and non-zero elements

r1, . . . , rm of R such that:

(1) r1|r2| · · · |rm.

(2) The set {r1x1, r2x2, . . . , rmxm} is a basis of N.

In particular, N is free. Furthermore, m and the ideals (ri), i = 1, . . . , m, are uniquely determined.

One common application is the following. Let M,N be free modules of finite rank over a PID R

and let f : M → N be a homomorphism of R-modules. There are bases of M and N in which f is

represented by a diagonal matrix

r1 0 . . . 0

0 r2
. . .

rn
0

. . .

0 . . . 0


,

where r1|r2| · · · |rn are non-zero elements of R.

Theorem 4.6.2. (Structure theorem for modules over a PID) Let R be a PID and M a finitely

generated R-module. There exists an integer n ≥ 0 and non-zero, non-unit, elements r1, . . . , rm of

R such that r1|r2| · · · |rm and

M ∼= Rn ⊕
m⊕
i=1

R/(ri).

As the proof of the existence part of the structure theorem is easy given the elementary divisors

theorem we give it here.
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Suppose that M is generated by t elements y1, . . . , yt . The R-module homomorphism Rt → M,

(a1, . . . , at) 7→
∑t
i=1 aiyi is surjective. Let K be the kernel. We may assume then that M = Rt/K.

We apply the elementary divisors theorem for K < Rt and find a basis x1, . . . , xt for Rt and elements

r1| · · · |rm′ , ri 6= 0, such that K has a basis r1x1, . . . , rm′xm′ . It follows that

M ∼= Rt−m
′ ⊕⊕m′i=1R/(ri).

If any of the ri are units, we may omit them and remain with ra|ra+1| · · · |rm′ , non-zero and non-unit

elements. And,

M ∼= Rt−m
′ ⊕⊕m′i=aR/(ri).

It only remains to denote t −m′ by n and rename the ri to get the statement as it appears in the

theorem.

The uniqueness requires some argument. First note that n can be characterized as rk(M) and so

is an invariant of M itself and not of the presentation. The submodule ⊕mi=1R/(ri) is characterized

as tor(M) and so is an invariant of M as well. This allows to reducing the proof of uniqueness to

proving that if M ∼= ⊕mi=1R/(ri) = ⊕ai=1R/(r ′i ) where the r ′i satisfy the same properties as the ri ,

then a = m and (ri) = (r ′i ). This is a bit of combinatorics and we refer for details to Dummit and

Foote.

This theorem has beautiful applications to the theory of abelian groups and to the theory of vector

spaces. Before giving them, we develop a bit of language concerning categories.

4.7. Applications of the Structure theorem for modules over PID. There are two important

applications that we discuss in turn.

4.7.1. Finitely generated abelian groups. In this case the PID is the ring of integers Z. Every abelian

group can be viewed as a Z-module and vice-versa. (We could have said that the category of abelian

groups is equivalent to the category of Z-modules, but that would be an abuse of power.) Thus,

the structure theorem gives the following result:

Theorem 4.7.1. Every finitely generated abelian group M is isomorphic to an abelian group of the

form Zn ⊕ ⊕mi=1Z/riZ where 1 < r1| · · · |rm, for a unique n, which is the rank of M, and unique

elements ri . The torsion subgroup of M is precisely the subgroup mapping to ⊕mi=1Z/riZ.

4.7.2. Vector spaces. Let k be a field. We claim that the category k[x]Mod of k [x ]-modules is

equivalent to the following category C. The objects of C are pairs (V, T ) consisting of a k-vector

space V and a linear transformation T : V → V . A morphism f : (V1, T1)→ (V2, T2) is a linear map

f : V1 → V2 such that f ◦ T1 = T2 ◦ f .

Indeed, given a k [x ]-module V , view V as a k-vector space and define a transformation T : V areV

by the formula

T (v) = x · v ,
where the multiplication is the module multiplication between the element x of the ring k [x ] and the

element v of the k [x ]-module V . A k [x ]-module homomophism f : V1 → V2 is naturally a k-linear

map f : V1 → V2 and since f (x · v) = x · f (v) it is a morphism (V1, T1)→ (V2, T2).

Conversely, given a pair (V, T ) define a k [x ]-module structure by

g(x) · v = g(T )(v).

Since (g + h)(T ) = g(T ) + h(T ), (gh)(T ) = g(T )h(T ), etc. this a module structure. A morphism

f : (V1, T1)→ (V2, T2) satisfies f ◦ T1 = T2 ◦ f and so it satisfies for any polynomial expression g in

T1 that f ◦ g(T1) = g(T2) ◦ f . Therefore, f becomes a morphism of k [x ]-modules.
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In this case, the composition of the functors in either order are the identity maps, so the equiv-

alence of categories is straightforward. We shall often refer to the module associated to (V, T ) as

the k [x ]-module V , leaving T to be understood from the context.

It is now interesting to see what module theory says about vector spaces and vice-versa. Some very

simple observations are:

(1) T invariant subspaces of (V, T ) correspond to sub k [x ]-modules of V . And then, quotients

correspond to quotients.

(2) For a polynomial f (x) ∈ k [x ], f (T ) is the zero linear map if and only if f (x) ∈ Annk[x ](V ).

(3) (V, T ) ∼= (V1, T1)⊕ (V2, T2) if and only if V ∼= V1 ⊕ V2 as k [x ]-modules.

Proposition 4.7.2. Let V be a k-vector space of finite dimension. Let T : V → V be a linear map.

Then the k [x ]-module V is a torsion module. Conversely, every finitely-generated torsion module

arises this way.

Proof. Write V as a sum of k [x ]-modules.

V ∼= (k [x ])n ⊕⊕mi=1k [x ]/(fi(x)),

where we may choose the fi to be monic and f1(x)| · · · |fm(x), and that determines these polynomials

uniquely. The dimension of k [x ] as a k-module is infinite, because 1, x, x2, x3, . . . are independent

over k . Thus, our assumption forces n = 0 and so V is torsion.

Conversely, given a finitely generated torsion k [x ]-module, we may write it as

⊕mi=1k [x ]/(fi(x)).

Since the equivalence of categories commutes with direct sums, it is enough to whose that k [x ]/(fi)

arises from a finite dimensional vector space, but this is clear; in fact, the dimension of this vector

space is precisely the degree of fi . �

Applying the Proposition and the observations above we find the following.

Theorem 4.7.3. Let (V, T ) be a finite-dimensional k-vector space with a linear transformation T

and decompose it as a k [x ]-module:

V ∼= ⊕mi=1k [x ]/(ci(x)),

where the ci are monic polynomials satisfying c1(x)|c2(x)| · · · |cm(x). Let

(V, T ) = ⊕mi=1(Vi , Ti)

be the corresponding decomposition of V into T -invariant subspaces. Then,

(1) dimk(Vi) = deg(ci(x)).

(2) The minimal polynomial of Ti is equal to its characteristic polynomial and both are equal

to ci(x).

(3) Fix i and write ci(x) = xd + αd−1x
d−1 + · · · + α0. There is a basis for Vi in which Ti is

given by the matrix 
0 0 0 · · · −α0

1 0 0 · · · −α1

0 1 0 · · · −α2
...

...

0 0 0 · · · −αd−1

 .
(4) We have dimk(V ) =

∑m
i=1 deg(ci(x)).

(5) The minimal polynomial of T on V is cm(x), while its characteristic polynomial is given by

c1(x)c2(x) · · · cm(x).
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(6) T is diagonalizable over some extension field of k if and only if cm(x) has no repeated roots,

that is, gcd(cm(x), c ′m(x)) = 1. It is diagonalizable over k if and only if cm(x) factors into

linear terms over k .

End of lecture 12 (October 24)

4.7.3. The Jordan canonical form. We assume here that the characteristic polynomial of T , and

hence the invariant factors ci(x), factors into linear terms over the field k . That would be the case

if k is algebraically closed, which is often the setting in which one develops the theory of Jordan

canonical form, but in fact this is not necessary. The weaker assumption we make suffices.

Let us focus on one invariant factor c(x) = ci(x). It factors as c(x) =
∏a
i=1(x −λi)bi . Here the

λi are some of the eigenvalues of T and the bi > 0 are multiplicities bounded by the multiplicities

in the characteristic polynomial of T . We apply the Chinese Remainder theory and get

k [x ]/(c(x)) ∼= ⊕bii=1k [x ]/((x − λi)ai ).
And, so, it behooves us to analyze modules of the form k [x ]/((x − λ)a). A change of variable

x 7→ y = x − λ allows us to study k [y ]/(y a), which corresponds to a vector space of dimension a

and a linear transformation with a matrix of the form
0 1 · · · 0

0 0 1 · · · 0
...

...

· · · 1

0 · · · 0

 .
(The corresponding basis for the polynomials is xa−1, xa, . . . , x, 1.) Therefore, k [x ]/((x − λ)a)

corresponds to a vector space of dimension a and a linear transformation with a matrix of the form
λ 1 · · · 0

0 λ 1 · · · 0
...

...

· · · 1

0 · · · λ

 .
We call such a matrix a Jordan block and denote it J(λ, a). Putting it all together, we find the

following.

Theorem 4.7.4. (Jordan canonical form) Every matrix T whose characteristic polynomial factors

into linear terms over k is conjugate to a block diagonal matrix of the form

diag(J(λ1, a1), . . . , J(λb, ab))

of Jordan blocks. The λi (that need not be distinct) are the eigenvalues of T . Each eigenvalue λ

of T appears and
∑
{i :λi=λ} ai is the algebraic multiplicity of λ in the characteristic polynomial of

T . Furthermore, the set of Jordan blocks is uniquely determined by T .

4.8. Morita equivalence.
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End of lecture 13 (October 29)

4.9. Injective and projective limits.
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End of lecture 14 (October 31)

4.9.1. More Examples: injective limits.
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4.9.2. More Examples: projective limits. For the discussion of infinite Galois groups we will need

to consider projective limits of groups. We consider here the general problem, leaving the more

thorough discussion of projective limits of finite groups to the chapter on Galois theory.

Proposition 4.9.1. Projective limits exist in the category of groups.

Proof. The proof is verbatim the proof for R-modules. Therefore, we will be brief. Given an index

set I and an inverse system ({Gi}i∈I , {fi j : Gj → Gi}i≤j) of groups, let∏
i∈I
Gi = {(gi)i∈I : gi ∈ Gi},

be the direct product of the underlying sets. We make it into a group by

(gi)i · (hi)i := (gihi)i .

Consider now the subset

G = {(gi)i : fi j(gj) = gi ,∀i ≤ j}.
One easily checks it is a subgroup of G, using that all fi j are group homomorphisms. The projections

pi :
∏
i∈I Gi → Gi induce by restriction group homomorphisms

αi : G → Gi , αi((gj)j) = gi .

The homomorphisms αi satisfy αi ◦ fi j = αj :

G
αi

���������� αj

��???????

Gi Gj
fi j

�oo

Given a group D and homomorphisms βi : D → Gi such that βi ◦ fi j = βj define a group homomor-

phism h : D → G by h = (βi)i . Clearly h satisfies αi ◦ h = βi and, in fact, this property determines

h uniquely. �

Proposition 4.9.2. Projective limits exist in the category of topological spaces.

Proof. Let ({Xi}, {fi j : Xj → Xi}i≤j) be an inverse system of sets indexed by an index set I. Let

X = {(xi)i∈I : fi j(xj) = xi ,∀i ≤ j}.
We consider X as a subspace of

∏
i∈I Xi . The proof is as for the case of groups. �

Proposition 4.9.3. Projective limits exist in the category of sets.

Proof. Let ({Xi}, {fi j : Xj → Xi}i≤j) be an inverse system of topological spaces indexed by an index

set I. Let

X = {(xi)i∈I : fi j(xj) = xi ,∀i ≤ j}.
We consider X as a subspace of

∏
i∈I Xi , where the latter is equipped with the product topology.

Then

X = lim
i∈I
Xi .

The proof is as in the case of groups, only that one needs to justify that the “obvious” maps are

continuous. �

A group G, whose multiplication map and inverse map are denoted, respectively,

m : G × G → G, ι : G → G,

is called a topological group if there is a topology given on G such that the functions m and ι are

continuous, where we provide G × G with the product topology.
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Proposition 4.9.4. Projective limits exist in the category of topological groups.

Proof. Let ({Gi}, {fi j : Gj → Gi}i≤j) be an inverse system of topological groups indexed by an index

set I. Let

G = {(gi)i∈I : fi j(gj) = gi ,∀i ≤ j}.
We consider G as a subgroup of

∏
i∈I Gi , where the latter is equipped with the product topology

and with coordinate-wise multiplication and that makes the product a topological group and makes

G into a sub topological group relative to the subspace topology (this requires verification that is

omitted here). Then

G = lim
i∈I
Gi .

The proof proceeds as in the case of groups and topological spaces combined, only that one needs

to justify that the “obvious” maps are continuous and are homomorphisms. �

A topological group is a homogenous space; namely, for every x, y ∈ G there is an homeomor-

phism ϕ of the topological space underlying G such ϕ(x) = y . Thus, G - as a topological space -

“looks the same from every point”. Indeed, given an element g ∈ G denote by [g] the function

[g] : G → G, [g](x) = gx.

It is easy to check that [g] is a continuous map with inverse given by [g−1], hence a homeomorphism.

Given x, y as above take the homeomorphism [yx−1]. Let X be a homogenous topological space

and x ∈ X a point. The topology of X is completely determined by the knowledge of the open sets

of X that contain x . Indeed, if U is an open set containing x , y ∈ X and ϕ(x) = y then ϕ(U) is an

open set containing y . If U is any open set, choose for every y ∈ U a homeomorphism ϕxy of X

such that ϕxy (x) = y then ϕ−1
xy (U) is an open set containing x .

In particular, the topology of a topological group is completely determined by the knowledge of

open sets containing the identity. Further, suppose that we have a collection C of open sets of

G such that each U ∈ C contains the identity and every open set containing the identity contains

some U ∈ C . Then the collection C determines the topology of G. Indeed, given an open set V

and y ∈ V choose an open set Uy ⊂ ϕ−1
1,y (V ) such that Uy ∈ C . Then V = ∪y∈V ϕ1,y (Uy ).

Proposition 4.9.5. Let ({Gi}, {fi j : Gj → Gi}i≤j) be an inverse system of topological groups such

that each Gi is a Hausdorff topological group. Then lim
←− i∈I

Gi is a closed subgroup of
∏
i∈I Gi .

Proof. We have defined G = lim
←− i∈I

Gi as

G = {(gr )r∈I ∈
∏
r∈I
Gr : fi j(gj) = gi ,∀i ≤ j}.

We may write then

G = ∩i≤j{(gr ) ∈
∏
r∈I
Gr : fi j(gj) = gi},

and so it is enough to prove that for every i , j the set {(gr ) ∈
∏
r∈I Gr : fi j(gj) = gi} is closed.

This set is equal to
∏
r 6∈{i ,j} Gr × {(gi , gj) ∈ Gi × Gj : fi j(gj) = gi}. The complement of this set

is
∏
r 6∈{i ,j} Gr × (Gi × Gj \ {(gi , gj) ∈ Gi × Gj : fi j(gj) = gi}, and so it is enough to prove that

{(gi , gj) ∈ Gi × Gj : fi j(gj) = gi} is a closed subset of Gi × Gj .
Let ∆ = {(x, x) : x ∈ Gi} be the diagonal of Gi × Gi . Let Id × fj i : Gi × Gj → Gi × Gi be the

continuous map taking (gi , gj) to (gi , fi j(gj). Then,

{(gi , gj) ∈ Gi × Gj : fi j(gj) = gi} = (Id × fj i)−1(∆).

Since Gi is Hausdorff ∆ is closed in Gi × Gi and thus so is {(gi , gj) ∈ Gi × Gj : fi j(gj) = gi}. �
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Corollary 4.9.6. Let ({Gi}, {fi j : Gj → Gi}i≤j) be an inverse system of finite groups, made into

topological groups by the discrete topology on each Gi . Then G = lim
←− i∈I

Gi is a compact Hausdorff

topological group. G has a local basis of open sets at the identity consisting of normal open subgroups

of finite index in G.

Proof. Since the product of Hausdorff spaces is Hausdorff and a subspace of a Hausdorff space is

Hausdoff, G is Hausdorff. By Tychonoff’s theorem
∏
Gi is a compact Hausdorff space. Since G is

a closed subset of a compact space, G is compact too. Finally, any open subset of
∏
Gi containing

the identity contains an open set V of the form

V =
∏
i∈I0

Ui ×
∏
i 6∈I0

Gi ,

for some finite subset I0 of I and where the Ui are open in Gi . Note that 1Gi ∈ Ui . Since {1Gi} is

itself on open subset of Gi , we see that this set contains the open set

U =
∏
i∈I0

{1Gi} ×
∏
i 6∈I0

Gi ,

which is a normal subgroup of
∏
Gi of finite index

∏
i∈I0 |Gi |. As the open sets in G are of the

form V ∩ G and this contains U ∩ G, which is a normal subgroup of G of finite index, the proof is

complete. �
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5. Infinite Galois theory

5.1. A quick review of Galois theorey of finite extensions.
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5.2. First definitions. Let K/F be an algebraic extension. We that that K/F is Galois if it is

a separable and normal extension. That is, every k ∈ K solves a separable non-zero polynomial

f (x) ∈ F[x ] and any irreducible polynomial f (x) ∈ F[x ] that has a root in K splits over K.

Lemma 5.2.1. K/F is Galois if and only if K = ∪L, the union being over all finite Galois extensions

L/F contained in K.

Proof. Suppose that K = ∪L, the union being over all finite Galois extensions L/F contained in K.

Let k ∈ K. Then k ∈ L for some L/F a finite Galois sub extension of K. Thus, k solves a separable

non-zero polynomial over F. That shows that K/F is separable. Given f (x) ∈ F[x ] an irreducible

polynomial that has a root k ∈ K. Take again L/F finite Galois sub extension such that k ∈ L.

Then f (x) splits over L, hence over K.

Conversely, let K/F be Galois. For each k ∈ K choose a separable polynomial fk(x) that k

satisfies. Since a factor of a separable polynomial is separable and k is a root of one of the factors

of fk(x) we may as well assume that f (x) is irreducible. Let Lk be the splitting field of f (x) in K.

Then k ∈ Lk , Lk/F is a Galois extension and so K = ∪k∈KLk , which gives K = ∪L, the union being

over all finite Galois extensions L/F contained in K. �

Corollary 5.2.2. K/F is Galois if and only if K is the splitting field of a collection of separable

polynomials {fα(x) : α ∈ I} of F[x ].

Proof. Suppose that k/F is Galois. For every k ∈ K choose an irreducible polynomial that k solves.

Then, as we saw, K is the union of the splitting fields of the polynomials {fk(x) : k ∈ K}, which is

a collection of separable polynomials over F[x ].

Conversely, suppose that K is the splitting field of a collection of separable polynomials {fα(x) :

α ∈ I} of F[x ]. For every finite subset J ⊂ I let LJ be the splitting field in K of the polynomials

{fj(x) : j ∈ J}. Then LJ/F is a finite Galois extension and K = ∪J⊂I,J finiteLJ , hence K/F is

Galois. �

Let K/F be a Galois extension. Let

I = {L : K ⊇ L ⊇ F, L/F finite Galois}.
Then I is a poset where we say that L ≤ L′ if L ⊆ L′. Further, I is directed, because given L1, L2

in I, the compositum L1L2 is a subfield of K which is also a finite Galois extension of F. Thus,

L1L2 ∈ I and Li ≤ L1L2. We note that

K = lim
−→ L∈I

L.

If L⊇L2 ⊇ F are Galois, we know from Galois theory that we have surjective group homomorphism

resL1,L2
: Gal(L1/F)→ Gal(L2/F), σ 7→ σ|L2

,

the kernel of which is Gal(L1/L2). Let

G = lim
←− L∈I

Gal(L/F),

the limit taken over all finite Galois extensions L/F relative to the homomorphisms resL1,L2
.

Theorem 5.2.3. G ∼= Aut(K/F).

Proof. Recall that G was defined as a subgroup of
∏
L∈I Gal(L/F),

G = {(σL)L : L1 ⊇ L1 ⇒ σL1
|L2

= σL2
}.

Given σ ∈ K, σ induces an automorphism of every finite Galois extension L/F. Indeed, if L/F is

the splitting field of a polynomial f (x) ∈ F[x ] then σ(L) is the splitting field of the polynomial σ(f ),

obtained from f by applying σ to its coefficients. But, σ(f ) = f and so σ(L) = L. Therefore,
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we have σL := σ|L ∈ Gal(L/F) for all L/F finite Galois. Clearly σL1
|L2

= σL2
. This gives a group

homomorphism Aut(K/F)→ G.

Conversely, let (σL)L ∈ G. Define σ ∈ Aut(K/F) as follows. Given k ∈ K choose a finite Galois

extension L such that k ∈ L. Let

σ(k) := σL(k).

This is well-defined. If k ∈ L1 ∩ L2 then

σL1
(k) = σL1∩L2

(k) = σL2
(k).

Finally, given k1, k2 ∈ K, there are Galois extensions Li such that ki ∈ Li . Then k1, k2 are both in

L = L1L2. We then calculate that σ(k1 ∗ k2) = σL(k1 ∗ k2) = σL(k1) ∗ σL(k2) = σ(k1) ∗ σ(k2),

where ∗ stands for either + or ×. Thus, σ is a homomorphism of fields. Finally, since K = ∪L∈IL,

σ(K) = ∪L∈Iσ(L) = ∪L∈IL = K, where we have used that for every L/F finite Galois σ(L) = L.

Thus, σ ∈ Aut(K/F). It is also easily checked that this is the inverse function to the homomorphism

constructed in the first part of the proof. Thus, we have constructed an isomorphism between the

groups. �

As usual, if K/F is a Galois extension, we shall denote

Gal(K/F) := Aut(K/F).

A group G is called a profinite group if G ∼= lim
←− i∈I

({Gi}i∈I , {fi j : Gj → Gi}), where

(1) I is a directed index set;

(2) Gi if a finite group;

(3) all given group homomorphisms fi j are surjective.

The group Gal(K/F) is a profinite group. If G is a profinite group then, since each Gi is compact

Hausdorff, G is a closed subset of the compact topological space
∏
i∈I Gi and so G is compact

Hausdorff as well (Corollary 4.9.6). The following proposition shows that pro finite groups have a

topology which is very well controlled and that will be very useful in our discussion of infinite Galois

extensions.

Before that, we discuss some properties of general topological groups G. For such a group, and

an element g ∈ G we have a function

[g] : G → G, [g](x) = gx.

This is a continuous function: let m : G → G be the multiplication map and U ⊂ G an open subset,

then {g} × [g]−1(U) ∼= m−1(U) ∩ {g} × G. Since {g} × G is homeomorphic to G, we get that

[g]−1(U) is open.

Further, [g] is a homeomorphism because [g−1] is its inverse. We see that a topological group is a

homogenous space - for every x, y ∈ G there is a homeomorphism ϕ : G → G such that ϕ(x) = y

(indeed, take ϕ = [yx−1]).

Proposition 5.2.4. Let G = lim
←− i∈I

({Gi}i∈I , {fi j : Gj → Gi}) be a profinite group.

(1) For every finite subset J ⊂ I define

GJ =

∏
j∈J
{1Gj} ×

∏
i 6∈J
Gi

 ∩ G.

Then Gj is a normal subgroup of G of finite index. Further, GJ is open.
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(2) Let U be an open subset of G containing the identity element 1G . Then U ⊃ GJ for some J.

Every open subset of G is a union of cosets of the subgroups GJ . If U is a subgroup then

U has finite index.

(3) Every open subgroup of G has finite index and is closed.

(4) Every closed subgroup of G of finite index is open.

(5) The intersection of open subgroups is a closed subgroup. Every closed subgroup is the

intersection of open subgroups.

(6) G is totally disconnected. Namely, every set with more than 1 element is not connected.

Proof. We observe that
∏
j∈J{1Gj} ×

∏
i 6∈J Gi is a normal subgroup of G. It is open, because, due

to the discrete topology on each Gj , {1Gj} is an open subset of Gj . It is of finite index, equals in

fact to
∏
j∈J |Gj |. Thus, GJ is a normal open subgroup of G of finite index.

Let U be now an open subset of G such that 1G ∈ U. Write U = V ∩ G where V is open in∏
i∈I Gi . We have 1G ∈ V and so, since V is open, by the definition of the product topology, for

some finite subset J ⊂ I we have

1 ∈
∏
j∈J

Vj ×
∏
i 6∈J
Gi ⊆ V.

Necessarily, 1Gj ∈ Vj and so ∏
j∈J
{1Gj} ×

∏
i 6∈J
Gi ⊆ V,

and it follows that GJ ⊂ U.

Let U be any open subset of G. For every x ∈ U choose a group GJ(x) ⊂ [x−1](U), where

J(x) ⊂ I is a suitable finite subset. Then U = ∪x∈U [x ](GJ(x)) = ∪x∈Ux · GJ(x) is a union of cosets

of groups GJ .

Finally, if U is an open subgroup then U ⊇ GJ for some J. Since GJ has finite index in G, so does

U. That concludes the proof of (2).

For (3), we have just seen that U has finite index. Since G − U = ∪x 6∈UxU and each xU is open,

it follows that G − U is open and so U is closed. Similarly, if U is a closed subgroup of finite index,

the union ∪x 6∈UxU is really a union of finitely many closed subsets and so is closed; it follows that

U is open. This proves (4).

Let Uα be a collection of open subgroups. Then, each Ua is closed and so the subgroup ∩αUα
is closed. Conversely, let H be a closed subgroup. Consider the sets HGJ . Since GJ is a normal

subgroup of G, HGJ is a subgroup of G. Since HGJ = ∪h∈HhGJ , it follows that HGJ is an open

subgroup. We claim that

H = ∩J⊂I, finiteHGJ .

The inclusion ⊆ is clear. Suppose then that x 6∈ H. We shall show x is not in the right hand side.

Since x 6∈ H, 1G 6∈ Hx = H−1x . Since Hx is closed, G −Hx is open and so there is some finite set

J ⊂ I such that

1G ∈ GJ , GJ ∩H−1x = ∅.

It follows that x 6∈ HGJ . Indeed, if x = hg then h−1x = g ∈ H−1x ∩ G, which is contradiction.

Finally, to prove (6) let U be an open set and x 6= y elements of U. Let GJ ⊂ x−1U. By adding

to J an index j for which that j-th component of x−1y is not 1Gj , we may assume x−1y 6∈ GJ . And

so xGJ is an open subset of U to which y does not belong. But xGJ is also open. It follows that U

is disconnected. �
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5.3. The main theorem of Galois theory.

Theorem 5.3.1. Let K/F be a Galois extension, G = Gal(K/F). There is an inclusion-reversing

bijection {
K ⊇ M ⊇ F
M any subfield

}
←→

{
H ⊆ G

H a closed subgroup

}
,

under which

M 7→ HM := {σ ∈ G : σ|M = Id}
and

H 7→ KH = {k ∈ K : σ(k) = k,∀σ ∈ H}.
Furthermore:

(1) M is a finite extension of F if and only if HM is an open subgroup.

(2) K/M is a Galois extension with Galois group HM .

(3) M/F is Galois if and only if HMCG, in which case Gal(M/F) = G/HM .

(4) Let M1,M2 be subfields. Then M1∩M2 corresponds to 〈HM1
, HM2

〉c and M1M2 corresponds

to HM1
∩HM2

, where here c stands for taking the closure.

Before the proof proper, let us make a remark about the topology of G. By the general theory a

basis at the identity for the topology of G is given as follows: pick L1, . . . , Lr finite Galois extensions

of F and let

G{L1,...,Lr} = {(σL)L : σLi = Id, i = 1, . . . , r} = {σ ∈ Aut(K/F ) : σ|Li = Id, i = 1, . . . , r}.

Then GL1,...,Lr is an open subgroup and these subgroups form a local basis at 1. But, let L =

L1L2 . . . Lr , the compositum of the fields Li . Then L/F is a Galois extension and the condition

σ|Li = Id, i = 1, . . . , is equivalent to the condition σ|L = Id. Thus, we have a simplified description

of a local basis at the identity. It consists of all subgroups of the form

G{L} = {σ ∈ Aut(K/F ) : σ|L},

where L runs over all finite, Galois extensions of F contained in K.

Proof. We first check that the correspondence is well-defined. Clearly, KH is a subfield of K that

contains F and HM a subgroup of G.. We need to show that HM is a closed subgroup of G. Before

that, note that K/M is the splitting field of the same collection of separable polynomials of F[x ]

that shows K/F is Galois. Thus, K/M is Galois and

Gal(K/M) = {σ ∈ Aut(K) : σ|M = Id}
= {σ ∈ Aut(K/F);σ|m = Id}
= HM .

Let σ ∈ G − HM = G − Gal(K/M). We need to show that there is an open set U ⊂ G such that

σ ∈ U and U ∩ Gal(K/M) = ∅. It is enough (and, essentially, necessary) to find some finite Galois

extension L/F such that

σ · G{L} ∩ Gal(K/M) = σ · Gal(K/L) ∩ Gal(K/M) = ∅.

Now, since σ 6∈ Gal(K/M), there is an element m ∈ M such that σ(m) 6= m. Let fm(x) be the

minimal polynomial of m over F. It is a separable polynomial and its splitting field L over F is a

finite Galois extension, and m ∈ L. Let τ ∈ Gal(K/L) then

στ(m) = σ(m) 6= m.
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That shows that σ · Gal(K/L) ∩ Gal(K/M) = ∅. Thus, we have proved the the correspondence is

well-defined. It is also clear from the definition that it is inclusion reversing. The next step is to

check that the maps

M 7→ HM , H 7→ KH,

are mutual inverses.

Clearly M ⊆ KHM . To show they are equal we will show that if k 6∈ M then ∃σ ∈ Aut(K/M)

such that σ(k) 6= k . That implies k 6∈ KH.

First, let L be the splitting field over M of the minimal polynomial of k over F. Then L % M,

L/M is Galois and by finite Galois theory, ∃σ ∈ Gal(L/M) such that σ(k) 6= k . If we can extend σ

to an automorphism σ̃ : K → K, we are done. This follows immediately from the following Lemma.

Lemma 5.3.2. Let L be a subfield of K and σ : L→ L a field automorphism, then ∃σ ∈ Aut(K)

such that the following diagram commutes

K
σ̃ // K

L
?�

OO

σ // L
?�

OO

Proof. (of Lemma) Let

Σ = {(L1, σ1) : σ1 : L1 → L1 an automorphism, L1 ⊇ L, σ1|L = σ}.

Note that Σ is not empty, because (L, σ) ∈ Σ, and is partially ordered under the relation

(L1, σ1) ≤ (L2, σ2) ⇐⇒ L1 ⊆ L2 and σ2|L1
= σ1.

Every chain {(Lα, σα)} has a supremum in Σ. Indeed, let L0 = ∪αLα. It is a field. One defines

σ0;L0 → L0, by σ0(a) = σα(a) if a ∈ Lα. It is easy to check that σ0 is a well defined field

homomorphism. We have σ0(L0) = σ0(∪αLα) = ∪ασ0(Lα) = ∪ασα(Lα) = ∪αLα = L0.

By Zorn’s lemma, Σ has a maximal element (L1, σ1). We claim that L1 = K (and so the lemma

is proved). If not, let k ∈ K − L1. Let L2 be the splitting field over L1 of the minimal polynomial

f of k over F. Then, by finite Galois theory (using that σ1 acts trivially on the coefficients of f ),

there is an automorphism σ2 : L2 → L2 such that the diagram is commutative:

L2
σ2 // L2

L1

?�

OO

σ1 // L1

?�

OO

Thus,

(L1, σ1) � (L2, σ2),

and that is a contradiction. �

Having proven that M = KHM , let’s prove that

HKH = H.

Again, one inclusion is clear: HKH ⊇ H. Let L/KH be a finite Galois extension. The restriction map

Gal(K/KH)→ Gal(L/KH), σ 7→ σ|L,

is a well-defined homomorphism (surjective, by the Lemma). Also, for every such L, the restriction

map

H → Gal(L/KH), σ 7→ σ|L,
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is a well-defined homomorphism. As LIm(H) = L ∩ KH = KH, by finite Galois theory Im(H) =

Gal(L/KH). That is, H → Gal(L/KH) is surjective homomorphism, too.

Suppose that there is an automorphism σ ∈ Gal(K/KH) and σ 6∈ H. Since H is closed, there

exists a finite Galois extension L1/F such that σ · Gal(K/L1) ∩ H = ∅. The extension L/KH,

where L = L1K
H is a finite Galois extension, and σ being an automorphism of K/KH induces an

automorphism σ|L of L/KH. By what we had shown above, there is τ ∈ H such that

σ|L = τ |L.

But this implies that σ−1τ |L = Id, so σ−1τ ∈ Gal(K/L1) and so τ ∈ σGal(K/L1). Contradiction.

At this point in the proof we have established that M 7→ HM and H 7→ KH are well-defined

mutual inverses. We know that K/M is Galois and HM = Gal(K/M).

Suppose that M/F is a finite extension. Let L be the normal closure of M in K. Then L/F is

a finite Galois extension and HM ⊇ HL = G{L}, which is an open subgroup. It follows that HM is

open too. Conversely, suppose that K is an open subgroup. Say H = HM . Then HM ⊇ G{L} for

some L/F finite Galois extension. Then, L ⊇ M ⊇ F and so M/F is a finite extension.

Next, we note that the statement about H1 ∩ H2 and 〈H1, H2〉c f are a formal consequence, as

H1 ∩ H2 is the maximal subgroup contained in both in H1 and H2 and so KH1∩H2 is the minimal

field containing both KH1 and KH2 , etc.

We note that the Galois correspondence is equivariant in the following sense. G acts both on the

set of subfields by M 7→ σ(M), which is another subfield of K containing F. It acts on subgroups

by H 7→ σHσ−1, which is another closed subgroup of G. The equivariance property is

Hσ(M) = σHMσ
−1.

It follows that the fixed points of the action must correspondence under the Galois correspondence.

On the level of subgroups, this is the collection of normal subgroups of G. On the level of subfields,

we prove the following statement.6

Lemma 5.3.3. Let M, K ⊇ M ⊇ F, be a subfield. Then M/F is Galois if and only if σ(M) = M for

all σ ∈ G.

Proof. (Of lemma) Suppose that M/F is Galois; say, M is the splitting field of a collection of

separable polynomials {fα(x) ∈ F[x ]}. Let R be the set of roots of {fα(x)} in K. Then, M = F(R).

If σ ∈ G then σ(R) = R and so σ(M) = M.

Suppose, conversely, that σ(M) = M for all σ ∈ G. Let m ∈ M and let fm(x) be the minimal

polynomial of m over F[x ]. Let m′ be another root of fm(x). We have the following diagram for

some field isomorphism σ : F(m)→ F(m′), such that σ(m) = m′.

F(m)
σ // F(m′)

F
?�

OO

Id // F
?�

OO

Extend σ to an element (still denoted σ) of G, using Lemma 5.3.2. As σ(M) = M it follows that

σ(m) = m′, m′ ∈ M too. If follows that M is the splitting field of the collection of separable

polynomials {fm(x) : m ∈ M} of F[x ] and so M/F is Galois. �

6We have in fact used this lemma above more than once of finite Galois extensions, since we allowed ourselves to

assume finite Galois theory. But, in fact, the proof here is self-contained and proves the case of finite Galois extensions

as well.
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Finally, suppose that M/F is Galois. There is a injective homomorphism

G/HM → Gal(M/F), σ 7→ σ|M .
Lemma 5.3.2 shows this is a surjective homomorphism. The proof of the theorem is complete. �
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5.4. Zp. The ring of p-adic integers Zp can be defined in several ways. We first approach it as an

inverse limit, in concert with the construction of infinite Galois extensions. Thus, for us,

Zp = lim
←− n

Z/pnZ,

relative to the transition maps

Z/pnZ→ Z/pmZ, x (mod pn) 7→ x (mod pm), m ≤ n.

Thus Zp is a profinite group, compact and Hausdorf in particular. In fact, since the transition maps

are ring homomorphisms (continuous for the discrete topology, of course), Zp is a topological ring.

Namely, the multiplication map is continuous too. We have a hands-on description of Zp as

{(, . . . , x3, x2, x1) : xi ∈ Z/piZ, xi+1 ≡ xi (mod pi), i = 1, 2, 3, . . . }.

In this notation, addition and multiplication are done component-wise. Recalling the basis for the

topology of a profinite group at the identity, we see that for Zp a basis for the topology at 0 are

the subgroups of finite index

In = {(xi)i ∈ Zp : xn ≡ 0 (mod pn)}

= {(. . . , xn+1, 0, . . . , 0, 0) : xi+1 ≡ xi (mod pi)}.

Lemma 5.4.1. The map

Z→ Zp, a 7→ a = (. . . , a, a, a),

is an injective ring homomorphism. The image of Z is dense. Zp is an integral domain.

Proof. First, note that a is indeed in Zp. The definitions give immediately that this is a ring

homomorphism. If a is in the kernel then a = 0, which means that the n coordinate is zero for every

n, that is, a ≡ 0 (mod pn) for every n and so a = 0.

To show the image is dense, we need to show that given x = (. . . , x2, x1) ∈ Zp and n, there is

a ∈ Z such that a ∈ x + In. But that just means that a − x = (. . . , a − x3, a − x2, a − x1) ∈ In.

Therefore, we only need to choose some a ∈ Z such that a ≡ xn (mod pn).

If x, y ∈ Zp and xy = 0 and, say x 6= 0, then for some n, xn 6≡ 0 mod pn. For every N then

xn+N 6≡ 0 mod pn. Since xn+Nyn+N ≡ 0 (mod pn+N) we get that yn+N ≡ 0 (mod p)N+1. Given

now any i , choose N ≥ i − 1 to get yn+N ≡ 0 (mod pi) and so that yi ≡ 0 (mod pi). It follows

that y = 0. �

Proposition 5.4.2. The subgroups In are principal ideals and

In = pnZp.

We have

Zp/In ∼= Z/pnZ.
Every closed subgroup of Zp is equal to some In and, in particular, open of finite index.

Proof. Suppose S is a dense set of a topological space X and U is a subset of X which is open and

close, then U is equal to the closure C of U ∩ S. Indeed, C is contained in U because U is closed.

On the other hand, if there is an element x ∈ U − C, then in the open subset U − C there is no

element of S, and that contradicts the fact that S is dense. Thus, U = C.

Apply that to In which is open, hence closed, and to the set Z. The intersection Z ∩ In = pnZ,

clearly. Its closure is pnZp: on the one hand, because multiplication by pn is continuous and Zp is

compact Hausdorff, pnZp is closed. On the other hand, if C ⊂ pnZp is closed and contains Z then

p−nC is well defined, closed and contains Z. Thus, p−nC = Zp.

We can also show more directly that In is equal to pnZp. On the one hand, it is clear from

the definition that In is an ideal and that pn ∈ In and so that In ⊇ pnZp. On the other hand,
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let x = (. . . , xn+1, 0, . . . , 0, 0) ∈ In. For every m define an element ym as follows. The element

xn+m ∈ Z/pm+nZ is congruent to zero modulo pn and so, there is an element ỹm ∈ Z/pm+nZ such

that pnỹm = xn+m. Let

ym = ỹm (mod pm).

We claim that y = (. . . , y2, y1) ∈ Zp and pny = x .

First, ym+1 (mod pm) = ỹm+1 (mod pm) and ym (mod pm) = ỹm (mod pm), so it’s enough to

show ỹm+1 − ỹm ≡ 0 mod pm. Now, because pnỹm+1 ≡ xn+m+1 ≡ xn+m ≡ pnỹm (mod pn+m), it

follows that pn(ỹm+1 − ỹm) ≡ 0 mod pm+n and so that ỹm+1 − ỹm ≡ 0 mod pm.

Secondly, the equation pnỹm ≡ xn+m (mod pn+m) gives upon reduction modulo pm, pnym ≡ xm
(mod pm), so pny = x .

We have a ring homomorphism

Zp → Z/pnZ, x 7→ xn.

The kernel is clearly In. The map is surjective, because the composition Z→ Zp → Z/pnZ is

surjective. Thus,

Zp/In ∼= Z/pnZ.

Lemma 5.4.3. The units of Zp consist of the elements x = (. . . , x2, x1) such that x1 6= 0 (mod p).

Proof. Clearly, if xy = 1 then x1y1 = 1 (mod p) and so x1 6= 0 (mod p). Conversely, suppose that

x1 6= 0 (mod p). Then, for every n, xn is a unit in Z/pnZ (the non-units are pZ/pnZ) because

it is not zero modulo p. Thus, for every n there is a yn such that xnyn = 1 (mod pn). We need

only to check that yn+1 ≡ yn (mod pn). But, xn+1yn+1 ≡ xnyn+1 ≡ 1 (mod pn) and so yn+1 ≡ yn
(mod pn) �

Let I be any closed subgroup of Zp. If x ∈ I then Zx ⊂ I and so Zpx ⊂ I, as I is closed. That

is, I is an ideal. Suppose I is not zero and let x = (..., x2, x1) ∈ I be a non-zero element. Let n be

the maximal such that xn ≡ 0 (mod pn). Then, as we saw, there is y ∈ Zp such that xn = pny .

Since xn+1 6≡ 0 (mod pn + 1), yn+1 6≡ 0 (mod p), but yn+1 ≡ y1 (mod p). Therefore y is a unit.

It follows that xy−1 = pn ∈ I and so I ⊇ In. However, the only ideals of Zp/In = Z/pnZ are the

images of Ii for i = 0, 1, . . . , n and so I = In for some n. �

Corollary 5.4.4. Zp is a principal ideal domain which is a local ring. It has, up to a unit, a unique

prime element, which is p.

Proof. Let I be any non-zero ideal. As the proof above shows, if x ∈ I and n is the maximum so

that xn ≡ 0 (mod pn) then we may write x = pny . Further, since xn+1 6≡ 0 (mod pn+1) it follows

p - yn+1 and so y1 6≡ 0 (mod p). That is, y is a unit and hence I ⊇ (x) = (pn) = In. It follows

that I = Im for some m ≤ n (because I/In is an ideal of Z/pnZ, as above). Thus, we have shown

that every ideal of Zp is one of the ideal In. Clearly I = (p) is maximal. For m > 1, Im is not prime

because Zp/Im = Z/pmZ is not an integral domain. If x 6= 0 then (x) = Im for some m and is not a

prime element if m > 1. So it follows that there is a unique, up to a unit irreducible element, which

we can choose to be p. �

Here is another approach to understanding Zp. Define a function

v : Zp → Z, v(x) = max{n : xn ≡ 0 (mod pn)}.
(We formally put v(0) = +∞.) This function is an example of a discrete valuation which means

that it satisfies:

(1) v(xy) = v(x)v(y);

(2) v(x + y) ≥ min{v(x), v(y)}.
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Note that an equivalent way to define v is to use unique factorization and define

v(x) = n if x = pnu, u ∈ Z×p .

At any rate, with this information it is easy to check that v has the said properties. Define now

d(x, y) = p−v(x−y).

One can then check that d is a metric. The topology d induces on Zp agrees with the given

topology. Indeed, the ideals In are none other then the closed balls of radius p−n, which are the

open balls of radius p−(n−1), around the origin. Zp is thus a compact metric space, containing Z
as a dense subset. It follows that Zp can be viewed as the metric completion of Z. Note that a

sequence of integers a(i) of Z converges to zero in Zp,

a(i)→ 0 ⇔ v(a(i))→ +∞,

that is if and only if the integers a(i) become more and more divisibly by p. A concrete example is

p, p2, p3, . . . → 0.

Finally, let Qp be the fraction field of Zp; it is called the field of p-adic numbers. We can extend v

to Qp by defining

v(a/b) = v(a)− v(b).

Properties (1), (2) above still hold and Zp = {x ∈ Qp : v(x) ≥ 0}.

5.5. Hensel’s lemma. Rings such as Zp play a very important role in number theory. If a polynomial

with integer coefficients has a solution in integers, then it has a solution in Zp for every prime p (and

in R). The converse need not be true. Yet, a good first step is to examine whether that polynomial

has indeed a solution in Zp for all p and in R. Although at first sight the ring Zp looks much more

complicated than Z, it is in fact much easier to work with. A case in point in Hensel’s lemma that

goes a long way towards giving a definite answer as to when a polynomial has a solution in Zp.

Recall that we can identify the quotient Zp/pZp with Z/pZ. Given a polynomial f (x) ∈ Zp[x ]

we can look at its reduction f̄ (x) modulo p, namely, we reduce all the coefficients modulo p and

so at the value f̄ (a) for a ∈ Zp. However, to simplify notation we will simply write f (a). Same for

a ∈ Z/pnZ = Zp/pnZp.

Theorem 5.5.1. (Hensel’s lemma) Let f (x) ∈ Zp[x ] be a monic, non constant polynomial. Let

α1 ∈ Z/pZ be a simple root of f (x), namely

(1) f (α1) = 0;

(2) f ′(α1) 6= 0.

(Both statement hold in Z/pZ.) Then, there exists a unique α ∈ Zp such that

(1) f (α) = 0 (in Zp);

(2) α ≡ α1 (mod pZp).

Proof. We prove by induction on n that for all n there exists αn ∈ Z/pnZ such that

f (αn) = 0 (mod pn), αn ≡ αn−1 (mod pn−1).

It then follows that α = (. . . , αn, . . . , α2, α1) ∈ Zp and f (α) = 0.

For n = 1, α1 is given. Assume that we have already constructed αn with the desired properties.

The binomial formula (x + y)n = xn + nxn−1y +
(
n
2

)
xn−2y2 + · · ·+ yn gives

f (x + y) = f (x) + f ′(x)y + g(x, y)y2,

for some polynomial g(x, y) with coefficients in Zp if f (x) ∈ Zp[x ].
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Now, choose any β ∈ Z/pn+1Z such that β ≡ αn (mod pn). Any other choice is of the form

β + γ, where γ ∈ pnZ/pn+1Z. We have

f (β + γ) = f (β) + f ′(β)γ + γ2g(β, γ).

As γ2 ≡ 0 (mod p2n) and g(β, γ) ∈ Zp, we have

f (β + γ) = f (β) + f ′(β)γ (mod pn+1).

Write f (β) = pnB, γ = pnC. We can choose γ so that B + f ′(β)C ≡ 0 (mod p), because modulo

p we have f ′(β) ≡ f ′(α1) 6≡ 0 (mod p). For such γ we have f (β + γ) ≡ 0 (mod pn+1) and we let

αn+1 = β + γ.

Examining the proof shows that γ is uniquely determined, because f ′(β) 6≡ 0 (mod p). Thus,

αn+1 is uniquely determined, and thus so is α. Arguing differently, we can say that if f (x) =

(x − α)(x − α′)h(x), where α,α′ ∈ Zp and α ≡ α′ (mod p) then f ′(α) ≡ 0 (mod p), that is

f ′(α1) = 0 (mod p) and that’s a contradiction. �

Example 5.5.2. Zp contains the p − 1-st roots of unity. Indeed, the polynomial f (x) = xp − x is

separable modulo p. Pick any non-zero α1 modulo p. Then f (α1) = 0, f ′(α1) 6= 0. Let µ1 be the

solution of f in Zp such that µ1 ≡ α1 (mod p), as guaranteed by Hensel’s lemma. We find that

f (x) = x
∏p−1
i=1 (x −µi and the µi are p− 1-st roots of unity that are distance (even after reduction

modulo p).

It is difficult, perhaps impossible, to write these roots explicitly. Take for example α2, the mod

p2 approximation to the modulo p root given by 2 to the polynomial xp− x , where p > 2 is a prime.

We know that α2 = 2 + kp. We also need that (2 + kp)p ≡ 2 + kp (mod p2) and this is equivalent

to k = 2p−2
p . Here is a table of k that shows that its behaviour is erratic. The first prime for which

k = 0 is 1093. This is relevant to Fermat’s last theorem through the “Wieferich criterion”.

prime 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59

k 2 1 4 10 6 9 6 11 2 12 2 5 7 41 19 16

5.6. Finite fields. We summarize here the main facts about finite fields. Let F = Fp be a finite

field of p elements, where p is a prime. Let Fp be an algebraic closure of Fp.

Theorem 5.6.1. (1) For every integer m, Fp contains a unique subfield having pm elements.

We denote it by Fmp . The field Fpm is the solutions in Fp to the equation xp
m − x = 0 and

is therefore Galois over Fp.

(2) We have Fpn ⊇ Fpn if and only if m|n. Every finite subfield of Fp is Fpm for some m. We

have:

Fpgcd(m,n) = Fpm ∩ Fpn , Fplcm(m,n) = Fpm · Fpn .

(3) Let f (x) ∈ Fpm [x ] be an irreducible polynomial of degree n and α a root of f in Fp then

Fpm(α) = Fpnm ,

and it is the splitting field of f .

(4) Let L be any field (not necessarily a subfield of Fp) with pm elements, then L ∼= Fpm .

(5) Fp is the algebraic closure of any of the fields Fpm .

(6) Define the Frobenius map

Frp : Fp → Fp, Frp(x) = xp.
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Let

Frpm = Frp ◦ · · · ◦ Frp (m times).

Then Frpm(x) = xp
m

and it is a field automorphism whose fixed points are the field Fpm .

(7) Fp = ∪∞m=1Fpm .

Let us now consider the situation from the point of view of infinite Galois theory. Fp is an infinite

Galois extension of Fp. Its Galois group is

lim
←− n

Gal(Fpn/Fp) = lim
←− n

Z/nZ.

Where the order is m ≤ n if m|n, the identification Gal(Fpn/Fp) = Z/nZ is such that Frp 7→ 1,

and the homomorphisms Z/nZ→ Z/mZ are just x (mod n) 7→ x (mod n). This inverse limit is

denoted Ẑ. It is a compact Hausdorff topological ring and

Z ↪→ Ẑ, m 7→ Frpm .

In fact, the image of Z is dense in Ẑ. We also have

Ẑ =
∏
p

Zp.

In particular, there is a surjection Ẑ→ Zp that shows that there is a Galois sub extension K/Fp of

Fp whose Galois group Gal(K/Fp) ∼= Zp. It is not hard to construct this extension by hand.

For every n consider the Galois extension Fppm /Fp with Galois group Z/pmZ. Let

k = ∪∞n=1Fppm .

Then

Gal(K/Fp) = lim
←− n

Z/pmZ = Zp.

Since we know that closed subgroups of Zp we see that the only proper subfields of K are the fields

Fppm and those are finite field extensions of Fp.

One can prove that every closed subgroup of Ẑ is equal to a product
∏
p Hp, where Hp is a closed

subgroup of Zp (it is easy to show these are closed subgroups; for the converse one proves first

that every closed subgroup is a product by showing first that every closed subgroup is an ideal and

then making use of idempotents). Thus, with our knowledge of Zp we can write down all the closed

subgroups of Ẑ and hence all the subfields of Fp. Here is one concrete conclusion. There is no

proper subfield L of Fp such that Fp/L is a finite extension.

5.7. Cyclotomic fields. Once more, since we assume that the reader had seen the example of

cyclotomic fields before, we only summarize some of their key aspects.

Let µn denote that n-th roots of unity in C.

µn = {α ∈ C : αn = 1} = {ea·
2πi
n : a = 0, 1, . . . , n − 1}.

The field Q(µn) is the splitting field of xn−1. It is called a cyclotomic field. Note that Z/nZ ∼= µn

by a 7→ ea·
2πi
n . Consequently, an element ea·

2πi
n generates µn if and only if (a, n) = 1. Therefore µn

has ϕ(n) generators, where ϕ is Euler’s ϕ-function. They are called primitive roots of order n.

We also note that µd ⊆ µn if and only if d |n. As a matter of notation, define

ζn = e
2πi
n .
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Define the n-th cyclotomic polynomial Φn by

Φn(x) =
∏

ζ∈µn primitive

(x − ζ).

Note that

xn − 1 =
∏
d |n

Φd(x).

One proves that Φn(x) ∈ Z[x ] and is, of course, a monic polynomial of degree ϕ(n).

A key fact is that Φn(x) is an irreducible polynomial over Q, from that we deduce that Q(µn)/Q
is a Galois extension with Galois group of order ϕ(n). Such an automorphism is determined by its

action of ζn and must take it to ζan for some (a, n) = 1. This allows us to deduce that

(Z/nZ)× ∼= Gal(Q(µn)/Q), a 7→ {ζ 7→ ζa}.

Namely, the automorphism corresponding to a congruence class a is the one uniquely determined

by the property that it acts on the n-th roots of unity by raising to a-th power.

Furthermore,

Q(µn) ∩Q(µm) = Q(µgcd(m,n)), Q(µn) ·Q(µm) = Q(µlcm(m,n)).

Let K = ∪nQ(µn). Then K/Q is a Galois extension and

Gal(K/Q) = lim
←−

Gal(Q(µn)/Q) = lim
←−

(Z/nZ)×,

where the identification takes the element a ∈ Z/nZ to the automorphism determined by ζn 7→ ζan.

This implies that the transition maps are

(Z/nZ)× → (Z/mZ)×, x (mod n) 7→ x (mod m), m|n.

This inverse limit is a bit complicated. Let p > 2 be a prime; we shall consider a sub Galois extension

L of K,

L = ∪nQ(µpn).

We have

Gal(L/Q) = lim
←−

Gal(Q(µpn)/Q) = lim
←−

(Z/pnZ)×.

Now, at each level n we have an isomorphism

(Z/pnZ)× ∼= Z/(p − 1)Z× Z/pn−1Z.

What matters to us is that the inclusion Z/pn−1Z→ (Z/pnZ)× is given by a 7→ (1 +p)a (mod pn).

Using this, one deduces that the transition maps induce maps

αn × βn : Z/(p − 1)Z× Z/pnZ→ Z/(p − 1)Z× Z/pn−1Z,

where αn is an isomorphism and βn(a (mod pn)) = a (mod pn−1). Consequently,

Gal(L/Q) ∼= Z/(p − 1)Z× Zp.

We deduce the following diagram

L
(Z/pZ)×

CCCCCCCCC
Zp

{{{{{{{{

Q(µp)

(Z/pZ)× CCCCCCCC
M

Zp{{{{{{{{{

Q
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where M∩Q(µp) = Q and L = MQ(µp). In particular, we have contracted a Zp Galois extension of

Q, which is a non-trivial task. This extension is not easily described using polynomials. To convince

yourself of that, try writing the Z/pZ Galois extension of Q one gets from M. It is the subfield of

Q(µp2 ) that has degree p over Q.
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6. Kummer Theory

6.1. Cyclic Galois extensions. Let F be a field and n a positive integer not divisible by the char-

acteristic of F. Assume that F contains the n-th roots of unity: the polynomial xn − 1 is separable

and its roots are in F. We denote the roots by µn, of µn(F) if we need to clarify the field involved;

it is a cyclic group of order n under multiplication. Given an element a ∈ F we denote by n
√
a any

fixed solution of the polynomial xn − a. Recall that a cyclic Galois extension, or simply a cyclic

extension of fields is a finite Galois extension of fields with cyclic Galois group. In the same vain,

one talks about abelian extension, solvable extension, etc.

Theorem 6.1.1. Let a ∈ F∗ then F( n
√
a)/F is a cyclic Galois extension of order dividing n. Con-

versely, if L/F is a cyclic Galois extension of order m, m|n, then L = F( m
√
a) for some a ∈ F∗.

Proof. F( n
√
a) is the splitting field of the polynomial xn − a, because the roots of this polynomial

are precisely {ζ · n
√
a : ζ ∈ µn}. Moreover, there are n elements in µn, so xn − a is a separable

polynomial and so F( n
√
a)/F is a Galois extension.

Let σ ∈ Gal(F( n
√
a)/F), then

σ( n
√
a) = ζσ · n

√
a,

for some ζσ ∈ µn. Note that σ = Id if and only if ζσ = 1. Further,

ζστ · n
√
a = (στ)( n

√
a)

= σ(ζτ
n
√
a)

= ζτσ( n
√
a)

= ζτζσ · n
√
a

= ζσζτ · n
√
a.

Therefore,

σ 7→ ζσ,

is an injective homomorphism Gal(F( n
√
a)/F)→ µn. Since µn is a cyclic group, so is Gal(F( n

√
a)/F).

Conversely, let L/F be a cyclic Galois extension of order m|n; say, Gal(L/F) = 〈σ〉. Given α ∈ L
and ζ ∈ µm, define the Lagrange resolvent:

(4) [α, ζ] = α+ ζσ(α) + · · ·+ ζm−1σm−1(α).

This is an element of L and the action of σ on it is given by σ([α, ζ]) = σ(α) + ζσ2(α) + · · · +

ζm−1σm(α). Using that σm = Id, we find that

σ([α, ζ]) = ζ−1 · [α, ζ].

It follows that [α, ζ]m = (σ([α, ζ]))m = σ([α, ζ]m) and so that

[α, ζ]m ∈ F.

By independence of characters, for every ζ there is an α ∈ L such that [α, ζ] 6= 0. Let ζ be a

primitive m-th root of unity. Then F ⊆ F([α, ζ]) ⊆ L and σi([α, ζ]) = ζ−i · [α, ζ] implies that σi is

not the identity on F([α, ζ]). Thus, by the Galois correspondence,

L = F([α, ζ]).

�

Remark 6.1.2. Let L/F be a cyclic Galois extension of order m|n, where F is as above. Let G = 〈σ〉
be the Galois group, a cyclic group of order m. Given an element γ of L whose m-th power is in

F×, we get a map

G → µn ⊆ F×, σi 7→ σi(γ)/γ.
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This map is a homomorphism. The set of such homomorphisms forms a group under multiplication

of functions and the Lagrange resolvent allows us to show that there is such a homomorphism,

obtained from taking γ = [ζ, α[ for ζ a primitive m-th root of unity, whose order is m.

6.2. Kummer extensions. Let F be a field and n a positive integer not divisible by the characteristic

of F. Assume that F contains the n-th roots of unity. Recall that the exponent of a group G is the

minimal integer n such that every element of G has order divisibly by n. If G is finite abelian, there

is then an element of order n in G. A Kummer n-extension of F is an abelian Galois extension

L/F of finite order such that the Galois group has exponent m|n. In this section we shall describe

all such Galois extensions. Note that the case of G is cyclic is precisely the case we have dealt with

above. We shall need some basic facts about character group of a finite abelian group.

6.2.1. Characters of finite groups. Let G be a finite abelian group. A character χ of G is a group

homomorphism

χ : G → C×.

We denote the set of all characters of G by Ĝ. They form a group under multiplication of functions

(χ1χ2)(g) = χ1(g)χ2(g).

Ĝ is called the character group of G. If G is of exponent n and we are given a field F as above,

we can and often identify the n-th roots of unity in C× with the n-th roots of unity µn in F,

µn(C) ∼= µn(F), and view Ĝ is the group of homomorphisms

G → µn(F).

Suppose that G is cyclic of order m|n, say G = 〈σ〉. Then, to give a homomorphism χ : G → C×
is equivalent to choosing an m-th root of unity ζ and defining

χζ(σi) = ζi .

And, conversely, every character arises this way. That is, we find that G ∼= Ĝ, but the isomorphism

is not canonical, it depends on the choice of ζ. More generally, writing G = G1×· · ·×Ga, a product

of cyclic groups, we have canonically, Ĝ = Ĝ1× · · · × Ĝa and so Ĝ ∼= G for any finite abelian group.

Using this it is not hard to show the following statements.

Let G be a finite abelian group of exponent n:

(1) Let g ∈ G, g 6= 1. There exists χ ∈ Ĝ such that χ(g) 6= 1.

(2) The pairing G × Ĝ → µn, (a, χ) 7→ χ(a) is a bi-additive perfect pairing. It identifies G with
ˆ̂G in a canonical way.

(3) A set {χ1, . . . , χr} of characters generated G if and only if χi(g) = 1 for all i implies that

g = 1.

6.2.2. Kummer extensions. Let L/F be a finite abelian Galois extension of exponent m|n. Let

M(L) = {` ∈ L : `n ∈ F×}, N(L) = {`n : ` ∈ M(L)}.

M(L) is a subgroup of L× and N(L) is a subgroup of F×. Of course, M(L) ⊇ F×, N(L) ⊇ F×n =

N(F ).

Theorem 6.2.1. Let G = Gal(L/F). There is an exact sequence of groups

1→ F× → M(L×)
λ→ Ĝ → 1,
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where the first map is just the inclusion. The map λ is the following. Let ` ∈ M(L) and σ ∈ G,

then σ(`) = ζσ,` · `, for some root of unity ζσ,` ∈ µm, depending on σ and `, because F(`)/F is a

cyclic Galois extension of order m|n. We let

λ(`) ∈ Ĝ, λ(`)(σ) = ζσ,`.

We have L = F(M(L)) and L = F(`1, . . . , `r ) for elements `1, . . . , `r ∈ M(L) if and only if the

cosets `iF∗ generate M(L)/F×.

Proof. We first check that χ := λ(`) is a character. Indeed χ(σ) = σ(`)
` and so

χ(στ) =
στ(`)

`
=
σ(χ(τ)`)

`
= χ(τ) ·

σ(`)

`
= χ(σ)χ(τ).

Further, λ is a homomorphism. Let `, k ∈ M(L). Then

σ(`k)

`k
=
σ(`)

`
·
σ(k)

k
,

and so λ(`k) = λ(`) · λ(k).

It follows easily from the definitions, and Galois theory, that F× = Ker(λ).

To show that λ is surjective, decompose G is a product of cyclic groups G1 × · · · × Ga. Fix

r, 1 ≤ r ≤ a. Note that we can identify Gr = 〈σ〉 with the Galois group of a cyclic Galois extension

Lr/F of order m|n contained in L. Suppose that χ ∈ Ĝr . In (4) we constructed a non-zero element

[α, ζ] that generated Lr/F, σ([α,ζ])
[α,ζ] = ζ−1 and [α, ζ]m ∈ F∗ (and so [α, ζ]n ∈ F∗). That is, we see

now that if we choose ζ to a primitive m-th of unity, then [α, ζ] ∈ M(Lr ) ⊂ M(L) and

λ([α, ζ])(σi) = ζ−i .

It follows that λ([α, ζ]) is an element of Ĝr of order m and so the map λ is surjective onto Ĝr
(cf. Remark 6.1.2). Doing it separately for each of the extensions Li/F we find that λ is surjective

onto Ĝ.

Now, we clearly have L ⊇ F(M(L)). Suppose that σ ∈ G acts trivially on F(M(L)). Then

λ(`)(σ) = 1 for all ` ∈ M(L) and so χ(σ) = 1 for all χ ∈ Ĝ. That implies that σ = 1 and so, by

the Galois correspondence, that L = F(M(L)). Now, by the same argument, L = F(`1, . . . , `r ) if

and only if {λ(`i)} generate Ĝ, if and only if {`i} generate the quotient group M(L)/F×; that is, if

and only if {`iF×} generate M(L)/F×. �

Remark 6.2.2. The significance of the last part of the theorem is that if F is an infinite field, the

set M(L) is infinite. It is therefore useful to know when we can choose finitely many elements

`i ∈ M(L) such that L = F(`1, . . . , `r ).

Noting that raising to n-th power provides an isomorphism M(L)/F× ∼= N(L)/F×n, we conclude

the following.

Corollary 6.2.3. There is an isomorphism

N(L)/F×n ∼= Ĝ.

Here N(L)/F×n is a finite subgroup of F×/F×n. Let a1, . . . , ar be elements of F× that generate

N(L)/F×n, then L = F( n
√
a1, . . . , n

√
ar ).

We wish now to complete our discussion by showing that every finite subgroup H of F×/F×n
arises as N(L)/F×n for a finite abelian extension of F or exponent n. It is quite clear what to do.

Choose finitely many elements a1, . . . , ar of F× that generate H modulo F×n. Let

L = F( n
√
a1, . . . , n

√
ar ).
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Clearly L, being the compositum of the cyclic extensions F( n
√
ar ), is a finite Galois extension with

abelian Galois group of exponent dividing N. Moreover, N(L) ⊇ H. Now, we proved in Theo-

rem 6.2.1 that if L = F( n
√
a1, . . . , n

√
ar ) then { n

√
a1 · F×, . . . , n

√
ar · F×} generate M(L)/F× and so

we obtain that {a1 · F×n, . . . , ar · F×n} generate N(L)/F×n. But, they also generate H. Therefore,

H = N(L)/F×n.

Theorem 6.2.4. Let F be a field containing the n-th roots of unity where n is not divisible by the

characteristic of F.

There is a bijection between the lattice of finite abelian Galois extensions L/F of exponent m|n
and finite subgroups H of F×/F×,n. To a Galois extension one associates H = N(L)/F×,n and

to a subgroup H, generated by elements a1, . . . , ar of F×, one associates the Galois extension

L = F( n
√
a1, . . . , n

√
ar ). Furthermore, we have

H ∼= ̂Gal(L/F).

Let M/F be the union of all finite abelian Galois extensions L/F of exponent dividing n, and let

G = Gal(M/F). Let Ĝ be the character group of G, comprising continuous homomorphisms G → µn
where µn is endowed with the discrete topology, then

Ĝ ∼= F×/F×n.
The proof of the theorem follows from the discussion above, apart from the conclusions concerning

Ĝ. This is left as an exercise.

Example 6.2.5. Quadratic extensions of R. The group R×/R×2 = R×/R>0 is isomorphic to Z/2Z.

Thus, R has a unique quadratic extension. Since −1 gives a non-zero coset, this extension is

R(
√
−1).

Example 6.2.6. Quadratic extensions of Fq (q = pr , p an odd prime). This is rather similar. The

map x 7→ x2 has kernel ±1 and so F×q /F×2
q is isomorphic to Z/2Z. It follows that there is a unique

quadratic extension of Fq. We know all that already, of course. Contrary to the case of the real

numbers, there is no canonical element in F×q that is not a square. We just know that such a exists

and then the said quadratic extension is Fq(
√
a).

Example 6.2.7. Quadratic and bi-quadratic extensions of Q. The structure of Q×/Q×2 is of an

infinite abelian group, each element of which, different from the identity, has order 2. Let k, ` ∈ Q×.

The extensions Q(
√
k) and Q(

√
`) are isomorphic if and only if kQ×2 = `Q×2, namely, if and only

if k/` is a square of a rational number.

In a similar way, bi-quadartic extensions of Q correspond to subgroups of order 4 of Q×/Q×2.

Let `, k be two non-zero rational numbers such that k/` is not a square. Then Q(
√
k,
√
`)/Q is

a bi-quadratic extension. Every bi-quadratic extension is obtained this way. Q(
√
k,
√
`)/Q is equal

to Q(
√
k ′,
√
`′)/Q precisely when the subgroup of Q×/Q×2 generated by k, ` is equal to the one

generated by k ′, `′.

The Galois extensionQ(µ8)/Q has Galois group (Z/8Z)× ∼= Z/2Z×Z/2Z (as abstract groups). It

is a bi-quadratic extension. One quadratic extension is the one generated by Q(i). Since i = ζ2
8 , this

is the extension which is the fixed field of the subgroup {1, 5}. The quadratic extension corresponding

to {1, 7} = {±1} is generated by α = ζ8 + ζ̄8 and is a real quadratic extension and the Galois group

acts by α 7→ ζ3
8 + ζ̄3

8 . Take the Lagrange resolvent [α,−1] = ζ8 + ζ̄8− (ζ3
8 + ζ̄3

8) = ζ8−ζ3
8−ζ5

8 +ζ7
8 .

This element should be a square of a rational number. And indeed

[α,−1]2 = 8.

And so we get the quadratic field Q(
√

2). Thus,

Q(ζ8) = Q(
√
−1,
√

2).
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7. Calculation of Galois groups

The main problem is this. Let F be a field and f (x) ∈ F[x ] a monic, separable irreducible

polynomial of degree n. Let L be the splitting field of f over F and G = Gal(L/F). Calculate G.

A priori, we only know that G is a transitive subgroup of Sn. Here is the list of possibilities (up

to conjugation) for small n.

n groups

2 S2

3 S3, A3

4 S4, A4, D4, V, C4

5 S5, A5, F20, D10, C5

Here V is the Klein four group {1, (12)(34), (13)(24), (14)(23)} and C4 = 〈(1234)〉. C5 =

〈(12345)〉 and F20 = 〈(12345), (2354)〉.

7.1. The discriminant. This is a tool that allows us to decide if G ⊆ An or not. Assume that the

characteristic of F is different from 2. Write

f (x) =

n∏
i=1

(x − αi),

in L. We view G as a subgroup of the permutation group of α1, . . . , αn, which is identified naturally

with Sn. Consider the action of G on

δ :=
∏
i<j

(αi − αj).

For σ ∈ G we have

σ(δ) = sgn(σ) · δ;

Indeed, this is one of the ways one defines the sign of a permutation. Since G fixes δ2, δ2 ∈ F. Let

D(f ) := δ2 =
∏
i<j

(αi − αj)2.

We call D(f ) the discriminant of f . To say G fixes δ is to say that D(f ) is square in F.

Proposition 7.1.1. G ⊆ An if and only if D(f ) is a square in F.

Example 7.1.2. Consider the polynomial

f (x) = (x − α1)(x − α2) = x2 + bx + c.

We have

D(f ) = (α1 − α2)2 = (α1 + α2)2 − 4α1α2 = b2 − 4c,

which is the usual discriminant of the quadratic polynomial.

Example 7.1.3. For a cubic polynomial x3 + ax + b, a brute force calculation gives

D(f ) = −4a3 − 27b2.

Given a general monic cubic polynomial x3 + αx2 + βx + γ, put x = y − α
3 to obtain

(y −
α

3
)3 + α(y −

α

3
)2 + · · · = y3 + ay + b,

where a, b are explicit expressions in α, β, γ. We note that in general, D(f (x)) = D(f (x − α)) for

any f (x) ∈ F[x ] monic and α ∈ F, because the roots are just shifted by α. Hence the substitution

we made above allows to reduce the calculation of D(f ) to the case of x3 + ax + b.
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As a concrete example, take the polynomial f (x) = x3 − x + 1. It is an irreducible polynomial.

Indeed, if it is reducible over Q then by Gauss’s lemma it is reducible over Z. Which implies it’s

reducible modulo 2 and therefore that it has a root modulo 2, but 0, 1 are not roots modulo 2.

Alternately, one argues that if there is a root over Z it must be {±1} and we verify this is not the

case. 7 Now, we have

D(f ) = 4− 27 = −23,

which is not a square in Q. Therefore, the Galois group is not contained in A3, yet a transitive

subgroup of S3. Therefore, the Galois group is S3.

As another concrete example take f (x) = x3 − 21x − 7 which is an irreducible polynomial by

Eisenstein’s criterion. The discriminant D(f ) is 3672 which is a square in Q and so the Galois group

is A3.

Example 7.1.4. To construct a family of cubic polynomials over Q with Galois group A3 is the same

as finding rational points on the curve

y2 = −4A3 − 27B2,

except that one needs to prove these polynomials are also irreducible. For a fixed B, the complex

solutions are an elliptic curve and they form a group under the addition law pictured in Figure 1.

Figure 1. Addition on an elliptic curve

If we take B = 7, we have the solution (y , A) = (337,−21) (derived from the example above). It

turns out that this is a point of infinite order on the curve, and so we get infinitely many polynomials

x3 + ax + 7,

with Galois group A3 (if they are irreducible). Note that a is a rational number in general. Note that

these polynomials cannot be obtained from each other by a linear change of co-ordinates. Thus,

this is a “genuinely” infinite family. Can you prove that they are almost always irreducible? I believe

that’s true but I didn’t prove it.

7In general, if f (x) = xn + an−1x
n−1 + · · ·+ a0 ∈ Z[x ] and a is a root of f in Z then a|a0.
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7.2. Calculating Galois groups by reduction modulo p. This method rests on the following the-

orem that we shall not prove in this course.

Theorem 7.2.1. Let f (x) ∈ Z[x ] be a monic irreducible polynomial of degree n. Let G ⊂ Sn be its

Galois group. Suppose that p is a prime and that modulo p we have

f (x) = f1(x) · · · fr (x) (mod p),

a product of distinct monic irreducible polynomials for degree deg(fi) = ni . Then G contains a

permutation of cycle type (n1, . . . , nr ).

This theorem is a very powerful theorem. For example, for n = 3, we know that G = A3 or S3

and we can distinguish between the possibilities by deciding if G contains a transposition or not. For

n = 4 we have the following table:

C4 V D4 A4 S4

(12) × × X × X
(123) × × × X X
(12)(34) X X X X X
(1234) X × X × X

The table shows that we can distinguish between all the transitive subgroups of S4 by knowing

the cycle types of permutations belonging to it. An even deeper theorem tells us that every cycle

type belonging to G arises this way from p large enough. The catch though is that we cannot bound

p (although we can do it condition on the Generalized Riemann Hypothesis).

Example 7.2.2. Consider the polynomial f (x) = x3 − x + 1. This polynomial is irreducible modulo

2 and so G has a 3 cycle. Modulo 7 we have f (x) = (x − 2)(x2 + 2x + 3) and so G contains a

transposition. It follows that G = S3.

Example 7.2.3. Consider the polynomial f (x) = x4 − 4x2 + 2. It is an irreducible polynomial by

Eisenstein’s criterion. One verifies by a somewhat tedious calculation that f is irreducible modulo 3

and so G has a 4 cycle. Consider the polynomial y2 − 4y + 2 and let α,α′ be the roots. We have

α = 2 +
√

2, , α′ = 2−
√

2,
α

α′
= (1 +

√
2)2.

The splitting field of f is

K = Q(
√
α,
√
α′) = Q(

√
α),

and so [K : Q] = 4. It follows that G = C4.

We remark that having proved that |G| = 4, we can prove G is cyclic “by hand”. Consider the

diagram

Q(
√
α)

σ Q(
√
α′)

Q(α)
σ Q(α′)

Q Q
We first construct σ : Q(α)→ Q(α′) = Q(α) that takes α to α′. It takes the irreducibly polynomial

x2−α to x2−α′ and so σ can be lifted to an automorphism, still denoted σ between the fields Q(
√
α)

and Q(
√
α′). It takes

√
α to

√
α′, σ(

√
α) =

√
α′. We calculate the σ(

√
α′) = σ(

√
α′/α ·

√
α) =
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σ((1 +
√

2)−1 ·
√
α) = (1−

√
2)−1 ·

√
α′ = −(1 +

√
2)
√
α′ = −

√
α. From that we see that σ has

order 4 and so that G is cyclic.

Example 7.2.4. Consider the polynomial x4 − 2 over Q. It is irreducible by Eisenstein’s criterion.

The Galois group G is therefore a transitive subgroup of S4. The splitting field is Q( 4
√

2, i). It

contains Q(
√

2, i) which is a biquadratic extension. We see that Q( 4
√

2, i) has degree 8 over Q.

Thus, G = D4.

Example 7.2.5. Consider x4 + 3x + 15, irreducible by Eisenstein. Modulo 2 the polynomial is

x4 + x + 1. It has no root modulo 2. The quadratic irreducible polynomials modulo 2 are just

x2 + x + 1 and so x4 + x + 1 is irreducible modulo 2. Thus, the Galois group contains a 4-cycle.

Modulo 5 we find the polynomial x(x3 +3) = x(x−3)(x2 +3x−1) and we conclude that G contains

a transposition, so G ⊇ D4.

The discriminant of a polynomial of the form x4 + qx + r is −27q4 + 256r3. 8 So, for our

polynomial, the discriminant is 861813 = 33 · 59 · 54 and so is not a square. So G is not a subgroup

of A4. However, from the classification of subgroups as in the table above, we already know that.

It remains to decide if D = S4 or D = D4.

Testing the polynomial modulo 7 we find a unique root 3, x4 +3x+15 = (x−3)(x3 +3x2 +2x+2)

and the polynomial x3 + 3x2 + 2x + 2 doesn’t have a root modulo 7, hence it is irreducible. Thus,

G contains a 3 cycle and so G = S4.

Example 7.2.6. Constructing Sn Galois extensions. This is based on the group theoretic fact that

for n prime, Sn is generated by σ, τ , where σ can be taken to be any transposition and τ any cycle

of length n. Given n prime, find a polynomial f over Z/2Z which is irreducible. Also, let p be an

odd prime that is greater or equal to n − 2 and let h(x) be a quadratic irreducible polynomial in

Z/pZ[x ]. Let g(x) = h(x) ·
∏n−3
i=0 (x − i). Then g(x) is a polynomial of degree n as well. Using the

Chinese remainder theorem we may find a polynomial a(x) ∈ Z[x ] such that

a(x) ≡ f (x) (mod 2), a(x) ≡ g(x) (mod p).

It follows that the Galois group of a(x) is Sn. This technique can be extended to n that is not

prime. We illustrate this is one example below.

It’s fun to work some examples. Here is the table of irreducible polynomials of degree at most 5

over Z/2Z.

8More generally (see Dummit and Foote p. 613 ff.) the discriminant of a polynomial of the form x4 +px2 +qx + r

is

16p4r − 4p3q2 − 128p2r 2 + 144pq2r − 27q4 + 256r 3.

You will also find there a thorough discussion of the determination of the Galois group of a quartic polynomial which

is guaranteed to work and doesn’t use the method of reducing modulo a prime.
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degree polynomials

1 x

x + 1

2 x2 + x + 1

3 x3 + x2 + 1

x3 + x + 1

4 x4 + x3 + x2 + x + 1

x4 + x3 + 1

x4 + x + 1

5 x5 + x3 + x2 + x + 1

x5 + x4 + x2 + x + 1

x5 + x4 + x3 + x + 1

x5 + x4 + x3 + x2 + 1

x5 + x3 + 1

x5 + x2 + 1

(This table should be checked again)

So, to construct a cubic polynomial over Z with Galois group S3 we take the polynomials

x3 + x + 1 (mod 2), (x2 + 1)x (mod 3)

and find a simultaneous lift to Z[x ], for instance x3 + x + 3.

To construct a polynomial of degree 5 over Z with Galois group S5 we take the polynomials

x5 + x2 + 1 (mod 2), (x2 + 1)x(x + 1)(x − 1) = x5 − x (mod 3)

and find a simultaneous lift to Z[x ], for instance x5 + 3x2 + 2x + 3.

To construct a polynomial of degree 4 over Z with Galois group S4 we use that S4 is generated

by any choice of a 4 cycle and a 3 cycle. take the polynomials

x4 + x + 1 (mod 2), (x3 − x + 1)x = x4 − x2 + x (mod 3)

and find a simultaneous lift to Z[x ], for instance x4 + 2x2 + x + 3.

Example 7.2.7. For n = 5 we have the table

C5 A5 D10 F20 S5

(12) × × × × X
(123) × X × × X
(1234) × × × X X
(12345) X X X X X
(12)(34) × X X X X
(12)(345) × × × × X

For example, consider the polynomial x5−2, an irreducible polynomial by Eisenstein’s criterion. The

splitting field L contains Q(ζ5) and L/Q(ζ5) is cyclic of degree 1 or 5, according to Kummer theory.

Degree 1 is not possible as [Q(ζ5) : Q] = 4 and we know that 5|[L : Q]. Thus, G has degree 20

and so, necessarily, G ∼= F20.
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